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Abstract

The goal of the thesis is to give a fundamental understanding of how matter and light in-

teract with each other, and a detailed derivation of the different matter light Hamiltonians.

The main goal is to compare different models and see which model uses the least amount

of computational time towards a good approximated solution and discuss the flaws and

strengths of the different Hamiltonians and why some Hamiltonians work well compared to

other models.

The result of the thesis is that one can transform Hamiltonians to different gauges, as

it can be advantageous to solve different systems in certain gauges. One advantage is that

a solution can be easier to obtain, as a smaller basis set is needed and as a consequence,

less computational power is necessary. One key aspect is why some problems are preferable

to solve in certain gauges, such as the matter-light Hamiltonian can be easily solved in the

dipole gauge for high coupling terms compared to the Coulomb gauge. As the problem

is not fully understood and there are three different main opinions on why invariance is

not conserved in the Coulomb gauge. One opinion is that there is an asymmetric relation

between the position and the momentum operator, different papers state that there is a loss

in locality, or that the self energy term is not properly gauge transformed.

2



Jan Haakon Trabski Melka Bcs
April 30, 2021

Contents

1 Introduction 1

2 Quantization of light 3

2.1 Multi Field Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Hamiltonian interaction between light and matter 8

3.1 The light matter Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Multipolar Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Derivation of different matter light Hamiltonian 12

4.1 The Jaynes-Cummings Hamiltonian and Rabi Hamiltonian . . . . . . . . . . . . 12

4.2 Tavis-Cummings Hamiltonian and Dicke Hamiltonian . . . . . . . . . . . . . . . 15

5 Discussion 16

5.1 Minimal coupling Hamiltonian and PZW-Hamiltonian . . . . . . . . . . . . . . . 16

5.2 The Different Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Conclusion 19

7 Appendix 23

7.1 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.2 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.3 Appendix B1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.4 Appendix B2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.5 Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3



Jan Haakon Trabski Melka Bcs
April 30, 2021

1 Introduction

The interaction between matter and light is weak. However, with an ideal experimental setup,

the interaction becomes significantly larger. The idea is to place an atom or a molecule inside a

cavity in the presence of light being trapped between two mirrors placed with a distance, such

that the distance divided by the wavelength gives either an integer or half an integer. This results

in the light having a standing wave solution (See figure 1.1).[1; 2] Most theoretical studies for

correlated matter light systems are performed within the long wavelength approximation. This

is only valid when the molecule or atom is much smaller than the wavelength and the amplitude

of the wave can be regarded as non-changing when interacting with the particle.[1; 3; 4; 5].

Figure 1.1: A standing wave of a single mode with frequency ω (the blue dashed

line), a molecule or atom in the center (red dot) and mirrors which stand opposite

of each other with a distance such that the distance gives a whole or half a integer

when divided by the wavelength.

The approximation is well established within the derivation of the matter light Hamiltonian. it is

assumed that the coupling term is subsumed in the kinetic energy term. A model such as Jaynes-

Cummings neglects the self-interacting term, as the term contributes with constant energy.[6]

However recent theoretical work highlights the importance of the self-interacting term for non-

relativistic QED (quantum electrodynamics) in the long wavelength approximation. Some conse-

quences of excluding the self-energy term are that depolarization shift is not properly described,

and models lose their ground state.[6].

One important aspect of the matter light Hamiltonian is that it has one degree of freedom, chosen

to be a gauge. As QED is an abelian unitary group and the gauges are invariant (the Lagrangian

does not change) when transformed between local symmetry groups. it is possible to transform

between gauges with a unitary transformation. [7; 8] The key idea of using such a transform,

is that unitary transforms are linear and as a result, preserves the inner product of elements,

which implies that the eigenvalues do not change under a unitary gauge transformation.[5; 9] A

particularly gauge transformation that can transform a Coulomb gauge to a Dipole gauge is the

PZW-transformation.[8]
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To solve the Schrödinger equation, one can introduce projection operators. The importance of

a projection operator is justified by that they can expand an arbitrary wave function in terms

of a finite orthogonal basis. it is important to specify that the projection operators do not give

an exact solution in terms of coefficients, as they are unknown and other approaches must be

deduced to find the optimal coefficients for the arbitrary wave function, such as variational meth-

ods. A problem with truncated states is that gauge invariance breaks down, and commutation

relations between operators collapse for an uncompleted basis. From a fundamental perspective,

there are three hypothesis on why truncation breaks down gauge invariance and commutation

relations. The first conjecture states that there is a fundamental asymmetry property between

the momentum and position operator and as a result, the truncation works well when acting on

the position operator, but not on the momentum operator.[10] The second conjecture states that

the potential operator is not properly gauged transformed by the PZW. When the projection

operator acts on the potential, the operator causes a shift in both position and momentum. A

suggestion to correct the error is to let the projection operator act on the potential operator,

before transforming it with the PZW-transformation.[11] The third conjecture suggests that not

all operators are confined in the projection operators, this means that not all operators are trun-

cated with respect to the projection operator. it is suggested that the self interacting term is

not properly truncated with respect to the projection operator. This can be corrected by using

the Thomas-Reiche-Kuhn sum rule on the self interacting term rule.[12]

One important concept that has not been mentioned, is that most models are approximated

within a two-level system such as Jaynes-Cummings, Tavis-Cumming, Dicke, Rabi etc. The

idea of the two-level model is that the basis only consists of two possible states, the ground

state and the excited state. The reason for using such models, is because it is quite difficult to

construct a proper model when regarding all the possible state simultaneously (see figure 1.2 as

an illustration).[3; 13]

Figure 1.2: The figure represents the two-level system. The |g〉 the ground state,

the |e〉 denotes the excited state and the ∆E denotes the energy difference between

the two states
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2 Quantization of light

To introduce the basic concepts of how matter and light interact with each other. Light must

firstly be quantized with the help of Maxwell’s equations. The foundation of classical electro-

magnetic theory states that light is an electromagnetic wave. The following chapter will contain

a detailed derivation of how light can be quantized.

2.1 Multi Field Quantization

The quantum description of light requires the electromagnetic field to be quantized. First, a

closer look at the Maxwell’s equations is required. The equations should always be valid, but

there are two different Maxwell equations depending on the system.[2; 14] For non-free space, the

divergence of the electric field will be defined as the charge density (ρ) divided by the vacuum

permittivity (ε0). The derivation will be done in free space without any molecules. Thus, the

Maxwell’s equation can be written as the following equations.[2; 3; 14]

∇ ·E = 0 (2.1)

∇ ·B = 0 (2.2)

∇×E = −∂B
∂t

(2.3)

∇×B =
1

c2
∂E

∂t
(2.4)

The first two equations above represent the divergence of an electric field (E) and a magnetic

field (B) in an empty space. The operator informs if there is a singularity in space where the

field origins from. The last two equations give a coherence between the magnetic and electric

field. Or in other words, the curl of the field. Equations 2.1-2.4 will be the basis to construct an

electromagnetic vector potential A in three dimensions and given those equations, it is possible

to construct an electromagnetic vector potential that satisfies the equations above. [2; 3; 14; 15]

E = −∂A
∂t
−∇φ (2.5)

B = ∇×A (2.6)
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The divergence of the electric field and magnetic field gives the same result and leaves one

degree of freedom left. A gauge transformation can be set for the last degree of freedom, and

particularly the Coulomb gauge. which can be regarded as an conservation law, where electric

field can’t be created from nothing. [3] This is the whole essence of the derivation of a matter

light Hamiltonian, and its because it is now achievable to transform the Hamiltonian between

different families of gauges. This property is powerful, as the Hamiltonian could be difficult to

solve in some gauges and easier in others. With the following established properties, it is now

possible to derive the wave equation with the following divergence property from the Coulomb

gauge.[16]

∇ ·A = 0 (2.7)

combining equations 2.6, 2.5, 2.4 and 2.3 will give the the wave equation in three dimensions.

∇2A =
1

c2
∂2A
∂t2

(2.8)

There are multiple ways to find a valid vector-field that satisfies the condition from 2.8. One way

is to use the frequency eigenmodes, another way is to choose proper boundary conditions.[17] In

both cases the wave is inside a three-dimensional box with side length L. Because of linearity, the

box can be written as a Fourier expansion of the k-modes, as the wave might be a combination

of different fields. Thus, each k-solution can be considered part of a basis set, and a general

solution can be represented as equation 2.9.[2; 3; 14]

A(r, t) =
∑
k

2∑
λ=1

ek,λAk,λ(t)e
ik·r + ek,λAk,λ(t)

∗e−ik·r (2.9)

Where k denotes the wave vector which points at the direction of propagation of the wave. It

should be shown that the wave vector has the following generalized form.[2; 3; 14]

k =

(
2πl

Lx
,
2πm

Ly
,
2πn

Lz

)
(2.10)

with

l = 0,±1,±2, . . .

m = 0,±1,±2, . . .

n = 0,±1,±2, . . .

Where ωk denotes the frequency of the kth-wave, ek,λ is the polarization vector and the A(t)k,λ
is the amplitude for each Fourier mode. From the general solution it is possible to find an
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expression for A(t) by using the assumption that A(r, t) is multiplicative separable and equation

2.8.[2; 3; 14]

∇2A(t) ·A(r)− 1

c2
∂2

∂t2
A(r)A(t) = 0 (2.11)

A(t)∇2A(r) −A(r)
1

c2
∂2

∂t2
A(t) = 0 (2.12)

One fundamental postulate is it is impossible to distinguish which direction the wave propagates.

Thus, the following equation must be satisfied.[2; 3; 14]

Ak(t) = A∗−k(t) (2.13)

Given a general solution for A(r). It is possible to derive a solution for A(t) using equations

2.12 and 2.13 .

A(t)∇2eik·r − eik·r 1

c2
∂2

∂t2
A(t) = 0 (2.14)

(
−k2 − 1

c2
∂2

∂t2

)
A(t) = 0 (2.15)

The speed of light c can be rewritten using c = ωk

k , and the A(t) can be expressed as following.

A(t) = Ak · e−itωk (2.16)

Thus, a complete solution of generality of the wave equation can be expressed as the equation

below.

A(r, t) =
∑
k

2∑
λ=1

ek,λAk,λe
ik·r−itωk + ek,λA∗k,λ(t)e

−ik·r+itωk (2.17)

It is now possible to express the magnetic field and the electric field as quantized waves, as there

is coherence between the electromagnetic field and the two other fields.

E(r, t) = i
∑
k

ωk

2∑
λ=1

−ek,λAk,λe
ik·r−itωk − ek,λA∗k,λe

−ik·r+itωk (2.18)

B(r, t) = i
∑
k

2∑
λ=1

k × ek,λ
k

− ek,λAk,λe
ik·r−itωk − ek,λA∗k,λe

−ik·r+itωk (2.19)
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From classic mechanics, the total energy stored inside the cavity is given in 2.20.

E =
1

2

∫
(ε0E2 + µ0B2)dV (2.20)

By substituting the electric and magnetic field with equations 2.19 and 2.18 in equation 2.20,

it is possible to solve the integral and find the total energy of the field (See Appendix A). The

integrals reduces to the following expression.[3; 18; 19]

E =
∑
k

∑
λ

ε0V ω
2
k (AkλA ∗kλ +A ∗kλ Akλ) (2.21)

which is a general expression of the classical electromagnetic field with Akλ as the amplitudes of

the waves. With the expression k = 2nπ/L, the energy is a summation of quantified wave-modes.

This is analogous to the harmonic oscillator. Thus, the amplitudes can be rewritten as a linear

combination of the canonical variables pkλ and qkλ as in 2.22 and 2.23.[2; 14; 20]

Akλ =
1

2ωk
√
(ε0V )

[ωkq̂kλ + ip̂kλ] (2.22)

A∗kλ =
1

2ωk
√
(ε0V )

[ωkq̂kλ − ip̂kλ] (2.23)

When inserting these terms into 2.21, the following expression can be derived.

H =
1

2

∑
k

∑
λ

(
p̂2kλ + ω2

kq̂
2
kλ
)

(2.24)

The expression above is the harmonic oscillator, which means a proper combination of the

canonical variables were given for the amplitudes, as for a single mode field, the annihilation

and creation operators may be defined as

b̂kλ =
1√

(2~ωk)
[ωkq̂kλ + ip̂kλ] (2.25)

b̂†kλ =
1√

(2~ωk)
[ωkq̂kλ − ip̂kλ (2.26)

and one can observe that the amplitudes can be rewritten in the form of annihilation and creation

operators.[3; 18]

Akλ =
1√

(2~ωk)
b̂kλ (2.27)
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A∗kλ =
1√

(2~ωk)
b̂†kλ] (2.28)

The annihilation and a destruction operator for a specific wave-number k and polarization λ

acting on a specific fock states |n〉kλ which represents the amount of particle in a system is given

below.

b̂kλ |n〉kλ =
√
n |n− 1〉kλ

b̂†kλ |n〉kλ =
√
n+ 1 |n+ 1〉kλ

(2.29)

it is observed that the b̂† creates an additional photon, while b̂ annihilates a photon. The

b̂† is known as the creation operator while the b̂ is known as the annihilation operator. In

other literature they are typically written as â† and â. For practical reasons, it is important

to distinguish between boson operators and fermions operators. The difference between them

is that bosons are of a integer spin such as photons, while ferions have half an integer spin

such as electrons. As boson and fermion have the same operators and they commute. Thus,

fermions creation and annihilation operators will be denoted with a. The |nkλ〉 is the state which

represents the number of photons in a specific mode. The annihilation and creation operators

obey the commutation relation given below.[3; 18]

[b̂kλ, b̂
†
kλ] = δkk′δλλ′ (2.30)

with the number operator n̂.

b̂†kλb̂k’λ = n̂kλ (2.31)

Thus the Hamiltonian for the harmonic oscillator can be rewritten with respect to the annihila-

tion and creation operators.

H =
1

2

∑
k

∑
λ

(
p2kλ + ω2

kq
2
kλ
)

=
1

2

∑
k

∑
λ

~ωk(b̂†kλb̂kλ + b̂kλb̂
†
kλ)

=
∑
k

∑
λ

~ωk(b̂†kλb̂kλ +
1

2
)

(2.32)

A commutator relation between the creation and annihilation operators was used to get the final

Hamiltonian.[3; 18]
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3 Hamiltonian interaction between light and matter

In the previous chapter, it was shown that light can be quantified from Maxwell’s equations, and

the annihilation and creation operators were derived. It is now appropriate to discuss the light

matter Hamiltonian in the Coulomb gauge and the introduction of the minimal coupling term.

As mentioned earlier, it is sometimes better to transform the Hamiltonians within the same local

symmetry group, as the following chapter will include a derivation of the PZW-transformation,

which transforms a Hamiltonian in the Coulomb gauge to the dipole gauge.

3.1 The light matter Hamiltonian

After quantizing the electromagnetic wave, it is now possible to describe the interaction between

matter and light. The Hamiltonian is a sum of three terms, which are the atomic energy term

(Ĥa), the electromagnetic field term (Ĥc) and a interaction term (Ĥint) as described in equation

3.5.[3; 18]

Ĥ = Ĥc + Ĥa + Ĥint (3.1)

From earlier derivations, the field Hamiltonian can be described as the equation under.

Ĥc = ~
∑
k

ωk(b̂
†
k b̂k +

1

2
) (3.2)

it is possible to have multiple modes at the same time and the wave can be described as a

linear combination of them and the energy will be a sum of all possibles energy states correlated

to a wave mode present in the linear combination. It is typical to shift the reference point to

~
∑
k ωk/2 and consider only a single mode inside the cavity. Thus, equation 3.2 can be rewritten

as equation 3.3.[3; 18]

Ĥc = ~ωc(b̂†b̂) (3.3)

As a brief summary, the expression above contains the number operator, which is the amount

of bosons present in the system when acting on an arbitrary wave function. The ωc is the

angular frequency, which can be interpreted as the amount of periodic cycles per time. For the

interaction term (Ĥint) and the atomic term (Ĥa) the Hamiltonian will be correlated. Because

of the presence of an electromagnetic wave, which will affect the charged particle and shift the

momentum operator as expressed in 3.4. [3; 18]

p̂′ = (p̂− qA(r, t)) (3.4)
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it is possible to derive the expression given above by using the Lorentz force, Legendre trans-

formations and Lagrange theory. Where A(r, t) is the electromagnetic field and q is the charge.

Thus, the total Hamiltonian in the Coulomb gauge can be written as the equation below.[3; 18]

Ĥ =
(p̂− qA(r, t))2

2m
+V(r) + ~ω(b†b) (3.5)

The equation above is known as the minimal coupling Hamiltonian in the Coulomb gauge. The

first term on the lefthand-side represents the coupling term between a charged particle and the

electromagnetic wave. Thus, the total Hamiltonian is well defined and can be used to solve

a system where charged particles and light are present. A problem with this Hamiltonian is it

requires a large basis to get a good approximate solution up to a certain coupling value. One way

to solve the problem is to use a unitary transformation to reduce the basis needed to describe

the system numerically. This will not only solve the energy problem but will simultaneously save

computational time for some models. Before such transformation can be considered, the dipole

approximation (long wavelength approximation) must be established.[3; 18]

3.2 Multipolar Hamiltonian

It will be evident later why one wants to use the dipole approximation later, when the unitary

transformation is introduced. It has been derived that the electromagnetic field has the expres-

sion given in 2.17. The expression given in 2.17, can be simplified further by inserting 2.27 and

2.28 into 2.17 and by only focusing on one of the polarizations and additionally only one single

mode k. Thus, 2.17 can be further simplified to the following.[2]

A(r, t) =
(

~
2ωε0V

) 1
2

e(b†eik·r−itωk + be−ik·r+itωk) (3.6)

when applying the dipole approximation. The position part of the electromagnetic wave function

can be written as a series of a Taylor expansion.[2; 20]

eir·k = 1 + ir · k+
1

2
(ir · k)2 + . . . (3.7)

It is appropriate to approximate equation 3.7 by only keeping the first term on the lefthand-side.

This approximation is only valid when the wavelength is much larger than the molecule. As the

amplitude doesn’t change when it interferes with the molecule. Equation 3.6 can be rewritten

as 3.8 .[2]

A(t) =

(
~

2ωε0V

) 1
2

e(b†e−itωk + be+itωk) (3.8)
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The equation above represents a rotating helix or in other words just a phase shift with respect

to time. This means that the amplitude of the system is constant with time, and the equation

3.9 can be simplified to the following equation.[2; 20]

A =

(
~

2ωε0V

) 1
2

e(b̂+ b̂†) (3.9)

and let A denote the following

A =

(
~

2ωε0V

) 1
2

e (3.10)

Equation 3.9 is widely used and has important applications for studying dipoles. it is should

be mentioned that higher ordered terms in the dipole approximation are kept to study higher

ordered poles such as quadrupoles, etc. Equation 3.9 is a key part of constructing a trans-

formation from the Coulomb gauge to the dipole gauge. The transformation is known as the

PZW-transformation (Power-Zienau-Woolley transformation). It is possible to shift the Hamil-

tonian, such that the energy is preserved by using the fact that Coulomb gauges are invariant

when transformed between local symmetry groups. A unitary transformation is used to shift the

Hamiltonian, and a special type of unitary transformation is when the length of the vector is

preserved, then it is a linear unitary transformation. The argument for shifting is to reduce the

basis needed to solve the Hamiltonian and in some instances, it is easier to solve. An operator

Û will be representing the linear unitary transformation with the following form.[2; 20; 21]

U = exp(
−iµ̂A(b̂+ b̂†)

~
). (3.11)

Where µ̂ is the dipole moment operator can be used to check if certain transition state is allowed

or not or if a molecule has a dipole moment present. By applying the unitary transformation on

equation 3.5 will give the following equation to simplify.

ÛĤÛ† = Û(Ĥint + Ĥa + Ĥc)Û
† (3.12)

with

Ĥa = p̂2 +V(r) (3.13)

The Baker–Hausdorff lemma 3.14 can be used to find the unitary transformed Hamiltonian.[3; 20]

eŜ
†
peŜ = p+ i[p, Ŝ] +

(i)2

2
[Ŝ, [p, Ŝ]] + ...+

(i)n

n!
[Ŝ, [...[Ŝ, [Ŝ, [p, Ŝ]]]] (3.14)
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Where Ŝ is a hermitian Hamiltonian. As the unitary transformation consists of boson and

fermion operators, the commutator relation will not cancel out as easily. The transformation

gave the following result (See appendix B for a detailed derivation) .[2; 14; 20]

ÛĤintÛ
† = p̂2

ÛĤcÛ
† = b̂†b̂+ iµA(b̂† − b̂) + (µA)2

ÛĤaÛ
† = V(r)

(3.15)

From equation 3.15, it is evident that the transformation acts as a momentum boost transforma-

tion. The total Hamiltonian can be rewritten with respect to the linear unitary transformation

as the equation below.[2; 14; 20; 22]

ĤPZW = ~ωc(b̂b̂†) + iωcµ̂A(b̂† − b̂) + (µ̂A)2 + p̂2 +V(r). (3.16)

Form equation 3.16 the first term on the righthand-side represents the energy by the field. The

second term in the interaction term between the particle and the field. The third term is the

self interacting term. The two last terms are operators for the charged particle. The equation

3.16 can phase shift using the phase shift operator,

U(θ) = eiθb̂
†b̂ (3.17)

and by applying the phase shift operator on 3.16, gives the following expression in 3.18. [23; 24]

ĤPZW = ~ωc(b̂b̂†) + ωcµ̂A(b̂† + b̂) + (µ̂A)2 + p̂2 +V(r). (3.18)

This model serves as the basis of many models, and for some models the self interaction term

is ignored, others use truncated states, such as projection operators. In the following pages,

derivations of the other models will be studied, and in the end compared.[2; 14; 20]

11



Jan Haakon Trabski Melka Bcs
April 30, 2021

4 Derivation of different matter light Hamiltonian

Equation 3.16 serves as the basis of many different matter light Hamiltonians. In this section,

different matter light Hamiltonians will be derived. Most of the models are derived with respect

to a truncated state, known as the two level model. Such models are Jaynes-Cummings model,

Rabi model, Tavis-Cummings model and Dicke model.

4.1 The Jaynes-Cummings Hamiltonian and Rabi Hamiltonian

Equation 3.16 is the basis of the JC-Hamiltonian. The self interacting term is dropped.[3; 18]

This is valid for this model, as the self-interacting term is constant for all possible states. For

other models, there are a lot of disputes, if that is correct and the validity of the assumptions

will be discussed later in the paper. The total Hamiltonian consists of the following parts.[3; 18]

H = Ĥa + Ĥc + Ĥint (4.1)

The indices denotes the following: a for atom, c for cavity and int for interaction. with the

following corresponding parts.[3; 18]

ĤPZW = ~ωc(b̂b̂†) + ωcµ̂A(b̂† + b̂) + (µ̂A)2 + p̂2 +V(r). (4.2)

The Hamiltonian above will serves as the basis to derive the Jaynes-Cummings Hamiltonian.

The JC model assumes that there is only two possible states of for an atom, which is an excited

state |e〉 and a ground state |g〉. This model is also known as the two level model for an atom or

a molecule. This assumption is only valid if the photons have a frequency close to the transition

energy. The next step is to rewrite the Hamiltonian to the known Jaynes-Cummings model.

The first part can stand as it is, But the rest of the part in equation 4.2, must be rewritten with

respect to the two level model. it is convenient to introduce the atomic transition operator.[3; 18]

ˆ̂σ+ = |g〉 〈e| , ˆ̂σ− = |e〉 〈g| (4.3)

Since the basis consists of two states (|g〉 , 〈g|), then the basis can be represented by a two times

two matrix where each basis elements is in the column. where the diagonal element’s are 〈g|g〉

and 〈e|e〉, and the off diagonal elements are 〈g|e〉 and 〈e|g〉. The atomic Hamiltonian can be

represented as the equation below.[3; 18]

Ĥa = Ee |g〉 〈g|+ Eg |e〉 〈e| (4.4)
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Eg and Ee the different eigenstate of the different states. The reason for a negative sign is that

the system is shifted such that the reference point is now the 1/2~ωc. The difference in the

energy is ωa.[3; 18]

Ĥa =
1

2
ωa~σ̂z (4.5)

The interaction terms must also be dealt with, as it is necessary to find the overlap matrix. Now

it is necessary to calculate the expectation value of the dipole moment of the two level state.

Let ψ = e+ g.[3]

〈ψ| d̂ |ψ〉 = 〈e| d̂ |e〉+ 〈e| d̂ |g〉+ 〈g| d̂ |e〉+ 〈e| d̂ |g〉 (4.6)

The off diagonal elements are nonzero for an atom, this can be explained by using symmetry

arguments. When regarding the transition integrals given above, the product between two equal

states results in an even function. An Addition observation is the atom can be regarded as

having an inversion center, then the transition operator must be regarded as an odd function

(ungerade). Thus, the product expressed by the diagonal elements, will be an odd function and

the integral must be zero.[25] In contrast the off diagonal are by the same reasoning the only

surviving terms. For a molecule, the same arguments cannot be used, as the molecules do not

necessary need to have a inversion center and will have an active dipole moment. One way to set

the diagonal elements to zero is to assume they are equal and shift the energy correspondent to

the dipole moment the such that the diagonal elements becomes zero (change of reference).[3; 18]

〈ψ| d̂ |ψ〉 = 〈g| d̂ |e〉+ 〈e| d̂ |g〉 (4.7)

g = 〈g| d̂ |e〉 = 〈e| d̂ |g〉 (4.8)

Let d̂ represent the dipole operator and g as the transition operator. Combining equation 3.9

and the identity Ĥint = d̂E and rewriting E with respect to annihilation and creation operator,

then the coupling constant g can be defined as. [3; 18]

g =

(
ω

2V ~ε0

)1/2

g · e (4.9)

Then the interaction Hamiltonian can be expressed as below.

Ĥint = ~g(σ̂+ + σ̂−)(b+ b†) (4.10)

13



Jan Haakon Trabski Melka Bcs
April 30, 2021

The total Hamiltonian can be written as the following equation below.

ĤRabi = ~ωc(b̂†b̂) + ~g(σ̂+ + σ̂−)(b̂+ b̂†) +
1

2
ωa~σ̂z (4.11)

The equation 4.11 represents the Rabi Hamiltonian in the two level system. The Hamiltonian

represents almost the same as the Jaynes-Cummings Hamiltonian, but the Jaynes-Cummings

model is further approximated with a simplified interaction term. The interaction term can be

transformed from the Schrödinger picture to the interacting picture with both a fast and a slow

oscillating term. This can be done by using a unitary transform on the interacting term, as

represented in the equation below. [18]

U ′ = eiĤ0t (4.12)

with H0 represented as the equation below

H0 = b†b+
ωa
2
σ̂z (4.13)

And as for the PZW-transformation the following commutator relations must be found by ap-

plying the Baker–Hausdorff lemma. This will give the following result.[18]

U ′ĤintU
′† = ~λ(σ̂+b̂ei(ωa−ωc)t + σ̂−b̂†e−i(ωa−ωc)t + σ̂+b̂†ei(ωa+ωc)t + σ̂−b̂†e−i(ωa+ωc)t) (4.14)

The four terms in this expression have a markedly different time behavior. While the first two

terms vary slowly with time, e±i(ωa−ωc)t, the last two terms vary rapidly with time, e±i(ωa+ωc)t.

The first two terms, corresponding to the absorption of a photon by the atom elevated to its

excited state and the opposite process, an emission of a photon by the atom deexcited to the

ground state, are therefore kept in the rotating wave approximation. This approximation is valid

for |ωa − ωc| << ωa, i.e., close to resonance of the photon with the splitting of the two-level

atom. With the rotating wave approximation the Jaynes-Cummings model can be derived, as

represented below.[18]

ĤJC = ~ωc(b̂
†b̂) + ~g(b̂σ̂+ + b̂†σ̂−) +

1

2
ωa~σ̂z (4.15)

The first term is the field energy term, the second term is the interaction term between light

and matter and the last term is the atomic term.[18; 26]

14



Jan Haakon Trabski Melka Bcs
April 30, 2021

4.2 Tavis-Cummings Hamiltonian and Dicke Hamiltonian

In addition to other Hamiltonians, one might want to study a system with more than one atom.

Such models are the Tavis-Cummings Hamiltonian and the Dicke model. The difference in the

Tavis-Cummings model is within the rotating wave approximation. The symbols are defined in

section 4.1, but in addition, there are sums in the terms. The N term represents each individual

atom and the interaction term between the wave and atom. Note that there is only one wave

that is present in the cavity, so there is no point including combinations.[18]

HTC = ~ωc(b̂†b̂) + ~ωa

N∑
i

σ̂+
i σ̂
−
i + ~

N∑
i

gi(b̂σ̂
+
i + b̂†σ̂−i ) (4.16)

HDicke = ~ωc(b̂†b̂) + ~ωa

N∑
i

σ̂+
i σ̂
−
i + ~

N∑
i

gi(b̂+ b̂†)(σ̂+
i + σ̂−i ) (4.17)
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5 Discussion

As a brief summary of the theory, four different Hamiltonians have been introduced with different

applications. As QED is a unitary symmetry group, a transformation between gauges of local

symmetry can be constructed. [7; 8] One such transformation is the PZW-transform 3.16, which

can take a Hamiltonian in the Coulomb gauge and transform it into the dipole gauge within

the long wavelength approximation.[10]. One small detail that should be mentioned is that the

dipole gauge is also commonly known as the length gauge because the interacting term depends

on the transition operator. In contrast, the Coulomb gauge is known as the velocity gauge, as

the interacting term depends on the momentum. The reason for mentioning this is due some

literature do not always use both names, even though they are synonyms.[16; 22]

Moreover, the different Hamiltonians that were derived in the dipole gauge have different appli-

cations that should be mentioned. One of the Hamiltonians derived was the Jaynes-Cummings

Hamiltonian equation 4.15, which is used to study single atomic systems or single molecule and

the frequencies between transition states. The Tavis-Cummings Hamiltonian equation 4.16 is

used to study the same as Jayne-Cummings, but the model can be used for a many particle

systems. Other models which are quite similar to the above mentioned Hamiltonians, but differ

from them as they are beyond the rotating wave approximations are the Dicke-model equation

4.17 and Rabi model equation 4.11. The Rabi model is used for a single atomic systems, while

the Dicke model is used for multi atomic systems.[27]

5.1 Minimal coupling Hamiltonian and PZW-Hamiltonian

As mentioned earlier the PZW-Hamiltonian is widely used regarding the light mattersystems.

The main difference between the Hamiltonian is that the minimal coupling Hamiltonian given

in the equation3.5 is in the Coulomb gauge while the PZW-Hamiltonian in the equation 3.16

is in the dipole gauge. [21; 28] Both models can be applied on the two-level model, where the

total basis is truncated down to two possible states, the ground state and the excited state.[13]

When applying a Hamiltonian on a truncated, some problems occur for the Hamiltonian in the

Coulomb gauge. [10; 16; 22]

As written in the introduction, there are three hypotheses why the Hamiltonians applied on a

truncated basis set in the Coulomb gauge performs poorer than the dipole gauge. One of the

conjectures [10] performed a theoretical experiment, where they compared the energy in a well

potential, given by the Rabi model in the dipole and Coulomb gauge. The goal was to compare

the accuracy of the Rabi splittings given from the Rabi model on a truncated basis in the dipole

and Coulomb gauge. The Rabi splitting calculated by the Rabi Hamiltonian in the Coulomb

gauge gave less accurate Rabi splitting than the dipole gauge of the same sized truncated basis
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set. This indicates that a large basis set is needed to study strong Rabi splitting values in the

Coulumb gauge, compared to the same Hamiltonian in the dipole gauge. The observation was

present due to an asymmetric behaviour between the momentum and position operator, which

is the main reason why the Hamiltonian in the Coulomb gauge fails to produce equally good

results as if the Hamiltonian was in the dipole gauge.[10] There is no suggestion from the paper

on how to correct the problem, but newer research papers disagree and agree with the origin of

the problem that was postulated and even suggested how to correct the problem.[4; 5; 10]

A different paper [11] did a similar experiment, but concluded more specifically why the gauge

invariance broke down in the Coulomb gauge. The argument is that the potential operator in the

light matter Hamiltonian is not properly gauge transformed by the PZW-transform. Meaning

the locality in the potential is lost due to truncation, which is analogous to the commutation

rule between the momentum and position operator is only preserved in a full basis. This means

that the hamiltonian applied on truncated basis in Hilbert space, will cause a loss in locality:

V(x) → V’(x, p̂) and can be fixed by applying the following substitution p̂′ → p̂ − qÂ and will

preserve the gauge invariance. Thus, to properly transform the Coulomb gauge with the PZW

transformation, the transformation must be properly truncated by the projection operator. This

means that the potential operator and the PZW operator must be acted on by the projection

operator to get a gauge invariant Hamiltonian in the Coulomb gauge (P̂Û
†
P̂·P̂V̂(x)P̂·P̂ÛP̂).[11]

A third paper [12] did a theoretical experiment where they transferred protons and electrons

between two fixed ions to study the Rabi splitting in different gauges. They suggested that the

problem comes from not all operators are properly confined when truncated, rather just loss of

locality. This implies that the problem does not only apply to the potential operator, but for the

dipole operator as the self energy term is not properly truncated. This was especially evident

when the projection operator (P̂) acted on the PZW-transformation (P̂ÛP̂) and then Taylor

expanded P̂ÛP̂ =
∑∞
n

1
n! (
−i
~ )nP̂µ̂nP̂) and analyzing the second order 1

2 (
−i
~ )2P̂µ̂(P̂ + Q̂)µ̂P̂)

where the identity is (P̂ + Q̂), where Q̂ is higher order excited states. [11]. A suggestion to

regain proper gauge invariance within the Coulomb gauge is to properly truncate the self energy

term with the Thomas-Reich-Kuhn sum rule (Given in appendix C).[5]

In a brief summary, one of the main reason for not using the light matter Hamiltonian in

the Coulomb gauge is that the gauge invariance breaks down and cannot accurately provide a

correct Rabi splitting even for small couplings.[5] The second reason is that there is an asymmetry

relation between the momentum and position operator in the Coulomb gauge. As a consequence,

a larger basis set for a truncated basis applied on a Hamiltonian in the Coulomb gauge is required

for the Hamiltonian to produce realistic results for even small couplings, in contrast to the dipole

gauge.[10] There is some dispute about how to correct the problem, but both papers [11; 12] have

proven that their way to correct the problem is functional, and result in a better description for a
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higher coupling term when applying these corrections. One specification is that these corrections

do not bypass the accuracy of the Hamiltonian in the dipole gauge. Resulting in a requirement

of a larger basis in the Coulomb gauge to get an equally accurate Rabi splitting as in the dipole

gauge.

5.2 The Different Hamiltonians

Now that the differences and problems of the Coulomb gauge and dipole gauge are established, it

is time to discuss why there are so many models and the differences between them. For a single

atomic system, there are two well known models, the Dicke model represented in equation 4.17

and the Jaynes Cumming model represented in equation 4.15. The main difference is that the

Jaynes-Cummings model is within the rotating wave approximation. The Rabi model given in

equation 4.11 can be transformed from the Schödinger picture to the interaction picture and will

consist of four terms (See equation 4.14). The first two terms in equation 4.14 are slow oscillating

terms with respect to time, while the last two terms are fast oscillating terms with respect to

time.[18] When applying the wave approximation, the slow oscillating terms are neglected. This

is a valid approximation when the applied electromagnetic radiation is near resonant with an

atomic transition, and the intensity is low.[29] The reason for applying the approximation is

that this simplifies the problem. For those instances the rotating wave approximation cannot

be used, the function that needs to be solved is transcendental, which means that the equations

can’t be solved analytically and numerical approaches must be used. In some instances, the

transcendental function can be expanded to a power series and an inversion of the function can

be used to obtain an analytical solution.[30]

A specific case where the Rabi and the Jaynes-Cummings models are utilized is in the study

of qubits.[27; 31] Within an area of circuit QED, where one wants to study single qubits and

how the two level system interacts with the harmonic oscillator. In other words, study how

nuclear spin interacts with a magnetic field. The model that is used is the Rabi Hamiltonian,

but sometimes the wave function applied on that Rabi Hamiltonian can be a bit problematic to

solve, but if the Rabi splittings between the qubits and the oscillator are much smaller than the

qubit and oscillator frequencies, then a good approximation to drop the counter rotating terms

(rotating wave approximation).[27] A different interest is to study larger systems with multiple

atoms or a molecule, then the Tavis-Cummings or Dicke-model can be used to describe such

systems. An Example where the Tavis-Cummings Hamiltonian is used is the study of quantum

gates. [18; 32]
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6 Conclusion

The Hamiltonian in the Coulomb gauge performs poorer than in the dipole gauge when studying

coupling strength correlated to energy. The were mainly three opinions on why invariance breaks

down in the Coulomb gauge [10; 11; 12], and only two of the papers provided a correction to the

problem [11; 12]. The three postulated problems are given as follows: There is an asymmetric

property between momentum and position operators. The second postulate is that there is

a loss in locality when applying truncation on the potential in the Coulomb Gauge. which

can be corrected by truncating the PZW transformation and applying the transformation on

the minimal coupling Hamiltonian. The third postulate is that the operators are not properly

truncated in the Coulomb gauge, especially the self interacting term. Which can be corrected if

the self interacting term is properly gauge transformed.
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7 Appendix

7.1 Appendix A

The derivation for the total energy given in 2.21 will be derived in this part of the appendix.

The derivation can be done by substituting the electric-field and magnetic-field with equation

2.18 and 2.19 gives the following expression

E =
1

2

∑
k

∑
λ

∫
dV (ε0ωkωk′)(−Ak,λAk′,λ′ek,λ · ek′,λ′ei(k+k’)r−(ωk+ω

′
k)

−A∗k,λA
∗
k′,λ′ek,λ · ek′,λ′ei(k+k’)r−(ωk+ω

′
k) +Ak,λA∗k′,λ′ek,λ · ek′,λ′ei(k+k’)r

A∗k,λAk′,λ′ek,λ · ek′,λ′ei(k−k’)) + µ0B2

(7.1)

The following relation must be used to further simplify the integral.

∫
V

e±i(k−k’)rdV = δk,±kV (7.2)

The magnetic part is analogues to the electric part. Using the equation 7.2. The integral can

be solved, giving the following expression.[3; 27; 33]

E =
1

2

∑
k

∑
λ,λ′=1,2

V ((AkλA
∗
kλ′ +A∗kλAkλ′)

×
(
ε0ω

2
kekλ · ekλ′ +

1

µ0
k× ekλ · k× ekλ′

)
−
(
AkλA−kλ′e−2iωkt +A∗kλA

∗
−kλ′e2iωkt

)
×
(
ε0ω

2
kekλ · e−kλ′ − 1

µ0
k× ekλ · k× e−kλ′

)
(7.3)

The expression above can be further simplified by using the following identities.[3; 27; 33]

(k× ekλ) · (k× e±kλ′) = k2ekλ · e±kλ

ekλ · ekλ′ = δλ,λ′

(7.4)

Rewriting this with some algebra gives the final expression for the energy

E =
∑
k

∑
λ

ε0V ω
2
k (AkλA ∗kλ +A ∗kλ Akλ) (7.5)
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7.2 Appendix B

This part of the appendix will cover a detailed derivation of equation under

Û(Ĥint + Ĥa + Ĥc)Û
† = ~ωc(b̂b̂†) + iωcµ̂A(b̂† − b̂) + (µ̂A)2 + Ĥa. (7.6)

As stated in section 2.1, the Baker-Hausdorff lemma must be used to find the following commu-

tator relations.

ÛĤintÛ
† = P̂ 2

ÛĤcÛ
† = b̂†b̂+ µ̂A(b̂† − b̂) + (µ̂A)2

ÛĤaÛ
† = V(r)

(7.7)

7.3 Appendix B1

The derivations will be done in a chronological order starting from above in 7.7. The relations

given in 7.7 can be found by using Baker Hausdorff lemma. For the first expression, it is only

necessary to include the first order commutator relation, as the rest will be zero. Before the

first relation can be evaluated, a little trick must be applied, as the interaction Hamiltonian is

squared. [3]

ÛĤintÛ
† = Û(p̂− qÂ)2Û†

The identity is inserted 1 = Û Û†

Û(p̂− qÂ)2Û† = Û(p̂− qÂ)Û†Û(p̂− qÂ)Û†

Thus, the problem has been simplified and the product of each Û(p̂− qÂ)Û† will be equal and

one have to only evaluate one of the terms.[3]

ÛĤintÛ
† = (p̂− qÂ) + [(p̂− qÂ), −i

~
µ̂A(b̂+ b̂†)]

−iA
~

[(p̂− Â), µ̂(b̂+ b̂†)] =
−iA
~

[(p̂, µ̂(b̂+ b̂†)] +
−iA
~

[−Â, µ̂(b̂+ b̂†)]

Now the equation above can be split up to two parts, one for the commutator relations between

Û p̂Û† and the commutator relations between Û q̂AÛ†.[3]
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−iA
~

[(p̂, µ̂(b̂+ b̂†)] =
−iA
~

[p̂, µ̂b̂] + [p̂, µ̂b̂†]

−iA
~

[−Â, µ̂(b̂+ b̂†)] =
−iA
~

[−Â, µ̂b̂†] + [−Â, µ̂b̂]

−iA
~

([p̂, µ̂b̂]− [p̂, µ̂b̂†]) =
−iA
~

([p̂, µ̂]b̂+ [p̂, b̂]µ̂+ [p̂, µ̂]b̂† + [p̂, b̂†]µ̂)

−iA
~

([−Â, µ̂b̂†] + [−Â, µ̂b̂]) = −iA
~

([−Â, µ̂]b̂† + [−Â, b̂†]µ̂+ [−Â, µ̂]b̂+ [−Â, b̂]µ̂)

−iA
~

([p̂, µ̂]b̂+ [p̂, b̂]µ̂+ [p̂, µ̂]b̂† + [p̂, b̂†]µ̂) =
−iA
~

[p̂, µ̂]b̂+ [p̂, µ̂]b̂†)

−iA
~

[−Â, µ̂]b̂† + [−Â, b̂†]µ̂+ [−Â, µ̂]b̂+ [−Â, −iA
~

(b̂]µ̂) = [−Â, b̂†]µ̂+ [−Â, b̂]µ̂)

−iA
~

([p̂, µ̂]b̂+ [p̂, b̂]µ̂+ [p̂, µ̂]b̂† + [p̂, b̂†]µ̂) =
−iA
~

([p̂, µ̂]b̂+ [p̂, µ̂]b̂†)

−iA
~

([−Â, µ̂]b̂† + [−Â, b̂†]µ̂+ [−Â, µ̂]b̂+ [−Â, (b̂]µ̂) = −iA
~

([−Â, b̂†]µ̂+ [−Â, b̂]µ̂)

−iA
~

([p̂, µ̂]b̂+ [p̂, µ̂]b̂†) = qA(b̂+ b̂†)

−iA
~

([−Â, b̂†]µ̂+ [−Â, b̂]µ̂) = 0

Thus, the equation resolve to.[22]

ÛĤintÛ
† = P̂ 2
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7.4 Appendix B2

Now the field energy Hamiltonian Ĥc will be evaluated. The same lemma will be used, but the

commutator relation up to the second order must be evaluated, as the rest is zero.

ÛĤcÛ
† = iωcb̂

†b̂+ [b̂†b̂,
−i
~
µ̂A(b̂+ b̂†)] + [[b̂†b̂,

−i
~
µ̂A(b̂+ b̂†)],

−i
~
µ̂A(b̂+ b̂†)]

[b̂†b̂, µ̂A(b̂+ b̂†)] = [b̂†b̂, µ̂Ab̂] + [b̂b̂†, µ̂Ab̂†)]

[b̂†b̂, µ̂Ab̂] + [b̂†b̂, µ̂Ab̂†)] = [b̂†, µ̂Ab̂]b̂+ b̂†[b̂, µ̂Ab̂] + [b̂†, µ̂Ab̂†)]b̂+ b̂†[b̂, µ̂Ab̂†)]

[b̂†, µ̂Ab̂]b̂+ b̂†[b̂, µ̂Ab̂] + [b̂†, µ̂Ab̂†)]b̂+ b̂†[b̂, µ̂Ab̂†)] = [b̂†, µ̂Ab̂]b̂+ b̂†[b̂, µ̂Ab̂†)]

[b̂†, µ̂Ab̂]b̂+ b̂†[b̂, µ̂Ab̂†)] = µ̂A((b̂†b̂− b̂b̂†)b̂+ b̂†(b̂b̂† − b̂†b̂))

µ̂A((b̂†b̂− b̂b̂†)b̂+ b̂†(b̂b̂† − b̂†b̂)) = iωcµ̂A(b̂† − b̂)

Now for the second order term.

[[b̂†b̂,
−i
~
µ̂A(b̂+ b̂†)],

−i
~
µ̂A(b̂+ b̂†)] = [iωcµ̂A(b̂† − b̂),

−i
~
µ̂Ab̂] + [iωcµ̂A(b̂† − b̂),

−i
~
µ̂Ab̂†]

[iωcµ̂A(b̂† − b̂),
−i
~
µ̂A(b̂] + [iωcµ̂A(b̂† − b̂),

−i
~
µ̂A(b̂†] =

[iωcµ̂A(b̂†),
−i
~
µ̂Ab̂] + [iωcµ̂A− b̂,

−i
~
µ̂Ab̂†]

[iωcµ̂A(b̂†),
−i
~
µ̂Ab̂] + [iωcµ̂A− b̂,

−i
~
µ̂Ab̂†] = (µ̂A)2

The last one is trivial.
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7.5 Appendix C

The Thomas-Reich-Kuhn sum rule is a formula that sum over the energies for all possible tran-

sition states.[12; 34]

D =
∑
j

[Ej − Ek](〈k| x̂ |j〉)2 (7.8)

Where x̂ is a operator, Ej and 〈j| are the eigenstate of the Hamiltonian and correspondent

eigenvalue. Ek and |k〉 are the particular state and the corresponding energy. where k usually

denotes the ground state. In context to the matter light Hamiltonian, the Thomas-Reich-Kuhn

can be rewritten as following.[12; 34]

D = A2
∑
j

[ωj − ωk](〈k| µ̂ |j〉)2 (7.9)
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