
Jan H
enrik Jahren

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f C
he

m
ic

al
 E

ng
in

ee
rin

gD
ata-driven m

odelling of subsea equipm
ent degradation using sim

ulated and experim
ental case studies

M
as

te
r’s

 th
es

is

Jan Henrik Jahren

Data-driven modelling of subsea
equipment degradation using simulated
and experimental case studies

Master’s thesis in Nanotechnology

Supervisor: Johannes Jäschke

December 2020

Jan Henrik Jahren

Data-driven modelling of subsea
equipment degradation using
simulated and experimental case
studies

Master’s thesis in Nanotechnology
Supervisor: Johannes Jäschke
December 2020

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Chemical Engineering

Sammendrag

I all industri finnes det visse essensielle komponenter som utsettes for slitasje fra flere
ulike kilder. I denne oppgaven studeres spesifikt erosjonen fra sand i den såkalte stru-
peventilen (”choke valve”) i et subsea oljeproduksjonssystem. Målet med oppgaven er å
undersøke muligheten til å erstatte tradisjonelle fenomenologiske modeller for degrader-
ing med data-drevne modeller basert på statistisk læring. Dette gjøres gjennom fire ulike
casestudier, tre simulerte case studier som tar for seg henholdsvis konstant, eksponentiell
og logistisk sand produksjon fra en oljebrønn og hvordan dette degraderer strupeventilen.
Til slutt har vi brukt et eksperimentelt oppsett ved instituttet som emulerer et subsea olje-
produksjonssystem. Her har vi studert erosjonen av 3D-printede prøver utsatt for en strøm
av vann (uten sand). Fra alle fire casestudiene ble det konstruert datasett og med disse
datasettene ble maskinlæringsmodeller trent. Her er det både studert både tradisjonelle
statistiske modeller som stegvis lineær regresjon, regresjonstrær, ensembler av trær og
støttevektormaskiner samt mer moderne nevrale nettverk. I de første tre casestudiene ble
erosjonsraten estimert ved hjelp av prosessvariabler som samles under simuleringen. Dette
gav svært gode resultater på den simulerte dataen.

Det å direkte måle erosjonen i det eksperimentelle oppsettet var en stor utfordring,
først ble det forsøkt med kamera og telling av piksler som fortsatt var tilstede, men det gav
svært ustabil data. Til slutt bestemte vi oss for å representere erosjonen av prøven med
endringen av trykkforskjellen over erosjonskammeret. Ettersom prøven blokkerer flyt, vil
trykkforskjellen jevnes mer og mer ut ettersom prøven forsvinner. Disse degraderingspro-
filene ble også relativt suksessfullt modellert ved bruk av maskinlæringsmodeller. Gjen-
nom oppgaven diskuteres fordeler og ulemper med de ulike metodene både kvantitativt og
kvalitativt i de ulike casestudiene.

i

Summary

In all industry, there are certain essential components that are subject to degradation from
various sources. In this thesis, specifically the erosion of a choke valve from sand produc-
tion in a subsea oil production network is studied. The goal of this thesis is to explore the
possibility of replacing traditional phenomenological models and expensive inspections
with more accurate data-driven degradation models based on statistical learning. This
is done through four case studies, three simulated case studies dealing with respectively
constant, exponential and logistic sand production from the oil well. Finally, this is com-
plemented by an experimental case study where a rig emulating a subsea oil well network
in the department of chemical engineering is used. Here we have studied the erosion of
3D-printed probes exposed to flows of water (without sand). From all four case stud-
ies, data sets were constructed, which were then used to train machine learning models.
Both traditional machine learning models like stepwise linear regression, regression trees,
ensembles of trees and support vector regression as well as more modern methods such
as neural networks were tested. In the first three case studies the erosion rate was esti-
mated using process variables recorded during the simulations, this yielded very strong
predictions, particularly (in case studies 2 & 3) when accurate sand production data was
available.

To directly measure the erosion of the probe in the experimental setup was a significant
challenge, initially we tried to use a camera and count pixels present in the images, but
this led to noisy data of low quality. Finally, we decided to use the change in differential
pressure across the erosion chamber to represent the degradation of the probe. The probe
was positioned in a way where it blocks the flow through the erosion chamber, and as such,
as its area is reduced the pressure across the erosion chamber equalises. These degradation
profiles were quite successfully modelled using machine learning models. Throughout
this thesis, the methods applied are discussed in terms of benefits and drawbacks, both
quantitatively and qualitatively.

i

Preface

This work is the product of the final semester of my integrated master’s degree in nan-
otechnology, where a 30 ECTS independent research project is done. My thesis theme
of data-driven modelling is a quite unconventional choice for students in my study pro-
gramme, the choice is a result of a strong interest in statistics and modelling after taking
classes in chemometrics and statistical learning here at NTNU in my 4th year. My main
supervisor for this project has been assoc. prof Johannes Jäschke at the Process Systems
Engineering group at the Department of Chemical Engineering. Co-supervisor Jose O. A.
Matias provided most of the day to day supervision being available any time for advice on
zoom and on email, for which I am extremely grateful.

Jose also built the rig where the experimental work has been carried out, throughout
the last months we have spent countless hours waiting for a diverse selection of 3D printed
probes to erode away. This project has been an extension of my specialisation project
where most of the work was based on the case study of constant sand production rate.
In this master project the work has been extended to simulated data with exponential and
logistic sand production rates as well as actually performing experiments to investigate
the applicability of these methods for real world data. A vast amount of time has been
spent optimising the process of gathering experimental data, some of it made it into the
thesis but most of it will pass quietly into the dustbin of things that were tried and did
not work. The analysis and modelling in this work has been done independently by me,
with advise from Jose, while the experimental work has been done jointly. Based on
the work in this thesis, a paper was submitted to the ESCAPE-31 conference, currently
pending approval, co-authored by my supervisors titled ”Data-driven modelling of choke
valve erosion usingdata simulated from a first principles model”. The paper is included in
Appendix E.

ii

Table of Contents

Sammendrag (Norwegian) i

Summary i

Preface ii

Table of Contents v

List of Tables viii

List of Figures xiii

Abbreviations xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Methods . 2
1.3 Outline . 2

2 Methods and theory for data processing 5
2.1 Data Pre-Processing . 5

2.1.1 Centering and Scaling . 6
2.1.2 Normalisation . 6
2.1.3 Linear interpolation . 6
2.1.4 Moving mean and median . 7
2.1.5 Principal Components Analysis 7

2.2 Regression Methods . 7
2.2.1 Linear Regression . 8
2.2.2 Partial Least Squares . 11
2.2.3 Support Vector Machines . 13
2.2.4 Regression trees . 15
2.2.5 Ensemble methods . 16

iii

2.2.6 Neural networks . 18
2.3 Model Selection and Evaluation . 20

2.3.1 Model Validation . 20
2.3.2 Model Performance . 20

2.4 Model optimization . 21
2.4.1 Gradient descent . 22
2.4.2 Bayesian optimisation . 23

3 Simulations 25
3.1 Gas lifted oil well network . 25
3.2 Erosion model . 28

3.2.1 Sand Production Rate . 29
3.3 Simulated data . 29

3.3.1 Data from constant sand production rate simulations 30
3.3.2 Data from exponential and logistic sand production rate simulations 30

4 Case study 1: Constant sand production rate 33
4.1 Exploratory analysis of simulated data with constant sand production rate 34
4.2 Pre-processing . 34
4.3 Regression results . 35

4.3.1 Linear regression . 35
4.3.2 Partial Least Squares Regression 37
4.3.3 Regression trees . 37
4.3.4 Support Vector Regression . 37
4.3.5 ANN Regression . 38

4.4 Summary . 38

5 Case studies 2 & 3: Exponential & Logistic sand production rate 39
5.1 Exploratory analysis of simulated data with changing sand production . . 40

5.1.1 PLS analysis of data . 41
5.2 Regression results . 44

5.2.1 Linear regression . 44
5.2.2 Regression trees . 45
5.2.3 Ensemble methods . 46
5.2.4 Support vector regression . 47
5.2.5 ANN Regression . 48
5.2.6 Summary . 49

5.3 Improving predictions by modelling sand production rate 52
5.3.1 Linearly modelling sand production 52
5.3.2 Results using modelled sand production rate 52

5.4 Modelling cumulative erosion with a NARX model 55
5.4.1 Cumulative model results . 55

5.5 Summary of results for simulated data 56

iv

6 Experiments 59
6.1 Overview of the rig . 59

6.1.1 Measuring erosion . 60
6.2 Experimental Data . 63

7 Case study 4: Experimental data 65
7.1 Exploratory data analysis and pre-processing 65

7.1.1 Pre-processing . 65
7.1.2 Exploratory data analysis . 66

7.2 Regression results . 69
7.2.1 Linear regression . 69
7.2.2 Regression trees . 69
7.2.3 Ensemble methods . 70
7.2.4 Support vector regression . 70
7.2.5 Neural networks . 72

7.3 Summary . 75

8 Conclusion 77
8.1 Case study 1: Constant sand production 77
8.2 Case studies 2 & 3: Exponential and logistic sand production 77
8.3 Case study 4: Experimental data . 78
8.4 Further Work . 79

Bibliography 79

A Simulation model 85
A.1 InitialConditionGasLift . 85
A.2 ParametersGasLift . 87
A.3 Sandproductionrate . 89
A.4 ModelSandArray . 90
A.5 WellPlantModel . 90
A.6 MainErodingValves . 97

B Training and testing script for simulated data 101
B.1 Analysis script for Exponential data . 101

C Experimental Data 111
C.1 Variable List . 111
C.2 Script for making training and test sets from imported data 112

D Training and testing script for experimental data 119
D.1 Analysis script for experimental data . 119

E Escape-31 Paper 123

v

vi

List of Tables

4.1 The predictors and response used for regression modelling of the simulated
data with constant sand production rate. 34

4.2 Model Performance, in terms of mean square error of prediction for sev-
eral statistical learning techniques when applied to data simulated with the
constant sand production rate given in Equation 3.9 in Chapter 3. 38

5.1 The predictors and response used for regression modelling of the simulated
data with exponential and logistic sand production rate. These are the same
covariates as in the first case study, with the addition of the sand production
rate. 40

5.2 Model Performance, in terms of mean square error of prediction for sev-
eral statistical learning techniques when applied to data simulated with the
exponential sand production rate given in Equation 3.10 in Chapter 3. . . 50

5.3 Model Performance, in terms of mean square error of prediction for sev-
eral statistical learning techniques when applied to data simulated with the
logistic sand production rate given in Equation 3.11 in Chapter 3. Reduc-
ing the sampling rate of the sand production rate is also tested, reducing
the sampling rate from every 50 days to every 14 days. 51

5.4 Model Performance, in terms of mean square error of prediction for sev-
eral statistical learning techniques when applied to data simulated with the
exponential sand production rate given in Equation 3.10 in Chapter 3. No
PCA pre-processing was applied in these tests. 54

6.1 List of the six experimental variables that were used in modelling. The
differential pressure was used as the target variable instead of direct ero-
sion measurements as discussed in Section 6.1.1. Tags corresponding to
the schematic in Figure 6.2 are given in parenthesis, and units of measure-
ments are given in brackets. The currents are the output control signals
that decide pump effect, valve openings etc. 63

vii

7.1 Model Performance, in terms of mean square error of prediction on unseen
test data for several statistical learning techniques applied to experimen-
tal data recorded from the lab rig. Both results for direct predictions, as
well as for 15 second moving average windows for the methods were this
was tested. For the NARX model, the MSE was computed using only the
closed loop predictions made in the range 5000-9000 seconds. 76

viii

List of Figures

2.1 Illustration of L1 and L2 regularisation’s and the intersections giving the
solutions to optimising B under L1 / L2 constraints. L1 regularisation is
shown in red and the L2 regularisation is shown in blue. As this figure
shows the L1 regularisation tends to have intersections setting variables to
zero (red and green intersect at b2 = 0), while L2 regularisation sets b2 to
be just ”small” compared to b1. 10

2.2 Illustration image a radial kernel SVM decision boundary as a solid line
and the margins as a dotted line from introduction to statistical learning1 . 15

2.3 Illustration of a how a regression tree might look. Each level of the tree
branches, splitting at thresholds where X1,X2,X3 and X4 respectively
equal s1, s2, s3 and s4. At the bottom there are leaves L1, L2, L3, L4
and L5. For a regression tree each leaf will correspond to a simply mod-
el/estimate of the data points in that leaf, while a classification tree would
attach a specific class to each leaf. 16

2.4 An illustration of a general basic network with 4 inputs, 2 hidden layers of
width 4, with a single output and bias terms for every non-output layer. . . 17

2.5 Illustration of the structure of a NLIO neural network, with predictors
x(t−2):t(t) as inputs (with k’th order lag), a hidden layer using a softmax
activation function and an output layer using a linear activation function. . 19

2.6 Illustration of the structure of a NARX neural network, with predictors and
preceding targets, x(t−2):t(t) and y(t−2):t−1(t)) as inputs with k’th order
lag, a hidden layer. The network uses a softmax activation function in the
hidden layer and a output layer using a linear activation function. 19

2.7 Illustrative split of data into training set, validation set and test set. 20
2.8 Illustration of 5-fold cross validation, showing 5 iterations each using a

different 1/5’th of the data as the validation set. 21

3.1 Illustration of a gas lifted oil production system with three wells showing
how production goes from reservoir to topside facility. Figure adapted
from Verheyleweghen and Jäaschke2. 26

ix

3.2 Illustration of a single gas lifted well, showing the important components
of a gas lifted well: production choke, gas lift choke, annulus, tube, injec-
tion valve and the bottom hole.3. 27

3.3 Illustration of the three different sand rates for the different case studies,
given in Equations 3.9, 3.10 and 3.11. The logistic sand production rate
also shows the added noise that was added for that case study. 29

3.4 Gas lift rate and erosion in mm plotted against time in days for 3 wells for
the constant sand production rate study. 30

3.5 Flowrate and well head pressure plotted against time in days for the con-
stant sand production rate case study. 31

3.6 Illustration of the erosion rate when simulated with exponential sand pro-
duction rate. A step profile in the erosion rate every 50 days is still ob-
served due to variations in gas lift rate. 32

3.7 Gas lift rate and erosion when simulated using exponential sand production. 32

4.1 Biplot (first 2 PC’s) of PCA carried out using the 9 predictors used for
regression models for each well: Annulus Pressure, Well head pressure,
Well head oil production rate, Well head gas production rate, Riser head
pressure, Manifold pressure, Riser head total oil production rate, Riser
head total gas production rate and Gas lift rate. 35

4.2 Correlation plot of simulated variables for a single well. Showing as ex-
pected extremely strong correlations between certain variables and the the
erosion rate, like wellhead gas production rate and the gas lift rate. 36

5.1 Loadings plot of the three PLS components explaining the largest amount
of variance in the correlation plot . 41

5.2 Correlation plot of the simulated data with a exponential sand production
rate. These are the same regression variables given in Table 5.1 42

5.3 Correlation plot of the simulated data with a logistic sand production rate.
These are the same regression variables given in Table 5.1 43

5.4 Plots of multiple linear regression model predictions with and without
PCA pre-processing for case studies 2 & 3. In case study 2, with expo-
nential sand production rate, the test MSE was 0.0191 and 0.0182 with
and without PCA pre-processing respectively. In case study 3, with logis-
tic sand production rate, the test MSE was 0.0245 and 0.0241 with and
without PCA pre-processing respectively. 45

5.5 Plots of predictions from regression trees optimised with Bayesian opti-
misation, with and without PCA pre-processing for case studies 2 & 3.
In case study 2, with exponential sand production rate, the test MSE was
0.0212 and 0.0173 with and without PCA pre-processing respectively. In
case study 3, with logistic sand production rate, the test MSE was 0.0216
and 0.0112 with and without PCA pre-processing respectively. 46

x

5.6 Plots of predictions from an ensemble with hyperparameters and the bagged
ensemble optimised with Bayesian optimisation, with and without PCA
pre-processing for case studies 2 & 3. In case study 2, with exponential
sand production rate, the test MSE was 0.0193 and 0.0158 with and with-
out PCA pre-processing respectively. In case study 3, with logistic sand
production rate, the test MSE was 0.0175 and 0.0105 with and without
PCA pre-processing respectively. 47

5.7 Plots of predictions from a Gaussian support vector regression, with and
without PCA pre-processing for case studies 2 & 3. In case study 2, with
exponential sand production rate, the test MSE was 0.0171 and 0.0167
with and without PCA pre-processing respectively. In case study 3, with
logistic sand production rate, the test MSE was 0.0177 and 0.0173 with
and without PCA pre-processing respectively. 48

5.8 Plots of predictions ANN regression, for case studies 2 & 3. In case study
2, with exponential sand production rate, the test MSE was 0.0102 and in
case study 3, with logistic sand production rate, the test MSE was 0.0150. 49

5.9 Bar chart of the performance of each of the methods for all three case
studies (without PCA pre-processing). The methods shown are those that
are primarily discussed, PLSR is left out as it was not viable for the non-
constant case studies. 50

5.10 This figure shows plots of the true sand production rate from case study
2, the result of using the simple modelling approach as well as the results
when held constant at sample values with a 50 day sampling rate. 53

5.11 Plots of predictions made using the modelled sand production data, show-
ing the best method for case studies 2 & 3, the bagged ensemble was the
most accurate model for predictions in these cases. 54

5.12 Sample partial auto-correlation function for the cumulative erosion arising
from case study 3, this shows as expected that the only significant partial
auto-correlation for t = tk is t = tk−1. Since this is a cumulative pro-
cess each step only adds to the previous without any further information
in the preceding time steps. What we observe is that the first order lag has
a correlation very close to 1, which is as expected, the 0th order lag is the
correlation of yt to yt and must of course be 1. This serves as justifica-
tion for setting the lag order of the NARX model to 1 as that is the only
statistically significant lag order. 56

5.13 Figure illustrating the 450 day long test of a NARX neural network for pre-
dicting, the blue markers show the predictions made in open loop format
with true values being fed back to the model. The green markers show the
closed loop predictions where the model is fed only the exogenous input
and feeding back its own predictions. The red line shows the true cumu-
lative erosion. After 250 days in closed loop, the networks prediction is
only off by 0.0392 while the erosion has been 2.5 (normalised and thus
arbitrary units) in the same time frame, meaning over 250 days the total
error is only about 1.6%. 57

xi

6.1 Experimental rig. The pump, controllers and air supply are visible on the
left hand side, the erosion chambers in the center, and the sand traps at the
bottom of the riser to the right. 60

6.2 Schematic showing the setup of the experimental rig used to gather exper-
imental data. The setup features 3 simulated ”wells”, each with a eroding
element chamber and a air supply and later possibility for sand injection.
Prior to the wells the rig has a sand filter and a pump after the reservoir.
After the wells each well has a sand trap, to be used if sand is included in
later experiments. On each well there is also pressure gauges to measure
the differential pressure over the eroding element chamber. 61

6.3 Before and after images of the erosion probe, showing one picture imme-
diately after the start of the experiment and one when the probe is severely
eroded. 62

6.4 Plots of the preliminary experimental data, plotting area, differential pres-
sure, top pressure and flowrates as functions of time for about 3 hours.
Initial inspection shows quite clearly that the strong correlation between
flowrates and pressures to the area seem to not be present in these, making
statistical modelling a unfeasible prospect. 62

6.5 Plot of normalised data after application of a 150 seconds wide moving
average filter, a clear, almost strictly declining trend is observed. The very
wide moving average filter had to be used to circumvent a very high level
of noise in the raw data. 64

7.1 Plot of the experimental data from the run of the rig with the controlled
flowrate being set to 5 [sl/min] showing a high level of noise in the raw
data, as well as the data after being subjected to several different moving
averages using window widths of 10, 50 and 150. 67

7.2 Correlation matrix of the six variables used for modelling the experimen-
tal change in differential pressure as the probes eroded, variables are num-
bered the same as in Table 6.1 in Chapter 4 with variables one through 5
being the predictors and variable 6 being the response. 68

7.3 Regression result for experimental data when applying stepwise linear re-
gression to the training data. 70

7.4 Regression result for experimental data when applying a single regression
tree (green) as well as the prediction when the predictions are smoothed
with a 15 second moving average (blue). The true value is also shown in red. 71

7.5 Regression result for experimental data when applying a bagged ensemble
of trees (green) as well as the prediction when the predictions are smoothed
with a 15 second moving average (blue). The true value is also shown in red. 71

7.6 Regression result for experimental data when applying Gaussian kernel
SVR (blue) and the true value (red). 72

7.7 Regression result for experimental data when applying a simple regression
network (blue) and the true value (red). 73

7.8 Regression result for experimental data when applying a NLIO neural net
(green) and the true value (red). 74

xii

7.9 Results of open loop predictions of the NARX network from 0 to 5000 sec-
onds (blue), closed loop predictions from 5000 to 9000 seconds (orange)
and the true values from 1 to 9000 seconds (red). 75

7.10 Bar plot over performances by the statistical learning methods in terms of
test set MSE, from best to worst from left to right. 76

xiii

Abbreviations

ANN = = Artificial Neural Network
CV = Cross validation
dP = Differential pressure
GOR = Gas Oil Ratio
MLR = Multiple linear regression
MSE = Mean square error
NARX = Non-linear autoregressive exogenous model
NLIO = Non-linear input/output model
OLS = Ordinary least squares
PCA = Principal Components Analysis
PI = Productivity Index
PLS(R) = Partial least squares (Regression)
RMSE = Root mean square error
RSS = Residual sum of squares
SGD = Stochastic Gradient Descent
SPE = Sum of prediction errors
SVM = Support vector machine
SVR = Support vector regression
TSS = Total sum of squares

xiv

Chapter 1
Introduction

Failure to detect faults in large scale, expensive or critical equipment can have immense
consequences. Both financial, environmental and in the most extreme cases, loss of human
life. One of the main mechanisms in equipment degradation in subsea oil extraction,
is sand erosion. Accurately modelling this process is vital for monitoring of equipment
health.4 5 Erosion by sand is a very complex process and, thus, difficult to model using
physical domain knowledge. Because of this difficulty, this thesis proposes the use of data-
driven approaches for modelling erosion in critical equipment of a subsea oil production
rig. In such systems, a multitude of available process measurements, such as flowrates and
pressures, can be combined to a soft-sensor for component degradation. This approach
could save significant amounts of resources by allowing fewer cost intensive inspections
and monitoring schemes as well as improving safety.

1.1 Motivation

In modern production systems, advanced process control is often applied to optimise pro-
duction and profit under certain constraints. One significant constraint that has to be taken
into account in all process control systems is the safety of the equipment and potential
degradation of said equipment which may cause operational halts, economic losses or as-
set damage when not properly handled. Control algorithms, being subject to constraints
from degradation of components need good and certain estimates of this degradation for
optimal operation. In cases where there is a large amount of uncertainty in the models,
worst case operation is often used where one assumes the worst case of degradation just
to be absolutely safe that no equipment failure will occur, this leads to lost profits from
too conservative operation. More accurate models, as well as specific estimates of the un-
certainties have the potential to allow for less restrictive operational control which in turn
means larger profits and more efficient operations. In this work it will be investigated if
statistical learning methods from basic linear regressions to complex neural networks can
provide these accurate models that are needed.

1

Chapter 1. Introduction

1.2 Methods
To investigate the usefulness of a data-driven modelling approach, statistical learning
methods will be tested on simulated data using the subsea gas lifted oil well network model
proposed by Krishnamoorthy et al.6 and adapted by Verheylewegen and Jäschke2. A final
case study using experimental data gathered from a laboratory rig at the Department of
Chemical Engineering at NTNU. This work will explore four different case studies, each
generating a separate data set that is independently analysed and modelled using the data-
driven methods to investigate the applicability of such methods to equipment degradation:

• Case study 1: Simulated erosion of choke valve in gas lifted subsea oil production
system, sand production rate is held constant. Useful primarily for initial exploration
of methods to see if further studies are merited.

• Case study 2: Simulated erosion of choke valve in gas lifted subsea oil production
system with a non-constant sand production rate. Real reservoirs do not produce the
same amount of sand at all times, the profile of the sand production rate is usually
increasing as a field matures7 8, in case study two a exponential sand production rate
is investigated. No random variance was added to the sand production rate and the
sand production rate was sampled every 50 days.

• Case study 3: Simulated erosion of choke valve in gas lifted subsea oil production
system with a non-constant sand production rate. Once again a non-constant sand
production rate was tested, but this time a logistic profile was investigated and some
random low magnitude stochastic noise was added to the sand production and the
sand production was still sampled every 50 days.

• Case study 4: Experimental validation of methods, using a laboratory rig that em-
ulates a three well gas lifted oil well production system. Multiple iterations of the
data acquisition and probe setups were tested before a final experimental setup was
found that yielded usable data.

1.3 Outline
This master’s thesis is split up into several chapters where the different case studies are
handled. First the theory for analysing, pre-processing and building regression models of
the data will be presented in Chapter 2. In Chapter 3, the model of the gas lifted subsea
oil production system will be presented as well as the adaptions for simulating erosion and
handling non-constant sand production rates, a quick overview of the data resulting from
the simulations will also be given. Chapters 4 and ?? will present the results from applying
the statistical learning methods to the simulated data from the in silico case studies. In
Chapter 6 the experimental rig will be presented, the variables being recorded, how these
variables are used to measure erosion and a quick overview of the resulting data. Chapter
7 will present the results from applying the statistical learning methods to the experimental
data gathered. Finally, Chapter 8 will sum up the results and present the conclusions that
can be drawn from the results as well as suggest future work that can be done to further

2

1.3 Outline

develop the approach. The code used to generate the the simulated data, as well as for
pre-processing and modelling of all the data for the different case studies are found in
the Appendix along with the paper that resulted from the work with first Chapters of this
thesis.

3

Chapter 1. Introduction

4

Chapter 2
Methods and theory for data
processing

This chapter will introduce the methods that will be used in the modelling and analysis
of both simulated and experimental data. First data needs to be pre-processed, for this
we will discuss centring and scaling, interpolation, normalisation and principal compo-
nents analysis. Then the different regression methods that are tested and compared will
be introduced, including classical statistical learning methods like linear regression and
more modern methods such as artificial neural networks (ANN). Then a brief overview of
model selection and model evaluation as well as the optimisation algorithms used to tune
the models.

2.1 Data Pre-Processing

This section will mainly deal with the various ways the data has to be treated before anal-
ysis is performed. This can for instance be centring and scaling so that no variable domi-
nates the statistical method simply due to having the largest scale and thus larger variances.
Another way to solve the problem of different scales for different variables is normalisa-
tion. Normalisation is very commonly used when dealing with different scales, but does
”waste” the information inherent in the scales of variables. For any case where one vari-
able has a much larger scale and is also a dominant influence, scaling it down to the same
value as other variables might not be beneficial for the modelling. When dealing with high
dimensional data, principal component analysis (PCA) can be a beneficial way to reduce
the feature space to a more manageable size, while maintaining most of the information.
PCA is very dependent on the scale of variances which in turn scales with variable scale
and thus should in general be applied to normalised data. In general throughout this thesis
I will stick to that the data matrix X contains p different variables and n different samples
resulting in a data matrix of dimensions n by p.

5

Chapter 2. Methods and theory for data processing

2.1.1 Centering and Scaling

Centering

Centering is performed by calculating the mean of each column, constructing a mean row
made up of each of the column means then subtracting this from every row in the data
matrix X:

Xcentered = X− µ (2.1)

where µ is a mean vector where each row contains column means of X, such that this
subtraction is equal to subtracting the mean value for each measurement from each sample
of that measurement.

Scaling

Scaling of the data can be done in various ways. When using latent variable methods on
data of very different scales, one should scale the data so that the variables with the largest
numerical values don’t automatically dominate as their variance is significantly scaled up.
One of these scaling methods is called min-max scaling, here every value is scaled from 0
to 1, removing any bias in favour of the variables with the largest absolute values.

Xscaled =
X−min(X)

max(X)−min(X)
(2.2)

2.1.2 Normalisation

Another even simpler approach, compensating for varying orders of magnitude and units
of measurement in the data is to apply normalisation. This pre-processing approach scales
all the data to be centred with unit variance. This is done using the standard score formula
(Equation 2.3:

Z =
X − µ
σ

(2.3)

Here Z is the standard score, X is the original data value, µ is the mean.

2.1.3 Linear interpolation

To handle the difference in sampling rates leading to uneven numbers of data points, linear
interpolation can be applied. Linear interpolation allows for the creation of ”synthetic”
points in between measured data points. Given sample points (x0, y0) and (x1, y1), a
point (x, y) that lies in between can be calculated. Choosing a value x between x0 to x1,
the corresponding y value can be calculated as:

y = y0 + (x− x0)
y1 − y0

x1 − x0
(2.4)

6

2.2 Regression Methods

2.1.4 Moving mean and median
For very noisy data, a way of smoothing the stochastic noise is often desired. A simple and
widely used method for smoothing is called a moving average, which essentially replaces
each value of a signal yi, with the average of a moving ”window” centred on point yi. For
a window of width k, Equation 2.5 gives the values of yi.

yi =
1

k
Σ
j=i+ k

2

j=i− k2
yj (2.5)

A similar approach can be used to calculate the moving median, which may be more
useful if the data contains radical outliers which are clearly errors that biases the average.
This would then lead to a lower bias smoothing than the average that can be highly affected
by a single erroneous measurement.

2.1.5 Principal Components Analysis
PCA is an unsupervised learning technique that takes only the input data and performs a
dimensionality reduction that constructs new axes that optimises the variance between the
observations9. This allows for low-dimensional representation of high-dimensional data
that still contain ”most” of the original information. The first principal component is the
normalised linear combination of the features:

Z1 = v11 X1 + v21X2 + ...+ vp1Xp (2.6)

Normalisation in this case is given as Σpj=1v
2
j1 = 1. Together these loadings (v)

constitute the loadings vector. The data X also should be normalised9. The normalised
data matrix is Z containing the standard scores calculated from X as previously described.
B has a correlation matrix C = ZTZ. Calculating the eigenvalues and eigenvectors of this
correlation matrix will give CV = VD where V and D are the eigenvectors and eigenvalues
respectively. These eigenvectors are the ”loadings”, the loadings along with the normalised
data matrix B make up the principal component scores T.

T = ZV (2.7)

The eigenvalues λ in D are equivalent to the variances σ2 9. This fact is very useful
when deciding how many Principal Components one is going to use as the relative amount
of variance explained by a set number of PC’s r can be calculated as

Σrj=1λj
Σnj=1λj

where λ is the
eigenvalues. To choose the appropriate amount of PC’s a scree plot is often used. Plotting
eigenvalues in decreasing order where one can look for an ”elbow”, where the amount of
variance explained levels off and the additional benefit of including additional PC’s is very
low compared to the preceding PC’s.

2.2 Regression Methods
In this section the regression methods that will be applied throughout this work will be
introduced. The methods in this section share the common features of using a data matrix

7

Chapter 2. Methods and theory for data processing

X or equivalently a normalised data matrix Z, to predict a matrix or vector of responses
Y. For simplicity in this chapter, X will be used even if most of the work is done on
normalised data. This n ∗ p, X data matrix, is used to predict the corresponding yi value
for the sample n = i. In this thesis the statistical learning methods that will be applied are:

• Multiple linear regression (MLR) using both ordinary least squares, regularisation,
stepwise subset selection and interaction terms.

• Latent variable regressions such as PLSR with the NIPALS algorithm, as well as
PCA pre-processing applied prior to modelling with other methods such as trees,
ensembles and MLR.

• Simple regression trees with binary splits and simple leaf node models like arith-
metic mean of each sample in the node.

• Ensemble methods using both gradient boosting (LSBoost) and bootstrap aggrega-
tion (bagging) will be presented, applied in this work on regression trees.

• Support vector regression (SVR) will be presented as an adaption of the famous
support vector machine classification method and used with different kernels.

• Artificial Neural Networks (ANN) will first be presented in the simplest approach
with a single input layer and single output node which can do simple regression
tasks, as well as two modifications that allows the network to create time series
models, these are called non-linear input output and non-linear auto-regressive ex-
ogenous models.

All the above methods have several hyperparameters that needs to be optimised such
as number of learners for ensemble methods or the slack for support vector regression,
all hyperparameter optimisation in this work is done using cross validation or Bayesian
optimisation. The Levenberg-Marquardt algorithm was used for some initial testing for
speed, but since it was not used in the final work it will not be further described in this
theory chapter.

2.2.1 Linear Regression
Simple linear regression assumes that there is a linear relationship between the response Y
and the predictors X along with some noise ε, which is assumed to be normally distributed
with mean zero.

Y = XB + εεεε(2.8)

With training data we can produce the estimate for B, that is B̂. From these an esti-
mated relationship between Y and X can be found as:

Ŷ = XB̂LR (2.9)

The hat symbol denotes that its an estimated coefficient or response rather than a true
value. The most common way to train a linear regression model is to minimise a sum of

8

2.2 Regression Methods

squared errors cost function, giving rise to the name ”least squares regression”. This cost
function is given as Equation 2.10, where RSS is the residual sum of squares, ŷi is the
prediction of Y for sample i, and yi is the true value of Y for sample i.

RSS = (ŷi − yi)2 (2.10)

B̂LR = (XTX)−1XTY (2.11)

Regularisation

As protection against overfitting, less complex models than those fit by ordinary least
squares might be needed, particularily in high-dimensional feature space. There are two
widespread regularisation techniques for high-dimensional feature spaces when doing lin-
ear regression, these are the lasso (L1) and ridge (L2) regularisation. Both adapt the ordi-
nary least squares cost function with a penalty term for more complex models as shown in
Equations 2.12 (Ridge / L2) and 2.13 (Lasso / L1). Note that, if λ were to be set to 0, the
ordinary least squares cost function would remain.

cost = Σni=n(yi − Σpj=1bjXij)
2 + λΣpj=1b

2
i (2.12)

cost = Σni=n(yi − Σpj=1bjXij)
2 + λΣpj=1|b| (2.13)

Both approaches reduces complexity, one significant difference is that the L1 regu-
larisation sets the unimportant predictor coefficients to zero, making it a potent tool for
model selection while ridge regression will only shrink coefficients ”close” to zero. An
illustration of why this is can be seen by plotting the optimum B on axes of the coeffi-
cients b1 and b2, the lasso regularisation is plotted in red and the ridge regularisation in
blue for a given λ, as one can see the intersection with the lasso regularisation sets b2 to
zero while the ridge regularisation makes b2 small compared to b1, but not zero, this is
shown in Figure 2.1.To decide on the value of lambda, cross validation is usually used but
it can also feature as a hyperparameter in Bayesian optimisation. Even if using Bayesian
optimisation on a single regularisation coefficient is unnecessary, since the regression is
a low cost function to evaluate in general, as Bayesian optimisation is usually applied for
functions that are computationally intensive to evaluate multiple times.

Linear Interactions Regression

The standard MLR regression has one bias term (B0) and one term corresponding to each
dimension of the data (B1, B2...Bn corresponding to X1, X2...Xn). Sometimes there
is also interest in combinations of terms, so that interactions between variables are also
modelled. In the simplest case, each of the first degree linear terms (BiXi) also has one
interaction term for each other term in the model, that is: Bi,jXiXj . A illustrative exam-
ple, making the case for using interaction terms in regressions is the case where modelling
fluid flow pumped by a rotating pump through a valve. If the data then includes a mea-
sured flow as the response as well as valve opening and pump rotation as predictors, the
most significant term might be a combination of the valve opening and the pump rotation.

9

Chapter 2. Methods and theory for data processing

Figure 2.1: Illustration of L1 and L2 regularisation’s and the intersections giving the solutions to
optimising B under L1 / L2 constraints. L1 regularisation is shown in red and the L2 regularisation
is shown in blue. As this figure shows the L1 regularisation tends to have intersections setting
variables to zero (red and green intersect at b2 = 0), while L2 regularisation sets b2 to be just
”small” compared to b1.

10

2.2 Regression Methods

Since pumping with a closed valve will not generate flow and opening a valve without any
fluid being pumped would also not generate any flow on its own. Thus, the most important
term will be a combination of pump rotation and valve opening. Higher order interactions
such as Bi,j,kXi, Xj , Xk can also be included but is seldom used due to the exponential
increase in model complexity from higher order interactions10.

Stepwise Linear Regression

Using every available term is often not optimal, then a method for choosing the best subset
of models is needed. Stepwise addition of terms to regression models is one such method
for best subset selection. This algorithm is based on starting with a initial model, then
adding or subtracting terms to search for the best model. There are three common ways to
perform this selection: forward, backwards or both. In forwards selection, one starts with
a ”empty” model, then tests every term for which terms improves model performance the
most (common metrics to evaluate model performance here is AIC and Validation error),
the best term is picked and added. This is repeated until further additions do not provide
a significant improvement. The backwards selection is very similar except that one starts
with a full model, including all terms and terms are removed step by step until removing
further terms degrades model performance significantly. These methods can be combined,
where the algorithm is allowed to both remove and add terms at each step in search of the
best model. Significant in this case can either mean statistically significant improvement
by a F-test using the following statistic:

F =

RSS1−RSS2

p2−p1

RSS2

n−p2

(2.14)

RSS is the residual sum of squares, p is the number of parameters in the models and
n is the number of samples. This statistic follows an F distribution with (p2 − p1, n −
p2) degrees of freedom. The other option for determining what constitutes a significant
improvement is to set a minimum level of improvement in either the selection criterion
such as the Akaike information criterion or validation MSE10.

Principal Components Regression

PCR combines the dimension reduction of PCA with the supervised learning technique of
regression. PCR changes ordinary least squares (OLS) MLR, instead of using X one uses
the PC scores T. In addition to calculating the optimal regression coefficients B one has to
find the optimal number of PC’s to use. This is often done using a cross validation method
(see section 2.3.1) method such as K-fold CV11.

2.2.2 Partial Least Squares
When one has data with significant co-linearity, the use of OLS MLR is often undesirable.
Two predictors are said to be colinear if there exists a linear relationshipX2 = λ0 +λ1X1.
Co-linearity is quite common in industrial process data, in this case study for instance one
sees significant co-linearity between inputs and measurements (see Section 4.1). PLS has

11

Chapter 2. Methods and theory for data processing

been successfully applied for several purposes in the literature12. PLS finds the B in the
regression Equation 2.11 in a supervised way corresponding to latent variables instead of
the normal data matrix X.

The PLSR method is based on two matricies X (dimensionsN ∗m) and Y (dimensions
N ∗p), whereN is the number of observations, where p is the dimensions of the dependent
variables and m is the dimensions of the independent variables. PLSR selects a number of
latent variables that best captures the covariance between X and Y (i.e instead of finding
the latent variables that maximize Cov(X,X) (as in normal PCA), one finds the latent
variables that maximize Cov(X,Y)12). This is done using a joint decomposition similar
to PCA in the form:

X = TPT (2.15)

Y = TCT (2.16)

Where T, with dimensions N ∗ r is a matrix that is commonly referred to as the
”scores”, which denote the coordinate in the latent variable space. C and P are respec-
tively the X and Y loadings, with dimensions p ∗ r and m ∗ r. The rank of the input matrix
(X) is r, r is bounded by r ≤ m. The loadings represent the composition of the latent
variables in terms of original predictor values.

The NIPALS algorithm

To find these matrices a commonly used algorithm is the non-linear iterative PLS algorithm
(see algorithm 1) which calculates the eigenvector matrix W (of dimensions m ∗ r) and
the aforementioned matrices. The matrices W, T, P and C are calculated using Equation
2.17a and the regression coefficient itself is calculated using Equations 2.18 and 2.19.13

W = [w1, . . . , wr] (2.17a)

T = [t1, . . . , tr] (2.17b)

P = [p17
. . . ,pr] (2.17c)

C = [c1, . . . , cr] (2.17d)

After the matrices are calculated the coefficient matrix BPLS can be found using Equa-
tions 2.18 and 2.19.13

X̃
+

= W (P TW)−1T T (2.18)

B̂PLS = X̃
+
Y (2.19)

12

2.2 Regression Methods

Algorithm 1: NIPALS algorithm13

Initialise:X1 ← X, Y1 ← Y ;
for d = 1, , r do

Sd = XTd Yd ;
wd = Eigmax[SdSTd];
td = Xdwd;
cd = YTd td/tTd td;
pd = XTd td/tTd td;
Xd+1 = Xd − tdpTd , Yd+1 = Yd − tdcTd ;

end
Create matrices W, T, P and C using equation 2.17a;
Find BPLS using equation 2.19;

2.2.3 Support Vector Machines
Support vector machine is a statistical method for constructing a non-linear decision bound-
ary that allows classification of data. SVM’s are an extension of support vector classifier’s.
First, support vector classifiers and support vector machines will be discussed. Then, it is
shown how these can be modified for building regression models.

Support vector classification

The basis of support vector classification is attempting to create a separating hyperplane
in the input data space for discrimination between classes. When the data is not separable,
a plane that discriminates the classes perfectly cannot be created. A hyperplane in p-
dimensions is given as:

b0 + b XT = 0 (2.20)

This separating hyperplane has the property that if f(xi) = b0 + b XTi > 0 then the
point given by Xi lies on one side of the boundary and if f(xi) = b0 + bXTi < 0 is true
it lies on the opposite side. The optimal separating hyperplane for classification is found
such that it maximises the distance from the decision boundary to the closest points. This
is called the maximal margin classifier and can be found from the following optimisation
problem:

max
bT

M

subject to : Σpi=1b
2 = 1, yi(b0 + bxTi) ≥M where i = 1, 2...n (2.21)

Where M is the width of the margin, that is the distance from the hyperplane to the
closest sample. This clearly does not work if the data is not separable. Introducing a slack
variable εi and a regularisation parameter C limiting the total amount of slack, modify the
method for this case. This gives a new optimisation problem that can be expressed as:

13

Chapter 2. Methods and theory for data processing

max
b0,b1b...bn,ε1,ε2....εn

M

subject to : Σpi=1b
2 = 1

yi(b0 + bxTi) ≥M(1− εi) where i = 1, 2...n, εi > 0, Σni=1εi ≤ C (2.22)

Where εi = 0 means that the sample is on the correct side of the margin, εi > 0 means
that it is on the wrong side of the margin and εi > 1 means that it is on the wrong side of
the hyperplane and will be missclassified. The ability to accept certain missclassifications
distinguishes soft margin classification from hard margin classification. Soft margin clas-
sification allows the classification of a real, non-separable data set with a linear decision
boundary. It can be shown using optimization theory that the support vector classification
(SVC) optimization14 problem has a solution for a test sample x∗:

f(x∗) = b0 + Σni=1αi〈x∗, xi〉 (2.23)

Replacing the inner product 〈x∗, xi〉 with a kernel allows for non-linear decision bound-
aries, so that Equations 2.23 can be re-written as:

f(x∗) = b0 + Σpi=1αiK(x∗, xi) (2.24)

Two widely used kernels for non-linear SVM are the radial (K(xi, xi) = exp(pj=1(xijxij)
2)

and polynomial (K(xi, xi) = (1 + Σpj=1xijxij)). An example a radial kernel decision
boundary can be seen in Figure 2.2.

Support Vector Regression

For the applications in this project an adapted version of the SVM method will be used.
Instead of creating a decision boundary for classification, the method creates a maximal
margin separating hyperplane for prediction. One looks for a linear model as with linear
regression with a hyperplane on the form15:

f(x) = βxT + β0 (2.25)

In this case, the estimate β̂ is found by solving the unconstrained minimisation prob-
lem:

min
β,β0

H

where H is:

H(β, β0) = ΣNi=1V (yi − f(xi)) +
λ

2
||β||2 (2.26)

This V (yi − f(xi)) function can take on widely varying shapes, some ignoring errors
where the distance from the margin, |r| < ε while applying a linear penalty to errors larger
than said tolerance, λ is a regularisation parameter. A famous version of this V function

14

2.2 Regression Methods

.

Figure 2.2: Illustration image a radial kernel SVM decision boundary as a solid line and the margins
as a dotted line from introduction to statistical learning 1

was presented by Huber (1964) cited by Hastie et al14, using quadratic errors for errors
smaller than regularisation parameter c and linear for errors greater than c.

VH(r) =
r2

2
, |r| ≤ c (2.27)

VH(r) = c|r| − c2

2
(2.28)

This approach gives some significant advantages in handling outliers, quadratic error
measures weigh single outliers that are very far off heavily.A single outlier sample could
heavily bias the model, particularly with quadratic error, using a linear error for samples
far away from the margin creates models more robust to outlier samples.

2.2.4 Regression trees

Regression trees create partitions in the data for either classification or regression purposes.
The trees discussed here will be binary trees where every partition is a two ways split
decided by a single variable j at a splitting point s. The terminal nodes of such a tree
are called leaves, when applied to classification a leaf usually corresponds to a particular
class, but for regression a (usually) simple model is applied within the leaf. A common
model to use within a leaf is the arithmetic mean of the observations within the leaf, but
more complicated models can be used16.

15

Chapter 2. Methods and theory for data processing

Figure 2.3: Illustration of a how a regression tree might look. Each level of the tree branches,
splitting at thresholds where X1,X2,X3 and X4 respectively equal s1, s2, s3 and s4. At the bottom
there are leaves L1, L2, L3, L4 and L5. For a regression tree each leaf will correspond to a simply
model/estimate of the data points in that leaf, while a classification tree would attach a specific class
to each leaf.

2.2.5 Ensemble methods

Ensembles are a powerful statistical tools that can make several weak learners into a single
strong learner. In this work two ensemble methods will be used : bootstrap aggregation
(commonly referred to as ”bagging”) and gradient boosting (”boosting”). Both take several
weak learners and aggregate them into an ensemble method, but in different ways.

Gradient Boosting

Gradient boosting is as based on teaching successive learners to aggregate into a single
good learner. The algorithm starts with an initial learner, then starts fitting new learners on
the residuals from the previous predictors on the data. Thus each successive learner will
compensate for the weakness of its predecessors, until a single strong aggregate predictor
has been trained. Each successive learner will have a different weight, which is also a
trainable parameter that determines how influential it will be in the prediction. All models
can in theory be aggregated with gradient boosting, but the most common are simple lin-
ear regressions and tree regressions. However complex model ensembles, such as neural
ensembles have gotten some traction recently. The fitting algorithm for gradient boosting
as presented by Friedman17 is given in Algorithm 2, where F is the function being approx-
imated, y is the response, h(x; a) is weak learner and ρ is a parameter giving the weight

16

2.2 Regression Methods

to the learners being added.

Algorithm 2: LSBoost17

F0(x) = ȳ
for m = 1, , M do

ỹi = yi − Fm−1(xi), i = 1, N
(ρm, am) = argmina,ρΣ

N
i=1[ỹi − ρh(xi; a)]2

Fm(x) = Fm−1(x) + ρmh(x; am)
end

Bootstrap Aggregation

Bootstrapping suggests that estimating the underlying ”true” population can be done by
sampling from a representative sample. Bootstrapping consists of creating B boostrapped
data sets, which are created by drawing N samples with replacement with uniform proba-
bility. Having created these B bootstrapped samples a regression tree is grown for each of
them. Normally the prediction f̂(x) is just equal to the prediction of the single tree grown
from all of the available training data, while the bagged tree prediction is:

f̂bag(x) =
1

B
ΣBb=1f̂

b∗(x) (2.29)

That is a averaged prediction of all the bagged trees, counting on the bootstrapped
samples to lead to a lower variance of prediction and thus a more powerful prediction.

Figure 2.4: An illustration of a general basic network with 4 inputs, 2 hidden layers of width 4, with
a single output and bias terms for every non-output layer.

17

Chapter 2. Methods and theory for data processing

2.2.6 Neural networks

A more modern approach to statistical modelling is the today omnipresent Artificial Neu-
ral Network, applicable to marketing, finance, healthcare and basically every other task
where classification and prediction from data is useful. Of all the models discussed Neu-
ral Networks have the greatest internal variance as a class of models. Neural Networks
can be either simple perceptrons or deep networks with up to 175 billion parameters such
as DeepMinds GPT-3 natural language model18. A good description of what a neural
network is given by this quote19: ”The central idea is to extract linear combinations of
the inputs as derived features, and then model the target as a nonlinear function of these
features.”

Basics of Neural Networks

A basic neural network has some important features: inputs, hidden layer nodes, output
nodes, bias nodes, weights and activation functions. Figure 2.4 shows a simple neural
network with two hidden layers between the input layer and output layer. The illustrated
network is a fully connected feedforward neural network, that is, connections are only
forward (left to right) and every node in layer n is connected to every node in layer n+1.
Each of these network edges have an associated weight, which is learned in training. Every
node also has an associated activation function which transforms the weighted sum of
the inputs, into the output passed into the following layer. Several common activation
functions exist, some of the most widely used ones are the ReLU and Sigmoid (Equation
2.30 and 2.31).

f(x) = x+ = max(0, x) (2.30)

f(x) =
1

1 + e−x
(2.31)

Figure 2.4 shows each non-output layer with an associated bias term, the bias terms
feed directly to the following layer without any inputs. The bias magnitudes and the net-
work weights that are learned during training are usually found using optimisation algo-
rithms such as gradient descent20.

NLIO and NARX models

In this work two types of shallow neural networks are used, the non-linear input-output
model (NLIO) that takes in a driving (exogenous) time series with lag x(t)(t−k):t to make
predictions on a target time series y(t). The second type is the non-linear auto-regressive
exogenous (NARX) model which also uses previous values y(t)t=(t−k):t−1 in addition to
make predictions of the target time series y(t). The order of the lag, k, indicate how many
previous values of the time series will be used as inputs. In general the models trained
with the auto-regressive property are superior to those without it, but previous values of
the target series y(t) might not always be available, requiring the use of only the driving
time series as inputs.

18

2.2 Regression Methods

Figure 2.5: Illustration of the structure of a NLIO neural network, with predictors x(t−2):t(t) as
inputs (with k’th order lag), a hidden layer using a softmax activation function and an output layer
using a linear activation function.

Figure 2.6: Illustration of the structure of a NARX neural network, with predictors and preceding
targets, x(t−2):t(t) and y(t−2):t−1(t)) as inputs with k’th order lag, a hidden layer. The network
uses a softmax activation function in the hidden layer and a output layer using a linear activation
function.

19

Chapter 2. Methods and theory for data processing

2.3 Model Selection and Evaluation
Deciding which data-driven models perform the best in this work is an important step and
using appropriate metrics to select the best performing models is a important step in this.
What we want is to have a measure of the expected performance on completely new data
if the model is deployed. Some of the ways to approach this are described below.

2.3.1 Model Validation
Test Set Validation

The simplest approach to estimating the performance of a model is to only allow the model
to see a certain, randomly selected portion of the data during training, then use the model
to make predictions on a unseen set that we can call the test set. Often one would want to
split the data in three parts: a training set, a validation set and a test set. First the model
is trained on the training data. Then performance on the validation data is used to select a
model. At last a test is done a independent unseen test set to estimate performance on new
unseen data.21 20 An illustration of this data split is shown in figure 2.7.

Figure 2.7: Illustrative split of data into training set, validation set and test set.

Cross Validation

The above approach depends on having enough data to train the model without using the
test set or the validation set. A way around this problem is using cross validation (CV).
K-fold cross validation involves splitting the available data into k ”folds” or partitions of
the data, this split is shown in Figure 2.8. All but one of the folds are used for training
the data, while the last fold is used for validation. This process of training and validation
is repeated k-times so that all k partitions have been used for validation exactly once21.
The model that has the best average validation performance should then be selected and
tested for performance on a test set. Keeping the test set out of the model selection avoids
biasing the estimated prediction error20.

2.3.2 Model Performance
To evaluate which models performs the best and if said model has a good enough perfor-
mance to be used one needs some metrics that allow quantification of performance of a
model. The following metrics can be calculated on the validation hold out set, training set
and the independent test set.

20

2.4 Model optimization

Figure 2.8: Illustration of 5-fold cross validation, showing 5 iterations each using a different 1/5’th
of the data as the validation set.

• MSE - Mean squared error, in regression analysis the quality of predictions are
usually measured by their distance from the true value. A common metric to use for
this is called MSE, of particular interest is the test MSE as this gives an indication
of the models performance on currently unseen data. The MSE is calculated as:

MSE =
1

n
Σni=1(yi − ŷi)2 (2.32)

It is always a positive number with lower errors indicating a higher predictive value.
The use of the square term more severely punishes larger misses and removes the
issue of errors in positive/negative directions.

• RMSE - Root mean squared error of prediction, equivalent to the square root of the
MSE, RMSE is used as a validation performance measure in this thesis.

RMSE =
√
MSE (2.33)

• R2 - This metric can be defined in multiple ways, but the idea is to calculate a score
of how well the predictors explains the response. For simple linear regression this
is just the correlation between the predictor and response, a score as close to 1 as
possible is desired.

R2 = 1− SSR

TSS
(2.34)

Where RSS is the regression sum of squares SSR = Σi(ŷi − ȳ)2 and TSS is the
total sum of squares TSS = Σi(yi − ȳ)2, ȳ is the mean value of y.

2.4 Model optimization
Ordinary least squares coefficients can be easily obtained, since the OLS regresision has an
analytical solution. However, for more complex cases, such as neural networks, ensembles

21

Chapter 2. Methods and theory for data processing

and SVR, hyperparameters such as weights, learning rates, number of leaves, need to
be optimised. There is a multitude of algorithms used to solve these machine learning
problems, the most basic of which is gradient descent. In addition to gradient descent,
I will briefly introduce the algorithm for Bayesian optimisation which was used in this
work.

2.4.1 Gradient descent

The basic idea of gradient descent is very simple, one must first define a goal of the ma-
chine learning algorithm, and then apply the gradient descent algorithm to try to optimise
that goal.

Conventionally in machine learning this is done by introducing a loss function. As this
thesis concerns itself with regression problems and not classification problems, the most
common loss function is the least squares loss, where L(f(xi, θ), yi) is the squared error
of prediction. This is equivalent to minimising the mean square error of prediction which
has been used as the main performance indicator in this work. Once such a loss function
has been define, the gradient of the loss function in parameter space can be calculated
∇θL(f(x, θ), y). With knowledge of the gradient, the parameters θ can be altered to give
better predictions by moving θ in the gradient descent direction. This is done by updating
the parameters a given amount (the learning rate ε), this update will move the parameters
towards a lower L(f(x, θ), y), leading to better predictions. This process continues until
a defined stopping criterion is met. Common criteria include a maximum number of itera-
tions, maximum number of seconds training, minimum increase in performance, minimum
step distance or targeted performance. The most common version of the gradient descent
algorithm is the stochastic gradient descent (SGD), which is given as Algorithm 3. In this
case some stochasticity is introduced by computing the gradient on a subset of training
samples instead of the whole. The minibatch sampling leads to some issues in terms of
convergence if the training rate is held fixed as the gradient may never get close ”enough”
to zero for the algorithm to be satisfied because of the noise introduced by the sampling.
To remedy this, the learning rate ε can be limited, if the conditions given in Equations 2.35
and 2.36 SGD will generally converge.22

Σ∞k=1εk =∞ (2.35)

Σ∞k=1ε
2
k <∞ (2.36)

22

2.4 Model optimization

Algorithm 3: Stochastic Gradient Descent22

Require: Learning schedule ε1, ε2...
Require: Initial parameter θ
k← 1
while stopping criterion not met do

Sample a minibatch of m examples from the training set x1, ..., xm with
corresponding targets yi.

Compute gradient estimate: ĝ ← 1
m∇θΣiL(f(xi, θ), yi)

Apply update: θ = θ − εkĝ
k← k + 1

end

Algorithm 4: Bayesian Optimisation22

Place a Gaussian prior on f(x)
Observe f(x) at n0 points according to an initial experimental design.
Set n = n0

while n ≤ N do
Update the posterior probability on f(x) using all available samples.
Let xn be a maximiser of the acquisition function overr x, where the

acquisition function is computed using the current posterior distribution.
Observe yn = f(xn)
n← n+ 1

end
Return a solution: either the point evaluated with the largest value of the

objective f, or the point with the largest posterior mean.

2.4.2 Bayesian optimisation

The Bayesian optimisation algorithm is a very powerful and commonly used algorithm
for optimising parameters in machine learning models because it efficiently allocates the
computational budget when evaluating the target function is expensive, for instance when
the target function requires training and testing of a full scale machine learning model.
When obtaining the derivative is hard or impossible, making gradient descent infeasible
this is very strong algorithm, it is relatively slow compared to the Levenberg–Marquardt
algorithm, but provides better generalisation and in this testing better results all around.

In this work Bayesian optimisation was used both in hyperparameter optimisation for
statistical methods as well as training of neural networks. The Bayesian optimisation
algorithm has two main components, a statistical model of the objective function and an
acquisition function for choosing where to sample next. Initially the objective function is
sampled with a starting experimental design, where no of the total N samples budgeted
are spent getting an overview of the objective function. The initial experimental design is
often a uniform random sampling. After this, every new point will be sampled intelligently
using an acquisition function, in this work this is the expected improvement function.

The expected improvement function uses the existing posterior to look for the x that

23

Chapter 2. Methods and theory for data processing

will lead to the largest improvement in f(x∗), where x∗ is the value of x at the current
optimum of f(x). The statistical model is a Gaussian process, which provides a Bayesian
posterior probability distribution that describes the potential values for f(x) at point xwith
the corresponding normal probability distribution at point. Each new observation is used
to update the posterior probability distribution. When the budget of function evaluations
has been spent, the current x∗ is returned (value of x with the highest evaluated f(x)),
or another search for the highest expected value of f(x) is done and the value of x with
the highest posterior mean for f(x) is returned instead. A more detailed view of how this
Gaussian process regression can be used to optimise a function can be found in the paper
of Frazier (2018)23, a simplified pseudocode for the algorithm is given as Algorithm 4.

24

Chapter 3
Simulations

Since erosion is not a fully understood process, representing it with a first principles model
has proven difficult. In this thesis, data-driven modelling approaches instead. For testing
the capabilities of these approaches, we us in silico and experimental case studies. In
this chapter, the models for simulating the degradation of choke valves in gas lifted oil
wells due to sand. The model is based on the papers of Krishnamoorthy et al.6 as well as
Verheyleweghen and Jäaschke.2

3.1 Gas lifted oil well network

In some cases oil wells do not have sufficient reservoir pressure to lift fluids to the top-
side facility. Gas lift, the injection of compressed gas through the annulus, can be used to
overcome this. The annulus is the void between the well piping and the casing. The gas
injection leads to a reduction in the fluid mixture density. That, in turn reduces the hydro-
static pressure loss in the well. Consequently, the pressure at the well bottom decreases,
compensating for the low reservoir pressure.

In Figure 3.1 the different parts of a gas lifted oil well network are shown. The oil flows
from a single reservoir into three wells, then, into a manifold before the riser takes the fluid
mixture to the surface. However a reservoir does not only produce oil but also gas, water
and sand. Maturing fields experience a significant increase over time in sand production,
which are approximated by exponential and logistic functions for demonstrative purposes
based qualitative evaluation of the shape of sand production rate profiles shown in the
literature.8 7 The model for describing gas lifted wells is given in four parts: The mass
balance of different phases, density models, pressure models and flow models. The mass
balance of the wells (Eq. 3.1 a-c) and the manifold/riser (Eq. 3.1 d-e) is given by Equations
3.1, the following equations will give the model for a single well, but it is identical for
additional wells.

ṁga = wgl − wiv (3.1a)

25

Chapter 3. Simulations

Figure 3.1: Illustration of a gas lifted oil production system with three wells showing how produc-
tion goes from reservoir to topside facility. Figure adapted from Verheyleweghen and Jäaschke 2.

ṁgt = wiv − wpg + wrg (3.1b)

ṁot = wro − wpo (3.1c)

ṁrg = Σ(wpg − wtg) (3.1d)

ṁro = Σ(wpo − wto) (3.1e)

Here the mga is the mass of the gas annulus, mgt is the mass of gas in the well tubing,
mot is the mass of oil in the well tubing, wgl is the gas lift injection rate, wiv is the gas
flow from the annulus to the tubing, wpg is the is the flow rate of produced gas, wrg is the
flow rate of gas from the reservoir and wro is the flow rate of oil from the reservoir. The
density model is given as ρa which is the density of the gas in the annulus and ρm which
is the density of the fluid mixture in the tubing by Equations 3.2.

ρa =
Mwpa
TaR

(3.2a)

ρw =
mgt +mot − ρ0LrAr

LwAw
(3.2b)

Where Mw is the molecular weight of the gas, R is the gas constant, ρ0 is the density
of the oil in the reservoir, Ta is the annulus temperature, Lr is length of the well above the

26

3.1 Gas lifted oil well network

Figure 3.2: Illustration of a single gas lifted well, showing the important components of a gas lifted
well: production choke, gas lift choke, annulus, tube, injection valve and the bottom hole. 3.

injection point andLw is the length below the injection point,Ar is the cross-sectional area
above the injection point and Aw is the cross-sectional area below the injection point. The
pressure model is given by the equations for the annulus pressure (pa), wellhead pressure
(pwh), well injection point pressure (wiv) and the bottomhole pressure (pbh). These are
given by Equations 3.3.

pa = (
TaR

VaMw
+

gLa
LaAa

)mga (3.3a)

pwh =
TwR

Mw
(

mgt

LwAw + LrAr − mot
ρ0

) (3.3b)

pwi = pwh +
g

AwLw
(mot +mgt − ρ0LrAr)Hw (3.3c)

pbh = pwi + ρwgHr (3.3d)

In these equations La is it is the length of the annulus, Aa is the cross-sectional area of
the annulus, Tw is the temperature of the well tubing, Hr is the vertical height of the well
tubing below the injection point, Hw is the height of the well tubing above the injection
point, g is the gravitational acceleration6. In this model we assume that only hydrostatic
pressure drop is taken into account. The last part of this model is based on flowrate mod-
elling, Equations 3.4 give the flowrate through the gas lift injection valve (wiv), total flow
through the production choke (wpc), produced gas flow rate (wpg), produced oil flow rate
(wpo), reservoir oil flow (wro) and reservoir gas flow rate (wrg).

wiv = Civ
√
ρamax(0, pai − pwi (3.4a)

wpc = Cpc
√
ρwmax(0, pwh − pm) (3.4b)

wpg =
mot

mgt +mot
wpc (3.4c)

27

Chapter 3. Simulations

wpo =
mgt

mgt +mot
wpc (3.4d)

wro = PI(pr − pbh) (3.4e)

wrg = GOR ∗ wro (3.4f)

Where Civ is the injection valve coefficient, Cpc is the production choke valve coef-
ficient, PI is the reservoir productivity index, reservoir pressure is pr, manifold pressure
is pm and GOR is the gas to oil ratio. In following equations the wells are indexed as ni.
Expressed as a set of differential equations (3.1a-c) and a set of algebraic equations (3.2a
- 3.4f) this can be written as shown in equations 3.7.

ẋi = fi(xi, zi, ui, pi) (3.5a)

gi(xi, zi, ui, pi) = 0 (3.5b)

The differential states, algebraic states, decision variables and model parameters are
given by the following vectors:

xi = [mgai mgti moti]
T (3.6a)

zi = [ρai ρmi pai pwii pwhi pbhi wivi wpci wpgi wpoi]
T (3.6b)

ui = [wgli]
T (3.6c)

pi = [GORi]
T (3.6d)

Using these vectors the combined model for multiple wells can be expressed as:

ẋi = fi(x, z,u,p) (3.7a)

gi(x, z,u,p) = 0 (3.7b)

3.2 Erosion model
A model for the erosion in the choke valves can be constructed as shown by Verheyleweghen
and Jäschke. This erosion model is in turn based on work by DNV published in 201524.
The erosion model presented is given by Equation 3.8. For the remainder of the case study
with simulated data we are assuming that this equation actually represents the erosion rate,
and thus will investigate statistical learning methods’ ability to replicate results from this
model.

Ė =
KF (α)Unp
ρtAt

G ∗ C1 ∗GF ∗ ṁsand ∗ Cunit (3.8)

Here E is the erosion while K, n, C1, GF and Cunit are empirical constants. Calcu-
lation of the parameters A and G is shown in detail in the paper by Verheyleweghen and
Jäschke, F (α) is the ductility and Unp is the particle impact velocity, calculation can be
found in the aforementioned paper. From this equation, one should note that the erosion is
a function of the sand production rate.

28

3.3 Simulated data

Figure 3.3: Illustration of the three different sand rates for the different case studies, given in Equa-
tions 3.9, 3.10 and 3.11. The logistic sand production rate also shows the added noise that was added
for that case study.

3.2.1 Sand Production Rate
In real oil well’s the sand production rate is not a constant factor, but a dynamically chang-
ing property of the maturing field. In general, there is a significant increase in the amount
of sand a field outputs over its lifetime, a lot of work has been done in terms of accurately
modelling this phenomenon.7 8 Without delving further into the specifics of these attempts
at modelling, this thesis only concerns itself with approximating the functional shape of
the sand production profile.

Initial exploration was done on constant sand production data corresponding to Equa-
tion 3.9. For the more complex simulated use case we consider two functions that yield a
non-linear increase over time as the field matures, the first one is a standard exponential
function (Equation 3.10) and the second is the logistic function which exhibits a similar
shape to the exponential function initially, but whose rapid increase levels off eventually,
providing a similar functional shape as empirical data shown in the paper by Pham.8

msand(t) = msand(0) (3.9)

msand(t) = msand(0) ∗ ek∗t (3.10)

msand(t) =
L ∗msand(0)

1 + e−k∗(t−t0)
(3.11)

3.3 Simulated data
In this section, a brief description of the simulated data sets used for obtaining the data-
driven models is given. The section is split into two sections, with Subsection 3.3.1 de-
scribing how the simulation is set up for the constant sand production rate, while Sub-
section 3.3.2 describes how the simulation is adapted for exponential and logistic sand
production rate.

29

Chapter 3. Simulations

Figure 3.4: Gas lift rate and erosion in mm plotted against time in days for 3 wells for the constant
sand production rate study.

3.3.1 Data from constant sand production rate simulations

Simulations were carried out using the model described in Section 3.1. The gas lift rates,
which are the system manipulated variables, are varied randomly within the range of
Umin + 1 ∗ (Umax − Umin) to Umin + 3 ∗ (Umax − Umin). A example of this fully
known gas lift profile can be seen in Figure 3.4. In addition to the random variations of the
input, normally distributed noise was added to the measurements, except for the gas lift
rate which is assumed to be fully known. For an overview of the measurements simulated
for a single well see Table 4.1. The simulations are run over 500 time steps, which is equal
to 500 days, with the gas lift injection changing independently every 50 days for each time
series. 200 time series were simulated to be used as training and test data, with an equal
split between the two data sets. Validation is done by using holdout and cross validation
on the training set, holding out part of that data for model selection.

3.3.2 Data from exponential and logistic sand production rate simu-
lations

The same approach is used for simulating the exponential data with one addition, the sand
production rate is allowed to vary. Since the goal of this research is to establish models
that can function as a soft sensor without requiring constant expensive measurements to be

30

3.3 Simulated data

Figure 3.5: Flowrate and well head pressure plotted against time in days for the constant sand
production rate case study.

taken, the model can not be allowed to see the constant changes in the sand production rate.
To an demonstrate the use case, a sand production sampling interval of 50 days is used for
model training here, that is the model will assume the sand production rate to be constant
until a new sample is done. This leads to an erosion rate profile similar to the one in
Figure 3.6, this profile is the one that the models will try to emulate. An illustration of how
different the cumulative erosion is, is shown in Figure 3.7. What this shows very clearly
is that an older field, which in general will have a higher sand production rate, has a vastly
higher rate of erosion than a younger field. The exponential rate was chosen arbitrarily
to demonstrate that models also extend to the less simplified case. The sampling rate was
chosen based on industrial experience of how often the sand production is measured, that
it is on the order of a month or two. In the results section, the effect of the sampling rate on
model performance will be discussed. For the logistic sand production rate simulations,
one further adaption was made, the sand rate that was used to simulate the erosion was
given some noise, corresponding to true stochastic variance in the sand production of the
well. It was established that this did not have a significant impact on the resulting erosion
profile, since the stochastic noise was of a modest magnitude and over time, this averages
out since the erosion happens over a long period. Nonetheless this establishes further
robustness of the analysis as a valid case study for real processes. Another observation
that is made from Figure 3.7 is that while the erosion rate is clearly increasing as the
sand production increases, at any one time the dominating influence of the gas lift rate is
clear which is to be expected from what we have seen in the case study of constant sand
production.

31

Chapter 3. Simulations

Figure 3.6: Illustration of the erosion rate when simulated with exponential sand production rate. A
step profile in the erosion rate every 50 days is still observed due to variations in gas lift rate.

Figure 3.7: Gas lift rate and erosion when simulated using exponential sand production.

32

Chapter 4
Case study 1: Constant sand
production rate

In this chapter, and the following chapter, I will discuss the in-silico case studies, where
the data-driven machine learning methods discussed in Chapter 2 are applied to data sim-
ulated with the model presented in Chapter 3. The code used to generate the data, to train
and test models can be found in Appendix A and B respectively. In this section, a brief
overview of the initial case study will be given in terms of the simulated data. Then the pre-
processing and regression models will be presented, the regression models are presented in
roughly increasing order of complexity from stepwise selected linear regression to neural
networks. Several of the methods tested here stem from the specialisation project work
done this spring, while some new methods like Neural Networks and Regularised Regres-
sion are new additions. Then, in the next chapter, the two case studies with exponential
and logistic sand production rates are discussed. In terms of model performance, training
time, complexity as well explainability and interpretability. Because throughout all case
studies, applying PCA has a detrimental impact, not every model was tested using PCA.

The simulated data consists of 200 time series of 501 points with a total of 100200
points in the data. Each time series is generated independently using a separate instance
of the simulation code. The data was divided evenly into a test set and a training set. All
models are optimised and trained using holdout validation, with a hold out set of 30% of
the training data. The trained models are then tested on the independent test set. When
working with this simulated data we are in a very data-rich environment, as such one can
afford to both use holdout validation for the model selection and optimisation as well as
an independent test set. Testing on an independent test set will give the most accurate
estimate of true predictive power. At each time step in the time series, several process
variables are recorded, in addition to the erosion, these are given in Table 4.1. The final
data sets then contain 9 ∗ 50100 predictors and 1 ∗ 50100 responses.

33

Chapter 4. Case study 1: Constant sand production rate

Table 4.1: The predictors and response used for regression modelling of the simulated data with
constant sand production rate.

Number Symbol Name
Predictor 1 pa Annulus pressure
Predictor 2 pwh Well head pressure
Predictor 3 WHO Well head oil production rate
Predictor 4 WHG Well head gas production rate
Predictor 5 prh Riser head pressure
Predictor 6 pm Manifold pressure
Predictor 7 RHO Riser head total oil production rate
Predictor 8 RHG Riser head total gas production rate
Predictor 9 GLR Gas lift rate
Response ER Erosion rate

4.1 Exploratory analysis of simulated data with constant
sand production rate

With the simulated data at hand I explore the correlations in the data to see if regression
modelling is likely to be a good approach. It is quite clear in Figure 3.4 that the erosion
is behaving like a linear phenomena (as is expected from the simulations when ṁsand is
constant). Thus, models that are good at fitting linear phenomena will probably perform
well. Another easy observation when looking at the rate of change of the erosion is that
the trend of the erosion profile seems to be strongly correlated

with the gas lift rate as well as the flow rate (see figures 3.5 and 3.4). To illustrate
these correlations more clearly a full correlation plot of all 10 variables has been included
in Figure 4.2. We observe several strong correlations between covariates, of particular
interest are the gas lift, annulus pressure and the various flowrates (riser head and well
head production rates) to the erosion rate. These strong correlations form a solid basis for
regression modelling.

4.2 Pre-processing
Before this data was used for modelling, some pre-processing was needed. The predictor
variables (see Table 4.1) were all subjected to normalisation (see section 2.1.2), so that all
variables has a standard deviation of one as well as a mean of zero. As some form of latent
variable method was going to be used, this was necessary to avoid unreasonable results
from variables with differing units of measurement. Instead of using the direct erosion
measurement the erosion rate was used as input data. This is necessary as predictions are
made at snapshots in time from the given process measurements at t = tk. The cumula-
tive erosion has significant auto-correlations, as expected there is a very high correlation
between total erosion at t = k and t = k + 1. In order to apply methods not designed for
time series analysis the erosion rate is used instead, with an accurate model of the erosion
rate for every moment of elapsed time, numeric integration can be used to compute the

34

4.3 Regression results

Figure 4.1: Biplot (first 2 PC’s) of PCA carried out using the 9 predictors used for regression models
for each well: Annulus Pressure, Well head pressure, Well head oil production rate, Well head gas
production rate, Riser head pressure, Manifold pressure, Riser head total oil production rate, Riser
head total gas production rate and Gas lift rate.

total erosion. For the third case study, a brief look will be taken at using a time-series ap-
proach to model the cumulative erosion using a neural network called NARX (Non-linear
auto-regressive) with exogenous inputs as described in Chapter 2.

4.3 Regression results
In this section a brief overview of the performance will be given for each of the tested
regression methods: linear regression, PLSR, regression trees, support vector regression
and neural regression networks. The discussion of these results is held brief as most of the
work relating to the first case study was done in the specialisation project conducted this
spring as well as the task of modelling a linear phenomena being a quite trivial task. A
summary of these results is given in Section 4.4.

4.3.1 Linear regression
For the testing of linear regression models both a latent variable approach using PCA pre-
processing as well as a normalised data input was tried. For the PCA data the best approach
proved to be a normal MLR model with a test set MSE (calculated from performance on
100 time series) of 0.0166 which is a quite strong performance. For using the raw data, a

35

Chapter 4. Case study 1: Constant sand production rate

Figure 4.2: Correlation plot of simulated variables for a single well. Showing as expected extremely
strong correlations between certain variables and the the erosion rate, like wellhead gas production
rate and the gas lift rate.

36

4.3 Regression results

stepwise selected linear model with interactions gave the best result with a test set MSE
0.0096. As stated previously, since the choke valve erosion here is a linear phenomena, it
is expected that linear regression will perform this well. Regularised linear regression was
also tested with similar success, in this case L2 or ridge regularisation was used.

4.3.2 Partial Least Squares Regression

Since partial least squares regression is based making latent variables with the strongest
correlations to the response, it is expected to perform well when the predictors importance
cannot be inferred from knowledge about the system. For the constant sand production rate
data, PLSR had the strongest performance of all methods, having a MSE of 0.0076. This
is probably due to being able to correctly pick out the latent variable that explained almost
all the variance in the response and base its predictions on that. When PLSR is among
the top performing models, it is a very strong choice for implementation in industrial
applications. Because it gives a thorough understanding of how it makes its predictions
based on the weights given to each latent variable as well as the composition of said latent
variables and how much of the target variance they explain.

4.3.3 Regression trees

When first inspecting the shape of the erosion rate it seems to follow a step wise shape
corresponding to the control input (the gas lift rate). This is not surprising, but it provides
a strong argument for trying a tree based model as tree’s naturally fit step-wise data very
nicely, since each ”level” can correspond to one or more leaf nodes. A coarse regression
tree performing well on this is a quite expected as the data is divided into approximate
levels corresponding to different gas lift rates. Since these are discrete with significant
intervals even a coarse model is able to perform very well, producing groups of leaf nodes
corresponding to the different gas lift rates. The optimised tree had a test set MSE of
0.0125. When using PCA at 95% explained variance, an ensemble bagged trees perform
the best among the tree models. This is not unexpected as the PCA data is significantly
more noisy than certain parts of the direct simulated data like the gas lift rate and ensemble
methods are more accurate for noisy data. The reason that the tree models suffer so much
from PCA pre-processing may be that the gas lift rate gets confounded with other variables,
making it less accurate when splits have to be performed on PC1 instead.

4.3.4 Support Vector Regression

Support vector regression also yielded very strong results and had comparable perfor-
mance to stepwise linear regression and optimised ensemble regression. The best per-
forming kernel was a radial basis function, the Gaussian kernel. This is a very flexible
basis which allows the fitting of most function shapes, even highly non-linear ones. The
performance of the SVR model was in the upper tier of methods for both raw data with a
MSE of 0.0100 and with PCA a 0.0164.

37

Chapter 4. Case study 1: Constant sand production rate

Table 4.2: Model Performance, in terms of mean square error of prediction for several statistical
learning techniques when applied to data simulated with the constant sand production rate given in
Equation 3.9 in Chapter 3.

Case Study 1: Constant SPR
Method W/o PCA W/ PCA

Stepwise linear 0.0096 0.0166
Partial Least Squares Regression 0.0076 N/A

Optimised tree 0.0124 0.0244
Optimised ensemble (LSBoost/Bag) 0.0100 0.0165

Gaussian SVR 0.0100 0.0164
ANN Regression 0.0090 N/A

4.3.5 ANN Regression
The ANN Regression model performed quite well, but had some more instability in its
predictions than other models suggesting that it did not depend on the exact same under-
lying variables. The regression delivered a test set MSE of 0.090 on the constant sand
production rate data. By plotting of the ANN regression output, one can see there is some
noise, but that it almost perfectly captures the step profile. Due to the blackbox nature
of the neural network predictions, ascertaining exactly why it has moderate residuals (i.e
prediction errors) seemingly suddenly is very difficult. The errors are high compared to
the other methods for constant data but not very high on an absolute scale with the erosion
rate varying from approximately −1.5 to 1.5 when normalised, meaning in absolute terms
the error is only 0.3% of the total range it predicts in.

4.4 Summary
The performance result of every method that was tested on the constant data can be seen
in Table 4.2, where it is easy to see that predicting the results from the constant sand
production rate is a trivial task as first thought with mean square errors of prediction of
around 0.01 on normalised data without PCA. A somewhat worse performance was ob-
served within the data that was subjected to PCA pre-processing, there are a couple of
possible explanations for this, first PCA does fundamentally remove information from the
data, even at 95% variance. At these low error levels this could explain some of it. Second,
it was observed in the linear regressions that using interaction terms was preferable, PCA
obscures interactions to some degree by confounding variables that might interact with
each other into shared PC’s which makes the models unable to capture interactions. The
strongest model for constant sand production rate was partial least squares regression with
a test set MSE of 0.076.

38

Chapter 5
Case studies 2 & 3: Exponential &
Logistic sand production rate

?? Case studies two and three are similar to the first case study, changing the shape of the
sand production profile and, for Case Study 3, adding some noise in the underlying sand
production rate. Since the sand production rate is not a fully known variable and as such a
sampling interval will use used. As both of these case studies are very similar, the results
for both case study 2 & 3 will be presented alongside each other to avoid unnecessary
repetition. The negligible impact of adding stochastic noise to the underlying true sand
production can be attributed to erosion being a long term process and thus the noise is
averaged out by the law of large numbers. The data sets used for these case studies are
almost exactly the same as the one in the first case study where the only difference here is
the addition of one covariate, the sampled sand production rate, sampled at the set interval.
While not strictly pre-processing, the sampling rate of the sand production rate has a very
significant impact on the model performance, this is to be expected as the sand production
rate is an important predictor and more accurate data for it should thus improve model
performance. This section will first do a brief exploratory data analysis of the two data
sets looking at correlations between variables as well as PLSR loadings, then proceed to
examine the results for each of the methods tested, the figures of the predicted vs true
response in this case are reduced in size so that case studies two and three can be viewed
side by side. Finally, in this section, an attempt at modelling the cumulative data directly
with a time series approach instead of modelling the erosion rate will be made using an
auto-regressive NARX neural network model.

39

Chapter 5. Case studies 2 & 3: Exponential & Logistic sand production rate

Table 5.1: The predictors and response used for regression modelling of the simulated data with
exponential and logistic sand production rate. These are the same covariates as in the first case
study, with the addition of the sand production rate.

Number Symbol Name
Predictor 1 msand Sand production rate
Predictor 2 pa Annulus pressure
Predictor 3 pwh Well head pressure
Predictor 4 WHO Well head oil production rate
Predictor 5 WHG Well head gas production rate
Predictor 6 prh Riser head pressure
Predictor 7 pm Manifold pressure
Predictor 8 RHO Riser head total oil production rate
Predictor 9 RHG Riser head total gas production rate

Predictor 10 GLR Gas lift rate
Response ER Erosion rate

5.1 Exploratory analysis of simulated data with changing
sand production

The exploratory data analysis in this section will be done with respect to the correlations
within the exponential and logistic sand production data sets. I will also examine the PLS
loadings, this analysis gives some insight as to how much of the variance in the response
is explained by each latent variable with a given composition of underlying predictors.

The correlation plots for the exponential and logistic sand production rate data sets are
shown in Figure 5.2 and 5.3 respectively.

It is known from Case Study 1 that the total production rate (i.e fluid flow) was the
main driver of the erosion, which in turn is controlled by the gas lift injection rate. The
highly correlated well head production rate and well gas lift injection rates are expected,
since the gas lift is the driver of the production rate. In the new data sets where the sand
production rate is allowed to vary, the sand production has the strongest correlation to the
response with 0.90 (exponential) and 0.97 (logistic) correlation coefficients respectively,
these are strong correlations, but also expected since sand is what erodes the choke valve
in the first place.

The difference between the case studies can be attributed to the sampling rate (note
that the correlation is calculated between true erosion and sampled sand production rate).
Since the exponential sand production rate function has a much steeper gradient when time
increases and it becomes more affected by the low frequency of sampling. On the other
hand, the logistic sand production rate functions tapers of its growth and the sampled
values is thus closer to the true values even towards both ends. Even if the sand production
has the strongest correlation, the gas lift rate and other variables also have quite significant
correlations. This is expected, the first case study shows that total fluid flow is main driver
of erosion while sand production is constant.

40

5.1 Exploratory analysis of simulated data with changing sand production

Figure 5.1: Loadings plot of the three PLS components explaining the largest amount of variance
in the correlation plot

5.1.1 PLS analysis of data
PLS will be used for exploratory analysis of the simulated data by looking at the relevant
loadings and explained variance to investigate which variables explain the most variance
in the response variable. The PLS components turned out very similar for both expo-
nential and logistic sand production data, loadings for the logistic data, PLS components
are shown in Figure 5.1. The two first components explain almost all the variance in the
response, with the first component explaining 80% of the variance and the second explain-
ing 16%. The sand production rate is the dominant variable in both components, but to a
significantly larger degree in the first PLS component.

Since these components are chosen based on explained y variance (i.e response / ero-
sion rate), one would expect explain a significant amount of the variance in x (i.e the state
of the system with process measurements like pressures, production rates, gas lift etc.).
The first component explains only 20% of the variance in x while the second component
explains 40%. Although complementary to the results from the correlation plot (Figures
5.2 and 5.3), the insights from identifying the components is useful for identifying the
variables driving the response.

In terms of model performance PLSR did poorly, being by a fairly wide margin the
worst of the tested methods, as can be seen in Tables 5.2 and 5.3, therefore the predictive
results will not be further discussed.

41

Chapter 5. Case studies 2 & 3: Exponential & Logistic sand production rate

Figure 5.2: Correlation plot of the simulated data with a exponential sand production rate. These
are the same regression variables given in Table 5.1

42

5.1 Exploratory analysis of simulated data with changing sand production

Figure 5.3: Correlation plot of the simulated data with a logistic sand production rate. These are the
same regression variables given in Table 5.1

43

Chapter 5. Case studies 2 & 3: Exponential & Logistic sand production rate

5.2 Regression results

In this section, the same methods that were used for Case Study 1 will be tested on the more
complex data from case studies 2 & 3. The methods that will be presented are as follows,
multiple linear regression, regression trees, ensemble methods, support vector regression
and NLIO neural network. The performance of the methods are shown in Tables 5.2 and
5.3. The added stochastic noise added for Case Study 3, did not prevent strong predictions
from being made, but may have had some impact on the accuracy of the models. This was
observed when certain models struggled more with the logistic profile despite it being less
steep at its steepest.

5.2.1 Linear regression

As in the first case study, the MLR models that were allowed to use interaction terms
performed the best. Stepwise iterative selection was used for selection of predictors, plots
of the predictions made can be seen in Figure 5.4. In case study 2, with exponential
sand production rate, the test MSE was 0.0191 and 0.0182 with and without PCA pre-
processing respectively. In case study 3, with logistic sand production rate, the test MSE
was 0.0245 and 0.0241 with and without PCA pre-processing respectively. Relative to the
other methods, linear regression performed worse on non-constant sand production rate
data, while it was among the best methods for the constant data. Since these methods are
better suited to approximate linear phenomena, the approximations of an erosion rate that
increases over time as a non-stationary process were significantly worse. Observing both
the predictions made in Case Study 2 and Case Study 3, one can start to discern part of
the cause for why the performance on the logistic sand production data is worse than for
the exponential. In the exponential data, at each step the prediction is at values that are
about the average across the sampling period, this is possible since the sand production is
sampled accurately. While what we observe for case study 3 is that it frequently misses
this mean value within each sampling period, that is because the sampling method only
samples at a single time point, and with the presence of noise the sampling may not be as
representative as when the underlying sand rate can be sampled without the presence of
noise.

The results when applying PCA compared to not using it is similar to the first case
study, that is similar but slightly worse. This again could be explained by loss of infor-
mation when converting the data to PC’s (95% explained variance was used), as well as
potentially confounding interaction effects.

Using L2 regularisation does not improve model performance, but instead made it sig-
nificantly worse with a MSE of 0.0354. On the other hand, the regularised regression
has better generalisability as regularisation is less prone to overfitting, which gives better
generalisability. The regularisation was optimised using Bayesian optimisation on the λ
coefficient and whether to use ridge or lasso regression. Note that stepwise selection is
computationally heavier than regressions not based on evaluating every possible model at
several steps compared to a single optimisation step with a L2 regularised linear regres-
sion. The training time is thus a significant advantage for ridge regression versus stepwise
selection.

44

5.2 Regression results

(a) Case study 2: exponential sand production rate. (b) Case study 3: logistic sand production rate.

Figure 5.4: Plots of multiple linear regression model predictions with and without PCA pre-
processing for case studies 2 & 3. In case study 2, with exponential sand production rate, the
test MSE was 0.0191 and 0.0182 with and without PCA pre-processing respectively. In case study
3, with logistic sand production rate, the test MSE was 0.0245 and 0.0241 with and without PCA
pre-processing respectively.

5.2.2 Regression trees

Regression trees are a very flexible method in terms of the functional shape that they can
emulate. But have little to no value when predicting outside the range of the known data.
The predictions made by an optimised regression tree using Bayesian optimisation can
be seen in Figure 5.5. The model performance without PCA pre-processing was quite
good at 0.0173 and 0.0112 for the second and third case studies respectively. With PCA
pre-processing the model performance was slightly worse for case study 2 at 0.0212 and
for case study 3 at 0.0216. The Bayesian optimisation algorithm used to optimise the
hyperparameters found that the optimal binary tree has a minimum leaf size of 68 with
a total of 1121 nodes in case study 3. This is a very large optimal tree for something
that essentially contains 10 ”levels” corresponding to the shifts in gas lift injection rate
changing every 50 days. This means that a the predictions can be quite noisy due to the
sheer amount of different possible leaf nodes.

Regression trees have several strong points, strong predictive power in terms of perfor-
mance, semi-transparent, method since you can trace along the tree to understand exactly
how a given prediction is made, and very quick to train. But trade-off that regression trees
have very poor extrapolation capacity, if one tries to predict something that it has not seen
before it will make potentially very erroneous predictions.

When comparing regression trees performance on Case Studies 2 & 3 compared to
stepwise linear regression, a significant accuracy advantage is obtained from using regres-
sion trees on Case Study 3, while the performance on Case Study 2 was relatively similar.
This is attributed to the noise in the sand production data and the way in which regression
trees make their predictions. For MLR, the least squares algorithm will assign a direct
coefficient to the sand production, making the erosion directly proportional. While the
regression tree is built up using binary splits, as such the prediction will follow the same

45

Chapter 5. Case studies 2 & 3: Exponential & Logistic sand production rate

path if the sand production is within a given range given by the split and small deviations
in the sampled values from the true values will thus not bias predictions significantly.

There is a very strong argument for choosing regression trees in this case because of
the high transparency, simple structure, short training times at the cost of only a minor
reduction in accuracy when compared with Gaussian SVR and bagged trees. Both of
which are only slightly better in the exponential sand production rate case and, in the
logistic sand production rate case only the bagged ensemble performed better.

(a) Case study 2: exponential sand production rate. (b) Case study 3: logistic sand production rate.

Figure 5.5: Plots of predictions from regression trees optimised with Bayesian optimisation, with
and without PCA pre-processing for case studies 2 & 3. In case study 2, with exponential sand
production rate, the test MSE was 0.0212 and 0.0173 with and without PCA pre-processing respec-
tively. In case study 3, with logistic sand production rate, the test MSE was 0.0216 and 0.0112 with
and without PCA pre-processing respectively.

5.2.3 Ensemble methods
To improve performance of regression trees, several trees can be aggregated. As observed
in the results, the optimised ensemble had a higher level of accuracy than the optimised
single regression tree for all cases. The optimised ensemble used bootstrap aggregation
for both case studies 2 & 3, this was chosen by Bayesian optimisation along with the other
hyperparameters such as number of learners (408 trees), weights for averaging and the pa-
rameters of the individual trees. Variance in the predictors was introduced by training them
each on a different subset of the training data as described in Chapter 2. For both Case
Study 2 & 3, a improvement in performance is observed when applying an ensemble ap-
proach instead of a single regression tree. In Case Study 2, the performance without PCA
improved from 0.0173to 0.0158 and with PCA from 0.0212to 0.0193. For Case Study
3, the performance without PCA improved from 0.0112 to 0.0105 and with PCA from
0.0216 to 0.0175. The ensemble, itself being made up of trees have the same strengths
as regression trees when compared to MLR based methods in terms of robustness against
noise in the sample data.

However, this improvement in accuracy comes at the cost of a significant reduction in
model transparency. Predictions using a single tree can be trusted. When using several

46

5.2 Regression results

smaller trees, the predictions from each of them needs to be traced and taken a weighted
sum off to understand exactly how the prediction is made. The component trees are still
binary regression trees and as such, the method is not black box. But inference about
the underlying phenomena is harder than with normal regression trees. In cases where
the performance is the same as that of an ordinary regression tree, the single regression
tree should be preferred for increased transparency and ease of training and for use in a
decision support system for decision makers. If only the exactness of the prediction is of
interest, the ensemble is a very strong method for fitting functions with a wide variety of
shapes and has many degrees of freedom to achieve this. In comparison to other methods
that are good at complex function shapes, such as neural networks, it is quick to train and
more transparent. There is also the benefit of increased robustness and lower variance of
predictions, which can be seen when comparing the plots of the optimised trees in Figure
5.5 with the plots of the optimised ensembles of trees in Figure 5.6.

(a) Case study 2: exponential sand production rate. (b) Case study 3: logistic sand production rate.

Figure 5.6: Plots of predictions from an ensemble with hyperparameters and the bagged ensemble
optimised with Bayesian optimisation, with and without PCA pre-processing for case studies 2 & 3.
In case study 2, with exponential sand production rate, the test MSE was 0.0193 and 0.0158 with
and without PCA pre-processing respectively. In case study 3, with logistic sand production rate, the
test MSE was 0.0175 and 0.0105 with and without PCA pre-processing respectively.

5.2.4 Support vector regression
Support vector regressions have several advantages in terms of generalisability and ro-
bustness, with very low variance of predictions in general. This can easily be seen by
comparing plots of the SVR predictions (Figure 5.7) to the plots of the predictions from
regression trees (Figure 5.5) and ensembles (Figure 5.6). The performance in terms of ac-
curacy was also very good for both case studies, with a MSE of 0.0167 and 0.0173 without
PCA for case studies 2 & 3 respectively. PCA proved to be detrimental to the performance,
with test MSE of 0.0171 and 0.0177.

As with MLR, SVR is competitive with the tree based methods in terms of model
accuracy for Case Study 2, but drops of relative to the tree based methods when noise is
introduced, this is attributed to the same cause as with MLR. SVR produces a hyperplane,

47

Chapter 5. Case studies 2 & 3: Exponential & Logistic sand production rate

containing weights for each variable in the same fashion as MLR does. Thus, a small
change due to noise in the sampled data will necessarily lead to a change in the prediction
as the prediction is directly proportional to the measured sand production rate.

One of the main advantages in using support vector regression over other methods is if
we expect that the real data might have more outliers than the simulated data. The support
vector methodology protects against outliers influencing the model unduly, as only the
set of support vectors will define the predicting hyperplane. For the applications in the
in-silico studies, we have data without too many outliers and the dimensionality is not
excessively high with 10 predictors and one response. Thus, the full benefit of the high-
dimensional tolerance of SVR is not needed, nor is the robustness versus outliers in the
training response data points.

(a) Case study 2: exponential sand production rate. (b) Case study 3: logistic sand production rate.

Figure 5.7: Plots of predictions from a Gaussian support vector regression, with and without PCA
pre-processing for case studies 2 & 3. In case study 2, with exponential sand production rate, the
test MSE was 0.0171 and 0.0167 with and without PCA pre-processing respectively. In case study
3, with logistic sand production rate, the test MSE was 0.0177 and 0.0173 with and without PCA
pre-processing respectively.

5.2.5 ANN Regression
The most advanced method discussed yet is the artificial neural network. The trained
neural net has two hidden layers each with 15 nodes. In general it should be expected to
be more flexible to fit functions that are non-linear. To be able to capture non-linearities the
activation function is a sigmoid function. ANN regression performs quite well being the
most accurate predictor for the Case Study 2 data and only falling behind the regression
tree and ensemble methods for the Case Study 3 data with MSE’s of 0.0150 and 0.0102
for the case studies respectively.

The drop in performance from Case Study 2 to Case Study 3 can be attributed to
the presence of noise, as with stepwise linear regression and support vector regression, a
weight for each variable into the network will be learned. This means that any change
in the model input from noise will cause a change in the prediction, this in contrast to
regression tree based models (and ensembles of them).

48

5.2 Regression results

Adjusting the size of the network did not improve test performance. Increasing net-
work size yielded a small decrease in training MSE but also a decrease in the performance
on the independent test set, this increase can be attributed to overfitting the data. As ex-
pected ANN’s have the best performances when the function to be emulated becomes
more complex, but due to the importance of the sand production to erosion, the sensitiv-
ity to noise in this measurements becomes quite high as the sand production is heavily
weighed from the input layer, having a detrimental effect on performance in Case Study
3. This improved performance of course comes with the cost that the model does not give
very strong insights into how its predictions are made. Another drawback is the require-
ment of large amounts of training data as even quite small, shallow networks such as these
have a large amount of parameters that need to be trained compared to simpler methods
such as MLR.

(a) Case study 2: exponential sand production rate. (b) Case study 3: logistic sand production rate.

Figure 5.8: Plots of predictions ANN regression, for case studies 2 & 3. In case study 2, with
exponential sand production rate, the test MSE was 0.0102 and in case study 3, with logistic sand
production rate, the test MSE was 0.0150.

5.2.6 Summary
Overall the models performed very well in case studies 2 & 3 as well, the results for Case
Study 2 are shown in Table 5.2. The results for Case Study 3, including results with a
shortened sampling rate, which will be motivated in the next section, are shown in Table
5.3. A comparison of the performances of all of the methods across all three case studies
is shown in Figure 5.9.

Stepwise regression and support vector regression performed better in case study 2
than in case study 3, while the opposite was true for the ensemble and tree based methods.
This is attributed to tree based methods being less sensitive to the noise in the sampled sand
production values as a range of sand values can lead to the same binary split decisions and
thus same prediction. This is not the case for MLR, SVR and ANN regression as all of
these methods directly relate input values through weights to an output, and as such a
change in the sampled sand production will always affect the predictions, all else being
equal, thus making them more prone to noisy predictions from small perturbations in the

49

Chapter 5. Case studies 2 & 3: Exponential & Logistic sand production rate

Table 5.2: Model Performance, in terms of mean square error of prediction for several statistical
learning techniques when applied to data simulated with the exponential sand production rate given
in Equation 3.10 in Chapter 3.

Case Study 2: Exponential SPR
Method W/o PCA W/ PCA

Stepwise linear 0.0182 0.0191
Optimised tree 0.0173 0.0212

Optimised ensemble 0.0158 0.0193
Gaussian SVR 0.0167 0.0171

ANN Regression 0.0138 N/A
PLSR 0.1840 N/A

observations. The regularised regression performed poorly compared to the other methods,
but might have the benefit of being more robust against overfitting in real cases. PCA-pre
processing was still in general detrimental to performance in all cases, this is likely due
to confounding of interaction effects in the data and loss of information, since the feature
space was not of very high dimensionality application of PCA-pre processing is deemed
unnecessary.

Figure 5.9: Bar chart of the performance of each of the methods for all three case studies (without
PCA pre-processing). The methods shown are those that are primarily discussed, PLSR is left out as
it was not viable for the non-constant case studies.

50

5.2 Regression results

Table 5.3: Model Performance, in terms of mean square error of prediction for several statistical
learning techniques when applied to data simulated with the logistic sand production rate given in
Equation 3.11 in Chapter 3. Reducing the sampling rate of the sand production rate is also tested,
reducing the sampling rate from every 50 days to every 14 days.

Case Study 3: Logistic SPR Sampling rate: 50 Sampling rate: 14
Method W/o PCA W/ PCA W/o PCA

Stepwise linear 0.0241 0.0245 0.0043
Optimised tree 0.0112 0.0216 0.0037

Optimised ensemble 0.0105 0.0175 0.0032
Gaussian SVR 0.0173 0.0177 0.0090

ANN Regression 0.0150 N/A 0.0032
PLSR 0.0765 N/A 0.0583

51

Chapter 5. Case studies 2 & 3: Exponential & Logistic sand production rate

5.3 Improving predictions by modelling sand production
rate

Looking at table 5.3, we observe that the reduced sampling interval, makes predictions
significantly more accurate. This is expected given the results of the exploratory data
analysis, and the strong correlation between the erosion rate and the sand production rate.
Increasing sampling frequency is not always feasible, but there are other methods that can
yield more accurate data for the sand production. Using domain knowledge for feature
engineering is one such approach25, in this subsection a linear model of the sand rate will
be used to improve model input.

5.3.1 Linearly modelling sand production

It is known that sand production rates tend to change, and that the change from one period
to another is generally quite similar. Using this knowledge, we make the assumption that
the sand production profile increases linearly from each sample point, at the same rate as it
did between the two most recent sample points. Then the sand production rate some time
∆t after the previous sample point k is given by Equation 5.1.

msand(t) = msand(k − 1) +
msand(k)−msand(k − T)

T
∆t (5.1)

Where T is the sampling period (in this case study, 50 days), makingmsand(k) the last
known known sample and msand(k − T) the one preceding it. Figure 5.10 shows the true
sand production rate as well as the values when held constant between samples and using
this modelling approach between samples.

Using this linear model instead of assuming the sand production stays constant during
the sampling window, increases the accuracy of the model feature by an order of mag-
nitude in terms of MSE, when compared to the true sand production rate. A ten fold
increase in feature accuracy, by making a simple and reasonable assumption about the
profile, without any additional resources spent on sampling, will be very beneficial to the
model performance. Figure 5.10 shows the results of the linearly modelled sand produc-
tion rate, the true sand production rate and the sand production variable when assumed
constant between samples, using the sand production profile from Case Study 3.

5.3.2 Results using modelled sand production rate

The results from using this feature engineering method to improve predictions are shown
in Table 5.4. What is immediately obvious is that predictions are vastly more accurate
when this more accurate, engineered, sand production rate is used as model input. The
most accurate model using this approach was the ensemble (bagged) approach, its perfor-
mance was increased, for Case Study 3, from 0.0105 to 0.0030 which is over a three fold
increase in accuracy. Similar, and greater improvements in model accuracy is seen across
all methods tested, which is not unexpected given the importance of the sand production
to the erosion of the choke valve.

52

5.3 Improving predictions by modelling sand production rate

Figure 5.10: This figure shows plots of the true sand production rate from case study 2, the result of
using the simple modelling approach as well as the results when held constant at sample values with
a 50 day sampling rate.

53

Chapter 5. Case studies 2 & 3: Exponential & Logistic sand production rate

Table 5.4: Model Performance, in terms of mean square error of prediction for several statistical
learning techniques when applied to data simulated with the exponential sand production rate given
in Equation 3.10 in Chapter 3. No PCA pre-processing was applied in these tests.

Performance using modelled sand production rate
Method Case study 2 Case study 3

Stepwise linear 0.0019 0.0038
Ridge regression 0.0290 0.0169
Optimised tree 0.0039 0.0038
Gaussian SVR 0.0037 0.0062

Optimised ensemble 0.0012 0.0029
ANN Regression 0.0013 0.0030

One thing to note is that using the modelled sand production rate, gives the best results
for Case study 2, this is attributed to the exponential function not having an inflection
point (d

2

dx2 f(x) = 0). Thus the linear approximations don’t end up with the significant
overshoots that are observed in the logistic profile. If the exponential profile were extended
further into the future, thus making the gradient even steeper, larger residuals between the
modelled and true sand production rate would be seen there as well.

Observing the different profiles for each of the methods, it is clear to see that the
hyperplane methods (SVR and MLR) produce low variance predictions but with some
bias. Tree predictions have a fair amount of noise, but this is vastly improved by using an
ensemble approach, bagging in this case. Neural regression networks are able to provide
quite low variance and bias predictions, performing about as accurately as an ensemble
of trees. Plots of prediction versus true profile, for the most accurate method which was
ensembles for both case studies, are shown in Figure 5.11.

No tests were carried out using PCA pre-processing as this was shown unnecessary for
this data in the previous studies of these Case Studies.

(a) Case study 2: exponential sand production rate. (b) Case study 3: logistic sand production rate.

Figure 5.11: Plots of predictions made using the modelled sand production data, showing the best
method for case studies 2 & 3, the bagged ensemble was the most accurate model for predictions in
these cases.

54

5.4 Modelling cumulative erosion with a NARX model

5.4 Modelling cumulative erosion with a NARX model
Finally, using the auto-regressive time series approach, I show the results when modelling
the cumulative erosion directly. For this section, I will only consider Case Study 3, but
similar results are obtained for the first and second case studies. As has been stated previ-
ously, it is not practical with traditional time series approaches such as AR, MA or ARMA
models, as they are designed for stationary time-series. For non-linear sand production
rates, the cumulative erosion will not only be non-stationary, it will also be somewhat
difficult to make stationary using simple approaches. For non-stationary time series an
ARIMA model (auto-regressive integrated moving average), but this is not explored in
this thesis.

There are ways to turn exponential series into linear ones by for instance, combining a
log transform, which will turn it into a linearly increasing time series and then transform-
ing the output yt into zt = yt − yt−1. But this would for instance not work for a logistic
profile. Thus, for modelling the cumulative erosion as a time series, a model that deals
well with non-linearity is required. Here, I use the NARX model, since it is able to make
strong predictions directly on non-linear time series data.26 27As discussed in Chapter 2,
the NARX neural network can operate in two different configurations, one called ”open
loop” and one called ”closed loop”. Open loop is generally not very interesting when mak-
ing predictions about the future as it requires knowledge of targets (true y values), which
in general is not available. The closed loop prediction changes the auto-regressive feed-
back from the true target values to the networks prior predictions, allowing for forecasts
multiple time steps ahead.

The amount of lag needed for accurate predictions are indicated (but not necessarily
known with certainty) by looking at the partial auto-correlation function (PACF). Figure
5.12 shows the PACF’s for the cumulative erosion. As expected for this phenomena, the
only information that should be needed to predict total erosion is how much the system is
already eroded as well as the parameters with information about how fast the component
is eroding. How fast the erosion was up to this point (i.e erosion rate), and the shape of
the profile up to that point should in theory not matter for how eroded it will be at the next
time step and this is what is seen in the PACF plot.

5.4.1 Cumulative model results
As stated above, the only lag order with a significant partial auto-correlation was the first
order lag, which in turn had a very strong auto-correlation, very close to 1. Because of the
data rich situation with a lot of available data to use from simulations, a network is chosen
with a width of the hidden layers of 20 neurons. The lag order was set to only include
first order lags, as those were the only ones with significant partial auto-correlations, this
yielded a network with very good performance. The network was tested for prediction 250
days ahead, the results of this test can be seen in Figure 5.13. In this test the loop was kept
open the first 200 days and then closed and predictions made using only the exogenous
inputs as well as the feedback of its own predictions. The result was that after 250 days of
closed loop predictions the error was 0.0392, which means that for a prediction very far in
the future the model was off by about 1.6% of the total erosion that happened in this time,
the units here are quite meaningless as the data is normalised, but the relative size of the

55

Chapter 5. Case studies 2 & 3: Exponential & Logistic sand production rate

Figure 5.12: Sample partial auto-correlation function for the cumulative erosion arising from case
study 3, this shows as expected that the only significant partial auto-correlation for t = tk is t =
tk−1. Since this is a cumulative process each step only adds to the previous without any further
information in the preceding time steps. What we observe is that the first order lag has a correlation
very close to 1, which is as expected, the 0th order lag is the correlation of yt to yt and must of
course be 1. This serves as justification for setting the lag order of the NARX model to 1 as that is
the only statistically significant lag order.

error is interesting and very promising for this application. Even though the model was
kept in open loop for 200 time steps in this case, this is not necessary since the model only
uses a single lagged value of the cumulative erosion.

5.5 Summary of results for simulated data
As known from Case Study 1, constant sand production erosion is a simple problem using
simulations. For the non-linear sand production rate profiles, the problem was complicated
both by the non-linear shape of the function that is to be learned and the lack of accurate
information about the sand production. In Case Study 3, this was further complicated by
the addition of noise to the underlying sand production. Results were still somewhat ac-
curate, but with a significant loss in accuracy whenever the sand production was changing
quickly, that is, after a lot of time has passed in the exponential profile and around the
inflection point of the logistic profile. To compensate for this, feature engineering with a
linear model of the sand production is used successfully to drastically improve accuracy of
models. Finally, a NARX neural network is applied to the cumulative erosion time series,
successfully predicting 250 days ahead, missing the true value by only 1.6%.

56

5.5 Summary of results for simulated data

Figure 5.13: Figure illustrating the 450 day long test of a NARX neural network for predicting,
the blue markers show the predictions made in open loop format with true values being fed back
to the model. The green markers show the closed loop predictions where the model is fed only
the exogenous input and feeding back its own predictions. The red line shows the true cumulative
erosion. After 250 days in closed loop, the networks prediction is only off by 0.0392 while the
erosion has been 2.5 (normalised and thus arbitrary units) in the same time frame, meaning over 250
days the total error is only about 1.6%.

57

Chapter 5. Case studies 2 & 3: Exponential & Logistic sand production rate

58

Chapter 6
Experiments

In this chapter, the setup and design of experiments will be discussed for real world testing
of the soft sensor approach to equipment degradation. The work was carried out over
several months in laboratory facilities at the Department of Chemical Engineering, with
multiple phases of tuning and testing before arriving at the final experimental procedure.
The sections of this chapter will describe an overview of the experimental rig, a quick
description of the fluid mechanics used to justify usage of differential pressure as a stand in
for erosion and finally a description of the experimental data, including brief descriptions
of how the approach has changed during the months of experimental work.

6.1 Overview of the rig
The experimental rig is designed to emulate the behaviour of a subsea gas lifted oil well
network with the same layout as the simulated case study with three gas lifted wells. The
system is constructed with one pump as the driving force of the flow. Then three controllers
immediately after the pump regulate fluid flow to each well. The wells are represented by
three paralell pipelines, each one containing an injection valve and an erosion chamber.
The air valves are used for injecting gas into the system to obtain the artificial lifting
effect. The erosion chamber is where the eroding sample, discussed later, is placed.

Then the fluid passes through a sand trap and then a riser to a ”topside” chamber.
Finally the fluid is recirculated through a large tank. All gas flows and liquid flows are
measured as well as the pressure at the top of the riser and the differential pressure over
the erosion chamber. A schematic of the rig can be seen in Figure 6.2.

The rig is constructed to facilitate multiple experiments for control, optimisation and
accelerated remaining useful life testing. In this work only experiments to measure the
erosion based degradation of probes are performed. Because of the long time scales of
erosion using standard subsea materials such as steel, the rig was set up to use 3D-printed
PVA (polyvinyl alcohol) probes. In addition to the 3D printed probes, custom built probe
holders were also built to accommodate them, a probe in its holder during an experiment
can be seen in Figure 6.3a.

59

Chapter 6. Experiments

Figure 6.1: Experimental rig. The pump, controllers and air supply are visible on the left hand side,
the erosion chambers in the center, and the sand traps at the bottom of the riser to the right.

6.1.1 Measuring erosion

The main goal of this experimental setup is to perform accelerated remaining useful life
testing, in this case what we desire is to accelerate the erosion of a probe. The geometry
and materials of these probes as well as the holders of the probes went through several
refining iterations. Initially, a more complex geometry was tested with a inner part at-
tempting a somewhat faithful reproduction of the geometry of a choke valve. The first
generation of probes were made with a quite brittle polymer material which lead to, rather
than a somewhat continuous and smooth erosion as real components experience, a very
uneven degradation, dominated by breaks and fractures of large blocks. To try to compen-
sate for this issue, PVA was used instead, which yielded a far smoother degradation. An
illustration of the PVA probes before and after some degradation can be seen in Figure 6.3.

Initially, the experiments were designed to record images of the probes with two cam-
eras every 30 seconds. From these images, we tried to calculate the visible area of the
probe as a measure of how much of the probe was remaining. Since the probe was multi-
layered with an internal structure this proved far too difficult in terms of getting good and
reliable measurements. In order to simplify this process, we altered the probe geometry
to a simple ”wall” shape that was attached to a probe holder. Even with multiple im-
provements to image quality (for instance, lighting and colouring of the inside chamber)
calculating the visible area in a reliable way proved a non-trivial task, an illustration of the
data after some pre-processing in the early stages can be seen in figure 6.4.

60

6.1 Overview of the rig

Figure 6.2: Schematic showing the setup of the experimental rig used to gather experimental data.
The setup features 3 simulated ”wells”, each with a eroding element chamber and a air supply and
later possibility for sand injection. Prior to the wells the rig has a sand filter and a pump after
the reservoir. After the wells each well has a sand trap, to be used if sand is included in later
experiments. On each well there is also pressure gauges to measure the differential pressure over the
eroding element chamber.

The final approach that we ended up using for the experimental measurements was
using a ”stand in” measurement for the erosion. The theory was that if we placed the probe
and holder in such a way that the intact probe impeded fluid flow through the chamber, the
degradation of the probe would correspond directly to a decrease in measured differential
pressure across the erosion chamber. This approach has been significantly more fruitful
since it has removed the need for advanced image processing as well as gathering very high
quality images, in the final iteration the images are only used for validation of observations.
A mechanical justification for using the measured differential pressure as a stand in for
erosion as described here is given below.

Using differential pressure as a measure of degradation

Here, we show the correlation between pressure drop and the cross-sectional area, corre-
sponding to the degraded probe area. Two equations are needed to make this argument,
the Bernoulli equation and the continuity equation. By assuming that the fluid is incom-
pressible and that the flow is steady, the continuity equation can be written as Equation
6.1.

61

Chapter 6. Experiments

(a) Probe prior to erosion taking place. (b) Probe after significant erosion has happened.

Figure 6.3: Before and after images of the erosion probe, showing one picture immediately after the
start of the experiment and one when the probe is severely eroded.

Figure 6.4: Plots of the preliminary experimental data, plotting area, differential pressure, top pres-
sure and flowrates as functions of time for about 3 hours. Initial inspection shows quite clearly that
the strong correlation between flowrates and pressures to the area seem to not be present in these,
making statistical modelling a unfeasible prospect.

62

6.2 Experimental Data

Table 6.1: List of the six experimental variables that were used in modelling. The differential
pressure was used as the target variable instead of direct erosion measurements as discussed in
Section 6.1.1. Tags corresponding to the schematic in Figure 6.2 are given in parenthesis, and units
of measurements are given in brackets. The currents are the output control signals that decide pump
effect, valve openings etc.

Number Symbol Name
Predictor 1 t Relative time [s]
Predictor 2 q Flowrate measured (FI101-103) [L/min]
Predictor 3 pt Topside pressure (PI 101-103) [mbar]
Predictor 4 T Temperature (TI 101-103) [C]n
Predictor 5 Icv Current bottom valve (CV101-103) [A]
Predictor 6 dP Differential pressure (dP 101-103) [mbar]

A2 ∗ v2 = A1 ∗ v1 (6.1)

Where A2, v2, A1 and v1 are the areas and velocities of the fluid in two differing seg-
ments of a continuous flow. This tells us that when the cross sectional area of the fluid
flow is increased, the velocity is decreased. Using Bernoulli’s principle stated as Equation
6.2, we see that as the velocity decreases, the pressure p will increase.

v2

2
+ gz +

p

ρ
= constant (6.2)

This will bring the pressures at both sides of the erosion box closer together as the
flow through the box becomes less constricted. Therefore, as the probe erosion evolves,
the differential pressure over the erosion chamber decreases.

6.2 Experimental Data
In this section, a brief description of the gathered experimental data will be given. For
information about how the data is processed and analysed see Chapter ??. Several sensors
are used to gather 34 different measurements at each time step (time steps are set to 1 sec).
A complete list of all the measurements can be found in Appendix C. When obtaining the
data-driven models, not all measurements are relevant, The eight measurements per ”well”
that are used in the analysis in Chapter 7 are listed in Table 6.1.

As said earlier in Section 6.1.1 the decrease in differential pressure is going to be used
as the response variable, instead of direct measurements of the probe degradation.

Plots of the differential pressure of two wells throughout an experimental run are
shown in Figure 6.5. As can clearly be seen here, there is a much more stable, strictly
declining trend in this data compared to the data that was gathered previously (Figure 6.4.
This strict downward profile matches the expected trend, since it has been shown that the
differential pressure behaviour is inversely proportional to the probe erosion.

63

Chapter 6. Experiments

Figure 6.5: Plot of normalised data after application of a 150 seconds wide moving average filter,
a clear, almost strictly declining trend is observed. The very wide moving average filter had to be
used to circumvent a very high level of noise in the raw data.

64

Chapter 7
Case study 4: Experimental data

The fourth and final case study in this thesis is an investigation of the previously tested
statistical learning methods. In this chapter it will be tested if the erosion process can
be accurately modelled in the real world using the same methods as in the in-silico case
studies. Because getting proper data of component degradation from a real subsea plant is
prohibitively expensive, a smaller scale lab rig was used. The method of the experiments
is described in detail in Chapter 4. In summary, since the reduction in probe area covering
the fluid flow parth is proportional to the differential pressure across the erosion chamber,
this measurement was used as a stand in for probe degradation. This change in differential
pressure will then be predicted with aforementioned statistical learning methods on the
basis of process measurements (Table 6.1). This chapter will first discuss the exploratory
analysis of the data as well as how pre-processing is used to make the data fit for regression
modelling. Then the results of applying the previously tested regression methods will be
discussed and compared.

7.1 Exploratory data analysis and pre-processing

7.1.1 Pre-processing
The experimental data is collected in six operating conditions, represented by different liq-
uid flowrates (2, 3, 4, 5, 6 and 9 L/min). For each condition, we gather data from the three
wells, leading to 18 independent probe degradation profiles. The experiments were run
until the probes in the three wells looked qualitatively ”destroyed” on the camera pictures.
Since the liquid flowrate is held constant during operation in this experimental design, cap-
turing the effect on the erosion profile is hard as it will not correlate to the degradation. To
capture this effect properly a design could for instance capture fluid flowrate and the rates
at which the probe degrades. The noise level of the data made using the gradient of the dP
profile difficult. For training the models, we concatenated the time series of all operating
conditions such that we obtained three data sets, one for each well. Wells one and two
were combined to create a training set, while well three became the independent test set.

65

Chapter 7. Case study 4: Experimental data

Validation was done splitting out part of the training set with cross and holdout validation
as described in Chapter 2. The data was then normalised before analysis was performed.
PCA pre-processing was not performed for this case, as the data we are dealing with is of
relatively low dimensionality and the performance in the previous case studies as well as
initial testing did not indicate that it would positively impact the models.

7.1.2 Exploratory data analysis
The most significant difference between real and simulated data is that there is a large
amount of noise and variance and it is difficult to determine their source. While in the sim-
ulated case studies the noise was introduced in a controlled fashion and followed a normal
distribution. No such guarantee exists for real world data. In particular the differential
pressure measurements were very noisy, which is a problem when you want to use it to
to represent the strictly increasing trend in the probe erosion. Figure 7.1 illustrates the
high level of noise in the differential pressure measurements when compared to the size of
the effect from the eroding probe. Since the trend of decrease in the differential pressure
is what is assumed to represent the erosion, a high level of smoothing is imposed on the
data with a 150 seconds moving average removing most of the measurement noise while
retaining most of the functional shape of the trend. Another option would have been to
use a trend line or other line fit and try to predict this trend. However, this would impose
an arbitrary linearity on the erosion that may not be realistic. A wide moving average
window of 150 also removes a lot of fluctuation in the data, some of which may contain
important information. By visual inspection, this maintains as much of the original shape
as possible while resembling the strictly decreasing trend in the differential pressure that
is used to represent the strictly increasing erosion. The knowledge that the remaining
area, which is represented by the differential pressure, is strictly decreasing and relatively
smooth provides a strong argument that applying such a wide moving average window is
acceptable.

After smoothing the data variation, we explore the correlation between the measure-
ments. Checking that there are significant correlations between the predictor data and
the response variables is an important preliminary step for obtaining a proper data-driven
model. A correlation plot including individual correlation values for each pair of variables,
including the 5 predictors and the response, is shown in Table 6.1. The most pertinent cor-
relations to study is the correlations between each predictor and the response. However,
correlation between predictors must also be noted, since it can be problematic for model
identification. The first variable is the relative time, which is time elapsed since the start
of the experiment. This variable is as expected strongly negatively correlated (correlation
coefficient: −0.71) with the differential pressure since the probe erodes over time and
each time step should see the probe eroded further than the last. The second variable is the
measured flowrate, while this may be the single most important variable in the system, it
shows almost no correlation to the response. This is due to the fact that the flowrate was
kept constant by control valves throughout the experimental runs. On the other hand, it
is fair to assume that a significant correlation between these variables would be observed,
if the flowrates were allowed to vary freely as the probe eroded. The topside pressure
seems to be basically independent of all the other measurements including the response
and time elapsed in the experiment with no correlation coefficients of magnitude greater

66

7.1 Exploratory data analysis and pre-processing

Figure 7.1: Plot of the experimental data from the run of the rig with the controlled flowrate being
set to 5 [sl/min] showing a high level of noise in the raw data, as well as the data after being subjected
to several different moving averages using window widths of 10, 50 and 150.

than 0.06. The fourth variable, the temperature is also significantly negatively correlated
to the response (correlation coefficient: −0.56), this is somewhat surprising as one would
not think that a increase in the temperature of absolute magnitude smaller than one full
Kelvin, would have a significant impact on for instance the solubility of PVA in the water
or something like that. This is probably a case of correlation without causation as both
variables have a strong correlation to the time elapsed. The final predictor variable, the
control current to the valve that controls the liquid flowrate has a significant correlation
(correlation coefficient: 0.50). This is likely due to the fact that the control valve be-
haviour changes depending on the hindrance, i.e. the amount of un-eroded probe blocking
the flow.

67

Chapter 7. Case study 4: Experimental data

Figure 7.2: Correlation matrix of the six variables used for modelling the experimental change in
differential pressure as the probes eroded, variables are numbered the same as in Table 6.1 in Chapter
4 with variables one through 5 being the predictors and variable 6 being the response.

68

7.2 Regression results

7.2 Regression results

In this section, the results from applying the statistical learning methods to the data from
this fourth case study. This includes results from linear regression, regression trees, en-
semble methods, support vector regression and artificial neural networks. For the neural
networks, direct prediction is done using a simple regression network, but results from
NLIO and NARX time series models are also shown. The performances of all of these
methods in terms of MSE are shown in Table 7.1 and Figure 7.10.

7.2.1 Linear regression

The stepwise linear regression managed to capture the downward trend of the differential
pressure but not the fluctuations, this is clearly visible in the plotted response shown in
Figure 7.3. The MSE was only 0.0854 over a full test set. The full model selected by
the stepwise selection algorithm contains 10 terms, 1 bias term, 5 variable terms and 4
interaction terms that significantly benefited the model, according to the stepwise selection
algorithm described in Chapter 2. It should be noted that the variance of the predictions
is very low for this this model, which is a result of the trained model being a continuous
hyperplane. This is different from the tree based models which do not have any sort of
continuity requirement and by their very nature are discrete.

For improving this model performance, one can consider using additional higher order
and/or different non-linear terms in order to properly describe the system dynamics. Then,
L1 regularisation can be applied to discover the relevant terms, similarly to Brunton et
al.28. This approach has the advantage of possibly learning an equation model describing
fundamental dynamics of the system, which none of the other methods are able to do.

7.2.2 Regression trees

Compared to the linear model, the tree is able to capture some of the non-linearity in the
differential pressure profile, this is shown in Figure 7.4. The performance of the tree alone
is about the same as the linear regression, with a test set MSE of 0.1213. The tree predic-
tion was made by applying Bayesian optimisation to hyperparameters, selecting minimum
leaf size, whether pruning should be turned on and which splits should be considered. The
hyperparameter optimisation was limited to 30 iterations.

The CART algorithm29 was used to train the trees with the optimised hyperparame-
ters. The main weakness of the tree prediction model is its high prediction variance. In
Figure 7.4 you can see that at 8500 seconds, when the true value is close to one, the out-
lier predictions span from about 0.25 to -1.5. Such variance can significantly impact any
decision-making method based on the tree method’s predictions. For example, from the
results in Figure 7.4, the most positive predictions show a probe only partially degraded
while the reality is that the probe is almost fully degraded which could lead to danger-
ous decisions. Due to the nature of this system, this drawback of the tree model can be
compensated. For example, let us say that our goal is state estimation, one might not need
second by second state estimates, because in reality erosion is a slow process when dealing
with real materials. Thus we can apply a moving average to the predictions, and as it is

69

Chapter 7. Case study 4: Experimental data

Figure 7.3: Regression result for experimental data when applying stepwise linear regression to the
training data.

shown in Figure 7.4, 30 second wide windows yield much more accurate predictions, re-
ducing the MSE to 0.0958 and significantly decrease the variance of predictions. Another
approach that could further reduce the variance of tree predictions is using an ensemble
approach with multiple trees, which is shown in the next section.

7.2.3 Ensemble methods
As expected the ensemble approach gives a significantly smaller prediction variance by av-
eraging several trees. The same Bayesian hyperparameter optimisation was applied to the
ensemble as with the tree. The optimisation chose bootstrap aggregation as the preferred
ensemble algorithm, using 496 bagged trees with equal weight. The number of predictors
for each tree, minimum leaf size and number of learners were chosen in the same way.
The ensemble of trees improves upon the prediction of the tree based methods, with a test
set MSE of 0.0998. In Figure 7.5, we see that, even with averaging 496 learners, there is
a significant amount of model prediction outliers. Applying the same 15 second moving
average, the performance is somewhat improved, becoming 0.0852. As with the previous
case studies, note that the ensemble method is generally very accurate, but this comes at
the expense of any meaningful inference about the underlying dynamics of the system and
the transparency of the model.

7.2.4 Support vector regression
Initial expectations for support vector regression were quite low due to the low dimension-
ality of this data. For SVR to make sense in applications it needs to provide very accurate
predictions as it is a very black box approach and thus offer little in terms of inference
and explainability. The resulting predictions from applying SVR to the experimental data

70

7.2 Regression results

Figure 7.4: Regression result for experimental data when applying a single regression tree (green)
as well as the prediction when the predictions are smoothed with a 15 second moving average (blue).
The true value is also shown in red.

Figure 7.5: Regression result for experimental data when applying a bagged ensemble of trees
(green) as well as the prediction when the predictions are smoothed with a 15 second moving average
(blue). The true value is also shown in red.

71

Chapter 7. Case study 4: Experimental data

Figure 7.6: Regression result for experimental data when applying Gaussian kernel SVR (blue) and
the true value (red).

had a MSE of 0.0793 and can be seen in Figure 7.6. Compared to tree and ensemble
methods, the variance of predictions from SVR are significantly lower, with few signifi-
cant outliers. Compared to the stepwise regression, another method based on creating a
hyperplane, SVR is more able to capture the non-linear profile of the differential pressure
profile. This is one of the most significant benefits of using SVR, as it allows the use of
non-linear kernels, in this case the Gaussian kernel which allows emulations of a variety
of non-linear profiles.

7.2.5 Neural networks
The experimental data should be very well suited for neural network applications, since the
system dynamics are complex and nonlinear, and the amount of available data is relatively
large. The data is a time series, but as has been shown in the previous subsections, models
are able to perform rather well on it without using any auto-regressive properties. A sim-
ple regression network, making direct predictions like the previously discussed models is
tested first. Afterwards, two time series based models will be investigated, the NLIO and
NARX models.

ANN Regression

A simple regression network was able to capture the dynamics of the degradation, it quite
accurately models the changes in differential pressures across the experiments, as shown
in Figure 7.7. The regression network had similar performances for different sizes, thus
a smaller network of 10-15 nodes is preferred as it is sufficient to achieve strong perfor-
mances without being slow to train. The variance of predictions were also significantly
lower than the ensemble methods but with comparable accuracy, having a MSE of 0.0764.

72

7.2 Regression results

Figure 7.7: Regression result for experimental data when applying a simple regression network
(blue) and the true value (red).

NLIO Network

The first time series model that is tested is the NLIO network, it can also be thought
of as a regression with the previous (lagged) predictor values merely being additional
predictors. The NLIO network is specifically designed to deal with non-linear dynamics,
and as expected it has a very strong performance in terms of capturing the non-linearity
in the data as shown in Figure 7.8. The MSE of the NLIO network was 0.0523, making
it stronger than all the non-time series models. This could be expected as it has more
information to use when making its predictions. This information has value when making
predictions, this is clear from looking at the comparison to the ordinary regression network.

NARX Network

The NARX model shows significant potential, it is first tested in open loop format being
fed the true (measured) lagged values of the response, then changed to closed loop format.
This was to show how this can be used to monitor a process that cannot be continuously
observed directly, either due to cost or physical limitations. As expected the open loop
predictions are almost perfect, as the change from time step to time step is very small,
and thus knowing the previous time step makes the predictions very strong. A positive
indication, is that when the loop is closed and it only relies on its own previous predictions
rather than true values, it still performs well with a closed loop MSE of 0.0384 in the
interval from 5000 to 9000 seconds. For comparison the ensemble model has a MSE of
0.0646 and the NLIO network has a MSE of 0.0537 in that time interval. It is not surprising
that a time series model does perform better since what we are dealing with is time series
data, but the time series is ”seasonal” in terms of experiments and non-stationary with large
differences in variance across time. Thus it is a very positive indication for the viability of

73

Chapter 7. Case study 4: Experimental data

Figure 7.8: Regression result for experimental data when applying a NLIO neural net (green) and
the true value (red).

this method that the NARX model still delivers very accurate predictions with the lowest
variance of predictions out of all models. The low variance of predictions are due to the
auto-regressive property, limiting the amount of change from one step to the next when the
first order partial autocorrelation is high as in this case.

74

7.3 Summary

Figure 7.9: Results of open loop predictions of the NARX network from 0 to 5000 seconds (blue),
closed loop predictions from 5000 to 9000 seconds (orange) and the true values from 1 to 9000
seconds (red).

7.3 Summary
The stepwise linear model performed well when compared to the other traditional statisti-
cal learning methods like regression trees, ensembles and support vector regression. Other
advantages of the stepwise MLR is that it is more interpretable, transparent and faster at
making predictions. Surprisingly, given the results of the previous case studies, ensem-
bles performed relatively poorly. This may be due to the real data being very noisy with
predictions being made on a very smoothed profile, the same argument can be made for
regression trees. Both of these methods’ predictions have a very high variance somewhat
similar to the real data. Linear regressions avoid a lot of the noise in predictions by enforc-
ing a continuity and in general having far fewer degrees of freedom and thus less likely to
learn patterns in the data instead of the underlying phenomenon. Stepwise regression has
a certain inbuilt protection against overfitting from the significance criteria for terms in the
model using the F-test as described in Chapter 2. When working with real data, it is ex-
pected that the modern approaches to machine learning will perform better, but at the cost
of a far higher model complexity and being less transparent. The ANN network was the
best regression approach that did not use the temporal features of the data, its performance
is further improved upon by adding lagged predictor values to the predictor data in a NLIO
network. Finally using the NARX network, where also the auto-regressive property is ex-
ploited yielded the strongest predictions in its closed loop form when making predictions
based on its past predictions.

75

Chapter 7. Case study 4: Experimental data

Figure 7.10: Bar plot over performances by the statistical learning methods in terms of test set MSE,
from best to worst from left to right.

Table 7.1: Model Performance, in terms of mean square error of prediction on unseen test data for
several statistical learning techniques applied to experimental data recorded from the lab rig. Both
results for direct predictions, as well as for 15 second moving average windows for the methods
were this was tested. For the NARX model, the MSE was computed using only the closed loop
predictions made in the range 5000-9000 seconds.

Case Study 4: Experimental Data
Method Direct predictions Smoothed predictions

Stepwise MLR 0.0854 N/A
Optimised tree 0.1213 0.0958

Optimised Ensemble (LSBoost/Bag) 0.0998 0.0852
Optimised SVR 0.0793 N/A
ANN Regression 0.0764 N/A
NLIO Neural Net 0.0523 N/A
NARX Neural Net 0.0384 N/A

76

Chapter 8
Conclusion

In this thesis, we discuss the use of statistical learning methods for modelling equipment
degradation. This is motivated by necessity, given the difficulty in obtaining first principles
models of this phenomenon. We present the advantages and challenges of this approach
using both simulated and experimental case studies.

8.1 Case study 1: Constant sand production
In the first case study, we study the erosion of a choke valve in a subsea gas lifted oil
production network under constant sand production from the well. The model is presented
in Chapter 3, looking at the model, the erosion under constant sand production should be
a linear phenomena and thus simple to predict. This is what was observed in the results,
with every model being able to make predictions that were very accurate. In this case,
simple and transparent models like partial least squares regression (PLSR) and multiple
linear regression (MLR), and should be preferred over more complex methods such as
support vector regression (SVR) and neural network regression.

8.2 Case studies 2 & 3: Exponential and logistic sand pro-
duction

The second and third case studies are similar to the first case study, except for the addition
of variation in the sand production in the simulation. Since in reality, the sand production is
not fully known, the models are fed a sampled sand production rate with a given sampling
interval. Making the sand production exponential, gave the erosion profile an exponential
trend, but with oscillations corresponding to changes in the control input. In this case study
the accuracy benefits of using more complex models were observed, but with acceptable
performance from simple MLR and regression trees.

The third case study changed the sand production used in the simulations to a logistic
profile. Additionally, stochastic noise was added to the underlying sand production. The

77

Chapter 8. Conclusion

added noise was observed to not exhibit a significant impact on the macroscopic trend of
the erosion. The order of the prediction accuracies observed in the exponential case was
somewhat altered. This is attributed to the noise added in Case Study 3. Regression trees
and ensembles of trees are more robust against small predictor noise as a small change in
a predictor value will not change the prediction directly if it still satisfies the same splits.
Thus, for sand rates within a certain interval, the prediction will be the same all else being
equal. This is not true for MLR, SVR and neural networks, where a direct proportionality
from weights is observed, meaning even a small change will perturb the prediction.

Studying the prediction profiles versus the true erosion profiles show us the weakness
of the methods are the inaccurate sand production data coming from the sampling interval.
This was confirmed by seeing a large improvement in accuracy by lowering sampling
intervals, but this is not cost effective or practical in the real world. Domain knowledge
tells us that sand production rates have trends that generally hold across multiple sampling
intervals. We thus replace the sampled sand production at each point with a modelled sand
production. The modelled values come from linear extrapolation using the two previously
observed values until a new sample is observed.

Up to this point, we have showed how to accurately model the erosion rate, we then
investigate a time series approach to modelling the cumulative erosion with a non-linear
auto-regressive exogenous neural network (NARX). To be useful for these applications,
long and accurate forecasts are necessary while in closed loop configurations, that is with-
out using true values of the previous response, but rather the networks own previous pre-
dictions. Forecasting 250 days into the future, using only the exogenous variables observed
over this time (closed loop configuration), the cumulative error is only 1.6%.

Conclusions from these results are that modelling the erosion rate using statistical
learning models is convenient. For inference, the accuracy of stepwise MLR and simple
regression trees perform well, being only hindered by the strong co-linearity’s in the data,
PCA can help with this problem. Modern machine learning methods were more accurate,
but at a significant cost to interpretability. The approaches discussed above have shown
themselves to be accurate, and could improve control strategies by forecasting degradation
by statistical learning, for instance in a model predictive control setting. Having shown
that the approach performs well on in-silico case studies, we investigate if the statistical
methods also perform well on real world data.

8.3 Case study 4: Experimental data
Having shown that statistical learning methods perform well on simulated degradation
data, we in this section test the merits of this approach experimental data from a laboratory
rig. We went to several different set ups to obtain usable experimental data (see 4), the final
approach uses the differential pressure to represent the degradation of a probe blocking the
fluid flow. The differential pressure data was very noisy, and to capture the trend caused
by the degradation of the probe a 150 second moving average was used on the measured
differential pressure.

Linear regression is able to capture the overall trend, but does not perfectly capture
the non-linearity, this is unsurprising for a first order interactions model. Note that the
variance of predictions are very low. SVR was better able to capture the non-linearity in

78

the differential pressure profile, maintaining a low variance of prediction. This is attributed
to the fact that these are models based on forming a continuous hyperplane.

Trees and ensembles of trees both had a high variance in their respective predictions.
This can be attributed to applying discrete models to data with a large amount of noise.
To compensate for this, a moving average was applied to the predictions. Thus yielding
state estimates at a later time since one needs to wait for the moving average window to
be centred on a given point to know the value of the smoothed prediction. Even applying
this smoothing filter, the predictions do not outperform the aforementioned hyperplane
methods (SVR & MLR) and is thus not advisable for any application for this case study.

Neural networks were then tested. First a simple regression network, as with SVR it
is able to capture the non-linearity in the profile. This is to be expected as a non-linear
(sigmoid) activation function was used. The neural network had slightly more accurate
predictions than the SVR model. Building upon the neural network, we then tested a
NLIO model, using lagged predictor values to make predictions. The hypothesis that
these lagged predictors carry useful information is supported by their inclusion improving
accuracy over a simple regression network.

Improving further on the NLIO results, there seems to be a significant auto-correlation
in the response data, this is utilised in the model by using a NARX model. This model
yielded far smoother predictions by using the previous prediction value as a important
covariate, making sure predictions close to each other in time have similar values.

The NARX network provided the strongest predictions, and should be used if predic-
tion accuracy is most important and generalisation is not too important. If inference and
transparency is the objective, stepwise linear regression with interactions was able to give
accurate enough predictions to be useful for applications.

8.4 Further Work
In the experimental case study, the most important future work that should be done to
further this approach is to set up a stronger methodology for directly measuring the erosion
instead of indirectly. This could be done by improving upon the pixel counting method
with better image processing, better cameras and probes with a stronger contrast to the
background. Another possibility could be the use of weighing after set time intervals to
measure lost mass, but this method would require a lot of time to make a large data set.

Other modelling approaches could also be tested. To be useful for the applications
we are investigating, the ability to make accurate predictions about the state of the system
without observing it often is important. For time series models, this means that we need
models able to make forecasts accurately far into the future. In this work, the only method
with an auto-regressive component tested was the NARX neural net, it was chosen due
to its ability to use exogenous variables and past predictions to forecast into the future.
There are however several more time-series methods that may have merit and should be
investigated, such as the ARIMAX model.

79

80

Bibliography

[1] G James, D. Witten, T Haste, and R Tibshirani. An Introduction to Statistical Learn-
ing. Springer, 2017.

[2] A Verheyleweghen and J Jäschke. Oil production optimization of several wells sub-
ject to choke degradation. IFAC-PapersOnLine, 51, 2018.

[3] Gisle Otto Eikrem, Lars Imsland, and Bjarne Foss. Stabilization of gas lifted wells
based on state estimation. IFAC Proceedings Volumes, 37(1):323 – 328, 2004. 7th
International Symposium on Advanced Control of Chemical Processes (ADCHEM
2003), Hong-Kong, 11-14 January 2004.

[4] Siri Kildal Hansen. Modelling Failure Mechanisms in Subsea Equipment. PhD thesis,
NTNU, 2016.

[5] X. Si, W. Wang, C. Hu, D. Zhou, and M. G. Pecht. Remaining useful life estimation
based on a nonlinear diffusion degradation process. IEEE Transactions on Reliabil-
ity, 61(1):50–67, 2012.

[6] D Krishnamoorthy, B Foss, and S Skogestad. Real-time optimization under uncer-
tainty applied to a gas lifted well network. Processes, Real-Time Optimization (Spe-
cial Issue), 2016.

[7] M. H. Hettema, J. S. Andrews, E. Papamichos, and M. Blaasmo. The relative im-
portance of drawdown and depletion in sanding wells: Predictive models compared
with data from the statfjord field. Journal of Petroleum Technology, 2006.

[8] Son Tung Pham. Estimation of sand production rate using geomechanical and hy-
dromechanical models. Advances in Materials Science and Engineering, 2017.

[9] G James, D. Witten, T Haste, and R Tibshirani. An Introduction to Statistical Learn-
ing. Springer, 2017.

[10] J Friedman, T Hastie, and R Tibshirani. The Elements of statistical learning, Data
Mining, Inference, and Prediction. Springer, 2017.

81

[11] G James, D. Witten, T Haste, and R Tibshirani. An Introduction to Statistical Learn-
ing. Springer, 2017.

[12] S. Wold and Sjöwström. Pls-regression: a basic tool of chemometrics. Chemometrics
and Intelligent Laboratory Systems, 58:109–130, 2001.

[13] A. E. Stott, S. Kanna, D. P. Mandic, and W. T. Pike. ”an online nipals algorithm for
partial least squares,”. In 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP),, New Orleans, LA, 2017, pp. 4177-4181., 2017.

[14] J Friedman, T Hastie, and R Tibshirani. The Elements of statistical learning, Data
Mining, Inference, and Prediction. Springer, 2017.

[15] Harris Drucker, Chris C, Linda Kaufman, Alex Smola, and Vladimir Vapnik. Support
vector regression machines. Advances in Neural Information Processing Systems, 9,
11 2003.

[16] J Friedman, T Hastie, and R Tibshirani. The Elements of statistical learning, Data
Mining, Inference, and Prediction. Springer, 2017.

[17] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine.
The Annals of Statistics, 29(5):1189–1232, 2001.

[18] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners, 2020.

[19] J Friedman, T Hastie, and R Tibshirani. The Elements of statistical learning, Data
Mining, Inference, and Prediction. Springer, 2017.

[20] P. Norvig and S. Russel. ,Artificial Intelligence: A Modern Approach. Prentice Hall,
3rd edition, 2009.

[21] J Friedman, T Hastie, and R Tibshirani. The Elements of statistical learning, Data
Mining, Inference, and Prediction. Springer, 2017.

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[23] Peter I. Frazier. A tutorial on bayesian optimization, 2018.

[24] DNV-GL. Recommended practice rp-o501: Managing sand production and erosion.,
2015. https://rules.dnvgl.com/docs/pdf/dnvgl/RP/2015-08/
DNVGL-RP-O501.pdf.

82

http://www.deeplearningbook.org
https://rules.dnvgl.com/docs/pdf/ dnvgl/RP/2015-08/DNVGL-RP-O501.pdf
https://rules.dnvgl.com/docs/pdf/ dnvgl/RP/2015-08/DNVGL-RP-O501.pdf

[25] Timur Bikmukhametov and Johannes Jäschke. Combining machine learning and
process engineering physics towards enhanced accuracy and explainability of data-
driven models. Computers Chemical Engineering, 138:106834, 2020.

[26] Eugen Diaconescu. The use of narx neural networks to predict chaotic time series.
WSEAS Transactions on Computer Research, 3, 03 2008.

[27] Tamal Datta Chaudhuri and Indranil Ghosh. Artificial neural network and time series
modeling based approach to forecasting the exchange rate in a multivariate frame-
work, 2016.

[28] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Sparse identification of
nonlinear dynamics with control (sindyc). IFAC-PapersOnLine, 49(18):710 – 715,
2016. 10th IFAC Symposium on Nonlinear Control Systems NOLCOS 2016.

[29] L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classification and Regression
Trees. Taylor & Francis, 1984.

[30] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl.
CasADi – A software framework for nonlinear optimization and optimal control.
Mathematical Programming Computation, 11(1):1–36, 2019.

83

84

Appendix A
Simulation model

In this appendix, the scripts that were used to simulate erosion data as discussed in Section
3. The appedix contains 6 scripts, one containing the initial conditions of the gas lifted
system (Section A.1), one containing parameters (Section A.2), function creating sand
production profile (Section A.3), a function for linearly modelling the sand production
(Section A.4), the model itself implemented using CasADi30 (Section A.5) as well as the
script that runs the model (Section A.6).

A.1 InitialConditionGasLift

1

2 function [dx0,z0,u0] = InitialConditionGasLift_5
3

4 %% Differential states
5 %well erosion
6 ER0 = [1,1,1]'/(365*24*3600); %[mm] x(1-3)
7

8 dx0 = vertcat(ER0);
9

10 %% Algebraic states
11 %pressure - annulus
12 p_ai0 = [61.9230, 62.1454, 62]';%[bar] z(1-3)
13 %pressure - well head
14 p_wh0 = [42.5851, 45.3082, 44]';%[bar] z(4-6)
15 %pressure - injection point
16 p_wi0 = [56.8713, 57.1119, 57]';%[bar] z(7-9)
17 %pressure - below injection point (bottom hole)
18 p_bh0 = [96.1433, 98.3867, 96.25]';%[bar] z(10-12)
19 %density - annulus
20 rho_ai0 = [0.4949, 0.4967, 0.4955]';%[100 kg/m3] z(13-15)
21 %mixture density in tubing
22 rho_m0 = [2.3400, 2.2359, 2.3]';%[100 kg/m3] z(16-18)
23 %well injection flow rate

85

24 w_iv0 = [1.5000, 1.5000,1.5000]';%[kg/s] z(19-21)
25 %wellhead total production rate
26 w_pc0 = [30.1212, 33.3235,32]';%[kg/s] z(22-24)
27 %wellhead gas production rate
28 w_pg0 = [3.1928, 4.0168, 4]';%[kg/s] z(25-27)
29 %wellhead oil production rate
30 w_po0 = [26.9283, 29.3067, 28]';%[kg/s] z(28-30)
31 %oil rate from reservoir
32 w_ro0 = [26.9283, 29.3067, 28]';%[kg/s] z(31-33)
33 %gas rate from reservoir
34 w_rg0 = [26.9283, 35.1680, 28]';%[0.1 kg/s] z(34-36)
35 %riser head pressure
36 p_rh0 = 22.9558;%[bar] z(37)
37 %mixture density in riser
38 rho_r0 = 1.3618;%[100 kg/m3] z(38)
39 %manifold pressure
40 p_m0 = 32.8920;%[bar] z(39)
41 %riser head total production rate
42 w_pr0 = 63.4446;%[kg/s] z(40)
43 %riser head total oil production rate
44 w_to0 = 85;%[kg/s] z(41)
45 %riser head total gas production rate
46 w_tg0 = 7.2096;%[kg/s] z(42)
47

48 %gas holdup @ annulus
49 m_ga0 = [1.0568, 1.0606, 1.0644]';%[ton] z(43-45)
50 %gas holdup @ well
51 m_gt0 = [0.7470, 0.7956, 0.8442]';%[ton] z(46-48)
52 %oil holdup @ well
53 m_ot0 = [6.3000, 5.8047, 5.3094]';%[ton] z(49-51)
54 %gas holdup @ riser
55 m_gr0 = 0.1265;%[ton] z(52)
56 %oil holdup @ riser
57 m_or0 = 0.9863;%[ton] z(53)
58 %particle impact velocity
59 V_p0 = [2,2,2]'; % z(54-56)
60 %mixed dynamic viscosity
61 mu_f0 = [0.001,0.001,0.001]'; % z(57-59)
62 %g1
63 g10 = [0.2,0.2,0.2]'; % z(60-62)
64

65 z0 = vertcat(p_ai0,p_wh0,p_wi0,p_bh0,rho_ai0,
66 rho_m0,w_iv0,w_pc0,w_pg0,w_po0,...
67 w_ro0,w_rg0,p_rh0,rho_r0,p_m0,w_pr0,w_to0,
68 w_tg0,m_ga0,m_gt0,m_ot0,m_gr0,m_or0,V_p0,mu_f0,g10);
69

70 %% Inputs
71 %gas lift rate
72 w_gl0 = [0.5,0.5,0.5]'; %[kg/s]
73

74 u0 = vertcat(w_gl0);

86

A.2 ParametersGasLift

1 function par = ParametersGasLift(n,sandArray)
2

3 %number of wells
4 par.n_w = 3;
5 %gas constant
6 par.R = 8.314; %[m3 Pa/(K mol)]
7 %molecular weigth
8 par.Mw = 20e-3; %[kg/mol] -- Attention: this unit is not usual
9

10 %% Properties
11 %density of oil - dim: nwells x 1
12 par.rho_o = 8*1e2; %[kg/m3]
13 %riser oil density
14 par.rho_ro = par.rho_o; %[kg/m3]
15 %1cP oil viscosity
16 par.mu_oil = 1*0.001; %[Pa s or kg/(m s)]
17

18 %% Project
19 %well parameters - dim: nwells x 1
20 %length
21 par.L_w = [1500;1500;1500]; %[m]
22 %height
23 par.H_w = [1000;1000;1000]; %[m]
24 %diameter
25 par.D_w = [0.121;0.121;0.121]; %[m]
26 %well transversal area
27 par.A_w = pi.*(par.D_w/2).ˆ2;%[m2]
28

29 %well below injection - [m]
30 par.L_bh = [500;500;500];
31 par.H_bh = [500;500;500];
32 par.D_bh = [0.121;0.121;0.121];
33 par.A_bh = pi.*(par.D_bh/2).ˆ2;%[m2]
34

35 %annulus - [m]
36 par.L_a = par.L_w;
37 par.H_a = par.H_w;
38 par.D_a = [0.189;0.189;0.189];
39 %volume of the annulus
40 par.V_a = par.L_a.*(pi.*(par.D_a/2).ˆ2 - pi.*(par.D_w/2).ˆ2); %[m3]
41

42 %riser - [m]
43 par.L_r = 500;
44 par.H_r = 500;
45 par.D_r = 0.121;
46 %riser areas
47 par.A_r = pi.*(par.D_r/2).ˆ2;%[m2]
48

49 %injection valve characteristics - dim: nwells x 1
50 par.C_iv = [0.1e-3;0.1e-3;0.1e-3];%[m2]
51 %production valve characteristics - dim: nwells x 1
52 par.C_pc = [2e-3;2e-3;2e-3];%[m2]
53 %riser valve characteristics

87

54 par.C_pr = [10e-3];%[m2]
55

56 %parameters
57 %reservoir pressure
58 par.p_res = [150;155;160]; % [bar]
59 %Annulus temperature
60 par.T_a = [28+273;28+273;28+273]; %[K]
61 %well temperature
62 par.T_w = [32+273;32+273;32+273]; %[K]
63 %riser temperature
64 par.T_r = 30+273; %[K]
65 %separator pressure
66 par.p_s = 20; %[bar]
67

68 %% Reservoir parameters
69 %System parameters for nominal model
70 par.GOR = [0.10;0.12;0.11];
71 par.PI = [5;5;5];
72

73 %% For scaling the noise
74 % pressure meters = 1
75 % flow meters = 0.1
76 par.scale = [1,1,1,1,1,1,0.1,0.1,0.1,0.1,0.1,0.1,1,1,0.1,0.1]';
77

78 %% For erosion model
79 % Sand
80 par.d_p = 2.5*10ˆ(-4); %[m] particle diameter
81 par.rho_p = 2.5*10ˆ3; %[kg/m3] particle density
82 par.mdot_p = sandArray(n+1); %[kg/s] sand rate
83

84 % Choke
85 par.K = 2*10ˆ(-9); %[-] material erosion constant
86 par.rho_t = 7800; %[kg/m3] sensity CS
87 par.r = 0.2; %[m] radius of curvature
88 par.D = 0.05; %[m] Gap between body and cage
89 par.H = 0.15; %[m] Height of gallery
90

91 % Constants
92 par.C_unit = 1000; % Unit conversion factor: now in mm/s
93 par.C_1 = 1.25; %[-] Model/geometry factor
94 par.n = 2.6; %[-] Velocity coefficient
95 par.GF = 2; %[-] Geometry factor
96

97 % Precalculations of erosion in choke:
98 par.alpha = atan(1/sqrt(2*par.r));
99 par.F = 0.6*(sin(par.alpha) + 7.2*(sin(par.alpha) - ...

sin(par.alpha)ˆ2))ˆ0.6 * (1-exp(-20*par.alpha));
100 par.A_g = 2*par.H*par.D; %[m2] Effective gallery area
101 par.A_t = par.D_w(1)ˆ2*pi/(4*sin(par.alpha)); % Area exposed to erosion
102 par.ER_constant = par.K*par.F*par.C_1*par.GF*par.mdot_p ...

*par.C_unit/(par.rho_t*par.A_t);

88

A.3 Sandproductionrate

1

2 function [sandArray,sandArrayNoise,stepSandArray] = ...
sandproductionrate(initial_mdot,days,type,k)

3

4 sandArray = [initial_mdot];
5

6

7 if (type == 'exp')
8 for n = 1:days
9 sandArray = [sandArray initial_mdot*(0.5+exp(k*n))];

10 end
11

12 stepSandArray = [];
13 step = 1;
14

15 for n = 1:days
16 stepSandArray = [stepSandArray sandArray(step)];
17 if mod(n,30) == 0
18 step = n
19

20 end
21

22 end
23 end
24

25 if (type == 'log')
26 for n = 1:days
27 newVal = (10*initial_mdot)/(1+exp(-k*(n-days/2)));
28 sandArray = [sandArray newVal];
29 end
30

31 stepSandArray = [];
32 step = 1;
33

34 for n = 1:days
35 stepSandArray = [stepSandArray sandArray(step)];
36 if mod(n,30) == 0
37 step = n
38

39 end
40

41 end
42 end
43

44 sandArrayNoise = sandArray + 0.1 * rand(1, length(sandArray));
45

46 end

89

A.4 ModelSandArray

1

2 %% Model sand production rate with interpolation
3

4 function modelSandArray = modelSandProdRate(sandArray,dt)
5

6 modelSandArray = []
7

8 days = length(stepSandArray)
9

10 modelSandArray(1) = sandArray(1);
11 ∆Sand = 0;
12

13 for i = 2:days
14

15 if i ≤ dt
16 modelSandArray(i) = sandArray(i);
17 end
18

19 modelSandArray(i) = modelSandArray(i-1);
20

21 if mod(i,dt) == 0
22 ∆Sand = (sandArray(i) - sandArray(i-dt+1))/dt;
23 end
24

25 modelSandArray(i) = modelSandArray(i-1) + ∆Sand;
26

27 if mod(i,dt) == 0
28 modelSandArray(i) = sandArray(i)
29 end
30

31 end
32

33

34

35 figure(1)
36 plot(1:500,modelSandArray(1:500),'b')
37 hold on
38 plot(1:500,sandArray(1:500),'r')
39 legend({'Model Sand Prod Rate','Sample Sand Prod Rate'})
40 title('Sand production rates, modelled, sampled and true')
41

42 end

A.5 WellPlantModel

1

2

3 function [xk,zk] = WellPlantModel(dx0,z0,u0,par)
4

5

6

90

7 %% Parameters
8 %number of wells
9 n_w = par.n_w; %[]

10 %gas constant
11 R = par.R; %[m3 Pa /K /mol]
12 %molecular weigth
13 Mw = par.Mw; %[kg/mol?]
14

15 %properties
16 %density of oil - dim: nwells x 1
17 rho_o = par.rho_o; %[kg/m3]
18 %riser oil density
19 rho_ro = par.rho_ro;%[kg/m3]
20 %1cP oil viscosity
21 mu_oil = par.mu_oil;% [Pa s]
22

23 %project
24 %well parameters - dim: nwells x 1
25 L_w = par.L_w; %[m]
26 H_w = par.H_w; %[m]
27 D_w = par.D_w; %[m]
28 A_w = par.A_w;%[m2]
29

30 %well below injection - [m]
31 L_bh = par.L_bh;
32 H_bh = par.H_bh;
33 D_bh = par.D_bh;
34 A_bh = par.A_bh;%[m2]
35

36 %annulus - [m]
37 H_a = par.H_a;
38 V_a = par.V_a; %[m3]
39

40 %riser - [m]
41 L_r = par.L_r;
42 H_r = par.H_r;
43 D_r = par.D_r;
44 A_r = par.A_r;%[m2]
45

46 %injection valve characteristics - dim: nwells x 1
47 C_iv = par.C_iv;%[m2]
48 %production valve characteristics - dim: nwells x 1
49 C_pc = par.C_pc;%[m2]
50 %riser valve characteristics
51 C_pr = par.C_pr;%[m2]
52

53 %% For erosion model
54 % Sand
55 d_p = par.d_p; %[m] particle diameter
56

57 % Choke
58 K = par.K; %[-] material erosion constant
59 rho_t = par.rho_t; %[kg/m3] sensity CS
60 r = par.r; %[m] radius of curvature
61 D = par.D; %[m] Gap between body and cage
62 H = par.H; %[m] Height of gallery
63

91

64 % Constants
65 C_unit = par.C_unit; % Unit conversion factor: now in mm/s
66 C_1 = par.C_1; %[-] Model/geometry factor
67 n = par.n; %[-] Velocity coefficient
68 GF = par.GF; %[-] Geometry factor
69

70 % Precalculations of erosion in choke:
71 alpha = par.alpha;
72 F = par.F;
73 A_g = par.A_g; %[m2] Effective gallery area
74 G = 1; % THIS MUST BE CHANGED
75 ER_constant = par.ER_constant;
76

77 gma = d_p./D;
78

79 %% CasADi Variables
80 %%%%%%%%%%%%%%%%%%%%%
81 % Differential states
82 %%%%%%%%%%%%%%%%%%%%%
83

84 %erosion rate
85 ER = MX.sym('ER',n_w); %[s] x(1-3)
86

87 %%%%%%%%%%%%%%%%%%%%%
88 % Algebraic states
89 %%%%%%%%%%%%%%%%%%%%%
90

91 %pressure - annulus
92 p_ai = MX.sym('p_ai',n_w);%[bar] z(1-3)
93 %pressure - well head
94 p_wh = MX.sym('p_wh',n_w);%[bar] z(4-6)
95 %pressure - injection point
96 p_wi = MX.sym('p_wi',n_w);%[bar] z(7-9)
97 %pressure - below injection point (bottom hole)
98 p_bh = MX.sym('p_bh',n_w);%[bar] z(10-12)
99 %density - annulus

100 rho_ai = MX.sym('rho_ai',n_w);%[100 kg/m3] z(13-15)
101 %mixture density in tubing
102 rho_m = MX.sym('rho_m',n_w);%[100 kg/m3] z(16-18)
103 %well injection flow rate
104 w_iv = MX.sym('w_iv',n_w);%[kg/s] z(19-21)
105 %wellhead total production rate
106 w_pc = MX.sym('w_pc',n_w);%[kg/s] z(22-24)
107 %wellhead gas production rate
108 w_pg = MX.sym('w_pg',n_w);%[kg/s] z(25-27)
109 %wellhead oil production rate
110 w_po = MX.sym('w_po',n_w);%[kg/s] z(28-30)
111 %oil rate from reservoir
112 w_ro = MX.sym('w_ro',n_w);%[kg/s] z(31-33)
113 %gas rate from reservoir
114 w_rg = MX.sym('w_rg',n_w);%[0.1 kg/s] z(34-36)
115 %riser head pressure
116 p_rh = MX.sym('p_rh',1);%[bar] z(37)
117 %mixture density in riser
118 rho_r = MX.sym('rho_r',1);%[100 kg/m3] z(38)
119 %manifold pressure
120 p_m = MX.sym('p_m',1);%[bar] z(39)

92

121 %riser head total production rate
122 w_pr = MX.sym('w_pr',1);%[kg/s] z(40)
123 %riser head total oil production rate
124 w_to = MX.sym('w_to',1);%[kg/s] z(41)
125 %riser head total gas production rate
126 w_tg = MX.sym('w_tg',1);%[kg/s] z(42)
127 %gas holdup @ annulus
128 m_ga = MX.sym('m_ga',n_w);%[ton] z(43-45)
129 %gas holdup @ well
130 m_gt = MX.sym('m_gt',n_w);%[ton] z(46-48)
131 %oil holdup @ well
132 m_ot = MX.sym('m_ot',n_w);%[ton] z(49-51)
133 %gas holdup @ riser
134 m_gr = MX.sym('m_gr',1);%[ton] z(52)
135 %oil holdup @ riser
136 m_or = MX.sym('m_or',1);%[ton] z(53)
137 %particle impact velocity
138 V_p = MX.sym('V_p',n_w);% z(54-56)
139 %mixed dynamic viscosity
140 mu_f = MX.sym('mu_f',n_w);% z(57-59)
141 %g1
142 g1 = MX.sym('g1',n_w);% z(60-62)
143

144 %%%%%%%%%%%%%%%%%%%%%
145 % Control inputs
146 %%%%%%%%%%%%%%%%%%%%%
147

148 %gas lift rate
149 w_gl = MX.sym('w_gl',n_w); %[kg/s]
150

151 %%%%%%%%%%%%%%%%%%%%%
152 % Parameters
153 %%%%%%%%%%%%%%%%%%%%%
154

155 %reservoir pressure
156 p_res = MX.sym('p_res',n_w);
157 %productivity index
158 PI = MX.sym('PI',n_w); %[kg sˆ-1 bar-1]
159 %GasOil ratio
160 GOR = MX.sym('GOR',n_w); %[kg/kg]
161 %Annulus temperature
162 T_a = MX.sym('T_a',n_w); %[oC]
163 %well temperature
164 T_w = MX.sym('T_w',n_w); %[oC]
165 %riser temperature
166 T_r = MX.sym('T_r',1); %[oC]
167 %separator pressure
168 p_s = MX.sym('p_s',1); %[bar]
169

170

171 %time transformation: CASADI integrates always from 0 to 1 and the ...
USER does the time

172 %scaling with T.
173 T = MX.sym('T',1); %[s]
174

175

176 %% Modeling

93

177 %gas fraction (mass) of the well holdup - avoiding zero division
178 xGw = (m_gt.*1e3./max(1e-3,(m_gt.*1e3+m_ot.*1e3)));
179 xOw = 1 - xGw;
180 %gas fraction (mass) of the riser holdup
181 xGr = (m_gr.*1e3./(m_gr.*1e3+m_or.*1e3));
182 xOr = 1 - xGr;
183

184 % ===================================
185 % Well model
186 % ===================================
187 % algebraic equations (all symbolic)
188 %annulus pressure - %g = 9.81
189 f1 = -p_ai.*1e5 + ((R.*T_a./(V_a.*Mw) + ...

9.81.*H_a./V_a).*m_ga.*1e3) + ...
(Mw./(R.*T_a).*((R.*T_a./(V_a.*Mw) + ...
9.81.*H_a./V_a).*m_ga.*1e3)).*9.81.*H_a;

190 %well head pressure
191 f2 = -p_wh.*1e5 + ((R.*T_w./Mw).*(m_gt.*1e3./(L_w.*A_w + ...

L_bh.*A_bh - m_ot.*1e3./rho_o))) - ((m_gt.*1e3+m_ot.*1e3 ...
)./(L_w.*A_w)).*9.81.*H_w/2;

192 %well injection point pressure
193 f3 = -p_wi.*1e5 + (p_wh.*1e5 + ...

9.81./(A_w.*L_w).*max(0,(m_ot.*1e3+m_gt.*1e3-rho_o.*L_bh.*A_bh)).*H_w) ...
+ (128.*mu_oil.*L_w.*w_pc./(3.14.*D_w.ˆ4.*((m_gt.*1e3

194 + m_ot.*1e3).*p_wh.*1e5.*Mw.*rho_o)./(m_ot.*1e3.*p_wh.*1e5.*Mw + ...
rho_o.*R.*T_w.*m_gt.*1e3)));

195 %bottom hole pressure
196 f4 = -p_bh.*1e5 + (p_wi.*1e5 + rho_o.*9.81.*H_bh + ...

128.*mu_oil.*L_bh.*w_ro./(3.14.*D_bh.ˆ4.*rho_o));
197 %gas density in annulus
198 f5 = -rho_ai.*1e2 +(Mw./(R.*T_a).*p_ai.*1e5);
199 %fluid mixture density in well
200 f6 = -rho_m.*1e2 + ((m_gt.*1e3 + ...

m_ot.*1e3).*p_wh.*1e5.*Mw.*rho_o)./(m_ot.*1e3.*p_wh.*1e5.*Mw + ...
rho_o.*R.*T_w.*m_gt.*1e3);

201 %well injection flow rate
202 f7 = -w_iv + C_iv.*sqrt(rho_ai.*1e2.*max(0,(p_ai.*1e5 - p_wi.*1e5)));
203 %wellhead prodution rate
204 f8 = -w_pc + 1.*C_pc.*sqrt(rho_m.*1e2.*max(0,(p_wh.*1e5 - p_m.*1e5)));
205 %wellhead gas production rate
206 f9 = -w_pg + xGw.*w_pc;
207 %wellhead oil prodution rate
208 f10 = -w_po + xOw.*w_pc;
209 %oil from reservoir flowrate
210 f11 = -w_ro + PI.*1e-6.*(p_res.*1e5 - p_bh.*1e5);
211 %gas from reservoir production rate
212 f12 = -w_rg.*1e-1 + GOR.*w_ro;
213 %riser head pressure
214 f13 = -p_rh.*1e5 + ((R.*T_r./Mw).*(m_gr.*1e3./(L_r.*A_r))) - ...

((m_gr.*1e3+m_or.*1e3)./(L_r.*A_r)).*9.81.*H_r/2;
215 %riser density
216 f14 = -rho_r.*1e2 + ((m_gr.*1e3 + ...

m_or.*1e3).*p_rh.*1e5.*Mw.*rho_ro)./(m_or.*1e3.*p_rh.*1e5.*Mw ...
+ rho_ro.*R.*T_r.*m_gr.*1e3);

217 %manifold pressure
218 f15 = -p_m.*1e5 + (p_rh.*1e5 + ...

9.81./(A_r.*L_r).*(m_or.*1e3+m_gr.*1e3).*H_r) + ...

94

(128.*mu_oil.*L_r.*w_pr./(3.14.*D_r.ˆ4.*((m_gr.*1e3 + ...
m_or.*1e3).*p_rh.*1e5.*Mw.*rho_ro)./(m_or.*1e3.*p_rh.*1e5.*Mw ...
+ rho_ro.*R.*T_r.*m_gr.*1e3)));

219 %total production rate of well
220 f16 = -w_pr + 1.*C_pr.*sqrt(rho_r.*1e2.*(p_rh.*1e5 - p_s.*1e5));
221 %oil total production rate
222 f17 = -w_to + xOr.*w_pr;
223 %gas total production rate
224 f18 = -w_tg + xGr.*w_pr;
225 % setting mass balances as algebraic equations since the
226 % dynamics of ER is on a much larger time scale
227 f19 = (w_gl - w_iv).*1e-3;
228 f20 = (w_iv + w_rg.*1e-1 - w_pg).*1e-3;
229 f21 = (w_ro - w_po).*1e-3;
230 f22 = (sum(w_pg) - w_tg).*1e-3 ;
231 f23 = (sum(w_po) - w_to).*1e-3 ;
232 f24 = - V_p + 3/(4*A_g)*(w_po/rho_o + R*T_w.*w_pg./(p_wh.*10ˆ5*Mw));
233 f25 = - mu_f + mu_oil.*(w_po/rho_o)./(w_po./rho_o + ...

R.*T_w.*w_pg./(p_wh.*10ˆ5*Mw));
234 % Assuming that gamma < 0 (checked in main)
235 f26 = -g1 + gma/0.1;
236

237 % differential equations - (all symbolic) - [ton]
238 % Erosion rate
239 df1 = ER_constant.*g1.*(V_p).ˆn;
240

241 %% Building system for integration
242 % Form the DAE system
243 diff = vertcat(df1);
244 alg = vertcat(f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16
245 ,f17,f18,f19,f20,f21,f22,f23,f24,f25,f26);
246

247 % give parameter values
248 alg = substitute(alg,p_res,par.p_res);
249 alg = substitute(alg,p_s,par.p_s);
250 alg = substitute(alg,T_a,par.T_a);
251 alg = substitute(alg,T_w,par.T_w);
252 alg = substitute(alg,T_r,par.T_r);
253

254 diff = substitute(diff,p_res,par.p_res);
255 diff = substitute(diff,T_w,par.T_w);
256

257 % concatenate the differential and algebraic states
258 x_var = vertcat(ER);
259 z_var = vertcat(p_ai,p_wh,p_wi,p_bh,rho_ai,rho_m,w_iv,
260 w_pc,w_pg,w_po,w_ro,w_rg,p_rh,rho_r,p_m,...
261 w_pr,w_to,w_tg,m_ga,m_gt,m_ot,m_gr,m_or,V_p, mu_f,g1);
262 p_var = vertcat(w_gl,GOR,PI,T);
263

264 %end modeling
265 %% Casadi commands for integration
266 %declaring function in standard DAE form (scaled time)
267 dae = struct('x',x_var,'z',z_var,'p',p_var,'ode',T*diff,'alg',alg);
268

269 %calling the integrator, the necessary inputs are: label; ...
integrator; function with IO scheme of a DAE (formalized); ...
struct (options)

95

270 F = integrator('F','idas',dae);
271

272 %integration results
273 Fend = F('x0',dx0,'z0',z0,'p',[u0;par.GOR;par.PI;par.T]);
274

275 %extracting the results (from symbolic to numerical)
276 xk = full(Fend.xf);
277 zk = full(Fend.zf);
278 end

96

A.6 MainErodingValves

1

2 %%
3 %
4

5 %
6 clear
7 close all
8 clc
9

10 %noise --> For reproducibility
11

12 rng(1)
13

14 %%
15

16 %% Initializing the table to store multiple time series:
17

18 nTimeseries = 200;
19 dataSz = [nTimeseries 10];
20 varNames = {'Num','uArray', 'yMeas','erosionArray', 'H', 'x0', 'xk', ...

'yk', 'z0', 'zk'};
21 varTypes = {'double', 'cell', 'cell', 'cell', 'cell', 'cell', 'cell', ...

'cell', 'cell', 'cell'};
22 Data = table('Size', dataSz, 'VariableNames', varNames, ...

'VariableTypes', varTypes);
23

24

25

26 %% Model initialization
27 sandArray = sandproductionrate(0.01,500);
28

29 for i_timeseries = 1:nTimeseries
30

31

32

33 % initial condition (pre-computed)
34 [x0,z0,u0] = InitialConditionGasLift_5;
35

36 % model parameters
37 par = ParametersGasLift(1,sandArray);
38

39 %states to measurement mapping function
40 H = zeros(16,length(z0));
41 %pai - annulus pressure, well 1-3
42 H(1,1) = 1;
43 H(2,2) = 1;
44 H(3,3) = 1;
45 %pwh - well head pressure, well 1-3
46 H(4,4) = 1;
47 H(5,5) = 1;
48 H(6,6) = 1;
49 %wro - wellhead gas production rate, well 1-3
50 H(7,25) = 1;

97

51 H(8,26) = 1;
52 H(9,27) = 1;
53 %wrg - wellhead oil production rate, well 1-3
54 H(10,28) = 1;
55 H(11,29) = 1;
56 H(12,30) = 1;
57 %prh - riser head pressure
58 H(13,37) = 1;
59 %pm - manifold pressure
60 H(14,39) = 1;
61 %wto - riser head total oil production rate
62 H(15,41) = 1;
63 %wtg - riser head total gas production rate
64 H(16,42) = 1;
65

66

67 %% Simulation parameters
68

69 % number of simulation steps
70 nSim = 500; % time_total = 3600*24*500; %[s]
71

72

73

74 [dx0,z0,u0] = InitialConditionGasLift_5
75

76 %sampling time /control interval /1 simulation iteration time
77 par.T = 3600*24; % [s]
78

79

80

81

82 %% Simulation initialization
83 xk = x0;
84 zk = z0;
85 uk = u0;
86 yk = H*z0;
87

88

89

90 %%
91

92

93 fprintf('Time series number: >>> %0.0f \n',i_timeseries)
94 %creating random array for the inputs
95 uArray = [];
96 %bounds on the inputs
97 uMin = 1.0;
98 uMax = 2.5;
99

100 for t = 0:nSim
101 if rem(t,50) == 0 %every 50 days we change the inputs
102 uk = (uMax - uMin).*rand(3,1) + uMin;
103 end
104 uArray = [uArray, uk];
105 end
106

107 % measurements (for plotting)

98

108 yMeas = yk;
109 erosionArray = xk;
110

111

112 for u = 1:nSim
113

114 %fprintf(' iteration >>> %0.0f \n',t)
115

116 % integrating the system
117 [xk,zk] = WellPlantModel(xk,zk,uArray(:,u),par);
118 par = ParametersGasLift(u,sandArray);
119 par.T = 3600*24;
120 % Adding noise to the measurements
121 yMeas = [yMeas, H*zk + par.scale.*randn(length(yk),1)];
122 erosionArray = [erosionArray, xk];
123 end
124

125

126 Data(i_timeseries, :) = {i_timeseries, uArray, yMeas, erosionArray, H, ...
x0, xk, yk, z0, zk};

127

128 end
129

130 %%
131 filename = 'datamatrix_'+string(nTimeseries)+'.mat';
132 save(filename, 'Data')
133 %% Plotting
134 figure(1)
135

136

137 time = 0:1:500; %[days]
138

139

140 % system inputs
141 subplot(2,1,1)
142 stairs(time,uArray(1,:));
143 hold on
144 stairs(time,uArray(2,:));
145 stairs(time,uArray(3,:));
146

147 legend('Well 1','Well 2','Well 3');
148

149 ylim([0,2.2]);
150 xlabel('Time [day]');
151 ylabel('Gas lift rate [kg/s]');
152

153 % erosion
154 subplot(2,1,2);
155 plot(time,transpose(Data.erosionArray{1,1}(1,:)));
156 hold on
157 plot(time,transpose(Data.erosionArray{1,1}(2,:)));
158 plot(time,transpose(Data.erosionArray{1,1}(3,:)));
159 ylim([0,50.2]);
160

161 legend('Well 1','Well 2','Well 3');
162

163 xlabel('Time [day]');

99

164 ylabel('Erosion [mm]');
165

166 figure(2)
167

168 % Pressure
169 subplot(2,1,1)
170 plot(time,yMeas(4,:));
171 hold on
172 plot(time,yMeas(5,:));
173 plot(time,yMeas(6,:));
174

175 legend('Well 1','Well 2','Well 3');
176

177 %ylim([0,2.2]);
178 xlabel('Time [day]');
179 ylabel('Well head pressure [bar]');
180

181 % erosion
182 subplot(2,1,2);
183 plot(time,yMeas(15,:)); %oil
184 %plot(time,yMeas(14,:)); %gas
185

186

187 xlabel('Time [day]');
188 ylabel('Flowrate [kg/s]');

100

Appendix B
Training and testing script for
simulated data

B.1 Analysis script for Exponential data
To not include two other scripts that are almost identical, only the script used to generate
the plots and models for exponential data will be included in the appendix.

1

2 %% Regression Analysis Script
3 % In this script there are two significant parts, one part that ...

initialises
4 % and pre-processes the training data and one part that takes this ...

data and
5 % feeds it to models for training and testing of machine learning methods.
6

7 %% Initialize training data
8

9 clc
10

11 %pai - annulus pressure, well 1-3
12

13 pai_1 = []; %y1
14

15 %pwh - well head pressure, well 1-3
16

17 pwh_1 = []; %y4
18

19 %wro - wellhead gas production rate, well 1-3
20

21 wro_1 = []; %y7
22

23 %wrg - wellhead oil production rate, well 1-3
24

25 wrg_1 = []; %y10

101

26

27 %prh - riser head pressure
28

29 prh = []; %y13
30

31 %pm - manifold pressure
32

33 pm = []; %y14
34

35 %wto - riser head total oil production rate
36

37 wto = []; %y15
38

39 %wtg - riser head total gas production rate
40

41 wtg = []; %y16
42

43 % Erosion rate of change
44

45 rocArray = []; %erosion well 1
46

47 % Gas Lift Rate
48

49 gLift = []; %control input well 1
50

51 % Sand Rate
52

53 sand = [];
54

55 % Time variable
56

57 time = 1:1:501;
58

59 varNames = {'Sand rate'; 'Annulus Pressure'; 'Well head pressure'; ...
'Well head oil production rate'; 'Well head gas production rate';

60 'Riser head pressure';'Manifold pressure';'Riser head total oil ...
production rate';

61 'Riser head total gas production rate';'Gas lift rate'};
62 %varNamesShorthand = {'P_A '; 'P_wh'; 'WH_OP'; 'WH_GP'; ...

'P_RH';'P_M';'RH_totOP';'RH_totGP';'GLR','ErosROC'};
63

64 responseName = {'Erosion rate of change'};
65

66 [sandArray,sandArrayNoise,stepSandArray] = ...
sandproductionrate(0.01,501,'log',0.015,50); % The function used ...
for generating logit data

67

68 % [sandArray,sandArrayNoise,stepSandArray] =
69 % sandproductionrate(0.01,501,'exp',0.005,50); The function used to make
70 % exponential data
71 %%
72 for i = 1:100
73

74 % Adding 100 timerseries of yMeas to the end of eachother to give more
75 % training data
76

77 %yMeas

102

78 pai_1 = [pai_1 Data.yMeas{i,1}(1,:)];
79 pwh_1 = [pwh_1 Data.yMeas{i,1}(4,:)];
80 wro_1 = [wro_1 Data.yMeas{i,1}(7,:)];
81 wrg_1 = [wrg_1 Data.yMeas{i,1}(10,:)];
82 prh = [prh Data.yMeas{i,1}(13,:)];
83 pm = [pm Data.yMeas{i,1}(14,:)];
84 wto = [wto Data.yMeas{i,1}(15,:)];
85 wtg = [wtg Data.yMeas{i,1}(16,:)];
86 sand = [sand stepSandArray];
87 %uArray
88 gLift = [gLift Data.uArray{i,1}(1,:)];
89

90 %erosionArray - Calculate erosion rate of change
91

92

93 erosArray = Data.erosionArray{i,1}(1,:);
94 roc = diff(erosArray)./diff(time);
95 roc = [roc, roc(500)];
96 rocArray = [rocArray, roc];
97

98

99 end
100

101 %Data without sand, use if working with constant spr data set
102 %RegData = [];
103 %RegData = [transpose(pai_1), transpose(pwh_1), transpose(wro_1), ...

transpose(wrg_1), transpose(prh), transpose(pm), transpose(wto), ...
transpose(wtg), transpose(gLift), transpose(rocArray)];

104 %NNRegData = [transpose(pai_1), transpose(pwh_1), transpose(wro_1), ...
transpose(wrg_1), transpose(prh), transpose(pm), transpose(wto), ...
transpose(wtg), transpose(gLift)];

105 %NNRegResponse = [transpose(rocArray)];
106

107

108 %Data with sandproduction rate, use for non-constant spr
109 RegData = [];
110 RegData = [transpose(sand), transpose(pai_1), transpose(pwh_1), ...

transpose(wro_1), transpose(wrg_1), transpose(prh), transpose(pm), ...
transpose(wto), transpose(wtg), transpose(gLift), ...
transpose(rocArray)];

111 NNRegData = [transpose(sand), transpose(pai_1), transpose(pwh_1), ...
transpose(wro_1), transpose(wrg_1), transpose(prh), transpose(pm), ...
transpose(wto), transpose(wtg), transpose(gLift)];

112 NNRegResponse = [transpose(rocArray)];
113

114 NNRegData = normalize(NNRegData);
115 NNRegResponse = normalize(NNRegResponse);
116 NormRegData = normalize(RegData);
117

118 %% Initialize Test Data
119

120 %pai - annulus pressure, well 1-3
121

122 pai_1_T = []; %y1
123

124 %pwh - well head pressure, well 1-3
125

103

126 pwh_1_T = []; %y4
127

128 %wro - wellhead gas production rate, well 1-3
129

130 wro_1_T = []; %y7
131

132 %wrg - wellhead oil production rate, well 1-3
133

134 wrg_1_T = []; %y10
135

136 %prh - riser head pressure
137

138 prh_T = []; %y13
139

140 %pm - manifold pressure
141

142 pm_T = []; %y14
143

144 %wto - riser head total oil production rate
145

146 wto_T = []; %y15
147

148 %wtg - riser head total gas production rate
149

150 wtg_T = []; %y16
151

152 % Erosion rate of change
153

154 rocArray_T = []; %erosion well 1
155 roc_T = [];
156

157 % Gas Lift Rate
158

159 gLift_T = []; %control input well 1
160

161

162 for i = 101:200
163

164 pai_1_T = [pai_1_T Data.yMeas{i,1}(1,:)];
165 pwh_1_T = [pwh_1_T Data.yMeas{i,1}(4,:)];
166 wro_1_T = [wro_1_T Data.yMeas{i,1}(7,:)];
167 wrg_1_T = [wrg_1_T Data.yMeas{i,1}(10,:)];
168 prh_T = [prh_T Data.yMeas{i,1}(13,:)];
169 pm_T = [pm_T Data.yMeas{i,1}(14,:)];
170 wto_T = [wto_T Data.yMeas{i,1}(15,:)];
171 wtg_T = [wtg_T Data.yMeas{i,1}(16,:)];
172

173 gLift_T = [gLift_T Data.uArray{i,1}(1,:)];
174

175

176

177 erosArray_T = Data.erosionArray{i,1}(1,:);
178 roc_T = [roc_T gradient(erosArray_T)];
179

180 end
181 %Use when testing performance of training data with spr

104

182 TestData = [transpose(sand), transpose(pai_1_T), transpose(pwh_1_T), ...
transpose(wro_1_T), transpose(wrg_1_T), transpose(prh_T), ...
transpose(pm_T), transpose(wto_T), transpose(wtg_T), ...
transpose(gLift_T)];

183

184 %Use when testing performance of training data without spr
185 %TestData = [transpose(pai_1_T), transpose(pwh_1_T), ...

transpose(wro_1_T), transpose(wrg_1_T), transpose(prh_T), ...
transpose(pm_T), transpose(wto_T), transpose(wtg_T), ...
transpose(gLift_T)];

186

187 NormTestResponse = transpose(normalize(roc_T));
188

189 NormTestData = normalize(TestData);
190

191

192 %% Training and Testing Stepwise Model
193

194 %Without PCA
195 [StepwiseModel, StepwiseValidationRMSE] = ...

trainStepwiseRegression(NNRegData,NNRegResponse);
196

197 %With PCA
198 [StepwiseModelPCA, StepwisePCAValidationRMSE] = ...

trainStepwiseRegressionPCA(NNRegData,NNRegResponse);
199

200 yhat_stepwise = StepwiseModel.predictFcn(NormTestData);
201 yhat_stepwise_pca = StepwiseModelPCA.predictFcn(NormTestData);
202

203

204 immse(yhat_stepwise,NormTestResponse)
205 immse(yhat_stepwise_pca,NormTestResponse)
206

207

208 %% Plot sample results
209 figure(1)
210

211 plot(1:500,yhat_stepwise(1:500),'g')
212 hold on
213 plot(1:500,yhat_stepwise_pca(1:500),'b')
214 hold on
215 plot(1:500,NormTestResponse(1:500),'r')
216 title('Stepwise regression with and without PCA')
217 legend('Predicted w/ stepwise','Predicted w/ stepwise+pca','True rate')
218

219 %ylim([0,2.2]);
220 xlabel('Time [day]');
221 ylabel('Rate of change');
222

223

224 %% Training and Testing Tree Model
225

226 %Without PCA
227 [OptTreeModel, OptTreeValidationRMSE] = ...

trainOptTreeRegression(NNRegData,NNRegResponse);
228

229 %With PCA

105

230 [OptTreeModelPCA, OptTreePCAValidationRMSE] = ...
trainOptTreeRegressionPCA(NNRegData,NNRegResponse);

231

232 yhat_opttree = OptTreeModel.predictFcn(NormTestData);
233 yhat_opttree_pca = OptTreeModelPCA.predictFcn(NormTestData);
234

235

236 immse(yhat_opttree,NormTestResponse)
237 immse(yhat_opttree_pca,NormTestResponse)
238

239 %% Plot sample results
240 figure(2)
241

242 plot(1:500,yhat_opttree(1:500),'g')
243 hold on
244 plot(1:500,yhat_opttree_pca(1:500),'b')
245 hold on
246 plot(1:500,NormTestResponse(1:500),'r')
247 title('Optimised Regression Tree with and without PCA')
248 legend('Predicted w/ tree','Predicted w/ tree+pca','True rate')
249

250 %ylim([0,2.2]);
251 xlabel('Time [day]');
252 ylabel('Rate of change');
253

254 %% Training and Testing SVM Model
255

256

257 %Without PCA
258 [SvmMedGausModel, SvmMedGausValidationRMSE] = ...

trainSvmMedGausRegression(NNRegData,NNRegResponse);
259

260 %With PCA
261 [SvmMedGausModelPCA, SvmMedGausPCAValidationRMSE] = ...

trainSvmMedGausRegressionPCA(NNRegData,NNRegResponse);
262

263 %Independent Test
264 yhat_svm = SvmMedGausModel.predictFcn(NormTestData);
265 yhat_svm_pca = SvmMedGausModelPCA.predictFcn(NormTestData);
266

267 %MSE calculation
268 immse(yhat_svm,NormTestResponse)
269 immse(yhat_svm_pca,NormTestResponse)
270

271

272 %% Plot sample results
273 figure(3)
274

275 plot(1:500,yhat_svm(1:500),'g')
276 hold on
277 plot(1:500,yhat_svm_pca(1:500),'b')
278 hold on
279 plot(1:500,NormTestResponse(1:500),'r')
280

281 legend('Predicted w/ Gaussian SVR','Predicted w/ Gaussian ...
SVR+PCA','True rate')

282 title('Medium Gaussian Support Vector Regression')

106

283 subtitle('with and without PCA')
284

285 %ylim([0,2.2]);
286 xlabel('Time [day]');
287 ylabel('Rate of change');
288

289 %% Training and Testing Ensemble Model
290

291

292 %Without PCA
293 [EnsembleModel, EnsembleValidationRMSE] = ...

trainEnsembleRegression(NNRegData,NNRegResponse);
294

295 %With PCA
296 [EnsembleModelPCA, EnsemblePCAValidationRMSE] = ...

trainEnsembleRegressionPCA(NNRegData,NNRegResponse);
297

298 %Independent Test
299 yhat_ensemble = EnsembleModel.predictFcn(NormTestData);
300 yhat_ensemble_pca = EnsembleModelPCA.predictFcn(NormTestData);
301

302 %MSE calculation
303 immse(yhat_ensemble,NormTestResponse)
304 immse(yhat_ensemble_pca,NormTestResponse)
305

306 %% Plot sample results
307 figure(4)
308

309 plot(1:500,yhat_ensemble(1:500),'g')
310 hold on
311 plot(1:500,yhat_ensemble_pca(1:500),'b')
312 hold on
313 plot(1:500,NormTestResponse(1:500),'r')
314 title('Optimised Ensemble of trees with and without PCA')
315 legend('Predicted w/ ensemble','Predicted w/ ensemble+pca','True rate')
316

317 %ylim([0,2.2]);
318 xlabel('Time [day]');
319 ylabel('Rate of change');
320

321 %% PLSR
322

323 X = NormRegData(:,1:10);
324 y = NormRegData(:,11);
325

326 [XL,yl,XS,YS,beta,PCTVAR,mse,stats] = plsregress(X,y,5);
327

328 %plot(1:9,cumsum(100*PCTVAR(2,:)),'-bo');
329 %xlabel('Number of PLS components');
330 %ylabel('Percent Variance Explained in y');
331

332 yfit = [ones(size(X,1),1) X]*beta;
333 residuals = y - yfit;
334 %stem(residuals)
335

336

337 Xtestplot = NormTestData(1:500,1:10);

107

338 yfitTestPlot = [ones(size(Xtestplot,1),1) Xtestplot]*beta;
339

340 immse(yfit,NormTestResponse)
341

342 figure(5)
343

344 plot(1:500,yfitTestPlot(1:500),'b')
345 hold on
346 plot(1:500,NormTestResponse(1:500),'r')
347 title('Partial Least Squares')
348 legend('PLSR','True rate')
349

350 %ylim([0,2.2]);
351 xlabel('Time [day]');
352 ylabel('Rate of change');
353

354

355 figure(6)
356 plot(1:5 ,cumsum(100*PCTVAR(2,:)),'-bo');
357 xlabel('Number of PLS components');
358 ylabel('Percent Variance Explained in Y');
359

360

361 figure(7)
362 plot(1:10,stats.W,'-');
363 xlabel('Variable');
364 ylabel('PLS Weight');
365 legend({'1st Component' '2nd Component' '3rd Component'},'location','NW');
366 %% GLM Modelling
367

368 [b,dev,stats] = glmfit(NNRegData,NNRegResponse,'normal');
369 yhat = glmval(b,NormTestData,'identity');
370

371 mse_glm = immse(yhat,NormTestResponse)
372

373

374 figure(8)
375 plot(1:500,NormTestResponse(1:500),'r',1:500,yhat(1:500),'b')
376 title('GLM predictions and True values')
377 legend({'Measured','GLM Prediction'})
378

379

380 %% Neural Network Modelling (Non-linear Input/Output)
381 x1 = transpose(NormTestData(4:50100,:));
382 xi1 = transpose(NormTestData(1:3,:));
383

384

385 [y1,xf1] = NLIOnet(x1,xi1)
386

387 immse(transpose(y1),NormTestResponse(4:50100))
388

389 figure(9)
390 plot(4:500,NormTestResponse(4:500),'r',4:500,y1(4:500),'b')
391 title('Non-linear I/O Neural Network')
392 legend({'Measured','Neural Network Prediction'})
393

394 %% Optimised Linear Model

108

395 hyperopts = struct('AcquisitionFunctionName','expected-improvement-plus');
396 [Mdl,FitInfo,HyperparameterOptimizationResults] = ...

fitrlinear(NNRegData,NNRegResponse,'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',hyperopts)
397

398

399 yfit_regularised = predict(Mdl,NormTestData);
400

401 immse(yfit_regularised,NormTestResponse)
402

403 figure(10)
404 plot(1:500,NormTestResponse(1:500),'r',1:500,yfit_regularised(1:500),'b')
405 title('Optimised Regularised Linear Regression')
406 subtitle('Least squares, expected-improvement, ridge regularisation')
407 legend({'Measured','Regularised Linear Regression'})
408

409

410 %% Function Declarations of training models for stepwise, optimised ...
tree, medium gaussian svr and optimised ensemble are collapsed for ...
space reasons, detailed documentation is available from Mathworks, ...
the algorithms chosen for training, loss functions, validation etc ...
is given earlier in the thesis.

411

412 % stepwise functions w and w/o pca
413

414 function [trainedModel, validationRMSE] = ...
trainStepwiseRegression(trainingData, responseData)

415 function [trainedModel, validationRMSE] = ...
trainStepwiseRegressionPCA(trainingData, responseData)

416

417 % optimised tree functions w and w/o pca
418

419 function [trainedModel, validationRMSE] = ...
trainOptTreeRegression(trainingData, responseData)

420 function [trainedModel, validationRMSE] = ...
trainOptTreeRegressionPCA(trainingData, responseData)

421

422 % medium gaussian svm w and w/o pca
423

424 function [trainedModel, validationRMSE] = ...
trainSvmMedGausRegression(trainingData, responseData)

425 function [trainedModel, validationRMSE] = ...
trainSvmMedGausRegressionPCA(trainingData, responseData)

426

427 % optimised ensemble functions w and w/o pca
428

429 function [trainedModel, validationRMSE] = ...
trainEnsembleRegression(trainingData, responseData)

430 function [trainedModel, validationRMSE] = ...
trainEnsembleRegressionPCA(trainingData, responseData)

109

110

Appendix C
Experimental Data

In this section of the appendix, possibly interesting information about the experimental
data that will be given.

C.1 Variable List
These variables were recorded by LabView during experimental runs of the erosion rig,
not all are used in prediction but for completeness everything that was recorded is listed
here.

1. Date

2. Time (clock)

3. Relative time [s]

4. Air flow set point [sl/min] (well 1-3)

5. Air flow measured [sl/min] (well 1-3)

6. Fluid flow rate set point control valve [l/min] (well 1-3)

7. Fluid flow rate measured control valve [l/min] (well 1-3)

8. Differential pressure (dP) [mbar] (well 1-3)

9. Pressure setpoint control valve [mbar] (well 1-3)

10. Pressure measured control valve [mbar] (well 1-3)

11. Temperature measured [C◦] (well 1-3)

12. Pressure measured topside [mbar] (well 1-3)

13. Control currents [A] (pump, control valves)

111

C.2 Script for making training and test sets from imported
data

This script takes the tables of data recorded by LabView from the sensors around the rig.
The script turns these 6 tables from six experimental runs into a training set consisting of
the measured data from two wells and a testing set with the data from the third well.

1 %% Creating a Full dataset of experimental data
2 %In this script, the code takes several tables, imported from .txt files
3 %output from LabView to
4

5 %% Working with experimental Data
6

7 %Working Notes on where to limit data Q2: 1000:13000, Q3: 3500:5000, ...
Q4: 500:3000 Q5: 500:2500, Q6:

8 %250:3000, Q9: 500:2000
9 %Throw away Well 1 for Q4

10

11 % Q1 1:12000, Q2 12000:13500, Q4 13500:16000, Q5 16000:18000, Q6
12 % 18000:20750, Q9 20750:22250
13

14 %% Initialise start and end of each variable
15 Q2start = 1000;
16 Q2end = 13000;
17 Q3start = 3500;
18 Q3end = 5000;
19 Q4start = 500;
20 Q4end = 3000;
21 Q5start = 500;
22 Q5end = 2500;
23 Q6start = 250;
24 Q6end = 3000;
25 Q9start = 500;
26 Q9end = 2000;
27

28 %% Adding data from experiments Q2, initialising data matrices
29

30 table = Q2;
31

32 DataColumnsWell1 = [3, 11, 16, 20, 25, 28, 31, 34];
33 DataColumnsWell2 = [3, 13, 17, 22, 26, 29, 32, 34];
34 DataColumnsWell3 = [3, 15, 18, 24, 27, 30, 33, 34];
35

36

37 Well1Data = [];
38 Well2Data = [];
39 Well3Data = [];
40

41 for i = 1:length(DataColumnsWell1)
42

43 vector1 = table2array(table(:,DataColumnsWell1(i)));
44 vector2 = table2array(table(:,DataColumnsWell2(i)));
45 vector3 = table2array(table(:,DataColumnsWell3(i)));
46

47

112

48 Well1Data = [Well1Data rescale(vector1,0,10)];
49 Well2Data = [Well2Data rescale(vector2,0,10)];
50 Well3Data = [Well3Data rescale(vector3,0,10)];
51

52

53 end
54

55 Well1Data = Well1Data(Q2start:Q2end,:);
56 Well2Data = Well2Data(Q2start:Q2end,:);
57 Well3Data = Well3Data(Q2start:Q2end,:);
58

59 q2w1 = Well1Data;
60 q2w2 = Well2Data;
61 q2w3 = Well3Data;
62

63

64 %% Repeating for Q3 - identical except no initialization of array
65

66 table = Q3;
67

68 Well1Data = [];
69 Well2Data = [];
70 Well3Data = [];
71

72 for i = 1:length(DataColumnsWell1)
73

74 vector1 = table2array(table(:,DataColumnsWell1(i)));
75 vector2 = table2array(table(:,DataColumnsWell2(i)));
76 vector3 = table2array(table(:,DataColumnsWell3(i)));
77

78

79 Well1Data = [Well1Data rescale(vector1,0,10)];
80 Well2Data = [Well2Data rescale(vector2,0,10)];
81 Well3Data = [Well3Data rescale(vector3,0,10)];
82

83

84 end
85

86 Well1Data = Well1Data(Q3start:Q3end,:);
87 Well2Data = Well2Data(Q3start:Q3end,:);
88 Well3Data = Well3Data(Q3start:Q3end,:);
89

90 q3w1 = Well1Data;
91 q3w2 = Well2Data;
92 q3w3 = Well3Data;
93

94

95 %% Repeating for Q4 - identical except no initialization of array
96

97 table = Q4;
98

99 Well1Data = [];
100 Well2Data = [];
101 Well3Data = [];
102

103 for i = 1:length(DataColumnsWell1)
104

113

105 vector1 = table2array(table(:,DataColumnsWell1(i)));
106 vector2 = table2array(table(:,DataColumnsWell2(i)));
107 vector3 = table2array(table(:,DataColumnsWell3(i)));
108

109

110 Well1Data = [Well1Data rescale(vector1,0,10)];
111 Well2Data = [Well2Data rescale(vector2,0,10)];
112 Well3Data = [Well3Data rescale(vector3,0,10)];
113

114

115 end
116 % Because well 3 is broken here we copy well 2,
117

118 Well1Data = Well2Data;
119

120 Well1Data = Well1Data(Q4start:Q4end,:);
121 Well2Data = Well2Data(Q4start:Q4end,:);
122 Well3Data = Well3Data(Q4start:Q4end,:);
123

124 q4w1 = Well1Data;
125 q4w2 = Well2Data;
126 q4w3 = Well3Data;
127

128 %% Repeating for Q5 - identical except no initialization of array
129

130 table = Q5;
131

132

133 Well1Data = [];
134 Well2Data = [];
135 Well3Data = [];
136

137 for i = 1:length(DataColumnsWell1)
138

139 vector1 = table2array(table(:,DataColumnsWell1(i)));
140 vector2 = table2array(table(:,DataColumnsWell2(i)));
141 vector3 = table2array(table(:,DataColumnsWell3(i)));
142

143

144 Well1Data = [Well1Data rescale(vector1,0,10)];
145 Well2Data = [Well2Data rescale(vector2,0,10)];
146 Well3Data = [Well3Data rescale(vector3,0,10)];
147

148

149 end
150

151 Well1Data = Well1Data(Q5start:Q5end,:);
152 Well2Data = Well2Data(Q5start:Q5end,:);
153 Well3Data = Well3Data(Q5start:Q5end,:);
154

155 q5w1 = Well1Data;
156 q5w2 = Well2Data;
157 q5w3 = Well3Data;
158

159 %% Repeating for Q6 - identical except no initialization of array
160

161 table = Q6;

114

162

163 Well1Data = [];
164 Well2Data = [];
165 Well3Data = [];
166

167 for i = 1:length(DataColumnsWell1)
168

169 vector1 = table2array(table(:,DataColumnsWell1(i)));
170 vector2 = table2array(table(:,DataColumnsWell2(i)));
171 vector3 = table2array(table(:,DataColumnsWell3(i)));
172

173

174 Well1Data = [Well1Data rescale(vector1,0,10)];
175 Well2Data = [Well2Data rescale(vector2,0,10)];
176 Well3Data = [Well3Data rescale(vector3,0,10)];
177

178

179 end
180

181 Well1Data = Well1Data(Q6start:Q6end,:);
182 Well2Data = Well2Data(Q6start:Q6end,:);
183 Well3Data = Well3Data(Q6start:Q6end,:);
184

185 q6w1 = Well1Data;
186 q6w2 = Well2Data;
187 q6w3 = Well3Data;
188

189 %% Repeating for Q9 - identical except no initialization of array
190

191 table = Q9;
192

193

194 Well1Data = [];
195 Well2Data = [];
196 Well3Data = [];
197

198 for i = 1:length(DataColumnsWell1)
199

200 vector1 = table2array(table(:,DataColumnsWell1(i)));
201 vector2 = table2array(table(:,DataColumnsWell2(i)));
202 vector3 = table2array(table(:,DataColumnsWell3(i)));
203

204

205 Well1Data = [Well1Data rescale(vector1,0,10)];
206 Well2Data = [Well2Data rescale(vector2,0,10)];
207 Well3Data = [Well3Data rescale(vector3,0,10)];
208

209

210 end
211

212 Well1Data = Well1Data(Q9start:Q9end,:);
213 Well2Data = Well2Data(Q9start:Q9end,:);
214 Well3Data = Well3Data(Q9start:Q9end,:);
215

216 q9w1 = Well1Data;
217 q9w2 = Well2Data;
218 q9w3 = Well3Data;

115

219

220 %% Playing with scaling and normalisation
221

222 q2w1 = normalize(q2w1);
223 q2w2 = normalize(q2w2);
224 q2w3 = normalize(q2w3);
225

226 q3w1 = normalize(q3w1);
227 q3w2 = normalize(q3w2);
228 q3w3 = normalize(q3w3);
229

230 q4w1 = normalize(q4w1);
231 q4w2 = normalize(q4w2);
232 q4w3 = normalize(q4w3);
233

234 q5w1 = normalize(q5w1);
235 q5w2 = normalize(q5w2);
236 q5w3 = normalize(q5w3);
237

238 q6w1 = normalize(q6w1);
239 q6w2 = normalize(q6w2);
240 q6w3 = normalize(q6w3);
241

242 q9w1 = normalize(q9w1);
243 q9w2 = normalize(q9w2);
244 q9w3 = normalize(q9w3);
245

246 %% Combining all experiments
247 FullDataW1 = [];
248 FullDataW2 = [];
249 FullDataW3 = [];
250

251 FullDataW1 = [q9w1; q6w1; q5w1; q4w1; q3w1; q2w1];
252 FullDataW2 = [q9w2; q6w2; q5w2; q4w2; q3w2; q2w2];
253 FullDataW3 = [q9w3; q6w3; q5w3; q4w3; q3w3; q2w3];
254

255 %% Combining into test and training set, using 2 wells for training ...
and 1 for testing

256

257 RegVars1 = FullDataW1(1:length(FullDataW1(:,3)),[1, 2, 4, 5, 6]);
258 RegVars2 = FullDataW2(1:length(FullDataW2(:,3)),[1, 2, 4, 5, 6]);
259 RegVars3 = FullDataW3(1:length(FullDataW3(:,3)),[1, 2, 4, 5, 6]);
260

261 RegResponse1 = movmean(FullDataW1(1:length(FullDataW1(:,3)),3),150);
262 RegResponse2 = movmean(FullDataW2(1:length(FullDataW2(:,3)),3),150);
263 RegResponse3 = movmean(FullDataW3(1:length(FullDataW3(:,3)),3),150);
264

265 TrainSetVars = [RegVars1; RegVars2];
266 TrainSetResponse = [RegResponse1; RegResponse2];
267

268 TestSetVars = RegVars3;
269 TestSetResponse = RegResponse3;
270

271 %% Plotting for show
272

273 figure(1)
274 plot(1:length(RegResponse1),RegResponse1,1:length(RegResponse2),RegResponse2,1:length(RegResponse3),RegResponse3)

116

275 legend('Well 1','Well 2','Well 3')

117

118

Appendix D
Training and testing script for
experimental data

D.1 Analysis script for experimental data

1

2 %% Modelling experimental data
3 % In this file I will make an effort to train and test models on the
4 % experimental data using various methods within the field of supervised
5 % statistical learning
6

7 %% GLM Modelling
8

9 [b,dev,stats] = glmfit(TrainSetVars,TrainSetResponse,'normal');
10 yfit = glmval(b,TestSetVars,'identity');
11

12 mse_glm = immse(yfit(5000:9000),TestSetResponse(5000:9000))
13

14 figure(1)
15 plot(5001:9000,TestSetResponse(5001:9000),'r')
16 hold on
17 plot(5001:9000,yfit(5001:9000),'o','MarkerSize',2,'MarkerEdgeColor','blue')
18 title('Stepwise prediction and True values')
19 subtitle('Mean Square Error of prediction: 0.1129')
20 legend({'Measured','Tree pred'})
21

22

23

24

25 %% Stepwise prediction
26

27 yfit = stepwise.predictFcn(TestSetVars);
28

29 mse_stepwise = immse(yfit(5000:9000),TestSetResponse(5000:9000))

119

30

31 figure(2)
32 plot(5001:9000,TestSetResponse(5001:9000),'r')
33 hold on
34 plot(5001:9000,yfit(5001:9000),'o','MarkerSize',2,'MarkerEdgeColor','blue')
35 title('Stepwise prediction and True values')
36 subtitle('Mean Square Error of prediction: 0.1069')
37 legend({'Measured','Stepwise pred'})
38

39 %% Tree prediction
40

41 yfit = opttree.predictFcn(TestSetVars);
42

43 mse_tree = immse(yfit(5000:9000),TestSetResponse(5000:9000))
44

45 figure(3)
46 plot(5001:9000,TestSetResponse(5001:9000),'r')
47 hold on
48 plot(5001:9000,yfit(5001:9000),'o','MarkerSize',2,'MarkerEdgeColor','blue')
49 title('Tree prediction and True values')
50 subtitle('Mean Square Error of prediction: 0.1072')
51 legend({'Measured','Tree pred'})
52

53 %% Ensemble
54

55 yfit = optensemble.predictFcn(TestSetVars);
56

57 mse_ensemble = immse(yfit(5000:9000),TestSetResponse(5000:9000))
58

59 figure(4)
60 plot(5001:9000,TestSetResponse(5001:9000),'r')
61 hold on
62 plot(5001:9000,yfit(5001:9000),'o','MarkerSize',2,'MarkerEdgeColor','blue')
63 title('Ensemble prediction and True values')
64 subtitle('Mean Square Error of prediction: 0.0798 (Bagging)')
65 legend({'Measured','Ensemble pred'})
66

67

68 %% SVM prediction
69

70

71 yfit = optsvm.predictFcn(TestSetVars);
72

73 mse_svm = immse(yfit(5000:9000),TestSetResponse(5000:9000))
74 %%
75 figure(5)
76 plot(5001:9000,TestSetResponse(5001:9000),'r')
77 hold on
78 plot(5001:9000,yfit(5001:9000),'o','MarkerSize',2,'MarkerEdgeColor','blue')
79 title('SVM prediction and True values')
80 subtitle('Mean Square Error of prediction: 0.1175')
81 legend({'Measured','SVM pred'})
82

83

84 %% NARX prediction
85

86 NARX_ExperimentalData;

120

87

88 X = tonndata(TestSetVars(1:9000,:),false,false);
89 T = tonndata(TestSetResponse(1:9000),false,false);
90

91 [x,xi,ai,t] = preparets(net,X,{},T);
92

93 numTimesteps = size(x,2);
94 knownOutputTimesteps = 1:(numTimesteps-4000);
95 predictOutputTimesteps = (numTimesteps-3999):numTimesteps;
96 X1 = X(:,knownOutputTimesteps);
97 T1 = T(:,knownOutputTimesteps);
98 [x1,xio,aio] = preparets(net,X1,{},T1);
99 [y1,xfo,afo] = net(x1,xio,aio);

100

101 x2 = X(1,predictOutputTimesteps);
102 [netc,xic,aic] = closeloop(net,xfo,afo);
103 [y2,xfc,afc] = netc(x2,xic,aic);
104

105 y1 = cell2mat(y1);
106 y2 = cell2mat(y2);
107

108 mse_narx = immse(transpose(y2),TestSetResponse(5001:9000));
109

110 figure(6)
111 plot(7:5000,transpose(y1),'-o')
112 hold on
113 plot(5001:9000,transpose(y2(1:4000)),'-o')
114 hold on
115 plot(1:9000,TestSetResponse(1:9000),'r')
116 title('NARX Neural Network Prediction and true values')
117 subtitle('Mean Square Error of closed loop prediction: 0.0797')
118 legend({'Open Loop Prediction','Closed Loop Prediction','True Values'})
119

120 %% NLIO prediction
121

122 NLIOExperimentalData;
123

124 X = tonndata(TestSetVars(1:9000,:),false,false);
125 T = tonndata(TestSetResponse(1:9000),false,false);
126

127 [x,xi,ai,t] = preparets(net,X,T);
128

129 [y1,xf1] = NLIOnet(x1,xi1);
130

131

132

133 mse_nlio = immse(transpose(y1(5001:9000)),TestSetResponse(5001:9000));
134

135

136 figure(7)
137 plot(5001:9000,TestSetResponse(5001:9000),'r')
138 hold on
139 plot(5001:9000,y1(5001:9000),'o','MarkerSize',2,'MarkerEdgeColor','blue')
140 title('NLIO Neural Network Prediction and True values')
141 subtitle('Mean Square Error of prediction: 0.0709')
142 legend({'Measured','NLIO pred'})
143

121

144 %% PLSR
145

146 [XL,yl,XS,YS,beta,PCTVAR,MSE,stats] = ...
plsregress(TrainSetVars,TrainSetResponse,4,'cv',4);

147

148

149 figure(8)
150 plot(1:4,cumsum(100*PCTVAR(1,:)),'-bo');
151 xlabel('Number of PLS components');
152 ylabel('Percent Variance Explained in y');
153

154

155 yfit = [ones(size(TestSetVars,1),1) TestSetVars]*beta;
156

157 figure(9)
158 plot(1:5,stats.W,'-');
159 xlabel('Variable');
160 ylabel('PLS Weight');
161 legend({'1st Component' '2nd Component' '3rd Component'},'location','NW')
162

163

164 mse_plsr = immse(yfit(5000:9000),TestSetResponse(5000:9000))
165

166 figure(10)
167 plot(5001:9000,TestSetResponse(5001:9000),'r')
168 hold on
169 plot(5001:9000,yfit(5001:9000),'o','MarkerSize',2,'MarkerEdgeColor','blue')
170 title('PLSR prediction and True values')
171 subtitle('Mean Square Error of prediction: 0.1135')
172 legend({'Measured','PLSR pred'})
173

174

175 %% MSE BAR PLOT
176

177

178 X = ...
categorical({'Ensemble','GLM','NARX','NLIO','PLSR','Stepwise','SVM','Tree'});

179 Y = [0.0798 0.1129 0.0797 0.0709 0.1135 0.1069 0.1175 0.1072];
180

181 bar(X,Y)

122

Appendix E
Escape-31 Paper

As a part of this work, a paper was submitted to the 31st European Symposium on Com-
puter Aided Process Engineering. The paper co-authored by my supervisors is included
below and provides a shorter version of the research related to the simulated data and the
modelling of the simulated data with traditional statistical learning methods.

123

Metin Türkay Metin Trkay, Erdal Aydin (Eds.)
Proceedings of the 31th European Symposium on Computer Aided Process Engineering
June 6th to 9th, 2021, Istanbul, Turkey. © 2021 Elsevier B.V. All rights reserved.

Data-driven modelling of choke valve erosion using
data simulated from a first principles model
Jan Henrik Jahrena, Jose Matiasa and Johannes Jäschkea*

aDepartment of Chemical Engineering, Norwegian University of Science and technology,
Sem Sælands vei 4, 7034 Trondheim, Norway
johannes.jaschke@ntnu.no

Abstract
On the Norwegian continental shelf there are, according to Norwegian Petroleum (DNV-
GL (2015), approximately 87 fields operating, with operational costs of 60 billion NOK
per year. Maintenance is a large portion of this, costing tens of billions of NOK. In ad-
dition to the economic burden, degradation can lead to critical equipment failure, as hap-
pened in 2011 in the Deepwater Horizons disaster where 11 people lost their lives and 4.9
billion barrels of oil were released into the environment.Pallardy (2010) Hence, failure to
detect faults can have immense financial, environmental and human consequences. One of
the principal mechanisms of degradation in subsea process equipment is erosion by sand,
which is a very complex process and, thus, difficult to be modelled using physical domain
knowledge. Because of this difficulty, we propose in this paper the use of data-driven
approaches for modelling erosion in critical equipment of a subsea oil production rig. In
such systems, a multitude of available process measurements such as flowrates, gas lift in-
jection rates, pressures etc. can be combined to a soft-sensor for component degradation.
This approach could save significant amounts of resources by allowing fewer cost inten-
sive inspections and monitoring schemes. This soft-sensor approach was tested with sim-
ulated data created using the model proposed by Krishnamoorthy et al.Krishnamoorthy
et al. (2016) and adapted by Verheyleweghen and Jäsckhke Verheyleweghen and Jäschke
(2018). This model considers sand degradation of a choke valve in a gas lifted well oil
production system with three wells. Regression models were trained on the simulated data
for obtaining the component erosion soft-sensor and their accuracy validated with unseen
data. The tested methods were MLR (normal, piecewise and interactions), trees (bagged,
boosted and normal regression trees) and support vector regressions with various kernels.
The approaches were tested in two case studies, the first with constant sand outflow from
the reservoir, and the second with a more realistic profile. In both, we compare the regres-
sion modelling techniques in terms of their basic requirements as well as accuracy and
convergence characteristics. Given the good performance of these approaches in the case
studies, testing using real world data is merited to investigate applicability to industrial
processes.

Keywords: equipment degradation, data-driven modelling, machine learning

1. Introduction

Failure to detect faults in large scale, expensive or critical equipment can have immense
consequences. Both financial and in the most extreme cases, loss of life. A famous ex-

Data-driven modelling of choke valve erosion using data simulated from a first
principles model 2

ample of such a failure is the Deepwater Horizon oil spill of 2010. This disaster released
an estimated 4.9 million barrels (Pallardy (2010)) of oil and killed 11 people (Kaufman
(2010)). While there where multiple failures to take appropriate actions leading up to the
disaster, with financial pressure mounting and corner’s being cut, the ultimate cause of
the disaster was the failure of the blowout valve. The blowout valve served as the last line
of defence, application of prognostics and health management to monitor this vital com-
ponent could have prevented this disaster that came to be one of the worst environmental
disasters of modern history (Si et al. (2012)).

One of the principle mechanisms in equipment degradation is erosion and as such accu-
rately modelling it is vital in monitoring of equipment health (Hansen (2016)). The most
obvious approach would be to create a first principle model to accurately predict erosion
but this has proved difficultDNV-GL (2015). If first principles modelling does not provide
satisfactory accuracy, data-driven regression modelling could be a solution. We propose
in this paper the use of data-driven approaches for modelling erosion in critical equip-
ment of a subsea oil production rig. In such systems, a multitude of available process
measurements such as flowrates, gas lift injection rates, pressures etc. can be combined to
a soft-sensor for component degradation. This approach could save significant amounts
of resources by allowing fewer cost intensive inspections and monitoring schemes as well
as improving safety. To investigate the voracity of such a data-driven modelling approach
models will be tested on simulated data using the model proposed by Krishnamoorthy
et al. (2016) and adapted by Verheyleweghen and Jäschke (2018).

2. Simulations

The simulated data in this work is based on a model for a gas lifted oil production facility
presented by Krishnamoorthy et al. (2016), this model is adapted by Verheyleweghen and
Jäschke (2018) to facilitate the simulation of the erosion of a choke valve. Krishnamoor-
thy et al. (2016) gives the model for describing gas lifted wells in four parts: The mass
balance of different phases, density models, pressure models and flow models. The ero-
sion rate is given by equation , where dE

dt is the erosion rate while K, n, C1, GF and Cunit
are constants. Calculation of the parameters A and G is shown in detail in the paper by
Verheyleweghen and Jäschke, F(α) is the ductility and Un

p is the particle impact velocity.

dE
dt

=
KF(α)Un

p

ρtAt
G∗C1 ∗GF ∗ dmsand

dt
∗Cunit (1)

An implementation of this adapted model using casADi (Andersson et al. (2019)) in Mat-
lab version 2019b is used to simulate a large amount of data to test models on. This was
done by simulating 200 time series of length 500 days, variability in the model is created
by letting the control input (gas lift rate) vary randomly within a given range. Two of
these data sets were created, first one where the sand production rate was held constant
and then one where the sand production rate was increased exponentially according to
equation 2 as this more closely resembled the sand production in an actual reservoir.

msand,t = msand,0 ∗ exp(0.005∗ t) (2)

Data-driven modelling of choke valve erosion using data simulated from a first
principles model 3

Recorded variables from the simulations
Sand production rate Annulus pressure Well head pressure
Well head oil produc-
tion rate

Well head gas pro-
duction rate

Riser head pressure

Manifold pressure Riser head total oil
production rate

Riser head total gas
production rate

Gas lift rate Measured erosion
(response)

Table 1: Table listing recorded variables from simulations used for training and testing
the data-driven models.

Ten process variables are recorded for each time step of the simulation (one timestep is
one day) as well as a the measured erosion at the given time.

2.1. Pre-processing

The simulations record directly the measured erosion, but since prediction is done using
process variable values at a given time it is more sensible to predict the rate of erosion
at the given time. To get this the gradient of the time series of erosion measurements is
used as the response variable while the remaining recorded variables are used for predic-
tion. Since sand production rate is normally not a constantly measured process variable
but rather something that is sampled at longer intervals, the models are trained using a
sampling rate of once per 50 days with respect to the sand production rate. In addition to
using the gradient values of the response, principal components analysis as pre-processing
was used for some of the models to test performance when using PC scores versus raw
predictor data.

3. Data-driven models

The proposal of this paper is that ordinary statistical learning methods can provide a good
stand in for measurements of erosion acting as a soft sensor. In this paper results will be
shown for three categories of common data-driven models: linear regressions, three based
models and support vector regressions. A brief description of the methods as well as the
specific versions applied in this work is given below. All the methods described below
are implemented in Matlab MATLAB (2020) using the Machine Learning and Statistics
toolbox The MathWorks (2020). All training optimization and selection of models is done
using holdout validation to select models. Tuning of hyperparameters for ensemble and
support vector methods are done with bayesian optimization.

3.1. Linear regressions

The most basic of all statistical models, assuming a linear relationship between variables
and the response. In this work it is found that the best performing method in terms of test
set MSE is a linear interactions model that includes not only the predictor variables but
first order interactions between the predictors (Friedman et al. (2017)). Normal multiple
linear regression and stepwise linear regression methods also performed well.

Data-driven modelling of choke valve erosion using data simulated from a first
principles model 4

3.2. Tree based methods

Using tree based models both simple decision trees as well as ensemble approaches per-
form well in terms of test set MSE. All the methods are based on building a tree with splits
on a given variable at a given value. The ensemble methods simply use multiple trees to
make their predictions in slightly different ways. Boosting uses successive weak learn-
ers to create a single strong learner, letting the training importance on wrongly classified
samples get larger compared to correctly classified samples during training to make a col-
lection of weak learners that average to a strong learner. Bagging or bootstrap aggregation
is a method used to reduce variance by training m models on m different bootstrapped data
sets containing ∼ 63% of the data and using a average of the predictions (Friedman et al.
(2017)).

3.3. Support vector regression

Support vector regression (SVR) is a kernel method, that adapts the maximal margin
classification which forms the basis of support vector machines (SVMs) to regression
problems. In the regression mode, one still attempts a similar feat of creating a sepa-
rating hyperplane of the form f (x) = βxT + β0 by solving this minimization problem:
minβ ,β0 H : H(β ,β0) = ΣN

i=1V (yi− f (xi))+
λ
2 ||β ||2. Where V is a function deciding how

errors are penalised and λ is a regularization parameter (Friedman et al. (2017)).

4. Results and discussion

A set of six specific learning methods was tested on both the data simulated from con-
stant sand production rate and exponential sand production rate, the model performance
as measured by MSE for constant sand production rate is given in table 2 and performance
for exponential sand production rate data is given in table 3. There are some considera-
tions outside of model performance that needs to be considered when selecting a model
for actual applications. There are significant differences in model training time, with the
outlier being SVM based models requiring significantly more training than tree ensem-
bles and MLR based models. The other consideration that needs to be made is that to
be acceptable in real world scenarios "black box" models of safety critical components is
undesirable and a premium is placed on model transparency and interpretability. None of
the models considered here are completely black box, in general models with transpar-
ent coefficients showing how a prediction is made is easier to interpret such as the MLR
models. As such when performance is close the preferred methods will be MLR models
due to fast training times and superior interpretability.

4.1. Constant sand production rate data

In the simplest test case where a constant sand production rate was used the models per-
formed (as expected) extremely well as the phenomena behaves linearly. Linear phenom-
ena are very well suited to being modelled by simple statistical learning methods. The
equivalent results from interactions MLR and stepwise MLR are certainly due to both al-
gorithms producing very similar models as the stepwise regression algorithm adds linear
interaction terms as well. While the performance of the MLR based models is degraded
by application of PCA pre-processing there is a significant gain in model simplicity with

Data-driven modelling of choke valve erosion using data simulated from a first
principles model 5

far fewer features being used for prediction which provides advantages in terms of data
needed for training and a lower model variance.

Method MSE w/o PCA MSE w/ PCA
MLR w/ interactions 0.0096 0.0166

Stepwise MLR 0.0096 0.0166
Bagged trees 0.0091 0.0162
Boosted trees 0.0125 0.0320

Linear kernel SVR 0.0123 0.0181
Cubic kernel SVR 0.0120 0.0129

Table 2: Table showing the test set performance of the models on simulated data with a
constant sand production rate.

4.2. Exponential sand production rate

For the data simulated with exponential sand production rate, a significant drop in model
performance was observed, as expected with a more complex function being emulated.
As with the data simulated from constant production rate, there is a drop in performance
when PCA is applied, but this effect is relatively weaker for the exponential data. In this
case cubic kernel support vector regression proved to have the strongest performance,
but in general bagged trees, boosted trees, interactions and stepwise MLR all provided
fairly accurate predictions of the erosion rate. The sampling rate of the sand production
rate measurement as expected has a very significant impact on the model accuracy with
exponential distribution, increasing sampling to once every 30 days instead of 50 for
example reduces the MSE of a optimised bagged ensemble to 0.0066 from 0.0184.

Method MSE w/o PCA MSE w/ PCA
MLR w/ interactions 0.0182 0.0191

Stepwise MLR 0.0182 0.0191
Bagged trees 0.0184 0.0192
Boosted trees 0.0184 0.0239

Linear kernel SVR 0.0465 0.0473
Cubic kernel SVR 0.0164 0.0169

Table 3: Table showing the test set performance of the models on simulated data using an
exponential sand production rate.

5. Conclusion

It is observed that for constant sand production rate very accurate predictions of the ero-
sion rates are made, a significant degradation of model accuracy is seen for all the con-
stant sand production rate models except for cubic kernel SVR when PCA pre-processing
is applied to the data. On the data simulated from an exponential sand production rate the
performance is overall worse as expected since the function that the models are attempt-
ing to reproduce is more complex. The methods are still relatively accurate with under
0.02 MSE on normalised unseen test data, what is obvious is that when the slope gets very

Data-driven modelling of choke valve erosion using data simulated from a first
principles model 6

high the models suffer quite significantly from the sampling rate of once every 50 days on
the sand production rate. With most of the models, except for linear kernel SVR which
overall performed very poorly performing well also with PCA pre-processing. With cur-
rent model performance there is a strong case to be made for selecting linear regression
based methods as they provide superior model transparency and interpretability. Having
observed that simulated data can be predicted well using statistical models, further inves-
tigation on real world data is merited to ascertain applicability to real industrial facilities.

6. Future work

The obvious next step for this work is testing the methods in a laboratory setup, where
we can become more confident that the approach merits testing in a full scale industrial
project. This is work we are currently undertaking at NTNU, using a lab rig which emu-
lates the studied oil production system for remaining useful life estimation, initial results
show some promise. With successful reproduction and validation of results, industrial
trials are the next step.

7. Acknowledgments

This work was carried out as a part of SUBPRO, a Research-based Innovation Centre
within Subsea Production and Processing. The authors gratefully acknowledge the finan-
cial support from SUBPRO, which is financed by the Research Council of Norway, major
industry partners, and NTNU.

References
Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B. and Diehl, M. (2019), ‘CasADi – A software

framework for nonlinear optimization and optimal control’, Mathematical Programming Computation
11(1), 1–36.

DNV-GL (2015), ‘Recommended practice rp-o501: Managing sand production and erosion.’. https://rules.dnvgl.com/docs/pdf/
dnvgl/RP/2015-08/DNVGL-RP-O501.pdf.

Friedman, J., Hastie, T. and Tibshirani, R. (2017), The Elements of statistical learning, Data Mining, Inference,
and Prediction, Springer.

Hansen, S. K. (2016), Modelling failure mechanisms in subsea equipment, Master’s thesis, NTNU.
Kaufman, L. (2010), ‘Search ends for missing oil rig workers’, New York Times .

URL: https://www.nytimes.com/2010/04/24/us/24spill.html
Krishnamoorthy, D., Foss, B. and Skogestad, S. (2016), ‘Real-time optimization under uncertainty applied to

a gas lifted well network’, Processes, Real-Time Optimization (Special Issue) .
MATLAB (2020), version (R2020b), The MathWorks Inc., Natick, Massachusetts.
Pallardy, R. (2010), ‘Deepwater horizon oil spill’, Encyclopaedia Britannica .

URL: https://www.britannica.com/event/Deepwater-Horizon-oil-spill
Si, X., Wang, W., Hu, C., Zhou, D. and Pecht, M. G. (2012), ‘Remaining useful life estimation based on a

nonlinear diffusion degradation process’, IEEE Transactions on Reliability 61(1), 50–67.
The MathWorks, I. (2020), Statistics and Machine Learning Toolbox, Natick, Massachusetts, United State.

URL: https://www.mathworks.com/help/stats/
Verheyleweghen, A. and Jäschke, J. (2018), ‘Oil production optimization of several wells subject to choke

degradation’, IFAC-PapersOnLine 51.

Jan H
enrik Jahren

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f C
he

m
ic

al
 E

ng
in

ee
rin

gD
ata-driven m

odelling of subsea equipm
ent degradation using sim

ulated and experim
ental case studies

M
as

te
r’s

 th
es

is

Jan Henrik Jahren

Data-driven modelling of subsea
equipment degradation using simulated
and experimental case studies

Master’s thesis in Nanotechnology

Supervisor: Johannes Jäschke

December 2020

	Sammendrag (Norwegian)
	Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Methods
	Outline

	Methods and theory for data processing
	Data Pre-Processing
	Centering and Scaling
	Normalisation
	Linear interpolation
	Moving mean and median
	Principal Components Analysis

	Regression Methods
	Linear Regression
	Partial Least Squares
	Support Vector Machines
	Regression trees
	Ensemble methods
	Neural networks

	Model Selection and Evaluation
	Model Validation
	Model Performance

	Model optimization
	Gradient descent
	Bayesian optimisation

	Simulations
	Gas lifted oil well network
	Erosion model
	Sand Production Rate

	Simulated data
	Data from constant sand production rate simulations
	Data from exponential and logistic sand production rate simulations

	Case study 1: Constant sand production rate
	Exploratory analysis of simulated data with constant sand production rate
	Pre-processing
	Regression results
	Linear regression
	Partial Least Squares Regression
	Regression trees
	Support Vector Regression
	ANN Regression

	Summary

	Case studies 2 & 3: Exponential & Logistic sand production rate
	Exploratory analysis of simulated data with changing sand production
	PLS analysis of data

	Regression results
	Linear regression
	Regression trees
	Ensemble methods
	Support vector regression
	ANN Regression
	Summary

	Improving predictions by modelling sand production rate
	Linearly modelling sand production
	Results using modelled sand production rate

	Modelling cumulative erosion with a NARX model
	Cumulative model results

	Summary of results for simulated data

	Experiments
	Overview of the rig
	Measuring erosion

	Experimental Data

	Case study 4: Experimental data
	Exploratory data analysis and pre-processing
	Pre-processing
	Exploratory data analysis

	Regression results
	Linear regression
	Regression trees
	Ensemble methods
	Support vector regression
	Neural networks

	Summary

	Conclusion
	Case study 1: Constant sand production
	Case studies 2 & 3: Exponential and logistic sand production
	Case study 4: Experimental data
	Further Work

	Bibliography
	Simulation model
	InitialConditionGasLift
	ParametersGasLift
	Sandproductionrate
	ModelSandArray
	WellPlantModel
	MainErodingValves

	Training and testing script for simulated data
	Analysis script for Exponential data

	Experimental Data
	Variable List
	Script for making training and test sets from imported data

	Training and testing script for experimental data
	Analysis script for experimental data

	Escape-31 Paper

