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Sammendrag

Optimering av likevektsgeometrier er et viktig trinn i studiet av diverse molekylære
egenskaper. Mangle slike egenskaper er lokale, hovedsaklig knyttet til en liten re-
gion av det totale molekylære systemet. Dette gjør multilevel-metoder passende for
beregning av lokale egenskaper, ettersom disse metodene modellerer ulike regioner
p̊a ulike niv̊a av teori, og derav tillater nøyaktige beskrivelser av regionen man er
interessert i til redusert beregningskostnad. Denne avhandlingen ser p̊a en nylig
introdusert multilevel Hartree-Fock (MLHF) metode, og videreutvikler denne meto-
den for optimering av likevektsgeometrier. MLHF-metoden er en to-niv̊a-metode,
som modellerer den aktive regionen med en HF-optimert tetthet og den inaktive
regionen med et startgjett for tettheten. Den molekylære gradienten for MLHF
utledes analytisk, og implementeres p̊a en slik m̊ate at den inaktive regionen er
frosset i rommet mens geometrien optimeres. Implementering og testing av meto-
den utføres i det nylig utgitte elektronstrukturprogrammet eT. Likevektsgeometrier
for fire sm̊a testsystemer beregnes og undersøkes i forhold til energi og et utvalg
av bindingslengder og bindingsvinkler. Sammenlignet med HF-optimerte geome-
trier er MLHF-geometriene høyere i energi, med en energiforskjell p̊a størrelsesorden
10−2 Hartree eller mindre. Videre sammenligninger gjøres med HF-geometrier der
den samme regionen som var frosset for MLHF-beregningen ogs̊a fryses for HF-
beregningen. MLHF-geometriene er forsatt høyere i energi en disse “frossen-HF”-
geometriene, men forskjellene er kun p̊a størrelsesorden 10−3 Hartree. Forskjellene i
de utvalgte bindingslengdene og bindingsvinklene for disse to metodene er innenfor
henholdsvis 2.8 pm og 2.6◦. Dette er innenfor de vanlige intervallene for feil p̊a
HF-niv̊aet av teori, og til gjengjeld gir MLHF-metoden en kraftig reduksjon i antall
orbitaler som inng̊ar i optimeringen. Effekten av å utvide det MLHF-aktive rommet
utover den ikke-frosne regionen undersøkes, og de korresponderende geometriene
nærmer seg ikke frossen-HF-geometrien. Dette motstrider hva som er forventet,
og kan muligens skyldes en forglemmelse i implementeringen, men ingen definitiv
forklaring er blitt funnet. Resultatene som er blitt oppn̊add kommer bare fra sm̊a
systemer, og sammenlignes kun innenfor HF-niv̊aet av teori. Disse begrensningene
for resultatene m̊a riktignok huskes p̊a, men MLHF geometrioptimering virker likevel
lovende n̊ar det gjelder utsikter for bruk p̊a store systemer, og for å fungere som
et startpunkt for nøyaktige korrelerte metoder. Et av leddene i den molekylære
MLHF-gradienten er beregningsmessig kostbart, og kan representere en utfordring
for utviklingen av en effektiv implementering av metoden. Et par approksimasjoner
til dette leddet utprøves, basert p̊a enkle approksimative oppdateringsalgoritmer,
men det viser seg at de introduserer en alvorlig forstyrrelse i gradienten, hvilket gjør
dem ubrukelige.





Abstract

The optimization of equilibrium geometries is an important step in the study of
various molecular properties. Many such properties are local, connected mostly to a
small region of the entire molecular system. This makes multilevel methods appro-
priate for the calculation of localized properties, as these methods model different
regions at different levels of theory, allowing accurate descriptions of the region of
interest at reduced computational cost. This thesis concerns a recently introduced
multilevel Hartree-Fock (MLHF) method, and develops this method for equilibrium
geometry optimization. The MLHF method is a two-level method, modelling the
active region with a HF optimized density and the inactive region with the starting
guess density. The MLHF molecular gradient is analytically derived, and imple-
mented in such a way that the inactive region is frozen in space during the geometry
optimization. The implementation and testing of the method is done in the newly
released electronic structure program eT. Equilibrium geometries of four small test
systems are obtained and investigated in terms of energy and a selection of bond
lengths and bond angles. When compared with HF optimized geometries, the MLHF
geometries are higher in energy, with energy differences on the order of 10−2 Hartree
or less. Further comparisons are made to HF optimized geometries where the same
region that was frozen in space for the MLHF calculation is also frozen for the HF
calculation. The MLHF geometries are still higher in energy than these “frozen HF”
geometries, but the differences are only on the order of 10−3 Hartree. The differ-
ences in the selection of bond lengths and bond angles for these two methods are
within 2.8 pm and within 2.6◦, respectively. This is within the usual error bounds
of the HF level of theory, and in return the MLHF method gives a large reduction
in the number of orbitals used in the optimization. The effect of extending the
MLHF active space beyond the unfrozen region is explored, and the corresponding
geometries fail to approach the frozen HF geometry. This is contrary to what is
expected, and might be the result of an oversight in the implementation; however,
no conclusive explaination has been determined. The results obtained are only from
small systems, and are compared only within the HF level of theory. While these
limitations of the results must be kept in mind, the MLHF geometry optimization
nevertheless appears promising for the prospect of application on large systems and
providing a starting point for accurate correlated methods. One of the MLHF molec-
ular gradient terms is computationally expensive and could pose a challenge for the
efficient implementation of the method. A couple of approximations to this term
are attempted, based on simple approximate updating schemes, but they are found
to introduce a severe disturbance in the gradient, which makes them unusable.
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1 Introduction

During the last six decades, computational chemistry has become an indispensable
tool in numerous areas of research. The ability to model chemical structures and
processes at the molecular level opens up the possibility to understand properties
and phenomena such as molecular structure, electronic structure, energy levels, vi-
brational frequencies, magnetic responses, and reaction mechanisms, in ways not
accessible through laboratory experiments. These computational models thus aid
the research in important areas like the study of biological systems, organic synthe-
sis, and material sciences, and help to guide experimental procedures in the search
for and development of new drugs, efficient catalysts, or novel functional materials.

Within computational chemistry, the field of geometry optimization 1 concerns the
study of molecular properties and phenomena related to the geometric structure of
molecular systems, and the responses to perturbations of this structure. Often, this
will involve constructing and investigating the potential energy surface (PES) of the
system. The PES represents the electronic energy as a multivariable function of all
nuclear geometrical coordinates, providing at each distinct molecular geometry the
corresponding energy. The study of the PES concerns problems such as locating sta-
tionary points and lowest-energy-pathways, corresponding to important geometrical
properties like equilibrium geometries, transition states, and reaction paths. As the
PES is a complicated surface, locating a stationary point is not a one-step process,
but must be done in an iterative fashion where an approximate step is calculated
in each iteration. Ideally, this process will converge to the stationary point as more
and more steps are taken. One of the most popular among such iterative methods
is Newtons method, which approximates the PES locally by a quadratic function
and calculates the step using the molecular gradient (matrix of first derivatives) and
molecular Hessian (matrix of second derivatives). In any geometry optimization,
the molecular gradient and Hessian are also used to confirm and characterize the
stationary points. A point is stationary if the corresponding gradient is zero, and can
be further characterized as a minimum, maximum, or saddle point by inspecting the
structure of the Hessian. This thesis will focus on finding equilibrium geometries,
corresponding to PES minima.

The construction of the PES is made possible by applying the Born-Oppenheimer
approximation. It states that because of the large difference in mass between an
electron and a nucleus, and the consequently large difference in their movement
speed, the assumption that the motion of the electrons in a molecule can be treated
separately from the motion of the nuclei is reasonable. This allows us to treat the
electronic structure with a parametric dependence on the nuclear positions, and
obtain a distinct electronic structure at each geometry. Being able to focus our
attention on the motion of the electrons is pivotal not only because a majority of
chemical phenomena are intimately linked to electronic structure specifically, but
because the treatment of electronic structure is an intricate one. The underlying
theory of motion in a molecular system is quantum mechanics (QM), in which the
properties of the system are contained in the quantum mechanical wave function.
Models based on QM, like the Wave Function Theory (WFT) and Density Func-
tional Theory (DFT) models, are called the ab initio (latin: “From first principles”)
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methods. In contrast, Molecular Mechanics (MM) methods use classical mechanics
to model the motion of the particles. In the WFT methods, the wave function is
obtained by solving the Schrödinger equation. Under the Born-Oppenheimer ap-
proximation, a distinct electronic wave function can be obtained at each molecular
geometry. Unfortunately, for systems with more than one electron, the equation
cannot be solved analytically for the exact electronic wave function. It is however
possible to construct approximate wave functions, and one very important method
for doing so is the Hartree-Fock (HF) method. This method models each electron as
feeling an averaged potential of all the other electrons in the system, as opposed to
treating all distinct electron-electron interactions. This has led to the definition of
electron correlation energy as the difference between the exact ground-state energy
and the energy given by HF in the limit of a complete basis2. Despite HF giving
energies typically within 1% of the exact energies, the lack of electron correlation
energy means that it is not possible to obtain quantitative results with HF alone3.
Where higher accuracy is needed, HF is commonly used as a starting point for
more accurate WFT methods like Møller-Plesset Perturbation Theory (MP), Con-
figuration Interaction (CI), and Coupled Cluster (CC)2. These post-HF methods
introduce hierarchies of improvements to the HF wave function as a way to systemat-
ically include more and more of the electron correlation energy. The higher accuracy
unfortunately comes with the price of larger computational cost. For example, the
full CI method, which is exact within a given basis set, scales exponentially with
the size of the system, while the highly accurate Coupled Cluster Singles Doubles
Triples (CCSDT) method formally scales with the 8th power of the size of the sys-
tem2. These kinds of fast scalings put a severe limit on the system sizes to which
these accurate methods can by applied. In particular, the large computational cost
is prominent in geometry optimizations, where the optimization of the wave function
and energy is required in each of the geometry iterations.

In short, the problem of high computational cost arises when we require a fast-scaling
method applied to a large molecular system in order to get acceptable results. How-
ever, even when highly accurate estimates of a molecular property are needed, it
seems unlikely that the entirety of a large system should need to be described at
the same degree of accuracy. This applies especially when studying properties that
are connected mostly to a smaller subsystem, a classic example being the study of
enzymes and enzymatic catalysis, where activity occurs in the small active site of
the enzyme4,5. Clearly, it would be highly desirable to be able to divide a system
into different regions and model them at different degrees of accuracy, in a way that
reduces computational cost while still yielding acceptable results. The multi-level
methods, also known as embedding methods, exist precisely for this purpose. These
come in a variety of families like the hybrid QM/MM methods4 which couple accu-
rate QM for the active region with computationally cheaper MM for the surrounding
environment, the continuum solvation methods6 which model the environment as
a continuous medium rather than as discrete molecular entities, and the DFT-in-
DFT7, WFT-in-DFT8, and WFT-in-WFT9 methods, which couple different levels
of QM theory.

The QM/MM methods were introduced by Warshel and Levitt in 197610, and have
since been widely established for many applications such as the study of biological,
inorganic, organometallic, and solid-state systems11. The ONIOM model introduced
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by Svensson et al.12 in 1996 is particularly flexible, allowing multiple layers with
different QM and MM models. In QM/MM methods, covalent bonds between the
regions are cut, and the use of link atoms to cap these bonds is required13. For
geometry optimizations, QM/MM often employ a so-called microiteration scheme
where at each iteration of the QM region optimization, the MM region is fully and
inexpensively optimized; however, including the electrostatic interactions between
the QM and MM region has been somewhat challenging for this approach13. In
DFT-in-DFT and WFT-in-DFT methods, the coupling between the two levels of
theory is described by a so-called embedding operator, which generally consists of a
classical electrostatic component as well as a nonlocal component arising from the
Pauli principle14. The construction of this embedding operator is not at all trivial,
and many different strategies have been developed for this purpose14–17. Continuum
solvation methods are important for the modelling of solvated systems6,18, since the
uniform solvent environment is well represented by a continuum. The effects of a
solute on the continuum can be easily represented by a QM operator, making it
straightforward to couple the continuum with a QM description of the solute19.
Notable continuum models include the Polarizable Continuum Model (PCM)20 and
the Conductor-like Screening Model (COSMO)21.

While the importance of DFT, MM, and continuum models in computational chem-
istry is undeniable, these methods will not be discussed further, and our focus will in-
stead be on the WFT methods. WFT-in-WFT multilevel methods are less common
than QM/MM and DFT-in-DFT. Notable examples include the CC-in-CC model
by Höfener and Visscher9, the hybrid model by Mata et al.22, and the cluster-in-
molecule model by Li and Piecuch23, which was later combined with frozen natural
orbitals by Rolik and Kállay24. Most such multilevel post-HF methods need to be
provided with an already optimized HF wave function, which will be expensive for
large systems. In 2014, Myhre et al.25 presented a general scheme for coupling mul-
tiple layers of different level CC for which the Pauli-principle is fulfilled across all
borders.

This thesis will concern a recent multilevel Hartree-Fock (MLHF) model developed
in the master thesis of Dundas26 under the supervision of Høyvik, later reformu-
lated in the molecular orbital (MO) basis by Sæther et al.27. It models the entire
system by a single Slater determinant MLHF wave function, thus introducing no
bond breaking or neglection of interactions at the boundaries. The MO basis for-
mulation is able to exploit a significant reduction in matrix dimensions compared to
the atomic orbital (AO) dimension. It may therefore be used as a cheaper starting
point for post-HF multilevel methods than a full-space optimized wave function as
mentioned earlier. The model was indeed used as a starting point for CCSD in the
master thesis of Sæther28 under the supervision of Høyvik. In all of these studies, the
MLHF model was implemented in local versions of the seasoned electronic structure
program LSDALTON29. Recently, a new open source electronic structure program
by the name of eT30 was released which features this MLHF model. The eT pro-
gram was developed by Folkestad and Kjønstad and collaborators at the Norwegian
University of Science and Technology. In this thesis, the MLHF method has been
further developed for geometry optimization by deriving the molecular gradient in
the AO basis. The gradient has been implemented into a local version of the eT pro-
gram, and by combining its MLHF wave function module and geometry optimization
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module, AO basis MLHF geometry optimization calculations could be performed.
The immobilization of the environment region has been explicitly enforced through
a manipulation of the gradient referred to as the frozen atoms approach.

The derivation of the molecular gradient was essential for this thesis because ab
initio geometry optimizations in general employ analytical gradients rather than
using numerical differentiation. Analytical gradients have been shown to not only
be more efficient, but also provide higher numerical accuracy31,32. The MLHF gra-
dient gives rise to a term involving two-electron interactions in the inactive region
whose construction represent a computationally expensive step. Some effort into the
analysis and approximation of this term has been attempted in this work and will
be presented.

In contrast to the use of analytical gradients, Hessians are usually approximated, as
the construction and inversion of exact Hessians is very expensive. The quasi-Newton
methods calculate the Newton step using an approximate Hessian which is updated
in each iteration based on the energy and gradient. The Broyden-Fletcher-Goldfarb-
Shanno (BFGS)1 method is one of the most popular Hessian updating schemes for
minimizations, but is unfit for locating saddle points33. Other updating schemes in-
clude the Symmetric Rank One (SR1)34 and the Powell-symmetric-Broyden (PSB)1

methods. The Newton equations may also be solved by applying a version of the Di-
rect Inversion in the Iterative Subspace (DIIS) technique by Pulay35 to the geometry
optimization problem, an approach known as GDIIS36, where the new geometry is
obtained as a linear combination of previous geometries which minimizes the New-
ton step1. Another popular method is the Rational Function (RF) method, which
replaces the quadratic approximation of the Newton method with a rational function
approximation33. The choice of Hessian updating is just one of several factors which
can affect the optimization performance. The choice of the initial Hessian, which
the updating schemes do not provide, can have a great impact on the convergence
since a better starting Hessian produces better approximate Hessians in the subse-
quent steps. Working in a suitable internal coordinate system can also significantly
improve the efficiency. Properly devised internal coordinates often perform better
than the simple but highly coupled Cartesian coordinates1,33. Finally, some form
of step control to monitor and restrict the step size is usually a good idea. This
thesis has not been concerned with comparing the performance of different Hessian
updates, starting Hessians, and coordinate systems. The eT program, being in its
earliest stage of release, does not yet offer a variety of such features in its geom-
etry optimization module. The module currently offers only the RF method with
BFGS Hessian updating and a scaled identity matrix initial Hessian in Cartesian
coordinates. Rather, the aim has been to achieve MLHF geometry optimization
functionality fit for proof-of-concept calculations with little regard for efficiency at
this stage. Still, having an idea of how different factors may affect the performance
is instructive.

This thesis is structured as follows. Chapter 2 presents some background theory
of the density-based HF energy optimization, the extension to the multilevel ana-
logue, and second order geometry optimization. Chapter 3 presents the derivation
of the MLHF molecular gradient, followed by the design of two approximations to
the expensive two-electron interaction term, and lastly a method to examine this
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gradient term numerically. Chapter 4 details the implementation of the MLHF ge-
ometry optimization and the frozen atoms technique into eT, the specifics of the
proof-of-concept calculations, as well as the implementation of the approximate gra-
dient terms. In Chapter 5, the results of the proof-of-concept calculations, the
performance of the approximate gradient terms, and the investigation of the exact
gradient term are presented and discussed. Finally, Chapter 6 gives a concluding
summary, while future work is discussed in Chapter 7.

5



2 Background theory

2.1 Exponential parametrization

The objective of this thesis is to develop and test equilibrium geometry optimization
using a multilevel Hartree-Fock (MLHF) wave function method. The geometry is
moved in iterative steps until a minimum is reached, and at each new geometry
the corresponding minimized energy is obtained by optimizing the wave function
at that geometry. Both the minimization of the energy and the optimization of
the geometry will be carried out in the density formulation of HF theory. In this
formulation, electronic states are represented by density matrices D rather than
by occupation number vectors |k〉 in the Fock space. The specifics of the density
formulation will be covered as part of Section 2.2, and the current section will instead
concern how to carry out a transformation from one density matrix to another. Such
transformations will feature heavily in both the theory of energy minimization and
of geometry optimization, as the starting density will undergo changes in both of
these procedures. In the energy minimization, this change is a result of varying
the electronic state to look for the lowest energy. In the geometry optimization, it
is a result of perturbing the molecular structure of the system. This section will
present the main points of the exponential parametrization method, which provides
a convenient way to transform between different densities.

Let Dmo be a real density matrix in the molecular orbital (MO) basis. In order
to constitute a valid density matrix, Dmo must fulfill the symmetry, trace, and
idempotency conditions:

(Dmo)T = Dmo

Tr[Dmo] =
1

2
Ne

(Dmo)2 = Dmo,

(2.1)

where Ne is the number of electrons in the system. An arbitrary transformation of
a valid density matrix will in general not result in a new density that is also valid.
However, a unitary transformation

Dmo = UTDmo
0 U (2.2)

will preserve the symmetry, trace, and idempotency of a valid reference density
matrix Dmo

0 . Here, U is an orthogonal matrix (which is the real analogue of a unitary
matrix). In fact, any valid density may be generated from any other valid reference
density by such a transformation3. Furthermore, any orthogonal matrix may be
written as the matrix exponential of an antisymmetric matrix (the real analogue
of an antihermitian matrix), and conversely the exponential of any antisymmetric
matrix is orthogonal37. We can make use of this fact to rewrite equation 2.2 as

Dmo(κ) = exp(−κ)Dmo
0 exp(κ) (2.3)

where κ is antisymmetric, i.e.
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κT = −κ. (2.4)

The fact that

U = exp(κ) ⇒ UT = exp(−κ) (2.5)

is easily seen from the definition of the matrix exponential:

exp(A) =

∞∑
n=0

An

n!
. (2.6)

The advantage of the exponential formulation in equation 2.3 is that it is simpler
to work with the exponential of an antisymmetric matrix than with an orthogonal
matrix directly. Antisymmetric matrices are trivial to represent by a set of indepen-
dent parameters; e.g. the lower triangular part of κ may be chosen as independent
parameters, and the remaining elements are then easily generated from the anti-
symmetry condition37. Since each element of the lower triangular part corresponds
to exactly one independent parameter, κ will have 1

2Nao(Nao − 1) independent pa-
rameters (where Nao is the number of AOs). This method of performing a unitary
transformation using the matrix exponential of an antisymmetric matrix is what is
known as exponential parametrization.

If we expand equation 2.3 in terms of the definition of the matrix exponential (equa-
tion 2.6), we arrive at a representation for the exponential parametrization known
as the Baker-Campbell-Hausdorff (BCH) expansion:

Dmo(κ) = exp(−κ)Dmo
0 exp(κ)

= Dmo
0 + [Dmo

0 ,κ] +
1

2!
[[Dmo

0 ,κ],κ] +
1

3!
[[[Dmo

0 ,κ],κ],κ] + . . .
(2.7)

The BCH expansion will prove essential in later sections when evaluating derivatives
of the density to derive the electronic and molecular gradient.

A problem arises with the exponential parametrization in that for some κ, the
transformation yields no change to the reference density:

exp(−κ)Dmo
0 exp(κ) = Dmo

0 . (2.8)

This is referred to as a redundant rotation of the density. Including these redundant
rotations is not only unnecessary, but may even lead to problems with convergence
since they introduce singularities in the Hessian at stationary points3. The redun-
dant rotations can be identified and removed by considering the projections of κ.
We start by noting the structure of the MO density matrix:

o v

Dmo =
o
v

(
1 0
0 0

)
(2.9)

The matrix has ones along the diagonal of the first 1
2Ne (corresponding to the num-

ber of doubly occupied orbitals) columns and zeros elsewhere. The reason for this
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structure is explained in section 2.2. Importantly, since Dmo
0 only has eigenvalues 1

and 0, it constitutes a projector 3. Defining the projectors

Pmo = Dmo
0 (2.10)

and

o v

Qmo = I−Dmo
0 =

o
v

(
0 0
0 1

)
,

(2.11)

where I is the identity matrix, we have the relations

PmoQmo = QmoPmo = 0 (2.12)

and

Pmo + Qmo = I. (2.13)

Equation 2.13 allows κ to be written in terms of its projections as

κ = (Pmo + Qmo)κ(Pmo + Qmo)T

= Pmoκ(Pmo)T + Pmoκ(Qmo)T + Qmoκ(Pmo)T + Qmoκ(Qmo)T.
(2.14)

The right-hand side terms correspond to the occupied-occupied, occupied-virtual,
virtual-occupied, and virtual-virtual blocks of κ, respectively. By using the idem-
potency of Dmo and equation 2.12, it is easily shown that

[Dmo
0 ,Pmoκ(Pmo)T] = 0

[Dmo
0 ,Qmoκ(Qmo)T] = 0.

(2.15)

Thus, for the occupied-occupied and virtual-virtual blocks of κ, all terms of the BCH
expansion (equation 2.7) except the first term will vanish, resulting in no changes
to the density. Therefore, the redundant rotations are the occupied-occupied and
the virtual-virtual rotations, and can be removed by requiring that κ satisfies the
projection relation

κ = Pmoκ(Qmo)T + Qmoκ(Pmo)T. (2.16)

2.2 The density based Hartree-Fock method

This section will give an overview of the theory of density based HF for energy
minimization. In other words, how to optimize the HF wave function at a given
molecular geometry. This will serve as a foundation on which the extension to the
multilevel HF method will be presented later (section 2.3).

Our system is assumed to be nonrelativistic, and the Born-Oppenheimer approxi-
mation is applied. We will consider only closed-shell HF-states with real orbitals.
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The HF energy is the expectation value of the true Hamiltonian with respect to the
HF state:

E = 〈HF| Ĥ |HF〉 . (2.17)

In second quantization, the Hamiltonian in the MO basis is given by

Ĥ =
∑
pq

hmo
pq Epq +

1

2

∑
pqrs

gmo
pqrsepqrs + hnuc, (2.18)

where Epq and epqrs are the one- and two-electron excitation operators, respectively.
The one- and two-electron integrals in atomic units are

hmo
pq =

∫
φ∗p(r)

(
1

2
∇2 −

∑
I

ZI
rI

)
φq(r)dr (2.19)

and

gmo
pqrs = (pq|rs) =

∫∫
φ∗p(r1)φ∗r(r2)

1

r12
φq(r1)φs(r2)dr1dr2. (2.20)

In the density formulation of HF, the energy is given by

E = 2
∑
pq

Dmo
pq h

mo
pq +

∑
pqrs

dmo
pqrsg

mo
pqrs + hnuc, (2.21)

where the one- and two-electron densities are introduced. These are defined as

Dmo
pq =

1

2
〈HF|Epq |HF〉

dmo
pqrs =

1

2
〈HF| epqrs |HF〉 ,

(2.22)

In an orthogonal MO basis, the condition

CTSC = I (2.23)

holds and the one-electron density matrix has the diagonal structure shown in equa-
tion 2.9. For a closed-shell HF-state, the two-electron density may be written in
terms of one-electron densities3. This, together with orthogonality, allows the HF
energy to be written as

E = 2Tr[Dmohmo] + Tr[DmoGmo(Dmo)] + hnuc, (2.24)

where we have defined the matrix

Gmo
pq (Dmo) =

∑
rs

(
2gmo
pqrs − gmo

psrq

)
Dmo
rs . (2.25)

The density-based energy minimization is commonly carried out in the AO basis, in
which the AO density matrix

D = CDmoCT (2.26)

is introduced into the HF energy expression. By defining the transformation of the
matrix elements as

9



hmo = CThC

Gmo(Dmo) = CTG(D)C
(2.27)

and exploiting the cyclic permutation feature of the trace, we get the HF energy in
the AO basis:

E = 2Tr[Dh] + Tr[DG(D)] + hnuc. (2.28)

The symmetry and trace conditions of the MO density (equation 2.1) translate to
the AO density:

DT = D, (2.29)

Tr[DS] = Tr[Dmo] =
1

2
Ne. (2.30)

Furthermore, the orthonormality of the MO space (equation 2.23) implies that the
AO density matrix must satisfy the idempotency condition

(DS)2 = CDmoCTSCDmoCTS = DS (2.31)

The minimization of the energy is achieved through the exponential parametrization
of the density, which preserves these conditions. The exponential parametrization
is detailed in section 2.1 for the MO basis, and its AO basis analogue is obtained
by applying the AO transformation to the parametrized MO density (equation 2.3)
and using the orthonormality condition (equation 2.23) and the identity37

Bexp(A)B−1 = exp(BAB−1). (2.32)

Defining the AO transformed antisymmetric matrix

X = CκCT (2.33)

we get the exponential parametrization of the AO density as

D(X) = exp(−XS)Dexp(SX). (2.34)

This parametrization may be represented as an asymmetric BCH expansion 3

D(X) = D + [D,X]S +
1

2!
[[D,X]S,X]S + . . . , (2.35)

where

[D,X]S = DSX−XSD (2.36)

is the so-called S commutator. The matrix X must obey a projection relation similar
to equation 2.16, with the AO projectors

P = DS

Q = I−DS,
(2.37)

to avoid redundant rotations.
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X may be written in terms of its independent parameters as

X =
∑
µ>ν

Xµν(Eµν −Eνµ) =
∑
µ>ν

XµνE
−
µν (2.38)

where Eµν are the so-called elementary matrices3. To find the electronic gradient, we
evaluate the differentiated energy in the point X = 0. The energy can be expressed
as a function of X by inserting the parametrized density (equation 2.35) into the
energy (equation 2.28), yielding

E(X) = 2Tr[Dh] + Tr[DG(D)] + 2Tr[[D,X]SF]

+ Tr[[D,X]SG([D,X]S)] + . . .
(2.39)

where

F = h + G(D) (2.40)

is the Fock matrix. Differentiating with respect to Xµν and evaluating at X = 0
yields

E(1)
µν = 2Tr[[D,E−µν ]SF] = 2Tr[E−µν(FDS− SDF)]. (2.41)

Thus the convergence criteria for the energy optimization is

FDS = SDF. (2.42)

For the actual optimization algorithm of the energy, there are a couple of options.
One is the density-based SCF method, in which the Roothan-Hall equations are
reformulated as a set of linear equations whose solution produces a new density
matrix3. These equations are solved until the generated density equals the previous
density. In contrast to the classical orbital-based SCF method, this method does not
require the diagonalization of the Fock matrix, only the addition and multiplication
of AO matrices, and linear scaling can be achieved3.

Another option is to directly minimize the energy (equation 2.28) with respect to the
density using one of the standard first- or second-order methods like the conjugate
gradient or Newtons method. With Newtons method, we iteratively search for the
minimum of a quadratic approximation to the energy function by solving the Newton
equations

E(2)
n ∆Xn = −E(1)

n , (2.43)

where E
(1)
n and E

(2)
n are the electronic gradient and Hessian of the n’th iteration,

respectively, and Xn is the change in the variational parameters3. However, to
directly solve the Newton equations would require the expensive inversion of the
Hessian, and it is thus more economical to solve the equations in an iterative fashion.
This is done by carrying out linear transformations of the Hessian on trial vectors
z:

σ = E(2)z. (2.44)

In the density formulation, this can be done in a way that avoids the explicit con-
struction and storage of the Hessian3.
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2.3 Density based multilevel Hartree-Fock

This section will present the main points of the energy minimization in the density-
based multilevel Hartree-Fock (MLHF) method in the MO basis as formulated by
Sæther et al.27. Their derivation follows similar steps as the classical density HF
approach described in section 2.2, but exploits the MO basis formulation to obtain
a significant reduction in the dimensions of the matrices. The process yields a single
MLHF wave function for the entire molecular system, thus introducing no breaking
of bonds or other troublesome behaviour at the boundary between the active and
inactive region.

In the MLHF approach, the density matrix is partitioned into an active and an
inactive part,

D = Da + De, (2.45)

each density representing a corresponding orbital space. We want these to be or-
thonormal spaces and thus require that each density fulfills the symmetry, trace, and
idempotency conditions (equations 2.29, 2.30, 2.31). Their sum, in other words the
total density, should also fulfill these conditions, implying not only the orthonormal-
ity of the total space, but also that the active and inactive spaces are orthogonal to
each other. The goal of the method is to optimize just the active part, while the in-
active part is modeled with a starting guess wave function which is never optimized.
This can be accomplished by first generating a starting guess density for the whole
system, which is then partitioned according to equation 2.45 by Cholesky decompo-
sition as described by Myhre et al.25. Since the inactive density is never optimized,
a reasonable starting guess should be chosen. One possibility is the superposition of
atomic densities (SAD) starting guess by van Lenthe et al.38.

The MLHF formulation allows for a reduction in dimensions of the active MO space,
thus making it highly desirable to carry out the energy minimization in the MO basis.
This reduction is performed as

oa oe va ve

Dmo
a =

oa
oe
va
ve


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


↓

oa va

Dmo
a,r =

oa
va

(
1 0
0 0

)
,

(2.46)

from Nao × Nao to Na
ao × Na

ao, where Nao is the total number of AOs and Na
ao is

the number of active AOs. This is owing to the structure of the active MO density,
which only has non-zero elements in the active occupied-active occupied block. The
active MOs are generated from the starting guess SAD density, while the inactive
MOs are never generated or referenced. This only needs to be performed once at
the beginning of the procedure.
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Inserting the partitioned MO density into the energy (equation 2.24) and applying
the reduction of dimensions yields

E = 2Tr[Dmo
a,rh

mo
r ] + Tr[Dmo

a,rG
mo
r (Dmo

a,r )]

+ 2Tr[Dmo
e hmo] + Tr[Dmo

e Gmo(Dmo
e )]

+ 2Tr[Dmo
a,rG

mo
r (Dmo

e )] + hnuc,

(2.47)

where the subscript r denotes a matrix of reduced dimension. We have used the
identity

Tr[AGmo(B)] = Tr[BGmo(A)], (2.48)

which follows from the permutational symmetries of the two-electron integrals (equa-
tion 2.20) for real orbitals.

Equation 2.47 may be written in terms of the separate contributions from the active
and inactive spaces:

E = e(Dmo
a,r ) + e(Dmo

e ) + 2Tr[Dmo
a,rG

mo
r (Dmo

e )] + hnuc, (2.49)

where

e(Dmo
i ) = 2Tr[Dmo

i hmo] + Tr[Dmo
i Gmo(Dmo

i )]. (2.50)

The energy minimization is achieved through rotations among active occupied and
active virtual orbitals only. In other words, the active density is optimized through
the exponential parametrization

Dmo
a,r (κr) = exp(−κr)D

mo
a,r exp(κr) (2.51)

while the inactive density remains unchanged throughout the minimization. To
avoid redundant rotations, κr is projected as

κr = Pmo
a,rκrQ

mo
a,r + Qmo

a,rκrP
mo
a,r (2.52)

with the projectors

Pmo
a,r = Dmo

a,r

Qmo
a,r = I−Dmo

a,r .
(2.53)

Inserting the BCH expansion of the parametrization into the energy expression yields

E(κr) = e(Dmo
e ) + 2Tr[Dmo

a,rh
mo
r ] + Tr[Dmo

a,rG
mo
r (Dmo

a,r )]

+ 2Tr[Dmo
a,rG

mo
r (Dmo

e )] + Tr[[Dmo
a,r ,κr]F

mo
eff,r] + . . .

(2.54)

where we have defined the effective Fock matrix

Fmo
eff,r = hmo

r + Gmo
r (Dmo

a,r ) + Gmo
r (Dmo

e ). (2.55)

From here, the derivation of the electronic gradient is analogous to the full space
HF method. Differentiating with respect to the independent elements of κr and
evaluating at κr = 0, we get
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E(1)
pq = 2Tr[[Dmo

a,r ,E
−
pq,r]F

mo
eff,r] = 2Tr[E−pq,r(F

mo
eff,rD

mo
a,r −Dmo

a,rF
mo
eff,r)]. (2.56)

Thus the convergence criteria is

Fmo
eff,rD

mo
a,r = Dmo

a,rF
mo
eff,r (2.57)

or equivalently

Fmo
eff,r,vo = Fmo

eff,r,ov. (2.58)

The linear transformations of the electronic Hessian on a trial vector κ is

E(2)κ = (Fmo
eff,r,oo − Fmo

eff,r,vv)κ + κ(Fmo
eff,r,vv − Fmo

eff,r,oo)

−Gmo
r,ov([Dmo

a,r ,κr]) + Gmo
r,vo([Dmo

a,r ,κr]).
(2.59)

The MLHF energy can now be minimized with an algorithm like the density-based
SCF method or Newtons method as discussed for the full-space HF method in section
2.2. Sæther et al.27 demonstrated the MLHF energy optimization using a Roothan-
Hall (RH) quasi-Newton minimization, where the two-electron integral matrix terms
of the electronic Hessian linear transformations (equation 2.59) are left out. Later,
Høyvik39 achieved accelerated convergence of the MLHF method through two dif-
ferent approaches: Combination of the RH process with the direct inversion in the
iterative subspace (DIIS) method by Pulay35, and the augmented RH method by
Høst et al.40.

2.4 Orbital connections

Now that the procedure for the MLHF energy minimization has been established,
we can move on to consider geometrical perturbations of the molecular system.
As it turns out, the change in molecular geometry upon an iterative step carries
some substantial implications on how we expand our wave function in a basis set.
Specifically, since our finite basis consists of AOs that are fixed on the nuclei, it
will change in response to the geometry perturbation. This is an example of a so-
called perturbation-dependent basis set (PDBS). Since there exist an infinite number
of orthonormal sets of orbitals at each molecular geometry, the need arises for a
method to unambiguously select exactly one of these sets at the next geometry.
These methods of creating a one-to-one correspondence between orthonormal orbital
sets at different perturbation strengths are known as orbital connections. Something
worth noting is that this complication of having to select a different basis at each
geometry arises because we are using a finite, incomplete basis41. This section will
present some of the fundamental theory on orbital connections. For more details,
see Olsen et al.42.

Let the orthonormal molecular orbitals (OMOs) be given by

ψm(x) =
∑
µ

χµ(x)Cµm(x), (2.60)
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where χµ is the set of basis functions and x is a vector of external parameters, for
instance the geometrical coordinates. The OMOs will in general differ from the
final MOs after optimization has been carried out, but will be required to equal the
optimized MOs for zero perturbation given by

φm(x0) =
∑
µ

χµ(x0)C(0)
µm. (2.61)

These may be considered part of the unmodified MOs (UMOs) defined as

φm(x) =
∑
µ

χµ(x)C(0)
µm. (2.62)

The UMOs are in general not orthogonal. The OMOs can now be written as

ψm(x) =
∑
n

φn(x)Tnm, (2.63)

where the so-called connection matrix T fulfills

T†(x)S(x)T(x) = 1

T(x0) = 1.
(2.64)

The latter requirement implies that the OMOs equal the UMOs at x0. Equation
2.63 holds as long as the UMO overlap matrix S(x) is non-singular42. By rewriting

T†(x)S(x)T(x) = (S
1
2T)†(S

1
2T) = 1 (2.65)

we see that S
1
2T is a unitary matrix and therefore may be expressed as the expo-

nential of an antihermitian matrix as discussed in section 2.1. For a real space this
corresponds to the exponential of an antisymmetric matrix, determined by a set of
1
2n(n−1) independent parameters as mentioned. Then by extension, the connection
matrix T is uniquely determined by the same number of independent parameters.
The choice of these parameters is what constitutes a particular orbital connection.

Some connections like the Gram-Schmidt connection and the symmetric connection
are simple to set up, but lack any real physical significance. In contrast, if the
natural connection introduced by Olsen et al.42 is used, the calculation of molecular
response properties is made more transparent in the sense that the equations reduce
to terms which have meaningful relations to physical quantities. An example is the
paramagnetic and diamagnetic terms in the calculation of magnetizabilities. This
connection is set up so that the change in the OMOs upon perturbation is as small
as possible.

As we shall see when deriving the MLHF molecular gradient (section 3.1), orbital
connections in the density formalism correspond to establishing connections between
the reference density matrices at different geometries, which will directly influence
the MLHF molecular gradient expression.
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2.5 The BFGS algorithm

The optimization of equilibrium geometries corresponds to locating a local minimum
of the PES. This section presents some theory on the popular Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method which will be used in the iterative search for the
minimum.

The BFGS method has its origin in Newtons method, a second order iterative
method which approximates the PES by a quadratic surface within a local region.
The i ’th step towards the local PES minimum is given by the Newton equations:

si = xi − xi−1 = −H−1
i gi, (2.66)

where g is the molecular gradient and H is the molecular Hessian. The step is
defined as the difference between the new and old geometry. Solving the Newton
equations involves the computationally expensive calculation and inversion of the
Hessian matrix. An alternative is to use less expensive, approximate Hessians. In
quasi-Newton methods an initial starting guess Hessian is used, and is updated in
some manner in the subsequent iterations to produce approximate Hessians. The
BFGS method is one such method, and uses the following update scheme for the
approximate Hessian33:

GBFGS
i = Gi−1 +

∆gi∆gT
i

∆gT
i si

− Gi−1sis
T
i Gi−1

sT
i Gi−1si

, (2.67)

where G is the approximate Hessian and ∆gi = gi− gi−1 is the gradient difference.
The BFGS Hessian is well suited for minimizations since it is guaranteed to be
positive definite as long as Gk−1 is positive definite33. For more information on
BFGS and other search methods, see Schlegel1.

The quasi-Newton methods can also be reformulated to instead update the inverse
Hessian directly and thus avoid the inversion step1.

Approximate Hessian updating methods do not provide an initial Hessian for the
optimization. The initial Hessian must instead be obtained in some other fashion.
One obvious possibility is to calculate it exactly, although this might not always
be possible. It may also be estimated in some fashion, for instance by empirical
quantities, or by a Hessian calculation with MM or a lower level QM method. A
crude approach is to simply use a scaled identity matrix as the initial Hessian1.
Various model initial Hessians exist, an example of which was developed by Lindh
et al.43. Bakken and Helgaker33 achieved good performance with this model Hessian
in combination with redundant internal coordinates.

2.6 The rational function method

An alternative to Newtons method is the related Rational Function (RF) method,
where the local quadratic approximation to the surface is replaced by a local rational
function approximation. Minimizing this rational function leads to the eigenvalue
equation
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(
Hi gi
gT
i 0

)(
si
1

)
= λi

(
si
1

)
, (2.68)

where left-hand side matrix is referred to as the augmented Hessian. This eigenvalue
problem actually represents a system of equations

si = −(Hi − λiI)−1gi

λi = gT
i si

(2.69)

where the former is a level-shifted version of the Newton equation (equation 2.66).
Solving equation 2.68 gives a particular eigenvector which, after scaling it so that its
last element equals 1, contains the geometry step. When looking for a minimum, we
chose the eigenvector associated with the smallest eigenvalue λi

44. The Hessian used
in the RF equation may be an approximate one provided by an updating scheme
such as the BFGS Hessian (equation 2.67).

2.7 Step control

The convergence of Newtons method or the RF method is not guaranteed, as the
quadratic surface or rational function approximations are only accurate within a
local region around the reference point. If the Hessian has small eigenvalues, the
produced step may become too large and overshoot the minimum, resulting in slow
convergence or even no convergence altogether if the steps get stuck in a loop1. The
step size may be restricted to avoid this in a number of ways. A simple approach
is to set a hard threshold for the norm of the step, or for each step component. A
better approach is to update this threshold in each iteration based on the accuracy
of the quadratic surface or rational function at the previous geometry33. Another
type of step control called a line search will only accept the step if it satisfies the
Wolfe condition

∆E < αgT
i ∆x

gT
i+1∆x > βgT

i ∆x,
(2.70)

where gi and gi+1 are the gradients in the current and new points, respectively, and
α and β are chosen parameters between zero and one. If the Wolfe condition is not
satisfied, the trial step is scaled down by some chosen factor to produce the next trial
step. A disadvantage of this is that each trial step requires a separate energy and
gradient calculation, an expensive approach especially for ab initio optimization.
An alternative is to produce a step that satisfies the Wolfe conditions based on a
polynomial fitting to the energy and gradient1.

2.8 Coordinate systems

The choice of coordinates for the molecular geometry can have a great impact on
the performance of geometry optimization methods. A poor choice of coordinates
may compromise the quality of the optimization by having traits such as:
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• Large variation in the stiffness of coordinates

• Strong coupling between the coordinates

• Large anharmonicity of the PES

Large variations in coordinate stiffness corresponds to an ill-conditioned Hessian
matrix, in which the eigenvalues differ strongly in magnitude1. Strong coupling
corresponds to large off-diagonal elements of the Hessian1. Both of these can slow
down the optimization. Lastly the anharmonicity of the PES, if significant around
the search area, means that the quadratic approximation of our method is poor, and
the calculated step may be inaccurate.

The Cartesian coordinate system is perhaps the most used and well-known coordi-
nate system, as it is simple and straightforward to implement. Unfortunately, these
coordinates are strongly coupled when representing molecular systems. They are also
redundant, as there are more such coordinates than the number of internal degrees
of freedom in a molecular system. Certain transformations of such redundant coor-
dinates will simply result in translation or rotation of the entire molecular system in
space. There exist various internal coordinate systems which generally perform bet-
ter than the Cartesian coordinates for geometry optimizations33,45. These consist
of coordinates corresponding to molecular degrees of freedom such as bond lengths,
bond angles, and dihedral angles, and can be either redundant or non-redundant.
The Z-matrix internal coordinates are non-redundant, but may encounter problems
especially for large or cyclical systems33,46. Various redundant and non-redundant
internal coordinate systems have since been introduces, such as the redundant inter-
nal coordinates by Peng et al.47, The natural internal coordinates by Pulay et al.48

have the interesting property of minimizing the coupling between the coordinates.44.

2.9 Hartree-Fock equilibrium geometries

The calculation of equilibrium geometries with HF is performed routinely in the
literature49–52. This section will present some known aspects of the performance of
HF in such calculations.

Equilibrium geometries obtained with HF usually differ from the exact equilibrium
geometries by only a couple of picometers3. Bond angles usually differ by a couple
of degrees35,50. Because HF lacks electron correlation energy, the electron-electron
repulsion is underestimated, with the result that HF often gives bond lengths that
are too short53. This effect is especially prominent for double bonds, triple bonds,
and bonds containing highly electronegative atoms50. The inclusion of correlation
energy by post-HF methods have in general been found to increase bond lengths50,51.
Conversely, Helgaker et al.51 found that improvements to the basis set tends to
shorten bond lengths. They compared equilibrium geometries obtained with HF
and various post-HF methods, for different-sized correlation consistent basis sets
cc-pVDZ, cc-pVTZ, and cc-pVQZ. For certain combinations of correlation level and
basis set size, a strong cancellation of errors occurred, resulting in highly accurate
bond lengths. For HF, there was no gain in going beyond the cc-pVDZ basis set
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since HF already undershoots the bond lengths; the only way to get improvements
was to introduce correlation. Xie et al.54 reached similar conclusions for correlation
consistent basis sets with added polarization functions and f-like functions.
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3 Molecular gradient in multilevel
Hartree-Fock

3.1 Deriving the molecular gradient

This section will present in detail the derivation of the analytical MLHF molecular
gradient in the AO basis which has been developed in this thesis. The approach is
largely based on a derivation of the HF molecular gradient presented by Larsen et
al.55 and will mostly follow the same steps. Still, some subtleties will arise in the
MLHF formulation.

The AO transformed MLHF energy (equation 2.47) is given by

E = 2Tr[Dah] + Tr[DaG(Da)] + 2Tr[Deh]

+ Tr[DeG(De)] + 2Tr[DaG(De)] + hnuc.
(3.1)

By differentiating this energy with respect to a geometrical coordinate, we obtain an
element of the molecular gradient. We will for simplicity use the shorthand notation

Ex ≡ ∂

∂kq
E = [g]kq (3.2)

to denote a general partial derivative with respect to a single spatial coordinate
q ∈ {x, y, z} of the k ’th nucleus. In other words, this denotes a general element
of the 3×Na gradient matrix g, where Na is the number of atoms. For further
simplicity, Ex will be referred to as just the “gradient” during the derivation.

Differentiating equation 3.1 yields

Ex = 2Tr[(Dx
a + Dx

e )Feff ] + 2Tr[Dah
x] + 2Tr[Deh

x]

+ Tr[DaG
x(Da)] + Tr[DeG

x(De)] + 2Tr[DaG
x(De)] + hxnuc.

(3.3)

Here we have used the identity 2.48, and introduced the AO transformed effective
Fock matrix (equation 2.55). Note the use of the following notation:

Tr[AGx(B)] =
∑
ijkl

(2(ij|kl)− (il|kj))xAijBkl. (3.4)

Because the AO basis is perturbation-dependent (see section 2.4), the AOs, and by
extension the densities, will change throughout the geometry optimization. Even the
inactive density De will change, despite the fact that only active nuclei are perturbed,
because it contains contributions from all AOs of the system. Consequently, its
derivative Dx

e must also be included. We cannot simply consider only the energy
terms that depend on the active density, like we do in the energy minimization. For
this reason we will for briefness write the gradient in terms of the total density as

Ex = 2Tr[DxFeff ] + 2Tr[Dhx] + Tr[DGx(Da)] + Tr[DGx(De)] + hxnuc (3.5)
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whenever specific reference to Da or De is not necessary. We do however keep the
differentiated two-electron integral matrix

Gx(D) = Gx(Da) + Gx(De) (3.6)

in separate terms for reasons explained later in this section.

The differentiated densities cannot be obtained explicitly and will therefore need to
be expressed in terms of other quantities. To achieve this, we once again consider
the exponential parametrization of the density expressed as an asymmetric BCH
expansion (equation 2.35). Conditions on the X matrix can be inferred from the
projection of its MO basis counterpart κ onto active occupied-active virtual space,
which was carried out in the energy minimization (equation 2.52). Without reducing
the dimensions of the MO space, the projection of κ uses the projectors Pmo

a = Dmo
a

and Qmo
a given by

oa oe va ve

Qmo
a =

oa
oe
va
ve


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 .
(3.7)

By then using the orthonormality, we arrive at

X = CκCT = CPmo
a κQmo

a CT + CQmo
a κPmo

a CT

= CPmo
a CTSCκCTSCQmo

a CT + CQmo
a CTSCκCTSCPmo

a CT

= PaXQT
a + QaXPT

a

(3.8)

where we have defined

Pa = CPmo
a CTS

Qa = CQmo
a CTS

(3.9)

Furthermore, the structure and idempotency of the MO projectors implies that

Pa = CoaC
T
oaS = DaS

Qa = CvaC
T
vaS

(3.10)

where Coa contains the active occupied columns of the MO coefficient matrix C
and zeros elsewhere, and similarly Cva contains the active virtual columns of C and
zeros elsewhere.

Expanding the S commutator of the BCH expansion (equation 2.35) and inserting
the projection yields

[D,X]S = DSPaXQT
a + DSQaXPT

a −PaXQT
a SD−QaXPT

a SD. (3.11)

Since Pa projects onto active occupied space, it follows that
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DSPa = DaSPa

PT
a SD = PT

a SDa,
(3.12)

as the inactive density is projected onto zero. When projecting with Qa both the
active and inactive densities are projected onto zero; however, keeping just the active
term in the equation by writing

DSQa = 0 = DaSQa

QT
a SD = 0 = QT

a SDa

(3.13)

is helpful simply for the sake of the mathematical derivation. With these projections,
the S commutator reduces to

[D,X]S = [Da,X]S. (3.14)

Now we differentiate D(X), yielding

Dx(X) = Dx + [Da,X]xS +
1

2
[[Da,X]S,X]xS + ... (3.15)

Evaluating at x = x0 and X = 0 will represent an expansion around the reference
geometry. Every term except the first two will disappear since all terms of the nested
commutators contain X. The terms containing X in the differentiated commutator
also vanish, leaving

Dx(0) = Dx + [Da,X
x]S. (3.16)

Although D(0) = D, note that Dx(0) 6= Dx. The latter is the differentiated refer-
ence density, while the former is the differentiated parametrized density evaluated
in the point X = 0.

Now we shall take a closer look at the differentiated reference density Dx, and it
becomes necessary to introduce two additional projectors

oa oe va ve

Pmo
e =

oa
oe
va
ve


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


oa oe va ve

Qmo
e =

oa
oe
va
ve


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ,

(3.17)

and their AO transformed counterparts

Pe = CPmo
e CTS = CoeC

T
oeS = DeS

Qe = CPmo
e CTS = CveC

T
veS

(3.18)
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which project onto inactive occupied and inactive virtual space, respectively. The
importance of this is to achieve the property

Pa + Pe + Qa + Qe = I, (3.19)

which allows us to separately consider all projections of the differentiated reference
density through the identity

Dx = (Pa + Pe + Qa + Qe)D
x(PT

a + PT
e + QT

a + QT
e ). (3.20)

Recall the idempotency of the reference density (equation 2.31), which must remain
true through the geometry iterations if the reference density is to be valid. As it turns
out, the idempotency will place certain constraints on the individual projections of
Dx, and this will allow us to obtain an expression for Dx. The idempotency implies

Dx = (DSD)x = DxSD + DSxD + DSDx, (3.21)

and so each term of equation 3.20 can be evaluated separately by inserting equation
3.21. For example:

PaD
xPT

a = PaD
xSDPT

a + PaDSxDPT
a + PaDSDxPT

a

= PaD
xPT

a + DaSDa + PaD
xPT

a ,
(3.22)

where we have used the fact that Pa = DaS and is idempotent. The other terms
containing only P’s are evaluated similarly, yielding

PaD
xPT

a = −DaS
xDa

PaD
xPT

e = −DaS
xDe

PeD
xPT

a = −DeS
xDa

PeD
xPT

e = −DeS
xDe.

(3.23)

The terms containing only Q’s are zero because these project densities onto zero.
Lastly, the mixed terms, e.g.

PaD
xQT

a = PaD
xSDQT

a + PaDSxDQT
a + PaDSDxQT

a

= PaDSDxQT
a = PaD

xQT
a

(3.24)

are undetermined by the idempotency of the density, and we may therefore choose
to set these terms to zero without affecting the validity of the density. Then in total,
the differentiated reference density is given by

Dx = −DSxD. (3.25)

It should be noted that setting the mixed projections of Dx to zero is a choice we
make that establishes a particular connection between densities at different geome-
tries, and that this connection is set up to preserve the idempotency of the density.
In other words, we have established an orbital connection, ensuring that the or-
thogonality of the active, inactive, and total spaces is preserved upon perturbation.
This particular choice of connection minimizes the norm of Dx, and is conceptually
similar to the natural connection of MO theory55.
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With this choice, the first term of the gradient (equation 3.5) becomes

2Tr[Dx(0)Feff ] = 2Tr[DxFeff ] + 2Tr[[Da,X
x]SFeff ]

= −2Tr[DSxDFeff ] + 2Tr[Xx(FeffDaS− SDaFeff)]
(3.26)

We recognize FeffDaS−SDaFeff as the convergence criteria for the energy minimiza-
tion. At the reference geometry the energy has been minimized, so this quantity is
zero. This leaves us with the final expression for the MLHF molecular gradient:

Ex = 2Tr[Dhx] + Tr[DGx(Da)] + Tr[DGx(De)]− 2Tr[DSxDFeff ] + hxnuc. (3.27)

This is actually exactly equivalent to the AO molecular gradient of full space HF
given by Larsen et al.55, as can be seen by substituting equation 3.6. Granted, the
derivation in the MLHF formalism required a couple of detours. As pointed out
by Larsen for the full space HF derivation, this density based formulation does not
require the diagonalization of the (effective) Fock matrix in order to determine the
perturbed density. The molecular gradient is given entirely in terms of the differ-
entiated one- and two-electron integral matrices and the differentiated AO overlap
matrix.

As discussed at the beginning of this section, equation 3.27 represents one element
of the gradient matrix g, corresponding to a partial derivative of the energy with
respect to a single geometrical coordinate. The physical interpretation of these
partial derivatives is that they are the negative of the forces acting on the nuclei.
The convergence of the geometry towards an equilibrium can in this sense be viewed
as a relaxation of these forces.

Since a MLHF geometry optimization aims to only optimize a small local region
of the molecular system, the gradient elements corresponding to nuclei outside of
this region should always be zero, thus enforcing these nuclei not to move. In the
current work this was achieved by explicitly setting these gradient elements to zero in
a procedure referred to as frozen atoms which will be detailed in the implementation
(section 4.1). Ultimately, we expect that this effect of freezing the inactive region in
space can be achieved directly through an active MO formulation where the gradient
vanishes for inactive atoms, but such a formulation has not been worked out in this
thesis. The idea of an MO driven geometry optimization is furthermore appealing
if a reduction of dimensions similar to that of the energy minimization is possible.

An important note about the molecular gradient is that, since the one- and two-
electron integral terms h, G(Da), G(De), as well as the overlap S are all matrices
of dimensions Nao × Nao (Nao being the number of AOs), each gradient element
involves a distinct derivative of Nao × Nao matrices. It it therefore not hard to
imagine that the calculation of these differentiated matrices will represent one of
the more computationally expensive steps of the geometry optimization. This is
especially true of the differentiated two-electron integral matrices. However, because
of the locality of the active AO space, Da will be a sparse matrix, containing mostly
zeros (or close-to-zero values) except for a localized section of the matrix. This
should make it possible to design effective and cheap ways to construct Gx(Da). For
this reason, we separate the differentiated two-electron integral matrix according to
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equation 3.6. The Gx(De) matrix is a different story, since the inactive density does
not have this kind of sparsity. One way to lessen the computational cost would be
to find some cheap way to calculate Gx(De) exactly. Another is to find a cheap and
reasonably accurate approximation. In this thesis, two such approximations have
been tested, and are detailed in section 3.2.

3.2 Approximations of the differentiated two-electron

integral matrix

In an attempt to tackle the time consuming step of constructing the differentiated
two-electron integral matrix Gx(De), two approximations to this matrix have been
devised based on simple updating schemes. These will now be presented.

We may write the inactive density after a geometry perturbation as

D̃e = De + ∆De, (3.28)

where D̃e is the inactive density after perturbation. In other words, the density
of the current iteration equals the density of the previous iteration plus a small
change. We can then write the differentiated two-electron integral matrix of the
current iteration as

G̃x(D̃e) = G̃x(De) + G̃x(∆De). (3.29)

The important point is that ∆De is likely to be a sparse matrix since, out of the
inactive AOs, the perturbation should only significantly affect those that are close
to the active region. Thus the calculation of G̃x(∆De) should be cheap. By then
making the approximation

G̃x(D̃e) ≈ Ãx(D̃e) = Ax(De) + G̃x(∆De), (3.30)

where Ax(De) is the approximate matrix of the previous iteration, we arrive at a
cheap approximate updating scheme. This will hereafter be referred to as the A-
approximation. In each iteration, the density D̃e and matrix Ãx(D̃e) must be kept
in memory or saved to a file for the next iteration. Note that in the first iteration,
De = 0, Ax(De) = 0, and Ãx(D̃e) = G̃x(D̃e), the exact matrix. The updating
algorithm for the A-approximation is illustrated in Figure 4.12.

Let us take a closer look at what effects the A-approximation is neglecting. In the
second iteration the exact matrix is given by the elements

[G̃x(D̃e)]ij =
∑
kl

G̃xijkl[D̃e]kl

= [G̃x(De + ∆De)]ij =
∑
kl

G̃xijkl[De]kl +
∑
kl

G̃xijkl[∆De]kl,
(3.31)

where we have used for simplicity the notation

Gxijkl = (2(ij|kl)− (il|kj))x (3.32)
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for the differentiated two-electron integrals. The approximate matrix elements, on
the other hand, are in the second iteration given by

[Ãx(D̃e)]ijkl =
∑
kl

Gxijkl[De]kl +
∑
kl

G̃xijkl[∆De]kl (2nd iteration), (3.33)

which neglects to update the differentiation of the two-electron integrals in the first
sum to the current geometry. In a sense, we are assuming that the changes in two-
electron interactions between two iterations is captured almost completely by the
change in density ∆De, and the interactions associated with the rest of the density
are almost constant. If ∆De is sparse, we thereby only need to calculate relatively
few of the differentiated integrals; only in the 1st iteration do we calculate all of
them.

The second approximation, hereafter referred to as the B-approximation, is based on
leaving out certain blocks of the inactive density in the exact calculation. Because
the eT program reorders the list of atoms so that active atoms are at the top of the
list, the AO inactive density matrix will have the following block structure:

De =

(
aa ae
ea ee

)
, (3.34)

i.e. containing an active-active, active-inactive, inactive-active, and inactive-inactive
block. We will hereafter use the notations

Daa
e =

(
aa 0
0 0

)
(3.35)

and

Du
e =

(
0 ae
ea ee

)
, (3.36)

with the relation

De = Daa
e + Du

e . (3.37)

We may write the density after perturbation as

D̃e = D̃aa
e + Du

e + ∆Du
e (3.38)

and further the differentiated two-electron integral matrix as

G̃x(D̃e) = G̃x(D̃aa
e ) + G̃x(D̃u

e )

= G̃x(D̃aa
e ) + G̃x(Du

e ) + G̃x(∆Du
e ).

(3.39)

The B-approximation approximates only part of the full matrix, namely

G̃x(D̃u
e ) ≈ B̃x(D̃u

e ) = Bx(Du
e ) + G̃x(∆Du

e ), (3.40)

where Bx(Du
e ) is the approximate matrix of the previous iteration. In the first

iteration, Bx(Du
e ) = 0 while B̃x(D̃u

e ) = G̃x(D̃u
e ), the exact u-part of the full matrix.
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Inserting equation 3.40 into equation 3.39, we arrive at the approximation for the
full matrix:

G̃x(D̃e) ≈ B̃x(D̃e) = G̃x(D̃aa
e ) + B̃x(D̃u

e ). (3.41)

In each iteration, the density D̃u
e and matrix B̃x(D̃u

e ) must be kept in memory or
saved to a file for the next iteration. If the matrices D̃aa

e and ∆Du
e are sparse,

they would ideally constitute a cheaper calculation in equations 3.40 and 3.41. The
updating algorithm for the B-approximation as is illustrated in Figure 4.13.

The A- and B-approximations are very similar; they only differ in the fact that the
B-approximation includes the exact contribution from the active-active block of De,
thus attempting to capture more of the changes in two-electron interactions. The
implementation and testing of the approximations are detailed in Section 4.3.

3.3 Investigation of the different inactive density matrix

blocks

The approximations to the differentiated two-electron integral matrix discussed in
section 3.2 attempt to exploit the structure of the inactive density to propose an
approximate matrix that will be computationally cheaper without much loss of ac-
curacy. For instance, in the A-approximation it was suggested that the change in
density between iterations, ∆De, will only have nonzero elements in a localized
region, making it possibly to tailor the construction of Gx(∆De) so that it is com-
putationally cheaper than for a density without such a predictable structure. The
approximation is then set up so that only this cheaper calculation is performed in
each iteration, with the exception of the first iteration in which the more expensive
exact matrix is calculated. Getting a better understanding of the structure of De

and how it changes during the optimization might help to explain the performance
of the A- and B-approximations, and may even give some insight into how to devise
other approximations. Some calculations have been carried out in this thesis in an
attempt to get numerical insight into the behavior of the Gx(De) matrix. Specif-
ically, these calculations aimed to see whether there are any consistent differences
between the different blocks of De entering the matrix. The calculations were ordi-
nary MLHF geometry optimizations, but the calculation of Gx(De) was performed
with the inactive density split up as

Gx(De) = Gx(Daa
e ) + Gx(Dee

e ) + Gx(Dmix
e ), (3.42)

where

Daa
e =

(
aa 0
0 0

)
(3.43)

Dee
e =

(
0 0
0 ee

)
(3.44)
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Dmix
e =

(
0 ae
ea 0

)
. (3.45)

Some properties of these differentiated matrices were printed to see e.g. if some of
them consistently contribute more to the gradient, or if some of them consistently
change less from one iteration to the next. The specifics of these tests are presented
in Section 4.4.

28



4 Implementation and computational
details

4.1 Implementation of the MLHF molecular gradient

into the eT program

eT is a newly released open source electronic structure program with a focus on
Coupled Cluster and multilevel methods30. It features an MO driven MLHF wave
function optimization module as described in section 2.3. The MLHF active region is
specified by the user by listing the active atoms on input, and the density is decom-
posed into active and inactive density accordingly. using Cholesky decomposition.

Currently, the only available geometry optimization algorithm in eT uses the RF
method with BFGS Hessian updating, all carried out in Cartesian coordinates. The
geometry optimization is not compatible with the MLHF wave function in the official
release, and so in this thesis a local version of the code was modified to allow MLHF
geometry optimization calculations. This included the development of procedures
for constructing the MLHF molecular gradient which will be detailed later on in
this section. Figure 4.1 illustrates the MLHF geometry optimization algorithm as
implemented in eT.
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Figure 4.1: Flowchart illustrating the MLHF geometry optimization al-
gorithm as implemented in eT. The algorithm for full space HF geometry
optimization is similar, only differing in that it does not include any de-
composition of the full density, it performs the HF energy minimization
in the AO basis, and it uses the HF molecular gradient.
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The implementation of the MLHF molecular gradient needed to be done in such a
way as to achieve the property that only a specified, local region of the molecular
system is optimized. The nuclei outside this region should never move throughout
the procedure, and may be referred to as the frozen nuclei or frozen atoms. This
was achieved by calculating only the gradient elements corresponding to unfrozen
nuclei, while setting the elements corresponding to frozen nuclei to zero. In other
words, the frozen nuclei were explicitly enforced to not move via the construction
of the gradient. The algorithm for the construction of the gradient is illustrated in
Figure 4.2.

Figure 4.2: Flowchart showing the construction of the molecular gradi-
ent with frozen atoms. The label k signifies the current atoms placement
in the list, while the second label signifies the spatial coordinate (x, y, z)
of that atom.

The method of freezing nuclei is such that the frozen atoms are specified separate
from the MLHF active atoms on input. It is thus possible to have atoms which are
frozen in space but nonetheless active in the energy minimization. In other words,
the MLHF active region may be extended beyond the unfrozen region, or vice-versa.
The proof-of-concept calculations presented later will include calculations in which
the MLHF active region is extended beyond the geometrically unfrozen region. The
frozen atoms method was also implemented for the HF molecular gradient, thus
allowing geometry optimization with a HF wave function together with frozen atoms
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which, will also feature in the proof-of-concept calculations.

4.2 Proof-of-concept calculations

The proof-of-concept calculations may be categorized into three different classes:

Class 1. Full space HF geometry optimization with no frozen atoms. In other
words, a regular HF geometry optimization to be used as a benchmark
for the other calculations. The full density is optimized in each iteration,
and all atoms are allowed to move.

Class 2. HF geometry optimization with a region of unfrozen atoms surrounded by
frozen atoms, hereafter referred to as frozen HF. These calculations use
the regular HF geometry optimization algorithm in the eT official release,
but with the frozen atoms algorithm (Figure 4.2) implemented for the
HF molecular gradient. In other words, the full density is optimized in
each iteration, but only unfrozen atoms are allowed to move.

Class 3. MLHF geometry optimization, the algorithm of which is illustrated in
Figure 4.1. In each iteration, the active density is optimized while the
inactive density is modeled by the SAD starting guess. Only unfrozen
atoms are allowed to move. The active atoms are specified on input, and
the decomposition into active and inactive space is done accordingly.
The frozen atoms are also specified on input, and is achieved through
the implementation of the frozen atoms algorithm (Figure 4.2) for the
MLHF molecular gradient. Calculations in which the active and unfrozen
region are the same, and calculations in which the active region extends
beyond the unfrozen region have both been carried out.

The energy of the optimized geometries were determined with a final HF energy
minimization.

All calculations have been carried out in the eT program except for the full space
HF calculations of Class 1. These were carried out in LSDALTON29, as convergence
proved difficult to achieve in eT. The cc-pVDZ basis set was used for all calculations.
The energy and gradient thresholds of the geometry optimization were both set to
10−4 a.u. for all calculations. Starting geometries were generated in Avogadro56

using the MMFF94 force field. The five molecular test systems, of which the first
four were used for the proof-of-concept calculations, are:

Molecule 1. Psoralen

Molecule 2. 2-phenyl-4,5-dicyano imidazole, hereafter referred to as PDCI

Molecule 3. Proflavine
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Molecule 4. bis(2,4,6-trichlorophenyl) oxalate, hereafter referred to as TCPO

Molecule 5. 1-methyl-2-[2’-(5’-tricyanovinyl)thienyl]-4,5-para-methoxyphenyl
imidazole, hereafter referred to as the y-chromophore.

The fifth molecule, the y-chromophore, has been used to test the approximate gra-
dient terms presented in Section 3.2. These tests will later be detailed in Sections
4.3 and 4.4.

Figures 4.3 - 4.7 show the test molecules with the various divisions into regions of
different levels of calculation. The blue shaded area indicates the unfrozen atoms
which will move during the optimization; the remaining atoms will be stationary.
The red circle indicate the MLHF active region; the density associated with the
atoms within this circle will be optimized at the HF level, while the density of
the outside atoms are modeled with SAD. In terms of the above three classes of
calculation, the subfigure (a) of each figure 4.3 - 4.5 shows the Class 2 calculation,
while all the other subfigures show calculations that belong to Class 3.

Figure 4.3: The psoralen molecule divided into regions of different lev-
els of calculation. The blue shaded region is the geometrically unfrozen
region, while the red region is the MLHF active region. MLHF inactive
atoms are modeled with SAD. Subfigure (a) illustrates the frozen HF cal-
culation, where the entire system is optimized at the HF level, but only
the blue shaded region is moved during the geometry iterations.
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Figure 4.4: The PDCI molecule divided into regions of different levels of
calculation. The blue shaded region is the geometrically unfrozen region,
while the red region is the MLHF active region. MLHF inactive atoms are
modeled with SAD. Subfigure (a) illustrates the frozen HF calculation,
where the entire system is optimized at the HF level, but only the blue
shaded region is moved during the geometry iterations.

Figure 4.5: The proflavine molecule divided into regions of different
levels of calculation. The blue shaded region is the geometrically unfrozen
region, while the red region is the MLHF active region. MLHF inactive
atoms are modeled with SAD. Subfigure (a) illustrates the frozen HF
calculation, where the entire system is optimized at the HF level, but
only the blue shaded region is moved during the geometry iterations.
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Figure 4.6: The TCPO molecule divided into regions of different levels of
calculation. The blue shaded region is the geometrically unfrozen region,
while the red region is the MLHF active region. MLHF inactive atoms are
modeled with SAD. Subfigure (a) illustrates the frozen HF calculation,
where the entire system is optimized at the HF level, but only the blue
shaded region is moved during the geometry iterations.

Figure 4.7: The y-chromophore divided into an MLHF active, geomet-
rically unfrozen region indicated by the blue shaded area inside the red
circle. The outside atoms are modeled with SAD, and are frozen during
the geometry optimization. Two of the active atoms, C1 and N1, are
indicated.
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A selection of bond lengths and bond angles obtained with the different optimizations
will be compared for molecules 1 - 4 to see if there are significant differences between
the different geometries. These particular bond lengths and angles are shown in
Figures 4.8 - 4.11.

Figure 4.8: A selection of bond lengths (in blue) and bond angles (in
green) of the psoralen molecule. They are given by:
A: H1-C1 B: C1-C2 C: O1-C3 D: C2-C4
α: H1-C1-C2 β: C1-C2-C4 γ: O1-C3-C2.

Figure 4.9: A selection of bond lengths (in red) and bond angles (in
green) of the PDCI molecule. They are given by:
A: H1-N1 B: C1-N1 C: C1-C2 D: C1-C3
α: H1-N1-C1 β: N1-C1-C3 γ: N1-C1-C2.
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Figure 4.10: A selection of bond lengths (in red) and bond angles (in
green) of the proflavine molecule. They are given by:
A: H1-N1 B: C1-N1 C: C1-C2 D: C2-C3
α: H1-N1-C1 β: N1-C1-C2 γ: C1-C2-C3.

Figure 4.11: A selection of bond lengths (in blue) and bond angles (in
green) of the TCPO molecule. They are given by:
A: O1-C1 B: C1-C2 C: C1-O2 D: O2-C3
α: O1-C1-O2 β: O1-C1-C2 γ: C1-O1-C3.
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4.3 Implementation and testing of the approximate gra-

dient terms

In Section 3.2 we presented two approximations to the differentiated two-electron
integral matrix Gx(De), dubbed the A- and B-approximations. They are both based
on calculating the exact matrix in the first iteration and performing an approximate
updating in the subsequent iterations. Figures 4.12 - 4.13 illustrate the updating al-
gorithm of the A- and B-approximations, respectively, as implemented in the MLHF
geometry optimization code in eT.

Figure 4.12: Flowchart illustrating the geometry optimization with the
approximate differentiated two-electron integral matrix Ax(De).
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Figure 4.13: Flowchart illustrating the geometry optimization with the
approximate differentiated two-electron integral matrix Bx(De).
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The approximations were tested for accuracy by performing MLHF geometry opti-
mization on the y-chromophore test molecule (figure 4.7) and comparing with the
exact matrix. Specifically, the following quantities were printed:

• Absmax[Ax(De) − Gx(De)], the absolute maximum of the difference in the
matrix.

• Tr[DGx(De)], the trace contribution of the exact matrix.

• Abs[Tr[DAx(De)]−Tr[DGx(De)]], the absolute value of the difference in the
trace contributions.

The same quantities were printed from the B-matrix. At each iteration we have
one of each of these quantities associated with each spatial coordinate of each active
atom, in other words 3 × Nactive of each quantity in total. We therefore restrict
the investigation to two of the active atoms of the y-chromophore, a carbon and a
nitrogen indicated in Figure 4.7.

4.4 Investigation of the different inactive density matrix

blocks

To investigate the different block contributions to the Gx(De) matrix (equation
3.39), a few quantities related to this matrix were printed for a MLHF geometry
optimization of the y-chromophore (figure 4.7). Specifically, for the block term
Gx(M), where M ∈ {Daa

e ,D
ee
e ,D

mix
e }, the following quantities were printed:

• Absmax[Gx(M)], the absolute maximum of the matrix.

• Tr[DGx(M)], the trace contribution from the matrix to the gradient. This
will reveal if any of the block terms dominate in the gradient contribution.

• ∆Tr[DGx(M)], the change in the trace contribution between two iterations.
This will reveal if any of the trace contributions are relatively constant.

As for the investigation of the approximate matrices, we restrict the investiga-
tion to two of the active atoms of the y-chromophore. Furthermore, we consider
Absmax[Gx(M)] and Tr[DGx(M)] in only the second iteration, and ∆Tr[DGx(M)]
as the change between the first and second iterations.
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5 Results and discussion

5.1 Proof-of-concept calculations

Tables 5.1 - 5.4 show the HF energies of the optimized geometries of the test systems,
the number of active AOs used in the geometry optimization calculations, and the
differences in the energies compared to the full space HF (Class 1, see section 4.2)
optimized geometry. The row labels denote the partitioning of the system as dictated
by the corresponding subfigure in figures 4.3 - 4.6. For example, (a) is always the
frozen HF geometry (Class 2), while (b) and onwards are the MLHF geometries
(Class 3) with varying active spaces indicated by the listed active AO number.

Geometry HF energy [a.u.] Deviation [a.u.] Active/Total AOs

Full space HF -644.67838 - -
Frozen HF (a) -644.66863 0.00975 -
MLHF (b) -644.66725 0.01113 96/226
MLHF (c) -644.66717 0.01121 138/226
MLHF (d) -644.66709 0.01129 166/226
MLHF (e) -644.66714 0.01124 198/226

Table 5.1: The HF energy of psoralen at equilibrium geometries obtained
with full space HF, frozen HF, and different sized MLHF. The number
of active AOs in the MLHF calculations and the deviation in energy
compared to the full space HF optimized geometry is also included.

Geometry HF energy [a.u.] Deviation [a.u.] Active/Total AOs

Full space HF -637.88549 - -
Frozen HF (a) -637.88140 0.00409 -
MLHF (b) -637.88009 0.00540 93/240
MLHF (c) -637.87957 0.00592 143/240
MLHF (d) -637.87962 0.00587 203/240
MLHF (e) -637.87968 0.00581 240/240

Table 5.2: The HF energy of PDCI at equilibrium geometries obtained
with full space HF, frozen HF, and different sized MLHF. The number
of active AOs in the MLHF calculations and the deviation in energy
compared to the full space HF optimized geometry is also included.
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Geometry HF energy [a.u.] Deviation [a.u.] Active/Total AOs

Full space HF -662.11563 - -
Frozen HF (a) -662.10632 0.00931 -
MLHF (b) -662.10406 0.01157 112/279
MLHF (c) -662.10459 0.01104 143/279
MLHF (d) -662.10447 0.01116 176/279
MLHF (e) -662.10431 0.01132 206/279
MLHF (f) -662.10394 0.01169 243/279
MLHF (g) -662.10385 0.01178 269/279

Table 5.3: The HF energy of proflavine at equilibrium geometries ob-
tained with full space HF, frozen Hf, and different sized MLHF. The
number of active AOs in the MLHF calculations and the deviation in en-
ergy compared to the full space HF optimized geometry is also included.

Geometry HF energy [a.u.] Deviation [a.u.] Active/Total AOs

Full space HF -3588.97588 - -
Frozen HF (a) -3588.97084 0.00504 -
MLHF (b) -3588.96769 0.00819 102/380
MLHF (c) -3588.96705 0.00883 139/380
MLHF (d) -3588.96510 0.01078 284/380
MLHF (e) -3588.96503 0.01085 366/380

Table 5.4: The HF energy of TCPO at equilibrium geometries obtained
with full space HF, frozen HF, and different sized MLHF. The number
of active AOs in the MLHF calculations and the deviation in energy
compared to the full space HF optimized geometry is also included.
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Figures 5.1 - 5.4 show the HF energies of the optimized geometries of the tests
systems plotted against the number of active AOs used in the geometry optimization,
as listed in the corresponding Tables 5.1 - 5.4. For full space HF and frozen HF, the
number of active AOs is defined as the number of total AOs.

Figure 5.1: The HF energy of psoralen at geometries optimized with
different sized MLHF, frozen nuclei HF, and full space HF, plotted against
the number of active AOs.

Figure 5.2: The HF energy of PDCI at geometries optimized with dif-
ferent sized MLHF, frozen nuclei HF, and full space HF, plotted against
the number of active AOs.
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Figure 5.3: The HF energy of proflavine at geometries optimized with
different sized MLHF, frozen nuclei HF, and full space HF, plotted against
the number of active AOs.

Figure 5.4: The HF energy of TCPO at geometries optimized with
different sized MLHF, frozen nuclei HF, and full space HF, plotted against
the number of active AOs.
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Tables 5.5 - 5.8 show bond lengths and bond angles of geometries obtained with
frozen HF and MLHF calculations for molecules 1 - 4. These bond lengths and
angles are illustrated in the corresponding Figures 4.8 - 4.11.

Geometry A [Å] B [Å] C [Å] D [Å] α [◦] β [◦] γ [◦]

Frozen HF (a) 1.077 1.455 1.343 1.385 128.14 135.86 110.38
MLHF (b) 1.098 1.465 1.354 1.395 127.74 136.39 109.77
MLHF (e) 1.098 1.467 1.358 1.394 127.74 136.24 109.64

Table 5.5: Comparison between a selection of bond lengths and angles
obtained with frozen HF and two different sized MLHF calculations, for
the psoralen molecule.

Geometry A [Å] B [Å] C [Å] D [Å] α [◦] β [◦] γ [◦]

Frozen HF (a) 0.997 1.373 1.363 1.432 125.13 104.65 123.95
MLHF (b) 0.993 1.359 1.375 1.435 124.94 105.72 125.15
MLHF (e) 0.982 1.351 1.367 1.428 124.77 105.75 125.02

Table 5.6: Comparison between a selection of bond lengths and angles
obtained with frozen HF and two different sized MLHF calculations, for
the PDCI molecule.

Geometry A [Å] B [Å] C [Å] D [Å] α [◦] β [◦] γ [◦]

Frozen HF (a) 1.001 1.390 1.359 1.432 113.90 122.97 120.86
MLHF (b) 1.006 1.367 1.377 1.445 115.52 122.52 121.44
MLHF (g) 1.010 1.366 1.379 1.444 115.65 122.51 120.74

Table 5.7: Comparison between a selection of bond lengths and angles
obtained with frozen HF and two different sized MLHF calculations, for
the proflavine molecule.

Geometry A [Å] B [Å] C [Å] D [Å] α [◦] β [◦] γ [◦]

Frozen HF (a) 1.339 1.543 1.172 1.371 119.87 118.16 128.16
MLHF (b) 1.311 1.557 1.166 1.372 120.59 121.35 127.36
MLHF (e) 1.296 1.551 1.163 1.363 121.24 121.16 128.92

Table 5.8: Comparison between a selection of bond lengths and angles
obtained with frozen HF and two different sized MLHF calculations, for
the TCPO molecule.

5.1.1 Energy comparison

The full space HF (Class 1, see section 4.2) geometry is of significantly lower energy
than the frozen HF (Class 2) and MLHF (Class 3) geometries. This is to be expected
considering the latter two are only optimized in a smaller region of the geometry.
This energy difference is on the order of 10−2 Hartree except for the PDCI molecule,
where it is on the order of 10−3 Hartree.

Comparing the frozen HF and MLHF geometries is especially interesting because
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they optimize the same geometrical region, but use different wave functions. The
energy of the frozen HF geometry is always lower than for the MLHF geometries,
but this difference is on the order of 10−3 Hartree. The TCPO molecule is an ex-
ception; for this molecule, the MLHF geometries are noticeably different in energy
compared to the other molecules, and this will be addressed later. Since the energy
threshold was set to 10−4 Hartree in the geometry optimization, the difference in the
energy of frozen HF geometries and MLHF geometries is not the result of numerical
variations. This means that even though the unfrozen region is the same, the pres-
ence of an unoptimized density in the frozen region affects the convergence and leads
to a geometry of higher energy. This makes sense since the HF and MLHF wave
functions, being different, result in different PES’s with differently located minima.
The minimum of the MLHF PES will necessarily (unless the two minima are far
apart) have to correspond to a point on the HF PES that is higher in energy than
the HF PES minimum. In other words, the HF energy will be higher for a MLHF
geometry. It does however appear that this energy difference will be small compared
to the deviation from the energy of the full space HF geometry.

5.1.2 Effects of extending the active space

From the above discussion that a difference in the wave function result in a shift
of the PES minimum, it would seem intuitive that the MLHF geometries would
approach the frozen HF geometry as the active space is extended. We would expect
that as the active space increases and the MLHF wave function converges to the HF
wave function, the MLHF PES would also converge to the HF PES. After all, the
frozen HF calculation should correspond to a MLHF calculation in which all atoms
are active. Surprisingly, this is not the case for our calculations; the energy of MLHF
geometries do not approach the energy of the frozen HF geometry, and in most cases
it actually increases slightly for larger active spaces. One particularly noteworthy
case is the MLHF (e) calculation of the PDCI system, where the density has been
decomposed in such a way that the number of active AOs equals the number of total
AOs (Table 5.2). It still does not coincide with the frozen HF geometry. The reason
for this lack of convergence to the frozen HF geometry with increasing active space
is unclear. It could be a result of the MLHF wave function not converging to the
HF wave function as it should in theory, and this would indicate an oversight in the
implementation of the method. It could also be the case that the assumption that
the MLHF PES will converge to the HF PES is incorrect, but this assumption seems
to follow from the aforementioned convergence of the wave function. Finally, it could
be that the MLHF geometry optimizations are locating a different local minimum
entirely. It is highly unlikely that any of the calculations have converged to saddle
points because the BFGS Hessian updating should ensure a positive definite Hessian
and convergence to a minimum.

The different MLHF geometries are quite similar in energy, differing at most on the
order of only 10−4 Hartree, with the TCPO molecule as an exception. This suggests
that the extension of the active space does not have a large effect on the convergence
of the unfrozen region. In other words, that the optimization is not very sensitive
to whether or not the density of the immediate surroundings is optimized. For
the TCPO molecule, the largest deviations in energy between the different MLHF
geometries is on the order of 10−3 Hartree, indicating that the optimization of this
molecule is more sensitive to the inactive density. Maybe the low rigidity of the
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freely rotatable single bonds at the border between the frozen and unfrozen regions
of the TCPO system (see Figure 4.6) means that the unfrozen region is more easily
affected by the density of the trichlorophenyl groups, but this is just speculation. In
any case, it appears that the extension of the active space either doesn’t change the
energy significantly, or it increases the energy. For this reason we will from now on
focus mostly on MLHF (b), the MLHF calculation with the smallest active space.

5.1.3 Comparing bond lengths and bond angles

As previously discussed, the frozen HF geometry and MLHF geometry will be dif-
ferent due to a shift of the PES minimum, as evidenced by their difference in energy.
This is further seen from the differences in the selection of bond lengths and angles
of these geometries. Almost all of the differences in bond lengths between frozen HF
and MLHF (b) are within 2 pm, while almost all of the differences in bond angles
are within 1◦. Again, the TCPO molecule is a notable exception, with a difference in
bond length A of 2.8 pm and a difference in angle β of 2.55◦. A closer look at the two
TCPO geometries showed a noticeable twisting of the oxalate unit (see Figure 4.6)
for the MLHF geometry, which further adds to the aforementioned speculation that
low rigidity might be a factor for the sensitivity to an unoptimized environment.

Further comparing the frozen HF and MLHF (b) geometries, the average bond
difference across all molecules is 1.2 pm, while the average angle difference is 0.91◦.
In general, HF geometries usually differ from the exact equilibrium geometries by a
couple of pm in bond lengths and a couple of degrees in bond angles, so these results
are within the usual performance of HF.

For the MLHF geometry with the largest active space (MLHF (g) for proflavine and
MLHF (e) for the other molecules), the deviation from frozen HF is larger than for
the MLHF (b) geometry for a majority of the bond lengths and angles. Here, the
average bond difference is 1.5 pm, while the average angles difference is 0.90◦. This
shows further that the extension of the active space does not yield geometries that
approach the frozen HF geometry.

It should be emphasized that these comparisons are all done within the HF level
of theory. To properly assess the quality of the MLHF geometry optimization,
comparisons with more accurate (or exact) structures are needed. A more extensive
study, featuring several different methods, a variety of test systems, and more types
of internal coordinates such as torsion angles, would give a clearer picture of the
performance of the method. Still, it is meaningful that the MLHF method seems to
lie within the usual quality of HF theory for geometry optimization, as its ultimate
goal is to be used as a starting point for more accurate methods.

5.1.4 Orbital reduction and accuracy compromise

We have seen that the MLHF (b) calculation results in a slightly different geometry
to the frozen HF (a) geometry, with slightly higher energy. In the psoralen system,
we get a reduction in active AOs of 130 for an energy increase of 1.38 · 10−3 Hartree
when going from (a) to (b). For PDCI, a reduction of 147 AOs for an increase
of 1.31 · 10−3 Hartree. For proflavine, a reduction of 167 AOs for an increase of
2.26 · 10−3 Hartree. Finally for TCPO, a reduction of 278 AOs for an increase of
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3.15 · 10−3 Hartree. The changes in bond lengths and angles are within the usual
error thresholds of HF theory. In total, the MLHF geometry optimization method
offers a large computational reduction over the frozen HF method with a seemingly
modest loss of accuracy. This seems promising for the application of this method as
a cheap starting point for post-HF calculations of molecular properties.

5.1.5 Final considerations

This thesis has not explored the use of different basis sets; only the cc-pVDZ basis
has been used. The literature reports that larger basis sets do not improve the HF
description of equilibrium geometries because HF underestimates bond lengths as a
fundamental result of lacking electron correlation. The HF description can only be
improved by first including correlation through a post-HF method. Nevertheless, it
would be interesting to study the effects of different basis sets on the MLHF geometry
optimization method to see if a more accurate basis can reduce the deviation of
the MLHF geometries from the frozen HF geometries. If the MLHF description is
significantly improved, the use of a larger basis might be worthwhile since the MLHF
method, with its substantially reduced cost, can afford more expensive basis sets. It
would also be interesting to compare MLHF geometries and frozen HF geometries
against experimental or highly accurate computational results. As mentioned in
Section 2.9, results for computationally obtained geometries in general depend on
both the amount of electron correlation included and the accuracy of the basis set,
and the cancellation of errors between these two aspects can in some cases lead
to unforeseen performance. It is therefore not impossible that a comparison with
experimental results will reveal MLHF to actually obtain more accurate geometries
than frozen HF through some fortunate cancellation of errors. Even if this is not
the case, it is nonetheless important to evaluate the accuracy of MLHF geometries
not just against regular HF, but also against exact geometries.

It is important to note that the tests systems used in this thesis are nowhere near the
system sizes for which the MLHF method is intended. Additionally, the difference in
size between the frozen and unfrozen regions in these tests is not very pronounced; in
a geometry optimization of an enzyme, for example, the unfrozen active site region
would only constitute dozens to a few hundred atoms out of a total of several thou-
sand atoms. Lastly, the unfrozen regions were chosen quite arbitrarily; in a study of
actual molecular or chemical properties the unfrozen region would be appropriately
selected for the property in question. In short, the proof-of-concept calculations are
not quite representative of the calculations one would want to use the method for,
but nevertheless shows that the large reduction in computational cost for a modest
loss of accuracy seems to work in concept.

5.2 Approximations of the differentiated two-electron

integral matrices

This section presents the results of the MLHF calculations carried out with the
matrices Ax(De) and Bx(De) (see section 3.2) as approximations to Gx(De). Tables
5.9 and 5.10 show various quantities related to these matrices. Table 5.12 shows the
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molecular gradient obtained with the A- and B-approximations alongside the exact
gradient. For comparison purposes, the values of the different terms in the exact
molecular gradient (equation 3.27) are listed in table 5.11. In all of these tables, the
quantities were obtained in the second geometry optimization of the y-chromophore,
and are listed for each spatial coordinate of two of the active atoms, a carbon and
a nitrogen.

Absmax diff Exact trace Abs trace diff Abs trace error [%]

C1
x 0.55812 0.75286 0.24731 32.849
y 0.34469 0.84530 0.07807 9.236
z 0.82504 -0.37528 0.10665 28.419

N1
x 0.87060 -0.23624 0.26665 112.873
y 0.33530 1.11291 0.07923 7.119
z 0.69889 1.13090 0.40986 36.242

Table 5.9: Errors associated with the approximate matrix Ax(De) for
two of the active atoms of the y-chromophore in the second iteration. All
quantities except the percentage error are in atomic units.
Absmax diff = absmax[Ax(De)−Gx(De)]
Exact trace = Tr[DGx(De)]
Abs trace diff = abs[Tr[DAx(De)]− Tr[DGx(De)]]
Abs trace error = abs [(trace diff)/(exact trace)×100]

Absmax diff Exact trace Abs trace diff Abs trace error [%]

C1
x 0.52992 0.75286 0.28108 37.335
y 0.34468 0.84530 0.07965 9.423
z 0.78309 -0.37528 0.13491 35.949

N1
x 0.83636 -0.23624 0.30796 130.359
y 0.32189 1.11291 0.09753 8.764
z 0.67279 1.13090 0.45680 40.393

Table 5.10: Errors associated with the approximate matrix Bx(De) for
two of the active atoms of the y-chromophore in the second iteration. All
quantities except the percentage error are in atomic units.
Absmax diff = absmax[Bx(De)−Gx(De)]
Exact trace = Tr[DGx(De)]
Abs trace diff = abs[Tr[DBx(De)]− Tr[DGx(De)]]
Abs trace error = abs [(trace diff)/(exact trace)×100]
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2Tr[Dhx] −2Tr[DSxDFeff ] Tr[DGx(Da)] Tr[DGx(De)] hxnuc

C1
x 7.42931 -0.16158 -5.26789 0.75286 -2.74852
y -1.33347 0.04115 -0.01671 0.84530 0.45755
z 15.60445 -0.08552 -10.54626 -0.37528 -4.60312

N1
x 3.11470 -0.01518 -1.56006 -0.23624 -1.30585
y -9.81960 0.05811 4.36643 1.11291 4.28378
z -40.11636 0.41153 23.51456 1.13090 15.06439

Table 5.11: Contributions from the different terms of the exact molec-
ular gradient, for two of the active atoms of the y-chromophore in the
second iteration. All quantities are in atomic units.

A grad B grad Exact grad

C1
x -0.24311 -0.27689 0.00419
y 0.07187 0.07350 -0.00617
z -0.11245 -0.14075 -0.00573

N1
x -0.26929 -0.31060 -0.00262
y -0.07748 -0.09584 0.00163
z -0.40480 -0.45169 0.00502

Table 5.12: Comparison of the gradient obtained with the A- and B-
approximations and with the exact method, for two of the active atoms
of the y-chromophore in the second iteration. All quantities are in atomic
units.
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5.2.1 Accuracy of the A- and B-approximations

The trace contributions from both of the approximate matrices deviate significantly
from that of the exact matrix, resulting in approximate gradients that differ from
the exact gradient by several orders of magnitude (table 5.12). The reason why
the distortion of the gradient is this immense can be understood by looking at the
individual contributions to the gradient. These are all several orders of magnitude
larger than the gradient itself, meaning that the different contributions must cancel
each other out almost completely. In fact, this illustrates the nature of the interplay
between different forces within a molecular system. Large attraction and repulsion
forces are always present between the particles, but balance each other at stable
geometries. Close to an equilibrium there is only a small net force, corresponding
to the negative of the gradient, pointing in the direction of the stationary. However,
the use of one of the approximate matrices introduces a deviation on the same scale
as these force contributions, and with nothing to cancel it, the resulting approximate
gradient is almost equal to the deviation. Unsurprisingly, the active energy was seen
to diverge away from the active energy of the geometry obtained with the exact
gradient. Both the A- and B-approximations are clearly unusable.

The approximations were built on the assumption that the change in the inactive
density will capture most of the changes in two-electron interactions when moving
from one geometry to the next. This assumption allowed for types of approximations
that were relatively simple to state and implement, not requiring any alterations of
the inner workings of the code that calculates the differentiated two-electron inte-
grals. The fact that large deviations are already present in the 2nd iteration shows
that they are not the result of an accumulation of tiny errors over several steps,
but that our assumption is invalid to the point of throwing the entire optimization
out of balance. Future efforts into the reduction of the cost of the differentiated
two-electron integral matrix should examine more closely its structure and the in-
teractions involved in order to identify negligible contributions such as e.g. small
long-range interactions. Some form of efficient screening method might be possible.

5.3 Investigations of the different inactive density ma-

trix blocks

This section presents quantities related to the different block terms of the differen-
tiated two-electron integral matrix as detailed in Section 4.4. Tables 5.13 and 5.14
list the absmax and the trace contributions of these matrices, respectively, for the
second iteration of the MLHF geometry optimization. Table 5.15 lists the change
in the trace contributions between the first and second iteration. All quantities are
listed for each spatial coordinate of two of the active atoms of the y-chromophore
shown in Figure 4.7.
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Absmax Gx(Daa
e ) Absmax Gx(Dee

e ) Absmax Gx(Dmix
e )

C1
x 0.47999 9.24910 0.05972
y 0.35246 6.61866 0.04011
z 0.61305 9.86173 0.07215

N1
x 0.40124 9.34990 0.03937
y 0.24523 5.08253 0.02060
z 0.35811 8.16368 0.05422

Table 5.13: Comparison of the absmax of the differentiated two-electron
integral matrices for different blocks of the inactive density, for two of the
active atoms of the y-chromophore in the second iteration. All quantities
are in atomic units.

Tr[DGx(Daa
e )] Tr[DGx(Dee

e )] Tr[DGx(Dmix
e )]

C1
x -1.44716 1.71545 1.23736
y 1.38748 0.78508 -0.48198
z 0.63457 -1.66969 0.28411

N1
x 1.21467 -1.79676 0.10978
y -0.41616 2.68286 -0.04093
z -4.46821 6.93751 -0.20755

Table 5.14: Comparison of the trace contribution of the differentiated
two-electron integral matrices for different blocks of the inactive density,
for two of the active atoms of the y-chromophore in the second iteration.
All quantities are in atomic units.

∆Tr[DGx(Daa
e )] ∆Tr[DGx(Dee

e )] ∆Tr[DGx(Dmix
e )]

C1
x -0.18989 0.31173 -0.01862
y -0.01031 -0.02189 0.05693
z -0.08193 0.13899 0.02169

N1
x 0.08885 0.04190 0.09295
y -0.06751 0.14578 -0.01002
z -0.16332 0.47563 0.02972

Table 5.15: Comparison of the change from the first to the second it-
eration in trace contribution of the differentiated two-electron integral
matrices for different blocks of the inactive density, for two of the ac-
tive atoms of the y-chromophore. In other words, ∆Tr[DGx(M)] =
Tr[DG̃x(M̃)] − Tr[DGx(M)], where Gx(M) and G̃x(M̃) are the ma-
trices in the first and second iteration, respectively. All quantities are in
atomic units.
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There seems to be no significant difference in the magnitude of the trace contribu-
tions from the different inactive density blocks, nor in the magnitude of the change
in these contributions between iterations. Interestingly, the absmax of the matrices
seems to differ quite consistently, with the aa-matrix an order of magnitude larger
than the mix-matrix, and the ee-matrix an order of magnitude larger than the aa-
matrix. It is difficult propose explanations for this without any further insight into
the matrix structure, and ultimately it does not seem to affect the final gradient
contribution. Based on these observations as well as the pathological behaviour of
the approximate matrices discussed in Section 5.2, it does not seem worthwhile to
further investigate the matrix based on the block structure of the inactive densities
or devise approximations accordingly.
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6 Summary and conclusions

This thesis has implemented and tested a MLHF wave function for use in the opti-
mization of equilibrium geometries. The two-level MLHF method divides the molec-
ular system into an active and inactive part through a decomposition of the density.
Only the active density is optimized at the HF level, while the inactive density
remains at the level of the SAD starting guess.

The MLHF molecular gradient was derived in the AO basis, and turned out equiva-
lent to the gradient of the full-space HF model. The gradient was implemented for
second order geometry optimization in the eT program using the RF method with
BFGS Hessian updating in Cartesian coordinates. A manipulation of the gradient
was used to explicitly freeze the environment region in space during geometry opti-
mization, by setting the gradient elements corresponding to the inactive atoms of the
environment to zero. A similar freezing technique can be employed for optimizations
using the full space HF wave function. In comparing these, the proof-of-concept cal-
culations showed that the MLHF method can achieve a large reduction in the number
of optimized AOs for a modest loss in the accuracy of the geometry. The presence
of an unoptimized density outside the unfrozen region changes the final geometry
to some extent, but the increase in energy and change in bond lengths and angles
is within the error thresholds usually seen for HF theory. One of the test systems
showed more noticeable geometrical changes, and points to the possibility that low
rigidity across the borders might make the dependence on the unoptimized density
more pronounced. However, this can not be stated conclusively without more test-
ing. Contrary to what was expected from the theory, the MLHF geometries did
not approach the frozen HF geometry for increasing active space sizes. No conclu-
sive reason for this could be determined, and it might point to an oversight in the
implementation.

Results have only been obtained within the HF level of theory, and no comparisons to
experimental or more accurately modelled geometries have been done. Additionally,
the tests systems used were small and in many ways not representative of the large
target calculations for this method. However, within these limitations, the results
seem promising. They suggest that the MLHF model may prove successful for
performing geometry optimization on localized regions of large systems at massively
reduced cost, providing a cheap starting point for more accurate models with which
the calculation of local properties like core excitations or the modeling of local
processes such as enzymatic catalysis can be carried out.

The molecular gradient contains a term of differentiated two-electron integrals which
poses a challenge for the efficient implementation of the model. Two simple approx-
imations of this term were formulated without any strong theoretical motivations
behind them, but it was found that the delicate balance between the forces of the
system, as represented by the gradient, was buckled by these approximations, result-
ing in gross distortions of the gradient and no convergence. There does not seem to
lie any immediate possibilities for simplifications of the term in the block structure
of the inactive density involved.
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7 Future work

This implemented the MLHF second order geometry optimization was done in the
AO basis. It would be highly desirable to further develop the method in the MO
basis in such a way that a reduction in dimensions similar to that of the energy
minimization can be achieved.

All the results obtained in this thesis have been obtained at the HF level of theory,
but the MLHF geometry optimization method should be more extensively compared
to other levels of theory, and to experimental results, in order to properly evaluate
its performance.

The proof-of-concept calculations were only aimed at obtaining equilibrium geome-
tries for benchmarking. Relatively small test systems were used due to problems
with convergence for larger systems. Furthermore, the difference in size of the un-
frozen and frozen regions were small, thus not representative of the massive size
difference that would be present in target calculations. Lastly, there were no real
chemical motivation behind the selection of the active spaces. Future studies to
calculate chemical properties of larger systems with an appropriately selected active
space with this method would be interesting.

This thesis has not been concerned with obtaining any results on the reduction in
computation time for the MLHF method relative to the full space HF method. As
the current implementation was only aimed at producing a code with the mini-
mum necessary functionality, the computation times of the presented calculations
are meaningless for this purpose. With a more streamlined and optimized imple-
mentation, the computational performance could be investigated.

Finally, further efforts to reduce the cost of the differentiated two-electron inte-
gral matrix should be attempted, e.g. by devising screening method for negligible
interactions.
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