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Abstract 

Our main objective at the beginning of the research period has been on utilizing the alternating 

direction method of multipliers (ADMM) to get a distributed optimization algorithm to solve 

structured nonlinear programming problems (NLP). A Thermal Energy Storage (TES) optimal 

design problem was chosen to motivate the need for distributed optimization and demonstrate the 

approach using illustrative examples. Due to its cyclic operation and uncertainties in future 

operating profiles, the optimal sizing of such systems need to consider many scenarios, making the 

problem size very large.  

The traditional approach has been to use a simple linear model to represent the system and then 

use the multiple scenarios to determine the optimal system capacity. The physical design 

parameters can then be found from the linear model solution based on some heuristics. The issue 

with such an approach is that the physical design parameters obtained through this approach is not 

optimal and would be even infeasible for some of the scenarios considered. This is due to the linear 

models not accounting the important nonlinear dynamics present in the process. We thus look at 

ways of using nonlinear dynamic models to make optimal design decisions under uncertanity. The 

optimal design problem is thus proposed to be framed as a two-stage stochastic nonlinear 

optimization problem.  

An issue that arises with this approach is the large nonlinear optimization problem that this results 

in. Handling all the variables simultaneously in the memory for solving the problem centrally is 

expected to require computing hardware specialized for such applications, and something we 

would want to avoid. Since the speed of arriving at the solution is not a large concern for design 

problems, we investigate the use of distributed optimization algorithms which solve smaller 

subproblems iteratively to arrive at the solution to the original large optimization problem. The 

special structure present in the design problem is exploited to form subproblems in a very general 

fashion. We make use of ADMM as the distributed optimization algorithm to coordinate between 

the subproblems. Since the subproblems are able to be solved in parallel each iteration in this 

approach, it could also be implemented using multiple smaller machines with minimal message 

passing between them.   
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Chapter 1. Introduction 

Reducing our reliance on fossil fuels for meeting our energy demands is one of the critical issues 

facing the modern world. The transition to a more sustainable energy future is expected to involve 

an increased proportion of renewable energy sources like wind and solar. These sources however 

have the disadvantage of being intermittent in their operation and offer fewer degrees of freedom 

to match the demand. In this regard, energy storage technologies play a crucial role in the 

integration of renewable energy sources to the energy system, as a way to handle the stochasticity 

present in the supply and demand of energy [1].  

We focus our attention on thermal energy storage (TES) systems which generally refer to the 

storage of energy as heat or cooling. They are commonly integrated with solar thermal power 

plants, industrial clusters, hot water systems in buildings, and district heating or cooling networks. 

A detailed overview of the broad scope of TES systems, the various classifications, and 

technologies are outlined by Alva et al. [2]. The dynamic nature of the process along with the 

associated uncertainties with the predictions of future demand and supply makes the problems 

related to optimal design and in ensuring optimal operations of these systems quite challenging.   

The optimal operation for TES systems 

The optimal operation of TES system can minimize the reliance on fossil fuels to meet energy 

demands and improve the profitability of the energy system. Dynamic optimization can be used 

for this, where the operation is optimized over a time interval, rather than for a single time instance. 

The process systems community has long made use of detailed dynamic models (based on first 

principles, observed plant dynamics, or a combination of both) for the control of such processes.  

Various authors have focussed on the optimal operation aspect of TES systems in the literature. 

Powell [3] demonstrates the benefit of integrating TES with various energy systems by solving an 

open-loop optimization problem. Uncertainties in the forecast of supply and demand profiles were 

not explicitly accounted in that work. Mdoe [4] later implemented a multistage nonlinear model 

predictive control (NMPC) to account for uncertainties in the supply and demand side temperatures 

for a two plant TES system. Data-driven approaches were proposed for scenario selection to 

represent the uncertainty using fewer number of scenarios for multistage NMPC [5]. Principal 
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component analysis was used to identify correlations between historical supply and demand 

profiles, and to build such scenarios for the optimal operation of a TES system [6].   

Optimal design for TES systems 

During the design stage of an energy storage system, one is primarily interested in modelling the 

long term profitability of the system. One key issue is addressing the significant uncertainty that 

exists in the demand and supply profiles during the design phase. Stochastic programming provides 

a systematic framework to model such problems that require decision making in the presence of 

uncertainty [7]. The operations research community has long studied location and capacity sizing 

problems for energy storage systems in electrical networks. Model simplifications are usually used 

to represent the problem as a two-stage linear stochastic program. This approach was used to solve 

an electricity network design and capacity expansion problem in the presence of uncertainty in 

future profiles [8]. A similar approach is used by Lamont [9] to find the optimals size for battery 

energy storage and pumped hydro-storage systems under similar uncertainties.  

For the TES system, a similar approach was followed during the specialization project [10] in the 

Fall Semester of 2019. The system was modelled in terms of heat duties to get the design problem 

as a two-stage linear stochastic program. The solution of the linear model was then used to find the 

physical design parameters (the tank volume and the heat exchanger area) using some heuristics. 

This approach was extended to include a comparison between the stochastic formulation and a 

bilevel formulation for the TES design problem by Thombre et al. [11]. However, the issue with 

such approaches is that they do not use the physical design parameters (like the tank volume or 

heat exchanger area) directly in the optimization problem, but need to be calculated based on some 

heuristics from the solution of the approximate linear problem. Such an approach does not give us 

the optimal physical design parameters for the given uncertainty information. A major issue that 

arises is due to the linear model approximation that is unable to capture the essential nonlinear 

dynamics that is present in the system. Hence in some scenarios, the linear problem assume 

recourse actions that are infeasible to be achieved in reality (for example - transfer of heat duty 

from a cold stream to a hot stream across a heat exchanger). 
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To overcome these limitations in the linear model approach, we consider extending the nonlinear 

dynamic models that are normally used for control applications to make optimal design decisions. 

Here, we propose to frame the optimal design problem as a two-stage nonlinear stochastic program 

with the first stage variables as the design parameters and the optimal operation actions as the 

second stage recourse variables. Since these models represent the real dynamics of the system, no 

physically infeasible recourse action would be considered in this formulation. However, this 

approach has the issue of resulting in sizeable nonlinear optimization problems rather quickly. We 

consider two approaches - a centralized approach and a distributed approach for solving these large 

optimization problems.  

Centralized approach vs Distributed approach for optimization 

The two-stage nonlinear design problem can be solved directly using standard nonlinear 

optimization solvers, which we refer to as the centralized optimization strategy. The problem 

associated with this is - when the size of the problem grows large, the number of variables that 

need to be simultaneously held in memory to run this scheme increases, which is expected to be 

the limiting factor for its application in practice. To address this issue, we explore a distributed 

optimization approach.  

In the distributed optimization strategy, we take advantage of the inherent structure of the problem 

and use decomposition methods to solve smaller subproblems iteratively. Application of this 

strategy for scenario decomposition related to multistage NMPC can be found in [12]. 

Krishnamoorthy et al. presented a primal decomposition algorithm [13] and a dual decomposition 

algorithm [14] for scenario decomposition in multistage NMPC. The progressive hedging 

algorithm (PHA) was used for scenario decomposition in a two-stage NMPC by Lucia [15].  

In our work, we aim to use the alternating direction method of multipliers (ADMM) algorithm to 

form parallelizable subproblems in a two-stage NLP, in a more general fashion. The hope is to be 

able to solve more complex models and multiple scenarios, without the penalty in computational 

memory required.  
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1.1. Objective of the Thesis 

The main objective of this work has been to explore the ADMM algorithm to solve structured 

nonlinear programming problems (NLP). Based on the information discussed previously, we use 

nonlinear dynamic models for optimal design of a TES system to present our appoach. The main 

focus thus has been on  

1. Framing the optimal design problem for a TES system using a nonlinear dynamic model as 

a two-stage stochastic NLP.   

2. Investigating a distributed optimization strategy using ADMM for solving the optimal 

design problem. 

This thesis thus aims to present the methodology and ideas in the context of optimal design of 

a simple TES case, however it can be applied easily solving structured NLPs found in many 

different areas.     

1.2. Structure of the thesis 

The thesis comprises of the following chapters which focus on the following.  

In Chapter 2, some technical preliminaries associated with distributed optimization and the ADMM 

algorithm are presented. A quick background of augmented Lagrangian (AL) methods is provided 

to solve optimization problems with equality constraints. The basic ADMM algorithm is then 

presented, which extends the AL method to allow for parallel implementation. Next, we outline 

how structured NLPs can be presented as a general form consensus problem which is a common 

form in which many distributed optimization algorithms are presented in literature. The chapter 

ends by applying the ADMM algorithm to structured NLP and applying any simplifications that 

occur due to the particular structure present in the problem.      

Chapter 3 introduces the TES system under consideration, and the mathematical model used to 

describe the dynamics of the process. The model is then used to describe the optimal operation 

problem. An illustrative example is used to analyze the open-loop optimization solution. The 

chapter ends by motivating the optimal design problem by demonstrating the effect design 

variables have on optimal operation.  
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Chapter 4 formally defines the optimal design problem. A simple deterministic case is first shown 

to explain the basic components involved in the optimization problem. Next, uncertainty is 

accounted for in the design, and the problem is converted to a two-stage stochastic NLP. An 

illustrative example is used to compare and contrast the stochastic solution with the solution if we 

had taken a deterministic approach to design. The chapter next argues how the problem size grows 

rapidly when considering more scenarios and increasing the prediction horizon. Partitioning the 

problem is considered for solving the large NLP to reduce memory usage.  

In Chapter 5, we demonstrate the approach for scenario decomposition in the context of two-stage 

NLPs. The problem is shown to be parallelizable by applying the ADMM algorithm. An illustrative 

example of splitting two scenarios into two partitions is shown using the simplified TES model to 

comment on the convergence behaviour of the ADMM algorithm. 

In Chapter 6, we demonstrate how long prediction horizons that would be required in the design 

problem could be partitioned and solved using ADMM. A general framework is presented for 

partitioning a single prediction horizon into many partitions. An illustrative example of splitting a 

prediction horizon into two partitions using the simplified TES model is presented to comment on 

the convergence behaviour of the algorithm. 

Chapter 7 provides the concluding remarks and presents opportunities for extending this approach 

in the future.    
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Chapter 2. Preliminaries on distributed optimization with ADMM  

This chapter quickly reviews some basic concepts that we use in later chapters. The standard 

ADMM algorithm is introduced using a simple equality constrained optimization problem. We 

then present structured NLPs that are of our interest as a general form consensus problem. We 

conclude the chapter by applying the ADMM to the structured NLPs and simplifying some of the 

steps that arise from the structure of the problem itself.   

Distributed optimization refers to the general approach of solving a large optimization problem by 

breaking it into smaller subproblems and solving each of them separately. These subproblems can 

be solved either sequentially (one subproblem after the other) or in parallel (using separate 

machines / processors etc.) and put back together to give us the solution to the original large 

problem. Primal and dual decomposition methods are some of the popular decomposition methods, 

but they offer feasible iterates and provide convergence under very strong assumptions even in the 

case of convex optimization problems. A comprehensive review of primal and dual decomposition 

methods is done by Palomar [16]. Since our aim is to use distributed optimization for a nonlinear 

optimization problem, we have not considered them in much detail. Instead, we focus on 

augmented Lagrangian (AL) method which offer more robust convergence properties than primal 

or dual methods.  

2.1. Method of Multipliers 

This section we will discuss the method of multipliers, which is an important precursor to 

understanding the alternating direction method of multipliers (ADMM).  

Consider the simple equality constrained optimization problem of the form 

,
min

x z
 ( ) ( )f x g z+   (2.1a) 

 0Ax Bz+ =   (2.1b) 

The method of multipliers (MM) or more commonly known as AL method was first introduced by 

Hestenes and Powell [17]. It was introduced as a way to improve the robustness of standard dual 

methods which only yield convergence under very strict assumptions like strict convexity and 
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finiteness of f and g. The MM scheme solves an optimization problem of the form (2.1) by 

minimizing the augmented Lagrangian function, given as  

( )
2

2
( , , ) : ( ) ( )

2

TL x z f x g z Ax Bz Ax Bz


 = + + + + +  (2.2) 

where   is the associated Lagrange multiplier of the constraint, and   is any chosen penalty 

parameter. The MM scheme is based on the fundamental result that there exists a sufficiently large 

penalty parameter 0   such that the minimizer of the AL function (2.2) is a minimizer of the 

original problem (2.1). The augmented Lagrangian can thus be seen as the unaugmented 

Lagrangian of the problem  

,
min

x z
 2

2
( ) ( )f x g z Ax Bz+ + +   (2.3a) 

.s t  0Ax Bz+ =   (2.3b) 

This problem is clearly equivalent to the original problem (2.1) since, for any feasible primal 

variable (x,z), the term added to the original objective is zero. The benefit of including the penalty 

term is that the dual problem of (2.3) can be shown to be differentiable under milder conditions 

than the dual of the original problem (2.1) [18]. The augmented Lagrangian method is related to 

the quadratic penalty method [19], but it reduces the possibility of ill-conditioning by explicitly 

introducing an estimate of the Lagrange multiplier into the function to be minimized [19]. An 

extensive analysis of the convergence properties of MM and their relation to older ideas of 

Lagrangian and penalty methods can be found in the monograph by Bertsekas [20].     

The MM scheme performs a minimization of the augmented Lagrangian function on the primal 

variables ( , )x z  and then updates the Lagrange multipliers using a steepest descent step in the 

space of  . The gradient is given by the primal residual ( , ) :r x z Ax Bz= +  at the current iteration 

of the algorithm [21].  

The standard MM scheme yields the following algorithm at iteration k 

( )1 1,k kx z+ +
 

,

: arg min ( , , )k

x z

L x z =   (2.4a) 

1k +
 1 1: ( )k k kAx Bz  + += + +   (2.4b) 
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The superscript k is used to indicate the iteration number of the algorithm. The solution of the 

subproblems at iteration k can be used to warm start (initialize) the solver at iteration k+1 as a way 

to speed up iterations. It is important to highlight that the MM scheme jointly minimizes on the 

primal variables, and the quadratic term prevents the algorithm being separable in x and z even if 

the original objective function was separable. Consequently, this prevents us from directly 

implementing the MM in a parallel fashion.  

2.2. Alternating Direction Method of Multipliers   

ADMM blends the ideas from MM and Gauss-Seidel coordination schemes to enable 

decomposition and parallel implementation [18]. It is based on the key observation that minimizing 

over the primal variables x and z separately (opposed to jointly being done in MM) enables 

independent subproblems in each partition for structured problems. The standard ADMM scheme 

has the following steps at iteration k 

1kx +  : arg min ( , , )k k

x

L x z =   (2.5a) 

1kz +  
1: arg min ( , , )k k

z

L x z +=   (2.5b) 

1k +  1 1: ( )k k kAx Bz  + += + +   (2.5c) 

Convergence 

We can write the necessary and sufficient condition for optimality for the problem (2.1) at a point 

* * *( , , )x z  . The primal feasibility condition is  

 * * 0Ax Bz+ =  (2.6) 

and the dual feasibility conditions are (where 0L  represents the unaugmented lagrangian of (2.1)) 

 * * *

0

* *

0 ( , , )

( )

x

T

x

L x z

f x A





= 

=  +
 (2.7) 

 * * *

0

* *

0 ( , , )

( )

z

T

z

L x z

g z B





= 

=  +
 (2.8) 

At iteration k+1 of ADMM, the infeasibility of the primal feasibility condition (2.6) can be 

represented as  ( )1 1 1k k kr Ax Bz+ + += + .  
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Since 1kx +  minimizes ( , , )k kL x z   by definition (2.5a), the optimality condition for this step is 

 

1

1 1

1 1 1

1 1 1

0 ( , , )

( ) ( )

( ) ( ( ))

( ) ( ))

k k k

x

k T k T k k

x

k T k k k k

x

k T k T k k

x

L x z

f x A A Ax Bz

f x A r B z z

f x A A B z z

 

 

  

 

+

+ +

+ + +

+ + +

= 

=  + + +

=  + + + −

=  + + −

  

or equivalently,  

 
1 1 1( ) ( )k T k T k k

x f x A A B z z + + + + = −   

The residual in the dual feasibility condition (2.7) at iteration k+1, can thus be represented as 

1 1( )k T k ks A B z z+ += − . 

Since 1kz + minimizes 1( , , )k kL x z +  by definition (2.5b), the optimality condition for this step is 

 

1 1

1 1 1

1 1

1 1

0 ( , , )

( ) ( )

( ) ( )

( )

k k k

z

k T k T k k

z

k T k k

z

k T k

z

L x z

g z B B Ax Bz

g z B r

g z B

 

 

 



+ +

+ + +

+ +

+ +

= 

=  + + +

=  + +

=  +

  

Thus it shows that ADMM iterations always satisfy the dual feasibility condition (2.8). 

A good stopping criterion for the algorithm is then the primal and dual residuals to be small and 

below some specified positive tolerance level 
2

k primalr   and 
2

k duals  .  

There are many convergence properties of ADMM discussed in the literature. A fairly general 

result when applying ADMM to convex problems is presented by Boyd [18] which we quote here 

Assumptions 2.1 :  

• The functions  : nf →  +  and  : mg →  +  are closed, proper and convex 

• There exists * * *( , , )x z  , not necessarily unique, for which the unaugmented Lagrangian 

* * * * * *

0 0 0( , , ) ( , , ) ( , , )L x z L x z L x z     holds for all , ,x z   

Under Assumption 2.1, ADMM iterates are shown to satisfy the following properties 
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• Residual convergence. 0kr →  as k → , i.e., the iterates approach feasibility 

• Objective convergence. *( ) ( )k kf x g z p+ →  as k → , i.e., the objective function of the 

iterates approach the optimal value 

• Dual variable convergence *k →  as k → , where *  is the dual optimal point 

When ADMM is applied to nonconvex problems, it can be considered just as another local 

optimization method. Even when the minimization steps can be carried exactly, ADMM need not 

converge, and when it does converge, it need not converge to the optimal point. Although the 

convergence guarantees do not exist for nonconvex NLPs, in practice however, ADMM has been 

shown to perform satisfactorily under various case studies, and their convergence comparable to 

that of MM [21]. It is worth explicitly stating that similar to other local optimization methods, 

ADMM can converge to a different point depending on the initial values of 0 0,x z , 0  and the 

penalty parameter   that are used [18].  

There are different extensions and variations to the standard ADMM scheme explored in the 

literature to improve their convergence properties, some of which are summarized by Boyd [18]. 

Of particular interest to us have been schemes investigating performing multiple coordination steps 

between the minimization steps (2.5a) and (2.5b) before performing the dual update step (2.5c). By 

performing multiple coordination minimization steps, the expectation is that the algorithm 

approaches the MM scheme (where both x and z are jointly minimized) convergence properties. In 

this interpretation, the MM scheme provides the limiting performance of ADMM. Some metrics 

that would be useful to monitor the progress of ADMM would be the primal and dual residuals 

every iteration. The AL function decreases monotonously every iteration in the MM scheme but is 

not necessary for ADMM, which is an indication of insufficient coordination steps being 

undertaken in the standard ADMM scheme.  

2.3. Structured NLPs as general form consensus problems 

Our aim is to use distributed optimization for large nonlinear problems. We will focus our attention 

on structured NLPs which could be partitioned into P blocks of the form 



11 

 

,
min

ix z
 

1

( )
P

i i

i

f x
=

   (2.9a) 

.s t  i ix   1,2,...,i P=  (2.9b) 

 0i i iA x B z+ =  1,2,...,i P=  (2.9c) 

Where the variable xi
n

ix   represents all the variables that correspond to block partition 

 : 1, , Pi = . The vector v  in the i-th partition is represented using the subscript as 
iv , and the 

i-th entry of the vector will be represented as ( )v i  to prevent any ambiguity. The feasible set is 

built by constraints  | ( ) 0ii ii c xx =  . The entire set of partition variables can be collected into 

a single variable vector 1 2, , ,T T T T

Px x x x =    where xn
x . The vector znz  contains all the 

coupling variables in the problem. Equation (2.9c) is called the linking (complicating) constraint 

as, without it, the problem would be trivially separable and could have been solved independently. 

The matrices iA  and iB  help map a subset or a linear combination of the partition variables to the 

coupling variables. In the simplest case of consensus optimization (local variable component ( )ix j  

corresponds to global variable component ( )z l ), these would be rather sparse matrices. The 

Lagrange multiplier associated with the coupling constraint in partition “i” is denoted as im

i   

and the entire set of multipliers associated with the coupling constraints represented as 

1 2, , ,T T T T

P    =     where 
m  .  

The general form consensus optimization problems can be represented using an undirected graph, 

and a simple example is shown in Figure 2-1. The left side is the partition optimization problems 

with their own local variables (the solid dots here represent a scalar element of the vector) and local 

constraints. The consensus constraint in this case is ( ) ( ) ( ) ( )1 2 31   3  3 2x x x z= == , which are 

represented by links connecting each to a global copy ( )3z  of these private variables.   
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Figure 2-1: Representing a simple general form consensus optimization problem. 

The coupling constraint for partition 1 can then be shown to be 

 1 1 1 0A x B z+ =   

 

1

1

1

1

(1)
(1)

(2)1 0 0 0 0 0 1
(2) 0

(3)0 0 0 1 1 0 0
(3)

(4)

x
z

x
z

x
z

x

 
  

−       + =       −        
 

  

The complete NLP (2.9) could be represented in the compact form as  

,
min

x z
 ( )f x   (2.10a) 

.s t  x    (2.10b) 

 0Ax Bz+ =   (2.10c) 

z(3)

x1

x2

x3

z(2)

z(1)
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where the feasible set 1, ,i P i ==  . Matrices A  and B  can be constructed easily using the 

partition matrices iA  and iB  given by 

 

1

P

A

A

A

 
 

=
 
  

 

1

P

B

B

B

 
 

=
 
  

 (2.11) 

A popular distributed optimization paradigm to exploit the structure of the original problem (2.9) 

is to decompose it into partition subproblems whose solutions are coordinated by some master 

coordinator scheme. Such approaches are frequently referred to as external decomposition. Some 

of the well-known approaches like primal decomposition, dual decomposition and ADMM fall into 

this category.  

2.4. ADMM algorithm applied to structured NLPs    

This section applies the general ADMM algorithm presented in the previous section to the 

structured NLPs of the form (2.9). The special structure of the problem is taken advantage of, 

providing simplifications and analytical solutions to some of the steps in ADMM. 

We first form the augmented Lagrangian for the structured NLP (2.9) by taking the coupling 

constraint to the objective term.  

 ( ) ( )
2

2
1

( , , ) ( )
2

P
T

i i i i i i i i i

i

L x z f x A x B z A x B z


 

=

= + + + +   (2.12a) 

We can now follow the steps we have outlined for ADMM.  

Step (2.5a) in the ADMM algorithm is the update of primal variable x which can be written as 

1kx + =  arg min
x

 ( ) ( )
2

2
1

( )
2

P
T

k k k

i i i i i i i i i

i

f x A x B z A x B z



=

+ + + +   (2.13a) 

 .s t  i ix   1,2,...,i P=  (2.13b) 

For the structured NLP, we can parallelize this step in each of the partitions i as  
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1k

ix + =  arg min
ix

 ( ) ( )
2

2
( )

2

T
k k k

i i i i i i i i if x A x B z A x B z


+ + + +  1,2,...,i P=  (2.14a) 

 .s t  i ix   1,2,...,i P=  (2.14b) 

Step (2.5b) in the ADMM algorithm is the update of the coupling variable z written directly as 

1kz + =  
arg min

z

 ( ) ( )
2

1 1 1

2
( )

2

T
k k k kf x Ax Bz Ax Bz


+ + ++ + + +   (2.15) 

This step has a closed-form solution which can be derived from the first-order optimality 

conditions [21] to give  

1kz +  ( )
1

1T T k TB B B Ax B 
−

+ = − +    (2.16) 

This requires the matrix B to have full column rank. In the context of structured NLP, it can be 

shown [18] that (2.16) is an averaging operator, with the j-th element of z, has the form 

1( )kz j+  
11
( )

j

i

j

k

i

x j+



=    (2.17) 

where  : 1, ,j P =  denotes the set of partitions that are connected to the variable ( )z j . In 

other words, the z-update step is just an averaging of all entries of 
1k

ix +
 that correspond to the 

global copy ( )z j . A detailed explanation with the derivation of this step is available in [18].     

Step (2.5c) is the dual variable update, and can be shown to be solved in the partitions as 

1k

i
+

 
1 1( )k k k

i i i iA x B z  + += + +   (2.18) 
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Chapter 3. Process description and model 

In this chapter, we will first describe the TES process and then derive the mathematical model to 

represent the dynamic behaviour of the process. The optimal operation problem is then framed and 

the behaviour of the TES system is discussed using an illustrative example. We will then see how 

design parameters influence optimal operation and motivate the need for optimal design.    

3.1. Process description - TES system 

The flowsheet in Figure 3-1 is used to represent the heating section of a district heating network. 

The district heating network uses hot water in a closed-loop as the medium to meet the heating 

demands of an area. An industrial process represented by the stream qwh is given, which has some 

cooling demand. This is referred to as the waste heat stream, which could be used as the cheap 

source of heat for the district heating network. The heat is transferred from the waste heat stream 

to the district heating circuit using the waste heat boiler (WHB). Additional heat can be added to 

the water using the peak heat boiler (PHB) which uses a more expensive source of energy for 

heating (fossil fuel or electricity). 

The demand for energy from consumers is represented as follows. The total volumetric flow in the 

district heating network is represented by qdh and is determined by the number of consumers and 

their demand for hot water at any particular time. Water is returned by the consumers at a 

temperature Tdh, Ret, which is assumed to be correlated only to the ambient conditions due to the 

heat losses in the long return pipeline. Water is heated by PHB to temperature Tphb and must be 

above a contractually specified temperature Tdh, minSup before it can be supplied to the consumers. 

Hence qdh, Tdh, Ret are time-varying external inputs to our system while Tdh, minSup provides us with 

a lower limit for Tphb that must always satisfy during operations. The PHB adds heat duty Qphb to 

the water, and the cost associated with this is assumed to be proportional to Qphb with a per-unit 

cost CQphb. The total energy that needs to be added by the district heating system is calculated as 

, , ( ) –  demand dh dh dh dh minSup dh Ret

pQ q C T T= , where dh  and dh

pC  represent the density and the 

specific heat capacity of water in the district heating circuit. 
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Figure 3-1: Flowsheet for the TES system 

The supply of energy from the industrial process is represented as follows. The process has a stream 

at volumetric flow qwh and temperature Twh,s up. The process requires that this stream be cooled 

down to at least Twh,minRet. Similar to the consumer side, qwh and Twh, sup are determined by the 

industrial process and are time-varying parameters to the system. Heat is transferred from the 

process stream to the district heating system using a heat exchanger WHB. The exit temperatures 

for the process stream and water are T wh,ret, and Twhb, respectively. To meet the process stream 

return temperature specification of Twh,minRet, a dump cooler (DC) is used which can remove excess 

heat duty Qdc by use of some external cooling utility. The use of this cooling utility has a cost 

associated with it and is assumed proportional to Qdc with a per-unit cost of CQdc. The total available 

supply of energy from the process is thus calculated as , , ( ) –  supply wh wh wh wh sup wh minRet

pQ q C T T= , 

where 
wh  and wh

pC  represent the density and the specific heat capacity of the waste heat stream. 
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The heating and energy storage functions are represented as follows. The water is first heated using 

the WHB up to Twhb. During periods where the demand for energy exceeds the heat duty being 

extracted from WHB, the water at the exit of the WHB would not be hot enough to meet the 

consumer temperature specifications. Hence it will need to be heated further using the PHB in order 

to satisfy the return temperature constrain Tphb >= T wh, minRet. During periods where the demand for 

energy is lower than is being extracted from the WHB, we do not need additional heating from the 

PHB and can directly send the water to the consumers. The temperature being sent would be higher 

than the minimum return temperature specification. A TES tank is proposed to be constructed that 

can be used as a buffer between these periods of excess and low demand to reduce this spec 

giveaway and hence minimize the total reliance on external utilities. The TES assumed here is a 

simple mixed tank design connected directly to the water stream. By splitting the total flow from 

the exit of the WHB, we can store the excess energy by increasing the temperature in the tank and 

similarly discharging it during periods of shortfall. The tank is assumed to be completely filled and 

under perfect level control, and hence the inflow would be equal to outflow. Our aim is to find the 

optimal size of this tank that needs to be installed, and also assess if any increase to the area in the 

existing heat exchanger WHB would be beneficial.  

3.2. Dynamic Process Model 

We will first build a simple dynamic model of the process that can be used for the optimization 

step. The dynamic process model is built according to the process described in the previous section. 

We will assume the following main assumptions throughout to build the model. 

• All fluid streams have constant properties like density (  ) and specific heat capacity (Cp) 

which do not change with temperature.  

• Heat losses from pipelines or heat exchangers to the surroundings are negligible. 

• Liquid holdups in pipes and pressure effects on flow rates are negligible. 

• All volume elements are well mixed (without internal temperature gradients), and their exit 

temperature is equal to the temperature of the volume. 

• Perfect level control in TES tank. 
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The dynamic model can then be built by writing out the mass and energy balances for each of the 

elements in the process with any additional assumptions being made mentioned therein. 

TES Tank 

The TES tank is assumed to be well-mixed, and the dynamic mass balance can then be written as  

 
( ) , ,( )dh tes dh tes in tes outd

V q q
dt

 = −  
 

Under the main assumptions of constant densities and perfect level control, the mass balance 

reduces to the inlet volumetric flow rate being equal to the outlet flow rate. This is already 

accounted for while setting up the variables in the flowsheet and does not need to be added 

separately. The variable   is used to denote the proportion of the total flow qdh that is being sent 

to TES. 

 , ,  dhtes in tes out tesq q q q== =   

The dynamic energy balance for the tank thus can be written as  

 
( ) ,( )dh tes dh tes dh dh dh whb tes tes loss

p p

d
V C T q C T T Q

dt
  = − −  

 

The energy loss from the tank is assumed from the total surface area of the tank to the ambient, and 

the rate of heat loss being proportional to the temperature difference between the tank and the 

ambient temperature. Assuming a constant height/ diameter ratio for the construction of tanks for 

a volume of Vtes, the heat loss can then be written as  

 ( )
2/3

, ( )tes loss tes tes tes ambQ U V T T −   

with a proportionality constant c. This gives us the dynamics of the temperature in the tank as 

 ( ) ( )
1/3

( )
tes tes tes ambtes dh whb tes

tes dh dh

p

cU V T TdT q T T

dt V C





−

−−
= −  (3.1) 
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Peak Heat Boiler (PHB) 

The peak heat boiler uses more expensive sources of energy to heat the water. The size of this 

exchanger is of less interest and is modelled simply as a well-mixed tank of constant volume (Vphb) 

with the additional heat duty being added directly, to capture simple dynamics in the response of 

this unit. The mass balance, using the earlier assumptions simplifies to inlet and outlet volume 

flows being equal, and is already accounted for while setting up the variables in the flowsheet. The 

energy balance equation can be written as  

 
( ) ( )dh phb dh phb dh dh dh b phb phb

p p

d
V C T q C T T Q

dt
 = − +  

 

Rearranging gives the differential equation for the dynamics of the exit temperature of PHB as 

 ( )phb dh b phb phb

phb dh phb dh

p

dT q T T Q

dt V V C

−
= +  (3.2) 

Node B 

Node B is assumed to be an ideal mixer with zero volume. The energy balance gives the 

temperature at the node as the algebraic equation  

 (1 )b tes whbT T T = + −  (3.3) 

Dump Cooler (DC) 

We are only interested in the heat duty of this cooler. Hence, it is simply modelled as a point volume 

with the heat duty removed directly. The energy balance then reduces to an algebraic equation  

 ( ),wh wh wh wh ret dc dc

pq C T T Q − =  (3.4) 

The dump cooler here is used to achieve a specified return temperature to the process. In case the 

energy is extracted from some flue stream being released to the environment, Qdc could easily just 

represent the amount of recoverable heat being released to the environment by picking a suitable 

value for Twh, minRet, and an economic penalty for wasting this energy.   
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Waste Heat Boiler (WHB) 

We are concerned with finding an optimal area for this heat exchanger and will assume this as a 

pure countercurrent heat exchanger. The most common way to model the steady-state energy 

balance for parallel heat exchangers is to use the log mean temperature difference (LMTD) between 

the temperature differences at the ends of the exchanger (
1T  and 2T ) as 

 
2 1 1 2

2 1 1 2ln( / ) ln( / )
LM

T T T T
T

T T T T

 −  −
 = =

   
 (3.5) 

The heat duty transferred in the heat exchanger is then calculated as, 

    LMQ UA T=    

 Using the LMTD directly in the dynamic energy balance is known to cause issues in optimization 

due to the highly nonlinear logarithmic term. There are various approximations to the LMTD 

instead that are popularly for such purposes used in the literature of the form 

 
( )

1/

1 2

1

2

n

n n

LM MT T T T
 

   =  + 
 

 (3.6) 

The value of the exponent n used in different approximations are as shown in table  

Table 3-1: Approximations commonly used for LMTD 

n Approximation ( )MT  

1 Arithmetic Mean ( )AMT  

1

3
 

Underwood’s Mean ( )UMT  

0.3275 Chen’s Mean ( )CMT  
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This approach was used by Mdoe [22] to model and calculate the optimal control for a different 

TES system. This approach does not give us an easy way to adjust the model complexity while 

building and later scaling the design problem and is not considered here. We will instead model 

the heat exchanger using the popular lumped cell-based approach [23] [24].  

In the lumped cell-based heat exchanger model, each stream is modelled as a series of well-mixed 

tanks referred to as cells. The adjacent cells exchange heat only with each other through the 

dividing wall. The advantage of this approach is that any flow configuration can be modelled and 

can better represent the true dynamic behaviour by manipulating the arrangement and using a 

sufficient number of these cells. The model complexity can be easily controlled by the number of 

cells used to represent the heat exchanger. The arrangement for a generic countercurrent heat 

exchanger with the hot stream and cold stream temperatures can then be illustrated as in Figure 

3-2.  

The convention followed is to number the cells in each stream in the direction of fluid flow (from 

inlet to outlet) with the total number of cells set as nCell. Therefore, cold cell “i” is thermally 

coupled with hot cell numbered “nCell + 1 - i” and the heat duty being transferred between them 

denoted as Q(i).    

In addition to the previously mentioned assumptions, the following assumptions are used while 

building the lumped cell-based heat exchanger model.  

• The total heat transfer area and volume in each side is uniformly distributed among the cells 

( ( )i

A
A

nCell
=  and ( )i

V
V

nCell
=  for i=1,2,…,nCell) 

• The overall heat transfer coefficient (U) in each cell is the same and does not change with 

flowrates  

• Wall thermal resistance and capacitance are insignificant.  
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Figure 3-2: Lumped cell-based model of a countercurrent heat exchanger 

These assumptions let us write the generic expression for heat transfer into the cold cell “i” as 

 
( ) ( ) ( 1 ) ( )( ) ( )i i hot nCell i cold iQ UA T T+ −= −   1,2,...,i nCell    

In modelling the WHB, the cold side is the district heating stream, and all the cell temperatures are 

represented using ( )

whb

iT . The hot side is the waste heat stream, and cell temperatures are represented 

as ,

( )

wh ret

iT . 
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The energy balance over the i-th cold side cell is 

 
( ) ( ).

( ) ( ) ( 1) ( ) ( )

dh whb dh dh whb dh dh dh whb whb whb

i p i p i i i

d
V C T q C T T Q

dt
  −= − +   1,2,...,i nCell    

 ,Re

0

whb dh tT T=    

The cold cell “i” is thermally coupled to the hot cell “nCell +1- i” according to the numbering 

scheme we have followed for the countercurrent heat exchanger. The energy balance in the coupled 

hot cell can be written as, 

 
( ) ( ). , , ,

( 1 ) ( 1 ) ( ) ( 1 ) ( )

wh whb wh wh wh ret wh wh wh wh ret wh ret whb

nCell i p nCell i p nCell i nCell i i

d
V C T q C T T Q

dt
 + − + − − + −= − −   1,2,...,i nCell   

 

 , ,sup

0

wh ret whT T=    

The heat duty being transferred between the cells is denoted as  

 ,

( ) ( ) ( 1 ) ( )( ) ( )whb whb wh ret

i i nCell i iQ UA T T+ −= −   1,2,...,i nCell    

 Rearranging and stacking them in standard notation gives us the differential equations for the 

temperature response in the WHB as 

 

( )
( )( 1) ( ) ( )

( ) . ,

( ) ( )

dh whb whb whb
i i iwhb

i whb dh dh dh whb dh

i p i

q T T Qd
T

dt V C V

− −
= +   1,2,...,i nCell   (3.7) 

 ,Re

0

whb dh tT T=    

 

( )
( ), .

( 1) ( ) ( 1 ),

( ) . ,

( ) ( )

wh wh ret wh ret whb
i i nCell iwh ret

i whb wh wh wh whb wh

i p i

q T T Qd
T

dt V C V

− + −
−

= +   1,2,...,i nCell   (3.8) 

 , ,sup

0

wh ret whT T=    
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3.3. Model as DAE 

The complete dynamic behaviour of the system can be thus expressed as a set of differential-

algebraic equations (DAE) of the form  

 ( )lg, , ,diff diff ax f x x u p=  (3.9a) 

 ( )lg0 , , ,diff ag x x u p=  (3.9b) 

The differential equations (3.1), (3.2), (3.7) and (3.8) are collected into the form of the equation 

(3.9a) and the algebraic equations (3.3) and (3.4) are collected into the form of the equation (3.9b).  

The differential state xdiff vector (of length 2*nCell + 2) is then defined as,  

 ,

1,..., 1,...,, , ,diff tes phb whb wh ret

i nCell i nCellx T T T T= =
 =     

the algebraic state vector xalg as, 

 lg ,a b dcx T T =     

the manipulated variable vector u as, 

 , ,phb dumpu Q Q =     

the time-varying parameter vector p as, 

 , ,, , ,dh wh dh Ret wh Supp q q T T =     

The various time-invariant parameters that are used in the simulations are specified in Table 3-2. 

Table 3-2: Parameter values used in simulations 

Parameter Description Value Units 

dh  Density of district heating stream 1000 kg/m3 
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wh  Density of waste heat stream 800 kg/m3 

dh

pC  Specific Heat Capacity of district heating stream 4.18 kJ/kg.K 

wh

pC  Specific Heat Capacity of waste heat stream 3.5 kJ/kg.K 

Uwhb Overall heat transfer coefficient for waste heat boiler 5.13 kW/m2K 

Utes Overall heat loss coefficient for TES tank 0.0001 kW/m2K 

Vphb Volume of Peak Heat Boiler   12 m3 

Vwhb, dh Volume of Waste Heat Boiler (district heating side)  12 m3 

Vwhb, wh Volume of Waste Heat Boiler (waste heat side) 12 m3 

nCell Number of cells used in modelling WHB 5 - 

Tamb Ambient Temperature 10 C  

Some nominal values for the varying elements of the model are specified in Table 3-3. These values 

are also used as the initial state for the differential states for all the simulations.   

Table 3-3: Nominal values for Variables and Inputs 

Variable Description 
Nominal 

Value 
Units 

Ttes Temperature of TES tank 45 C  

Tphb Temperature at the exit of Peak Heat Boiler 56 C  
whbT  WHB exit Temperature of district heating stream 46 C  

,wh retT  WHB exit temperature for waste heat stream  71 C  

Tb Temperature of Node B 55 C  

Tdc Dump cooler exit temperature 30 C  

  Split ratio of WHB exit stream sent to TES 0 - 

Qphb Heat duty added to PHB 0 kW 

Qdc Heat duty removed from Dump Cooler 0 kW 

Vtes Volume of TES tank 15000 m3 

Awhb Area of WHB heat exchanger 400 m2 

qdh Volumetric flow rate of district heating stream 900 m3/hr. 

qwh Volumetric flow rate of Waste Heat stream 900 m3/hr. 

Tdh, minSup Minimum supply temperature of water to consumers 55 C  

Twh, minRet Minimum return temperature of waste heat stream 30 C  

Tdh, Ret Supply temperature of district heating stream 30 C  

Twh, Sup Supply temperature of waste heat stream 100 C  

CQphb Price per unit of energy added  0.06 USD/kWh 

CQdc Price per unit of energy removed 0.006 USD/kWh 
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3.4. The Optimal Operations Problem  

In this section, we illustrate the optimal operation of the TES system. The area of the heat exchanger 

and the volume of the tank are kept fixed as in Table 3-3. A simple step change is in the flowrate 

qwh to represent a step-change in the supply of energy (while all the other parameters are kept 

constant for simplicity of discussion)  to illustrate the behaviour of the system under optimal 

operation. We will then show how the design parameters (volume of tank and area of heat 

exchanger) affect this optimal system behaviour.  

During operations, only the costs associated with the purchase of external utilities are considered 

(in our case Qphb and Qdc) where CQphb and CQdc are the unit prices associated with these external 

utilities. Hence for an operating period from t0 to tf, the corresponding operating cost function 

(Coper) can be defined as  

 
( )

0

: ( ) ( ) ( ) ( )

ft

oper Qphb phb Qdump dump

t

C C t Q t C t Q t dt= +  (3.10) 

The optimal operations problem is to find the profile for the input variables that minimizes the 

operating cost for the period. This can be formulated as the optimization problem in continuous 

time as 

lg( ), ( ), ( )
min

diff ax t x t u t
 ( )

0

( ) ( ) ( ) ( )

ft

Qphb phb Qdump dump

t

C t Q t C t Q t dt+  
 

 (3.11a) 

s.t. ( )lg( ) ( ), ( ), ( ), ( )diff diff ax t f x t x t u t p t=   
0 ft t t   (3.11b) 

 ( )lg0 ( ), ( ), ( ), ( )diff ag x t x t u t p t=   
0 ft t t   (3.11c) 

 0
ˆ(0)diffx x=    (3.11d) 

 ( )diff diff difflbx x t ubx    
0 ft t t   (3.11e) 

 
lg lg lg( )a a albx x t ubx    

0 ft t t   (3.11f) 

 ( )lbu u t ubu    
0 ft t t   (3.11g) 

The initial condition for the differential states is specified as 0x̂ . The bounds for the states and 

inputs are also included in the problem (Equations 3.11e to 3.11g). This problem in infinite-
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dimensional and can be solved by first converting it into a finite-dimensional nonlinear 

programming problem (NLP), dividing it into N equally spaced sampling intervals (n = 0,1,…,N-

1). This discretization can be performed using various approaches such as single shooting, multiple 

shooting, direct collocation [25]. We will use direct collocation for all our problems in this thesis. 

After discretization, the optimal operations problem can be posed in the standard NLP form as 

lg
1 , ,
min

diff a
n nnx x u+

 ( )
1

0

N
Qphb phb Qdump dump

n n n n

n

C Q C Q
−

=

+  
 

 (3.12a) 

s.t. ( )lg

1 , , ,diff diff a

n n n n nx f x x u p+ =   n=0,1,…,N-1 (3.12b) 

 ( )lg0 , , ,diff a

n n n ng x x u p=   n=0,1,…,N-1 (3.12c) 

 0 0
ˆdiffx x=    (3.12d) 

 
diff diff diff

nlbx x ubx    n=0,1,…,N-1 (3.12e) 

 
lg lg lga a a

nlbx x ubx    n=0,1,…,N-1 (3.12f) 

 
nlbu u ubu    n=0,1,…,N-1 (3.12g) 

In compact notation, the optimal operations problem can be represented as  

min
operx

 ( )oper operC x   (3.13a) 

s.t. ( )oper operx    (3.13b) 

where all the variables associated with the operation phase are collected into the vector 

lg

0 1, , ,oper diff diff a

n n nx x x x u+
 =   for all 0,1,..., 1n N= − . The operating cost function is defined as

( )
1

0

N
oper oper Qphb phb Qdump dump

n n n n

n

C x C Q C Q
−

=

= +  and the feasible set oper  contains all the feasible points 

of the constraints (3.12b to 3.12g). 

All the illustrative examples in this thesis are implemented in MATLAB R2019b using CasADi 

(v3.5.1 ) [26] framework for formulating the mathematical models and the NLP. These problems 

are then solved using IPOPT [27] to find a local solution.   



28 

 

An Illustrative Example of Optimal Operation 

To analyze the solution of (3.12) a simple problem is solved where a step-change in flowrate of qwh 

is provided. A prediction horizon of 30 hours is considered, and the step change is shown in the 

top subplot of Figure 3-3. The first 15 hours have a 20% higher flowrate than the nominal flow, 

and for the next 15 hours, it is 20% lower than nominal. All other time-varying parameters are kept 

constant and the nominal values are chosen to satisfy the consumer demand without the use of 

heating in the PHB. It is very easy to analyze the solution of the optimal control problem. The exit 

temperature response of the WHB is shown in the bottom subplot of Figure 3-3. When there is an 

increased flow in the first half, the WHB exit temperature increases (in this particular case to above 

the return specification of 55 C ) and vice versa in the latter half. 

 

Figure 3-3: Step change in disturbance and response in WHB exit temperatures 

Optimal operation in this case is rather intuitive - try and store the excess energy in the first half 

and then release it during the period of shortfall. This is the optimal solution from solving the NLP 

(3.13). In the bottom subplot of Figure 3-4, the split ratio ( ) is being manipulated to charge the 

TES tank as can be seen by the increase in temperature Ttes. If TES temperature is above the 

minimum return temperature (55 C ), we cannot avoid sending hot water above the minimum 
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return specification and  is saturated fully in an attempt to maximize the energy stored in the TES. 

There is no need for Qphb during this time. When the step-change causes a fall in the supply (by 

hour 15), the WHB exit temperature quickly falls below 55 C  . Since the TES tank has stored 

energy,   is manipulated to now discharge the tank. Qphb is required to maintain the temperature 

Tphb at its lower limit when the TES temperature falls below 55 C  around hour 23. 

 

Figure 3-4: Optimal operation profiles 

This simple example is thus able to show the crucial nonlinear behaviour associated with the TES 

system. Even though cumulatively the supply and demand for energy were the same as for the 

nominal case, we do end up using peak heating to satisfy the demand profile in this simple example. 

This is because of the importance of temperature (the quality of energy) in real TES systems. 

Analyzing the system simply as duties would not have considered the second law of 

thermodynamics which is essential while trying to find real-life equivalent parameters for 

designing and operating such systems.   

The primary factors affecting the quality of energy in this case are the volume of the tank and the 

area of the heat exchanger. The area of the heat exchanger directly influences the temperature Twhb 
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and hence the maximum temperature that the TES tank can be charged up to. The volume of the 

tank affects the amount of heat duty that is stored at a particular temperature. Both these parameters 

have an important effect on the operational cost, which is analyzed in the next section.  

3.5. The effect of Design on Optimal Operations 

Next, we look at the effect design variables (volume of tank and area of heat exchanger in our case) 

have on optimal operation under the same step-change in qwh represented in Figure 3-3.    

Volume of the Tank 

We redo the analysis with different tank sizes (with a constant nominal heat exchanger area) - one 

lower (10,000 m3), one larger (20,000 m3), and compare it to the nominal volume (15,000 m3) of 

the tank that was considered earlier. Since the heat exchanger area is the same - the exit temperature 

of WHB will follow the same profile as in the bottom subplot of Figure 3-3 from before. The 

optimal profile for  is found by solving the OCP to first charge and later discharge the tank. The 

larger tank holds more charge at the same temperature than the smaller ones. we can see from the 

top subplot of Figure 3-5 as it takes longer for this temperature to approach Twhb. This, in turn, 

requires less Qphb during the discharging phase as more energy could be dispatched from the larger 

TES tank.   
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Figure 3-5: Optimal operation at different tank sizes 

Area of the Heat Exchanger 

Similar to the tank volume, we compare the optimal operation solution under 3 cases of heat 

exchanger area around the nominal value of 400 m2 (and the tank volume held constant at the 

nominal value). From the top subplot in Figure 3-6, we see that increasing the area results in 

extracting more of the available energy from the supply stream. This means that Twhb temperatures 

will be higher, the TES can be potentially be charged to a higher temperature and thus store more 

energy for the same tank volume. This effect can be seen in the bottom subplot of Figure 3-6, as 

less Qphb is required with an increase in the heat exchanger area for the same tank volume.      



32 

 

 

Figure 3-6: Optimal operation at different heat exchanger areas 

We can see that these simple sizing parameters chosen during the design phase of the project have 

an important influence on the operation cost of the dynamic process in the future. We would hence 

like to find how these sizing parameters, for such a dynamic process with uncertain demand or 

supply profiles, can be chosen by the designer. This question is explored in the coming chapters of 

this thesis.  
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Chapter 4.  Optimal Design Problem  

In the previous chapter, we introduced the optimal control problem for the TES plant and saw the 

effect of the original design variables (like heat exchanger area and tank volume) on the optimal 

operation. This chapter will discuss how these design parameters are chosen.  

During process design, one seeks to choose the process and equipment parameters that will 

maximize the net present value (NPV) of the project. For a fixed production capacity of the plant, 

this reduces to minimizing the total cost of ownership for the plant. We ignore the present value 

aspects associated with actual project evaluation to make it easier for the analysis of our results and 

discussions. The costs associated with the plant can be broadly split into the initial capital cost and 

the operations costs. In our case, the initial capital cost is restricted to consist only the purchased 

equipment cost for the heat exchanger and the TES tank. These can be estimated using simple cost 

relationship of the form a + bSc where S is the characteristic size of the equipment (area in m2 for 

heat exchangers and volume in m3 for tanks). The constants are taken from Sinnott [28] and are 

shown in Table 4-1. 

Table 4-1: Constants used for estimating design cost 

Constants 
Storage Tank: 

(cone roof) 

Heat Exchanger: 

(shell and tube) 

a 5700 10000 

b 700 88 

c 0.7 1 

The design life of 20 years is considered for the plant. To compare the objective values between 

the different cases easily, the total capital cost is scaled down to the associated prediction horizon 

for the optimization problem. It is represented as (ignoring the constants not influencing the 

optimization).  

The constants Ctank and Chex are scaled-down corresponding to the considered prediction horizon 

for the optimization problem (4.2). When the prediction horizon of 20 years will be considered for 

the optimization problem, Ctank and Chex will be equal to the constants b in the table above.  

 ( ) ( )
0.7 1

tan capital k tes hex whbC C V C A= +   (4.1) 
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4.1. Optimal Design – Without Uncertainty 

Consider the case where the supply and demand of energy is known perfectly for the prediction 

horizon N. Then the optimal design problem can be simply formulated by extending the optimal 

control problem from section 3.4 to include the contribution of capital cost in the objective. The 

design parameters (Vtes, Awhb) are also now variables for the optimization with associated bounds. 

The design problem is formulated as the NLP  

, ,
min

tes whb
nV A u
 ( ) ( ) ( )

1
0.7

tan

0

N
k tes HEx whb Qphb phb Qdump dump

n n n n

n

C V C A C Q C Q
−

=

+ + +  
 

 (4.2a) 

s.t. ( )lg

1 , , ,diff diff a

n n n n nx f x x u p+ =   n=0,1,…,N-1 (4.2b) 

 ( )lg0 , , ,diff a

n n n ng x x u p=   n=0,1,…,N-1 (4.2c) 

 0 0
ˆdiffx x=    (4.2d) 

 
diff diff diff

nlbx x ubx    n=0,1,…,N-1 (4.2e) 

 
lg lg lga a a

nlbx x ubx    n=0,1,…,N-1 (4.2f) 

 
nlbu u ubu    n=0,1,…,N-1 (4.2g) 

 tes tes teslbV V ubV     (4.2h) 

 whb whb whblbA A ubA     (4.2i) 

For the sake of compact notation, we represent the design problem as  

,
min
des operx x

 ( )( ) ,capital des oper des operC x C x x+   (4.3a) 

s.t. ( ),des operx x    (4.3b) 

where the variables associated with design into the vector are collected into ,des tes whbx V A =   . The 

operation phase variable vector operx  is defined as before. The capital cost depends on the design 

variables, and the capital cost function is defined as ( ) ( )
0.7

tan( )capital des k tes hex whbC x C V C A= + . The 

operating cost now depends on both the vectors desx  and operx , and the operating cost function is 
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defined as ( )
1

0

,
N

oper des oper Qphb phb Qdump dump

n n n n

n

C x x C Q C Q
−

=

= + . All the feasible points to the constraints 

(4.2b to 4.2i) are represented using the feasible set  .  

Illustrative example of optimal design – without uncertainty 

We illustrate the design problem with a prediction horizon of 30 hours. The supply side profile is 

given as in the top subplot of Figure 4-1, while all other parameters are held constant at their 

nominal values. The main results from the solution for the NLP are given in Table 4-2 and the 

associated optimal input represented in the bottomsubplot of Figure 4-1. An important point to note 

here is that NLP  was solved using IPOPT, which is a local optimizer; thus the solutions we obtain 

are local minimizers.   

Table 4-2: Optimal design for the deterministic case 

Design parameters in Base design Optimal design Units 

Tank volume (Vtes) 15000 11420.55 m3 

Heat exchanger area (Awhb) 300 464.70 m2 

Ccapital 867.9 846.5 USD 

Coper 170.5 63.6 USD 

Total Cost 1038.4 910.1 USD 

We can see that compared to the base design, it is beneficial to increase the heat exchanger area 

and reduce the tank volume from the nominal values. The trade-off between the capital cost and 

the operating cost leads to a lower total cost for the period of 1 day being considered. 

Comparing the state profiles between the base and optimal design in Figure 4-2, we see that the 

increased heat exchanger area increases the Twhb temperature and thus the TES is able to store more 

energy even for the lower tank volume as can be seen by the reduced reliance on Qphb. Any further 

increase in the design parameters to store more energy would just cost more than relying on the 

external utilities to satisfy the energy demand. 
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Figure 4-1:Disturbance profile and optimal input profile (base design vs optimal design) 

 
Figure 4-2:State response (base design vs optimal design) 
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4.2. Optimal Design under Uncertainty 

In reality, there is uncertainty associated with the demand and supply profiles of energy and has to 

be accounted for in the design stage. We can represent each unique combination of supply and 

demand profiles across the prediction horizon using different representative scenarios. Let the set

: {1,2,..., }S=  denote all such representative scenarios the system is expected to face during 

operation. Historical operating data from the district heating system could be used to build these 

scenarios. An example of using historical data for scenario generation in a multistage NMPC is 

shown by Thombre et al. [6]. Since scenario selection is not our primary focus here, we assume 

these scenarios are given to us with associated probabilities represented as 
s . 

There are various ways to include this uncertainty information during the design stage itself. One 

could potentially design the system to be optimal for any of the given scenarios. A simple approach 

for process design would involve designing the plant for one particular scenario and checking its 

sensitivity against other scenarios to and make modifications if needed. A more systematic 

approach would be to optimize the design for a choice of risk measure which accounts all the 

scenarios. Such approaches could include minimizing the total cost for the worst-case scenario, the 

expected value of the total cost under all the scenarios, or any other metric we wish to choose.  

A simple stochastic optimization framework is used to describe the design problem in our case 

where the optimal design is defined as the one that minimizes the expected value of the total cost. 

The optimal design problem can thus be framed as a two-stage nonlinear stochastic problem with 

full recourse with the design decisions as the first stage variables and the operating decisions as the 

second stage recourse variables. Formulating it as a two-stage program means that once the design 

decisions are made, the disturbance is fully revealed, and the optimal control actions are then taken. 

This is a simplifying assumption and could be relaxed further by assuming multiple stages to 

represent the sequence of decisions that occur in the operations stage, reacting to uncertainties that 

might be revealed over time. We do not consider this case and stick with the simple two-stage 

formulation.  
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The design problem can be represented in the compact form as 

,
min
des oper

sx x
 ( ) ( , )capital des oper des oper

s s s

s

C x C x x


+   
 

(4.4.a) 

. .s t  ( , )des oper

sx x    s   (4.4.b) 

where each scenario s has its own second stage variables 
oper

sx . The operating cost associated with 

the scenario is calculated as  
1

, , , ,

0

( , )
sN

oper des oper Qphb phb Qdump dump

s s n s n s n s n s

n

C x x C Q C Q
−

=

= + .  

 

Figure 4-3: Schematic representation of two-stage stochastic design problem with 3 scenarios 

A simple schematic of the two-stage design problem with 3 scenarios is represented in Figure 4-3. 

There are 3 possible scenarios that could be realized, represented using the parameters pn,s. The 

design decision is made in the first stage, after which the uncertainty is completely revealed. Once 

the uncertainty is revealed, the control actions (un,s) and the corresponding state profiles ( ,

diff

n sx  and 

lg

,

a

n sx ) are decided to minimize the operating cost for the realized scenario.   
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Illustrative example of optimal design – under uncertainty  

We illustrate the design problem under uncertainty where two scenarios are considered for the 

supply side profile given as in Figure 4-4, while all other parameters are held at their nominal 

values. Both scenarios are considered equally likely, where scenario 2 can be considered an 

extreme operation of the TES as compared to scenario 1.  

 
Figure 4-4: Scenarios used in the illustrative example 

With perfect information about the profile that would be realized during operation, we would have 

designed the system to be optimal for that particular scenario as in the previous section. The optimal 

designs for the individual scenarios are shown in Table 4-3.  

Table 4-3: Optimal design with perfect information 

Optimal solution based on 

the individual scenario 
Scenario 1 Scenario 2 Units 

Tank volume (Vtes) 11420.56 20633.38 m3 

Heat exchanger area (Awhb) 464.70 368.79 m2 

Ccapital 846.54 958.39 USD 

Coper 63.59 441.57 USD 

Total Cost 910.13 1399.96 USD 
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But in reality, we do not know which of the two scenarios would be realized during operation at 

the design stage. Hence a stochastic model is used to decide the optimal design for the TES. The 

total costs associated with this design when either of the scenarios are realized is shown in Table 

4-4. The design from the stochastic model would have a higher cost than if we had the optimal 

design for each scenario. Optimal design from the stochastic model is the one that minimizes the 

expected total cost, and thus a decision that hedges against all scenarios. This example illustrates 

that it is impossible, under uncertainty to find a solution that is optimal under all scenarios. 

Table 4-4: Optimal design with the stochastic model 

The optimal solution for 

the stochastic model 

 

Scenario 1 

 

Scenario 2 

 

Units 

 

Tank volume (Vtes) 19013.51 m3 

Heat exchanger Area (Awhb) 368.79 m2 

Ccapital 924.86 USD 

Coper 341.55 479.30 USD 

Total Cost 1266.41 1404.16 USD 

Expected Total Cost 1335.29 USD 

4.3. Growth in Problem size and the need for Decomposition 

We had considered a simple case in the previous section with a prediction horizon of 1 day and 

only two scenarios. For a more realistic TES design problem, we would need the prediction horizon 

to cover multiple charge/ discharge cycles. This would require the prediction horizon to cover much 

longer periods depending on the type of TES system being considered (for example - months in 

the case of seasonal energy storage). Since each unique combination of the time-varying parameters 

represents a scenario, we would also have to consider many scenarios to represent the uncertainty.  

This can lead to our two-stage NLP becoming very large, and are thus concerned with our ability 

to solve the problem with the limited available memory at our disposal. Since the design problem 

is not used for any real-time application, we are less concerned with the time to solve the problem, 

but rather the memory required for solving it. We thus look for iterative schemes which can solve 

this large NLP with limited usage of memory. The aim is to use the structure of the problem to 

solve it in a distributed matter to arrive at the optimal solution for the original problem.      
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Chapter 5. Applying ADMM to scenario decomposition 

In this chapter, we will see how ADMM can be used for scenario decomposition in a two-stage 

NLP. We will use a simplified model of the TES system to let us focus more on the decomposition 

algorithm and its results. The dynamics associated with the heat exchangers are ignored and focus 

only on the TES tank sizing as the design problem. The disturbance is simply represented as the 

heat duty transferred from the supplier to the TES system through the waste heat boiler as Qwhb. 

The simplified system is represented in Figure 5-1, and the model equations are then 

 

Figure 5-1: Simplified flowsheet of the TES system 

the differential equation 

 
( ) ( ) ( )

1/3( )dh whb tes
tes tes tes tes amb

tes

d q T T
T U V T T

dt V

 −−
= − −  (5.1) 

and the algebraic equations 

 (1 )b tes whbT T T = + −  (5.2) 

 phb
phb b

dh dh dh

p

Q
T T

q C
= +  (5.3) 

 
,Re

whb
whb dh t

dh dh dh

p

Q
T T

q C
= +  (5.4) 
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The dynamic behaviour of the system can thus be expressed in the standard DAE form  

 ( )lg, , ,diff diff ax f x x u p=  (5.5a) 

 ( )lg0 , , ,diff ag x x u p=  (3.9b) 

with the differential state vector
diff tesx T =   , the algebraic state vector 

lg , ,a b phb whbx T T T =   . The 

manipulated variable vector is , phbu Q =   , and the time-varying parameter vector 

,, ,dh whb dh Retp q Q T =   . The variables associated with the design phase is represented as 

des tesx V =   . For a prediction horizon of N - the variables associated with the operation phase is 

then collected as 
lg

0 1, , ,oper diff diff a

n n nx x x x u+
 =    for 0,1,..., 1n N= − . The operating cost function can 

thus be defined as ( )
1

0

,
N

oper des oper Qphb phb

n n

n

C x x C Q
−

=

= and the capital cost function as 

( )
0.7

tan( )capital des k tesC x C V= .  

5.1. Decomposing scenarios using ADMM 

We will consider the two-stage stochastic formulation for the design problem used in section 4.2. 

The uncertainty was represented using the scenario set : {1,2,..., }S= , and the scenario tree was 

given in Figure 4-3. The design problem was represented in the compact form 

,
min
des operx x

 ( ) ( ),capital des oper des oper

s s s

s

C x C x x


+   (5.6a) 

. .s t  ( ),des oper

sx x    (5.6b) 

We can consider each scenario as a separate partition, as shown in Figure 5-2, with the number of 

partitions P equal to the number of scenarios S.  
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Figure 5-2: Schematic for scenario decomposition with 3 scenarios 

The length of the horizon considered in each partition i we will represent as Ni . Each partition 

i has its own private variable vector which we denote as xi which is made up of the design variable 

vector for this partition represented as ( )des

i
x and the operation variable vector for this partition as 

( )oper

i
x . These vectors are as defined in the previous section, but now refer to the variables that are 

local to the partition i.  

 

lg

0 1, , ,

: ( ) , ( )

: ( ) , ( ) , ( ) , ( ) , ( )

des oper

i i i

des diff diff a

i i n i i n i i n i i

x x x

x x x x u+

 =  

 =  

 0,1,..., 1in N= −   

All the partitions need to reach consensus on their copy of the design variable to be equivalent to 

the original problem.    

We can construct the global variable z to contain an estimate of what the design variable in each 

partition should be (represented in red in the figure above).  
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The original NLP 5.6 can thus be written in the structured NLP form as  

,
min

ix z
 ( )

( )
( )

( ) , ( )

capital des

i oper des oper

i i i

i

C x
C x x

P




 
 +
 
 

  

 

(5.7a) 

. .s t  ( )( ) , ( )des oper

i i ix x   i  (5.7b) 

 ( ) 0des

ix z− =  i  (5.7c) 

ADMM for solving this problem can be derived by forming the augmented Lagrangian by adding 

the coupling constraint (5.7c) to the objective term 

,
min

ix z
 

( )
( ) ( )

2

2

( )
( ) , ( ) ( ) ( )

2

capital des

i oper des oper T des des

i i i i i i

i

C x
C x x x z x z

P


 



 
 + + − + −
 
 

   (5.8a) 

. .s t  ( )( ) , ( )des oper

i i ix x   i  (5.8b) 

We can now directly follow the ADMM algorithm for structured NLPs we had described in section 

2.4. In iteration k, we can separately solve each individual partition problem as (keeping the global 

variable fixed).  

min
ix

 ( )
( ) ( )

2

2

( )
( ) , ( ) ( ) ( )

2

capital des

i oper des oper kT des k des k

i i i i i i

C x
C x x x z x z

P


 + + − + −   (5.9a) 

. .s t  ( )( ) , ( )des oper

i i ix x   i  (5.9b) 

The global variable update step is the averaging operator, and since all the partitions have a copy 

of the global variable, it can be written as 

 1 ( )k des

i i

i

z x+



=    

If all the scenarios have equal probability, then it can also be written as 

 

 
1

( )des

i
k i

x

z
P

+ =
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The primal residual is just in the infeasibility of the design variable and can be defined for each 

partition as  

 1 1 1( )k des k k

i ir x z+ + += −   (5.10) 

The dual variable update in the partitions is thus 

1k

i
+

 ( )1 1( )k des k k

i ix z  + += + −    

The dual residual in each partition is thus 

 
1 1( )k k k

is z z+ += −   (5.11) 

An interesting aspect to note here is that by applying ADMM for scenario decomposition in the 

two-stage stochastic program here, we have ended up with the progressive hedging (PH) algorithm 

described by Rockafellar and Wets [29]. The PH algorithm is a popular method used to solve two-

stage stochastic problems in a distributed manner where the second stage problems are all coupled 

via the first stage variables. It can thus be shown that PH is a particular case of ADMM, and that 

ADMM provides a more general framework to derive decomposition strategies for large 

optimization problems [21].  

5.2. Illustrative example of decomposing 2 scenarios as 2 partitions 

We will use an illustrative example to demonstrate the approach discussed in the previous section. 

Let us consider two scenarios with a prediction horizon of 48 hours, where the time-varying 

disturbance Qwhb is only considered and shown in Figure 5-3 and scenarios have equal probability.  
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Figure 5-3: Scenarios used in the illustrative example 

The design problem (5.6) can be solved as a single NLP which gives us the optimal solution for 

the tank volume Vtes = 17709 m3 and the objective function value of 730.05 USD. In an actual case, 

one does not expect to solve this problem centrally, but here we use this to compare our results 

from the distributed algorithm. In the distributed algorithm, we split the NLP into two partitions, 

each with its own local variables. The global variable z thus includes an estimate of the variable 

Vtes. All the optimization problems are solved using off the shelf interior-point solver IPOPT [27]; 

thus, individual solutions are not necessarily global minimum. The various metrics during the 

iterations of the ADMM algorithm using a constant penalty parameter (  ) are plotted in the 

following figures.  

The primal and dual residuals for partition 1 (Equation 5.10 and 5.11) are shown in semi-log plots 

in Figure 5-4. Each iteration, the primal and dual residuals correspond to the infeasibility in the 

tank volume between the partitions converging to zero within a few iterations. This property is not 

guaranteed by the ADMM algorithm in the case of nonconvex problems and should be checked 

before analyzing any other results.  
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Figure 5-4: Convergence of ADMM (primal and dual residual) 

As the primal residual tends to zero, the penalty term in the augmented Lagrangian goes to zero, 

and its value stabilizes. The objective function value obtained from solving the problem centrally 

is marked in Figure 5-5 to quickly see if ADMM is converging to the same solution. This is not 

guaranteed since ADMM must be considered as just another local optimization method as we had 

discussed in section 2.2. With different initial values of , ,x z  and the penalty parameter  , we 

could expect ADMM to converge to a different local optimum altogether.   
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Figure 5-5: Convergence of ADMM (objective function value) 

The local copies corresponding to the global variable are shown in Figure 5-6. We can see that 

both the local variables were initialized with the initial guess for tank volume at 10,000 m3 and 

later stabilizes to a constant value (residual convergence). In this particular case, we can see that 

ADMM has converged to the same optimal value we had found from the central solution.  
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Figure 5-6: Convergence of ADMM (local variable Vtes) 

5.3. Discussions from the illustrative example 

An important aspect we had observed while solving the illustrative example is the vital role the 

penalty term plays on the convergence behaviour of the algorithm. It is crucial to ensure that the 

penalization term does not skew the objective of the partition problems too much. Using the design 

variable as they were defined initially, resulted in the penalty term being orders of magnitude larger 

than the optimal cost itself. This results in the ADMM iterations having a very low rate of 

convergence from the initial guesses we had given for the design variable. To avoid this, the design 

variable was scaled down to lie between 10-100 such that the penalization term ( )des

i
x z−  became 

in the same orders of magnitude as the optimal objective function value.  

The choice of the penalty parameter  (  ) for ADMM iterations also influenced the magnitude of 

the penalization term. More importantly, the penalty parameter has a significant influence on the 

speed of convergence of the algorithm as it is also the step length for the dual variable update 

between iterations. This parameter needs to be large enough for the subproblems to converge, but 

excessively large values did lead to numerical instabilities. A too-large step length caused 

oscillations in the dual residual, and the solutions of the subproblems cycling between iterations. 

This behaviour is in some ways similar to a line search algorithm overshooting the optimal point 

if we use too large of a step length.  

The time required to solve each iteration was significantly reduced by using a warm start approach, 

where the solution from the previous iteration was used as the initial guess for the next iteration.  
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Chapter 6. Applying ADMM for decomposing a long scenario 

When increasing the prediction horizon of the design problem, we expect the need to form 

partitions within a long scenario in addition to the partitions across scenarios considered earlier. In 

this chapter, ADMM is applied to partition a single long prediction horizon.  

6.1. Decomposing a long scenario  

We can partition a single long horizon of length N into P partitions. Each partition “i” can have its 

own desired length represented as Ni. A schematic for forming 3 partitions is shown in Figure 6-1.  

 

Figure 6-1: Schematic for partitioning a single long scenario into 3 partitions 

Each partition has its own local variables as before represented as 
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The partitions must now reach consensus not only on their copy of the design variable, but the 

adjacent partitions must now also ensure continuity of the differential states at their common 

boundary (shown in red). Since the first and last partitions are only coupled on one end, this 

coupling constraint can be written as  
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The global variable now contains the estimate for the design variable along with the differential 

state at the boundary between partitions. 

 ,
i

des diff

Nz x x =    1,2, , 1i P= −   

The design problem can then be written in the structured NLP form as  

,
min

ix z
 ( ) ( )( ) ( ) , ( )capital des oper des oper

i i i

i

C x C x x

P

+
  

 
(5.12a) 

 ( )( ) , ( )des oper

i i ix x   i   (5.12b) 

 0i i iA x B z− =  i   (5.12c) 

where the matrices Ai and Bi are sparse matrices used to link the local variables in the partition to 

the corresponding global copy. Similar to the previous chapter, we form the augmented Lagrangian 

by adding the coupling constraint (5.12c) to the objective term and applying the ADMM algorithm 

to solve the partition problems separately as 

min
ix

 ( ) ( )
( )

2

2

( ) ( ) , ( )

2

capital des oper des oper

i i i kT k k

i i i i i i i

C x C x x
A x B z A x B z

P




+
+ − + −  

 
(5.13a) 

 ( )( ) , ( )des oper

i i ix x    (5.13b) 

The design variable in the global variable is linked to all the partitions, while each state variable at 

a boundary is linked to the adjacent partitions only. The elements in the global variable can then 

be updated as 
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The primal residual is the infeasibility of the coupling constraint and defined for each partition as 

 
1 1 1k k k

i i i ir A x B z+ + += −   (5.14) 

The dual variable is then updated in each partition as 

1k

i
+

 ( )1k k

i ir  += +    

The dual residual is 

 
1 1( )k T k ks A B z z+ += −   (5.15) 

It is interesting to note that our approach shares similarities to multiple shooting (MS) approach 

for solving dynamic optimization problems [25]. The main difference is that in MS, the state 

continuity constraints across the partitions are enforced explicitly by the optimization solver. In 

contrast, our approach, they are enforced implicitly by minimizing the AL. The optimization solver 

itself might be using a barrier penalty approach to enforce these equality constraints, which makes 

the approaches even more similar.  

6.2. Illustrative example of decomposing a scenario into 2 partitions 

Let us consider a single scenario with a horizon of 48 hours with the time-varying disturbance, as 

shown in Figure 6-2. The design problem can be solved as a single NLP which gives us the solution 

for tank volume Vtes = 12052 m3 and the objective function value is 560.35 USD. The optimal state 

profile is shown in the bottom subplot of Figure 6-3. Similar to earlier, we represent the central 

solution here to compare the convergence behaviour of our distributed algorithm when the initial 

condition for all the states are chosen to be the same as the centralized solver. 
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Figure 6-2: Scenario used in the illustrative example 

 

Figure 6-3: Centralized solution (state profile)  

In the distributed approach, we can split the NLP into two partitions each with a 24-hour horizon. 

The global variable z contains the design variable Vtes and the differential state at the end of the 

first partition. From the central solution, we can see that the value of z at the optimum was  [12052, 

54]. The various metrics during the iterations of the ADMM algorithm is plotted in the following 

figures using a constant penalty parameter ( 5 = ).  
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The primal and dual residuals (Equations 5.14 and 5.15) are shown in semi-log plots in Figure 6-4. 

Each iteration, the primal and dual residual vectors contains the infeasibility in Vtes and the 

infeasibility in the differential state Ttes continuity between the partitions. Their individual 

components are represented for observing the trends rather than as a single norm here. We see that 

the residuals tend to zero with more iterations. We observe oscillations in dual infeasibility, which 

indicate to us that more coordination steps are necessary before performing the dual update step in 

ADMM in this case.  

 

 

Figure 6-4: Convergence of ADMM (primal and dual residuals) 
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As the primal residual tends to zero, the penalty term in the augmented Lagrangian goes to zero, 

and it stabilizes. The objective function value that we got from solving the problem centrally is 

indicated in Figure 6-5 to see if ADMM is converging to the same solution. The AL in this case, 

actually increases with iterations highlighting the effect of nonconvexity present in the problem.  

 

Figure 6-5: Convergence of ADMM (objective function value) 

The local copies corresponding to the global variable are shown in Figure 6-6. Volume of the tank 

is gradually updated from the initial guess towards the optimal solution which happens to match 

with the solution we had found by solving the problem centrally. The behaviour of the differential 

state at the boundary is more interesting here. This variable is the end temperature of the TES in 

partition 1 while it is the initial temperature in partition 2. After the first iteration, the optimal for 

partition 1 is to have the TES tank discharged, while for partition 2 it is optimal to start the system 

with a charged TES tank. The penalty term in the augmented Lagrangian prevents partition 2 from 

setting this variable at its upper limit. The global copy for this temperature is updated based on the 

local copies, and the associated Lagrange multipliers are updated in each partition. The AL thus is 

able to implicitly force the partitions to reach consensus on this state variable within a few 

iterations.  
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Figure 6-6: Convergence of ADMM (local variables) 

6.3. Discussions from the illustrative example 

In this example, we had to reach consensus between partitions on two variables which had different 

magnitudes in their residuals during the iterations. We could observe that with low penalty 

parameter  , the residual convergence in the variable with the lower residual (in our case – the 

temperature) was much slower. The choice of the penalty parameter   played a large role in 

convergence in this example affecting the speed of convergence but also on the point ADMM 

converges to. Since ADMM is a local optimization method, this behaviour is to expected and 

indicates the presence of nonconvexity in the problem.   
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Chapter 7. Conclusion and future work 

Our main objective at the beginning of the research period has been on utilizing the alternating 

direction method of multipliers (ADMM) to get a distributed optimization algorithm to solve 

structured nonlinear programming problems (NLP). A Thermal Energy Storage (TES) optimal 

design problem was chosen to motivate the need for distributed optimization and demonstrate the 

approach using illustrative examples. The main focus thus has been on  

1. Developing a simple model of the TES process to capture the important nonlinear dynamics 

present in the system. 

2. Framing the design problem for a TES system as a two-stage stochastic NLP. 

3. Forming partitions in the design problem by exploiting the structure present in the problem. 

4. Using ADMM as the distributed optimization algorithm to coordinate between the 

individual partition problems (which can now be solved in parallel) to get the solution to 

the original NLP 

We demonstrated the approach of forming partitions in the NLP by framing the problem in the 

general consensus form and solving them using ADMM. While implementing the approach in the 

illustrative examples, we were able to observe the importance of scaling the problem such that the 

penalty term does not skew the objective function in the partitions. The coupling constraints and 

the objective function should be scaled to systematically tune the residual convergence when 

extending this approach to more complex models.  

We briefly highlighted how the choices of the initial guesses for the variables and the penalty 

parameter affected the ADMM algorithm in the case of nonconvex problems. Investigating the 

nonconvexity is not straightforward and was not really pursued here, but is another interesting area 

to explore in the future.  

Although the ADMM algorithm provided opportunities to solve the partition problems in parallel 

each iteration, they were solved sequentially for ease of development in all the case studies 

performed. When extending this to very large problems, the implementation in a distributed 

computing environment would be required.     
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A1. MATLAB Codes 

This section contains some important pieces of source code developed in this project. The code is 

written in MATLAB and used CasADi [26] as the symbolic framework for implementing the 

nonlinear optimization problems, which were then solved using IPOPT [27]. 

A1.a. Main File 

This file main.m is used to solve the design problem (in a centralized or distributed fashion). The 

code in its current version is used to solve the problem using 2 partitions solved sequentially during 

the ADMM iterations.  

% Distributed Optimization using ADMM for TES Design 

% 2 Nodes 

% Author: Sandeep Prakash - sandeepp@stud.ntnu.no 

% June 2020 

 

%% Clearing Workspace 

close all; 

clear 

import casadi.* 

global par_sim; 

global par_model; 

 

%% Simulation Parameters 

Tsim = 24*2;        par_sim.Tsim = Tsim;    %Design Life (in hours) 

dt = 1;             par_sim.dt = dt;        %hours 

Nsim = Tsim/dt;     par_sim.Nsim = Nsim;    %Discrete time steps in sim 

par_sim.N_scale = 1; 

Num_nodes = 2;      par_sim.Num_nodes = Num_nodes; % = 1 sets centralized 

 

par_sim.Num_colloc_points = 3; 

Node_overlap = 0;   par_sim.Node_overlap = Node_overlap; 

 

%% Generating Disturbance profiles 

% Initializing Model Parameters 

par_model = param_model(); 



 

 

 

%Generate Disturbance and COnstraint Profiles 

[dist, constr] = Generate_Profiles(); 

 

%% Checking integrator at single point 

% Creating Integrator 

[F,x_var, z_var, p_var, alg, diff, L] = myfunc_Integrator(); 

 

% Generating bounds and initial guesses 

[x0,z0,u0,Des_var0,lbx,lbz,lbu,lbDes_var,ubx,ubz,ubu,ubDes_var] = ...                                  

Initialization_bounds(); 

[x0_,z0_,u0_,Des_var0_] = scale_to_one(1, x0,z0,u0,Des_var0); 

 

%Testing integrator at a single point 

d0 = [dist.q_dh{1}(1); dist.Q_Supply{1}(1)]; 

Fk = F('x0',x0,'z0',z0,'p',[u0; Des_var0; d0]); 

xf_ = full(Fk.xf); 

zf_ = full(Fk.zf); 

disp(Fk.qf); 

 

%[xf, zf, u0, Des_var0] = scale_to_one(-1, xf_, zf_, u0_, Des_var0_) 

%find_a_Steady_State(d0) 

 

%% Setting up NLP in Nodes 

 

opts = struct('warn_initial_bounds',false, 'print_time',false, ... 

'ipopt',struct('max_iter',5000,'print_level',5)); 

 

if Num_nodes == 1 

%% Setting Centralized Node (unlimited memory) 

 

% Collecting Profiles to Node Data Structure 

nodeID = 1; 

N0_Data.nodeID = nodeID; 

N0_Data.dist = dist; 

N0_Data.constr = constr; 

 

% create Node variables 



 

 

[Jcentr,w_pubDes, w_pubL, w, w_pubR, g,p_NLP, W0, LBW, UBW, ... 

lbg,ubg,p_NLP0] = create_NodeModel(N0_Data); 

 

% w refers to central solver, whereas w0_w0 refers to initial guess 

% for the variables (first 0 indicating centralized) 

w0_pubDes0 = W0.w_pubDes0;          w0_pubL0 = W0.w_pubL0; 

lbw_pubDes = LBW.lbw_pubDes;        lbw_pubL = LBW.lbw_pubL; 

ubw_pubDes = UBW.ubw_pubDes;        ubw_pubL = UBW.ubw_pubL; 

w0_w0 = W0.w0;                      w0_pubR0 = W0.w_pubR0; 

lbw = LBW.lbw;                      lbw_pubR = LBW.lbw_pubR; 

ubw = UBW.ubw;                      ubw_pubR = UBW.ubw_pubR; 

 

else 

%% Setting Local Nodes (limited memory) 

 

%% Collecting Profiles to Node Data Structure N1 

nodeID = 1; 

N1_Data.nodeID = nodeID; 

N1_Data.dist = dist; 

N1_Data.constr = constr; 

 

% create Node 1 variables 

[J1,w1_pubDes, w1_pubL, w1, w1_pubR, g1,p1_NLP, W1_0, LBW1, UBW1,... 

lbg1,ubg1,p1_NLP0] = create_NodeModel(N1_Data); 

 

w1_pubDes0 = W1_0.w_pubDes0;        w1_pubL0 = W1_0.w_pubL0; 

lbw1_pubDes = LBW1.lbw_pubDes;      lbw1_pubL = LBW1.lbw_pubL; 

ubw1_pubDes = UBW1.ubw_pubDes;      ubw1_pubL = UBW1.ubw_pubL; 

 

w1_w0 = W1_0.w0;                    w1_pubR0 = W1_0.w_pubR0; 

lbw1 = LBW1.lbw;                    lbw1_pubR = LBW1.lbw_pubR; 

ubw1 = UBW1.ubw;                    ubw1_pubR = UBW1.ubw_pubR; 

 

%% Collecting Profiles to Node Data Structure N2 

nodeID = 2; 

N2_Data.nodeID = nodeID; 

N2_Data.dist = dist; 

N2_Data.constr = constr; 



 

 

 

% create Node 2 variables 

[J2,w2_pubDes, w2_pubL, w2, w2_pubR, g2,p2_NLP, W2_0, LBW2,UBW2,... 

lbg2,ubg2,p2_NLP0] = create_NodeModel(N2_Data); 

 

w2_pubDes0 = W2_0.w_pubDes0;        w2_pubL0 = W2_0.w_pubL0; 

lbw2_pubDes = LBW2.lbw_pubDes;      lbw2_pubL = LBW2.lbw_pubL; 

ubw2_pubDes = UBW2.ubw_pubDes;      ubw2_pubL = UBW2.ubw_pubL; 

w2_w0 = W2_0.w0;                    w2_pubR0 = W2_0.w_pubR0; 

lbw2 = LBW2.lbw;                    lbw2_pubR = LBW2.lbw_pubR; 

ubw2 = UBW2.ubw;                    ubw2_pubR = UBW2.ubw_pubR; 

 

end 

 

%% Solve NLP 

if Num_nodes == 1 

 

%% Solve Centralized NLP 

% structure for optimizer 

centr_prob = struct('x', vertcat(w_pubDes{:},w_pubL{:}, w{:},w_pubR{:}),... 

'g', vertcat(g{:}), ... 

'p', vertcat(p_NLP{:}), ... 

'f', Jcentr ); 

 

% creating solver 

centr_solver = nlpsol('solver', 'ipopt', centr_prob, opts); 

 

% Solve the NLP 

centr_sol = centr_solver('x0', vertcat(w0_pubDes0,w0_pubL0,w0_w0,w0_pubR0),...     

     'lbx',vertcat(lbw_pubDes,lbw_pubL,lbw,lbw_pubR), ... 

     'ubx',vertcat(ubw_pubDes,ubw_pubL,ubw,ubw_pubR), ... 

     'lbg',lbg,'ubg',ubg, ... 

     'p', p_NLP0); 

 

flag_centr = centr_solver.stats() 

centr_w_opt = full(centr_sol.x); 

centr_lam_opt = full(centr_sol.lam_x); 

 



 

 

%Displaying cost, End states and Volume 

centr_cost = full(centr_sol.f); 

centr_pubDes_star   = centr_w_opt(1); 

 

%for pausing - if any subproblem failed 

if  (flag_centr.success) == 1 

  disp(['solved succesfully - centrally']); 

  design_val = centr_pubDes_star; 

%         [~,~,~,design_val] = scale_to_one(-1, 0,0 ,0 ,centr_pubDes_star); 

  disp(['Optimal Volume is ' num2str(design_val(1)) ' m3']); 

%         disp(['Optimal Area is ' num2str(centr_pubDes_star(2)) ' m2']); 

  disp(['Optimal cost is ' num2str(centr_cost) ' USD']); 

else 

  disp(['Central solver not converged']) 

  disp(['Central Solver ' flag_centr.return_status]) 

end 

 

plot_NodeProfile(centr_w_opt,centr_lam_opt,N0_Data,W0) 

else 

 

%% Solve distributed problem 

 

% Iteration Tolerance Parameters 

rho = 0.05; 

max_iter = 50; 

toll_OpVar = 1e-1;       % largest tolerance for operations variables 

toll_Des = 1e-1;         % largest tolerance for design variables 

         iter = 1; 

         nDes = size(w1_pubDes0, 1); 

         nOpVar = size(w1_pubR0,1); 

 

%Node 1                         `           %Node 2 

% Local copy 

N1_pubR_star = w1_pubR0;                    N2_pubL_star = w2_pubL0; 

N1_pubDes_star = w1_pubDes0;                N2_pubDes_star = w2_pubDes0; 

 

% Global copy 

z_Des  = (N1_pubDes_star+N2_pubDes_star)./2; 



 

 

z_Oper = (N1_pubR_star+N2_pubL_star)./2; 

 

% Primal Residual 

N1_eps_primal_Des   = 10.*ones(nDes,1); 

N2_eps_primal_Des = N1_eps_primal_Des; 

N1_eps_primal_OpVar = 10.*ones(nOpVar,1); 

N2_eps_primal_OpVar = N1_eps_primal_OpVar; 

 

%Dual Residual 

eps_dual_Des = 10.*zeros(nDes,1); 

eps_dual_OpVar = 10.*zeros(nOpVar,1); 

 

%Lagrange Multiplier 

N1_lambda_Des   = 1.*zeros(nDes,1); 

N2_lambda_Des = N1_lambda_Des; 

N1_lambda_OpVar = -10.*ones(nOpVar,1); 

N2_lambda_OpVar = N1_lambda_OpVar; 

 

% Collecting for plotting etc 

N1_pubR_kPlot(iter,:)   =  N1_pubR_star'; 

N2_pubL_kPlot(iter,:)     =  N2_pubL_star'; 

N1_pubDes_kPlot(iter,:) = N1_pubDes_star'; 

N2_pubDes_kPlot(iter,:)   =  N2_pubDes_star'; 

z_Des_kPlot(iter,:) =   z_Des'; 

z_Oper_kPlot(iter,:) = z_Oper'; 

N1_eps_primal_Plot(1,:) = [N1_eps_primal_Des',  N1_eps_primal_OpVar']; 

N2_eps_primal_Plot(1,:) = [N2_eps_primal_Des', N2_eps_primal_OpVar']; 

eps_dual_Plot(iter,:) = [eps_dual_Des'; eps_dual_OpVar']; 

N1_lambda = [N1_lambda_Des; N1_lambda_OpVar]; 

N2_lambda =  [N2_lambda_Des; N2_lambda_OpVar]; 

N1_lambda_plot(1,:) = N1_lambda'; 

N2_lambda_plot(1,:) = N2_lambda'; 

N1_f_opt(1) = NaN; 

N2_f_opt(1) = NaN; 

N1_Aug_Lagrange(1) = NaN; 

N2_Aug_Lagrange(1) = NaN; 

rho_Plot(1) = rho; 

 



 

 

while ( max(abs(N1_eps_primal_OpVar)) > toll_OpVar || ... 

max(abs(N1_eps_primal_Des)) > toll_Des || ... 

max(abs(N2_eps_primal_OpVar)) > toll_OpVar || ... 

max(abs(N2_eps_primal_Des)) > toll_Des     || ... 

max(abs(eps_dual_Des)) > toll_Des || ... 

max(abs(eps_dual_OpVar)) > toll_OpVar ) && ... 

(iter < max_iter ) 

 

%% Solve Node 1 

 

%Building the Augmented Lagrange Function 

J = J1; 

 

% Adding Penalty for Design Violation 

for i = 1 : nDes 

J = J    + N1_lambda_Des(i)* (w1_pubDes{1}(i) - z_Des(i) ) ... 

+ rho/2*            (w1_pubDes{1}(i) - z_Des(i) )^2; 

end 

 

% Adding Penalty for variable violation 

indx = 1; 

for i = 1: size(w1_pubR,2)         %Running through all cells 

for j = 1: size(w1_pubR{i},1)  %Running through each element inside cell 

J = J   + N1_lambda_OpVar(indx,1)*(w1_pubR{i}(j) - z_Oper(indx))... 

+ rho/2*                   (w1_pubR{i}(j) - z_Oper(indx))^2; 

indx = indx+1; 

end 

end 

 

% structure for optimizer 

N1_prob = struct('x',vertcat(w1_pubDes{:},w1_pubL{:},w1{:},w1_pubR{:}),... 

  'g', vertcat(g1{:}), ... 

  'p', vertcat(p1_NLP{:}), ... 

  'f', J ); 

% creating solver 

N1_solver = nlpsol('solver', 'ipopt', N1_prob, opts); 

 

% Solve the NLP 



 

 

N1_sol = N1_solver('x0', vertcat(w1_pubDes0,w1_pubL0, w1_w0, w1_pubR0),... 

  'lbx', vertcat(lbw1_pubDes,lbw1_pubL,lbw1,lbw1_pubR),... 

  'ubx', vertcat(ubw1_pubDes,ubw1_pubL,ubw1,ubw1_pubR),... 

  'lbg', lbg1, 'ubg', ubg1, ... 

  'p', p1_NLP0); 

 

flag1 = N1_solver.stats(); 

N1_w_opt = full(N1_sol.x); 

N1_lambda_opt = full(N1_sol.lam_x); 

N1_Aug_Lagrange(iter+1,1) = full(N1_sol.f); 

 

%Extracting results 

[N1_pubDes_star, N1_pubL_star, N1_w_star, N1_pubR_star, ~,~,~,~,~,~] = ... 

  extract_NodeSolution(N1_w_opt,N1_lambda_opt,N1_Data,W1_0,par_sim); 

 

% Calculating the value of penalty used in this iteration 

N1_penalty = 0; 

% Penalty value for Design Violation 

for i = 1 : nDes 

N1_penalty = N1_penalty +N1_lambda_Des(i)*(N1_pubDes_star(i)-z_Des(i))... 

       +rho/2*           (N1_pubDes_star(i)-z_Des(i))^2; 

end 

% Penalty for Operations Variable 

for i = 1 : size(N1_pubR_star,1) 

N1_penalty = N1_penalty+N1_lambda_OpVar(i,1)*(N1_pubR_star(i)-z_Oper(i))... 

   +rho/2*               (N1_pubR_star(i)-z_Oper(i))^2; 

end 

 

N1_f_opt(iter+1) = N1_Aug_Lagrange(iter+1) - N1_penalty; 

 

%% Solve Node 2 

%Building the Augmented Lagrange Function 

J = J2; 

% Penalty for Design Violation 

for i = 1 : nDes 

J = J    + N2_lambda_Des(i)*     (z_Des(i) - w2_pubDes{1}(i) ) ... 

    + rho/2*                (z_Des(i) - w2_pubDes{1}(i) )^2; 

end 



 

 

 

% Penalty for variable violation 

indx = 1; 

for i = 1: size(w2_pubL,2)          %Running through all cells 

for j = 1: size(w2_pubL{i},1)   %Running through each element inside cell 

J = J   + N2_lambda_OpVar(indx,1)*  (z_Oper(indx) - w2_pubL{i}(j) )... 

        + rho/2*                    (z_Oper(indx) - w2_pubL{i}(j) )^2; 

indx = indx + 1; 

end 

end 

 

% structure for optimizer 

N2_prob = struct('x', vertcat(w2_pubDes{:}, w2_pubL{:}, w2{:}, w2_pubR{:}),... 

         'g', vertcat(g2{:}), ... 

         'p', vertcat(p2_NLP{:}), ... 

         'f', J ); 

% creating solver 

N2_solver = nlpsol('solver', 'ipopt', N2_prob, opts); 

 

% Solve the NLP 

N2_sol = N2_solver('x0',  vertcat(w2_pubDes0, w2_pubL0, w2_w0, w2_pubR0), ... 

       'lbx', vertcat(lbw2_pubDes, lbw2_pubL, lbw2, lbw2_pubR), ... 

       'ubx', vertcat(ubw2_pubDes, ubw2_pubL, ubw2, ubw2_pubR), ... 

       'lbg', lbg2, 'ubg', ubg2, ... 

       'p',   p2_NLP0); 

 

flag2 = N2_solver.stats(); 

N2_w_opt = full(N2_sol.x); 

N2_lambda_opt = full(N2_sol.lam_x); 

N2_Aug_Lagrange(iter+1,1) = full(N2_sol.f);   %Augmented Lagrange function 

 

%Extracting Solution Values 

[N2_pubDes_star, N2_pubL_star, N2_w_star, N2_pubR_star, ~,~,~,~,~,~] = ... 

      extract_NodeSolution(N2_w_opt,N2_lambda_opt,N2_Data,W2_0,par_sim); 

 

% Calculating the value of penalty used in this iteration 

N2_penalty = 0; 

 



 

 

% Penalty for Design Violation 

for i = 1 : nDes 

N2_penalty =N2_penalty+N2_lambda_Des(i)*(z_Des(i)-N2_pubDes_star(i)) ... 

                   +rho/2*           (z_Des(i)-N2_pubDes_star(i))^2; 

end 

% Penalty for Operations Variable 

for i = 1   :   size(N2_pubL_star,1) 

N2_penalty =N2_penalty+N2_lambda_OpVar(i,1)*(z_Oper(i)-N2_pubL_star(i))... 

            + rho/2*                        (z_Oper(i) - N2_pubL_star(i))^2; 

end 

 

N2_f_opt(iter+1) = N2_Aug_Lagrange(iter+1) - N2_penalty; 

 

%% Lambda Update Step 

% Update global copy 

z_Des  = (N1_pubDes_star + N2_pubDes_star)./2; 

z_Oper = (N1_pubR_star + N2_pubL_star)./2; 

 

% Update Dual Residual 

eps_dual_Des         = rho*(z_Des   - z_Des_kPlot(iter,:)'); 

eps_dual_OpVar       = rho*(z_Oper  - z_Oper_kPlot(iter,:)'); 

 

% Primal Residual 

N1_eps_primal_Des   = N1_pubDes_star - z_Des; 

N2_eps_primal_Des   =  z_Des -  N2_pubDes_star; 

N1_eps_primal_OpVar = N1_pubR_star   - z_Oper; 

N2_eps_primal_OpVar =  z_Oper - N2_pubL_star; 

 

% Update Lambda 

N1_lambda_Des = N1_lambda_Des     + rho.*(N1_eps_primal_Des); 

N2_lambda_Des   = N2_lambda_Des   + rho.*(N2_eps_primal_Des); 

N1_lambda_OpVar = N1_lambda_OpVar + rho.*(N1_eps_primal_OpVar); 

N2_lambda_OpVar = N2_lambda_OpVar + rho.*(N2_eps_primal_OpVar); 

 

 

% Warm Starting Solver for next iteration 

w1_pubDes0  = N1_pubDes_star;       w2_pubDes0  = N2_pubDes_star; 

w1_pubL0    = N1_pubL_star;         w2_pubL0    = N2_pubL_star; 



 

 

w1_w0       = N1_w_star;            w2_w0       = N2_w_star; 

w1_pubR0    = N1_pubR_star;         w2_pubR0    = N2_pubR_star; 

 

%% Extention - varying rho 

if iter <= max_iter 

if  N1_eps_primal_Plot(iter,:)*N1_eps_primal_Plot(iter,:)' > ...         

10*(eps_dual_Plot(iter,:)*eps_dual_Plot(iter,:)')  ...     

N2_eps_primal_Plot(iter,:)*N2_eps_primal_Plot(iter,:)' > ...         

10*(eps_dual_Plot(iter,:)*eps_dual_Plot(iter,:)') 

rho = 2*rho; 

   disp('rho increased'); 

elseif eps_dual_Plot(iter,:)*eps_dual_Plot(iter,:)' > ... 

           10*(N1_eps_primal_Plot(iter,:)*N1_eps_primal_Plot(iter,:)') || ... 

       eps_dual_Plot(iter,:)*eps_dual_Plot(iter,:)' > ... 

           10*(N2_eps_primal_Plot(iter,:)*N2_eps_primal_Plot(iter,:)') 

   rho = rho/2; 

   disp('rho decreased'); 

else 

rho; 

disp('rho unchanged'); 

end 

 

% else 

% disp('rho should be stabilized'); 

% end 

 

%% Collect for Plotting etc 

 

N1_pubR_kPlot(iter+1,:)    = N1_pubR_star'; 

N2_pubL_kPlot(iter+1,:)     = N2_pubL_star'; 

N1_pubDes_kPlot(iter+1,:)  = N1_pubDes_star'; 

N2_pubDes_kPlot(iter+1,:)   = N2_pubDes_star'; 

 

z_Des_kPlot(iter+1,:)  = z_Des'; 

z_Oper_kPlot(iter+1,:) = z_Oper; 

 

N1_eps_primal_Plot(iter+1,:) = [N1_eps_primal_Des', N1_eps_primal_OpVar']; 

N2_eps_primal_Plot(iter+1,:) = [N2_eps_primal_Des', N2_eps_primal_OpVar']; 



 

 

N1_lambda_plot(iter+1,:)     = [N1_lambda_Des', N1_lambda_OpVar']; 

N2_lambda_plot(iter+1,:)     = [N2_lambda_Des', N2_lambda_OpVar']; 

 

eps_dual_Plot(iter+1,:)      = [eps_dual_Des', eps_dual_OpVar']; 

rho_Plot(iter+1) = rho; 

 

% Update iteration counter for Decomposition 

iter = iter + 1; 

 

end 

 

%% ADMM Iterations Summary Data 

 

distr_cost = N1_f_opt(iter-1) + N2_f_opt(iter-1); 

%for pausing - if any subproblem failed 

if  (flag1.success + flag2.success) == Num_nodes && (iter < max_iter) 

disp(['Converged by decomposition in' num2str(iter) 'iterations']); 

disp(['Optimal Volume is ' num2str(N1_pubDes_star(1)) '/' ... 

                           num2str(N2_pubDes_star(1)) ' m3']); 

disp(['Optimal Area is ' num2str(N1_pubDes_star(2)) '/' ... 

                         num2str(N2_pubDes_star(2)) ' m2']); 

disp(['Optimal Cost is ' num2str(distr_cost) ' USD']); 

else 

disp(['Decomposition not converged in ' num2str(iter) ' iterations']) 

disp(['Optimal Volume is ' num2str(N1_pubDes_star(1)) '/ ' ... 

                           num2str(N2_pubDes_star(1)) ' m3']); 

disp(['Optimal Area is '    num2str(N1_pubDes_star(2)) '/ ' ... 

                            num2str(N2_pubDes_star(2)) ' m2']); 

disp(['Optimal Cost is ' num2str(distr_cost) ' USD']); 

disp(['N1 ' flag1.return_status]) 

disp(['N2 ' flag2.return_status]) 

end 

 

itergrid = linspace(1, iter, iter)'; 

 

%% Plotting ADMM 

 

figure(3) 



 

 

subplot(2,2,1)  %Residuals - Prmal 

semilogy(itergrid, abs(N1_eps_primal_Plot(:,nDes+1:end)),'o-b')%Operational 

hold on 

xlabel('iteration'); 

semilogy(itergrid, abs(N1_eps_primal_Plot(:,1:nDes)),'b')       %Design 

hold on 

 

%         yyaxis right 

%         plot(itergrid, N2_eps_primal_Plot(:,1:nDes),'r') 

%         hold on 

%         plot(itergrid, N2_eps_primal_Plot(:,nDes+1:end),'-.r') 

legend('eps Primal - V tes', 'eps Primal - T tes'); 

title(['Primal Infeasibility. rho = ', num2str(rho)]); 

 

subplot(2,2,2)                                              %Dual Residuals 

semilogy(itergrid, abs(eps_dual_Plot(:,1:nDes)),'b') 

hold on; 

semilogy(itergrid, abs(eps_dual_Plot(:,nDes+1:end)),'-ob') 

xlabel('itearation'); 

%                 yyaxis right 

%                 plot(itergrid, eps_dual_Plot(:,1:nDes),'r') 

%                 hold on; 

%                 plot(itergrid, eps_dual_Plot(:,nDes+1:end),'-.r') 

legend('eps Dual - Vtes', 'eps Dual - T tes') 

title(['Dual Infeasibility. rho = ', num2str(rho)]); 

 

subplot(2,2,3)  %Lambdas 

plot(itergrid, N1_lambda_plot(:,1:nDes),'b') 

hold on 

plot(itergrid, N1_lambda_plot(:,nDes+1:end),'-.b') 

hold on 

plot(itergrid, N2_lambda_plot(:,1:nDes),'r') 

hold on 

plot(itergrid, N2_lambda_plot(:,nDes+1:end),'-.r') 

%             legend('lambda Vol', 'lambda A whb', 'lambda T tes') 

title(['Lambdas. rho = ', num2str(rho)]); 

 

%     subplot(2,2,4)  %Augmented Lagrange Function value 



 

 

%         plot(itergrid, N1_Aug_Lagrange,'b-.*') 

%         hold on 

%         plot(itergrid, N2_Aug_Lagrange,'r-.*') 

%         hold on 

%         plot(itergrid, N1_f_opt, 'b'); 

%         hold on 

%         plot(itergrid, N2_f_opt, 'r'); 

%     legend('N1 Aug Lagrange', 'N2 Aug Lagrange', 'N1 Opt f', 'N2 Opt f') 

%     title(['Aug Lag vs Objective. rho = ', num2str(rho)]); 

 

subplot(2,2,4)  %Augmented Lagrange Total 

plot(itergrid, N1_Aug_Lagrange + N2_Aug_Lagrange, 'r-.o'); 

hold on 

plot(itergrid, 186.7.*ones(iter,1),'g--'); 

legend('Augmented Lagrangian', 'Original Optimum'); 

title(['Objective Value. rho = ', num2str(rho)]); 

 

figure(4)   %Design Variables 

subplot(2,2,1)  %Primal Value 

plot(itergrid, N1_pubDes_kPlot(:,1),'b')       %Vol 

hold on 

plot(itergrid, N2_pubDes_kPlot(:,1),'r') 

title(['Volume. rho = ', num2str(rho)]); 

 

subplot(2,2,4) 

plot(itergrid, rho_Plot) 

title('rho plot'); 

 

figure(5)   %Operational Variables 

subplot(2,2,1) 

plot(itergrid, N1_pubR_kPlot(:,1), 'bo-')    %Ttes 

hold on 

plot(itergrid, N2_pubL_kPlot(:,1), 'ro-') 

legend('Node 1 optimal value','Node 2 optimal value') 

title('Loacal Variable T tes in each iteration'); 

xlabel('iteration'); ylabel('Temperature [deg C]'); 

subplot(2,2,2) 

%         plot(itergrid, N1_pubR_kPlot(:,2), 'b')    %Tphb 



 

 

%         hold on 

%         plot(itergrid, N2_pubL_kPlot(:,2), 'r') 

title(['T phb. rho = ', num2str(rho)]); 

subplot(2,2,3) 

%         plot(itergrid, N1_pubR_kPlot(:,3:5), '')    %Twhb 

%         hold on 

%         plot(itergrid, N2_pubL_kPlot(:,3:5), '') 

title(['T whb. rho = ', num2str(rho)]); 

subplot(2,2,4) 

%         plot(itergrid, N1_pubR_kPlot(:,6:8), '')    %Twhb ret 

%         hold on 

 %         plot(itergrid, N2_pubL_kPlot(:,6:8), '') 

title(['T whb ret. rho = ', num2str(rho)]); 

 

plot_NodeProfile(N1_w_opt,N1_lambda_opt,N1_Data,W1_0) 

plot_NodeProfile(N2_w_opt,N2_lambda_opt,N2_Data,W2_0) 

 

end 

A1.b. Specifying bounds for all the variables 

The function Initialization_bounds.m is used to specify the upper and lower bounds for all the 

variables in the optimization problem.  

function [x0,z0,u0,Des_var0,lbx,lbz,lbu,lbDes_var,ubx,ubz,ubu,ubDes_var] = 

Initialization_bounds() 

global par_model; 

N = par_model.Ncell_whb; 

lb_Tphb = par_model.T_dh_minSup; 

ub_T_dc = par_model.T_wh_minRet; 

 

%Initial Guesses 

x0 = [55];         %T_tes 

z0 = [55;56]  ;               %T_b,T_phb 

u0 = [0;0];                   %alpha,Q_Phb 

Des_var0 = [10000];           %V_tes 

 



 

 

%Bounds 

ubx = [100];       %T_tes,T_phb 

lbx = [30]; 

 

ubz = [100 ;100   ];     %T_b 

lbz = [30 ;lb_Tphb ]; 

 

ubu = [1;1500000]; 

lbu = [0;0]; 

 

ubDes_var = [25000]; 

lbDes_var = [5000]; 

end 

A1.c. Specifying the Dynamic model as DAE 

The function myfunc_Integrator.m is used to specify the dynamic model of the TES system.  

function [F,x_var, z_var, p_var, alg, diff, L] = myfunc_Integrator() 

 

import casadi.* 

global par_model; 

global par_sim; 

 

% Integration Final Time 

 tf = par_sim.dt;   %Hours 

 

%Constants from parameter Structures 

 rho_dh = par_model.rho_dh;   %kg/m3 

 Cp_dh = par_model.Cp_dh;     %KJ/(kg* K) 

 rho_wh = par_model.rho_wh; 

 Cp_wh = par_model.Cp_wh; 

 T_dh_Ret = par_model.T_dh_Ret;     %Deg C 

 T_wh_Sup = par_model.T_wh_Sup; 

 

 V_whb_dh = par_model.V_whb_dh; 

 V_whb_wh = par_model.V_whb_wh; 



 

 

 Ncell_whb = par_model.Ncell_whb; 

 U_whb = par_model.U_whb; 

 coef_Qphb = par_model.coef_Qphb; 

 coef_Qdc = par_model.coef_Qdc; 

 

 V_phb = par_model.V_phb_dh; 

 alpha_loss = par_model.alpha_loss; 

 T_amb = par_model.T_amb; 

 

%% Declaring Scaled CasADi variables 

%Differential States 

T_tes = MX.sym('T_tes',1); 

 

%Algebraic States 

T_b = MX.sym('T_b',1); 

T_phb = MX.sym('T_phb',1); 

 

% Design Variables 

V_tes = MX.sym('V_tes',1); 

%     V_tes = 11000; 

 

% control input 

alpha = MX.sym('alpha', 1); 

Q_phb = MX.sym('Q_phb',1); %KW 

 

%% Unscaled Variables for use in Equations 

[~,~,~,~,lbx,lbz,lbu,lbDes_var,ubx,ubz,ubu,ubDes_var] = 

Initialization_bounds(); 

 

% Differential States 

   T_tes       = T_tes*       (ubx(1) - lbx(1)) + lbx(1); 

%Algebraic States 

   T_b         = T_b_*         (ubz(1) - lbz(1)) + lbz(1) ; 

   T_phb       = T_phb_*       (ubz(2) - lbz(2)) + lbz(2); 

% Design Variables 

   V_tes       = V_tes_*       (ubDes_var(1) - lbDes_var(1)) + lbDes_var(1); 

% control input 

   alpha       = alpha_*       (ubu(1) - lbu(1)) + lbu(1) ; 



 

 

   Q_phb       = Q_phb_*       (ubu(2) - lbu(2)) + lbu(2) ; 

 

% Time Varying Parameters 

q_dh = MX.sym('q_dh_',1);    %m3/hr 

Q_whb = MX.sym('Q_whb_',Ncell_whb); 

 

% Intermediate Casadi Variables 

T_whb = T_dh_Ret + (Q_whb*3600)/(rho_dh*Cp_dh*q_dh); 

 

%% Model Equations Unscaled 

%All equations in per hour basis 

%Differential Equations 

dT_tes = (q_dh*alpha*(T_whb - T_tes))/(V_tes)  - alpha_loss*(T_tes - 

T_amb)/(V_tes*rho_dh*Cp_dh)  ; 

% dT_phb = (q_dh*(T_b - T_phb)/V_phb) + (Q_phb*3600)/(V_phb*rho_dh*Cp_dh); 

 

%Algebraic Equations 

alg1 = alpha*T_tes + (1-alpha)*T_whb  - T_b ; 

alg2 = (q_dh*(T_b - T_phb)/V_phb) + (Q_phb*3600)/(V_phb*rho_dh*Cp_dh); 

 

%% Model Equations scaled 

%     dT_tes_ = dT_tes/       (ubx(1) - lbx(1)); 

 

%% Stacking variables and Parameters 

 

diff = vertcat(dT_tes); 

alg = vertcat(alg1,alg2); 

 

x_var = vertcat(T_tes);              %Differential States 

z_var = vertcat(T_b,T_phb);          %Algebraic States 

 

    u_var = vertcat(alpha,Q_phb);   %Operation handles (Manipulated Variables) 

    Des_var = vertcat(V_tes);                 %Design variables 

    Dist_var = vertcat(q_dh,Q_whb);           %Disturbance values 

p_var = vertcat(u_var,Des_var,Dist_var); %Parameters to be input to integrator 

 

% Operational Objective to be minimized 



 

 

L = (Q_phb*coef_Qphb); 

 

%% Creating the Integrator 

 

dae = struct('x',x_var,'z',z_var,'p',p_var,'ode',diff,'alg',alg,'quad',L); 

opts = struct('tf',tf); 

 

% create IDAS integrator 

F = integrator('F','idas',dae,opts); 

 

end 

A1.d. Specifying parameters 

The function param_model.m is used to specify the constant parameters used in the problem.  

function par = param_model() 

 

%% District Heating Parameters 

    par.rho_dh = 1000;      %kg/m3 

    par.Cp_dh = 4;          %KJ/(kg* K) 

    par.T_dh_Ret = 30;      %Deg C 

    par.T_dh_minSup = 55; 

 

%% Waste Heat Stream Parameters 

    par.rho_wh = 1000; 

    par.Cp_wh = 2; 

    par.T_wh_Sup = 100; 

    par.T_wh_minRet = 50; 

 

%% Waste Heat Boiler 

    par.V_whb_wh = 12; 

    par.V_whb_dh = 12; 

    par.U_whb = 5.13; 

    par.Ncell_whb = 1; 

    par.A_whb = 33; 

 



 

 

%% Peak Heat Boiler 

    par.V_phb_dh = 12; 

 

%% Cost factors 

        par.coef_Vtes = (700)/(365*10)*3;               %USD/m3 

        par.coef_Awhb = (880)/(365*10)*4;               %USD/m2 

        par.coef_Qphb = (0.06)*1;                       %USD/kWh 

        par.coef_Qdc = par.coef_Qphb/10; 

 

%% Heat Loss 

    par.alpha_loss = 0; 

    par.T_amb = 10; 

end 

A1.e. Specifying Disturbance profiles 

The function Generate_Profiles.m is used to specify the individual scenarios.  

function [disturbance, constraint] = Generate_Profiles() 

%Generates profiles for Disturbances and constraints. 

%% Initialize some data from parameters 

global par_sim; 

global par_model; 

 

    Num_nodes = par_sim.Num_nodes; 

    Nsim = par_sim.Nsim; 

    overlap = par_sim.Node_overlap; 

    Tsim = par_sim.Tsim; 

    dt = par_sim.dt; 

    rho_wh = par_model.rho_wh; 

    rho_dh = par_model.rho_dh; 

    Cp_wh = par_model.Cp_wh; 

    Cp_dh = par_model.Cp_dh; 

    T_wh_Sup = par_model.T_wh_Sup; 

    T_dh_Ret = par_model.T_dh_Ret; 

    T_dh_minSup0 = par_model.T_dh_minSup; 

    T_wh_minRet0 = par_model.T_wh_minRet; 



 

 

%First Point Values 

q_dh0 = 3600*0.3;          %m3/hr 

q_wh0 = 3600*0.3;       %m3/hr 

 

% Q_whb_max0 = 17.22488038;       %KW 

Q_Supply0 = rho_wh*(q_wh0/3600)*Cp_wh*(T_wh_Sup - T_wh_minRet0); 

Q_Demand0 = rho_dh*(q_dh0/3600)*Cp_dh*(T_dh_minSup0 - T_dh_Ret); 

 

%% Build Complete Profiles 

n = Nsim; 

 

%% 20%1n/2u/2d/1n  30%1n/2u/2d/1n 

    q_dh = q_dh0.*ones(n,1); 

    q_wh = [q_wh0.*ones(n/12,1);q_wh0*1.2.*ones(2*n/12,1); 

      q_wh0*0.8.*ones(2*n/12,1);q_wh0.*ones(n/12,1); 

          q_wh0.*ones(n/12,1);q_wh0*1.3.*ones(2*n/12,1); 

       q_wh0*0.7.*ones(2*n/12,1);q_wh0.*ones(n/12,1)]; 

    T_dh_minSup = T_dh_minSup0.*ones(n,1); 

    T_wh_minRet = T_wh_minRet0.*ones(n,1); 

        Q_Supply = rho_wh*Cp_wh*(q_wh/3600).*(T_wh_Sup - T_wh_minRet); 

        Q_Demand = rho_dh*Cp_dh*(q_dh/3600).*(T_dh_minSup0 - T_dh_Ret); 

 

%% From Mo Data 

  q_dh = q_dh0.*ones(n,1); 

   q_wh = q_wh0.*Read_MoData(); 

   T_dh_minSup = T_dh_minSup0.*ones(n,1); 

   T_wh_minRet = T_wh_minRet0.*ones(n,1); 

       Q_Supply = rho_wh*Cp_wh*(q_wh/3600).*(T_wh_Sup - T_wh_minRet); 

       Q_Demand = rho_dh*Cp_dh*(q_dh/3600).*(T_dh_minSup0 - T_dh_Ret); 

 

%% Display Complete Profile 

t_plot = linspace(0,Tsim-dt,Nsim)'; 

 

figure(1) 

stairs(t_plot, Q_Supply, '-r'); 

    xlabel('time [hrs]'); ylabel('Duty [kW]'); 

legend('Q whb');  title('Disturbance Profile'); 

 



 

 

%% Picking from complete profile 

if Num_nodes == 1 

% If Centralized 

par_sim.Node_Nsim = Nsim; 

 

        % Profile for time in Central node (in Cell structure) 

        Tsim_Grid{1} = linspace(0,Tsim-dt,Nsim)'; 

%% Collecting profiles into Structure 

  disturbance.q_dh{1} = q_dh; 

        disturbance.Q_Supply{1} = Q_Supply; 

        constraint.Q_Demand{1} = Q_Demand; 

        constraint.T_dh_minSup{1} = T_dh_minSup; 

        constraint.T_wh_minRet{1} = T_wh_minRet; 

else 

 

%% If Distributed Optimization 

Node_Nsim = (Nsim/Num_nodes+overlap).*ones(1,Num_nodes);   

%Initial vector of number of elements in each node 

    Node_Nsim(1) = Node_Nsim(1) - overlap; 

    par_sim.Node_Nsim = Node_Nsim; 

 

        % Picking from full profile 

        nstart = 1; 

        for j = 1:Num_nodes 

            nend = nstart + Node_Nsim(j)-1; 

 

               Tsim_Grid{j} = t_plot(nstart:nend); 

 

               disturbance.q_dh{j}  = q_dh(nstart:nend); 

               disturbance.Q_Supply{j} = Q_Supply(nstart:nend); 

               constraint.Q_Demand{j} = Q_Demand(nstart:nend); 

               constraint.T_dh_minSup{j} = T_dh_minSup(nstart:nend); 

               constraint.T_wh_minRet{j} = T_wh_minRet(nstart:nend); 

 

            nstart = nend - overlap + 1; 

 

            % Plotting each node Profile 

            figure(2) 



 

 

            plot(Tsim_Grid{j},  disturbance.Q_Supply{j},  

    '--o','MarkerSize',4*j); 

            hold on 

            xlabel('time in hours');  legend('Q Supply'); 

 

        end 

end 

 

par_sim.Tsim_Grid = Tsim_Grid; 

end 

A1.f. Building the NLP structure 

The function create_NodeModel.m is generalized to create and return the NLP structure 

depending on the subproblem that is calling it.  

function [J, w_pubDes, w_pubL, w, w_pubR, g,p_NLP, W0, LBW, UBW, 

lbg,ubg,p_NLP0] = ... 

  create_NodeModel(Node_Data) 

import casadi.* 

global par_model; 

global par_sim; 

 

dist = Node_Data.dist;      %Time varying Disturbance 

constr = Node_Data.constr;  %Time varying constraints 

nodeID = Node_Data.nodeID; 

 

coef_Vtes = par_model.coef_Vtes;    %cost coefficient parameter for Tank 

volume 

coef_Awhb = par_model.coef_Awhb; 

Ncells = par_model.Ncell_whb; 

 

dt = par_sim.dt;                    %hour 

Num_nodes = par_sim.Num_nodes; 

overlap = par_sim.Node_overlap;     % number of overlapping dt's. 0 is no 

overlap 

Nopt = par_sim.Node_Nsim(nodeID);   % Number of points for optimization 



 

 

problem 

N_scale = par_sim.N_scale; 

 

% Generating Initial guesses and bounds 

[x0,z0,u0,Des_var0,lbx,lbz,lbu,lbDes_var,ubx,ubz,ubu,ubDes_var] = 

Initialization_bounds(); 

        %Finding the size of each Diff state, Alg state, MV 

        nx = size(x0,1); 

        nz = size(z0,1); 

        nu = size(u0,1);                    %Number of Operational MVs 

        ndes = size(Des_var0,1);            %Number of Design Variables 

        ndist = length(fieldnames(dist)) ;  %Number of Disturbance variables 

 

% Integrator 

[~,x_var, z_var, p_var, alg, diff, L] = myfunc_Integrator(); 

 

%Function to return values of diff, alg and L for a given collocation point 

(x_var, z_var, p_var) 

f = Function('f',{x_var,z_var,p_var},{diff,alg,L},{'x','z','p'}, ...  

    {'xdot','zeval','qj'}); 

 

%% Direct Collocation Polynomials  

d = 3; 

 

% Get collocation points 

tau_root = [0, collocation_points(d, 'radau')]; 

 

% Coefficients of the collocation equation (xdot = C*x) 

C = zeros(d+1,d+1); 

 

% Coefficients of the continuity equation 

D = zeros(d+1, 1); 

 

% Coefficients of the quadrature function 

B = zeros(d+1, 1); 

 

% Construct polynomial basis 

for j=1:d+1 



 

 

    % Construct Lagrange polynomials to get the polynomial basis at the 

collocation point 

    coeff = 1; 

    for r=1:d+1 

        if r ~= j 

            coeff = conv(coeff, [1, -tau_root(r)]); 

            coeff = coeff / (tau_root(j)-tau_root(r)); 

        end 

    end 

    % Evaluate the polynomial at the final time to get the coefficients of the 

continuity equation 

    D(j) = polyval(coeff, 1.0); 

 

    % Evaluate the time derivative of the polynomial at all collocation points 

to get the coefficients of the continuity equation 

    pder = polyder(coeff); 

    for r=1:d+1 

        C(j,r) = polyval(pder, tau_root(r)); 

    end 

 

    % Evaluate the integral of the polynomial to get the coefficients of the 

quadrature function 

    pint = polyint(coeff); 

    B(j) = polyval(pint, 1.0); 

end 

 

%% Build NLP solver 

% Empty NLP 

w = {};     w0 = [];        lbw = [];         ubw = [];      

%Variables for NLP solver - Private (excl public facing ones) 

 

%Variables for NLP solver - Public 

w_pubDes = {};  w_pubDes0 = [];     lbw_pubDes = [];    ubw_pubDes = [];    % 

Public variable - Design Parameters 

w_pubL = {};    w_pubL0 = [];       lbw_pubL = [];      ubw_pubL = [];      % 

Public Variables on left edge 

w_pubR = {};    w_pubR0 = [];       lbw_pubR = [];      ubw_pubR = [];      % 

Public Variables on right edge 



 

 

 

J = 0;                                                  %Objective for NLP 

Solver 

g = {};     lbg = [];       ubg = [];                   %Constraints for NLP 

Solver 

p_NLP = {}; p_NLP0 = [];                                %parameters for NLP 

solver 

 

    %Declaring Design Variables 

    V_TES = MX.sym('V_TES',1); 

%         %Collecting the Design Variables 

        Des_var     = vertcat(V_TES); 

        w_pubDes    = {w_pubDes{:}, Des_var}; 

        lbw_pubDes  = [lbw_pubDes; lbDes_var]; 

        ubw_pubDes  = [ubw_pubDes; ubDes_var]; 

        w_pubDes0   = [w_pubDes0; Des_var0]; 

 

%     %Capital Cost (normalized for number of nodes) 

    J = J + (coef_Vtes*((V_TES)^0.7))/Num_nodes; 

 

% "Lift" initial conditions 

X0 = MX.sym('X0',nx); 

w_pubL = {w_pubL{:}, X0}; 

    % If first node - then initial state is fixed at x0. Else - is a variable 

for optimizer. 

    if Node_Data.nodeID == 1 

        lbw_pubL = [lbw_pubL; x0]; 

        ubw_pubL = [ubw_pubL; x0]; 

    else 

        lbw_pubL = [lbw_pubL; lbx]; 

        ubw_pubL = [ubw_pubL; ubx]; 

    end 

w_pubL0 = [w_pubL0; x0]; 

 

Xk = X0;    % for linking the initial state to integrator inside collocations 

%% Building the NLP 

js = 1; 

    for k=0:(Nopt-1) 



 

 

%Time Varying Disturbances (Dk) 

        Dk = MX.sym(['D_' num2str(k) '_' num2str(js)],ndist); 

        p_NLP = {p_NLP{:},Dk}; 

        p_NLP0 = [p_NLP0;dist.q_dh{nodeID}(k+1); dist.Q_Supply{nodeID}(k+1)]; 

 

        % Calculatin the steady state point to give as better initial Guess 

for NLP 

%         [x0, ~, ~] = find_a_Steady_State( 

[dist.q_dh{nodeID}(k+1);dist.q_wh{nodeID}(k+1)] ); 

 

 

        % Control Input (Uk) 

        Uk = MX.sym(['U_' num2str(k) '_' num2str(js)],nu); 

 

        % If inside overlap region - adding to public variable structure 

        if k <= (overlap - 1)                   %Left side Public Variable 

            w_pubL   = {w_pubL{:}, Uk}; 

            lbw_pubL = [lbw_pubL; lbu]; 

            ubw_pubL = [ubw_pubL; ubu]; 

            w_pubL0  = [w_pubL0; u0]; 

        elseif k >= (Nopt - overlap)            %Right side Public Variable 

            w_pubR   = {w_pubR{:}, Uk}; 

            lbw_pubR = [lbw_pubR; lbu]; 

            ubw_pubR = [ubw_pubR; ubu]; 

            w_pubR0  = [w_pubR0; u0]; 

        else                                    %Private Variables 

            w   = {w{:},Uk}; 

            lbw = [lbw;lbu]; 

            ubw = [ubw;ubu]; 

            w0  = [w0;u0]; 

        end 

 

        % Declaring New Collocation variables that are handles for solver 

        Xkj = {}; 

        Zkj = {}; 

            for j = 1:d 

                Xkj{j} = MX.sym(['X_' num2str(k) '_' num2str(j) '_' 

num2str(js)],nx); 



 

 

                Zkj{j} = MX.sym(['Z_' num2str(k) '_' num2str(j) '_' 

num2str(js)],nz); 

 

                if k <= (overlap-1)                     %Left Public 

                    w_pubL   = {w_pubL{:}, Xkj{j},Zkj{j}}; 

                    lbw_pubL = [lbw_pubL; lbx;lbz]; 

                    ubw_pubL = [ubw_pubL; ubx;ubz]; 

                    w_pubL0  = [w_pubL0; x0;z0]; 

                elseif k >= (Nopt - overlap)            %Right Public 

                    w_pubR   = {w_pubR{:}, Xkj{j},Zkj{j}}; 

                    lbw_pubR = [lbw_pubR; lbx;lbz]; 

                    ubw_pubR = [ubw_pubR; ubx;ubz]; 

                    w_pubR0  = [w_pubR0; x0;z0]; 

                else                                    %Private Variable 

                    w   = {w{:},Xkj{j},Zkj{j}}; 

                    lbw = [lbw; lbx;lbz]; 

                    ubw = [ubw; ubx;ubz]; 

                    w0  = [w0; x0;z0]; 

                end 

            end 

 

%% Loop over collocation points 

  Xk_end = D(1)*Xk; 

            for j = 1:d 

 

                % Expression for the state derivative of the collocation point 

j  

    % (collocation equation RHS i.e xdot = C*x) 

                xp = C(1,j+1)*Xk;  % helper state 

                for r = 1:d 

                    xp = xp + C(r+1,j+1)*Xkj{r}; 

                end 

                %Calculating the diff,alg and quadrature @ collocation point 

                [fj,zj,qj] =  f(Xkj{j}, Zkj{j}, vertcat(Uk, Des_var, Dk) ); 

 

                % dynamic and algebraic constraints must satisfy 

                g = {g{:}, dt*fj-xp, zj}; 

                lbg = [lbg; zeros(nx,1); zeros(nz,1)]; 



 

 

                ubg = [ubg; zeros(nx,1); zeros(nz,1)]; 

 

%% Constraints to prevent Temp Cross 

g = {g{:}, Xkj{j}(8)-Xkj{j}(3), Xkj{j}(7)-Xkj{j}(4),    Xkj{j}(6)-Xkj{j}(5)  

}; 

               lbg = [lbg; zeros(Ncells,1)]; 

               ubg = [ubg; 80.*ones(Ncells,1)];    

 

%% Quadrature 

%Adding the OPEX for this step (quadrature at the last collocation point) 

                J = J + (B(d+1)*qj*dt) ; 

 

                % Add contribution to the end states 

                Xk_end = Xk_end + D(j+1)*Xkj{j}; 

            end 

 

%% Reached last collocation point 

        % Imp -> Add any other albebraic constraint here :(on last collocation 

point) 

        %Inequality of T_phb > T_dh_minSup 

%         g   = {g{:}, Zkj{d}(2)}; 

%         lbg = [lbg; constr.T_dh_minSup{nodeID}(k+1)]; 

%         ubg = [ubg; 100]; 

%         %Inequality of T_wh_ret > T_wh_minRet 

%         g   = {g{:}, Xkj{d}(3)}; 

%         lbg = [lbg; constr.T_wh_minRet{nodeID}(k+1)]; 

%         ubg = [ubg; 200]; 

 

        % New NLP variable for state at end of interval 

        Xk = MX.sym(['X_' num2str(k+1) '_' num2str(js)], nx); 

            %If it's not last state -> stored in private variable structure. 

Else in public variable structure 

            if k <= (overlap-1)             %Left Public 

                w_pubL   = {w_pubL{:},Xk}; 

                lbw_pubL = [lbw_pubL;lbx]; 

                ubw_pubL = [ubw_pubL;ubx]; 

                w_pubL0  = [w_pubL0; x0]; 

            elseif k >= (Nopt-1 - overlap)  %Right Public 



 

 

                w_pubR   = {w_pubR{:},Xk}; 

                lbw_pubR = [lbw_pubR;lbx]; 

                ubw_pubR = [ubw_pubR;ubx]; 

                w_pubR0  = [w_pubR0; x0]; 

            else                            %Private Variable 

                w   = {w{:},Xk}; 

                lbw = [lbw;lbx]; 

                ubw = [ubw;ubx]; 

                w0  = [w0; x0]; 

            end 

 

        % Shooting Gap constraint 

        g   = {g{:},Xk_end-Xk}; 

        lbg = [lbg;zeros(nx,1)]; 

        ubg = [ubg;zeros(nx,1)]; 

    end 

 

    %Collecting numeric limits into a structure to send out 

    W0.w_pubDes0 = w_pubDes0;       W0.w_pubL0 = w_pubL0;       W0.w0 = w0;     

W0.w_pubR0 = w_pubR0; 

    LBW.lbw_pubDes = lbw_pubDes;    LBW.lbw_pubL = lbw_pubL;    LBW.lbw = lbw;  

LBW.lbw_pubR = lbw_pubR; 

    UBW.ubw_pubDes = ubw_pubDes;    UBW.ubw_pubL = ubw_pubL;    UBW.ubw = ubw;  

UBW.ubw_pubR = ubw_pubR; 

end 

A1.g. Plotting optimum profiles  

The function plot_NodeProfile.m is generalized to plot the solution of the subproblem that calls 

it.  

function [] = plot_NodeProfile(w,lambda,Node_Data,W0 ) 

global par_sim; 

global par_model; 

 

    dist = Node_Data.dist;      %Time varying Disturbance 

    constr = Node_Data.constr;  %Time varying constraints 



 

 

    nodeID = Node_Data.nodeID; 

    t_plot = par_sim.Tsim_Grid{nodeID}; 

    dt = par_sim.dt; 

    par_model = param_model(); 

    Nwhb = par_model.Ncell_whb; 

    U_whb = par_model.U_whb; 

    A_whb = par_model.A_whb; 

    T_dh_Ret = par_model.T_dh_Ret; 

    rho_dh = par_model.rho_dh; 

    Cp_dh = par_model.Cp_dh; 

 

%% Extract Node Solution 

[~, w_pubL, ~, w_pubR, Des_opt, u_opt, x_opt, z_opt,lam_Des,lam_x] = 

    extract_NodeSolution(w,lambda,Node_Data,W0,par_sim ); 

 

    %Design Variables 

    V_tes = Des_opt(1);                         lam_V_tes = lam_Des(1); 

    %MVs 

    alpha = u_opt(:,1); 

    Q_phb = u_opt(:,2); 

    %Diff States 

    T_tes = x_opt(:, 1);                        lam_T_tes = lam_x(:,1); 

    %Alg States 

    T_b = z_opt(:, 1); 

    T_phb = z_opt(:, 2); 

 

    Q_whb = dist.Q_Supply{nodeID}(:,1); 

    q_dh = dist.q_dh{nodeID}(:,1); 

    T_whb = T_dh_Ret + (Q_whb*3600)./(rho_dh*Cp_dh.*q_dh); 

 

%% Plotting 

 

%TES Overall 

    figure(7) 

    subplot(2,2,1) 

    stairs(t_plot,alpha);       %alpha 

    hold on 

    xlabel('t in hours');    ylim([-0.1, 1]) 



 

 

    legend('alpha') 

 

    % Duties 

    subplot(2,2,2) 

    stairs(t_plot,Q_phb);                %Qphb 

    hold on 

    xlabel('t in hours'); 

    legend('Q phb') 

 

    %Temperatures WHB 

    subplot(2,2,3) 

    plot(t_plot, T_whb, 'o-')  %Twhb 

    hold on 

    xlabel('time [hrs]'); ylabel('Temperature [Deg C]'); 

    legend('T whb'); title('Waste Heat Boiler Exit Temp Profile'); 

 

    %Temperatures TES circuit 

    subplot(2,2,4) 

    plot(t_plot, T_whb,'b-o')  %T whb 

    hold on 

    plot([t_plot; t_plot(end)+ dt], T_tes,'r-o')  %Ttes     

   %since states have both x0 and xN, extending tplot 

    hold on 

    plot(t_plot,T_phb,'mo-')                     %Tphb 

    hold on 

    xlabel('time [hrs]'); ylabel('Temperature [Deg C]'); 

    legend('T whb', 'T tes', 'T phb'); title('Optimal State Profiles'); 

end 

 


