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Abstract

Supervised learning is a field that is rapidly growing within the world of science as the popularity of machine

learning (ML) is ever growing. The potential these methods hold, not only in simpler classification methods

but also within surrogate models for process optimization, is potentially limitless, and it is a appealing topic of

investigation that will be considered in this paper. This paper considers a heat exchanger network using a three-

way parallel split, where the goal of the process optimization is to adjust the split ratio in such a manner that the

greatest outlet temperature is achieved. This was approached by two ML models, one with a direct classic black-

box approach, and one that uses a intermediate prediction step of a set of process parameters. These two models

were then used to predict the optimal valve configuration for the split configuration. The performance of the

models was evaluated by comparing the obtained plant inputs with analytically calculated optimal values, and see

how much the final outlet temperature deviated from its optimal as a result of the predicted inputs. The goal of this

project was to evaluate whether the intermediate prediction step in the grey-box model produced any significant

benefit or disadvantage compared to a direct black-box approach, and to evaluate any additional benefits of using

such a model structure. From the simulation results it was found that when opting for ideal priors for each structure,

both methods had fairly equal performance. During further comparisons between the two structures, it was found

that the black-box model has more predictions closer to the optimal values, while the grey-box model seemed to

excel at keeping the overall temperature loss reduced. This was seen by how the overall spread of the temperature

loss of the black-box model was greater than the grey-box. Due to this, no clear winner could be determined as each

method seemed to posses its own fair share of strengths and weaknesses. Regardless, the presented work shows that

there is potential within grey-box surrogate optimization approaches, and that with further investigation it could

grow to outperform the traditional black-box model, as the obtained model seemed to have a better understanding

of the dynamics in place. It is strongly believed that with further investigations and improvements to the approach,

such as a deeper evaluation of measurement and disturbance parameter selection, a more adequate model can be

developed. Other suggestions for improvements include Gaussian process regression networks (GPRN), which is

shown to have strong empirical performance for finding correlations between disturbance parameters.
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1 Introduction

Mathematical optimization is a classic computer science and engineering problem which has existed for centuries.

In its simplest form, an optimization problem consists of the process of maximizing or minimizing (finding the

greatest or smallest value) a real objective function. The objective function is typically set as either a loss/cost

function (in which minimization is the preferred optimization) or a utility or fitness function (vice versa). [7] The

goal is thus to systematically choose input values from within a feasible set and computing the value of the objective

function in order to find the best possible set of inputs. Typically, these optimization cases come packaged with

some sort of restraints on the inputs, which is what was referred to when talking about a feasible set. [8]

Machine learning (ML) is a field of study under artificial intelligence that can be specifically tailored to perform

regression analysis and is used frequently in model predictions. ML is typically exposed to a set of training data

sets, which is used for the machine to ”learn” regression pattern and model structure, in order to be able to predict

optimal values. One method which excels at this front is neural network trained ML. These networks consists of

a set of nodes that are paired in smaller subsets called layers. All nodes in layer i, are connected to all nodes in

layer i+1 through a set of signal wires, and the strength of the signals is represented by the weight of the nodes in

layer i. During operation, a ”input” will stimulate nodes in the first layer, which then passes through all i layers,

before it produces a output determined by how the input is affected throughout by all the weights within the various

layers. [9]

While still a underdeveloped field, it is strongly agreed upon that, the usage of ML for chemical engineering is a

field that has great promise. [10] This is because the method is especially good for processes where parameters can

be difficult to measure, or the existing models are found lacking. By today, there are already multiple implemented

existing algorithms in the chemical industry such as artificial neural networks, fuzzy logic, genetic algorithms and

evolution strategy which are used in processes with parameters that are difficult to measure. [11]

One particular model, which showed great promise within regression analysis, was the aforementioned model

using a neural network. This method was designed to be able to utilize adaptive basis functions, which allowed

them to learn ”hidden features” (hidden here meaning not directly obvious when analyzing the data) within the

modelling problem.

While often seen hand-in-hand, the study of statistics and that of machine learning can be argued to vary greatly.

The goal of statistics is to obtain a comprehensible model for a set of data and be able to obtain relationships

and dependencies for the data. On the contrary, the field of study that is machine learning is mainly concerned

with making output predictions with the highest accuracy possible. The difference here lies in the fact that the

machine learning community is rarely concerned with the actual ”shape” or ”form” of the model, and is mostly

satisfied with using a black-box model. In some cases, these black-box models can be adjusted slightly if some

trend of dependencies is expected, by which we will have created a grey-box model. A grey-box model is any

model that combines elements of a white-box model and black-box model. A white-box model is here defined as a

purely theoretical one, while a black-box model has no model form and prior presumptions. [12] While these types

of models may often bring outstanding prediction results, many statisticians would doubtlessly argue that these

models are substandard as they do not provide a thorough enough breakdown of the data and thus unsubstantial
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understanding of the matter.

While this was traditionally the case for statistics and machine learning, orienting the problems towards Gaussian

processes (GP) seemed to be a solution that would fit both camps. While the model is computationally simple to

implement, the model is also comprehensible on a logical scale - thus making it a good middle ground between

the two fields. A GP is obtained through a generalization of a Gaussian probability distribution. [3] One of the

main strengths of the Gaussian process framework is the fitting capability it possesses. Additionally, as long as the

training sets are not remarkably large, these processes also managed to retain a fairly decent level of computational

tractability. Gaussian processes can be visualized in a simplified way by thinking of a function as a very long vector

containing every possible function value, f (x), for every desired x value. By leaving out the infinite possible values

for x, and only considering a set finite number of points for it, we obtain the same answer through inference in

the Gaussian process as if we had ignored infinitely many other points. In doing so, we can assign a probability

for all our function values f (x), on how likely they are to fit our data, and by taking the mean of our probability

distribution we can obtain a ”most likely” characterization of our data. [3]

Usage of GPs has been popularized strongly within the world of ML as the method has several useful properties that

make them ideal. One of the big strengths that lie in GPs is that of the model being non-parametric. This means

that when adjusting a GP to new data, we do not have to worry about the pre-existing mean representation not

being able to fit the data. Despite this, the model also has good analytic inference in that the predictive posterior

distribution can be computed exactly in its closed form. As we will see, adjusting the prior knowledge of the

model is a fairly straightforward task, as one can combine kernels in any desired manner, based on the process to

be modelled, which allows for great flexibility in evaluating different approaches for the model.

GPs are however not omnipotent, as they also hosts a fair share of weaknesses. One of the greatest is that the

process has a relatively slow inference, as computing the n× n matrix inverse of the predictive distribution equation

(Equation 3.13) takes O(N3) operations. While also mentioned as a strength of GP that one can chose kernels in

order to obtain various GP approaches and thus more flexibility in model approach, this can also be viewed as

a down-side as substantial pre-requisite knowledge is required on the subject in order to make a good kernel

suggestion. This has been improved on in later years as one can set a computer to automatically find the proper set

of kernels by maximizing marginal likelihood (Abdessalem et al. [13]).

Heat exchanger network (HEN) is a design technique based on coupling together heat exchangers in a optimal

set of series and/or parallel to achieve the greatest energy saving within the operation. One possibility for HEN

synthesis is to use pinch technology in order to find what combinations gives most ideal heat transfer between

all streams involved. [14] In this paper, a slightly different approach is considered as the design of the network

(explained further under Section 4.2) is defined as a fixed structure of three heat exchangers in parallel setup. The

strategy of the optimization is thus to utilize ML in order to find a optimal set of valve openings in each parallel for

the output temperature to be maximized. The most straight-forward way to approach this would be to take a set of

measurements and use these to predict the optimal set of valve openings, with the goal being to achieve the greatest

outlet temperature. The main emphasis for this report, however, is on the usage of a grey-box model, and thus the

main objective will be to compare the efficacy of a direct black-box approach to a customized grey-box approach

that utilizes a set intermediate parameter predictions. The idea is based on the potential advantages of knowing the
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intermediate values, and to evaluate if by doing this we can create a model that has a better understanding of the

system, and thus can give better predictions.

1.1 Structure of Report

The thesis will proceed with a further delve into Machine Learning in Section 2. Here a couple of key concepts

will be introduced and explained before moving onto a more extensive look at Gaussian processes in Section 3.

This section will further introduce all the general concepts and mathematical concepts that lie behind the Gaussian

processes and ML models and elaborate how we are able to achieve the results we have. We then move on to a

further description of the system that is considered in Section 4, before doing a breakdown of the methodology

used to solve the optimization problem in Section 5. The results will then be presented under Section 6 where

all case studies will have graphs illustrating the performance of the various methods employed. These results will

then be further discussed and evaluated under Section 7, before finally concluding under Section 8. The appendix

will feature the result graphs in a side-by-side manner for easier comparisons in Appendix A, as well as all code

used in the thesis itself in Appendix B.
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2 Machine Learning

One major factor that differentiates humans from machines is the way machines simply follow a set of instructions,

while we are able to learn from experiences and adapt. While machines most often are used to solve explicit

problems but computationally heavy problems, no learning is typically required. Machine Learning (ML) comes

in handy when there exist no fully satisfactory algorithm which we can program a computer to execute. We will

therefore have the machine ”learn” through training datasets in order to be able to best predict a set of outputs

given a set of inputs. ML is typically divided into three categories depending on the amount of human intervention

required for it to operate:

• Supervised learning: The computer is given a set of inputs which is to be mapped to a set of ”desired”

outputs given by a teacher or supervisor.

• Unsupervised learning: The computer is given non-labeled, non-structured data which it is to find a struc-

ture on its own.

• Reinforcement learning: The computer is reinforced of its outputs based on a feedback system that either

penalizes ”wrong” behaviour or rewards ”good” behaviour. [15]

For this paper, the topic of supervised learning will be considered. This is the kind of learning where input-

output mapping is considered from a set of training data. Based on the nature of the output, the learning is either

considered as classification (in the case of discrete outputs), or regression (in the case of continuous outputs).

2.1 Classification learning

The most basic form of machine learning can be argued to lie within the basic decision tree type of learning that

operate with classification. These type of decision trees are a set of algorithm pathways that predicts a output

through a set of Boolean (true or false) conditions. The tree could be as simple as attempting to discern gender of

a person on the basis of height and weight, where the tree would look something like Figure 2.1.

Figure 2.1: A simple and possibly completely inaccurate decision tree of a hypothetical scenario of determining gender based on the parameters

weight and height. The tree is just made to be an example of how one can classify unlabeled data into a predetermined group based

on certain characteristics of said data.

The figure was created arbitrarily for the sake of the report and is based on no scientific evaluations. In this
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example, the input of the classification algorithm is mass and height. By using labelled training data, we can

improve our model by modifying the fitted parameters such that the mass and heights rules correlate to a better

likelihood of correct output prediction. [16]

When working with real-life engineering problems however, simply relying on a decision tree like this has obvious

flaws in that the prediction can often be inaccurate and thus unreliable. Additionally these kinds of trees need

tweaking and are not easy to visualize with when the amount of discriminatory rules increases. One way that was

looked into to bettering this was in terms of using multiple decision trees and combining the outputs to provide

a more accurate prediction, which later on was cleverly dubbed forests. [17] These types of structures were later

on evaluated to be closely resembling the way neurons work in the human brain, and through years of research

an approach of artificial neural networks was discovered. For this ”new” field of study, the term ”classification

branches” along the trees were replaced by nodes, and the ”trees” were replaced by layers. The concept remains

the same, in that we have labelled data used for the input-to-output tweaking of the system. However the algorithm

now uses these layers and a natural bias to adjust numbers through each layer. All of which, in the end, results in

a likelihood prediction in the case of classification. [18] A classic example of a artificial neural network like this is

illustrated below in Figure 2.2.

Figure 2.2: A simple illustration of a artificial neural network, images rights are credited to Bre et al. [1]. The image shows how a set of inputs

is passed through n layers before becoming a specific output. The signal is being passed as a numerical value and transformed by

a weight for each of the lines in the network. The final value of the numerical value in the output layer is the numerical values that

the network computes.

2.2 Regression

While classification is characterized by the application of discrete labels to objects, regression is concerned with

prediction of continuous quantities. For example, a socioeconomist might wish to examine how the usage of

cigarettes correlates with various demographic factors such as age, location, education, cigarette pricing and in-

come.

The simplest form for regression models are arguably those of linear nature, where we have either a single variable

or multiple variables that are scaled to form a linear result. While simple to understand and implement, the
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method is not particularly useful aside from a handful of cases, or situations where the inputs are pre-treated

through iterative feature engineering. In this paper, a more comprehensive method is used, namely that of Gaussian

processes. In short, this class of methods predicts a normal distribution for any point of interest. This will be looked

into further in Section 3.

In general, when working with regression cases, the input is labelled as x, while the targeted output is labelled as

y. When considering a training dataset for the regression, we typically classify this as the set D , which contains

the n training points {(xi,yi) | i = 1, ...,n}. It is important to note here that depending on the case in question,

both x and y can be multivariate. In the earlier socioeconomic example, the input, x, would be all the factors of

age, location, education, cigarette pricing and income - while the output, y, could be cigarette consumption. After

successful training, the goal of the model would be to be able to predict a unknown output, y∗, for a given set of

input variables, x∗, with acceptable accuracy. The accuracy of the model would ideally be tested with a prediction

from a input x∗ from which we already have a expected output value y∗ and then we measure the deviancy of the

prediction with relation to this expected output. In most real cases, we cannot expect the model to operate with a

100% accuracy for these kinds of problems, due to possible measurement noise or lack of data in the training.

2.3 Surrogate modelling of process systems

A major bottleneck in the implementation of real-time optimization in process systems is that detailed models,

while accurate, require extensive computational power. This is not only limited by the amount of processing power

a modern computer can work with, but also the fact that these calculations can be slow for more intricate process

systems. If the time needed to compute input parameters for a plant arrives by the time the plant already has

moved on to a significantly different state, we would naturally get a deviation from optimal operation. Surrogate

optimization is the ideology of finding an alternative model that can solve this optimization problem within an

acceptable margin of error. [19]

Ideally we can imagine this as having a set of real world influences that affects our process. The first step of

surrogate optimization is therefore to discover the set of influences that actually have causality over our process.

From this, we attempt to create a virtual representation of our problem, sometimes referred to as a digital twin

model. This digital twin model is the part of the model that acts as a surrogate for which we can find optimal

solutions to our process. If we find that the model is insufficient in its predictions, we can utilize a feedback system

where the optimal predictions then fed back into our model such that we can modify it to give better predictions. [20]

In terms of this paper, a surrogate model will be applied for a heat exchanger network where a cold stream is split

into three parallel streams that each pass through a heat exchanger (more thoroughly explained under Section 4).

While this sort of case can be solved completely analytically given the right parameters, this is not always feasible

for real world cases. For example, it can be extremely hard to measure the overall heat transfer coefficient for a

given heat exchanger, and one must rely on model-based disturbance estimation techniques, which are costly on

their own. Since the situation becomes more difficult to solve for these cases, a surrogate model is implemented to

bypass these issues that arise from lack of knowledge about the system. [21]
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2.4 ML evaluation

When evaluating ML models, there is a wide array of possibilities to chose from and typically one has to chose

depending on what type of prediction the model is doing in order to find a proper evaluation. For classification

models, the most commonly used metrics to evaluate model performance are confusion matrices or a receiver

operating characteristics (ROC) curve. [22] On the other hand, evaluation of regression methods, which is the class

of models considered in this paper, is commonly assessed by mean squared error or scatter plots. [23] This work has

mainly considered scatter plots, as well as a boxplot, as these were deemed most relevant for the case. Scatter plots

are often great visualization tools for model evaluation as they show the true, desired value of the output variable

and compares these to the ML predictions in a plot. An example of a scatter plot is illustrated below in Figure

2.3. As these plots contain the predicted values and the actual ones, we have that points closer to the prediction

line (linear y = x line) indicate better predictions. Often when working with figures like these, terms like ”scatter

cloud” are frequently used. This is used to talk about the general shape of all the plotted data points, as once the

amount of them increases they tend to resemble a cloud. By visualizing it as this we can also use terms like cloud

density or sparsity to classify how concentrated the points are.

Figure 2.3: Example of a scatter plot used to evaluate the efficacy of a ML model. The image is from the Karimian et al. [2] and shows the

forecasted (predicted) PM2.5 concentrations to determine air pollution in a local area.
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3 Gaussian Processes

Gaussian processes (GP) is named after its creator Carl Friedrich Gauss based on his notion of a Gaussian dis-

tribution (also known as a normal distribution). [24] Simply speaking, for any set S ∈ RD, a GP on S is a set of

multi-dimensional random variables (Zt : t ∈ S) such that Equation 3.1 is satisfied. In this expression, N(~µ,K)

represents a normal distribution with mean vector ~µ and covariance matrix K.

∀n ∈ N , ∀t1, t2, ..., tn ∈ S , (zt1 ,zt2 , ...,ztn)∼ N(~µ,K) (3.1)

In lingual terms, this means that the created GP on S, (zt1 , ...,ztn ), is a set of finite dimensional distributions that also

are Gaussian distributed. From this we can describe a GP as a distribution over functions, meaning f ∼ GP(µ,k).

Before conditioning a GP to any data, the function is thus specified by its mean function E[ f (x)] = µ(x) and its

covariance function (often referred to as a kernel) Cov
(

f (x), f (x′)
)
= k(x,x′) which is in the domain RD.

The prior mean of a GP is typically set to be 0 for all x ∈ S, as any prior mean can be accounted for at a later

point by simple manipulation of the regression values. In doing so, it follows that the structure of the GP model is

entirely determined by its kernel.

One of the big benefits of GPs is the possibility of writing the marginal likelihood of our constructed GP model. [25]

By evaluating the marginal likelihood we are able to compare the performance of various models in terms of ade-

quacy to the data. The marginal likelihood for a GP prior using a set of function values f (X)= [ f (x1), f (x2), ..., f (xN)]

at positions X is defined below in Equation 3.2.

p(y|X) =
∫

p(y|f,X)p(f |X)df (3.2)

The term marginal refers to the implicit integration (marginalization) over all function values of f . Through some

derivations (see Seeger [3]), we can solve the integral and obtain a log marginal likelihood shown in Equation 3.3.

log p(y|X) =−1
2

yT (K +σ
2
n I)−1y− 1

2
log |K +σ

2
n I|− n

2
log2π (3.3)

3.1 Priors

A GP is operated through a baseline known as a prior. A prior is the base assumption used before any kind of

model approaches are applied. This is, as the name suggest, a prior assumption of what we expect to observe from

our function. [26] In a case where we have no knowledge of our model beforehand, this prior would usually be a

function that returns zero for any value of x. Priors also usually has a uncertainty region, which represents how

likely it is to reject the prior assumptions.

When combining the prior with a set of measured datapoints, we obtain what is called a posterior distribution.

This is illustrated below in Figures 3.1, where we can see how the distribution is changed with the introduction

of new knowledge, and how the new realization of the Gaussian process (the lines in the figure) adjust to the data

points.
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(a) A figure showing the prior of a possible GP. (b) A figure of the posterior resulting from inputting two data points.

Figure 3.1: Figures showing how we achieve a posterior from a prior and its set data points. The mean prediction is represented by the solid

line, while the dashed lines represent four sample posterior functions. The shaded region is the uncertainty in the predictions,

which is found by two times the standard deviation of each input, x. Image credits goes to Seeger [3].

By supplementing more datapoints into a posterior, we can imagine how the shaded region becomes significantly

smaller as it collapses near all the datapoints to give a proper fit for the GP function. Since GP also is a non-

parametric model, we do not have to worry about the model not being able to pass through all the points. This

is however not the case when working with GP models where data noise is possible. For these models, it is

desired that the model to not pass through all points as it only means it is trying to fit the measurement noise

in a deterministic manner, which in turn gives poorer predictions. In the event where we adjust a GP model to

adjust for all training points and it results in poor prediction due to uncertainty and errors, we have a case called

overfitting. [27] Poor predictions from overfitting is especially sensible when either datasets are too small, or there

is a substantial lack of prior knowledge of the modelling problem.

Selecting the proper prior is another important aspect of the pre-processing work that goes into creating a GP grey-

box model. This is also utilized in this paper where we apply a total of three different priors to both the black-box

approach and the grey-box approach. As we will see in Section 5.3, these prior assumptions about a model are

quite important and can greatly impact the performance of a model. The properties of a prior are mainly consisting

of the uncertainty area and the realizations of the GP (the lines in Figures 3.1).

3.2 Covariance functions

The covariance function k(x,x′) is a measure of the similarity between two measurement points x and x′. By assum-

ing similar data points to have similar function values, we attain inference in our data set. By definition, we have

that the covariance function needs to be symmetric (k(x,x′) = k(x′,x)) and it needs to be positive semidefinite. [28]

A function is defined as positive semidefinite if the inequality in Equation 3.4 is satisfied. For this equation, f (x)

is a short-hand way of writing GP(m(x),k(x,x′)), and µ(x) is a mean function used on x.

∫
k(x,x′) f (x) f (x′)dµ(x)dµ(x′)≥ 0 (3.4)
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A kernel is a function which maps pairs of inputs x∈ S and x′ ∈ S into R. [3] One of the most commonly used kernel

is the squared exponential kernel (SEK), [29] which is defined below in Equation 3.5 for the single-input case. Some

examples of other kernels commonly used include periodical and linear kernels, and we pick the desired kernel

based on the type of problem we wish to model.

k(x,x′) = σ
2 exp− (x− x′)2

2l2 (3.5)

In this expression, l varies the length (or width) of the kernel, while σ adjusts the height of the normal distribution

curve. These are known as the hyperparameters of the kernel and the effects of adjusting these parameters is

illustrated below in Figure 3.2, where the mean is set as zero.

Figure 3.2: Figure showing a exponential quadratic distance plot (a example of a SEK kernel). The figure shows comparisons the effect of

varying l and σ on the normal distribution. The figure shows how l varies the width of the curve, while σ adjust the height of the

curve. The image is credited to Roelants [4].

When this kernel is applied as a function however, these parameters take on a different interpretation. The length-

scale l is used to describe the smoothness of the function. When using a small lengthscale, the function values are

allowed to change quickly, while greater values make for a smoother graph with less steep changes. The signal

variance σ2 is used as a scaling factor. Smaller values of this can be recognized as functions that stay close to their

mean values, whereas larger values of this value lets the function chase outliers. Another term that was omitted

from Equation 3.5 is a noise variance term, which is included when there is additional noise in the data that needs

to be considered. This parameter is used to specify how much noise that is expected within the data. [30]

3.2.1 Combining covariance functions

One downside about the SEK however is that it is one-dimensional. Regardless, one major benefit of kernels is the

possibility of combining the kernels to get the desired properties of the model we wish to construct. This allows

us to combine kernels with the right properties to customize our surrogate model to better fit our process. One can

assemble multiple kernels together in order to produce a higher level structure with specific properties. [3]

As an example of kernel combination through multiplication, we can see Equation 3.6 below, where we combine

10



Gaussian Process-based grey-box modelling of heat exchanger networks

two separate SEKs which gives us a two-dimensional radial-basis functions. The input-parameters of this two-

dimensional kernel is therefore a input vector meaning that
(
x, x’

)
=
(
(x1,x2),(x′1,x

′
2)
)
.

ki j
(
x,x’

)
∝ σ

2
1 σ

2
2 exp

(
− (x1− x′1)

2

2l2
1

)
exp
(
− (x2− x′2)

2

2l2
2

)
(3.6)

Following the example of combining SEKs, we can construct a kernel using a SEK for each of the inputs of the

dataset where each kernel has a different lengthscale parameter. In doing so we construct what is commonly re-

ferred to a squared exponential automatic relevance determination (SE-ARD) which is one of the most commonly

used kernels in most GP applications. [29] The individual lengthscale parameters here are important because the

input dimensions have different effects on the output. By having a individual lengthscale for each input we can

therefore scale them accordingly.

For this paper however, the goal is to create a single surrogate model for the full dataset, and thus we do not desire

to use SE-ARD. In order to ensure that the dimensions of the inputs do not affect the output unevenly, we use data

normalization for the training data.

When constructing a single model that accounts for multiple outputs, we use a coregionalized model that takes

the form shown in Equation 3.7. Using this kernel allows the model to express the outputs as combinations of

independent random functions. The kernel also has the benefit of ensuring that all resulting covariance functions

are valid positive semidefinite functions. [31]

B⊗K =


B1,1×K(X1,X1) . . . B1,D×K(X1,XD)

...
. . .

...

BD,1×K(XD,X1) . . . BD,D×K(XD,XD)

 (3.7)

By using this definition we have that the covariance function is the chosen kernel applied ith function at X and the

jth junction at X ′, multiplied with the (i, j)th entry in the matrix of B. To ensure that this is a valid kernel we must

uphold the criteria of the matrix being positive semidefinite. We do this by defining the coregionalization matrix,

B, as shown in Equation 3.8.

B =WW T +diag(κ) (3.8)

The definition is defined for some matrix W and vector κ such that the coregionalized matrix is positive semidefi-

nite. This is regarded as the intrinsic model of coregionalization (ICM). [32] One major benefit of this model is that

is allows for shared information across outputs, a feature which independent models cannot. In cases like this, if

there is a region where a lack of training data is present, the independent models tend to collapse to their prior as-

sumptions. In the case of an ICM, if the models have associated patterns, the overall fit is better. [33] When working

with noise-free data, the ICM model is mathematically equivalent to predicting each output independently. This

property is known as autokrigeability. [34]
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3.3 Gaussian Process Regression

When using Gaussian Process for regression the methodology follows a set of steps. This includes having a training

data set and a test data set which are the inputs for the GP. The output of said process can be either a single value,

or a set of values. Since ML models possess fundamental limitations, they posses critical flaws that can prove

detrimental for the predictions. If the models are tuned poorly, and we need predictions far outside the training

region of the models, we can end up with exceptionally poor results. [35] It is due to this that evaluation of the

confidence interval is an additional point that is of grave importance when working with predictions for ML, and

it has become a increasingly attractive field of study.

GP regression uses a Bayesian approach and infers a probability distribution over the output space, given any test

input in the considered set S. In parametric Bayesian modelling, this is done by first specifying a prior distribution,

p(w), on a parameter w. From this a posterior is constructed by relocating the probability distributions based

on training data using Bayes’ theorem. [36] The prior can be obtained my modifying Equation 3.2 to obtain the

posterior distribution, shown in Equation 3.9. The posterior is defined as shown in Equations 3.10, which is the

combination of prior and the dataset.

p(w|y,X) =
p(y|X ,w)p(w)

p(y|X)
(3.9)

posterior =
likelihood×prior

marginal likelihood
(3.10)

The posterior probability distribution of the parameters can be further propagated to the output predictions, as

shown in Equation 3.11.

p( f ∗|X∗,y,X) =
∫

w
p( f ∗|x∗,w)p(w|y,X)dw (3.11)

3.3.1 Predicting with Noise-free Data

Using the aforementioned kernels k(x,x′), we can create a covariance matrix Ki j = k(xi,x j) that has all the covari-

ances for all the points of our inputs xi ‖ i = 1,2, ...,n. Note however, that we can only create a covariance matrix

if our choice of kernel is positive semidefinite. [37] By drawing samples from the distribution of all the functions

evaluated in the covariance functions, we can see that the specifications of the covariance functions implies dis-

tribution over functions. We do this by selecting a set of prediction points, X∗ and write out the corresponding

covariance matrix, using our previously defined SEK (Equation 3.5). Additionally, we generate a Gaussian vector

with the created covariance matrix (K(X∗,X∗)) and obtain Equation 3.12 for the prior distribution of the prediction,

assuming a zero prior mean.

f∗ ∼N
(
0,K(X∗,X∗)

)
(3.12)

In most cases, including this, we assume that the likelihood and the prior are Gaussian, thus making the predictive

distribution a Gaussian distribution which we can solve to obtain a prediction for our points X∗. This is done by
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finding the hyperparameters of the distribution, namely the mean and variance which is done using the maximum

a posteriori probability of y. This is also commonly referred to evidence maximization or empirical Bayes. [38]

Regression predictions are obtained using prediction points X∗, and a predictive distribution around said point

f ∗ := f (X∗). We start by conditioning on the joint Gaussian prior distribution on the observations [3] to construct

the following predictive distribution, shown in Equation 3.13, for f ∗.

f ∗|X∗,X , f ∼N
(
K(X∗,X)X(X ,X)−1 f ,K(K(X∗,X∗)−K(X∗,X)K(X ,X)−1K(X ,X∗)

)
(3.13)

From this equation, we have that function values of f ∗ can be sampled from the joint posterior distribution through

evaluation of the covariance matrix and mean. We do this by deriving the conditional distribution from Equa-

tion 3.13. In doing so, we obtain the key predictive equations when using Gaussian process regression, namely

Equations 3.14 and 3.15 for the mean and the covariance respectively. [3]

f̄ ∗ = E
[

f ∗|X ,y,X∗
]
= K(X∗,X)

[
K(X ,X)+σ

2
n I
]−1y (3.14)

Cov( f ∗) = K(X∗,X∗)−K(X∗,X)
[
K(X ,X)+σ

2
n I
]−1K(X ,X∗) (3.15)
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4 Case Study - Parallel Heat Exchanger Network

Energy saving and optimization is a big topic of interest within chemical process technology. Since these plants

commonly operate at big scales, any energy that can be recovered is worth looking into, lest it be wasted and thus

losing out on a major cost reducing factor. This can be accomplished by heat exchangers, and it was during the

energy crisis in the 1970s that sparked a great research field within further optimizing heat exchangers through

the introduction of pinch technology. [39] This design methodology is based on minimizing energy consumption

in a chemical process by calculating the best configurations for heat exchangers to decide pairings, and positions

which maximizes feasible energy transfer. In the operation of a heat exchanger network that presents parallel

configurations, such as this case study, the streams can instead of a regular split utilize selective vents by which we

can control the exact amount sent through each parallel. The case study for this work is illustrated below in Figure

4.1.

Figure 4.1: A figure illustrating the case study for this thesis. The case study consists of a heat exchanger network where the inlet stream, with

heat capacity w0 and temperature T0, is split in three. The three resulting streams are then fed into three separate heat exchangers

with separate heat capacities and temperatures, wh,1−3 and Th,1−3, and overall heat transfer coefficients UA1−3. The stream is then

merged for a final stream with temperature T . The image is credited to Chen [5].

The system entails a cold stream being sent into a three-way split using the vents α1 and α2. Each of the parallel

streams are then fed to a different heat exchanger. These heat exchangers have their respective heat transfer coef-

ficient UA1−3 and hot streams with parameters wh,1−3 and Th,1−3 for their heat capacities and inlet temperatures

respectively. The parameters for the heat capacities are simplified to entail the product of the mass flow with the

heat capacities of the streams. During operation, we also obtain the parameters Th1−3e for resulting exit temper-

atures of the heat exchanger streams. Additionally, as the cold streams are heated, we obtain the temperatures

T1−3 before they are merged again to obtain a final outlet stream with temperature T . As this is a heat exchanger

network, the goal is then to be able to implement a control of the vents, α1−2, such that the outlet temperature, T ,

is the highest possible.

Since this system is completely modelled and readily available from a preset of code, it could be tempting to
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consider every available possible parameter for the prediction algorithm. Since this case would leave a lot to be

desired from a research perspective as its lacking a lot of realistic limitations, the model parameters selected has

been consciously selected such as to resemble a real-life case as closely as possible. The goal of the model is to be

able to take a set of measurement parameters from the system, labeled y’s, and use these to predict a set of process

parameters labeled d’s. Part of the y’s is a set of current valve calculations α1−2,estimated included, as these showed

to provide a lot of necessary information about the system. The measurements were used in some sort of manner

to try and predict u∗, for α1−2 that grants the highest possible outlet temperature for T . The parameters y’s, d’s and

u∗ are defined as the following process parameters shown below in Equation 4.1.

~y =



α1,current

α2,current

T1

T2

T3

Th,1e

Th,2e

Th,3e



~d =



wh1

wh2

wh3

UA1

UA2

UA3


~u =

α1,optimal

α2,optimal

 (4.1)

This method will also be evaluated by the more direct approach of measurements, y, straight to valve configurations,

u∗. This will be done to see if there is any benefit to having the disturbances, d’s, as a buffer calculation step before

the configurations are calculated. The benefit of calculating this buffer step is that they provide slightly more

insight into what is actually going on in the grey-box model. When working with grey box models like this, it is

not highly unusual for some set of data points to give very inaccurate predictions. While the reasons for this can be

many, by providing these sets of buffer points for the model, we can not only investigate these data points further

to see if there is a trend in the model - but the points also act as a sort of ”anchor” to keep the model from going

astray.

4.1 Model assumptions and simplification

In order to model this system we also make some simplifications in order to not overcomplicate the calculations.

One of these assumptions is that we keep a single phase throughout the heat exchanger network. This implies that

none of the streams involved will have a phase change occurring during the heat transfer, thus neglecting effects of

latent energy.

The next assumption made is that of constant heat capacity. As we know, heat capacity is realistically not constant

as it depends on the temperature, pressure and volume of the system considered. In this experiment, the temperature

change for the streams is not considerably large. This allows us to set this assumption without much worry, as the

heat capacity generally does not change much when the temperature change is small overall. [40]

The final assumption made is that we use a logarithmic mean to determine the driving force for the heat transfer.

This approximation was derived by Chen [5] and used as the logarithmic mean temperature difference (LMTD) in

this paper. This can be done by assuming a countercurrent flow for the heat exchanger network. And we can define
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the logarithmic mean temperature difference between ∆T1 and ∆T2 as shown in Equation 4.2. These parameters

will, from the case study, be represented by (Tj−T0) for ∆T1, and (Th, j−Th, je) for ∆T2.

LMTD =
∆T1−∆T2

ln(∆T1
∆T2

)
≈
{

∆T1 ·∆T2 ·
(

∆T1 +∆T2

2

)} 1
3

(4.2)

4.2 System model

When modeling the system, we start with energy balances on both hot and cold sides, and with expressions to

the heat transfer between the streams, aiming to obtain a final set of equations we can use for computational

calculations. The system to be modelled is shown in Figure 4.1.

w j = Fjcp,0

wh j = Fh, jcph, j

(4.3)

F1 ,T0

F2 ,T0

Fj 

FN ,T0

F0,T0

Th,jTh,je

T0 Tj

Fout , Tout

Figure 4.2: A simple illustration showing a heat exchanger system where a inlet stream is split into N parallels. The line j is focused for

calculations and is heated using a heat exchanger with temperature Th, j and heat capacity (and mass flow product) wh j . After being

fed to the heat exchanger the stream on line j has its temperature changed to Tj . The figure illustrates a design method for heat

exchanger networks where splitting a stream, and then unifying them later on can give great results for the final outlet temperature

of the system T . The figure was created using a diagram software developed by Benson [6].

Q j,cold = w j · (Tj−T0)

Q j,hot = wh j ·
(
Th, j−Th, je

) (4.4)

The notation here uses w j and wh j defined earlier in Equation 4.3 as the product of the mass flows and heat

capacities of the respective streams. We see that Q j, which is the heat transfer occurring in heat exchanger on line

j, is given by the total heat transferred shown in Equation 4.5.

Q j =UA j ·∆TLMT D, j (4.5)
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Equation 4.5 has been extended with subscripts to account for the various parameters that we have at the different

heat exchangers in the parallel system. ∆TLMT Di, j here refers to the logarithmic mean temperature, which is shown

in Equation 4.2 and is the driving force of the heat transfer.

Finally, we have a overall mass balances and overall energy balances for the system which yields the following

Equations shown below in 4.6 and 4.7.

1 = α1 +α2 +α3

⇒ α3 = 1− (α1 +α2)
(4.6)

T = α1 ·T1 +α2 ·T2 +α3 ·T3

⇒ T = α1 ·T1 +α2 ·T2 +(1−α1−α2) ·T3

(4.7)

Combining all of these equations for the case study, shown in Figure 4.1, we get the following set of equations

shown in Equations 4.8. Solving these computationally was done using CasADi’s packages for optimization and

root-finding problems. All the variables present were set as individual symbolic parameters and the system would

solve a optimization problem when finding the optimal valve configurations u∗. The optimization was set to

maximize the outlet temperature T , meaning the objective function J was set as −T as the optimizer is, by default,

implemented to solve minimization problems. Additionally, the y’s were found using a root finder for the system

given the initial parameters of the d’s.

Q j = w j ·α j · (Tj−T0)

Q j =UA j ·∆TLMT D, j

∆TLT MD, j =
{
(Tj−T0) · (Th, j−Th, je) ·

(Tj−T0)+(Th, j−Th, je)
2

} 1
3

Q j = wh j · (Th, j−Th, je) ∀ j = 1,2,3

(4.8)
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5 Methodology

Since the problem involved machine learning, it should come to no surprise that the first step is to train the machine

learning models (ML models). This step is called the training step, and requires the biggest time investment for

the overall prediction process. The flipside being that once these ML models are trained, they do not have to be

re-trained before repeated usage. The process of initializing these models was found to be very quick and part of

the main bottleneck for the predictions is getting the correct measurements from the CasADi optimization. As the

size of the disturbance-set grew however, it was quickly seen that prediction using GPs for multiple inputs and

outputs, the time needed for training grew drastically. For further elaboration on this, the reader is referred to the

discussion in Section 7. The CasADi optimization employed to find optimal valve-predictions used the software

package Ipopt, developed by Wächter and Biegler [41].

5.1 Dataset generation

All of these models were trained with randomly generated data using the code in Appendix B.1. This function

takes the desired amount of datapoints to be generated (1200 in the case of training) and generates a random set

of data, which includes all disturbances, measurements and valve openings. The set of disturbances and valve

openings were uniformly distributed inside a given interval. The only parameters with a interval length 6= 0 were

the disturbances wh1−3 and UA1−3, which had individual ”reasonable” disturbance intervals set to each parameter.

This function also has the ability to take in a variable dubbed ”ttratio”, from test-training ratio. This parameter

proportionally increases the size of the intervals from which data is uniformly drawn, and thus generating a dataset

from a larger ”hypercube” that we are working with initially. The term ”nominal hypercube” in this paper, refers to

the cases where the ttratio is set as 1.0. Thus, testing values on the nominal hypercube refers to testing within the

same range the models were trained for. The ttratio was later used when testing the models’ ability to predict for

datapoints outside of its training range to see how well it would hold up to possible extreme disturbances, which

can be seen under Section 6.2.

Additionally it is important to note that all the data used for training the ML models were normalized before

training. This accounts for both the input variables and the output variables. The values were later readjusted after

prediction to show their actual value. The scaling was done using Scikit-learn’s package for scaling, to which

all work is attributed to Pedregosa et al. [42]. Normalization of training data is a pre-processing step frequently

done in machine learning as it helps neutralize effects of data scaling. These undesired effects are often caused

by variables having different units or representing different physical entities. By normalizing all the data, the

ML is able to focus its optimization more on the relationship between the input-output rather than how the inputs

relate to each other. [43] Additionally, working with normalized data has been shown to give more effective kernel

performance for high-dimensional models as seen in Schölkopf et al. [44].

In order to find the optimal valve parameters for the system, CasADi’s optimization package was used on Equations

4.6 - 4.8. These equations formed a non-linear problem, which could be optimized using the outlet temperature,

T , as the objective function. In doing so, the optimal valve configurations were found, and these were used to both

train the ML models and when evaluating their performance later on. The optimization was set up following the
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model derivations shown in Section 4.2.

5.2 Machine learning model generation and evaluation

For the machine training step, a total of 3 separate ML models were trained for a set of 1200 training points each.

In order to be able to distinguish these machines from one another, they were dubbed accordingly to their input-

output configuration. YD is the part of the process that takes the measurements, y, and uses these to predict the

disturbances d. DU it the proceeding ML model that was intended to take the predicted disturbances and predict a

set of valve configurations u∗, which would give the optimal outlet temperature T . It is important to note here, that

DU was trained using a generated set of disturbances d and not using the predicted set from the YD ML model.

The final ML model is a YU model, which takes the measurements, y, and predicts the optimal valve configurations

u∗ directly. This final model was trained in order to be able to compare the two approached y→ d → u∗, which

uses YD and DU, and y→ u∗ which only uses the YU model. All the parameters used under y, d and u can be seen

in Equation 4.1 and in the setup of the three ML models, which is illustrated below in Figure 5.1.

y = 
[ α1,current , α2,current , T1, T2, T3,

Th,1e, Th,2e, Th,3e ]

d = 
[ wh1, wh2, wh3,
UA1, UA2, UA3 ]

u = 
[ α1,optimal , α2,optimal ] 

YU

DUYD

Figure 5.1: Figure showing a block diagram of the ML structure and which parameters are used. The goal is to find a suitable set of values for

the prediction u∗ by using the YU model for the y→ u∗ approach, and YD combined with DU for the y→ d→ u∗ approach. The

diagram was created using a diagram software developed by Benson [6].

Evaluation of the code was done by generating a new set of 1000 datapoints. 500 of the generated datapoints had

a ttratio of 1.0, meaning that we test for values in the range that the ML had been trained for, but not the exact

same points it is trained for. The latter 500 points were generated using a ttratio of 1.3, which was to test the ML

model’s ability to predict outside of its training region. The results for the datapoints inside the training region is

included under Section 6.1, while the analysis done outside the training region is included under Section 6.2.

5.3 Prior adjustment

Following the y→ d → u∗ and y→ u∗ approaches, a separate analysis was performed by adjusting the priors of

the ML models. This can be done by first making more simplistic regression predictions for some of the values,

and subtracting the prediction values from the training values. This method is illustrated below in Equations 5.1.

In these equations, ypr refers to the predicted value from the simple regression, xtr and ytr refers to the original

training dataset for x and y, y∗tr refers to the adjusted training value for y, and yGP refers to the final predicted
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y-value from the ML models.

ypr = fsimple regression(xtr,ytr)

y∗tr = ytr− ypr(xtr)

yGP = GP(xtr,y∗tr)

(5.1)

For this experiment, two prior types other that the default zero prior were tested, namely a linear prior and a

quadratic prior. From this, we are able to compare how selecting different priors affect the performances of the

ML models. Typically, we could expect that a linear prior would be optimal for these kinds of predictions as a

GP will always return to their prior for results they have not been trained for. By enforcing a linear trend for

the training values, we can have the predictions that land outside the prediction hypercube, land somewhat closer

to their desired value compared to them approaching zero. As quadratic fits are typically used as priors for cost

functions and the like, it is hypothesized that using a linear prior will produce a better fit for this process model.

In doing adjustments like this, it it typically known that higher degrees of polynomials lead to overfitting of the

training data, which is why no higher order polynomial was tested than a quadratic one. [3] In this sense, we expect

the linear fit to predict slightly better than the quadratic, as quadratic priors are typically better suited towards

optimization problems where the predictions are focused towards some sort of objective function, and there might

not be enough complexity in the data trend to justify a quadratic fit.

5.4 GPy

GPy is a Gaussian process framework that is written in Python. The framework was made by the Sheffield machine

learning group and published in 2012 on the popular coding website GitHub. [45] The framework is one of many

modern data-driven types of programming approaches of which machine learning falls under. [46] The package

covers a wide range of popular machine learning algorithms that are based on GPs, and is the main machine

learning tool that is employed in this paper.

The models were built using a standard radial basis function kernel (often referred to as a RBF kernel or SEK). This

function is defined as shown in Equation 3.5, and further explored under Section 3.2. This kernel was combined

with a coregnionalized regression model by using a Intrinsic Coregionalization Model (ICM), which is shown in

Equation 3.7.

5.5 Algorithm Summary

To summarize, a set of datapoints was generated using a piece of code, shown in Appendix B.1, following a

uniform distribution within a set region in the disturbance space, which then was used to train three separate ML

models. Two of the aforementioned models, YD and DU, were meant to work together to predict a set of valve

predictions, and a third model YU was developed for comparison. The goal of this comparison is to evaluate

whether a grey-box approach using a set of intermediate prediction of d’s (see Equation 4.1) would produce any
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beneficial results. Both of the approaches, y→ d→ u∗ and y→ u∗ were tested both inside and outside their training

region to measure how well they perform when predicting for unfamiliar data. The approaches were also tested

using a set of three different prior adjustments to analyze how any prior knowledge of the system affects the final

outlet temperature.
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6 Results

All results included are tested for randomly generated data within a set variance. The data will first be presented

when using a ttratio of 1.0 in Section 6.1.1. This will be to focus mainly on the differences in the approaches

between y→ d→ u∗ and y→ u∗, from here on dubbed YDU and YU approaches. As mentioned in Section 5, the

ML models were tested on 500 training points for both ttratio’s of 1.0 and 1.3.

The first set of results included will compare the predicted optimal values for u to the analytically calculated

optimal ones. These will be illustrated in separate scatters where a condensed linear trend of the scatter clouds

suggests better predictions. Following this, histograms for both approaches will be included to evaluate how the

valve predictions perform to the overall plant optimization. The histograms will show how much each final outlet

temperature T deviates from the maximum attainable temperature. The amount of deviation will be plotted versus

the frequency of said deviation and it is used show the accuracy of the predictions. Naturally, this entails that better

predictions lead to more frequent cases close to 0°C deviation.

As a final step of the analysis, the three priors were compared using boxplots. These plots included the overall

temperature loss that all the various priors achieved from their valve predictions. Since ML has a slight tendency

for some extreme predictions, this can lead to a fair share of outliers which makes the overall visual presentation

messy. To compensate for this and make sure the plots were visually clear, the whiskers were set to cover the 98th

percentile of the data.

From all these plots, the three separate prior adjustments will be analysed to see how these affect the final results

for both the YDU and the YU approach. The differences between the priors are explained computationally in

Section 5.3 and theoretically under Section 3.1, but in short three regression approaches are applied to the training

data before the ML model is trained. These three are namely no prior regression, linear regression and quadratic

regression.

Alongside this section, some general performances differences will be brought up between all the approaches. The

goal from all of this is to be able to see what prior adjustment works best and to be able to determine the value of a

grey-box approach (YDU) compared to a direct black-box approach (YU). As this is more nuanced than declaring

a winner and a loser, the pros and cons of each approach will be evaluated.

6.1 Testing inside the training region

First off, an extensive analysis was be performed for the nominal hypercube, where we test with a set ttratio of 1.0.

This entails that the ML models are being tested for the same kind of scenarios they were trained for, but not the

exact same data points.

6.1.1 Nominal hypercube using YDU approach

The results obtained when using a nominal hypercube with the YDU approach are illustrated in the following

section. As the models are being tested in the same region they were trained for, we expect somewhat good results

from this if the model is to hold any value.
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The obtained valve predictions for YDU using the default prior, are illustrated below in Figures 6.1.

0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Ac
tu

al
 v

al
ve

 v
al

ue
 [-

] Optimal predictions
U1 prediction

0.20 0.25 0.30 0.35 0.40 0.45 0.50
Predicted valve value [-]

0.20
0.25
0.30
0.35
0.40
0.45
0.50

Ac
tu

al
 v

al
ve

 v
al

ue
 [-

] Optimal predictions
U2 prediction

(a) Figure showing the scatter plot of all the predicted values of u compared to

their actual optimal prediction value, when using no prior adjustment.
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(b) Graph showing the frequency of various temperature deviations that resulted

from the valve predictions in 6.1a.

Figure 6.1: Figures illustrating the prediction efficacy of the YDU approach with no prior adjustment, i.e. default prior.

From the scatter plots we can see that most of the predictions land close to their optimal, with some slight deviations

in the predictions. This is especially true for the greater values of u∗ as they seem to lean greatly under their optimal

prediction. We also notice that the general predictions for both u1 and u2 are slightly lower than that of their optimal

prediction.

This is somewhat reflected in the final temperature results, which can be seen in Figure 6.1b, where we see that there

are some deviancies (from optimally achievable temperature) as great as 9°C. Most of the resulting temperatures

do however seem to range from [0, 2]°C range, which is reasonable given the lack of prior knowledge of the model.

The obtained valve predictions for YDU using a linear prior, are illustrated below in Figures 6.2.
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(a) Figure showing the scatter plot of all the predicted u-values to their actual

optimal prediction value, when using a linear prior.
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(b) Graph showing the frequency of various temperature deviations that resulted

from the valve predictions in 6.2a.

Figure 6.2: Figures illustrating the obtained valve predictions u∗ and their resulting outlet temperatures, when using a linear prior for the

YDU approach.

From this figure we can see that the results seem to be overall closer to their overall predictions compared to using
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the default prior (shown in Figure 6.1a). This is especially true for the predictions for u1 as they seem to be shifted

in a manner that makes the overall scatter cloud seem better aligned with the line for optimal predictions. We do

however still see a trend for some uncertainty in the predictions with a fair amount of outliers scattered about, but

as we can see in Figure 6.2b, the overall resulting outlet temperatures seem to be much closer to 0°C compared to

those in 6.1b.

The overall temperature deviancies in Figure 6.2b seem to mainly lie in the range of [0, 0.2]°C, which is a big

improvement over the default prior approach (Figure6.1b). We do however see that the general scatter cloud for u2

still seem to be having a trend shifted slightly below the line for optimal predictions, which indicated a somewhat

still poor fit for the data.

The obtained valve predictions when using a quadratic prior are illustrated below in Figures 6.3. For this ap-

proach, we initially expected the results to possibly be slightly overfitted and thus performing slightly worse than

the linear prior.
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(a) Figure showing the scatter plot of all the predicted u-values to their actual

optimal prediction value.
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(b) Figure showing the resulting histogram when using the valve predictions

shown in Figure 6.3a.

Figure 6.3: Figures showing the resulting data when using a quadratic prior for the YDU approach.

From these figures we can see that the trained model predicts values of u1 that are more often greater than their

optimal values, as the scatter cloud seems shifted above the optimal predictions line. The predictions for u2,

however, seem to be fitted fairly accurately around the line showing the optimal predictions. From the histogram

in Figure 6.3b we can also see that the overall performance of the graph seems to be fairly similar to the linear

prior, with most temperature deviancies laying in the range of [0, 0.2]°C. But as visual evaluation of the histograms

alone can be difficult, this will be further evaluated in Section 6.1.3, where we utilize boxplots for more readily

comparison of the performance of the two methods.

6.1.2 Nominal hypercube using YU approach

The results obtained when using the YU approach (explained under Section 5) within the training region are

illustrated in this section. The data is presented in the same order as the previous section, meaning that the first set

of data contains the obtained results when using a default prior. This is shown below in Figures 6.4.
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(a) Figure showing the scatter plot of all the predicted u-values to their actual

optimal prediction value, when using no prior adjustment.
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(b) Figure showing the resulting histogram when using the valve predictions

shown in Figure 6.4a.

Figure 6.4: Figures showing the resulting data when using a default prior for the YU approach.

From these graphs, we can see that the valve prediction scatter results seem to be more focused around their optimal

values compared to the default prior YDU approach (Figure 6.1a). While there are some outliers, these are not as

extreme as the ones for the YDU approach. This naturally leads to a better outlet temperature, which can be seen

in the histograms presented in Figures 6.1b and 6.4b for the YDU and YU approach respectively. We can see that

not only is the maximum temperature difference greatly different (from 9°C to 1.4°C), but the overall distribution

also varies greatly. The main distribution for the YU approach seems to be concentrated around the [0, 0.15]°C

range, compared to YDU’s [0, 0.2]°C range (for both the linear and quadratic prior).

Next up was the analysis of using a linear prior for the YU approach. The results from this is illustrated below in

Figures 6.5.
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(a) Figure showing the scatter plot of all the predicted u-values to their actual

optimal prediction value, when using a linear prior.

0.0 0.5 1.0 1.5 2.0 2.5
Temperature difference compared to actual u-values [C]

100

101

102

Nu
m

be
r o

f e
rro

r p
oi

nt
s [

lo
g]

(b) Figure showing the resulting histogram when using the valve predictions

shown in Figure 6.5a.

Figure 6.5: Figures showing the resulting data when using a linear prior for the YU approach.

Contrary to the expectations stated under Section 5.3, we can see from Figures 6.5 that the overall YU predictions

for a linear prior performs worse than when using no prior adjustment. By a quick glance at the u-prediction scatter
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plots (in Figures 6.4a and 6.5a) we can see that the results are overall less concentrated around their optimal values

for the linear prior. This combined with the fact that the overall scatter cloud seems to be shifted slightly above the

optimal prediction line makes the overall results for the linear prior somewhat poor.

In the YU approach, we already have six variables used to predict two, which already leads to a quite exceptional fit

as can be seen in the histogram for the default prior (Figure 6.4b). When applying a linear trend onto the prior, we

thus add an extra layer of inaccurate information that seems to lower the overall performance. Unlike the default

prior, where we see that the results are even so good that they seem to rival the quadratic prior adjustment for the

YDU approach (seen when comparing the histogram Figures 6.3b and 6.4b). This will be evaluated further under

Section 6.1.3, but since the linear prior already seems to clutter the YU predictions - we can already somewhat

expect the quadratic prior to overfit as well and give somewhat poor results.

The obtained predictions and their resulting outlet temperatures when using a quadratic prior are plotted below

in Figures 6.6.
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(a) Figure showing the scatter plot of all the predicted u-values to their actual

optimal prediction value, when using a quadratic prior.
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(b) Figure showing the resulting histogram when using the valve predictions

shown in Figure 6.6a.

Figure 6.6: Figures showing the resulting data when using a quadratic prior for the YU approach.

It is not directly clear, from looking at the u-predictions for the default and quadratic prior (Figures 6.4a and 6.6a),

which one of the two performs better as both clouds seem fairly scattered. At a closer glance however, it seems to

be a trend for the predictions that the data is more concentrated around the true optimal values. This observation is

verified when looking at the resulting outlet temperatures as the overall predictions seem way more concentrated

around the [0, 0.15]°C range, with fewer outliers (seen from Figures 6.4b and 6.6b).

When comparing the performance of the quadratic prior and the linear prior however, we can see that the scatter

cloud seems to be concentrated way better around the optimal prediction line (seen from Figures 6.5a and 6.6a).

This is especially noticeable for the predictions for u2. On the contrary, for the predictions of u1, the overall

predictions seem fairly similar and no major differences are noted.

When looking at the histograms (Figures 6.5b and 6.6b), we can see that the overall performance seems to strongly

favor the quadratic prior, as the temperature deviancy range is almost half to that of the linear prior (from [0, 0.5]°C

to [0, 0.2]°C. The overall amount of outliers is also greatly decreased and seem much closer to the 0°C.
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6.1.3 Boxplot evaluation of the approaches

In order to compare the different approaches, it was decided to construct a boxplot from the data in the histograms

as this would give best visual representation of how the performances of the different approaches. The boxplots

were constructed to find out how the performance of the various priors vary, in order to better be able to pick a

winner among the three. All three prior adjustment methods were also evaluated outside the training region to see

if some held their performance better than others. This is evaluated in Section 6.2.3.

The first boxplot shows the combined results of the histograms for the YDU approach (shown in Figures 6.1b, 6.2b

and 6.3b) and is shown below in Figures 6.7.
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(a) Figure showing the obtained boxplot for the YDU approach.
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(b) Figure showing a zoomed rendition of the box plots for visual clarity.

Figure 6.7: Figures showing the obtained boxplot for the various prior selections for the YDU approach. The box is set as the default interquar-

tile range (IQR), the whiskers are set to 2nd and 98th and the outliers are marked with ”+” crosses. Both a normal and a zoomed

version is included for visual clarity as some extreme outliers cause the full picture to become a bit hard to evaluate visually.

From the boxplots one can immediately tell that the default prior performs way worse in its overall resulting

temperatures than those with the prior adjustment. Between the quadratic and the linear prior however, the trend

of improvement seem to diminish drastically. The box and the whiskers only show a slightly more accurate trend

for the quadratic prior compared to the linear prior. As this improvement seems relatively minor, the change is

evaluated as insignificant. But we can still say that when using a grey-box approach, having some prior adjustment

seems to be like the most optimal choice.

Moving on to the YU approach, the resulting boxplots from the histograms of the selected priors (Figures 6.4b,

6.5b and 6.6b) the following boxplots were created, illustrated below in Figures 6.8.
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(a) Figure showing the obtained boxplot for the YU approach.
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(b) Figure showing a zoomed rendition of the box plots for visual clarity.

Figure 6.8: Figures showing the obtained boxplot for the various prior selections for the YU approach. Both a normal and a zoomed version

is included for visual clarity as some extreme outliers cause the full picture to become a bit hard to evaluate visually. The boxplots

show the overall temperature loss, compared to analytically optimal values, resulting from the valve predictions.

Similarly to what was seen from the histograms for the YDU approach, it seems that the linear prior performs

considerably poor for the YU approach. Unlike the YDU approach, it seems like there is a much closer call

between the quadratic and default prior for the YU approach. While the overall 50% distribution (IQR) of the

quadratic prior is closer to 0°C temperature loss, it also has a wider span of its whiskers. Either way it seems that

both the quadratic prior and the default prior seems to outperform the linear prior for the YU approach.

As to why the linear prior performs so poorly compared to the quadratic prior adjustment (and even no prior

adjustment), this will be further discussed and evaluated under Section 7.3.

6.2 Testing outside the training region

From Figures 6.7 and 6.8, we can see that both the YDU approach and YU approach have two prior options that

outperform the third. For the YDU approach, this was the linear and quadratic priors - while for the YU approach

the quadratic and default priors seem to perform best. All priors will still be tested for both approaches to see how

well the models can operate when working outside of their training region. This is investigated during this section,

with results summarized under Section 6.2.3 in the boxplot Figures 6.15 and 6.16.

Since comparisons will be done sporadically with results from inside the training region, the reader is referred to

Appendix A, where side-by-side graphs are attached for more readily comparisons.

6.2.1 YDU approach outside the training region

In a similar fashion to Section 6.1, the results in this part will be presented in the same order of default prior, linear

prior and finally quadratic prior. The results for the default prior are illustrated in Figure 6.9.

28



Gaussian Process-based grey-box modelling of heat exchanger networks

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
0.2

0.3

0.4

0.5

0.6

Ac
tu

al
 v

al
ve

 v
al

ue
[-] Optimal predictions

U1 prediction

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
Predicted valve value [-]

0.2

0.3

0.4

0.5

0.6

Ac
tu

al
 v

al
ve

 v
al

ue
 [-

]

Optimal predictions
U2 prediction

(a) Figure showing the scatter plot of all the predicted u-values to their actual

optimal prediction value, when using a default prior.
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(b) Graph showing the frequency of various temperature deviations that resulted

from the valve predictions in 6.9a.

Figure 6.9: Figures showing the resulting data when using a default prior for the YDU approach.

From a quick glance at the figure for the valve predictions, in comparison to the nominal hypercube (Figure 6.1a),

we can quickly see that the clouds are way more scattered for this case. These clouds also show way more frequent

appearances of extreme outliers, where a much greater amount of points are separated from the main scatter cloud.

This leads to more extreme max temperature discrepancies too, as the worst case scenario (as seen in Figure 6.9b)

has outliers as far as 12°C. Aside from these few extremes, the overall prediction still seems to lie within the [0,

2]°C range however, so the model seem to be able to adapt fairly well to predicting outside its training region.

Next up is the linear prior approach, which has its results illustrated below in Figure 6.10.
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(a) Figure showing the scatter plot of all the predicted u-values to their actual

optimal prediction value, when using a default prior.
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(b) Graph showing the frequency of various temperature deviations that resulted

from the valve predictions in 6.10a.

Figure 6.10: Figures showing the resulting data when using a linear prior for the YDU approach, with a ttratio of 1.3.

Similarly to the case for the default prior, we see that the scatter cloud for the u-predictions in Figure 6.10a is

generally less concentrated than when testing inside the training region. The linear prior does however not have as

many extreme outliers as the case for default prior. This is also reflected in the histogram in Figure 6.10b, where

we see that even though the general prediction range now includes more cases for predictions in the [0.25, 0.5]°C
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range, these are overall not considerably frequent. The extrapolation capability of the linear prior is therefore

deemed as good, and even better than the case for default prior. This can be said as for 500 prediction points, only

a single point exceeded the maximum extreme found from the analysis inside the training region, which was found

to be 3.5°C.

Finally there is the results obtained when using a quadratic prior, are shown below in Figures 6.11.
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(a) Figure showing the scatter plot of all the predicted u-values to their actual

optimal prediction value, when using a quadratic prior.
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(b) Graph showing the frequency of various temperature deviations that resulted

from the valve predictions in 6.11a.

Figure 6.11: Figures showing the resulting data when using a quadratic prior for the YDU approach, with a ttratio of 1.3.

Similarly to the previous two cases, the scatter cloud for the u-prediction is more sparse when comparing with the

results from training inside the training region (Figure 6.3). This is especially apparent for the higher end of the

u2 predictions, and the lower end of the u1 predictions. Again, like in the previous cases the overall temperature

difference histogram does not seem to be too affected by this, as the main temperature prediction lie in the same

range of [0, 0.2]°C as the nominal ttratio. This prediction is fairly similar to the predictions for the linear approach

(Figure 6.10a), but the different maximum outlier masks it in the graph. Further comparisons are made under

Section 6.2.3 using boxplots.

One relatively important observation that needs to be stated for the YDU approach however, is that regardless of

how seemingly scattered the u-predictions are, the overall final temperature results are not all that much affected

by it. It would seem that the loose points in the u2 scatter cloud seems to be paired with a ”good match” from the

u1 cloud (and vice versa), which overall gives a decent final temperature. ”Good match” here meaning any pairing

of the two valve predictions that result in a final outlet temperature close to the maximum possible attainable

temperature. This will be further discussed under Section 7.

6.2.2 YU approach outside the training region

When testing outside the training region for the YU approach, it was found a lot of similarities with how the YDU

approach reacted to the new testing environment. Still, the two ML models seemed to have slightly varying ways

of adapting to the new data, which we will see in the following section. The first set of results show the data

obtained for the default prior, and is illustrated below in Figures 6.12a.
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(a) Figure showing the scatter plot of all the predicted u-values to their actual

optimal prediction value, when using a default prior.
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(b) Graph showing the frequency of various temperature deviations that resulted

from the valve predictions in 6.12a.

Figure 6.12: Figures showing the resulting data when using a default prior for the YU approach, with a ttratio of 1.3.

When evaluating the effect of the increased ttratio on the YU approach, it is interesting to compare the adjustment

of the YU approach to the YDU approach. This can be valuable as we get to see how the different approaches

adapt to the new testing environment. Thus, Figures 6.12 are comparable with the figures for a nominal hypercube

(using the YU approach), shown in Figures 6.4, and with the nominal and expanded hypercube for the YDU

approach shown in Figures 6.1 and 6.9 respectively. As aforementioned, the reader is referred to Appendix A

as all these plots are attached side-by-side for more readily visual comparison between them. When comparing

these, we can see that the scatter cloud for the YU approach seems to be way less affected by the increased testing

region. The plots are concentrated far better around their desired position than that of the YDU approach. Still,

we see that the overall scatter cloud for the u2 predictions are shifted slightly below the optimal prediction line,

albeit not as extreme as the YDU approach with a default prior (Figure 6.9). This does at first glance not seem to

be very well reflected in the histograms as most predictions result in temperatures ranging from [0, 0.15]°C, but

again it is important to note how visually deceptive these graphs can appear as due to the variations in the x-axis.

Comparisons on that aspect will therefore be more focused on under Section 6.2.3.
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Next up is the plots for the results when using a linear prior. These are shown below in Figures 6.13.
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(a) Figure showing the scatter plot of all the predicted u-values to their actual

optimal prediction value, when using a linear prior.
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(b) Graph showing the frequency of various temperature deviations that resulted

from the valve predictions in 6.13a.

Figure 6.13: Figures showing the resulting data when using a linear prior for the YU approach, with a ttratio of 1.3.

Similarly to the case for the default prior, the scatter cloud for the linear prior seems to overall be less scattered

when comparing with the YDU approach using a linear prior, for both nominal and extended hypercubes (in Figures

6.2a and 6.10a respectively). This is less apparent for the linear prior for the YU approach, but as discussed under

Section 6.1.3, the linear prior seems to be the worst fit of the three priors for this approach. When evaluating the

final resulting temperatures (Figures 6.5b and 6.13b), not much change is observed and the overall accuracy of the

model seems to remain the same with both histograms having a prediction range of [0, 0.5]°C for most of their

points.

Finally, is the plots for the results when using a quadratic prior. These are shown below in Figures 6.14.
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(a) Figure showing the scatter plot of all the predicted u-values to their actual

optimal prediction value, when using a default prior.
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(b) Graph showing the frequency of various temperature deviations that resulted

from the valve predictions in 6.14a.

Figure 6.14: Figures showing the resulting data when using a quadratic prior for the YU approach, with a ttratio of 1.3.

When evaluating the scatter cloud of the YU predictions using a quadratic prior, we see a similar behaviour to

the default prior (Figure 6.12). From Figure 6.14a, we can see that the scatter cloud is slightly more scattered
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compared to the nominal hypercube (Figure 6.6a). The effect is less apparent than for the case with the YDU

approach (Figure 6.3a). Nonetheless, the overall accuracy of the temperature prediction does not seem to be too

affected by this. From a quick glance at the results from the nominal hypercube (Figure 6.6b) we can see that the

main prediction range seems to remain unchanged for this case (Figure 6.14b). The main distribution however is

shifted more towards 0.2°C, which is more apparent in the following comparison boxplots in Figure 6.16.

6.2.3 Boxplot evaluation of the approaches

The final step of the evaluation is that of the boxplot analysis. In this section the boxplots of both the YDU approach

and YU approach are included to see the performance variations between the nominal hypercube (Section 6.1.3)

and this case, using an expanded hypercube. These results can be seen below in Figures 6.15 and 6.16.
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(a) Figure showing the obtained boxplot for the YDU approach.

0.0 0.1 0.2 0.3 0.4 0.5
Temperature loss compared to optimal u-values [C]

Defa
ult

 
Pri

or 
 

Lin
ea

r 
Pri

or 
 

Qua
dra

tic
 

Pri
or 

    
 

(b) Figure showing a zoomed rendition of the box plots for visual clarity.

Figure 6.15: Figures showing the obtained boxplot for the various prior selections for the YDU approach. Both a normal and a zoomed version

is included for visual clarity as some extreme outliers cause the full picture to become a bit hard to evaluate visually.

When comparing this boxplot to the same approach over the training region (Figure 6.7), we see that the boxes are

stretched a bit, as expected. Similarly to the case with a nominal hypercube, testing over a region greater than the

training set does not seem to show any significant difference between the linear and the quadratic prior. And when

using a ttratio of 1.3 it is deemed that both of these methods work equally effective at predicting values that give

adequate final outlet temperature. The YU approach was evaluated in a similar manner, and the results can be seen

in Figures 6.16.
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(a) Figure showing the obtained boxplot for the YU approach.
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(b) Figure showing a zoomed rendition of the box plots for visual clarity.

Figure 6.16: Figures showing the obtained boxplot for the various prior selections for the YU approach. Both a normal and a zoomed version

is included for visual clarity as some extreme outliers cause the full picture to become a bit hard to evaluate visually.

When comparing this boxplot to the analysis done within the training region (Figures 6.8) it is a bit more visually

clear that the quadratic prior performs marginally better than the default prior. Even thought the whiskers are

slightly shorter for the default prior, with a difference of approximately 0.1°C, the overall IQR box is slightly

closer to 0°C for the quadratic prior. It is worth mentioning that the median of all the approaches is fairly close.

This is especially noticeable for the default and the quadratic prior. But still, while the resulting temperature loss is

more concentrated for default prior, the overall temperature loss distribution seems to slightly favor the quadratic

prior. This would of course depend on the type of plant that is operated on and if the cost function is highly

sensitive to small temperature loss or not.
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7 Discussion

It becomes apparent when evaluating the u-predictions, that only a scatter plot of the predictions does not tell the

entire story. There have been presented multiple cases where we can clearly see that an increased scatter cloud

does not necessarily mean a direct correlation to worse predictions in terms of overall loss. This was especially

apparent for the YDU case studies, where for all priors the scatter appeared as being far worse than the actual

resulting temperature was. For the YU study, most of the predictions seemed to land fairly close to their optimal

predictions, but with the overall temperature not necessarily being better for it. Regardless, it is interesting to see

how the grey-box YDU model managed to pair seemingly off values of u1 with seemingly off values of u2, to

create something that is close to the actual optimal.

The reasoning for the YDU approach being able to create better pairs of u1 and u2 is speculated to lie within the cost

function, namely the outlet temperature. To evaluate this further we can analyze a Hessian of the input-parameters

as well as a Taylor expansion of the cost function around the optimum. A Hessian is frequently used to evaluate

the local curvature of some point in a multivariable function. The function is defined below in Equation 7.1, and

is usually evaluated at some point ((xi,x j) = (x∗i ,x
∗
j) to evaluate the sensitivity of the function f to disturbances in

its variables. [47]

(H f )i, j =
δ 2 f

δxiδx j
(7.1)

By taking a Taylor expansion of the cost function around the optimum, we obtain Equation 7.2 which is shown

below.

J(u∗+∆u) = J(u∗)+ Ju(u∗)∆u+∆uT H(u∗)∆u

Ju(u∗) = 0→ J(u∗+∆u)− J(u∗) = ∆uT H(u∗)∆u
(7.2)

As the gradient is zero at the optimum, we can see that the Hessian carries all the information about the gradients

at the optimum. These gradients will indicate the overall temperature loss we have for the cost function. As the

Hessian is a matrix, we naturally know that some directions have higher gain, thus leading to a greater temperature

loss. It is speculated that even though the overall scatter clouds for the YDU predictions look worse than the YU

approach (seen in Figures 6.3a and 6.6a respectively), the YDU approach seems to have a better idea of the Hessian

for the optimum. This allows it to pair better combinations of u1 and u2 that gives overall lower temperature loss

(as seen in Figures 6.7 and 6.8).

As to why, not only the results, but mainly the scatters for YDU and YU look so different; this is hypothesized to

lie in the nature of the models. The y→ u∗ approach is more direct, presenting six inputs and two outputs. This

means the overall prediction of each point should land closer to the actual optimal values and thus give smaller

scatter clouds. On the other hand, the YDU approach, uses the more comprehensive grey-box route of y→ d→ u∗.

This can lead to the ML model somehow getting a better understanding of the system and how these parameters

interact, and thus being able to predict values for u∗ that, while ultimately incorrect and ultimately further from
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their actual optimal values, were able to create a different interpretation of the the system that had reasonable

performance in terms of system optimization.

When considering all the results presented, both for testing in the nominal and in an expanded region, it becomes

apparent that some approaches performed considerably worse than others. This is in regards to the default prior for

the YDU approach and the linear prior for the YU approach. Both of these methods showed considerably greater

uncertainty in their prediction and an overall bigger inaccuracy. For the other two cases, for both approaches,

picking a single winner becomes a bit more ambiguous. For example, when evaluating the YU approach for a

nominal and increased ttratio, we can see that while the default prior has an overall shorter range for its outer

whiskers of about 0.1°C the IQR for the quadratic prior is slightly closer to 0. Thus the question becomes if the

cost function for a process utilizing this HEN network is more sensitive to bigger temperature deviations (from

optimal temperature) or if some deviations are acceptable as long as it means more situations overall run closer to

optimal temperature. Similarly for the YDU approach, we can see that the performance of the methods is fairly

similar. For the nominal hypercube, it can be seen from Figure 6.7b that the quadratic prior has a slightly smaller

error in its predictions. For an increase in ttratio however (seen in Figure 6.15a), while the IQR for both priors are

similar, the linear prior has a smaller prediction error range overall. Thus the question a plant engineer, considering

to implement one of these approaches, would have to ask is whether we expect most operation cases to be within

the training range or if more extreme cases are prone to show up. Regardless of the situation, it can be stated very

confidently that a default prior for the YDU approach and a linear prior for the YU approach seems to be a poor

choice.

7.1 Evaluating the intermediate values for the YDU approach

One of the main attractions of a grey-box model is the added possibility of troubleshooting for extreme points.

This was evaluated by comparing the predicted disturbance values from the YD model and comparing them with

actual analytical values. The results are illustrated below in Figure 7.1.
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(a) Figure showing predicted against actual d-values, using a default prior.
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(b) Figure showing predicted against actual d-values, using a linear prior.
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(c) Figure showing predicted against actual d-values, using a quadratic prior.

Figure 7.1: Figures showing the predicted d-values against their actual analytical values from the YDU approach with the various priors

While the overall predictions for wh1−3 is fairly adequate, the predictions for UA1−3 is very chaotic. During evalu-

ation of this method the predictions that gave the greatest temperature loss were manually labelled and scrutinized.

From this analysis, it is was found that, while not immediately apparent from the values of u alone, the disturbance

values for wh1−3 could prove very helpful in spotting predictions that have gone off course. In some of the extreme

cases, one could immediately tell from the values for wh, that something was wrong as one of the values would

either be considerably low or fairly high. This trend was, however, found to not be particularly consistent and it

was mainly found that extreme values for UA1−3 were hard to spot.

When building up the machine learning model, it was found that N inputs to N outputs seemed to lose its value

when approaching greater values for amount of output predictions. This was fairly well reflected in the YU ap-

proach as it was fairly decent at predicting the two u-values even when there were only two measurement inputs

used for training. When constructing the YDU approach however simply giving training the ML model with six

inputs (for six outputs) was not enough, as the overall performance of the model was exceptionally poor. It was
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quickly seen that the measurements did not carry the necessary information required to predict the disturbances,

and so the current valve openings α1−2 were included in the model.

7.2 Training dataset size

When it comes to finding the ideal amount of training points for the ML models, no extensive testing was done,

but during the early phases of the coding it was found that the scatter clouds were very loose if exceptionally few

training points were being used (∼100). However, after a certain amount of training points (∼ 500) the amount

of time required for the hyperparameter optimization rapidly increased, and the prediction results would remain

somewhat the same. The drastic increase in training time was particularly noticeable for the YD model, as this

model accounted for the greatest amount of variables. While a set of training points of 500 points could do equally

well as a set of 1200, which was the considered amount in this paper, the training dataset size was set as big as

reasonably possible to be sure that further training would not drastically change the observations made in this work.

When using this amount of training points, the training was already fairly time-consuming and is easily determined

as the most time-consuming part of the machine learning process. Once the models are trained, loading up their

hyperparameters for prediction in a later run is very swift and efficient. Training the ML models for points above

1200-1500 would drastically increase the training time, and it was decided that setting a reasonable training size

for all models were better than having part of the ML modules be trained far better than the YD model.

7.3 Performance of priors in YU approach

When evaluating the performance of the YU model, it is speculated that applying a linear prior only seemed to

”confuse” the model and hinder its ability to successfully comprehend the process using a GP. Since this was not

the case for the case applying quadratic regression, this was evaluated further by looking at the performance for

linear and quadratic regression alone. This was coded and tested, and the obtained results are shown below in

Figures 7.2.
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(a) Linear regression applied to the YU model.

0.20 0.25 0.30 0.35 0.40 0.45 0.50
Predicted valve value [-]

0.20
0.25
0.30
0.35
0.40
0.45
0.50

Ac
tu

al
 v

al
ve

 v
al

ue
 [-

] Optimal predictions
U1 predictions

0.20 0.25 0.30 0.35 0.40 0.45 0.50
Predicted valve value [-]

0.20
0.25
0.30
0.35
0.40
0.45
0.50

Ac
tu

al
 v

al
ve

 v
al

ue
 [-

] Optimal predictions
U2 predictions

(b) Quadratic regression applied to the YU model.

Figure 7.2: Evaluation of simple regression applied to the YU model. The figures show the valve predictions against their calculated analytical

value in order to explain why using a linear prior performs so poorly for the YU model.
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It was originally hypothesized that the reason the prior had a negative influence over the performance of the YU

model was that the approach was already fairly direct, having only two prediction parameters using eight inputs.

By applying any prior to such a approach, it seems like the prior’s individual performance does seemingly need to

be somewhat good on its own in order to not hamper the performance of the ML model. From the figure we can see

that simple quadratic regression actually manages to produce a noticeable trend for the model. These predictions

are by no means exceptional, but it does manage to display a trend in its predictions. This trend is fairly adequate

compared to the predictions obtained from linear regression, in which the predictions are not well correlated with

their true values. This can explain much of why we saw the performance of the linear prior being rather poor in its

performance (seen in Figures 6.8 and 6.16 for nominal and extended testing regions).

7.4 Improving the model: Regression networks

In recent years there has been a rapid development of interest within the field of Gaussian process regression

frameworks that accounts for fixed correlations between output variables (Byron et al. [48], Osborne et al. [49],

Williams et al. [50], Alvarez and Lawrence [51], Alvarez and Lawrence [52]). One of the more promising models

utilize a regression network, that is designed to account for correlation between outputs. In doing so, they created

a multiple output model (often referred to as ’multi-task’ models) that can achieve better prediction results. This

could be especially applicable for a grey-box model like the YDU model, considered in this paper. By training

a regression network like this, we can help the model better understand the correlations between the disturbance

parameters and thus achieve better plant inputs to minimize temperature loss. Other methods include Gaussian

process regression networks (GPRN). These models have been found to show ”strong empirical performance” on

several various datasets (Wilson et al. [53]).

7.5 Improving the model: Disturbance selection and ML formulations

As was seen from Figure 7.1, the grey-box evaluation had a rather poor performance for its disturbance predic-

tions. The prediction efficacy for the heat capacity parameterers wh1−3 were fairly adequate, but the prediction

for the overall heat transfer coefficients UA1−3 were exceptionally poor. It is speculated that when constructing a

model like this, a more thorough evaluation of the measurement and disturbance parameter selection could have

improved this. Additionally, when working with larger disturbance (or measurement) sets it can be an advantage

to incorporate other function approximators over GPs. A possibility is the use of spline models, which have often

been shown to work better for problems where the problem scale is too big for a GP to handle, and the models

are in many instances, regarded as mathematically equivalent. [54] The scaling was already noticeable and slightly

problematic when increasing the size of the training sets. For sets over ∼1500 training points, training the YD

model took up to 8 hours to complete, even with a fairly high-end computer being used.
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8 Conclusion

While more traditional black-box models have been the main go-to method for the use of machine learning in most

studies, this paper made an attempt at the results of using a grey-box approach. Grey-box in this sense indicates that

a set of intermediate process disturbance parameters were predicted and used to predict the optimal process inputs.

This not only allows a operator to more readily investigate any peculiar predictions without having to fully break

down the black-box model, but has been shown to also give room for the ML models to understand the process

better and thus give alternative parameter predictions that lead to surprisingly adequate process optimization.

In terms of the simulations performed in this work, the grey-box model was found to display some shortcomings

when predicting outside the dedicated training area, to which it was found that the traditional black-box model is

superior (Figures 6.15 and 6.16 for YDU and YU approach respectively). In terms of predicting within the training

region however, the grey-box model presented less overall temperature loss and thus slightly better predictions. On

the other hand, the black-box model showed a higher amount of prediction points that yield zero (or close to zero)

temperature loss. It can therefore be said that when opting between a grey-box and a black-box model for a plant

considering a case study like this, one would have to evaluate the specific case in order to best be able to select a

model.

From further evaluation of the grey-box model it was found that it does not necessarily respect the intermediate

disturbance values. While the predictions for the disturbances wh1−3 (seen in Figure 7.1) were fairly accurate, the

predictions for the parameters UA1−3 were not very indicative and useful for estimating when a input prediction

had gone amiss. Despite this shortcoming, we can say that utilizing a grey-box model certainly has its fair share

of benefits compared to a traditional black-box model, but more research into this field is required. One of the

suggested methods by which one can achieve this is by using GPRN or other regression networks that can help

in accounting for correlations between the output variables of the process. By doing this we can possibly design

machine learning models that better understand the underlying structure of the system and is thus able to give

better input predictions.
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A Side-by-Side results

This appendix has attached to it all of the plots shown in the results (section 6), but in a different order. This makes

comparison of the efficacy of the various approaches better, especially when evaluating the performance of the

various ttratios.

A.1 Default prior

Attached below (figures A.1 and A.2) is a comparison figures showing all the created scatter plots, and their

respective histograms, for the YDU and the YU approach using a default prior for both ttratios.

A.1.1 U-prediction comparison plots
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(a) Scatter plot of the predicted u-values for the YDU ap-
proach.
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(b) Scatter plot of the predicted u-values for the YDU ap-
proach with ttratio as 1.3.
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(c) Scatter plot of the predicted u-values for the YU approach.

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
0.2

0.3

0.4

0.5

0.6

Ac
tu

al
 v

al
ve

 v
al

ue
 [-

] Optimal predictions
U1 predictions

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
Predicted valve value [-]

0.2

0.3

0.4

0.5

0.6

Ac
tu

al
 v

al
ve

 v
al

ue
 [-

] Optimal predictions
U2 predictions

(d) Scatter plot of the predicted u-values for the YU approach
with ttratio as 1.3.

Figure A.1: Comparison scatter plot for all the predicted u-values for the YDU and YU approach using a default prior.

45



Gaussian Process-based grey-box modelling of heat exchanger networks

A.1.2 Histogram comparison plots
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(a) Histogram of the resulting T-differences for the YDU ap-
proach.
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(b) Histogram of the resulting T-differences for the YDU ap-
proach with ttratio as 1.3.
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(c) Histogram of the resulting T-differences for the YU ap-
proach.
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(d) Histogram of the resulting T-differences for the YU ap-
proach with ttratio as 1.3.

Figure A.2: Comparison histograms for all the resulting T-differences for the YDU and YU approach using a default prior.
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A.2 Linear prior adjustment

The plots for the YDU and YU approach using a linear prior can be seen below in figures A.3 and A.4.

A.2.1 U-prediction comparison plots
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(a) Scatter plot of the predicted u-values for the YDU ap-
proach.
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(b) Scatter plot of the predicted u-values for the YDU ap-
proach with ttratio as 1.3.
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(c) Scatter plot of the predicted u-values for the YU approach.
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(d) Scatter plot of the predicted u-values for the YU approach
with ttratio as 1.3.

Figure A.3: Comparison scatter plot for all the predicted u-values for the YDU and YU approach using a linear prior.
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A.2.2 Histogram comparison plots
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(a) Histogram of the resulting T-differences for the YDU ap-
proach.
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(b) Histogram of the resulting T-differences for the YDU ap-
proach with ttratio as 1.3.
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(c) Histogram of the resulting T-differences for the YU ap-
proach.

0.0 0.5 1.0 1.5 2.0
Temperature difference compared to actual u-values [C]

100

101

102

Nu
m

be
r o

f e
rro

r p
oi

nt
s [

lo
g]

(d) Histogram of the resulting T-differences for the YU ap-
proach with ttratio as 1.3.

Figure A.4: Comparison histograms for all the resulting T-differences for the YDU and YU approach using a linear prior.

48



Gaussian Process-based grey-box modelling of heat exchanger networks

A.3 Quadratic prior adjustment

And finally, comparison plots for the quadratic prior are included below in figures A.5 and A.6.

A.3.1 U-prediction comparison
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(a) Scatter plot of the predicted u-values for the YDU ap-
proach.
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(b) Scatter plot of the predicted u-values for the YDU ap-
proach with ttratio as 1.3.
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(c) Scatter plot of the predicted u-values for the YU approach.
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(d) Scatter plot of the predicted u-values for the YU approach
with ttratio as 1.3.

Figure A.5: Comparison scatter plot for all the predicted u-values for the YDU and YU approach using a quadratic prior.
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A.3.2 Histogram comparison plots
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(a) Histogram of the resulting T-differences for the YDU ap-
proach.
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(b) Histogram of the resulting T-differences for the YDU ap-
proach with ttratio as 1.3.
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(c) Histogram of the resulting T-differences for the YU ap-
proach.
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(d) Histogram of the resulting T-differences for the YU ap-
proach with ttratio as 1.3.

Figure A.6: Comparison histograms for all the resulting T-differences for the YDU and YU approach using a quadratic prior.

A.4 Boxplot Comparisons

This appendix includes all the zoommed versions of the boxplots for easier visual comparison betweent he perfor-

mance of the various approaches.
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(a) Zoomed boxplot of the temperature loss and frequency for
the YDU approach.
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(b) Zoomed boxplot of the temperature loss and frequency
for the YU approach.
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(c) Zoomed boxplot of the temperature loss and frequency for
the YDU approach outside the training region.
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(d) Zoomed boxplot of the temperature loss and frequency
for the YU approach outside the training region.

Figure A.7: Comparison boxplots for the resulting temperature loss and their frequencies. All versions are zoomed with a

consistent axis for better visual clarity.
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B Code Attachment
B.1 hex3 gendist.py

1 i m p o r t numpy as np
2

3 #np . random . seed ( 1 ) ## i m p o r t a n t when working wi th random numbers !
4

5 d e f g e n d a t a s e t (N, t t r a t i o = 1 . 0 ) :
6

7 p a r s p a n = {}
8 # D e f i n i n g d i s t u r b a n c e box [ c e n t e r , v a r i a b i l i t y ]
9 p a r s p a n [ ’T0 ’ ] = [ 6 0 , 0 ] # C

10 p a r s p a n [ ’w0 ’ ] = [ 1 0 5 , 0 ] # kW/K
11 p a r s p a n [ ’wh1 ’ ] = [ 4 0 , 10] # kW/K
12 p a r s p a n [ ’wh2 ’ ] = [ 5 0 , 10] # kW/K
13 p a r s p a n [ ’wh3 ’ ] = [ 3 0 , 10] # kW/K
14 p a r s p a n [ ’ Th1 ’ ] = [ 1 5 0 , 0 ] # C
15 p a r s p a n [ ’ Th2 ’ ] = [ 1 5 0 , 0 ] # C
16 p a r s p a n [ ’ Th3 ’ ] = [ 1 5 0 , 0 ] # C
17 p a r s p a n [ ’UA1 ’ ] = [ 6 5 , 15] # kW/K
18 p a r s p a n [ ’UA2 ’ ] = [ 8 0 , 10] # kW/K
19 p a r s p a n [ ’UA3 ’ ] = [ 9 5 , 15] # kW/K
20

21 # Copied from t r a n s f e r l e a r n i n g
22 p a r s p a n [ ’ Ts ’ ] = [ 0 , 0 ] # C
23 p a r s p a n [ ’ h1 ’ ] = [ 0 , 0 ] # kW/K
24 p a r s p a n [ ’ h2 ’ ] = [ 0 , 0 ] # kW/K
25 p a r s p a n [ ’ h3 ’ ] = [ 0 , 0 ] # kW/K
26

27 r a n d m a t r i x = np . random . r and ( l e n ( p a r s p a n ) , N)
28 p a r v e c = {}
29 f o r i , parname i n enumera t e ( p a r s p a n . keys ( ) ) :
30 p a r v e c [ parname ] = p a r s p a n [ parname ] [ 0 ] + t t r a t i o * (2 * r a n d m a t r i x [ i ] − 1 ) * ( p a r s p a n [

parname ] [ − 1 ] )
31

32 pa r0 = [{ key : v a l u e [ i ] f o r key , v a l u e i n p a r v e c . i t e m s ( ) } f o r i i n r a n g e (N) ] # Conve r t from
d i c t −>a r r a y f o r GPy

33

34 # Random i n p u t v a l u e s
35 # Smith , Noah A. , and Roy W. Tromble . ” Sampl ing u n i f o r m l y from t h e u n i t s i m p l e x . ” Johns

Hopkins U n i v e r s i t y , Tech . Rep 29 ( 2 0 0 4 ) .
36 dim = 3
37 x = np . s o r t ( np . random . rand ( dim − 1 , N) , a x i s =0)
38 x = np . c o n c a t e n a t e ( [ np . z e r o s ( ( 1 , N) ) , x , np . ones ( ( 1 , N) ) ] , a x i s =0)
39 a l p h a = x [ 1 : ] − x [ : − 1 ]
40

41 # # Checking u n i f o r m i t y
42 # ax = p l t . axes ( p r o j e c t i o n = ’3 d ’ )
43 # ax . p l o t ( a l p h a [ 0 ] , a l p h a [ 1 ] , a l p h a [ 2 ] , ’ b . ’ )
44 # p l t . show ( )
45

46 a l p h a = a l p h a [ : − 1 ]
47

48 r e t u r n par0 , a l p h a

B.2 hex3 chen.py
1 from c a s a d i i m p o r t *
2 i m p o r t numpy as np
3

4 n l p o p t s = { ’ i p o p t ’ : { ’ p r i n t l e v e l ’ : 0} , ’ p r i n t t i m e ’ : F a l s e }
5 x v a r s = [ ’ a l p h a 3 ’ , ’T ’ , ’ T s t a r 1 ’ , ’ T s t a r 2 ’ , ’ T s t a r 3 ’ , ’ The1 ’ , ’ The2 ’ , ’ The3 ’ , ’Q1 ’ , ’Q2 ’ , ’Q3 ’ , ’ Qloss1 ’

, ’ Qloss2 ’ , ’ Qloss3 ’ , ’T1 ’ , ’T2 ’ , ’T3 ’ ]
6 u v a r s = [ ’ a l p h a 1 ’ , ’ a l p h a 2 ’ ]
7

8 m e a s s e t s = {
9 # 1 : [ ’ T0 ’ , ’T1 ’ , ’T2 ’ , ’T3 ’ , ’ The1 ’ , ’ The2 ’ , ’ The3 ’ , ’ a l p h a 1 ’ , ’ a l p h a 2 ’ ] ,

10 1 : [ ’ a l p h a 1 ’ , ’ a l p h a 2 ’ , ’T1 ’ , ’T2 ’ , ’T3 ’ , ’ The1 ’ , ’ The2 ’ , ’ The3 ’ ] ,
11 2 : [ ’wh1 ’ , ’wh2 ’ , ’wh3 ’ , ’ Th1 ’ , ’ Th2 ’ , ’ Th3 ’ ] ,
12 3 : [ ’T0 ’ , ’w0 ’ , ’wh1 ’ , ’wh2 ’ , ’wh3 ’ , ’ Th1 ’ , ’ Th2 ’ , ’ Th3 ’ , ’UA1 ’ , ’UA2 ’ , ’UA3 ’ , ’ Ts ’ , ’ h1 ’ ,

’ h2 ’ , ’ h3 ’ ]
13 }
14

15 Ti max = 1500
16

17 d e f model ( p a r ) :
18 T = SX . sym ( ’T ’ )
19 T s t a r 1 = SX . sym ( ’ T s t a r 1 ’ )
20 T s t a r 2 = SX . sym ( ’ T s t a r 2 ’ )
21 T s t a r 3 = SX . sym ( ’ T s t a r 3 ’ )
22 The1 = SX . sym ( ’ The1 ’ )
23 The2 = SX . sym ( ’ The2 ’ )
24 The3 = SX . sym ( ’ The3 ’ )
25 Q1 = SX . sym ( ’Q1 ’ )
26 Q2 = SX . sym ( ’Q2 ’ )
27 Q3 = SX . sym ( ’Q3 ’ )
28 Qloss1 = SX . sym ( ’ Qloss1 ’ )
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29 Qloss2 = SX . sym ( ’ Qloss2 ’ )
30 Qloss3 = SX . sym ( ’ Qloss3 ’ )
31 T1 = SX . sym ( ’T1 ’ )
32 T2 = SX . sym ( ’T2 ’ )
33 T3 = SX . sym ( ’T3 ’ )
34 a l p h a 1 = SX . sym ( ’ a l p h a 1 ’ )
35 a l p h a 2 = SX . sym ( ’ a l p h a 2 ’ )
36 a l p h a 3 = SX . sym ( ’ a l p h a 3 ’ )
37

38 T0 = p a r [ ’T0 ’ ]
39 w0 = p a r [ ’w0 ’ ]
40 Th1 = p a r [ ’ Th1 ’ ]
41 Th2 = p a r [ ’ Th2 ’ ]
42 Th3 = p a r [ ’ Th3 ’ ]
43 wh1 = p a r [ ’wh1 ’ ]
44 wh2 = p a r [ ’wh2 ’ ]
45 wh3 = p a r [ ’wh3 ’ ]
46 UA1 = p a r [ ’UA1 ’ ]
47 UA2 = p a r [ ’UA2 ’ ]
48 UA3 = p a r [ ’UA3 ’ ]
49

50 Ts = p a r [ ’ Ts ’ ]
51 h1 = p a r [ ’ h1 ’ ]
52 h2 = p a r [ ’ h2 ’ ]
53 h3 = p a r [ ’ h3 ’ ]
54

55 dTlm1 = ( ( Th1 − T s t a r 1 ) * ( The1 − T0 ) * ( ( Th1 − T s t a r 1 ) + ( The1 − T0 ) ) / 2 ) * * ( 1 / 3 )
56 dTlm2 = ( ( Th2 − T s t a r 2 ) * ( The2 − T0 ) * ( ( Th2 − T s t a r 2 ) + ( The2 − T0 ) ) / 2 ) * * ( 1 / 3 )
57 dTlm3 = ( ( Th3 − T s t a r 3 ) * ( The3 − T0 ) * ( ( Th3 − T s t a r 3 ) + ( The3 − T0 ) ) / 2 ) * * ( 1 / 3 )
58

59 f0 = − T + a l p h a 1 *T1 + a l p h a 2 *T2 + a l p h a 3 *T3
60 f01 = a l p h a 1 + a l p h a 2 + a l p h a 3 − 1
61 f11 = − Q1 + w0* a l p h a 1 *( T s t a r 1 − T0 )
62 f12 = − Q2 + w0* a l p h a 2 *( T s t a r 2 − T0 )
63 f13 = − Q3 + w0* a l p h a 3 *( T s t a r 3 − T0 )
64 f21 = − Q1 + UA1*dTlm1
65 f22 = − Q2 + UA2*dTlm2
66 f23 = − Q3 + UA3*dTlm3
67 f31 = − Q1 + wh1 *( Th1 − The1 )
68 f32 = − Q2 + wh2 *( Th2 − The2 )
69 f33 = − Q3 + wh3 *( Th3 − The3 )
70 f41 = − Qloss1 + w0* a l p h a 1 *( T1 − T s t a r 1 )
71 f42 = − Qloss2 + w0* a l p h a 2 *( T2 − T s t a r 2 )
72 f43 = − Qloss3 + w0* a l p h a 3 *( T3 − T s t a r 3 )
73 f51 = − Qloss1 + h1 *( Ts − T1 )
74 f52 = − Qloss2 + h2 *( Ts − T2 )
75 f53 = − Qloss3 + h3 *( Ts − T3 )
76

77 x = v e r t c a t ( a lpha3 , T , T s t a r 1 , T s t a r 2 , T s t a r 3 , The1 , The2 , The3 , Q1 , Q2 , Q3 , Qloss1 , Qloss2 , Qloss3 , T1 ,
T2 , T3 )

78 f = v e r t c a t ( f0 , f01 , f11 , f12 , f13 , f21 , f22 , f23 , f31 , f32 , f33 , f41 , f42 , f43 , f51 , f52 , f53 )
79 u = v e r t c a t ( a lpha1 , a l p h a 2 )
80 J = −T
81

82 r e t u r n { ’ x ’ : x , ’ u ’ : u , ’ f ’ : f , ’ J ’ : J}
83

84 d e f o u t p u t ( u , par , x0=None ) :
85

86 m = model ( p a r )
87 nx = np . prod (m[ ’ x ’ ] . shape )
88 nu = np . prod (m[ ’ u ’ ] . shape )
89 nf = np . prod (m[ ’ f ’ ] . shape )
90

91 i f x0 i s None :
92 x0 = np . a r r a y ( [ 0 . 3 3 ] * ( nu +1) + [ ( p a r [ ’T0 ’ ]+ p a r [ ’ Th1 ’ ] ) / 2 , ( p a r [ ’T0 ’ ]+ p a r [ ’ Th2 ’ ] ) / 2 , (

p a r [ ’T0 ’ ]+ p a r [ ’ Th3 ’ ] ) / 2 ] * 2 + [ p a r [ ’T0 ’ ] ] * ( nx − 2*( nu +1) − 1) )
93

94 n l p = {} # NLP d e c l a r a t i o n
95 n l p [ ’ x ’ ] = v e r t c a t (m[ ’ u ’ ] ,m[ ’ x ’ ] ) # d e c i s i o n v a r s
96 n l p [ ’ f ’ ] = m[ ’ J ’ ] # o b j e c t i v e
97 n l p [ ’ g ’ ] = m[ ’ f ’ ] # c o n s t r a i n t s
98

99 # C r e a t e s o l v e r i n s t a n c e
100 F = n l p s o l ( ’F ’ , ’ i p o p t ’ , n lp , n l p o p t s )
101

102 # So lve t h e problem u s i n g a g u e s s
103 l b x = np . a r r a y ( [ * u ] + [ 0 ] * ( 1 ) +[ − i n f ] * ( nx −1) ) # c o n s t r a i n t on i n p u t s and f i r s t s t a t e ( l a s t

f low s p l i t )
104 ubx = np . a r r a y ( [ * u ] + [ 1 ] * ( 1 ) +[+ i n f ] * ( nx −1) ) # upper l i m i t on s p l i t s i s n o t n e c e s s a r y , b u t

w i l l a u t o m a t i c a l l y be s a t i s f i e d
105

106 l b x [ ( nu +2) : ( nu +2+3*2) ] = p a r [ ’T0 ’ ] # c o n s t r a i n t on t e m p e r a t u r e s
107 ubx [ ( nu +2) : ( nu +2+3*2) ] = np . a r r a y ( [ p a r [ ’ Th1 ’ ] , p a r [ ’ Th2 ’ ] , p a r [ ’ Th3 ’ ] , p a r [ ’ Th1 ’ ] , p a r [ ’

Th2 ’ ] , p a r [ ’ Th3 ’ ] ] ) # c o n s t r a i n t on t e m p e r a t u r e s
108
109

110 r = F ( x0=x0 , l b g =np . z e r o s ( n f ) , ubg=np . z e r o s ( n f ) , l b x = lbx , ubx=ubx )
111

112 s o l = r [ ’ x ’ ] . f u l l ( ) . r e s h a p e ( −1)
113
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114 r e t u r n { ’ x ’ : s o l [ − nx : ] , ’ s u c c e s s ’ : F . s t a t s ( ) [ ’ s u c c e s s ’ ]}
115

116 d e f c o s t ( u , p a r ) :
117 m = model ( p a r )
118 F = F u n c t i o n ( ’F ’ , [m[ ’ x ’ ] , m[ ’ u ’ ] ] , [m[ ’ J ’ ] ] , [ ’ x ’ , ’ u ’ ] , [ ’ J ’ ] )
119 o u t = o u t p u t ( u , p a r ) #np . z e r o s ( nx ) ;
120 J = F ( o u t [ ’ x ’ ] , u )
121 r e t u r n { ’ J ’ : J . f u l l ( ) . r e s h a p e ( −1) , ’ s u c c e s s ’ : o u t [ ’ s u c c e s s ’ ]}
122
123

124 d e f g rad ( u , p a r ) :
125 m = model ( p a r )
126

127 F = F u n c t i o n ( ’F ’ , [m[ ’ x ’ ] , m[ ’ u ’ ] ] , [m[ ’ f ’ ] , m[ ’ J ’ ] ] , [ ’ x ’ , ’ u ’ ] , [ ’ f ’ , ’ J ’ ] )
128 G = r o o t f i n d e r ( ’G’ , ’ newton ’ , F )
129 o u t = o u t p u t ( u , p a r ) #np . z e r o s ( nx ) ;
130 J u f u n = G. f a c t o r y ( ’ Ju ’ , [ ’ x ’ , ’ u ’ ] , [ ’ j a c : J : u ’ ] )
131

132 d e l t a = 0
133 Ju = J u f u n ( o u t [ ’ x ’ ]+ d e l t a , u ) . f u l l ( ) . r e s h a p e ( −1)
134 # w h i l e n o t G. s t a t s ( ) [ ’ s u c c e s s ’ ] :
135 # d e l t a = d e l t a *10 ;
136 # Ju = J u f u n ( xgu es s + d e l t a , u ) . f u l l ( ) . r e s h a p e ( −1)
137 r e t u r n { ’ g r ad ’ : Ju , ’ s u c c e s s ’ : True}
138
139

140 d e f o u t p u t m e a s ( m e a s s e t , u , p a r ) :
141 m e a s v a r s = m e a s s e t s [ m e a s s e t ]
142 y = np . z e r o s ( ( l e n ( m e a s v a r s ) , ) )
143 o u t = o u t p u t ( u , p a r )
144 x = o u t [ ’ x ’ ]
145 f o r i , v a r i n enumera t e ( m e a s v a r s ) :
146 i f v a r i n p a r :
147 y [ i ] = p a r [ v a r ]
148 e l i f v a r i n u v a r s :
149 y [ i ] = u [ u v a r s . i n d e x ( v a r ) ]
150 e l i f v a r i n x v a r s :
151 y [ i ] = x [ x v a r s . i n d e x ( v a r ) ]
152 e l s e :
153 y [ i ] = np . nan
154 r e t u r n { ’ y ’ : y , ’ s u c c e s s ’ : o u t [ ’ s u c c e s s ’ ]}
155

156 d e f opt im ( par , x0=None ) :
157

158 m = model ( p a r )
159 nx = np . prod (m[ ’ x ’ ] . shape )
160 nu = np . prod (m[ ’ u ’ ] . shape )
161 nf = np . prod (m[ ’ f ’ ] . shape )
162

163 n l p = {} # NLP d e c l a r a t i o n
164 n l p [ ’ x ’ ] = v e r t c a t (m[ ’ u ’ ] ,m[ ’ x ’ ] ) # d e c i s i o n v a r s
165 n l p [ ’ f ’ ] = m[ ’ J ’ ] # o b j e c t i v e
166 n l p [ ’ g ’ ] = m[ ’ f ’ ] # c o n s t r a i n t s
167

168 # C r e a t e s o l v e r i n s t a n c e
169 F = n l p s o l ( ’F ’ , ’ i p o p t ’ , n lp , n l p o p t s )
170

171 T b a c k o f f = 1
172 # Trand = 1 ;
173 a l p h a b a c k o f f = 1e −3
174

175 i f x0 i s None :
176 # x0 = np . z e r o s ( nx+nu ) ;
177 # x0 [ : nu +1] = 1 / ( nu +1) ;
178 # x0 [ ( nu +2) : ( nu +2+3*2) ] = p a r [ ’ T0 ’ ] + T b a c k o f f #+ Trand *np . random . r and ( 3 * 2 ) ; # [ T s t a r 1

, T s t a r 2 , T s t a r 3 , The1 , The2 , The3 ]
179 x0 = np . a r r a y ( [ 0 . 3 3 ] * ( nu +1) + [ ( p a r [ ’T0 ’ ]+ p a r [ ’ Th1 ’ ] ) / 2 , ( p a r [ ’T0 ’ ]+ p a r [ ’ Th2 ’ ] ) / 2 , (

p a r [ ’T0 ’ ]+ p a r [ ’ Th3 ’ ] ) / 2 ] * 2 + [ p a r [ ’T0 ’ ] ] * ( nx − 2*( nu +1) − 1) )
180

181 # So lve t h e problem u s i n g f i r s t g u e s s
182

183 l b x = np . a r r a y ( [ a l p h a b a c k o f f ] * ( nu +1) +[ − i n f ] * ( nx −1) ) # c o n s t r a i n t on i n p u t s and f i r s t
s t a t e ( l a s t f low s p l i t )

184 ubx = np . a r r a y ( [ 1 ] * ( nu +1) +[+ i n f ] * ( nx −1) ) # upper l i m i t on s p l i t s i s n o t n e c e s s a r y , b u t
w i l l a u t o m a t i c a l l y be s a t i s f i e d

185

186 l b x [ ( nu +2) : ( nu +2+3*2) ] = p a r [ ’T0 ’ ] # c o n s t r a i n t on t e m p e r a t u r e s
187 ubx [ ( nu + 2) : ( nu + 2 + 3) ] = np . a r r a y ( [ min ( Ti max , t ) f o r t i n [ p a r [ ’ Th1 ’ ] , p a r [ ’ Th2 ’ ] ,

p a r [ ’ Th3 ’ ] ] ] ) # c o n s t r a i n t on t e m p e r a t u r e s
188 ubx [ ( nu + 2 + 3) : ( nu + 2 + 3 * 2) ] = np . a r r a y ( [ p a r [ ’ Th1 ’ ] , p a r [ ’ Th2 ’ ] , p a r [ ’ Th3 ’ ] ] ) #

c o n s t r a i n t on t e m p e r a t u r e s
189

190 r = F ( x0=x0 , l b g =np . z e r o s ( n f ) , ubg=np . z e r o s ( n f ) , l b x = lbx , ubx=ubx )
191

192 # w h i l e n o t F . s t a t s ( ) [ ’ s u c c e s s ’ ] :
193 # Trand = Trand + 1 ;
194 # x0 [ ( nu +2) : ( nu +2+3*2) ] = p a r [ ’ T0 ’ ] + T b a c k o f f + Trand *np . random . r and ( 3 * 2 ) ;
195 # r = F ( x0=x0 , l b g =np . z e r o s ( n f ) , ubg=np . z e r o s ( n f ) , l b x = lbx , ubx=ubx ) ;
196

197 s o l = r [ ’ x ’ ] . f u l l ( ) . r e s h a p e ( −1)
198
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199 r e t u r n { ’ u ’ : s o l [ : nu ] , ’ x ’ : s o l [ − nx : ] , ’ s u c c e s s ’ : F . s t a t s ( ) [ ’ s u c c e s s ’ ]}

B.3 YU training.py
1 # ##########################PREFACE###########################
2 # Code by Michae l Lindbak
3 # For academic m a s t e r s d e g r e e i n Chemical E n g i n e e r i n g S p r i n g 2021
4

5 # I m p o r t i n g t o o l s f o r t h e code
6 i m p o r t GPy #ML
7 i m p o r t numpy as np #Numpy
8 i m p o r t m a t p l o t l i b . p y p l o t a s p l t # P l o t t i n g
9 from s k l e a r n . p r e p r o c e s s i n g i m p o r t MinMaxScaler # S c a l i n g

10 from s k l e a r n . l i n e a r m o d e l i m p o r t L i n e a r R e g r e s s i o n # P r i o r a d j u s t m e n t
11 i m p o r t pandas as pd # Data −management
12 from s k l e a r n . p r e p r o c e s s i n g i m p o r t P o l y n o m i a l F e a t u r e s # P r i o r a d j u s t m e n t
13 from s k l e a r n . p i p e l i n e i m p o r t m a k e p i p e l i n e # p r i o r a d j u s t m t n t
14 from s k l e a r n . l i n e a r m o d e l i m p o r t Ridge # p r i o r a d j u s t m e n t
15 i m p o r t j o b l i b # Sav ing / E x p o r t i n g S c a l e r
16

17 # I mp or t pre −made code
18 i m p o r t h e x 3 g e n d i s t a s g e n d i s t #Code f o r g e n e r a t i n g random da ta − p o i n t s
19 i m p o r t hex3 chen as ch #Code f o r d a t a c a l c u l a t i o n s o f t h e sys tem
20

21 # I mp or t p r e d i c t i o n code from S u p e r v i s o r
22 d e f p r e d i c t a l l (m: GPy . models . G P C o r e g i o n a l i z e d R e g r e s s i o n , X) :
23 ny = l e n ( np . un iq ue (m. o u t p u t i n d e x ) )
24 y = [ ]
25 covy = [ ]
26 Xaug = np . h s t a c k ( ( X, 0 . 0 * np . o n e s l i k e (X [ : , 0 : 1 ] ) ) )
27 f o r i y i n r a n g e ( ny ) :
28 Xaug [ : , −1 : ] = i y
29 y i , c o v y i = m. p r e d i c t ( Xaug , Y metada ta ={ ’ o u t p u t i n d e x ’ : Xaug [ : , − 1 : ] . a s t y p e ( i n t ) } )
30 y . append ( y i )
31 covy . append ( c o v y i )
32 r e t u r n np . h s t a c k ( y ) , np . h s t a c k ( covy )
33
34

35 # ##########################CODING###########################
36

37 ## G e n e r a t i n g d a t a s e t
38 g e n d a t a = g e n d i s t . g e n d a t a s e t ( 1 2 0 0 )
39

40 ## S e p a r a t e d a t a i n t o GPy s t a n d a r d s
41 # y− d a t a
42 y t r a i n = np . a r r a y ( [ ch . opt im ( x p t ) [ ’ u ’ ] f o r x p t i n g e n d a t a [ 0 ] ] )
43 y s c a l e = MinMaxScaler ( )
44 y t r a i n = np . a r r a y ( y s c a l e . f i t t r a n s f o r m ( y t r a i n ) )
45 j o b l i b . dump ( y s c a l e , ’ y u u s c a l e . gz ’ )
46 Y t r a i n = np . a r r a y ( l i s t ( z i p (* y t r a i n ) ) )
47 Y t r a i n = np . a r r a y ( [ i [ : , None ] f o r i i n Y t r a i n ] )
48

49 # x− d a t a
50 x t r a i n = np . a r r a y ( [ ch . o u t p u t m e a s ( 1 , [ g e n d a t a [ 1 ] [ 0 ] [ i ] , g e n d a t a [ 1 ] [ 1 ] [ i ] ] , g e n d a t a [ 0 ] [ i ] ) [

’ y ’ ]
51 f o r i i n r a n g e ( l e n ( g e n d a t a [ 0 ] ) ) ] )
52 x s c a l e = MinMaxScaler ( )
53 x t r a i n = np . a r r a y ( x s c a l e . f i t t r a n s f o r m ( x t r a i n ) )
54 j o b l i b . dump ( x s c a l e , ’ y u y s c a l e . gz ’ ) # E x p o r t s t h e s c a l e r
55

56 # u− pr
57 # r e g = L i n e a r R e g r e s s i o n ( ) . f i t ( x t r a i n , y t r a i n ) # L i n e a r P r i o r (

uncomment l i n e )
58 # r e g = m a k e p i p e l i n e ( P o l y n o m i a l F e a t u r e s ( ) , Ridge ( ) ) . f i t ( x t r a i n , y t r a i n ) # P o l y n o m i a l p r i o r

( uncomment l i n e )
59 # u p r = y t r a i n − r e g . p r e d i c t ( np . a r r a y ( x t r a i n ) ) # P r i o r a d j u s t m e n t

( uncomment l i n e )
60 u p r = y t r a i n
61

62 U pr = np . a r r a y ( l i s t ( z i p (* u p r ) ) )
63 U pr = np . a r r a y ( [ i [ : , None ] f o r i i n U pr ] )
64
65

66 # Sav ing d a t a f o r l a t e r use
67 # Note t h a t t h i s d a t a i s n o t s o r t e d i n t o t h e r e s p e c t i v e f o l d e r s wi th p r i o r s and t h e l i k e
68 x y u t r a i n = pd . DataFrame ( x t r a i n )
69 y y u t r a i n = pd . DataFrame ( y t r a i n ) #NOTE: NOT Y t r a i n ! ! ! ! !
70 x y u t r a i n . t o c s v ( ’ x y u t r a i n . csv ’ , i n d e x = F a l s e )
71 y y u t r a i n . t o c s v ( ’ y y u t r a i n . csv ’ , i n d e x = F a l s e )
72
73
74

75 # Making a ML Ke rn e l
76 K = GPy . ke rn . RBF( i n p u t d i m = x t r a i n . shape [ 1 ] )
77 icm = GPy . u t i l . m u l t i o u t p u t . ICM( i n p u t d i m = x t r a i n . shape [ 1 ] , n u m o u t p u t s = Y t r a i n . shape [ 0 ] ,

k e r n e l =K)
78 m = GPy . models . G P C o r e g i o n a l i z e d R e g r e s s i o n ( [ x t r a i n ]* U pr . shape [ 0 ] , U pr , k e r n e l = icm )
79 m[ ’ . * r b f . l e n g t h s c a l e ’ ] . c o n s t r a i n b o u n d e d ( 0 . 1 , 2 0 0 )
80 m[ ’ m i x e d n o i s e . G a u s s i a n n o i s e . * . v a r i a n c e ’ ] . c o n s t r a i n b o u n d e d (1 e −6 ,1 e −3)
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81 m[ ’ . * r b f . v a r i a n c e ’ ] = 5 0 .
82 m. o p t i m i z e r e s t a r t s ( 2 )
83 p r i n t (m)
84 p r i n t ( ”\n\n ” , m. ICM . B .W)
85 p r i n t (m. ICM . B . kappa )
86 np . s ave ( ’ ML parameters / YtoU . npy ’ , m. p a r a m a r r a y )

B.4 YD training.py
1 # ##########################PREFACE###########################
2 # Code by Michae l Lindbak
3 # For academic m a s t e r s d e g r e e i n Chemical E n g i n e e r i n g S p r i n g 2021
4

5 # I m p o r t i n g t o o l s f o r t h e code
6 i m p o r t GPy #ML
7 i m p o r t numpy as np #Numpy
8 i m p o r t m a t p l o t l i b . p y p l o t a s p l t # P l o t t i n g
9 from s k l e a r n . p r e p r o c e s s i n g i m p o r t MinMaxScaler # S c a l i n g

10 from s k l e a r n . l i n e a r m o d e l i m p o r t L i n e a r R e g r e s s i o n # P r i o r a d j u s t m e n t
11 i m p o r t pandas as pd # Data −management
12 from s k l e a r n . p r e p r o c e s s i n g i m p o r t P o l y n o m i a l F e a t u r e s # P r i o r a d j u s t m e n t
13 from s k l e a r n . p i p e l i n e i m p o r t m a k e p i p e l i n e # p r i o r a d j u s t m t n t
14 from s k l e a r n . l i n e a r m o d e l i m p o r t Ridge # p r i o r a d j u s t m e n t
15 i m p o r t j o b l i b # Sav ing / E x p o r t i n g S c a l e r
16

17 # I mp or t pre −made code
18 i m p o r t h e x 3 g e n d i s t a s g e n d i s t #Code f o r g e n e r a t i n g random da ta − p o i n t s
19 i m p o r t hex3 chen as ch #Code f o r d a t a c a l c u l a t i o n s o f t h e sys tem
20

21 # I mp or t p r e d i c t i o n code from S u p e r v i s o r
22 d e f p r e d i c t a l l (m: GPy . models . G P C o r e g i o n a l i z e d R e g r e s s i o n , X) :
23 ny = l e n ( np . un iq ue (m. o u t p u t i n d e x ) )
24 y = [ ]
25 covy = [ ]
26 Xaug = np . h s t a c k ( ( X, 0 . 0 * np . o n e s l i k e (X [ : , 0 : 1 ] ) ) )
27 f o r i y i n r a n g e ( ny ) :
28 Xaug [ : , −1 : ] = i y
29 y i , c o v y i = m. p r e d i c t ( Xaug , Y metada ta ={ ’ o u t p u t i n d e x ’ : Xaug [ : , − 1 : ] . a s t y p e ( i n t ) } )
30 y . append ( y i )
31 covy . append ( c o v y i )
32 r e t u r n np . h s t a c k ( y ) , np . h s t a c k ( covy )
33
34

35 # ##########################CODING###########################
36

37 ## G e n e r a t i n g d a t a s e t
38 g e n d a t a = g e n d i s t . g e n d a t a s e t ( 1 2 0 0 )
39

40 ## S e p a r a t e d a t a i n t o GPy s t a n d a r d s
41 # y− d a t a
42 y t r a i n = pd . DataFrame ( g e n d a t a [ 0 ] )
43 y t r a i n = y t r a i n . d rop ( columns =[ ’ Ts ’ , ’ h1 ’ , ’ h2 ’ , ’ h3 ’ , ’T0 ’ , ’w0 ’ , ’ Th1 ’ , ’ Th2 ’ , ’ Th3 ’ ] ) #

E s t i m a t i n g wh1 −3 , UA1−3
44 y t r a i n = np . a r r a y ( y t r a i n )
45 y s c a l e = MinMaxScaler ( ) # C l a s s used f o r s c a l i n g
46 y t r a i n = y s c a l e . f i t t r a n s f o r m ( y t r a i n )
47 Y t r a i n = np . a r r a y ( l i s t ( z i p (* y t r a i n ) ) )
48 Y t r a i n = np . a r r a y ( [ i [ : , None ] f o r i i n Y t r a i n ] ) # ” F l i p s ” t h e y− t r a i n i n a manner GPy l i k e s

( I t h i n k )
49 j o b l i b . dump ( y s c a l e , ’ M a s t e r s y s c a l e . gz ’ ) # E x p o r t s t h e s c a l e r
50
51

52 # x− d a t a
53 x t r a i n = np . a r r a y ( [ ch . o u t p u t m e a s ( 1 , [ g e n d a t a [ 1 ] [ 0 ] [ i ] , g e n d a t a [ 1 ] [ 1 ] [ i ] ] , g e n d a t a [ 0 ] [ i ] ) [

’ y ’ ]
54 f o r i i n r a n g e ( l e n ( g e n d a t a [ 0 ] ) ) ] )
55 x s c a l e = MinMaxScaler ( )
56 x t r a i n = np . a r r a y ( x s c a l e . f i t t r a n s f o r m ( x t r a i n ) )
57 j o b l i b . dump ( x s c a l e , ’ M a s t e r s x s c a l e . gz ’ ) # E x p o r t s t h e s c a l e r
58

59 # y− pr
60 # r e g = L i n e a r R e g r e s s i o n ( ) . f i t ( x t r a i n , y t r a i n ) # L i n e a r P r i o r (

uncomment l i n e )
61 # r e g = m a k e p i p e l i n e ( P o l y n o m i a l F e a t u r e s ( ) , Ridge ( ) ) . f i t ( x t r a i n , y t r a i n ) # P o l y n o m i a l p r i o r

( uncomment l i n e )
62 # y p r = y t r a i n − r e g . p r e d i c t ( np . a r r a y ( x t r a i n ) ) # P r i o r a d j u s t m e n t

( uncomment l i n e )
63 y p r = y t r a i n
64 Y pr = np . a r r a y ( l i s t ( z i p (* y p r ) ) )
65 Y pr = np . a r r a y ( ( [ i [ : , None ] f o r i i n Y pr ] ) )
66
67

68 # E x p o r t i n g d a t a
69 # Note t h a t t h i s d a t a i s n o t s o r t e d i n t o t h e r e s p e c t i v e f o l d e r s wi th p r i o r s and t h e l i k e
70 x t t r a i n = pd . DataFrame ( x t r a i n )
71 y t t r a i n = pd . DataFrame ( y t r a i n ) #NOTE: NOT Y t r a i n ! ! ! ! !
72 x t t r a i n . t o c s v ( ’ x t t r a i n . c sv ’ , i n d e x = F a l s e )
73 y t t r a i n . t o c s v ( ’ y t t r a i n . c sv ’ , i n d e x = F a l s e )
74
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75 # Making a ML Ke rn e l
76 K = GPy . ke rn . RBF( i n p u t d i m = x t r a i n . shape [ 1 ] )
77 icm = GPy . u t i l . m u l t i o u t p u t . ICM( i n p u t d i m = x t r a i n . shape [ 1 ] , n u m o u t p u t s = y t r a i n . shape [ 1 ] ,

k e r n e l =K)
78 m = GPy . models . G P C o r e g i o n a l i z e d R e g r e s s i o n ( [ x t r a i n ]* y t r a i n . shape [ 1 ] , Y t r a i n , k e r n e l = icm )
79 m[ ’ . * r b f . l e n g t h s c a l e ’ ] . c o n s t r a i n b o u n d e d ( 0 . 1 , 2 0 0 )
80 m[ ’ m i x e d n o i s e . G a u s s i a n n o i s e . * . v a r i a n c e ’ ] . c o n s t r a i n b o u n d e d (1 e −6 ,1 e −3)
81 m[ ’ . * r b f . v a r i a n c e ’ ] = 5 0 .
82 m. o p t i m i z e r e s t a r t s ( 2 )
83 # D i s p l a y h y p e r p a r a m e t e r s
84 p r i n t (m)
85 p r i n t ( ”\n\n ” , m. ICM . B .W)
86 p r i n t (m. ICM . B . kappa )
87 np . s ave ( ’ ML parameters / YtoD . npy ’ , m. p a r a m a r r a y )
88
89
90

91 ## C o n t r o l v a l u e s
92 c o n t r o l d a t a = g e n d i s t . g e n d a t a s e t ( 6 0 0 , 1 )
93 c o n t r o l d a t a X = np . a r r a y ( [ ch . o u t p u t m e a s ( 1 , [ c o n t r o l d a t a [ 1 ] [ 0 ] [ i ] , c o n t r o l d a t a [ 1 ] [ 1 ] [ i ] ] ,
94 c o n t r o l d a t a [ 0 ] [ i ] ) [ ’ y ’ ] f o r i i n r a n g e ( l e n (

c o n t r o l d a t a [ 0 ] ) ) ] )
95 c o n t r o l d a t a X = x s c a l e . t r a n s f o r m ( c o n t r o l d a t a X )
96

97 p r e d i c t c o n t r o l = [ ]
98 f o r i i n r a n g e ( l e n ( c o n t r o l d a t a X ) ) :
99 p r e d i c t c o n t r o l . append ( p r e d i c t a l l (m, np . a r r a y ( [ c o n t r o l d a t a X [ i ] ] ) ) [ 0 ] [ 0 ] ) # P r e d i c t i n g

w0 wh1−3 Th1−3
100

101 # p r e d i c t c o n t r o l += r e g . p r e d i c t ( c o n t r o l d a t a X )
102 p r e d i c t c o n t r o l = np . a r r a y ( y s c a l e . i n v e r s e t r a n s f o r m ( p r e d i c t c o n t r o l ) )
103 a c t u a l c o n t r o l = pd . DataFrame ( c o n t r o l d a t a [ 0 ] )
104 a c t u a l c o n t r o l = a c t u a l c o n t r o l . d rop ( columns =[ ’ Ts ’ , ’ h1 ’ , ’ h2 ’ , ’ h3 ’ , ’T0 ’ , ’w0 ’ , ’ Th1 ’ , ’ Th2 ’

, ’ Th3 ’ ] )
105 a c t u a l c o n t r o l = np . a r r a y ( a c t u a l c o n t r o l ) # y s c a l e . i n v e r s e t r a n s f o r m ( y t r a i n ) ) # a c t u a l c o n t r o l )

# I f p r i o r i s a d j u s t e d
106 c o n t r o l d a t a X = x s c a l e . i n v e r s e t r a n s f o r m ( c o n t r o l d a t a X )
107

108 p r i n t ( ” P r e d i c t ” , p r e d i c t c o n t r o l )
109 p r i n t ( ”\n\ n A c t u a l ” , a c t u a l c o n t r o l )
110
111

112 ## P l o t t i n g
113 f i g , ( ax1 , ax2 ) = p l t . s u b p l o t s ( 2 )
114

115 ax1 . s c a t t e r ( a c t u a l c o n t r o l [ : , 0 ] , p r e d i c t c o n t r o l [ : , 0 ] ,
116 s =5 , l a b e l =”wh1 p r e d i c t i o n s ” )
117 ax1 . s c a t t e r ( a c t u a l c o n t r o l [ : , 1 ] , p r e d i c t c o n t r o l [ : , 1 ] ,
118 s =5 , l a b e l =”wh2 p r e d i c t i o n s ” )
119 ax1 . s c a t t e r ( a c t u a l c o n t r o l [ : , 2 ] , p r e d i c t c o n t r o l [ : , 2 ] ,
120 s =5 , l a b e l =”wh3 p r e d i c t i o n s ” )
121 ax1 . s e t ( x l a b e l = ” A c t u a l wh− v a l u e s [kW/K] ” , y l a b e l =” P r e d i c t e d Th− v a l u e s [kW/K] ” )
122 ax1 . s e t t i t l e ( ”wh 1−3 C o n t r o l , t t r a t i o =1” )
123 ax1 . s e t x l i m ( 2 0 , 60)
124 ax1 . s e t y l i m ( 2 0 , 60)
125 ax1 . p l o t ( np . l i n s p a c e ( 2 0 , 6 0 ) , np . l i n s p a c e ( 2 0 , 6 0 ) ,
126 c o l o r =” r e d ” , a l p h a = 0 . 2 5 , l a b e l =” Opt imal p r e d i c t i o n s ” )
127 ax1 . l e g e n d ( )
128 ax1 . g r i d ( )
129

130 ax2 . s c a t t e r ( a c t u a l c o n t r o l [ : , 3 ] , p r e d i c t c o n t r o l [ : , 3 ] ,
131 s =5 , l a b e l =”UA1 p r e d i c t i o n s ” )
132 ax2 . s c a t t e r ( a c t u a l c o n t r o l [ : , 4 ] , p r e d i c t c o n t r o l [ : , 4 ] ,
133 s =5 , l a b e l =”UA2 p r e d i c t i o n s ” )
134 ax2 . s c a t t e r ( a c t u a l c o n t r o l [ : , 5 ] , p r e d i c t c o n t r o l [ : , 5 ] ,
135 s =5 , l a b e l =”UA3 p r e d i c t i o n s ” )
136 ax2 . s e t ( x l a b e l =” A c t u a l UA− v a l u e s [kW/K] ” , y l a b e l =” P r e d i c t e d UA− v a l u e s [kW/K] ” )
137 ax2 . s e t t i t l e ( ”UA 1−3 C o n t r o l , t t r a t i o =1” )
138 ax2 . s e t x l i m ( 5 0 , 1 1 0 )
139 ax2 . s e t y l i m ( 5 0 , 1 1 0 )
140 ax2 . p l o t ( np . l i n s p a c e ( 5 0 , 1 1 0 ) , np . l i n s p a c e ( 5 0 , 1 1 0 ) ,
141 c o l o r =” r e d ” , a l p h a = 0 . 2 5 , l a b e l =” Opt imal p r e d i c t i o n s ” )
142 ax2 . l e g e n d ( )
143 ax2 . g r i d ( )
144

145 p l t . show ( )
146

147 ## Extreme v a l u e s
148 e x t r e m e d a t a = g e n d i s t . g e n d a t a s e t ( 6 0 0 , 1 . 2 5 )
149 e x t r e m e d a t a X = np . a r r a y ( [ ch . o u t p u t m e a s ( 1 , [ e x t r e m e d a t a [ 1 ] [ 0 ] [ i ] , e x t r e m e d a t a [ 1 ] [ 1 ] [ i ] ] ,
150 e x t r e m e d a t a [ 0 ] [ i ] ) [ ’ y ’ ] f o r i i n r a n g e ( l e n (

e x t r e m e d a t a [ 0 ] ) ) ] )
151 e x t r e m e d a t a X = x s c a l e . t r a n s f o r m ( e x t r e m e d a t a X )
152

153 p r e d i c t e x t r e m e = [ ]
154 f o r i i n r a n g e ( l e n ( e x t r e m e d a t a X ) ) :
155 p r e d i c t e x t r e m e . append ( p r e d i c t a l l (m, np . a r r a y ( [ e x t r e m e d a t a X [ i ] ] ) ) [ 0 ] [ 0 ] ) # P r e d i c t i n g

w0 wh1−3 Th1−3
156

157 p r e d i c t e x t r e m e = np . a r r a y ( y s c a l e . i n v e r s e t r a n s f o r m ( p r e d i c t e x t r e m e ) )
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158 a c t u a l e x t r e m e = pd . DataFrame ( e x t r e m e d a t a [ 0 ] )
159 a c t u a l e x t r e m e = a c t u a l e x t r e m e . drop ( columns =[ ’ Ts ’ , ’ h1 ’ , ’ h2 ’ , ’ h3 ’ , ’T0 ’ , ’w0 ’ , ’ Th1 ’ , ’ Th2 ’

, ’ Th3 ’ ] )
160 a c t u a l e x t r e m e = np . a r r a y ( a c t u a l e x t r e m e ) # y s c a l e . i n v e r s e t r a n s f o r m ( y t r a i n ) ) # a c t u a l c o n t r o l )

# i f p r i o r a d j u s t e d
161 e x t r e m e d a t a X = x s c a l e . i n v e r s e t r a n s f o r m ( e x t r e m e d a t a X )
162

163 p r i n t ( ” P r e d i c t ” , p r e d i c t e x t r e m e )
164 p r i n t ( ”\n\ n A c t u a l ” , a c t u a l e x t r e m e )
165
166

167 ## P l o t t i n g
168 f i g , ( ax1 , ax2 ) = p l t . s u b p l o t s ( 2 )
169

170 ax1 . s c a t t e r ( a c t u a l e x t r e m e [ : , 0 ] , p r e d i c t e x t r e m e [ : , 0 ] ,
171 s =5 , l a b e l =”wh1 p r e d i c t i o n s ” )
172 ax1 . s c a t t e r ( a c t u a l e x t r e m e [ : , 1 ] , p r e d i c t e x t r e m e [ : , 1 ] ,
173 s =5 , l a b e l =”wh2 p r e d i c t i o n s ” )
174 ax1 . s c a t t e r ( a c t u a l e x t r e m e [ : , 2 ] , p r e d i c t e x t r e m e [ : , 2 ] ,
175 s =5 , l a b e l =”wh3 p r e d i c t i o n s ” )
176 ax1 . s e t ( x l a b e l = ” A c t u a l wh− v a l u e s [kW/K] ” , y l a b e l =” P r e d i c t e d wh− v a l u e s [kW/K] ” )
177 ax1 . s e t t i t l e ( ”wh 1−3 Extreme , t t r a t i o =1 .25 ” )
178 ax1 . s e t x l i m ( 1 0 , 70)
179 ax1 . s e t y l i m ( 1 0 , 70)
180 ax1 . p l o t ( np . l i n s p a c e ( 1 0 , 7 0 ) , np . l i n s p a c e ( 1 0 , 7 0 ) ,
181 c o l o r =” r e d ” , a l p h a = 0 . 2 5 , l a b e l =” Opt imal p r e d i c t i o n s ” )
182 ax1 . l e g e n d ( )
183 ax1 . g r i d ( )
184

185 ax2 . s c a t t e r ( a c t u a l e x t r e m e [ : , 3 ] , p r e d i c t e x t r e m e [ : , 3 ] ,
186 s =5 , l a b e l =”UA1 p r e d i c t i o n s ” )
187 ax2 . s c a t t e r ( a c t u a l e x t r e m e [ : , 4 ] , p r e d i c t e x t r e m e [ : , 4 ] ,
188 s =5 , l a b e l =”UA2 p r e d i c t i o n s ” )
189 ax2 . s c a t t e r ( a c t u a l e x t r e m e [ : , 5 ] , p r e d i c t e x t r e m e [ : , 5 ] ,
190 s =5 , l a b e l =”UA3 p r e d i c t i o n s ” )
191 ax2 . s e t ( x l a b e l =” A c t u a l UA− v a l u e s [kW/K] ” , y l a b e l =” P r e d i c t e d UA− v a l u e s [kW/K] ” )
192 ax2 . s e t t i t l e ( ”UA 1−3 Extreme , t t r a t i o =1 .25 ” )
193 ax2 . s e t x l i m ( 4 0 , 1 1 0 )
194 ax2 . s e t y l i m ( 4 0 , 1 1 0 )
195 ax2 . p l o t ( np . l i n s p a c e ( 4 0 , 1 1 0 ) , np . l i n s p a c e ( 4 0 , 1 1 0 ) ,
196 c o l o r =” r e d ” , a l p h a = 0 . 2 5 , l a b e l =” Opt imal p r e d i c t i o n s ” )
197 ax2 . l e g e n d ( )
198 ax2 . g r i d ( )
199
200

201 p l t . show ( )

B.5 DU training.py
1 # ##########################PREFACE###########################
2 # Code by Michae l Lindbak
3 # For academic m a s t e r s d e g r e e i n Chemical E n g i n e e r i n g S p r i n g 2021
4

5 # I m p o r t i n g t o o l s f o r t h e code
6 i m p o r t GPy
7 i m p o r t numpy as np
8 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
9 from s k l e a r n . l i n e a r m o d e l i m p o r t L i n e a r R e g r e s s i o n # P r i o r a d j u s t m e n t

10 from s k l e a r n . p r e p r o c e s s i n g i m p o r t P o l y n o m i a l F e a t u r e s # P r i o r a d j u s t m e n t
11 from s k l e a r n . p i p e l i n e i m p o r t m a k e p i p e l i n e # p r i o r a d j u s t m t n t
12 from s k l e a r n . l i n e a r m o d e l i m p o r t Ridge # p r i o r a d j u s t m e n t
13 i m p o r t pandas as pd
14 from s k l e a r n . p r e p r o c e s s i n g i m p o r t MinMaxScaler
15 i m p o r t j o b l i b
16

17 # I mp or t pre −made code
18 i m p o r t h e x 3 g e n d i s t a s g e n d i s t #Code f o r g e n e r a t i n g random da ta − p o i n t s
19 i m p o r t hex3 chen as ch #Code f o r d a t a c a l c u l a t i o n s o f t h e sys tem
20

21 # I mp or t p r e d i c t i o n code from s u p e r v i s o r
22 d e f p r e d i c t a l l (m: GPy . models . G P C o r e g i o n a l i z e d R e g r e s s i o n , X) :
23 ny = l e n ( np . un iq ue (m. o u t p u t i n d e x ) )
24 y = [ ]
25 covy = [ ]
26 Xaug = np . h s t a c k ( ( X, 0 . 0 * np . o n e s l i k e (X [ : , 0 : 1 ] ) ) )
27 f o r i y i n r a n g e ( ny ) :
28 Xaug [ : , −1 : ] = i y
29 y i , c o v y i = m. p r e d i c t ( Xaug , Y metada ta ={ ’ o u t p u t i n d e x ’ : Xaug [ : , − 1 : ] . a s t y p e ( i n t ) } )
30 y . append ( y i )
31 covy . append ( c o v y i )
32 r e t u r n np . h s t a c k ( y ) , np . h s t a c k ( covy )
33
34

35 # ##########################CODING###########################
36

37 ## G e n e r a t i n g d a t a s e t ##
38 g e n d a t a = g e n d i s t . g e n d a t a s e t ( 1 2 0 0 , 1 )
39

40 ## S e p a r a t e d a t a i n t o GPy s t a n d a r d s
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41 # x− d a t a
42 x t r a i n = pd . DataFrame ( g e n d a t a [ 0 ] )
43 x t r a i n = x t r a i n . d rop ( columns =[ ’ Ts ’ , ’ h1 ’ , ’ h2 ’ , ’ h3 ’ , ’T0 ’ , ’w0 ’ , ’ Th1 ’ , ’ Th2 ’ , ’ Th3 ’ ] ) #wh1

−3 and UA1−3
44 x t r a i n = np . a r r a y ( x t r a i n )
45 x s c a l e = MinMaxScaler ( )
46 x t r a i n = np . a r r a y ( x s c a l e . f i t t r a n s f o r m ( x t r a i n ) )
47 j o b l i b . dump ( x s c a l e , ’ S t a r t i n g x s c a l e . gz ’ )
48

49 # y− d a t a
50 y t r a i n = np . a r r a y ( [ ch . opt im ( x p t ) [ ’ u ’ ] f o r x p t i n g e n d a t a [ 0 ] ] )
51 y s c a l e = MinMaxScaler ( )
52 y t r a i n = y s c a l e . f i t t r a n s f o r m ( y t r a i n )
53 j o b l i b . dump ( y s c a l e , ’ S t a r t i n g y s c a l e . gz ’ )
54

55 Y t r a i n = np . a r r a y ( l i s t ( z i p (* y t r a i n ) ) )
56 Y t r a i n = np . a r r a y ( [ i [ : , None ] f o r i i n Y t r a i n ] )
57
58

59 # y− pr
60 # r e g = L i n e a r R e g r e s s i o n ( ) . f i t ( x t r a i n , y t r a i n ) # L i n e a r P r i o r (

uncomment l i n e )
61 # r e g = m a k e p i p e l i n e ( P o l y n o m i a l F e a t u r e s ( ) , Ridge ( ) ) . f i t ( x t r a i n , y t r a i n ) # P o l y n o m i a l P r i o r

( uncomment l i n e )
62 # u p r = y t r a i n − r e g . p r e d i c t ( np . a r r a y ( x t r a i n ) ) # P r i o r a d j u s t m e n t

( uncomment l i n e )
63 u p r = y t r a i n
64 U pr = np . a r r a y ( l i s t ( z i p (* u p r ) ) )
65 U pr = np . a r r a y ( [ i [ : , None ] f o r i i n U pr ] )
66
67

68 # Sav ing d a t a f o r re − use
69 # Note t h a t t h i s d a t a i s n o t s o r t e d i n t o t h e r e s p e c t i v e f o l d e r s wi th p r i o r s and t h e l i k e
70 x s t r a i n = pd . DataFrame ( x t r a i n )
71 y s t r a i n = pd . DataFrame ( y t r a i n ) #NOTE: NOT Y t r a i n
72 y s t r a i n . t o c s v ( ’ y s t r a i n . c sv ’ , i n d e x = F a l s e )
73 x s t r a i n . t o c s v ( ’ x s t r a i n . c sv ’ , i n d e x = F a l s e )
74
75

76 ##Making a ML k e r n e l
77 K = GPy . ke rn . RBF( i n p u t d i m = x t r a i n . shape [ 1 ] )
78 icm = GPy . u t i l . m u l t i o u t p u t . ICM( i n p u t d i m = x t r a i n . shape [ 1 ] , n u m o u t p u t s = y t r a i n . shape [ 1 ] ,

k e r n e l =K) # s h o u l d be 2 i f f a i l
79 m = GPy . models . G P C o r e g i o n a l i z e d R e g r e s s i o n ( [ x t r a i n ]* U pr . shape [ 0 ] , U pr , k e r n e l =icm )
80 m[ ’ m i x e d n o i s e . G a u s s i a n n o i s e . * . v a r i a n c e ’ ] . c o n s t r a i n b o u n d e d (1 e −6 ,1 e −3)
81 m[ ’ . * r b f . v a r i a n c e ’ ] = 1 0 0 .
82 m. o p t i m i z e r e s t a r t s ( 2 )
83 # D i s p l a y h y p e r p a r a m e t e r s
84 p r i n t ( ”\n\n ” , m. ICM . B .W)
85 p r i n t (m. ICM . B . kappa )
86 np . s ave ( ’ ML parameters / DtoU . npy ’ , m. p a r a m a r r a y )
87
88

89 ## C o n t r o l v a l u e s
90 c o n t r o l d a t a = g e n d i s t . g e n d a t a s e t ( 6 0 0 , 1 )
91 c o n t r o l d a t a X = pd . DataFrame ( c o n t r o l d a t a [ 0 ] ) . d rop ( columns =[ ’ Ts ’ , ’ h1 ’ , ’ h2 ’ , ’ h3 ’ , ’T0 ’ , ’w0 ’

, ’ Th1 ’ , ’ Th2 ’ , ’ Th3 ’ ] )
92 c o n t r o l d a t a X = np . a r r a y ( c o n t r o l d a t a X )
93 c o n t r o l d a t a X = x s c a l e . t r a n s f o r m ( c o n t r o l d a t a X )
94

95 p r e d i c t c o n t r o l U = [ ]
96 a c t u a l c o n t r o l U = [ ]
97 f o r i i n r a n g e ( l e n ( c o n t r o l d a t a X ) ) :
98 p r e d i c t c o n t r o l U . append ( y s c a l e . i n v e r s e t r a n s f o r m ( p r e d i c t a l l (m, np . a r r a y ( [ c o n t r o l d a t a X [ i

] ] ) ) [ 0 ] [ 0 ] . r e s h a p e ( 1 , −1) ) [ 0 ] ) # +
99 # r e g . p r e d i c t ( c o n t r o l d a t a X [ i ] . r e s h a p e ( 1 ,

−1) ) ) [ 0 ] )
100 a c t u a l c o n t r o l U . append ( ch . opt im ( c o n t r o l d a t a [ 0 ] [ i ] ) [ ’ u ’ ] )
101

102 p r e d i c t c o n t r o l U = np . a r r a y ( p r e d i c t c o n t r o l U )
103 # p r e d i c t c o n t r o l U = p r e d i c t c o n t r o l U + r e g . p r e d i c t ( c o n t r o l d a t a X ) # I f p r i o r a d j u s t e d
104 a c t u a l c o n t r o l U = np . a r r a y ( a c t u a l c o n t r o l U )
105

106 ## P l o t t i n g
107 f i g , ( ax1 , ax2 ) = p l t . s u b p l o t s ( 2 )
108

109 ax1 . s c a t t e r ( a c t u a l c o n t r o l U [ : , 0 ] , p r e d i c t c o n t r o l U [ : , 0 ] ,
110 s =5 , l a b e l =” P r e d i c t i o n s ” )
111 ax1 . s e t ( x l a b e l = ” A c t u a l U1− v a l u e ” , y l a b e l =” P r e d i c t e d U1− v a l u e ” )
112 ax1 . s e t t i t l e ( ”U1 C o n t r o l , t t r a t i o =1” )
113 ax1 . s e t x l i m ( 0 . 2 , 0 . 5 )
114 ax1 . s e t y l i m ( 0 . 2 , 0 . 5 )
115 ax1 . p l o t ( np . a r r a y ( np . l i n s p a c e ( 0 , 1 ) ) , np . a r r a y ( np . l i n s p a c e ( 0 , 1 ) ) ,
116 c o l o r =” r e d ” , a l p h a = 0 . 2 5 , l a b e l =” Opt imal p r e d i c t i o n s ” )
117 ax1 . l e g e n d ( )
118 ax1 . g r i d ( )
119

120 ax2 . s c a t t e r ( a c t u a l c o n t r o l U [ : , 1 ] , p r e d i c t c o n t r o l U [ : , 1 ] ,
121 s =5 , l a b e l =” P r e d i c t i o n s ” )
122 ax2 . s e t ( x l a b e l = ” A c t u a l U2− v a l u e ” , y l a b e l =” P r e d i c t e d U2− v a l u e ” )

59



Gaussian Process-based grey-box modelling of heat exchanger networks

123 ax2 . s e t t i t l e ( ”U2 C o n t r o l , t t r a t i o =1” )
124 ax2 . s e t x l i m ( 0 . 2 , 0 . 5 )
125 ax2 . s e t y l i m ( 0 . 2 , 0 . 5 )
126 ax2 . p l o t ( np . a r r a y ( np . l i n s p a c e ( 0 , 1 ) ) , np . a r r a y ( np . l i n s p a c e ( 0 , 1 ) ) ,
127 c o l o r =” r e d ” , a l p h a = 0 . 2 5 , l a b e l =” Opt imal p r e d i c t i o n s ” )
128 ax2 . l e g e n d ( )
129 ax2 . g r i d ( )
130

131 p l t . show ( )
132

133 ## Extreme t e s t i n g >:3
134 e x d a t a = g e n d i s t . g e n d a t a s e t ( 3 0 0 , 1 . 4 )
135 ex da t aX = pd . DataFrame ( e x d a t a [ 0 ] ) . d rop ( columns =[ ’ Ts ’ , ’ h1 ’ , ’ h2 ’ , ’ h3 ’ , ’T0 ’ , ’w0 ’ , ’ Th1 ’ , ’

Th2 ’ , ’ Th3 ’ ] )
136 ex da t aX = np . a r r a y ( ex da t aX )
137 ex da t aX = x s c a l e . t r a n s f o r m ( ex da t aX )
138

139 p r e d i c t e x U = [ ]
140 a c t u a l e x U = [ ]
141 f o r i i n r a n g e ( l e n ( ex da t aX ) ) :
142 # p r e d i c t c o n t r o l U . append ( y s c a l e . i n v e r s e t r a n s f o r m ( p r e d i c t a l l (m, np . a r r a y ( [ c o n t r o l d a t a X [ i

] ] ) ) [ 0 ] [ 0 ] . r e s h a p e ( 1 , −1) +
143 # r e g . p r e d i c t ( c o n t r o l d a t a X [ i ] . r e s h a p e ( 1 ,

−1) ) ) [ 0 ] ) # I f p r i o r a d j u s t e d
144 p r e d i c t e x U . append ( y s c a l e . i n v e r s e t r a n s f o r m ( p r e d i c t a l l (m, np . a r r a y ( [ ex da t aX [ i ] ] ) ) [ 0 ] [ 0 ] .

r e s h a p e ( 1 , −1) ) [ 0 ] ) # +
145 # r e g . p r e d i c t ( ex da t aX [ i ] . r e s h a p e (1 , −1 ) ) ) [ 0 ] )
146 a c t u a l e x U . append ( ch . opt im ( e x d a t a [ 0 ] [ i ] ) [ ’ u ’ ] )
147 p r e d i c t e x U = np . a r r a y ( p r e d i c t e x U )
148 a c t u a l e x U = np . a r r a y ( a c t u a l e x U )
149

150 ## P l o t t i n g
151 f i g , ( ax1 , ax2 ) = p l t . s u b p l o t s ( 2 )
152 ax1 . s c a t t e r ( a c t u a l e x U [ : , 0 ] , p r e d i c t e x U [ : , 0 ] ,
153 s =5 , l a b e l =” P r e d i c t i o n s ” )
154 ax1 . s e t ( x l a b e l = ” A c t u a l U1− v a l u e ” , y l a b e l =” P r e d i c t e d U1− v a l u e ” )
155 ax1 . s e t t i t l e ( ”U1 Extreme , t t r a t i o =1 .4 ” )
156 ax1 . s e t x l i m ( 0 . 2 , 0 . 6 )
157 ax1 . s e t y l i m ( 0 . 2 , 0 . 6 )
158 ax1 . p l o t ( np . a r r a y ( np . l i n s p a c e ( 0 , 1 ) ) , np . a r r a y ( np . l i n s p a c e ( 0 , 1 ) ) ,
159 c o l o r =” r e d ” , a l p h a = 0 . 2 5 , l a b e l =” Opt imal p r e d i c t i o n s ” )
160 ax1 . l e g e n d ( )
161 ax1 . g r i d ( )
162

163 ax2 . s c a t t e r ( a c t u a l e x U [ : , 1 ] , p r e d i c t e x U [ : , 1 ] ,
164 s =5 , l a b e l =” P r e d i c t i o n s ” )
165 ax2 . s e t ( x l a b e l = ” A c t u a l U2− v a l u e ” , y l a b e l =” P r e d i c t e d U2− v a l u e ” )
166 ax2 . s e t t i t l e ( ”U2 Extreme , t t r a t i o =1” )
167 ax2 . s e t x l i m ( 0 . 2 , 0 . 6 )
168 ax2 . s e t y l i m ( 0 . 2 , 0 . 6 )
169 ax2 . p l o t ( np . a r r a y ( np . l i n s p a c e ( 0 , 1 ) ) , np . a r r a y ( np . l i n s p a c e ( 0 , 1 ) ) ,
170 c o l o r =” r e d ” , a l p h a = 0 . 2 5 , l a b e l =” Opt imal p r e d i c t i o n s ” )
171 ax2 . l e g e n d ( )
172 ax2 . g r i d ( )
173

174 p l t . show ( )

B.6 Comparison.py
1 # ##########################PREFACE###########################
2 # Code by Michae l Lindbak
3 # For academic m a s t e r s d e g r e e i n Chemical E n g i n e e r i n g S p r i n g 2021
4

5 # I m p o r t i n g t o o l s f o r t h e code
6 i m p o r t GPy #ML
7 i m p o r t numpy as np #Numpy
8 i m p o r t m a t p l o t l i b . p y p l o t a s p l t # P l o t t i n g
9 from s k l e a r n . p r e p r o c e s s i n g i m p o r t MinMaxScaler # S c a l i n g

10 i m p o r t pandas as pd # Data −management
11 i m p o r t j o b l i b # S c a l e r −management
12 from s k l e a r n . l i n e a r m o d e l i m p o r t L i n e a r R e g r e s s i o n # P r i o r a d j u s t m e n t
13 from s k l e a r n . p r e p r o c e s s i n g i m p o r t P o l y n o m i a l F e a t u r e s # P r i o r a d j u s t m e n t
14 from s k l e a r n . p i p e l i n e i m p o r t m a k e p i p e l i n e # P r i o r a d j u s t m t n t
15 from s k l e a r n . l i n e a r m o d e l i m p o r t Ridge # P r i o r a d j u s t m e n t
16 # I mp or t pre −made code
17 i m p o r t h e x 3 g e n d i s t a s g e n d i s t #Code f o r g e n e r a t i n g random da ta − p o i n t s
18 i m p o r t hex3 chen as ch #Code f o r d a t a c a l c u l a t i o n s o f t h e sys tem
19

20 # I mp or t p r e d i c t i o n code from S u p e r v i s o r
21 d e f p r e d i c t a l l (m: GPy . models . G P C o r e g i o n a l i z e d R e g r e s s i o n , X) :
22 ny = l e n ( np . un iq ue (m. o u t p u t i n d e x ) )
23 y = [ ]
24 covy = [ ]
25 Xaug = np . h s t a c k ( ( X, 0 . 0 * np . o n e s l i k e (X [ : , 0 : 1 ] ) ) )
26 f o r i y i n r a n g e ( ny ) :
27 Xaug [ : , −1 : ] = i y
28 y i , c o v y i = m. p r e d i c t ( Xaug , Y metada ta ={ ’ o u t p u t i n d e x ’ : Xaug [ : , − 1 : ] . a s t y p e ( i n t ) } )
29 y . append ( y i )
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30 covy . append ( c o v y i )
31 r e t u r n np . h s t a c k ( y ) , np . h s t a c k ( covy )
32

33 d e f p l o t h i s t ( p r e d i c t e d , t a r g e t , t i t l e , f p ) :
34 # h i s t o g r a m
35 a b s v a l u e e r r o r = np . abs ( p r e d i c t e d − t a r g e t )
36 p r i n t ( min ( a b s v a l u e e r r o r ) )
37 p r i n t ( max ( a b s v a l u e e r r o r ) )
38 # p l t . t i t l e ( t i t l e )
39 p l t . y s c a l e ( ’ l o g ’ )
40 p l t . y l im ( [ 0 , 5 0 0 ] )
41 p l t . h i s t ( a b s v a l u e e r r o r , b i n s =100)
42 p l t . y l a b e l ( ’ Number o f e r r o r p o i n t s [ l o g ] ’ )
43 p l t . x l a b e l ( ’ Tempera tu r e d i f f e r e n c e compared t o a c t u a l u− v a l u e s [C] ’ )
44 p l t . g r i d ( )
45 p l t . s a v e f i g ( f ’ f i g s \\{ fp } . pd f ’ )
46 p l t . show ( )
47 p l t . c l o s e ( )
48

49 d e f p l o t b o x ( p r e d i c t e d , t a r g e t , t i t l e , fp ) :
50 f i g = p l t . f i g u r e ( )
51 p r e d i c t e d = np . abs ( p r e d i c t e d − t a r g e t )
52 ax = f i g . a d d s u b p l o t ( )
53 ax . b o x p l o t ( [ p r e d i c t e d [ i ] f o r i i n r a n g e ( l e n ( p r e d i c t e d ) ) ] , v e r t =0 , whis = ( 2 , 98) , sym= ’+ ’ )
54 ax . s e t y t i c k l a b e l s ( [ ’y−>d−>u* ’ , ’y−>u* ’ ] )
55 # p l t . t i t l e ( t i t l e )
56 ax . g e t x a x i s ( ) . t i c k b o t t o m ( )
57 ax . g e t y a x i s ( ) . t i c k l e f t ( )
58 p l t . x l a b e l ( ” Tempera tu r e l o s s compared t o o p t i m a l u− v a l u e s [C] ” )
59 p l t . s a v e f i g ( f ’ f i g s \\{ fp } . pd f ’ )
60 p l t . show ( )
61

62 r u n t y p e s = [ ’NO PRIOR ’ , ’LINEAR PRIOR ’ , ’QUADRATIC PRIOR ’ ]
63 r u n t y p e = r u n t y p e s [ 2 ] #Used t o d e c i d e what run t o do
64 np . random . seed ( 4 2 0 )
65

66 # S e t up p r i o r re − a d j u s t m e n t f l a g s
67 p r i o r a d j u s t m e n t = F a l s e
68 i f r u n t y p e != ’NO PRIOR ’ :
69 p r i o r a d j u s t m e n t = True
70
71

72 ##SETUP y−>d
73 # P r e p e a r i n g d a t a
74 x t t r a i n = np . g e n f r o m t x t ( f ’ ML parameters \\{ r u n t y p e }\\ x t t r a i n . c sv ’ , d e l i m i t e r = ’ , ’ ,

s k i p h e a d e r =1)
75 y t t r a i n = np . g e n f r o m t x t ( f ’ ML parameters \\{ r u n t y p e }\\ y t t r a i n . c sv ’ , d e l i m i t e r = ’ , ’ ,

s k i p h e a d e r =1)
76 i f r u n t y p e == ’NO PRIOR ’ :
77 y p r = y t t r a i n
78 e l i f r u n t y p e == ’LINEAR PRIOR ’ :
79 YD reg = L i n e a r R e g r e s s i o n ( ) . f i t ( x t t r a i n , y t t r a i n )
80 y p r = y t t r a i n − YD reg . p r e d i c t ( np . a r r a y ( x t t r a i n ) )
81 e l s e :
82 YD reg = m a k e p i p e l i n e ( P o l y n o m i a l F e a t u r e s ( ) , Ridge ( ) ) . f i t ( x t t r a i n , y t t r a i n )
83 y p r = y t t r a i n − YD reg . p r e d i c t ( np . a r r a y ( x t t r a i n ) )
84
85

86 Y pr = np . a r r a y ( l i s t ( z i p (* y p r ) ) )
87 Y pr = np . a r r a y ( [ i [ : , None ] f o r i i n Y pr ] )
88

89 # S e t t i n g up ML
90 k = GPy . ke rn . RBF( i n p u t d i m =8)
91 icm = GPy . u t i l . m u l t i o u t p u t . ICM( i n p u t d i m =8 , n u m o u t p u t s =6 , k e r n e l =k )
92 YD = GPy . models . G P C o r e g i o n a l i z e d R e g r e s s i o n ( np . a r r a y ( [ x t t r a i n ]* Y pr . shape [ 0 ] ) , Y pr , k e r n e l =

icm , i n i t i a l i z e = F a l s e )
93 YD. u p d a t e m o d e l ( F a l s e )
94 YD. i n i t i a l i z e p a r a m e t e r ( )
95 p a r a = np . l o a d ( f ’ ML parameters \\{ r u n t y p e }\\YtoD . npy ’ )
96 YD. p a r a m a r r a y [ : ] = p a r a [ : ]
97 YD. u p d a t e m o d e l ( True )
98 p r i n t (YD)
99 p r i n t ( ”\n\n ” , YD. ICM . B .W, ”\n ” , YD. ICM . B . kappa )

100 p r i n t (YD. ICM . r b f . l e n g t h s c a l e )
101
102

103 ##SETUP d−>u*
104 # P r e p e a r i n g i n g d a t a
105 x s t r a i n = np . g e n f r o m t x t ( f ’ ML parameters \\{ r u n t y p e }\\ x s t r a i n . c sv ’ , d e l i m i t e r = ’ , ’ ,

s k i p h e a d e r =1)
106 y s t r a i n = np . g e n f r o m t x t ( f ’ ML parameters \\{ r u n t y p e }\\ y s t r a i n . c sv ’ , d e l i m i t e r = ’ , ’ ,

s k i p h e a d e r =1)
107 i f r u n t y p e == ’NO PRIOR ’ :
108 u p r = y s t r a i n
109 e l i f r u n t y p e == ’LINEAR PRIOR ’ :
110 DU reg = L i n e a r R e g r e s s i o n ( ) . f i t ( x s t r a i n , y s t r a i n )
111 u p r = y s t r a i n − DU reg . p r e d i c t ( np . a r r a y ( x s t r a i n ) )
112 e l s e :

61



Gaussian Process-based grey-box modelling of heat exchanger networks

113 DU reg = m a k e p i p e l i n e ( P o l y n o m i a l F e a t u r e s ( ) , Ridge ( ) ) . f i t ( x s t r a i n , y s t r a i n )
114 u p r = y s t r a i n − DU reg . p r e d i c t ( np . a r r a y ( x s t r a i n ) )
115

116 U pr = np . a r r a y ( l i s t ( z i p (* u p r ) ) )
117 U pr = np . a r r a y ( [ i [ : , None ] f o r i i n U pr ] )
118
119

120 # S e t t i n g up ML
121 ke rn = GPy . ke rn . RBF( i n p u t d i m = x s t r a i n . shape [ 1 ] )
122 icm2 = GPy . u t i l . m u l t i o u t p u t . ICM( i n p u t d i m = x s t r a i n . shape [ 1 ] , n u m o u t p u t s =U pr . shape [ 0 ] , k e r n e l

= ke rn )
123 DU = GPy . models . G P C o r e g i o n a l i z e d R e g r e s s i o n ( np . a r r a y ( [ x s t r a i n ]* U pr . shape [ 0 ] ) , U pr , k e r n e l =

icm2 , i n i t i a l i z e = F a l s e )
124 DU. u p d a t e m o d e l ( F a l s e ) # I g n o r e s c a l l o f e x p e n s i v e u n d e r l a y i n g a l g e b r a
125 DU. i n i t i a l i z e p a r a m e t e r ( ) # I n i t i a l i z e p a r a m e t e r s
126 p a r r = np . l o a d ( f ’ ML parameters \\{ r u n t y p e }\\DtoU . npy ’ )
127 DU. p a r a m a r r a y [ : ] = p a r r [ : ] # Loads a l l p a r a m e t e r s t o a s s i g n e d s l o t s
128 DU. u p d a t e m o d e l ( True ) # C a l l s t h e u n d e r l y i n g a l g e b r a once
129

130 ##SETUP y−>u*
131 # P r e p e a r i n g YU d a t a
132 YU y = np . g e n f r o m t x t ( f ’ ML parameters \\{ r u n t y p e }\\ x y u t r a i n . csv ’ , d e l i m i t e r = ’ , ’ , s k i p h e a d e r

=1)
133 YU u = np . g e n f r o m t x t ( f ’ ML parameters \\{ r u n t y p e }\\ y y u t r a i n . csv ’ , d e l i m i t e r = ’ , ’ , s k i p h e a d e r

=1)
134 i f r u n t y p e == ’NO PRIOR ’ :
135 y u p r = YU u
136 e l i f r u n t y p e == ’LINEAR PRIOR ’ :
137 YU reg = L i n e a r R e g r e s s i o n ( ) . f i t ( YU y , YU u )
138 y u p r = YU u − YU reg . p r e d i c t ( np . a r r a y ( YU y ) )
139 e l s e :
140 YU reg = m a k e p i p e l i n e ( P o l y n o m i a l F e a t u r e s ( ) , Ridge ( ) ) . f i t ( YU y , YU u )
141 y u p r = YU u − YU reg . p r e d i c t ( np . a r r a y ( YU y ) )
142

143 YU pr = np . a r r a y ( l i s t ( z i p (* y u p r ) ) )
144 YU pr = np . a r r a y ( [ i [ : , None ] f o r i i n YU pr ] )
145

146 # S e t t i n g up YU ML
147 YU k = GPy . ke rn . RBF( i n p u t d i m =YU y . shape [ 1 ] )
148 YU icm = GPy . u t i l . m u l t i o u t p u t . ICM( i n p u t d i m =YU y . shape [ 1 ] , n u m o u t p u t s =YU pr . shape [ 0 ] , k e r n e l =

YU k )
149 YU = GPy . models . G P C o r e g i o n a l i z e d R e g r e s s i o n ( [ YU y ]* YU pr . shape [ 0 ] , YU pr , k e r n e l =YU icm ,

i n i t i a l i z e = F a l s e )
150 YU. u p d a t e m o d e l ( F a l s e )
151 YU. i n i t i a l i z e p a r a m e t e r ( )
152 y u p a r = np . l o a d ( f ’ ML parameters \\{ r u n t y p e }\\YtoU . npy ’ )
153 YU. p a r a m a r r a y [ : ] = y u p a r [ : ]
154 YU. u p d a t e m o d e l ( True )
155
156
157
158

159 ##GENERATING DATA / / T T r a t i o = 1
160 g e n d a t a = g e n d i s t . g e n d a t a s e t ( 5 0 0 , 1 )
161 y d a t a = np . a r r a y ( [ ch . o u t p u t m e a s ( 1 , [ g e n d a t a [ 1 ] [ 0 ] [ i ] , g e n d a t a [ 1 ] [ 1 ] [ i ] ] , g e n d a t a [ 0 ] [ i ] ) [ ’

y ’ ]
162 f o r i i n r a n g e ( l e n ( g e n d a t a [ 0 ] ) ) ] )
163 y s c a l e = j o b l i b . l o a d ( f ’ ML parameters \\{ r u n t y p e }\\ M a s t e r s x s c a l e . gz ’ ) # MinMaxScaler ( )
164 d s c a l e = j o b l i b . l o a d ( f ’ ML parameters \\{ r u n t y p e }\\ M a s t e r s y s c a l e . gz ’ )
165 u s c a l e = j o b l i b . l o a d ( f ’ ML parameters \\{ r u n t y p e }\\ y u u s c a l e . gz ’ )
166 s t a r t u s c a l e = j o b l i b . l o a d ( f ’ ML parameters \\{ r u n t y p e }\\ S t a r t i n g y s c a l e . gz ’ )
167 s t a r t d s c a l e = j o b l i b . l o a d ( f ’ ML parameters \\{ r u n t y p e }\\ S t a r t i n g x s c a l e . gz ’ )
168 y d a t a = np . a r r a y ( ( y s c a l e . t r a n s f o r m ( y d a t a ) ) )
169
170

171 ##PREDICTING y−>d && d−>u
172 d p r e d = [ ]
173 u p r e d = [ ]
174 u a c t u a l = [ ]
175 u comp = [ ] # Comparing t h e y−>d−>u* model t o y−>u*
176 d a c t u a l = [ ]
177

178 f o r i i n r a n g e ( l e n ( y d a t a ) ) :
179 i f p r i o r a d j u s t m e n t :
180 d p r e d . append ( np . a r r a y ( p r e d i c t a l l (YD, np . a r r a y ( [ y d a t a [ i ] ] ) ) [ 0 ] [ 0 ] +
181 YD reg . p r e d i c t ( y d a t a [ i ] . r e s h a p e ( 1 , −1) ) [ 0 ] ) )
182 u p r e d . append ( u s c a l e . i n v e r s e t r a n s f o r m ( p r e d i c t a l l (DU, np . a r r a y ( [ d p r e d [ i ] ] ) ) [ 0 ] [ 0 ] .

r e s h a p e ( 1 , −1) +
183 DU reg . p r e d i c t ( np . a r r a y ( d p r e d [ i ] ) . r e s h a p e ( 1 , −1) ) ) [ 0 ] )
184 u comp . append ( u s c a l e . i n v e r s e t r a n s f o r m ( p r e d i c t a l l (YU, np . a r r a y ( [ y d a t a [ i ] ] ) ) [ 0 ] [ 0 ] .

r e s h a p e ( 1 , −1) +
185 YU reg . p r e d i c t ( y d a t a [ i ] . r e s h a p e ( 1 , −1) ) ) [ 0 ] )
186 e l s e :
187 d p r e d . append ( np . a r r a y ( p r e d i c t a l l (YD, np . a r r a y ( [ y d a t a [ i ] ] ) ) [ 0 ] [ 0 ] ) )
188 # d p r e d . append ( np . a r r a y ( d s c a l e . i n v e r s e t r a n s f o r m ( p r e d i c t a l l (YD, np . a r r a y ( [ y d a t a [ i ] ] )

) [ 0 ] [ 0 ] . r e s h a p e ( 1 , −1) [ 0 ] ) ) ) # I f p r i o r was a d j u s t e d
189 u p r e d . append ( u s c a l e . i n v e r s e t r a n s f o r m ( p r e d i c t a l l (DU, np . a r r a y ( [ d p r e d [ i ] ] ) ) [ 0 ] [ 0 ] .

r e s h a p e ( 1 , −1) ) [ 0 ] )
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190 u comp . append ( u s c a l e . i n v e r s e t r a n s f o r m ( p r e d i c t a l l (YU, np . a r r a y ( [ y d a t a [ i ] ] ) ) [ 0 ] [ 0 ] .
r e s h a p e ( 1 , −1) ) [ 0 ] )

191

192 u a c t u a l . append ( ch . opt im ( g e n d a t a [ 0 ] [ i ] ) [ ’ u ’ ] )
193
194

195 #Used t o u n s c a l e d p r e d
196 d p r e d = np . a r r a y ( [ d s c a l e . i n v e r s e t r a n s f o r m ( d p r e d [ i ] . r e s h a p e ( 1 , −1) ) [ 0 ] f o r i i n r a n g e ( l e n (

d p r e d ) ) ] )
197 u p r e d = np . a r r a y ( u p r e d )
198 u a c t u a l = np . a r r a y ( u a c t u a l )
199 u comp = np . a r r a y ( u comp )
200 d a c t u a l = pd . DataFrame ( g e n d a t a [ 0 ] )
201 d a c t u a l = d a c t u a l . d rop ( columns =[ ’ Ts ’ , ’ h1 ’ , ’ h2 ’ , ’ h3 ’ , ’T0 ’ , ’w0 ’ , ’ Th1 ’ , ’ Th2 ’ , ’ Th3 ’ ] )
202 d a c t u a l = np . a r r a y ( d a c t u a l )
203
204
205

206 # P l o t t i n g U p r e d i c t i o n vs Rea l
207 f i g , ( ax1 , ax2 ) = p l t . s u b p l o t s ( 2 )
208 ax1 . s c a t t e r ( u p r e d [ : , 0 ] , u a c t u a l [ : , 0 ] , l a b e l = ”U1 p r e d i c t i o n ” , s =4)
209 ax1 . p l o t ( np . l i n s p a c e ( 0 , 1 ) , np . l i n s p a c e ( 0 , 1 ) , l a b e l =” Opt imal p r e d i c t i o n s ” , a l p h a = 0 . 6 , c o l o r = ’

r e d ’ )
210 ax1 . s e t x l i m ( 0 . 2 , 0 . 5 )
211 ax1 . s e t y l i m ( 0 . 2 , 0 . 5 )
212 ax1 . l e g e n d ( )
213 # ax1 . s e t x l a b e l ( ” P r e d i c t e d v a l v e v a l u e [ − ] ” ) #Removed f o r v i s u a l c l a r i t y
214 ax1 . s e t y l a b e l ( ” A c t u a l v a l v e v a l u e [ −] ” )
215

216 ax2 . s c a t t e r ( u p r e d [ : , 1 ] , u a c t u a l [ : , 1 ] , l a b e l = ”U2 p r e d i c t i o n ” , a l p h a = 0 . 6 , c o l o r = ’ o r a n g e r e d ’ ,
s =4)

217 ax2 . p l o t ( np . l i n s p a c e ( 0 , 1 ) , np . l i n s p a c e ( 0 , 1 ) , l a b e l =” Opt imal p r e d i c t i o n s ” , a l p h a = 0 . 6 , c o l o r = ’
r e d ’ )

218 ax2 . l e g e n d ( )
219 ax2 . s e t x l i m ( 0 . 2 , 0 . 5 )
220 ax2 . s e t y l i m ( 0 . 2 , 0 . 5 )
221 ax2 . s e t x l a b e l ( ” P r e d i c t e d v a l v e v a l u e [ −] ” )
222 ax2 . s e t y l a b e l ( ” A c t u a l v a l v e v a l u e [ −] ” )
223 p l t . s a v e f i g ( f ’ f i g s /U− p r e d i c t i o n s vs a c t u a l { r u n t y p e } . pd f ’ )
224

225 p l t . show ( )
226
227

228 # P l o t t i n g t e m p e r a t u r e d i f f e r e n c e
229 T pred = [ ]
230 T a c t u a l = [ ]
231 T comp = [ ]
232

233 f o r i i n r a n g e ( l e n ( y d a t a ) ) :
234 T pred . append ( ch . o u t p u t ( u p r e d [ i ] , g e n d a t a [ 0 ] [ i ] ) [ ’ x ’ ] [ 1 ] )
235 T a c t u a l . append ( ch . o u t p u t ( u a c t u a l [ i ] , g e n d a t a [ 0 ] [ i ] ) [ ’ x ’ ] [ 1 ] )
236 T comp . append ( ch . o u t p u t ( u comp [ i ] , g e n d a t a [ 0 ] [ i ] ) [ ’ x ’ ] [ 1 ] )
237 T pred = np . a r r a y ( T pred )
238 T a c t u a l = np . a r r a y ( T a c t u a l )
239 T comp = np . a r r a y ( T comp )
240

241 p l o t h i s t ( T pred , T a c t u a l , ” Tempera tu r e d i f f e r e n c e y−>d−>u* \n t t r a t i o = 1 . 0 ” , f ” ydu
h i s t o g r a m { r u n t y p e }” )

242 p l o t h i s t ( T comp , T a c t u a l , ’ Tempera tu r e d i f f e r e n c e y−>u* \n t t r a t i o = 1 . 0 ’ , f ’ yu h i s t o g r a m {
r u n t y p e } ’ )

243 p l o t b o x ( [ T pred , T comp ] , T a c t u a l , ’ T e m p e r a t u r e s i n box − p l o t , t t r a t i o = 1 . 0 ’ , f ” B o x p l o t {
r u n t y p e }” )

244 pd . DataFrame ( T pred ) . t o c s v ( f ’ T p r e d { r u n t y p e } . c sv ’ , i n d e x = F a l s e )
245 pd . DataFrame ( T comp ) . t o c s v ( f ’ T comp { r u n t y p e } . c sv ’ , i n d e x = F a l s e )
246 pd . DataFrame ( T a c t u a l ) . t o c s v ( f ’ T a c t u a l { r u n t y p e } . c sv ’ , i n d e x = F a l s e )
247

248 ##GENERATING DATA t t r a t i o = 1 . 2
249 gen dataEX = g e n d i s t . g e n d a t a s e t ( 5 0 0 , 1 . 3 )
250 y dataEX = np . a r r a y ( [ ch . o u t p u t m e a s ( 1 , [ gen dataEX [ 1 ] [ 0 ] [ i ] , gen dataEX [ 1 ] [ 1 ] [ i ] ] , gen dataEX

[ 0 ] [ i ] ) [ ’ y ’ ]
251 f o r i i n r a n g e ( l e n ( gen dataEX [ 0 ] ) ) ] )
252 # y s c a l e = j o b l i b . l o a d ( ’ M a s t e r s x s c a l e . gz ’ ) # MinMaxScaler ( )
253 # d s c a l e = j o b l i b . l o a d ( ’ M a s t e r s y s c a l e . gz ’ )
254 y dataEX = np . a r r a y ( ( y s c a l e . t r a n s f o r m ( y dataEX ) ) )
255

256 ##PREDICTING y−>d && d−>u
257 d predEX = [ ]
258 u predEX = [ ]
259 u a c t u a l E X = [ ]
260 u compEX = [ ]
261 f o r i i n r a n g e ( l e n ( y dataEX ) ) :
262 i f p r i o r a d j u s t m e n t :
263 d predEX . append ( np . a r r a y ( p r e d i c t a l l (YD, np . a r r a y ( [ y dataEX [ i ] ] ) ) [ 0 ] [ 0 ] +
264 YD reg . p r e d i c t ( y dataEX [ i ] . r e s h a p e ( 1 , −1) ) [ 0 ] ) )
265 u predEX . append ( u s c a l e . i n v e r s e t r a n s f o r m ( p r e d i c t a l l (DU, np . a r r a y ( [ d predEX [ i ] ] ) )

[ 0 ] [ 0 ] . r e s h a p e ( 1 , −1) +
266 DU reg . p r e d i c t ( np . a r r a y ( d predEX [ i ] ) . r e s h a p e ( 1 , −1) ) ) [ 0 ] )
267 u compEX . append ( u s c a l e . i n v e r s e t r a n s f o r m ( p r e d i c t a l l (YU, np . a r r a y ( [ y dataEX [ i ] ] ) )

[ 0 ] [ 0 ] . r e s h a p e ( 1 , −1) +
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268 YU reg . p r e d i c t ( y dataEX [ i ] . r e s h a p e ( 1 , −1) ) ) [ 0 ] )
269 e l s e :
270 d predEX . append ( np . a r r a y ( p r e d i c t a l l (YD, np . a r r a y ( [ y dataEX [ i ] ] ) ) [ 0 ] [ 0 ] ) )
271 u predEX . append ( u s c a l e . i n v e r s e t r a n s f o r m ( p r e d i c t a l l (DU, np . a r r a y ( [ d predEX [ i ] ] ) )

[ 0 ] [ 0 ] . r e s h a p e ( 1 , −1) ) [ 0 ] )
272 u compEX . append ( u s c a l e . i n v e r s e t r a n s f o r m ( p r e d i c t a l l (YU, np . a r r a y ( [ y dataEX [ i ] ] ) )

[ 0 ] [ 0 ] . r e s h a p e ( 1 , −1) ) [ 0 ] )
273

274 u a c t u a l E X . append ( ch . opt im ( gen dataEX [ 0 ] [ i ] ) [ ’ u ’ ] )
275
276

277 u predEX = np . a r r a y ( u predEX )
278 u a c t u a l E X = np . a r r a y ( u a c t u a l E X )
279 u compEX = np . a r r a y ( u compEX )
280
281
282

283 # P l o t t i n g U p r e d i c t i o n vs Rea l
284 f i g 2 , ( ax1 , ax2 ) = p l t . s u b p l o t s ( 2 )
285 ax1 . s c a t t e r ( u predEX [ : , 0 ] , u a c t u a l E X [ : , 0 ] , l a b e l = ”U1 p r e d i c t i o n ” , s =4)
286 ax1 . p l o t ( np . l i n s p a c e ( 0 , 1 ) , np . l i n s p a c e ( 0 , 1 ) , l a b e l =” Opt imal p r e d i c t i o n s ” , a l p h a = 0 . 6 , c o l o r = ’

r e d ’ )
287 ax1 . s e t x l i m ( 0 . 2 , 0 . 6 )
288 ax1 . s e t y l i m ( 0 . 2 , 0 . 6 )
289 ax1 . l e g e n d ( )
290 # ax1 . s e t x l a b e l ( ” P r e d i c t e d v a l v e v a l u e [ − ] ” ) #Removed f o r v i s u a l c l a r i t y
291 ax1 . s e t y l a b e l ( ” A c t u a l v a l v e v a l u e [ −] ” )
292

293 ax2 . s c a t t e r ( u predEX [ : , 1 ] , u a c t u a l E X [ : , 1 ] , l a b e l = ”U2 p r e d i c t i o n ” , a l p h a = 0 . 6 , c o l o r = ’
o r a n g e r e d ’ , s =4)

294 ax2 . p l o t ( np . l i n s p a c e ( 0 , 1 ) , np . l i n s p a c e ( 0 , 1 ) , l a b e l =” Opt imal p r e d i c t i o n s ” , a l p h a = 0 . 6 , c o l o r = ’
r e d ’ )

295 ax2 . l e g e n d ( )
296 ax2 . s e t x l i m ( 0 . 2 , 0 . 6 )
297 ax2 . s e t y l i m ( 0 . 2 , 0 . 6 )
298 ax2 . s e t x l a b e l ( ” P r e d i c t e d v a l v e v a l u e [ −] ” )
299 ax2 . s e t y l a b e l ( ” A c t u a l v a l v e v a l u e [ −] ” )
300 p l t . s a v e f i g ( f ’ f i g s /U− p r e d i c t i o n s vs a c t u a l E X { r u n t y p e } . pd f ’ )
301

302 p l t . show ( )
303

304 # P l o t t i n g t e m p e r a t u r e d i f f e r e n c e
305 T predEX = [ ]
306 T ac tua lEX = [ ]
307 T compEX = [ ]
308

309 f o r i i n r a n g e ( l e n ( y d a t a ) ) :
310 T predEX . append ( ch . o u t p u t ( u predEX [ i ] , gen dataEX [ 0 ] [ i ] ) [ ’ x ’ ] [ 1 ] )
311 T ac tua lEX . append ( ch . o u t p u t ( u a c t u a l E X [ i ] , gen dataEX [ 0 ] [ i ] ) [ ’ x ’ ] [ 1 ] )
312 T compEX . append ( ch . o u t p u t ( u compEX [ i ] , gen dataEX [ 0 ] [ i ] ) [ ’ x ’ ] [ 1 ] )
313 T predEX = np . a r r a y ( T predEX )
314 T ac tua lEX = np . a r r a y ( T ac tua lEX )
315 T compEX = np . a r r a y ( T compEX )
316 pd . DataFrame ( T predEX ) . t o c s v ( f ’ T predEX { r u n t y p e } . c sv ’ , i n d e x = F a l s e )
317 pd . DataFrame ( T compEX ) . t o c s v ( f ’ T compEX { r u n t y p e } . c sv ’ , i n d e x = F a l s e )
318 pd . DataFrame ( T ac tua lEX ) . t o c s v ( f ’ T a c t u a l E X { r u n t y p e } . c sv ’ , i n d e x = F a l s e )
319

320 p l o t h i s t ( T predEX , T actua lEX , ” Tempera tu r e d i f f e r e n c e y−>d−>u* \n t t r a t i o = 1 . 2 ” , f ” ydu
h is togramEX { r u n t y p e }” )

321 p l o t h i s t ( T compEX , T actua lEX , ’ Tempera tu r e d i f f e r e n c e y−>u* \n t t r a t i o = 1 . 2 ’ , f ’ yu
h i s togramEX { r u n t y p e } ’ )

322 p l o t b o x ( [ T predEX , T compEX ] , T actua lEX , ’ Boxplo t , t t r a t i o = 1 . 2 ’ , f ” BoxplotEX { r u n t y p e }” )
323

324 # P l o t t i n g compar i son g r a p h s between YD−DU and YU
325 f i g 3 , ( ax1 , ax2 ) = p l t . s u b p l o t s ( 2 )
326 ax1 . s c a t t e r ( u comp [ : , 0 ] , u a c t u a l [ : , 0 ] , l a b e l =”U1 p r e d i c t i o n s ” , s =5 , c o l o r =” t a b : b l u e ” )
327 ax1 . p l o t ( np . l i n s p a c e ( 0 , 1 ) , np . l i n s p a c e ( 0 , 1 ) , l a b e l =” Opt imal p r e d i c t i o n s ” , a l p h a = 0 . 7 , c o l o r =”

r e d ” )
328 ax1 . s e t x l i m ( 0 . 2 , 0 . 5 )
329 ax1 . s e t y l i m ( 0 . 2 , 0 . 5 )
330 ax1 . l e g e n d ( )
331 # ax1 . s e t x l a b e l ( ” P r e d i c t e d v a l v e v a l u e [ − ] ” ) #Removed f o r v i s u a l c l a r i t y
332 ax1 . s e t y l a b e l ( ” A c t u a l v a l v e v a l u e [ −] ” )
333

334 ax2 . s c a t t e r ( u comp [ : , 1 ] , u a c t u a l [ : , 1 ] , l a b e l =”U2 p r e d i c t i o n s ” , s =5 , a l p h a = 0 . 8 , c o l o r = ’m’ )
335 ax2 . p l o t ( np . l i n s p a c e ( 0 , 1 ) , np . l i n s p a c e ( 0 , 1 ) , l a b e l =” Opt imal p r e d i c t i o n s ” , a l p h a = 0 . 7 , c o l o r =”

r e d ” )
336 # ax2 . g r i d ( )
337 ax2 . s e t x l i m ( 0 . 2 , 0 . 5 )
338 ax2 . s e t y l i m ( 0 . 2 , 0 . 5 )
339 ax2 . l e g e n d ( )
340 ax2 . s e t x l a b e l ( ” P r e d i c t e d v a l v e v a l u e [ −] ” )
341 ax2 . s e t y l a b e l ( ” A c t u a l v a l v e v a l u e [ −] ” )
342 p l t . s a v e f i g ( f ’ f i g s /YU− p r e d i c t i o n s vs a c t u a l { r u n t y p e } . pd f ’ )
343

344 p l t . show ( )
345

346 # P l o t t i n g EX c o m p a r i s o n s
347
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348 f i g 4 , ( ax1 , ax2 ) = p l t . s u b p l o t s ( 2 )
349 ax1 . s c a t t e r ( u compEX [ : , 0 ] , u a c t u a l E X [ : , 0 ] , l a b e l =”U1 p r e d i c t i o n s ” , s =5 , c o l o r = ’ t a b : b l u e ’ )
350 ax1 . p l o t ( np . l i n s p a c e ( 0 , 1 ) , np . l i n s p a c e ( 0 , 1 ) , l a b e l =” Opt imal p r e d i c t i o n s ” , a l p h a = 0 . 7 , c o l o r =”

r e d ” )
351 ax1 . s e t x l i m ( 0 . 2 , 0 . 6 )
352 ax1 . s e t y l i m ( 0 . 2 , 0 . 6 )
353 ax1 . l e g e n d ( )
354 # ax1 . s e t x l a b e l ( ” P r e d i c t e d v a l v e v a l u e [ − ] ” ) #Removed f o r v i s u a l c l a r i t y
355 ax1 . s e t y l a b e l ( ” A c t u a l v a l v e v a l u e [ −] ” )
356

357 ax2 . s c a t t e r ( u compEX [ : , 1 ] , u a c t u a l E X [ : , 1 ] , l a b e l =”U2 p r e d i c t i o n s ” , s =5 , a l p h a = 0 . 8 , c o l o r = ’m’ )
358 ax2 . p l o t ( np . l i n s p a c e ( 0 , 1 ) , np . l i n s p a c e ( 0 , 1 ) , l a b e l =” Opt imal p r e d i c t i o n s ” , a l p h a = 0 . 7 , c o l o r =”

r e d ” )
359 ax2 . s e t x l i m ( 0 . 2 , 0 . 6 )
360 ax2 . s e t y l i m ( 0 . 2 , 0 . 6 )
361 ax2 . l e g e n d ( )
362 ax2 . s e t x l a b e l ( ” P r e d i c t e d v a l v e v a l u e [ −] ” )
363 ax2 . s e t y l a b e l ( ” A c t u a l v a l v e v a l u e [ −] ” )
364 p l t . s a v e f i g ( f ’ f i g s /YU− p r e d i c t i o n s vs a c t u a l E X { r u n t y p e } . pd f ’ )
365

366 p l t . show ( )
367

368 ## E v a l u a t i n g d− pred e f f i c a c y
369 f i g 5 , ( ax1 , ax2 ) = p l t . s u b p l o t s ( 2 )
370 ax1 . s c a t t e r ( d p r e d [ : , 0 ] , d a c t u a l [ : , 0 ] , s =5 , l a b e l =”wh1 p r e d i c t i o n s ” )
371 ax1 . s c a t t e r ( d p r e d [ : , 1 ] , d a c t u a l [ : , 1 ] , s =5 , l a b e l =”wh2 p r e d i c t i o n s ” )
372 ax1 . s c a t t e r ( d p r e d [ : , 2 ] , d a c t u a l [ : , 2 ] , s =5 , l a b e l =”wh3 p r e d i c t i o n s ” )
373 ax1 . s e t ( x l a b e l = ” A c t u a l wh− v a l u e s [kW/K] ” , y l a b e l =” P r e d i c t e d wh− v a l u e s [kW/K] ” )
374 ax1 . s e t x l i m ( 2 0 , 60)
375 ax1 . s e t y l i m ( 2 0 , 60)
376 ax1 . p l o t ( np . l i n s p a c e ( 2 0 , 6 0 ) , np . l i n s p a c e ( 2 0 , 6 0 ) ,
377 c o l o r =” r e d ” , a l p h a = 0 . 6 , l a b e l =” Opt imal p r e d i c t i o n s ” )
378 ax1 . l e g e n d ( )
379 ax1 . g r i d ( )
380
381

382 ax2 . s c a t t e r ( d p r e d [ : , 3 ] , d a c t u a l [ : , 3 ] , s =5 , l a b e l =”UA1 p r e d i c t i o n s ” )
383 ax2 . s c a t t e r ( d p r e d [ : , 4 ] , d a c t u a l [ : , 4 ] , s =5 , l a b e l =”UA2 p r e d i c t i o n s ” )
384 ax2 . s c a t t e r ( d p r e d [ : , 5 ] , d a c t u a l [ : , 5 ] , s =5 , l a b e l =”UA3 p r e d i c t i o n s ” )
385 ax2 . s e t ( x l a b e l =” A c t u a l UA− v a l u e s [kW/K] ” , y l a b e l =” P r e d i c t e d UA− v a l u e s [kW/K] ” )
386 ax2 . s e t x l i m ( 5 0 , 1 1 0 )
387 ax2 . s e t y l i m ( 5 0 , 1 1 0 )
388 ax2 . p l o t ( np . l i n s p a c e ( 5 0 , 1 1 0 ) , np . l i n s p a c e ( 5 0 , 1 1 0 ) ,
389 c o l o r =” r e d ” , a l p h a = 0 . 6 , l a b e l =” Opt imal p r e d i c t i o n s ” )
390 ax2 . l e g e n d ( )
391 ax2 . g r i d ( )
392 p l t . t i g h t l a y o u t ( )
393 p l t . s a v e f i g ( f ’ f i g s / d− p r e d i c t i o n s { r u n t y p e } . pd f ’ , d p i =400)
394

395 p l t . show ( )
396

397 ## E v a l u a t i n g t h e o u t l i e r d a t a p o i n t s
398 a b s v a l u e e r r o r = np . abs ( T pred − T a c t u a l )
399 w e i r d s p o t = np . where ( a b s v a l u e e r r o r == max ( a b s v a l u e e r r o r ) ) [ 0 ] [ 0 ]
400 n e x t s p o t = np . where ( a b s v a l u e e r r o r == np . s o r t ( a b s v a l u e e r r o r ) [ − 2 ] ) [ 0 ] [ 0 ]
401 c o n t r o l s p o t = np . where ( a b s v a l u e e r r o r == np . s o r t ( a b s v a l u e e r r o r ) [ 0 ] ) [ 0 ] [ 0 ]
402 p r i n t ( ”D− p r e d i c t i o n s f o r max T− d i f f e r e n c e : ” , d p r e d [ w e i r d s p o t ] , # d s c a l e . i n v e r s e t r a n s f o r m (

d p r e d [ w e i r d s p o t ] . r e s h a p e (1 , −1 ) ) [ 0 ] ,
403 ”\nCompared t o a c t u a l d− v a l u e s o f : ” , d a c t u a l [ w e i r d s p o t ] )
404 p r i n t ( ”\nWhich was t h e f o l l o w i n g u * : ” , u p r e d [ w e i r d s p o t ] , ”\nCompared t o a c t u a l u o f : ” ,

u a c t u a l [ w e i r d s p o t ] )
405

406 p r i n t ( ”\n\nD− p r e d i c t i o n s f o r second max T− d i f f e r e n c e : ” , d p r e d [ n e x t s p o t ] , # d s c a l e .
i n v e r s e t r a n s f o r m ( d p r e d [ n e x t s p o t ] . r e s h a p e (1 , −1 ) ) [ 0 ] ,

407 ”\nCompared t o a c t u a l d− v a l u e s o f : ” , d a c t u a l [ n e x t s p o t ] )
408 p r i n t ( ”\nWhich was t h e f o l l o w i n g u * : ” , u p r e d [ n e x t s p o t ] , ”\nCompared t o t h e a c t u a l u o f : ” ,

u a c t u a l [ n e x t s p o t ] )
409

410 p r i n t ( ”\n\nD− p r e d i c t i o n s f o r min T− d i f f e r e n c e : ” , d p r e d [ c o n t r o l s p o t ] , # d s c a l e .
i n v e r s e t r a n s f o r m ( d p r e d [ n e x t s p o t ] . r e s h a p e (1 , −1 ) ) [ 0 ] ,

411 ”\nCompared t o a c t u a l d− v a l u e s o f : ” , d a c t u a l [ c o n t r o l s p o t ] )
412 p r i n t ( ”\nWhich was t h e f o l l o w i n g u * : ” , u p r e d [ c o n t r o l s p o t ] , ”\nCompared t o t h e a c t u a l u o f :

” , u a c t u a l [ n e x t s p o t ] )
413
414

415 p r i n t ( ” u1 p red ex max : ” , max ( u predEX [ : , 0 ] ) , ” u2 p red ex max : ” , max ( u predEX [ : , 1 ] ) ,
416 ”\nu1 comp max : ” , max ( u compEX [ : , 0 ] ) , ” u2 comp max : ” , max ( u compEX [ : , 1 ] ) )
417 p r i n t ( ”\n\nu1 pred ex # 2 : ” , np . s o r t ( u predEX [ : , 0 ] ) [ − 2 ] , ” u2 p red ex # 2 : ” , np . s o r t ( u predEX

[ : , 1 ] ) [ − 2 ] ,
418 ”\nu1 comp # 2 : ” , np . s o r t ( u compEX [ : , 0 ] ) [ − 2 ] , ” u2 comp # 2 : ” , np . s o r t ( u compEX [ : , 1 ] )

[ − 2 ] )

B.7 Boxplot comparisons.py
1 # L a z i l y made code f o r c r e a t i n g compar i son b o x p l o t s f o r t h e a p p r o a c h e s
2 i m p o r t GPy
3 i m p o r t numpy as np
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4 i m p o r t m a t p l o t l i b . p y p l o t a s p l t # P l o t t i n g
5

6 d e f p r e d i c t a l l (m: GPy . models . G P C o r e g i o n a l i z e d R e g r e s s i o n , X) :
7 ny = l e n ( np . un iq ue (m. o u t p u t i n d e x ) )
8 y = [ ]
9 covy = [ ]

10 Xaug = np . h s t a c k ( ( X, 0 . 0 * np . o n e s l i k e (X [ : , 0 : 1 ] ) ) )
11 f o r i y i n r a n g e ( ny ) :
12 Xaug [ : , −1 : ] = i y
13 y i , c o v y i = m. p r e d i c t ( Xaug , Y metada ta ={ ’ o u t p u t i n d e x ’ : Xaug [ : , − 1 : ] . a s t y p e ( i n t ) } )
14 y . append ( y i )
15 covy . append ( c o v y i )
16 r e t u r n np . h s t a c k ( y ) , np . h s t a c k ( covy )
17

18 d e f p l o t b o x ( p r e d i c t e d , t a r g e t , t i t l e , fp ) :
19 f i g = p l t . f i g u r e ( )
20 p r e d i c t e d = np . abs ( p r e d i c t e d − t a r g e t )
21 ax = f i g . a d d s u b p l o t ( )
22 b = ax . b o x p l o t ( [ p r e d i c t e d [ i ] f o r i i n r a n g e ( l e n ( p r e d i c t e d ) ) ] , v e r t =0 , whis = (2 , 98) , sym= ’+

’ )
23 ax . s e t y t i c k l a b e l s ( [ ’ D e f a u l t \ n P r i o r ’ , ’ L i n e a r \ n P r i o r ’ , ’ Q u a d r a t i c \ n P r i o r ’ ] ,

va= ’ c e n t e r ’ )
24 # p l t . t i t l e ( t i t l e )
25 p l t . x l im ( [ 0 , 2 ] )
26 ax . g e t x a x i s ( ) . t i c k b o t t o m ( )
27 ax . g e t y a x i s ( ) . t i c k l e f t ( )
28 p l t . x l a b e l ( ” Tempera tu r e l o s s compared t o o p t i m a l u− v a l u e s [C] ” )
29 p l t . y t i c k s ( r o t a t i o n =50)
30 p l t . s a v e f i g ( f ’ f i g s \\{ fp } . pd f ’ )
31

32 p l t . show ( )
33 r u n t y p e s = [ ’EX ’ , ” ” ] # E i t h e r expanded t e s t i n g r e g i o n or d e f a u l t
34 r u n t y p e = r u n t y p e s [ 1 ] # P ick 0 or 1 depend ing on d e s i r e d run − t y p e
35
36

37 T pred = np . g e n f r o m t x t ( f ’ T pred{ r u n t y p e } NO PRIOR . csv ’ , d e l i m i t e r = ’ , ’ , s k i p h e a d e r =1)
38 T p r e d 2 = np . g e n f r o m t x t ( f ’ T pred{ r u n t y p e } LINEAR PRIOR . csv ’ , d e l i m i t e r = ’ , ’ , s k i p h e a d e r =1)
39 T p r e d 3 = np . g e n f r o m t x t ( f ’ T pred{ r u n t y p e } QUADRATIC PRIOR . csv ’ , d e l i m i t e r = ’ , ’ , s k i p h e a d e r

=1)
40 T comp = np . g e n f r o m t x t ( f ’ T comp{ r u n t y p e } NO PRIOR . csv ’ , d e l i m i t e r = ’ , ’ , s k i p h e a d e r =1)
41 T comp 2 = np . g e n f r o m t x t ( f ’ T comp{ r u n t y p e } LINEAR PRIOR . csv ’ , d e l i m i t e r = ’ , ’ , s k i p h e a d e r =1)
42 T comp 3 = np . g e n f r o m t x t ( f ’ T comp{ r u n t y p e } QUADRATIC PRIOR . csv ’ , d e l i m i t e r = ’ , ’ , s k i p h e a d e r

=1)
43 T a c t u a l = np . g e n f r o m t x t ( f ’ T a c t u a l { r u n t y p e } NO PRIOR . csv ’ , d e l i m i t e r = ’ , ’ , s k i p h e a d e r =1)
44 T a c t u a l 2 = np . g e n f r o m t x t ( f ’ T a c t u a l { r u n t y p e } LINEAR PRIOR . csv ’ , d e l i m i t e r = ’ , ’ , s k i p h e a d e r

=1)
45 T a c t u a l 3 = np . g e n f r o m t x t ( f ’ T a c t u a l { r u n t y p e } QUADRATIC PRIOR . csv ’ , d e l i m i t e r = ’ , ’ ,

s k i p h e a d e r =1)
46 T t o t = T a c t u a l
47 np . append ( T t o t , T a c t u a l 2 )
48 np . append ( T t o t , T a c t u a l 3 )
49

50 p l o t b o x ( [ T pred , T pred 2 , T p r e d 3 ] , T t o t , ’ r e d u n d a n t t i t l e ’ , f ’ c o m p b o x p l o t s { r u n t y p e } YDU
’ )

51 p l o t b o x ( [ T comp , T comp 2 , T comp 3 ] , T t o t , ’ r e d u n d a n t t i t l e ’ , f ’ c o m p b o x p l o t s { r u n t y p e } YU ’
)
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