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Abstract

The statistical associating fluid theory (SAFT) has been hugely successful in describing
associating chain fluids. These SAFT like equations of state are usually written as a sum
of the Helmholtz free energy, consisting of an ideal, a monomeric, a chain and an asso-
ciation contribution. Most of the work on these equations has been on the monomeric
contribution, where the Barker-Henderson perturbation theory has shown promising re-
sults. Barker-Henderson perturbation theory is based on expanding the Helmholtz free
energy from a well understood repulsive hard-sphere reference fluid into a perturbation
series, where the perturbation adds on the attractive forces. Investigations of this method
has shown promising results for pure fluids, but in a recent paper, Hammer et al. observed
severe problems in describing the second and third order perturbation terms for mixtures
with large differences in well-depth.

This thesis investigates the problem with the second order perturbation term in more
detail and presents several approaches to solve the issue. Monte Carlo simulations has
been performed for different reduced temperatures, reduced densities, mixture composi-
tions and well-depth ratios in order to get a better understanding of how these parameters
affect the second order perturbation term. In the paper by Hammer et al., they only studied
the second order perturbation term using the macroscopic compressibility approximation
(MCA), where they utilized the correction factor developed by Lafitte et al.. We have in
this thesis tested the correction factor developed for Lennard-Jones fluids by van Westen
and Gross. The results were slightly better, especially at the higher reduced temperature
range.

Inspired by the work of Henderson we have also examined a numerical method in
calculating the second order perturbation term for mixtures, without having to use the
MCA. This method has been developed from two different reference fluids: a pure hard-
sphere fluid and an additive binary hard-sphere fluid. They were both able to predict
the general trend fairly well, but had a tendency to overestimate the slope at the higher
reduced density range.

The Monte Carlo simulation data for the second order perturbation term can be divided
into six different interaction terms when dealing with a binary mixture. We have shown
how these can be estimated using the numerical method inspired by Henderson. Close
comparisons between this method and Monte Carlo data of these terms has revealed that
using an additive binary hard-sphere reference improves the prediction of the ”pure” in-
teraction terms, compared to using a pure hard-sphere reference. The prediction of the
cross-interaction terms appeared to be more unreliable.

For future development, either a better understanding of the 3- and 4-particle distribu-
tion functions used in the numerical method, is needed or a thorough extension to mixture
of the MCA using a correction factor, should be conducted.
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Norsk Sammendrag

Statistisk assosierende fluid teori (SAFT) har hatt stor suksess i å beskrive assosierende
kjede fluider. Disse SAFT-type-tilstandsligningene er som regel skrevet som en sum
av Helmholtz fri energi, bestående av et ideelt bidrag, et monomerisk bidrag, et kjede
bidrag og et assosierende bidrag. Det meste av arbeidet på disse ligningene har vært
på det monomeriske bidraget, hvor spesielt Barker-Henderson perturbasjonsteori har gitt
lovende resultater. Barker-Henderson perturbasjonsteori er basert på å utvide Helmholtz
fri energi fra det godt forståtte avstøtende hardsfære referanse fluidet til en perturbasjon-
srekke, hvor perturbasjonen legger til de tiltrekkende kreftene. Man har i dag klart å
utvikle gode modeller for de tre første perturbasjonsleddene for rene fluider, men det ble
i artikkelen av Hammer et al. nylig observert store problemer i å beskrive det andre og
tredje perturbasjonsleddet for blandinger med store forskjeller i brønndybde.

Denne oppgaven undersøker problemene med andreordens perturbasjonsleddet nærmere
og presenterer flere mulige veier for å løse de. Det har blitt gjennomført Monte Carlo
simuleringer ved ulike reduserte temperaturer, reduserte tettheter, blandingsforhold og
brønndybder for å få en bedre forståelse av hvordan disse parameterne påvirker andreor-
dens perturbasjonsleddet. I artikkelen av Hammer et al., så de kun på andreordens per-
turbasjonsleddet når man bruker den makroskopiske kompressibilitets approksimasjonen
(MCA) med korreksjonsfaktoren utviklet av Lafitte et al.. Vi har i denne oppgaven testet
korreksjonsfaktoren utviklet for Lennard-Jones fluider av van Westen og Gross. Den viste
en liten forbedring, da spesielt i det høyere reduserte temperatur området.

Inspirert av arbeidet til Henderson, har vi også undersøkt en numerisk metode i å
kalkulere andreordens perturbasjonsledd for blandinger uten å bruke MCA. Denne meto-
den har blitt utviklet for to ulike referansefluider: et rent hardsfære fluid og et additivt
binært hardsfære fluid. Begge viste seg å følge den generelle trenden relativt godt, men
hadde en tendens til å overestimere senkningen ved høyere reduserte tettheter.

Det er mulig å dele opp Monte Carlo simuleringsdataen for andreordens perturbasjon-
sleddet i seks ulike interaksjonsledd, når man har en binærblanding. Vi har vist hvordan
man kan estimere disse ved bruk av den numeriske metoden inspirert av Henderson. Om-
fattende sammenligner mellom denne numeriske metoden og Monte Carlo data viser at
bruk av en binær additiv hardsfære referanse forbedrer prediksjonen av de ”rene” interak-
sjonsleddene over å bruke en ren hardsfære referanse. Sammenligningene har også vist at
den numeriske metoden er noe upålitelig i predikering av krysstermer.

For framtidig arbeid, vil man enten trenge en bedre forståelse av 3- og 4-partikkel dis-
tribusjonsfunksjoner som brukes i den numeriske metoden, eller en skikkelig utvidelse
av den makroskopiske kompressibilitets approksimasjonen med korreksjonsfaktor, for
blandinger.
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Chapter 1
Introduction

For a long time it has been desirable to describe the volumetric properties of particles
such as the pressure (P ), volume (V ) and temperature (T ) relations. They have usually
been described using an equation of state (EOS), a mathematical equation which relates
thermodynamic state variables [33]. The well-known ideal gas law of Boyle is one of the
early attempts in an EOS, with the major assumptions being volume-less particles, per-
fectly elastic collisions and no inter-particular interactions. It was not until van der Waals
published the van der Waals EOS in 1873, that a systematic approach in explaining a real
gas was made. This equation considers both the volume and the inter-particular interac-
tions. Since then, several equations of states has been made and today they serve many
purposes. They can describe the PV T properties for interpolation and data smoothing, be
used for differentiation and integration for obtaining thermodynamic properties, predict
the gas phase properties of both pure fluids and their mixtures from just a small set of
experimental data as well as predict the vapour-liquid equilibria of mixtures [47]. Just to
mention a few of their many purposes.

There are numerous ways of developing more realistic equations of states. One com-
mon starting point is to describe the interaction between the particles through a math-
ematical pair potential with repulsive and/or attractive regions. Some of the more well
known potentials being the hard-sphere, Mie and Lennard-Jones pair potentials. Taking
into account the pair potential when deriving an equation of state increases the difficulty
however. Even the very simple hard-sphere potential which only has a contact repulsion
cannot be described exactly analytically [18]. Approximate methods have therefore been
essential.

In 1954, Zwanzig developed a perturbation method were the thermodynamic proper-
ties of one system can be related over to a slightly different system and to the difference
in the inter-particular potentials of the two. This makes it possible to use a repulsive hard-
sphere fluid as a reference system, with the attractive forces added on as a perturbation
[58]. One of the difficulties with this theory is its sensitivity to the choice of hard-sphere
diameter and the perturbing potential. Based on the work of Zwanzig, Barker and Hender-
son were able to develop a successful perturbation theory, where they among other things
used a temperature dependent hard-sphere diameter [5].

In recent years, perturbation theory has regained an interest due to the success of the
Statistical Associating Fluid Theory (SAFT) originally developed by Chapman et al. [11]
in 1989 by applying previous work of Wertheim [50, 51, 52, 53]. There has been written
many articles on SAFT-like expressions since then. Two of the more famous ones are
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Chapter 1. Introduction

SAFT-VR by Gil-Villegas et al. [13] and PC-SAFT by Gross and Sadowski [14]. The
SAFT-like equations of state are usually written as a sum of the reduced Helmholtz free
energy:

a = aid + amono + achain + aassoc (1.1)

were the subscripts id, mono, chain and assoc refer to the ideal, monomeric, chain and
association contributions to the reduced Helmholtz free energy respectively. Most of the
later SAFT-like equations of states have tried to improve the monomeric term of the orig-
inal SAFT equation. This is where the perturbation theory of Barker and Henderson [5]
comes in, as this theory has shown promising results in the context of SAFT theory.

Most of the research on perturbation theory and SAFT equation of states has been
focused on single component fluids and little on mixtures. The highly successful SAFT-
VR-Mie by Lafitte et al. [23] works well for single component fluids, but struggles in
describing mixtures, especially the second order perturbation term as shown in the pa-
per of Hammer et al. [16]. Recently, the SAFT approach has also been developed for
Feynman-Hibbs corrected Mie Fluids by Aasen et al. [1, 2] in order to describe novel
quantum mixtures between helium and neon that can be used to improve the hydrogen
liquefaction process for large-scale export of liquid hydrogen produced from renewable
energy. The challenge with neon and helium mixtures however, is that helium has a much
smaller well-depth than neon [2] which makes it very difficult to describe. Figure 1.1 illus-
trates the well-depth of a Lennard-Jones potential. The focus of this paper will therefore
be on binary mixtures of Lennard-Jones particles with large differences in well-depths.

1.00 1.25 1.50 1.75 2.00 2.25 2.50
r/σ

−1

0

1

2

3

4

u
(r

)/
ε

ε

Figure 1.1: The reduced Lennard-Jones potential (u/ε) as a function of r/σ. Where r is the distance
between two particles, σ is the distance in which the potential is zero and ε is the well-depth.

As mentioned previously, the second order term in the work of Lafitte et al. [23] fails for
mixtures, but the work of van Westen and Gross [54] has yet to be extended to mixtures,
which we will do in this paper. Both Lafitte et al. [23] and van Westen and Gross [54]
have used the macroscopic compressibility approximation (MCA) with a correction fac-
tor for the second order term, this could be partly the reason for the failure of mixtures.
We will therefore also be going back to the older papers and see if a second order term
developed, not using the MCA could yield better results. Leonard et al. [26] laid much of
the foundation for mixtures in a seminal paper. They derived the perturbation theory for
three references: pure component, additive and non-additive. We will only focus on the
two first theories. Here the paper by Smith et al. [41] is of particular interest.

2



All the models will be implemented in Python and compared to Monte Carlo data.
The paper is structured in the following way:

• The theoretical foundation behind the perturbation theory will be described in sec-
tion 2.

• An explanation on how the Monte Carlo data was obtained will be given in section
4.2.

• The results will be compared and discussed in section 5.

• Some suggestions on further work will be given in section 7.
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Chapter 2
Theory

The theory section will first go through some general theory and relations from elemen-
tary statistical mechanics that will be used to derive the remaining theory, followed by
a presentation of the three very well known pair potentials Hard-Sphere, Lennard-Jones
and Mie potentials. Then the general perturbation theory will be presented by use of the
λ-expansion and the ”blip function” procedure for soft core reference systems. This is
followed by the specific perturbation procedure of Barker and Henderson.

2.1 Statistical Mechanics
The first part of this section will explain how to start from the general Hamiltonian and
end up with the Helmholtz free energy and the equilibrium density for the canonical en-
semble. It will also present the configurational integral and the distribution function. The
last part of this section will present the grand canonical ensemble and some useful rela-
tions there.

Consider a macroscopic, isolated system containing N identical spherical shaped par-
ticles of mass m in a volume V . 3N coordinates rN ≡ r1, ..., rN and 3N momenta
pN ≡ p1, ...,pN of the particles completely specifies the dynamical state of a classical
mechanical system. The 6N variables define a phase point in the 6N dimensional phase
space. The Hamiltonian (H) of the system can be written in the general form as

H(rN ,pN ) = KN (pN ) + UN (rN ) + ΦN (rN ) (2.1)

where KN is the kinetic energy

KN =

N∑
i=1

|pi|2
2m

(2.2)

UN is the inter-particular potential energy and ΦN is the potential energy from the inter-
action between the particles and some spatially varying, external field [18]. Separating
the energy in this way is only possible if the potential energy is not dependent upon the
velocities. For almost all potential energy functions that are in use this is a safe assump-
tion [24]. The phase-space probability density F [N ](rN ,pN ; t) is introduced, where the
quantity F [N ]drNdpN is the probability that at time t the physical system state can be
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Chapter 2. Theory

represented by a phase point lying in the 6N -dimensional phase-space element drNdpN .
This implies that the integral of F [N ] over all phase space is∫ ∫

F [N ](rN ,pN ; t)drNdpN = 1 (2.3)

for all t. The description of the system that the full phase-space probability density pro-
vides is usually more detailed than what is needed. Usually one is more interested in a sub-
set of particles of size n. Thus a reduced phase-space distribution functionF (n)(rn,pn; t)
is defined as:

F (n)(rn,pn; t) =
N !

(N − n)!

∫ ∫
F [N ](rN ,pN ; t)dr(N−n)dp(N−n). (2.4)

Since the redundant information can be eliminated by integrating F [N ] over the coordi-
nates and the momenta of the other (N − n) particles. The combinatorial factor N !

(N−n)!

is the number of ways of choosing a subset of size n. The quantity F [n]drndpn gives
the probability of a subset n lying in the reduced phase-space element drndpn at time t,
irrespective of the coordinates and the momenta of the other N − n particles [18].

2.1.1 The canonical Ensemble
Some thermodynamic properties of a physical system can be written as averages of par-
ticle coordinate and momenta dependent functions. The so called mechanical properties.
At thermal equilibrium state, these averages has to be independent of time. One proce-
dure in obtaining these is to average over a constructed ensemble. A statistical-mechanical
ensemble is an arbitrarily large collection of fictional systems, where each of them is a
replica of the physical system in interest. They are characterized by the same macroscopic
parameters and differ from each other in the assignment of coordinates and momenta of
each particle. We will be using the canonical NV T ensemble which is characterized by
the same values of N , V and T . The constant T is justified by assuming that the systems
of the ensemble are initially brought into thermal equilibrium with each other by submerg-
ing them in a heat bath at temperature T . This ensemble has the equilibrium probability
density function (F [N ]

0 (rN ,pN )) for a system of identical spherical particles

F [N ]
0 (rN ,pN ) =

1

h3NN !

exp(−βH)

QN
(2.5)

where h is the Planck’s constant and QN is the canonical partition function

QN =
1

h3NN !

∫ ∫
exp(−βH)drNdpN (2.6)

while β is 1/kBT , where kB is the Boltzmann constant. Connecting statistical mechanics
with thermodynamics is beneficial, thus the Helmholtz free energyA is introduced, which
is an appropriate thermodynamical potential for an NV T ensemble, defined as

A = U − TS (2.7)

where T is the temperature, U is the internal energy and S is the entropy. The link between
statistical mechanics and thermodynamics is through the relation between the thermody-
namic potential and the partition function, which for Helmholtz free energy is:

A = −kBT lnQN (2.8)
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2.1 Statistical Mechanics

It will be convenient to separate the Helmholtz free energy into an ideal part containing
the contribution from a uniform ideal gas which is readily calculable and into a residual
part containing the contributions arising from interactions between particles. This can be
obtained by rewriting the canonical partition function. First the Hamiltonian is separated
in the same way as equation 2.1 and it is assumed no external force. The momenta for the
canonical partition function can be integrated analytically and thus the canonical partition
function is rewritten as:

QN =
1

h3NN !

∫ ∫
exp(−β(KN (pN ) + UN (rN )))drNdpN

=
1

h3NN !

∫
exp(−βUN (rN ))drN

∫
exp(−βKN (pN ))dpN

=
1

h3NN !

∫
exp(−βUN (rN ))drN

∫
exp

(
−β

N∑
i=1

|pi|2
2m

)
dpN

(2.9)

Since all the particles are equal and their momenta are independent of each other, then
each integral over the momenta will also be equal to each other, independent of the mo-
mentum label

QN =
1

h3NN !

∫
exp(−βUN (rN ))drN

[∫ ∞
−∞

exp(−β p2

2m
)dp
]3N

=
1

h3NN !

∫
exp(−βUN (rN ))drN

(
2πm

β

)3N/2
(2.10)

Inserting the Broglie thermal wavelength Λ

Λ =

(
βh2

2πm

)1/2

(2.11)

into the equation, the following form for the canonical partition function is obtained

QN =
1

N !

ZN
Λ3N

(2.12)

where ZN is the configurational integral

ZN =

∫
exp(−βUN (rN ))drN . (2.13)

By assuming there are no interactions between the particles UN = 0, the configurational
integral for ideal gas is obtained:

Z id
N =

∫
exp(−β · 0)drN =

∫
· · ·
∫

dr1 · · · drN = V N (2.14)

where V is the volume. The partition function of an ideal gas will then be

Qid
N =

1

N !

V N

Λ3N
(2.15)

The partition function of a system with interacting particles can conveniently be written
as

QN = Qid
N

ZN
V N

(2.16)
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Chapter 2. Theory

and thus the desired form of Helmholtz free energy is obtained:

A = −kBT ln(Qid
N

ZN
V N

) = −kBT lnQid
N − kBT ln

ZN
V N

= Aid +Ares (2.17)

Returning back onto the equilibrium probability equation 2.5, it would be convenient to
obtain an equilibrium particle density, as the work in this thesis will mostly be dealing
with position dependent inter-particular potentials. To obtain such a density, a reduced
form of the equilibrium probability density function must first be obtained, by inserting
equation 2.5 into equation 2.4

F (n)
0 (rn,pn) =

N !

(N − n)!

∫ ∫
F [N ]

0 (rN ,pN )dr(N−n)dp(N−n)

=
N !

(N − n)!

∫ ∫
1

h3NN !

exp(−βH)

QN
dr(N−n)dp(N−n)

=
N !

(N − n)!

1

h3NN !QN

∫
exp(−βUN )dr(N−n)

∫
exp

(
−β

N∑
i=1

|pi|2
2m

)
dp(N−n)

(2.18)

As shown previously in equation 2.10 integration over a component of momentum yields
(2πm/β)1/2, so equation 2.18 can be rewritten as

F (n)
0 (rn,pn) =

N !

(N − n)!

1

h3NN !QN

∫
exp(−βUN )dr(N−n)

∫
exp

(
−β

N∑
i=1

|pi|2
2m

)
dpN

· 1

(2πm/β)3n/2
exp

(
−β

n∑
i=1

|pi|2
2m

)

=
N !

(N − n)!

1

h3NN !QN

∫ ∫
exp(−βH)dr(N−n)dpN

· 1

(2πm/β)3n/2
exp

(
−β

n∑
i=1

|pi|2
2m

)
=ρ

(n)
N (rn)f

(n)
M (pn)

(2.19)

where F (n)
M (pn) is the n-particle Maxwell distribution of momenta

F (n)
M (pn) =

1

(2πm/β)3n/2
exp

(
−β

n∑
i=1

|pi|2
2m

)
(2.20)
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2.1 Statistical Mechanics

and ρ(n)
N (rn) is the desired equilibrium n-particle density

ρ
(n)
N (rn) =

N !

(N − n)!

1

h3NN !QN

∫ ∫
exp(−βH)dr(N−n)dpN

=
N !

(N − n)!

1

h3NN !QN

∫
exp(−βUN )dr(N−n)

∫
exp

(
−β

N∑
i=1

|pi|2
2m

)
dpN

=
N !

(N − n)!

N !Λ3N

h3NN !ZN

∫
exp(−βUN )dr(N−n)

(
2πm

β

)3N/2

=
N !

(N − n)!

Λ3N

ZN

∫
exp(−βUN )dr(N−n) 1

Λ3N

=
N !

(N − n)!

1

ZN

∫
exp(−βUN )dr(N−n)

(2.21)

Finally the n-particle distribution function g(n)
N (rn) is introduced, defined as

g
(n)
N (rn) =

ρ
(n)
N (rn)

Πn
i=1ρ

(1)
N (ri)

. (2.22)

which measures how much the structure of a fluid deviates from complete randomness.
This thesis will be dealing with homogeneous systems, which simplifies the equation to

ρ
(n)
N (rn) = ρng

(n)
N (rn) (2.23)

where ρ is the particle density N/V [18]. The two relations from equation 2.21 and
equation 2.23 will be important in the perturbation theory section.

2.1.2 The Grand Canonical Ensemble
The previous section was for a homogeneous system with constant number of particles
(closed). This section will discuss a homogeneous open system. The thermodynamic
state is then defined by specifying the values of µ, V and T , where µ is the chemical
potential. The corresponding thermodynamic potential is the grand potential Ω, defined
as

Ω = A− 〈N〉µ (2.24)

where 〈N〉 is the average number of particles [18]. It is assumed that there is no external
field and that the system is homogeneous, thus the internal energy can be written as

U = TS − PV + µ〈N〉 (2.25)

which reduces the grand potential to

Ω = −PV (2.26)

while the differential form of equation 2.24 is

dΩ = −SdT − PdV − 〈N〉dµ (2.27)

From the derivatives of Ω the following properties can be obtained

S = −
(
∂Ω

∂T

)
V,µ

(2.28)
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P = −
(
∂Ω

∂V

)
T,µ

(2.29)

〈N〉 = −
(
∂Ω

∂µ

)
T,V

(2.30)

The grand canonical ensemble is the ensemble for systems that have constant µ, V and T
values. This is ensured by assuming that all the systems of the ensemble are allowed to
come to equilibrium with a reservoir, where they can exchange both heat and matter. The
normalised probability density function is now

F0(rN ,pN ;N) =
exp(−β(H−Nµ))

Ξ
(2.31)

where Ξ is the grand partition function given as

Ξ =

∞∑
N=0

exp(Nβµ)

h3NN !

∫ ∫
exp(−βH)drNdpN =

∞∑
N=0

zN

N !
ZN (2.32)

and z is the activity given as

z =
exp(βµ)

Λ3
(2.33)

The link with thermodynamics is obtained by the relation

Ω = −kBT lnΞ (2.34)

The probability, p(N) that at equilibrium this system will contain exactly N particles
irrespective of their coordinates and momenta is

p(N) =
1

h3NN !

∫ ∫
F0drNdpN =

1

Ξ

zN

N !
ZN (2.35)

the average number of particles 〈N〉 is then

〈N〉 =

∞∑
N=0

Np(N) =
1

Ξ

∞∑
N=0

N
zN

N !
ZN =

∂lnΞ

∂lnz
(2.36)

A measure of fluctuation in number of particles about its average value can be obtained
by the mean-square deviation, which can be obtained by differentiating 〈N〉 with respect
to lnz:

∂〈N〉
∂lnz

= z
∂

∂z

(
1

Ξ

∞∑
N=0

N
zN

N !
ZN

)

=
1

Ξ

∞∑
N=0

N2 z
N

N !
ZN −

(
1

Ξ

∞∑
N=0

N
zN

N !
ZN

)2

= 〈N2〉 − 〈N〉2 ≡ 〈(∆N)2〉

(2.37)

Which can be rewritten as

〈(∆N)2〉
〈N〉 =

1

〈N〉
∂〈N〉
∂µ

∂µ

∂lnz
=
kBT

〈N〉
∂〈N〉
∂µ

. (2.38)
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The right hand side is an intensive quantity, which means that the left hand side also has
to be intensive. Therefore when 〈N〉 → ∞, 〈(∆N)2〉1/2/〈N〉 → 0. in other words,
in the thermodynamic limit 〈N〉 → ∞, V → ∞, with ρ = 〈N〉/V held constant, the
number of particles in the system can be found from the grand canonical average 〈N〉.
The thermodynamic properties calculated from other ensembles will become identical in
the thermodynamic limit. We introduce the isothermal compressibility χT , defined as

χT = − 1

V

(
∂V

∂P

)
T

. (2.39)

We want to relate this to the intensive ratio (equation 2.38). In order to do this we note
that the Helmholtz free energy is an extensive property and therefore must be expressible
as

A = NĀ(ρ, T ) (2.40)

where Ā is the free energy per particle. Using the following relation for the Helmholtz
free energy

µ =

(
∂A

∂N

)
T,V

(2.41)

the following relations can be obtained for the free energy per particle

µ = Ā+ ρ

(
∂Ā

∂ρ

)
T

(2.42)

(
∂µ

∂ρ

)
T

= 2

(
∂Ā

∂ρ

)
T

+ ρ

(
∂2Ā

∂ρ2

)
T

(2.43)

We also have the following relation for the Helmholtz free energy

P = −
(
∂A

∂V

)
T,N

= −∂A
∂ρ

∂ρ

∂V
= ρ2

(
∂Ā

∂V

)
T

(2.44)

Taking the derivative of this relation gives us(
∂P

∂ρ

)
T

= 2ρ

(
∂Ā

∂ρ

)
T

+ ρ2

(
∂2Ā

∂ρ2

)
T

= ρ

(
∂µ

∂ρ

)
T

(2.45)

combining this with (
∂P

∂ρ

)
T

= −V
2

N

(
∂P

∂V

)
N,T

=
1

ρχT
(2.46)

and (
∂µ

∂ρ

)
T

= V

(
∂µ

∂N

)
V,T

(2.47)

gives the relation

1

ρχT
= ρV

(
∂µ

∂N

)
V,T

N

(
∂µ

∂N

)
V,T

=
1

ρχT

(2.48)
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combining this with equation 2.38 at the thermodynamic limit gives the useful relation

〈(∆N)2〉
〈N〉 = ρkBTχT (2.49)

which will be an important relation for the macroscopic compressibility approximation
explained in section 2.4 [18].

2.2 Hard-Sphere Potential
The repulsion between molecules or atoms at short range that have their origin from the
overlap of the outer electron shell, is very important for the calculation of pair potentials.
The attractive force however, although acting on long ranges, vary much more smoothly
and has a minor impact on the liquid structure. The simplest model for a fluid reflecting
these observations is the hard-sphere model, that ignores the attractive force all together.
The pair potential u(r) is written as

uhs
d (r) =

{
∞ r < d

0 r > d
(2.50)

where d is the hard-sphere diameter. This model works well for studies where the hard-
core of the potential is dominant. The understanding one have of the model today, is
mostly from computer simulations and have had no significant difference from more com-
plicated inter particular potential models, especially at conditions close to crystallization
[18].

2.3 Lennard-Jones and Mie Potential
A more realistic potential for neutral atoms than the hard-sphere potential can be obtained
from quantum mechanical calculations. When the separation between the particles is
large, the dominant contribution to the potential comes from dispersion forces such as
dipole-dipole interaction, dipole-quadrupole interaction and London dispersion. All these
terms represent attractive contributions to the potential, the leading term however is the
dipole-dipole interaction varying with r−6. The other terms are generally small compared
to the leading term and are thus neglected. The short range interaction however is harder
to calculate, thus for mathematical convenience, it is common to represent the short range
contribution with an inverse-power law on the form of r−l. For closed-shell atoms l will
be between 9 and 15. u(r) in the limiting cases of r →∞ and r → 0 can be described as

ulj(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(2.51)

which is the 12-6 Lennard-Jones potential originally proposed by Jones [20], where σ is
the collision diameter, which is the separation of particles (u(r) = 0). ε is the depth of
the potential well at the minimum potential in u(r), which is at rmin = 21/6σ [18]. The
alternative to the Lennard-Jones potential is the Mie potential by Mie [30]. This potential
allows for a more flexible description of the repulsive and the attractive terms:

umie(r) = Cε
[(σ

r

)lr
−
(σ
r

)la]
(2.52)
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2.4 Perturbation Theory

where

C =
lr

lr − la

(
lr
la

) la
lr−la

. (2.53)

The variable C is described as it is to ensure that the minimum of the potential remains
−ε regardless of what the repulsive lr and the attractive la parameters are. The repulsive
parameter lr will always have to be larger than the attractive parameter la. By letting
lr = 12 and la = 6 the Lennard-Jones potential is recovered. Figure 2.1 shows the Mie
potential for different repulsive and attractive parameters.

1 2 3 4 5
r/σ

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

u
m

ie
/ε

8-6

12-6

18-6

18-12

Figure 2.1: The reduced 8-6, 12-6, 18-6 and 18-12 Mie potential as a function of r/σ.

This project will be focusing on the Lennard-Jones potential.

2.4 Perturbation Theory
This section will explain the general perturbation theory. It is assumed a homogeneous
system and that the interactions between particles are spherically symmetric and pairwise
additive. The basis of the perturbation theory that is discussed is the division of the pair
potential

u(rij) = u0(rij) + w(rij) (2.54)

where u0(rij) is the pair potential of the reference system, while w(rij) is the pertur-
bation. The perturbation calculation usually proceed in two stages, where the first step
is to calculate the effects of the perturbation on the thermodynamic properties and pair
distribution function of the reference system. This will be done systematically through
an expansion in powers of the inverse temperature up to the second order term, the λ-
expansion. We will also present two other different approaches in calculating the second
order term. The second step is then to relate the properties of the soft-core reference sys-
tem over to those of a hard-sphere fluid, as the hard-sphere system is much more well
understood and thus easier to perform the perturbation on.
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Chapter 2. Theory

2.4.1 The λ-Expansion

This section will present the λ-expansion.
We start by considering the following pair potential

uλ(rij) = uλ0(rij) + wλ(rij) (2.55)

where λ is a coupling parameter that gradually switches the perturbation wλ on from the
reference system u0. We let UN (rN ;λ) be the total potential energy of the system due to
particle interaction

UN (rN ;λ) =

N∑
i=1

N∑
j>i

uλ(rij) (2.56)

Recall that the Helmholtz energy can be written on the form A = Aid + Ares. Since the
decomposition is on the inter-particular potential, it has no effect on the kinetic part of
the Helmholtz free energy and thus the attention is on the residual Helmholtz free energy.
Taking the derivative of the residual Helmholtz free energy

∂Ares(λ)

∂λ
= −

∂
(
kBT lnZN (λ)

V N

)
∂λ

= − 1

βZN (λ)

∂ZN (λ)

∂λ

=
1

βZN (λ)

∫
exp(−βUN (rN ;λ))β

∂UN (rN ;λ)

∂λ
drN

= 〈U ′N (rN ;λ)〉λ

(2.57)

The angular brackets denotes a canonical ensemble average for a system of N particles

〈f〉 =

∫
fexp(−βUN )drN

ZN
(2.58)

By integrating equation 2.57 an equation for the perturbed residual Helmholtz free energy
is obtained

Ares(λ1) = Ares
0 +

∫ λ1

λ0

〈U ′N (rN ;λ)〉λdλ (2.59)

where Ares
0 is the residual Helmholtz free energy of the reference system. We expand the

ensemble average in a series expansion about λ = λ0

〈U ′N (rN ;λ)〉λ = 〈U ′N (rN ;λ)〉λ0
+ (λ− λ0)

∂

∂λ
〈U ′N (rN ;λ)〉λ

∣∣∣∣
λ=λ0

+O(λ− λ0)2

(2.60)
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2.4 Perturbation Theory

The first derivative of 〈U ′N (λ)〉λ with respect to λ is

∂〈U ′N (rN ;λ)〉λ
∂λ

=
ZN (λ)

∫
(−βexp(−βUN (rN ;λ))U ′N (rN ;λ)U ′N (rN ;λ))drN

ZN (λ)2

+
ZN (λ)

∫
(exp(−βUN (rN ;λ))U ′′N (rN ;λ)drN

ZN (λ)2

− Z ′N (λ)
∫

(exp(−βUN (rN ;λ))U ′N (λ)drN

ZN (λ)2

=− β
∫

exp(−βUN (rN ;λ))U ′N (λ)2drN

ZN (λ)

+

∫
(exp(−βUN (rN ;λ))U ′′N (rN ;λ)drN

ZN (λ)

− Z ′N (λ)
∫

exp(−βUN (rN ;λ))U ′N (rN ;λ)drN

ZN (λ)2

=〈U ′′N (rN ;λ)〉λ − β〈U ′N (rN ;λ)2〉λ−
1

ZN (λ)2

[
−β
∫

exp(−βUN (rN ;λ))U ′N (rN ;λ)drN

·
∫

exp(−βUN (rN ;λ))U ′N (rN ;λ)drN
]

=〈U ′′N (rN ;λ)〉λ − β〈U ′N (rN ;λ)2〉λ + β〈U ′N (rN ;λ)〉2λ
(2.61)

Inserting the derivative into equation 2.60 and equation 2.59 gives

Ares(λ1) =Ares
0 +

∫ λ1

λ0

(〈U ′N (rN ;λ0)〉λ0
+ (λ− λ0)

[
〈U ′′N (rN ;λ0)〉λ0

− β〈U ′N (rN ;λ0)2〉λ0
+ β〈U ′N (rN ;λ0)〉2λ0

]
)dλ+

∫ λ1

λ0

O(λ− λ0)2dλ

=Ares
0 +

[
λ〈U ′N (rN ;λ0)〉λ0

+

(
1

2
λ2 − λλ0

)[
〈U ′′N (rN ;λ0)〉λ0

− β〈U ′N (rN ;λ0)2〉λ0 +β〈U ′N (rN ;λ0)〉2λ0

] ]λ1

λ0

+O(λ− λ0)3

=Ares
0 + (λ1 − λ0)〈U ′N (rN ;λ0)〉λ0

+

(
1

2
λ2

1 −
1

2
λ2

0 − λ1λ0 + λ2
0

)
· [〈U ′′N (rN ;λ0)〉λ0

− β〈U ′N (λ0)2〉λ0
+ β〈U ′N (rN ;λ0)〉2λ0

] +O(λ− λ0)3

=Ares
0 + (λ1 − λ0)〈U ′N (rN ;λ0)〉λ0

+
1

2
(λ1 − λ0)2

[
〈U ′′N (rN ;λ0)〉λ0

−β[〈U ′N (rN ;λ0)2〉λ0 − 〈U ′N (rN ;λ0)〉2λ0
]
]

+O(λ− λ0)3

(2.62)

For small attractive perturbations, a linear scaling on the coupling parameter can simplify
the expressions. Thus the pair potential is written as

uλ(rij) = u0(rij) + λw(rij) (2.63)
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Chapter 2. Theory

with λ0 = 0 and λ1 = 1. We choose to define the total perturbation energy for λ = 1 as

WN (rN ) =

N∑
i=1

N∑
j>i

w(rij). (2.64)

Then U ′N (rN ) = WN (rN ) and U ′′N (rN ) = 0 [18]. Equation 2.62 then simplifies to

Ares = Ares
0 + 〈WN (rN )〉0 −

1

2
β[〈WN (rN )2〉0 − 〈WN (rN )〉20] +O(β2) (2.65)

This is the same equation that was originally derived by Zwanzig [58]. The dimensionless
Helmholtz energy per particle ares = βAres/N is introduced and the perturbation is written
as

ares =

∞∑
i=0

aiβ
i (2.66)

[23] with

a1 =
1

N
〈WN (rN )〉0 (2.67)

a2 = − 1

2N
[〈WN (rN )2〉0 − 〈WN (rN )〉20] (2.68)

By noticing that the double sum in equation 2.64 yieldsN(N−1)/2 terms, each of which
gives the same result after integration, the a1 term can be further simplified to

a1 =
1

N

N(N − 1)

2

∫ ∫
w(r12)

(
1

ZN

∫
· · ·
∫

exp(−βUN,0(rN ))dr3 · · · drN
)

dr1dr2

(2.69)
where UN,0 is the reference system potential. We recognize the inner integration’s as the
n-particle density equation 2.21 and insert this into the equation

a1 =
1

N

N(N − 1)

2

∫ ∫
w(r12)

(N − 2)!

N !
ρ

(2)
N,0(r1, r2)dr1dr2

=
1

N

N(N − 1)

2

∫ ∫
w(r12)

1

N(N − 1)
ρ

(2)
N,0(r1, r2)dr1dr2

=
1

N

1

2

∫ ∫
w(r12)ρ

(2)
N,0(r1, r2)dr1dr2

(2.70)

The n-particle distribution function 2.23 is inserted:

a1 =
1

N

ρ2

2

∫ ∫
w(r12)g

(2)
N,0(r1, r2)dr1dr2. (2.71)

Let the position of particle 1 be the origin of the coordinates and set r12 = r2 − r1.
Utilizing that dr12=dr2 and integrating over coordinate r1 we obtain

a1 =
1

N

ρ2

2

∫ ∫
w(r12)g0(r12)dr1dr12

=
1

N

ρ2V

2

∫
w(r)g0(r)dr

(2.72)
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Here it is assumed that the system is isotropic thus g0(r12) = g0(r12). The integration
yields the volume as both w(r12) and g0(r12) are independent of r1 as the position of
particle 1 is the origin. Finally the three dimensional dr is substituted with 4πr2dr

a1 =
1

N
2πρ2V

∫ ∞
0

w(r)g0(r)r2dr

= 2πρ

∫ ∞
0

w(r)g0(r)r2dr
(2.73)

The radial distribution function g(r) is important in the physics of monoatomic liquids.
First of all, it is measurable by radiation-scattering experiments. Secondly, the form of
the function gives insight into what the structure of liquid means, as the definition of g(r)
implies that on average the number of particles between r and r+dr from a reference par-
ticle will be 4πr2ρg(r)dr [18]. The physical interpretation of the first order perturbation
term is that it is the average particle interaction potential calculated using the structure of
the reference system [13].

The results obtained by Zwanzig [58] as seen in equation 2.65 is unfortunately not as
useful for the second order term, as it has been obtained in the canonical ensemble and is
therefor only valid for a finite system. To obtain a more useful expression, one can take
the thermodynamic limit (N → ∞, N/V fixed). However this involves the asymptotic
behaviour of the four-body distribution function, when two of the particles involved are
remote from the other two. A way to avoid this is to derive the necessary results in the
grand canonical ensemble, where there is no problems with the asymptotic behaviour of
the distribution functions. These can then be used for the canonical ensemble through
suitable transformations. We expand the free energy in powers of λ into the following
perturbation series

A = A0 + λ

(
∂A

∂λ

)
λ=0

+
1

2
λ2

(
∂2A

∂λ2

)
λ=0

+O(λ3) (2.74)

The first step now is to find the first and second derivative of the logarithm of the grand
partition function 2.32 with respect to λ. The first derivative is

∂ln(Ξ(λ))

∂λ
=
∂ln
(∑∞

N=0
zN

N !ZN (λ)
)

∂λ

= − β

Ξ(λ)

∞∑
N=0

zN

N !

∫
exp(−βUN (rN ;λ))

∂UN (rN ;λ)

∂λ
drN

(2.75)

Once again, only pair interactions are considered for UN (rN ;λ) and uλ(rij) is on the
form of equation 2.63. Since the system is assumed to be homogeneous, the double sum
will yield N(N − 1)/2 terms with all giving the same result after integration and hence
the term is simplified to

∂ln(Ξ)

∂λ
= − β

2Ξ

∞∑
N=0

zN

N !
N(N − 1)

∫ ∫
w(r12)

(∫
· · ·
∫

exp(−βUN,0(rN ))drN−2

)
dr1dr2 (2.76)

In the grand canonical ensemble, the probability of there being particles in the element
dr1 · · · drn is

ρ(n)(rn) =
1

Ξ

∞∑
N=n

zN

(N − n)!

∫
exp(−βUN )drN−n (2.77)
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Inserting this into equation 2.76 and realising that the two first terms in the sum (N = 0
and N = 1) will be zero, the following expression is obtained

∂lnΞ

∂λ
= −β

2

∫ ∫
ρ

(2)
0 (r1, r2)w(r12)dr1dr2 (2.78)

The second derivative becomes

∂2lnΞ

∂λ2
=− β

2

∫ ∫
ρ

(2)
0 (r1, r2)

∂w(r12)

∂λ
dr1dr2 −

β

2

∫ ∫
∂ρ

(2)
0 (r1, r2)

∂λ
w(r12)dr1dr2

=
β

2

∫ ∫
1

Ξ2

( ∞∑
N=2

zN

(N − 2)!

∫
· · ·
∫

exp(−βUN )drN−2

)
w(r12)

∂Ξ

∂λ
dr1dr2

+
β2

2

 ∞∑
N=2

1

Ξ

zN

N !

1

2

∑
i 6=j

∑
k 6=l

∫
w(rij)w(rkl)exp(−βUN )drN


=− β

4

∫ ∫ ∫ ∫
ρ

(2)
0 (r1, r2)ρ

(2)
0 (r3, r4)w(r12)w(r34)dr1dr2dr3dr4+

β2

4

∞∑
N=2

zN

ΞN !

N !

(N − 4)!

∫ ∫ ∫ ∫
w(r12)w(r34)

(∫
· · ·
∫

exp(−βUN )drN−4

)
dr1dr2dr3dr4

+
β2

4

∞∑
N=2

zN

ΞN !

N !

(N − 3)!
4

∫ ∫ ∫
w(r12)w(r23)

(∫
· ·
∫

exp(−βUN )drN−3

)
dr1dr2dr3

+
β2

4

∞∑
N=2

zN

ΞN !

N !

(N − 2)!

∫ ∫
w(r12)2

(∫
· ·
∫

exp(−βUN )drN−2

)
dr1dr2

=
β2

2

∫ ∫
ρ

(2)
0 (r1, r2)w(r12)2dr1dr2 + β2

∫ ∫ ∫
ρ

(3)
0 (r1, r2, r3)w(r12)w(r23)dr1dr2dr3

β2

4

∫ ∫ ∫ ∫ (
ρ

(4)
0 (r1, r2, r3, r4)− ρ(2)

0 (r1, r2)ρ
(2)
0 (r3, r4)

)
w(r12)w(r34)dr1dr2dr3dr4

(2.79)

The derivatives of Helmholtz free energy can now be obtained through thermodynamic
arguments. From equation 2.24, 2.26 and 2.34 one have that

A = 〈N〉µ− PV = 〈N〉µ− kBT lnΞ (2.80)

While from equation 2.30 one can obtain the relation

〈N〉 = kBT [∂(lnΞ)/∂µ]λ,T,V (2.81)

therefore(
∂A

∂λ

)
ρ

=〈N〉
(
∂µ

∂λ

)
ρ

− kBT
(
∂(lnΞ)

∂λ

)
ρ

=〈N〉
(
∂µ

∂λ

)
ρ

− kBT
(
∂(lnΞ)

∂λ

)
µ

− kBT
(
∂(lnΞ)

∂µ

)
λ

(
∂µ

∂λ

)
ρ

=− kBT
(
∂(lnΞ)

∂λ

)
µ

(2.82)

inserting equation 2.76 and equation 2.23 as well as integrating in the same way as ex-
plained in the previous section gives(

∂A

∂λ

)
λ=0

=
1

2
Nρ

∫
g0(r12)w(r12)dr2 (2.83)

which is the same result as the one obtained in the canonical ensemble. The second
derivative gives(

∂2A

∂λ2

)
= −kBT

(
∂2(lnΞ)

∂λ2

)
µ

− kBT
(
∂2(lnΞ)

∂λ∂µ

)(
∂µ

∂λ

)
ρ

(2.84)
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Differentiating equation 2.81 gives

d〈N〉 = kBT

(
∂2(lnΞ)

∂µ2

)
T,V

dµ+ kBT

(
∂2(lnΞ)

∂λ∂µ

)
T,V

dλ (2.85)

and hence from the cyclic relation(
∂µ

∂λ

)
ρ

=
∂2(ln Ξ)

∂λ∂µ
/
∂2(ln Ξ)

∂µ2 (2.86)

Inserting this into equation 2.84 gives(
∂2A

∂λ2

)
= −kBT

(
∂2(ln Ξ)

∂λ2

)
µ

+
kBT [∂2(ln Ξ)/∂λ∂µ]2

∂2(ln Ξ)/∂µ2
(2.87)

Since

kBT
∂2(ln Ξ)

∂λ∂µ
= − ∂

∂µ

(
1

2
Nρ

∫
g0(r12)w(r12)dr2

)
(2.88)

and

kBT

(
∂2(ln Ξ)

∂µ2

)
T,V

=

(
∂〈N〉
∂µ

)
T,V

(2.89)

the second derivative becomes(
∂2A

∂λ2

)
= −kBT

(
∂2(ln Ξ)

∂λ2

)
µ

+
(1/kBT )( ∂

∂µ
1
2Nρ

∫
g0(r12)w(r12)dr2)2

(1/kBT )∂〈N〉/∂µ (2.90)

Then by using the relation as seen in equation 2.44(
∂

∂µ

)
T

=

(
∂ρ

∂µ

)
T

∂

∂ρ
= ρ

(
∂ρ

∂P

)
T

∂

∂ρ
(2.91)

it becomes(
∂2A

∂λ2

)
= −kBT

(
∂2(ln Ξ)

∂λ2

)
µ

+N

(
∂ρ

∂P

)
0

[
∂

∂ρ

(
1

2
ρ2

∫
g0(r12)w(r12)dr2

)]2

(2.92)
and finally by inserting equation 2.79 and equation 2.23 as well as integrate once the
following form is obtained(

∂2A

∂λ2

)
=− βNρ

2

∫
g0(r1, r2)w(r12)2dr2 − βNρ2

∫ ∫
g0(r1, r2, r3)w(r12)w(r23)dr2dr3

− βNρ3

4

∫ ∫ ∫
(g0(r1, r2, r3, r4)− g0(r1, r2)g0(r3, r4))w(r12)w(r34)dr2dr3dr4

+N

(
∂ρ

∂P

)
0

[
∂

∂ρ

(
1

2
ρ2

∫
g0(r12)w(r12)dr2

)]2

(2.93)

[12]. We can from this write the second order perturbation term a2 as

a2 =− ρ

4

∫
g0(r1, r2)w(r12)2dr2 −

ρ2

2

∫ ∫
g0(r1, r2, r3)w(r12)w(r23)dr2dr3

− ρ3

8

∫ ∫ ∫
(g0(r1, r2, r3, r4)− g0(r1, r2)g0(r3, r4))w(r12)w(r34)dr2dr3dr4

+
kBT

8

(
∂ρ

∂P

)
0

[
∂

∂ρ

(
1

2
ρ2

∫
g0(r12)w(r12)dr2

)]2

(2.94)
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The physical interpretation of the second order term is that it describes the fluctuation
of the attractive energy due to the compression of the particles from the action of the at-
tractive perturbation. The problem with the expression we just presented is that it requires
knowledge about the three and four particle distribution functions of the reference system.
There are currently no exact analytical form for these. The situation gets further difficult
for the higher order terms. In order to solve this, Barker and Henderson came with the
discrete representation in 1967 [5]. The argument here is based on a semi-macroscopic
one. The range of interparticle distances can be divided into intervals with equal length,
where rm to rm+1 would be ∆r, withm = 0, 1, 2, .... They further imagined two concen-
tric spheres of radius rm and rm+1 drawn around each particle of the reference system.
The number of neighbours in the spherical shells between two successive spheres would
on average be

〈Nm〉0 = 2πNρ

∫ rm+1

rm

g0(r)r2dr (2.95)

They then assumed ∆r to be sufficiently small such that the perturbation w(r) would
essentially have the same value wm at all points within the shell. Inserting this relation
into equation 2.65 would give

Ares = Ares
0 +

∑
m

〈Nm〉0wm −
1

2
β
∑
m

∑
n

[〈NmNn〉0 − 〈Nm〉0〈Nn〉0]wmwn +O(β2)

(2.96)
If the shells are of macroscopic volume, there will be no correlation between the number
of particles in different shells, thus 〈NmNn〉0 = 〈Nm〉0〈Nn〉0 for the cases wherem 6= n.
The second order term then becomes

A2 = −1

2

∑
m

〈∆N2
m〉0w2

m (2.97)

where 〈∆N2
m〉0 ≡ 〈N2

m〉0 − 〈Nm〉20. Additionally the fluctuation in number of parti-
cles in a shell will be related to the compressibility of the reference system through the
macroscopic expression 2.49

〈∆N2
m〉0 = 〈Nm〉0kBTρχ0

T = 〈Nm〉0kBT
(
∂ρ

∂P

)
0

(2.98)

inserting this into the expression for A2, replacing the sum with an integral gives

A2

N
= a2 = −πρkBT

∫ ∞
0

w(r)2

(
∂ρ

∂P

)
0

g0(r)r2dr (2.99)

This is known as the macroscopic compressibility approximation (MCA) and has shown to
give quite poor results [41]. To improve this description, Zhang [57] proposed multiplying
it with a correction factor (1 + χ) to account for the particle correlation between the
neighbouring coordination shells:

a2 = −πρkBT
(
∂ρ

∂P

)
0

(1 + χ)

∫ ∞
0

g0(r)w(r)2r2dr (2.100)

Many different functional dependencies of the correction parameter have been proposed,
where some of them will be further investigated in section 3.2. Figure 2.2 shows a com-
parison between MCA with and without the χ-factor to Monte Carlo simulation data.
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Figure 2.2: The second order perturbation term for the Barker and Henderson theory at the reduced
temperature T ∗ = kBT/ε = 1 as a function of the reduced density ρ∗ = Nσ3/V . The figure
compares the macroscopic compressibility approximation with and without the χ-factor as given by
van Westen and Gross [54] to Monte Carlo simulation data from this thesis.

2.4.2 Soft-Core Reference Systems
For perturbation theory to be useful, a well-understood reference system is needed. Hard-
sphere systems are usually chosen due to their simplicity. Realistic inter-particular poten-
tials do not have an infinitely steep repulsive core, thus it will be better to use a harshly
repulsive, but continuous potential for the reference system [18]. This section will es-
tablish a relation between the reference system and the system of hard-spheres through
the ”blip-function” method of Hans C. Andersen and Chandler [17]. For a harshly re-
pulsive reference system, the Boltzmann factor e0(r) = exp[−βu0(r)] will typically be
very similar to the Boltzmann factor of a hard-sphere potential ehs

d (r). For a well chosen
hard-sphere diameter d, ∆e(r)

∆e(r) = e0(r)− ehs
d (r) (2.101)

will be effectively non-zero only over a small range of r. Let this range be dξ. ξ will
then be a dimensionless parameter, which works as a measure of the softness of the po-
tential. Figure 2.3 is an illustration of the ”blip-function” and shows what is meant by the
dimensionless parameter ξ.
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Figure 2.3: The blip function. The blue plot is the Boltzmann factor for the hard-sphere potential
ehs
d (r) and the red plot is the Boltzmann factor for the reference potential e0(r). Beneath these two

plots, the ”blip-function” ∆e(r) = e0(r)− ehs
d (r) is plotted. The dimensionless ξ is here the range

for which the ”blip-function” is non-zero.

Using a small value for ξ, an expansion for the properties of the reference system
about those of a hard-sphere system in powers of ξ can be obtained. This is done through a
functional Taylor expansion of the reduced free energy density ϕ = −βAres/V in powers
of ∆e(r) with the hard sphere system as the reference system ϕhs

d

ϕ0 = ϕhs
d +

∫
δϕ

δe(r)

∣∣∣∣
e=ehs

d

∆e(r)dr+
1

2!

∫ ∫
δ2ϕ

δe(r)δe(r′)

∣∣∣∣
e=ehs

d

∆e(r)∆e(r′)drdr′+ ...

(2.102)
Evaluating the first functional derivative gives

δϕ

δe(r)
=
δ(−βAres/V )

δe(r)

=
1

V

δ(−β(− 1
β ln ZN

V N ))

δe(r)

=
1

V ZN

δZN
δe(r)

=
1

V ZN

δ(
∫
e(rN )drN )

δe(r)

(2.103)

where e(rN ) is exp[−βU(rN )] and

U(rN ) =

N∑
i=1

N∑
j>i

u(rij) (2.104)

Inserting this relation and using the definition for functional differentiation, we end up
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2.4 Perturbation Theory

with the following expression

δϕ =
1

V ZN

(∫
· · ·
∫
δe(r12)e(r13)e(r14) · · · e(rN−1,N )dr1 · · · drN .

+

∫
· · ·
∫
e(r12)δe(r13)e(r14) · · · e(rN−1,N )dr1 · · · drN

+ ( N (N -1)-2 other terms)

) (2.105)

It is once again assumed a mono-particle system, thus each of the terms in the double sum
will yield the same integral result, which can further simplify the equation to

δϕ =
1

V ZN

N(N − 1)

2

∫ ∫
δe(r12)

[∫
· · ·
∫
e(r13)e(r14) · · · e(rN−1,N )dr3 · · · drN

]
dr1dr2

(2.106)
Let the position of particle 1 be the origin and integrate over coordinate r1.

δϕ =
1

V ZN

N(N − 1)

2

∫ ∫
δe(r12)

[∫
· · ·
∫
e(r13)e(r14) · · · e(rN−1,N )dr13 · · · dr1N

]
dr1dr12

=
V

V ZN

N(N − 1)

2

∫
δe(r12)

[∫
· · ·
∫
e(r13)e(r14) · · · e(rN−1,N )dr13 · · · dr1N

]
dr12

(2.107)
Using the definition of functional differentiation to obtain

δϕ

δe(r)
=
N(N − 1)

2

∫
· · ·
∫
e(r13)e(r14) · · · e(rN−1,N )dr13 · · · dr1N

ZN
(2.108)

Inserting the equation for the equilibrium n-particle density (equation 2.21) gives

δϕ

δe(r)
=
N(N − 1)

2

(N − 2)!

N !
exp(βu(r12))ρ

(2)
N (r1r2)

=
1

2
exp(βu(r12))ρ

(2)
N (r1r2)

(2.109)

Recalling that the system is homogenous. The n-particle distribution function for ho-
mogenous systems (equation 2.23) is inserted. By defining the cavity-correlation function
y(r) = exp(βu(r))g(r) this gives the following form

δϕ

δe(r)
=

1

2
ρ2exp(βu(r))g(r)

=
1

2
ρ2y(r)

(2.110)

Inserting this relation to the functional Taylor expansion gives

ϕ0 = ϕhs
d +

1

2
ρ2

∫
yhs
d (r)∆e(r)dr +

1

2!

∫ ∫
δ2ϕ

δe(r)δe(r′)

∣∣∣∣
e=ed

∆e(r)∆e(r′)drdr′ + ...

(2.111)
The system is isotropic thus yhs

d (r) will be the same as yhs
d (r), same goes for ∆e(r). A

natural choice for d will be one that causes the first order term to vanish, thus d is found
implicit by

1

2
ρ2

∫
yhs
d (r)∆e(r)dr = 0

2πρ2

∫
yhs
d (r)∆e(r)r2dr = 0

(2.112)
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[18]. With this choice for d, the second order term, that originally was of order ξ2, become
of order ξ4 as was shown by Hans C. Andersen and Chandler [17] and the subsequent
terms becomes of order ξ4 or higher. Equation 2.112 represents the Weeks, Chandler and
Andersen method of calculating the hard sphere diameter which is one of many methods.
The method that Barker and Henderson used can also be recovered as will be shown here.
Since ∆e(r) is only none-zero in a narrow range of r, we can expand ryhs

d in a Taylor
series about r = d.

r2yhs
d (r) = r2yhs

d (r)
∣∣
r=d

+d
d
dr
r2yhs

d (r)
( r
d
− 1
)∣∣∣∣
r=d

+d2 d2

dr2
r2yhs

d (r)
( r
d
− 1
)2
∣∣∣∣
r=d

+···
(2.113)

Inserting this into equation 2.112 we get

∞∑
m=0

dm

m!

dm

drm
yhs
d (r)

∣∣∣∣
r=d

Im = 0 (2.114)

where

Im =

∫ ∞
0

( r
d
− 1
)m

∆e(r)d(r/d)

= − 1

m+ 1

∫ ∞
0

( r
d
− 1
)m+1 d

dr
exp[−βu0(r)]dr

(2.115)

u0(r) will vary rapidly with r, thus the derivative in the equation will approximately be a
δ−function at r = d and the series is therefore quickly convergent. By only keeping the
first term we get

0 =−
∫ ∞

0

( r
d
− 1
)
δ(r − d)dr

=1−
∫ ∞

0

r

d
δ(r − d)dr

(2.116)

We can then use the following relation∫ ∞
0

rδ(r − d)dr = d =

∫ ∞
0

(1−H(r − d)) dr (2.117)

where H(r − d) is a heaviside function. Inserting this relation and utilizing that
∫
δ(r −

d)dr = H(r − d) = exp[−βu0(r)] we can rewrite equation 2.116 as

d =

∫ ∞
0

(1− exp[−βu0(r)])dr (2.118)

This is the same equation as Barker and Henderson [5] derived differently.
Using all the derived relations we can see that the reduced Helmholtz free energy density
of the reference system is related to the hard-sphere fluid by

ϕ0 = ϕhs
d +O(ξ4) (2.119)

Multiplying each term with −V/N gives the useful relation

a0 = ahs
d +O(ξ4) (2.120)
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2.5 Barker-Henderson Perturbation Theory

2.5 Barker-Henderson Perturbation Theory
Recall from the perturbation theory that the inter-particular potential is divided into a
repulsive reference part and an attractive perturbation part (see equation 2.63) leading to
the following expression

u(r) = u0(r) = λw(r). (2.121)

What remains now is to define the reference and the perturbation part [18]. For this we
will be following the work of Barker and Henderson [5] (BH). There are many other
perturbation theories that could be used as well, such as the well known Weeks-Chandler-
Andersen (WCA) perturbation theory, but as BH is one of the most used ones, as well as
being relative simple and performing well [54], it will be the one we will be using for this
thesis.

We choose to use the Mie potential to define the reference and the perturbation part as
the Lennard-Jones potential can easily be recovered by letting lr = 12 and la = 6:

u0(r) =

{
umie(r) r ≤ σ
0 r > σ

(2.122)

w(r) =

{
0 r ≤ σ
umie(r) r > σ

(2.123)

Figure 2.4 shows a plot of the reference potential and the perturbation
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Figure 2.4: The BH potential. The red line shows the reference potential while the blue line shows
the perturbation. Here we have used the Mie 12-6 potential (Lennard-Jones).

This choice for the repulsive reference fluid is softly repulsive and thus the Helmholtz
energy will not directly follow from a system of hard-spheres. However using the theory
established in section 2.4.2 one can map the properties of the softly repulsive reference
fluid onto a system of hard-spheres [54]. Further, the equation 2.120 as seen in the section
2.4.2, can be approximated as

a0 ≈ ahs
d (2.124)

by choosing the effective hard-sphere diameter such that it satisfies equation 2.116 and
neglecting the higher order terms. Barker and Henderson [5] lastly assumed that g0(r)
could be approximated from the hard-sphere radial distribution function:

g0(r) ≈ ghs
d (r) (2.125)
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The only part left now is to fully specify the Helmholtz free energy of the reference fluid,
which is usually done by using the equation of Carnahan and Starling [10].

Ahs
d =NkBT

4η − 3η2

(1− η)2
(2.126)

where η is the ratio of the volume occupied by the spheres to the total volume:

η =
π

6
ρd3 (2.127)

The Carnahan-Starling equation of state has shown to behave very well at low densities
as well as well as the metastable region and does not diverge until it reaches a packing
fraction of one. Since most of the previous work on perturbation theory has been on
spherical particles, hence the packing fraction will never exceed (π/6)21/2 = 0.7405
and combined with it being a very simple model, Carnahan-Starling has usually been the
choice for describing the hard-sphere fluid [31, 56].

Combining everything from the Barker-Henderson perturbation theory we end up with
the following equation for the reduced Helmholtz free energy

a = aid + ahs
d +

∞∑
i=1

aiβ
i (2.128)

where our attention will be on the second order term in the infinite sum.
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Chapter 3
Implementation of the First and
Second Order Perturbation Terms

This section will first present how the hard-sphere diameter d was calculated, then how
analytical expressions for the first and the second order perturbation terms can be obtained
for pure fluids using the MCA with a correction factor for the second order term. We will
then explain the basis for mixtures, before we extend the analytical forms to mixtures.
Finally we will present an alternative numerical approach that does not utilize the MCA
inspired by the work of Smith et al. [41] and Henderson [19].

3.1 Analytical Implementation of the Pure First Order
Perturbation Term

The hard-sphere diameter was calculated numerically using the following temperature
dependent formula by Barker and Henderson [5]

d =

∫ σ

0

[1− exp(−βumie(r))]dr. (3.1)

For the numerical calculation, a 16 point Gauss-Legendre Quadrature was used, which is
described more in detail in section 4.1.

In order to find the first order perturbation term, equation 2.73 is rewritten utilizing
the equation 2.123 for w(r)

a1 = 2πρ

∫ ∞
σ

w(r)g0(r)r2dr

= 2πρ

∫ ∞
d

umie(r)g0(r)r2dr − 2πρ

∫ σ

d

umie(r)g0(r)r2dr

= I1A + I1B

(3.2)

[23, 54]. To simplify further the BH approximation g0(r) ≈ ghs
d (r) is used.

a1 = 2πρ

∫ ∞
d

umie(r)ghs
d (r)r2dr − 2πρ

∫ σ

d

umie(r)ghs
d (r)r2dr = I1A + I1B (3.3)
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The attention is now put onto the first integral I1A

I1A = 2πρ

∫ ∞
d

ghs
d (r)Cε

[(σ
r

)lr
−
(σ
r

)la]
r2dr

= 2πρCεd3

[
xlr0

∫ ∞
1

x−lrghs
d (xd)x2dx− xla0

∫ ∞
1

x−laghs
d (xd)x2dx

] (3.4)

where the last relation is once again from the substitution of x = r/d, by using that
dr = ddx and x0 = σ/d. Rewriting the equation in the form of correlation integrals over
a hard-core Sutherland potential [44] of exponent l, which is defined as

IS1 (η, l) = −2πρεd3

∫ ∞
1

ghs
d (xd)

(
1

x

)l
x2dx

= −12εη

∫ ∞
1

ghs
d (xd)

(
1

x

)l
x2dx

(3.5)

gives the following form for I1A

I1A = C
[
xla0 I

S
1 (η; la)− xlr0 IS1 (η; lr)

]
(3.6)

[23]. Gil-Villegas et al. [13], proposed solving these hard-core Sutherland potential terms
with the use of the mean-value theorem (MVT). MVT states that if f1 : [a, b] → R is
continuous and f2 is an integrable function that does not change sign on the interval [a, b],
then there exists a ς ∈ [a, b] value such that∫ b

a

f1(x)f2(x)dx = f1(ς)

∫ b

a

f2(x)dx (3.7)

where R are all real numbers [59]. They let f1(x) = ghs
d (xd) and f2(x) =

(
1
x

)l
x2 and

got the following relation∫ ∞
1

ghs
d (xd)

(
1

x

)l
x2dx = ghs

d (ς)

∫ ∞
1

(
1

x

)l
x2dx (3.8)

The radial distribution function ghs
d is also affected by the packing fraction η, thus for

convenience sake one wants to represent the full function ghs
d (ς; η) by its contact value,

but evaluated at an effective packing fraction ηeff such that

ghs
d (ς; η) = ghs

d (1; ηeff) (3.9)

This is possible, as the value at x = 1 for the radial distribution function ghs
d will decrease

as the packing fraction η decreases, see figure 3.1 for an illustration.
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Figure 3.1: The relationship between ghs
d (ς; η) and ghs

d (1; ηeff). Data for the hard-sphere radial
distribution function gHS

d (x) extracted from the work of Gil-Villegas et al. [13] for η = 0.36 is
shown as the red curve. The value of ghs

d (ς; η = 0.36) with ς = 1.24, here illustrated as the point
where the vertical black line meets the red plot corresponds to the contact value ghs

d (1; ηeff) where
ηeff = 0.11 here shown as the blue plot. This radial distribution was also extracted from the work
of Gil-Villegas et al. [13].

From the Carnahan and Starling equation of state, the following form for the radial
distribution function at the contact value is obtained

ghs
d (1; ηeff) =

1− ηeff/2

(1− ηeff)3
(3.10)

By inserting this into equation 3.8, multiplying by −12εη and integrating they obtained
the following analytical form for the integral

IS1 (η; l) = −12εη

(
1

l − 3

)
1− ηeff(η; l)/2

(1− ηeff(η; l))3
(3.11)

[13]. The next step is to find the dependence of ηeff on the actual value of η and on
the potential range. One way to do this, would be to use exact values of a1 obtained
from computer simulations. A second way is to integrate the a1 integral using an exact
representation for ghs

d (r). Both the work of Gil-Villegas et al. [13] and Lafitte et al. [23]
used the latter method by solving the Ornstein-Zernike equation (see appendix section
7.2) with the Malijevsky and Labik formula for the hard-sphere bridge function [27].
The original Gil-Villegas et al. [13] parametrization was derived for exponents of the
Sutherland potential in the range of 3 < l ≤ 12, but in this project, the work of Lafitte
et al. [23] which created the model for a much broader range of 5 < l ≤ 100 will be used:

ηeff(η; l) = ĉ1(l)η + ĉ2(l)η2 + ĉ3(l)η3 + ĉ4(l)η4 (3.12)

with 
ĉ1
ĉ2
ĉ3
ĉ4

 =


0.81096 1.7888 −37.578 92.248
1.0205 −19.341 151.26 −463.50
−1.9057 22.845 −228.14 973.92
1.0885 −6.1962 106.98 −677.64




1
1/l
1/l2

1/l3

 (3.13)
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For the second integral I1B , Lafitte et al. [23] approximated ghs
d (r) with a Taylor expansion

of the contact value of ghs
d (r) with respect to the separation r.

ghs
d (xd) ≈ ghs

d (d) + (x− 1)

(
dghs
d (xd)

dx

)
x=1

(3.14)

Using this approximation, I1B can be written as

I1B ≈ −2πρd3(ghs
d (d)

∫ x0

1

umie(xd)x2dx+

(
dghs
d (xd)

dx

)
x=1

∫ x0

1

umie(xd)x2(x−1)dx)

(3.15)
For simplicity the following integrals are defined:

Îl(x0) =

∫ x0

1

x2

xl
dx = −x

3−l
0 − 1

l − 3
(3.16)

Ĵl(x0) =

∫ x0

1

(x3 − x2)

xl
dx = −x

4−l
0 (l − 3)− x3−l

0 (l − 4)− 1

(l − 3)(l − 4)
(3.17)

They then used the Carnahan-Starling expression for ghs
d (d) at the contact value from

equation 3.10 and the Percus-Yevick approximation for the derivative

ghs
d (d) =

1− η/2
(1− η)3

(3.18)

(
dghs
d (xd)

dx

)
= −9η(1 + η)

2(1− η)3
(3.19)

Using these simplifications the second integral I1B can be written as

I1B = 4(x6
0B(η; la)− x12

0 B(η; lr)) (3.20)

where

B(η; l) = 12ηε

(
1− η/2
(1− η)3

Îl(x0)− 9η(1 + η)

2(1− η)3
Ĵl(x0)

)
(3.21)

From this, the first order term a1 can be written as

a1 = C
[
xla0 (IS1 (η; la) +B(η; la))− xlr0 (IS1 (η; lr) +B(η; lr))

]
(3.22)

3.2 Analytical Implementation of the Pure Second Order
Perturbation Term

Using the MCA approximation (see equation 2.100) as basis and the same procedure as
shown in the previous section 3.1 both Lafitte et al. [23] and van Westen and Gross [54]
ended up with the expression

a2 =− πρKhs(1 + χ)

∫ ∞
σ

ghs
d (r)(umie(r))2r2dr

=− πρKhs(1 + χ)

∫ ∞
d

ghs
d (r)(umie(r))2r2dr + πρKhs(1 + χ)

∫ σ

d

ghs
d (r)(umie(r))2r2dr

(3.23)
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where Khs = kBT (∂ρ/∂P )T , which from using the Carnahan Starling EOS was calcu-
lated to be

Khs =
(1− η)4

1 + 4η + 4η2 − 4η3 + η4
. (3.24)

To calculate the integrals in equation 3.23 they both used the first-order perturbation terms
IS1 for the first integral, while for the second integral Lafitte et al. [23] used the B terms,
while van Westen and Gross [54] numerically integrated these. We will be presenting both
methods here starting with the work of Lafitte we get the following expression for a2:

a2 =
1

2
KhsC2

[
x2la

0 (IS1 (η; 2la) +B(η; 2la))− 2xlr+la
0 (IS1 (η; lr + la) +B(η; lr + la))

+x2lr
0 (IS1 (η; 2lr) +B(η; 2lr))

]
(3.25)

van Westen and Gross on the other hand integrated the second term in equation 3.23 nu-
merically using the approximation of yhs

d from de Souza and Ben-Amotz [43], developed
for x = r/d < 1.5 which has the following form

yhs
d (η;x) = exp(Â+ B̂x+ Ĉx3)

Â =
3− η

(1− η)3
− 3

B̂ =
−3η(2− η)

(1− η)3

Ĉ = ln
[

2− η
2(1− η)3

]
− η(2− 6η + 3η2)

(1− η)3

(3.26)

Recall that yhs
d = ghs

d for r > d. By defining Bnum(η; l) as:

Bnum(η; l) = 12εη

∫ 1

x0

yhs
d (η;x)x2−ldx (3.27)

we get the following expression for a2

a2 =
1

2
KhsC2

[
x2la

0 (IS1 (η; 2la) +Bnum(η; 2la))− 2xlr+la
0 (IS1 (η; lr + la)

+Bnum(η; lr + la)) +x2lr
0 (IS1 (η; 2lr) +Bnum(η; 2lr))

] (3.28)

where all instances of Bnum are integrated numerically using a 16 point Gauss-Legendre
quadrature procedure. For the correction factor χ, Lafitte et al. [23] and van Westen and
Gross [54] also here had different approaches, both of these will be investigated in this
thesis. Lafitte et al. wrote the χ factor on the following form

χ = v1(α)ηx3
0 + v2(α)(ηx3

0)5 + v3(α)(ηx3
0)8 (3.29)

where α is a dimensionless van der Waals-like attractive constant, defined as

α =
1

εσ3

∫ ∞
σ

umie(r)dr = C
(

1

la − 3
− 1

lr − 3

)
(3.30)

while vi(i = 1, 2, 3) is a function with the following closed functional form

vi(α) =

(
n=3∑
n=0

ωi,nα
n

)
/

(
1 +

n=6∑
n=4

ωi,nα
n−3

)
i = 1, ..., 6 (3.31)
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The coefficients ωi,n were determined by Lafitte et al. in two steps. First ωi,n (i = 1, ..., 3)
were obtained by correlating them to the exact a2 values from Monte Carlo data for a fixed
reduced temperature T ∗ = 1 and the literature vapor-liquid equilibrium (VLE) data. Then
the remaining ωi,n (i = 4, ..., 6) coefficients were estimated from VLE data including
critical temperatures and critical densities. The coefficient values can be found in the
paper of Lafitte et al. [23].

van Westen and Gross [54] on the other hand wrote the χ factor on the following form

χ(ρ∗, T ∗) =

5∑
i

b̂i(T
∗)ρ∗i (3.32)

where
b̂i(T

∗) = b̂i0 + b̂i1/
√
T ∗ + b̂i2/T

∗ + b̂i3/T
∗2 (3.33)

The constants were obtained from correlating them to Monte Carlo simulation data for
a2. Their values can be found in the paper of van Westen and Gross [54]. The major
difference between the χ factor of Lafitte et al. and van Westen and Gross is that the one
from Lafitte et al. was made for Mie potentials and depends on the reduced density and
the dimensionless van der Waals-like attractive constant, while the one of van Westen and
Gross was made for the Lennard-Jones potential and is both reduced density and reduced
temperature dependent.

3.3 Extension to Mixtures
In this section, we will extend the perturbation theory over to mixtures, with a special
attention on the second order perturbation term.

Before we begin the mixture extension it is important to define the reference to develop
the perturbation theory for mixtures from. Leonard et al. [26] derived in a seminal paper a
perturbation theory for mixtures from three different references. They were the following:
a pure component hard-sphere fluid, an additive hard-sphere fluid and a non-additive hard-
sphere fluid. We will only be looking at the two first. For a review of the non-additive
hard-sphere fluid we direct the interested reader to the paper of Hammer et al. [16].

When using a pure hard-sphere fluid as the reference, Leonard et al. [26] said that the
following hard-sphere diameter should be used:

d =
∑
i

∑
j

xixjνij (3.34)

where xi is the fraction of component i and νij is the effective hard-sphere diameter:

νij =

∫ σij

0

[1− exp(−βu0,ij(r))]dr (3.35)

Using this as the foundation, the reduced Helmholtz free energy can be described from

ares = ahs
d + 2πρβ

∑
i

∑
j

xixj

∫ ∞
σij

ghs
d (r)wij(r)r

2dr +O(β2) (3.36)

When using the additive hard-sphere fluid as the reference the following hard sphere di-
ameters are used

dii = νii (3.37)
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dij = 0.5(dii + djj) (3.38)

thus, there are individual hard-sphere diameters where the cross specie interactions are
explained by taking the average of the two diameters. Using this as the foundation, the
reduced Helmholtz free energy can be described from

ares = ahs
d,mix + aad + 2πρβ

∑
i

∑
j

xixj

∫ ∞
σij

ghs
d,ij(r)wij(r)r

2dr +O(β2) (3.39)

where ahs
d,mix is the hard sphere contribution to the residual Helmholtz free energy and aad

is a term accounting for the non-additivity of the system that is usually very small and
written as

aad = −2ρπ
∑
i

∑
j

xixjd
2
ijg

hs
d,ij,c(dij − νij) (3.40)

where ghs
d,ij,c is the radial distribution function at its contact value. Now that the foun-

dation for two different perturbation mixture theories using different references has been
explained, we will define our mixing rules.

The interaction between species i and j will be described using the following Mie
potential

umie
ij = Cijεij

((
σij
rij

)lr,ij
−
(
σij
rij

)la,ij
)

(3.41)

where

Cij =
lr,ij

lr,ij − la,ij

(
lr,ij
la,ij

) la,ij
lr,ij−la,ij

(3.42)

For lij and σij the commonly used mixing rules for classical Mie fluids will be used:

lk,ij =
√

(lk,ii − 3)(lk,jj − 3) + 3, k = a, r (3.43)

σij =
σii + σjj

2
(3.44)

while for εij the geometrical combining rule will be used

εij =
√
εiiεjj (3.45)

We are now ready to present the various models that we have tested in this thesis. We will
start with explaining the one by Lafitte et al. [23].

3.3.1 Lafitte et al. Analytical Second Order Perturbation Term for
Mixtures

Lafitte et al. [23] used an additive hard-sphere fluid as a reference. For the hard-sphere
contribution to the residual Helmholtz free energy, the expression of Boublı́k [9] and
Mansoori et al. [28] was used

ahs
d,mix =

1

ζ0

[
3ζ1ζ2
1− ζ3

+
ζ3
2

ζ3(1− ζ3)2
+

(
ζ3
2

ζ2
3

− ζ0
)

ln(1− ζ3)

]
(3.46)

where

ζm =
πρ

6

(∑
i

xidii

)
, m = 0, 1, 2, 3. (3.47)
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The first order perturbation term was written as

a1 =

n∑
i=1

n∑
j=1

xixja1,ij (3.48)

where following the work of Lafitte et al. [23]

a1,ij =Cijηij
[
x
la,ij

0,ij (IS1,ij(ηij ; la,ij) +Bij(ηij ; la,ij))− xlr,ij0,ij (IS1 (ηij ; lr,ij)

+Bij(ηij ; lr,ij))]
(3.49)

where x0,ij = σij/dij , ηij = πρd3
ij/6 while IS1,ij is

IS1,ij(ηij ; lij) = −12

(
1

lij − 3

)
1− ηeff(ζ3; lij)/2

(1− ηeff(ζ3; lij))3
(3.50)

and

Bij(ηij ; lij) = 12

(
1− ζ3/2
(1− ζ3)3

Îlij (x0,ij)−
9ζ3(1 + ζ3)

2(1− ζ3)3
Ĵlij (x0,ij)

)
(3.51)

For the second order term the following form was suggested by Lafitte et al. [23]

a2 =

n∑
i=1

n∑
j=1

xixja2,ij (3.52)

where

a2,ij =
1

2
Khs(1 + χij)C2

ijε
2
ijηij

[
x

2la,ij

0,ij (IS1,ij(ηij ; 2la,ij) +Bij(ηij ; 2la,ij))

− 2x
la,ij+lr,ij
0,ij (IS1,ij(ηij ; la,ij + lr,ij) +Bij(ηij ; la,ij + lr,ij))

+x
2lr,ij
0,ij (IS1,ij(ηij ; 2lr,ij) +Bij(ηij ; 2lr,ij))

] (3.53)

Here Khs is

Khs =
(1− ζ3)4

1 + 4ζ3 + 4ζ2
3 − 4ζ3

3 + ζ4
3

. (3.54)

while

χij = v1(αij)ζ̄x + v2(αij)ζ̄
5
x + v3(αij)ζ̄

8
x (3.55)

where

ζ̄x =
πρ

6

∑
i

∑
j

xixjσ
3
ij (3.56)

and αij is the dimensionless van der Waals energy of the i-j interaction

αij = Cij
(

1

la,ij − 3
− 1

lr,ij − 3

)
. (3.57)
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3.3.2 van Westen and Gross Analytical Second Order Perturbation
Term for Mixtures

We have extended the work of van Westen and Gross originally created for pure Lennard-
Jones fluids, to Lennard-Jones mixtures. We did this by following the work of Lafitte et al.
[23] for mixtures, but instead using the χ-factor as seen in equation 3.32 with the reduced
temperature and the reduced density defined as

T ∗ =
kBT

ε11
(3.58)

ρ∗ =
N2

1σ
3
11 + 2N1N2σ

3
12 +N2

2σ
3
22

NV
(3.59)

We also changed the B term, with Bnum from equation 3.27, but extended to mixtures in
the following way

Bnum,ij(ηij ; lij) = 12

∫ 1

x0,ij

yhs
d (ζ3;x)x2−lij dx (3.60)

This gives us the following form for aij to use in equation 3.52

a2,ij =
1

2
Khs(1 + χ)C2

ijε
2
ijηij

[
x

2la,ij

0,ij (IS1,ij(ηij ; 2la,ij) +Bnum,ij(ηij ; 2la,ij))

− 2x
la,ij+lr,ij
0,ij (IS1,ij(ηij ; la,ij + lr,ij) +Bnum,ij(ηij ; la,ij + lr,ij))

+x
2lr,ij
0,ij (IS1,ij(ηij ; 2lr,ij) +Bnum,ij(ηij ; 2lr,ij))

] (3.61)

3.3.3 Numerical Second Order Perturbation Term for Mixtures Us-
ing a Pure Reference

One problem with following the procedure of Lafitte et al. [23], is that the extension of
the macroscopic compressibility approximation with a correction factor to mixtures has
no physical basis. Thus we have chosen to return to the work of Barker and Henderson. In
1970, they published a paper were they calculated the second order term using equation
2.94 as their basis and not the macroscopic compressibility approximation [41]. In a later
paper by Henderson [19] it was further extended to a mixture of square-well particles
(u(r) = ∞, r < σ, u(r) = ε, σ < r < 3σ/2 and u(r) = 0, r > 3σ/2) and hard-
sphere particles. We will in this section explain their work and extend it to a mixture of
Lennard-Jones particles.

Starting from the equation 2.94, the first obvious problem is describing the three and
four particle distribution functions. Currently there are no exact equations for these, Smith
et al. [41] therefore used the superposition approximation [21] for these:

g0(123) = g0(12)g0(13)g0(23) (3.62)

g0(1234) = g0(12)g0(13)g0(14)g0(13)g0(24)g0(34) (3.63)

For simplicity we have written g0(r1, r2) as g0(12) etc. At low densities this approxi-
mation is valid, but at high densities it is poor. Substituting equation 3.62 and 3.63 into
equation 2.94 we get

35



Chapter 3. Implementation of the First and Second Order Perturbation Terms

a2 =− ρ

4

∫
g0(12)w(12)2dr2 −

ρ2

2

∫ ∫
g0(12)g0(13)g0(23)w(12)w(23)dr2dr3

− ρ3

8

∫ ∫ ∫
(g0(12)g0(13)g0(14)g0(23)g0(24)g0(34)

−g0(12)g0(34))w(12)w(34)dr2dr3dr4

+
kBT

8

(
∂ρ

∂P

)
0

[
∂

∂ρ

(
ρ2

∫
g0(12)w(12)dr2

)]2

(3.64)

The next step is to get the integrals on a form where they only use h0 and wg0 as func-
tions as they will go towards zero at reasonable distances when integrating over all space
(cluster integrals). We do this by substituting all instances of g0 with h0 + 1, where they
are not paired up with w.

a2 =− ρ

4

∫
g0(12)w(12)2dr2

− ρ2

2

∫ ∫
g0(12)w(12)g0(23)w(23)(h0(13) + 1)dr2dr3

− ρ3

8

∫ ∫ ∫
[g0(12)w(12)g0(34)w(34)(h0(13) + 1)(h0(14) + 1)

(h0(23) + 1)(h0(24) + 1)− g0(12)w(12)g0(34)w(34)] dr2dr3dr4

+
kBT

8

(
∂ρ

∂P

)
0

[
∂

∂ρ

(
ρ2

∫
g0(12)w(12)dr2

)]2

=− ρ

4

∫
g0(12)w(12)2dr2

− ρ2

2

∫ ∫
g0(12)w(12)g0(23)w(23)(h0(13) + 1)dr2dr3

− ρ3

8

∫ ∫ ∫
g0(12)w(12)g0(34)w(34) [h0(13)h0(14)h0(23)h0(24)+

h0(13)h0(14)h0(23) + h0(13)h0(14)h0(24) + h0(13)h0(23)h0(24)+

h0(14)h0(23)h0(24) + h0(13)h0(14) + h0(13)h0(23) + h0(13)h0(24)+

h0(14)h0(23) + h0(14)h0(24) + h0(23)h0(24) + h0(13) + h0(14) + h0(23)

+ h0(24)]dr2dr3dr4 +
kBT

8

(
∂ρ

∂P

)
0

[
∂

∂ρ

(
ρ2

∫
g0(12)w(12)dr2

)]2

(3.65)

Some of the cluster integrals that we have obtained from the second and third integrals
are reducible. To illustrate what we mean by a reducible integral it is beneficial to draw
these integrals using graph theory, where we let white circles correspond to coordinates
held constant under the integration and black circles represent variables of the integration.
We let h0(r) and w(r)g0(r) be the bonds drawn as:
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3.3 Extension to Mixtures

These can be combined to draw diagrams. Two circles in a diagram are considered con-
nected if there exists a bond between them and a diagram is considered connected if there
exist at least one path, using the connected circles, between any pair of circles in the graph.
The second integral in equation 3.65 will give us the two following connected diagrams
as figure 3.2 shows

1

2

3 1

2

3

(a) (b)

Figure 3.2: A graph illustration of the two connected diagrams from the second integral in equa-
tion 3.65, where white circles correspond to coordinates held constant under integration and black
circles represents variables of integration. The continuous line represent h0(r) and the dashed lines
represents w(r)g0(r).

A diagram is considered reducible if it contains an articulation circle and irreducible if
it does not. An articulation circle is a circle which if removed, will divide a connected
diagram into two or more connected diagrams. We can see from figure 3.2 that (b) is
reducible as removing the circle marked 2 will disconnect circle 1 and 3 from each other.
The third integral in equation 3.65 will give us the following diagrams as figure 3.3 shows
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3
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3
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(g)
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(h)
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3

(i)
4
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3

(j)
4

1
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3

(k)
4
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3

(l)
4

1
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3

(m)
4

1

2

3

(n)
4

1

2

3

(o)
4

Figure 3.3: A graph illustration of the 15 connected diagrams from the third integral in equation
3.65. White circles correspond to coordinates held constant under integration and black circles
represents variables of integration. The continuous lines represents h0(r) and the dashed lines
represents w(r)g0(r).
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We can see from figure 3.3 that (f), (g), (j), (k), (l), (m), (n) and (o) are reducible. Accord-
ing to Smith et al. the last integral in equation 3.64 will only produce reducible cluster
integrals when using the substitutions from Baxter [6] and Schofield [34]

kBT

(
∂ρ

∂P

)
0

(
∂

∂ρ

)[
ρ2g0(12)

]
= 2ρg0(12) + ρ2

∫
[g0(123)− g0(12)] dr3 (3.66)

and

kBT

(
∂ρ

∂P

)
0

= 1 + ρ

∫
h0(12)dr2 (3.67)

with the superposition approximation from equation 3.63. Some of these reducible cluster
integrals cancel out the reducible cluster integrals from the second and third integrals.
Unfortunately, due to the superposition approximation, not all the reducible integrals are
canceled out. Smith et al. [41] meant that the job of the last integral was to cancel out all
the reducible integrals, but due to the superposition approximation this does not happen.
Therefore they suggested to omit all the reducible integrals anyway, which we will be
doing as well. This give us the following form for the second order perturbation term:

a2 =− ρ

4

∫
g0(12)w(12)2dr2 −

ρ2

2

∫ ∫
g0(12)w(12)g0(23)w(23)h0(13)dr2dr3

− ρ3

8

∫ ∫ ∫
g0(12)w(12)g0(34)w(34) [2h0(13)h0(24)+

4h0(13)h0(14)h0(24) + h0(13)h0(14)h0(23)h0(24)]dr2dr3dr4

(3.68)

where we have used that the system is isotropic and therefore independent of coordinate
labels such that we can add the irreducible integrals that will be equal together. We can
rewrite equation 3.68 into the form that Smith et al. presented it as by letting the hard-
sphere fluid be our reference system with a hard-sphere diameter d chosen as equation
2.118. We then obtain:

a2 = −1

4
ρJ1 −

1

2
ρ2J2 −

1

8
ρ3(2J3 + 4J4 + J5) (3.69)

where
J1 =

∫
w(12)2ghs

d (12)dr2 (3.70)

J2 =

∫ ∫
w(12)ghs

d (12)w(34)ghs
d (34)hhs

d (13)dr2dr3 (3.71)

J3 =

∫ ∫ ∫
w(12)ghs

d (12)w(34)ghs
d (34)hhs

d (13)hhs
d (24)dr2dr3dr4 (3.72)

J4 =

∫ ∫ ∫
w(12)ghs

d (12)w(34)ghs
d (34)hhs

d (13)hhs
d (14)hhs

d (24)dr2dr3dr4 (3.73)

J5 =

∫ ∫ ∫
w(12)ghs

d (12)w(34)ghs
d (34)hhs

d (13)hhs
d (14)hhs

d (23)hhs
d (24)dr2dr3dr4

(3.74)

In order to calculate these, Smith et al. [41] suggested rewriting these integrals into

J1 = 4π

∫ ∞
0

w(r)2ghs
d (r)r2dr (3.75)
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J2 = 4π

∫ ∞
0

w(r)ghs
d (r)γ(r)r2dr (3.76)

J3 = 4π

∫ ∞
0

γ(r)2r2dr (3.77)

J4 = 4π

∫ ∞
0

hhs
d (r)γ(r)2r2dr (3.78)

where

γ(x) =
2π

x

∫ ∞
0

w(y)ghs
d (y)y

∫ x+y

|x−y|
hhs
d (z)zdzdy (3.79)

They also gave an expression for the J5 integral by expanding the integrand in a series of
Legendre polynomials

J5 =64π3
∑
l

1

(2l + 1)2

∫ ∞
0

r2
12w(r12)ghs

d (r12)

∫ ∞
0

r2
13h

hs
d (r13)Dl(r12, r13)

·
∫ ∞

0

r2
14h

hs
d (r14)Dl(r12, r14)El(r13, r14)dr14dr13dr12

(3.80)

where

Dl(r12, r13) =
(2l + 1)

2

∫ π

0

hhs
d (r23)Pl(cosθ23)sinθ23dθ23 (3.81)

El(r12, r13) =
(2l + 1)

2

∫ π

0

w(r23)ghs
d (r23)Pl(cosθ23)sinθ23dθ23 (3.82)

and
r2
23 = r2

12 + r2
13 − 2r12r13cosθ23 (3.83)

Pl is a Legendre polynomial of order l. The next step now is to approximate the radial
distribution function ghs

d (r), as it is needed in equations 3.75 to 3.78 and equation 3.80.
For this we have tested two different analytical forms which we will briefly discuss here.

The first one we tested was the one by Wertheim [49] and Throop and Bearman [45]
following the implementation by Smith and Henderson [40]. Wertheim solved the equa-
tion

y(r) = 1 + ρ

∫
r′<d

y(r′)dr′ − ρ
∫

r′<d
|r−r′|>d

y(r′)y (|r− r′|) dr′ (3.84)

(has its origin in both the Ornstein-zernike relation and the Percus-Yevick approximation,
which are explained briefly in section 7.2 in the appendix) by taking the Laplace transfor-
mation of each term. He then solved the transformed terms algebraically which we will
not go into detail here. He finally ended up with the following equation to solve

gpy(r) = L−1{Gpy(τ)} =
1

2πir

∫ δ+i∞

δ−i∞

τL(τ)eτrdτ
12η[S(τ)eτ + L(τ)]

(3.85)

where Gpy is the Laplace transformed gpy, τ is the Laplace transform variable and

S(τ) = (1 + η)2τ3 + 6η(1− η)τ2 + 18η2τ − 12η(1 + 2η) (3.86)

L(τ) = 12η[(1 +
1

2
η)τ + (1 + 2η)] (3.87)
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Wertheim wanted a closed form for any given r, thus he expanded the denominator in
powers of L(τ)/S(τ) and got the equation on the following form

gpy(r) =

∞∑
n=1

(−1)n+1

24πri

∫ δ+i∞

δ−i∞
exp(τ(r − nd))

[
L(τ)

S(τ)

]n
τdτ (3.88)

The integral for r−nd < 0 would be zero for each of the terms in the sum, as the contour
can be closed on the right half plane which has no poles. For r − nd > 0 Wertheim
closed the contour in the left half plane. All three roots of S(τ) contributes to this, thus
the integrals can be evaluated by the means of the residue theorem at the three roots of
S(τ). In the paper of Smith they have implemented this method up to r = 5d, where they
after this point has truncated it as 1.

The second version we used by Trokhymchuk et al. [46] have also used equation 3.85
by Wertheim as their foundation. From d < r < 2d they closely followed the work of
Wertheim, but through a slightly different take on it by Nezbeda [32] giving the following
expression

gpy(r) =
Ã0

r
eµ0[r−σ] +

B̃0

r
cos(β0[r − σ] + γ0)eα0[r−σ] (3.89)

while for the remaining range they used the residue theorem on equation 3.85 which give
us

gpy(r) =

∞∑
n=0

gresidue
n (r)for r ≥ d (3.90)

where gresidue
n (r) is the residue of Gpy(τ) at the roots of the denominator L(τ) + S(τ)eτ .

The residue at 0 contributes 1 while the other roots occur as complex-conjugate pairs.
Among these there exists a pair κ0±iω0 which is closest to the real axis and can determine
the asymptotic behaviour of gpy(r)−1 for large r. From this they obtained the expression
for the remaining range

gpy(r) = 1 +
C̃0

r
cos(ω0 + δ0)eκ0r (3.91)

The constants for both of these expressions were found by trying to reflect the physics as
much as possible and will not be explained here (we refer the interested reader to their
paper for more details [46]).

Henderson [19] extended equation 3.69 to a mixture of square-well and hard-sphere
particles. He used a pure hard-sphere fluid as his reference and ended up with the follow-
ing form for the second order perturbation term
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 Ĵ∗3

(3.92)

where the asterisk denote that the pair potentials in the integrals is divided by its epsilon
value, while Ĵ3 contains all the remaining integrals. Henderson did not specify or calcu-
late this integral, but found it indirectly from fitting a function F c to simulation data of
the pure fluid second order perturbation term:

F c(ρ) =k̂1(1− exp(−2.75ρ/(
√

2− ρ))− (2.75/
√

2)ρ) + k̂2ρ+ k̂3ρ
2

≈a2 = −1

4
ρJ1 −

1

2
ρ2J2 −

1

8
ρ3Ĵ3

(3.93)
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We tested this strategy for a Lennard-Jones fluid by using the python implemented linear
least square fitting function (scipy.linalg.lstsq [35]) to obtain k̂1, k̂2 and k̂3. After F c(ρ)
had been obtained he calculated the second order perturbation term for mixtures in the
following way

a2 =− 1
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ε211ρ
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4

ρ
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(3.94)

The results from using this approach with a Lennard-Jones mixture, were quite poor as
can be seen in the discussion section 5.4. We will therefore introduce a new strategy. We
will once again assume that the integrals containing the compressibility factor will cancel
out all the reducible cluster integrals and we therefore omit all these. Lastly we will be
using the Lennard-Jones potential instead of the square-well and hard-sphere potential.
We then end up with the following expression:
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 (2J∗3 + 4J∗4 + J∗5 ).

(3.95)

Given this expression, the only difference in the potential between the different particles
is the well depth ε. However it can easily be extended to different σ values and even
Mie potentials. The next step is to define the hard-sphere diameter. We are using a pure
hard-sphere fluid as the reference, thus we will be using the one defined by Leonard et al.
[26] (see equation 3.34). We calculated J1 to J4 using equation 3.70, 3.71, 3.72 and 3.73
respectively. The inner integral of γ was calculated analytically while the outer integrals
were calculated numerically using the Python implemented function scipy.integrate.quad
[37]. For the J5 integral the Dl and El terms were first calculated and stored for all the
required combinations of r12, r13 and r14 using the Simpsons method with 101 points
from 0 to π. The Python implemented scipy.special.legendre [36] was used to obtain
the Legendre polynomial values and the Legendre sum was truncated at l = 11. After the
requiredDl andEl values were calculated, the outer integrals were calculated numerically
using a 201 point Simpsons method truncated at 5d. According to Smith et al. [41] both
the truncation of the Legendre sum and the integration range introduce minimal error.

What makes this method especially interesting is that we can calculate each of the
six contributions used in the Monte Carlo simulations (this is explained more in detail in
section 4.3) and compare them to Monte Carlo data individually. We do this by reformu-
lating equation 3.95 for a binary mixture of particle species 1 and 2 into the following six
equations:

− 1
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(3.96)
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− 1
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3.3.4 Numerical Second Order Perturbation Term for Mixtures Us-
ing an Additive Binary Reference

For the equations we have just shown we have used a pure hard-sphere reference fluid. We
will now extend them to an additive binary hard-sphere mixture reference fluid, where we
will be using equation 3.37 and 3.38 to define the hard-sphere diameters. This will give
us the following three binary radial distribution functions ghs

d,11, ghs
d,12 and ghs

d,22. When we
take the different radial distribution functions into account we will end up with a much
more complicated expression. To simplify the expression we introduce the following four
terms

J∗1,ij = 4π

∫ ∞
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w∗(r)2ghs
d,ij(r)r

2dr (3.102)

J∗2,ijk = 4π
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J∗4,ijkl = 4π
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2
(γ∗ijik(r)γ∗kljl(r) + γ∗ijjl(r)γ

∗
klik(r))r2dr (3.105)

where

γ∗ijkl(x) =
2π

x

∫ ∞
0

w∗(y)ghs
d,ij(y)y

∫ x+y

|x−y|
hhs
d,kl(z)zdzdy (3.106)

and w∗(r) is the reduced particle interaction potential. We have here approximated
the three and four particle radial distribution functions for mixtures by using the super-
position approximation with the corresponding radial distribution functions that match
the required interactions. For example a three particle superposition approximation for
the interaction between one particle of type 1 and two particles of type 2, would be
ghs
d,12(r)ghs

d,12(r)ghs
d,22(r). Due to how complicated the J∗5 term is and its contribution

being very small, we have chosen to not calculate this term with binary radial distribution
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functions and have instead used the J∗5 value as seen from equation 3.80. Using this and
the notation we just introduced we can write the second order term as
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(3.107)

We now need a way to calculate the binary radial distribution functions ghs
d,11, ghs

d,12 and
ghs
d,22. For this we have used the work of Smith et al. [42] who have published their Fortran

77 code. Our procedure for calculating equation 3.107 is as follows. The inner integral
in γ∗ijkl was calculated using the Simpsons method with a minimum of 100 points and a
maximum of 200 times the integration range number of points when integrating within
the range of r ∈ {0, 3}. When integrating within the range of r ∈ {3, 7} the Simpsons
method using a minimum of 20 points and a maximum of 20 times the integration range
number of points was used. We utilized a larger number of integration points in the range
between 0 and 3 due to the radial distribution function varying the most in this range
(see figure 5.6). All points above r = 7 we set to 0. For the outer integral in γ∗ijkl the
python implemented scipy.integrate.quad [37] function was used. While for the outermost
integral we used a 501 point Simpsons method, truncating at r = 5. Our reasoning
for using the least accurate integration procedure on the outermost integral was due to
computation time as well as the integral accuracy being most affected by the accuracy of
the inner integrals. We can once again calculate the six contributions for the Monte Carlo
simulation. This time using the following equations:
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− 4
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Chapter 4
Numerical Methods and Monte
Carlo Simulation

4.1 Numerical Methods
This section will briefly explain the different numerical integration methods used for this
thesis.

Consider a function f , that is dependent on x. An approximate integral of precision
d = 2n− 1 is the Gauss-Legendre Quadrature defined as∫ 1

−1

f(x)dx =

n∑
i=1

wif(xi) +Rn (4.1)

where xi is the ith root of the Legendre polynomial Pn(x), wi is the weight defined as

wi =
2

(1− x2
i )[P ′n(xi)]2

(4.2)

and Rn is the residual

Rn =
2n+1(n!)4

(2n+ 1)[(2n)!]3
f (2n)(ξ), − 1 < ξ < 1 (4.3)

For an arbitrary interval [a, b] the approximation can be written as∫ b

a

f(y)dy ≈ b− a
2

n∑
i=1

wif(yi) (4.4)

where yi is

yi =

(
b− a

2

)
xi +

(
b+ a

2

)
(4.5)

[3]. The Gauss-Legendre quadrature is exact for polynomials of degree 2n−1 or less and
can be used for definite integrals [29]. The python function numpy.polynomial.legendre.leggauss
has been used to perform these integrations [36].

For integrals where one of the integration limits has been infinite, a Fourier integral
has been used to calculate them using the python function scipy.integrate.quad [37]. In
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cases where computation time has been an issue the Simpson’s rule of integration has
been used: For an arbitrary interval [a, b] the approximation can be written using an even
number of equal sub-intervals, say n = 2m∫ b

a

f(x)dx ≈1

3

(b− a)

2m
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(x2m−2)

+ 4f(x2m−1) + f(x2m))

(4.6)

If the fourth derivative f (4) exists and is continuous on a ≤ x ≤ b then the residual R
will be

R = −b− a
180

(
b− a
2m

)4

f (4)(ξ) (4.7)

where ξ is a suitable unknown value between a and b [22]. The python function
scipy.integrate.simps has been used to perform these integrations [38].

4.2 Monte Carlo Methods
As shown in section 2.4, canonical ensemble averages can be used to evaluate the pertur-
bation terms. Say for example that 〈WN (rN )〉0 is to be evaluated. The integral is on the
following form

〈WN (rN )〉0 =

∫
WN (rN )ρ

(N)
N,0drN (4.8)

where

ρ
(N)
N,0 =

exp(−βUN,0(rN ))

ZN
=

exp(−βUN,0(rN ))∫
exp(−βUN,0(rN ))drN

(4.9)

For the potential functions that are used in this project, analytical evaluations of these
integrals are generally not possible, while numerical methods would quickly require an
unrealistic amount of function evaluations. One way to approximate the integral is by the
simple Monte Carlo method, which would involve the following steps:

1. Generate an initial configuration by randomly assigning 3N Cartesian coordinates
to the particles.

2. Calculate WN (rN ) and the Boltzmann factor exp(−βUN,0(rN )) for the configura-
tion.

3. Add the Boltzmann factor to the accumulated sum of Boltzmann factors and the
potential to its accumulated sum of potentials and return to the first point.

4. After Ntrial of iterations the ensemble average can be calculated from:

〈WN (rN )〉0 =

∑Ntrial
i=1 WN,i(rN )exp(−βUN,0,i(rN ))∑Ntrial

i=1 exp(−βUN,0,i(rN ))
(4.10)

However this is not a feasible approach, as there will be many configurations that have
extremely small Boltzmann factors from the high-energy overlap between particles. One
way to solve this is by using an importance sampling method. The most commonly used
one is from the work of Metropolis in 1954. The Metropolis algorithm generates a Markov
chain of states, which satisfies the two following conditions: (1) each trial is from a finite
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set of possible outcomes, (2) the outcome of each trial depends only on the trial that
immediately preceded it [24]. Two such states m and n are connected by a transition
probability Πmn, which is the probability of going from state m to n. Π can be regarded
as an N × N transition matrix for an irreducible Markov chain, where N is the number
of possible states. Each row will add to 1∑

n

Πmn = 1 (4.11)

The probability that the system is in a specific state is represented by a probability vector
ρ, where each column gives the probability of a state. By saying that ρ(1) represents the
initial configuration then the probability of the second state will be given by

ρ(2) = ρ(1)Π (4.12)

while the third will be
ρ(3) = ρ(2)Π = ρ(1)Π2 (4.13)

and so on. The configuration will eventually converge to the limiting distribution

ρlimit = lim
τ→∞

ρ(1)Πτ (4.14)

a consequence of this is that the limiting distribution will have to satisfy the eigenvalue
equations

ρlimitΠ = ρlimit (4.15)∑
m

ρmΠmn = ρn (4.16)

The problem now is to find the elements of Π so that equation 4.15 and 4.16 are satisfied.
A useful trick to solve this is to replace it with the unnecessarily strong condition of
microscopic reversibility

ρmΠmn = ρnΠnm (4.17)

By summing over all states of m and by using equation 4.11, one get back the properties
of equation 4.15 and 4.16:∑

m

ρmΠmn =
∑
m

ρnΠnm = ρn
∑
m

Πnm = ρn (4.18)

Metropolis et al. created such a scheme that would satisfy both equation 4.11 and equation
4.17, known as the asymmetrical solution:

Πmn = �mn ρn ≥ ρm m 6= n (4.19)

Πmn = �mn(ρn/ρm) ρn ≤ ρm m 6= n (4.20)

The liquid also has to have the possibility of remaining in the same state

Πmm = 1−
∑
n 6=m

Πmn (4.21)

In this solution � is a symmetrical stochastic matrix, �mn = �nm, called the underlying
matrix of the Markov chain. This matrix has to be specified in order to implement the
Metropolis method. It is done by specifying cubes R that are centered at each individual
particle position rmi with sides of length 2δrmax. Each time a particle is then moved there
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will be a large, but finite positions NR for it to move to with equal probability. Thus �mn
can be simply defined as

�mn =

{
1/NR rni ∈ R
0 rni /∈ R

(4.22)

Using this choice for �, the Monte Carlo procedure can be described in the following way.
First a particle is chosen, this could be done randomly, but in the code used for this project
this is performed sequentially, where one cycle is when all the particles has been moved
once. The particle is given a uniform random displacement along each of the coordinate
directions, with an adjustable maximum displacement of δrmax. This parameter governs
the size of the region as well as the convergence of the Markov chain. The next step is to
calculate δUN,0,nm = UN,0,n(rN ) − UN,0,m(rN ). This does not require a recalculation
of all the configurational energy of state m, only the changes from moving the specific
particle. So for particle i it would be

δUN,0,nm =

 N∑
j=1

u0,n(rij)−
N∑
j=1

u0,m(rij)

 (4.23)

The corresponding element of the transition matrix Π, will depend on the initial state m
and the final state n. So if δUN,0,nm ≤ 0 is downhill then ρn ≥ ρm and equation 4.19
applies, which means that the new configuration is accepted. If δUN,0,nm > 0 is uphill
then ρn < ρm and equation 4.20 applies. The move is then accepted with a probability
ρn/ρm:

ρn
ρm

=
Z−1
N exp(−βUN,0,n(rN ))

Z−1
N exp(−βUN,0,n(rN ))

= exp
(
−βδUN,0,nm(rN )

)
(4.24)

This is done by generating a random number uniformly on (0,1). If the random number is
less than exp

(
−βδUN,0,nm(rN )

)
, the move is accepted, otherwise it is rejected. When a

move is accepted the potential WN,n(rN ) is added to the accumulated average potential.
The question now, lies in how δrmax should be chosen. If chosen to be too small, then
a large fraction of moves will be accepted, but the phase space will be explored very
slowly. If too large, then nearly all trial moves will be rejected [4]. The code used for
this project generally aims for a 0.3-0.5 acceptance rate and will adjust δrmax accordingly
during simulation to reach this average.

All the simulations performed for this project has been with soft-spheres, which we
have defined using equation 2.122, letting lr = 12 and la = 6 (Lennard-Jones). This may
at first seem strange as the Barker and Henderson theory is from a system of hard-spheres,
but as section 2.4.2 explains the hard-sphere system is an approximation of the reference
soft-sphere system, we therefore believe it will be more accurate to use soft-spheres for
the simulations.

4.3 Monte Carlo Settings
We have used the same Metropolis Monte Carlo code as was used in the work of Hammer
et al. [16] which has been created by the research group at Sintef Energi AS.

In order to calculate the second order perturbation term from Monte Carlo simulations
we used equation 2.68. For a binary mixture with the two particles labeled 1 and 2 the
energy can be written as a sum of three contributions

W = W11 + 2W12 +W22 (4.25)
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where the subscript of Wij denotes that the contribution is from the interaction between
the particle type i and j. We have omitted the notation showing its dependence of the
particle coordinates for simplicity. Using this we can write the following terms as

〈W 〉0 = 〈W11〉0 + 2〈W12〉0 + 〈W22〉0 (4.26)

and

〈W 2〉0 − 〈W 〉20 =[〈W11W11〉0 − 〈W11〉0〈W11〉0] + 4[〈W12W12〉0 − 〈W12〉0〈W12〉0]

+ [〈W22W22〉0 − 〈W22〉0〈W22〉0] + 2[〈W11W22〉0 − 〈W11〉0〈W22〉0]

+ 4[〈W11W12〉0 − 〈W11〉0〈W12〉0] + 4[〈W12W22〉0 − 〈W12〉0〈W22〉0]

(4.27)

where the second equation is used for calculating the second order perturbation term.
Each of the contributions are calculated during the Monte Carlo simulation using the
mixing rules described in section 3.3 for the interactions between particle type 1 and 2.
Each time W is calculated it is calculated using the following equations with the cutoff
range (rc) for the inter-particle potential set to 4σ11:

W11 =
1

2

N1∑
i=1

N1∑
j=1

w11(rij) (4.28)

W12 =
1

2

N1∑
i=1

N2∑
j=1

w12(rij) (4.29)

W22 =
1

2

N2∑
i=1

N2∑
j=1

w22(rij) (4.30)

The energy that was lost due to this cut-off is calculated by assuming that g0(r) = 1 after
this point and we end up with the three following long range tail corrections:

W11,lrcε11

N1
= 2π

N1

V

∫ ∞
rc

r2w11(r)dr (4.31)

W12,lrcε11

N1
= 2π

N2

V

∫ ∞
rc

r2w12(r)dr (4.32)

W22,lrcε11

N2
= 2π

N2

V

∫ ∞
rc

r2w22(r)dr (4.33)

The final equation in calculating W at one step is then

W = W11 + 2W12 +W22 +W11,lrc + 2W12,lrc +W22,lrc (4.34)

The Monte Carlo simulation was performed in a cubic box with periodic boundary con-
dition and every simulation used 500 particles. For the code used in this thesis one MC
cycle consists of one trial move per particle. To equilibrate the system, 80 equilibration
blocks with 18.750 · 103 MC cycles each were used, while the production phase used
25 blocks with 150 · 103 MC cycles each. The sampling of the configurational attrac-
tive energy was calculated every 250 MC move, as this according to Hammer et al. [16]
improves the accuracy compared to only sampling every completed MC cycle while still
being computationally efficient.
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In order to explore the compositional space, we performed MC simulations with the
following settings ε22/ε11 ∈ {1, 2, 4, 8}, T ∗ ∈ {1, 2, 4, 6, 12}, ρ∗ ∈ {0.05, 0.1, 0.15, 0.2, 0.25
, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and x2 ∈ {0.25, 0.5, 0.75}. Where we have used
equation 3.58 and 3.59 for T ∗ and ρ∗ respectively, while using N2 ∈ {125, 250, 375} to
correspond to the mole fractions. In calculating the standard error we first calculate the
block average of the property (f ) in question

〈f〉 =
1

Nblk

Nblk∑
i=1

fi (4.35)

where Nblk is the number of blocks. Then the standard deviation s2 is calculated as

s2
f =

〈
(f − 〈f〉)2

〉
=

1

Nblk

Nblk∑
i=1

f2
i − 〈f〉2 (4.36)

With the standard error of the mean 〈f〉 being

s〈f〉 =
sf√
Nblk

(4.37)

Jack knifing is also performed and is the one that is reported when it yields better statis-
tics. It works by first estimating the parameter for each sub-sample omitting the i-th
observation

f̄i =
1

Nblk − 1

Nblk∑
j=1,j 6=i

fi, i = 1, ..., Nblk (4.38)

Then the standard deviation is calculated as

s2
f̄ =

〈
(f̄ − 〈f̄〉)2

〉
=
Nblk − 1

Nblk

(
Nblk∑
i=1

f̄2
i −Nblk〈f̄〉2

)
(4.39)
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Chapter 5
Results and Discussion

This chapter will present the results from the five different implemented models described
in this thesis. We will briefly summarize them here.

Lafitte et al.

The work of Lafitte et al. [23] is based on the MCA with a correction factor and the
Mie potential. It uses an additive binary reference hard-sphere fluid and is written on an
analytical form the following way

a2 =

n∑
i=1

n∑
j=1

xixja2,ij (5.1)

a2,ij =
1

2
Khs(1 + χij)C2

ijε
2
ijηij

[
x

2la,ij

0,ij (IS1,ij(ηij ; 2la,ij) +Bij(ηij ; 2la,ij))

− 2x
la,ij+lr,ij
0,ij (IS1,ij(ηij ; la,ij + lr,ij) +Bij(ηij ; la,ij + lr,ij))

+x
2lr,ij
0,ij (IS1,ij(ηij ; 2lr,ij) +Bij(ηij ; 2lr,ij))

] (5.2)

The χ-factor is here dependent on the reduced density and the dimensionless van der
Waals energy. See section 3.3.1 for more details on this model.

Westen and Gross

The work of van Westen and Gross [54] is based on the MCA with a correction factor and
the Lennard-Jones potential and has been extended to mixtures using an additive binary
reference hard-sphere fluid. It is written in a partly analytical form the following way

a2 =

n∑
i=1

n∑
j=1

xixja2,ij (5.3)

a2,ij =
1

2
Khs(1 + χ)C2

ijε
2
ijηij

[
x

2la,ij

0,ij (IS1,ij(ηij ; 2la,ij) +Bnum,ij(ηij ; 2la,ij))

− 2x
la,ij+lr,ij
0,ij (IS1,ij(ηij ; la,ij + lr,ij) +Bnum,ij(ηij ; la,ij + lr,ij))

+x
2lr,ij
0,ij (IS1,ij(ηij ; 2lr,ij) +Bnum,ij(ηij ; 2lr,ij))

] (5.4)
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Chapter 5. Results and Discussion

where Bnum,ij is calculated numerically. The χ-factor is here dependent on the reduced
density and the reduced temperature. See section 3.3.2 for more details on this model.

Henderson

The work of Henderson [19] does not use the MCA and was originally based on a mixture
of square-well and hard-sphere potentials, but has here been modified to Lennard-Jones
potentials with different well-depths, using a pure reference hard-sphere fluid. It is cal-
culated numerically and uses a correlated term to deal with the higher order distribution
functions from the two last integrals. It has the following form:

a2 =− 1

4
ρ

∑
i

∑
j

xixjε
2
ij

 J∗1 −
1

2
ρ2

∑
i

∑
j

∑
k

xixjxkεijεjk

 J∗2

− 1

8
ρ3

∑
i

∑
j

∑
k

∑
l

xixjxkxlεijεkl

(− 8

ε211ρ
3
F c(ρ)− 2

ρ2
J∗1 −

4

ρ
J∗2

)
(5.5)

See section 3.3.3 for more details on this model.

Numerical Method Using a Pure Reference

This method does not use the MCA and is based on the Lennard-Jones potential with
different well-depths, using a pure reference hard-sphere fluid. It is calculated numerically
and is written in the following form:

a2 =− 1

4
ρ

∑
i

∑
j

xixjε
2
ij

 J∗1 −
1

2
ρ2

∑
i

∑
j

∑
k

xixjxkεijεjk

 J∗2

− 1

8
ρ3

∑
i

∑
j

∑
k

∑
l

xixjxkxlεijεkl

 (2J∗3 + 4J∗4 + J∗5 ).

(5.6)

See section 3.3.3 for more details on this model.

Numerical Method Using an Additive Binary Reference

This method does not use the MCA and is based on the Lennard-Jones potential with
different well-depths, using an additive binary reference hard-sphere fluid. It is calculated
numerically and is written in the following form:

a2 =− 1

4
ρ

∑
i

∑
j

xixjε
2
ijJ
∗
1,ij

− 1

2
ρ2

∑
i

∑
j

∑
k

xixjxkεijεjkJ
∗
2,ijk


− 1

8
ρ3

∑
i

∑
j

∑
k

∑
l

xixjxkxlεijεkl(2J
∗
3,ijkl + 4J∗4,ijkl + J∗5 )

 .

(5.7)

See section 3.3.4 for more details on this model.
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5.1 Monte Carlo Simulation Data

The discussion is structured in the following way. First the Monte Carlo simulation data
will be presented, followed by a comparison between Lafitte et al. implementation of the
second order perturbation term for mixtures with our mixture extension to van Westen
and Gross work on the second order perturbation term. After that part we will give our
brief thoughts on the three different analytical radial distribution functions used in this
thesis. We will then compare the three different numerical implementations for the sec-
ond order perturbation term for mixtures to Monte Carlo simulation data. The individual
Monte Carlo contribution terms will also be investigated and compared to the numerical
implementation. A detailed error analysis of the various models will be given and used
to create different fitting approaches as well as a better understanding of the problems in
modelling mixtures with large difference in well-depth. Lastly some suggestions on the
next steps for improving the model will be given.

5.1 Monte Carlo Simulation Data
The Monte Carlo data was obtained by the simulation procedure as explained in sections
4.2 and 4.3. The error of the simulation data was calculated as one standard deviation
of the sample mean (see equation 4.36), but had a magnitude of error smaller than the
symbol size used to visualize the data, that we have chosen to omit it. This lead us to
believe that the simulation data is relatively accurate. The general trend for the data is that
a larger epsilon ratio yields a lower second order perturbation term value. The same trend
is observed when we increase the fraction of component 2, the reduced density and to a
certain degree the reduced temperature. As the amount of data obtained for this project is
relatively large, we have chosen to visualize the trend using a principal component analy-
sis (PCA) loadings plot with only one principal component (PC1) on the normalized data
[25]. The result can be seen in figure 5.1.

Figure 5.1: The loading’s plot with one axis (PC1) based on normalized Monte Carlo data of the
second order perturbation term with the variables reduced density (ρ∗), reduced temperature (T ∗),
epsilon ratio (ε22/ε11) and the fraction of component 2 (x2).

The first component of a PCA is in the direction with the most variance such that it mini-
mizes the average squared distance from a point to the line. As we can see from the figure
the second order perturbation term is on the far left on the PC1 line, while all the other
variables are on the the right side, showing that they are indeed negatively correlated with
the second order term as mentioned earlier. We can also see that the epsilon ratio explains
most of the variance for PC1, while the reduced temperature explains the least, suggesting
that in general the epsilon ratio has the greatest impact on the second order term while the
reduced temperature has the least impact. This is also our observation when we have been
analyzing the data.

Another observation we made from the data was that the Monte Carlo data for the
epsilon ratio of 8 at the lower reduced temperature and higher reduced density spectrum
seemed to be less accurate as it had a tendency to deviate more from the general trend.
We therefore performed these simulations again doubling the number of MC steps to see
if they would be improved. Another important factor to point out at this range is that we
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Chapter 5. Results and Discussion

could potentially be in the metastable region. For pure hard-sphere systems this has been
stated to be between η = 0.494 (ρ = 0.943) to η = 0.644 [31]. However we are dealing
with the much less studied mixture of soft-sphere particles described by equation 2.122
and could well be in the metastable region. This region is known to be difficult to perform
simulations in and can yield somewhat unreliable data.

5.2 Comparison between Lafitte and van Westen
In the paper of Hammer et al. [16] they showed the many problems of Lafitte et al. [23]
(Lafitte) work when it comes to the mixture extension of the second order perturbation
term (see section 3.3.1 for details on model). Inspired by Lafitte et al., van Westen and
Gross [54] (WG) created a modified version for the second order perturbation term, but
only for Lennard-Jones fluids and not Mie fluids. It was also not extend to mixtures. We
have extended it to mixtures as shown in section 3.3.2 and will in this part compare it to
the work of Lafitte et al..
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Figure 5.2: Comparison of the Lafitte et al. and van Westen and Gross implementation of the second
order perturbation term for a pure fluid at the reduced temperature (a) T ∗ = 1 and (b) T ∗ = 12.
The Monte Carlo data (MC) performed for this thesis is shown as well to test the accuracy of the
models.

Figure 5.2a compares the implementations of the second order perturbation term for a pure
Lennard-Jones fluid to Monte Carlo data at the reduced temperature of T ∗ = 1. The fig-
ure clearly shows that the implementation of WG predicts better than the work of Lafitte.
This is expected as the χ-factor of Lafitte has been correlated to work for a much broader
range of potentials than the one by WG and is likely more prone to inaccuracies when
only comparing the Lennard-Jones potential. Figure 5.2b compares the implementations
of the second order perturbation term for a pure Lennard-Jones fluid to Monte Carlo data
at the reduced temperature of T ∗ = 12. At this temperature it appears that the work of
Lafitte collapses, while the work of WG still predicts fairly well. This is likely due to how
the χ-factor has been correlated. In the work of Lafitte, it is not dependent on the reduced
temperature and hence, has only been correlated for the reduced temperature of T ∗ = 1
[23]. The χ-factor of WG however, is dependent on the reduced temperature and has been
correlated for a range of reduced temperatures spanning from T ∗ = 0.5 to T ∗ = 12.
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5.2 Comparison between Lafitte and van Westen
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Figure 5.3: Comparison of the Lafitte et al. and van Westen and Gross implementation of the
second order perturbation term for a mixture at the reduced temperature T ∗ = 1 and the fraction of
component 2 x2 = 0.5 with different epsilon ratios. The MC data from this thesis is shown as well
to test the accuracy of the models.

Concluding that the work of WG is better at approximating the second order pertur-
bation term for pure Lennard-Jones fluids than the one by Lafitte, it will be interesting
to see how well it performs when extended to mixtures. Figure 5.3 compares their work
with Monte Carlo data for a binary mixture with different epsilon ratios at T ∗ = 1 and
x2 = 0.5. Unfortunately the figure shows that there is little reason to suggest that the
work of WG performs much better than the one by Lafitte. They both seem to predict
badly, especially at the high epsilon ratio.
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Figure 5.4: Comparison of the Lafitte et al. and van Westen and Gross implementation of the second
order perturbation term for a mixture at the reduced temperatures (a) T ∗ = 1 and (b) T ∗ = 12 and
epsilon ratio ε22/ε11 = 8 with different component 2 fractions. The MC data from this thesis is
shown as well to test the accuracy of the models.

Figure 5.4a compares their work with Monte Carlo data for a binary mixture with differ-
ent fractions of component 2 at T ∗ = 1 and ε22/ε11 = 8. This figure clearly shows their
inability to accurately predict the second order perturbation term.

Figure 5.4b shows the same, but at the much higher reduced temperature of 12. We
can here see that the one by WG seem to predict the general trend in the beginning much
better than the one by Lafitte, but fails at the higher reduced density range. For this reason
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and the fact that WG predicts pure Lennard-Jones fluid better, we have chosen to only go
further with the work by WG for the remaining comparisons.

5.3 Radial Distribution Function Comparisons
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Figure 5.5: A comparison of the radial distribution function implementation for a pure fluid by
Smith and Henderson [40] and Trokhymchuk et al. [46] with the MC data extracted from the work
of Trokhymchuk et al. [46] at σ = 1 and the density value 0.2 (a) 0.5 (b) and 0.9 (c).

For the numerical calculations of the second order term, we have used analytical equa-
tions for the radial distribution functions (RDF). As the accuracy of these are quite im-
portant in order to obtain reasonable numerical values, we have compared the models to
Monte Carlo data extracted from the work of Trokhymchuk et al. [46]. The results can be
seen in figure 5.5.

We can clearly see that the radial distribution function of Smith and Henderson [40]
overall agrees better with the Monte Carlo data, then the one by Trokhymchuk et al. [46]
with the exception being at the contact value, where it actually performs worse than the
one by Trokhymchuk et al.. This is a well known problem using the Percus-Yevick theory
[48]. Despite its issues we will continue testing the work of Trokhymchuk et al. as their
relative simple form compared to the one by Smith and Henderson is tempting for future
work in obtaining an analytical form.
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5.4 Comparison of the Numerical Second Order Perturbation Term Using a Pure
Hard-Sphere Reference
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Figure 5.6: A comparison of the radial distribution function implementation by Smith et al. [42]
with Monte Carlo (MC) data given by Hammer et al. [16] at σ11 = 1, σ22 = 1.5, x2 = 0.5 and the
density value 0.3 (a) and 0.8 (b). The leftmost plot is ghs

11, the middle one is ghs
12 and the rightmost is

ghs
22.

Figure 5.6 compares the binary radial distribution function by Smith et al. [42] against
simulation data. We can see that it is not able to predict the contact value properly, but
overall, it seems to estimate the general trend fairly well and will therefore be used for
the numerical calculation of the second order perturbation theory, when using an additive
hard-sphere mixture reference.

5.4 Comparison of the Numerical Second Order Pertur-
bation Term Using a Pure Hard-Sphere Reference

We will now investigate the performance of the numerical method in calculating the sec-
ond order perturbation term for mixtures using a pure hard-sphere fluid reference as seen
in section 3.3.3. Figure 5.7 compares the numerical second order perturbation term (see
equation 3.69) using the radial distribution function of both Smith and Henderson [40]
and Trokhymchuk et al. [46] to Monte Carlo data and the work of WG for a pure fluid at
the reduced temperatures T ∗ = 1 and T ∗ = 12.
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Figure 5.7: Comparison of the van Westen and Gross implementation of the pure second order
perturbation term and the numerical second order perturbation term using the radial distribution
function by Smith and Henderson and the one by Trokhymchuk et al. at different reduced tempera-
tures. The MC data from this thesis is shown as well to test the accuracy of the models.

We can clearly see that the work of WG is better at predicting the second order pertur-
bation term for a pure fluid than the numerical approach. This is nothing new and has been
reported in previous papers [41]. What is more interesting however is the difference in us-
ing the two analytical forms for the radial distribution function. We can see that generally
the one by Smith and Henderson seem to perform better than the one by Trokhymchuk
et al.. To investigate this further we have plotted the ratio of the Monte Carlo data to the
numerical second order term in figure 5.8.
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Figure 5.8: Ratio between the Monte Carlo data for the pure second order perturbation term a2,MC

and the numerical second order perturbation term a2,model at the reduced temperature T ∗ = 1. The
figure compares the implementation using the radial distribution function by Smith and Henderson
to the implementation using the radial distribution function by Trokhymchuk et al..

We can here see a major problem in using the radial distribution function by Trokhymchuk
et al. [46]. It does not appear to converge to one as the reduced density decreases. This
is problematic since the Monte Carlo data will be going towards ideal gas here, which a
good model should be able to predict. The reason for the failure here of Trokhymchuk
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5.4 Comparison of the Numerical Second Order Perturbation Term Using a Pure
Hard-Sphere Reference

et al. radial distribution function is due to the models reduced density range only being
from 0.2-0.9. In the paper they have a few suggestions for fixing this issue by changing
the function at this range, but to avoid any potential function discontinuity that this could
lead to, we have instead chosen to only look at the one by Smith and Henderson for further
comparisons, which seem to converge to one as the reduced density decreases.
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Figure 5.9: Comparison between the van Westen and Gross implementation of the second order
perturbation term, the numerical second order perturbation term following the work of Henderson
[19] (using F c(ρ)) and the numerical second order term as we proposed it in equation 3.95. The MC
data from this thesis is shown as well to test the accuracy of the models. The reduced temperature
is at T ∗ = 1 and (a) shows the models for a pure fluid while (b) shows the model for a mixture with
x2 = 0.5 and ε22/ε11 = 8.

In figure 5.9 we compare the method created by Henderson [19] which originally was
made for a mixture of square-well and hard-sphere particles, but has now been extended to
a mixture of Lennard-Jones particles (see equation 3.94 in section 3.3.3 and table 7.1 for
the constants), to the numerical method using a pure hard-sphere reference fluid as seen
in equation 3.95 in section 3.3.3. We can see that it predicts the pure fluid considerably
better, but still not better than the model by van Westen and Gross [54]. For a mixture
with epsilon ratio of 8 it deviates more than all the other models. According to Henderson
[19], the model gave reasonable results for the mixture of square-well and hard-sphere
particles. This comes as no surprise, as the perturbation terms will only be dependent
on the density and the component fraction, while for the Lennard-Jones mixture they will
also be dependent on the temperature as it does not have a hard-core. Secondly the use of a
pure component reference system is correct for the case of the mixture of hard-sphere and
square-well particles, while for the Lennard-Jones mixture, this is not true. Combining
these observations we can see that the J∗ integrals (see equation 3.70 to 3.74) will only
be dependent on the density, thus making the F c(ρ) function the same independent of the
temperature, component fraction and the epsilon value of the square-well particles. This
however does not hold true for the mixture of Lennard-Jones particles and is the reason
we did not continue following the approach of Henderson.
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Figure 5.10: Comparison of the van Westen and Gross implementation of the second order pertur-
bation term and the numerical second order perturbation term using the radial distribution function
by Smith and Henderson at different reduced temperatures, fractions of component 2 and epsilon
ratios. The MC data from this thesis is shown as well to test the accuracy of the models.

Figure 5.10 compares the numerical second order term for mixtures using a pure hard-
sphere fluid as the reference (see equation 3.95) and the radial distribution function of
Smith and Henderson against Monte Carlo data and the mixture extension of WG. We
can see that at the reduced temperature of 1, they both struggle somewhat in predicting
the Monte Carlo data especially at the higher reduced density range. However interest-
ingly the numerical method seem to be following the trend of the data to a higher degree
than WG, but overestimates the rate in which it decreases, thus it consistently has lower
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5.5 Error Analysis

values than the simulation data, while the extension of WG, both overestimates and un-
derestimates the value. At the reduced temperature of 12, we can clearly see that both
models predict better. This is not surprising for the numerical approach as it is based
on the superposition approximation, which will be more accurate at higher temperatures
as the particles, as we can see from equation 4.24 used in Monte Carlo simulation with
soft-spheres, will have a higher probability of overlap and therefore be less structured. In
other words the three and four body interactions will be more independent of each other.
Physically this is explained by the greater kinetic energy that the particles will have mak-
ing overlap easier and therefore lead to a more chaotic and less structured system. It is
unclear why it improved the WG method. It could be due to the trend being less affected
by it being a mixture and thus making the fitted χ-factor of WG more valid. Another
interesting observation is how they seem to predict less well as the epsilon ratio increases.
This could be due to how an increased well-depth for one of the particle types will counter
the increase in temperature when it comes to the probability of overlap as we can see from
equation 4.24 and 3.41. This leads again to more structure. Lastly we notice the total ne-
glect of the downward trend at the higher reduced density values of the WG method. It
seem to be increasing instead. This does not happen with the numerical method.

5.5 Error Analysis
In this part of the discussion, we will be looking closer at the numerical second order per-
turbation term and try to analyze what is causing the error as well as suggest some ways
to correct it.

Figure 5.11: The loading’s plot with one axis (PC1) based on normalized ratios between the nu-
merical method (a2,model) using a pure hard-sphere reference and Monte Carlo data of the second
order perturbation term with the variables reduced density (ρ∗), reduced temperature (T ∗), epsilon
ratio (ε22/ε11) and the fraction of component 2 (x2).

Figure 5.11 shows a PCA loadings plot with one principal component (PC1) on the ratio
of the numerical second order perturbation term using a pure hard-sphere reference di-
vided by the MC data. We have used the entire data set that we have simulated and have
normalized the ratios before performing PCA. We can clearly see from this plot that the
main contributor to variance in the error is the reduced density followed by the reduced
temperature and the epsilon ratio. We can also see that the fraction of component two
contributes little to the variance of the PC1. This further confirms our observations from
the previous figures that the main error occurs at the higher reduced density range.

To understand where the error may come from, it may be enriching to go through the
major approximations we used in order to obtain the equation for the second order pertur-
bation term (equation 3.95). The first approximation is that we are using the superposition
approximation to estimate the higher order distribution functions, the second is that we
assume the radial distribution functions for the 1-1, 1-2 and 2-2 interactions to be the
same by using the pure hard-sphere fluid as our reference system, the last approximation
is that we assume the integrals containing the compressibility factor will cancel out all
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the reducible cluster integrals. The first approximation we will be looking into is the pure
hard-sphere reference approximation. We will test this one by checking whether equation
3.107 in section 3.3.4 which is based on an additive binary reference performs any better.

5.5.1 Additive Reference Versus Pure Reference
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Figure 5.12: Comparison between the numerical second order perturbation term when using a pure
hard-sphere fluid as reference and the numerical second order perturbation term when using a binary
hard-sphere mixture as a reference, with epsilon ratio of 8, at different reduced temperatures and
fractions of component 2. The MC data from this thesis is shown as well to test the accuracy of the
models.

As we can see from the figure 5.12, using an additive binary hard-sphere reference
fluid through the binary hard-sphere code by Smith et al., yields only a very slight im-
provement on the second order perturbation term. This lead us to believe that the major
issue is the superposition approximation. As we saw in figure 5.10, the numerical second
order approximation has difficulty in accurately predicting the second order perturbation
term, even for pure fluids. However the major benefit in using this method is that we can
divide it into six parts and compare each of those to the six contributions from the Monte
Carlo data (see equation 4.27). This will hopefully give us some more insight in how
well the superposition approximation and the assumption that the integrals containing the
compressibility factor should cancel all the reducible cluster integrals are.
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5.5.2 Comparison of the Six Interaction Terms
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Figure 5.13: Comparison between MC data (black circles) and the numerical method (red transpar-
ent circles) for each of the terms as seen in equations 3.96 to 3.101. The reduced temperature is at
T ∗ = 1, the epsilon ratio is at ε22/ε11 = 1 and the component fraction is at x2 = 0.5.

Figure 5.13 compares all six of the Monte Carlo contributions to their respective equa-
tion approximations as given in equations 3.96 to 3.101. We have for these figures used a
pure fluid (ε22/ε11 = 1), but have randomly assigned a number of particles to be particle 2
such that the fraction of particle 2 equals x2. This is in order to get a better understanding
of its problems in predicting a pure fluid. We can see that they predict reasonably well
up to around the reduced density value of 0.5. After this point they seem to diverge more
from the simulation data, but still in general follow the same trend.
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Figure 5.14: Comparison between MC data (black circles) and the numerical method (red transpar-
ent circles) for each of the terms as seen in equations 3.96 to 3.101. The reduced temperature is at
T ∗ = 12, the epsilon ratio is at ε22/ε11 = 1 and the component fraction is at x2 = 0.5.

Figure 5.14 shows that at the higher temperature (T ∗ = 12), the numerical method pre-
dicts the data better, which comes as no surprise as this was something we observed earlier
on in the discussion. We also notice that the numerical method seems to struggle the most
in predicting the − 2

2N [〈W11W22〉0 − 〈W11〉0〈W22〉0] term, which we will for simplicity
denote as the 1122 term. This may be due to it being purely calculated by the four parti-
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cle distribution function with the reducible cluster integrals cancelled (see equation 3.99),
thus it will be heavily affected by the superposition approximation.
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Figure 5.15: Comparison between MC data (black circles) and the numerical method (red trans-
parent circles) for the term − 2

2N
[〈W11W22〉0 − 〈W11〉0〈W22〉0] as seen in equations 3.99. The

reduced temperature is at T ∗ = 1, the epsilon ratio is at ε22/ε11 = 1 and the component fraction is
at x2 = 0.25 (a) and x2 = 0.75 (b).

From figure 5.15 we can observe a worrying result. It appears that the simulation re-
sults for the 1122 term give different results for x2 = 0.25 and x2 = 0.75, which is not
what we would expect for a pure fluid, where particle 1 and 2 are the same (ε22/ε11 = 1).
It should in theory yield the same result and be independent of whether the fraction of
particle 1 is 0.25 or 0.75. To investigate this further we repeated the simulations for the
reduced density values of 0.7-0.9 doubling the number of Monte Carlo steps. The results
are shown in figure 5.16.
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Figure 5.16: Comparison between MC data, when using 25 000 equilibrium steps and 300 000
steps per block at the reduced densities ρ∗ =0.7-0.9 (black circles) and the numerical method (red
transparent circles) for the term− 2

2N
[〈W11W22〉0−〈W11〉0〈W22〉0] as seen in equation 3.99. The

reduced temperature is at T ∗ = 1, the epsilon ratio is at ε22/ε11 = 1 and the component fraction is
at x2 = 0.25 (a) and at x2 = 0.75 (b).

We still observe the same tendency in figure 5.16 as in the previous figure 5.15 and cur-
rently have no explanation for this phenomena.
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In figure 5.17 we compare the old simulation data against the new simulation data and
the numerical model.
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Figure 5.17: Comparison between MC data (black circles) with the default 18 750 equilibrium
steps and 150 000 steps per block and the MC data (blue circles) with 25 000 equilibrium steps
and 300 000 steps per block for the reduced density range 0.7-0.9. The numerical method (red
transparent circles) is also shown here as seen in equations 3.96 to 3.101. The reduced temperature
is at (a) T ∗ = 1 and (b) T ∗ = 12, the epsilon ratio is at ε22/ε11 = 1 and the component fraction is
at x2 = 0.5.

We can see from figure 5.17 that there is an observable difference in the two simulation
data, questioning the reliability of the simulation data at the higher reduced densities. For
the higher reduced temperature (T ∗ = 12) they agree more. In the remaining part of
the discussion, the old simulation data will be used. However in future work it may be
beneficial to perform simulations with a greater number of Monte Carlo steps at the higher
reduced density range.

We will now investigate whether using an additive binary hard-sphere reference fluid
will improve the prediction of the six interaction terms from the Monte Carlo simulations.
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(c) x2 = 0.75

Figure 5.18: Comparison between MC data (black circles), the numerical method using a pure
reference (red transparent circles) and the numerical method using an additive binary reference
(blue transparent circles) for each of the terms as seen in equations 3.96 to 3.101 and equations
3.108 to 3.113. The reduced temperature is at T ∗ = 1, the epsilon ratio is at ε22/ε11 = 2 and the
component fraction is at (a) x2 = 0.25, (b) x2 = 0.5 and (c) x2 = 0.75.
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Figure 5.18 compares all six of the Monte Carlo contributions to their respective equa-
tion approximations as given in equations 3.96 to 3.101 for the pure reference and as given
in equations 3.108 to 3.113 for the additive reference with ε22/ε11 = 2 and T ∗ = 1. We
can see from the figures that the three contributions − 1

2N [〈W11W11〉0 − 〈W11〉0〈W11〉0],
− 1

2N [〈W22W22〉0 − 〈W22〉0〈W22〉0] and − 4
2N [〈W12W12〉0 − 〈W12〉0〈W12〉0] which we

will refer to as the 1111, 2222 and 1212 terms respectively for simplicity, seem to perform
slightly better when the additive binary reference is used. The reason for this could be that
there is a slight difference in the radial distribution functions, as the hard-sphere diameter
for component 1 is d11 = 0.973 and d22 = 0.984 for component 2, thus the single ref-
erence radial distribution function fails in representing the ”pure” interactions. Another
interesting observation is how the 1111 term seem to have a less linear shape, but rather a
more curved one, when x2 = 0.25 (see figure 5.18a). We also see the same happen with
the 2222 term when x2 = 0.75 (see figure 5.18c). The numerical method seem to struggle
predicting these trends by overestimating them independent of the reference system used
in calculating these.

We can also see a similar tendency for the cross interaction terms− 4
2N [〈W11W12〉0−

〈W11〉0〈W12〉0] and − 4
2N [〈W12W22〉0 − 〈W12〉0〈W22〉0] which we will refer to as the

1112 and 1222 terms respectively for simplicity. In this case it seems like the 1112 term
experiences some sort of bend around ρ∗ ≈ 0.6 when x2 = 0.25, which the numeri-
cal method has a hard time explaining (see figure 5.18a). A similar bend occurs in the
1222 term when x2 = 0.75 (see figure 5.18c), which the numerical method also seem to
struggle in predicting.

Lastly we have the 1122 term, which interestingly, the numerical method using a pure
reference seem to predict better than the numerical method using a binary reference, at
x2 = 0.25, but worse at x2 = 0.75, while being almost indistinguishable at x2 = 0.5.
We believe that this has to do with the way the pure reference hard-sphere diameter is
calculated (see equation 3.34). We expect the numerical method using an additive binary
hard-sphere reference to more accurately represent the system. Therefore we think that
using the single component hard-sphere radial distribution function, with the hard-sphere
diameter as seen in equation 3.34, has the unfortunate property of exaggerating the con-
tribution of component 1 for the diameter at x2 = 0.25, and exaggerating the contribution
of component 2 for the diameter at x2 = 0.75. We believe it is only coincidental that the
pure reference predicts the 1122 term better at x2 = 0.25 (see figure 5.18a). As mentioned
previously, the 1122 term is purely calculated from the four particle distribution function
with the irreducible cluster integrals cancelled, which still lead us to believe that the main
error for this term is from the superposition approximation.
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(c) x2 = 0.75

Figure 5.19: Comparison between MC data (black circles), the numerical method using a pure
reference (red transparent circles) and the numerical method using an additive binary reference
(blue transparent circles) for each of the terms as seen in equations 3.96 to 3.101 and equations
3.108 to 3.113. The reduced temperature is at T ∗ = 12, the epsilon ratio is at ε22/ε11 = 2 and the
component fraction is at (a) x2 = 0.25, (b) x2 = 0.5 and (c) x2 = 0.75.
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Figure 5.19 compares all six of the Monte Carlo contributions to their respective equa-
tion approximations as given in equations 3.96 to 3.101 for the pure reference and as given
in equations 3.108 to 3.113 for the additive reference with ε22/ε11 = 2 and T ∗ = 12. We
can see from the figure that there is a larger difference between the binary and the pure
reference in predicting the 1111, 2222 and 1212 terms, where the binary reference gen-
erally performs better. The reason for this could be that the difference between the radial
distribution functions are greater when the reduced temperature is at the higher spectrum.
This becomes apparent if we look at the hard-sphere diameters. For component 1 it is
d11 = 0.891 and for component 2 it is d22 = 0.920, thus it has a hard-sphere ratio of
d22/d11 = 1.033, which is greater than the hard-sphere ratio of d22/d11 = 1.011 at
T ∗ = 1. The problem with the 1112 and 1222 terms as discussed previously also seem
to be worse at this temperature. We can also see the same problematic trend in predicting
the 1122 term as we observed when T ∗ = 1.

Since we have used a different and less accurate approach in calculating the integrals
for the additive binary reference system compared to the pure reference system, we have
compared the pure J1, J2, J3 and J4 integrals using the two different integration ap-
proaches in table 5.1 to test its accuracy.

Table 5.1: A comparison of the various J integrals as seen in equations 3.70 to 3.73. We show
the results of the integrals when they have been calculated for a pure fluid using the python imple-
mented quad function, combined with the analytical form for the inner integral (denoted as Quad
integration). We also show the other integration method, were we used a combination of the Simp-
sons method and the quad function without an analytical form for the inner integral (denoted as
Simpsons integration).

T ∗ ρ∗ J Quad integration Simpsons integration
1 0.05 J1 5.276555112004786 5.276586796093443

J2 -9.939632898767748 -9.938262267332528
J3 29.397135819160578 29.394667776295154
J4 -4.492568853770168 -4.565941672813765

0.9 J1 7.176044111870223 7.176203707218072
J2 -6.1307740525137735 -6.135635188960642
J3 9.746206304423024 9.72620447866978
J4 -1.9872267992887147 -2.040599222630942

12 0.05 J1 5.20077408228156 5.200804706024412
J2 -7.977720268505207 -7.979628949504402
J3 18.588399547162798 18.611505244181863
J4 -1.7564894764212216 -1.814120191300096

0.9 J1 5.758339875350886 5.758418694632738
J2 -4.436725738186285 -4.440228854624521
J3 4.794968662017447 4.815815720708088
J4 -0.060060352867348336 -0.09764420832030662

We can see from table 5.1 that the two integration methods yield fairly similar results and
we therefore conclude that any problems with the addditive binary reference system is not
due to the method of integration. In the next two figures we will be looking at the case
when ε22/ε11 = 8, in other words when the difference between component 1 and 2 is
even more profound.
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Figure 5.20: Comparison between MC data (black circles), the numerical method using a pure
reference (red transparent circles) and the numerical method using an additive binary reference
(blue transparent circles) for each of the terms as seen in equations 3.96 to 3.101 and equations
3.108 to 3.113. The reduced temperature is at T ∗ = 1, the epsilon ratio is at ε22/ε11 = 8 and the
component fraction is at (a) x2 = 0.25, (b) x2 = 0.5 and (c) x2 = 0.75.
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(c) x2 = 0.75

Figure 5.21: Comparison between MC data (black circles), the numerical method using a pure
reference (red transparent circles) and the numerical method using an additive binary reference
(blue transparent circles) for each of the terms as seen in equations 3.96 to 3.101 and equations
3.108 to 3.113. The reduced temperature is at T ∗ = 12, the epsilon ratio is at ε22/ε11 = 8 and the
component fraction is at (a) x2 = 0.25, (b) x2 = 0.5 and (c) x2 = 0.75.

Figures 5.20 and 5.21 compare all six of the Monte Carlo contributions to their respec-
tive equation approximations as given in equations 3.96 to 3.101 for the pure reference
and as given in equations 3.108 to 3.113 for the additive reference with ε22/ε11 = 8 and
the reduced temperature T ∗ = 1 and T ∗ = 12, respectively. We can see from the figures
that the 1111, 2222 and 1212 terms are generally predicted better, when the additive bi-
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nary reference is used. The difference between the two is much more profound when the
epsilon ratio is at the much higher ratio ε22/ε11 = 8, especially at the reduced temper-
ature T ∗ = 12. In this range the hard-sphere ratio is d22/d11 = 1.082, which is larger
than the hard-sphere ratio of d22/d11 = 1.033, the ratio it had when ε22/ε11 = 2 and
T ∗ = 12. The same problem in predicting the non-linear trend of the 1111 term when
x2 = 0.25 (see figures 5.20a and 5.21a) and the 2222 term when x2 = 0.75 (see figures
5.20c and 5.21c), is observed as well. The additive binary reference seems to predict the
1112 term notably better than the pure reference when x2 = 0.75 (see figures 5.20c and
5.21c), but fails considerably at x2 = 0.25 (see figures 5.20a and 5.21a). While the 1222
term is well predicted by the additive binary reference at x2 = 0.25 (see figures 5.20a
and 5.21a), but fails at x2 = 0.75 (see figures 5.20c and 5.21c). The failure is especially
severe at the reduced temperature T ∗ = 12. This could potentially be due to the way
we calculate the 1222 term, when using the binary reference as seen in equation 3.113.
It consists of an approximation of the three and four particle distribution functions for a
binary mixture, which we have estimated with the superposition approximation, using the
binary radial distribution functions that correspond with the interactions in question (see
section 3.3.4). This is not necessarily the best way of approximating them and should
probably be investigated further in future work.

For the 1122 term, we once again see the same trend for the pure reference method,
where at x2 = 0.75 it predicts lower values than the additive binary reference and at
x2 = 0.25 it predicts higher values. However this time the higher values at x2 = 0.25 is
not more accurate, but rather so high that they are greater than the MC data values. This
further supports our hypothesis that the additive binary reference is the more accurate
approach and that the pure reference, due to the way it is calculated, exaggerates the
contribution of the particle that has the highest fraction of the mixture. We also observe
that at x2 = 0.5 (see figures 5.20b and 5.21b), the pure and additive binary references are
nearly indistinguishable for the 1122 term.

5.5.3 Correlation Procedures
As using a binary reference system only seems to partly improve the second order pertur-
bation term for mixtures, we have decided to investigate methods in correlating the terms,
in hope of improving the model. One way we could do this is through correcting each
of the six terms such that they match the Monte Carlo contributions. We did this by first
correcting the 1122 term which is approximated by equation 3.99. We chose this term as
our basis as it only relies on the sum 2J∗3 + 4J∗4 + J∗5 , thus we have a direct way to fit the
four particle distribution term with the reducible cluster integrals omitted, to Monte Carlo
data. We used the pure Monte Carlo data as our basis (ε22/ε11 = 1) and divided the 1122
term MC contribution by − 1

8ρ
34x2

1x
2
2ε

2
12, which is the value in front of 2J∗3 + 4J∗4 + J∗5

in equation 3.99. Then we divided this new found value by 2J∗3 + 4J∗4 + J∗5 . We did this
for each of the three fractions x2 = 0.25, x2 = 0.5 and x2 = 0.75, and took the average
of them. Then we repeated this for each reduced density from 0.4-0.9 and each reduced
temperature value and finally fitted it to the following function:

(1 + k̂1T
∗)exp(k̂2ρ

∗) (5.8)

using the python implemented function scipy.optimize.curve fit [39] (the constants can be
found in the appendix in table 7.2). The form it has was chosen to ensure that it will be
1 for the lower reduced density values as these values seem to already be estimated well.
We also added the reduced temperature as a variable, as we did see a slight temperature
dependence in the error. The fitted function was multiplied to the 2J∗3 + 4J∗4 + J∗5 term
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and the result can be seen in figure 5.22.
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Figure 5.22: Comparison between MC data (black circles) and the numerical method (red trans-
parent circles) for each of the terms as seen in equations 3.96 to 3.101. The reduced temperature is
at T ∗ = 4, the epsilon ratio is at ε22/ε11 = 1 and the component fraction is at x2 = 0.5. (a) is
without the correction (see equation 5.8) on (2J∗

3 + 4J∗
4 + J∗

5 ) and (b) is with the correction.

We can see from figure 5.22 that the approximation of the 1122 term is much better,
but we also notice that the approximations of the 1112 and 1222 terms are much worse
now, leading us to believe that the error in the J∗2 term, which these two rely on in addition
to the 2J∗3 +4J∗4 +J∗5 term was cancelled out by the error in 2J∗3 +4J∗4 +J∗5 . We therefore
fitted the J∗2 term following the same procedure, but using equation 3.100 and 3.101 as
the basis. They were fitted to the same type of equation as equation 5.8 (the constants can
be found in the appendix in table 7.3). The result can be seen in figure 5.23.
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Figure 5.23: Comparison between Monte Carlo data (black circles) and the numerical method (red
transparent circles) for each of the terms as seen in equations 3.96 to 3.101. The reduced temperature
is at T ∗ = 4, the epsilon ratio is at ε22/ε11 = 1 and the component fraction is at x2 = 0.5. Here
the (2J∗

3 + 4J∗
4 + J∗

5 ) and J∗
3 terms are corrected (see equation 5.8).

We can see from figure 5.23 that the 1122, 1112 and 1222 terms are now well approx-
imated, while the 1111, 2222 and the 1212 terms are now worse. We could naively try to
also fit the J∗1 term, which these three contributions all rely on, however we know from
previous papers [23, 41] that the equation for J∗1 (3.70) is well understood and therefore
should not need any further fitting. The source of inaccuracy could lie in how we fitted
the previous terms, thus we performed the same exercise, but instead used Monte Carlo
data to estimate J∗2 and (2J∗3 + 4J∗4 + J∗5 ) directly. The result can be seen in figure 5.24.

0.0 0.2 0.4 0.6 0.8

ρ∗

−0.15

−0.10

−0.05

0.00

[〈W
1
1
W

1
1
〉 0
−
〈W

1
1
〉 0
〈W

1
1
〉 0

]

1111

0.0 0.2 0.4 0.6 0.8

ρ∗

−0.15

−0.10

−0.05

0.00

[〈W
2
2
W

2
2
〉 0
−
〈W

2
2
〉 0
〈W

2
2
〉 0

]

2222

0.0 0.2 0.4 0.6 0.8

ρ∗

−0.4

−0.3

−0.2

−0.1

0.0

4[
〈W

1
2
W

1
2
〉 0
−
〈W

1
2
〉 0
〈W

1
2
〉 0

]

1212

0.0 0.2 0.4 0.6 0.8

ρ∗

−0.10

−0.05

0.00

2[
〈W

1
1
W

2
2
〉 0
−
〈W

1
1
〉 0
〈W

2
2
〉 0

]

1122

0.0 0.2 0.4 0.6 0.8

ρ∗

0.0

0.1

0.2

4[
〈W

1
1
W

1
2
〉 0
−
〈W

1
1
〉 0
〈W

1
2
〉 0

]

1112

0.0 0.2 0.4 0.6 0.8

ρ∗

0.0

0.1

0.2

4[
〈W

1
2
W

2
2
〉 0
−
〈W

1
2
〉 0
〈W

2
2
〉 0

]

1222

Figure 5.24: Comparison between MC data (black circles) and an estimated version using J∗
2 and

(2J∗
3 + 4J∗

4 + J∗
5 ) estimated from MC data (red transparent circles) for each of the terms as seen in

equations 3.96 to 3.101. The reduced temperature is at T ∗ = 4, the epsilon ratio is at ε22/ε11 = 1
and the component fraction is at x2 = 0.5.

As we can see from figure 5.24, the same problem emerges. This lead us to believe that
the problem lies in how we handle the last term in equation 3.64 and that we may not be
able to just use this term to simply cancel out all the reducible cluster integrals. This will
need some further investigation in the future.

As the term wise correlation did not seem to give the desired outcome, we have simply
tried to correlate the entire expression, as it seem to underestimate in a similar fashion over
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the entire range we are investigating. We have based it on the calculations using the pure
hard-sphere reference, instead of the additive binary hard-sphere reference. The additive
binary reference did generally predict better, but as the improvement was minor and since
the calculation procedure for the additive binary reference was quite computationally ex-
haustive, we have decided to perform the correlation using the pure reference, to see if
it is possible to still obtain a reasonable approximation from the simpler method. Figure
5.25 shows the ratio between the Monte Carlo data and the numerical approximation at
various fractions, epsilon ratios and reduced temperatures.
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Figure 5.25: Ratio between the MC data for the second order perturbation term a2,MC and the
numerical second order perturbation term a2,model using a pure hard-sphere reference at different
reduced temperatures, fractions of component 2 and epsilon ratios.
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We can see from figure 5.25 that the ratio trend is not particular simple. We will how-
ever still give correlation a try as it may still yield reasonable results. For the correlation,
we took the logarithm of the average of the ratio values across the various epsilon ra-
tios and component 2 fractions for each combination of reduced temperature and reduced
density from 0.5− 0.9, and correlated it to the logarithm of the function

exp((1 + k̂1T
∗)k̂2ρ

∗) (5.9)

using the python implemented function scipy.optimize.curve fit [39] (the constants can
be found in the appendix in table 7.4). The form was chosen to ensure that the function
goes toward 1 for the lower reduced density, as the numerical method seem to estimate
the value in this region pretty well. The result from multiplying the function with the
numerical second order perturbation term for mixtures using a pure reference can be seen
in figure 5.26.
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Figure 5.26: Comparison of the numerical second order perturbation term using the radial distri-
bution function by Smith and Henderson without a correlation function (uncorrelated) and with a
correlation function (correlated) at different reduced temperatures, fractions of component 2 and
epsilon ratios. The MC data from this thesis is shown as well to test the accuracy of the models.

We can see that it predicts reasonable well, but it still does not have a satisfactory
accuracy. This is as expected, as there seem to be a dependence on the epsilon ratio for the
three and four particle distribution functions, which the superposition approximation and
our simple fitting model are not able to account for. We could have correlated a function
with an epsilon ratio dependence, but this is not a very satisfactory solution as this opens
the possibility for having to do the same with the sigma ratio as well as other Mie fluid
parameters. It does also not give any good answer to what the underlying problem is and it
makes the numerical method pretty much futile, as we could then just extend the χ-factor
from the WG method to take mixture parameters into account, as this method is much less
computationally demanding.

5.6 The Next Steps for Improving the Model
We can see from the discussion that it is no easy task to improve the second order per-
turbation term for mixtures. The extension of the WG method for mixtures did seem to
perform slightly better than the work of Lafitte et al., especially at the higher tempera-
tures, but it is not entirely satisfactory. To our knowledge, no one has yet properly derived
the MCA with a χ-factor based on a thorough understanding of how the particles in the
neighbouring shells are correlated with each other, when we have a mixture. This may be
the key in understanding how to improve the approach for mixtures. It could also possibly
be that the only way to improve the MCA for mixtures is through correlation. Which
would be unfortunate as this would not yield any better understanding of the mechanics
behind mixtures.

The numerical approach we have shown, seem to be the better option if a physical
understanding of the problem is to be obtained, however it also has its fair amount of
challenges such as the problems in getting it onto an analytical form, which as it is to-
day seem to be a near impossible task. This will be very important if it is to be used in
an industrial situation where computational efficiency is required [55]. Another current
problem with this method is its dependence on the three and four particle distribution
functions, which we have shown can not be satisfactorily approximated using the super-
position approximation. A better understanding of these functions will be vital if this
method is ever to be successful.
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Chapter 6
Conclusion

In this thesis, we have investigated the challenges in predicting the Barker and Hender-
son second order perturbation term for mixtures and suggested some strategies for fu-
ture improvements. We performed Monte Carlo simulations for all the combinations of
the following parameter settings: ε22/ε11 ∈ {1, 2, 4, 8}, T ∗ ∈ {1, 2, 4, 6, 12}, ρ∗ ∈
{0.05, 0.1, 0.15, 0.2, 0.25 , 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and x2 ∈ {0.25, 0.5, 0.75}.
The data has shown to be somewhat unreliable at the higher reduced density range. In-
spired by the work of Lafitte et al. [23] for mixtures we have extended the work of van
Westen and Gross [54] for mixtures and compared it to the model by Lafitte et al. and
Monte Carlo data. The extension predicted significantly better than the work of Lafitte
et al. at the higher reduced temperature range, but only slightly better at the lower reduced
temperature range.

We also extended and modified the work of Henderson [19] for Lennard-Jones mix-
tures with different well-depths using both a pure hard-sphere reference and an addi-
tive binary hard-sphere reference. The pure hard-sphere reference seem to predict the
general trend fairly well, but overestimates the downward slope at the higher reduced
density range. This is less severe at the higher reduced temperature range. The addi-
tive binary hard-sphere reference seem to slightly improve the agreement with the sim-
ulation data. We have also for the first time to our knowledge performed an exten-
sive study on each of the six contributions to the Monte Carlo data: the 1111 term(
− 1

2N [〈W11W11〉0 − 〈W11〉0〈W11〉0]
)
, the 1212 term

(
− 4

2N [〈W12W12〉0 − 〈W12〉0〈W12〉0]
)
,

the 2222 term
(
− 1

2N [〈W22W22〉0 − 〈W22〉0〈W22〉0]
)
, the 1122 term

(
− 2

2N [〈W11W22〉0
−〈W11〉0〈W22〉0]), the 1112 term

(
− 4

2N [〈W11W12〉0 − 〈W11〉0〈W12〉0]
)

and the 1222
term

(
− 4

2N [〈W12W22〉0 − 〈W12〉0〈W22〉0]
)
, and compared them to the approximate equa-

tions from the numerical method, in calculating the second order perturbation term. Our
findings can be summarized as:

• The numerical method is generally able to predict the six terms reasonably well up
to ρ∗ = 0.5.

• The 1111, 1212 and 2222 terms were generally better approximated using an addi-
tive binary reference than a pure reference. The difference was especially noticeable
at the higher reduced temperature and epsilon ratio range.

• At T ∗ = 1, the 1111 term deviate more from a linear behavior at x2 = 0.25,
while the 2222 term deviate more from a linear behavior at x2 = 0.75, which the
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numerical method seem to struggle in accurately explaining.

• The 1112 term is well-predicted by the additive binary reference at x2 = 0.75, but
fails considerably at x2 = 0.25 and vice versa for the 1222 term. This is even more
exaggerated at the higher reduced temperature.

• The numerical method generally struggles in predicting the 1122 term, but using an
additive binary reference seem to yield more consistent results.

A strategy in fitting each of the numerical integrals to the six terms calculated by Monte
Carlo, revealed a problem with the numerical method, which is believed to come from
the way the reducible cluster integrals are omitted. This will need further investigation. A
strategy in correlating the entire expression seemed to predict significantly better, however
this did not give any better understanding of the current problem.

For the numerical method presented in this project to be reliable in the future, a better
understanding of the 3- and 4-particle distribution functions will be needed as the major
current issues with this strategy is believed to stem from the superposition approximation.
We will also need some way to extend it to an analytical form, for it to be reliable in
industrial work, either this or we could return to the work of Lafitte et al. [23], where
some major improvements to the MCA and the χ-factor will be needed.
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Chapter 7
Further Work

There are several parts in this projects that would benefit from a more extensive investiga-
tion. As seen in the discussion (see section 5) the Monte Carlo data is not entirely reliable
at the higher reduced density and the lower reduced temperature range. Redoing these
points by doubling or even quadrupling the number of MC steps, could perhaps resolve
this problem. A bootstrapping procedure would probably also be wise, as this would make
it easier for error estimation, since the outcome space of the data will be predicted.

The models by Lafitte et al. and van Westen and Gross, which are both based on the
MCA with a correction factor, may perform better if a proper and extensive extension
for the MCA and the χ-factor to mixtures was generalized. The best option here, would
likely be to obtain a proper understanding on how the particles in the neighbouring shells
are correlated with each other. In the paper by Gil-Villegas et al. [13], they used the local
compressibility approximation (LCA), instead of the MCA and extended it for mixtures.
This could also be worthwhile exploring.

Probably our biggest suggestion for further work on this project is the approximations
of the 3- and 4-particle distribution functions, as we have seen that the superposition ap-
proximation is not able to properly predict these. There are several interesting approxima-
tions on this that has been suggested, such as the ladder approximation by Blawzdziewicz
et al. [7] which showed promising results when used for perturbation onto a square-well
potential [8]. There are also many other approximations, which are based on improving
the superposition approximation. These have been covered extensively in the excellent
paper by Grouba et al. [15].

We have in this thesis been mostly focusing on Lennard-Jones fluid mixtures with dif-
ference in well-depths. An investigation in how well the numerical approach will perform
for various Mie fluid mixtures or in mixtures with different sigmas could be interesting.

An investigation on some of the thermodynamic properties that can be obtained from
the Helmholtz free energy, could give more insight in the problems we currently have
for the numerical method in calculating the second order perturbation term for mixtures.
Maybe an approach in a similar fashion as van Westen and Gross did, by adding the
perturbation terms one by one could yield interesting results.

Lastly a proper investigation on how some of the other perturbation theories would
perform when extended to mixtures such as the WCA theory [17], could be interesting.
According to van Westen and Gross [54], the WCA diameter is supposed to perform better
as it is not only temperature dependent, but also density dependent.
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Appendix

7.1 Table of Correlation Constants

Table 7.1: The constants obtained for the correlated function F c (see equation 3.93).

Constant Correlated Value
k̂1 4.32485439
k̂2 -1.08075001
k̂3 4.89332707

Table 7.2: The constants obtained for the correlation (see equation 5.8) used to correct the (2J∗
3 +

4J∗
4 + J∗

5 ) term.

Constant Correlated Value
k̂1 -0.00145076
k̂2 -0.20523767

Table 7.3: The constants obtained for the correlation (see equation 5.8) used to correct the J∗
2 term.

Constant Correlated Value
k̂1 0.00016559
k̂2 -0.12706174

Table 7.4: The constants obtained for the correlation (see equation 5.9) used to correct the entire
numerical second order perturbation term using a pure hard-sphere reference.

Constant Correlated Value
k̂1 0.03728314
k̂2 -0.22793082

7.2 Ornstein-Zernike and Percus-Yevick
In this section, we will describe a method for developing an expression for the radial
distribution function, specifically through the Ornstein-Zernike equation.

In order to develop a method for creating an expression for the radial distribution
function it will be convenient to start with the case of inhomogeneous fluids. To do this
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we return to the Hamiltonian as shown in equation 2.1 which included a term representing
the interaction of the particles with an external spatially varying field (ΦN ). The effect
of including this term is to break up the translational symmetry. Using this hamiltonian
we rewrite the grand partition function, which is still related to the grand potential by
Ξ = exp(−βΩ), into

Ξ =

∞∑
N=0

1

N !

∫
exp(−βVN )

(
N∏
i=1

exp[−βφ(ri)]

)
drN (7.1)

where φ is related to Φ in the following way

ΦN (rN ) =

N∑
i=1

φ(ri) =

∫
ρ(r)φ(r)dr (7.2)

The definition of the particle densities is changed to

ρ(n)(rn) =
1

Ξ

∞∑
N=n

1

(N − n)!

∫
exp(−βVN )

(
N∏
i=1

exp[−βφ(ri)]

)
dr(N−n). (7.3)

We recast the grand partition function into

Ξ =

∞∑
N=0

1

N !

∫
· · ·
∫

exp(−βVN )

(
N∏
i=1

1

Λ3
exp[βψ(ri)]

)
dr1 · · · rN (7.4)

where
ψ(r) = µ− φ(r) (7.5)

This quantity is the intrinsic chemical potential, the quantity to µ not explicitly dependent
on φ(r). If we say that the definition of φ(r) includes the confining potential (the interac-
tion between the particles and the confining wall), then the volume V can be replaced by
φ(r). Using equation 2.25 the infinitesimal change in equilibrium state is

δU = TδS +

∫
ρ(1)(r)δφ(r)dr + µδN (7.6)

It then follows from the definition of Helmholtz free energy that the change in A in an
infinitesimal process is

δA = −SδT +

∫
ρ(1)(r)δφ(r)dr + µδN (7.7)

We define the intrinsic Helmholtz free energy A as

A = A−
∫
ρ(1)(r)δφ(r)dr (7.8)

with

δA =− SδT −
∫
δρ(1)(r)φ(r)dr + µδN

=− SδT −
∫
δρ(1)(r)ψ(r)dr

(7.9)
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since µδN =
∫
δρ(1)(r)µdr. From the definition of functional derivatives we see that

δA
δρ(1)(r)

= ψ(r). (7.10)

The last thing to notice is that the intrinsic Helmholtz free energy can also be divided into
two parts

A = Aid +Ares (7.11)

where
Aid = kBT

∫
ρ(1)(r)(ln[Λ3ρ(1)(r)]− 1)dr. (7.12)

We now introduce the direct correlation functions c(n)(rn). The single particle correlation
function is defined as

c(1)(r) = −β δAres

δρ(1)(r)
(7.13)

while the pair function is defined as

c(2)(r, r′) =
δc(1)(r)

δρ(1)(r′)
= −β δ2Ares

δρ(1)(r)δρ(1)(r′)
(7.14)

Combining equation 7.10, 7.12 and 7.13 we get the following relation

βψ(r) = β
δAres

δρ(1)(r)
= ln[Λ3ρ(1)(r)]− c(1)(r). (7.15)

By inserting ψ = µ− φ and z = exp(βµ)/Λ3 we get

ρ(1)(r) = zexp[−βφ(r) + c(1)(r)]. (7.16)

For the case of a uniform fluid where φ = 0 we can reformulate the equation into

− kBTc(1) = µ− kBT ln[Λ3ρ] = µres. (7.17)

Another way to formulate the definition of c(2) is the well known Ornstein-Zernike rela-
tion:

h(2)(r, r′) = c(2)(r, r′) +

∫
c(2)(r, r′′)ρ(1)(r′′)h(2)(r′′, r′)dr′′ (7.18)

where h(2)(r, r′) = g(2)(r, r′)− 1. By solving the equation recursively we get

h(2)(r1, r2) =c(2)(r1, r2) +

∫
c(2)(r1, r3)ρ(1)(r3)c(2)(r3, r2)dr3

+

∫ ∫
c(2)(r1, r3)ρ(1)(r3)c(2)(r3, r4)ρ(1)(r4)c(2)(r4, r2)dr3dr4 + · · ·

(7.19)

We can see from this equation that the total correlation between particles 1 and 2 (h(2)(r1, r2))
is due to the direct correlation between particle 1 and 2 as well as the indirect correlation
propagated through increasingly large numbers of intermediate particles. If the fluid is
both uniform and isotropic, we can write the Ornstein-Zernike relation as

h(r) = c(r) + ρ

∫
c(|r− r′|)h(r′)dr′ (7.20)
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One need to solve for both h(r) and c(r) in order to solve the Ornstein-Zernike equation.
This requires an additional relation known as a closure relation. The most successfully and
commonly used one is probably the Percus-Yevick approximation which we will derive in
a slightly different way from the original paper. The idea is to expand the single-particle
correlation function of an inhomogeneous fluid about that of a uniform reference system
in powers of ∆ρ(1). We use Percus idea of switching on the interaction φ(r) with a particle
fixed at the origin r0 = 0. We let the total potential energy of the remaining particles in
the external field due to particle 0, be on the form of equation 7.2 with

φ(ri) = u(r0, ri). (7.21)

It can be shown that the single particle density in presence of an external field ρ(1)
φ is

related to the two particle density without a field

ρ
(1)
φ (r1) =

ρ(2)(r0, r1)

ρ
(7.22)

or reformulated to
ρ

(1)
φ (r1) = ρg(r0, r1). (7.23)

The effect of switching on the interaction with the particle 0, is to change the potential
from 0 to ∆φ = u(r0, r1) which gives a change in the single-particle density

∆ρ(1)(r1) = ρg(r0, r1)− ρ = ρh(r0, r1) (7.24)

Using this we will expand exp[c(1)(r)] in powers of ∆ρ(1)(r) to first order as

exp[c(1)(r)] ≈ exp[c
(1)
0 ] +

∫
∆ρ(1)(r′)

exp[c(1)(r)]

δρ(1)(r′)

∣∣∣∣
φ=0

dr′ (7.25)

Using equation 7.14 and 7.17 this can be written as

exp[c(1)(r)] ≈ exp(−βµres
0 )

(
1 +

∫
∆ρ(1)(r′)c(2)

0 (r, r′)dr′
)

(7.26)

For a uniform fluid and using equation 7.24 we can rewrite it into

exp[c(1)(r)] ≈ exp(−βµres
0 )

(
1 + ρ

∫
c(|r− r′|)h(r′)dr′

)
(7.27)

Using equation 7.16, 7.17, 7.21 and the Ornstein-Zernike relation we get an expression
for the pair distribution function

g(r) =exp[−βu(r)]

(
1 + ρ

∫
c(|r− r′|)h(r′)dr′

)
=exp[−βu(r)][1 + h(r)− c(r)]

(7.28)

This is the Percus-Yevick (PY) approximation and can be written as

c(r) ≈ (1− exp[βu(r)])g(r) (7.29)

Using the cavity distribution function y(r) and the Mayer function fM(r) = exp[−βu(r)]−
1 = e(r)− 1 the PY approximation can be written in its familiar form

c(r) = y(r)fM(r) (7.30)
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The PY approximation is especially good when used on hard-spheres with diameter d. In
this case it becomes

c(r) =

{
−y(r) r < d

0 r > d
(7.31)

It is even further restricted by the fact that

g(r) = 0, r < d (7.32)

Using these two relations the Ornstein-Zernike relation can be rewritten into

y(r) = 1 + ρ

∫
r′<d

y(r′)dr′ − ρ
∫

r′<d
|r−r′|>d

y(r′)y (|r− r′|) dr′ (7.33)

[18].
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