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Abstract

Epidermal growth factor receptor (EGFR) inhibitors interrupt EGFR-dependent cellular signal-

ing pathways that lead to accelerated cancerous tumor growth and proliferation, and are actively

developed for treatment of various types of non-small cell cancer. Here, we continue our investigation

of an empirical chirality-potency relationship between the R/S enantiomers of thieno-, pyrrolo- and

furopyrmidines when acting as Type I Epidermal Growth Factor Receptor Tyrosine Kinase (EGFR-

TK) inhibitors, with the aim of providing a mechanism which relates molecular chirality to empirical

measurements of inhibition.

Based on long Molecular Synamics simulations (1 µs) of ligand-in-receptor complexes between the

active EGFR intracellular domain and inhibitors, we present qualitative evidence that the primary

differentiator of potency is a combination of 3 stereo-specific interactions: a water-mediated hydro-

gen bond to Threonine-854, a pi-cation interaction with Lysine-745, and for methanol-containing

inhibitors, a hydrogen bond to either Lysine-745 or Aspartate-855. These interactions are shown to

occur more frequently for the high-potency enantiomers in our simulation. The water-bridge is a new

addition which we previously couldn’t have modeled in our gas-state simulation.

Our findings provide important insight for the design of EGFR inhibitors. More broadly, the

results raise further questions about the role of water in ligand-receptor bonding, and add to a

growing list of evidence that modeling of water is crucial in estimating the binding affinity of small

molecule inhibitors.
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Abbreviations

ATP Adenosine triphosphate

ASP Asparartate

EGFR Epidermal Growth Factor Receptor

EGF Epidermal Growth Factor

GLU Glutamine

LIE Ligand Interaction Energy

LYS Lysine

MC Monte Carlo simulations

MD Molecular Dynamics simulations

MM Molecular Mechanics

MM/GB-SA Molecular Mechanics/Generalized Born Surface Area energy calculation

OPLS Optimized Potentials for Liquid Simulations (force field)

QM/MM Hybrid quantum mechanical and molecular mechanical method

RTK Receptor tyrosine kinase

RMSD Root Mean Square Deviation

THR Threonine

XRD X-Ray Diffraction
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1 Introduction

Epidermal growth factor receptor (EGFR) is a transmembrane cell surface protein that is a receptor for the

Epidermal Growth Factor (EGF) family of extracellular protein ligands. EGFR is part of the ErbB family

of four receptor tyrosine kinases (EGFR/Her1, Neu/Her2, Her3, and Her4) whose primary biological

function is to regulate cell growth [1]. However, they have also been shown to play a large role in several

types of non-small cell cancer, including breast, lung, esophageal, and head and neck cancers [2,3]. Under

certain conditions, as a result of over-expression, mutation, or co-expression of the growth factors and the

receptor, these receptors can become hyperactivated; the result of this is uncontrolled cell proliferation. [4]

Due to their multi-dimensional role in the progression of cancer, EGFR and its family members have

emerged as popular targets for anti-cancer therapy [5], particularly small-molecule kinase inhibitors [6].

The first such inhibitor to be made commercially available was Erlotinib (under the brand name of

Tarceva) in 2004, [7] and later FDA-approved kinase inhibitors include Gefitinib and Lapatinib [8]. These

inhibitors compete directly with ATP and bind to EGFR in its place, preventing phosphorylation of target

tyrosine residues and stopping the signal cascade. However, prolonged administration of 1st generation

EGFR-TK inhibitors often leads to patients becoming immune to the drugs due to mutations in EFGR [9],

necessitating further developments in mutation-resistant inhibitors.

In the last decade we have been developing ATP-competitive EFGR-inhibitors based on thieno- [10],

pyrrolo- [11] and furopyrimidines [12], structurally inspired by the pyrrolopyrimidine AEE788, an EGFR

inhibitor first elucidated in 2004 [13]. A structure-activity relationship (SAR) study in 2015 [14] synthe-

sized and evaluated 44 such small molecule kinase inhibitors against EGFR, many of which had chiral

substitutes. For all chiral compounds, the chirality was observed to have a surprisingly strong effect upon

the biological activity of the inhibitor; when separated into enantiopure solutions, several enantiomers

were reported to have a thousandfold difference in potency between the most active and least active

enantiomer, with the racemic mixture following the trend of the most active enantiomer. This means

that the active enantiomer competes strongly with the native ATP ligand in binding to EGFR, while the

other enantiomer is much less competitive.

A chiral compound is one which is not superposable on its mirror image through any combination of

translation and rotation. [15] In the case of the EGFR inhibitors, the chirality results from an amine

substituent on the pyrrolpyrimidine scaffold whose carbon chain contains a chiral carbon bound to the

amine, a phenyl group, a hydrogen, and either a methyl or a methanol group. In a symmetric environment,

such as in gas or solvated in water, the energy difference between the mirror images is exactly zero. In

proteins however, proteinogenic amino acids (save glycine) have at least one chiral center at Cα. Threonine

and isoleucine have an additional chiral center at Cβ . Further, only one of the two enantiomers is widely

used in nature: according to the D-/L-naming convention, most naturally occurring amino acids are found

in the L-configuration. Since proteins contain hundreds of amino acids, they are highly asymmetric. Thus,

2



1 Introduction

it is not unexpected to see differences in binding affinity for chiral inhibitors bound to an enzyme like

EGFR. However, in our case, two of the groups on the chiral center, hydrogen and methyl/methanol, are

much smaller than the two ring structures, and the binding pocket appears to have sufficient space for

them both. How is it that the configuration of methyl, a small, non-polar, functional group is able to

produce such a large effect?

This is the central problem of this thesis:

What is the structural mechanism that explains why the potency of 1-phenylethylamine-

substituted furo-, thieno- and pyrrolopyrimidines as EGFR inhibitors depends so strongly on

their stereoisomery?

Developing a theory that relates how the microscopic change in structure affects the macroscopic activity

is a highly non-trivial task. The potential search space for explanations is enormous due to the vast

amount of atomic, molecular and supramolecular interactions that take place in a biomolecule. Express-

ing, evaluating and validating all explanations would be the work of several lifetimes. Fortunately for

the scope of this thesis, we have two factors that drastically cut down on the amount of work. The

first is that EGFR is a very well studied enzyme, with a large amount of papers written about the pro-

tein’s structure [16], dynamics [17], mechanisms [18] and interactions with other inhibitors [19], and crucially,

three-dimensional protein structures submitted to the Protein Databank (PDB). The second is access

to advanced computational modelling tools and the computational resources to use them, which allows

us to both model atomic interactions directly and to do so much faster than is possible in a laboratory

setting.

In the experimental studies of our inhibitors, potency was measured by IC50. This is the concentration

at which the natural reaction catalyzed by the enzyme (a tyrosine-phosphorylation) reacts at 50% of the

non-inhibited rate. This is one of several standard ways of reporting the binding affinity of the inhibitor

to the receptor - how strongly the inhibitor interacts with the receptor [20]. If the system is at equilibrium,

the IC50 value can be directly related to the change in binding free energy [21] - which can be calculated

computationally, provided we use realistic model systems and accurate energy calculations. By looking

at which atomic interactions contribute to the differences in binding free energy, we would therefore have

a top down approach to finding a theoretical explanation. Unfortunately, this has already proven itself

to be a rather difficult task to accomplish in our earlier work [22].

Previously, we have used the Protein Database to create 3D models of the receptor-inhibitor complexes

of our kinase inhibitors docked to EGFR. These 3D models were used for calculating docking scores using

quick and simplified docking methods such as Glide and Induced Fit Docking, [23] which are intended for

high-throughput virtual screening of compounds using a rigid receptor model (the familiar lock-and-key

model of enzymatic reactions). Unfortunately these methods were found to be too inaccurate for the
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task in terms of how the docked ligand-receptor system behaved; neither score nor structure showed clear

differences between the enantiomers [24]. With that in mind, we attempted to model the system using a

hybrid quantum mechanics and molecular mechanics method, arguing that the flexibility of the receptor

as well as the quantum mechanical interactions between the ligand and the binding pocket might be the

reason for the enantioselectivity. Here our focus was to quantify how strongly the inhibitors interacted

with various residues in the binding pocket; Again we found no clear indications for one enantiomer

being more stable than the other. Additionally, we had considerable difficulty computing more accurate

energies and minimized energy structures due to computational cost. [22]

Heading back to the drawing board, we considered further approaches and addressed deficiencies in our

models. One factor we hadn’t considered yet was the impact of the surrounding solvent. It is well

known that structures in the crystal and in solution differ in several important respects, such as radius

of gyration, solvent accessible surface, intramolecular hydrogen bonds, and orientation of surface side

chains. Indeed, recent papers modelling enzyme-ligand bonding mechanisms highlight the importance of

properly modeling water [25,26]. The fast docking methods used implicit solvent surfaces along with three

structural water molecules that came from the PDB crystal structure, while the QM/MM experiment

modeled only the gas-state geometry. We haven’t yet modeled the dynamic movement of the solvent in

and around the inhibitor-receptor complex - a deficiency we now seek to address.

Initially we looked into using a polarizeable continuum model, [27] which models solvent effects by treating

the solvent as a continuum that surrounds the solute; however, while studies indicate these can reproduce

hydrogen bonding with the solvent, or at least the energetic contribution from such, a purely implicit

solvent model struggles to reproduce effects that occur due to buried waters and hydrogen bonding

networks. [28] These effects are highly likely to be important for us; the fact that the PDB crystal already

contains three structural water molecules is a strong indication that water bridging - polar interactions

between the ligand and the receptor mediated by waters - is an important phenomenon, something that

can be attested by other studies of EGFR-inhibitors identifying a water bridge to Threonine-854 as an

important stabilizing effect for pyrrolopyrimidine-based compounds [29]. As such, we saw the need for our

models to incorporate explicit water molecules, so that such bridges can be modeled properly.

Adding explicit solvent also raises a second issue - at normal biological temperatures of 300K, water is a

highly disordered liquid, not a solid. In order for water to behave like a liquid in our simulation, we need

to account for the dynamic motions of the explicit water molecules which occur due temperature, and

therefore we need to account for kinetic energy - which almost immediately implies we have to abandon

the notion of a single energy-minimized structure due to the stochastic nature of temperature.

This in turn means quantum mechanical descriptions of the system states are infeasibly expensive - we

had already run into problems with making one gas-state QM/MM geometry for each inhibitor - so

we decided to drop the quantum mechanical parts of our computation completely. Instead we decide to
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1 Introduction

adopt purely molecular mechanics based approaches. Molecular mechnics, or MM, are based around force

fields; approximations of the interatomic forces which are adjusted to reproduce results from quantum

mechanical calculations and, typically, to certain empirical measurements. For example, a typical force

field incorporates Coulombic terms describing electrostatic interactions between atoms, spring-like terms

that model the preferred bond lengths and bond angles, terms describing Van der Waahls forces between

atoms, and terms that amount to empirical corrections. Such force fields are inherently approximate to

a much greater degree than quantum mechanical calculations. Comparison of simulations to a variety of

experimental data indicates that force fields have improved substantially over the past decade, particularly

when it comes to approximating protein structures [30]; however, they still suffer from various inaccuracies,

such as being unable to model breaking and formation of covalent bonds [31].

In return for the MM approximation, the cost of calculating interatomic forces decreases drastically, to the

point that using the same resources and time as before, we may calculate several thousands of structures.

In molecular modelling, and particularily in modeling of biochemical systems, there are two principal

methods of doing such sampling: Monte Carlo (MC) stochastic sampling, and Molecular Dynamics (MD)

simulations. MC uses a stochastic acceptance method to ensure the final samples are a Boltzmann

distribution of the relevant system, while MD solves Newton’s equations of motion to evolve the model

system forward in time. In our case, the choice naturally falls to Molecular Dynamics, because we are

interested in capturing the dynamics of the solvent and ligand interactions, something which Monte Carlo

methods are less suited for.

Within the field of biochemical modelling, Molecular Dynamics is an increasingly used method to model

protein-ligand complexes such as ours. According to a recent review of Molecular Dynamics applied

to biochemical modeling, the number of yearly studies involving MD in top journals surpassed 1000 in

2017 [31]. Our problem domain is a very common one: use MD to estimate the binding free energy of a

ligand to a receptor and investigate what influences this energy. Unfortunately, there is no one universally

applied method to this problem, due to the sheer size of biomolecular systems making accurate prediction

a very slow process; rather, methods for solving this problem are continually being developed on various

scales of accuracy vs. time (ranging from ligand screening which can evaluate thousands of ligands per

day to long MD simulations which spend days computing one ligand in particular), and literature contains

extensive reviews on these various methods [32–37].

On the computationally expensive side, there are the methods of Free Energy Perturbation (FEP) [38]

and Thermodynamic Integration (TI) [39], called ”alchemical” methods [40], as they involve gradually

perturbing the system by transforming one molecule into another and calculating the resulting energy

difference (in the limit of ligand dissassociation, the molecule is gradually replaced by nothing). We would

certainly have liked to apply these methods to our system, since in theory, our alchemical transformation

would be a very simple exchange of one methyl/methanol group and one hydrogen. Unfortunately, due

to financial and technological reasons, such methods were beyond what we could compute at this time.
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Next to these alchemical transformations, there are quite a number of so called ”enhanced sampling”

methods. In principle, a straightforward MD simulation, when based on a reasonably accurate force

field and including solvation effects, should be able to simulate the systems of interest completely. In

practice, the time required for a ligand to unbind on its own, or for a protein to undergo a conformational

change, is much greater than what is feasable to simulate. Enhanced sampling methods are meant to

solve this, by speeding up exploration of phase space or directing the simulation to explore particular

events. Such methods include umbrella sampling, [41] stochastic tunneling, [42] metadynamics, [43]1 parallell

tempering, [44] steered molecular dynamics, [45] taboo search, [46] and multicanonical MD, [47] to name but

a few. In the context of relative binding free energy, they are commonly used to sample the path from

bound to free ligand and compute the energy along the way. A thorough review of all of these are beyond

what we consider the scope of this thesis, but there are many reviews in the literature of various enhanced

sampling methods applied to biological systems. [48,49]

Finally, there are the more straightforward MD approaches which do not involve simulating a path

between bound and free ligand, but rather evaluates the free energy of the free and bound systems

separately, so-called end-point methods. One example is the Linear Interaction Analysis method [50,51]

which is an application linear response theory to free energy approximation where the free energy is

estimated as the difference between the sum of forces on the bound and free ligand - this methods relies

only on equilibrium simulations of the ligand bound to the complex and the ligand in free solution.

Another pair of commonly used end point methods are MM-PBSA (Molecular Mechanics with Poisson-

Boltzmann Surface Area) and MM-GBSA (Molecular Mechanics with Generalized Born Surface Area).

Both of these methods applied to binding free energy entail the same kind of calculation: simulate the

protein-ligand complex in explicit solvent (and optionally, free ligand and free protein), post-process

the resulting trajectory by removing this explicit solvent, and use an implicit surface model to estimate

the average solvation energy in addition to the molecular mechanics energy. They differ in how they

approximate this implicit surface, with MM-PBSA numerically solving the Poisson-Boltzmann equation

while MM-GBSA uses a generalized approximation that is less computationally expensive [52,53].

With the sheer variety of options available to us, we decided to stop and re-evaluate our approach with

regards to the overall goal. As mentioned, the previous QM/MM study was concerned with quantifying

the interaction strength between the inhibitor and the ligand. However, that presupposes that the

molecular system studied is more or less the same as the real world system and that the difficulty is in

computing accurate energies. Our previous findings show that this is not the case, and that we need to

know more about how the protein-ligand complex actually behaves near equilibrium - which parts of the

binding pocket are solvent accessible, which aren’t? Which parts of the protein are flexible, which parts

are more rigid due to strong interactions? How does the binding pocket vary - is it a cramped space with

1We mention that we did attempt to apply metadynamics to our model system over the course of the thesis work, but we

abandoned those attempts due to time constraints and unconvincing results combined with uncertainty and inexperience

with the method.
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1 Introduction

little room for the inhibitor to maneuver, or is the protein flexible enough that the inhibitor may adopt

several conformations with similar energy minima? Which residues tend to interact with our inhibitors,

how strongly, and how often? While many of these questions have specific methods designed to answer

them that offer good trade-offs between speed and accuracy, the nature of our thesis problem means we

do not, a priori, know which of these quantities are important - answering that had, after all, been the

point of computing the binding free energy in the first place.

Therefore, we decided to to take one of the simplest and straightforward approaches: regular equilibrium

MD simulations. Rather than focus on calculating the binding free energy accurately and then from that

estimate which effects and interactions contribute to the difference in relative binding affinity between

our enantiomers, our goal will be to inspect the equilibrium state of our inhibitors bound to EGFR

in order to get a qualitative understanding of the molecular dynamics. Due to the inclusion of kinetic

energy terms and simulated thermostats, MD simulations are able to equilibriate our system in a heated

environment, rather than the absolute zero of our previous gas state quantum mechanics. By expanding

the system size to include a large amount of explicit solvent molecules, we hope to capture solvent-ligand

interactions in the binding pocket as well as stabilize the receptor geometry. Finally, we may simulate

the inhibitor-EGFR complexes over a medium long time period of one microsecond, which we estimate

will be sufficient to capture most dynamical events short of conformational changes in the protein.

The rest of this thesis is structured as follows: In the Theory section we explain the biochemical back-

ground necessary to understand the function of EGFR, as well as the theoretical basis for our simulation

analysis. In the Methods section we explain how our experiments were set up and run, and we explain

the rationale behind our practical decisions regarding the simulations. The Results and Discussion sec-

tion presents summaries of the data gathered from these simulations, and pulls it together to answer

our research question, along with commentary on application to further work. Finally, our Conclusion

contains a summary of our findings.
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2 Theoretical Background

2.1 Biological function of Epidermal Growth Factor Receptor

Figure 2.1: Outline of sig-

nal cascade path from activa-

tion of EGFR by growth factors.

Public domain image taken from

Wikipedia (Jan 2020)

As mentioned in the introduction, EGFR is a transmembrane pro-

tein receptor for the EGF family of extracelullar protein ligands.

Binding of an EGF ligand to the extracellular domain of EGFR

triggers ligand-induced dimerization of the receptor [18], resulting in

an assymmetric conformation of the paired intracellular EGFR do-

mains. This activates the intracellular tyrosine kinase domain, which

in turn autophosphorylates several tyrosine residues on EGFR it-

self, fully activating the enzymatic domain and stimulating binding

of other key signal-transducing intracellular proteins such as GRB2

(Growth Factor Receptor-bound protein 2), causing a signalling cas-

cade which eventually results in DNA synthesis and cell prolifera-

tion [18] - the details of this cascade are too broad to cover within

the scope of this thesis, but a summary is shown in figure 2.1.

In order to trigger the autophosphorylation and subsequent signal

cascade, the tyrosine kinase domain requires ATP to donate the re-

quired phosphate groups. Small molecule tyrosine kinase inhibitors

like erlotinib, AEE788 and our own series are reversible competitive

antagonists to ATP. [54] binding to the tyrosine kinase domain in its

place and preventing phosphorylation (i.e. they are type I tyrosine

kinase inhibitors [55]). It is this kinase domain we model in the present thesis.

2.1.1 Structure of intracellular kinase domain of EGFR

The EGFR protein kinase domain is structured in two lobes (see Figure 2.2, showing the co-crystallized

structure of EGFR with the inhibitor AEE788 (PDB:2J6M) [56]). The smaller N-terminus (red) lobe

contains many β-sheets, while the larger C-terminus lobe is rich in α-helices. These lobes are connected

by a hinge-region (yellow) which also forms the active site for ATP. Central to the structure is the

activation loop (A-loop, green) running from Asp855 to Val726. A-loops are common in several protein

kinases, where phosphorylation of an A-loop tyrosine acts as a common switch for activity. This has not

been found to be the case for ERbB, however. In the inactive autoinhibited conformation, the DFG motif

preceding the A-loop adopts a short helix structure (termed DFG-out), whereas growth factor-induced

dimerization causes it to unwind (DFG-in), opening the active seat. Another regulatory mechanism is

the orientation of the C-helix (orange) on the N-lobe; In the active form, a salt bridge can be observed

between the phosphate groups of ATP and the C-lobe. In inactive kinases, however, this lobe moves out

of position, resulting in the loss of this salt bridge interaction. [12,19]
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2 Theoretical Background

Figure 2.2: Crystal structure of EGFR inhibited by AEE788 (PDB:2J6M) [56] with key protein kinase

features highlighted.
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2.2 Enzymatic assay and binding free energies [complete]

2.2 Enzymatic assay and binding free energies [complete]

Our empirical data on the potency of our inhibitors is based on a standard enzymatic assay performed

by Invitrogen (LifeTechnology) using their Z’-LYTE®assay technology in an earlier paper [14]. In this

assay, the conversion of a small-peptide molecule from unphosphorylated to phosphorylated state by the

target enzyme (EGFR protein) is measured in absence and presence of the target inhibitor over the course

of an hour, and inhibition is reported as interpolated IC50 [nM], the concentration of the inhibitor at

which the enzymatic reaction reacts at 50% of the uninhibited rate. Thus the empirical data measures

how competitive a given inhibitor is with the natural ATP ligand, with the most competitive inhibitors

needing a very small dose to decrease enzymatic activity by half. In our case, both enantiopure and

racemic mixtures of each inhibitor was made; generally, the reported IC50 was low for one enantiopure

solution, slightly higher for the racemic mixture, and well above the measurement range for the other

enantiopure solution. The experimental IC50 values for the enantiopure solutions is shown in Table 2.1,

with the values of >1000 implying that the concentration was outside measurement range.

It is important to note that, in this thesis, we are not actually interested in a discrepancy in drug

effectiveness in the human cell; we are studying a difference in empirical IC50 measured by an enzyme

assay. Even in this environment the affinity of a ligand for its receptor does not, per se, define the

effectiveness and duration of biological action. Rather, it is the lifetime of the binary receptor-ligand

complex that in large part dictates the effect. However, if we assume the measured system is in a rapid

equilibrium steady-state, then we can relate the residence time to binding affinity and to IC50
[20]. This

can be done by using the Cheng-Prusoff equation [21] for binding free energy (∆G) of an inhibitor:

∆Gbind = RT log

(
IC50

1 + [S]/Km

)
(1)

This equation holds under the following conditions, according to Cheng and Prusoff: (1) the reaction

in the absence of the inhibitor follows a simple Michaelis-Menten equation; (2) the rate of the reaction

depends on the amount of the enzyme-substrate complex; (3) a rapid equilibrium steady state method

is used; and (4) only reversible inhibitors are discussed. Our inhibitors are reversible, we are already

assuming a rapid equilibrium steady state, and the natural phosphorylation reaction of erlotinib has

been established by the enzymatic assay to follow the Michealis-Menten for the purpose of the assay, so

the equation should hold.

By subtracting the binding free energy of the active stereoisomer from that of its corresponding enan-

tiomer, we obtain an equation for the difference in binding free energy (∆∆G) between two structurally

similar inhibitors:

∆∆G = ∆GRbind − ∆GSbind = RT log

(
IC50(most active)

IC50(least active)

)
(2)

This result is also reported in Table 2.1 and tells us the size of the energy difference we should observe

in the simulation.

10



2 Theoretical Background

Table 2.1: Experimental IC50 values and computed difference in relative binding Gibbs free energy.

Compound IC50 (S ) [nM] IC50 (R) [nM] ∆∆G [kcal/mol]

1a [57] >1000 35 -2.1 >

1b [57] 3 >1000 -3.6 >

1c [14] 1.5 629 -3.7

2a [14] >1000 5.3 -3.2 >

2b [11] 77 4.7 -1.7

3a [14] >1000 38 -2.0 >

3b [14] 36 >1000 -2.1 >

Ideally, if we were to calculate these two binding free energies separately in an accurate manner based on

simulation and their difference agrees with the values in Table 2.1 to a statistically significant manner,

we would have come a great way towards explaining the empirical difference. We would be able to

compare the contributions to the binding free energy and look for notable discrepancies, for example if

one particular inhibitor-residue interaction has a significantly larger energy contribution to one binding

free energy than the other; or perhaps, we might find that the contribution from, say, the protein flexibility

is negligible.

Unfortunately, binding energy differences of 2 to 3 kcal/mol is just on the edge of the accuracy of

conventional molecular mechanics methods (FEP binding affinity calculations using the OPLS3e force

field report a root mean square error of about 1 kcal/mol [58]) - so even if the simulation is rather accurate

in terms of predicted equilibrium state ensembles, the uncertainty in the subsequent energy terms may

be too great for quantitive analysis, in particular since our choice of simulation setup is only suited for

approximate end-point calculations such as MM/GB-SA. Therefore, in addition to calculating the binding

energy by MM/GB-SA, we also devote some time to exploring other ways of obtaining useful data from

the simulation trajectories.

2.2.1 MM/GB-SA binding free energies

During post-processing of our Molecular Dynamics trajectories, MM/GB-SA binding free energies will

calculated by using the thermal mmgbsa.py script provided by Schrodinger with some modifications.

Normally, the MM/GB-SA protocol removes all explicit water molecules and replaces them by an implicit

solvent surface (the Generalized Born Surface Area part of the protocol). This approach - simulating the

system with explicit solvent and calculating binding free energy with an implicit solvent - is common in

literature, but has been shown to be somewhat erroneous [59] in terms of correlation between predicted

binding free energy and experimental binding free energy. Instead, we opt to make some adjustments

by choosing to keep structural water molecules between protein and its binding inhibitors, that is, water

molecules which mediate a polar interaction between the protein and the inhibitors; an approach that has
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2.2 Enzymatic assay and binding free energies [complete]

shown to have some merit in terms of improving correlation between experimental and calculated binding

free energy. [60] due to water bridges being largely neglected by the Generalized Born Surface Area.

The script then calculates the energy of three systems: the protein-ligand complex, the protein alone, and

the ligand alone. This is known as a single-trajectory approach, compared to the three trajectory approach

where one simulates and calculates energies for the complex, the protein, and the ligand separately [31]. We

have a reason for not performing the extra free-molecule simulations: beyond the increased computational

cost, we are not, in fact, interested in the free energy of binding of each inhibitor, but the pair-wise

difference between the two enantiomers of each inhibitor. Therefore we opt not to relax the separate

protein and ligand systems, since these would have the same energy for both enantiomers anyway; the

protein because its non-liganded geometry is always the same, and the ligand because the ∆G of changing

chirality in a symmetric environment is strictly zero. As a consequence, the MM/GB-SA binding free

energy, ∆Gbind, calculated by the script will not include energy terms arising from conformational changes

in either the ligand or the protein, but only the difference in energy due to interactions between the ligand

and the protein-water structure:

∆Gbind = Gcomplex+waterinterface −Gprotein+waterinterface −Gligand (3)

where the Gibbs energy G of each structure is the sum of a gas-phase energy term (EMM ), a solvation

free energy (Gsolv) and an entropy term (TS) calculated via the Prime-MM/GB-SA driver:

G = EMM +Gsolv − TS (4)

We can then exploit the fact that, since the relaxed protein and the relaxed ligand should in theory have

the same energy, the only energy term that is actually different between the enantiomers is the energy

of their respective complexes, Gcomplex+waterinterface. Thus we can express the difference in binding free

energy between the R and S enantiomers as

∆∆GR←↩S = GRcomplex+waterinterface −GScomplex+waterinterface (5)

2.2.2 Protein-Ligand Simulation Interaction Analysis

For analysis of the ligand, we will use the Protein-Ligand Simulation Interaction Analysis (SIA), a

Desmond toolchain meant to analyse trajectories of protein-ligand simulations, producing a wide variety

of useful statistics about the simulation, such as root mean square deviation from reference structure,

mean fluctuation of the ligand and protein atoms, the protein’s secondary structure, and timeline plots

torsional angles of the ligand.

One of the more important results from the SIA tool is a protein-ligand contact analysis of the trajectory.

This generates a time series where, at each sampled timestep in the trajectory, the tool calculates which
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2 Theoretical Background

residues interact with the ligand, and what kind of interaction this is. One residue may have several -

possibly different - interactions with the ligand at the same type at the same time, for example Arginine

forming separate hydrogen bonds with each of its nitrogens. The interaction types and their conditions

are described in the Desmond [61] manual and are reproduced here:

• Hydrogen bonds are defined by distances and angles of the D–H · .. A–X atom arrangement: a

D–A distance less than 2.5 Å, a D–H–A angle greater than 120°, and a H–A–X angle greater

than 90°.

• Pi-pi stacking occurs between two aromatic groups stacked face-to-face or face-to-edge.

• Pi-cation bonds occur between aromatic and charged groups within 4.5Å

• General hydrophobic interactions occur when hydrophobic side chain is within 3.6 Å of a ligand

aromatic or aliphatic carbon.

• Ionic interactions occur between oppositely charged atoms on the ligand and the protein that are

within 3.7Å

• Water bridges involve hydrogen bonding via a water bridge molecule, broken down into protein

donor and protein acceptor. The geometric criteria are a D–A distance less than 2.7 Å, a D–H–A

angle greater than 110°, and a H–A–X angle greater than 80°.

Comparing how frequently a given residue interacts with the inhibitors may give us insight into whether

some residues have a stereoselective effect, where they prefer interacting with one residue over the other.

A related method is Ligand Interaction Energy (LIE) [62], which uses a slightly more rigorous approach

of calculating the difference in Van der Waahls and electrostatic energy for the ligand in solution and the

ligand in the binding pocket in order to estimate the binding free energy. We do not use this method

in this thesis, but the ligand interaction frequency described above is motivated by the same underlying

physical motivation and can be viewed as a cruder approximation of LIE.
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3 Method

3.1 Practical considerations of Molecular Dynamics

The basic idea behind an MD simulation is straightforward. Given the positions of all the atoms in a

molecular system, one can calculate the force exerted on each atom by all the other atoms. One can

thus use Newton’s laws of motion to predict the spatial position of each atom as a function of time.

In particular, one steps through time, repeatedly calculating the forces on each atom and then using

those forces to update the position and velocity of each atom. The resulting trajectory is, in essence, a

three-dimensional movie that describes the atomic-level configuration of the system at every point during

the simulated time interval.

The actual implementation, design and performance of MD simulations requires some practical considera-

tions: First, which computing hardware should we use? In our case this is rather simple, because we have

access to the Idun supercomputer courtesy of NTNU, which contains both high-end GPUs and massively

parallel CPUs. We’ll primarily be using GPUs due to our choice in the second question: Which software

to use? Common choices include GROMACS, [63] NAMD, [64] AMBER, [65] CHARMM, [66] Desmond, [67]

and OpenMM [68]; Because our previous work has primarily been performed within the (proprietary)

molecular modelling suite designed by Schrödinger Inc. [23] we decided to use their high-performance MD

implementation, Desmond - which runs on a single GPU per simulation, hence why we will be using

GPU hardware. Third, which force field should we use? In the field of biochemical modelling, three force

fields tend to see widespread use: CHARMM. [69] AMBER. [70] and OPLS. [71] and their successors. [31] In

our case, Desmond provides access to the extensively optimized OPLS3e [58] force field, which has one of

the broadest ligand parameter data sets of these force fields, though third-party evaluations of this force

field are rare due to its proprietary nature. In particular, the parameter set for OPLS3e includes data

for pyrrolopyrimidines, which makes it particularly well suited for our inhibitors. [72]

Once these three choices were made, in particular choosing Desmond as our Molecular Dynamics software,

our remaining choices are more restricted based on what is implemented in Desmond. For the time

integrator algorithm - the part of the simulation that steps the system forward in time once forces

have been calculated - we use the only available: the r-RESPA (reversible REference System Propagation

Algorithm) integrator, which splits the forces into short and long range calculations which can be updated

on different time scales, and uses the Liouville formulation of mechanics rather than the Newtonian

formulation. [73]

For our protein-ligand complexes, we are interested in simulating them at constant pressure and temper-

ature (the NPT ensemble) rather than the default constant energy and volume (NVE ensemble), since

biological systems at the protein scale operate more like the former than the latter; even if the cell tends

to have a (near) constant volume, we are simulating only a fraction of the cell volume, where pressure
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3 Method

and temperature is more important. Algorithms for controlling pressure and temperature are termed

barostats and thermostats, respectively. [74] In Desmond, our choices of thermostat are limited (in the

GUI, at least) to the Nose-Hoover chain thermostat [75,76] and the Dissipative Particle Dynamics (DPD)

thermostat, while the choice of barostats are limited to the Martyna-Tobias-Klein (MTK) extension of

Nose-Hoover chains [77] or the Langevin barostat. The documentation recommends to only use DPD

for coarse-grained molecular dynamics simulations, while we are interested in all-atom simulations, so we

choose the Nose-Hoover chain thermostat, and it is then natural to use the MTK barostat since it extends

Nose-Hoover. We do note that there is also the possibility of employing the Berendsen thermo/barostat

and the Langevin thermo/barostat by modifying command line input to Desmond; however, outside of

their use in the default relaxation schemes, we decided to refrain from using these as they are both less

accurate than Nose-Hoover (in terms of physical basis). [78]

3.2 Model system preparation

1a: X––S, R1 = H, R2 = OH

1b: X––S, R1 = H, R2 –– OH

1c: X––S, R1 = OH, R2 = OCH3

2a: X––O, R1 = H

2b: X––NH, R1 = H

3a: X––S, R1 = H

3b: X––S, R1 = OH

Figure 3.1: Model compounds used in

this study. Fragment A (aniline) in red.

Fragment B (Phenyl or bromine) in blue.

Core scaffold in black.

Initially we performed experiments using only one in-

hibitor pair, the R and S enantiomers of 2-[4-(1-

phenylethylamino)thieno[2,3-d]pyrimidine-6-yl]phenol (1a),

based on the reasoning that simulating additional compounds

was too time consuming when we weren’t sure the method

would yield interpretable results, since this had happened in

our previous QM/MM study. We expanded the experiment

to include other inhibitors for which we have experimental

IC50 values (shown in 3.1) once results from Molecular Dy-

namics simulations showed a some interesting differences be-

tween the R and S enantiomer of compound 1a. For this

reason, there were some minor differences in the set up of 1a

and the other inhibitors.

Of the seven inhibitor pairs we simulated in this thesis, com-

pounds 1a-c are thienopyrimidines with an asymmetric polar

ortho-substitute on fragment B (in blue). Compounds 2a-

b use a different heteroatom at X, allowing for comparison

between furo- thieno- and pyrrolopyrimidines. Finally, com-

pounds 3a-b use the truncated Bromine structure investi-

gated by Bugge et al. [14]. This naming convention was inher-

ited from the empirical studies performed previously. [10,24] In

this study we found it especially important to draw attention

to the difference between compounds which have a methanol substitute at R3 (1b,1c and 3b) and the

ones which have a methyl group (1a, 2a, 2b and 3a); this is because the binding modes found by MD
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3.3 Simulation details

showed distinct behaviour for the methanol compounds, since the hydroxy group can form hydrogen

bonds which the methyl cannot.

For the preparation of the protein-ligand complex system, we took advantage of our earlier work [22,24]

and reused the crystal structures prepared then; the details of this preparation is summarised here.

The protein-ligand complex’s geometry was prepared by starting with the co-crystallized EGFR-AEE788

complex (PDB code 2J6M) as elucidated by Yun et al.. This structure represents the intracellullar kinase

domain of an active but inhibited EGFR monomer, which includes residues 696 to 1020.2 All solvent

molecules were removed and missing sequences, protonation of amino acids, and H-bond assignment was

added via Maestro’s Protein Preparation Wizard. In particular, the PDB crystal structure was missing

the entire residue sequence from 984 through 1004, necessitating wholesale addition of the chain using

Prime.

The AEE788 inhibitor was then replaced by our own inhibitors through docking with Glide, which uses

a heuristic dock-and-score method in a rigid receptor; The waters were then removed completely and the

complex energy minimized at absolute zero in QSite, a hybrid quantum mechanics/molecular mechanics

module, using the OPLS 2005 force field for the protein and the quantum mechanical DFT-B3LYP

method for the ligand, using a 6-31G+* basis set. It was these free gas complexes we used as the starting

structures for our simulations in this thesis.

In order to perform molecular dynamics simulations in a solvated environemnt, we constructed an or-

thorombic simulation box around the protein-ligand complex using with a distance of 10 angstrom to the

existing geometry in all three direction, and then populated the remaining volume with water molecules,

using a TIP4P solvent model. We neutralized the system by adding counter-ions (8 Na+ ions). This was

all done by the Desmond System Builder module. An example of the resulting simulation box is shown

in Figure 3.2 for compound S -1c.

3.3 Simulation details

All Molecular Dynamics simulations were performed using the Desmond molecular dynamics software [61]

and the OPLS3e force field [58] using periodic boundary conditions.

The prepared model systems were relaxed using Desmond’s default five-step NPT relaxation scheme;

First, the system is simulated in a Brownian Dynamics NVT ensemble at 10K for 100 ps with restraints

on heavy atoms, then in the same conditions in a Langevin NVT ensemble for 12 ps, followed by a

Langevin NPT ensemble at 1 atm pressure for 12 ps. The next step increases temperature to 300 K and

applies a Langevin NPT ensemble for 12 ps, and finally the restraints on the heavy atoms are lifted and

the system is relaxed at 300K, 1 atm in a Langevin NPT ensemble for 24 ps.

2This thesis employs the PDB numbering scheme, which does not include the 24-residue membrane targeting signaling

sequence.
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Figure 3.2: The simulation system for the Molecular Dynamics simulations was prepared using Desmond

System Builder. Displayed here is the resulting simulation box for compound S -1c

After relaxation, the model systems were simulated for 1000 ns in an NPT ensemble (P = 1.0135 bar, T =

310 K) using a Nose-Hoover chain thermostat coupled to a Martina-Tobias-Klein barostat. [77] The sim-

ulations used the reversible reference system propagation algorithm (r-RESPA) [73] time step integrator

with a far-time step of 6 femtoseconds, a near-time step of 2 femtoseconds, and the near-far intersection

at 9 angstrom. Macroscopic properties were sampled every 1.2 picoseconds, while the trajectory was

sampled every 500 picoseconds (ie. every 100 000 time steps), resulting in a trajector consisting of 2000

snapshots. The exception was our first two simulations, those of S -1a and R-1a, due to these being our

trial systems; these were run for approximately 1600 ns and only sampled snapshots every nanosecond.

3.4 Data post-processing and analysis

Once the simulations had been completed, we were left with 14 very rich sets of data - macroscopic

thermodynamical properties like temperature, potential energy, and pressure had been sampled every

picosecond, while the system trajectory (i.e. the position of each atom) of each production run consists

of 2000 (or about 1600 in the case of 1a) distinct snapshots taken at regular intervals3. To simplify

the task of extracting meaningful data from these trajectories, we relied heavily on automated analytical

tools in Desmond, as well as visual inspection of the trajectories in Maestro. [23]

MM/GB-SA energies were calculated for every tenth trajectory frame (every 5 ns) using the thermal -

3In theory we could have sampled velocity as well, but the resulting data files proved problematic to work with due to

sheer size
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3.4 Data post-processing and analysis

mmgbsa.py script as described in Theoretical background, including the modification that we include

interstitial water molecules. Specifically, for each MD snapshot, all water molecules whose oxygen atoms

were within 3.5 Å of a protein heavy atom and a ligand heavy atom - i.e., were close to both protein

and ligand - were kept by the script. Usually one to seven water molecules for each snapshot met that

criterion, and these water molecules were considered as a part of the protein structure for the purposes

of the MM/GBSA calculations.

The trajectories were analysed using the Simulation Interaction Analysis tool and both raw data and

accompanying reports were exported. In terms of input, the tool requires a simulation trajectory, the

atom specification of the protein, the atom specification of the ligand, and a reference structure to which

all other snapshots are compared; we use the first frame in each trajectory as the reference. In the Results

section of the present thesis, we include only those plots that are relevant for our discussion; some of

these plots were made by ourselves by importing the output data into R, with data processing performed

using tidyverse and plotting done with ggplot2. [79]

3.4.1 Representative binding pose geometries

A considerable amount of our analysis will be based on visual inspection in the Maestro GUI of the

generated snapshots from each trajectory. Presenting such insights in a static research paper is a con-

siderable challenge, as the medium precludes inserting three dimensional figures as well as animations.

Additionally, relying on the human eye to discern whether structures are significantly different is an error-

prone approach. In order to identify different binding modes and how the ligand conformation changes

throughout the simulation, we combine plots of root mean square deviation (RMSD) of the ligand from a

reference state with a clustering method based on this RMSD using the the trj cluster.py script provided

by Schrodinger, which uses affinity propagation to cluster the frames of a trajectory based on the RMSD

of an input atom specification (in our case, the ligand atoms)

The timeline plot of RMSD allows us to identify if the ligand is oscillating about a thermal average

structure or is changing conformation significantly; this plot is calculated as part of the SIA tool chain.

The clustering method, on the other hand, allows us to identify which parts of trajectory have the same

conformation and find a representative binding mode we can use in this report. In brief, each frame is

viewed as a possible candidate ”exemplar”, i.e. a distinct binding mode, and the likelihood of that is

calculated by subtracting how well it represents neighbouring frames from how well itself is represented

by another frame. A more detailed description of this algorithm is beyond the scope of this thesis -

details are described elsewhere. [80] The end result is a number of clusters, each having a representative

”exemplar” frame which best represents the average binding mode of the ligand within the cluster.

In our case, we found that the number of clusters varied between 50 and 100 depending on the trajectory.

Since 50 images per trajectory for 14 trajectories is still too large to reasonably fit in this report, we chose
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the ten densest clusters, and visually inspected them while consulting the RMSD plots to identify if any

of these exemplar clusters could further be represented by each other. Once this had been done, we were

finally left with one to three representative frames that show the binding mode(s) generally adopted by

each inhibitor throughout the simulation.
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4 Results and Discussion

We performed long-timescale (1 µs) unbiased MD simulations of our inhibitors - one trajectory per

enantiomer, across seven pairs, for a total of fourteen simulations. Each simulation consist of the inhibitor

situated in the active seat of the intracellular TK domain of EGFR, with the complex surrounded by a box

of about 10 000 T4P water molecules with periodic boundary conditions. Here we present the results from

these simulations in a systematic manner, describing their stability, evolution, and the conformational

state of the ligand, as well as the average receptor-ligand interactions and the computed MM/GB-SA

energies. At the same time we discuss the implicaitons of these data and use them to build toward

a plausible answer to our thesis problem. We then discuss this answer in a broader context, how our

method performed, how well our assumptions hold up, and sources of error.

4.1 MM/GB-SA Binding energy

Figure 4.1 shows the calculated Gibbs free binding energy ∆Gbind as calculated by the MM/GB-SA

approach described earlier, for every tenth frame of each simulation. Figure 4.2 shows a component of

this binding free energy, the Gibbs Energy of the protein-ligand complex. In theory, the time-averaged

difference in the latter should be equal to the logarithm of the ratio of IC50 values; unfortunately, from

these plots, it becomes abundantly clear that the standard deviation of this time-averaged quantity is

much greater than the calculated difference in ∆∆G from empirical data shown in Table 2.1. This is true

even before we consider uncertainties such as incomplete simulation (violation of the ergodic hypothesis)

and sensitivity to initial conditions. It is thus clear to us that the calculation of the relative free energy of

binding via MM/GB-SA applied to our simulations is unable to clearly differentiate between high-potency

and low-potency enantiomers. Fortunately, the purpose of our simulation was not, this time, to calculate

the interaction energy exactly, but to generate a set of equilibrium conformations and investigate these

for interesting differences between each enantiomer, which we shall now do.

4.2 Stability of the protein

Figures 4.3 and 4.4 show the root mean square deviation (in Angstrom) of the protein and the ligand from

their initial (t=0) configuration, as calculated by the Simulation Interaction Analysis tool. The Protein

RMSD is measured with regards to the frame of reference of its backbone peptide chain. It intentionally

does not capture the deviations of the side chains, so that the plot captures larger conformational changes

in the backbone rather than the frequent fluctuations of the side chains. In contrast, the ligand RMSD

is measured with respect to the ligand heavy atoms, but realigned to the center of mass of the ligand -

which means it shows the internal conformational fluctuations of the ligand, but not its orientation or

distance to the binding pocket. The reader can be assured that we did not observe any unbinding events

during the simulation.

The sharp increase in RMSD beyond the initial time step common to all production is due to a reconfig-

20



4 Results and Discussion

Figure 4.1: Timeline plot of the binding free energy of each inhibitors calculated for every tenth frame

using the MM/GB-SA method.

Figure 4.2: Timeline plot of the energy of the protein-ligand complex calculated by MM/GB-SA. In

theory, the difference between the average of this energy for each enantiomer is proportional to the

difference in empirical IC50 values, but noise makes this difference rather diffuse. Compound 1a was

sampled for longer but at a lower frequency. It is clear that any differences in binding energy based on

an average of these will have too great variation to be statistically significant.
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4.2 Stability of the protein

uration of the protein complex due to an unfinished relaxation procedure - the sum of hundreds of small

adjustments across a macro-molecule consisting of 300 residues in response to the comparatively sudden

presence of dynamic solvent as well as the change in force field. Beyond this initial reconfiguration,

however, fluctuations in the protein RMSD on the order of 1 to 4 Angstrom are perfectly normal for a

protein of our size.

Visually inspecting the protein backbone during the trajectories, we find that most parts of the protein

tends to oscillate around a stable equilibrium, in agreement with the RMSD plots. There is one exception

to this; we find that the loop added by Prime during model system preparation (res 984 to 1004) shows

considerable fluctuations both within each simulation and across different simulation runs. Some runs

in particular produced a stable helix conformation for this loop (see Figure 4.5 for an example). These

fluctuations are not unexpected - the very fact that the XRD crystal structure lacked this loop implies

that it fluctuates too much for the XRD to get a good resolution of it. Additionally, while Prime is a

decent tool for making adding short sequences and estimating their conformation, its accuracy decreases

proportionally when it has to complete longer sequences - in particular, since the resulting loop was not

already in a helix or sheet conformation, it is natural that the loop tries to adopt one of these more

stable conformations over the course of the simulation. The fact that it adopts a helix conformation in

our MD runs does not necessarily imply that it does so in reality; it merely shows that the OPLS3e force

field makes it favor the α-helix conformation over the β-sheet conformation. The real protein folding is a

much harder problem to solve, and one we’d hoped to avoid, ideally. In terms of our simulations it causes

some complications, because the Prime loop contains some residues which, for the right folding, turn out

to interact rather frequently with some of the inhibitors - as seen in Figure 4.13 later in this section.
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4 Results and Discussion

(a) R-1a (b) S -1a

(c) R-1b (d) S -1b

(e) R-1c (f) S -1c

Figure 4.3: Root mean square deviation (RMSD) of protein atoms (blue) and ligand atoms (red) of

compounds 1a-c relative to starting geometry for the protein backbone and ligand, as well as the mean

(time-averaged) RMSD of the ligand.
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4.2 Stability of the protein

(a) R-2a (b) S -2a

(c) R-2b (d) S -2b

(e) R-3a (f) S -3a

(g) R-3b (h) S -3b

Figure 4.4: Root mean square deviation of compounds 2a-b and 3a-b relative to starting geometry for

the protein backbone and ligand, as well as the mean (time-averaged) RMSD of the ligand.
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4 Results and Discussion

(a) Initial state

(b) Purple strand folded to α-helix

Figure 4.5: The protein loop added by Prime (residues 990 to 1021) tended to fold in different ways

across simulations. Depicted here is the start and end frames of the simulation of S -3a, where we saw it

fold into an α-helix.
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4.3 Average inhibitor conformation - RMSD and cluster analysis

(a) R-1a, far (b) R-1a, near

(c) S -1a, far (d) S -1a, near

Figure 4.6: Representative conformations for compound 1a. Both enantiomers have two significantly

different conformations each in terms of RMSD, stemming from the rotation of the tail phenol fragment,

and whether the hydroxy group lies near the heteroatom or on the far side of it. Otherwise the confor-

mation is similar to most other inhibitors, with the phenylamine pointing ”up” relative to the scaffold.

Note the orientation of the chiral methyl group.

4.3 Average inhibitor conformation - RMSD and cluster analysis

Images of molecular geometry follow the conventional CPK colouring scheme with blue nitrogen, red

oxygen, white hydrogen, and grey carbons. The exception are the ligand carbon atoms, which are

coloured green to distinguish the ligand and protein.

From the plot of Ligand RMSD in figures 4.3 and 4.4 it is clear that the ligands tend to fluctuate around

an average structure, with occasional large changes in RMSD indicating that they adopt a different

conformation. Since the RMSD is measured entirely with respect to the ligand (i.e. it does not capture

reorientation with respect to the protein), and since the ligand only forms noncovalent bonds to the

receptor and the solvent, we can investigate what these binding modes look like without needing to keep

track of the surrounding water molecules or receptor residues. As explained in Methods, presenting

the entire trajectory in this report is infeasible; we therefore used a cluster analysis script to find good

representative snapshots of the trajectory that can explain what the various inhibitor conformations look

like. For the sake of simplicity, we first present the ligand conformations themselves without considering

the binding site residues or the solvent.

Inspecting the RMSD plot of R-1a, S -1a, R-1b, and S -1b, it is clear they all oscillate between two
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4 Results and Discussion

(a) R-1b, far
(b) R-1b, near

(c) S -1b, far (d) S -1b, near

Figure 4.7: Representative conformations for compound 1b. Like 1a, both enantiomers have two

significantly different conformations each in terms of RMSD, stemming from the rotation of the tail

phenol fragment, and whether the hydroxy group lies near the heteroatom or on the far side of it. Notice

how the R enantiomer forms an internal hydrogen bond between the chiral methanol group and the N3

nitrogen.

general conformations. The cluster analysis confirms what we observe visually - these two binding modes

are not due to changes in the amine conformation containing the stereocenter, but are a result of the tail

fragment of these inhibitors being a ortho-substituted phenol. In all four simulations, this substituted

phenyl lies in the same plane as the double ring scaffold, but it occasionally flips 180°, showing that there

are two roughly equivalent energy minima with a torsional barrier between them. The respective ligand

conformations are in figures 4.6 and 4.7. It is clear that the phenol lies near-coplanar with the scaffold

most of the time, and that the only difference is whether the substitute is on the near or far side of the

heteroatom - the amine substitute doesn’t contribute significantly to the RMSD beyond noise.

Even though 1c also contains an asymmetrically substituted phenyl in its tail, the RMSD plots do

not show the same oscillation. Instead, S -1c shows larger than normal fluctuations about its average

conformation, while R-1c spends the first 200 seconds slowly converging to its average conformation. The

methoxy group of R-1c is initially on the near side of the heteroatom, but eventually (after about 200

ns) flips to the far side. In contrast the methoxy group of S -1c stays on the near side of the heteroatom

throughout the simulation. The representative conformation for compounds S -1c and R-1c are shown

in Figure 4.8. The reason they have opposite tail angle is not necessarily due to any intrinsic effects of

inhibitors themselves, but is a consequence of their different initial conformations - this is an error that
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(a) S -1c (b) S -1c

Figure 4.8: Representative conformations for compound 1c. Despite having an asymmetrically substi-

tuted tail like 1a and 1b, neither R-1c nor S -1c shows any tendencies to ”flip” the tail, and so they only

have one conformation each. Notice how the R enantiomer forms an internal hydrogen bond between the

chiral methanol group and the N3 nitrogen.

we unfortunately did not catch until after the simulations had been completed.

However, even though S -1c and R-1c start in different conformations, if they were to behave like 1a and

1b, they should flip back and forth between the conformations; they clearly do not. While the chemical

environment of this fragment certainly plays a role in damping these rotations, the lack of oscillations

in the tail can also be explained by considering the molecule as a rigid rotor - 1c’s methoxy group is

roughly twice as heavy as the hydroxy group of 1a and 1b while also being longer, which increases the

methoxyphenyl’s moment of inertia about the C6-C19 bond significantly compared to the phenol. This in

turn heightens the energy barrier between near-heteroatom and far-heteroatom conformations, meaning

oscillations between them are much less frequent.

Unlike 1a-c, compounds 2a-b and 3a-b do not have an asymmetric tail substitute. However, we still

see conformational changes for S -2a, S -2b, and S -3a in their RMSD plots (Figure 4.4). By inspecting

the conformations themselves, we see that the two conformations differ in the orientation of the phenyl-

amine ring in relation to the scaffold. We see that the phenyl points either up or down relative to the

scaffold; with the exception of these three enantiomers, the inhibitors adopt the phenyl ”up” conformation

throughout the entire simulation. Even for S -2a and S -3a, looking back to the RMSD plots (Figure

4.4b), we see that they only take the ”down” conformation for a short period equal to roughly 10% of the

simulation time (550 ns to 650 ns for S -2a, 100 ns to 200 ns for S -3a). Only S4a spends a substantial

amount of time in the phenyl down conformation, about 30% of simulation time; it is also notable for

changing conformation multiple times. There is certainly an element of chaos involved; the simulations

are sensitive to initial conditions and the conformational changes appear to occur only once or twice per

microsecond, so we cannot for certain say that these conformational changes are impossible in the other

enantiomers; however, we find it very likely that there are some structural elements at play here. For

now, though, we note that the phenyl up conformation is so common that we will primarily investigate

that one.
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4 Results and Discussion

(a) R-2a, phenyl up

(b) S -2a, phenyl up (c) S -2a, phenyl down

Figure 4.9: Representative conformations for both enantiomers of compound 2a. During most of the

simulation, both enantiomers have very similar conformations; however, for a short period (from 500ns to

700ns) S -2a adopts a rather different conformation in which the phenyl-amine substituent rotates about

120°.

We have now covered what the average conformations of the inhibitors look like and how they change - in

particular, we note that all inhibitors have an almost identical conformation, similar to that of AEE788

as described by Yun et al.. The amount of rotatable bonds is generally small compared to the number of

atoms, owing to the rigid aromatic ring structures in these inhibitors. Before we move on to considering

the influence of the binding pocket, we note that there is a significant structural difference to be observed

between methyl-substituted inhibitors 1a, 2a, 2b and 3a) and methanol substituted compounds 1b, 1c,

and 3b). For the methyl compounds, no difference is apparent between the high-potency R enantiomer

and the low-potency S enantiomer, outside of some increased steric repulsion between the methyl and

the scaffol in the S conformation due to proximity. In the case of the methanol compounds, however, we

see that the low-potency R enantiomer (the CIP priority switches due to the oxygen) adopts a similar

orientation of the methanol group, but in this case the group forms an internal hydrogen bond to the N3

nitrogen on the scaffold. The fact that this stabilization occurs in the low-potency enantiomer was a cause

of consternation to us until this thesis, as we had seen a similar behaviour in our QM/MM simulation. In

this thesis, however, we find an answer that explains why the internal hydrogen bond actually results in

a less favourable binding mode than the methanol ”out” conformation that occurs in the high-potency

S enantiomer. In order to fully explain this, though, we will need to finally involve the binding pocket

residues and the effect of the solvent.
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4.3 Average inhibitor conformation - RMSD and cluster analysis

(a) R-2b, phenyl up

(b) S -2b, phenyl up
(c) S -2b, phenyl down

Figure 4.10: Representative conformations for both enantiomers of compound 2b. While the R enan-

tiomer stays in the phenyl up conformation throughout the entire simulation, the S enantiomer changes

conformation thrice, spending about 25% of simulation time in the phenyl down position.

30



4 Results and Discussion

(a) R-3a, phenyl up

(b) S -3a, phenyl up (c) S -3a, phenyl down

Figure 4.11: Representative conformations for both enantiomers of compound 3a.

(a) S -3b, phenyl up

(b) S3b, phenyl down

Figure 4.12: Representative conformations for both enantiomers of compound 3b. Notice how the R

enantiomer forms an internal hydrogen bond between the chiral methanol group and the N3 nitrogen.

31



4.4 Residue-ligand interaction analysis

4.4 Residue-ligand interaction analysis

The protein-ligand interaction histograms (Figure 4.13) shows how frequently each residue interacted

with the inhibitors as a fraction of total simulation time and what kind of interactions it had, restricted

to those residuals with an interaction frequency higher than 30% with at least one inhibitor. Figure

4.14 shows these interactions as a timeline, indicating exactly when these interactions happen during the

simulation. Finally, Table 4.1 lists the actual values of the interaction frequency. These three figures are

all different means of showing the same idea - we can look at how frequently each residue interacts with

each inhibitor and correlate that to the structural differences between each inhibitor as well as to the

binding mode of these inhibitors.

Our first group of residues are the three hydrophobic residues Ala743, Leu718 and Leu844. From the

interaction frequency graphs it is clear that these three interact in roughly the same manner across all

compounds. If we look at the shape, orientation, and location of these three residuals, we find that

Figure 4.13: These histograms show how frequently each compound interacted with a given residue

over the course of their respective simulation. Values over 1.0 are possible as some protein residue may

make multiple contacts of same subtype with the ligand, as is the case for the two distinct hydrogen

bonds between 2b and Met793.
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4 Results and Discussion

Figure 4.14: Histograms of interaction frequency as a fraction of simulation time for each inhibitor

and any residue with a frequency higher than 30%. A blank (grey) spot indicates no interaction was

registered at this time step, while a colour indicates which kind of interaction took place. We also want

to make clear that the interaction density of 1a is less contiguous without it necessarily having half the

interactions - it was merely sampled at half the rate of the other simulations.

they are nonpolar residues which lie above and below the scaffold and tail fragment. If we orient the

double ring to lie in the plane, Leu844 lies directly below while Leu718 and Ala743 lies directly above the

double ring, forming a narrow hydrophobic cleft, see Figure 4.15. This cleft formation occurs for both

the phenyl up and phenyl down conformations of S -2a, S -2b and S -3a. Leu718 additionally lies above

the tail fragment, providing an explanation for why the tail prefers lying coplanar to the scaffold and

why, as we explained earlier, there is an energy barrier between the two torsional energy minimums of

compounds 1a-c.

There is one other residue which interacts in the same manner for both enantiomers for all pairs:

Methionine-793. In particular, the interaction with this hinge residue only involves its backbone peptide

group - the side chain faces away from the binding pocket. The amine group of the backbone forms a

hydrogen bond to the N1 nitrogen of the scaffol, with an additional hydrogen bond formed between the

carbonyl part of the backbone and the NH group of the pyrrolopyrimidine scaffold of 2b explaining why
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4.4 Residue-ligand interaction analysis

Table 4.1: Interaction frequency between the inhibitors and surrounding residues organized by interac-

tion type.

Molecule Enantiomer ALA743 ASP855 CYS775 LEU718 LEU844 LYS745 MET793 THR854 TYR998

hydrophobic Hbond Waterbridge Hbond Waterbridge Hbond hydrophobic Waterbridge hydrophobic Hbond Pi-Cation Waterbridge Hbond Waterbridge Hbond Waterbridge Hbond hydrophobic Pi-Pi Waterbridge

1a active 0.5402 - 0.0009 - 0.0332 0.0096 0.4554 0.0288 0.7150 - 0.5542 - 1.0079 - - 0.9598 - 0.0070 0.0026 0.0096

inactive 0.6841 - - - 0.0071 0.0327 0.4389 0.0310 0.6761 - 0.2257 0.0009 0.9425 0.0230 - 0.1257 - - - 0.0009

1b active 0.5403 0.1949 0.2386 - 0.0287 0.0050 0.2748 0.0156 0.5709 0.6814 0.6002 0.0800 1.0737 0.0225 0.0037 1.0081 0.0112 0.1986 0.4841 0.0125

inactive 0.3467 - 0.0037 0.0125 - 0.0275 0.6071 0.0200 0.4972 - 0.3691 - 1.0356 0.0087 0.6483 0.0019 - 0.0019 0.0012 0.0012

1c active 0.4129 0.5147 0.2492 - 0.1393 - 0.4853 - 0.6877 0.6065 0.3785 0.0868 0.9244 - 0.0119 0.9838 - - - -

inactive 0.3973 - 0.1081 0.3991 0.0025 - 0.2180 0.0019 0.5971 - 0.2623 - 0.9744 - 0.1949 0.0031 - - - -

2a active 0.5122 - - - 0.0281 - 0.6034 0.0425 0.6359 - 0.4372 - 0.9969 - - 0.9656 - 0.0050 - 0.0369

inactive 0.5515 - - - 0.0294 - 0.8495 0.0212 0.6790 - 0.1711 - 0.9988 - 0.0025 0.8695 - - - -

2b active 0.5878 - - - 0.0187 - 0.6352 0.0856 0.5134 - 0.2692 - 1.9888 - - 0.9525 - 0.0137 - -

inactive 0.5503 - - - 0.0331 - 0.7283 0.0768 0.5984 - 0.3660 - 1.9963 - - 0.8239 - - - -

3a active 0.4766 - 0.0031 - 0.0150 - 0.2986 0.0019 0.6327 - 0.4603 - 0.9756 - - 0.8882 - - - -

inactive 0.2911 - - - 0.0100 0.0012 0.3348 0.0562 0.4491 - 0.2255 0.0044 0.9019 0.0275 - 0.3285 - - - -

3b active 0.5410 0.1153 0.1776 - 0.0258 - 0.1817 0.0014 0.5776 0.3315 0.4407 0.2115 0.9824 - 0.0515 0.9532 - - - -

3b inactive 0.4922 - 0.0094 0.0156 0.0006 - 0.3548 0.0019 0.5203 - 0.2511 - 0.9925 - 0.6846 0.0006 - - - -

it has double the interaction frequency of the other inhibitors. This bond was already known both from

our earlier QM/MM study, [22] the docking study, [24] and the binding mode of AEE788 found in 2007. [56]

It is reassuring that this bond reappears in our simulation, since it is considered one of the main reasons

why thieno-, furo- and pyrrolopyrimidines are effective scaffolds for EGFR inhibitors in the first place. [12]

The additional bond formed to 2b additionally explains why this inhibitor has a lower IC50 value than

the furo- and thienopyrimidines.

Figure 4.16: All investigated inhibitors bond strongly to the backbone of Metionine793 lying in the

hinge region, forming a bond from the N1 nitrogen on the scaffold to the amine group of the backbone.

Depicted is R-2b, which forms an extra bond due to its NH heteroatom. Dashed yellow lines are hydrogen

bonds; dashed teal lines indicate possible aromatic hydrogen bonds.

One residue interacts frequently with only one inhibitor: Tyrosine-998, which only interacts with S -1b.

This is because, as mentioned, the folding of the Prime loop, of which Tyr998 is a part of, is rather

chaotic and so whether any inhibitors interact with any residues on this loop at all depends on the initial

conditions of the simulation, and should ideally be determined by running multiple simulations with

different starting points. It also poses a challenge for any energy calculation based on ligand-residue

interactions (or indeed, any energy calculation at all which involves the Prime loop) because of this

chaotic behaviour. Additionally, since this residue only interacts with the tail of S -1b (and not the
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4 Results and Discussion

scaffold or the amine substitute), it is unlikely to be a significant contributor to the stabilization of one

enantiomer above another. For these reasons, we disregard this interaction in our further analysis; it may

certainly be important for further optimization of the ligand, but in this thesis, we estimate it to not

have much real impact in terms of stabilizing one enantiomer more than the other, even if it does so in

this simulation.

Figure 4.15: Space-filling CPK-model of

compound S -1a (green) and the three hy-

drophobic residues of Ala743, Leu718 and

Leu844 from frame 695 of the MD simu-

lation of S -1a bound to EGFR, showing

that the three hydrophobic residues form

a cleft surrounding the inhibitor.

Having discussed the residues which are consistent across

simulations and discarded one that isn’t, we are left with

the residues which behave differently across simulations -

the ones which finally give us a clue towards explaining

the stereoisomeric difference in potency. There are three of

these residues: Asp855, which forms hydrogen bonds and

water bridges; Lys745, which forms pi-cation bonds and hy-

drogen bonds; and Thr854, which forms water bridges and

sometimes hydrogen bonds. Immediately we note that there

is a significant difference in interaction behaviour between

methanol-substituted inhibitors and methyl substituted in-

hibitors. Only the three methanol-containing inhibitors 1b,

1c and 3b) show any interactions with Asp855 at all, and

only these form a hydrogen bond to Lys745; the four methyl-

containing compounds 1a, 2a, 2b and 3a) do not have

these interactions. We therefore consider the methanol- and

methyl- substituted compounds separately here.

Focusing first on the methanol containing compounds, we notice that there are clearly systematic differ-

ences between the high-potency S enantiomer and the low-potency R enantiomer in how they interact

with the aforementioned residues based on the interatcion frequency: First, only the S-enantiomer forms

a hydrogen bond to Lys745, even though both form a pi-cation bond; Second, S-enantiomer’s interaction

with Asp855 is markedly stronger than the R-enantiomer’s; and finally, the S-enantiomer forms a water

bridge to Thr854, while the R-enantiomer forms a hydrogen bond (in the case of R-1b and R-3b) or

has a smaller interaction consisitng of both hydrogen bonding and water bridges (R1c). In this case, we

think a picture says more than a thousand words - Figure 4.17 shows the binding mode of the S and R

enantiomers of 1b, both showing the location and orientation of the aforementioned residues, and most

importantly: the water molecules.

First, consider the bonds to Lys745 and Asp855. At pH 7, our preprocessing estimated that Lysine is

a protonated amine and Asp855 a deprotonated carbooxylic acid; therefore, they form an ionic bond

between each other. Further, since Lys745 is a cation, it forms a pi-cation bond to the phenyl ring
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4.4 Residue-ligand interaction analysis

(a) R-1b (b) S -1b

Figure 4.17: The high potency S-enantiomer of the methanol compounds form additional hydrogen

bonds to Lys745 and Asp855 via the methanol while retaining a bond to Thr854 mediated by water,

in contrast to the low-potency R-enantiomer which bonds to Thr854 via a direct hydrogen bond from

methanol. Shown are representative binding modes of the R/S-enantiomers of 1b and their interactions

with Lys745, Asp855, and Thr854, and the surrounding solvent. The bridging water molecule is thickened

for emphasis. Dashed lines show non-covalent bonds: yellow for hydrogen bonds, green for pi-cation

bonds, and purple for ionic bonds.

for both enantiomers. In addition, however, the S-enantiomer methanol forms a strong hydrogen-ionic

bond to this residue - except for when it forms a hydrogen bond to Asp855 or one of their surrounding

solvent molecules. These solvent molecules form a rather interesting network of hydrogen bonds between

various polar/ionic residues, the solvent, and the inhibitor itself - in the broader context of EGFR, the

formation of a salt bridge between Lys745 and Glu762 is one of the primary interactions that activate

the protein. However, in our narrow scope of investigating the stereoselectivity of EGFR towards our

inhibitors, we theorize that these two alternating non-covalent bonds to Lys745 and Asp855 explain why

the S-enantiomer of 1b, 1c and 3b has a higher binding affinity than the R-enantiomer. Still, one

question remains: what about the aforementioned water bridge to Thr854?

Earlier we noted that the R-enantiomers of the methanol-substituted compounds tended to form internal

hydrogen bonds between the methanol and the N3 nitrogen on the scaffold. When we include Thr854, it

becomes obvious that the methanol actually forms two hydrogen bonds in the low-potency enantiomer:

one internal bond to the N3 nitrogen, and one external bond to the hydroxy group of Thr854. More

importantly, however, we see what instead happens when there is only a hydrogen instead of a methanol

in this area: A water bridge forms between N3 and Thr854. This means that even without the methanol,

the bond to Thr854 can be maintained in almost exactly the same manner, and with greater flexibility

due to the free movement of solvent. Further this structural water is incredibly stable; normally, water

diffuses in and out of the binding pocket continuously, meaning that labeling any water molecule in order

to calculate its energy becomes a futile task. Not so with this water bridge, however; once a water

molecule formed this bridge, it often stayed in that area for several hundred nanoseconds. In fact, this
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(a) R-1a
(b) S -1a

Figure 4.18: The high potency R-enantiomer of the methyl thienopyrimidines 1a and 3a) forms a single

bond that the low-potency S-enantiomer doesn’t: a water-mediated hydrogen bond to Thr854. Shown

are representative binding modes of the R/S-enantiomers of 1a and their (non-)interactions with Lys745,

Asp855, and Thr854, and the surrounding solvent. Dashed lines show non-covalent bonds: yellow for

hydrogen bonds and green for pi-cation bonds.

water bridge happened for all high-potency enantiomers in our simulations, while only two low-potency

enantiomers formed it consistently, namely the methyl-substituted furo- and thienopyrimidines 2a and

2b.

Speaking of which, do the methyl-substituted compounds show similar behaviour? Clearly, because of

their structure, they cannot have the internal hydrogen bond, nor the polar bonds to Asp855 or Lys745,

which is confirmed by interaction analysis. What remains is the pi-cation bond between the phenyl and

Lys745 and the water bridge to Thr854. As mentioned, we see a difference between the thienopyrimidines

1a and 3a and the pyrimidines with different heteroatoms, 2a and 2b. The former establish the water

bridge much more frequently in their high-potency R enantiomer than in their low potency S-enantiomer.

Inspecting their trajectories, it is not hard to explain why this is - the methyl is a larger group than the

hydrogen it replaces, which present a steric hindrance towards forming the water bridge, while at the

same time, steric repulsion between the methyl and Thr854 forces the latter away from the ligand. For

these two thienopyrimidines, then, we theorize that the displacement of the water bridge to Thr854 due

to steric hindrance from methyl in S-1a and S-3a causes these enantiomers to be less stable, explaining

why the R-enantiomers have a higher binding affinity.

What then, of the furo- and pyrrolopyrimidine based 2a and 2b? These do not displace this water

bridge in their low-potency conformation. Instead, the structures are perturbed slightly compared to the

thienopyrimidines such that the methyl lies just outside the space occupied by the water bridge, while

phenyl is slightly farther away from Lys745. In the case of the phenyl-down conformation, we see a similar

behaviour, with the phenyl still having a pi-cation interaction with Lys745 and the water bridge being
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(a) R-2b

(b) S -2b, phenyl up (c) S -2b, phenyl down

Figure 4.19: Unlike the methyl substituted thienopyrimidines, pyrrolopyrimidine 2b (and furopyrimi-

dine 2a, not shown) does not displace the water bridge to Thr854; in fact, this bridge is maintained in

both the phenyl up and phenyl down conformation.

maintained. The interaction frequency plots do not hint at any particular discrepancy either. Why is it

that our simulations allow these two inhibitors to maintain the water bridge while 1a and 3a cannot?

So far, we have treated the inhibitors like the scaffold is in approximately the same position with respect

to the binding pocket for all of them. However, if we actually measure the distance between Met793

and the heteroatom for our exemplar geometries, we find that the thienopyrimidines are farther away

from the hinge compared to 2a and 2b. Unfortunately, we uncovered this rather late in our work, and

so we did not have enough time to perform a more rigorous analysis of our trajectory to verify that the

thienopyrimidines are consistently farther away from the hinge than 2a and 2b. We think it likely, because

there is a casual relationship in play: compared to oxygen and nitrogen, sulphur has a larger radius, often

longer bond lengths, and weaker non-covalent interactions, particularly in when parametrized in force

fields. [81] Thus, the equilibrium distance is farther away due to weaker attractive interactions compared

to the furo- and pyrrolpyrimidines. In turn, we hypothesize that because 2a and 2b are generally closer

to the hinge, the steric strain on the phenyl (which is on the opposite side from the hinge) is decreased,

allowing the amine moeity a greater degree of freedom to move methyl out of the way of the water and

Thr854. This is why they show few differences between the two enantiomers in our simulation; they
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Figure 4.20: In our exemplar structures, the thienopyrimidine scaffold is often farther away from the

hinge compared to the furo- and pyrrolopyrimidine scaffold. Depicted from left to right are the scaffold

and hinge region of S -2a, S -2b and S -1a with measurements showing the interatomic distance between

the N3 nitrogen of the inhibitor and the amine nitrogen of Met793, as well as the distance between the

heteroatom and the carbonyl group of Met793.

simply are able to accommodate the water bridge better due to the scaffold’s close proximity to Met793.

This does not mean there is no repulsion in place, of course; only that its impact is lessened.

Here, the weakness of using the interaction frequency to reason about the molecular behaviour becomes

clear; because the counting of an interaction is a binary check, we do not get a clear estimate of how strong

a particular interaction is nor how much energy this interaction contributes. Our previous arguments

surrounding the methanol-substituted compounds are possible because it is clear to us that the extra

interactions are not just rarer, but actually inaccessible to the wrong enantiomer, even if the force

field does not precisely model the strength of these interactions; in the case of the methyl-substituted

compounds, the difference becomes one of degree rather than possibility, meaning that a proper analysis

of this behaviour should employ methods that account for how interactions vary with distance. In the

future, perhaps, we may want to once again model a portion of the system quantum mechanically in

order to more accurately estimate the strength of these various interactions and the strain imposed upon

the ligand, now that we have a clearer picture of the interactions that occur within the binding pocket.

Unfortunately, this also means that our simulations are unable to determine whether the enantiomers 2a

and 2b can be differentiated by a similar set of interaction behaviours as those of 1a and 3a, even if we

consider it likely that the water bridge to Thr854 is a key factor in all of these inhibitors.

4.5 Summary of results

In the preceding section, we have presented analyses of data generated by Molecular Dynamics simulations

of a set of EGFR inhibitors bound to the active seat of EGFR, and gradually pieced together a picture

of how the inhibitors interacts with the binding pocket. The final paragraphs outline our answer to

the thesis question: a possible explanation for why one enantiomer is more stable than the other, with
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separate behaviour for the methanol-substituted inhibitors 1b, 1c and 3b) and the methyl-substituted

thienopyrimidine inhibitors 1a and 3a). In common for both of these is a water-mediated hydrogen bridge

between the N3 nitrogen on the scaffold and Thr854, which is present in the high-potency conformation

and either displaced (for methyl-substituted inhibitors) or replaced (by methanol) in the low-potency

conformation. Additionally, the high-potency methanol-substituted inhibitors have favourable hydrogen

bond interactions to Lys745 and Asp855 which are not possible in the low-potency enantiomers. As

another way of illustrating this, we provide the 2D chemical diagram in Figure 4.21. We hit one snag,

that being the furopyrimidine 2a and the pyrrolopyrimidine 2b, neither of which show any differences

between their enantiomers that we could determine from our simulations, unfortunately.

4.6 Retrospective of earlier study

In light of our new theory about the binding site interactions, we reviewed one of our old studies, the

Glide docking study first used to model our inhibitors. In this study, the 2J6M was allowed to keep its

native three structural waters; however, the methodology of Glide naturally freezes these water molecules

in place, since it considers them a part of the receptor, which itself is completely rigid. Further, it does

not model solvent at all. This is natural considering its purpose as a massive screening tool meant to

sort through thousands of ligands, evaluate possible docking poses, score these, and return a ranked

set of the best scoring ligand poses. However, even with these massive approximations, the calculated

geometries turn out surprisingly accurate - at least for the high-potency ligand. Figure 4.22a shows

a slightly modified result of Glide, where the low-potency S -1a has been superimposed upon the high

potency R-1a based on their scaffold. The image clearly shows that while both conformations maintain

the pi-cation bond to Lys745 and the water bridge to Thr854, S -1a would experience significant steric

clash with Thr854 in this position. This is a consequence of the rigid water - the displacement of the

water molecule seen in our MD simulations cannot happen, so instead, the ligand conformation adopts

to allow the water bridge to continue.

If we instead look at Figure 4.22b, we see the actual location of the S-1a inhibitor pose (purple) and the

aforementioned superimposed-on-R-1a position. It is clear that in order to decrease steric repulsion from

Thr854, Glide moved S-1a away, which weakened both the hydrogen bond to Met793 and the pi-cation

bond to Lys745 in the process. Overall, we find that the biggest error committed by Glide in terms of

optimal ligand pose is its inability to displace or remove the structural waters. This results in accurate

poses for the high-potency ligands, but significantly different poses for the low-potency enantiomers.

Intuitively, this should mean that the internal energy as well as the Van der Waals repulsion of the low-

potency enantiomer should be higher; looking at the calculated energy terms, that intuition appears to

be entirely correct. While the final GlideScore only shows weak correlation to actual measured activity,

if we instead sum up the Van der Waals, Coulomb, and Internal Energy terms computed by Glide, we

get roughly the expected energy difference (2-4 kcal/mol) not only for 1a, but for 2a and 3a as well. The

only methyl-substituted inhibitor this doesn’t work on is 2b (Figure 4.23), which we believe is due to the
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Figure 4.21: Simplified 2D schematic showing how chirality affects non-covalent interactions.

Top: Steric clash with a methyl group (shown as dashed lines) prevents a water bridge to Thr854 in the

S -enantiomer of methyl-substituted thienopyrimidine inhibitors, here 1a, but not in the R-enantiomer.

Bottom: Additional bond from methanol to Lys745 causes the S enantiomer to be more stable than the

R enantiomer in methanol-substituted thienopyrimidines, here 1b.
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(a) Top Glide pose of R-1a (green), with the top pose

of S-1a (pink) superimposed on the scaffold of R-1a. It

is clear that this hypothetical pose would experience

significant steric clash between the S-1a methyl and

Thr854.

(b) Top pose for S-1a found by Glide, in two locations:

the correct position as found by Glide (purple), and the

position it takes when superimposed on the scaffold of

R-1a.

Figure 4.23: Top Glide poses of R-2b (green) and S-2b (pink)

extra hydrogen bond to Met793 being overestimated.

In the case of the methanol-substituted compounds, we find that Glide does not predict the bond to

Lys745 at all (Figure 4.24b); however, we also see that this is not, necessarily, due to some peculiarities

about Lys745, but simply that one of the structural waters is perfectly positioned to bond to the S-

methanol (Figure 4.24a) - in the MD simulations, this area is generally saturated with water molecules,

so there’s no single molecule which consistently forms this bond. We also looked at the later poses found

by GlideXP and MM/GB-SA, and find that they suffer from the same problem of being unable to displace

or remove the water molecules. These considerations make it clear that Glide is actually pretty adept at

predicting binding poses, but that it suffers when structural waters are included when they shouldn’t be

(and likely vice versa).

This supports our own findings that modelling of flexible water molecules is crucial to obtaining correct

binding modes for EGFR inhibitors based on thieno-, furo-, and pyrrolopyrimidine scaffolds. Without
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(a) Best Glide poses for 1c from a different angle,

showing how the structural water forms a hydrogen

bond to the methanol group.

(b) Top glide poses of R-1c (green) and S-1c (pink)

the water, the interaction with Thr854 disappears, removing one of the key stereo-selective interactions

as was the case for the QM/MM study; With rigid water, the low-potency enantiomers adopt unusual

binding poses due to the steric repulsion from the rigid water. One approach that doesn’t involve long MD

simulations would be to estimate the location of water molecules in the binding pocket and then include

the cost of desolvating these in the energy calculation; programs such WaterMap [82] and HydraMap [83]

were made explicitly for this task.

4.7 Further work

Our theory could well do with more rigorous validation through both computational modelling and

laboratory experiments. Since we opted to run long single-trajectory simulations, we made headway

in uncovering dynamic processes that happen on time scales under a microsecond, such as the ligand

conformation transitions revealed by the RMSD plot, but we did not anticipate that the protein sequence

added by Prime would be as weakly folded as it was. Using ensemble methods to repeatedly simulate

our model systems with slightly different initial conditions would help quantify model uncertainty and

dependence on initial conditions, furnishing our work with some more statistically well founded data now

that we have a clear hypothesis to investigate. In a similar vein, physical experiments such as X-Ray

Diffraction of EGFR co-crystallized with some of our inhibitors may be used to validate and/or disprove

our hypothesis about the water bridge being displaced in the low-potency enantiomer.

A weakness with our method is the lack of energy quantification, particularly with respect to residue

interaction strength. Our current methodology is limited in scope to what are essentially binary evalua-

tions of interactions (”is the interaction present, or not?”), unlike real interactions whose strength varies

non-linearly with distance. An obvious next step is to compute the interaction strength quantitatively,

as we tried in our previous project, but now with a clearer understanding of which residues interact in

which way - e.g. the strength of the water bridge vis-a-vis the internal hydrogen bond can be settled

more accurately using quantum mechanics on a reasonable scale, since the ligand-water-residue system

contains at most 70 atoms.
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4.7 Further work

Figure 4.25: A mockup of a possible binding mode of a dimethanol compound

For the experimentalist, our work presents further insights on molecular behaviour that may be used to

guide further development of EGFR inhibitors. The primary takeaway is that the cramped conformation

of the binding pocket causes the carbon-amine substitute to curve back towards the scaffold, necessitating

consideration of spatial distance between distantly-bonded atoms; the secondary takeaway is that the

scaffold has a propensity for forming water-mediated hydrogen bonds, so one cannot just consider the

ligand and the binding pocket alone. Additionally, we find that the ligand is much more solvent-exposed

than was previously estimated by Prime. Our simulations indicate that methanol-substituted compounds

are more likely to have higher binding affinity owing to the additional polar bonds these are able to make.

Our findings indicate the possibility of creating compounds that replace the Thr854 water bridge with

e.g. a hydroxy group, as the low-potency enantiomers were found to do, while also forming the favourable

interactions of the high-potency enantiomer. A simple candidate, at least in terms of structural changes,

is one where both small functional groups are methanol; we illustrate the imagined binding mode in

Figure 4.25. This compound would both have the favourable bonds to Lys745 and Asp855, while also

replacing the water bridge with an internal hydrogen bond.
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5 Conclusion

5 Conclusion

In this thesis, we have used Molecular Dynamics simulations to investigate the underlying mechanisms of

chirality-dependent inhibitory potency of a family of EGFR inhibitors. We performed long equilibrium

simulations of inhibitors in the binding pocket of the intracellular kinase domain of EGFR, in order to

learn more about their equilibrium binding mode and the residue interactions that occur. In order to do

so, we perform interaction analyses of the trajectory and make heavy use of visualization of the trajectory

to glean information about the system. We also tried to calculate the difference in relative binding free

energy using these simulations as a one-trajectory MM/GB-SA calculation, but the resulting binding free

energy had too high uncertainty to be considered significant.

We find that most inhibitors adopts a common binding mode most of the time. This binding mode

coincides generally with the binding mode of AEE788, as described by Yun et al.. The furo/pyrrol/thieno-

pyrimidine ring (the scaffold) is oriented with the 1-N in the back of the ATP-binding pocket, where it

bonds with the main chain amide of Met793. Met793 lies in the hinge region of the kinase, which connect

the N and C lobes. The scaffold is further sandwiched between the hydrophobic residues of Ala743

and Leu844, see figure 4.15. The 4-phenylethylamine moiety extends ”up” into the hydrophobic pocket

defined by Thr790, Leu788, Lys745, and Met766, where the phenyl ring forms approximately a 70°angle

to the pyrimidine ring. The 6-phenyl substituent is sandwiched between Leu718 above and Gly796 below.

Our key finding is that in this binding mode, the difference in inhibitory potency between the high-

potency and low-potency enantiomers can be explained by the stereoselective formation of a water bridge

between the N3 nitrogen and the hydroxyl of Thr854; In the low-potency enantiomer this bride is sterically

hindered, being either displaced by a methyl group or replaced by a methanol group. The methanol-

substituted compounds additionally form polar bonds to Lys745 and Asp855. We propose that the

increased stability due to these extra bonds are the underlying cause of the chirality-dependent inhibiton

of EGFR. These findings provide new insights into the behaviour of the EGFR binding pocket and

highlight the importance of solvent modelling.
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[39] Schlitter, J.; Klähn, M. A new concise expression for the free energy of a reaction coordinate. The

Journal of Chemical Physics 2003, 118, 2057–2060.
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