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Preface

This present paper is a Master’s thesis for the course TKJ4900, ”Theoretical
Chemistry, Master’s thesis” with an emphasis on chemometrics. The thesis is an
extension of the course TKJ4510, ”Theoretical chemistry, Project thesis” and
as such, parts of the introduction, theory and simulation will be covering the
same topics. The work for the thesis was conducted during the spring of 2020
at the Department of Chemistry at the Norwegian University of Science and
technology. The written work in the paper includes a software update for the
visualization program, PyVisA, within the simulation library for rare events,
PyRETIS. It also contains a case study of two RETIS simulations of methane
diffusion within S1 hydrates, with and without water vacancies. Here, the phe-
nomena of cage-to-cage jumps of methane have been studied using PyVisA and
PyRETIS. As there is an emphasis on chemometrics, this thesis is meant as a
means to classify a mass of information generated by path sampling in order to
guide a user to relevant descriptions. The idea is to complement the work of
a user and guide him/her in the description of the outcome through means of
post-processing of simulation results. Here, the new developed features within
PyVisA have been utilized in order to describe the cage-jumps of methane within
the hydrate system.
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allowing me to work on this thesis, and for all the guidance, humour and ideas
he has provided during my last year of studying. I also want to thank Titus
van Erp for his guidance and knowledge on theory and feedback on my thesis.
I also want to thank Anders Lervik and Ola Årøen for their interest and help
in programming and design.





Abstract

Interpreting of results and data from molecular simulation can be a daunting
task. The simulations can often output terabytes of data with high dimension-
ality and possibly many correlated descriptors. In order to better interpret and
handle the large amounts of data generated, a software update for the library for
visualization and post processing of data from molecular simulation, PyVisA,
was developed. The updates include methods for 1- post processing of results
such as recalculation of new collective variables, 2- unsupervised learning such
as clustering and dimensionality reduction of simulation data, 3- computation
of the correlation matrix between descriptors, 4- interactivity, animation and
storage of trajectories and 5- sorting based on Monte Carlo procedures and
available trajectory files.

In this master thesis, cage diffusion within S1 hydrates has been studied through
RETIS simulations of cage-to-cage jumps of methane by using the newly de-
veloped features and software. A methane hydrate is a naturally occurring
clathrate structure, capable of trapping guest molecules such as CH4 and CO2.
Hence, the methane hydrates show potential both as an energy source and a
means of storage for CO2. The hydrates where studied with and without water
vacancies. From the simulation results, PyVisA was able to successfully add
new descriptors to existing simulation data as well as perform post processing
of the data. As such, all results where produced either directly through PyVisA,
or by analyzing data files created from PyRETIS. From the results it can be
shown that the area of the six-membered ring, and the volume of the cage show
increased values as the methane molecules move towards the ring. This behavior
was observed for the system with and without water vacancies. The system with
water vacancies also report a far lower rate constant and crossing probability
than the system without water vacancies. Further, for the system with vacan-
cies, Gaussian mixture clustering provided the best result in capturing regions
in the potential energy. PCA was also applied to both systems, which efficiently
reduced the number of dimensions with 90% variance retained.





Sammendrag

Tolkning av resultater og data fra molekylære simuleringer kan være svært
krevende. Simuleringene kan ofte produsere mange terabyte av data med mange
dimensjoner av høyt korrelerte deskriptorer. For å bedre tolke og behandle
denne enorme mengden med data, har en software oppdatering for biblioteket
for visualisering og postprosessering av data fra molekylsimuleringer, PyVisA,
blitt utviklet. Oppdateringen inneholder metoder for 1- postprosessering av re-
sultater som beregning av nye kollektive variabler, 2- ikke-veiledet læring som
grupperingsanalyser og dimensjonsreduksjon av simuleringsdata, 3- beregning
av korrelasjonsmatrisen mellom deskriptorer, 4- interaktivitet, animasjon og la-
gring av molekylære baner og 5- sortering basert p̊a Monte Carlo prosedyre og
lagrede data-filer.

I denne masteroppgaven har burdiffusjon i S1 hydrater blitt studert gjennom
RETIS simuleringer av bur til bur hopp av metan. Dette ble gjort ved å bruke
den nylig utviklede software-oppdateringen og de nye implementerte metodene
i PyVisA. Et metanhydrat er en klatratstruktur av naturlig forekomst som har
evnen til å fange gjestemolekyler som CH4 og CO2. Av denne grunn har metan-
hydratet stort potensiale b̊ade som en energiressurs og som et lagringsmedium
for CO2. Hydratet ble studert med og uten vannledighet. Fra simuleringsre-
sultatene har PyVisA suksessfullt beregnet og inkludert nye deskriptorer til ek-
sisterende simuleringsdata, samt utført postprosessering av dataen. Som s̊adan
har alle resultater blitt produsert enten direkte gjennom PyVisA, eller gjennom
å analysere datafilene produsert gjennom PyRETIS. Fra resultatene kan det
vises at arealet av den seksleddede ringen metanet hopper gjennom og volumet
av startburet viser økte verdier idet metane hopper ut av startburet. Dette for
begge systemer. Systemet med manglende vannmolekyler viste ogs̊a en lavere
rate og krysningssannsynlighet enn systemet uten manglende vann. Videre, for
systemet med vannmangel s̊a gav Gaussisk gruppering det beste resultatet n̊ar
regionene i den potensielle energien skulle grupperes. PCA var ogs̊a anvendt
til begge systemer, og oppn̊adde en effektiv reduksjon i antall dimensjoner der
90% av variansen var beholdt.





Overview of thesis

This thesis consists of a software update of the GUI for visualization, PyVisA,
under the simulation program PyRETIS. It is then followed by a case study
of methane diffusion within an S1 hydrate where the newly developed methods
and feature are implemented. The first section of the thesis is an introduction
to the current state of hydrate based carbon capture and storage. Following
the introduction, comes a theoretical background for the simulations of rare
events using interface sampling. This section will also contain the theory on the
statistics and machine learning techniques which have been implemented into
the program. After section 2, in section 3, the methods which have been im-
plemented into PyVisA will be displayed and their relevance to post processing
of data from molecular simulations will be discussed. In this section, the set-
tings, order parameter and collective variables used in the simulation will also
be presented. In section 4, the results from the simulations will be presented
and their relevance to the system will be discussed before the overall conclusion
is presented in section 5. Further work regarding this study and field is also
presented in the final chapter.
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1 Introduction

Since 1811, it has been known that natural gas can be hydrated and hydrate
based carbon capture (HBCC) has been a topic of interest in recent years [1]. A
hydrate is crystalline accumulation of gas and water in an ice-like cage [1, 2]. The
water molecules, called the host, are able to trap and store guest molecules like
CH4 or CO2 [3]. Methane hydrates, called S1 hydrates, are naturally occurring
in deep sea sediments in areas with high pressure and low temperature, called the
gas-hydrate-stability-zone (GHTZ) [1, 4, 5]. These methane hydrates represent a
major potential as an energy source, but also as a climate threat. It is theorized
that they can release their methane as a results of global warming and that the
quantity of methane rivals that of the existing reserves of coal and natural gas
combined [4, 5].

The methane from the hydrates can be harvested simply by depressurizing or
heating [2]. While these harvesting methods are simple, they can cause destabi-
lization of the hydrate reservoir. This can cause water leakage below the GHTZ
which can halt the harvesting process [2, 5, 6]. In order to retain the structure
of the hydrate reservoir, and one of the main reasons for the potential of HBCC
is that the harvested methane can be replaced by CO2. Hydrates are efficient
container for CO2 as one volume of CO2-hydrates can release 175 volumes of
CO2 under standard conditions. Another benefit of HBCC is that it is operated
at low temperature and pressure. This causes HBCC to require less energy than
standard methods of CSS as around 70-90% of the operating cost in standard
three stage CSS is from energy consumption [7]. With increasing pressure to de-
velop climate friendly solutions for energy production and solutions for circular
economy, HBCC presents a safe and carbon negative method for gas production
[8].

One of the ways for the gas exchange to be performed is through cage-to-cage
diffusion within the hydrate [9]. The S1 hydrate unit cell is made up of 46
water molecules forming two types of cages, see Fig. 1, consisting of five- and
six-membered rings. When a guest molecule jumps from a donor to an acceptor
cage, it can either be performed by the guest molecule jumping through a six
membered or five membered ring [2]. When jumping through a six-membered
ring, the acceptor cage will be another large cage, denoted as an L6L-jump. If
the jump occurs through a five-membered ring, the acceptor and donor cages
can be either small, or a large, and the jump is denoted as S5S-, S5L-, L5S- and
L5L-jumps. This is because of the rings orientation in the unit cell leading to a
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one dimensional diffusion through the six-membered rings [2, 9, 10]. Since the
jumps through the five-membered rings require much more energy then the L6L
jumps, they will not be considered. The jumps can occur with and without water
vacancies in the rings, but the energy barrier for diffusion without vacancies is
significantly higher than if there are vacancies present. [9, 10].

Figure 1: Illustration of the types of cages which make up an S1 hydrate. The
large cage (left), and the small cage (right) forming a 6:2 ratio within the unit
cell of the S1 hydrate. The figure is taken from Ref. [2].

In this work, the goal is to explore the cage-to-cage diffusion of methane in an
S1 hydrate with and without water vacancies through RETIS simulations. In
order to explore the diffusion, the simulations will be designed to perform the
L6L jumps of the methane. Thanks to the substantial developments included in
PyVisA, we perform data exploration and visualization to describe the physical
process.
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2 Theory

This section will focus on the theory for the techniques used in the simulations
and the features that have been added to PyVisA. First the theory on interface
sampling of rare event simulations, and then the unsupervised learning methods
will be presented.

2.1 Interface sampling

Simulations based on molecular dynamics (MD) try to solve Newtons equations
of motion for a system of molecules. MD methods are used numerous fields of
research, from material science to biology and theoretical chemistry [11]. While
MD is flexible, it suffers from needing a time step of between 0.5 and 2 femto
seconds. This makes it hard to simulate reactions occurring at micro second
time scales. [12]. Many methods, trying to overcome this simulation barrier
to sample rare events, will either alter the potential energy surface and/or the
dynamics of the reaction [12, 13, 14]. This causes a disturbance of the chem-
ical phenomenon being studied [12]. One way to simulate rare events without
disturbing the dynamics of the system is to sample unbiased MD trajectories
by utilizing Monte Carlo schemes in path space [11]. Among the methods that
sample trajectories, transition interface sampling, (TIS), and replica exchange
TIS, (RETIS), have increased the efficiency of rare events simulation while still
sampling the unaltered dynamics of the system [15, 16, 17].

RETIS, which is a TIS development, is a simulation method which samples MD
trajectories in the phase space of the reaction by an MC procedure. In RETIS
and TIS, the progress of a reaction is defined by an order parameter, λ (OP),
which is a numerical descriptor that aims to capture the phenomenon. The OP
will discriminate the reaction into reactant state A, λ ≤ λA, and product state
B, λ ≥ λB [11]. All other descriptors in the simulation are here called collective
variables (CV).

TIS/RETIS aims to calculate the rate constant, kAB , of a reaction, given as
[11]:

kAB = fAPA(λA|λB), (1)

where fA is the initial flux of trajectories that pass through state A, and
PA(λB |λA) is the probability to reach the reactant state B, given that the tra-
jectory started from state A [11, 18].
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In most rare events, crossing the potential energy barrier of the reaction is not
possible by means of a standard MD simulation. However, by defining path
ensembles, which define regions between the product and reactant state, the
TIS/RETIS algorithm is able to efficiently sample rare events [5, 18]. Each
path ensemble is labeled as [i+] and has an interface λi of the order parameter.
The first interface λ0 is placed so that the first path ensemble [0+] defines the
reactant state A. The following interfaces are then placed so that λ2 ≥ λ1 ≥ λ0
until λN is reached which defines the product state B. This implies that the
crossing probability can be expressed as the product of conditional crossing
probabilities. The rate constant for the reaction is then calculated as [11]:

kAB = fA

N−1∏
i=0

PA(λi+1|λi), (2)

where instead of the probability of crossing into the product state from the reac-
tant state from Eq. (1), the history dependent conditional crossing probability
PA(λi+1|λi), is used. This is the probability that a path crosses the interface
λi+1 given that the path had its origin in λA, ended in either λA or λB and had
at least one crossing of the interface λi [11]. An example of the path ensemble
interfaces with molecular trajectories is shown in Fig. 2.
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Figure 2: Illustration of the RETIS path ensemble interfaces for a simple 2D
well potential with five path ensembles and two trajectories, one reactive (black)
and one non-reactive (orange). The figure is taken from the PyRETIS website
at Ref. [18].

One difference between TIS and RETIS is the calculation of the initial flux, fA.
In TIS, the initial flux is calculated by a MD simulation given as [15]:

fA =
N+
c

T∈A
, (3)

where N+
c is the number of positive crossings with interface λA = λ0 and T∈A

is the time spent in state A. RETIS, which obtains its results purely from
path sampling simulations, avoids the need to calculate the flux through a MD
simulation. This is done by introducing another path ensemble [0−] which is
placed behind the first path ensemble. Ensemble [0−] contains all trajectories
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which start at λA, explore the reactant state and end at λA again. This allows
the RETIS algorithm to calculate the flux through the average path lengths

of the paths contained within the ensembles [0−] and [0+], 〈t[0
−]

path〉 and 〈t[0
+]

path〉
respectively. The calculation of the flux, now becomes [15]:

fa =
1

〈t[0
−]

path〉+ 〈t[0
+]

path〉
(4)

The most important of the path sampling methods, is the shooting move. The
shooting move consists of taking a random time step from the last accepted path,
altering the momentum at this point, and creating a new path by integrating
forward and backwards in time [15]. In order to sample the correct distribution
of paths there is a requirement for the trajectories to obey detailed balance
[19, 20]. This implies that at equilibrium, the transitions between two states
occur at the same rate. Detailed balance can be expressed as [15]:

Pgen[x(o) → x(n)]

Pgen[x(n) → x(o)]

Pacc[x
(o) → x(n)]

Pacc[x(n) → x(o)]
=
P [x(n)]

P [x(o)]
, (5)

where Pgen[x(o) → x(n)], and Pgen[x(n) → x(o)] are the probabilities to generate
a new path (n) from an old path (o), and from the new path, generate the old
path. Pacc[x

(o) → x(n)], and Pacc[x
(n) → x(o)] are the probabilities to accept

paths from state o to state n and from state n to state o. Lastly P [x(o)] and
P [x(n)] are the probabilities for the old and the new path.

The MC moves also need an acceptance criterion. When generating a new path,
each time step of the last accepted trajectory will have the same probability to be
chosen as the ”shooting point” and the velocities are regenerated according to a
Boltzmann distribution. From the shooting point, the path is generated through
integration forwards and backwards in time until a stable state is reached. The
acceptance criterion for the newly generated path can then be written as [15]:

Pacc[x
(n) → x(o)] = min

[
1,
L(o)

L(n)

]
, (6)

where L(o) and L(n) are the lengths of the old and the new path. This means that
longer paths are unfavorable and are likely to be rejected [15]. Both TIS and
RETIS also use the time reversal move, which as the name implies, changes the
time direction of a path. This is cheaper MC move as it does not require any MD
steps, but will produce highly correlated paths [11]. Another difference between
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TIS and RETIS is that RETIS also utilizes the swapping move. This MC move
consists of swapping two paths if they are valid for each others path ensembles.
This move acts between different path ensembles, and will increase the amount of
accepted trajectories and reduce the correlation between successive trajectories
within the same path ensemble [16].

2.2 Unsupervised learning

Unsupervised learning is part of an exploratory data analysis where the scientist
is not interested in prediction, as there is no response variable. Instead, the goal
is to discover patterns, subgroups and other behaviour in the data.

2.2.1 K-means clustering

K-means clustering is a technique for dividing and categorizing data into classes
or clusters and is widely used within data mining and machine learning. The
generic algorithm aims to divide a set of n observations into k distinct clusters
[21]. If C1,...,CK are sets which denote the indices of all the observations in
each of the K cluster, then they need to satisfy two properties [21]:

• C1 ∪ C2 ∪...∪ CK = {1,....n}, meaning that every observations must be-
long to one of the K clusters.

• Ck ∩ C
′

k = ∅, meaning that the clusters do not overlap, and that no
observation can belong to more than one cluster.

The K-means algorithm aims to minimize the within-cluster variation (WCV),
W (Ck) which is a measure of how much the observations within the same cluster
differ from each other [21]. The most common way to define the within-cluster
variation is through squared euclidean distance and is defined as:

W (Ck) =
1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′ j)
2, (7)

where |Ck| denotes the number of observation and xij , and xi′j are the points
within the kth cluster,.

The standard algorithm, often called naive K-means, moves between two steps
for n observations, p features and K clusters [21]:
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1. Randomly assign an initial placement for the K clusters and assign the
points to their closest cluster center.

2. Iterate until no observations change their cluster assignment:

(a) For each cluster, compute the centroid where the centroid is the vec-
tor of the p feature means for all observations within each cluster.

(b) Assign each observation to its closest centroid, defined by the eu-
clidean distance.

An illustration of algorithm 2.2.1 is shown in Fig. 3.

Figure 3: Illustration of the k-means algorithm from Stanford [22], where: in
(b) two cluster centers are randomly placed for the initial observations; in (c)
the observations are assigned to the nearest clusters before the centers of mass
for the clusters are updated in (d); new assignments are done in (e) before the
final adjustments of cluster centers are performed in (f).

Although the naive algorithm is guaranteed to decrease the WCV, it is not
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known if the clustering finds a local or a global optimum since the initial as-
signment of clusters is random. Hence it is recommended to run the algorithm
several times in order to compare the WCV between the different runs to find
the global minimum [21].

2.2.2 Gaussian mixture model

Gaussian mixture model (GMM) is a technique which tries to cluster data sim-
ilarly to k-means, but utilizes the variance of the data as well. A Gaussian mix-
ture model ρ(x|Θ) is a weighed sum of M > 1 cluster or components ρ(x|θm).
Each component in the model is expressed as a normal distribution of the form
[23]:

ρ(x|Θ) =

M∑
m=1

αmρ(x|θm), (8)

where x = [x1, x2, ..., xd]
T is the d -dimensional data vector, θm = {µm, Σm}, is

the mean vector and the covariance matrix and αm is the weight of component
m = 1, ...,M . The weights are also strictly positive and

∑M
m=1 αm = 1. Θ,

called the Gaussian mixture is the set of parameters {α1, ..., αM ,θ1, ...,θM}
and denotes the shape of the Gaussian distributions for the components [23].

The general algorithm for GMM consists of an expectation step, and a maxi-
mization step, called the EM-iteration, that are performed consecutively until
the log-likelihood [23]:

log ρ(χ|Θ) = log

N∏
i=1

ρ(xi|θm), (9)

converges to a local optimum where χ = {x1, x2, ..., xN} are N independent and
identically distributed samples and Θ is the Gaussian mixture.

In the expectation step, the data χ is assumed incomplete while the complete
data set, γ = (χ,Z), is determined by estimating the set of variables con-
tained within Z = {z1, z2, ...,zM}, and each zm is an N -dimensional vector
[z1m, z

2
m, ..., z

N
m ]. The log-likelihood of the complete data is then [23]:

log ρ(γ|Θ) =

N∑
i=1

M∑
m=1

zim log [αmρ(xi|θm) ], (10)
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where zim is equal to:
zim = P (m|xi,Θt), (11)

which is the posterior probability, and Θt is the estimation of the Gaussian pa-
rameters after t iterations of the EM-iteration. This corresponds the probability
that sample i, belongs to cluster m [23, 24].

In the maximization step, the parameters of the Gaussian mixture, Θt+1 are
updated through the estimate of the variables zim. In the model, this corre-
sponds to updating the variables αt+1

m ,µt+1
m and Σt+1

m , which are the weight,
the expectation values, and the correlation matrix of the normal distribution,
given by [23]:

αt+1
m =

1

N

N∑
i=1

zim, (12)

µt+1
m =

∑N
i=1 zixi∑N
i=1 z

i
m

, (13)

and

Σt+1
m =

∑N
i=1 z

i
m(xi − µt+1

m )(xi − µt+1
m )T∑N

i=1 z
i
m

(14)

By repeating the EM-iteration, the likelihood of all the points belonging to
all the clusters is computed, and from these results, the parameters of all the
clusters are updated [23, 24]. Through these iterations, the points will eventually
be assigned to the cluster they most likely to belong to and the results can be
visualized [25].

2.2.3 Hierarchical clustering

Hierarchical clustering begins by treating each observation as its own cluster,
before merging observations and creating larger and larger clusters. This merg-
ing can be done until a single cluster containing all the observations are left
[26] and the user can chose the amount of clusters to use, or until a predefined
number of clusters is reached. The method begins by calculating the proxim-
ity matrix for all points, before merging the two closest observations to a new
cluster, and re-computing the proximity matrix [27]. This style of hierarchical
clustering is called agglomerative or bottom-up clustering as it starts with the
leaves and combines them until it reaches the root [21].
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In order to produce the proximity matrix, a dissimilarity measure between two
points, and a metric for measuring the similarity between clusters, often called
a linkage criterion, must be chosen. There are several methods for calculating
the distance between two points, such as the Euclidean distance defined as [21]:

||xi − xj || =
√

(ai − aj)2 + (bi − bj)2, (15)

where xi and xj are two dimensional observations which contain the values (a,
b). An illustration of the agglomerative algorithm is shown is Fig. 4 where eight
points are being clustered.

Figure 4: Illustration of the hierarchical agglomerative clustering algorithm
taken from the computer science portal GeeksforGeeks at Ref. [28].
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For the linkage criterion, the complete, single, average and centroid linkage
is often used. The complete and single linkage is the maximum and minimum
distance between any two points in two different clusters. The average linkage is
the average distance between all points in two clusters, and the centroid linkage
is the dissimilarity between the centroids. This is a mean vector of length p, of
two clusters [21].

The general algorithm for agglomerative hierarchical clustering is defined as
follows [21]:

1. Define a dissimilarity measure for all the
(
n
2

)
= n(n-1)/2 pairwise dissim-

ilarities. Each observation is treated as its own cluster.

2. for i = n, n-1 ,...., 2 do:

(a) Identify the pair of clusters that are the least dissimilar, and fuse
them. This becomes a new cluster.

(b) Compute the new pairwise dissimilarities between all i-1 cluster that
remain.

3. The merging is repeated until the desired amount of clusters remain.

2.2.4 Spectral clustering

Spectral clustering is an emerging method for data exploration that can often
outperform traditional techniques like k-means while still being implementable
with simple algebra by treating the clustering as a graph partitioning problem
[29]. In any clustering scheme, a measure of similarity or dissimilarity, sij
between points xi and xj is often needed in order to determine assignments
to clusters. But if no more information between the observations other than
similarity is known, a way to express the data is through a similarity graph
G = (V,E). Where V is the set of vertices, {v1, v2, ..., vn}, in a dataset of n
observation where each vertex vi represents one observation xi and E is the
set of edges connecting the vertices. Two vertices vi and vj will have an edge,
eij , if the similarity sij is positive, or larger than some threshold where the
edge is weighted by sij [29]. The clustering problem now becomes a matter of
partitioning the similarity graph such that the vertices within one cluster are
as similar as possible. The edges within a cluster will then be highly weighted
and the edges between groups of vertices will have low weights as they are as
dissimilar as possible [29].
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In spectral clustering there are many ways to transform a dataset of n observa-
tions with pairwise similarities into a similarity graph. What all these methods
have in common is that they aim to produce undirected graphs. In graph theory
an undirected graph G, is a graph where for every edge eij connecting the vertex
vi to vj , there is also an edge eji connecting vertex vj to vi, meaning that all
edges are symmetric. See Fig. 5 where an undirected and a directed graph is
shown. If G is assumed to be weighted, then all edges also carry a non-negative
weight wij , where wij = wji. If wij = 0, there would not be an edge between
the vertices vi and vj . The weights of a graph is defined within the adjacency
matrix of the graph, W, and by summing the weights on the edges from a vertex,
vi, one can also find the degree, of said vertex, di defined by [29]:

di =

j=1∑
N

wij , (16)

where di defines how many edges a vertex, vi, has.

a)

b)

Figure 5: Illustration of two graphs. Sub-image a) shows an undirected graph
consisting of six vertices and seven edges, and sub-image b) shows a directed
graph consisting of three vertices and four edges. The image is taken from Ref.
[30].

One of the main types of similarity graphs used in spectral clustering is the k -
nearest neighbour. In the k -nearest neighbour graph the vertex vi is connected
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to the k nearest other vertices, hence the name nearest neighbours. In order
to ensure the resulting graph is undirected, two measures can be made as the
neighbourhoods of the vertices are not symmetrical. The first method is to
neglect the direction of edges, where if vertex vi is in the neighbourhood of vj
, then they are both connected and similarly if vj was in the neighbourhood of
vi. This creates what is called k-nearest neighbour graph. The second method is
to create an symmetrical edge eij between vertices vi and vj if they are both in
each others neighbourhood. This results in the mutual neighbourhood graph.[29]

After the similarity graph has been created, the graph Laplacian is computed,
which is defined as [29]:

L = D −W, (17)

where D is the degree matrix, which is a diagonal matrix that contains all the
degrees, d1, d2, ..., dn on the diagonal given by Eq. (16), and W is the adjacency
matrix containing all the weights. The benefit of using the Laplacian is that it
will have the degrees for all vertices on its diagonal, and the negative weights
for the edges of the vertices on the off-diagonal entries [29, 31].

Then, the first k eigenvectors, u1, u2, ..., uk, of L are computed where k is the
amount of clusters. The eigenvectors will contain information on how to segment
the nodes in the graph and on the basis of these eigenvector, k-means clustering
is performed to assign the points to the clusters [31].

2.3 Principal component analysis

Principal component analysis (PCA) is a widely used technique for unsupervised
learning, dimensionality reduction and data visualization. The core idea, is that
with n observations in p dimensions, all p dimensions are not necessarily of equal
importance. PCA will therefore try to find a low-dimensional representation of
the data while trying to capture as much of the variance in the original data as
possible. [21]

The different principal components (PC’s) are found through linear combina-
tions of the p variables in the original system [21]. Given a set of features
X1, X2, ...., Xp, the first PC is given as the normalized combination of the fea-
tures:

Z1 = φ11X1 + φ21X2 + ...+ φp1Xp, (18)

which have the largest variance and where φ are called the loadings and
∑p
j=1 φ

2
j1 =

1 [21].

14



These loadings make up the first principal components loading vector φ1 =
(φ11, ..., φp1)T and is a measure of how much of the original variable is repre-
sented in the PC. Therefore it is important that they are normalized in order
to give equal importance to the original variables in regards to the size of their
variance. Then the first PC, for a dataset X of size nxp, is computed by finding
the linear combination of loadings and sample feature values with the largest
sample variance of the form [21]:

zi1 = φ11x11 + φ21x12 + ...+ φp1x1p, (19)

with a constraint that the loadings are normalized and assuming that the vari-
ables in X have been centered so as to have mean zero. This is assumed because
the only points of interest is the variance. This in turn, is a maximization prob-
lem defined by [21]:

maximize
φ11,...,φp1

{ 1

n

n∑
i=1

( p∑
j=i

φj1xij

)2}
subject to

p∑
j=1

φ2j1 = 1. (20)

The problem, can also be written as:

1

n

n∑
i=1

z2i1, (21)

where z11, ..., zn1 are called the scores of the first principal component and have
an average of zero, as they are a linear combination of the variables of X which
have been centered to have a zero mean.

The interpretations of the scores and loadings, can be thought of as the following.
The loadings define the direction of the vector in the feature space with the most
variance. These directional values are then projected onto the n observations
in the dataset giving the scores of the principal component, such that z11 =
φ11x11 etc. Then in order to find the second PC, Z2, one has to find the linear
combination of the variables that has maximum variance and is uncorrelated,
and therefore orthogonal to Z1 [21]. This process is illustrated in Fig. 6.
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Figure 6: Illustration of PCA being performed on a dataset. The red and green
line defines the directions of largest and second largest variance in the dataset.
The second image shows the first two principal components plotted against each
other, which have been normalized to a mean zero. The image is taken from
Ref. [32].

Similarly to the first PC, the scores of the second PC, z12, z22, ..., zn2, take the
form of:

zi2 = φ12xi1 + φ21xi2 + ...+ φp2xip, (22)

where φ12, ..., φp2 are the loadings of the second PC which make up the second
PC loading vector φ2. Then, the maximization problem similar to Eq. (20)
must be solved, but for the variables corresponding to the second PC, Z2. Then
for the third PC, one finds the linear combination of the variables giving the
third largest amount of variance, while being uncorrelated to Z1 and Z2, and
the same for the rest of the PC’s [21].

Another useful property of PCA is that the first PC provides the best line
and the first two PC’s provide the best plane in a p-dimensional space that is
closest to the n observations in terms of average squared euclidean distance [21].
This property continues with increasing number of PC’s and dimensions in the
system. This implies that the first M principal component score and loading
vectors provide the best approximation in M dimensions to the ith observation,
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xij , in terms of euclidean distance [21]. This can be written as:

xij

M∑
m=1

zimφjm. (23)

Assuming the original data matrix is column centered, the principal compo-
nents score and loading vectors can, given a large enough dataset, give a good
approximation of the data. [21]

2.3.1 Proportion of explained variance

When performing PCA, the goal is to have as few PC’s as possible, while retain-
ing as much variance as possible. If, in a p-dimensional dataset, one creates p
PC’s, there is no dimensionality reduction, and the dataset is simply re-created.
There is also the risk of choosing to few PC’s and not retaining enough variance
to be able to capture anything of interest in the data. The proportion of vari-
ance explained (PVE) by each component is the amount of variance that PC is
able to capture [21]. By assuming the variables in a dataset has mean zero, the
total variance can be explained as [21]:

p∑
j=1

Var(Xj) =

p∑
j=1

1

n

n∑
i=1

x2ij , (24)

and the variance explained by the mth PC is [21]:

1

n

n∑
i=1

z2im =
1

n

n∑
i=1

( p∑
j=1

φjmxij

)2
. (25)

Hence, the PVE corresponding to the mth PC is given by [21]:

PVE(Zm) =

1
n

∑n
i=1

(∑p
j=1 φjmxij

)2
∑p
j=1

∑n
i=1 x

2
ij

. (26)

In order to assess the amount of PC’s necessary in an analysis, the cumulative
explained variance (CEV), which is the sum of the PVE of the PC’s is plotted
against the number of PC’s. A plot of the CEV is shown in figure 7. By visual
inspection of the CEV plot, one can find the amount of PC’s to use. As a
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rule of thumb one should choose the smallest amount of PC’s that is needed in
order to explain a sizeable amount of variance, often above 80% [21]. Another
method is to look for the elbow in the CEV plot, which is where the increase in
explained variance per principal component decreases. In Fig. 7 the shoulder
appears to be around 15 principal components. This is because after about 15
principal components, the model retains about 85% variance, and slope of the
graph rapidly decreases, meaning that the model becomes more complex while
the increase in variance retained is only slightly increasing.

Figure 7: Plot of cumulative explained variance with a shoulder at around 15
components. The figure is taken from Ref. [33].
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3 Methods and developments

3.1 Software Development

In this section the software developments that have been added to PyVisA
will be presented. Their purpose and benefit towards guiding a user in data
exploration and analysis will also be discussed. The methods have primarily
been added to a new page of the GUI, named Analysis, which contains clustering,
PCA, calculation of the correlation matrix and the options for interactivity,
storage and animation, see Fig. 8. The program has also been extended to load
singular trajectories and configurations, interactively select and visualize whole
trajectories on the plots as well as animate and store said trajectories. Further,
the option to perform post-processing on the trajectory files in order to add
more collective variables to the simulation has also been implemented.

Figure 8: Analysis tab, showing the different options for interactivity, animation,
clustering and correlation matrix. The Analysis drop-down menu consists of
the option: K-means-, Hierarchical-, Gaussian mixture-, spectral clustering and
PCA.

The data collection of the program has also been updated and compressed by the
introduction of a trajectory class which contains all the features of a PyRETIS
trajectory. The information and features of the trajectories have been stored
into an object by utilizing the pandas dataframe to store large amounts of data
[34]. PyVisA can also perform a new collection of the data, which is useful if
the user is visualizing an ongoing simulation. This option is available through
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the ”Refresh data” button on the Data-tab, see Fig. 9 b).

With the introduction of the trajectory class, the ability to sort the simulation
data has also been improved by 1- the option to sort trajectories based on their
MC-generation move and 2- the option to only show the data from the stored
trajectory files. This a useful feature in the analysis as the trajectory files are
the ones that can be used for recalculations of new collective variables. These
options for selection and sorting, are available in the Data-tab of PyVisA, which
is shown is Fig. 9, where the old and the new Data-tab is displayed.

a)

b)

Figure 9: The old, a), and the updated, b), Data-tab in PyVisA. The new tab
has been fitted with option to sort based on MC generation moves, available
trajectory files, and can perform a refresh of the data to visualize the develop-
ment of an ongoing simulation. Sub-image a) is taken from the pyretis website
at Ref. [35].
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In order for the user to be able to load data from specific folder, or singular
trajectories, the commands for the program has also been updated. This makes
PyVisA able to test behaviour and check for correctness with a smaller sample
than by loading the entire simulation. This makes the program flexible in load-
ing data, either from the command window, or through the ”load data” option
in the File-menu. This improved ability to sort the data also aids in the search
for outliers. This is because the user has an improved chance of pinpointing
the outliers with a smaller subset of the data, as well as being able to get the
information about the outlier through the interactivity of the plots.

3.1.1 Clustering

The following methods of clustering have been added as features of analysis
in PyVisA: k-means, agglomerate hierarchical with average linkage, Gaussian
mixture model and spectral clustering with k-nearest neighbourhood with 30
neighbours. In order try to generate stable clusters in the hierarchical method,
the average linkage criterion was chosen as single and centroid linkage tends to
yield uneven or distorted clusters [21, 27].

There are many implications in clustering that will greatly affect the outcome of
the analysis. The amount of clusters will be unknown, and there is no consensus
on a single best approach to clustering and data analysis. K-means clustering is
often the standard approach for many when performing post-processing. How-
ever it has its cons, and it will often be useful to be able to perform clustering
with different algorithms. One possible pitfall of k-means and hierarchical clus-
tering is that every observation will be assigned to a cluster, which also means
that noise and outliers will be included. This can cause the clusters to be dis-
torted since it now contains outliers which are likely to not belonging to any
clusters [21]. K-means also utilize the euclidean distance measure, and is there-
fore best suited to handle circular clusters. If there are clusters of other shapes,
it is likely that the k-means algorithm will assign observations to the wrong
cluster, as the cluster boundaries are overlapping, as showing in Fig. 10. In
order to cluster data from different shapes of clusters, algorithms like GMM or
spectral clustering can be more flexible.

The benefit of using algorithms like GMM is that it performs soft clustering as
GMM also utilizes the variance of the data, whereas k-means and hierarchical
performs hard clustering [24]. In hard clustering, each observation is assigned to
a cluster which can be right or wrong. But in soft clustering, the observations
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are assigned to the clusters with a certain probability of belonging to that cluster
[36]. Then, if k-means provides staggered results, and its suspected that there
is a lot of noise in the data set, GMM clustering might be a more suitable
algorithm to utilize.

a) b)

Figure 10: Illustration of two types of clusters, one circular, a, and one elliptical,
b. K-means clustering can often struggle with clusters with elliptical shape as
in sub figure b. The figure is taken from Ref. [24].

Spectral clustering is also more flexible than k-means as the algorithm assumes
little of the shapes of the clusters. Spectral clustering can easily cluster data
forming intertwined spirals and can handle large datasets, assuming that the
Laplacian is sparse, which is ensured by using the k -nearest neighbourhood
similarity graph. This is shown in Fig. 11 where both spectral and k-means
clustering have been performed for circular dataset. While the risk of getting
stuck in a local optimum is low, the method is generally unstable for different
values of the parameters involved in generating the similarity graphs. As such,
spectral density is not a good choice for a black box method [29, 31]. Clusters of
elliptical or possibly spiral shape could occur in simulations for example if one
measure dihedral angles [20]. Therefore it is beneficial to be able to use spectral
clustering in combination with other methods, as a means of specialization after
initial inspection of a dataset.

22



a) b)

Figure 11: Illustration of k-means and spectral clustering on a circular dataset.
The figure is taken from Ref. [31].

Clustering methods are also sensitive to perturbations of the data, meaning
that by removing a random subset of the data, the results from clustering will
be different compared to results generated by using all the data [21]. Since
clustering can give non-robust results, it is important to perform clustering on
smaller subsets of the data with varying amount of clusters. This will also apply
when analyzing results from path sampling, as there are possibilities that one
path will be repeated which occurs if the last accepted path is copied as the
new path. The choice of visualizing data based on the different MC generation
moves can reduce the amount of repeated data by choosing to only visualized the
trajectories initialized through a shooting move. This can also help optimize the
different percentage of moves for the simulation. The ability to cluster smaller
subsets is also improved with the new features for loading data within PyVisA.

Clustering techniques can also be useful in the detection of energy minimums.
As changes in potential energy can indicate the stability of a system, there might
be areas that contain a high density of the simulations trajectories. In order to
visualize these areas, either density plots or clustering techniques can be used.
These stable states and energy minimums can be of highly irregular shapes.
This is because they can be a product of many different descriptors for the
system. Therefore the algorithms like GMM and spectral clustering might be
best suited to handle such clusters. The clustering algorithms can also serve as
a validation for the density plots, improving the users ability to discern different
states of the system. Clustering methods also help in analyzing outlier of the
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simulation as k-means will react strongly to their presence.

As there is no best method of clustering defined, it is important to have a range
of different methods available. This allows the user to easily and readily cy-
cle through different methods of unsupervised learning. One generic approach
might be to start off with k-means clustering or hierarchical, as these are the
fastest of the methods, and from these results, get indications as to the appro-
priate amount of clusters. Then, after getting indications of how many clusters
to use through visual inspection and k-means, other more specialized clustering
algorithms like spectral or GMM can be used. Spectral and GMM clustering
will likely be more flexible in regards to the shapes of the clusters, and might
results in a more precise clustering of the data. From this, the user can compare
methods, and get a better grasp of the system.

3.1.2 Dimensionality reduction

The option to perform principal component analysis was added to PyVisA in
order to facilitate dimensionality reduction. The software used was from the
machine learning library scikit-learn in Python [37]. There are vast possible
application for the usage of PCA, which is why the simulation data, the scores
from the PC’s, the loadings, correlation matrix and explained variance will be
saved and compressed to a hdf5 file. This will allow each user to tailor the
analysis to their specific needs and simulations.

The analysis and visuals being generated are meant as a guideline for where
the user should continue their search. The PCA option in PyVisA will generate
plots of the scores of the first two principal components in order to inspect if
there is some behaviour of interest between the principal components. This is
illustrated in Fig. 12 where the first two PC’s have been plotted for a small
test set of 10 cycles. The loadings and cumulative explained variance will also
be plotted, as a control for the reliability of the principal components. This is
illustrated in Fig. 13 where the CEV has been generated for the same test set
as in Fig. 12.
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Figure 12: Example of a plot of the first two principal components plotted
against each other from PyVisA, for a small test set consisting of 10 cycles [5].
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Figure 13: Example of the plot of the cumulative explained variance from
PyVisA, for a small test set consisting of 10 cycles [5].

In chemical reactions and the study of rare events, one descriptor might only
cover a part of the reaction and the reaction pathway. As reaction are often
complex mechanisms it might be necessary to utilize multiple order parameter
descriptors in order to find the transition states. PCA will be able to provide the
user with these descriptors as the principal components are linear combinations
of the original descriptors. This can also apply to stable states and energy
minimums of the system.

Another use of PCA is in combination with the different clustering methods
that have been implemented. Many classical methods for data exploration,
such as k-means, suffer when the dimensions of the data become to large [38].
In the case of k-means clustering, there may not be any clear structure or
separation between the cluster, the amount of cluster can be difficult to choose,
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and the placement of the cluster centers can cause faulty cluster assignments.
To combat this inefficiency, it is often useful to perform PCA on the dataset
prior to performing the clustering. By performing the PCA, which aims to
reduce the dimensions d, and clustering which aims to compress and label the n
observations, one produces a compression of dimensions and observations. The
user can then utilize the compressed data files generated by PyVisA to explore
the data further.

3.1.3 Post-processing

The post-processing feature that has been added to PyVisA consists of a tool
that was developed during the autumn of 2019 [5] and is available as an op-
tion through the File-menu. The post-processing tool collects the trajectory
files from a complete simulation, and by using the functionality for recalcula-
tion within PyRETIS [39], copy the existing order parameter and compute new
collective variables. The newly computed descriptors can then be visualized by
PyVisA.

The prerequisites for the computations is that the user adds the code for the
new collective variables to the order parameter script file or another independent
python file. Then by writing the names and inputs of the new collective variables
to the input .rst file, the calculations can proceed. An example for adding an
additional collective variable is shown beneath in Fig. 14. For further reading
on this topic, see the PyRETIS website [40] where an example on the use of
PyVisA is available and a tutorial for the new features will be available after
the release of the software update.
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Figure 14: Formatting for addition of collective variables in the input file of
PyRETIS.

The benefits of being able to perform post processing on simulation results are
many. Firstly, a simulation of a rare event is time consuming as the simulation
might need thousands of cycles which all perform costly molecular dynamic
steps. Therefore it can be beneficial to run the simulation, and then add the
new collective variables after inspecting the initial data. This can save time
as there is no need to run another simulation, and the user can customize new
descriptors for the system after reviewing the original results. Secondly, one can
also use the new descriptors to perform statistics on the system and validate
the outcomes. This can be done in order to reveal mechanisms and behaviours
in the data that where not initially available. This facilitates exploration of
data, and can be beneficial in describing a molecular system or reaction. If the
user discovers a high degree of outliers in the values of the descriptors, it is
also possible to design new collective variables that try to capture these. If new
descriptors are added to the system, the order parameter will not be changed
in order to retain the validity of the rate calculations. [5]

3.1.4 Correlation Matrix

This feature will calculate and display the pairwise Pearson correlations between
all descriptors in the simulation [21]. An example of the correlation matrix is
shown in Fig. 15 This is a useful way to start the analysis of the CV’s of a
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simulation as it can give early indications of where to start with visualizing
results and performing post-processing. It can also be used for dimensionality
reduction as it can single out the descriptors which make a small contribution
to the system. In Fig. 15, this could be op10, as is shows almost a linear
negative relation to the order parameter, meaning that it might be a superfluous
descriptor.

Figure 15: Correlation matrix computed by PyVisA for small test set of 10
cycles and 11 descriptors.

3.1.5 Interactive plots and animation

The functionality to pick points on the plot has been introduced where PyVisA
will calculate the closest point in relation to where the user picks. The closest
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point will be colored in a selected color and information regarding the origin
of the point, i.e the coordinates, cycle number, ensemble name, status, and
MC generation move will be displayed. Further, there is the option to show
the whole trajectory to which the selected point belongs. Here the user can
select color, size of points and width of intersecting lines between points. This
is illustrated in Fig. 16, where a point has been selected and the trajectory
has been displayed in green from a density plot in PyVisA. An intersecting line
between the points in the trajectory has been chosen and the information about
the trajectory is displayed.

Figure 16: Example of the interactive picking on the plots in PyVisA for a test
set of 100 cycles for the methane hydrate system [2].
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This feature can be helpful in visualizing reactive pathways in the simulation. It
can also facilitate further inspections into specific trajectories if there appears to
be an underlying behaviour of interest in the plotted data. In combination with
a density plot, it can be useful to show a whole trajectory as it can illustrate how
a system moves between different densely populated areas of the descriptors. As
Fig 16 is only made up of 100 cycles, one can easily distinguish the different
points. But if one wishes to single out one trajectory from several thousands
cycles over several ensembles, this will be more difficult.

The ability to select and visualize single trajectories will also be helpful when
coupled with the possibility to animate the chosen trajectory. As the amount
of data from a simulation can easily be on the scale of terabytes, it can be
beneficial to visualize how the molecules move and interact. This can greatly
increase the understanding of the system and the phenomenon that is being
studied as well as provide a molecular understanding to the data. In order to
play the trajectories, the molecular visualization system PyMOL [41], has been
integrated so that a user can play a chosen trajectory, given that the trajectory
files exist, and a valid configuration file is given. An example of the PyMOL
interface is shown if Fig. 17 and shows the methane hydrate system [2].
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Figure 17: Example of the PyMOL interface for visualization of molecular sys-
tems and trajectories showing the methane hydrate system [2].

3.2 Simulation software

The simulations in this work have been performed using PyRETIS. PyRETIS
is a open source python library for the simulation of rare events and emphasizes
TIS and RETIS simulation [42]. PyRETIS can make use of external engines for
molecular dynamic integration’s, and GROMACS was used as the engine. The
engine is a numerical integrator that solves Newtons equations of motion which
are used in the dynamics of the simulation [5, 42]. GROMACS is a molecular
simulations package that can be used to increase the efficiency of a simulation, as
it excels at calculating non-bonded interactions, which often is the dominating
term in the simulation [5, 43].
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3.3 Simulation

Two RETIS simulations of methane diffusion within an S1 hydrate has been run.
The first simulation contained no water vacancies, and the second simulation
contained one water vacancy. Then, by using the features available in PyVisA,
new collective variables where computed and analyzed for both simulations.
Thanks to these features, it is possible to understand how this system behaves
and create descriptors that can capture phenomena of interest.

The system for the simulations without water vacancies was developed by Mag-
nus Waage [2], and consists of a simulations box of dimensions 2.385 nm x 2.385
nm x 2.385 nm, and 8 unit cells of hydrates. Both simulations where performed
at a temperature of 200 K, and at 1 bar of pressure. The pressure in the simu-
lation is quite low in comparison to the formation pressure of the hydrates, but
as the dimensions of the simulation box are not moving, the pressure has little
significance to the system.[2, 5]

In the first simulation, without water vacancies, 3075 cycles where run, with
25 sub-cycles and 22 path ensembles. In a RETIS simulation a cycle is defined
as one MC-move for each ensemble and a sub-cycle is the amount of MD steps
that the external engine, GROMACS is this case, will perform before PyRETIS
calculates the order parameter and collective variables [11]. The frequency for
storing the trajectory files where set to 25 for both simulations [42].

In the second simulation with water vacancies, 6000 cycles where run, with 19
path ensembles and 25 sub-cycles. In order to include the water vacancy, one
water molecule from the six-membered ring separating the acceptor and donor
cage was removed. As the free energy barrier for the cage jump is expected to
be lower with vacancies, less path ensembles where used. This will also increase
the overall speed of the simulation.

3.4 Order parameter and collective variables

The OP for the system is labeled as ”Cage jump” and is created by Waage
et al [2]. It is defined by a vector in the direction between the centers of the
starting cage and the donor cage for the L6L jump. The progress of the reaction
is measured by the distance that the methane molecule has traveled along this
vector, where 0.0 nm indicated the center of the six-membered ring separating
the two large cages, shown in green in Fig. 18 where an illustration of the OP
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is shown [2, 5]. This vector is made in order to remove the effect of the water
molecules moving in the hydrate structure as the distance between an interface
and centers of the cages can vary by more than 0.5 Å [2].

Figure 18: Illustration of the order parameter for the methane hydrate system,
with the black arrow indicating the vector between the cages where the methane
(dark blue) travels. The figure is taken from Ref. [2].

The following collective variables where created in order to create a framework
with correlated and uncorrelated descriptors for the system [5]. In the first sim-
ulation without water vacancies, the collective variables that where calculated
through the post-processing tool [5], and added to PyVisA are:

• Area of the ring separating the acceptor and donor cage.

• Volume of starting cage.

In the second simulation containing water vacancies, the recalculated collective
variables are:

• Area of the ring separating the acceptor and donor cage.

• Volume of starting cage

• The x, y and z coordinates of the methane molecule.
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• Distances between the methane and the centers of the two rings connected
to the removed water molecule, adjacent to the six-membered ring.

• Number of water molecules in the ring.

The area of the ring separating the acceptor and donor cage and the volume
of the starting cage where made in an attempt to visualize the breathing of
the cages in respect to the cage-to-cage diffusion. These descriptors where in-
cluded in both simulations to investigate how the breathing changes with water
vacancies.

In the second simulation, the coordinates of the methane molecule are also
included. This is because the z-coordinate of the methane has been shown in
the previous work to have an almost negatively linear relationship with the order
parameter [5]. This is because the system is oriented such that the OP-vector is
defined along the z-axis. With water vacancies, it might be of interest to see if
the same behaviour occurs. This correlation might be observed if a surrounding
water molecule fills vacancy in the ring, thereby moving the vacancy throughout
the structure. The L6L jump is the most likely mechanism for the system
without vacancies, but as there are now vacancies present, other mechanisms
may occur such as the L5S and L5L jump. This is because removed water
molecules was also a part of two five-membered rings. In order to investigate if
the methane exits one of the two rings connected to the removed water molecule,
the distances to the centers of these rings are included. The rings are defined
by the remaining water molecules in the original rings. This will also make it
visible if the water molecules move, as it will greatly affect the calculation of
the centers of the rings. The descriptors will be negative as long as the distance
between the starting cage to the center of the ring is larger than the distance
between the cage center and the methane. This is done in order to make the
descriptors similar to the order parameter. The movement of the water vacancies
is also a phenomenon of interest as it is likely to affect the diffusion. Therefore
a collective variable defining the number of water molecules in the ring between
the acceptor and donor cage will also be added. This is performed by defining
a sphere in the initial positions of the water molecules in the ring, and checking
if these positions are filled. This CV will be compared to the order parameter.
See appendices A.1 and A.2 for the scripts containing the collective variables.
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4 Results and discussion

In the following section, the results from the two RETIS simulations will be
presented and briefly discussed as accurate calculations of the rate constant and
crossing probability is not within the scope of this report. Then, the collective
variables that were computed using the recalculation tool of PyVisA will be
presented and discussed in relation to the order parameter and to each other.
Further the results that where generated through the features for clustering
and dimensionality reduction in PyVisA will be presented and their relevance
in classifying the mass of data will be discussed. This will be done for both
simulations, first the simulation without water vacancies and then the simulation
with vacancies.

4.0.1 Results from RETIS simulations

Table 1: Summary of the results from the RETIS simulation without water
vacancies calculated by PyRETIS.

Property Symbol Value Relative Error (%)
Crossing probability P(λB |λA) 5.039·10−20 198
Flux [1/ps] fA 0.758 2.679
Rate constant [1/ps] kAB 3.821·10−20 198

Table 2: Summary of the results from the RETIS simulation with water vacan-
cies calculated by PyRETIS.

Property Symbol Value Relative Error (%)
Crossing probability P(λB |λA) 5.895·10−7 40.872
Flux [1/ps] fA 0.708 2.809
Rate constant [1/ps] kAB 4.173·10−7 40.968

From table 1 and 2 it is clear that the probability and rate of the simulation with
vacancies is considerably lower than without vacancies. This is to be expected
as the free energy barrier for the cage jump is lower with vacancies. The free
energy barrier for the jumps with and without vacancies where calculated by
Waage et al [2] to be 14.7 kBT and 31.7 kBT respectively at 280 K. With a lower
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energy barrier, the jump will be more likely to occur and both the probability
and rate constant will increase. The relative error where calculated by PyRETIS
by a block average analysis. The initial flux shows a lower relative error than
both the crossing probability and rate constant. This could be because the rate
and crossing probability are both products of all the path ensembles, leading
to a cumulative error rate. The crossing probability and rate constant also has
similar relative errors, this for both simulation.

In Fig. 19 and Fig. 20, the total probability for performing the L6L jump
without and with water vacancies is shown. From Fig. 19 it is possible to see
that the five last path ensembles, all contain reactive trajectories that are able
to perform the cage jump. It is also possible to see the development of the
probabilities between the different ensembles, where the crossing probability is
rapidly decreasing after the fourth path ensemble with interface at −0.2 nm. It
also illustrates the cause behind the vastly different relative errors between the
initial flux and the rate constant. From Fig. 20, more reactive pathways can be
seen with a wider range of probabilities. This can indicate that there are several
paths for the methane to jump through the ring as the methane has a larger
area to jump through when the ring is broken. The curvature of the graph is
also less steep compared to Fig. 19, as there is a higher probability for the cage
jump to occur.
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Figure 19: Total crossing probability for the simulation without vacancies

Figure 20: Total crossing probability for the simulation with vacancies
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4.1 Methane hydrate without water vacancies

While the simulation without water vacancies need approximately six days to
run the 3075 cycles, the recalculation of the collective variables only needed 10
minutes. Although this corresponds to a reduction of data, determined by the
frequency at which the trajectory files are stored, the speed of calculations are
vastly different.

4.1.1 Energy terms and stable states

In Fig. 21, the correlation matrix is shown. The matrix show a strong positive
correlation between the potential and total energy, while little to no correlation
between kinetic and total energy,

Figure 21: Correlation matrix for the order parameter, collective variables and
energies for the simulation without water vacancies. The labels are: op1 = Cage
jump order parameter; op2 = Area of ring separating acceptor and donor cage;
op3 = Area of starting cage.
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In order to inspect the energies further, a density plot was made of the potential
and kinetic energies, see Fig. 22. For the density plot, the data from all ensem-
bles and cycles was used in order to visualize the sampling space. In this plot the
potential energy shows two distinct clusters at around -1000 kJ/mol and -18 000
kJ/mol while the kinetic energy varies around 1700 kJ/mol to 1950 kJ/mol. The
two extremities might represent stable states of the system, but there is little to
no correlation between the order parameter and potential energy. This indicates
that the differences in potential energy could stem from the water molecules in
the system and not from the jump of the guest molecule. As there are seemingly
no discontinuities in the order parameter and collective variables this could also
be a readout problem occurring between PyRETIS and GROMACS. It is also
clear from the correlation matrix that the order parameter and collective vari-
ables have little to no correlation with the different energy descriptors. This is
illustrated in Fig. 23 where a scatter plot has been generated for the OP and
potential energy, with a color map from the kinetic energy. The data plotted
is from all path ensembles and cycles, with only the accepted trajectories gen-
erated through the shooting move. This is done in order to visualize as many
unique trajectories as possible. The scatter plot is consistent with the results
from the correlation matrix, and shows the two distinct regions of the potential
energy with only small fluctuations in the kinetic energy. A reactive pathway
has also been highlighted in red. The trajectory is displaying erratic behavior
which might further indicate that the jumps in potential energy does not stem
from the cage-to-cage diffusion, but rather a readout issue between GROMACS
and PyRETIS as the OP is affected by neither the potential nor the kinetic
energy. However due to the simulation time needed and time limitations, a new
simulation could not be performed.
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Figure 22: Density plot of the potential [kJ/mol] and kinetic energies [kJ/mol]
for all cycles, ensembles and trajectories from all ensembles with only the ac-
cepted trajectories generated with a shooting move

Figure 23: Scatter plot of the cage jump [nm], potential [kJ/mol] and kinetic
energies [kJ/mol] from all ensembles with only the accepted trajectories gener-
ated with a shooting move. One reactive trajectory has been highlighted in red
with an intersecting line between points in the trajectory.
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4.1.2 Breathing of water cages

The breathing of the water cages are described by the area of the ring separating
the acceptor and donor cage, and the volume of the starting cage, labeled as op2
and op3 in the correlation matrix. When plotting the order parameter against
each of the two collective variables, see Fig. 24 and Fig. 25, both plots show
a similar behavior. This is in accordance to the results from the correlation
matrix where the collective variables show a correlation of around 70%. Both
the area of the six-membered ring and the volume of the starting cage seem to
be increasing as the values of the order parameter goes towards 0.0 nm. This
is when the methane is nearing the center of the ring separating the acceptor
and donor cage. The area of the ring and volume of the cage seem to be most
frequently in the range of 0.40 to 0.55 nm2, and 0.25 to 0.28 nm3 respectively.
The increase in the collective variables could be indications of the breathing of
the cage, where the cage expands as the methane is jumping between the cages.
However, there are also reactive pathways showing lower values for the CV’s as
the cage-jump occurs.
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Figure 24: Scatter plot of the cage jump [nm] versus the area of the ring sepa-
rating the acceptor cage [nm2] for all accepted trajectories in all ensembles and
cycles.

Figure 25: Scatter plot of the cage jump [nm] versus the the volume of the
starting cage [nm3] for all accepted trajectories in all ensembles and cycles.
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4.1.3 Principal component analysis

Through principal component analysis of the data from the simulation, three
components where chosen. With three components, the new model retained 90%
variance of the original data. The cumulative explained variance and loadings of
the components is shown in Fig. 26. By analyzing the plot of the scores from the
two first components, two distinct clusters are visible. See Fig. 27 for the scores
plot. Through the loadings, it is visible that the order parameter and collective
variables have a high positive representation within the first component. The
potential and total energy has a high negative representation in the second
component and the third component is singularly made up of the negative of the
kinetic energy. This means that by compressing the data into three components,
the first component explains the OP and CV’s, the second component explains
the potential and total energy, and the third component is the kinetic energy.
This also indicates that in the scores plot, the OP and CV’s make up the lower
cluster and the potential and total energy make up the top cluster. Although the
scores are distinct, they are not completely uncorrelated, which can also be seen
from the loadings. In the loadings, PC1 and PC2 have some presence of each
others main descriptors. From the PCA results one can learn that the system
is separated into three terms, the OP and CV’s, the potential and total energy
and lastly the kinetic energy. PCA also achieves a reduction of dimensions, from
six to three descriptors, making it possible to visualize all the simulation data
simultaneously.
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Figure 26: Cumulative explained variance (left) and loadings for all three com-
ponents (right) for the simulation without water vacancies, where the labels are:
op1 = Cage jump order parameter; op2 = Area of ring separating acceptor and
donor cage; op3 = Area of starting cage.
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Figure 27: Score plot of the two first principal components.

4.2 Methane hydrate with water vacancies

In order to inspect the results from the simulation, and to get an initial start
of the analysis, the correlation matrix was constructed through PyVisA, see
Fig. 28. Similarly with the simulation without water vacancies, the energies
show little correlation with the OP and CV’s. The potential and total energy
are strongly correlated while the kinetic energy only shows a minor correlation
with the other energy terms. It is also made clear that the z-coordinate of the
methane molecule, labeled as op8, correlates almost completely in a negative
manner with the order parameter. When plotted, the OP and z-coordinate have
an R2 value of 0.97, see Fig. 38 in appendix B. The number of water molecules
in the ring separating the acceptor and donor cage, op9, is mostly uncorrelated
as it is a quantized descriptor.
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Figure 28: Correlation matrix of the order parameter, collective variables and
energies from the simulation with water vacancies. The labels are as follows:
op1 = Cage jump order parameter; op2 = Area of ring separating acceptor and
donor cage; op3 = Area of starting cage; op4 and op5 = Distances between
methane and the centers of the two five-membered rings in which the removed
water molecule was a part of; op6 - op8 = The x, y and z coordinate of the
methane molecule and op9 = number of water molecules in the ring separating
the two cages.

4.2.1 Energy terms and stable states

In this simulation, the potential energy also shows two clusters similarly to
the simulation without vacancies. See Fig. 22 for the density plot. Here, it
can be seen that the potential energy vary between -18100 kJ/mol to -18600
kJ/mol and the kinetic energy vary between 1700 kJ/mol to 1950 kJ/mol. This
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might indicate that the lowest value cluster of the potential energy from the
simulation without water vacancies are the values caused by the cage jump and
that the highest value cluster is the background values of the water molecules in
the system. To further visualize the clusters of the potential energy, k-means,
Gaussian mixture and spectral cluster plots was created using two cluster, see
Fig. 39, 40 and 41 in appendix B. The Gaussian mixture provided the best
clustering results as k-means and spectral clustering was not able to define the
elliptical clusters. This might occur as there is simply so much data to cluster
that the general shape of the clusters become less meaningful in the algorithms.
So unless the variance of the data is taken in to account when creating the
clusters, the correct shapes will not be produced. This also visualizes the general
problem with k-means where the class boundaries become linear.

By creating a density plot of the potential energy with the order parameter,
there are indication of a stable state at values for the cage jump around -0.26
nm, see Fig. 30. This is at the interface of the first path ensemble, which
means that the high density areas consist of many of the trajectories included
in the [0−] and [0+] ensembles. Here the potential energy has its lowest values
at around -18500 kJ/mol. By further inspection, the same values are measured
when the cage jump has values above 0.05 nm. This might indicate that the
methane enters a new stable state when it is nearing the center of the acceptor
cage.
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Figure 29: Density plot of the cage jump [nm] versus the kinetic energy [kJ/mol]
for all accepted trajectories in all ensembles and cycles for the system with one
water vacancy.

Figure 30: Density plot of the cage jump [nm] versus the potential energy
[kJ/mol] for all accepted trajectories in all ensembles and cycles for the system
with one water vacancy.
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4.2.2 Breathing of water cages

Through inspection of the correlation matrix, the area of the six-membered ring
and the volume of the starting cage, labeled op2 and op3, both have a slight
correlation with the order parameter. Density plots where created with the data
from all accepted trajectories from all cycles and ensembles, see Fig. 31 and
32. The plots aim to visualize all of the sampling space and shows that the
behaviour of both descriptors are similar to how the they behave during the
simulation without water vacancies, see Fig. 24 and 25. This implies that the
same breathing mechanisms occur during the cage-jump. For both simulations
the majority of the reactive pathways have values for the descriptors which
increase as the methane jumps between cages. The largest increase in values for
both descriptors occur until the cage jump reaches -0.2 nm, where they behave
in increasingly linear fashion beyond these points. The values lower than -0.2
nm mainly belong to the [0−] and [0+] path ensembles. The increase is most
visible at the interface of the [0+] at -0.26 nm. This could correspond to the
stable state visualized through the potential energy and the order parameter in
Fig. 30.
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Figure 31: Scatter plot of the cage jump [nm] versus the area of the ring sepa-
rating the acceptor cage [nm2] for all accepted trajectories in all ensembles and
cycles for the system with vacancies.

Figure 32: Scatter plot of the cage jump [nm] versus the volume of the starting
cage [nm3] for all accepted trajectories in all ensembles and cycles for the system
with vacancies.
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4.2.3 Other mechanisms of cage-to-cage diffusion

In Fig. 33 and 34, the order parameter has been plotted against the distances
to the centers of the two cages that the removed water molecule was connected
to. The distances will be negative until the distance between the center of the
starting cage to the centers of the rings are smaller than the distance between
the cage center and the methane molecule. As the structures in the hydrate
are quite flexible, and the distances use the centers of the ring and cage, these
descriptors are not an absolute measure. Instead they act as a guidance in
order to establish if there are other mechanisms of cage-jumps present. From
the figures, it can be seen that the distances are increasing negatively until
the values of the cage jump reach 0.0 nm ± 0.1 nm. This could correspond
to the flexibility of the water molecules in the hydrate. For both figures, the
change in sign for the descriptors is most likely corresponding to the methane
exiting the starting cage through the six-membered ring. This implies that
there were no other mechanisms for cage-jumps during the simulation. With
the water vacancy, the six-membered ring represent the path of least resistance
for the cage jumps. It can also be seen that the lowest areas of potential energy
correspond with findings from the other descriptors. The potential energies are
lowest for values of the OP around the [0]+ path ensemble, as in areas where
the methane molecule has entered the next cage. These figures also no sudden
or large changes in the descriptor values, which could indicate that the water
molecules have not moved further throughout the structure.
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Figure 33: Scatter plot of the cage jump [nm] and the distance to the center of
one of the two five-membered rings [nm] that where connected to the removed
water molecule, with a color map from the potential energy. This descriptor is
labeled as op4 in the correlation matrix.

Figure 34: Scatter plot of the cage jump [nm] and the distance to the center of
one of the two five-membered rings [nm] that where connected to the removed
water molecule, with a color map from the potential energy. This descriptor is
labeled as op5 in the correlation matrix.
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4.2.4 Movement of water vacancy

Another important aspect of the hydrate system containing water vacancies is
the movement of the vacancy. The initial vacancy in the ring can be filled
if another water molecule enters the ring, and the vacancy moves throughout
the structure. This would likely affect both the rate constant and the crossing
probability as well as the trajectories in the simulation. In order to inspect
the movements further, a plot of the order parameter and the number of water
molecules in the ring has been made, see Fig. 35. From the graph it can be seen
that the amount of molecules in the ring start at 5, before varying between 5
and 2. As the number of molecules in the ring should vary between 5 and 6, the
low values could indicate that the structure has collapsed. However, through
animating and inspecting reactive trajectories from the last path ensemble, this
is not the case. Therefore it is visible that the structure is very flexible which
is the reason that the descriptor provides values of 2 and 3 molecules. Because
of this flexibility, it is not clear whether the number of molecules originate from
the vacancy moving or the fluctuations of the water molecules. However, the
plot does show that the vacancy in the ring does not get filled. From the order
parameter and the rest of the collective variables, op2 - op8, no further evidence
regarding the movement of the vacancy and its effect on the system could be
found.
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Figure 35: Scatter plot of the cage jump [nm] and the number of water molecules
in the ring separating the acceptor and donor cages for all cycles in the last path
ensemble with a color map from the potential energy [kJ/mol].

4.2.5 Principal component analysis

After the recalculation done through PyVisA, there are now 12 descriptors for
the system describing the diffusion. The last CV, labeled op9, counting the
number of water molecules was not included in the PCA as it is not a contin-
uous descriptor. Six principal components where chosen. With six principal
component, 90% of the variance was retained. See Fig. 36 for the cumulative
explained variance plot and loadings matrix. From the loadings matrix, it can
bee seen that the largest terms in PC1 is the order parameter, and op8, which
is the z-coordinate of the methane molecule. The loading of the two descriptors
are at ± 0.45, as the have a strong linear and negative correlation. Similarly as
in the simulation without water vacancies, the second component PC2, consists
mostly of the potential and total energy. In PC3, the dominating terms are op2,
op3 , op4 and op6. This is the area of the six-membered ring, the volume of the
cage, the distance to one of the five-membered rings and the x-coordinate of the
methane molecule. The area and volume descriptors are represented negatively,
while the distance measure is represented positively. These is also a positive
representation of op7, which is the y-coordinate of the methane molecule. Al-
though the largest positive loadings come from the distance descriptor and the
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y-coordinate of the methane, the two descriptor do not correlate, as shown in
the correlation matrix, see Fig. 28. The lack of correlation could occur from
the nature of the distance descriptor, as it fluctuates with the flexibility of the
water molecules, and changes signs. If the flexibility of the water molecules
where accounted for in the descriptor, a larger correlation might have been ob-
served. In PC4, the highest representation of the loading come from the kinetic
and total energies. The kinetic energy has the highest value of -0.85, while the
total energy has a loading value of -0.36. This is to be expected as the total
energy is the sum of the potential and kinetic energies. In both PC5 and PC6,
the distance to the other five-membered ring, op5, and the y-coordinate of the
methane molecule, op7, are the descriptors with the highest representation in
the loadings. The only exception is that the first distance descriptor op4, also
has a somewhat large representation in PC6. These two components are also
the only ones that show no representation of the energy terms.

Through visual inspection of the scores plot from the two first principal com-
ponents, see Fig. 37, two regions can be observed. From values of PC1 above
4, there seems to be two clusters that are seemingly not correlated to the first
component. This area of the scores plot, could be the potential and total energy
terms, similarly to the PCA results from the first simulation. The other region
of the scores plot is harder to interpret, and shows no clear behaviour between
the two components. This area could also consist of two clusters, but is harder
to discern as there is a low degree of separation. The two clusters could then
be a representation of the values for the descriptors op1 - op4, and op8, which
would give an indication to the cage jump and the breathing of the cage.
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Figure 36: Cumulative explained variance (left) and loadings for all six com-
ponents (right) for the simulation with water vacancies, where the labels are:
op1 = Cage jump order parameter; op2 = Area of ring separating acceptor and
donor cage; op3 = Area of starting cage; op4 and op5 = Distances between
methane and the centers of the two five-membered rings in which the removed
water molecule was a part of; op6 - op8 = The x, y and z coordinate of the
methane molecule.
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Figure 37: Score plot of the two first principal components.
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5 Conclusion

In this thesis a software update for the visualization program for data from
molecular simulation PyVisA was developed. The program has been extended
to include features for recalculation of collective variables, calculation of the
correlation matrix, dimensionality reduction, clustering, interactivity and an-
imation of trajectories and improved options for selection and storage of tra-
jectories. The idea is to improve the users ability to perform post-processing
of data from molecular simulations, and guide the user in the search for latent
variables and help to classify the mass of data generated from path sampling.

As a case study, and in order to utilize the new features on a molecular system,
RETIS simulations of cage-to-cage diffusion within an S1 hydrate was performed
and studied. As there are limitations to the lengths of simulations that could be
performed, the simulation results act as a proof of concept for the potential and
flexibility for performing post processing and the visualization methods that
have been added to PyVisA. The simulations contained the methane hydrate,
with and without water vacancies in the ring structure. In order to study the
diffusion, a set of collective variables where designed and where added to the
simulation by using the recalculation tool of PyVisA. The collective variables
where the area of the ring separating the acceptor and donor cage, and the
volume of the starting cage for both simulations. For the second simulation with
vacancies, the x, z and z coordinates of the methane molecule and the distances
to the centers of the two adjacent five-membered rings was also included as well
as the number of water molecules in the six-membered ring with the vacancy.

In the simulation without water vacancies, principal component analysis was
performed. With three principal components, 90% of the variance was retained,
whereas the OP and CV’s where mostly present in the first component, the
total and potential energy where mostly represented by the second component,
and the third component was solely comprised of the kinetic energy. While
the scores plot displayed two distinct clusters, it is worth to mention that the
potential energy displayed erratic behaviour throughout the simulation and as
such, no physical interpretations about the energies could be used. There where
also indications of increasing values for the volume of the starting cage and area
of the ring separating the acceptor and donor cage when the methane performed
the L6L jump.

The simulation with water vacancies showed similar results from the principal
component analysis, where 90% variance was retained by using six components.
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As there where more descriptors in the original data, the descriptors where not
as clearly represented in the loadings of the components. However, the order
parameter, the energies and some the descriptors involved with the breathing
of the cages showed a clear correlation in the loadings that were not present
in the correlation matrix. For the collective variables, the same behaviour for
the breathing of the cage was observed in relation to the order parameter and
the system shows a stable state at around the first path ensemble at values of
-18450 kJ/mol. The potential energy also shows two distinct regions, where
Gaussian mixture clustering provided the best fit for classifying the data. Fur-
ther, through analyzing the collective variables that where added, there where
no signs of mechanisms of cage jumps other than the L6L jump occurring during
the simulation. There where also no clear evidence regarding the movement of
the vacancy as the structure is very flexible. However the collective variables
suggest that the vacancy in the ring did not get filled during the simulation.
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6 Further work

Further work following this Master thesis, is the integration of the developments
done during this project into main program, making it available as part of
the open source library of PyRETIS. For the simulation results it is worth to
emphasize that convergence of the simulation and accurate calculations of rate
constants where not within the aim of this thesis as there where time limitations
for the length of the simulations that could be performed. Therefore, longer
simulations could be run in future in order to improve the behaviour of the
system and the statistical analysis. Here, a collective variable describing the
movement of the water vacancies could also be included to further research its
effect on the diffusion. This CV could utilize the number of hydrogen bonds
of the water molecules to locate the vacancy. The molecules surrounding the
vacancy will have a lower amount of hydrogen bonds compared to the rest of
the molecules in the hydrate. Hence, by finding these water molecules and
averaging their positions, the coordinates of the vacancy can be found. Another
simulation could also be run in order to investigate the erratic behaviour of the
potential energy for the system without vacancies. The behaviour of potential
energy might be caused by a readout problem with GROMACS and PyRETIS
and the interface between the two could be investigated in order to reproduce
and avoid this issue.
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A Input files for RETIS simulation

A.1 Methane hydrate without vacancies

Retis Methane-hydrate

=====================

Simulation

----------

task = retis

steps = 3000

interfaces = [-0.26, -0.24, -0.22, -0.20, -0.19, -0.18, -0.17,

-0.16, -0.15, -0.14, -0.13, -0.12, -0.11, -0.10,

-0.09, -0.08, -0.07, -0.06, -0.05, -0.04, -0.02,

0.00, 0.02, 0.20]

System

------

units = gromacs

Engine settings

---------------

class = gromacs

gmx = gmx

mdrun = gmx mdrun

input_path = gromacs_input

timestep = 0.002

subcycles = 25

gmx_format = g96

TIS settings

------------

freq = 0.5

maxlength = 20000

aimless = True

allowmaxlength = False

zero_momentum = False
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rescale_energy = False

sigma_v = -1

seed = 0

RETIS settings

--------------

swapfreq = 0.5

relative_shoots = None

nullmoves = True

swapsimul = True

Initial-path

------------

method = kick

kick-from = previous

Orderparameter

--------------

class = CageJump

module = orderp.py

Collective-variable

-------------------

class = AreaAndVolume

module = orderp.py

Output

------

order-file = 1

trajectory-file = 25

A.1.1 Script file

import logging

import numpy as np

import scipy

from scipy.spatial import ConvexHull

from pyretis.orderparameter import OrderParameter, Distance
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from pyretis.orderparameter.orderparameter import Distance

logger = logging.getLogger(__name__) # pylint: disable=invalid-name

logger.addHandler(logging.NullHandler())

class CageJump(OrderParameter):

"""CageJump(OrderParameter).

This class defines the L6L jump order parameter for

the methane hydrate system.

Attributes

----------

name : string

A human readable name for the order parameter

index : integer

This selects the particle to use for the order parameter.

periodic : boolean

This determines if periodic boundaries should be applied to

the position or not.

"""

def __init__(self):

"""Initialise the order parameter.

Parameters

----------

name : string

The name for the order parameter

index : tuple of ints

This is the indices of the atom we will use the position of.

periodic : boolean, optional

This determines if periodic boundary conditions should be

applied to the position.

"""

super().__init__(description='Ring diffusion for hydrate')

self.idx1 = np.array([56, 64, 104, 112, 200, 208], dtype=np.int16)
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# convert to atom index:

self.idx1 *= 4

self.idx1 -= 3

# convert to 0 index:

self.idx1 -= 1

self.idx2 = np.array([56, 64, 72, 80, 104, 112, 136, 152, 168, 176,

200, 208, 232, 248, 264, 272, 296, 304, 328,

336, 344, 352, 360, 368], dtype=np.int16)

# convert to atom index:

self.idx2 *= 4

self.idx2 -= 3

# convert to 0 index:

self.idx2 -= 1

self.idxd = 1472 # index for diffusing atom

def calculate(self, system):

"""Calculate the order parameter.

Here, the order parameter is just the distance between two

particles.

Parameters

----------

system : object like :py:class:`.System`

This object is used for the actual calculation, typically

only `system.particles.pos` and/or `system.particles.vel`

will be used. In some cases `system.forcefield` can also be

used to include specific energies for the order parameter.

Returns

-------

out : float

The order parameter.

"""

pos = system.particles.pos

resl = 1.0e3

cm1 = np.average(np.rint(pos[self.idx1] * resl) / resl, axis=0)

cm2 = np.average(np.rint(pos[self.idx2] * resl) / resl, axis=0)
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cmvec = cm2 - cm1

molvec = np.rint(pos[self.idxd] * resl) / resl

molvec -= cm1

orderp = -np.dot(cmvec, molvec) / np.sqrt(np.dot(cmvec, cmvec))

return [orderp]

class AreaAndVolume(OrderParameter):

"""

AreaAndVolume(OrderParameter)

This order parameter calculates the area of the six-membered ring

which the methane molecule jumps through when performing the L6L jump,

and the volume of the starting cage.

Attributes:

----------

periodic : boolean

This determines if periodic boundaries should be applied to

the position or not.

"""

def __init__(self, periodic=True):

super().__init__(description="Area of ring and volume of starting cage")

self.periodic = periodic

self.idx1 = np.array([220, 252, 412, 444, 796, 828], dtype=np.int16)

self.idx2 = np.array([220, 252, 284, 316, 412, 444, 540, 604,

668, 700, 796, 828, 924, 988, 1052, 1084,

1180, 1212, 1308, 1340, 1372, 1404, 1436, 1468],

dtype=np.int16)

def calculate(self, system):

pos = system.particles.pos

ar_ring = ConvexHull(pos[self.idx1]).area

vol_cage = ConvexHull(pos[self.idx2]).volume

return [ar_ring, vol_cage]
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A.2 Methane hydrate with vacancies

Retis Methane hydrate

=====================

Simulation

----------

task = retis

steps = 6000

interfaces = [-0.26, -0.24, -0.22, -0.20, -0.18, -0.16,

-0.15, -0.14, -0.13, -0.12, -0.11, -0.10,

-0.09, -0.08, -0.07, -0.06, -0.05, 0.05]

System

------

units = gromacs

Engine settings

---------------

class = gromacs

gmx = gmx

mdrun = gmx mdrun

input_path = gromacs_input

timestep = 0.002

subcycles = 25

gmx_format = g96

TIS settings

------------

freq = 0.5

maxlength = 20000

aimless = True

allowmaxlength = False

zero_momentum = False

rescale_energy = False

sigma_v = -1

seed = 0
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RETIS settings

--------------

swapfreq = 0.5

relative_shoots = None

nullmoves = True

swapsimul = True

Initial-path

------------

method = kick

kick-from = previous

Orderparameter

--------------

class = CageJump

module = orderp.py

Collective-variable

-------------------

class = AreaAndVolume

module = orderp.py

Collective-variable

-------------------

class = L5Jump

module = orderp.py

methane_idx = 1468

water_idx = [316, 988, 1084, 1180]

Collective-variable

-------------------

class = L5Jump

module = orderp.py

methane_idx = 1468

water_idx = [796, 924, 988, 1340]

Collective-variable

-------------------
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class = Position

index = 1468

dim = x

Collective-variable

-------------------

class = Position

index = 1468

dim = y

Collective-variable

-------------------

class = Position

index = 1468

dim = z

Collective-variable

-------------------

class = nrInRing

module = orderp.py

Output

------

order-file = 1

trajectory-file = 25

A.2.1 Script file

import logging

import numpy as np

import mdtraj

from scipy.spatial import distance, ConvexHull

from pyretis.orderparameter import OrderParameter, Distance

from pyretis.orderparameter.orderparameter import Distance

logger = logging.getLogger(__name__) # pylint: disable=invalid-name

logger.addHandler(logging.NullHandler())
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class CageJump(OrderParameter):

"""CageJump(OrderParameter).

This class defines the L6L jump order parameter for

the methane hydrate system.

Attributes

----------

name : string

A human readable name for the order parameter

index : integer

This selects the particle to use for the order parameter.

periodic : boolean

This determines if periodic boundaries should be applied to

the position or not.

"""

def __init__(self):

"""Initialise the order parameter.

Parameters

----------

name : string

The name for the order parameter

index : tuple of ints

This is the indices of the atom we will use the position of.

periodic : boolean, optional

This determines if periodic boundary conditions should be

applied to the position.

"""

super().__init__(description='Cage jump for hydrate')

self.idx1 = np.array([56, 64, 104, 112, 200], dtype=np.int16)

# convert to atom index:

self.idx1 *= 4

self.idx1 -= 3

# convert to 0 index:

self.idx1 -= 1
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self.idx2 = np.array([56, 64, 72, 80, 104, 112, 136, 152, 168,

176, 200, 208, 232, 248, 264, 272, 296,

304, 328, 336, 344, 352, 360,], dtype=np.int16)

# convert to atom index:

self.idx2 *= 4

self.idx2 -= 3

# convert to 0 index:

self.idx2 -= 1

self.idxd = 1468 # index for diffusing atom

def calculate(self, system):

"""Calculate the order parameter.

Here, the order parameter is just the distance between two

particles.

Parameters

----------

system : object like :py:class:`.System`

This object is used for the actual calculation, typically

only `system.particles.pos` and/or `system.particles.vel`

will be used. In some cases `system.forcefield` can also be

used to include specific energies for the order parameter.

Returns

-------

out : float

The order parameter.

"""

pos = system.particles.pos

resl = 1.0e3

cm1 = np.average(np.rint(pos[self.idx1] * resl) / resl, axis=0)

cm2 = np.average(np.rint(pos[self.idx2] * resl) / resl, axis=0)

cmvec = cm2 - cm1

molvec = np.rint(pos[self.idxd] * resl) / resl

molvec -= cm1

orderp = -np.dot(cmvec, molvec) / np.sqrt(np.dot(cmvec, cmvec))

return [orderp]
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class AreaAndVolume(OrderParameter):

"""

AreaAndVolume(OrderParameter)

This order parameter calculates the area of the six-membered ring

which the methane molecule jumps through when performing the L6L jump,

and the volume of the starting cage.

Attributes:

----------

periodic : boolean

This determines if periodic boundaries should be applied to

the position or not.

"""

def __init__(self, periodic=True):

super().__init__(description="Area of ring and volume of starting cage")

self.periodic = periodic

self.idx1 = np.array([220, 252, 412, 444, 796], dtype=np.int16)

self.idx2 = np.array([220, 252, 284, 316, 412, 444, 540, 604,

668, 700, 796, 828, 924, 988, 1052, 1084,

1180, 1212, 1308, 1340, 1372, 1404, 1436], dtype=np.int16)

def calculate(self, system):

pos = system.particles.pos

ar_ring = ConvexHull(pos[self.idx1]).area

vol_cage = ConvexHull(pos[self.idx2]).volume

return [ar_ring, vol_cage]

class L5Jump(OrderParameter):

"""L5Jump(OrderParameter)

This class defines the collective variable used for the

methane hydrate system

"""
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def __init__(self, methane_idx, indices):

"""Initialize the order parameter.

Attributes

----------

methane_idx : integer

Index of the methane molecule in the system

indices : list

This selects the particles in the ring we want to use.

periodic : boolean

This determines if periodic boundaries should be applied to

the position or not.

"""

super().__init__(description='L5 jump for methane.')

self.methane_idx = methane_idx

self.periodic = True

self.water_idx = indices

self.cage_idx = [220, 252, 284, 316, 412, 444, 540, 604,

668, 700, 796, 828, 924, 988, 1052, 1084,

1180, 1212, 1308, 1340, 1372, 1404, 1436, 1468]

def calculate(self, system):

"""Calculate the collective variable.

Here the descriptor is the distance between the methane molecule,

and the center of the selected ring.

Parameters

----------

system : object like :py:class:`.System`

This object is used for the actual calculation, typically

only `system.particles.pos` and/or `system.particles.vel`

will be used. In some cases `system.forcefield` can also be

used to include specific energies for the order parameter.

Returns

-------

out : float
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The order parameter.

"""

pos = system.particles.pos

ch4 = pos[self.methane_idx]

water = pos[self.water_idx]

ring = ConvexHull(water)

cage = ConvexHull(self.cage_idx)

centroid_ring = np.mean(ring.points[ring.vertices, :], axis=0)

centroid_cage = np.mean(cage.points[cage.vertices, :], axis=0)

dist_cage_ring = distance.euclidean(centroid_ring, centroid_cage)

dist_cage_ch4 = distance.euclidean(centroid_cage, ch4)

dist_ring_ch4 = distance.euclidean(centroid_ring, ch4)

if dist_cage_ring > dist_cage_ch4:

sign = -1

else:

sign = 1

corrected_distance = sign * dist_ring_ch4

return [corrected_distance]

class Position(OrderParameter):

"""A positional order parameter.

This class defines a very simple order parameter which is just

the position of a given particle.

Attributes

----------

index : integer

This is the index of the atom which will be used, i.e.

``system.particles.pos[index]`` will be used.

dim : integer

This is the dimension of the coordinate to use.

0, 1 or 2 for 'x', 'y' or 'z'.

periodic : boolean
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This determines if periodic boundaries should be applied to

the position or not.

"""

def __init__(self, index, dim='x', periodic=False):

"""Initialise the order parameter.

Parameters

----------

index : int

This is the index of the atom we will use the position of.

dim : string

This select what dimension we should consider,

it should equal 'x', 'y' or 'z'.

periodic : boolean, optional

This determines if periodic boundary conditions should be

applied to the position.

"""

txt = 'Position of particle {} (dim: {})'.format(index, dim)

super().__init__(description=txt, velocity=False)

self.periodic = periodic

self.index = index

self.dim = {'x': 0, 'y': 1, 'z': 2}.get(dim, None)

if self.dim is None:

msg = 'Unknown dimension {} requested'.format(dim)

class nrInRing(OrderParameter):

"""nrInRing(OrderParameter)

This class defines the collective variable used for counting

the amount of water molecules in the ring separating the acceptor

and donor cage.

"""

def __init__(self):

"""Initialize the order parameter."""
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super().__init__(description='Water vacancy movement')

self.periodic = True

self.indices = np.arange(0, 1465, 4).tolist()

self.init = [[1.805, 1.504, 1.203],

[1.805, 2.105, 1.203],

[1.572, 1.662, 1.203],

[1.572, 1.947, 1.203],

[2.037, 1.662, 1.203],

[2.037 ,1.947, 1.203]]

def calculate(self, system):

"""Calculate the collective variable.

Here the descriptor is the distance between the methane molecule,

and the center of the selected ring.

Parameters

----------

system : object like :py:class:`.System`

This object is used for the actual calculation, typically

only `system.particles.pos` and/or `system.particles.vel`

will be used. In some cases `system.forcefield` can also be

used to include specific energies for the order parameter.

Returns

-------

out : float

The order parameter.

"""

pos = system.particles.pos

water_pos = pos[self.indices]

counter = 0

radius = 0.085

for water in water_pos:

for i in self.init:

diff = np.subtract(water, i)

xv



dist = np.sum(np.power(diff, 2))

if dist < radius ** 2:

counter += 1

return [counter]
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B Various plots

Figure 38: The order parameter plotted against the z-coordinate of the methane
molecule for the simulation with water vacancies.
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Figure 39: K-means cluster plot of the potential and kinetic energy with two
clusters for all cycles and ensembles for the simulation with water vacancies.
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Figure 40: Gaussian mixture cluster plot of the potential and kinetic energy
with two clusters for all cycles and ensembles for the simulation with water
vacancies.
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Figure 41: Spectral cluster plot of the potential and kinetic energy with two
clusters for all cycles and ensembles for the simulation with water vacancies.
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