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Abstract

The initial purpose of this master’s project was to investigate the capability of derivatives
of 1,4,8,11-tetraazacyclotetradecane (cyclam, 6) to act as chiral polydentate ligands in Au(III)-
complexes. Due to unpromising results of the aforementioned study, investigations of
polydentate 2,6-disubstiuted pyridine-systems (15) as sources of chiral ligands for Au(Ill) was
initiated. In addition, study of a recently reported gold catalysed test-reaction was undertaken.

With the aim to synthesise new chiral organo-Au(Ill)-complexes, derivatives of the cyclam
framework were propsed as ligands. After preparation of tetraamide 7b from diamine 8b and
dimethyl malonyl chloride, attempts of reduction using LiAlH4 to cyclam 6b were unsuccessful.
Consequently, an alternative strategy was formulated: mono-Boc-protection of the diamine
precursor 8b to 8b-Boc allowed for the preparation of chiral ‘open cyclam’ derivatives 21 and
22. Unfortunately, these ‘open cyclam’ systems were incapable of incorporating Au(III).

AICI; or TMSCI
j/ _aa j,NH HN,, LiAIH, Ph._NH HN, _Ph
ET L
e THE “NH HN THF Ph””NH HN ~Ph
o)
8b 7b (51 %) 6b
1) Boc,0, DCM
2) NaHCO4
S
O, 03X
© 0o AlCI D
Ph._NH o o 3
j’ ’ EXS Pha NHHN_ (Ph A Pha _NHHN_ (Ph AUl PthH HN _Ph
. _Boc ———————> . * Al
Ph” “N” NEt,, THF 1 THF ACN l
H 3 e NH HN Ph Ph™ NHz HoN " Ypp pPhY H2® Hz
R R
8b-Boc (71 %) TFA 21-Boc : R=Boc (82 %) 22 (69 %)

15 min 21 : R=H (95 %)

Synthesis and attempted Au(Ill)-coordination of various chiral cyclam derivatives.

Chiral 2-bromo-6-alkylpyridine alcohols 12a-b were synthesised from 2,6-
dibromopyridine (13) by treatment with BuLi and stereoselective addition to the chiral ketones
(-)-menthone 14a and (+)-camphor 14b. A bipyridine analogue 15h was synthesised in similar
fashion. Subsequent Suzuki cross-couplings of 12a-b with various commercially available
boronic acids gave chiral 2-aryl-6-alkylpyridine alcohols 15a-g in 41% to quantitative yields.
Several of these compounds were novel and as such characterised.



N 1) BuLi, THF, -80 °C | X Ar-B(OH),, Pd(PPhg),, K,COg X
| _ _
Br”™ "N” "Br  2)cChiral ketone 14 Br® 'N° 'R pioxane:H,0, 70 °C Ar” "NT R
13 7 2 R R Ar
O~ a Neomenthol-1-yl (79%) Neomenthol-1-yl Ph
§Q 0%@ b Isoborneol-1-yl (25%) Neomenthol-1-yl  3,5-diOMePh
14a 14b Neomenthol-1-yl Thiophene-2-yl

@ = o o6 5“»';

Isoborneol-1-yl
Isoborneol-1-yl
Isoborneol-1-yl
Isoborneol-1-yl

Ph

3,5-diOMePh
Thiophene-2-yl
N-MePyrrole-2-yl

41 % to quantitative yields

~
OH:

1) BuLi, THF, -80 °C

2)14a

17 15h (23 %)

Synthesis of chiral 2-aryl-6-alkylpyridine alcohols 15a-h.

Selected pyridine alcohols were also synthesised as the corresponding methyl ether by
treatment with NaH and reaction with Mel. All methylated compounds were novel and
therefore characterised.
12b-OMe (97%")

X
| OH 15h-OMe (quantitative®)
Br N/ 1) NaH, THF
R 2) Mel ’ Pathway A
e N oo
Ar-BR, Ar-BRY, 15b-OMe (quantitative®)
Pd(PPh3), Pathway Pd(PPhs), Pathway B
K2CO4 B K2CO3 15d-OMe (49 %")
Dioxane:H,0, 70 °C Dioxane:H,0, 70 °C  15e-OMe (quantitative®)
S Pathway A
| | oH
Ar N 1) NaH, THF
R
2) Mel

Synthesis of chiral pyridine methyl ethers. ¢ Yield for methylation step. ® Yield for Suzuki cross coupling.

Attempted coordinations of pyridine based ligands to gold(IIl) showed variable results,
greatly depending on the pyridine substituents, as well as the reaction conditions. A series of
coordination conditions were tested, but using an ACN:H>O mixture as the solvent with
inclusion of acetate and a silver-salt was found to be the optimal conditions for formation of
Au(Ill)-complexes. Application of the present coordination protocol allowed for isolation and
characterisation of the N,N,O-tridentate complexes Au(Ill)-15h-X (X = AuCls, NTf, SbFs).
While other N,N-bidentate and X,N,O-tridentate (X=N or S) Au(IIl) complexes are believed
to have been prepared and crystals for XRD analysis acquired, their structures have not
presently been confirmed. Efforts to achieve C-H activation for C,N,O-tridentate coordination
by modification of substituent or altered reaction conditions were unsuccessful.
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KAUCly, AgNTf,
KOAc

R

ACN:H,0

Novel, chiral Gold(IIT)-complex,
S characterised by NMR, HRMS and IR
NTf spectroscopy.

15h Au(III)-15h-NTf;
Preparation of chiral Au(Ill) complex.

The novel bipyridine complex Au(Ill)-15h-NTf, was catalytically active in a [1+2]-
cycloaddition reaction between propargyl acetate 11 and styrene. The resulting cyclopropane
20 was formed as a 76:24 trans:cis mixture, with no enantiomeric excess of either diastereomer.
Analysis of the complex” NMR coupling constants gave important information on the
conformation of the chiral auxilliary.

I
Au(ll)-15h-NTf, (5 mol%
MeO DCM, r.t.
Ao

11 20

OMe

Use of chiral Au(1ll)-15h-NTf> catalyst in a cyclopropanation test-reaction.

Furthermore, a recently reported Au catalysed reaction between propargyl alcohols 1 and
aryl nucleophiles was investigated with the aim to achieve asymmetric synthesis of the product
allenes 3 and indenes 4. The reaction was scoped with regards to solvent, Au-source, electronic,
and steric effects of both the propargyl alcohol 1 and aryl nucleophile.

1 A Ar?
a Ph Ph
b  Ph Mes
1) LDA, THF, 0°C g 4 et
\\\ AL JRING d Ph 4-CF;Ph
Ar2 X ) e Mes Ph
2) Aldehyde Ar'CHO Ar f  Mes 4-CF;Ph
g 2,6-diMePh  Ph
h  4-OMePh Ph
i 4-CF;Ph Ph
18-67 % yields
H Ph
OH ArH (6 equiv.) Nu /g
[Au] (5 mol%) Ph C Ar O’
Auomolx)
Ph” O Ph7 N Y
Ph F3-EtOH or MeNO, Ph Ph Ar
la 2 3 4

Gold catalysed reactions of propargyl alcohols.

Polar, non-nucleophilic solvents such as MeNO> or CF;CH,OH (F3-EtOH) were most
suited to avoid formation of undesired side products 2 (Nu = Ar or solvent). EtOH was found
to be a better nucleophile than the included aryls, and an unexpected side reaction took place
leading to dimer a,-unsaturated ketone 19. A mechanism for its formation is suggested.

Au(IIl) salts were generally more effective than Au(I) for these reactions. Electronic effects
greatly governed the outcome of the reactions, and, in general, anything other than
electronically neutral propargyl alcohols 1 and aryl nucleophiles gave undesired side products

vil



2. Sterically encumbering the propargylic position by choice of aldehyde precursor resulted in
great reduction of undesired propargylic substitution product 2 and primarily yielded the allene
3.

OH MesH, AuBrj Mes
-
Ph)\ F4-EtOH, rt., 15 min Ph)\
Ph-4-CF Ph-4-CF5
1d 2e, main product
Mes
OH MesH, AuBr, e FaC O
[ Y -1 C Mes > ’
Mes)\ F4-EtOH, r.t., 15 min Y heat
Ph-4-CF, Ph-4-CF, Mes

1f 3d

Different behaviour of sterically encumbering propargylic position.

Separation of the products was labour intensive due to their non-polar nature. Baseline
separation of enantiomers by chiral HPLC was unsuccessful with various compounds, columns,
and eluents, rendering these test-reactions unsuitable for new chiral Au-complexes.
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Sammendrag

Det tiltenkte mélet med denne masteroppgave var 4 underseke mulighetene for bruk av
derivater av 1,4,8,11-tetraazasyklotetradecan (cyclam, 6) som ligander for Au(IIl)-komplekser.
Grunnet lite givende resultater i det ovenfornevnte studiet, begynte utforskning av polidentate
2,6-disubstituerte pyridinsystemer (15) som kilde for kirale ligander for Au(IIl). I tillegg ble et
studie av en nylig rapportert gullkatalysert testreaksjon utfort.

Med sikte pa a syntetisere nye kirale organo-Au(Ill)-komplekser ble cyclamderivater
foreslatt som ligander. Etter fremstilling av tetraamid 7b fra diamin 8b og
dimetylmalonylklorid, var forsek pa reduksjon ved bruk av LiAlH4 til cyclam 6b ikke
vellykkede. Folgelig ble en alternativ strategi formulert: mono-Boc-beskyttelse av
diaminforleperen 8b til 8b-Boc muliggjorde fremstilling av kirale 'dpen cyclam' derivater 21
og 22. Dessverre var ikke disse 'dpen cyclam' systemene i stand til & innlemme Au(III).

o o}
0 o AICl5 or TMSCI
Phj,NHz &4 Ph _uNHHN, _Ph  LiAlH, Ph_4NHHN, _Ph
T — —_—x—
NEt,, THF j J: j J:
Ph”“/NH, 3 Ph” “NHHN” ph 1P Ph™ “NH HN™ “Ph
o) o}
8b 7b (51 %) 6b
1) Boc,0, DCM
2) NaHCO;,
S|
0, X .0  3X
S o A(CI = 2
Ph._NH 0 > 0 AL
’ Exg Pha NHHN_ (Ph A Pha _NHHN_ (Ph AUl Ph  NHHN_ (Ph
., ,Boc ————— T 1 THE T l ACBNE ®AID®
PR N’ NEts, THF . N
H 3 PRV NH  HN"Vppy PhY" NHz HN“Ypp Ph H2® HZ Ph
R R
8b-Boc (71 %)  TFA 21-Boc : R=Boc (82 %) 22 (69 %)

15 min 21 : R=H (95 %)

Syntese og forsokt Au(lll)-koordinering av forskjellige kirale cyclam derivater.

Kirale 2-brom-6-alkylpyridinalkoholer 12a-b ble syntetisert fra 2,6-dibromopyridin (13)
ved tilsats av BuLi og stereoselektiv tilneerming til de kirale ketonene (-)-menton 14a og (+)-
kamfer 14b. En bipyridinanalog 15h ble syntetisert pd lignende méte. Etterfolgende Suzuki
krysskoblinger av 12a-b med forskjellige kommersielt tilgjengelige boronsyrer ga kirale 2-
aryl-6-alkylpyridinalkoholer 15a-g 1 41% til kvantitative utbytter. Flere av disse forbindelsene
var nye og som sidan karakteriserte.
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1) BuLi, THF, -80 °C X Ar-B(OH),, Pd(PPhg),, KoCO3 X
| _
Br 2) Chiral ketone 14 Br™ N° 'R Dioxane:H,0, 70 °C Ar” °NT TR
e 12 R R Ar
O~ o a Neomenthol-1-yl (79%) Neomenthol-1-yl Ph
§Q *@ b Isoborneol-1-yl (25%) Neomenthol-1-yl 3,5-diOMePh
14a 14b Neomenthol-1-yl Thiophene-2-yl

@ = o o6 5“»';

Isoborneol-1-yl
Isoborneol-1-yl
Isoborneol-1-yl
Isoborneol-1-yl

Ph

3,5-diOMePh
Thiophene-2-yl
N-MePyrrole-2-yl

41 % to quantitative yields

1) BuLi, THF, -80 °C

2)14a

17 15h (23 %)

Syntese av kirale 2-aryl-6-alkylpyridinealksohyoler 15a-h.

Utvalgte pyridinalkoholer ble ogsd syntetisert som den tilsvarende metyleteren ved
behandling med NaH og reaksjon med Mel. Alle metylerte forbindelser var nye og derfor

karakteriserte.
N 12b-OMe (97%")
| OH 15h-OMe (quantitative®)
Br N/ 1) NaH, THF
R 2) Mel Pathway A
e - Hatived
Ar-BR, Ar-BR, 15b-OMe (quantitative®)
Pd(PPhs), pathway | ZAPPha) Pathway B
K2CO3 B K2COs 15d-OMe (49 %)
Dioxane:H,0, 70 °C Dioxane:H,0, 70 °C  15e-OMe (quantitative®)
X Pathway A
| | oH
Ar N 1) NaH, THF
R
2) Mel

Syntese av kirale pyridin metyl etere. ¢ Ubytte for metyleringssteg. * Utbytte for Suzuki krysskobling.

Forsgkte koordineringer av pyridinbaserte ligander til gull(Ill) ga varierende resultater,
sterkt avhengig av pyridinsubstituentene, sa vel som reaksjonsbetingelsene. En rekke
koordinasjonsbetingelser ble testet, men bruk av en ACN:H2O-blanding som lesningsmiddel
med tilsats acetat og et selvsalt ble det bestemt til & vare de optimale betingelser for dannelse
av Au(Ill)-komplekser. Anvendelse av den presenterte koordineringsprotokollen tillot
isolering og karakterisering av N,N,O-tridentate komplekser Au(Ill)-15h-X (X = AuCls, NTf,
SbFs). Andre N,N-bidentate og X,N,O-tridentate (X = N eller S) Au(IIl)-komplekser antas &
ha blitt fremstilt, og krystaller for XRD-analyse anskaffet, men deres strukturer forelopig ikke
bekreftet. Forsek pd a4 oppnd C-H-aktivering for C,N,O-tridentat-koordinering ved
modifisering av substituenter eller endrede reaksjonsbetingelser var ikke vellykkede.



KAUCly, AgNTf,
KOAc
_—

ACN:H,0

Nytt, kiralt Gull(III)-kompleks,
© karakterisert ved NMR, HRMS og IR
NTf; spektroskopi.

15h Au(ITI)-15h-NTf
Fremstilling av kiralt Au(Ill) kompleks.

Det nye bipyridinkomplekset Au(Ill)-15h-NTf> var katalytisk aktivt i en [14+2]-
sykloaddisjonsreaksjon mellom propargylacetat 11 og styren. Den resulterende cyklopropanen
20 ble dannet som en 76:24 trans:cis-blanding, uten noe enantiomert overskudd av noen
diastereomerene. Analyse av kompleksets NMR-koblingskonstanter ga viktig informasjon om
konformasjonen av det kirale neomentholsystemet.

/k OMe

| Au(ll)-15h-NTf; (5 mol%
s () ey, [
MeO DCM, r.t.

o

11 20

Bruk av den kirale Au(1ll)-15h-NTf> katalysatoren i en syklopropanerings testreaksjon.

Videre ble en nylig rapportert Au-katalysert reaksjon mellom propargylalkoholer 1 og
arylnukleofiler underseokt med sikte pa & oppnd asymmetrisk syntese av allener 3 og indener 4.
Reaksjonen ble testet med hensyn pé lesningsmiddel, Au-kilde, elektronisk og sterisk effekter
av bade propargylalkohol 1 og arylnukleofil.

1 At AP
a Ph Ph
b Ph Mes
1) LDA, THF, 0°C g 4 m oMerh
N » THF, . d Ph 4-CFsPh
\\Arz Ar )\ 5 € Mes Ph
2) Aldehyde Ar'CHO A f Mes 4-CF;Ph
g 2,6-diMePh Ph
h 4-OMePh Ph
i 4-CEPh Ph
18-67 % yields
H Ph
OH ArH (6 equiv.) Nu /g
[Au] (5 mol%) Ph C Ar O’
AU molk)
Ph” O Ph7 O Y
Ph  F3-EtOH or MeNO, Ph Ph Ar
1a 2 3 4

Gullkatalysert reaksjon av propargylalkoholer.

Polare, ikke-nukleofile losningsmidler som MeNO: eller CFzCH>OH (F3-EtOH) var mest
egnet for & unnga dannelse av uenskede biprodukter 2 (Nu = Ar eller lgsningsmiddel). EtOH
ble vist til & vaere en bedre nukleofil enn de inkluderte arenene, og en uventet sidereaksjon fant
sted som forte til et dimerisk a,3-umettet keton 19. En mekanisme for dens dannelse er foreslatt.

Au(Ill)-salter var generelt mer effektive enn Au(l) for disse reaksjonene. Elektroniske
effekter styrte resultatet av reaksjonene i stor grad, og generelt, alt annet enn elektronisk
neytrale propargylalkoholer 1 og arylnukleofiler ga uenskede biprodukter. Sterisk begrensning
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av propargylposisjonen ved valg av aldehyd-forleper resulterte i stor reduksjon av uensket
propargylsubstitusjon produkt 2 og ga primert allen 3.

OH MesH, AuBr; Mes

Ph)\ F3-EtOH, r.t., 15 min Ph)\
Ph-4-CF, Ph-4-CF,
1d 2e, hovedprodukt
Mes
OH MesH, AuBrj PN FsC
Mes' C Mes VN ’
Mes”™ "N F4-EtOH, rt., 15 min Y heat
Ph-4-CF, Ph-4-CF, Mes
1f 3d

Forskjellige oppforsel av sterisk begrensede propargylalkohol.

Separasjonen av produktene var arbeidskrevende siden de var sammenlignbart upolare.
Basislinjeseparasjon av enantiomerer ved kiral HPLC var ikke vellykket med forskjellige

forbindelser, kolonner og elueringsmidler, noe som gjorde disse testreaksjonene uegnet for nye
kirale Au-komplekser.
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Symbols and abbreviations

Ac Acetyl

ACN Acetonitrile

AcOH Acetic acid

Ar Aromatic / Aryl

ax Axial

cm’! Wave number

COSY 'H-'H Correlation spectroscopy

) Chemical shift (ppm)

DCM Dichloromethane

DCE 1,2-Dichloroethane

DEE Diethylether

d Doublet, or Deuterated

dd Doublet of doublets

E Electrophile

ee Enantiomeric excess

equiv. Equivalent(s)

eq Equatorial

Et Ethyl

HMBC Heteronuclear multiple bond correlation
HRMS High resolution mass spectrometry
HSQC Heteronuclear single quantum correlation
Hz Hertz

iPr iso-Propyl

IR Infrared spectroscopy

J Coupling constant

L Ligand

LDA Lithium diisopropyl amide

M* Molecular ion

m Multiplet

Me Methyl
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MeOH
Mes
MS

NMR
n.o.

NOESY

obsd
0.n.
Ph
Piv

ppm
refl.

R¢

r.t.

TFA

Bu
THF
TLC
TOCSY

Methanol

Mesityl

Molecular sieves
Mass-per-charge ratio
Nuclear magnetic resonance
Not observed
'H,"H-Nuclear Overhauser effect spectroscopy
Nucleophile

Observed

Over night

Phenyl

Pivaloyl

Pyridyl

Parts per million

Reflux

Retention factor

Room temperature

Singlet
2,2,2-trifluoroacetic acid
Triplet

tert-Butyl

Tetrahydrofuran

Thin layer chromatography

'H,'H-Total correlation spectroscopy
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1.1 Aim of Project

1 Introduction

Everyone is familiar with gold as a dark yellow metal, highly priced in most societies that
we have historical records from. It was one of the first metals to be discovered, as it can be
found in its metallic form in nature. While the universe has produced gold by supernova
nucleosynthesis and through the collision of neutron stars,!!! alchemists thought they could
create gold by mixing of various liquids and other lower metals. Such endeavours were of
course unsuccessful, but their ideas and experiments started a way of thinking and working that
we today know as chemistry.

Over the centuries, the table has indeed turned from chemists trying to transform other
materials into gold, to using gold to transform other materials. In the recent decades, the use of
gold as a catalyst in organic reactions has seen a pique in interest as the field of organometallic
chemistry is well established and one of the largest areas of current research. The chemical
transformations that gold enables allow for new synthetic routes to valuable compounds.

1.1 Aim of Project

The original aim of this project was to synthesise polydentate ligands based on the structure
of 1,4,8,11-tetraazacyclotetradecane (cyclam, 6), followed by their attempted coordination to
Au(IIl).

Furthermore, a study was undertaken of a recently reported Au(Ill)-catalysed reaction
between propargyl alcohols (1) and aryl nucleophiles, producing either allenes 3 or indenes 4
(Scheme 1).1?] The Fiksdahl research-group is continuously involved in the synthesis of novel
organometallic Au(I) and Au(Ill) complexes. Thus, achieving asymmetric formation of either
allenes (3) or indenes (4) through the present reaction would allow for another complimentary
method to those already established in the research group to assess enantioselectivities of novel
chiral Au-catalysts.

OH ArH (6 equiv.) H oh
[Au] (5 mol%) /g [Au]
Ph)\ Ph™ "CuAr ’
N \| heat
Ph Ph Ar
1a 3 4

Scheme I — Gold catalysed reaction between propargyl alcohols 1 and aryl nucleophiles.

In addition, the synthesis of chiral pyridine based ligands and their attempted coordination
to Au(Ill) was of interest for this master’s project. If successful, these complexes would be
fully characterized by HRMS, NMR-, IR-, and XRD spectroscopy, and applied in our available
test-reactions for gauging catalytic activity and enantioselectivity.



2.1 The Chemistry of Gold

2 Theory

This chapter will cover relevant theoretical concepts for this master’s thesis. It will start
with an introduction to the field of gold catalysis in organic chemistry. Some theory related to
organogold ligands will then be presented. The relevant chemical motifs of allenes, indenes,
and cyclams, which might not be familiar to every organic chemist, will be introduced. Finally,
the Morita-Baylis-Hillman reaction for preparation of a-substituted a,3-unsaturated ketones
will be briefly presented.

2.1 The Chemistry of Gold

Elemental gold has since the cradle of chemistry been known to be stable, which is one of
the attributes that has made it so famous and timeless; while nitric acid is generally strong
enough to oxidize most other transition metals, gold requires the addition of hydrochloric acid
as well. This mixture is commonly known as aqua regia — royal water — named after its ability
to dissolve the royal metals of group 11. Furthermore, gold can be oxidized by oxygen in
aqueous cyanide, which is the most commonly employed process for leaching gold from ores.[!

The field of gold catalysis for organic transformations was for many years notoriously
neglected in favour of other transition metals. Whether this was due to the perceived high cost
of the metal or the known stability of gold(0) is unclear. Still, other metals of higher market
cost — such as Pd, Ir, and Rh — have received a lot of successful attention and are now
incorporated into routine reactions known by any organic chemist.

In homogenous reactions, gold generally exists in the +1 or +3 oxidation states. Still, Au(0)
can exist as nanoparticles which are catalytically active.l*! As a result, uncertainty to what the
active species in solution is can arise. Over the past decades, Au(I) has received the most
attention, and it has been argued that Au(IIl) catalysts are only precursors to Au(I) which is
formed in situ. Such statements have in later time been proven wrong, and the present work
also exemplifies this. Consequently, further research into Au(III) catalysts have started to catch
on.

Gold is mostly considered a carbophilic Lewis acid, having a strong affinity towards
carbon-carbon multiple bonds, especially alkynes, but also alkenes and allenes. It has also been
argued that carbonyl compounds can show activation in presence of Au(IIl).I®) Since
organogold complexes are generally stable towards air and moisture handling is
straightforward. Gold complexes have also in the last couple of decades been investigated for
biological activity.”8] Since Au is considered a Lewis acid it normally has quite different
catalytic cycles compared to other transition metals; oxidation states are often omitted, instead
simply varying between a free cation and a bound neutral species (or alternatively, a free neutral
species and a bound anionic species). Because of this, note that the positive charge of [AuL]"
does not say anything about gold’s oxidation state, but only signifies a catalytically active
species. A catalytic cycle for a nucleophilic attack to a triple bond is depicted in Scheme 2.



2.2 Ligands of Homogenous Gold Catalysts

Nu R2 [AuL]* Rl—=——R?
R" H
protodeuration coordination/
activation
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Nu R2 Nu-attack R—_u_—I R
>_<_ [AuL]*
R" AuL NuH
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Scheme 2 — Catalytic cycle of Au facilitating nucleophilic attack on an alkyne.

Coordination of Au to the alkyne makes the triple bond electron deficient, activating for
nucleophilic attack in the subsequent step. If the nucleophilic atom bears a hydrogen, liberation
of gold in a process known as protodeauration follows, which regenerates the catalyst and
releases the alkene product. Interesting cases exist, for example if the nucleophile is water, as
the following tautomerization will yield a ketone,®! allowing for mild and selective hydration
of alkynes.

In addition to acting as an electron deficient Lewis acid, gold is also able to act as an
electron donor. Relativistic effects are invoked to explain this, by the contraction of the 6s
orbital. The closer packing of the inner orbitals causes a heightened shielding effect for the
valence 5d orbital, thereby expanding and delocalizing it. The delocalization allows for facile
backbonding from gold to stabilize cationic intermediates through carbenoid species.*! The
effect is shown schematically with an alkene nucleophile in Scheme 3a, and an example of a
Au(I)-catalysed intramolecular tandem cyclopropanation given in Scheme 3b.[10]

a)

Ar Ar
/\/ A 1
R'—==R? ? R? \ R R?
[N —_— s .
LIS N
[AuL] RT  Aul @®AuL
backbonding
b)
/// ) ~,
] (PPh3)AU(ACN)SbFg =AuL :
\/Y\/Y 7 - A >
DCM, r.t., 98% Me z
H Me

H

Scheme 3 — Gold backbonding to form carbenoid species, stabilizing the intermediate cation
(Z:C(COQMQ)Q).

2.2 Ligands of Homogenous Gold Catalysts

Ligands for commercial Au(I) and Au(Ill) catalysts vary due to the different electronic
configurations of the two oxidation states. Au(I) complexes are linear with two coordination
points, while Au(Ill) are square planar with four coordination points. Au(I) forms stable bonds
to chloride, phosphines, thioethers and nitriles as ligands, and NHC complexes are also readily

3



2.2 Ligands of Homogenous Gold Catalysts

available. Au(III) is most commonly commercially available as either a trihalide or tetrahalide
salt (Figure 1).

©OSbFs iPr iPr
87 e MeCN-AC F‘tBLtJB NN
eCN-Au-R—tBu
Au Au b
- ’ (O~ g
Cl
I 1I 111 1A%
AuCly AuBr; KAuUCl, HAuCl,*xH,0
\'% VI VII VIII

Figure 1 — Various commercially available gold(l) (I-IV) and gold(Ill) (V-VIII) complexes and salts.

Gold(I) salts such as III are active catalysts by dissociation of ACN in solution. All the
illustrated gold(IIl) salts V-VIII are also active without the need for further activation. For
some other catalysts, however, more forceful removal of a ligand is necessary to open up an
active site at the metal. Conveniently, this can be done by addition of a silver salt AgX to act
as a halide abstraction agent. X is generally a spherical, weakly coordinating anion such as
SbFs or BF4~, though more strongly coordinating alternatives such as NTf,™ are also common.
Moreover, the choice of counterion can have a significant effect on the catalysts action;!'!! an
achiral gold ligand with a chiral ferrocene counterion has been shown to produce great %ee.!?!

The gold catalysts become more interesting when attaching organic ligands, as this enables
tailoring their reactivity. What follows is one of the currently most attractive facets of Au(Ill)-
chemistry; the linearity of Au(I) complexes naturally holds the ligand at the opposite side of
the metal from the substrate binding-site, and chemoselectivity is achieved by having bulky
ligands that wrap around to the other side of gold, as can be seen in IV. Au(IIl), on the other
hand, has in theory a greater potential to achieve chemo- and enantioselectivity by being able
to bring the ligand(s) closer to the substrate through its square planar geometry.

Several heteroatoms have been shown to coordinate to gold, but its fastidious oxidation
statel!'3] plays a crucial role; while phosphor ligands readily coordinates to Au(I),['*] P-Au(III)
bonds do not form spontaneously and are acquired by oxidation of their analoguous Au(I)
complexes.!!3] Nitrogen is recognized as the heteroatom which most readily coordinates Au(III),
though the functional group in which it is situated affects the strength of the resulting Au-N
bond. For example, amines normally form strong, irreversible tethers to Au(Ill), whilst
coordination through an amide-N seems to require the carbonyl to have further stabilization,
such as in derivatives of benzamide and picolinamide.['®!°1 Gold(IIT) complexes not involving
the coordination to a nitrogen are mostly restricted to NHCs[?" (and even then, nitrogen has a
pivotal role).
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Scheme 4 — N,O-bidentate Au(Ill) complex.

N,O-bidentate Au(IIl) complexes, such as IX (Scheme 4) have previously been synthesised
by various groups and shown to be catalytically active.[?!-23] Carboxylic acids allow for unaided
coordination, whilst alcohols require further motivation. One reported method for achieving a
Au-alkoxide g-bond consists of mixing the ligand and Au(Ill)-salt precursor in an alkaline
mixture of ACN:H,0.??] The ‘required” N-Au(Il) bond forms naturally, and the O-Au(III)
forms by deprotonation of an alcohol by base ("OH or "OAc). In such a case, Au(Ill) is
coordinated to the two heteroatoms from the ligand, and two halogens from the salt precursor
(typically chloride). Normally, halides do not passively dissociate from the metal centre to
allow for catalytic activity. Such behaviour is however possible for coordinative heteroatoms
of organoligands. The 16-electron pyridine-oxazoline complex X was by 'H,'’N-HMBC shown
to dissociate pyridine, forming X’ in situ, which creates an active site at gold without the need
for added silver-salts (Scheme 5).[**] This was observed by a downfield shift of the pyridine-N
and a corresponding upfield shift of the oxazoline-N, indicating a weakened/broken Au-
pyridine bond and a strengthened Au-oxazoline bond as the positive charge becomes
distributed over fewer atoms.

A S | N )
| Ao B N
C|®AI | _— . NI
IU N CﬁD’AU/
¢ ey o
1 r
H OMe MeO,C

MeOzC =
Meozo)qAPh MeOZCAC”Ph
X
Scheme 5 — Catalytic activity achieved by temporary ligand dissociation.

2.3 Propargyl Esters and -Alcohols

Propargylic esters have earned an exceptional amount of attention within the field of gold
catalysis, with several documented inter- and intramolecular transformations available from
the same class of starting materials. The acyl group has the interesting ability to either perform
a 1,2- or 1,3-shift, leading to carbenoid or allene species, respectively, both of which are prone
for further transformations (Scheme 6a).5-3!11 The 1,2-acyl shift also exemplifies the
aforementioned backbonding ability of gold. Propargyl acetals have also been shown to be able



2.3 Propargyl Esters and -Alcohols

to undergo similar 1,2-alkoxy shifts.3?) Also, in the presence of water and gold, propargyl
esters are also readily hydrated.l*3-4] A reaction developed and utilised in our group for
investigation of stereoselectivity of newly synthesised gold-complexes is the cyclopropanation
of propargyl acetate 11 with styrene (Scheme 6b).12!-33] The resulting cyclopropane 20 has been
theorised to preferentially form the cis diastereomer by proceeding through the most stable
intermediate, but can — again by gold catalysis — isomerise to the trans diastereomer, often
concomitant with loss of any enantiomeric excess the cis product might have achieved.!]

a) j\ b)
1,2-acyl 07 O 041\0
R shift \)\H/H Ar\/JW /k
®
PN [AuL] 0" "0
o} (O) 20 )\
N 1,3-acyl Ph N Ar AN
p shift O R [AuL]
*[LAul) HR ——— l% | 11
cyclo- inati
Ph/\ y coordination

propanation

N PN

0”0 0} j’
Ar_ g Ar e
[AuL] *ILAULY
back- 1,2-acetyl
bonding )\ shift
o0~ O
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S
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Scheme 6 — a) Two reactivity patterns of propargyl esters. b) Gold-catalysed cyclopropanation of propargyl
acetate 11 (Ar = 4-OMePh).
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Scheme 7 — Propargyl alcohol 1a either yielding a 1,1,3-trisubstituted alkyne 2 (path a) or an allene 3 (path
b).

Another way of interpreting the 1,3-acyl shift for propargyl esters is by a nucleophilic attack
on the terminal position of the alkyne accompanied by a leaving group in the propargylic
position; it just so happens that the nucleophile and the leaving group are one and the same for
the case of esters. However, substituting the ester for another leaving group and inclusion of
an external protic nucleophile NuH should allow for similar reactivity, but with access to new
compounds. An example of such a leaving group is an alcohol, releasing as water, shown in
Scheme 7, path b. Xu and co-workers showed that from an enantiomerically enriched propargyl
alcohol, only minor enantiomeric excess of the allene was formed under the catalytic activity
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of IX,[*¢! indicative of an intermediate which loses the chiral information of the starting
material.

Propargyl alcohols have also been thoroughly investigated for direct propargylic
substitution, forming 1,1,3-trisubstituted prop-2-yns (2) from a variety of nucleophiles
(Scheme 7a). Such reactions can be gold-catalysed,7-3%1 though a variety of other transition
metals and Lewis acids have also been used for this purpose.[40-44]

2.4 Allenes

An allene, or cumulene, is a functional group with the motif C=C=C. Despite their
resemblance to a conjugated diene, allenes show no conjugative throughput. This is due to the
p-orbitals on the central sp-hybridised carbon being orthogonal, thereby resulting in no orbital
overlap and a twisted structure (se Figure 2). Followingly, allenes can form sterecoisomers, as
was suggested as early as in 1875 by van’t Hoff. It wasn’t until 60 years later that this was
verified, when Maitland and Mills were the first to successfully synthesise two optically active

allenes.[*]

The significance of broken conjugation becomes apparent when considering the addition
reaction of HX to propadiene; one would expect protonation to occur at the central carbon as
this would create a more stable allylic cation intermediate. However, since such a cation
wouldn’t be stabilised without bond-rotation, protonation occurs on a terminal position
instead.[*6-*8] This seems to only be the case for propadiene though, as adding substituents
yields products originating from protonation of the sp-carbon, maybe due to inductive
effects.[*-°% These observations are shown in Scheme 8.

Figure 2 — Structure of propadiene.

xw LR
H,C-C=CH; =%— HC=C=CH, = —> H,C-C=CH,

X H HX
H,C—C=CHPh <——  H,C=C=CHPh

Scheme 8 — Addition of HX to propadiene and phenylallene.

Allenes are normally synthesised by prototropic rearrangement, from the corresponding
propyne,1331 or by [2,3]- or [3,3]-sigmatropic rearrangments.>*61 A gold(I)-catalysed
Claisen-rearrangement forming an allene is shown in Scheme 9. Other synthetic routes for
allene formation also exist, such as Cu(ll)-catalysed coupling, additions to enynes, 1,2-
eliminations, Wittig-type reaction, and more.7-°]



2.5 Indenes

Synthetically, allenes are very useful in cyclisation reactions by various means. For
example, vinyl allenes readily participate in Diels-Alder reactions as the product is inherently
conjugated.l®) Homoallenic alcohols can form 2,5-dihydrofurans by gold(IlT)-catalysis.!'3! Au
is known to interact well with allenes, even forming stable, isolable complexes such as XI
(Figure 3).[6!] Such complexes can fluctuate between ' and n? coordination modes, which
causes what is known as m-face exchange. This allows gold to dynamically ‘twist’ around the
allene, thereby changing which C=C bond of the allene it is coordinated to. This is illustrated
in Scheme 10.

o 1) [(PhsPAu)sO1BF, (1 mol%) H
)\ DCM, rit. B
Ph™ N PR C OH
N
SiMle,  2) NaBH,, MeOH, rt. Y\/
SiMe3
(92% ee) 98%, 92% ee

Scheme 9 — Gold(I)-catalysed Claisen rearrangement of a propargyl vinyl ether to an allene.[*”
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Figure 3 — A stable, isolable Au(I)-allene complex./0"
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Scheme 10 — Au undergoing m-face exchange of an allene.

2.5 Indenes

An indene (4) is an attractive scaffold due to its biological activities, as exemplified by
Sulindac (5) which is used as a non-steroidal anti-inflammatory drug (NSAID) in its racemic
form (Figure 4a).191 Two different isomers exist, 1 H-indene and 2H-indene, the former being
the most common due to increased stability of its aromatic system (Figure 4b and c). ‘Indene’
will from here on assume the 1H-isomer. Indene is a remarkably stable structures, resisting
oxidation of the cyclopentene-ring even in harsh conditions.[®*] Several metal-catalysed
reactions have been reported for the synthesis of substituted indenes such as by Fe, 3] Zr,[66]
Rh,[%7], Pt,[301 and Co.[%®! Au(I) has also been shown to facilitate such reactions from propargyl
acetates,3! and also being able to form the saturated derivative 2,3-dihydro-1H-indene in a

dimeric reaction of vinyl phenyls.[®]



2.6 Cyclams

Figure 4 — a) The structure of sulindac (5), and the two forms of indene, b) IH-indene and c) 2H-indene.

The Au-catalysed cyclisation of allenes to indenes was observed in 2006 by Marion and co-
workers, and picked up in 2016 by Morita and co-workers, though their mechanistic
explanations of the reaction differed.l>?!] Marion investigated propargyl acetates in the
presence of Au(l) species, and found that the resulting indenes could give various regioisomers.
The varying products were explained the acetyl group undergoing a 1,2-shift, 1,3-shift, or no
shift at all, and the final cyclisation simply explained by a general hydroarylation.l”®! Morita
investigated propargyl alcohols in the presence of Au(Ill) species, with an added aryl
nucleophile. They found substrate 1a to initially form an allene 3a, and formulated a
subsequent Nazarov cyclisation-like step!’!7?] that required heating, forming the indene
product 4a (Scheme 11). Whether heating assists the Au-allene interaction or the Nazarov
cyclisation is unknown. The cyclisation could also be performed by either of the two phenyl
rings of 3a, one being sterically favoured (as shown) while the other being electronically
favoured as the intermediate positive charge would be predominant on a doubly benzylic
carbon. Gauging by the isolated products, steric effects were dominant for these reactions.

H* AuL*
o LAugMes 4 (AuL* H@g (QUL Ph . {
y { -AuL N
Ph)&/ o M ST - . Ph CYPh
Ph Ph Mes
Ph -H,0
2 3a Mes
1a MesH

Ph H Ph
-AuL* . Al
G o U — O
Protodeauration *
Mes Mes Mes
4a

Scheme 11 — Suggested mechanism by Morita et al.”’’ for the Au-catalysed formation of allenes and indenes
from propargyl alcohols.
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2.6 Cyclams

1,4,8,11-Tetraazacyclotetradecanes (cyclams, 6, Figure 5) are macrocyclic compounds,
known as strongly chelating ligands.[”>] The four nitrogens create an electron rich cavity in the
interior of the ring-system which well accommodates a cationic metal in a square-planar
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2.7 Morita-Baylis-Hillman (MBH) Reaction

configuration. Cyclam-systems have also found useful applications in biological studies.l’*7%]
Ni(IT)(cyclam)-complexes have been quite thoroughly investigated.[’8! Other metals have also
been incorporated into the cyclam-scaffold,[’”] even as n!- and n?-coordinated species to

elemental oxygen.[”8]

Figure 5 — Structure of cyclam, 6.

A few Au(Ill)-cyclam complexes have been synthesised, but the related work focused on
selective uptake of Au-particles.l'®! Chiral, enantiopure cyclams were synthesised for the first
time in 1988 by Wagler and Burrows by the use of L-phenylalanine.l””! Recently, synthesis of
some chiral amide-cyclam derivatives, such as 7a, were reported in low yields by condensation
reactions between a malonyl chlorides and chiral 1,2-diamines (8).3%] An example is given in

Scheme 12.
O
o o S ;
NH2 0 “NH o NSO
NEt;, THF
. NH HN NO

“'NH, cl ClI > 0 H

rt., 16 hrs O)><§O ] WNH

8a 7a (36 %) 7a’ (14 %)

Scheme 12 — Condensation of (IR, 2R)-cyclohexane-1,2-diamine (8a) with dimethyl malonyl chloride,
forming chiral cyclam 7a along with the trimer side product 7a’./8"

2.7 Morita-Baylis-Hillman (MBH) Reaction

In the MBH reaction (sometimes only called a Baylis-Hillman reaction), a conjugatively
activated vinyl system and a suitable electrophile add to form a-substituted a,3-unsaturated
compounds, catalysed by a mild base such as NEt3.8!) The reaction is schematically shown in
Scheme 13, where an aldehyde acts as the electrophile. The activated vinyl system (for example
an a,f3-unsaturated ester) is attacked by the base, forming a zwitterion with a stabilised negative
charge. The resulting enolate nucleophilic carbon attacks the aldehyde in the C-C bond forming
step, and an additional equivalent of base then assists release of the product. These reactions
allow for a versatile method for C-C bond formation to densely functionalised compounds.

10
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Scheme 13 — A base catalysed MBH reaction. EWG = Electron withdrawing group.

Several modifications exist, such as aza-MBH reactions where an imine acts as the
electrophile,3?) or the use of phosphines®3! or carbenes[®+83] as the catalyst. Systems using a
TMS-ether substituted allene as the activated vinyl-species have also been reported.[®6]
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3.1 Synthesis of Starting Materials

3 Results and Discussion

This section will be split into 4 parts. The first section will cover synthesis of relevant
starting materials for later sections, namely propargyl alcohols, substituted pyridines and their
related compounds. The second section covers the gold catalysed reactions of propargyl
alcohols 1 with aryl nucleophiles, and related studies. Next, coordination studies of pyridine
based ligands, forming chiral organogold(Ill)-complexes, will be presented, along with
investigation of catalytic activity in a [1+2]-cycloaddition reaction. Finally, synthesis of
cyclam ligands and related coordination to Au(IIl) will be presented.

3.1 Synthesis of Starting Materials

This section covers the synthesis propargyl alcohols (1a-i), chiral pyridine derivatives (12a-
b, 15a-h, 12b-OMe and 15b,d,e,h-OMe), and other related compounds.

3.1.1 Synthesis of Propargyl Alcohols, 1a-i

For the investigation of the reaction of propargyl alcohols 1 with aryl nucleophiles in the
presence of a Au-catalyst, a range of propargyl alcohols needed to be prepared. Therefore, the
propargyl alcohols 1a-i were synthesised according to literature procedure from aldehydes 9a-
e and arylacetylenes 10a-d, shown in Scheme 14.187]

? x LDA
\Q THF, 0°Ctort.
3! 2 18-67 % isolated yield
2 R lo R 1R R?
a H a H a H H
b 2,4,6-triMe b 2.,4,6-triMe b H 2.,4,6-triMe
¢ 2,6-diMe c 4-OMe ¢ H 4-OMe
d 4-OMe d 4-CF; d H 4-CF3
e 4-CF; e 24,06-triMe H
f 24,6-riMe  4-CF3
g 2,6-diMe H
h 4-OMe H
i 4-CF3 H

Scheme 14 — Synthesis of propargyl alcohols 1a-i.

Arylacetylenes 10 were deprotonated by LDA to give the corresponding lithium alkynyl
anion. Upon addition of the aldehyde, the acetylide anion acts as a nucleophile towards the
carbonyl, forming racemic propargyl lithium alkoxides. Protonation by aqueous workup
formed the desired propargyl alcohol products 1a-i in fair isolated yields (41-67 %) with the
exception of 1¢ which was isolated in only 18 % yield. Similar reactions have been reported in
good to excellent yields,¥! only differing by the use of n-BuLi instead of LDA and performing
the deprotonation at -78 °C instead of 0 °C. A combination of these factors can have
contributed the decreased yields. The poor yield of 1c¢ is due to extensive overlap with an
unknown side-product during flash chromatography.
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3.1 Synthesis of Starting Materials

Propargyl alcohols 1a, 1¢-d and 1g-i have been previously reported, and '"H NMR spectra
were in accordance with the reported values.!83-89% Products 1b, e and f have not been reported,

and were consequently fully characterized by NMR and HRMS. The assigned 'H and '*C NMR
shifts of the novel propargyl alcohols are presented in Figure 6.

The propargyl alcohols le-f originating from mesitaldehyde (9b), displayed the curious
behaviour of changing colour from yellow to green upon standing without any signs of
degradation by 'H NMR. A second flash column of 1f returned the product to the original
yellow coloured oil, which once again turned back to green even when protected from light in
the freezer. Regardless, the green colour did not seem to hinder the reactivity of the compounds
in further reactions.

213

1f

Figure 6 — Assigned 'H and '3C shifts of previously unreported propargyl alcohols 1b, 1e and 1If.

3.1.2 Synthesis of Propargyl Acetate, 11

Propargyl acetate 11 was synthesised based on a previously reported strategy.[*!! The
reaction is shown in Scheme 15.

O
(o] Mg C]J‘k

Br
| 1) 2 THF
S
2) AcCl, NEt;, DCM
C|3 62 % over two steps (lj

9d 11

Scheme 15 — Synthesis of propargyl acetate 11.
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3.1 Synthesis of Starting Materials

The commercially available ethynyl Grignard reagent was added slowly to a stirred
solution of aldehyde 9d at r.t., forming the corresponding propargyl alkoxide in 1 hr.
Addition of NH4Cl (sat.) simultaneously quenched the slight excess of the Grignard and
protonated the alkoxide. Extraction gave the intermediate propargyl alcohol. Without further
purification, this intermediate alcohol was reacted with an excess of acetyl chloride at r.t.
overnight to give the desired product 11 in 62% yield over 2 steps. 'H NMR of both the
intermediate propargyl alcohol and the product propargyl acetate 11 were in accordance with
previously reported data.[#!:42]

3.1.3 Synthesis of Chiral 2-bromo-6-alkylpyridines Alcohols, 12a-c

Organogold(IlT)-complexes in literature greatly revolve around coordination to nitrogens,
situated in various functional groups. The N,O-bidentate 2-(neomenthol-1’-yl)pyridine Au(III)
complex XII was recently synthesised in our group, and further investigation into such hetero-
polydentate complexes was desired.[?! The features of the Au-O bond are of particular interest.

XII

Figure 7 — Structure of previously synthesised Au(Ill) complex XII.

The 2-bromo-6-alkylpyridines 12a-c¢ were synthesised based on previously reported
procedures from 2,6-dibromopyridine (13) and chiral ketones from natural ketones (14).°1%2]
The chiral ketones used were chosen based on availability: (-)-menthone (14a), (+)-camphor
(14b) and (-)-fenchone (14¢). These reactions are summarised in Scheme 16.

= “-.2/
OH:

12a (79 %)
o n-Buli S
| ‘i | ] oH
Br” "N” Br R "R?  DEE,-80°Ctort Br~ N
13 14a: (-)-Menthone 12b (25 %)
14b: (+)-Camphor
14c: (-)-Fenchone
=
| JoH
Br N
12¢ (74 %?)

Scheme 16 — Synthesis of chiral 2-bromo-6-alkylpyridines 12a-c.

Treatment of 2,6-dibromopyridine (13) with 1.05 equiv. n-BuLi in dry DEE at -80 °C
results in halogen-lithium exchange forming the reactive species 2-bromo-6-lithiopyrdine in
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3.1 Synthesis of Starting Materials

situ. Organolithium compounds are strongly nucleophilic, and addition of an electrophilic
ketone gives the adduct. Aqueous workup protonates the formed lithium alkoxides to yield the
products 12a-c. Due to the chirality of the ketones, attack by the lithiopyridine to the carbonyl
will preferentially take place from one face. Consequently, the stereochemistry of the hydroxyl-
bearing carbon will be determined by the innate stereochemistry of the substrate. The resulting
reduced forms of the menthone, camphor, and fenchone systems are called neomenthol,
isoborneol and S-fenchol, respectively.

The products 12a and 12b were isolated in 79% and 25% yield. Purification by flash
chromatography was sufficient for the neomenthol derivative 12a, but the isoborneol derivative
12b also required further purification by sublimating unreacted camphor at 70 °C under
vacuum. The considerably lower yield of 12b is attributed to increased steric constraints around
the carbonyl of camphor (14b), hindering the attack by the lithiopyridine. In repeated attempts,
the reaction mixture was kept at -80 °C for a longer period before warming to r.t., but did not
result in discernible increased yield. Since literature preparations of 12b report noticeably
higher yield (42%/°!), the quality of our camphor was checked by 'H NMR, showing no sign
of contamination. The f-fenchol compound 12¢ was initially believed to have been isolated in
74% yield, but NMR spectra were not in accordance with literature data.®'l Thus, it was
decided to disregard the -fenchol derivative 12c.

It has been argued that menthone and camphor have enolizable hydrogens, which could set
up for competing deprotonation of the equilibrating enol.[”’] Ma et al. used this argument to
reason for their high yield of 12¢ (90%) compared to 12a and 12b (68% and 42%, respectively).
This argument does not seem to be applicable to my findings, and it is unknown why our yields
show different trends and why NMR spectra for 12¢ were incorrect.

3.14 Synthesis of Chiral 2-aryl-6-alkylpyridine Alcohols 15a-h

With 2-bromo-6-alkylpyridines 12a and 12b in hand, various chiral 2-aryl-6-alkylpyridines
15a-g were synthesised by Suzuki cross couplings with available arylboronic acids 16a-d. The
arylboronic acids used were chosen by either having a potentially coordinating heteroatom in
the 2-position or based on phenyl. These reactions are shown in Scheme 17.

| N Pd({PPhs)s, KoCO5 | =
+ ' - -
Br~ N7 "R “ffBRz Dioxane:H;0, 70 °C Art N7 R
51-99 %
12 R 16 Ar 15 R Ar
a  Menthol a Ph a  Menthol Ph
b Isoborneol b 3,5-diOMePh b Menthol 3,5-diOMePh
c Thiophene-2-yl ¢ Menthol Thiophene-2-yl
d  N-methylpyrrole-2-yl d Isoborneol Ph
e Isoborneol  3,5-diOMePh
f  Isoborneol Thiophene-2-yl
g  Isoborneol N-methylpyrrole-2-yl

Scheme 17 — Synthesis of chiral 2-aryl-6-alkylpyridines 15a-g by Suzuki cross coupling reactions.

Under a N2-atmosphere, the 2-bromo-6-alkylpyridine alcohol (12) and boronic acid/pinacol
ester (16) were dissolved in dioxane (1 mL) and mixed with the potassium carbonate in H,O
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3.1 Synthesis of Starting Materials

(0.5 mL). The Pd-catalyst dissolved in dioxane (1 mL) was then introduced either directly from
the preformed complex as commercially available, or formed in situ from Pd(OAc), and PPh3
with a small amount of NEt; as a reducing agent. The mixture was heated to 70 °C and stirred
o.n. or until no remaining pyridine bromide remained (as determined by either TLC or 'H
NMR).

For the Pd-catalyst, 5 mol% was sufficient in most cases. If, however, black palladium
particles were visible without complete consumption of starting material, more catalyst was
added as necessary.

These reactions were generally very pleasant to work with. The boronic acid mostly used
in stoichiometric amounts, and no unwanted homo-coupling of starting material was ever
observed. After purification by flash column chromatography, the pure products 15a-g were
isolated in 54-99 % yield. The thiophene 15f was more difficult to remove from unreacted
bromide starting materials than the others. A 1:15 mixture of acetone:pentane was found to be
somewhat effective but did still not give satisfactory purity. As such, the reaction was re-
attempted with 2 equiv. of the boronic acid to ensure full consumption of starting material. This
allowed for isolation in 51% yield of 15f after purification by flash column chromatography
(1:30 EtOAc:pentane).

Compounds 15b-¢ and 15e-g have previously not been reported in literature, and were fully
characterised by NMR and HRMS. Through NOESY experiments, assignment of the two
bridged methyl groups of isoborneol rings was possible. By analysis of coupling constants, all
menthol rings had the conformations with the hydroxyl group in an axial position. The
orientation of the iPr-moieties could not be determined by the NMR spectra acquired. The
assigned 'H and '3C chemical shifts of the novel compounds are shown in Figure 8.

Attempted reaction of 2-pyridyl boronic acid (16e) with substrate 12a gave no conversion
to the desired chiral 2,2’-bipyridine alcohol 15h, attributed to the pyridine boronic acid being
more electron deficient — thereby less nucleophilic for the transmetallation step — than the other
utilized aryl boronic compounds. Luckily, 6-bromo-2,2'-bipyridine (17) was commercially
available, so halogen-lithium exchange and addition of (-)-menthone (14a) gave the desired
chiral bipyridine 15h in 23% yield (Scheme 18). The '"H NMR spectrum was in accordance
with previously reported values.[®?l The bipyridine-isoborneol derivative was not synthesised
due to time limitations.
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Figure 8 — Assigned 'H and 3C shifts of novel 2-aryl-6-alkylpyridine alcohols 15b-c and 15e-g.

Pd(PPh3),, K,CO3
| —
N~ ~B(OH), Dioxane:H,0,70°C

1) BuLi, -80 °C

2) (-)-Menthone

12a 16e 15h 17
Scheme 18 — Synthesis of chiral bipyridine alcohol 15h.

3.1.5 Methylation of Pyridine Alcohols

With several 2-aryl-6-alkylpyridines 15a-h in hand, we also wanted to study effect of the
hydroxyl group in Au-coordination; a weaker O-Au bond could allow for temporary
dissociation of the oxygen, creating an active site at Au. As a result, the substrate would be
brought as close as possible to the chiral group of the ligand, potentially increasing the effect
of the chirality and increasing enantioselectivity in Au-catalysed reactions. Therefore, some
methoxy analogues 15b,d,e,h-OMe were synthesised.
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L JgH 1) NaH, THF
Br” N ) NaH,
R
2) Mel
12 12b-OMe
Ar-BR', Ar-BR';
Pd(PPhs), Pd(PPhg),
K,CO4 Patg‘”ay K,CO4
Dioxane:H,0, 70 °C Dioxane:H,0, 70 °C
X Pathway A
| | oH
Ar N 1) NaH, THF
R
2) Mel
15 15-OMe

Scheme 19 — Synthesis of methoxy derivatives 15-OMe through two different pathways.

The bromopyridine alcohol 12b or the selected 2-aryl-6-alkylpyridine alcohols 15b,h were
dissolved in THF and the alcohol deprotonated by reaction with NaH. Subsequent Sn2 reaction
with Mel yielded the corresponding methyl ether pyridines 12b-OMe, 15b-OMe and 15h-
OMe in excellent yields (=97 %) after extraction into DCM. Suzuki cross coupling of 12b-
OMe yielded 15d-OMe in 49 % yield and 15e-OMe in quantitative yield. All synthesised
methoxy derivatives were unreported in literature, and accordingly fully characterised.
Chemical shifts of the novel compounds are presented in Figure 9.

Curiously, reactions in dry DEE instead of THF gave no conversion, but quantitative
recovery of starting materials even if heated for several days. The large excess of NaH used
(10 equiv.) was due to suspected degradation and slow initial rate of the reaction. As NaH is
known to be able to act as a base, a reducing agent, and a nucleophile,* 12 equiv. of Mel was
used to avoid formation of methane gas. Though such drastic excesses are not very economic,
reactions sometimes required up to 24 hrs to reach full conversion and were therefore deemed
necessary. No further optimization was explored.
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136.4
7.71

1214 10.1
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2.91

MeO

OMe

15e-OMe ®

15d-OMe ®

Figure 9 — Assigned 'H and 3C shifts of four novel 2-aryl-6-alkylpyridines methyl ethers and one novel 2-
bromo-6-alkylpyridine methyl ether. ¢ Synthesised through Pathway A. ° Synthesised through Pathway B.

3.1.6 Synthesis of Chiral BOX-Au(III) complex XIII

The chiral bis-oxazoline (BOX) Au(Ill) complex XIII was synthesised from the
commercially available ligand 18, according to the procedure reported by our group.?!]

&% \) KAUCl,, AgSbF <j|>®<|( \8

ACN, 96 %

SbFg

Ph C| c| Ph
X111

Scheme 20 — Synthesis of BOX-Au(Ill) complex XIII.

Mixing the ligand 18 with KAuCls (VII, 1.1 equiv.) and AgSbFs (1.2 equiv.) in ACN for 1
hr gave the pure Au(Ill) complex XIII in 96 % yield as an orange powder after filtration
through celite. The 'TH NMR spectrum was in accordance with reported data.[?!]

3.2 Au-catalysed Reactions of Propargyl Alcohols and Aryl Nucleophiles

The Au(Ill)-catalysed reaction between propargyl alcohols (1) and aryl nucleophiles
forming indenes 4 was recently reported by Morita et al.?! The reaction is redrawn in Scheme
21. For mechanistic details, see Chapter 2.5, Scheme 11. These transformations sparked interest
in our research-group due to propargyl alcohols 1 not being commonly reported in the field of
Au-chemistry (propargyl esters have that honour). Moreover, due to the chirality of the
products, asymmetric catalysis was envisioned. The product of the reaction could be
conveniently tuned by simple time and temperature control to either stop at an intermediate
allene 3, or further proceed to a 1,3-diaryl-1H-indene 4. Consequently, this project was initiated
to investigate the scope of these reactions in regard to Au-source, propargyl alcohol
substituents (1), aryl nucleophile and solvent (based on already reported findings by Morita et
al.), and to finally investigate their potential for use in asymmetric catalysis.
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1
OH Ar3H H [A ] Ar
[Au] (5 mol%) u
Ar1 )\ Ar1 /gc - Ar3 _—
N Ar2 \| heat
Solvent, r.t. Ar2 Ard
1 3 4

Scheme 21 — Reaction between propargyl alcohol 1 and an aryl nucleophile, producing either allene 3 or
indene 4.

For use as a test-reaction of newly synthesised Au-complexes, the following reaction
criteria should be satisfied: 1) easy to perform, 2) easy to workup, and 3) easy to analyse the
product mixture. These three factors will be focused on in the following testing.

3.2.1 Effect of Au-source

Our group’s interest in the transformations mentioned above is the capability to work with
different chiral Au-catalysts in asymmetric catalysis. Therefore, it seemed reasonable to start
by investigating how simple commercially available Au-salts affect the outcome of the
reactions. Morita ef al. had undertaken some investigation on how different Au(I)- and Au(III)-
salts affect the obtained yield of indene 4a by reaction of propargyl alcohol 1a with mesitylene.
Nevertheless, we found their choices to not be representative of the commonly employed Au-
salts in the field. Also, no reasoning was given for their increased catalytic loading of Au(I)-
salts (15 mol%) compared to Au(Ill)-salts (5 mol%).[?) Furthermore, no comment was made
on the ratios of the other competing products of the reaction, but only the obtained yield of
indene 4a. Consequently, we decided that more investigation into the effect of the Au-source
was needed.

Besides incomplete consumption of starting material, three primary products can be formed
by the reaction of 1 (see Scheme 22): 1) nucleophile attacking C-1 of the substrate, substituting
the hydroxyl group in an Sn1/2 fashion, yielding products akin to alkyne 2a, 2) nucleophilic
attack at C-3 of the substrate, forming the allene 3a in an Sn2’ fashion, or, 3) Nazarov
cyclisation of the aforementioned allene to indene 4a. Furthermore, there is a possibility for
the solvent to act as the nucleophile, resulting in exchange of the hydroxyl group yielding
alkynes of type 2b.

With the different potential products in mind, the reaction was attempted with a selection
of different Au(I)- and Au(Ill)-catalysts. For the time being, the reported recommended
conditions were used: CF3CH20OH (F3-EtOH) as solvent, 5 mol% catalyst and 6 equiv. of MesH.
For allene (3) formation, solutions were stirred at r.t. for 15 mins, and for indene (4) formation,
at 80 °C for 1.5 hrs. The only modification from the reported procedure was addition of NEt3
in the workup to inoculate the catalyst. The relative abundance of the various compounds
formed was determined by integration of characteristic signals of the 'H NMR spectrum of the
crude mixture (Scheme 22). The results can be seen in Table 1.
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Scheme 22 — Characteristic chemical shifts of the substrate 1a and different potential products.

Table 1 — Effect of Au-source *

MesH (6 equiv.) H Ph
OH [Au] (5 mol%) Nu P
Ph)\ _— Ph)\ Ph CY Mes ’
S Ph F3-EtOH, T °C, t min S Ph Ph Mes
1a 2ab/2b° 3a 4a
Entry [Au] T=rt,t=15 T=80°C,t=90
la 2 3a 4a la 2 3a 4a
1 AuCl; (V) 0 100 86 4 0 8P 2 90
2 Au(ll) AuBr3 (VD) 0 100 85 5 0 7° 0 93
3 KAuCls (VII) 0 9b 91 0 0 8P 2 90
4 Au(l) (JohnPhos) Au(ACN)SbFs (IIT) 74 3b4e 19 0 0 8b,2c 0 90
5 Me2SAuCl (I) 74 3b4e 19 0 0 5b 0 954

2 Standard procedure: Au-catalyst (5 mol%) with propargyl alcohol 1a (1 equiv.) and MesH (6 equiv.) in F3-EtOH (1
mL). Mixture stirred at T °C for t mins before addition of water, a few drops of NEt3 and extraction into DEE followed by
removal of solvent in vacuo. Ratios are based on integration of the resulting 'H NMR spectra.

" Nu = Mes, (2a). °Nu = F3-EtO (2b). ¢ Observed signals of unidentified compounds.

The tested Au(Ill)-salts (entries 1-3) show similar behaviour and form the desired allene 3a
and indene 4a. Most notable is the ability of KAuCls to form the allene intermediate 3a more
selectively without any traces of indene 4a, and the ability of AuBr3 to convert all the formed
allene more selectively to indene when heated (see Scheme 21). The differences in the formed
amount of 1,1,3-triarylpropyn 2a are negligible within the precision of NMR-integration. The
persistence of undesired alkyne 2a after heating indicates a dead-end for the reaction, or
alternatively that a transformation of 2a to 4a proceeds exceedingly slowly.

The two tested Au(I)-salts (entries 4-5) show drastic difference from the Au(Ill)-salts when
attempting to form the allene 3a; only 19% conversion can be seen after stirring for 15 mins,
with a much higher relative ratio of the undesired alkyne 2a. Marion ef al. also observed the
difficulty of Au(T) to form allenes in their similar study using propargyl acetates.l*!l Heating
and further stirring showed very promising conversion into the indene 4a, with comparable
results to the Au(Ill)-salts. Some reactions also showed formation of small amounts of
propargyl ether 2b; this is, however, not expected to have significantly impacted the formation
of indene 4a, as it will later be showed that these propargyl ethers are still capable of
undergoing both conversion to allene and indene. Using catalyst I also showed aromatic signals
not previously seen with other catalysts, possibly indicating a different competing reaction
taking place. The reduced ability of Au(I)-salts to form allenes compared to the Au(Ill)-salts is
clear evidence that these catalytic species are indeed different, and Au(IIl) is not simply a
precursor to Au(l).

In conclusion, most Au-catalysts are capable of converting 1,3-diarylpropargyl alcohols 1
into indenes 4, but Au(I)-sources are less effective at forming the intermediate allenes 3.
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3.2.2 Effect of Solvent

The proposed solvent of F3-EtOH was seen as unusual, and when only compared towards
toluene, THF and DCE, some further options should be explored in attempt to avoid the use of
a fluorinated solvent. As such, some other solvents commonly used in organogold chemistry
were attempted in indene formation using the other standard conditions recommended by
Morita et al. The results are shown in Table 2.

Table 2 — Effect of solvent ¢

, Ph
OH MesH (6 equiv.) Nu H
AuBr3 (5 mol%) + /& +
- Ph™ ~Cy_Ph
Ph)\ Ph)\ Y
Ph Solvent, 80 °C, 1.5 hrs Ph Mes Mes
1a 2b¢ 3a 4a

Entry  Solvent la 2 3a 4a Comment
1 EtOH 0 c:76° 0 0 Isolated products 2¢ : 19, 76 : 244
2 F3-EtOH 0 7° 0 93
3 AcOH ? 77¢ ? 23 Complex mix of several products
4 ACN 0 72¢ 0 28
5 DCM 35 3¢ 57 5 60 °C
6 MeNO2 0 10¢ 5 85

2 Standard procedure: AuBrs3 (5 mol%) with propargyl alcohol 1a (1 equiv.) and MesH (6 equiv.) in solvent (1 mL).
Mixture stirred at 80 °C for 1.5 hrs before addition of water, a few drops of NEt3 and extraction into DEE followed by
removal of solvent in vacuo. Ratios are based on integration of the resulting 'H NMR spectra.

" Nu = solvent. ¢ Nu = Mes, (2a). ¢ Due to overlapping 'H NMR signals, ratio based on isolated yields after flash column
chromatography.

As F3-EtOH had been successful in these reactions, simple EtOH was first attempted (entry
1). By inspection of the crude 'H NMR spectrum, none of the desired products could be
observed, but instead the corresponding propargyl ether 2¢ from nucleophilic attack by ethanol
on the substrate 1a, as well as some other unknown compound. Purification of the crude
mixture by flash chromatography (1:20 EtOAc:pentane) gave the pure propargyl ether 2¢ and
also an unexpected, not previously reported, a, [3-unsaturated ketone 19 containing three
phenyls and no mesitylene. Its structure was elucidated by a combination of NMR spectroscopy
and HRMS. For discussion about 19, see section 3.2.2.1 below.
OH MesH (6 equiv.)
AuBr; (5 mol%)
Ph)\

OEt O OEt
+ Ph Ph
Ph EtoH, 80°C, 1.5 hrs Ph Ph
19

la 2¢

Scheme 23 — Reaction of 1a with EtOH, forming alkyne 2¢ and a,-unsaturated ketone 19.

Using AcOH as the solvent (entry 3) created a complex mix of products from which only
the 1,1,3-triarylpropargyl 2a and indene 4a were recognizable in a relative ratio of 77:23. It is
possible that replacement of OH by OAc could have taken place, forming the analogous
propargyl acetate, which could react in very different manners from the starting alcohol (see
section 2.3). Attempts were made to look for the corresponding propargyl acetate in the crude
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'"H NMR spectrum, but, due to overlapping signals, its presence could not be confirmed."]
Regardless, it was clear that AcOH was not an appropriate solvent for these reactions.

ACN is known to be a good solvent for Au(Ill)-salts and -complexes in terms of both
solubility and stability (see section 2.2). It would therefore be convenient to use ACN in these
reactions (entry 4). Unfortunately, efficiencient formation of the undesired alkyne 2a compared
to the indene 4a was observed. Despite this, the crude reaction-mixture was surprisingly clean,
not showing traces of any other compounds than these two, where the other solvents always
showed slight formation of other minor side products.

Along with ACN, DCM is a common solvent in Au-catalysis, but showed poor conversion
to indene 4a, with the allene 3a as the major product and discernible amounts of starting
material left (entry 5). Due to the lower boiling point of DCM, the solution was only heated to
60 °C which is believed to have affected the conversion.

Eventually, MeNO> was attempted (entry 6). MeNO> showed comparable selectivity as F3-
EtOH, but some formation of alkyne 2a (5%) could also be observed. Still, F3-EtOH was more
selective in the indene-formation. As it is unknown if Au-complexes are compatible with F3-
EtOH, MeNO: could serve as an alternative should instability or solubility problems develop.

In conclusion from solvent-screening, F3-EtOH was indeed the most suitable solvent. It has
been argued that F3-EtOH is exceptionally good at stabilising cationic species, which might be
the reason for this.[”>) MeNO> gives lower selectivity but avoids the use a fluorinated solvent
and can serve as an alternative if compatibility problems arise. The other solvents either created
complex mixtures of products, or an increased amount of the undesired alkyne 2a, and are as

such unsuitable.
3.2.2.1.  «a,B-Unsaturated Ketone Dimer 19

Using EtOH as the solvent for the reaction between 1,3-diphenylpropynol (1a) and MesH
in the presence of catalytic AuBr3 (VI) gave a mixture of the propargyl ether 2¢ and the
unexpected a,-unsaturated ketone 19. Its structure was determined by a combination of
HRMS and NMR spectroscopy. A NOESY experiment was used to determine the orientation
of the alkene. According to literature search, compound 19 is novel, but similar structural
motifs are generated through the Morita-Baylis-Hillman (MBH) reaction (see section 2.6, page
9). MBH reactions have previously been reported to proceed best in polar protic solvents such
as MeOH, without the incorporation of the solvent,®2] which is not in line with the structure of
19 which has the solvent ethoxy-group incorporated.
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19

Figure 10 — Assigned 'H and 3C shifts (relative to TMS in CDCl;) the a, f-unsaturated ketone 19. Arrows
indicate 'H,'H-NOESY correlations.

From similar starting materials, Wadhwa et al. observed MBH side-products when they
generated TMS-protected propargyl alcohols in a phosphor-catalysed reaction.!®3] However,
their proposed mechanism involves the reaction of an allene (formed in siti) with an electron-
deficient aldehyde, whereas no aldehyde was present in my reactions; '"H NMR confirmed no
benzaldehyde-contaminant remained in the propargyl alcohol substrate.

Despite the striking structural similarity of 19 and MBH-products, we could not reason its
formation through the standard MBH mechanism. A wide range of catalysts have been
effective in MBH reactions such as amines,®!) phosphor compounds,® BuOK,®¢ and
NHCsB481 Yet, to the best of our knowledge, no reports exist for Au-catalysis. Attempted
reaction between propargyl alcohol 1a and anisole — a good aromatic nucleophile — still only
showed EtOH as the acting nucleophile. Using F3-EtOH as solvent gave no formation of the
fluorinated derivative of 19. This is attributed to the electron withdrawing effect of the CF3

group, making this solvent less nucleophilic.

Our suggested mechanism for the formation of 19 is shown in Scheme 24. Nucleophilic
attack by the solvent at C-1 of substrate 1a (possibly aided by Au” in solution) forms the
propargyl ether 2¢ (isolated from the reaction mixture). By Au-activation, the water released
can give hydration of the alkyne, followed by protodeauration, keto-enol tautomerization and
finally elimination of EtOH, which would yield 1,3-diphenylpropenone (Chalcone). Chalcone
could possibly also form directly from 1a without proceeding through the intermediate of 2c.
From the crude '"H NMR mixture, weak signals possibly corresponding to (£)-Chalcone could
be observed, but this is inconclusive due to low relative intensity and overlapping signals.
Because of the elevated temperature, this 4-electron -system could undergo a hetero-[4+2]
cycloaddition with propargyl ether 2¢ in solution, and a further hetero-[4+2] cycloreversion
would give 19. In the process, volatile phenylacetylene (10a) would be eliminated which would
be removed by evaporation, and could therefore not be observed by 'H NMR.
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Scheme 24 — Suggested mechanism for generation of a,B-unsaturated ketone 19.

Further work on this reaction is encouraged, as two stereocenters are incorporated.
Assuming the mechanism shown in Scheme 24, control of the OEt-stereocenter would require
an Sn1 substitution with a chiral Au-complex coordinated to the neighbouring alkyne.
Stereocontrol of the alkene would depend on the approaching orientations of (£)-Chalcone and
2¢ in the hetero-[4+2] cycloaddition step. It would be interesting to investigate the extent to
which Au can affect this reaction. It was, however, decided that this reaction was outside the
scope of the planned project, and, as such, no further investigation was undertaken.

323 Effect of Propargyl Alcohol Substituents

Varying the electronic- or steric characteristics of the substituents of propargyl-systems are
known to impact Au-catalysed reactions.3!! The effect of different phenyl substituents on either
side of the propargyl alcohol 1 was thus investigated. Several of the compounds produced from
these reactions have not previously been reported, but due to the difficult purifications — often
requiring flash column chromatography with ~1:200 EtOAc:pentane to achieve any form of
separation — not all proposed compounds could be isolated in adequate quantities for structural
confirmation by NMR and HRMS. However, based on various isolated derivatives of each
compound class, characteristic structural fragments that makes up each product can be
determined with feasible ease based on 'H NMR spectra alone. If a novel compound was not
isolated in adequate amounts for structural confirmation, it will not be listed in the experimental
section, but its "H NMR spectrum can be found in the Appendices.
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Table 3 — Effect of propargyl alcohol (1) substituents *

1
MesH (6 equiv.) H Ar
OH AuBr3 (5 mol%) Mes ,g
] ] Ar'”"SCo_Mes
Ar % Ar \\ Y
Ar2  F3-EtOH, T °C, t min Ar2 Ar? Mes
1 2 3 4
Entry  Ar' Ar? Propargyl T=rt,t=15 T=280°C,t=90
alcohol 1 2 3 4 1 2 3 4
1 Ph Ph 1a 0 a:10 a:85 a5 0 a7 0 a:93
2 4-OMePh Ph 1h ob - - -
3 4-CFsPh Ph 1i 4 d:53 b:43 0 0 d:56 0 b:44
4 Ph 4-OMePh  1c 100 0 0 0
_be - - -
5 Ph 4-CF3Ph 1d 20 e:65 €26 0
6 Mes 4-CFs;Ph 1f 50 0 d:95 0 50 0 d:95 0
7 Mes Ph le 0 0 e:100 0 0 0 0 ¢:100
8 2,6-diMePh Ph 1g 0 0 £:98 d:2 0 0 0 d:100
9 Ph Mes 1b Observed® - - Observed® - -

2 Standard procedure: AuBr;3 (5 mol%) with propargyl alcohol 1 (1 equiv.) and MesH (6 equiv.) in F3-EtOH (1 mL).
Mixture stirred at T °C for t min before addition of water, a few drops of NEt; and extraction into DEE followed by
removal of solvent in vacuo. Ratios are based on integration of the resulting 'H NMR spectra.

b Complex mixture / polymerization makes integration unreliable/impossible. © Stirred o.n.

Exchanging to an electron rich phenyl at Ar! (entry 2) gave a complex mixture of various
polymerization products after stirring at r.t. for 15 mins. The lack of formation of desired
products is attributed to anisole being a better nucleophile than mesitylene. Through flash
chromatography, a compound containing two equivalents of the starting propargyl alcohol and
one mesityl fragment could be isolated. NMR indicates a mixed indene-alkyne compound, but
their connectivity could not be elucidated due to the complexity and proximity of 'H and '*C
signals; a TOCSY experiment was attempted to differentiate the different aromatic systems
without success. Furthermore, the propargyl ether 2f, resulting from nucleophilic attack by the
solvent at C-1, could be isolated.

The electron deficient 4-CF3-phenyl (entry 3) allowed for preferential formation of the
corresponding undesired alkyne 2d. Still, the novel corresponding allene 3b was formed,
isolated, and fully characterized. This allene was also able to complete the cyclization to the
indene 4b when heated. In an attempt to decrease the amount of the alkyne 2d that was formed,
a separate attempt at 0 °C was done, but resulted in no consumption of the starting material.

Next, varying the electronic nature of Ar> was investigated. The electron rich anisole (entry
4) showed no conversion after stirring at r.t. for 15 mins. Allowing further stirring o.n. revealed
a complex mixture, assumed to be polymerization products. An electron deficient Ar?
derivative (entry 5) also opened for preferential propargylic substitution forming 2e, analogues
to Ar! (entry 3). The corresponding allene 3¢ was also be observed, but could not be isolated
by flash column chromatography, but only as a mixture with alkyne 2e. In addition, what is
assumed to be a dimer of the propargylic alcohol was isolated after flash column
chromatography; from 3C NMR, two sets of alkynes can be seen, and '"H NMR shows no
incorporation of mesitylene. The structure of this compound could however not be elucidated
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due to high degree of equivalent signals. Mixing the reagents at 0 °C and allowing to heat
slowly to r.t. gave the same mixture of products, indicating that propargylic substitution is not
controllable by temperature.

In an attempt to block the propargylic position for substitution, mesitylene was introduced
as Ar! (entry 6). It was hoped that the steric factor imposed by the ortho methyl groups could
prevent attack by the nucleophile on C1. Indeed, promising reduction in the formation of the
undesired 1,1,3-triarylpropyn in favour for the desired allene 3d was observed, however still
with impurities assumed to be caused by partial polymerisation. Contrary to previously
synthesised allenes, allene 3d decomposed on storing and also showed a surprising broadening
of some '"H NMR signals belonging to the nucleophile mesitylene. Unsurprisingly, cyclization
to the corresponding indene 4e could not be accomplished due to Ar? being too electron
deficient for the intermediate Au-3d’ to perform a Nazarov cyclisation (Scheme 25).

gﬁﬁﬁw

LAU O
CFs CFs

1f Au-3d’ 4e

Scheme 25 — Sterically encumbered Ar! prevents propargyl substitution, but electron deficient Ar? prevents
indene formation.

Keeping the steric mesityl as Ar' but returning to Ar?> = Ph, which we knew could cyclize
to an indene (entry 7), pleasingly awarded complete consumption of starting material to the
corresponding allene 3e, with no recognizable amount of propargylic substitution, though still
with the broadened '"H NMR signals of the nucleophile. Furthermore, this allene could cyclize
to 1,3-dimesitylindene (4¢) after heating. For the sake of incorporating three distinctly different
aromatic systems, the nucleophilic mesitylene was attempted replaced with 1,3,5-
triisopropylbenzene, but this yielded only a complex mixture. Therefore, the 2,6-
dimethylphenyl derivative was introduced as Ar' to maintain the desired steric encumbrance
of the propargylic position, while still being NMR-distinguishable from the nucleophilic
mesitylene (entry 8). This too showed great ability to form both the desired allene 3f and indene
4d, with no recognizable trace of propargylic substitution, also in MeNO; as solvent. Again,
this allene also showed broadening of signals, and it was decided some further investigation
was in place (see Section 3.2.3.1).

Finally, as a curiosity, mesitylene was also introduced as Ar? (entry 9), but surprisingly did
not give pure propargylic substitution, but rather a complex mixture of compounds, indicating
polymerization.

In conclusion, the propargyl alcohol system is sensitive to electronic factors in both of its
aromatic rings. Electron rich rings favour dimerization/polymerization due to being better
nucleophiles than mesitylene, while electron poor rings increase the relative amount of
propargylic substitution that takes place. Electron neutral phenyl derivatives are preferred for
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Ar! and required for Ar?; only Ar? = Ph were able to form the corresponding indenes. Sterically
encumbering the propargylic position by choice of aldehyde precursor eliminates the formation
of undesired propargylic substitution.

3.2.3.1. NMR- and DFT Studies on Novel Allenes and Indenes

Some curious artefacts were observed in the NMR spectra of some of the synthesised
allenes and indenes. The '"H NMR spectra of allenes 3d-f showed two broad peaks at §'H
~2.13ppm, and one broad peak at §'H~6.95 ppm (varying slightly between the compounds).
This was seen as an indication of fluctuating conformations in solution (or some other dynamic
process). Such broad peaks had not been seen for any of the other allenes isolated. These broad
peaks integrated correctly as two methyls and two aromatic hydrogens, respectively, and were
persistent even after purification by flash chromatography. Therefore, they were not the result
of interaction with residual Au-particles in solution. Characterisation by NMR revealed the
broad signals belonged to the nucleophile, Ar?, and as the common trait of these systems was
the methyl groups introduced on Ar!, an interaction between these two ring systems was
assumed to cause the broadening of signals. Closer inspection of the 3C NMR spectra also
showed broadening of signals at ~6'3C 137 ppm. Albeit broadening of 3C NMR signals is
known, it is less common than for '"H NMR.

Si 9 j
~C =C

3d 3e 3f
Figure 11 — Allenes 3d-f that exhibit broadening of signals in 'H and '*C NMR.

To verify presence of fluctuating conformers, 'H NMR spectra of 3d were collected at
different temperatures (Figure 12). Cooling to 263 K gave clear sharpening of the signals into
four distinct peaks, as a result of slower dynamic processes. Furthermore, heating of the sample
to 313 K gave coalescence of signals; the most upfield methyls showed one broad peak, whilst
the downfield aromatics were shown as one peak, only slightly broader than other aromatic
hydrogens. Other spectra at intermediate temperatures (collected at intervals of 10 K) showed
smooth transitioning between the two edge-cases. Heating of the sample beyond 313 K is
expected to cause further coalescence to sharp peaks, as the rate of dynamic processes continue
to increase, but such spectra could not be acquired due to spectrometer limitations.

Due to the 90 ° twist of allenes (see section 2.4, page 7), the ortho-methyls of Ar' and Ar?
can be in close proximity given correct dihedral angles. In an attempt to identify the fluctuating
conformations, DFT calculations of 3f were performed with different dihedral angles about
each aryl, as well as for the phenyl derivative 3a for reference. 3f was chosen instead of the
other options due to it having the least number of atoms, and therefore cheaper to calculate.
Indeed, calculations support observations of a hindered rotation of Ar® in 3f for certain dihedral
angles. Energy barrier for rotation of Ar! is also greater in 3f, but still low enough to allow for
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free rotation at ambient temperature, in agreement with the NMR observations. Selected
structures, calculated energies, further detailed discussion and other relevant data regarding
DFT calculations can be found in Appendix A.

C1+C2

\ T=313K
CF3 .

T=303K

(9]
1%
- 7
o
b

T=293K(r.t)

T=283K

!
b
!

T=263K

FEEr

Figure 12 —'H NMR spectra of allene 3d at varying temperatures, showing presence of a dynamic process in
solution (CDCl3, 400 MHz).

The complete NMR characterisation of indenes 4 was a challenging task, indeed, due to
several factors: 1) the high degree of aromaticity meant overlapping signals in both 'H and *C
spectra, 2) the various other sideproducts produced from the related reactions were equally
unpolar, which made their chromatographic separation labour intensive, and 3) the small scale
of the reactions (10-20 mg of the propargyl alcohol) meant the isolation of sufficient amount
of compound for NMR characterisation could be difficult, especially for insensitive quaternary
carbons. To make matters worse, due to the presence of a stereo centre and hindered ring-
rotations, no symmetry was observed for any ring-system, meaning every hydrogen and carbon
would have their own individual NMR signal; this further complicates the NMR spectra and
meant that extraction of peak-data from 1D experiments alone was unfeasible. Overlapping
signals also meant that COSY spectra were of only limited help in isolating each ring-system
from each other.

In order to be able to perform reliable assignments of 'H signals, the use of TOCSY
experiments were found to be very helpful. By this, overlapping signals of different spin-
systems, i.e. the different aryls, could be distinguished from each other, and their ordering
determined by combination with COSY. In some cases where HSQC and/or HMBC spectra
had closely overlapping '3C signals that needed to be distinguished, selective experiments were
performed to achieve increased resolution of the spectral windows of interest. Finally, to
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identify the relative syn/anti configurations of the twisted indene substituents, NOESY
experiments were used.

Figure 13 — Assigned 'H and '>C NMR shifts of indene 4d (left) and reference labelling (right).

As an example of such assignment, the novel indene 4d will be used and is shown in Figure
13. Due to the purity and quantity isolated of novel indene 4d (12.8 mg) the compound was
fully characterized by NMR and HRMS. The twisted/non-planar orientation of each mesityl
substituent is attributed to steric hindrance between H8” and H7 as well as H9’’ and H4. This
would explain why the analogue 4a only shows the same asymmetric behaviour for the mesityl
moiety whereas the phenyl shows symmetry due to permitted rotation.

The characteristic benzylic and vinylic hydrogens (H1 and H2, respectively) were essential
to determining the position and orientation of substituents. 2D-NOESY experiment shows clear
correlation of the benzylic H1 to methyls H7” and H7”’ indicating these are syn to one another.
No signals were observed for methyls H8” nor H9’’ to H1, but there is however correlation of
H8’ to H7 as well as H9’’ to H4. HMBC correlations of carbon signals in close proximity to
each other were distinguishable by a acquiring a selective HMBC spectrum, which utilizes a
specific pulse for excitation of '3C nuclei only within the range of interest (§'°C 119-149 ppm).
This, for example, unambiguously reveals that C3” and C3”’ have overlapping signals at §'3C
128.2 ppm, and are indeed distinguishable from C5°” at §'3C 128.3 ppm, which is not possible
to determine from a standard HMBC due to the much broader signals (see Appendix F.4-
Appendix F.11).

324 Effect of Nucleophile

The final aspect to investigate was the effect of the aromatic nucleophile (Ar?). The original
article by Morita et al. showed the use of different nucleophiles, such as 1,3,5-
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triisopropylbenzene, pentamethylbenzene, hydroxymesitylene and bromomesitylene to
successfully generate indenes in varying yields.[?] The two latter systems generated a mixture
of two diastereomers in lower yields. Moreover, combined with the knowledge that varying
the electron-density of the aryl in the propargyl alcohol 1 negatively impacted the studied
reactions, it was decided to mainly focus on aryls without heteroatoms. Still, some further
investigation into the impacts of electron rich and -poor nucleophiles was done. These
experiments were conducted simultaneously as the other screening experiments presented
above, so the beneficial effects of ortho-blocking Ar! had not been discovered yet. The
unsubstituted propargyl alcohol 1a was therefore used. The results are summarized in Table 4.

Using the quite sterically hindered 1,3,5-triisopropylbenzene (entry 2) revealed a complex
mix containing the propargyl ether resulting from attack by solvent (2b) after stirring at r.t.
from 15 min. Surprisingly, heating for 1.5 hrs still yielded the corresponding indene 4f with no
traces of 2b remaining. As the corresponding allene was never isolated, and it is not reported
in literature, no reference could be used to integrate the correct allenic hydrogen if any traces
remained. A small NMR peak at §'H 6.71 ppm could be seen in both crude NMR spectra, and
assumed to be the allene, but this has not been confirmed. The results from this experiment
also confirms that F3-EtOH as the solvent might not only have the effect of stabilizing the
positive charges of transition states, but also be incorporated in the intermediate structure 2b
which can still undergo further transformations. This was also confirmed by reacting pure,
isolated propargyl ether 2b with mesitylene to form the indene 4a.This is contrasted to the
corresponding non-fluorinated propargyl ethoxide 2¢ which was shown to undergo a very
different reaction (see section 3.2.2.1). During purification, removal of unreacted, high-boiling
triisopropylbenzene was more troublesome than the parallel runs of mesitylene, and was also
mostly UV inactive.

Table 4 — Investigation of the effect of aromatic nucleophiles on Au-catalysed formation of allenes and
indenes®

ArH (6 equiv.) H Ph
OH AuBr; (5 mol%) Nu P
Ph)\ Ph)\ Ph CY Ard ’
N ph  F3-EtOH, T °C, t min N Ph Ph AR
la 2 3 4
Entry ArH T=rt,t=15 T=280°C,t=90
1a 2 3 4 la 2 3 4
1 Mesitylene 0 10 85 5 0 7 0 93
2 1,3,5-triisopropylbenzene 0 main®d - 0 0 0 - £:100
3 Pentamethylbenzene 0 - g:100 0 0 - 0 g:main®
4 Anisole 0 g:100°¢ - - 0 g:100¢ - -
5 1,3,5-trimethoxybenzene 0  h:main®* - - 0 h:main®* - -
6 Nitrobenzene 0 1004 - - ob - - -
7 1,3-bis(trifluoromethyl)benzene 0 1004 - 0P -

2 Standard procedure: AuBr;3 (5 mol%) with propargyl alcohol 1a (1 equiv.) and aryl nucleophile Ar’H (6 equiv.) in F3-
EtOH (1 mL). Mixture stirred at T °C for t min before addition of water, a few drops of NEt; and extraction into DEE
followed by removal of solvent in vacuo. Ratios are based on integration of the resulting '"H NMR spectra.

> Complex mixture / polymerization. ¢ Nu = Ar. ¢ Nu = F3-EtO (2b)
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Pentamethylbenzene (entry 3) showed clean conversion to allene 3g and good conversion
to indene 4g, though formation of other unidentified materials could also be observed by 'H
NMR after heating. No formation of neither 1,3-diphenyl-1-pentamethylphenylprop-2-yn nor
propargyl ether 2b could be observed. However, likewise to entry 2, removal of unreacted Ar’H
was difficult as it was only vaguely visible under UV light. Even after three flash columns, a
substantial amount or pentamethylbenzene still remained. Attempts with different eluent
systems were not successful, despite often being separable by TLC. As a result, to get a pure
NMR sample of indene 4g, 1.5 mg of the mixture of 4g and pentamethylbenzene was applied
to a TLC-plate, eluted with pentane, and the silica of the indene-band scraped off and washed
with EtOAc. By this, preparative TLC seems to be a better method for purification of 3g and
4g than flash column chromatography.

Tests with the electron rich aryls of anisole and 1,3,5-trimethoxybenzene (entries 4-5) only
yielded propargylic substitution as the recognizable and isolable products (2g and 2h,
respectively). Changing to the more sterically encumbered propargyl alcohol 1e did still not
enable formation of allene. Electron deficient aryls (entries 6-7) were weaker nucleophiles than
the solvent, and so only the propargyl ether 2b was isolated. For both electron rich and deficient
phenyls, heating of the solutions gave complex mixtures, assumed to be due to polymerization.

It can from this, once again, be seen that electronic neutrality seems to be a requirement
for these reactions. While some other aryl nucleophiles are also compatible with this reaction,
they are generally more difficult to remove from the products due to being high-boiling and
UV-inactive. This means they are incompatible with HPLC analysis.

3.2.5 Analysis of Enantiomers by Chiral HPLC

With the caveats of the reactions scoped out, attempts to separate enantiomers of racemic
mixtures by chiral HPLC followed. As our group continues to develop new chiral gold catalysts,
their catalytic activity and selectivity must be monitored in various test-reactions. For routine
incorporation of the reaction of propargyl alcohols 1 with aryl nucleophiles, purification of
product allenes (3) and/or indenes (4) must be quick, and analysis of their isomers by chiral
HPLC must be straightforward. By the various techniques attempted for formation of allenes
and indenes in the present work, only the reactions of the three propargyl alcohols 1a, 1e and
1g with mesitylene formed the desired products with sufficient control and ease. As such, their
corresponding allene 3 and indene 4 products (see Figure 14) were analysed by chiral HPLC.
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Figure 14 — Structures of allenes 3 and indenes 4 (along with their corresponding propargyl alcohols 1) that
were chosen for analysis by chiral HPLC.

First, allenes 3e-f and indenes 4c-d formed from the sterically encumbered propargyl
alcohols 1e and 1g were tested; the reaction mixtures were the easiest to purify due to prevented
propargylic substitution, and therefore the more attractive alternatives for routine operation.

A Chiralpak® AD-H 5 pm 4.6 mm x 250 mm NP-column was used with isocratic n-
hexane:iPrOH as the eluent (0.8 mL/min) at r.t. and detected using a DAD. A racemic sample
of allene 3e showed no sign of separation of enantiomers with various eluent compositions
ranging from 100:0 to 90:10. The same was seen for the corresponding racemic indene 4c¢. The
presence of two mesityl moieties can have caused the compounds to be too spherically unpolar,
thereby resulting in no separation. Unfortunately, the allene 3f and indene 4d displayed the
same behaviour. Brief attempts using a Lux® Cellulose-1 5 pm 4.6 mm x 150 mm NP-column
with similar eluent compositions were also unsuccessful in separating the enantiomers.

Unencouraged by these results, the simpler allene 3a was attempted, despite its purification
being slightly more labour intensive. With an isocratic eluent of 95:5 n-hexane:i/PrOH,
separation was finally achieved, however without baseline separation. Therefore, despite the
sample being racemic, integration of the chromatogram did not reproducibly yield a 1:1 ratio
of enantiomers; different runs of the same sample resulted in the ‘enantiomeric excess’ varying
by up to 5 % due ambiguous integration ranges. Attempts with the indene 4a showed the exact
same trends.
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The present results indicate that chiral analysis cannot be reliably performed with our
available HPLC systems. Still, attempts were made to see if any stereocontrol could be
achieved by application of two chiral Au(III) catalysts developed in our group, shown in Figure
15. Both complexes XIII and XIV were catalytically active in the reaction between propargyl
alcohol 1a with mesitylene producing the allene 3a. Alas, subsequent HPLC analysis of the
purified products indicated potential low %ee. Due to the racemic control-sample generating
integrals concordant with 5 %ee, these studies cannot confirm whether the tested chiral
catalysts display enantioselectivity in the synthesis of allene 3a.

LIS Lo

|

R )/Aq’N Cl-Au-Cl ~OH
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Figure 15 — Chiral Au(Ill) complexes used as catalyst in the reaction of propargyl alcohol 1a with
mesitylene.

In conclusion, analysis of various allenes 3 and indenes 4 — synthesised by the Au(III)
catalysed reaction of propargyl alcohols 1 and mesitylene — by chiral HPLC was not able to
adequately separate the product enantiomers. Subsequently, with the HPLC systems
investigated, a routine methodology for evaluation of new chiral gold complexes’
enantioselectivity could not be established. It is possible that other HPLC columns or eluent
systems would be successful for this endeavour, but could not be explored due to time
limitations.

3.3 Coordination of Au(III) to Chiral Pyridine Based Ligands

2-Substituted pyridines have previously been used as ligands for Au(IIl) in our group,®

and further derivatisation of such compounds to novel Au(Ill)-complexes was highly attractive.
Having synthesised a range of 2-aryl-6-alkylpyridins 15a-h along with some methylated
derivatives 15-OMe (see sections 3.1.3-3.1.5), coordination studies followed. The chiral 2-
aryl-6-alkylpyridine compounds 15a-h were attempted coordinated to Au(IIl) following
various minor modifications of the strategy by Cinellu et al.**]

3.3.1 2-Aryl-6-Neomenthol Pyridine Alcohols 15a-c and 15h

The present pyridine based ligands were all potentially N,O-bidentate through the pyridine
nitrogen and the alcohol oxygen. Furthermore, the aryl group in the 2-position of the pyridine
could also be used as an additional bonding-site generating X,N,O-tridentate ligands (X=C, N,
S); the bipyridine 15h, for example, has clear potential to act as a N,N,O-tridentate ligand,
while the 3,5-dimethoxybenzene derivative 15b could through C-H activation act as a C,N,O-
tridentate ligand. Attempted coordinations of various neomenthol derivatives (15a-c,h,
prepared in section 3.1.4, page 15) are summarized in Table 5.
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Table 5 — Attempted coordinations of 2-aryl-6-neomentholpyridines to Au. °

12a 15a

15¢ 15h
Me2SAuCI (I) AuCls (V) KAuCls (VII)
Entry Ligand Au AgX,X=  Base Solvent, condition Result
1 12a V(1.2) NaOAc (1.1) ACN:H20 Ligand recovered
2 12a I1(1.1) d.-DCM Ligand recovered
3 15a V(1.2) ACN:H20 PyH"
4 15a VII (1.3) KOAc (3) ACN:H20 Ligand recovered
5 15a VII (1.3) SbFs(1.3) KOAc (3) ACN: Decomposition
6 15b V(1.2) KOAc (3) ACN:H20 Free ligand + unknown
compound
7 15b VII (1.3) SbFs(1.3) KOAc (3) ACN:H20, (70 °C) Ligand recovered
8 15b VII (1.2)  SbFs (1.2) ACN, (70 °C) PyH"
9 15¢ V(1.1) d;-ACN Black particles + PyH"
10 15¢ V(.1) KOAc (3) ACN Ligand recovered
11 15¢ V(1.3) BF4 (1.3) KOAc (3) ACN:H20 Black particles, ligand recovered
12 15h V(2.5) KOAc (6) ACN:H20 Au(IID)-15h-AuCl4
13 15h V(12 NTH1.2) ds-ACN PyH* + Au(IIl)-15h-NTf>
14 15h VII(1.3) NTH(1.3) KOAc(3) ACN:H>0 Au(II)-15h-NTf,

2 Equivalents used, relative to ligand (5-10 mg), are given in parentheses after the reagent. Solutions (0.2-1 mL) stirred
for at least 1 hr, often o.n.
b Black particles assumed to be reduced Au’; PyH" = Protonated pyridine

As a diagnostic test for Au-coordination, the downfield shift of the characteristic triplet of
the aromatic hydrogen in the 4-position of the pyridine will be used and is reported as A§'H =
8 "Heomplex — 6 'Hiigand. All NMRs related to Au-coordinations are performed in d3-ACN, unless
otherwise specified. 'H,">’N-HMBC was also used to determine the upfield shift of >N due to
complexation and will likewise be reported as AS'”N = § ' Neomplex — & *Niigand.”]

The simple bromide 12a was tested since it was available, but was unsurprisingly unable to
coordinate to neither Au(I) nor Au(Ill) (entries 1 and 2). A derivative of 12a with a hydrogen
in the place of the bromide has previously been shown to successfully coordinate Au(Ill) in
our group (XII, Figure 7, page 14). As such, the lack of coordination of the 12a is assumed to
be due to the bromide being too electron withdrawing, leading to a decreased electron density
on the nitrogen. The solution of 12a, AuCls and NaOAc changed colour on stirring from yellow
to deep orange, assumed to be caused by anion exchange of chloride for acetate at Au. A pink
solution appeared by mixing of the ligand with Me>SAuCl in DCM, normally indicative of
decomposition to Au’ nanoparticles.

The 2-phenyl derivative 15a was first stirred with AuClz in a mixture of ACN and H>O
(entry 3) and after extracting into DCM and drying, a golden oil remained. The resulting NMR
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showed promising downfield shift of A§'H = 0.60 ppm. However, a combination of broad
aromatic signals, only slightly shifted alkyl signals, and lacking crystallinity indicates that this
is not a desired Au(Ill)-complex but instead a pyridinium salt, possibly with an anionic gold
species as the counter ion. As such, a new attempt with inclusion of mild base (entry 4) was
done. However, this only revealed the free ligand, which consolidates the hypothesis of
protonation of pyridine. Attempted activation of the gold salt by addition of AgSbFs (entry 5)
initially gave a pale yellow solution, which rapidly decomposed to a rusty-red solid when dried,
which was insoluble in both DCM and ACN.

As there appeared to be some incompatibility problems with ligand 15a, the ligand was
modified in an attempt to better accommodate gold(I1I). Thermal C-H activation of aryls have
been reported to be successful for C-Au bond formation. It is suggested that such reactions
takes place by SgAr-type mechanism by Au®, forming a carbocationic intermediate.®]
Therefore, the electron rich 3,5-dimethoxyphenyl derivative 15b was synthesised, aiming to
facilitate such an SgAr mechanism and thereby formation of C,N,O-tridentate gold(III)-
complexes. Initial tests of 15b with gold(IIT) and mild base at r.t. gave the free ligand with
traces of conversion to an unknown compound with a diminutive downfield shift of AS'H =
0.25 ppm (entry 6), which is too small to indicate a desired Au-N coordination. Stirring at 70
°C for 2.5 hrs and extraction into DCM was also unsuccessful. Attempted activation of Au by
removal of a halogen (entry 7), even when heated at 70 °C for 2.5 hrs, was also ineffectual.
Speculations were arising of either the water or base impacting the reaction negatively.
Therefore, another attempt was done in which only the ligand 15b, KAuCls4 and AgSbFs were
mixed in ACN at 70 °C (entry 8). The resulting 'H NMR spectrum showed a mixture of two
compounds with a more promising downfield shifts of A§'"H=0.72 and 0.77 ppm, respectively.
One of these compounds could be observed by 'H,'’N-HMBC, and its corresponding pyridine-
nitrogen showed a drastic shift of A6'N =-103.6 ppm. However, NMR signals corresponding
to the aromatic 2,6-hydrogens of the phenyl-ring still integrated to 2H, meaning no C-Au bond
had formed. Moreover, broad signals at §'H ~12.5 ppm were reminiscent with protonation of
the pyridine. Crystallization attempts using ACN:DEE or DCM:pentane all proved
unsuccessful, only yielding a brown oil which turned to an orange powder when dried, still
with impurities present. Decomposition was observed after storing for two weeks. The above
results indicate C-H activation of 1Sb might require higher temperatures or heating by
microwaves irradiation, but, due to time limitations, this could not be tested.

Owing to the variable oxidation state of sulphur, it is sometimes argued to be poisonous to
metals for catalytic activity.®”) Notwithstanding, sulphur has been incorporated into ligands in
organometallic reactions,[*1% and due to its compatibility with Au(T) — for example in the
precursor I — it would be interesting to see if coordination of sulphur to Au(IIl) was possible.
Consequently, thiophene ligand 15¢ was synthesised. Incorporation of the sulphur in thiophene
—rather than as a simple alkyl thiol or thioether — was done as the related Suzuki cross coupling
had proven useful for similar reactions, and since oxidation of thiophene compared to non-
aromatic analogues generally requires peracids.['°!] Sulphur in normal thiophene has a +2
oxidation state; even though the +4 and +6 oxidised forms thiophene-1-oxide and thiophene-
1,1-dioxide are known, they are thermally unstable and non-aromatic.['°!! Theoretical
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3.3 Coordination of Au(III) to Chiral Pyridine Based Ligands

calculations and experiments have also investigated the o-hole of 1,4-N---S systems and
showed there to be a preference for the two heteroatoms being conformationally syn,[!%2] which
is promising for forming S,N-bidentate or S,N,O-tridentate Au(Ill)-complexes. An initial
attempt of stirring ligand 15¢ with AuCls; showed a promising shift of A6'H = 0.48 ppm (entry
9). Nevertheless, appearance of black particles was concerning. Filtering off the particles and
addition of DCM gave further precipitation of black particles. Precipitation from DCM by
addition of pentane gave a brown powder, which, surprisingly, displayed a '"H NMR spectrum
with sharper signals and a further downfield shift of 0.20 ppm of the characteristic pyridine
hydrogen in the 4-position (for a total A§'H = 0.68 ppm). Still, the substantial amount of Au’
particles that had been removed clearly meant the isolated compound was not a desired Au(I1I)-
complex, but instead a pyridinium salt. Attempts were made with inclusion of KOAc, but only
led to recovery of the free ligand (entry 10). Formation of a more assertive Au-species by
addition of silver, and a small amount of water to ensure adequate solubility of the base, again
gave black particles and only the free ligand was observed by 'H NMR (entry 11).
Unfortunately, these results indicate that the thiophene ligand 15¢ is unsuitable for coordination
to Au(Ill) with this strategy.

Lastly, the bipyridine 15h was attempted. As bipyridine was one of the earliest ligands used
in organogold chemistry,!'%) we were optimistic that this could yield successful coordinations
for the chiral neomenthol derivative. Stirring of ligand 15h with AuCls (1.2 equiv.) and base
overnight gave a 1:1 mixture of a new compound (A§'H = 0.58 ppm) and the free ligand (entry
12). Adding more gold (1.3 equiv.) and base to the same solution and stirring for an additional
3 hrs gave complete conversion to the new compound (see '"H NMR in Figure 16). This new
compound exhibited clear and pronounced downfield shift of the ortho and para hydrogens of
each pyridine, indicative of a strongly electron withdrawing species coordinated to each/both
nitrogens. Furthermore, one of the meta hydrogens on the central pyridine shows an upfield
shift of A§'Hmeta = -0.11 ppm, which is unprecedented. In an attempt to form crystals by slow
evaporation of pentane into DCM, a single red oil drop of the pure complex was collected.
NMR spectra of this compound could not confirm whether the hydroxyl group was coordinated
or not; a broad peak could be observed in the 'H NMR spectrum at §'H 2.13 ppm, which could
correspond to either an uncoordinated OH-group or residual HO. HRMS could observe an ion
corresponding to N,N,O-tridentate coordination to [AuCl]*, as well as a weak signal
corresponding to N,N-bidentate coordination to [AuCl>]" (Figure 17). If the N,N-bidentate is
in fact the main product, fragmentation of HCI during MS ionisation would lead to the observed
N,N,O-tridentate complex. The present data were as such inconclusive in determining the
coordination-mode of the ligand. IR would be able to differentiate by observation of the OH-
group (or lack thereof), but due to a combination of the potentially oxidising nature of Au(III)
and the complex being liquid, it was a concern the instrumentation would sustain damage.
Furthermore, HRMS observed AuCls™ as the counter anion. This explains why the initial 1.2
equivalents added gave a mixture of two complexes, as two gold atoms seem to be included in
the complex, hereon named Au(IIl)-15h-AuCls.
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Figure 16 —'H NMR spectra of formation of complex Au(Ill)-15h-AuCl,, drawn in the N,N,O-tridentate
coordination-mode (Table 5, entry 12).
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Figure 17 — HRMS spectra of Au(Ill)-15h-AuCl,, inconclusively showing both N,N-bidentate and N,N,O-
tridentate coordination of the ligand.

The formation of a new chiral Au(Ill)-complex was encouraging, but a non-auric
counterion is needed as to not interfere with any catalytic stereo- or enantioselectivities.
Therefore, a new attempt with AuClz and AgNTf> was performed (entry 13), but this revealed
a 1:1 mixture of the same set of signals as Au(IIl)-15h-AuCl4 and a new compound that had
not been previously observed. Further addition of gold- and silver salts showed no effect.
However, addition of KOACc to the existing mixture gave conversion of the new compound to
the free ligand, while the other set of signals persisted. This advances the claim that protonated
pyridines are quite prevalent for these coordinations, as addition of base caused deprotonation
of the pyridinium and regeneration of the free ligand. The same mixture of protonated pyridine
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and Au(Ill)-complex was also observed with AgSbF as the source of silver, and inclusion of
base once again resulted in the free ligand 15h and Au(IlI)-complex.

AuCls
KOAc

ACN:H,0

x©®

AuCls, AgX

—_—

ACN

+  H-15h-X

15h

KAuCl,, AgX
KOAc

_

ACN:H,0

x®

Au(IID)-15h-X
Scheme 26 — Synthesis of novel chiral bipyridine based Au(Ill) complexes. X=NTf>, SbFs.

Finally, a mixture of KAuCls, AgNTf> and mild base (entry 14) was attempted, as this
should give the optimal conditions for formation of the desired N,N-bidentate/N,N,O-tridentate
Au(Ill)-complex. Pleasingly, stirring over night gave quantitative conversion to the N,N,O-
tridentate complex Au(Ill)-15h-NTt; as a deep orange powder after precipitation from DCM
by addition of pentane (Scheme 26). The novel complex was fully characterised by HRMS,
NMR, and IR spectroscopy, and its 'H, 13C and >N chemical shifts (in d3-ACN) are displayed
in Figure 18a. "F-NMR could also observe the NTf;~ counterion, but without an internal
fluorinated reference standard its chemical shift will not be reported here (but the NMR
spectrum is available in Appendix N.4). IR spectroscopy revealed no OH-signals, verifying
N,N,O tridentate mode of coordination (Appendix N.9). Tridentate coordination is also
supported by the large difference in the chemical shift of the benzylic carbon on the neomenthol
moiety, moving from §'*C 77.3 ppm (CDCls) to §'*C 105.5 ppm (CD3CN). The two pyridines
show an unsymmetric cooridination strength judging by the nitrogen shifts: the central pyridine
shifts by A§'"Neenrat = -49.9 ppm, whilst the terminal pyridine shows a tigher binding by a
larger shift AS "Nierminat = -80.1 ppm, as shown in Figure 18b. Analysis of the coupling
constants in the neomenthol moiety clearly shows the same coupling pattern as the free ligand
for all hydrogens. Therefore, it can be concluded that the conformation of the cyclohexane ring
has not changed by accommodating gold, and the oxygen remains axially oriented, presented
in Figure 18c. The unique shifts of H6¢q from 6'H 1.51 to §'H 2.12 ppm as well as H7 from
§'H 1.23 to 6'H 1.67 ppm is indicative of their spatial proximity of the gold cation center. This
demonstrates that the /Pr-group has oriented itself so that H7 is oriented towards — and the iPr-
methyls are pointing back and away from — the cationic gold center, minimising steric
interactions.
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Figure 18 — a) Chemical shifis of the novel complex Au(Ill)-15h-NTf>. b) Excerpt of overlayed 'H,'”>’N-HMBC
spectra of ligand (red) and complex (blue). c¢) Exercpt of 'H NMR spectra of ligand (red) and complex (blue).

40



3.3 Coordination of Au(III) to Chiral Pyridine Based Ligands

Another attempt with AgSbFs as the source of silver gave 85% conversion to the Au(III)-
15h-SbFs complex after 2 hrs, producing the same NMR spectra as Au(Ill)-15h-NTfz, except
for the quartet in the '*C spectrum belonging to the CF3-groups of the counterion that were
absent. Efforts to acquire crystals for XRD analysis by slow diffusion of pentane into DCM
mostly yielded oils, which turned to a powder when dried; it is assumed there is a substantial
interaction between DCM and the Au(lll)-complexes which prevents adequate mixing of
pentane to cause crystallisation. Still, after several attempts, potentially usable crystals for XRD
could be acquired, which would be attempted analysed in future work.

332 Isoborneol Pyridine Alcohols 15d-g

Similarly to the neomenthol-based compounds presented above, the derivatives containing
isoborneol as the chiral auxiliary (15d-g, prepared in section 3.1.4, page 15) were attempted
coordinated to Au(IIl), and the results are summarized in Table 6. Due to time limitations, less
investigation was done with these derivatives compared to the neomenthol analogues.

Table 6 — Attempted coordinations of 2-aryl-6-isoborneolpyridines to Au. ¢

= = =
|| oH | || oH || oH
N\ O N S
N N "N
\_s
15d 15f
0
15e

AuCls (V) KAuCls (VII)

Entry Ligand Au AgX,X=  Base Solvent, Result®
condition
1 15d V(1) NaOAc (3) ACN:H:0  Ligand recovered
2 15d V(1) NaH (1) ACN New compound, decomposed o.n
3 15d VII (1.3) SbFs(1.3) KOAc (3) ACN:H2O0  Decomposed when dried
4 15e V(1.1) KOAc (2) d;-ACN Ligand recovered
5 15f V(1.1) d;-ACN PyH", broad peaks
6 15f V(1.1) NaOAc (3) ACN:H20  Ligand recovered or black particles,
depending on workup

7 15f V(1.1 SbFe (2.2)  NaOAc (3) ACN:H20  New compound, decomposes

2 Equivalents used, relative to ligand (5-10 mg), are given in parentheses after the reagent. Solutions (0.2-1 mL) stirred
for at least 1 hr, often o.n.
b Black particles assumed to be reduced Au’; PyH* = Protonated pyridine

Starting from the phenyl substituted 15d, simple attempts to stir the ligand with AuCl;
overnight showed no conversion, with or without mild base (entry 1). As the isoborneol-OH
group is more sterically enclosed than the neomenthol derivative, a smaller base (NaH) was
attempted (entry 2). Since NaH is not assumed to be compatible with Au(IIl), only the ligand
and base was first stirred for 30 minutes, before addition of AuCls, causing conversion to a new
compound (AS§'H = 0.24 ppm), which decomposed on standing. Repeated attempts to
reproduce this method were unsuccessful. The low coordination-shift of the hydrogen in the 4-
position of pyridine does not seem to indicate that a gold-complex was formed. Inclusion of
silver initially gave a yellow solution which decomposed to a red, insoluble solid upon drying

(entry 3).
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3.3 Coordination of Au(III) to Chiral Pyridine Based Ligands
The 3,5-dimethoxyphenyl 15e was only investigated by stirring with AuClz and base in
ACN, and resulted in recovery of the free ligand (entry 4). This is in line with previous

observations that no change occurs if base is included without water, possibly due to
deactivation of Au(III) by anionic ligand exchange.

Decomposition

5
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|
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Figure 19 — Synthesis and ' H NMR spectrum of the assumed complex Au(Ill)-15f-SbFs.

The thiophene 15f showed a downfield shift of AS'H = 0.42 ppm along with significant
peak broadening when stirred with AuCls; (entry 5). Precipitation of an unknown yellow
powder in the NMR tube is assumed to be the cause of the broadened signals, as this results in
poor shimming of the sample. When acetate and water was included (entry 6), black particles
appeared upon addition of DCM, and NMR showed only the free ligand. Assuming instability
in DCM, a different workup was attempted consisting of addition of further 2 mL ACN and
removal of water by drying over Na;SOs4, and finally removal of ACN in vacuo. This workup
gave no black particles, but also showed no coordination by NMR. Finally, silver was added
(entry 7). Since decomposition was previously observed by adding DCM, the Na>SO4-strategy
was attempted again, and NMR finally revealed a new compound with A6'H = 0.71 ppm,
assumed to be the novel complex Au(Ill)-15f-SbFe, Figure 19. It was not concluded whether
an S,N,O-tridentate, N,O-bidentate, or S,N-bidentate complex formed, but appearance of a
broad peak (spanning ~3 ppm in width) might indicate the OH-group has not coordinated.
Attempts to form crystals for XRD analysis from ACN:THF of ACN:DEE were unsuccessful
and caused decomposition. The reaction could not be re-attempted due to time limitations.

The N-methylpyrrole ligand 15g was synthesised, but was not attempted in viable
coordination reactions due to time limitations. Nonetheless, ligand 15g was not expected to be
able to form a Au(Ill)-complex due to the N-methyl hindering the approach of gold and
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occupying the coordination site at pyrrole. Furthemore, the nitrogen lone pair of pyrrole is
occupied in the aromatic system. To circumvent these limitations, synthesising an
unmethylated pyrrole derivative by construction of the pyrrole ring from the appropriate 1,4-
dicarbonyl and ammonia was debated (no corresponding boronic acid is commerically
available), but never attempted.

Coordination of the bipyridine derivative of isborneol would have been interesting owing
to the successful results of neomenthol 15h. However, it is assumed synthesis of the bipyridine-
isoborneol ligand would result in low yields, and given the time left of the project, it was not
attempted. Synthesis of this bipyridine-isoborneol ligand would have allowed for a better
comparison of the utilised chiral auxillaries.

3.33 Methyl Ether Derivatives of Chiral Pyridine Based Ligands

To increase the stereoselectivity a catalyst would have, the effects a chiral group has on the
substrate should be maximised. Adapting the ligand, so as to bring a substrate closer to the
chiral environment provided by the auxiliary, is one way of achieving such stereocontrol. We
hypothesised that a weakened Au-O bond — such as by changing from a ¢-bond to a m-bond —
would enable temporary release of the chiral auxiliary, thereby opening an active site at gold
as close to the chiral group as possible. Additionally, the effects a non-covalent Au-O bond
would have on the stability of the Au(Ill)-complexes could be investigated. Hence, the
methylated derivatives 15b,d,e,h-OMe were synthesised (see section 3.1.5, page 17). Their
attempted coordinations to Au(IIl) are summarised in Table 7.

Table 7 — Attempted coordinations of methylated 2-aryl-6-alkylpyridines (15-OMe) to Au. ¢

2| 2
SUSPUEL
N N
15d-OMe
0

15e-OMe
AuCls (V) KAuCls (VII)

Entry Ligand Au AgX, X=  Base Solvent, condition  Result ®

1 15b-OMe V (1.1) ACN Broad peaks, slight downfield shift

2 15h-OMe V(1.1) ds-ACN PyH" + Au(IIl)-complex

3 15h-OMe V(1.2) BF4 (1.2) ACN:H20 PyH" + Au(Ill)-15h-OMe-BF4,
crystals acquired

4 15h-OMe VII(1.3) NTf2(1.3) KOAc(3) ACN:H20 Free ligand and Au(IIT)-15h-
OMe-NTf2

5 15d-OMe VII (1) SbFs (1) d;-ACN Broad peaks

6 15e-OMe V(1.1) d;-ACN Broad peaks, downfield shift

2 Equivalents used, relative to ligand (5-10 mg), are given in parentheses after the reagent. Solutions (0.2-1 mL) stirred
for at least 1 hr, often o.n.
b Black particles assumed to be reduced Au’; PyH" = Protonated pyridine

Stirring 15b-OMe with AuCls only gave broad aromatic peaks in "H NMR along with slight
movement of the alkyl signals (entry 1). A separate attempt at 60 °C gave the same broad peaks
and no C-H activation of the dimethoxyphenyl. Since there was no success with the hydroxyl
derivative 15b, no further attempts were made.
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The methylated bipyridine neomenthol 15h-OMe was completely consumed, forming two
different new compounds when stirred with AuCl; in ACN (entry 2), assumed to be protonated
pyridine and the desired complex, or alternatively two different forms of protonated pyridine.
Addition of further AuCl; had no effect. '"H,'’>’N-HMBC only showed one signal strong enough
to confirm coordination to the terminal pyridine, whose nitrogen shifted AS"*Nierminat = -88.1
ppm. Comparing to the hydroxyl analogue 15h, this N-shift is more drastic than for either
pyridine in the isolated Au(IIl)-15h complexes (see Figure 18b). Therefore, it is reasonable to
assume the ether oxygen of 15h-OMe is not coordinating to gold, causing to the positive charge
to be distributed over fewer atoms. Including AgBF4 (entry 3) still gave the same mixture, but
with a higher amount of the desired complex, Au(Ill)-15h-OMe-BF4. Addition of DCM gave
immediate white precipitation assumed to be AgCl, which when removed allowed for
formation of crystals usable for XRD analysis (which presently have not been possible to
analyse). Repeated attempts to acquire expendable catalyst for test-reaction screening could
not be performed due to time limitations. Finally, inclusion of base and the tightly binding
NTf,™ anion again gave the free ligand and the corresponding Au(Ill)-complex Au(Ill)-15h-
OMe-NTf; (entry 4). Unfortunately, including both silver and base was not able to give
complete conversion to a complex, but still a discernible amount of free ligand.

Finally, the two methylated isoborneol derivatives 15d-OMe and 15e-OMe were briefly
tested for coordination to Au(Ill) (entry 5-6), but did not show any promising results, in line
with their corresponding hydroxyl versions 15d and 15e (see Table 6, entries 1-4).

334 Catalytic Testing of Chiral Au(IIl)-complex

The catalytic activity and enantioselectivity of the newly synthesised Au(Ill)-15h-NTf
complex was investigated. For this purpose, the complex’ action was investigated in the [1+2]-
cycloaddition of propargyl acetate (11) with styrene. The cyclopropane product can be formed
as either the cis or trans diastereomers, while the alkene is produced only as the Z-isomer
(Scheme 27). For mechanistic details of this reaction, see section 2.3, Scheme 6b, page 6.

,k OMe

o” "0
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Ph DCM, r.t.
MeO
Ao
11 20

Scheme 27 — Au-catalysed [1+2]-cycloaddition between propargyl acetate 11 and styrene.

The novel complex Au(Ill)-15h-NTf> was highly active in the above reaction, causing
complete consumption of substrate 11 after just 10 mins. Workup and purification by flash
column chromatography yielded the cyclopropane product 20 in 71 % yield. Analysis by chiral
HPLC showed the diastereomers to be formed in relative ratios trans:cis 76:24 (52 %de, see
Appendix M.2). Elevated amounts of the trans diastereomer is however not surprising, as the
model reaction has in our group been shown to undergo cis-to-frans isomerisation in the
presence of catalytic gold.?!! Unfortunately, no discernible enantiomeric excess was formed
for each diastereomer.
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The other Au(Ill)-complexes that were synthesised were reserved for XRD analysis, and
therefore not attempted in the above cycloaddition reaction. Further work would focus on their
isolation, characterisation, and screening in the above reaction, along with other available test-
reactions in our group.

3.4 Synthesis and Coordination of Cyclam Ligands

As part of a collaboration with PhD-candidate Ann Christin Reierselmoen, various chiral
cyclam ligands (6) were synthesised to be coordinated to Au(IIl). If successful, the resulting
chiral Au(Ill)-complexes were then to be investigated as catalysts in asymmetric reactions. The
data presented herein are the results of syntheses individually conducted for this master’s thesis,
and the combined results of the collaboration can be seen in our manuscript in preparation for
a short communication in Appendix B.

34.1 Synthesis of Chiral Cyclam

Following the strategy reported by De et al.,[3% synthesis of chiral tetraphenyl substituted
cyclam 6b was planned according to Scheme 28. The phenyl derivative 8b was chosen as it
was commercially available, and can conveniently be visualised for TLC by UV light. For ease
of discussion, the cyclam 7b will be referred to the ‘dimer’ of the reaction, 7b’ as the ‘trimer’,
etc.

AICI3 or TMSCI

j 1 -

'NH HN NH HNY ~Ph

j,NHZ
cl ol ————

Ph”” “NH, NEts, THF 7b (51 %)
+

8a (o}
Ph
Ph_ _NH i Kr Ph
o
Ph NH O HN ©
o)><U\NHO
A

b’ Ph

Scheme 28 — Unsuccessful synthesis of chiral cyclam 6b.

6b

Mixing dimethylmalonyl chloride and diamine 8b in dry THF with NEt; at r.t. gave a
complex mixture of the desired cyclam 7b together with its analogue 21-membered cyclic
trimer 7b’ and the 28-membered cyclic tetramer 7b’’ (not depicted), as indicated by HRMS.
Purification by flash column chromatography (5:1 EtOAc:pentane) gave the novel cyclam 7b
in 44 % yield. In an attempt to reduce the amount of undesired oligomers that formed, a
repeated reaction with greater dilution was conducted. Indeed, increased formation of the
desired cyclam 7b was observed by NMR, and could be isolated in 51 % yield after three
consecutive flash columns.
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With cyclam 7b in hand, attempted reduction to the final product 6b followed (Scheme 28).
As four reductions on the same molecule were required for formation of 6b, the reaction was
modified by inclusion of a Lewis acid; binding to the amide carbonyls would polarise the bond,
assisting the hydride attack. Consequently, a solution of tetraamide 7b and AICI3 in THF were
cooled to 0 °C before addition of excess LiAlH4. After quenching with /PrOH, the following
extraction proved problematic due to various Al-salts causing emulsions. Moreover, cyclams
(6) can be water-soluble, making for an ineffective extraction. Attempted purification by flash
column chromatography (2:13 MeOH:DCM) only yielded complex mixtures of various
partially reduced cyclam compounds. Change of Lewis acid to TMSCI was also unsuccessful
in achieving the fully reduced product 6b.

Owing to the great difficulty of synthesising the fully reduced cyclam 6b, an alternative
method was suggested. Mono-N-protection of the diamine precursor 8b using Boc,O would
form 8b-Boc, from which the selective synthesis of the ‘open cyclam’ derivative 21-Boc could
be possible. Following deprotection of the terminal amines to give 21 leaves us with a scenario
where only two amides need to be reduced, rather than the required four in 7b (Scheme 29).

Ph__NH, o o O§><fo
Ph_uNHz 1) Boc,0 j CI)J><U\CI
j» ) Bocy N PhTNH HNj:Ph
2) NaHCO3, DCM .
Ph” NH, 2)NaHCOs o)\o NEts, THF PhY NH  HN"Vpp,
)< Boc  Boc
8b 8b-Boc (71 %) 21-Boc (82 %)
TFA
15 min
0 o}

PhTNH HNI\Ph AICI3, LiAIH, PhTNH HN__ \Ph
-
PRV NHpHN"Ypp  THF PR NH; HlePh
22 (69 %) 21 (95 %)
Scheme 29 — Synthesis of chiral ‘open cyclam’ 22.

Methods for selective mono-protection of diamines have been reported, but require the use
of dangerous HCl-gas.['% As such, simple mixing of the diamine 8b with less than one
equivalent of BocoO was attempted. Purification by flash column chromatography (EtOAc)
gave the pure mono-protected amine 8b-Boc in 71 % yield. Subsequent reaction with dimethyl
malonyl chloride precipitated the Boc-protected ‘open cyclam’ product 21-Boc in 82 % yield
from the reaction mixture. Derivative 21-Boc was insoluble in several tested polar and nonpolar
organic solvents, making the succeeding removal of the Boc-groups troublesome. Deprotection
of 21-Boc was planned to be performed in an EtOH/HCI solution, but stirring for 2 days
resulted in quantitative recovery of the protected starting material. Various attempts with other
solvent-acid combinations were also unsuccessful. Finally, addition of neat TFA was found to
successfully dissolve and deprotect 21-Boc to give the novel ‘open cyclam’ tetraamine 21 in
just 15 mins. The following reduction using the aforementioned AlCl3-LiAlH4 strategy lead to
the previously unreported target ‘open cyclam’ 22 in 69 % yield.

46



3.4 Synthesis and Coordination of Cyclam Ligands

Some of the compounds synthesised above were insoluble in CDCI3 and were characterised
in de-DMSO.

3.4.2 Coordination of Chiral ‘Open Cyclams’ 21 and 22 to Au(III)

The two ‘open cyclam’ ligands 21 and 22 were briefly attempted coordinated to Au(III)
without any success. In the field of organogold(Ill)-chemistry, coordinations are commonly
performed in ACN due to good solubility and stability of Au(Ill)-salts (see Section 2.2).
However, due to the poor solubility of the ligands in ACN, resulting '"H NMR spectra showed
broad and inconclusive signals. Coordinations were attempted from both AuCl3 and KAuCly
salts without any clear signs of successful incorporation of Au(IIl) to the ‘open cyclam’ core.
Activation of the gold-species by abstraction of a halide through addition of a silver-salt was
also unsuccessful, as shown in Scheme 30.

It is unknown why coordinations of ligands 21 and 22 to Au(Ill) failed. Additional
coordination attempts of ligands 21 and 22 by Ann Christin Reierselmoen were also
unsuccessful. Even though insufficient solubility of the ligands might be the cause, we have
theorised that the strongly chelating effects of the cyclam systems can also have resulted in
trapping of aluminium from previous synthetic steps (see Scheme 29). Chelation of other
metals in the cyclams could be the cause of failed the insertion of Au(III).

~
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Scheme 30 — Unsuccessful coordinations of ‘open cyclams’ 21 and 22 to Au(Ill).
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4 Conclusion

4 Conclusion

In this master’s thesis, several novel compounds have been presented for the first time.

As the Fiksdahl research group is continuously interested in the preparation of novel, chiral
Au-complexes, there is a pressing need for standardised Au-catalysed test-reactions to gauge
their enantioselectivities. Consequently, the study of the recently reported reaction between
propargyl alcohols 1 and aryl nucleophiles, forming allenes (3) and indenes (4) in the presence
of Au-catalysts has been presented. The reactions were shown to be highly sensitive to several
reaction conditions. Au(l) and Au(Ill) catalysts were both successful in forming indene
products 4 by thermal activation, but Au(Ill) catalysts were superior for forming the
intermediate allene products 3. This demonstrates a crucial difference in reactivity of Au(I) and
Au(Ill) catalysts, which have sometimes been argued to be equivalent and interchangeable.
Several solvent systems were tested, and few were shown to be applicable. Varying electronic-
and steric substituents on both the propargyl alcohol 1 substituents and aryl nucleophile
demonstrated the fastidious nature of the reactions, often forming mixtures of several products.
Chiral HPLC was unsuccessful in the enantiomeric separation of various allenes 3 and indenes
4.

Ligands based on ortho-substituted pyridines have previously been successful at
coordinating to Au(IIl) in our group, and consequently, further derivatisation of such systems
was attractive. Synthesis of several chiral 2-aryl-6-alkyl pyridine alcohols 15a-h and methyl
ether derivatives 15b,d,e,h-OMe have been presented, either containing neomenthol or
isoborneol as the chiral auxiliaries. Several of the prepared pyridine derivatives have never
been reported in literature and were as such fully characterised. Numerous attempted
coordinations of these potential pyridine based ligands to Au(Ill) were conducted, mostly
resulting in decomposition of the formed complexes or protonation of the pyridine instead of
incorporation of gold. Still, through several attempts, the novel complexes Au(Ill)-15h-X
(X=AuCl4, NTt>, SbFes) were prepared and isolated, and characterised by HRMS, NMR and IR
spectroscopy. The Au(Ill)-complexes Au(Ill)-15f-SbFs and Au(Ill)-15h-OMe-X (X=BF4,
NTt>) were also synthesised, but their structures not conclusively determined, pending XRD
analysis. The complex Au(IIl)-15h-NTf> was used in a model [1+2]-cycloaddition reaction
between propargyl acetate 11 and styrene, forming the product cyclopropane in 71 % yield in
10 mins with 52 %de (trans:cis 76:24).

Preparation of cyclam derivatives, to act as chiral polydentate ligands for square planer
Au(Ill), was performed. Unsuccessful synthesis of the chiral cyclam 6b by reduction of the
corresponding tetraamide 7b prompted the alternative synthesis ‘open cyclams’ 21 and 22,
neither of which could be successfully coordinated to Au(III). The low solubility of the ligands,
along with the possibility of the cyclam-core already being occupied by another metal, are
believed to be the main causes that prevented incorporation of Au(IIl).
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5 Further work

S5 Further work

On allene/indene test-reaction: The test-reactions of 1,3-diarylpropargyl alcohols (1) with
aryl nucleophiles have been extensively discussed in this thesis, but were only limited to 1,3-
diaryls. How these reactions would be affected by non-aromatic substituents on C-1 has not
been discussed herein. Expanding the investigation of the mild nucleophiles to non-aromatic
systems would allow for the synthesis of new indene derivatives, which indeed could be useful
in the field of medicinal chemistry. Additionally, development of a suitable chiral HPLC
system that allows for the routine analysis of allene and/or indene products would be highly
attractive. In doing so, one would permit a more in depth investigation of asymmetric synthesis
of the aforementioned allenes and indenes through chiral Au-catalysts.

On chiral pyridine based ligands: Further trials for forming chiral Au(III)-catalysts from the
numerous pyridine based ligands 15a-h synthesised in this thesis is encouraged, possibly by a
different strategy than the one focused on herein. Re-preparation of the Au(Ill)-complexes
propsed herein, and their catalytic testing, is high interest. Adaptions of these systems by use
of pyrrole as the central nitrogen-bearing heterocycle would be fascinating, as such Au(III)-
complexes are — to the best of our knowledge — not reported. Since pyrrole is more electron
rich than pyridine, tighter binding and facile complex-formation can be expected. Finally, XRD
analysis of the acquired crystalline Au(Ill)-complexes must be finalised.

On chiral cyclam based ligands: Coordination of the chiral ‘open cyclams’ 21 and 22 to Au
were only briefly investigated due to the poor solubility of the ligands in ACN. These ligands
should be excellent for the incorporation of square planar Au(IIl). Therefore, further
experiments for their coordination would be interesting to investigate. Furthermore, different
synthetic strategies for the formation of cyclams that do not involve the use of metals (such as
Al) would be desirable, to prevent chelation to the products.
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6 Experimental

All reactions, except the synthesis of gold complexes, were performed under inert No-
atmosphere. Commercial grade reagents were used without any additional purification. Dry
solvents were collected from a MB SPS-800 solvent purification system. All reactions were
monitored by NMR and/or thin-layer chromatography (TLC) using silica gel 60 F254 (0.25
mm thickness). TLC plates were developed using UV-light, p-anisaldehyde stain, or I stain.
Flash chromatography was performed with Merck silica gel 60 (0.040- 0.063 mm). 'H and '3C
NMR spectra were recorded either a Bruker Avance DPX 400 MHz or a Bruker Avance III
600 MHz spectrometer. Chemical shifts are reported in ppm (6 ) downfield from
tetramethylsilane (TMS) as an internal standard when using CDCl3 as the solvent, or relative
to d>-ACN when using d3-ACN as the solvent, calibrated to §'H 1.94 ppm, §'3C 1.32 ppm and
SN -135.5 ppm.l'%] Peak multiplicity is given by the apparent splitting pattern. Coupling
constants (J) are given in Hz. Assignment of NMR signals to their corresponding atom is done
only when possible from the spectra acquired, and if not, only characteristic spectral data is
listed. Accurate mass determination in positive and negative mode was performed on a "Synapt
G2-S" Q-TOF instrument from Water TM. Samples were ionized by the use of ASAP probe
(APCI) or ESI probe. No chromatographic separation was used prior to mass analysis.
Calculated exact mass and spectra processing was done by Waters TM Software Masslynx
V4.1 SCN871. IR spectra were recorded with a Bruker Alpha FT-IR spectrometer using OPUS
V7 software to analyse the spectra.

6.1 Synthesis of propargyl alcohols, 1a-i

General procedure A

OH
(0]
N LDA
N EL o
THF, 0 °C-r.t. R 0
1 R?
R R2
9 R! 10 R? 1 R! R?
a H a H a H H
b 2,4,6-triMe b 2.,4,6-triMe b H 2,4,6-triMe
¢ 2,6-diMe c 4-OMe ¢ H 4-OMe
d 4-OMe d 4-CFK; d H 4-CF3
e 4-CF; e 246-triMe H
f 24,6-triMe 4-CF3
g 2,6-diMe H
h 4-OMe H
i 4-CF; H

A solution of arylacetylene 10a-d (1-1.1 equiv.) in dry THF was cooled to 0 °C and LDA
(1.5 equiv., 2M in THF) was added slowly under a N»>-atmosphere. The solution was stirred for
30 mins before aldehyde 9a-e (1 equiv.) was added. The solution was stirred for 2 hrs and
allowed to warm to r.t. before being quenched with aqueous NH4Cl (sat., 10 mL). The layers
were separated, and the aqueous phase was extracted with EtOAc (3x15 mL). The combined
organic layers were washed with brine, dried over Na>SQOs, and the solvent removed in vacuo.
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Purification by flash column chromatography (EtOAc:pentane) yielded pure propargyl alcohol
la-i.

1a

1,3-Diphenylprop-2-yn-1-ol (1a): Following general procedure A, acetylene 10a (580 uL,
5.28 mmol) in THF (10 mL) was reacted with LDA (3.6 mL, 2M, 7.20 mmol). Addition of
aldehyde 9a (490 uL, 4.80 mmol) yielded propargyl alcohol 1a (647 mg, 65 %) as a pale yellow
oil after flash column chromatography (1:10 EtOAc:pentane).

'H NMR (600 MHz, CDCl3) § (ppm): 7.61 (d, J = 7.1, 2H, H2), 7.46 (m, 2H, H5), 7.39 (t,
J=17.1,2H, H3), 7.36-7.25 (m, 4H, H4, H6 and H7), 5.67 (d, J = 6.1, 1H, H1), 2.45 (d, 1H,
OH).

'H NMR was in accordance with literature data.l®"!

1b

3-Mesityl-1-phenylprop-2-yn-1-ol (1b): Following general procedure A, acetylene 10b
(510 uL, 3.26 mmol) in THF (5 mL) was reacted with LDA (2.2 mL, 2M, 4.34 mmol). Addition
of aldehyde 9a (221 uL, 2.17 mmol) yielded propargyl alcohol 1b (329 mg, 61 %) as a light
brown powder after flash column chromatography (1:13 EtOAc:pentane).

'H NMR (600 MHz, CDCl3) § (ppm): 7.65 (d, J = 7.3, 2H, H5), 7.40 (t, J = 7.5, 2H, H6),
7.34 (t,J=7.3, 1H, H7), 6.86 (s, 2H, H10), 5.77 (d, J = 6.3, 1H, H1), 2.40 (s, 6H, Me9), 2.27
(s, 3H, Mel1), 2.23 (d, J = 6.3, 1H, OH).

13C NMR (150 MHz, CDCl3) & (ppm): 141.1 (C4), 140.4 (C9), 138.1 (C11), 128.6 (C6),
128.4 (C7), 127.6 (C10), 126.8 (C5), 119.1 (C8), 96.3 (C2), 84.7 (C3), 65.5 (C1), 21.30 (C13),
21.03 (C12).

HRMS (ASAP) caled for CisHi7 [M-OH]" 233.1330, obsd 233.1328.
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1c

3-(4-Methoxyphenyl)-1-phenylprop-2-yn-1-ol (1c¢): Following general procedure A,
acetylene 10¢ (599 uL, 4.61 mmol) in THF (10 mL) was reacted with LDA (3.5 mL, 2M, 7.0
mmol). Addition of aldehyde 9a (427 uL, 4.20 mmol) yielded propargyl alcohol 1¢ (183mg,
18%) as a yellow solid after flash column chromatography (1:5 EtOAc:pentane).

'H NMR (400 MHz, CDCls) 8§ (ppm): 7.62 (dm, J = 7.3, 2H, H2), 7.39-7.42 (m, 4H, H3
and H5), 7.34 (tt, J = 8.2, 2.0, 1H, H4), 6.84 (d, J = 8.8, 2H, H6), 5.68 (d, J = 6.1, 1H, H1),
3.81 (s, 3H, H7), 2.26 (d, J= 6.1, 1H, OH).

'H NMR was in accordance with literature data."!

1d

1-Phenyl-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-ol (1d): Following general procedure
A, acetylene 10d (580 uL, 3.556 mmol) in THF (5 mL) was reacted with LDA (2.5 mL, 2M,
5.0 mmol). Addition of aldehyde 9a (330 uL, 3.25 mmol) yielded propargyl alcohol 1d (367.4
mg, 41 %) as a white powder after flash column chromatography (1:10 EtOAc:pentane).

'H NMR (600 MHz, CDCls) 8 (ppm): 7.61 (m, 2H, H2), 7.58 (s, 4H, H5 and H6), 7.43 (m,
2H, H3), 7.37 (m, 1H, H4), 5.71 (d, J = 6.1, H1), 2.27 (d, J = 6.2, OH).

'H NMR was in accordance with literature data.l®"!

le

1-Mesityl-3-phenylprop-2-yn-1-ol (1e): Following general procedure A, acetylene 10a (658
1L, 5.99 mmol) in THF (3 mL) was reacted with LDA (4.0 mL, 2M, 8.0 mmol). Addition of
aldehyde 9b (589 uL, 3.99 mmol) yielded propargyl alcohol 1e as a yellow oil after flash
column chromatography (1:9 EtOAC:pentane).
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'H NMR (600 MHz, CDCl3) & (ppm): 7.38-7.44 (m, 2H, H9), 7.25-7.32 (m, 3H, H10 and
H11), 6.87 (s, 2H, H6), 6.11 (s, 1H, H1), 2.55 (s, 6H, Me5), 2.27 (s, 3H, Me7), 2.10 (bs, 1H,
OH).

BCNMR (150 MHz, CDCl3) & (ppm): 137.8 (C7), 136. (C5), 133.6 (C4), 131.6 (C9), 130.0
(Co), 128.3 (C10), 128.2 (C11), 122.8 (C8), 88.8 (C2), 85.7 (C3), 60.8 (C1), 20.9 (Me7), 20.3
(Me5).

HRMS (ASAP) calcd for CisHi7 [M-OH]J" 233.1330, obsd 233.1330.

1f

1-Mesityl-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-ol (1f): Following general procedure
A, acetylene 10d (564 uL, 3.46 mmol) in THF (3 mL) was reacted with LDA (3.00 mL, 2M,
6.00 mmol). Addition of aldehyde 9b (463 uL, 3.14 mmol) yielded propargyl alcohol 1f (528
mg, 53 %) as a green solid after flash column chromatography (1:10 EtOAc:pentane).

'H NMR (600 MHz, CDCls) 8 (ppm): 7.55 (d, J = 8.4, 2H, H10), 7.51 (d, J = 8.3, 2H, H9),
6.89 (s, 2H, H6), 6.13 (d, J = 3.3, 1H, H1), 2.55 (s, 6H, Me5), 2.27 (s, 3H, Me7), 2.08 (bs, 1H,
OH).

13C NMR (150 MHz, CDCI3) & (ppm): 138.2 (C7), 136.6 (C5), 133.2 (C4), 131.9 (C9),

130.12 (C6), 130.11 (g, J = 32.6, C11), 126.6 (C8), 125.2 (q, J = 3.7, C10), 123.9 (q, J = 272.5,
C12),91.3 (C2), 84.3 (C3), 60.7 (C1), 20.9 (Me5), 20.3 (Me7).

HRMS (ASAP) calcd for CioHi70F3 [M*]* 318.1231, obsd 318.1229.

1-(2,6-Dimethylphenyl)-3-phenylprop-2-yn-1-ol (1g): Following general procedure A,
acetylene 10a (511 uL, 4.65 mmol) in THF (3 mL) was reacted with LDA (3.17 mL, 2M, 6.34
mmol). Addition of aldehyde 9¢ (565 mg, 4.23 mmol) yielded propargyl alcohol 1g (666 mg,
67 %) as a green solid after flash column chromatography (1:9 EtOAc:pentane).

'H NMR (400 MHz, CDCls) 8 (ppm): 7.38-7.45 (m, 2H, HS), 7.27-7.33 (m, 3H, H3 and
H7), 7.12 (dd, J = 8.4, 6.5, 1H, H2), 7.05 (m, 2H, H6), 6.16 (d, J = 3.6, 1H, H1), 2.60 (s, 6H,
H4), 2.10 (d, J= 3.9, 1H, OH).
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'H NMR was in accordance with literature data.[83!

1h

1-(4-Methoxyphenyl)-3-phenylprop-2-yn-1-ol (1h): Following general procedure A,
acetylene 10a (507 uL, 4.62 mmol) in THF (10 mL) was reacted with LDA (3.2 mL, 2M, 6.4
mmol). Addition of aldehyde 9d (571 uL, 4.69 mmol) yielded propargyl alcohol 1h (702 mg,
64 %) as a yellow solid after flash column chromatography (1:7 EtOAc:pentane).

'H NMR (600 MHz, CDCls) § (ppm): 7.54 (d, J = 8.5, 2H, H2), 7.47 (m, 2H, H5), 7.28-
7.35 (m, 3H, H6 and H7), 6.93 (d, J= 8.8, 2H, H3), 5.65 (d,J=6.1, 1H, H1), 3.82 (s, 31, H4),
2.20 (d, J= 6.1, 1H, OH).

'H NMR was in accordance with literature data."!

1i

3-Phenyl-1-(4-(trifluoromethyl)phenyl)prop-2-yn-1-ol (1i): Following general procedure A,
acetylene 10a (437 uL, 3.98 mmol) in THF (5 mL) was reacted with LDA (2.8 mL, 2M, 5.6
mmol). Addition of aldehyde 9e (494 uL, 3.62 mmol) yielded propargyl alcohol 1i (652 mg,
65 %) as an orange oil after flash chromatography (1:9 EtOAc:pentane).

'H NMR (400 MHz, CDCls) 8 (ppm): 7.72 (d, J = 8.0, 2H, H3), 7.64 (d, J = 8.3, 2H, H2),
7.48 (m, 2H, H4), 7.30-7.40 (m, 3H, H5 and H6), 5.75 (s, 1H, H1), 3.37 (s, 1H, OH).

'H NMR was in accordance with literature data.l®"!
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6.2 Gold-catalysed reactions

6.2.1 Synthesis of 1,1,3-trisubstituted prop-2-yns, 2a-h

2a

(3-Mesitylprop-1-yne-1,3-diyl)dibenzene (2a): Propargyl alcohol 1a (42.2 mg, 0.203 mmol),
mesitylene (169 uL, 1.216 mmol) and AuBr3; (5.8 mg, 0.013 mmol) were stirred in ACN (3
mL) at 85 °C for 1.5 hrs. Water (10 mL) was added, and the solution extracted into DEE (3x10
mL), dried over Na;SO4 and the solvent removed in vacuo. Purification by flash column
chromatography (1:100 EtOAc:pentane) gave a 1:3 mixture of alkyne 2a and indene 4a (51.3
mg total).

"H NMR values are extracted from a 1:3 mixture with indene 4a. See Appendix D.1 for
their combined '"H NMR spectrum.

'H NMR (400 MHz, CDCls) & (ppm): 7.46 (m, 2H, Ph), 7.38 (d,J="7.7, 2H, Ph), 7.25-7.31
(m, 4H, Ph), 7.20 (m, 2H, Ph), 6.88 (s, 2H, H2), 5.72 (s, 1H, H1), 2.29 (bs, 6H, H3), 2.28 (bs,
3H, H4).

'H NMR was in accordance with previously reported data.[*]

0 ™ CF,

2b

(3-(2,2,2-Trifluoroethoxy)prop-1-yne-1,3-diyl)dibenzene (2b): Propargyl alcohol 1a (23.9
mg, 0.115 mmol) was stirred with 1,3,5-triisopropylbenzene (166.2 uL, 0.687 mmol) and
AuBr3 (2.5 mg, 0.006 mmol) in F3-EtOH (1 mL). The solution was stirred at r.t. for 15 mins
before addition of water (5 mL), extraction into DEE (3x10 mL) and drying over Na,SOx.
Removal of solvent in vacuo and purification by flash column chromatography (1:25
EtOAc:pentane) yielded alkyne 2b (7.7 mg, 23 %).

'H NMR (600 MHz, CDCl3) § (ppm): 7.60 (m, 2H, H7), 7.50 (m, 2H, H11), 7.42 (m, 2H,
HS), 7.38 (m, 1H, H9), 7.36 (m, 1H, H13), 7.34 (m, 2H, H12), 5.65 (s, 1H, H1), 4.06 (dq, J =
12.0, 8.6, 1H, H4), 3.98 (dq, J = 12.0, 8.8, 1H, H4).
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13C NMR (150 MHz, CDCI3) & (ppm): 137.0 (C6), 131.9 (C11), 128.98-128.99 (C9 and
C13), 128.7 (C8), 128.4 (C12), 127.6 (C7), 124.05 (q, J = 279.0, C5), 121.9 (C10), 89.2 (C3),
84.7 (C2), 72.8 (C1), 64.6 (q, J = 34.6, C4).

HRMS (ASAP) calcd for C17H130F3; [M*]*290.0918, obsd 290.0920.

2¢

(3-Ethoxyprop-1-yne-1,3-diyl)dibenzene (2¢): Propargyl alcohol 1a (39.5 mg, 0.190 mmol)
was stirred with anisole (120 uL, 1.104 mmol) in EtOH (4 mL) and AuBr3 (4.0 mg, 0.009
mmol) was added. The solution was heated to 60 °C and stirred for 1.5 hrs. Water (5 mL) was
added and the solution extracted into DEE (3x10 mL) and dried over Na;SOs. Removal of
solvent in vacuo and purification by flash column chromatography (1:20 EtOAc:pentane)
yielded alkyne 2¢ (25.5 mg, 57 %) as a faint yellow oil.

'H NMR (400 MHz, CDCls) § (ppm): 7.58 (d, J = 7.6, 2H, H4), 7.47 (m, 2H, H7), 7.39 (t,
J=17.6, 2H, HS), 7.27-7.36 (m, 4H, H6, H8 and H9), 5.39 (s, 1H, H1), 3.80 (dq, J = 8.8, 7.1,
1H, H2), 3.63 (dq, J= 8.9, 7.1, 1H, H2), 1.29 (t, J = 7.0, 3H, H3).

'H NMR was in accordance with previously reported data.[#4]

2d

1,3,5-Trimethyl-2-(3-phenyl-1-(4-(trifluoromethyl)phenyl)prop-2-yn-1-yl)benzene  (2d):
Propargyl alcohol 1i (19.0 mg, 0.069 mmol), mesitylene (57 uL, 0.4122 mmol) and AuBr3 (1.5
mg, 0.003 mmol) were stirred in F3-EtOH at r.t. for 15 mins. H>O (5 mL) was added and the
solution extracted into DEE (3x10 mL), dried over Na2SO4 and solvent removed in vacuo.
Through flash column chromatography (1:100 EtOAc:pentane) alkyne 2d was isolated as a
minor product (1.2 mg, 5 %).

"H NMR (600 MHz, CDCls) & (ppm): 7.54 (m, 2H), 7.49 (m, 2H), 7.47 (m, 2H), 7.31 (m,
3H), 6.90 (s, 2H), 5.73 (s, 1H), 2.25-2.32 (m, 6H).

Not enough compound was collected for 3C NMR or HRMS.
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2e

1,3,5-Trimethyl-2-(1-phenyl-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-yl)benzene ~ (2e):
Propargyl alcohol 1d (20 mg, 0.072 mmol), mesitylene (15 uL, 0.109 mmol) and AuBr;3 (1.6
mg, 0.004 mmol) were stirred in MeNO; at r.t. for 15 mins. H>O (5 mL) was added and the
solution extracted into DEE (3x10 mL), dried over Na>SO4 and solvent removed in vacuo.
Through flash column chromatography (petroleum ether) a mixture of alkyne 2e and allene 3¢
were collected (total 11.7 mg). See Appendix D.10 for their combined '"H NMR spectrum.

2f

1-Methoxy-4-(3-phenyl-1-(2,2, 2-trifluoroethoxy)prop-2-yn-1-yl)benzene (2f): Propargyl
alcohol 1h (16.5 mg, 0.069 mmol) was stirred with mesitylene (57.3 uL, 0.412 mmol) in F3-
EtOH. AuBrs; (1.5 mg, 0.003 mmol) was added and the mixture stirred at r.t. for 15 mins before
H>O (5 mL) was added. The solution was extracted with DEE (3x10 mL) and dried over
NazSO4. Removal of the solvent in vacuo and purification by flash column chromatography
(1:100 EtOAc:pentane) gave alkyne 2f (6.2 mg, 28 %) as a yellow oil.

'H NMR (600 MHz, CDCl3) § (ppm): 7.47-7.54 (m, 4H, H2’ and H2"*), 7.31-7.39 (m, 3H,
H3’ and H4"), 6.94 (d, J = 8.7, 2H, H3"*), 5.61 (s, I H, H3), 4.03 (dq, J = 12.0, 8.6, IH, H1"""),
3.93 (dq, J=11.8, 8.9, 1H, HI>>"), 3.83 (s, 3H, Me4*").

13C NMR (150 MHz, CDCl3) § (ppm): 160.2 (C4°*), 131.9 (C2°), 129.15 (C2”), 129.12
(C1°°), 128.9 (C4%), 128.4 (C3°), 124.1 (q, J = 279.5, C2°*"), 122.0 (C1°), 114.0 (C3**), 89.0
(C1), 84.9 (C2), 72.4 (C3), 64.4 (q, J = 34.4, C1>>"), 55.4 (Me4>").

HRMS (ASAP) caled for CisH1502F3 [M*]" 320.1024, obsd 320.1019.
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2g

(3-(4-Methoxyphenyl)prop-1-yne-1,3-diyl)dibenzene (2g): Propargyl alcohol 1a (48.2 mg,
0.231 mmol) was stirred with anisole (147 uL, 1.353 mmol) in F3-EtOH. AuBr3 (4.8 mg, 0.011
mmol) was added and the mixture heated to 85 °C and stirred for 1.5 hrs before H>O (5 mL)
was added. The solution was extracted with DEE (3x10 mL) and dried over Na;SO4. Removal
of the solvent in vacuo and purification by flash column chromatography (1:24 EtOAc:pentane)
gave alkyne 2g (53.1 mg, 77%) as a yellow oil.

'H NMR (600 MHz, CDCls) 8 (ppm): 7.44-7.48 (m, 2H, H2"), 7.40-7.44 (m, 2H, H2"),
7.25-7.36 (m, 7H, H3’, H4*, H3** and H2*>"), 7.18-7.24 (m, 2H, H4>"), 6.82-6.87 (m, 2H, H3"""),
5.16 (s, 1H, H3), 3.75 (s, 3H, Me4>>).

"H NMR was in accordance with previously reported data.[1%6]

2h

(3-(2,4,6-Trimethoxyphenyl)prop-1-yne-1,3-diyl)dibenzene (2h): Propargyl alcohol 1a (9.5
mg, 0.046 mmol) was stirred with 1,3,5-trimethoxybenzene (41.8 mg, 0.275 mmol) in F3-EtOH.
AuBr3 (1.1 mg, 0.002 mmol) was added and the mixture stirred at r.t. for 15 mins before H,O
(5 mL) was added. The solution was extracted with DEE (3x10 mL) and dried over Na>SOs.
Removal of the solvent in vacuo and purification by flash column chromatography (1:30
EtOAc:pentane) gave alkyne 2h (8.5 mg, 52 %) as a yellow oil.

'H NMR (600 MHz, CDCls) 8 (ppm): 7.50 (d, J = 7.8, 2H, H2""), 7.43-7.48 (m, 2H, H2"),
7.22-7.48 (m, SH, H3’, H4* and H3”), 7.15 (t, J = 7.3, 1H, H4”"), 6.15 (s, 2H, H3"""), 5.86 (s,
1H, H3), 3.80 (s, 6H, Me2°”), 3.78 (s, 3H, Me4™>).

'H NMR was in accordance with literature data.[!07]
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6.2.2 Synthesis of allenes, 3a-g
General procedure B

H

OH AUBr3 /g
) Ar AT AP
Ar % H Solvent, r.t., 15 min Y
Ar? Ar2
1 A Ar* 3 A Ar? Ar’
a Ph Ph a Ph Ph Mes
e Mes Ph b 4-CF3sPh Ph Mes
f Mes 4-CF3Ph [ Ph 4-CFsPh Mes
g 2,6-diMePh Ph d Mes 4-CFsPh  Mes
i 4-CF:Ph Ph e Mes Ph Mes
f 2,6-diMePh  Ph Mes
g Ph Ph PentaMePh

Propargyl alcohol 1 (1 equiv.) and an aromatic nucleophile (1 - 6 equiv.) were dissolved in
either F3-EtOH or MeNO; (1 mL). A solution of AuBr; (0.05 equiv.) in the same solvent (1
mL) was added, and the solution stirred at r.t. for 15 mins. H>O (5 mL), a few drops of NEt3
and DEE (5 mL) were added and the layers separated. The aqueous layer was extracted with
DEE (3x10 mL), the combined organic layers dried over Na;SOs, followed by removal of
solvent in vacuo. Purification by flash column chromatography (1:200 EtOAc:pentane) yielded

allenes 3a-g.
H
oy

3a

(I-Mesitylpropa-1,2-diene-1,3-diyl)dibenzene (3a): Following general procedure B,
propargyl alcohol 1a (45.7 mg, 0.219 mmol) was reacted with mesitylene (140 uL, 1.006
mmol) in F3-EtOH, with catalytic AuBr3 (4.3 mg, 0.010 mmol). Workup and purification by
crystallization from petroleum ether yielded allene 3a (26.5 mg, 40 %) as a white solid.

'H NMR (600 MHz, CDCls) 8 (ppm): 7.38 (m, 2H), 7.16-7.34 (m, 8H), 6.94 (s, 2H, H2),
6.59 (s, 1H, H1), 2.31 (s, 3H, H4), 2.25 (s, 6H, H3).

'H NMR was in accordance with literature data.[?]
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3b

1,3,5-Trimethyl-2-(1-phenyl-3-(4-(trifluoromethyl)phenyl)propa- 1, 2-dien-1-yl)benzene
(3b): Following general procedure B, propargyl alcohol 1i (19.2 mg, 0.069 mmol) was reacted
with mesitylene (57.3 puL, 0.412 mmol) in the presence of AuBr3 (1.5 mg, 0.003 mmol) in F3-
EtOH. Workup and purification gave pure allene 3b (4.9 mg, 19 %).

'H NMR (600 MHz, CDCls) § (ppm): 7.55 (d, J = 8.2, 2H, H3*"), 7.46 (d, J = 8.1, 2H,
H2°>), 7.29 (m, 2H, H3”), 7.20-7.25 (m, 3H, H2"’ and H4""), 6.95 (s, 2H, H3"), 6.61 (s, 1H,
H3), 2.32 (s, 3H, Me4’), 2.25 (s, 6H, Me2).

13C NMR (150 MHz, CDCl3) 8 (ppm): 206.8 (C2), 138.2 (C1°>), 137.4 (C4’), 136.8 (C2°),
134.9 (C1°°), 131.1 (C1°), 126.0 (q, J = 32.2, C4°*"), 128.8 (C3”), 128.6 (C3), 127.5 (C4>),
127.2(C2°7), 126.3 (C2°*), 125.7 (q, J = 3.7, C3>>), 124.2 (q, J=271.8, CF34°""), 110.2 (C1),
96.1 (C3), 21.1 (Me4’), 20.5 (Me2”).

HRMS (ESI) caled for CasHaoF3 [M+H]" 379.1674, obsd 379.1667.

H
CF;
3c
1,3,5-Trimethyl-2-(3-phenyl-1-(4-(trifluoromethyl)phenyl)propa-1,2-dien-1-yl) benzene
(3¢): Following general procedure B, propargyl alcohol 1d (20.1 mg, 0.072 mmol) was reacted
with mesitylene (15 uL, 0.109 mmol) in the presence of AuBr3 (1.7 mg, 0.004 mmol) in

MeNO». Workup and flash column chromatography gave a mixture of allene 3¢ and alkyne 2e
as a 1:4 mixture (8.7 mg total). See Appendix E.8 for their combined '"H NMR spectrum.
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3d

2,2'-(1-(4-(Trifluoromethyl)phenyl)propa-1,2-diene-1,3-diyl)bis(1,3, 5-trimethylbenzene)
(3d): Following general procedure B, propargyl alcohol 1f (15.0 mg, 0.047 mmol) was reacted
with mesitylene (10 uL, 0.071 mmol) in the presence of catalytic AuBr;3 (1.1 mg, 0.002 mmol)
in MeNO,. Workup and purification gave pure allene 3d (8.0 mg, 40 %) as an orange oil.

'H NMR (600 MHz, CDCL3) § (ppm): 7.51 (d, J = 8.2, 2H, H3""), 7.32 (d, J = 8.2, 2H,
H2”), 6.94 (bs, 2H, H3"), 6.86 (s, 2H, H3*>"), 6.76 (s, 1H, H3), 2.32 (s, 3H, Me4"), 2.31 (s, 6H,
Me2">), 2.27 (s, 3H, Med”*"), 2.20 (bs, 3H, Me2”), 2.04 (bs, 3H, Me2").

13C NMR (150 MHz, CDCls) & (ppm): 206.5 (C2), 140.5 (C17°), 137.4 (C4°), 137.3 (broad,
C2°), 136.9 (broad, C2°), 136.7 (C4°>), 136.5 (C2°>°), 131.1 (C1°), 129.1 (C3°**), 128.7 (C3°),
128.6 (J = 32.3, C4>), 127.7 (C1>*), 126.4 (C2”), 125.4 (J = 3.7, C3”), 124.3 (J = 271.8,
CF34”), 105.6 (C1), 92.5 (C3), 21.2 (Me2’”), 21.1 (Me4’), 20.9 (Me4>*), 20.3 (Me2").

HRMS (ASAP) calcd for CasHasF3 [M+H]" 421.2143, obsd 421.2137.

3e

2,2'-(1-Phenylpropa-1,2-diene-1,3-diyl)bis(1,3,5-trimethylbenzene) ~ (3e):  Following
general procedure B, propargyl alcohol 1e (20.2 mg, 0.080 mmol) was reacted with mesitylene
(17 uL, 0.120 mmol) in the presence of catalytic AuBr; (1.7 mg, 0.004 mmol) in MeNO,.
Workup and purification gave allene 3e (10.5 mg, 37 %).

"H NMR (600 MHz, CDCl3) 8 (ppm): 7.27 (dd, J=7.5,7.5. 2H, H3""), 7.22 (d, J= 7.2, 2H,
H2’*), 7.18 (dd, J = 7.1, 7.1, 1H, H4"’), 6.92 (bs, 2H, H3"), 6.85 (s, 2H, H3*”"), 6.70 (s, 1H,
H3), 2.32 (s, 6H, Me2°""), 2.31 (s, 3H, Me4’), 2.26 (s, 3H, Me4’”’), 2.21 (bs, 3H, Me2’), 2.07
(bs, 3H, Me2’).

BC NMR (150 MHz, CDCl3) § (ppm): 205.8 (C2), 137.2 (broad, C2’), 137.0 (broad, C2°),
136.9 (C4°), 136.5 (C2’”” and C4°”’), 136.3 (C1*"), 131.9 (C1°), 129.0 (C3**), 128.49 (C3’),
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128.45 (C37’), 128.3 (C1°7’), 126.6 (C4°’), 126.3 (C2”’), 106.2 (C1), 92.1 (C3), 21.2 (Me2’"’),
21.1 Me4’), 20.9 (Me4’’), 20.3 (Me2’).

HRMS (ASAP) calcd for C27Hzo [M+H]" 353.2269, obsd 353.2263.

3f

2-(3-(2,6-Dimethylphenyl)-1-phenylpropa-1,2-dien-1-yl)-1,3,5-trimethylbenzene (3f):
Following general procedure B, propargyl alcohol 1g (20.1 mg, 0.085 mmol) was reacted with
mesitylene (17.7 uL, 0.127 mmol) in the presence of catalytic AuBr3 (1.9 mg, 0.004 mmol) in
MeNO,. Workup and purification gave pure allene 3f (9.9 mg, 34 %).

'H NMR (600 MHz, CDCl3) 8 (ppm): 7.27 (dd, J = 7.6, 7.6, 2H, H3""), 7.23 (d, J = 8.3,
2H, H2’), 7.19 (t, J = 7.1, 1H, H4>), 6.99-7.06 (m, 3H, H3>>* and H4>>*), 6.92 (bs, 2H, H3"),
6.71 (s, 1H, H3), 2.35 (s, 6H, Me2*>), 2.31 (s, 3H, Me4’), 2.22 (bs, 3H, Me2°), 2.07 (bs, 3H,
Me2).

3C NMR (150 MHz, CDCIl3) 6 (ppm): 205.8 (C2), 137.2 (broad, C2’), 137.1 (broad,
C27), 137.0 (C4%), 136.6 (C2°7°), 136.3 (C1°), 131.7 (C17), 131.4 (C1°™), 128.51 (C3"),
128.48 (C3°), 128.1 (C37), 126.74 (C47), 126.70 (C47"), 126.3 (C2°), 106.4 (C1), 92.2
(C3), 21.3 (Me2”), 21.1 (Me4”), 20.3 (Me2”).

HRMS (ASAP) caled for CasHz7 [M+H]" 339.2113, obsd 339.2108.

(1-(2,3,4,5,6-Pentamethylphenyl)propa-1,2-diene-1,3-diyl)dibenzene ~ (3g):  Following
general procedure B, propargyl alcohol 1a (14.5 mg, 0.070 mmol) was reacted with
pentamethylbenzene (15.6 mg, 0.105 mmol) using catalytic AuBr3 (1.7 mg, 0.004 mmol) in
F3-EtOH. Extraction into DEE (3 x 10 mL) gave pure allene 3g (23.3 mg, 99 %) without the
need for further purification.
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'H NMR (400 MHz, CDCl3) & (ppm): 7.36 (d, J = 7.6, 2H, H16), 7.23-7.31 (m, 6H, H12,
H13 and H17), 7.19 (m, 2H, H14 and H18), 6.56 (s, 1H, H3), 2.31 (s, 3H), 2.27 (s, 3H), 2.25
(s, 3H), 2.22 (s, 6H).

13C NMR (150 MHz, CDCls) & (ppm): 206.1 (C2), 136.1 (C15), 134.51, 134.45, 133.2,
132.75, 132.74, 132.5, 132.3, 132.2, 128.63, 128.60, 127.2 (C16), 127.1 and 127.0 (C14 and
C18), 126.4, 111.2 (C1), 96.9 (C3), 18.8, 17.8, 16.8, 16.7, 16.6.

6.2.3 Synthesis of Indenes, 4a-d and 4f-g

General procedure C

Ar’
OH AuBr;
A 1)\ A O’
r \
N Ph Solvent, 80 °C, 1.5h
Ar?
1 A 4 A Ar?
a Ph a Ph Mes
e Mes b 4-CFsPh Mes
g 2,6-diMePh ¢ Mes Mes
i 4-CF3:Ph d 2,6-diMePh  Mes
f Ph 2,4,6-triisoPrPh
g Ph PentaMePh

Propargyl alcohol 1 (1 equiv.) and aromatic nucleophile (1 - 6 equiv.) were dissolved in
either F3-EtOH or MeNO:> (1 mL). A solution of AuBr3 (0.05 equiv.) in the same solvent (1
mL) was added, and the solution stirred at 80 °C for 1.5 hrs. H>O (5 mL), a few drops of NEt3
and DEE (5 mL) were added and the layers separated. The aqueous layer was extracted with
DEE (3x5 mL), the combined organic layers dried over Na>xSQO4, followed by removal of
solvent in vacuo. Purification by flash column chromatography (1:200 EtOAc:pentane) yielded

o
9w,
S

4a

3-Mesityl-1-phenyl-1H-indene (4a): Following general procedure C, propargyl alcohol 1a
(52.9 mg, 0.254 mmol) was reacted with mesitylene (103.8 uL, 1.524 mmol) in the presence
of catalytic AuBr3 (5.6 mg, 0.013 mmol) in F3-EtOH. Workup and purification gave indene 4a
(72.7 mg, 92 %) as a colourless solid.
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'H NMR (600 MHz, CDCls) § (ppm): 7.28-7.32 (m, 3H), 7.24 (m, 1H), 7.18-7.22 (m, 3H),
7.17 (m, 1H), 6.96-7.00 (m, 2H), 6.93 (d, J = 7.4, 1H), 6.37 (d, J=2.0, 1H), 4.78 (d, J = 1.9,
1H), 2.35 (s, 3H), 2.21 (s, 3H), 2.13 (s, 3H).

"H NMR was in accordance with previously reported data.[*]

CF;

9y,
&

4b

3-Mesityl-1-(4-(trifluoromethyl)phenyl)- 1 H-indene (4b): Following general procedure C,
propargyl alcohol 1i (19.3 mg, 0.069 mmol) was reacted with mesitylene (57 uL, 0.412 mol)
in the presence of AuBr3 (1.8 mg, 0.004 mmol) in F3-EtOH. Workup and flash column

chromatography resulted in a mixture of indene 4b and alkyne 2d. See Appendix F.2 for their
combined '"H NMR spectrum.

&
v
O

4c

1,3-Dimesityl-1H-indene (4¢): Following general procedure C, propargyl alcohol 1e (20.3
mg, 0.080 mmol) was reacted with mesitylene (17 uL, 0.120 mmol) in the presence of catalytic
AuBr3 (1.7 mg, 0.004 mmol) in MeNO»>. Workup and purification gave the pure indene 4¢
(14.2 mg, 50 %) as a colourless solid.

'H NMR (400 MHz, CDCls) 8 (ppm): 7.12-7.24 (m, 3H), 6.94-7.03 (m, 4H), 6.73 (bs, 1H),
6.37 (d, J = 2.0, 1H), 5.13 (bs, 1H), 2.62 (s, 3H), 2.35 (s, 3H), 2.28 (s, 3H), 2.17 (s, 3H), 2.11
(s, 3H), 1.61 (s, 3H).

"H NMR was in accordance with previously reported data.[%4]
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4d

1-(2,6-Dimethylphenyl)-3-mesityl-1H-indene (4d): Following general procedure C,
propargyl alcohol 1g (19.8 mg, 0.085 mmol) was reacted with mesitylene (17.7 uL, 0.127
mmo) in the presence of catalytic AuBr3 (2.0 mg, 0.005 mmol) in MeNO>. Workup and
purification gave pure indene 4d (12.8 mg, 45 %) as a colourless solid.

'H NMR (600 MHz, CDCls) & (ppm): 7.23 (t, J= 7.3, H5), 7.14-7.215 (m, 3H, H6, H7 and
H3%), 7.09 (t, J = 7.5, 1H, H4%), 7.01 (d, J = 7.5, 1H, H4), 6.97 (bs, 2H, H3"* and H5"), 6.89
(d,J=174, 1H, H5), 6.39 (d, J =2, 1H, H2), 5.17 (s, 1H, H1), 2.66 (s, 3H, H7"), 2.35 (s, 3H,
HS8”), 2.18 (s, 3H, H9™), 2.11 (s, 3H, H7"), 1.65 (s, 3H, HS).

13C NMR (150 MHz, CDCls) 8 (ppm): 147.1 (C7a), 144.4 (C3a), 142.9 (C3), 138.2 (C6"),
137.6 (C2°), 137.2 (C6™), 137.0 (C2”), 136.9 (C4°"), 135.8 (C2), 135.5 (C1°), 132.0 (C1*),
129.2 (C5°), 128.3 (C3* and C3”°), 128.2 (C5”"), 126.7 (C4*), 126.3 (C5), 125.2 (C6), 122.9
(C7), 120.6 (C4), 52.3 (C1), 21.9 (C7’), 21.1 (C8°*), 20.7 (C9°*), 20.4 (C7>*), 19.0 (C8").

HRMS (ASAP) caled for CasHas [M*]" 338.2035, obsd 338.2034.

&
qv
3

4f

1-Phenyl-3-(2,4,6-triisopropylphenyl)- 1 H-indene (4f): Following general procedure C,
propargyl alcohol 1a (23.9 mg, 0.115 mmol) was reacted with 1,3,5-triisopropylbenzene (166.2
uL, 0.687 mmol) in the presence of catalytic AuBr3 (2.5 mg, 0.006 mmol) in F3-EtOH. Workup
and purification gave indene 4f (6.8 mg, 15 %) as a colourless solid.

'H NMR (600 MHz, CDCl3) 8 (ppm): 7.27-7.33 (m, 3H), 7.18-7.25 (m, 4H), 7.16 (ddd, J
=7.4,7.4,1.1, 1H), 7.10 (m, 2H), 6.96 (d, J = 7.3, 1H), 6.40 (d, J=2.0, 1H), 4.78 (d, J= 1.5,
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1H), 3.02 (hept, J= 6.9, 1H), 2.96 (hept, J = 6.9, 1H), 2.85 (hept, J= 6.9, 1H), 1.32 (d, /= 6.9,
6H), 1.15 (d, J= 6.8, 9H), 1.09 (d, J = 6.9, 3H).

"H NMR was in accordance with previously reported data.[?]

(O
v
()

4g

3-(2,3,4,5,6-Pentamethylphenyl)-1-phenyl-1H-indene (4g): Following general procedure C,
propargyl alcohol 1a (14.3 mg, 0.069 mmol) was reacted with pentamethylbenzene (64.3 mg,
0.434 mmol) in the presence of catalytic AuBr3 (1.5 mg, 0.003 mmol) in F3-EtOH. Workup
and purification by scraping product off from a TLC-plate and washing the silica with EtOAc
gave indene 4¢g (0.8 mg, 3 %).

'H NMR (400 MHz, CDCls) & (ppm): 7.13-7.35 (m, 8H), 6.92 (m, 1H), 6.34 (d, J = 2.1,
1H), 4.79 (d, J = 1.8, 1H), 2.32 (s, 3H), 2.28 (s, 3H), 2.27 (s, 3H), 2.18 (s, 3H), 2.09 (s, 3H).

'"H NMR was in accordance with previously reported data.[?!

6.2.4 Synthesis of a,-unsaturated ketone, 19

19

(2)-2-(Ethoxy(phenyl)methyl)-1,3-diphenylprop-2-en-1-one (19): Propargyl alcohol 1a
(56.9 mg, 0.273 mmol), mesitylene (225 uL, 1.617 mmol) and AuBr3; (5.9 mg, 0.014 mmol)
were stirred in EtOH (2 mL) at 90 °C for 1.5 hrs. H>O (10 mL) was added, the solution extracted
into DEE (3x10 mL), dried over Na;SO4 and the solvent removed in vacuo. Flash column
chromatography (1:20 EtOAc:pentane) gave a,p-unsaturated ketone 19 as a minor product
(13.6 mg).

'H NMR (600 MHz, CDCl3) 8 (ppm): 7.67 (m, 2H, H5), 7.41 (m, 2H, H16), 7.28-7.34 (m,
3H, H7 and H17), 7.24 (m, 1H, HI8), 7.16 (m, 2H, H6), 7.07 (m, 2H, H9), 7.01-7.05 (m, 3H,
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H10 and H11), 6.79 (d,J=1.2, 1H, H3), 5.37 (d, J= 1.3, 1H, H12), 3.54 (q, /= 7.0, 2H, H13),
1.16 (t,J=17.0, 3H, H14).

13C NMR (150 MHz, CDCl3) § (ppm): 199.8 (C1), 142.3 (C2), 139.6 (C15), 136.6 (C4),
135.3 (C8), 132.7 (C7), 130.4 (C3), 129.3 (C5), 128.9 (C9), 128.4 (C17), 128.0 (C6 and C10),
127.88 (C18), 127.76 (C11), 127.4 (C16), 83.0 (C12), 65.1 (C13), 15.1 (C14).

HRMS (ESI) calcd for Co4H200,Na [M+Na]" 365.1517, obsd 365.1522.

6.2.5 Synthesis of Cyclopropane, 20

J [Au]* catalyst (5 mol%)

DCM, r.t.

%O%O

MeO Ph

11 20

(Z)-2-(4-Methoxyphenyl)-1-(2-phenylcyclopropyl)vinyl acetate (20): Propargylacetate 11
(1 equiv.), styrene (4 equiv.), the appropriate Au-catalyst (0.05 equiv.) were stirred in DCM at
r.t. until complete consumption of 11 as determined by TLC (EtOAc:pentane 1:8) or NMR.
The solvent was removed under reduced pressure and flash column chromatography
(EtOAc:pentane 1:15) yielded a mixture of stereoisomers of cyclopropane 20.

Trans-20:

'H NMR (600 MHz, CDCl3) 8 (ppm): 7.25-7.31 (m, 4H, H7 and H9), 7.18 (t, J = 7.4, 1H,
H8), 7.11 (d, J= 7.2, 2H, H6), 6.83 (d, J = 8.8, 2H, H10), 6.03 (s, 1H, H1), 3.79 (s, 3H, H11),
2.21 (ddd, J=9.1, 5.5, 5.2, 1H, H4), 2.19 (s, 3H, H2), 1.96 (ddd, J = 8.9, 5.3, 5.0, 1H, H3),
1.33 (ddd, J=9.0, 5.6, 5.6, 1H, H5 syn to H4), 1.24 (ddd, J = 8.7, 5.6, 5.6, 1H, H5 syn to H3).

"H NMR were in accordance with previously reported data.[*!]

6.3 Synthesis of cyclam-related compounds

0] 0]

T e

“NH HN
0 0

Ph NH HN Ph

Ph Ph

Tb

(2R,3R,9R,10R)-6,6,13, 13-Tetramethyl-2,3,9, 10-tetraphenyl-1,4,8,11-
tetraazacyclotetradecane-3,7,12, 14-tetraone (7b): Under a N-atmosphere, (1R,2R)-1,2-
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diphenylethane-1,2-diamine (8b) (126.0 mg, 0.594 mmol) was dissolved in THF (40 mL) and
mixed with NEt; (0.19 mL, 1.36 mmol). Dimethyl malonyl chloride (78 uL, 0.595 mmol) was
added and the solution stirred until no more diamine remained, as determined by TLC. H>O
(10 mL) was added, the solution extracted into DCM (3x20 mL), washed with brine (20 mL),
and dried over Na;SOs. Removal of solvent in vacuo and purification by flash column
chromatography (1:20 EtOAc:pentane) gave cyclic tetraamide 7b (91.7 mg, 51 %) as a white
solid.

"HNMR (400 MHz, CDCl3) § (ppm): 7.74 (dd, J = 5.3, 2.6, 4H), 7.15-7.25 (m, 12H), 7.06-
7.15 (m, 8H), 5.25 (dd, J= 5.6, 2.6, 4H), 1.43 (s, 12H).

HRMS (ASAP) calcd for C3sHaiN4O4 [M+H]" 617.3128. obsd 617.3124.

j/ NH
oo <

8b-Boc

Ph._ __NH,

Ph

Tert-butyl ((IR,2R)-2-amino-1,2-diphenylethyl)carbamate (8b-Boc): To a stirred solution
of (1R,2R)-1,2-diphenylethane-1,2-diamine (8b) (365 mg, 1.72 mmol) in dry DCM (50 mL)
di-tert-butyl decarbonate (340 mg, 1.56 mmol) dissolved in dry DCM (25 mL) was added
dropwise over the course of 15 mins. After stirring for 2 days, NaHCO3 (250 mg) was added
and the mixture concentrated under reduced pressure. The solution was washed with aqueous
NaOH (1M, 2x15 mL), dried over Na>SO4 and solvent removed in vacuo. Purification by flash
column chromatography (EtOAc) gave pure product 8b-Boc (347 mg, 71 %) as a white solid.

"H NMR (400 MHz, CDCl3) & (ppm): 7.21-7.36 (m, 10H), 5.87 (m, 2H), 4.85 (s, 1H), 4.32
(s, 1H), 1.31 (s, 9H).

"H NMR was in accordance with previously reported data.[!%8]

0 @)

Phj, Iph
Ph "’r}lH HN” “Ph
Boc Boc

21b-Boc

NH HN

Di-tert-butyl ((IR,1'R,2R,2'R)-((2,2-dimethylmalonyl)bis(azanediyl))bis(1,2-
diphenylethane-2, 1-diyl))dicarbamate (21b-Boc): ): Mono-boc protected diamine 8b-Boc (106
mg, 0.34 mmol) and NEt3 (190 uL, 1.36 mmol) were mixed in THF (dry, 5 mL). Dimethyl
malonyl chloride (23 uL, 0.17 mmol) was added and the solution stirred until no starting
material remained, as determined by TLC. H>O (5 mL) was added and product isolated by
filtering the solution, leaving the product 21b-Boc (102 mg, 82 %) as a white solid.
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'H NMR (600 MHz, ds-DMSO) & (ppm): 7.76 (d, J = 9.2, 2H), 7.66 (d, J = 9.5, 2H), 7.26
(d,J=7.4,4H), 7.22 (t, J= 7.4, 4H), 7.11-7.20 (m, 12H), 5.39 (dd, J = 8.8, 6.0, 2H), 5.10 (dd,
J=9.4, 6.0, 2H), 1.22 (s, 16H), 0.91 (s, 6H).

13C NMR (150 MHz, de-DMSO) & (ppm): 172.2, 155.2, 140.8, 140.2, 127.7, 127.6, 126.9,
126.6, 126.4, 77.9, 57.8, 56.9, 49.6, 28.1, 23.5.

HRMS (ESI) calcd for C43HsoN4OsNa [M+Na]* 743.3785, obsd 743.3782.
HRMS (ESI) calcd for C3sHasN4O4 [M-Boc+H]" 621.3441, obsd 621.3446.

0) @)

Ph:], :I:Ph
Ph” Ph

“NHK,N

NH HN

21b

NI1,N3-Bis((IR,2R)-2-amino-1,2-diphenylethyl)-2, 2-dimethylmalonamide (21b): Chiral
dicarbamate 21b-Boc (102 mg, 0.14 mmol) was dissolved in TFA (1 mL) at 0 °C, and the
solution stirred for 20 mins. Aqueous NaOH (1M) was added dropwise until ~pH 10 and DCM
(10 mL) was added. The layers were separated and the aqueous phase was extracted with DCM
(3x10 mL), and the combined organic layers washed with H2O (10 mL), dried over NaxSOq,
and concentrated in vacuo, yielding pure product 21b (71 mg, 95 %).

'H NMR (600 MHz, CDCls) § (ppm): 7.99 (d, J = 8.0, 2H), 7.16-7.35 (m, 20H), 5.10 (dd,
J=8.1,3.3, 2H), 4.36 (d, J = 2.8, 2H), 1.29 (s, 6H), 1.22 (bs, 4H).

13C NMR (150 MHz, CDCI3) § (ppm): 173.1, 142.0, 140.3, 128.6, 128.3, 127.5, 127.2,
126.6, 126.2, 59.8, 58.8, 49.5, 23.9.

HRMS (ESI) caled for C33H37N4O2 [M+H]* 521.2917, obsd 521.2926.

PTJ,NHHN:[Ph
Ph” “NHK,N” “Ph
22b

(IR, 1'R,2R,2'R)-N' N'"-(2,2-Dimethylpropane-1,3-diyl)bis(1,2-diphenylethane- 1, 2-
diamine) (22b): Chiral amidoamine 21b (71 mg ,0.14 mmol) and AICl; (73 mg, 0.54 mmol)
were dissolved in dry THF (5 mL) and cooled to 0 °C. After stirring for 15 mins, LiAlH4 (1M,
2.7mL, 2.7 mmol) was added and the solution stirred o.n.. H2O (20 mL) and NaOH were added
until ~pH 14. The solution was filtered and extracted with DCM (3x10 mL), dried over Na>SO4
and concentrated in vacuo yielding product 22b (19.5 mg, 30 %).
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"H NMR (400 MHz, CDCl3) § (ppm): 7.05-7.24 (m, 20H), 3.93 (d, J = 7.1, 2H), 3.59 (d, J
=17.1,2H), 2.21 (d, J=11.4, 2H), 2.14 (d, J=11.4, 2H), 1.79 (bs, 6H), 0.79 (s, 6H).

3C NMR (100 MHz, CDCl3) 6 (ppm): 143.9, 142.2, 128.13, 128.06, 127.9, 127.3, 126.94,
126.90, 70.8, 62.2, 57.2, 35.3, 24.8.

HRMS (ESI) calcd for C33Hs1Ns [M+H]" 493.3331, obsd 493.3337.

6.4 Synthesis of propargyl acetate 11

MgBr

0
0
1y & , THF
| ) = O)‘Ks
2) AcCl, NEts, DCM N
0 X

9d 11

1-(4-Methoxyphenyl)prop-2-yn-1-yl acetate (11): Ethynyl magnesiumbromide in THF (9.5
mL, 0.5M, 4.77 mmol) was added dropwise to a solution of anisaldehyde (9d) (446.8 uL, 3.67
mmol) in dry THF (3 mL). After stirring for one hour, aqueous NH4ClI (sat., 10 mL) was added
and the layers separated. The aqueous layer was extracted with DCM (3x10 mL), the combined
organic layers washed with brine (10 mL), dried over Na>xSO4 and solvent removed in vacuo.
Without further purification, the resulting orange oil was diluted in DCM (dry, 5 mL), and to
it was added NEt; (2 mL, 14.43 mmol) and acetyl chloride (500 uL, 7.03 mmol) and the
solution stirred for 1 hr. H>O (10 mL) was added, and the same workup followed as for step
one. Purification by flash column chromatography (1:7 EtOAc:pentane) yielded pure propargyl
acetate 11 (466 mg, 62%) as a clear oil.

'H NMR (400 MHz, CDCls) 8 (ppm): 7.47 (d, J = 8.7, 2H, H4), 6.91 (d, J = 8.8, 2H, H5),
6.41(d, J=2.2, IH, H1), 3.82 (s, 3H, H6), 2.64 (d, J = 2.3, 1H, H2), 2.09 (s, 3H, H3).

"H NMR was in accordance with literature data.[*!l 'H NMR for intermediate propargyl
alcohol was also in accordance with literature data.[4?]
6.5 Synthesis of chiral 2-bromo-6-alkyl pyridine alcohols, 12a-b

General procedure D

X 1) nBuLi, DEE, -80 °C N
| N | OH
~ - ~
Br N" Br ) Chiral ketone 14 Br™ N R
13 12a: Neomenthol

12b: Isoborneol

Under a N»-atmosphere, 2,6-dibromopyridine (13) was dissolved in dry DEE and cooled to
-80 °C. nBuLi (1.05 equiv., 2.5M in hexane) was added slowly and the solution stirred for 1 hr.
The appropriate chiral ketone 14 (1.1 equiv.) was dissolved in DEE and added dropwise. The
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solution was stirred at -80 °C for 2 hrs before allowing to warm to r.t. The reaction was
quenched with NH4Cl (sat.), extracted into DEE (3x20 mL), washed with brine (10 mL), and
dried over Na;SO4. Removal of the solvent in vacuo and purification by flash column
chromatography (DCM) gave the pure chiral 2-bromo-6-alkylpyridine alcohols 12.

12a

(18,2S,5R)-1-(6-Bromopyridin-2-yl)-2-isopropyl-5-methylcyclohexan-1-ol (12a):
Following general procedure D, pyridine 13 (676.7 mg, 2.857 mmol) was treated with nBuLi
(1.2 mL, 3.001 mmol) and reacted with (-)-menthone (14a) (543uL, 3.144 mmol). Workup and
purification gave 2-bromo-6-alkylpyridine 12a (702.3 mg, 79 %) as a white powder.

'HNMR (400 MHz, CDCl3) § (ppm): 7.55 (t,J="7.8, 1H, H12), 7.36 (d, J= 7.4, IH, H11),
7.33 (d, J= 7.8, 1H, H13), 4.20 (bs ,1H, OH), 1.93 (m, 1H, HS.), 1.87 (m, 1H, H4ey), 1.60-
1.75 (m, 3H, H34y, H5eq and Héeg), 1.56 (ddd, J = 13.1, 3.5, 2.4, Hée,), 1.33 (dd, J = 12.5, 12.5,
1H, H64), 1.26 (hept, J = 6.9, 1H, H7), 1.04 (m, 1H, H4), 0.89 (d, J = 6.5, 3H, H9), 0.84 (d,
J=6.8, 3H, H8), 0.70 (d, J= 6.9, 3H, H8).

"H NMR was in accordance with previously reported data.[*?]

12b

(IR,2R,4R)-2-(6-Bromopyridin-2-yl)-1,7, 7-trimethylbicyclo[2.2. 1] heptan-2-ol (12b):
Following general procedure D, pyridine 13 (764.9 mg, 3.229 mmol) was treated with nBuLi
(1.5 mL, 3.546 mmol) and reacted with (1R)-(+)-camphor (14b) (491.6 mg, 3.223 mmol).
Workup and purification gave 2-bromo-6-alkylpyridine 12b (247.3 mg, 25 %) as a white
powder.

'H NMR (400 MHz, CDCl3) § (ppm): 7.51 (t, J=7.7, 1H, H13), 7.40 (d, J= 7.5, 1H, H12),
7.36 (dd,J=17.8, 0.6, 1H, H14), 4.31 (s, 1H, OH), 2.27 (ddd, J = 14.1, 3.7, 3.7, 1H, H6y), 2.15
(d, J = 14.0, 1H, H64x), 1.90 (t, J = 4.4, 1H, HS), 1.79 (m, 1H, H4ey), 1.21-1.33 (m, 5H, H3e,
H4ax and H10), 0.90 (s, 3H, H9), 0.85 (s, 3H, H7), 0.75 (m, 1H, H34y).

"H NMR was in accordance with previously reported data.[*?]
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6.6 Synthesis of chiral 2-aryl-6-alkyl Pyridines, 15 and 15-OMe

6.6.1 Synthesis of 2,6-disubstituted pyridine alcohols, 15a-g

General procedure E

AN Pd(PPh3)4, KoCO3 | X
| + ' —_—
_BR —
Br” N7 R Ar 2 Dioxane:H,0, 70 °C AN R
12 R 16 Ar 15 R Ar
a  Menthol a Ph a  Menthol Ph
b Isoborneol b 3,5-diOMePh b Menthol 3,5-diOMePh
¢ Thiophene-2-yl ¢ Menthol Thiophene-2-yl
d  N-methylpyrrole-2-yl d Isoborneol Ph
e Isoborneol  3,5-diOMePh
f  Isoborneol Thiophene-2-yl

g Isoborneol N-methylpyrrole-2-yl

Under an Nz-atmosphere, chiral 2-bromopyridine 12a-b (1 equiv.) and the appropriate aryl
boronic acid or boron pinacol ester 16a-d (1-2 equiv.) were dissolved in dioxane (1-2 mL) and
K>COs3 (3 equiv.) dissolved in water (0.5 mL) was added. The solution was heated to 70 °C,
and catalytic Pd(PPh3)s4 (5-10 mol%) in dioxane (0.5 mL) was then added, either by formation
in situ or by direct addition of preformed complex as commercially available. The solution was
stirred over night or until full conversion as determined by TLC. Water (10 mL) was added,
the product extracted into DCM, washed with brine (10 mL) and dried over Na;SO4. Removal
of the solvent in vacuo and purification by flash column chromatography yielded the pure 2-
aryl-6-alkylpyridines 15a-g.

15a

(18S,2S,5R)-2-Isopropyl-5-methyl-1-(6-phenylpyridin-2-yl)cyclohexan-1-ol (15a):
Following General Procedure E, 2-bromopyridine 12a (50.2 mg, 0.160 mmol) was reacted with
phenyl boronic acid (16a) (20.6 mg, 0.160 mmol) in the presence of catalytic Pd(PPhs)4 (9.6
mg, 0.009 mmol) and K>CO;3 (64.1 mg, 0.480 mmol) to give 2,6-disubstituted pyridine 15a
(44.7 mg, 92 %) after workup and purification (1:25 EtOAc:pentane) as a white powder.

'H NMR (400 MHz, CDCl3) § (ppm): 8.03 (m, 2H, H16), 7.78 (t, J = 7.8, 1H, H12), 7.64
(dd, J=7.7,0.5, 1H, H13), 7.49 (m, 2H, H17), 7.43 (m, 1H, H18), 7.27 (d, J= 8.1, 1H, H11),
5.62 (bs, 1H, OH), 2.01 (m, 1H, HS4), 1.91 (m, 1H, Hdeg), 1.58-1.83 (m, 4H, H24x, H34x, H3eq
and H6.g), 1.38 (dd, J = 12.5, 12.5, 1H, H64y), 1.28 (hept d,J=7.0, 1.7, 1H, H7), 1.07 (dq, J =
12.5, 3.8, 1H, H34), 0.91 (d, J = 6.6, 3H, H9), 0.85 (d, J = 6.8, 3H, H8), 0.69 (d, J = 7.0, 3H,
HS).
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"H NMR was in accordance with previously reported data.[*?]

(1S,2S,5R)-1-(6-(3,5-Dimethoxyphenyl)pyridin-2-yl)-2-isopropyl-5-methylcyclohexan-1-ol
(15b): Following general procedure E, 2-bromopyridine 12a (100.1 mg, 0.320 mmol) was
reacted with (3,5-dimethoxyphenyl)boronic acid (16b) (115.4 mg, 0.640 mmol) in the presence
of catalytic Pd(PPh3)s4 (19.0 mg, 0.016 mmol) and K>CO3 (136.0 mg, 0.984 mmol) to give 2,6-
disubstituted pyridine 15b (103.1 mg, 87 %) after workup and purification (1:25
EtOAc:pentane) as a colourless oil.

'H NMR (600 MHz, CDCI3) & (ppm): 7.77 (t, J= 7.8, 1H, H12), 7.60 (d, J="7.7, 1H, H13),
7.28 (d,J=7.8, 1H, H11), 7.19 (d, J= 2.3, 2H, H16), 6.54 (t, J= 2.3, 1H, H18), 5.58 (bs, 1H,
OH), 3.87 (s, 6H, H19), 2.00 (m, 1H, H54), 1.91 (m, 1H, Hdey), 1.74 (qd, J = 12.8, 3.4, 1H,
H34x), 1.58-1.70 (m, 3H, H24x, H3eq and Héeg), 1.38 (t, J = 12.6, 1H, H64y), 1.27 (hept d, J =
6.9, 1.9, 1H, H7), 1.07 (qd, J = 12.7, 3.7, 1, H4ay), 0.91 (d, J = 6.6, 3H, H9), 0.84 (d, J = 6.8,
3H, H8), 0.69 (d, J = 7.0, 1H, HS).

13C NMR (150 MHz, CDCls) § (ppm): 165.0 (C10), 161.2 (C17), 154.2 (C14), 140.9 (C15),
137.8 (C12), 118.41 (C13), 118.04 (C11), 105.0 (C16), 101.3 (C18), 55.5 (C19), 50.71 (C6),
50.16 (C2), 35.4 (C4), 28.6 (C5), 27.5 (C7), 23.7 (C8), 22.43 (C9), 22.08 (C3), 18.6 (C8).

HRMS (ESI) calcd for C23H3NO3 [M+H]* 370.2382, obsd 370.2387.

15¢

(18,28,5R)-2-Isopropyl-5-methyl-1-(6-(thiophen-2-yl)pyridin-2-yl)cyclohexan-1-ol (15¢):
Following general procedure E, 2-bromopyridine 12a (50.7 mg, 0.160 mmol) was reacted with
(thiophene-2-yl)boronic acid (16¢) (33.6 mg, 0.240 mmol) in the presence of catalytic
Pd(PPh3)s4 (18.6 mg, 0.016 mmol) and K>COs (68.6 mg, 0.480 mmol) to give 2,6-disubstituted
pyridine 15¢ (44.1 mg, 87 %) after workup and purification (1:30 EtOAc:pentane) as a white
powder.

'H NMR (600 MHz, CDCls) § (ppm): 7.70 (t, J=7.8,1H, H12), 7.61 (d, J = 3.5, 1H, H16),
7.53 (d, J=7.7, 1H, H13), 7.39 (d, J= 5.0, 1H, H18), 7.18 (d, J= 7.8, 1, H11), 7.11 (dd, J =

73



6 Experimental

4.9,3.8, 1H, H17), 5.32 (bs, 1H, OH), 2.00 (m, 1H, H5), 1.90 (m, 1H, Hdeq), 1.74 (qd, J = 12.8,
3.4, 1H, H34,), 1.66 (dq, J = 13.0, 3.5, 1H, H3.q), 1.58-1.63 (m, 2H, H2 and Hée,), 1.36 (t, J =
12.6, 1H, H6yy), 1.28 (hept d, J = 6.9, 1.7, 1H, H7), 1.06 (qd, J = 12.6, 3.8, 1H, H4ay), 0.91 (d,
J=6.6,3H, H9), 0.84 (d, J= 6.8, 3H, HS), 0.69 (d, J = 7.0, 3H, HS).

13C NMR (150 MHz, CDCls) 8 (ppm): 165.2 (C10), 149.9 (C14), 144.5 (c15), 137.7 (C12),
128.0 (C17), 127.7 (C18), 124.7 (C16), 117.5 (C11), 116.4 (C13), 77.1 (C1), 50.6 (C6), 50.1
(C2), 35.3 (C4), 28.6 (C5), 27.6 (C7), 23.6 (C8), 22.4 (C9), 22.0 (C3), 18.5 (C8).

HRMS (ASAP) caled for C23H30NO3 [M+H]" 368.2226, obsd 368.2223.

15d

(IR,2R,4R)-1,7,7-Trimethyl-2-(6-phenylpyridin-2-yl)bicyclo[2.2. 1] heptan-2-ol (15d):
Following general procedure E, 2-bromopyridine 12b (100.0 mg, 0.322 mmol), was reacted
with phenylboronic acid (16a) (43.2 mg, 0.355 mmol) in the presence of catalytic Pd(PPhs3)4
formed in situ from Pd(OAc): (3.6 mg, 0.016 mmol), PPh; (25.4 mg, 0.097 mmol) and NEt;
(135 uL, 0.967 mmol) and K>CO3 (66.0 mg, 0.478 mmol) to give 2,6-disubstituted pyridine
15d (95.8 mg, 97 %) after workup and purification (DCM) as a white oil.

'"H NMR (600 MHz, CDCl3) & (ppm): 8.00 (m, 2H, H17), 7.70 (t, J = 7.8, 1H, H13), 7.61
(d,J=7.8, 1H, H14), 7.46 (m, 2H, H18), 7.61 (m, 1H, H19), 7.37 (d, J= 7.8, 1H, H12), 5.40
(s, 1H, OH), 2.35 (dt, J=14.1, 3.7, 1H, H6¢), 2.19 (d, J=14.0, 1H, H6.), 1.92 (t,J=4.4, 1H,
HS5), 1.82 (m, 1H, H4.q), 1.25-1.38 (m, 5H, H3eq, H4ax and H11), 0.86-0.96 (m, 7H, H3.x, H8
and H10).

"H NMR was in accordance with reported data.®*]

(IR,2R,4R)-2-(6-(3,5-Dimethoxyphenyl)pyridin-2-yl)- 1,7, 7-trimethylbicyclo[2.2. 1] heptan-
2-0l (15e): Following general procedure E, 2-bromopyridine 12b (50.1 mg, 0.161 mmol) was
reacted with (3,5-dimethoxyphenyl)boronic acid (16b) (53.9 mg, 0.296 mmol) in the presence
of catalytic Pd(PPh3)4 (9.9 mg, 0.009 mmol) and K>COs3 (66.0 mg, 0.478 mmol) to give 2,6-
disubstituted pyridine 15e (59.0 mg, 100 %) after workup and purification (1:10
EtOAc:pentane) as a colourless oil.
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"H NMR (600 MHz, CDCls3) § (ppm): 7.70 (t,J=7.8, 1H, H13), 7.58 (d, J=7.8, 1H, H14),
7.39(d,J=7.8, 1H, H12), 7.17 (d, J= 2.3, 2H, H17), 6.53 (t, J= 2.3, 1H, H19), 5.27 (s, 1H,
OH), 3.85 (s, 6H, H20), 2.34 (dt, J= 14.1, 3.8, 1H, H6¢q), 2.20 (d, J= 14.0, 1H, H6ax), 1.92 (t,
J =44, 1H, HS), 1.81 (m, 1H, H4ey), 1.24-1.37 (m, 5H, H3¢q, H4ax and H10), 0.85 (m, 7H,
H3.x, H7 and H9).

13C NMR (150 MHz, CDCl3) § (ppm): 163.2 (C11), 161.1 (C18), 154.5 (C15), 141.0 (C16),
136.6 (C13), 119.3 (C12), 118.5 (C14), 105.0 (C17), 101.1 (C19), 82.8 (C1), 55.4 (C20), 53.5
(C8), 50.5 (C2), 45.4 (C5), 44.1 (C6), 30.8 (C3), 27.0 (C4), 21.3 (C10), 21.2 (C9), 10.0 (C7).

HRMS (ASAP) calcd for C1oH26NOS [M+H]" 316.1735, obsd 316.1742.

15f

(IR,2R,4R)-1,7,7-Trimethyl-2-(6-(thiophen-2-yl)pyridin-2-yl)bicyclo[2.2. 1] heptan-2-ol
(15f): Following general procedure E, 2-bromopyridine 12b (50.0 mg, 0.161 mmol), was
reacted with (thiophene-2-yl)boronic acid (16¢) (22.7 mg, 0.177 mmol) in the presence of
catalytic Pd(PPh3)4 formed in situ from Pd(OAc) (1.8 mg, 0.008 mmol), PPh3 (12.7 mg, 0.048
mmol) and NEt; (68 L, 0.484 mmol), and K>CO; (68.0 mg, 0.492 mmol) to give 2,6-
disubstituted pyridine 15f (25.6 mg, 51 %) after workup and purification (1:10
acetone:pentane) as a colourless oil.

'H NMR (600 MHz, CDCls) 8 (ppm): 7.65 (t, J = 7.8, 1H, H13), 7.58 (dd, /= 3.7, 1.0, 1H,
H17), 7.53 (d, J = 7.8, 1H, H14), 7.38 (dd, J = 5.0, 1.0, 1H, H19), 7.30 (d, J = 7.8, 1H, H12),
7.10 (dd, J=5.0, 3.7, 1H, H18), 4.96 (s, IH, OH), 2.31 (dt, J = 14.1, 3.8, 1H, H6.y), 2.20 (d, J
= 14.0, 1H, H64y), 1.92 (t, J = 4.4, 1H, H5.,), 1.80 (m, 1H, Hdeg), 1.23-1.35 (m, 7H, H3eq, Hdax
and H10), 0.91 (s, 3H, H9), 0.89 (s, 3H, H7), 0.86 (m, 1H, H34).

13C NMR (150 MHz, CDCls) 8 (ppm): 163.4 (C11), 150.3 (C15), 144.9 (C16), 136.5 (C13),
128.0 (C18), 127.7 (C19), 124.4 (C17), 118.6 (C12), 116.5 (C14), 82.8 (C1), 53.5 (C8), 50.5
(C2), 45.4 (C5), 43.7 (C6), 30.8 (C3), 26.9 (C4), 21.3 (C10), 21.2 (C9), 9.8 (C7).

HRMS (ASAP) calcd for C19H24NOS [M+H]" 314.1579, obsd 314.582.
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(IR,2R,4R)-1,7,7-Trimethyl-2-(6-(1-methyl-1H-pyrrol-2-yl)pyridin-2-
vl)bicyclo[2.2.1] heptan-2-ol (15g): Following general procedure E, 2-bromopyridine 12b
(50.0 mg, 0.161 mmol), was reacted with 1-Methyl-2-pyrroleboronic acid pinacol ester (16d)
(72.4 mg, 0.350 mmol) in the presence of catalytic Pd(PPhs)s4 formed in situ from Pd(OAc)
(3.8 mg, 0.0017 mmol), PPhs (25.9 mg, 0.099 mmol) and NEt; (68 uL, 0.484 mmol), and
K>COs (136.5 mg, 0.988 mmol) to give 2,6-disubstituted pyridine 15g (20.8 mg, 41 %) after
workup and purification (1:1 DCM:pentane) as an orange oil.

'H NMR (600 MHz, CDCl3) 8 (ppm): 7.63 (t, J= 7.9, 1H, H13), 7.45 (dd, J= 7.9, 0.6, 1H,
H14), 7.23 (d, J= 7.8, 1H, HI2), 6.73 (t, J = 2.2, 1H, H19), 6.62 (dd, J = 3.8, 1.8, 1H, H17),
6.18 (dd, J = 3.7, 2.6, 1H, H18), 5.30 (s, 1H, OH), 4.00 (s, 3H, H20), 2.33 (dt, J = 14.1, 3.8,
1H, H6eq), 2.13 (d, J = 14.1, 1H, H6a), 1.92 (t, J=4.4, 1H, H5), 1.82 (m, 1H, H4.y), 1.28-1.36
(m, 2H, H3eq and Hday), 1.27 (s, 3H, H10), 1.00 (m, 1H, H3ay), 0.92 (s, 3H, H9), 0.83 (s, 3H,
H7).

13C NMR (150 MHz, CDCls) & (ppm): 162.3 (C11), 150.4 (C15), 136.2 (C13), 131.8 (C16),
126.7 (C19), 119.4 (C14), 117.4 (C12), 111.3 (C17), 107.8 (C18), 83.1 (C1), 53.5 (C8), 50.6
(C2), 45.4 (C5), 44.6 (C6), 37.6 (C20), 30.7 (C3), 27.1 (C4), 21.4 (C10), 21.2 (C9), 10.3 (C7).

HRMS (ASAP) calcd for CaoHa7N>O [M+H]* 311.2123, obsd 311.2127.

6.6.2 Synthesis of 2,6-disubstituted pyridine 15h
~_—
N H
- Os_~_ nBuLi
| N Br _— >
N DEE, -80 °C
17 14a 15h

(1S,2S,5R)-1-((2,2"-Bipyridin)-6-yl)-2-isopropyl-5-methylcyclohexan-1-ol ~ (15h):  6-
Bromo-2,2’-bipyridine (17) (497.2 mg, 2.115 mmol) was dissolved in dry DEE and cooled to
-80 °C. nBuLi (850 uL, 2.5M in hexane, 2.125 mmol) was added dropwise and the solution
stirred until it reached -40 °C before being cooled back to -80 °C. (-)-Menthone (14a) (367uL,
2.379 mmol) diluted in DEE (1 mL) was added dropwise, and the solution was stirred overnight
and allowed to warm to r.t. The solution was quenched with sat. NH4CI (25 mL), extracted into
DCM (3x20 mL), washed with brine (20 mL), dried over Na,SO4. Removal of the solvent in
vacuo and purification by flash column chromatography (1:15 NEts:petroleum ether) and
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product recrystallised from ACN by dropwise addition of water, yielding product 15h (150.5
mg, 23 %) as white crystals.

'H NMR (600 MHz, CDCls) & (ppm): 8.69 (dm, J = 4.7, 1H, H19), 8.41 (d, J = 8.0, 1H,
H16), 8.33 (d, J= 7.7, 1H, H13), 7.85 (t, J = 7.8, 1H, H12), 7.83 (td, J = 11.5, 1.8, 1H, H17),
7.37(d,J=17.8, 1H, H11), 7.32 (ddd, J = 7.4, 4.8, 0.9, 1H, H18), 5.42 (bs, IH, OH), 2.01 (m,
1H, H54), 1.92 (m, 1H, Héey), 1.76 (qd, J = 12.9, 3.4, 1H, H3a), 1.65-1.71 (m, 2H, H24 and
H3e), 1.62 (ddd, J=13.1, 3.2, 2.5, 1H, H6ey), 1.40 (t, J= 12.6, 1H, H64y), 1.28 (hept d, J= 6.9,
1.5, 1H, H7), 1.08 (qd, J = 12.6, 3.6, 1H, H4y), 0.92 (d, J = 6.8, 3H, H9), 0.84 (d, /= 6.8, 3H,
H8), 0.69 (d, J = 7.0, 1H, HS).

ISN'NMR (60.8 MHz, d3-ACN) & (ppm): -72.4 (between C15 and C19), -92.4 (between C10
and C14).

IR (thin film, cm™): 3369, 2946, 2915, 2840, 1563, 1429, 1387, 1048, 777, 496.

'H NMR was in accordance with literature data.®?!

6.6.3 Synthesis of chiral 2,6-disubstituted pyridine methyl ethers, 12b-OMe and
15b,d,e,h-OMe

General procedure F

X X
| OH NaH, Mel | OMe
7 1 EE—— = 1
R® N R THF, r.t. R® 'N° 'R
R R*
12b Br Isoborneol 12b-OMe
15b  3,5-diOMePh  Neomenthol 15b-OMe
15h Py Neomenthol 15h-OMe

To a solution of pyridine alcohol 15 or 12b (1 equiv.), in dry THF, under a N>-atmosphere,
was added NaH (10 equiv.) and the solution is stirred for 30 mins. Mel (12 equiv.) was added
and the solution stirred until completion as determined by TLC (3 hrs — 2 dys). NaOH (1M, 10
mL) was added and the solution stirred for 30 mins. The solution was extracted into DCM,
washed with NaOH (1M) and brine, and dried over Na;SO4. Removal of solvent in vacuo
yielded the methylated derivatives 15-OMe or 12b-OMe without the need for further
purification.

12b-OMe

2-Bromo-6-((1R,2R,4R)-2-methoxy-1,7, 7-trimethylbicyclo[2.2. 1| heptan-2-yl)pyridine
(12b-OMe): Following general procedure F, pyridine alcohol 12b (187.6 mg, 0.605 mmol)
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was treated with NaH (145.4 mg, 6.047 mmol) and reacted with Mel (451.7 uL, 7.256 mmol),
yielding pure 12b-OMe (189.6 mg, 97%) as colourless oil after workup.

'H NMR (600 MHz, CDCl3) 8 (ppm): 7.51 (t, J= 7.6, 1H, H14), 7.47 (dd, J= 7.7, 0.7, 1H,
H13), 7.34 (dd, J= 7.6, 0.8, 1H, H15), 2.87 (s, 3H, H7), 2.65 (d, J= 13.1, 1H, H64y), 2.11 (ddd,
J=13.1,4.2, 3.2, 1H, H6ey), 1.86 (t, J=4.5, IH, H5), 1.61 (ddddd, J=12.1, 11.8, 4.5, 3.7, 3.2,
1H, Hdey), 1.47 (ddd, J=12.1, 9.1, 5.1, 1H, Hdyy), 1.11 (s, 3H, H11), 1.10 (ddd, J = 13.3, 11.8,
5.2, 1H, H3ey), 0.87 (s, 6H, H8 and H10), 0.41 (ddd, J = 13.2, 9.4, 3.7, 1H, H34).

13C NMR (150 MHz, CDCls) 8 (ppm): 164.4 (C12), 140.2 (C16), 138.0 (C14), 12.58 (C15),
121.3 (C13), 90.5 (C1), 54.7 (C9), 50.8 (C2), 49.5 (C7), 45.7 (C5), 34.9 (C6), 31.1 (C3), 25.7
(C4), 21.02 and 20.96 (C10 and C11), 9.9 (C8).

HRMS (ESI) calcd for CisHi9NBr [M-OMe]" 292.0701, obsd 292.0706.

15b-OMe

2-(3,5-Dimethoxyphenyl)-6-((18S,2S,5R)-2-isopropyl-1-methoxy-5-
methylcyclohexyl)pyridine (15b-OMe): Following general procedure F, pyridine alcohol 15b
(53.1 mg, 0.144 mmol) was treated with NaH (33.0 mg, 1.374 mmol) and reacted with Mel
(101.1 uL, 1.624 mmol), yielding pure 15b-OMe (55.5 mg, 100 %) as a yellow oil after workup.

'H NMR (600 MHz, CDCls) § (ppm): 7.68 (t, J = 7.8, 1H, H13), 7.52 (dd, J=7.8, 0.7, 1H,
H14), 7.37 (dd, J= 7.8, 0.7, 1H, HI2), 7.23 (d, J = 2.3, 2H, H17), 6.52 (t, J = 2.3, 1H, H19),
3.87 (s, 6H, H20), 3.24 (s, 3H, H7), 2.18 (dd, J = 14.6, 12.7, 1H, H64), 2.00 (dt, J = 14.6, 2.6,
1H, Héeq), 1.86 (dm, J = 12.7, 1H, Hde,), 1.65-1.76 (m, 2H, H5 and H3.y), 1.52-1.62 (m, 2H,
H2 and H3.y), 1.39 (hept d, J = 13.8, 1.7, 1H, HS), 1.08 (qd, J = 12.7, 3.6, 1H, H4,), 0.97 (d,
J= 6.6, 3H, H10), 0.90 (d, J = 6.8, 3H, H9), 0.58 (d, J = 7.0, 3H, H9).

13C NMR (150 MHz, CDCls) 8 (ppm): 163.7 (C11), 161.1 (C18), 156.1 (C15), 142.0 (C16),
135.8 (C13), 120.1 (C12), 117.8 (C14), 105.2 (C17), 100.5 (C19), 85.1 (C1), 55.4 (C20), 51.6
(C2), 50.3 (C7), 40.0 (C6), 35.4 (C4), 28.0 (C5), 26.6 (C8), 23.6 (C9), 22.6 (C10), 21.2 (C3),
18.2 (C9).

HRMS (ASAP) calcd for C24H33NO3 [M+H]" 384.2539, obsd 384.2542.
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15d-OMe

2-((IR,2R,4R)-2-Methoxy-1,7,7-trimethylbicyclo[2.2. 1 | heptan-2-yl)-6-phenylpyridine
(15d-OMe): Following general procedure E, 2-bromopyridine 12b-OMe (50.0 mg, 0.154
mmol) was reacted with phenylboronic acid (16a) (19.2 mg, 0.157 mmol) in the presence of
catalytic Pd(PPhs)s (18.4 mg, 0.016 mmol) and K>»COs (70.0 mg, 0.507 mmol). Workup and
purification (1:24 EtOAc:pentane) yielded pure chiral 2,6-disubstituted pyridine methyl ether
15d-OMe (24.1 mg, 49 %) as a pale yellow oil.

'H NMR (600 MHz, CDCls) 8 (ppm): 8.11 (m, 2H, H18), 7.72 (t, J = 7.8, 1H, H14), 7.64
(dd, J=7.7,0.8, 1H, H15), 7.44-7.50 (m, 3H, H19 and H13), 7.39 (m, 1H, H20), 2.97 (d, J =
13.0, 1H, H64), 2.91 (s, 3H, H7), 2.16 (ddd, J = 13.0, 4.4, 2.9, 1H, H6.y), 1.91 (t, J = 4.4, 1H,
H5), 1.56-1.69 (m, 2H, H4., and Hdey), 1.17 (s, 3H, H11), 1.09 (ddd, J = 13.3, 11.6, 5.4, 1H,
H3eq), 0.93 (s, 3H, H8), 0.90 (s, 3H, H10), 0.55 (ddd, J = 13.1, 9.1, 3.9, 1H, H34).

13C NMR (150 MHz, CDCls) 8 (ppm): 161.9 (C12), 154.4 (C16), 139.7 (C17), 136.4 (C14),
128.7 (C20), 128.6 (C19), 126.7 (C18), 121.0 (C13), 117.8 (C15), 91.1 (C1), 54.4 (C9), 50.8
(C2), 49.5 (C7), 46.0 (C5), 34.9 (C6), 31.1 (C3), 26.3 (C4), 21.13 and 21.09 (C10 and C11),
10.1 (C8).

HRMS (ESI) caled for C2oHosNO [M+H]" 322.2171, obsd 322.2174.

15e-OMe

2-(3,5-Dimethoxyphenyl)-6-((1R,2R,4R)-2-methoxy- 1,7, 7-trimethylbicyclo[2.2. 1] heptan-
2-yl)pyridine (15e-OMe): Following general procedure E, 2-bromopyridine 12b-OMe (50.4
mg, 0.155 mmol) was reacted with (3,5-dimethoxyphenyl)boronic acid (16b) (55.8 mg, 0.308
mmol) in the presence of catalytic Pd(PPh3)s (10.0 mg, 0.086 mmol) and K>CO3 (59.3 mg,
0.429 mmol). Workup and purification (1:30 EtOAc:pentane) yielded pure chiral 2,6-
disubstituted pyridine methyl ether 15e-OMe (59.0 mg, 100 %) as a pale colourless oil.

'H NMR (600 MHz, CDCls) 8 (ppm): 7.71 (t, J = 7.8, 1H, H14), 7.60 (dd, J= 7.7, 0.6, 1H,
H15), 7.47 (dd, J = 7.8, 0.6, 1H, H13), 7.30 (d, J = 2.3, 2H, HI8), 6.52 (t, J = 2.3, 1H, H20),
3.87 (s, 6H, H21), 2.92 (d, J = 12.9, 1H, H64x), 2.91 (s, 3H, H7), 2.17 (ddd, J = 13.0, 4.1, 3.0,
1H, H6eq), 1.90 (t, J = 4.4, 1H, HS), 1.66 (m, 1H, Hdey), 1.60 (m, 1H, Hdy), 1.17 (s, 3H, H11),
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1.09 (ddd, J = 13.1, 11.7, 5.2, 1H, H3eq), 0.92 (s, 3H, HS), 0.89 (s, 3H, H10), 0.57 (ddd, J =
13.1,9.2, 3.7, 1H, H34).

13C NMR (150 MHz, CDCls) 8 (ppm): 161.8 (C12), 161.1 (C19), 154.1 (C16), 141.8 (C17),
136.4 (C14), 121.4 (C13), 118.0 (C15), 104.9 (C18), 100.8 (C20), 91.1 (C1), 55.4 (C21), 54.4
(C2), 50.8 (C9), 49.5 (C7), 46.0 (C5), 35.0 (C6), 31.1 (C3), 26.3 (C4), 21.12 (C10), 21.09
(C11), 10.1 (C8).

HRMS (ASAP) caled for C24H32NO3 M+H 382.2382, obsd 382.2387.

15h-OMe

6-((1S,2S,5R)-2-Isopropyl-1-methoxy-5-methylcyclohexyl)-2,2"-bipyridine =~ (15h-OMe):
Following general procedure F, pyridine alcohol 15h (49.8 mg, 0.160 mmol) was treated with
NaH (39.1 mg, 1.629 mmol) and reacted with Mel (120.3 uL, 1.933 mmol) yielding pure 15h-
OMe (52.1 mg, 100 %) as a yellow oil after workup.

'HNMR (600 MHz, CDCls) 8 (ppm): 8.66 (d, J=4.7, 1H, H20), 8.46 (d, /= 8.0, 1H, H17),
8.25(d, J=7.8, 1H, H14), 7.81 (td, J= 7.7, 1.7, 1H, HIS), 7.77 (t, J = 7.8, 1H, H13), 7.45 (d,
J=17.7, 1H, H12), 7.27 (dd, J = 6.6, 4.9, 1H, H19), 3.25 (s, 3H, H7), 2.18 (dd, J = 14.4, 12.8,
1H, H64y), 2.02 (dt, J = 14.6, 2.5, 1H, H6.y), 1.88 (dt, J = 12.6, 2.5, 1H, Hdey), 1.67-1.79 (m,
2H, H3 and H5), 1.53-1.61 (m, 2H, H2 and H3), 1.40 (hept d, J = 6.9, 1.0, 1H, HS), 1.13 (qd,
J=12.5,3.6, 1H, Hdy), 1.00 (d, J = 6.6, 3H, H10), 0.91 (d, J = 6.9, 3H, H9), 0.57 (d, J = 7.0,
3H, HY).

13C NMR (150 MHz, CDCls) § (ppm): 163.3 (C11), 156.7 (C16), 155.5 (C15), 149.0 (C20),
136.8 (C18), 136.1 (C13), 123.4 (C19), 121.5 (C12), 121.1 (C17), 118.2 (C14), 85.1 (C1), 51.8
(C2), 50.3 (C7), 40.0 (C6), 35.4 (C4), 28.0 (C5), 26.5 (C8), 23.6 (CY), 22.6 (C10), 21.3 (C3),
18.2 (C9).

HRMS (ASAP) calcd for C21H29N20 [M+H]" 325.2280, obsd 325.2286.

6.7 Synthesis of Au(IIT) complexes
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Box-Ph-Au(1ll)-SbF s (XIII): (4R,4'R)-2,2'-(propane-2,2-diyl)bis(4-phenyl-4,5-
dihydrooxazole) (18) (21.0 mg, 0.063 mmol) was mixed with KAuCls (VII) (24.9 mg, 0.066
mmol) and AgSbFs (45.0 mg, 0.132 mmol) in ACN (2 mL). After 1.5 hrs, the solution was
filtered through celite and solvent removed in vacuo, yielding the product XIII (48.1 mg, 96 %)
as a yellow powder.

'H NMR (400 MHz, d5-ACN) & (ppm): 7.40-7.51 (m, 6H), 7.30-7.37 (m, 4H), 6.05 (dd, J
= 10.0, 4.7, 2H), 5.18 (dd, J= 9.9, 9.4, 2H), 4.73 (dd, J = 9.3, 4.8, 2H), 2.03 (s, 6H).

"H NMR was in accordance with previously reported data.[?!]

Au(IIl)-15h-NTf

Chiral bipyridine alcohol ligand 15h (5.1 mg, 0.016 mmol) was stirred with KAuCls (VII)
(8.0 mg, 0.021 mmol) in ACN (0.5 mL) and KOAc (5.1 mg, 0.052 mmol) in H2O (0.3 mL).
AgNTf (8.3 mg, 0.021 mmol) in ACN (0.4 mL) was added and the solution stirred for 1.5 hrs.
H>O (1 mL) was added and the solution extracted with DCM (3x1 mL) without inclusion of
AgCl precipitate. Removal of solvent in vacuo yielded pure Au(Ill)-15h-NTf> (13.5 mg,
100 %).

'H NMR (600 MHz, d3-ACN) & (ppm): 9.05 (d, J = 5.6, 1H, H19), 8.54 (td, J = 7.9, 1.4,
1H, H17), 8.49 (t, J = 8.1, 1H, H12), 8.47 (d, J = 8.1, 1H, H16), 8.33 (d, J = 8.1, 1H, HI3),
8.02 (ddd, J = 7.9, 5.9, 1.6, 1H, H18), 7.71 (d, J= 8.2, IH, H11), 2.11 (m, 1H, H6q), 1.90 (m,
1H, H54), 1.84 (m, 1H, Hde,), 1.80 (ddd, J= 12.4, 4.1, 1.8, 1H, H24y), 1.57-1.72 (m, 3H, H3,,
H3cq and H7), 1.48 (dd, J = 12.7, 12.7, 1H, H64y), 1.08 (qd, J = 12.3, 4.1, 1H, H4ay), 1.05 (d, J
= 6.8, 3H, HS), 0.93 (d, J = 6.7, 3H, H9), 0.85 (d, J = 6.9, 3H, H8).

13C NMR (150 MHz, d3-ACN) & (ppm): 177.0 (C10), 158.8 (C15), 151.9 (C14), 149.8
(C19), 145.8 (C17), 145.7 (C12), 131.3 (C18), 127.5 (C16), 126.9 (C11), 124.9 (C13), 120.9
(q, J = 320.6, CF3), 105.5 (C1), 51.8 (C6), 51.3 (C2), 34.7 (C4), 30.0 (C7), 28.7 (C5), 23.7
(C8), 22.1 (C9), 21.3 (C3), 19.9 (C8).

SN NMR (60.8 MHz, d3-ACN) & (ppm): -142.7 (between C10 and C14), -152.6 (between
C15 and C19).

IR (thin film, cm™): 3086, 2954, 2870, 1602, 1492, 1347, 1180, 1131, 1053, 775, 614, 570.
HRMS (ESI) calced for C2oH2sN2OCIAu M™ 541.1321, obsd 541.1326.
HRMS (ESI-) caled for C2NO4FsS2 M™279.9173, obsd 279.9177.
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Appendix A DFT Calculations for Different Conformations of Allenes
3a and 3f

A crude structure optimization of allene 3f was performed in Avogadrol'®! with UFF force
field, before further refining the equilibrium structure with restricted Hartree-Fock (RHF) in
the STO-3G basis set using the PySCF software package.!''” From this structure (Figure 20a),
structures with rotated dihedral angles of the aryls were generated.

a) b)

Figure 20 — a) Optimized geometry of 3f (RHF in the STO-3G basis set). b) Labels of aryls and dihedral
angles.

The three dihedral angels shown in Figure 20b were simplified by recognizing that Ar? and
Ar® were close to perpendicular to each other (87.1 ©) in the optimized structure for 3f. It is
reasonable to assume that this close-to-perpendicular relationship would hold for different
angles of . That is, changing 3 by a small amount, restricting rotation about that bond, and
optimizing the geometry is assumed to enforce a similar rotation about y such that the angle
between Ar?> and Ar’ remains close to 90 °. This allows for reducing the number of free
variables to only two by generating structures according to a = [0,30,...,150], 8 =
[0, 30, ...,150] and y = B + 90, where (a,f) = (0,0) is defined as the optimized geometry. By
setting Ar? to be perpendicular to Ar? in all cases, y is no longer a free variable and can be
omitted. Due to symmetry of each ring, an angle of 180 ° is equivalent to 0 ° and can also be
disregarded. An interval of 30 ° can be too large to get a sufficient phase diagram, but was
chosen as a compromise to computational time in this case. From the optimized geometry (a,f3)
=(0,0), Avogadro’s Bond Centric Manipulation Tool allows for bond rotation by a set amount
(here 30 °), and in this way all 36 structures were manually generated.

With all structures of 3f in hand, a second set was generated by removing the methyl-groups
of Ar!, and thereby generating the exact equivalent 36 structures for the reference structure 3a.

From the resulting 72 structures, the energy of each molecule was calculated in PySCF
using (Kohn-Sham) Density Functional Theory (DFT) in the cc-pVDZ basis set and B3LYP as
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the exchange correlation functional. No literature search was done to see if this was a good
choice of basis set/exchange correlation functional for allenes. The resulting energies for 3a
and 3f are shown in Table 8 and Table 9, respectively. The average time taken for each
calculation was 388.1 and 554.6 seconds per conformation for 3a and 3f, respectively.

Table 8 — Relative energies (Eq g — Emin, [Ha]) of different conformations of allene 3a, colour-coded from
green (low energy) to red (high energy).

a\f 0 30 60 90 120 150 180
o 0.0031 0.0155 0.0592 0.0694 0.0317 0.0045 0.0031
30 0.0063 0.0186 0.0624 0.0609 0.0208 0.0068 0.0063
60 | 0.0058 0.0176 0.0591 0.0552 0.0152 0.0056 0.0058
90 | 0.0022 0.0146 0.0552 0.0508 0.0114 0.0020 0.0022
120 | 0.0000 0.0121 0.0532 0.0497 0.0118 0.0018 0.0000
150 | 0.0008 0.0128 0.0544 0.0602 0.0436 0.0183 0.0008
180 | 0.0031 0.0155 0.0592 0.0694 0.0317 0.0045 0.0031

Table 9 — Relative energies (Eq g — Emin, [Ha]) of different conformations of allene 3f, colour-coded from
green (low energy) to red (high energy).

a\f 0 30 60 90 120 150 180
0 0.0000 0.0126 0.1759 0.6712 0.4820 0.0438 0.0000
30 | 0.0055 0.3155 0.1059 0.1770 0.0404 0.0042 0.0055
60 ~ 0.0317 0.0331 0.0636 0.0573 0.0130 0.0066 0.0317
90 0.0300 0.0465 0.0671 0.0566 0.0167 0.0097 0.0300
120 = 0.0210 0.0350 0.0694 0.0701 0.0869 0.1244 0.0210
150 | 0.0137 0.0183 0.0716 0.7727 2.0917 0.2238 0.0137
180 | 0.0000 0.0126 0.1759 0.6712 0.4820 0.0438 0.0000

For allene 3a, the calculations show that there is almost unhindered rotation of the Ar!, as
seen by minor variations (few m « is changed. Change of 8, however, has a larger impact and
shows a fluctuation of up to 66 mHa, almost independent of a. Since NMR signals are
representations of the average structure in solution, free rotation about a dihedral angle means
the symmetric (average) structure will be seen. Likewise, hindered rotation a about dihedral
angle means it will occupy only a selection of substructures and not necessarily show symmetry.
Since allene 3a is NMR-symmetric for all aryls, this would mean that a barrier of 66 mHa is
low enough to still allow for free rotation. It should however be noted that any solvent effects
that might be present in solution are not accounted for in these calculations. The two structures
of 3a(a,f) = 3a(0,0) and 3a(0,90), which correspond to the largest difference in energy by
change of 8, are shown in Figure 21. For 3a, only one local minimum was found, namely
3a(120,0).

Allene 3f indeed shows a difference in conformational energies. Most notable is the spike
at 3f(a,B) = 3£(150,120), which corresponds to the greatest proximity of the o-methyls of Ar!
and Ar. This energy-spike is exaggerated, as the structure corresponds to an atomic overlap of
two hydrogens (see Figure 21); a lower energy should be found by rotation of the methyl groups
so that hydrogens are intertwined rather than overlapping. Still, a significantly increased
relative energy due to steric proximity is expected, and as these calculations aim to qualitatively
investigate minima/maxima only, the results were left as is. Similar to 3a, changing £ has the
largest impact on the energy. Moreover, change of @ now has a larger impact than for 3a, but
still low enough to allow for free rotation (less than 66 mHa). Within the range of @ = 60-90
there is little barrier of rotation of f, but any other value of @ shows increased shows
destabilisation. This indicates not all structures are equally likely to exist in solution, and can

II
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be used as a plausible explanation for the observed broadening of signals in NMR spectra of
3f (see Figure 12, section 3.2.3.1).

It is clear from this that the introduction of methyls in the ortho positions of Ar! creates
steric restraints and elevated energy barriers of rotation of the ring(s). This energy barrier of
rotation of Ar! is increased to the point where free rotation is no longer permitted for certain
positions of Ar’(/Ar?), and its fluctuating orientation in solution can be seen by NMR
spectroscopy. Change of temperature can control the rate of fluctuation by overcoming the
increased energy barrier imposed by the extra methyls. That is, cooling of the solution to T <
270K freezes rotation of Ar?® thereby causing desymmetrization and splitting of NMR signals.
Heating to T > 310K allows for increased rotation of Ar3 thereby coalescing the signals to one
peak (the average structure). In the cases investigated here, Ar' shows sufficiently low energy
barrier of rotation that cooling to T = 263K was not sufficiently cold to cause desymmetrization
due to its lower energy barrier of rotation.

3a(0,0) 3a(0,90)

overlap

3£(150,120)

Figure 21 — Selected conformations of 3a and 3f
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PI,N,I\(IIN-Au(III) complexes with tetradentate cyclam based
igands.

Ann Christin Reiersglmoen, Thomas N. Solvi and Anne Fiksdahl*

Abstract  Chiral cyclam (1,4,8,11-tetraazacyclotetradecane)
derivatives were synthesized stepwise from chiral mono-boc-1,2-
diamines and (dialkyl)malonyl dichloride via the open diamide-di-(N-
Boc-amino) intermediates (65-91%). Deprotection and ring closure
with a second malonyl unit afforded the cyclam tetraamide precursors
(80-95%). The new protocol allowed preparation of the target cyclam
derivatives (53-59%) by a final optimized hydride reduction. Both the
open tetraamine intermediates and the cyclam derivatives
successfully coordinated with AuCl; to give moderate to excellent
yields (50-96%) of the corresponding novel tetracoordinated N,N,N,N-
Au(lll) complexes with alternating five- and six-membered chelate
rings. Testing of catalytic ability of the cyclam based N,N,N,N-Au(lll)
complexes demonstrated high catalytic activity of some complexes in
selected test reactions (full conversion in 1-24h, 62-97% product
yields).

Introduction

The importance of gold for humankind dates long back, and gold
is linked to the evolution of many parts of the society. Contrary to
the general fascination and importance of gold, the potential as
homogenous catalyst has been neglected, compared to a range
of other transition metals. The utilization of gold in synthetic
organic chemistry has become a topic of interest during the last
decades, as evidenced by the increasing number of review
articles published in this period.™! Whereas both gold(l) and
gold(lll) are proven to be catalytic active forms of gold, gold(l) has
so far, received main attention, likely due to the higher stability,
as demonstrated by development of a high number of gold(l)
catalyzed transformation and ligated gold(l) complexes, along
with improved mechanistic understanding.!? In contrast, gold(IIl)
catalysis were for a long time mostly based on inorganic salts,
such as AuCls, AuBr3, or pyridine-AuClz and Pic-AuCls. However,
Au(lll) complexes with various coordinated ligands are about to
become more explored. Different from the linear coordination
mode of gold(l), gold(lll) forms square planar complexes. This
allows for greater steric control around the reaction center by
using polydentate ligands. An interesting group of ligands which
may coordinate to all the four coordination sites of gold(lll), are
represented by polyamine ligands, such as cyclam (1,4,8,11-
tetraazacyclotetradecane), cyclen (1,4,7,10-
tetraazacyclododecane)), ethylenediamine and
triethylenetetramine derivatives. Such polyamine coordinated
Au(lll) complexes have mainly been prepared for studies on
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Department of Chemistry
Norwegian University of Science and Technology
Hagskoleringen 5, 7491, Trondheim, Norway
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selective uptake of Au(lll) from water® or of X-ray crystal
structures,!* or for investigation of biological properties. Cyclam
is known as a tetramino-macrocyclic ligand, which binds strongly
to give complexes with many transition metal cations. While
catalytic applications of square planar cyclam complexes are
reported for metals, such as Ni,® Cu,l"' Fel®), catalytic properties
of cyclam coordinated gold(lll) complexes are not known. Inspired
by the tetracoordinated gold(lll) complexes developed for
biological purposes, we wanted to develop new chiral cyclam
coordinated gold(lll) complexes. We hereby presentthe synthesis
of chiral cyclam ligands and related polyamino compounds, ligand
coordination to Au(lll), as well as testing of catalytic properties of
the successfully obtained Au(lll) complexes.

Results and Discussion

Synthesis of potential ligands:

Chiral cyclam derivatives have previously been directly
synthesized from (1R, 2R)-cyclohexane-1,2-diamine (A) and
malonyl dichloride,® giving 36% yield of the wanted cyclam
tetraamide product  2a with dimethylmalonyl dichloride.
Additionally, a macrocyclic by-product (14%) was formed by
condensation of three units of diamine A and malonyl dichloride.
To inhibit the formation of the trimer, we decided to prepare the
cyclams in an indirect way. In fact, increased yields of cyclam
derivative 2a (68% yield over three steps) were obtained by
malonyl reaction of the mono-boc-protected diamine (A-boc)
followed by boc-deprotection with HCI, and final ring closure of
diamide-diamine intermediate 1a with one malonyl unit to give
tetraamide product 2a (Scheme 1la). The equivalent ethyl-
substituted cyclam 4a was prepared in comparable yield (63%
over the three steps) by the same method with diethylmalonyl

a) R R R R
o o
NH;
L4 NH HN,, 4 &4 NH HN,,
-BOE T NEl, THF, ! NEI, THF, .
N rt, 1h "NHH N rt, ih NH HN
2. HCI, MeOH, ;\Kg
A-boc rt.3h R: Me, 1a, 77% yield © s o
Et, 3a, 6% yisid
e R: Me, 2a, 80% yield
EL, 4a, 95% yield
b)
1 :
R
o o
[¢] 0 T -
amines R'-H; Cl_ci Pha_ NH NHO L NH L WM
 boc, C- NEL, THF, R R
B-boc, C-E 3 _Ph
., th 1b-e PH" "NH, ( HO'
2 for 1b: Bh
TFA. 15 min b 1c 1d 1o
|vield:  78% 85% 91% 76%
c)
oh
"
Ph._.NH; Ph._,NH HN,, _Ph Ph O HN
c ¢ o L on
NEt; THF, j L o, =—(
Ph” TNH; PhTNHHNT PR 97 B o
B Pn/H‘N
o 0 L)
2b 2
65% yield 8% yield

Scheme 1. Synthetic protocols for preparation of potential ligands 1-4.
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chloride. This method also allowed for isolation of the open
diamide-diamine 1a (77%). In addition, the similar potential
ligands 1b-e (65-91%, Scheme 1b) were likewise prepared from
amines B-E. The phenyl-substituted cyclam tetramide derivative
2b was prepared by the original direct method® (65%, Scheme
1c), as the mono-boc amine B-boc was less accessible.

As amide coordination to Au(lll) in general, is challenging,
and notsuccessful in our hands, as discussed below, we wanted
to prepare the reduced amine products (5a-b, 6a-b) from amides
1a-b and 2a-b. Initially, by refluxing diamide-diamines 1la-b and
cyclam amide precursors 2a-b in THF with LiAlH, for 3 days,®
complex product mixtures of partly and fully reduces species were
obtained for all besides 2a. In order to activate the amides for
reduction, improved reaction conditions were obtained by adding
AICI3to the reactions. Complete reduction of polyamides 1a-b and
2a-b yielded the open tetraamine products 5a-b and the target
cyclams 6a-b with four secondary amine functions in moderate to
high yields (30-88%, Scheme 2) within 1 - 2 days.

O,NH HNI: Phim,,(%
“NHoH,N Ph Ph

NH HN™

5a, 88% yield 5b, 30% yield
tab  AICI LIAH,
2a-b THF, reflux %
O’NH HN:C PHINH HNIPh
“NH HN P w Fh
R R
6a, 53% yield 6b, 59% yield

Scheme 2. Reduction of diamides 1a-b and tetraamides 2a-b.

Au(lll) coordination studies:

Amide coordinated Au(lll) complexes has so far scarcely been
reported.% This is likely a resultof the electron deficient character
of the amide nitrogens. Coordination was initially tested with the
cyclam tetraamide derivatives 2a-b and 4a. ] udged from 'H NMR,
these ligands showed no interaction with Au(lll), as expected.
Similar resistance to coordinate was observed for the open
diamide-diamines 1c-e. The phosphorus containing ligand 1c did
undergo phosphor oxidation. No effect was obtained by refluxing
or adding of additives, such as silver salts, NaOH or NH4PFs.

Given the previously reported coordinating studies of
unsubstituted cyclam, B2 % 50 the prepared new amine ligands
5a-b and 6a-b (Scheme 2) were used for Au(lll) coordination.
Both ligands 5a and 6a readily coordinated with AuCl;in methanol
and gave moderate to excellent yields of tetracoordinated 5a-
Au(ll) and 6a-Au(lll) N,N,N,N-complexes with alternating five- and
six-membered chelate rings (50% and 96%, respectively,
Scheme 3). NMR monitoring of the formation of complex 5a-
Au(lll) clearly indicated a tetra-nitrogen-coordinated complex, as
shown by the deshielding coordination effects A8*N porg 16.3 -
32.0 ppm for both primary and secondary amine nitrogens and
Ab'Hcoors 0.3-0.5 ppm for the neighboring N-CH and N-CH:
protons. Comparable effects, A&'Hcqo 0.3-0.6 ppm, were also

WILEY-VCH

observed for the corresponding CH and CH; neighboring protons
in complex 6a-Auf(lll). Further on, cyclam 6b readily coordinated
to AuCls in a mixture of dichloromethane and acetonitrile to obtain
sufficient solubility of cyclam 6b, allowing formation of 6b-Au(lll)
in 64% vyield (Scheme 3). The A8'H coordination shifts of 6b-
Au(lll) is similar to those discussed for 6a-Au(lll). Surprisingly,
tetramine 5b did not behave in a similar way as the other ligands,
instead giving a complex mixture, as judged by 'H NMR, when
attempted coordinated to Au(lll). Changing between the source of
Au(lll) and the solvents methanol, acetonitrile and
dichloromethane did not improve the outcome.

NN N N7 Ph
H, Hy Hy H
AuCl; i,
P 5a-Au(lll) Sb-Au(lll)
5a-b 50% Not formed
6a-b MeOH (for 5a/6a)

ACN/DCM (for 6b)

3cr
H, H

6a-Au(lll) 6b-Au(lll)
96% 64%

Scheme 3. Au(lll) coordination conditions for ligands 5a-b and
6a-b. Coordination of 5b was unsuccessful.

Catalytic activity:

The catalytic ability of the new Au(lll) complexes were
evaluated in two selected test reaction. High catalytic ability was
shown for novel N,N,N,N-Au(lll) complexes 5a and 6a in selected
test reactions (full conversion in 1-24h, 62-97% product yields).

Conclusion

A new stepwise procedure was developed for improved preparation
of chiral cyclam (1,4,8,11-tetraazacyclotetradecane) derivatives 6a-b
with cyclohexyl and a diphenyl-C2 bridge between the nitrogens,
respectively. Reaction of chiral mono-boc-1,2-diamines and
(dialkyl)malonyl dichloride gave the diamide-diamino intermediates
1a-b, 3a (66-78%) after deprotection. Final ring closure with a second
malonyl unit, afforded the cyclam tetraamides 2a ,4a (80-95%), while
the tetraamide cyclam 2b was directly synthesized in from
(dialkyl)malonyl dichloride and diamine B (65%). The fully reduced
open tetraamine products 5a-b (30-88%) as well as the target cyclam
derivatives 6a-b (53-59%) were obtained by optimized LiAlH,
reduction by AICk activation of polyamides 1la-b and 2a-b,
respectively. Successful AuCl; coordination of the open tetraamine
ligand 5a and the new cyclam derivatives 6a-b gave the
corresponding tetracoordinated N,N,N,N-Au(lll) cyclam 5a and 6a-b
complexes (50-96%) with alternating five- and six-membered chelate
rings. High catalytic ability was shown for novel N,N,N,N-Au(lll)
complexes 5a and 6a in selected test reactions (full conversion in 1-
24h, 62-97% product yields).
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HSQC NMR spectrum of Propargyl Alcohol 1b
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Appendix C.7 HRMS spectrum of Propargyl Alcohol 1b
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance =2.0 PPM / DBE: min =-50.0, max =50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Monoisotopic Mass, Even Electron lons

401 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-150 10B:0-3 0:0-10

2019-677 18 (0.380)AM2 (Ar,35000.0,0.00,0.00); Cm (18:29)

1: TOF MS ASAP +

4.36e+4007
100+ 2331328
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202.0782
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'"H NMR spectrum of Propargyl Alcohol 1¢
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13C NMR spectrum of Propargyl Alcohol 1¢
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COSY NMR spectrum of Propargyl Alcohol 1e
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HSQC NMR spectrum of Propargyl Alcohol 1e
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Appendix C.15 HRMS spectrum of Propargyl Alcohol 1e
OH
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance =1.0 PPM / DBE: min =-50.0, max =50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Monoisotopic Mass, Even Electron lons

401 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-150 10B:0-3 0:0-10

2019-676 40 (0.792) AM2 (Ar,35000.0,0.00,0.00); Cm (21:44)

1: TOF MS ASAP +

1.27e4008
100~ 233.1330
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Mass Calc. Mass mDa PPM DBE i-FIT  Norm  Conf(%) Formula
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Appendix C Spectra of Propargyl Alcohols, 1a-i

HSQC NMR spectrum of Propargyl Alcohol 1f
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Appendix C Spectra of Propargyl Alcohols, 1a-i

Appendix C.20 HMBC NMR spectrum of Propargyl Alcohol 1f
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Appendix C.21

OH

1f

Appendix C Spectra of Propargyl Alcohols, 1a-i

HRMS spectrum of Propargyl Alcohol 1f

O CF;

Elemental Composition Report Page 1
Single Mass Analysis
Tolerance =2.0 PPM / DBE: min =-50.0, max =50.0
Element prediction: Off
Number of isotope peaks used for i-FIT =3
Monoisotopic Mass, Odd Electron lons
747 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
C:0-100 H:0-150 0:0-10 F:0-6
2019-645 36 (0.724) AM2 (Ar,35000.0,0.00,0.00); Cm (33:36)
1:TOF MS ASAP +
4.05e4007

100— 301.1211

%,

302.1237
303.0993
202.0781 315 057 161220
270.0652 286.0963 i
48,
0 189.0702 ) | 510672 ) |r319-126"' ; B.1208 5451519 4001752
VAR AAAA) VAR AR LARAS RARAN LARR) RALAN RAMRY RALAY LAALS LARAN LALLE LARA) LA RALAN LMY RAAA] MARLS RALR) RARM) RALAY UALAY RRAAY AR RARAS m/z
160 180 200 220 240 260 280 300 320 340 360 380 400 420

Minimum: -50.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula
318.1229 318.1231 -0.2 -0.6 10.0 1595.5 n/a n/a C19 H17 0 F3
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4a

Spectra of 1,1,3-trisubstituted prop-2-yns, 2a-h
2a

'"H NMR Spectrum of Mixture of Alkyne 2a and Indene 4a

Appendix D Spectra of 1,1,3-trisubstituted prop-2-yns, 2a-h
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Appendix D Spectra of 1,1,3-trisubstituted prop-2-yns, 2a-h

'"H NMR Spectrum of Alkyne 2b
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13C NMR Spectrum of Alkyne 2b
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Appendix D Spectra of 1,1,3-trisubstituted prop-2-yns, 2a-h

HSQC NMR Spectrum of Alkyne 2b

Appendix D.5

0" >CF,

4

2b

wdd

oy

Sy

0's

0€1

021

0Ll

001

06 -

08

oo

wdd ,.5_)__.___

sxojsweaed oON

Co<)

<9

PWOYY {S3UBWNDOQ\NSIWU\SIBSA\ D} £T1000 ANIN HIDETObsy
Mi §-913F
£100D 98-TSNL

XXXV



Appendix D Spectra of 1,1,3-trisubstituted prop-2-yns, 2a-h
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Appendix D Spectra of 1,1,3-trisubstituted prop-2-yns, 2a-h

Appendix D.7 HRMS Spectrum of Alkyne 2b

Elemental Composition Report

Single Mass Analysis

Tolerance =2.0 PPM / DBE: min =-50.0, max =50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Monoisotopic Mass, Odd Electron lons

2399 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

Elements Used:

C:0-100 H:0-150 N:0-5 0:0-5 F:0-6
2019-294 52 (1.034) AM2 (Ar,35000.0,0.00,0.00); Cm (50:52)
1:TOF MS ASAP +

1004 191.0864

%]

381.1648

124.0880
192.0900 82,1685
105.0347 207.0813 290.0920 353.1919 480,

4171858 [713
d i

Page 1

3.17e+4005

498.1786 580.1858 £12.1641

L u N L L Ll
0 - L nLIJL L U

! INARRL T gl T T
50 100 150 200 250 300 350 400 450 500

Minimum: -50.0
Maximum: 5.0 2.0 50.0

Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula

290.0920 290.0918 0.2 0.7 10.0 589.1 n/a n/a
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'"H NMR Spectrum of Alkyne 2¢
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Appendix D Spectra of 1,1,3

'"H NMR Spectrum of Alkyne 2d
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Appendix D Spectra of 1,1,3-trisubstituted prop-2-yns, 2a-h
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Appendix D Spectra of 1,1,3-trisubstituted prop-2-yns, 2a-h

'"H NMR Spectrum of Alkyne 2f
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Appendix D Spectra of 1,1,3-trisubstituted prop-2-yns, 2a-h

COSY NMR Spectrum of Alkyne 2f
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Appendix D Spectra of 1,1,3-trisubstituted prop-2-yns, 2a-h

HSQC NMR Spectrum of Alkyne 2f
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Appendix D Spectra of 1,1,3-trisubstituted prop-2-yns, 2a-h

Appendix D.15
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Appendix D Spectra of 1,1,3-trisubstituted prop-2-yns, 2a-h

Appendix D.16

HRMS Spectrum of Alkyne 2f

Elemental Composition Report Page 1
Single Mass Analysis
Tolerance =3.0 PPM / DBE: min =-50.0, max =50.0
Element prediction: Off
Number of isotope peaks used for i-FIT =3
Monoisotopic Mass, Odd Electron lons
1016 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
Elements Used:
C:0-100 H:0-150 N:0-3 0:0-3 F:0-5
2019-356 23 (0.465) AM2 (Ar,35000.0,0.00,0.00); Cm (19:25)
1:TOF MS ASAP +
2.15e+007
100+ 221.0963
%,
222.0995
178.0775 320.1019
oL 8206541059333 150860 1760620 2060721 223.1030  289.0832303 0989 | 321.1059 35,0013 -
60 ' 80 100 120 ' 140 ' 160 @ 180 N 200 220 240 260 280 300 320 @ 340 @ 360 380 |
Minimum: -50.0
Maximum: 5.0 3.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm  Conf(%) Formula

320.1019  320.1024 -0.5 -1.6 10.0 1182.1 0.045 95.56 (18 H15 02 F3
320.1013 0.6 1.9 14.0 1185.2 3.114 4.44 C21 H14 0 F2
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Appendix D Spectra of 1,1,3-trisubstituted prop-2-yns, 2a-h
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Appendix E Spectra of Allenes, 3a-g

Spectra of Allenes, 3a-g

Appendix E

'"H NMR Spectrum of Allene 3a

Appendix E.1
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Appendix E Spectra of Allenes, 3a-g

'"H NMR spectrum of Allene 3b
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Appendix E Spectra of Allenes, 3a-g

13C NMR spectrum of Allene 3b
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COSY NMR spectrum of Allene 3b
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Appendix E Spectra of Allenes, 3a-g
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Appendix E Spectra of Allenes, 3a-g

HSQC NMR spectrum of Allene 3b

Appendix E.5
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Appendix E Spectra of Allenes, 3a-g

HMBC NMR spectrum of Allene 3b

Appendix E.6
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Appendix E Spectra of Allenes, 3a-g

Appendix E.7 HRMS spectrum of Allene 3b

Elemental Composition Report Page 1

Single Mass Analysis

Tolerance =5.0 PPM / DBE: min =-5.0, max =50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Monoisotopic Mass, Even Electron lons

40 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 F:0-7

2020_153 66 (0.631)AM2 (Ar,35000.0,0.00,0.00); Cm (55:66)

1:TOF MS ES+
1.03e+005
100 341.0187 429.0892
355.0706 435.1382
415.0376
%,
1 326.9666 342.0192
356.0709 379.1667 445.1202
338.3425
416.0377
343.0171 |{357.0695
393.1471 417.0352
377.1517 | 381.2988 | 395.1619 446.1213
1 344.0151 %00,9854 418.0365 I
0 J | L LJAIJJH 11 ﬁlll.. L Laaka lluhlllhlhjxl.hl [T | JJ H. I
LA LA RN AR B B AR AR LA R B AR R MR B m/z

320 330 340 350 390 400 410 420 430 440 450
Minimum: -5.0
Maximum: 5.0 5.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula
379.1667 379.1674 -0.7 -1.8 13.5 973.9 n/a n/a C25 H22 F3
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Appendix E Spectra of Allenes, 3a-g

'"H NMR Spectrum of Mixture of Allene 3¢ and Alkyne 2e
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Appendix E Spectra of Allenes, 3a-g

'"H NMR spectrum of Allene 3d

Appendix E.9
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Appendix E Spectra of Allenes, 3a-g
13C NMR spectrum of Allene 3d
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Appendix E Spectra of Allenes, 3a-g

COSY NMR spectrum of Allene 3d

Appendix E.11
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Appendix E Spectra of Allenes, 3a-g

HSQC NMR spectrum of Allene 3d

Appendix E.12
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Appendix E Spectra of Allenes, 3a-g
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Appendix E Spectra of Allenes, 3a-g

Appendix E.14 HRMS spectrum of Allene 3d

S
e

CF,

3d

Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -5.0, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

30 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 F:0-4

2020-117 93 (1.826) AM2 (Ar,35000.0,0.00,0.00); Cm (47:97)
1: TOF MS ASAP+

7.79e+007
2
100- 4212137
2771211
%—
1.1209
422 2176
2470742 437 2001
o 7213273 /864688 4447 gg3g 1088.7653 .
100 200 300 400 500 600 700 BOD 900 1000 1100 1200 1300 1400 1500
Minimum: =5.0
Maximum: 5.0 5.0 50.0
Mass Calc. Mass mDa PEM DEE i=-FIT Norm Conf (%) Formula
421.2137 421,.2143 -0.6 =1.4 13.5 1597.9 n/a n/a C28 H28 F3
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Appendix E Spectra of Allenes, 3a-g

'"H NMR spectrum of Allene 3e
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13C NMR spectrum of Allene 3e

F
)

3e

wdd 0z oy 09 08 ool ozi ori 09l 08l ooz
| | | | | | | | | |
(4] ad T r
0 49 _
ZH 00°1 a1
0 €55
W3 MaM
ZHW £EBEGT6E0ST 4
89LEE Is
sasjswesed Bursssooid - zd
M 008TF6E0°0 ETMTId
M 00L9€8LOO cimld
M 00000000°9 ZMId
o380 (00 0L £adod
aTzZ3Tem Z]loddada
HT 220N
ZHW L00FZBT009 z04s
M 00000000°08 ™id
9ssn Op " 11 d
ol s TONN
ZHW 6TLFOE60ST 10ds
1 0ax
Q@8 (000000€0°0 11d
988 (000000007 ¢ Ta
H0°00¢ L
23sn 0081 qa
0350 L9B7ET Ma
PT LET o4
088 §59.L806°0 s} 4
ZH £6EQ0T"T SHUAId
ZH 1697 LG0SE HMS
2 sa
Fz01 SN
£1000 LNIANTOS
9£559 al
ogbdbz_ 2044104
) 1900 B9LLITZ aHaodd
10ads WNYLSNI
Y 1£°1Z _BuwTy
0E606T0T s31ed
siajaweled UOTITSTNBOY - zd
1 ON2OYd
4 ONdXd
Md ZT0-ZSNL YN
s1@3jsweled eieq IUDIIND \\MFW/J
SN I SV oS b
[sR=J o
PREPRE ;
N = oW w
w

LXIV

Appendix E Spectra of Allenes, 3a-g

Appendix E.16

SO\:D} €TOdD ANIN ddOETD

Y
<D i
£TOaD ZTO-ZSNL



Appendix E Spectra of Allenes, 3a-g

COSY NMR spectrum of Allene 3e
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Appendix E Spectra of Allenes, 3a-g

HSQC NMR spectrum of Allene 3e
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Appendix E Spectra of Allenes, 3a-g

Appendix E.20 HRMS spectrum of Allene 3e
H
o

3e

Elemental Composition Report Page 1l

Single Mass Analysis

Tolerance =2.0 PPM / DBE: min =-50.0, max =50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Monoisotopic Mass, Even Electron lons

491 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-150 10B:0-3 0:0-10

2019-679 63 (1.240) AM2 {Ar,35000.0,0.00,0.00); Cm (50:63)

1:TOF MS ASAP +

9.89e+006
100— 353.2263
%,
354.2297
352.2188.]
124.0874 5331324
J.Ll 1’355'2331 483.2628
N L e R Ll Ly L L A L L LAy LAy LA LA KAl WAl L AR L) M) RSN L) seass e e s I
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Minimum: -50.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula
353.2263  353.2269 -0.6 -1.7 13.5 1259.8 n/a n/a C27 H29
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Appendix E Spectra of Allenes, 3a-g

'"H NMR spectrum for Allene 3f
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Appendix E Spectra of Allenes, 3a-g

13C NMR spectrum for Allene 3f
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Appendix E Spectra of Allenes, 3a-g

COSY NMR spectrum for Allene 3f
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Appendix E Spectra of Allenes, 3a-g

HSQC NMR spectrum for Allene 3f
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Appendix E Spectra of Allenes, 3a-g

Appendix E.25 HMBC NMR spectrum for Allene 3f
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Appendix E Spectra of Allenes, 3a-g

Appendix E.26

Elemental Composition Report

Single Mass Analysis

HRMS spectrum for Allene 3f

\c

Tolerance = 2.0 PPM [/ DBE: min =-50.0, max = 50.0

Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

484 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

Elements Used:

C:0-100 H:0-150 10B:0-3 0:0-10

2019-678 68 (1.345) AM2 (Ar,35000.0,0.00,0.00); Cm (61:88)

1: TOF MS ASAP+

100= 339.2108
%_
124 0874
338.2031-
209.1328 -340.2143
368.2009
P - ) 20.2546
100 200 300 400 500 60O
Minimum:
Maximum: 5.0 2.0
Mass Calec. Mass mDa FFM
339.2108 339.2113 -0.5 -1.5

47 4

3f
Page 1
6.37e+006
1_707. 7 _B840.1161
LAY WARAS MMM AR RAALS MAALY LA RAAA MiAM MAMS Lisas naadkd naai LIS
700 800 900 1000 1100 1200 1300 1400 1500
=-50.0
50.0
DEBE i-FIT Norm Conf (%) Formula
13.5 1336.0 n/a n/a C26 H27
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'"H NMR Spectrum of Allene 3g
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Appendix E Spectra of Allenes, 3a-g

13C NMR Spectrum of Allene 3g
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Appendix E Spectra of Allenes, 3a-g

COSY NMR Spectrum of Allene 3g
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Appendix E Spectra of Allenes, 3a-g

HSQC NMR Spectrum of Allene 3g
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Appendix E Spectra of Allenes, 3a-g

HMBC NMR Spectrum of Allene 3g
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Appendix F Spectra of Indenes, 4a-d and 4f-g

Spectra of Indenes, 4a-d and 4f-g

Appendix F

'"H NMR Spectrum of Indene 4a

Appendix F.1

wdd g0 0L §L 0Z ST 0¢ € O S¥ 0§ SS 09 §9 0L
1 | 1 L 1 1 | 1 1 | | L 1 | 1
W T w | N ,:ﬁ.{
| _ [ L
00T od " I
0 a9
a7 7
0 ass
MaM _
ds
9€6 Is
sxejswered Bursssooxd - zd4
M 0000000079 TNTd
238N 008 1d
HT 20N
ZHW T90LEBT 009 048
1 0ar
298 000000007 T 1a
A 0°00€E aL
2881 0002 aa
2880 009" Tk Ma
BF 1T 24
088 9L6Z9EZL"T o¥
ZH BBLIYE'O SHEAId
ZH DEZ 6TOZT HMS
z sa
9t SN
£1000 LNIATOS
9£559 ak
oebz 90441nd
) T900 B9LLITZ  UHEOHEA
3sads WNELSNI
4 B8L'8 _BuTL
10606102 a3eq
sisjsweies uotatstnboy - 73
1
1
dd 081-TSNL AWYN
sIdjaweied eled JUDIIND \ | / > .. ﬁ‘.&u\\,f
| f T r
SN NN RNIFS = e T e
N L - =2 WWOWWOWOR PP PP
W = ~) =] SO WdDOWUna B

<)
AIMNAa
<)

£ suewoyl {s3jusuwnoog\nsIwu\sissn\:d} £12dD NOLOdd
(3TTI-20TS) ¥a
£120D 08T-TSNL

LXXX



Appendix F Spectra of Indenes, 4a-d and 4f-g
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Appendix F Spectra of Indenes, 4a-d and 4f-g
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Appendix F Spectra of Indenes, 4a-d and 4f-g

'"H NMR Spectrum of Indene 4d
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Appendix F Spectra of Indenes, 4a-d and 4f-g

13C NMR Spectrum of Indene 4d
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Appendix F Spectra of Indenes, 4a-d and 4f-g

COSY NMR Spectrum of Indene 4d
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Appendix F Spectra of Indenes, 4a-d and 4f-g

HSQC NMR Spectrum of Indene 4d
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Appendix F Spectra of Indenes, 4a-d and 4f-g

HMBC NMR Spectrum of Indene 4d
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Appendix F Spectra of Indenes, 4a-d and 4f-g

Appendix F.9 Selective HMBC NMR Spectrum of Indene 4d
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Appendix F Spectra of Indenes, 4a-d and 4f-g

NOESY NMR Spectrum of Indene 4d
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Appendix F Spectra of Indenes, 4a-d and 4f-g

Appendix F.11 HRMS Spectrum of Indene 4d
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 2.0 FPPM / DBE: min = -50.0, max =50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Monoisotopic Mass, Odd Electron lons

480 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-150 10B:0-3 ©O:0-10

2019-680 36 (0.724) AM2 (Ar,35000.0,0.00,0.00); Cm (27:38)

1. TOF MS ASAP+

1.38e+006
100~ 338.2034
%_
‘3/39.2[]85
| 2020780 1231797 340.2126
14
?:011913 L \l ﬁ412153 420 2558436 2503 551 .5352619.5343i§3?.0504 5454'8112
0= ! 1 ' ! 1 ! T ! ' AR ! T ! miz
200 250 300 350 400 450 500 550 600 650
Minimuam: —-30.40
Maximum: 3.0 2.0 50.0
Mass Calc. Masz mDa FEM DBE i-FIT Horm Conf (%) Formula
33B.2034 338.2035 -0.1 -0.3 14.0 1116.7 n/fa n/a C2ZE6 HZE
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Appendix F Spectra of Indenes, 4a-d and 4f-g

'"H NMR Spectrum of Indene 4f
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Appendix F Spectra of Indenes, 4a-d and 4f-g
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Appendix G Spectra of Cyclam-related compounds, 7, 8, 21 and 22

Appendix G Spectra of Cyclam-related compounds, 7, 8, 21 and 22

Appendix G.1 '"H NMR Spectrum of cyclic tetraamide 7b
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Appendix G Spectra of Cyclam-related compounds, 7, 8, 21 and 22

Appendix G.2

HRMS Spectrum of cyclic tetraamide 7b

O, O

L

“NH HN
o) 0

Ph NH HN Ph

Ph Ph

7b

Elemental Composition Report

Single Mass Analysis

Tolerance =1.0 PPM / DBE: min =-2.0, max =50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =2

Monoisotopic Mass, Even Electron lons
1403 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-500 N:0-10 0:0-20

2018-517ny 148 (2.896) AM2 (Ar,35000.0,0.00,0.00); Cm (129:149)
1: TOF MS ASAP +

Page 1

1.88e+005

647.2939 6553395 663.4547
¥ PR RS b M2

/.

100+ 617.3124
o]
6183156
6152070 || 6193185
0-L 82,5018 ‘599;‘3|010‘ AL 2820 L L, leo.azll‘z 5§|1:30g} 634.3107.,.,541,203¢ ;
590.0 600.0 610.0 620.0 630.0 650.0 660.0
Minimum: -2.0
Maximum: 5.0 1.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula
617.3124 617.3128 -0.4 -6.6 20.5 584.5 n/a C38 H41 N4 04
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Appendix G Spectra of Cyclam-related compounds, 7, 8, 21 and 22
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Appendix G Spectra of Cyclam-related compounds, 7, 8, 21 and 22

Appendix G.6 COSY NMR Spectrum of di-Boc ‘open cyclam’ 21-Boc
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Appendix G Spectra of Cyclam-related compounds, 7, 8, 21 and 22

HSQC NMR Spectrum of di-Boc ‘open cyclam’ 21-Boc
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Appendix G Spectra of Cyclam-related compounds, 7, 8, 21 and 22

Appendix G.8 HMBC NMR Spectrum of di-Boc ‘open cyclam’ 21-Boc
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Appendix G Spectra of Cyclam-related compounds, 7, 8, 21 and 22

Appendix G.9 HRMS Spectrum of di-Boc ‘open cyclam’ 21-Boc
o) o]
Phj,NH HNIPh
Ph ""I}IH HN™ “Ph
Boc Boc
21-Boc
Elemental Composition Report Page 1

Multiple Mass Analysis: 2 mass(es) processed
Tolerance =2.0PPM / DBE: min =-2.0, max =50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =2

Monoisotopic Mass, Even Electron lons

6142 formula(e) evaluated with 14 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-150 N:0-10 0:0-20 Na:0-1

2018-610esi 119 (1.117) AM2 (Ar,35000.0,0.00,0.00); Cm (119:123)

1: TOF MS ES+
6.61e+006
L00- 6213446
7433782
7] 744.3818
6223478 [
178.0792 503.2813 745.3848
2881103 4862575
0 meoy | Him i 11090507 14647700
"'100 200 300 @ 400 @ 500 600 700 800 900 1000 1100 = 1200 = 1300 1400 = 1500
Minimum: 80.00 2.0
Maximum: 100.00 5.0 2.0 50.0
Mass RA Calc. Mass mDa PPM DBE i-FIT  Norm Conf(%) Formula
621.3446 100.00 621.3446 Q.0 0.0 8.5 631.8 3.943 1.94 C25 H53 N2 015
621.3449 -0.3 -0.5 7.5 631.1 3.319 3.62 C25 H46 N10 07 Na
621.3441 0.5 0.8 18.5 628.1 0.263 76.89 C38 H45 N4 04
621.3454 -0.8 -1.3 23.5 629.9 2.124 11.95 C39 H41 N8
621.3457 -1.1 1.8 19.5 630.8 2.971 5.12 C41 H46 N2 02 Na
621.3435 1.1 1.8 2.5 633.1 5.340 0.48 C24 H50 N6 011 Na
743.3782 94.51 743.3782 0.0 0.0 23.5 531.6 3.099 4.51 C41 H47 N1 04
743.3785 -0.3 -0.4 19.5 531.5 2.940 5.29 C43 H52 N4 06 Na
743.3787 -0.5 -0.7 5.5 535.3 6.793 0.11 C28 H55 N8 015
743.3790 -0.8 -1.1 1.5 535.4 6.857 0.11 C30 H6G N2 017 Na
743.3774 0.8 1.1 0.5 536.6 8.084 0.03 C27 H59 N4 019
743.3771 1.1 1.5 14.5 529.2 0.619 53.84 C42 H56 010 Na
743.3795  -1.3  -1.7 17.5 532.4 3.830 2.17  C44 H55 010
743.3768 1.4 1.9 18.5 529.6 1.080 33.94 C40 H51 N6 08

CI
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Appendix G Spectra of Cyclam-related compounds, 7, 8, 21 and 22
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Appendix G Spectra of Cyclam-related compounds, 7, 8, 21 and 22
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Appendix G Spectra of Cyclam-related compounds, 7, 8, 21 and 22
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Appendix G Spectra of Cyclam-related compounds, 7, 8, 21 and 22

Appendix G.14 HMBC NMR Spectrum of diamidodiamine ‘open cyclam’ 21
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HRMS Spectrum of diamidodiamine ‘open cyclam’ 21

Elemental Composition Report Page 1
Single Mass Analysis
Tolerance =2.0 PPM / DBE: min =-2.0, max =50.0
Element prediction: Off
Number of isotope peaks used for i-FIT =2
Monoisotopic Mass, Even Electron lons
1814 formula(e) evaluated with 4 results within limits (all results (up to 1000) for each mass)
Elements Used:
C:0-100 H:0-150 N:0-8 0:0-20 Na:0-1
2018-625esi 155 (1.448) AM2 (Ar,35000.0,0.00,0.00); Cm (154:166)
1:TOF MS ES+
1.79e+007
100 503.2822
521.2926
%,
522.2957
485.2714
178.0779
176.0620 523.2982 717.2515
0 4’1179‘0341 209.1545 331.2068 4832529 | _587.3140 [ 829.4448.857.3419
T [ | T T T | I | T 1 T | LR T [ T | I T I | T I AL | T | m"Z
150 200 250 300 350 400 450 500 550 600 650 700 800 850 900

Minimum: -2.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula
521.2926 521.2922 0.4 0.8 0.5 757.2 2.587 7.52 C20 H45 N2 013

521.2933 -0.7 -1.3 18.5 756.1 1.488 22.58 C36 H38 N2 Na

521.2917 0.9 1.7 17.5 755.0 0.476 62.14 C33 H37 N4 02

521.2935 -0.9 -1.7 4.5 757.1 2.556 7.76 C21 H41 N6 09

CVII



Appendix G Spectra of Cyclam-related compounds, 7, 8, 21 and 22

Appendix G.16 '"H NMR Spectrum of tetramine ‘open cyclam’ 22
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Appendix G Spectra of Cyclam-related compounds, 7, 8, 21 and 22

Appendix G.17
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Appendix G.18
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Appendix G Spectra of Cyclam-related compounds, 7, 8, 21 and 22

Appendix G.19 HSQC NMR Spectrum of tetramine ‘open cyclam’ 22
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Appendix G Spectra of Cyclam-related compounds, 7, 8, 21 and 22

Appendix G.20 HMBC NMR Spectrum of tetramine ‘open cyclam’ 22
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Appendix G Spectra of Cyclam-related compounds, 7, 8, 21 and 22

Appendix G.21 HRMS Spectrum of tetramine ‘open cyclam’ 22
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance =2.0 PPM / DBE: min =-5.0, max =50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Monoisotopic Mass, Even Electron lons

3255 formula(e) evaluated with 4 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-5 0:05 P:0-1 CLO0-4 Au:0-3

2020_107_2 74 (0.708) AM2 (Ar,35000.0,0.00,0.00)

1:TOF MSES +
1.69¢+006
100 4933337
489.3023
%_
273.1685 4943367
217.1059
331.2104 591.2241
196.1131 595.2200
694.4417
N _huk . 8605753 9993488 155 6708

e f v 7 v - y aan = mfz
100 200 300 400 500 600 | 700 @ 800 | 900 @ 1000 1100 1200 = 1300 1400 1500

Minimum: -5.0
Maximum: 5.0 2.0 560.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm  Conf(%) Formula

493.3337 493.3331 0.6 1.2 1
493.3344 -0.7 -1.4

943.1 0.000 100.00 C33 H41l N4

964.3  21.209 0.00 C24 H56 03 P
2

493.3346 -0.9 -1.8 -3.5 964.8 21.702 0.00 (25 H56 02 C13

493.3328 0.9 1.8 1.5 964.5 21.384 0.00 C26 H51 N2 02

12

wuwum
(S N,

CXIII



Appendix H 1H NMR Spectrum of Propargyl Acetate, 11
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TNS2-170
check fraA7

'"HNMR Spectrum of Propargyl Acetate, 11

No parameters

[A
LL’?'Z>-

£0F°9

60F"9

VoV

96879

CXIV

ppm

0.5

1.0

1.5

3.5 2.5

4.0

4.5

5.0

T
6.0

8.0




Appendix I Spectra of 2-Bromo-6-Alkyl Pyridine Alcohols, 12a-c

Appendix [ Spectra of 2-Bromo-6-Alkyl Pyridine Alcohols, 12a-c¢

Appendix .1 '"H NMR spectrum of Pyridine alcohol 12a
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Appendix I Spectra of 2-Bromo-6-Alkyl Pyridine Alcohols, 12a-c

Appendix 1.2
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Appendix I Spectra of 2-Bromo-6-Alkyl Pyridine Alcohols, 12a-c

Appendix 1.3 '"H NMR spectrum of Pyridine alcohol 12¢

'"H NMR was not in accordance with previously reported data.[®'l The structure of 12c is
therefore uncertain. The acquired spectrum after flash column chromatography is included here
for reference.
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

Appendix J

"H NMR spectra of Pyridine 15a
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

'"H NMR Spectra of Pyridine 15b
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g
13C NMR Spectrum of Pyridine 15b
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

COSY NMR Spectrum of Pyridine 15b
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

HSQC NMR Spectrum of Pyridine 15b
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

'H,3C-HMBC NMR Spectrum of Pyridine 15b

Appendix J.6
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

'H,'’>N-HMBC NMR Spectrum of Pyridine 15b

Appendix J.7
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

Appendix J.8 HRMS Spectrum of Pyridine 15b

Elemental Composition Report Page 1
Single Mass Analysis
Tolerance =2.0 PPM / DBE: min =-5.0, max =50.0
Element prediction: Off
Number of isotope peaks used for i-FIT =3
Monoisotopic Mass, Even Electron lons
2525 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass)
Elements Used:
C:0-100 H:0-100 N:0-10 0:0-10 Si:0-2 1:0-2
2020_23 59 (0.568) AM2 (Ar,35000.0,0.00,0.00); Cm (58:61)
1:TOF MS ES+
1.58e+005
100— 370.2387
%_
To7.9607 352.2285
371.2417
439.9163
453.8961
697.3662
. — [, 77534277 gaq 1505 1042.7365
- AR WA R AR LALAY L] RS MAARY RARAY AR LAY NRAR RAAY M| | RAAAU ML nannants MLILTES
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Minimum: -5.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm  Conf(%) Formula
370.2387 370.2382 0.5 1.4 8.5 802.8 0.000 100.00 C23 H32 N 03
370.2387 0.0 0.0 4.5 818.5 15.690 0.00 C15 H32 N7 02
Si
370.2386 0.1 0.3 7.5 822.5 19.769 0.00 C22 H36 N Si2
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

'"H NMR Spectra of Pyridine 15¢
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

13C NMR Spectrum of Pyridine 15¢
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

COSY NMR Spectrum of Pyridine 15¢
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

Appendix J.14 HRMS Spectrum of Pyridine 15¢
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Element prediction: Off
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Monoisotopic Mass, Even Electron lons

1063 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-5 0:0-10 S:0-4

202052 35(0.707) AM2 (Ar,35000.0,0.00,0.00); Cm (34:48)

1: TOF MS ASAP +

8.76e+006
100— 316.1742
%_
298.1634
317.1772
124‘03230020593 3181729
. U | [319.1742 447 3458 ga7.4570 7640531 913.9973
0 AR BB AR DA RAAAN LARAH RAAAE RAARE RALES BARAE RALES ARAS RARL LAAAE RRARERALEN RLRRE LARAE RRARE REARE LARAN RRAAN RALARRALEE RAARY RALAE LALRY RARRI RARM | mfz
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Minimum: -5.0
Maximum: 5.0 5.0 50.0
Mass Calc, Mass mDa PPM DBE i-FIT  Norm  Conf(%) Formula

316.1742  316.1735 0.7
316.1729 1.3

7.5 1491.8 ©0.001 99.87 C19 H26 N 0 S
-1.5 1498.5 6.666 0.13 C11 H30 N3 03
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13C NMR Spectrum of Pyridine 15¢
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

HSQC NMR Spectrum of Pyridine 15e
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15¢

'H,3C-HMBC NMR Spectrum of Pyridine 15¢
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

'H,'’SN-HMBC NMR Spectrum of Pyridine 15¢
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NOESY NMR Spectrum of Pyridine 15e
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

Appendix J.23 HRMS Spectrum of Pyridine 15e
| X
5 | P OH
_0
15e
Elemental Composition Report Page 1

Single Mass Analysis

Tolerance =2.0 PPM / DBE: min =-5.0, max =50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Monoisotopic Mass, Even Electron lons

308 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-5 0:0-10

2020 _47 24 (0.482) AM2 (Ar,35000.0,0.00,0.00); Cm (19:24)

1: TOF MS ASAP +

8.16e+005
100— 368.2223
1 124.0879
%,
350.2119
164.1191 | 369.2256
370.2284
I\ , LLJ,LLL " 487.9214 6398419415 5177 9438231
L L L L e L L A Ly L Ly LAy LN AL KAl WAl Ly AR L) M RSN Lt s e s R
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Minimum: -5.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula
368.2223  368.2226 -6.3 -0.8 9.5 973.6 n/a n/a C23 H30 N 03
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HSQC NMR Spectrum of Pyridine 15f
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Appendix J.28 'H,3C-HMBC NMR Spectrum of Pyridine 15f
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Appendix J.29 HRMS Spectrum of Pyridine 15f

Elemental Composition Report Page 1

Single Mass Analysis

Tolerance =2.0 PPM / DBE: min =-50.0, max =50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Monoisotopic Mass, Even Electron lons

3295 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-10 0:0-10 S:0-3

2019-762 24 (0.482) AM2 (Ar,35000.0,0.00,0.00); Cm (24)

1: TOF MS ASAP +

6.42e+006
100 296.1481
314.1582
%7
3151609
164.1193 292.0709] 316.1571
0 L diiie, A )317.1579  551.7813670.93937301334 1003.00351220.13281273.9976 13614716

AR VAR A A L L L LN A LA LA LA AN LA VRN LA SAAR) ML) ML) LALNRLARY LAl MARRLAAR AR L WAL
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Minimum: -50.0

Maximum: 5.0 2.0 50.0

Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula

314.1582 314.1579 0.3 1.0 8.5 1487.6 0.000 100.00 C19 H24 NO S
314.1579 0.3 1.0 -4.5 1501.9 14.330 0.00 C4 H28 N9 0 S3
314.1577 0.5 1.6 5.5 1501.4 13.812 0.00 C11 H20 N7 04
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Appendix J.30 '"H NMR Spectra of Pyridine 15g
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

Appendix J.31
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

Appendix J.32 COSY NMR Spectrum of Pyridine 15g
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

HSQC NMR Spectrum of Pyridine 15g
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

Appendix J.35 HRMS Spectrum of Pyridine 15g

Elemental Composition Report Page 1l

Single Mass Analysis

Tolerance =2.0 PPM / DBE: min =-50.0, max =50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Monoisotopic Mass, Even Electron lons

2731 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-10 0:0-10 Si:0-2

2019-760 16 (0.327)AM2 (Ar,35000.0,0.00,0.00); Cm (16)

1:TOF MS ASAP +

3.52e+005
100— 311.2127
124.0879
%] 293.2021
164.1193
1-312.2159
327.2072
N Ll. L r 429.0907 5931570 701.4055822.7744 966.4083 1253‘99331321,0335 1450_2343””2
RN WAL A MR RN LD R AN LAY SRS LA SARR) RARAY LARE) ERARNUALEE RS LARAE MAAS ROAR) REAS ASARE R RSARE LAAM RAARE REAN! RAARIRRAM
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Minimum: -50.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula

311.2127  311.2128 -0.1 -0.3 4.5 1139.4 14.789 0.00 C12 H27 N8 Si
311.2123 0.4 1.3 8.5 1124.6 0.000 100.00 C20 H27 N2 O
311.2133 -0.6  -1.9 -10.5 1142.8 18.202 0.00 C6 H39 09 Si2

CLIX



Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g

'"H NMR Spectra of Pyridine 15h

Appendix J.36
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Appendix J Spectra of 2-aryl-6-alkylpyridine Alcohols, 15a-g
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IR Spectrum of Pyridine 15h
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-
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'"H NMR Spectrum of Pyridine Methyl Ether 12b-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

13C NMR Spectrum of Pyridine Methyl Ether 12b-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

COSY NMR Spectrum of Pyridine Methyl Ether 12b-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

Appendix K.4 HSQC NMR Spectrum of Pyridine Methyl Ether 12b-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

Appendix K.5 'H,3C-HMBC NMR Spectrum of Pyridine Methyl Ether 12b-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

NOESY NMR Spectrum of Pyridine Methyl Ether 12b-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

Appendix K.7 HRMS Spectrum of Pyridine Methyl Ether 12b-OMe
X |
P
Br N
12b-OMe
Elemental Composition Report Page 1

Single Mass Analysis

Tolerance =5.0 PPM / DBE: min =-5.0, max =50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Monoisotopic Mass, Even Electron lons

346 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-5 0:0-5 Br:0-2

JA_SVG_20200508_116rean 70 (1.299) AM2 (Ar,35000.0,0.00,0.00); Cm (70:74)

1:TOF MS ES+
1.05e+006
100 292.0706
%
271.1888 295.0717
273.1681
250.0233
N 271.1521.,[ 287.1620 2960753 3151789 3312098 355.2839 3633492
0 gl | | ) N i | Y [
T | 1 1 1 | 1 1 1 AL 1 1 I T | 1 | I 1 1 1 1 1 m"Z
240 250 260 270 280 290 300 310 320 330 340 350 360
Minimum: -5.0
Maximum: 5.0 5.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula

292.0706  292.0701 0.5 1.7 6.5 1356.8 n/a n/a C15 H19 N Br
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe
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'"H NMR Spectra of Pyridine Methyl Ether 15b-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe
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13C NMR Spectrum of Pyridine Methyl Ether 15b-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

COSY NMR Spectrum of Pyridine Methyl Ether 15b-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

Appendix K.11 HSQC NMR Spectrum of Pyridine Methyl Ether 15b-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

Appendix K.12 'H,3C-HMBC NMR Spectrum of Pyridine Methyl Ether 15b-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

'H,'’>N-HMBC NMR Spectrum of Pyridine Methyl Ether 15b-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

Appendix K.14 HRMS Spectrum of Pyridine Methyl Ether 15b-OMe
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Elemental Composition Report Page 1

Single Mass Analysis

Tolerance =3.0 PPM / DBE: min =-5.0, max =50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Monoisotopic Mass, Even Electron lons

323 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-5 0:0-10

2020_44 23 (0.465)AM2 (Ar,35000.0,0.00,0.00); Cm (23:30)

1: TOF MS ASAP +

4.13e+006
100 384.2542
%_
3522279
| 385.2574
| 124.0879

257.1416 | [386.2604

NN 1972866 655-4257776.5041 9153206

LA VAR AR A Ll L S L ) LA LA LA LA VARl LA RAAR] LML) NS RLALNRAARY LS MARRLAAR M L WAL
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Minimum: -5.0

Maximum: 5.0 3.0 50.0

Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula
384.2542 384.2539 0.3 0.8 8.5 1141.3 n/a n/a C24 H34 N 03
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

'"H NMR Spectra of Pyridine Methyl Ether 15d-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

13C NMR Spectrum of Pyridine Methyl Ether 15d-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

COSY NMR Spectrum of Pyridine Methyl Ether 15d-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe
HSQC NMR Spectrum of Pyridine Methyl Ether 15d-OMe
15d-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

Appendix K.19 'H,3C-HMBC NMR Spectrum of Pyridine Methyl Ether 15d-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

Appendix K.20 'H,'’>N-HMBC NMR Spectrum of Pyridine Methyl Ether 15d-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

NOESY NMR Spectrum of Pyridine Methyl Ether 15d-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

Appendix K.22 HRMS Spectrum of Pyridine Methyl Ether 15d-OMe
X |
P
N
15d-OMe
Elemental Composition Report Page 1l

Single Mass Analysis

Tolerance =2.0 PPM / DBE: min =-5.0, max =50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Monoisotopic Mass, Even Electron lons

2660 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-5 0:0-10 Si:0-3 5S:0-2

2020_3569 (0.657) AM2 (Ar,35000.0,0.00,0.00); Cm (67:72)

1: TOF MS ES+
3.89e+006
100— 290.1915
%_
291.1948
3222174
610.1847 684.2032
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Minimum: -5.0
Maximum: 5.0 2.0 560.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula
322.2174  322.2171 0.3 0.9 9.5 1032.3 0.000 100.00 C22 H2B N O
322.2168 0.6 1.9 -0.5 1054.1 21.774 0.00 C13 H36 N3 Siz2
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

'"H NMR Spectra of Pyridine Methyl Ether 15e-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

COSY NMR Spectrum of Pyridine Methyl Ether 15e-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

Appendix K.26 HSQC NMR Spectrum of Pyridine Methyl Ether 15e-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

Appendix K .27 'H,3C-HMBC NMR Spectrum of Pyridine Methyl Ether 15e-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

'H,'’>N-HMBC NMR Spectrum of Pyridine Methyl Ether 15e-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

NOESY NMR Spectrum of Pyridine Methyl Ether 15e-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

Appendix K.30 HRMS Spectrum of Pyridine Methyl Ether 15e-OMe
X |
MeO | N/
OMe
15e-OMe
Elemental Composition Report Page 1

Single Mass Analysis

Tolerance =2.0 PPM / DBE: min =-5.0, max =50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Monoisotopic Mass, Even Electron lons

319 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-5 0:0-10

2020_48 26 (0.536) AM2 (Ar,35000.0,0.00,0.00); Cm (26)

1: TOF MS ASAP +

3.21e4005
100 382.2387
3502125
% —
1 124.0880
| 383.2418
164.1191 ‘
384.2442
okl bl L 4866535 7582860 5462055 9843516 14340757,
A AN DAL AL DARL AR DA AN AR | AR

| NARARARDAY DARRIAARAN LARA RAAANRALEN A T LA A A WA LAt N REAAN AR LAY LA SAARI LML AR R |
100 200 300 400 500 OO 700 8OO 900 1000 1100 1200 1300 1400 1500

Minimum: -5.0

Maximum: 5.0 2.0 560.0

Mass Calc. Mass mDa PPM DBE i-FIT Norm  Conf(%) Formula
382.2387 382.2382 0.5 1.3 9.5 851.0 n/a n/a C24 H32 N 03
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

'"H NMR Spectra of Pyridine Methyl Ether 15h-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

13C NMR Spectrum of Pyridine Methyl Ether 15h-OMe

Appendix K.32
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

COSY NMR Spectrum of Pyridine Methyl Ether 15h-OMe

Appendix K.33
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

Appendix K.34 HSQC NMR Spectrum of Pyridine Methyl Ether 15h-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

Appendix K.35 'H,3C-HMBC NMR Spectrum of Pyridine Methyl Ether 15h-OMe
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

'H,'’>N-HMBC NMR Spectrum of Pyridine Methyl Ether 15h-OMe

Appendix K.36
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Appendix K Spectra of 2,6-disubstituted Pyridine Methyl Ethers, 12-OMe and 15-OMe

Appendix K.37 HRMS Spectrum of Pyridine Methyl Ether 15h-OMe

15h-OMe

Elemental Composition Report Page 1

Single Mass Analysis

Tolerance =3.0 PPM / DBE: min =-5.0, max =50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Monoisotopic Mass, Even Electron lons

2641 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-5 0:0-10 Si:0-3 Cl:0-2

2020_43 66 (1.311) AM2 (Ar,35000.0,0.00,0.00); Cm (57:71)

1: TOF MS ASAP +

2.51e+006

100 325.2286

% 124.0879
293.2022

| 326.2317
164.1193
( 3392077
0 I\ Ll [ 19072769 530 4701 7516100815-6578
LA DARAR AR BRI RARAN B HAARLAREAL DAL RARAN DAL RRAARAREE BN

T AR LAY WAL AR U LA LAY Ry WS RSN LARRE RS LAY LA MRS LAY NS RN NARE M AR Lt naabaa s I
100 200 300 400 500 600 700 8OO 900 1000 1100 1200 1300 1400 1500

Minimum: -5.0

Maximum: 5.0 3.0 50.0

Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula
325.2286  325.2280 0.6 1.8 8.5 1265.6 n/a n/a C21 H29 N2 O
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Appendix L. Spectra of a,-unsaturated ketone, 19

Spectra of a,-unsaturated ketone, 19

Appendix L

'"H NMR Spectrum of a,B-unsaturated ketone 19
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Appendix L. Spectra of a,-unsaturated ketone, 19

13C NMR Spectrum of o,B-unsaturated ketone 19

Appendix L.2
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Appendix L. Spectra of a,-unsaturated ketone, 19

COSY NMR Spectrum of o,f-unsaturated ketone 19

Appendix L.3
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Appendix L. Spectra of a,-unsaturated ketone, 19

HSQC NMR Spectrum of o,B-unsaturated ketone 19
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Appendix L. Spectra of a,-unsaturated ketone, 19

Appendix L.5 HMBC NMR Spectrum of o,B-unsaturated ketone 19
O OFEt
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Appendix L. Spectra of a,-unsaturated ketone, 19

NOESY NMR Spectrum of o,B-unsaturated ketone 19
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Appendix L. Spectra of a,-unsaturated ketone, 19

Appendix L.7 HRMS Spectrum of a,B-unsaturated ketone 19
O OEt
Ph | Ph
Ph
19
Elemental Composition Report Page 1l

Single Mass Analysis

Tolerance =5.0 PPM / DBE: min =-2.0, max =50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Monoisotopic Mass, Even Electron lons

299 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-150 0:0-10 Na:0-1 Br:0-3 Au:0-3

2019-121 81 (0.768) AM2 (Ar,35000.0,0.00,0.00); Cm (79:93)

1: TOF MS ES+
1.14e+007
100 365.1522
%7
366.1554
297.1282
707.3148
205.1343 443.2015 7083181
y 661.2725 :
189.07044 ([, | | l ) . 7093209 1003.4343 1167.50241300,55931356.5907
0 | AARAE LAY DARAS RAMAN LARA] RARAN LAMAY RAARY MARAN AR UARAI RARLY MAALS RAAKS LAY RARAJ RARAS LAMLY NAARE LAAKI dAl T M2
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Minimum: -2.0
Maximum: 5.0 5.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula
365.1522 365.1519 0.3 0.8 1.5 1489.8 3.544 2.89 C10 H25 Na Au
365.1517 0.5 1.4 13.5 1486.3 0.029 97.11 (24 H22 02 Na
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Appendix M Spectra of cyclopropane 20

Appendix M

Appendix M.1
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No parameters
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Appendix M Spectra of cyclopropane 20

Appendix M.2

Ph-4-OMe

Ph
OAc

20

Data File C:\CHEM32\1\DATA\THOMASSOLVI\TNS3-020-000008.D

Sample Name: sample

Acqg. Operator

Acg. Instrument :
Injection Date

Acg. Method :
Last changed :
Analysis Method :
Last changed :

Method Info

Sample Info

Additienal Info

Thomas Solvi
Instrument 1
5/4/2020 2:20:46 PM
C:\CHEM32\1\METHODS\THOMAS NORDB@ SOLVI\TNSicYCLOPROP.M

5/4/2020 2:18:12 PM by Thomas Solvi
C:\CHEM32\1\DATA\THOMASSOLVI\TNS3-020000000.D\DA.M (TNS_CYCLOPROP.M)
5/4/2020 3:07:18 PM by Morten Gundersen

(modified after loading)

AD-H kolonne, iPrOH:hex 10:90,

Location -

0.8 mL/min

Heksan:iPrOH 95:5, 0.8 mL/min

sample, 1 ul

AD-H 5 um,

Peak (s) manually integrated

HPLC Spectrum isomer-mixture of 20, prepared using Au(I1I)-15h-NTf,

[ 1 VWD1A, Wavelength=254 nm (THOMASSOLVI\TNS3-020-000008.D)
mAU ]
70
60 .
50
40
30
20
10
0
Y g ) S S ) S
0] 5 10 15 20 25 30 35 minf
Area Percent Report
Sorted By H Signal
Multiplier: H 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs
Signal 1: VWDl A, Wavelength=254 nm
Peak RetTime Type Width Area Height Area
# [min] [min] mAU *s [mAU ] %
it Bttt [====]======= | === | === [======== I
1 17.198 BV 0.3054 906.83063 34.84491 11.9747
2 18.199 vV 0.3220 917.03180 34.18813 12.1094
3 29.128 BV 0.4686 2862.45190 76.93575 37.7985
4 31.140 VB 0.4749 2886.60278 72.81766 38.1174
Instrument 1 5/4/2020 3:07:25 PM Morten Gundersen Page 1 of 2
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Appendix N Spectra of Au(Ill)-complexes

Appendix N Spectra of Au(IIl)-complexes

Appendix N.1 '"H NMR Spectrum of Au(III)-Box complex XIII
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'"H NMR Spectrum of Chiral Au(III)-N,N,O-tridentate B

Appendix N Spectra of Au(Ill)-complexes

Appendix N.2
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13C NMR Spectrum of Chiral Au(III)-N,N,O-tridentate B

Appendix N Spectra of Au(Ill)-complexes

Appendix N.3
Au(1II)-15h-NTf,
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Appendix N Spectra of Au(Ill)-complexes

Appendix N.4 F NMR Spectrum of Chiral Au(III)-N,N,O-tridentate Bipyridine complex
Au(IIT)-15h-NTf,
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Appendix N Spectra of Au(Ill)-complexes

ipyridine
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complex Au(II)-15h-NTf,

Appendix N.5
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Appendix N Spectra of Au(Ill)-complexes

Appendix N.6 HSQC NMR Spectrum of Chiral Au(III)-N,N,O-tridentate Bipyridine
complex Au(IIl)-15h-NTf;

Au(IlT)-15h-NTf
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Appendix N Spectra of Au(Ill)-complexes

Appendix N.7
Bipyridine complex Au(III)-15h-NTf;

Au(IlT)-15h-NTf

'H,3C-HMBC NMR Spectrum of Chiral

Au(III)-N,N,O-tridentate
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Appendix N Spectra of Au(Ill)-complexes

Appendix N.8 "H,5N-HMBC NMR Spectrum of Chiral Au(III)-N,N,O-tridentate
Bipyridine complex Au(III)-15h-NTf;
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Appendix N Spectra of Au(Ill)-complexes

Appendix N.9 IR Spectrum of Chiral Au(III)-N,N,O-tridentate Bipyridine complex
Au(IIl)-15h-NTf,

Au(IlT)-15h-NTf
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Appendix N Spectra of Au(Ill)-complexes

Appendix N.10
Au(1II)-15h-NTf,

HRMS Spectra of Chiral Au(III)-N,N,O-tridentate Bipyridine complex

Au(IlT)-15h-NTf

Elemental Composition Report Page 1l
Single Mass Analysis
Tolerance =2.0 PPM / DBE: min =-5.0, max =50.0
Element prediction: Off
Number of isotope peaks used for i-FIT =3
Monoisotopic Mass, Even Electron lons
10457 formula(e) evaluated with 20 results within limits (all results (up to 1000) for each mass)
Elements Used:
C:0-100 H:0-100 N:0-10 0:0-10 Na:0-1 CLO0-4 Au:0-3
2020 58 363 (3.369) AM2 (Ar,35000.0,0.00,0.00); Cm (363:371)
1: TOF MS ES+
2.87e4007
100 541.1326
%_
505.1561 543.1302
311.2129
2932022 | 544.1332
o bpgaorne LSOOG |sa51359 6743260791504 9872000 _Las2aer 131088 S0
AR ARAR LA RARRIRALAN LARES RALANLALEE RALAS UARAELARA RARRIRASAN LARES RAAANLALEERARAY UARAE LAAS RSARI REASE NRALE RAARARSARE RAAM MUARELEAR! RARRIRRAM |
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Minimum: -5.0
Maximum: 5.0 2.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula
541.1326  541.1321 0.5 0.9 9.5 1124.4 0.023 97.71 (€20 H25 N2 0 Cl
Au
541.1327 -0.1 -0.2 13.5 1128.2 3.821 2.19 C21 H23 N8 06 Na
cl
541.1329 -6.3  -0.6 -1.5 1132.5 8.072 0.03 C‘{' H26 N8 04 Na
Cl Au
541.1332 -0.6  -1.1 3.5 1132.8 8.362 0.02 €19 H32 N2 010
Na Cl12
541.1319 0.7 1.3 24.5 1133.2 8.738 0.02 C34 H22 N2 03
cl
541.1329 -6.3  -0.6 7.5 1133.2 8.788 0.02 C17 H27 N8 08
c12
541.1329 -6.3  -0.6 15.5 1133.8 9.418 0.01 €28 H28 N4 O
c13
541.1323 0.3 0.6 7.5 1135.0 10.584 0.00 C25 H34 N2 0 Na
Cl4
541.1335 -6.9  -1.7 25.5 1135.1 10.648 0.00 €37 H23 0 Na Cl
541.1323 0.3 0.6 -0.5 1135.3 10.924 0.00 C14 H33 N6 08 Na
13
541.1315 1.1 2.0 10.5 1135.7 11.300 0.00 C27 H32 05 C13
541.1337 -1.1 -2.0 4.5 1135.9 11.451 0.00 C15 H29 N1e 04
Na C13
541.1317 0.9 1.7 -4.5 1136.0 11.562 0.00 C13 H35 03 C13
Au
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Appendix N Spectra of Au(Ill)-complexes

Elemental Composition Report Page 1

Single Mass Analysis

Tolerance =10.0 PPM / DBE: min =-5.0, max =50.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Monoisotopic Mass, Even Electron lons

2299 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-100 H:0-100 N:0-5 0:0-5 F:0-7 S:0-2

2020_161neg2 240 (2.235)AM2 (Ar,35000.0,0.00,0.00)

1: TOF MS ES-
2.65e+004
100 582.8240
279.9177
%_
584.8203
281.9140
143.7059 p00.7939 730.0925 940.7894 1055.9595
: 279.7610.] 336.8460 582.7161 ’ ’ 999.2136 )
0 T \I Y Y sy T T T Aaany t t /I 1 t T \\ T |/ U 1 m/z
100 200 300 400 500 600 700 800 900 1000 1100
Minimum: -5.0
Maximum: 5.0 10.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula

279.9177  279.9173 0.4 1.4 0.5 110.2 ©.000 100.00 C2 N 04 F6 S2
279.9186 -0.9 -3.2 7.5 123.4  13.195 0.00 C7 N 05 F2 S2
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