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Abstract

Equation of State (EOS) developed from perturbation theory are well known in the

literature and can be a very useful tool for modelling fluid behaviour. While popular

perturbation theories of i.e. Barker-Henderson (BH) prove to be accurate for macroscopic

pure-component fluids at high temperatures, there currently exist a lack of successful

methods to obtain accurate EOS for fluids in small confinements. This thesis therefore

investigates the applicability of BH perturbation theory (BHPT) for fluids confined to

small systems, and extends the BHPT of the first order to the specific case of the Lennard-

Jones/spline (LJ/s) fluid confined to small spherical geometries with hard walls. The

investigation demonstrates two major findings, 1) a difference between small and bulk

hard-sphere (HS) pressure and radial distribution function g(r) (RDF) and 2) particles

are depleted from the inner-core (IC) of the spherical confined HS fluid, which is adsorbed

on the confinement wall. For the HS RDF g (r), instead of tending towards g (r) → 1

when the pair-distance r → ∞, the small HS RDF reduces to zero when r equals the

sphere confinement diameter. For the adsorption, the depletion causes a reduction in the

IC density of the small system fluid, causing the fluid to exert properties more similar

to bulk fluids with lower fluid densities. By taking these observations into account, a

"small" first-order BHPT framework is developed and is observed to accurately predict the

simulated first-order perturbation term a1 and the simulated small HS and LJ/s pressures.

By only requiring the bulk HS RDF, the adsorption per surface area Γ as a function of

fluid density and the spherical ideal gas RDF, the small BHPT can predict small LJ/s

properties under spherical confinement of any "relatively large" radius size R. "Relatively

large" in the context of small systems means spherical confinement geometries that are

large enough to give the confined fluid distinctive IC and outer-core (OC) structural

regions, as the current small BHPT will break down when the regions cannot be told apart.

While this thesis has investigated the LJ/s fluid, the small BHPT should be applicable

for a variety of pair potentials, in addition to being able to be extended to other types of

confinement geometries.
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Sammendrag

Tilstandsligninger (EOS) utviklet gjennom perturbasjonsteori er kjent i litteraturen

og kan være et nyttig verktøy for å modellere væskeoppførsel. Selv om populære

perturbasjonsteorier av f.eks. Barker-Henderson (BH) fungerer nøyaktig for makroskopiske

ren-komponentvæsker ved høye temperaturer, er det for øyeblikket en mangel av slike

metoder for å oppnå nøyaktig EOS for væsker i små systemer. Oppgaven til denne

masteroppgaven handler derfor om å undersøke i hvilken grad man kan bruke generell

BH perturbasjonsteori (BHPT) til å utvikle EOS for fluider i små systemer, i tillegg til å

utvide førsteordens BHPT til det spesifikke eksempelet av Lennard-Jones/spline (LJ/s)

væsken begrenset inne i små sfæriske geometrier med harde vegger. Oppgaven viser to

hovedfunn, 1) det finnes en forskjell mellom små og stor (bulk) hardkule (HS) trykk

og radiell distribusjonsfunksjon g(r) (RDF) og 2) den indre delen (IC) av den sfæriske

geometrien mister partikler, der partiklene blir adsorbert på geometriveggen. For HS

RDF g(r), i stedet for å tendere mot g(r)→ 1 når paravstanden r →∞, så reduserer den

små HS RDF til null når r tilsvarer sfære-geometri diameteren. Adsorpsjonen fører til en

reduksjon av IC tettheten, noe som får væsken til å utøve egenskaper mer lik bulk væsker

med lavere væsketetthet. Ved å ta hensyn til disse variablene, kan et "små" førsteordens

BHPT-rammeverk utvikles, som viser seg å være nøyaktig til å prediktere første-ordens

leddet a1, i tillegg til små HS og LJ/s trykk. Ved å bare kreve bulk HS RDF, adsorpsjon

per overflate areal som funksjon av væsketetthet og den sfæriske ideell gass RDF, kan

den små BHPT predikere små LJ/s væskeegenskaper i små systemer av sfæriske geometri

av hvilken som helst "relativt stor" radius. "Relativt stor" i dette tilfellet betyr sfæriske

geometrier som er stort nokk til å gi fluidene separate IC og ytre kjerne (OC) strukturelle

geometrier, siden det nåværende rammeverket vil bryte sammen når man ikke kan skille

regionene sammen. Selv om denne masteroppgaven har undersøkt LJ/s væsken, vil denne

teorien være aktuell for en rekke parpotensialer, i tillegg til å kunne bli utvidet til andre

systemgeometrier.
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1 Introduction

Many fields require in-depth understanding of fluid behaviour for a large spectrum of

pressure and temperature values. At the same time, obtaining data from experiments

can be difficult due to high costs and demanding experimental conditions. A theoretical

alternative is to develop analytical expressions that can predict the behaviour of fluids

with a certain degree of accuracy. These expressions are called Equation of States (EOS)

and are defined as equations that relates pressure P with volume V and temperature

T of homogeneous systems at thermodynamic equilibrium [3]. Methods to obtain EOS

are currently well established for pure fluids that can be characterized by classical

thermodynamics, i.e. bulk fluids with a volume V and particle number N large enough

to cause variables variables such as V and N to be extensive. One example of such an

expression is the Van der Waals (VDW) EOS that relates thermodynamic state variables

in the following way

(
P + bWDV,1

n2
mol

V 2

)
(V − nmolbWDV,2) = nmolRT (1.1)

where nmol is the number of particles in moles and R is the gas constant. In comparison

to the ideal gas law EOS that models fictive, volumeless particles without particle-particle

interactions, the VDW EOS introduces two additional variables bVDW,1 and bVDW,2 that

characterize attractive intermolecular interactions and particle volume. To derive the

EOS, VDW treated intermolecular interactions as mathematical pair potentials with

attractive and repulsive regions that gives particles volume and particle-particle attraction

[4]. Examples of pair potentials include the comprehensively studied hard-sphere (HS) and

Lennard Jones (LJ) pair potentials, where HS purely exerts short-range hard repulsion

representing particle volume, while LJ additionally exerts long-range weak attraction

representing particle-particle attraction. To finally obtain Equation 1.1, VDW recognized

that fluid structure is primarily determined by the particle volume, and therefore simple

fluids with molecular interactions can be accurately approximated to purely have HS

fluid structure with an additional uniform "background" attraction governing particle

movement. More accurate methods to obtain EOS have been developed since then based

on the same idea. Examples include the cubic Redlich-Kwong [5] and Peng–Robinson [6]

EOS, and also the more sophisticated Barker Henderson perturbation theory (BHPT)

EOS [7].
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While these methods have been proven to be very useful in the many areas that require

accurate data for fluids of bulk size, the predictability of macroscopic EOS can possibly

decease for fluids of nanoscale, as finite-size effects become prominent with decreasing fluid

volume [8]. Examples of finite-size fluid-systems include confined fluids in random porous

media [9] and nano-encapsulated phase-changing materials [10], where fluid properties can

be additionally dependent on the factors such as confinement geometry and surface tension.

In addition to the recent interest in nanotechnology development, a key area of interest

is therefore to investigate how well macroscopic EOS can predict nanofluid properties

and to possibly establish EOS that can accurately model nanoscale fluids. Examples of

ongoing EOS developments within the topic include modelling fluids in random porous

media using scaled particle theory [11] [12] and extending the VDW EOS to pure fluids in

confined cylinders [13]. A topic that have not been researched in depth however, is how

well BHPT can be applied and extended to isolated nanofluids in confinement.

The purpose of this master thesis is therefore to investigate the topic of EOS that

can describe the behaviour of confined nanofluids, where the specific research objective

is to investigate and extend the general first-order BHPT to the simple case of the

Lennard-Jones/spline (LJ/s) fluid confined to small, spherical confinement geometries

with hard walls. Completing this objective will provide the first steps towards accurate

EOS representations for confined nanofluids using BHPT. The objective will primarily be

accomplished through theoretical developments and molecular dynamics (MD) simulations

in LAMMPS [14] for LJ/s particles in spherical small-systems without periodic boundary

conditions. Non-periodicity in this thesis means that no particles exist outside the spherical

confinement. The first objective is to obtain simulated properties of the LJ/s fluid in

spherical confinement, followed by applying and extending BHPT to such systems. The

thesis body will consist of theory, thermodynamic methods, results and discussion followed

by a few concluding remarks and a few future work suggestions.

Since this thesis will investigate theoretical fluids confined to small systems in LJ units

of σ and ε, the terms "small", "smallness" and "finite-size" would better describe the

investigated systems in comparison to less arbitrary terms such as "nano" or "nanoscale".

On the other hand, "bulk" will therefore denote macroscopic and large systems at the

thermodynamic limit. A more in-depth discussion on the definition of "small" and "bulk"

is explained in Section 2.47.
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2 Theoretical Background

This chapter will present the necessary background theory to investigate and obtain a

method to determine EOS that can describe the behaviour of confined fluids in small

spherical geometries based on the general BHPT. The chapter begins by introducing

classical fluids in terms of excess Helmholtz energy, pair potentials, fluid structure

and molecular dynamics, followed by a an overview of the general Barker-Henderson

perturbation theory. Then an overview of the definition on small systems will be presented.

Lastly, a spherical ideal gas RDF that was developed under the thesis investigation is

presented, as the spherical ideal gas RDF proved to be an essential factor to obtain small

EOS.

2.1 Excess Helmholtz Energy

Consider a one-component system characterized by N spherical particles with a diameter

d and mass m interacting together at a temperature T inside a volume V . At a time

t, the system will be completely specified by 3N coordinates rN ≡ r1, ..., rN and 3N

momentum vectors pN ≡ p1, ...,pN of the particles. The total energy of the system can

be described by the hamiltonian H, which is expressed as the sum of the kinetic energy of

all N particles KN

(
pN
)
and the potential energy that arises from intermolecular particle

interactions UN
(
rN
)

H
(
rN ,pN

)
= KN

(
pN
)

+ UN
(
rN
)

(2.1)

where

KN =
N∑
i=1

|pi|2

2m
(2.2)

and

UN
(
rN
)

=
N∑
i

ue (ri) +
N∑
i

N∑
j>i

u (ri, rj) +
N∑
i

N∑
j>i

N∑
k>j

ut (ri, rj, rk) + . . . (2.3)

The term ue (ri) represents the interaction that occurs when the system of particles are

exposed to an external field, while the terms u (ri, rk), ut (ri, rj, rk) and so on represents

the particle interactions. Under conditions when the external field potential equals zero

and when the triplet ut (ri, rj, rk) and higher order particle interactions are neglected, the
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potential energy reduces to a functional of the pair potential function u (ri, rk)

UN
(
rN
)
≈

N∑
i

N∑
j>i

u (ri, rj) (2.4)

The partition function QN for the NVT ensemble can be expressed as

QN =
1

h3NN !

∫∫
exp(−βH)drNdpN (2.5)

where h is Plank’s constant, kB is Boltzmann’s constant and β = 1/(kBT ). The momentum

integral of the partition function can be solved exactly

QN =
1

h3NN !

∫
exp (−βUN) rN

∫ ∞
−∞

exp(−β
N∑
i=1

|pi|2

2m
)pN =

1

N !

ZN
Λ3N

(2.6)

where Λ is de Broglie thermal wavelength and ZN is the configurational integral

Λ =

(
2πβ~2

m

)1/2

(2.7)

ZN =

∫
exp (−βUN) drN (2.8)

When the intermolecular potential is zero, u (ri, rj) = 0, the system reduces to ideal gas

conditions such that the ideal gas configuration integral becomes

Z id
N =

∫
· · ·
∫

dr1 · · · rN = V N (2.9)

Qid
N =

1

N !

V N

Λ3N
(2.10)

The partition function can as a result be expressed as

QN = Qid
N

ZN
V N

= Qid
NQ

res
N (2.11)

The partition functions connects statistical mechanics to thermodynamics. The Helmholtz

free energy can therefore be expressed as a function of the ideal and residual NVT partition

functions

A(N, V, T ) = −kBT lnQN = −kBT lnQid
N − kBT lnQres

N (2.12)
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The primary goal of these derivations is to prove that the total Helmholtz free energy

can be separated into a sum of the more known ”ideal” part and an ”residual” part by

equivalently stating

a =
A

NkBT
=

1

NkBT
(Aid + Ares) = aid + ares (2.13)

An expression for the complete Helmholtz free energy a corresponds to an EOS that

completely describes the fluid characterized by the pair potential u (ri, rj). By using

Stirling’s factorial approximation lnN ! ≈ N lnN −N , the ideal Helmholtz free energy

part can be expressed as

aid =
Aid

NkBT
= ln Λ3ρ− 1 (2.14)

The ideal term is readily evaluated while the residual term is not. A topic of interest

is therefore to develop methods that can obtain accurate expressions for ares, a term

that arises from the consideration of intermolecular interactions defined by the pair

potential u (ri, rj). One of the methods to obtain ares is through BHPT, where the residual

Helmholtz energy is approximated into a reference hard repulsion part and a series of

perturbations. Before explaining BHPT in Section 2.4, the fluid structure and the pair

potentials u (ri, rj) relevant to this thesis will be introduced first.

2.2 Fluid Structure & Radial Distribution Function

It can be shown that the equilibrium n-particle density ρ(n)
N is defined as Equation 2.15

for canonical systems [15]

ρ
(n)
N =

N !

(N − n)!

1

ZN

∫
exp (−βUN) dr(N−n) (2.15)

where the product of the single-particle density ρ(1)
N (r) and a volume element dr determines

the average number of particles in that volume element. The total number of particles in

the system can be obtained by integrating over all space

∫
ρ

(1)
N (r)dr = N (2.16)

The single-particle density of a uniform fluid is therefore equal to the overall number

density

ρ
(1)
N (r) = N/V = ρ (2.17)
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For the case of n = 2, the product ρ(2)
N (r1, r2) dr1dr2 can be interpreted as the average

number of particle-pairs occupying the volume elements dr1dr2. For the special case of a

uniform, ideal gas, the pair density ρ(2)
N becomes

ρ
(2)
N = N(N − 1)

1

V N
V N−2 =

1

ρ2

(
1− 1

N

)
(2.18)

For homogeneous systems, the the pair-particle distribution function g(2)
N (r1, r2) can be

defined as

g
(2)
N (r1, r2) =

ρ(2) (r1, r2)

ρ(1) (r1) ρ(1) (r2)
(2.19)

If the system is also isotropic, then the pair distribution function g(2)
N (dr1dr2) becomes a

function of only the pair-distance separation r1,2 = ‖r1 − r2‖, and is usually called the

radial distribution function g (r) (RDF). When r is much larger than the range of the

pair potential, the radial distribution function approaches the ideal gas limit (Equation

2.18), such that g (r)→ 1 when r →∞ and N is a large number. The radial distribution

function g (r) provides a fundamental method to describe local fluid structure by describing

the probability of finding a particle at a distance r from any arbitrary reference particle in

the system relative to the ideal gas distribution. Since the ideal gas is structureless, the

ideal gas RDF always equals 1. Figure 2.1a displays the particle distribution for an ideal

gas and Figure 2.1b displays the particle distribution for a very structured fluid (2D).

(a) (b)

Figure 2.1: Illustrations of (a) an ideal gas configuration and (b) a very structured
fluid. The concentric circles represent different values of the pair-distance r, where the
pair-distance between the magenta and black particles can (a) have any value on average
for the ideal gas case and (b) can have distinct values due to particle volume and structure.
The figures are strictly illustrative, and were made in Python.
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Compared to an ideal gas RDF, the RDF of real fluids will exhibit more oscillatory

behaviour with successive maxima and minima due to particle volume and packing effects.

This can be seen from Figure 2.1b, where oscillatory behaviour can be represented by the

concentric circles and empty space around any reference particle, which is a consequence

of strongly repulsive forces at short distances. Figure 2.2 displays the radial distribution

function for the HS fluid as a function of the pair-distance r [1].

0 1 2 3 4 5 6
r/

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

g(
r)

* = 0.85
* = 0.70
* = 0.55

Figure 2.2: The analytical bulk Percus-Yevick HS RDF [1] at three densities with HS
diameter dHS = 1σ.

The RDF equals zero from 0 to σ for dHS = 1σ as the probability of finding a particle

within the radius of a HS particle equals zero. The successive peaks represents the

probability of finding a particle at a distance of the concentric circles of neighbor particles,

i.e. g (r) = 3 represents the probability of finding 3 particles at the distance r. The pair

distribution is very useful for obtaining thermodynamic properties for fluids with packing

and structure effects.

2.3 Pair Potentials

Pair potentials are mathematical functions that describe the potential energy between two

particles given their relative pair-distance in space r = ‖r1−r2‖, such that u (r1, r2) = u (r).

As a consequence, pair potentials can describe pair-potential fluids, where the particle

behaviour are governed by the potential. In terms of fluid perturbation theory, the main

principle is to approximate a complicated pair potential fluid into a simpler, solvable

reference fluid, such that a series of perturbations make up the difference between the two

fluids. For this thesis, the reference fluid is governed by the HS pair potential while the
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investigated fluid is governed by the LJ/s pair potential. The following sub-sub-sections

will therefore present the relevant pair potentials for the HS and LJ/s fluids and their

bulk EOS, in addition to the wall potential used for spherical confinement.

2.3.1 Reference Pair Potentials

One of the more simpler pair potential fluids is the hard-sphere fluid, which can be described

as three-dimensional spherical particles with a certain diameter d that cannot overlap in

space. The behaviour can be mathematically stated by the hard-sphere intermolecular

pair potential uHS (r)

uHS(r) =

 ∞ for r < d

0 for r ≥ d
(2.20)

where the sole interaction between the hard-sphere particles is that they become

impenetrable at r = dHS, the HS diameter. A method to obtain the HS EOS is by

determining all the virial coefficients Bn in the infinite virial series expansions of the

compressibility factor Z, defined as

Z =
PV

NkBT
= 1 +

∞∑
n=2

Bnρ
n−1 = 1 +B2ρ+B3ρ

2 + . . . (2.21)

Unfortunately, only the first number of virial coefficients can be determined analytically.

A consequence is therefore that an exact solution for the hard-sphere equation of state

does not currently exist. The fact that the EOS for essentially an ideal gas fluid with

volume has to be approximated, illustrates the difficulty in modelling fluid behaviour.

A popular and accurate hard-sphere equation of state used in this thesis is called the

Carnahan-Starling (CS) EOS [16]. The EOS can be obtained by approximating the virial

coefficients as a simple algebraic expression, such that

Bn ≈
(
n2 + n− 2

)
= 4, 10, 18, ... n ≥ 2 (2.22)

where Bn is the nth hard-sphere virial coefficient and n ≥ 2. For illustration, the 2nd to

4th exact hard sphere virial coefficients are 4, 10 and 18.3647684 respectively [17]. By

summing to an infinite order, the following hard-sphere equation of state is obtained in

terms of the HS compressibility factor ZCS

ZCS =
1 + η + η2 − η3

(1− η)3
(2.23)
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where η = πσ3ρ/6 is the packing fraction. The resulting equation is found to predict

pressures that are virtually indistinguishable from computer simulation pressures obtained

over the entire fluid range [16]. The residual hard-sphere contribution to the Helmholtz

energy can be obtained by using the following expression [18]

AHS = A− Aid =

∫ V

∞
(P − NkBT

V
)dV

= −NkBT
∫ η

0

1

η
(ZCS − 1) dη = NkBT

4η − 3η2

(1− η)2

(2.24)

in reduced form

aHS =
AHS
NkBT

=
4η − 3η2

(1− η)2
(2.25)

One of the more efficient methods to simulate HS in MD is to use the discontinuous MD

framework [19], a framework that "off-the-shelf" MD codes such as LAMMPS do not

currently have. As a consequence, obtaining simulated HS properties can be difficult when

only LAMMPS is accessible. A work-around is to use an empirical Mie pair potential,

also called the Pseudo HS pair potential (PHS) to approximate HS fluid behaviour, which

is documented to accurately reproduce HS properties at T ∗ = 1.5 [19]

uPHS(r) =

 50
(

50
49

)49
ε
[(

σ
r

)50 −
(
σ
r

)49
]

+ ε r <
(

50
49

)
σ

0 r ≥
(

50
49

)
σ

(2.26)

This pair potential will be used to reproduce HS properties from LAMMPS simulation in

this thesis. Both the HS and PHS potentials are plotted together in Figure 2.3

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
r/
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1.0

1.5
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2.5

3.0

u(
r)/

PHS
HS

Figure 2.3: The HS and PHS pair potentials as a function of pair-distance, as seen in
Equations 2.20 and 2.26. Both potentials represent the HS particles with dHS = 1σ.
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2.3.2 LJ and LJ/s Pair Potentials

In comparison to the discontinuous HS pair potential, a more realistic pair potential

can be constructed to imitate neutral, real atoms by expressing the short-range Pauli

repulsion as r−12 and long range van der Waals attraction as r−6 [15]. By combining

the two contributions in the following way, the Lennard-Jones pair potential uLJ (r) is

obtained

uLJ (r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(2.27)

where ε is the depth of the attractive potential well and σ is the distance at which the

pair potential reduces to zero. A difficulty with such a pair potential is the intrinsic

large computational power required to simulate the virtually zero forces that arise for all

particles when r tends to infinity. In other words, every Lennard-Jones particle is always

affected by the other N-1 particles independent of the distance. An alternative method to

avoid such an issue is to truncate the Lennard-Jones pair potential with a spline, a cubic

polynomial that reduces to zero at a more reasonable distance. The Lennard-Jones/spline

pair potential uLJ/s (r) can be expressed as

uLJ/s(r) =


4ε
[(

σ
r

)12 −
(
σ
r

)6
]

for r < rs

bLJ/s,1 (r − rc)2 + bLJ/s,2 (r − rc)3 for rs < r < rc

0 for r > rc

(2.28)

where rs =
(

26
7

)1/6
σ, rc = 67

48
rs, bLJ/s,1 = −24192

3211
(ε/r2

s) and bLJ/s,2 = −387072
61009

(ε/r3
s). The

distance rc gives the Lennard-Jones inflection point and the parameters a, b and rc are

determined such that the potential and the derivative are continues at rs and rc. As

a result of this truncation, the Lennard-Jones/spline pair potential becomes zero at rc

instead of tending to zero as r tends to infinity. Compared to hard-spheres, obtaining an

accurate EOS for LJ or LJ/s fluids can be considerably more difficult due to the more

complex pair potential. As mentioned previously, thermodynamic perturbation theories

such as the BHPT have been developed to produce EOS for pair potentials like LJ and

LJ/s, and will be presented in later sections. Here the first order perturbation term for a

bulk LJ/s EOS is presented, which is obtained from the general BHPT

A1/N = a1 = 2πεkBTρ
∗
[
p1(ρ∗)4 + p2(ρ∗)3 + p3(ρ∗)2 + p4(ρ∗) + p5 + (ρ∗)(p6(ρ∗)2

+ p7(ρ∗) + p8)(xLJ/s − 1) + (ρ∗)(p9(ρ∗)2 + p10(ρ∗) + p11)(xLJ/s − 1)2
] (2.29)
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i pi i pi i pi i pi
1 0.04605 4 -0.3464 7 9.4890 10 -45.88
2 20.4554 5 -0.5351 8 0.5337 11 4.6270
3 -0.3328 6 -7.529 9 30.73

Table 2.1: Parameters for Equation (2.29)

where ρ∗ = Nσ3/V is the reduced density, pi are parameter values listed in Table 2.1 and

xLJ/s = σ/d. The expression is obtained by correlating the two-dimensional polynomial

a1/ (2πεkBTρ
∗) against 5 isotherms T ∗ ∈ {0.4, 0.7, 0.85, 1.0, 2.0} and 0 < ρ∗ < 0.9 [20].

In terms of simulating fluids in a confined geometry in LAMMPS, a wall-potential can be

defined to keep particles from escaping the geometry confinement. A hard wall is desired

in this thesis. Constrained to LAMMPS’ wall/region command however, completely

hard walls cannot be exerted to the spherical confinement system. Instead the following

cut and shifted LJ pair potential is used as a "pseudo-hard" confinement wall potential,

which can also be called as the WCA pair potential

uWCA(r) =

 3× 4ε
((

0.01σ
r

)12 −
(

0.01σ
r

)6
)

+ 3ε for r < 0.01× 21/6σ

0 for r ≥ 0.01× 21/6σ
(2.30)

The comparison between the LJ and LJ/s pair potential is shown in Figure 2.4a, and the

wall-potential is shown in Figure 2.4b
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Figure 2.4: (a) The LJ and LJ/s pair potentials from Equations 2.27 and 2.28, (b) the
WCA wall-potential as a function of pair-distance r from Equation 2.30.
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2.4 Thermodynamic Perturbation Theory

The essence of perturbation theory is to approximate the solution of a difficult problem as

the solution of a related, simpler problem plus additional small "perturbation" terms that

characterize the difference between the two problems. In practice, the difficult problem of

obtaining a LJ/s EOS can be solved by obtaining the EOS for a solvable reference system

plus a number of pertubative terms. The perturbation theory used in this thesis is the

BHPT, which assigns HS fluids as the reference system. The theory starts by defining a

modified pair potential uBH (d, σ, α, γ r) expressed through the target pair potential u (r)

as

uBH(d, σ, α, γ; r) =


u[d+ (r − d)/α] for d+ (r − d)/α < σ

0 for σ < d+ (r − d)/α < d+ (σ − d)/α

γu(r) for σ < r

(2.31)

where α varies the steepness of the modified potential in the repulsive region and γ varies

the depth of the potential well in the attractive region. The modified potential reduces to

the HS potential uHS (r) with diameter d when α = γ = 0 while original potential u (r) is

recovered when α = γ = 1. By expanding the Helmholtz energy for the modified potential

uBH (r) in a double Taylor series in α and γ around the point α = γ = 0, the following

expression is obtained from Equation 2.12

βAres = − lnQres
N |α=γ=0 − α

∂ lnQres
N

∂α

∣∣∣∣
α=γ=0

− γ ∂ lnQres
N

∂γ

∣∣∣∣
α=γ=0

+ . . . (2.32)

The first term in the Taylor series equals the HS Helmholtz energy AHS. By evaluating

Equation (2.32) at α = γ = 1, the complete residual Helmholtz energy for u (r) can be

recovered as a sum of the HS Helmholtz energy AHS and an infinite series of perturbations

A1, A2 and so on. The final result from the double Taylor expansion can be expressed as

Ares

NkT
=
AHS
NkT

− 2πρd2g0(d)

(
d−

∫ σ

0

{1− exp[−βu(z)]}dz
)

+ 2πρβ

∫ ∞
σ

g0(r)u(r)r2dr + higher-order terms
(2.33)

where ρ is the number density. As can be seen, the HS diameter d influences both the

hard-sphere particle-size and the overall perturbative Helmholtz energy. By defining the
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HS diameter dHS in Equation 2.34

dBH (T ) =

∫ σ

0

{1− exp

(
−u(z)

kBT

)
}dz (2.34)

then the first of the two first-order perturbation terms in Equation 2.33 will reduce to

zero, causing the HS diameter dHS to become temperature dependent according to BHPT.

The final expression for Ares/ (NkBT ) will therefore equal

Ares

NkBT
=

AHS
NkBT

+ 2πρβ

∫ ∞
σ

g0(r)u(r)r2dr + higher-order terms (2.35)

where the first perturbation term a1 is

a1,RDF = 2πρ

∫ ∞
σ

g0(r)u(r)r2dr (2.36)

The subscript RDF in a1,RDF denotes that a1 is obtained by integrating the RDF using

Equation 2.36. The complete set of perturbations can be expressed as an expansion over

β = (kBT )−1 [2] such that the reduced residual Helmholtz energy ares can be expressed as

ares = aHS + βa1 + . . . . . . =
∞∑
n=0

(β)nan (2.37)

where

ares =
Ares

NkBT
aHS =

AHS
NkBT

(2.38)

Increasing the temperature would therefore decrease the magnitude of higher order

perturbation terms, making the first order BHPT EOS to be more accurate. This form

of residual Helmholtz energy expansion has been derived previously in 1954 by Zwanzig

[21], which takes basis in splitting the target potential u (r) into a reference system pair

potential u0 (r) plus a perturbation potential w (rij;λ) governed by a coupling parameter

λ that has a value between 0 and 1. The simplest case occurs when

uλ (rij) = u0 (rij) + λw (rij) (2.39)

where

u0(r) =

 u(r) r ≤ σ

0 r > σ
w(r) =

 0 r ≤ σ

u(r) r > σ
(2.40)
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The total perturbation energy from the pair potential w (r) can be expressed as

WN(rN) =
N∑
i=1

N∑
j>1

w (ri,j) (2.41)

By performing a λ-expansion using Equation 2.12, Equation 2.37 can be obtained. Another

result from the λ-expansion is that the first-order perturbation term a1 can also be

expressed as a statistical average of the attractive contribution of the target potential [22]

a1,AVG =
〈WN〉
N

(2.42)

Equation 2.42 provides an important alternative method to obtain the first order

perturbation term a1, as statistical averages can be obtained directly from molecular

simulation methods.

2.5 Molecular Dynamics

A short introduction to computational molecular dynamics will be presented in this section.

Classical molecular dynamics is a computational method to simulate particle dynamics by

solving Newton’s equations of motion for N interacting particles

mi
∂2ri
∂t2

= F i, i = 1 . . . N (2.43)

where mi, ri and Fi are particle i’s mass, position and force. The forces F i are the

negative derivatives of the particles’ potential function UN
(
rN
)
. The particles’ positions

and velocities can be obtained as a function of time by numerically solving Newton’s

equations of motion for a small time step ∆t. An accurate and stable method to integrate

Equation 2.43 is by using the velocity Verlet integrator, which expresses particles’ time-

dependent positions and velocities as

v

(
t+

1

2
∆t

)
= v(t) +

∆t

2m
F (t)

r(t+ ∆t) = r(t) + ∆tv

(
t+

1

2
∆t

)
v(t+ ∆t) = v

(
t+

1

2
∆t

)
+

∆t

2m
F (t+ ∆t)

(2.44)
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By initializing the particles with initial coordinates and velocities, the system will usually

reach an equilibrium state after a certain number of time steps. When considering MD

simulations in the NVT ensemble, the number of particles N , the volume of the system

V and the temperature T remains constant while energy can be exchanged with the

environment. Keeping the system at a constant temperature is a non-trivial task however,

as the system temperature is directly related to the kinetic energy of the particles. A

frequently used algorithm to control the temperature is called the Nosé-Hoover thermostat,

which introduces a friction factor that slows down or accelerates particles until the

temperature is equal to the desired value. After an "initialization" run to equilibrate

the system, a "production" run can be performed to obtain macroscopic properties by

averaging equilibrium configurations of the system. An alternative to simulating a large

number of particles is to implement periodic boundary conditions to mimic macroscopic

fluid behaviour. More specifically, periodic boundary conditions convert the simulation

system into an "unit cell" with an "infinite" number of unit cell neighbors, such that

when a particle passes through one side of the unit cell, it will re-appear on the opposite

side with the same velocity. Periodic boundary conditions are desired when the objective

is to simulate bulk fluids. This is visually explained in Figure 2.5

Figure 2.5: A two-dimensional snapshot of periodic simulation cells. Molecules that
"leave" the center cell in one direction, will return to the same cell in the other direction.

A complication with periodic boundary conditions occurs when simulating particles with

long-range pair-potentials, as the long-range interactions will cause disarray for the particle

dynamics between unit cells.
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2.6 Thermodynamics of Small Systems

In thermodynamics, the main difference between fluids confined to "small" and "bulk"

sized volume confinements are their surface area to volume ratio. For fluid volumes with

radius R, the ratio becomes

ratio =
4πR2

(4/3)πR3
= 3/R (2.45)

Bulk fluids with N and V values of large size will minimize the ratio value (R → ∞),

causing any surface effects exerted to the fluid to be negligible in comparison to the effects

exerted by the fluid body. That way, the Helmholtz energy of the bulk fluid system can

be seen to be extensive in terms of variables such as N and V , where increasing N and V

by a factor of i.e. 2 can be seen as doubling the system’s total Helmholtz energy in the

NVT ensemble

A (2N, 2V, T ) = 2A (N, V, T ) (2.46)

On the other hand, the surface area to volume ratio becomes much larger for small

systems (R <<∞), causing surface effects to play a significant role to the fluid behaviour

in small systems. That way, doubling N and V cannot be seen as doubling the total

Helmholtz energy. Because macroscopic bulk systems does not consider smallness effects,

bulk thermodynamic properties cannot be directly comparable to properties of small

systems [23]. Therefore, fluids confined to small systems can be defined as systems that

experience finite-size effects, in addition to having variables such as N and V to no longer

be extensive.

Since the first order bulk LJ/s BHPT EOS is readily obtainable, the task in this thesis

is to investigate how surface effects alter the BHPT terms aHS and a1 in Equation 2.47

when LJ/s fluids are confined to small spherical systems with hard walls. The ideal gas

EOS aID is independent of the volume size, as ideal gas particles have no finite-size effects

in the first place. A difference between the small and bulk terms should be observed since

the bulk LJ/s EOS does not consider finite-size effects.

aLJ/s ≈ aID + aHS + βa1 (2.47)
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2.7 Analytical Circle Equation

One of the more interesting results obtained from simulations on fluids confined to

small spherical geometries, is the specific shape of the RDF. Instead of tending towards

g (r) → 1 when r → ∞, the small RDF reduces to zero when r equals the sphere

confinement diameter, as seen in Figure 2.6
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Figure 2.6: The bulk HS and small PHS RDFs at ρ∗ = 0.85 and dHS = 0.96424σ as a
function of pair-distance r. The Bulk HS RDF is obtained from the analytical Percus-
Yevick expression [1] while the small PHS RDF is obtained from LAMMPS simulation.
The small system has a spherical radius of R = 5σ.

One of the main causes for such a reduction is that no particle pairs can have a separation

higher than the confinement diameter for non-periodic conditions. Other causes for the

reduction can be due to an altered fluid packing effect caused by the confined walls.

However, given that the non-periodicity factor is the only contributor to the small RDF

behaviour, then an interesting expression to obtain is an analytical equation that purely

describes the non-periodicity effect. In other words, what kind of behaviour would the

non-periodic RDF for a fluid confined to a spherical geometry exhibit if the fluid structure

is unaffected by confinement geometry? Such an analytical equation can be derived for

the ideal gas, as ideal gas have no volume or intermolecular interactions contribution to

fluid structure. At the same time, the pure "non-periodic" effect can still be observed

due to the fact that no ideal gas particles exist outside the confinement for small systems.

This section will therefore provide a full derivation for the spherically confined ideal gas

RDF, g0 (r). To the best of our knowledge, this is the first time g0 (r) have been derived

in the open literature. The derivation of g0 (r) has therefore been a part of the thesis

work.
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First, the term "non-periodic" in relation to RDFs can be explained. Non-periodicity is a

MD term that simply means that the simulated unit-cell of particles will not be replicated

an infinite number of times to mimic the behaviour of bulk fluids, as explained in Section

2.5 and Figure 2.5. In a more general sense, non-periodicity means that no particles will

exist outside the confinement geometry. This will be the thesis definition of "non-periodic".

Systems with periodicity will therefore mean bulk fluids. The comparison between a

periodic and non-periodic fluid is illustrated in Figure 2.7a, where no particles can exist

in the grey area for non-periodic spherical systems. The effect that non-periodicity has on

the RDF calculation can be explained through an example: Given an arbitrary (black)

particle inside a spherical confinement, the number of neighbor particles that the black

particle can have at a pair-distance r (the distance between the black and colored circle),

will be reduced from all the particles that lie on the colored sphere, to the sum of particles

inside the non-shaded area. Increasing the pair-distance r will decrease the number of

possible neighbor particles that can be sampled. Therefore, given any particle within the

fluid, g0(r) will give a probability lower than the equivalent bulk RDF, in addition to

giving zero probability of finding a neighbor particle at a pair-distance of the confinement

diameter or higher. The confinement sphere in the this thesis and the following derivation

is defined as a sphere SR with a radius R.

The key step in this derivation is to define a sphere Sr with the pair-distance value r as

its radius, such that the reduction in the number of available pair-distances / neighbor

particles at the pair-distance value r for an arbitrary particle, becomes proportional with

the reduction in the available surface area of sphere Sr, Ar, inside the the confinement.

This can be seen in the perimeter reduction in the 2D case in Figure 2.7a, where the

magenta part of the sphere Sr surface area represents the possible sampled number of

pair-distances for a non-periodic system. Therefore, for that black particle, instead of

having to count the number of particles that fall into a volume shell of r ± δr, only its

reduced surface area of sphere Sr has to be calculated instead. The system variables are

illustrated in Figure 2.7b, where xi, D and hc will be defined later.

In terms of the RDF calculation, calculating the reduced surface area for sphere Sr for an

arbitrary particle within the confinement will depend on two factors, a) how close the

particle is to the confinement wall and b) the pair-distance magnitude r as illustrated in

Figures 2.8a and 2.8b



2.7 Analytical Circle Equation 19

(a)

xi
xi + hc
Sphere SR, radius: R

Sphere SD, radius: D

Sphere Sr, radius: r

(b)

Figure 2.7: (a) A snapshot of a possible particle distribution around an arbitrary (black)
particle at a certain pair-distance. When the fluid is confined to a spherical geometry,
the particles in the grey area become separated from the particles inside the confinement,
and will not be counted towards the RDF calculation. (b) Illustration of a spherical
confinement system SR with radius R. The centers of the variable spheres SD and Sr
are a distance D apart. The pair-distance r dictates the intersection point xi and the
spherical cap height h between spheres SR and Sr.

(a) (b)

Figure 2.8: (a) Three particles inside a spherical confinement. Given the same pair-
distance r, only the the particle closest to the wall will experience a reduction in the
possible number of pair-distances that can be sampled. (b) Given a particle close to the
confinement wall, the number of the possible sampled pair-distances will reduce with
higher pair-distance magnitude r.

Next, the relevant values for the pair-distance r will be between r ∈ 0 ≤ r ≤ 2R, and

the possible position values that a particle can have from sphere SR’s center is defined as

D with a value between D ∈ 0 ≤ D ≤ R. The variable D will then define an additional

sphere SD with radius D that shares the the same center as sphere SR. As mentioned

previously, the sphere Sr surface reduction is directly related to its D magnitude. A

specific property for spherical confinement is that all particles that lie on sphere SD’s

surface, will experience the same reduction in surface area, as seen in Figure 2.9a.
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Then, a function that describes the position of ideal gas particles inside the confinement

is required. Given a pair-distance r, the reduction in Sr’s surface area is only dependent

on how far away particles are from the sphere SR center. Since ideal gas particles will

be evenly distributed throughout the whole confinement sphere, the number of particles

that are a distance D away from the confinement sphere SR center, will be assumed to be

directly proportional to the surface area of sphere SD, AD = 4πD2. For example, a higher

number of ideal gas particles will lie on a larger AD than a smaller AD. A normalized

comparison between the the surface area of sphere SD and the experimental number of

particles as a function of D is plotted in Figure 2.9b. The consequence of this function is

that the number of particles at a certain distance D away from the sphere SR center can

be obtained, where all the particles has the same reduction in surface area Sr.
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Figure 2.9: (a) Three particles inside a spherical confinement. Given the same pair-
distance r and the fact that they all lie on sphere SD, the reduction in the possible number
of sampled pair-distances will be equal for all three particles. (b) For ideal gas particles
confined inside a spherical confinement, the possible number of particles that can be
found on the sphere SD should be proportional with its surface area, AD = 4πD2. This is
observed to be the case as the normalized experimental number of particles as a function
of D matches the normalized SD surface area. The experimental data is obtained by
scattering 200 particles 50000 times in a confinement radius of R = 1.

Now, the objective is to obtain the total sum of the reduced surface area for the confined

particles at a pair-distance r. By dividing the total sum with the sum of the "complete"

surface area for all particles, the spherical ideal gas RDF can be obtained. This should in

theory be equivalent to using the RDF algorithm to count pair-distances for spherically

confined ideal gas particles if the reduced surface area - pair-distance assumption is true.
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Considering Cartesian space where sphere SR lie at x, y, z = (0, 0, 0) and sphere Sr lie at

x, y, z = (D, 0, 0) such that

x2 + y2 + z2 = R2 and (x−D)2 + y2 + z2 = r2 (2.48)

Given that the two spheres intersect, xi can be defined as the x-axis value of the sphere-

sphere intersection

xi =
R2 +D2 − r2

2D
(2.49)

xi also denotes the distance from x = 0 to an orthogonal yz plane that intersects sphere

Sr to create a spherical cap with height hc of size 0 ≤ hc ≤ 2r. hc can be defined as

hc = D + r − xi =
(D + r −R) (D + r +R)

2D
(2.50)

xi and hc are illustrated in Figure 2.7b. By using the formulas for the spherical surface

area Ar and spherical cap Ar,cap for sphere Sr, the reduced surface area Ar,red becomes

Ar = 4πr2 Ar,cap = 2πrhc Ar,red = 2πr (2r − hc) =
πr
(
R2 − (D − r)2)

D
(2.51)

Criteria for overlap has to be defined as the spheres r and R only overlap for certain

values of r and D. Two types of overlap occurs depending on the r value: when r < R and

when r > R. No overlap occurs occurs when r < R and sphere r is completely immersed

in sphere R. In that case, the total surface area of sphere r remains complete. No overlap

occurs when r > R and sphere R is completely immersed in sphere r. In that case the

total surface area of sphere r is reduced to zero. Overlap occurs otherwise. The function

for the surface of sphere r is given by r,D and R as Ar (r < R,D,R) and Ar (r > R,D,R)

Ar,red (r < R,D,R) =

 4πr2 for r +D < R

πr (R2 − (D − r)2) /D for r +D > R
(2.52)

Ar,red (r > R,D,R) =

 0 for R +D < r

πr (R2 − (D − r)2) /D for R +D > r
(2.53)

Now assume that the particles in the sphere SR are distributed on n evenly spaced

concentric circles with the sphere SR center and a radius D that goes from 0 to R with

a spacing ∆D = R/n such that D ∈ {D0 = 0, . . . , Di−1, Di, Di+1, . . . , Dn = R}. By

assuming that the number of particles that lie on the surface of sphere SDi
is proportional
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with its surface area 4πD2
i , the total sum of the "reduced surface area" for all the particles

in the confinement at a pair-distance r can be obtained by summing the product of

Ar,red and the surface area of sphere SDi
for all Di. By also dividing with the product

of the complete sphere Sr surface area, Ar = 4πr2 and sphere Sdi surface area for all Di,

the analytical sphere RDF g0 (r,< R,R) can be obtained. Since Ar,red consists of two

functions, the case of r < R will be used first.

go (r < R,R) =

i=n∑
i=0

Ar,red (r < R,Di, R) 4πD2
i

i=n∑
i=0

16π2D2
i r

2

(2.54)

Expanding Ar(r < R,D,R) into two sums

go (r < R,R) =

i:Di=R−r∑
i=0

16π2D2
i r

2 +
i=n∑

i:Di=R−r
8π2D2

i r(2r − h)

i=n∑
i=0

16π2D2
i r

2

(2.55)

If the numerator and denominator are multiplied with ∆D and n→∞, then the finite

sums can be recognized as Riemann sums

lim
n→∞

n∑
i=1

∆x · f (xi) =

∫ b

a

f(x)dx (2.56)

such that

go (r < R,R) =

limn→∞
i:Di=R−r∑

i=0

16π2D2
i r

2∆D + limn→∞
i=n∑

i:Di=R−r
8π2D2

i r(2r − h)∆D

limn→∞
i=n∑
i=0

16π2D2
i r

2∆D

(2.57)

Applying Equation 2.56 to Equation 2.57 and integrating

go (r < R,R) =

∫ R−r
0

16π2D2
i r

2dD +
∫ R
R−r 8π2D2

i r(2r − h)dD∫ R
0

16π2D2
i r

2dD
=

16R3 − 12R2r + r3

16R3

(2.58)

The same equation is obtained for g0 (r > R) such that the analytical spherical RDF

becomes

go (r, R) =
16R3 − 12R2r + r3

16R3
(2.59)
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For R = 1, the RDF becomes

go (r) =
1

16
r3 − 3

4
r + 1 (2.60)

The accuracy of the analytical go (r) can be tested with a comparison to experimental

data. The two following methods have been used in this report

1. A simulated non-periodic RDF can be obtained by scattering ideal gas particles in

a spherical confinement. This RDF has been obtained by scattering 500 particles

40000 times in a spherical confinement of R = 1.

2. PHS can be simulated in a spherical region of radius R = 5σ with LJ walls of 10ε and

0.01σ cutoff. To reduce the structure effect, 55 PHS particles with a small diameter

of dPHS = 0.5σ have been simulated, such that ρ∗ = 0.1. 40000 configurations have

been sampled.

After simulating case 1) in Python and 2) in LAMMPS, their respective RDFs are obtained

from a standard RDF algorithm without periodicity (the non-periodic RDF algorithm is

explained in Section 3.3). The RDFs are plotted against go (r) using Equation 2.59
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Figure 2.10: (a) The comparison between g0(r, R) and the spherically confined ideal gas
RDF with confinement radius R = 1. (b) The comparison between g0(r, R) and the small
PHS RDF at ρ∗ = 0.1 and dHS = 0.5σ with confinement radius of R = 5σ.

As can be observed from the Figures 2.10a and 2.10b, the experimental data fits very

well with the analytical g0 (r, R) expression. The scatter at low r for the experimental

ideal gas RDF in Figure 2.10a can be attributed to insufficient statistics, as sampling is

more sensitive at low distances. The region in which the experimental PHS RDF equals

zero in Figure 2.10b is caused by the particle volume. Because both the PHS density and
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diameter is of low magnitude, the fluid will experience limited structural effect, and will

as a result behave similarly to ideal gas particles with volume. Thus, Figure 2.10b is an

excellent example of the pure non-periodicity effect on the PHS RDF calculation under

non-periodic conditions.

Given that the radius R of the confinement sphere SR tends to a large value or infinity,

g0 (r, R) will tend toward 1 at a relatively low pair-distance r, as seen in Figure 2.11.
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Figure 2.11: The comparison between the bulk ideal gas RDF and g0(r, R) for various
confinement radii R = 1, 10, 100 and 1000.

When R→∞, the limit of the function g0 (r, R) would equal 1 for any finite pair-distance

r

lim
R→∞

g0 (r, R) = lim
R→∞

(
1− 3r

4R
+

r3

16R3

)
= 1 for |r| <∞ (2.61)

showing that the spherical ideal gas RDF for a bulk spherical system (R→∞) becomes

equal to the bulk ideal gas RDF, which is always equal 1 independent of the pair-distance

r.
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3 Thermodynamic Methods

The simulation work in this thesis has consisted of performing MD simulations in LAMMPS

[14]. For properties that are not directly obtainable from molecular simulations, the

programming languages Fortran and Python have been used to implement thermodynamic

theory to post-process data. Examples of post-processed properties include the spherical,

non-periodic RDF and the first order perturbation term a1,RDF that can be obtained by

integrating the RDF using Equation 2.36. The LAMMPS, Fortran and Python scripts

are found in the Appendix sections A1, A2 and A3. This section will therefore 1) detail

the simulation conditions for the experiments performed LAMMPS and 2) explain the

thermodynamic methods that are implemented in Python and Fortran.

An illustration of the simulation setup is shown in Figure 3.1, where particles are simulated

inside a spherical confinement with a "hard" WCA wall potential uWCA (r) as defined

in Equation 2.30. There currently does not exist an option to purely have reflective

walls for spherical geometries in LAMMPS. The automatically calculated volume for

the system in LAMMPS is of the cubic simulation domain, which is different to the

spherical confinement volume. As a result, properties such as pressure can still be natively

calculated in LAMMPS, but have to be calculated in an alternative way as mentioned in

the next section.

Figure 3.1: An illustration of the simulation setup in LAMMPS. Given a cubic simulation
domain, a spherical region can be drawn up to exert a WCA wall potential, forcing the
particles to stay inside the spherical confinement. Due to non-periodic boundary conditions
being applied, no particles will exist outside the spherical confinement.
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3.1 Simulation Conditions

The MD simulations in LAMMPS are performed in the NVT ensemble by using the Verlet

algorithm for integrating the equations for motion and the Nose-Hoover thermostat for

keeping a constant system temperature. With the exception of verifying bulk properties

with theoretical data, all the fluids studied in this thesis are confined in spherical regions

without periodic boundary conditions. To create a spherical confinement inside the

simulation domain in LAMMPS, the fix/wall region command [24] is applied to create

a spherical shell of a specified radius that exerts a WCA potential towards any particle

that attempts to pass through the shell. To make the wall as hard as possible, the WCA

wall potential is set to only exert strong repulsion by cutting and shifting the potential at

its well bottom at a pair-wall distance of 0.01σ, with a strength parameter of 3ε, as seen

in Equation 2.30.

The two fluids simulated in this thesis are the PHS and LJ/s fluids. Simulating the non-

default LJ/s fluid is possible in LAMMPS by using a LJ/s add-on package [25]. Except

for a difference in their characteristic pair potentials, the simuation settings, confinement

radius and density range are generally the same for both fluids. As the PHS can only

be simulated at T ∗ = 1.5, the simulation temperature is set to equal T ∗ = 1.5 for all

simulations. Given that the liquid-gas phase transition of the bulk LJ/s fluid lie between

ρ∗ = 0− 0.85 [20], the density range ρ∗ = 0.15− 0.85 is investigated in this thesis. The

investigated confinement radius values are R/σ = 5, 7.5, 10, 12.5, 15.

In the stage of obtaining an initial configuration, all particles are randomly scattered

in a region smaller than the investigated spherical region of radius R. The randomized

distribution of particles are then moved by minimizing the total potential energy of the

system. Then the initialization simulation is run with a time step of ∆t = 0.0001− 0.0003

for 10·106 total number of time steps. The production simulations are then run with a time

step of ∆t = 0.0001− 0.0003 for 10-1000·106 total number of time steps, and is divided

into 5 blocks when computation of standard deviations becomes necessary. The specific

value for the time step and production run length depends on what kind of simulations

that has been run. Generally a lower density simulation requires more samplings than

higher density simulations. For sample scripts, refer to Appendix A1.

The fluid pressure and the first order perturbation term a1,AVG are directly calculated in

LAMMPS. As mentioned previously, the intrinsic pressure calculation in LAMMPS uses
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the volume of the simulation domain, which is different than the spherical confinement

volume. The fluid pressure is therefore calculated by taking the average of the diagonal

components of the per-atom stress tensor, divided by the product of the dimension and

sphere volume, as explained in the compute stress/atom command [26]. The first order

perturbation term a1,AVG is calculated by taking the ensemble average of the perturbative

potential energy, as defined in Equation 2.42. To do so, a1,AVG is obtained by using the

rerun command on the dump file from the production run of the PHS fluid, where the

pair potential is changed to a tabulated list of values describing the attractive region of

the LJ/s pair-potential.

3.2 Thermodynamic Pressure

For a fluid constrained to the NVT ensemble, any property of the fluid can be obtained if

an accurate expression for its reduced Helmholtz energy afluid exists. By neglecting the

higher order terms, the BHPT LJ/s EOS to the first order can be expressed as

aLJ/s ≈ aID + aHS + βa1 (3.1)

The expression can be differentiated with respect to V to obtain the LJ/s pressure [18]

PLJ/s = −
(
∂ALJ/s

∂V

)
T,N

= −NkBT
(
∂aLJ/s

∂V

)
T,N

(3.2)

By applying the aLJ/s expression into Equation 3.2, the LJ/s pressure can be expressed in

the following way

PLJ/s =
NkBT

V
−NkBT

∂aHS
∂V

−N ∂a1

∂V
(3.3)

In reduced units

P ∗LJ/s = PLJ/s
σ3

ε
= ρ∗T∗ −Nσ3T∗

∂aHS
∂V

+
(ρ∗)2

ε

∂a1

∂ρ∗
(3.4)

where T∗ = TkB/ε. The LJ/s pressure can also be rewritten as the sum of the HS pressure

and the a1 contribution

P ∗LJ/s = PLJ/s
σ3

ε
= PHS

σ3

ε
+

(ρ∗)2

ε

∂a1

∂ρ∗
(3.5)
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Given that only discrete values for a1 exists from MD, discrete pressure values of PLJ/s

can be obtained by the use of central difference

∂f(x)

∂x
≈ f(x+ h)− f(x− h)

2h
(3.6)

3.3 RDF Algorithm

As can be observed from the subsection 2.7 and Figure 2.6, a key difference between bulk

and nano fluids is the shape of their radial distribution functions due to the presence or

absence of periodic boundary conditions. While there exists a number of methods to obtain

bulk RDF through LAMMPS [27, 28], no such implementations exists for non-periodic

fluids confined to non-cubic geometries. By "non-cubic", LAMMPS intrinsically calculates

a system density using the volume of the cubic simulation domain, even if an additional

constraint has been added to make the particles move in a smaller sphere. Luckily, by

only omitting the periodicity requirement in the general bulk RDF scheme and using the

correct fluid density, the scheme to produce small RDFs of any geometries is obtained. A

general scheme to obtain a both a bulk and small RDF is presented here.

The principle is to construct a histogram h (k) with nk bins of size δr that counts

accumulated pair-distances for nc number of particle configurations. The algorithm of

obtaining the RDF can then be explained in the following three steps

1. Calculate the pair separation rij for particles ri and rj.

• For periodic boundary conditions: If the pair-distance between ri and a reflected

particle rj in another periodic cell is lower, then the pair distance rij is set to

that value.

• Otherwise: the pair-distance value rij stays the same.

Increase the histogram count for the bin that rij falls into, h (k) = h (k) + 1

2. Repeat step 1 for all particles 1, . . . , N to obtain a complete histogram of pair

separations, nc times.

3. By considering a specific volume element, the radial distribution function is obtained

through

g

(
kdr +

1

2
dr

)
=

n(k)

nID(k)
(3.7)
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where the expression is an alternative form of Equation 2.19. n (k) is the number of

particles in bin k, defined in the following way

n(k) =
h(k)

Nnc

(3.8)

and nID(k) is the average number of ideal particles in the volume shell of thickness

kδr − (k − 1) δr

nID(k) =
4πρ

3

[
(kδr)3 − ((k − 1) δr)3] (3.9)

such that

g

(
r +

1

2
δr

)
=

n (k)

nID (r)
=

h (k) / (Nnc)
4πρ

3

[
(r + δr)3 − r3

] (3.10)

Lists of equilibrium configurations in the form of dump files can be obtained by running

simulation runs in LAMMPS. This thesis has applied this general non-periodic RDF

algorithm (implemented in Fortran and shown in Appendix A2) on those dump files to

obtain small RDFs from simulation. The RDFs calculated in this thesis uses nc = 40000

particle configurations and a spacing δr = 1/50.
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4 Results and Discussion

A number of simulations have been performed in LAMMPS to investigate the PHS and

LJ/s fluid behaviour under spherical confinement at the temperature of T ∗ = 1.5 with

dBH (T ∗ = 1.5) = 0.964239σ. The data will therefore be used to map and extend the

ability of the general BHPT to predict fluid behaviour under spherical confinement in this

section. Since the thesis relies on the PHS fluid to accurately represent HS fluid behaviour,

the first subsection will test this approximation by comparing HS fluid properties to

simulation PHS fluid properties obtained from LAMMPS. The following subsections will

then discuss the differences between bulk and small system fluids and how to apply the

BH perturbation theory to fluids in small systems.

This chapter requires the use of the bulk HS RDF for dBH (T ∗ = 1.5) = 0.964239σ at a

large range of densities. The analytical representation of the Percus-Yevick (PY) bulk HS

RDF derived by [1] is used in this thesis.

4.1 The HS and PHS fluid

The assumption that PHS replicates HS fluid behaviour at T ∗ = 1.5 can be tested by

plotting the HS pressure obtained from the CS EOS with the pressure obtained from

simulating PHS particles in a system with periodic boundary conditions. The HS and

PHS pressures are shown to be indistinguishable in Figure 4.1
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Figure 4.1: The bulk HS and PHS pressure as a function of the reduced density ρ∗ at
T ∗ = 1.5. The HS pressure is calculated from the CS EOS while the PHS pressure is
obtained from LAMMPS simulation. The error is plotted as two standard deviations,
however the error is so small it cannot be seen.
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The HS RDF is another fluid property that is of importance in this thesis. The bulk HS

RDF can be obtained from the analytical PY HS RDF expression while while the bulk

PHS RDF can be calculated according to Subsection 3.3. The bulk HS and PHS RDF at

ρ∗ = 0.85 and dHS = 1σ is seen to be very similar in Figure 4.2a
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Figure 4.2: (a) Bulk PHS RDF is plotted together with the analytical PY HS RDF as a
function of pair-distance r with dHS = dBH (T ∗ = 1.5). The bulk PHS RDF is obtained
from LAMMPS. (b) The analytical PY HS RDF is plotted together with a more accurate
HS RDF from [2] with dHS = 1σ.

Both the contact value g (σ) and the general structural trend is observed to match well.

However, the bulk PY HS RDF is known to underpredict the contact value [15], which

means that the PHS RDF underpredicts the contact value as well. A comparison between

the PY HS RDF and a more accurate HS RDF from [2] is plotted in Figure 4.2b, where a

clear contact value difference can be observed. Given good statistics and sufficiently small

histogram bins for the PHS RDF calculation, a possible cause for its underprediction

can lie in how the PHS and HS potentials intrinsically produce different fluids behaviour.

If the RDF contact value is ignored however, the general HS and PHS fluid structure

can be seen as approximately equivalent. Therefore, the RDF contact value will not be

discussed in the following sections, while the overall PHS fluid structure will be seen as

an approximately accurate estimation of HS fluid structure.



32 4.2 Bulk and Small LJ/s Fluid Properties

4.2 Bulk and Small LJ/s Fluid Properties

The next step forward is to compare the properties of bulk and small LJ/s fluids. One

of the preliminary results obtained from simulating small systems is the existence of a

pressure difference between the bulk and nano LJ/s fluids, shown in Figure 4.3. The bulk

LJ/s pressure is obtained from LAMMPS simulation, and can also be approximated from

the LJ/s BHPT EOS to the first order using Equation 3.3. The difference between the

two is caused by the negligence of higher order terms for the BHPT EOS of first order.

The LJ/s small pressure is obtained in LAMMPS for confinement radius of R = 5σ. By

taking basis in BHPT, the pressure difference can be caused by a change in the reference

fluid behaviour and/or its fluid structure, which will in turn cause a deviation in the

pressure contributions from aHS and/or a1.
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Figure 4.3: The bulk and small LJ/s pressure as a function of fluid density, at T ∗ = 1.5.
The confinement radius is R = 5σ for the small pressure. The bulk pressure is obtained
from LAMMPS simulations sim and the bulk BHPT EOS of first order a1 while the small
pressure is obtained from LAMMPS. The error is plotted as two standard deviations, but
is so small it cannot be seen.

Out of the two possibilities aHS and a1, a1 is readily observed to deviate from bulk to

small systems as a1,RDF relies on the reference system RDF. In comparison to a bulk

system where the RDF tends towards 1 when r → ∞, the RDF of a small system will

tend towards zero as no particles outside the confinement will exist or interact with the

particles inside the nano system. The difference between the small and bulk RDF is

explained more in-depth in Section 2.7. By obtaining the small PHS RDF from LAMMPS,

the bulk HS and small PHS RDF at ρ∗ = 0.15 and ρ∗ = 0.85 are shown in Figure 4.4.
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Figure 4.4: The bulk HS and small PHS RDF at (a) ρ∗ = 0.15 and (b) ρ∗ = 0.85. as a
function of pair-distance r. The bulk HS RDF is obtained from the analytical PY HS
RDF expression, while the small PHS RDF is obtained from LAMMPS simulations.

The stark difference between the bulk and small RDFs mark a clear departure from the

general range of obtainable bulk a1 values for small systems, as the RDF reduction will

change the obtainable small a1,RDF values from integrating the RDF using Equation 2.36.

By integrating the experimental small RDF using Equation 2.36 and using LAMMPS

rerun, discrete values of small a1,RDF and a1,AVG can be obtained at a range of densities,

and is displayed in Figure 4.5 together with bulk a1.
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Figure 4.5: The bulk and small first order term a1 from BHPT. The bulk a1 is obtained
from the BHPT LJ/s EOS, while the small RDF aRDF is obtained from the small PHS
RDF using Equation 2.36 and the small aAVG is obtained from LAMMPS simulation. The
error is plotted for aAVG with two standard deviations, but is so small it cannot be seen.

The similarity between a1,RDF and a1,AVG shows that the small RDF can be a good

descriptor of fluid structure in small systems. The deviation between the two at high
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densities can be caused by a number of reasons, including numerical integration of Equation

2.36 to obtain a1,RDF, insufficient sampling for the RDF and inaccurate tabulation of

the LJ/s potential under rerun to obtain a1,AVG. The difference in the bulk and small

a1 values can be a plausible cause for the pressure difference in Figure 4.3. However,

the reference system can also contribute to the pressure difference if the HS fluid is also

dependent on smallness effects. From LAMMPS, a distinct bulk and small pressure

difference is also observed for the reference system, shown in Figure 4.6a. Therefore, both

aHS and a1 change under confinement. By using the experimental small PHS pressure and

the pressure contribution from the small a1 in Equation 3.5, the small LJ/s pressure can

possibly be predicted. The resulting LJ/s pressure from a "small" BHPT EOS is shown

in Figure 4.6b, with the use of the small PHS and small a1 BHPT pressure contribution
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Figure 4.6: (a) Bulk HS and small PHS pressure at T ∗ = 1.5 and R = 5σ. (b) Bulk and
small LJ/s pressure is plotted as a function of density. Bulk LJ/s pressure is obtained
from BHPT of first order. The small PLJ/s∗ from "small simulation" is obtained using
LAMMPS while "small BHPT" is obtained from BHPT using both small reference and a1

pressure values at R = 5σ.

According to Figure 4.6b, the small BHPT EOS of first order is able to predict the

experimental LJ/s pressure very well at a high temperature T ∗ = 1.5, although a certain

deviation from the experimental LJ/s pressure can be seen at high reduced densities.

The deviation between the simulated and predicted BHPT LJ/s pressure can possibly be

attributed to be caused by numerical error such as insufficient simulation steps, numerical

integration of a1, numerical differentiation of a1 and the exclusion of higher perturbation

terms a2, a3 and so on. Based on the assumption that the difference is only caused by

numerical errors, an accurate representation of a small LJ/s BHPT EOS can possibly be

obtained by having a correct representation of a small HS EOS and small a1 values. The
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next steps forward is therefore to better understand the non-periodic RDF transformation

and how to possibly obtain a small HS EOS.

4.3 First Order Perturbation Term

As mentioned previously, the lack of periodic boundary conditions is one of the primary

factors for the small RDF trend, which in turn causes a difference between bulk and small

a1 values. A question to ask here is if the bulk-small RDF difference is only caused by the

non-periodicity factor, in the sense that no other smallness factors influences the small

PHS RDF shape. For example, given that is the case and that the non-periodic factor

can be captured analytically, then the bulk HS RDF can theoretically be transformed

into a "small" bulk-transformed RDF (BT-RDF) that should accurately recapture small

a1. If the BT-RDF does end up behaving similarly to small RDFs , then the spherical

confinement does not alter the fluid structure in a major way. Any deviation between the

BT and small RDF suggests that additional small factors play a role in altering the small

system fluid structure. Section 2.7 derives an analytical RDF g0 for spherically confined

ideal gas describing the non-periodic reduction trend, and can be multiplied with bulk

RDFs to obtain BT-RDFs

g(r)small = g(r)bulk × g0 (4.1)

The product of bulk HS RDFs and g0 is therefore plotted in Figure 4.7 together with

small RDFs at the same densities for the confinement radius R = 5σ.
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Figure 4.7: The BT and small PHS RDF at (a) ρ∗ = 0.15 and (b) ρ∗ = 0.85 as a function
of pair-distance r, for the confinement radius R = 5σ. The BT RDF is obtained using
Equation 4.1 while the small PHS RDF is obtained from LAMMPS simulations.
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By simply multiplying the bulk RDF with g0, the BT-RDF at a low density of ρ∗ = 0.15

is able to represent small RDFs very well. At the same time, the two RDFs becomes less

similar at a higher density of ρ∗ = 0.85, suggesting that the confined fluid exerts a more

alternative structure than pure bulk structure. The BT-RDF is observed to exert sharper

peaks in comparison to the more smoother small RDF peaks, while at the same time

becoming indistinguishable after r = 5σ. The difference between the BT and small RDF

can be mapped out by proposing an extra variable x0 that depends on the pair-distance r

and the confinement radius R at a certain reduced density ρ∗

gbulk (r) g0 (r) x0 (r, R) = gsmall (r) (4.2)

such that

x0 (r, R) =
gsmall (r)

gbulk (r) g0 (r)
(4.3)

In the low density case, x0 should be close to unity as the non-periodicity becomes the

primary smallness factor. With increased density, x0 should deviate from unity to capture

the additional small structure effect that occurs in the fluid system. The small-system

density dependence that occurs can possibly be compared to the small-system dependence

of the confinement radius R. At the same density ρ∗, x0 should in theory tend towards

unity as the confinement radius R tends towards infinity, since the small system fluid will

tend towards bulk size. At low R, perhaps the small structure factor will deviate from

unity due to any additional packing constraint enforced by the confinement wall. The

variation of x0 with system density ρ∗ and confinement radius R is plotted in Figures 4.8

and 4.9

As can be seen in the Figures 4.8 and 4.9, x0 tends towards unity with increasing R

and decreasing ρ∗, suggesting that the periodicity factor becomes the main difference

between bulk and small system fluids. When R decreases and ρ∗ increases however, an

additional smallness structure factor becomes prominent in the small system. Perhaps

the more interesting trend is how the structure factor x0 is dependent on the confinement

radius R at a constant density of ρ∗ = 0.85. While the density is kept at a constant,

the structure factor becomes incrementally more prevalent with decreasing confinement

radius R, suggesting that the decrease in R somehow disrupts the "bulk" structure in

the confined fluid. One hypothesis is that the confinement wall "irregularly" constrain a

certain volume that PHS particles can or cannot exist in, in comparison to bulk fluids
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Figure 4.8: The density dependency of x0 in Equation 4.3 at (a) R = 5σ and (b)
R = 15σ.
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Figure 4.9: The R dependency of x0 in Equation 4.3 at (a) ρ∗ = 0.15 and (b) ρ∗ = 0.85.

at the same density. Such a disruption advocates for the presence of a heterogeneous

structure, where certain areas in the spherical confinement will have distinctly different

densities.

4.3.1 Particle Adsorption

An interesting trend to observe is therefore the density variation from the sphere

confinement center to its radius R. For bulk fluids, the density for a volume element

anywhere within the fluid should on average always equal the bulk density. For fluids in

small systems, the radial density variation from the confinement center is shown in Figure

4.10
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Figure 4.10: The density variation of the PHS fluid within confinements of R = 5σ, 10σ
and 15σ for (a) ρ∗ = 0.15 and (b) ρ∗ = 0.85. The data is obtained by iterating through
simulation configurations using the Fortran program density_variation in Appendix
A2.

Fluids in small systems are observed to have a specific density arrangement that deviates

from the fluid density close to the confinement wall. The density peak(s) suggests that

particles are especially prone to concentrate there. An explanation can be that the

confinement wall does not push particles in the same way particles do. For example, a

particle in the center of the small system fluid will be pushed by particles in all directions,

while particles pushed towards the wall will not be as pushed back into the fluid by the

non-moving wall. As a result of the anisotropic particle pushing, particles close to the

wall will be more prone to stay there.

As can also be seen in Figure 4.10, the shape and length of the density arrangement is

very independent of the confinement size, with the exception that the magnitude slightly

increases with R. The independence of the density arrangement length with R suggests

that the density arrangement "shell" that encompass the "inner-core" (IC) of the fluid

scales with the surface area of the confinement sphere. By increasing R, the fraction of

the IC fluid structure will increase, which will in turn reduce the impact of the density

arrangement at the surface. Another observation from Figure 4.10 is that the IC density

is lower and will tend towards the overall fluid density with increasing R. The low IC

density magnitude suggests that particles are depleted from the IC region to be adsorbed

in the density arrangement region at the surface wall. Since the density arrangement

region is predicted to scale with the confinement surface area, the number of adsorbed

particles should do so too. With increasing R, the fraction of adsorbed particles will
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therefore decrease in comparison to the fraction of the IC particles. The IC density can be

obtained by integrating the linear region in the density variation observed in Figure 4.10,

ρ∗IC =
1

(4/3)πr3

∫ r

0

ρ∗ (r) 4πr2dr (4.4)

Finding the IC density can be difficult for confinements of low R however, as the distinction

between the IC and outer-core (OC) adsorption region can be hard to define. This can

especially be seen for the R = 5σ and ρ∗ = 0.85 case in Figure 4.10b, as the majority

of the density region varies with r. For the R = 10σ, 15σ cases at ρ∗ = 0.85, a clear

distinction can be made, where the linear density regions is qualitatively observed to stop

at around R− 5.5σ. For all the cases at ρ∗ = 0.15, the linear density region is observed to

stop around R− 2σ. By neglecting the R = 5σ, ρ∗ = 0.85 case, the IC and overall fluid

densities are obtained and plotted in Figure 4.11
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Figure 4.11: The PHS IC and fluid density for (a) ρ∗ = 0.15 and (b) ρ∗ = 0.85 as a
function of R, calculated using Equation 4.4 on the density variation curves in Figure
4.10. The blue line shows the expected total fluid density of the system.

Both the IC and calculated fluid density is observed to tend towards the bulk density with

increasing R. An explanation for the difference between the calculated and actual fluid

density can be due to insufficient sampling of the density variation in Figure 4.10. Given

the IC density, the adsorption per surface area Γ can be obtained in the following way

Γ =
1

4πR2

∫ R

0

4πr2 (ρ∗ (r)− ρ∗IC) dr (4.5)

Γ is plotted in Figure 4.12, and is observed to be relatively proportional with confinement

surface area. The small difference between the adsorption values can be caused by



40 4.3 First Order Perturbation Term

insufficient sampling and the various ways particles with diameter dBH (T ∗ = 1.5) can be

stacked close to the surface area at different R.

6 8 10 12 14
R/

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225
Average = 0.013N 2

(a)

7 8 9 10 11 12 13 14 15
R/

0.2500

0.2525

0.2550

0.2575

0.2600

0.2625

0.2650

0.2675

0.2700
Average = 0.260N 2

(b)

Figure 4.12: The adsorption Γ at (a) ρ∗ = 0.15 and (b) ρ∗ = 0.85 as a function of R,
using Equation 4.5. The average adsorption is plotted alongside.

The average Γ for ρ∗ = 0.15 and 0.85 is displayed with with two standard deviations

Γ (ρ∗ = 0.15) = 0.013± 0.001Nσ−2 Γ (ρ∗ = 0.85) = 0.260± 0.001Nσ−2 (4.6)

By multiplying the average surface adsorption with the surface area of confinement sphere

R, the IC core of any R can be predicted

ρ∗IC =
(4/3)πR3ρ∗ − 4πR2Γ

(4/3)πR3
(4.7)

The predictive and experimental IC densities are plotted together in Figure 4.13, and is

observed to match very well. Given the adsorption value for a certain fluid density, the IC

density can be predicted for spherical confinements of any R of relative size. A "relative

sized" R is defined as a confinement geometry of large enough R to create a distinct IC and

OC separation. For example, Equation 4.7 will begin to predict nonphysical and negative

IC densities at low R. If a "small" BHPT EOS require a clear distinction between IC

and OC regions for fluids in small systems to work, then the case of R = 5σ at ρ∗ = 0.85

would prove to be a limit of its applicability.
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Figure 4.13: The simulated and predicted IC densities are plotted for (a) ρ∗ = 0.15 and
(b) ρ∗ = 0.85 as a function of R. The predicted IC density is obtained from Equation 4.7.
The blue line shows the expected total fluid density of the system.

4.3.2 Fluid Density Variation

A similar analysis can be performed on the density arrangement profile as a function of

fluid density. Due to the intrinsic uncertainties that low confinement radii R have on

the IC-OC structure separation, this fluid density dependency analysis will focus on the

specific case of R = 10σ. By holding R = 10σ constant and estimating the IC region to

be between r = 0 and R− 5.5σ for all fluid densities, the fluid density dependency on the

density arrangement region and the IC density is shown in Figure 4.14
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Figure 4.14: (a) The density variation within a spherical confinement of R = 10σ for
fluid densities of ρ∗ = 0.15 − 0.85. The higher the fluid density is, the higher density
variation profile it has. (b) The IC and fluid density for a spherical confinement of spherical
confinement of R = 10σ, calculated using Equation 4.4 on the density variation equation
curves in Figure 4.14a. The blue line shows the expected total fluid density of the system.



42 4.3 First Order Perturbation Term

In comparison to how independent the density arrangement length is with R, the density

arrangement region increases in size and structure variation with increasing fluid density.

A consequence of the fluid density dependence is that more particles will be adsorbed

on the confinement surface, which in turn will increase the IC density reduction. The

significance of the distinct inner and outer core regions in relatively large confined fluids

is that the majority of the fluid is composed of the inner-core region. As a consequence,

confined fluids will more likely exert properties similar to bulk fluids of the inner-core

density in comparison to the actual fluid density. Given that is the case, then a more

accurate BT-RDF transformation can be obtained by using the IC density for the bulk

RDF instead of the total fluid density. Such a transformation avoids the direct and

possibly complicated consideration of the surface density arrangement region. More

formally stated, the BT-RDF transformation can be improved from

g (ρ∗ = ρ∗, r)small = g (ρ∗ = ρ∗, r)bulk × g0 (4.8)

to

g (ρ∗ = ρ∗, r)small = g (ρ∗ = ρ∗IC, r)bulk × g0 (4.9)

By using the experimental IC densities displayed in Figure 4.14b, the modified bulk RDF

transformation is shown in Figure 4.15
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Figure 4.15: The comparison between the small PHS RDF obtained from LAMMPS and
the BT HS RDF from Equation 4.9 for (a) ρ∗ = 0.15 and (b) ρ∗ = 0.85 at a confinement
radius of R = 10σ.

The overall trend between the BT-RDF and small RDF is observed to significantly improve,

but the BT-RDF is somehow vertically shifted by a constant value. This non-unity shift can
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also be observed in the low density and high R case of x0 (Figure 4.9a), where the constant

multiplication factor is seen to tend towards unity with increasing R. One possibility is

that the vertical shift is caused by the adsorption effect. For example, the small RDF

algorithm does not discriminate between the inner and outer core densities, but divides the

pair-distance histogram with the total fluid density. As a result of the IC particle depletion,

the relative probability of finding a particle inside the small system fluid would likely

decrease in comparison to the ideal gas distribution. In other words, the small n(k) will

reflect the histogram of an IC density fluid while the nID(k) will reflect the histogram of an

ideal gas with the actual fluid density in the RDF Equation g (r) = n(k)/nID(k) (Equation

3.7) where ρ∗IC < ρ∗, such that the numerator and denominator histograms reflects fluids

of two different densities. This probability decrease is not seen in the BT-RDF, as both

the n(k) and nID(k) reflect fluids of the same density ρ∗IC. By simply multiplying the BT

with the density fraction (ρ∗IC)/ρ∗, the nID(k) will reflect the histogram of an ideal gas

with the actual fluid density ρ∗ while the n(k) will still reflect the histogram for a fluid

with IC density. Therefore, one can perhaps obtain a more matching RDF transformation

by using the normalization factor (ρ∗IC)/ρ∗

g (ρ∗ = ρ∗, r)small = g (ρ∗ = ρ∗IC, r)bulk × g0 ×
ρ∗IC
ρ∗

(4.10)

The BT-RDF transformation using Equation 4.10 is shown in Figure 4.16
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Figure 4.16: The comparison between the small PHS RDF obtained from LAMMPS
and the final BT HS RDF from Equation 4.10 for (a) ρ∗ = 0.15 and (b) ρ∗ = 0.85 at a
confinement radius of R = 10σ.

An alternative method to obtain a similar result would be to find the number of particles

that can be obtained from integrating the small RDF, as it should in theory equal the
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number of particles that can be obtained from the BT-RDF. However, given that the IC

density trend is known, this method would require the additional information of knowing

the experimental small RDF.

Figure 4.16 shows excellent match between the two RDFs, proving the RDF transformation

using Equation 4.10 to be working well. At this point, the relative error between the

two RDFs can be caused by a number of reasons, including additional smallness effects,

the density arrangement region, that PHS RDFs are being used instead of HS RDFs and

insufficient sampling for the RDF and inner-core density calculation. The good match

also suggests that the density variation region does not modify the HS RDF in any other

major way than just to adsorb particles to the wall. Without a further investigation of

these factors, the BT a1 is calculated and plotted together with the small a1 in Figure 4.17.

The two a1 match exceptionally well, with a modest deviation at higher fluid densities.
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Figure 4.17: The bulk and small a1 from BHPT are plotted together with the a1 obtained
from the BT RDFs at a confinement radius of R = 10σ. Small RDF aRDF is obtained
using Equation 2.36 while small AVG aAVG is obtained using LAMMPS. The error is
plotted for aAVG with two standard deviations, but the error is so small it cannot be seen.

A short recap of the "bulk transformation" is that small a1 can be predicted from bulk

HS RDF, by simply having 1) a spherical and non-periodic ideal gas RDF g0 and 2) the

knowledge of the IC density at a certain ρ∗. Given that an analytical expression for the

adsorption factor Γ as function of fluid density can be obtained, then small a1 for spherical

geometries of any (relatively large) R can be obtained from this bulk-transformation

framework.
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4.4 Reference system

The main observation from the previous sections is the existence of distinctive IC and OC

regions inside fluids confined to spherical geometries of relative size. Perhaps the same

reduction in density can model the small PHS trend, such that the bulk CS EOS can be

used in the following way

PHS,small (ρ∗) = PCS (ρ∗IC) (4.11)

Given the case of R = 10σ and by using the IC density obtained from Figure 4.14b, the

following BT PHS is obtained
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Figure 4.18: The Bulk HS and the small PHS pressure is plotted together with the
pressure obtained from Equation 4.11 and 4.12 using the IC and modified IC density at
T ∗ = 1.5 and R = 10σ. The bulk HS pressure HS pressure is obtained from the CS EOS
and the small PHS pressure is obtained from LAMMPS.

By simply using the CS EOS with IC density values, a relatively accurate approximation

for the small HS pressure can be obtained. At the same time, one can clearly observe

a deviation between the BT and small pressure with increasing density. The difference

can be caused by inaccurate IC density values and additional finite-size effects. Given

that the error is only caused by inaccurate IC density values, then the IC density can be

shifted by a constant k1 to more accurately represent the small PHS pressure

PHS,small (ρ∗) = PCS (ρ∗IC × k1) (4.12)

The constant is found to have the small value of k1 ≈ 1.0143 by using a simple Fsolve

scheme, such that the modified BT pressure is plotted in Figure 4.18, and is shown to

have excellent match with the small-system pressure. The significance of the low constant
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k1 magnitude suggest the difference between the unmodified BT and small pressure can

solely be caused by inaccurate values of the IC densities. The modified BT PHS pressure

is used together with the BT a1 obtained from the previous section to accurately predict

the small LJ/s pressure in Figure 4.19
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Figure 4.19: The bulk and small LJ/s pressure is plotted alongside the predicted LJ/s
pressure with the use of BT a1 and BT HS pressure from Equation 4.12. The bulk LJ/s
pressure is obtained from BHPT of first order, while the small LJ/s pressure is obtained
from LAMMPS.

The LJ/s pressure prediction is surprisingly accurate considering that only the first

perturbation term is used. A possible reason can be due to the high fluid temperature

T ∗ = 1.5, as LJ/s particles will behave more like HS with increasing temperature and the

fact that perturbation terms are expanded in factors of β = 1/(kBT ).



47

5 Conclusion

As stated in the introduction, the goal of this master thesis was to investigate the topic

of Equation of State (EOS) that can describe the behaviour of nanofluids in spherical

confinement. By taking basis in general Barker-Henderson perturbation theory (BHPT),

this thesis has extended the theory by developing a framework that includes the description

of finite-size effects that arises for fluids confined to systems of small size. With only a

small number of modifications to the reference system and the first-order perturbation

term a1, the modified BHPT framework is observed to accurately predict small a1 and

small-system hard-sphere (HS) and Lennard-Jones/spline (LJ/s) pressures at low densities.

While the predictive error increases with density, the error magnitude at high densities is

still relatively limited.

A major finding in this thesis is the existence of a density arrangement region at the OC

of the fluid that adsorbs and depletes particles from the IC region of the fluid. As a result

of the particle adsorption, the IC density will decrease and be less than the overall fluid

density. Since the majority of fluids in relatively large small-systems is made up of the

IC-region, the IC density becomes a better descriptor of the fluid than the actual fluid

density. Therefore, one can generally obtain a better description of nanofluids by simply

using the IC density over the fluid density. For example, accurate predictive values of

the small HS pressure can be obtained by simply using the CS EOS with IC densities,

given that the IC densities are known. The knowledge of the IC density also considerably

increases the accuracy of the bulk-small HS RDF transformation. The combination of

the ρ∗IC HS bulk RDF, the spherical non-periodicity effect and a normalization constant,

predictive small a1 can be obtained. Values of IC densities can be obtained from the

adsorption per surface area Γ, which is relatively independent of R with the possible

exception of low R. As a conclusion, by simply having the knowledge of the IC density

and its variation with fluid density, an accurate BHPT EOS should be able to be obtained

for fluids contained to small spherical regions of any (relatively large) R magnitudes.
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6 Future Work

While the modified BHPT is observed to accurately predict the small-system LJ/s pressure,

much remains to be done in order to be able to fully obtain a small LJ/s EOS for a fluid

in spherical confinement of any arbitrary large radius R. The first task that should be

done is to verify the qualitative conclusions made in this thesis by simulating actual HS

particles in spherical confinement and increase the sampling number for ex. the density

variation in Figures 4.10 and 4.14a. The second task is to investigate the temperature

dependency of the small HS pressure and RDF, as the HS diameter dBH (T ∗) is defined

to vary with temperature in BHPT. Given that all the thesis conclusions still holds, the

next step is to obtain an accurate function for the IC density or adsorption per surface

area Γ that depends on the fluid density and confinement size R. By obtaining such an

analytical function, an accurate small LJ/s EOS can finally be obtained.

A natural step forward is to obtain various small LJ/s fluid properties from the EOS,

including heat capacities and the vapor-liquid phase diagrams, and compare the results with

bulk LJ/s and real fluid properties. The framework can also be applied to pair potential

fluids such as LJ and various Mie pair potentials. Other highly relevant possibilities for

further work include

• The comparison between the density arrangement region and Γ for fluids confined

to spherical and planar walls. Given that a link between a spherical and planar wall

can be obtained, then one can possibly use existing data from planar wall literature

to spherically confined fluids.

• A more rigorous understanding for why small RDF and a1,RDF can accurately reflect

a1,AVG and fluid properties. To the best of our knowledge, small RDFs have not

been investigated in-depth in the current literature.

• The topic of fluids confined to small R geometries to the degree that the fluid

become completely heterogeneous, as the current small BHPT EOS is only valid for

"relatively large" small R geometries.

• The spherical small BHPT EOS framework can be extended to fluids in small

systems of any type of confinement geometry, as adsorption should occur for hard

walls of any type of confinement geometries. In this case the difficulty can be

obtaining the non-periodic geometrical RDF reduction factor, especially for complex,

non-symmetric confinement geometries.
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Appendix

A1 LAMMPS input scripts

Sample initialization script for LAMMPS. The number of temp0 for the number of particles

and the confinement radius R. The PHS potential can be replaced with pair_style

lj/spline with pair_coeff 1 1 1.0 1.0 1.0 0.0 to simulate LJ/s particles.

1 log "log.LJ.init_random"

2 variable dt equal 0.0003

3 variable Nprod2 equal 10000000

4 variable therm_print equal 100

5 units lj

6 atom_style full

7 variable temperature equal 1.5

8 region box2 sphere 0.0 0.0 0.0 temp0 units box units box

9 region box sphere 0.0 0.0 0.0 temp0 units box units box

10 boundary f f f

11 create_box 1 box

12 create_atoms 1 random temp0 3688530 box2 units box

13 pair_style mie/cut 0.983917385243402

14 pair_coeff ∗ ∗ 1 0.9642390375385339 50.0 49.0 0.983917385243402

15 pair_modify shift yes

16 mass ∗ 1

17 timestep ${dt}

18 neighbor 0.1 bin

19 neigh_modify every 1 delay 0 check yes

20 thermo_style custom step time etotal ke pe lx density temp press

21 thermo ${therm_print}

22 minimize 0.0 1.0e11 3000000 30000000

23 fix wall all wall/region box lj126 3.0 0.01 0.011224620483093731

24 fix_modify wall energy yes

25 minimize 0.0 1.0e−10 10000000 10000000

26 velocity all create 1.5 3068102

27 dump d_posen all custom 1000 "dump.LJs.nano.nvt" id type x y z

28 dump_modify d_posen sort id

29 fix ensNVT all nvt temp 1.5 1.5 $(100.0∗dt)

30 fix 1 all wall/reflect xlo EDGE xhi EDGE ylo EDGE yhi EDGE zlo EDGE zhi EDGE

31 run ${Nprod2}

32 write_data "config.LJ.init_random"
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Sample production run script for LAMMPS. Nprod steps is adjusted depending on the

required statistical accuracy for the obtained results. The temp0 variables are replaced

for the confinement radius R and the pressure calculation on line 28.

1 log "log.LJs.nano.nvt"

2 variable dt equal 0.0003

3 variable Nprod equal 20000000

4 variable therm_print equal 100

5 variable Nevery equal 250

6 variable Nrepeat equal 1

7 variable Nfreq equal ${Nevery}∗${Nrepeat}

8 units lj

9 atom_style full

10 variable temperature equal 1.5

11 pair_style mie/cut 0.983917385243402

12 boundary f f f

13 read_data "config.LJ.init_random"

14 group SS type 1

15 fix 1 all wall/reflect xlo EDGE xhi EDGE ylo EDGE yhi EDGE zlo EDGE zhi EDGE

16 pair_coeff ∗ ∗ 1 0.9642390375385339 50.0 49.5 0.983917385243402

17 pair_modify shift yes

18 mass 1 1.0

19 timestep ${dt}

20 neighbor 0.1 bin

21 neigh_modify every 10 delay 0 check yes page 1000000 one 100000

22 thermo ${therm_print}

23 region box sphere 0.0 0.0 0.0 temp0 units box

24 fix wall all wall/region box lj126 3.0 0.01 0.011224620483093731

25 fix ensNVT all nvt temp ${temperature} ${temperature} $(100.0∗dt)

26 compute peratom all stress/atom NULL

27 compute p all reduce sum c_peratom[1] c_peratom[2] c_peratom[3]

28 variable press equal −(c_p[1]+c_p[2]+c_p[3])/(3∗(4/3)∗PI∗temp0∗temp0∗temp0)

29 fix o_tps all ave/time ${Nevery} ${Nrepeat} ${Nfreq} v_press file "out.entps_nvt"

30 dump d_posen all custom ${Nevery} "dump.LJs.nano.nvt" id type x y z

31 dump_modify d_posen sort id

32 dump d_check all custom ${Nprod} "dump_LJs.nano.check_nvt" id type x y z

33 run ${Nprod}

34 write_data "config.LJs.nano.end_nvt"
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A2 Fortran scripts

1 program density_variation

2 implicit none

3 integer, parameter :: n=temp1, it=400000, space=temp2

4 real, parameter:: radius=temp, dr=(2∗radius)/(space−1)

5 integer :: i, j, k, z, dummy, it0=0

6 integer, dimension(space) :: h=0

7 real, dimension(space) :: r_vec = (/(i∗dr, i=0,space−1)/), g=0

8 real, dimension(3,n) :: r=0

9 real, dimension(3) :: rij

10 real :: rij_sq, r_hi, r_lo, h_id, rho=n/((4.0/3.0)∗4.D0∗DATAN(1.D0)∗radius∗∗3), const

11 open(1, file='dump.LJs.nano.nvt')

12 do while (it0 < it)

13 do j = 1,9

14 read(1,∗)

15 end do

16 do i=1,n

17 read(1,∗)dummy,dummy,rij(1),rij(2),rij(3)

18 r(:,i) = (/rij(1), rij(2),rij(3)/)

19 end do

20 do i = 1, n−1

21 rij_sq = sum(r(:,i)∗∗2)

22 k = floor(sqrt(rij_sq)/dr) + 1

23 h(k) = h(k) + 1

24 end do

25 it0 = it0+1

26 end do

27 const = 4.0∗4.D0∗DATAN(1.D0)/ 3.0

28 do k = 1, space

29 g(k) = real(h(k))/real(it)

30 h_id = const∗((r_lo + dr)∗∗3 − (real(k−1)∗dr)∗∗3)

31 g(k) = g(k)/h_id

32 end do

33 open (unit=2,file="temp−dens.txt",action="write",status="replace")

34 do z = 1, space/2

35 write(2,fmt='(2f15.8)') r_vec(z), g(z)

36 end do

37 close(1)

38 end program read
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1 program RDF

2 implicit none

3 integer, parameter :: n=temp, it=80000, space=temp2

4 real, parameter:: radius=temp, dr=(2∗radius)/(space−1)

5 integer :: i, j, k, z, dummy, it0=0

6 integer, dimension(space) :: h=0

7 real, dimension(space) :: r_vec = (/(i∗dr, i=0,space−1)/), g=0

8 real, dimension(3,n) :: r=0

9 real, dimension(3) :: rij

10 real :: rij_sq, r_hi, r_lo, h_id, rho=n/((4.0/3.0)∗4.D0∗DATAN(1.D0)∗radius∗∗3), const

11 open(1, file='dump.LJs.nano.nvt')

12 do while (it0 < it)

13 do j = 1,9

14 read(1,∗)

15 end do

16 do i=1,n

17 read(1,∗)dummy,dummy, rij(1),rij(2),rij(3)

18 r(:,i) = (/rij(1), rij(2), rij(3)/)

19 end do

20 do i = 1, n−1

21 do j = i+1, n

22 rij(:) = r(:,i)−r(:,j)

23 rij_sq = sum(rij∗∗2)

24 k = floor(sqrt(rij_sq)/dr) + 1

25 h(k) = h(k) + 2

26 end do

27 end do

28 it0 = it0+1

29 end do

30 const = 4.0∗4.D0∗DATAN(1.D0)∗rho/ 3.0

31 do k = 1, space

32 g(k) = real(h(k))/real(n∗it)

33 h_id = const∗((r_lo + dr)∗∗3 − (real(k−1)∗dr)∗∗3)

34 g(k) = g(k)/h_id

35 end do

36 open (unit=2,file="rdf.txt",action="write",status="replace")

37 do z = 1, space

38 write(2,fmt='(2f15.8)') r_vec(z), g(z)

39 end do

40 close(1)

41 end program read
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A3 Python scripts

1 # calculating a1_RDF

2 import numpy as np

3 import math

4 from scipy.interpolate import interp1d

5 from pathlib import Path

6

7

8 def spline(z):

9 rs = (26 / 7) ∗∗ (1 / 6)

10 rc = 67 / 48 ∗ rs

11 a = −(24192 / 3211) ∗ (1 / (rs ∗∗ 2)) # (−24192/3211)∗(1/rs∗∗2)

12 b = −(387072 / 61009) ∗ (1 / (rs ∗∗ 3)) # (−387072/61009)∗(1/rs∗∗3)

13 if z <= rs:

14 return 4 ∗ (1 / (z ∗∗ 12) − 1 / (z ∗∗ 6))

15 if rs < z < rc:

16 return a ∗ (z − rc) ∗∗ 2 + b ∗ (z − rc) ∗∗ 3

17 if rc <= z:

18 return 0

19

20 def numint2(f, a, b):

21 x, w = np.polynomial.legendre.leggauss(16)

22 t = 0.5 ∗ (x + 1) ∗ (b − a) + a

23 return sum(w ∗ f(t)) ∗ 0.5 ∗ (b − a)

24

25

26 dens = temp

27 data = np.loadtxt("rdf.dat")

28 ip = interp1d(data[1:,0],data[1:,0]∗∗2∗np.vectorize(spline)(data[1:, 0])∗data[1:,1], kind='cubic')

29 rs = (67/48)∗(26/7)∗∗(1/6)

30 a000 = numint2(np.vectorize(ip),1,rs)∗dens∗2∗math.pi

31

32 f = open("a1rdf.txt","w+")

33 f.write("temp␣␣␣" + str(a000))

34 f.close()


