
Distributed optimization using
ADMM for Optimal Design of
Thermal Energy Storage systems

July 2020

M
as

te
r's

 th
es

is

M
aster's thesis

Sandeep Prakash

2020
Sandeep Prakash

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f N
at

ur
al

 S
ci

en
ce

s
De

pa
rt

m
en

t o
f C

he
m

ic
al

 E
ng

in
ee

rin
g

Distributed optimization using ADMM for
Optimal Design of Thermal Energy
Storage systems

Sandeep Prakash

Chemical Engineering
Submission date: July 2020
Supervisor: Johannes Jäschke, Associate Professor IKP
Co-supervisor: Mandar Thombre, PhD Candidate IKP

Norwegian University of Science and Technology
Department of Chemical Engineering

iii

Abstract

Our main objective at the beginning of the research period has been on utilizing the alternating

direction method of multipliers (ADMM) to get a distributed optimization algorithm to solve

structured nonlinear programming problems (NLP). A Thermal Energy Storage (TES) optimal

design problem was chosen to motivate the need for distributed optimization and demonstrate the

approach using illustrative examples. Due to its cyclic operation and uncertainties in future

operating profiles, the optimal sizing of such systems need to consider many scenarios, making the

problem size very large.

The traditional approach has been to use a simple linear model to represent the system and then

use the multiple scenarios to determine the optimal system capacity. The physical design

parameters can then be found from the linear model solution based on some heuristics. The issue

with such an approach is that the physical design parameters obtained through this approach is not

optimal and would be even infeasible for some of the scenarios considered. This is due to the linear

models not accounting the important nonlinear dynamics present in the process. We thus look at

ways of using nonlinear dynamic models to make optimal design decisions under uncertanity. The

optimal design problem is thus proposed to be framed as a two-stage stochastic nonlinear

optimization problem.

An issue that arises with this approach is the large nonlinear optimization problem that this results

in. Handling all the variables simultaneously in the memory for solving the problem centrally is

expected to require computing hardware specialized for such applications, and something we

would want to avoid. Since the speed of arriving at the solution is not a large concern for design

problems, we investigate the use of distributed optimization algorithms which solve smaller

subproblems iteratively to arrive at the solution to the original large optimization problem. The

special structure present in the design problem is exploited to form subproblems in a very general

fashion. We make use of ADMM as the distributed optimization algorithm to coordinate between

the subproblems. Since the subproblems are able to be solved in parallel each iteration in this

approach, it could also be implemented using multiple smaller machines with minimal message

passing between them.

iv

Preface

This Master’s thesis was written in the spring semester of 2020. It concludes the 2-year master’s

degree program at the Department of Chemical Engineering at the Norwegian University of

Science and Technology (NTNU), leading to an M.Sc. in Chemical Engineering. The final year of

my studies was spent at the research group in Process Systems Engineering within the Department

of Chemical Engineering. The work performed in this thesis is an extension of the specialization

project carried out in the Fall 2019 semester in the same research group.

I would like to thank my supervisor, Associate Professor Johannes Jäschke, for his continued

guidance. I appreciate the freedom he has given me to try out various ideas and suggesting relevant

research that has been invaluable along the way. My sincere gratitude to PhD candidates Mandar

Thombre and Zawadi Ntengua Mdoe, for the long discussions and taking the time in providing

invaluable feedback during the writing process. I would also like to extend my gratitude to

postdoctoral fellow Dinesh Krishnamoorthy for taking the time to clarify my doubts and helping

me with some good coding practices you shared with me.

I cannot thank my dearest friends – Rizwan, Jithin, and Simen enough for being there for me these

last two years. Without your constant support, I do not know how I could have made it through the

strange period of early 2020. My thoughts go out to my family and friends who have been a source

of encouragement throughout.

Declaration of Compliance

I declare that this is an independent work according to the exam regulations of the Norwegian

University of Science and Technology (NTNU)

Trondheim, Norway

July 13, 2020 Sandeep Prakash

v

Table of contents

ABSTRACT ... III

PREFACE ... IV

LIST OF FIGURES ... VII

LIST OF TABLES ... IX

CHAPTER 1. INTRODUCTION .. 1

The optimal operation for TES systems .. 1

Optimal design for TES systems ... 2

Centralized approach vs Distributed approach for optimization ... 3

1.1. OBJECTIVE OF THE THESIS ... 4

1.2. STRUCTURE OF THE THESIS .. 4

CHAPTER 2. PRELIMINARIES ON DISTRIBUTED OPTIMIZATION WITH ADMM 6

2.1. METHOD OF MULTIPLIERS ... 6

2.2. ALTERNATING DIRECTION METHOD OF MULTIPLIERS ... 8

Convergence ... 8

2.3. STRUCTURED NLPS AS GENERAL FORM CONSENSUS PROBLEMS .. 10

2.4. ADMM ALGORITHM APPLIED TO STRUCTURED NLPS ... 13

CHAPTER 3. PROCESS DESCRIPTION AND MODEL ... 15

3.1. PROCESS DESCRIPTION - TES SYSTEM ... 15

3.2. DYNAMIC PROCESS MODEL ... 17

TES Tank .. 18

Peak Heat Boiler (PHB) ... 19

Node B .. 19

Dump Cooler (DC) ... 19

Waste Heat Boiler (WHB) .. 20

3.3. MODEL AS DAE... 24

3.4. THE OPTIMAL OPERATIONS PROBLEM ... 26

An Illustrative Example of Optimal Operation ... 28

3.5. THE EFFECT OF DESIGN ON OPTIMAL OPERATIONS .. 30

Volume of the Tank ... 30

Area of the Heat Exchanger ... 31

CHAPTER 4. OPTIMAL DESIGN PROBLEM ... 33

4.1. OPTIMAL DESIGN – WITHOUT UNCERTAINTY .. 34

vi

Illustrative example of optimal design – without uncertainty ... 35

4.2. OPTIMAL DESIGN UNDER UNCERTAINTY ... 37

Illustrative example of optimal design – under uncertainty ... 39

4.3. GROWTH IN PROBLEM SIZE AND THE NEED FOR DECOMPOSITION .. 40

CHAPTER 5. APPLYING ADMM TO SCENARIO DECOMPOSITION .. 41

5.1. DECOMPOSING SCENARIOS USING ADMM .. 42

5.2. ILLUSTRATIVE EXAMPLE OF DECOMPOSING 2 SCENARIOS AS 2 PARTITIONS ... 45

5.3. DISCUSSIONS FROM THE ILLUSTRATIVE EXAMPLE ... 49

CHAPTER 6. APPLYING ADMM FOR DECOMPOSING A LONG SCENARIO ... 50

6.1. DECOMPOSING A LONG SCENARIO ... 50

6.2. ILLUSTRATIVE EXAMPLE OF DECOMPOSING A SCENARIO INTO 2 PARTITIONS ... 52

6.3. DISCUSSIONS FROM THE ILLUSTRATIVE EXAMPLE ... 56

CHAPTER 7. CONCLUSION AND FUTURE WORK .. 57

REFERENCES ... 58

A1. MATLAB CODES ... 62

A1.A. MAIN FILE ... 62

A1.B. SPECIFYING BOUNDS FOR ALL THE VARIABLES .. 76

A1.C. SPECIFYING THE DYNAMIC MODEL AS DAE .. 77

A1.D. SPECIFYING PARAMETERS .. 80

A1.E. SPECIFYING DISTURBANCE PROFILES... 81

A1.F. BUILDING THE NLP STRUCTURE .. 84

A1.G. PLOTTING OPTIMUM PROFILES ... 91

vii

List of figures

Figure 2-1: Representing a simple general form consensus optimization problem. 12

Figure 3-1: Flowsheet for the TES system ... 16

Figure 3-2: Lumped cell-based model of a countercurrent heat exchanger 22

Figure 3-3: Step change in disturbance and response in WHB exit temperatures 28

Figure 3-4: Optimal operation profiles ... 29

Figure 3-5: Optimal operation at different tank sizes .. 31

Figure 3-6: Optimal operation at different heat exchanger areas ... 32

Figure 4-1:Disturbance profile and optimal input profile (base design vs optimal design) 36

Figure 4-2:State response (base design vs optimal design) .. 36

Figure 4-3: Schematic representation of two-stage stochastic design problem with 3 scenarios .. 38

Figure 4-4: Scenarios used in the illustrative example .. 39

Figure 5-1: Simplified flowsheet of the TES system ... 41

Figure 5-2: Schematic for scenario decomposition with 3 scenarios ... 43

Figure 5-3: Scenarios used in the illustrative example .. 46

Figure 5-4: Convergence of ADMM (primal and dual residual) ... 47

Figure 5-5: Convergence of ADMM (objective function value) ... 48

Figure 5-6: Convergence of ADMM (local variable Vtes) ... 49

Figure 6-1: Schematic for partitioning a single long scenario into 3 partitions 50

Figure 6-2: Scenario used in the illustrative example .. 53

viii

Figure 6-3: Centralized solution (state profile) .. 53

Figure 6-4: Convergence of ADMM (primal and dual residuals) .. 54

Figure 6-5: Convergence of ADMM (objective function value) ... 55

Figure 6-6: Convergence of ADMM (local variables) ... 56

ix

List of tables

Table 2-1: Approximations commonly used for LMTD .. 20

Table 2-2: Parameter values used in simulations ... 24

Table 2-3: Nominal values for Variables and Inputs ... 25

Table 3-1: Constants used for estimating design cost .. 33

Table 3-2: Optimal design for the deterministic case .. 35

Table 3-3: Optimal design with perfect information .. 39

Table 3-4: Optimal design with the stochastic model .. 40

1

Chapter 1. Introduction

Reducing our reliance on fossil fuels for meeting our energy demands is one of the critical issues

facing the modern world. The transition to a more sustainable energy future is expected to involve

an increased proportion of renewable energy sources like wind and solar. These sources however

have the disadvantage of being intermittent in their operation and offer fewer degrees of freedom

to match the demand. In this regard, energy storage technologies play a crucial role in the

integration of renewable energy sources to the energy system, as a way to handle the stochasticity

present in the supply and demand of energy [1].

We focus our attention on thermal energy storage (TES) systems which generally refer to the

storage of energy as heat or cooling. They are commonly integrated with solar thermal power

plants, industrial clusters, hot water systems in buildings, and district heating or cooling networks.

A detailed overview of the broad scope of TES systems, the various classifications, and

technologies are outlined by Alva et al. [2]. The dynamic nature of the process along with the

associated uncertainties with the predictions of future demand and supply makes the problems

related to optimal design and in ensuring optimal operations of these systems quite challenging.

The optimal operation for TES systems

The optimal operation of TES system can minimize the reliance on fossil fuels to meet energy

demands and improve the profitability of the energy system. Dynamic optimization can be used

for this, where the operation is optimized over a time interval, rather than for a single time instance.

The process systems community has long made use of detailed dynamic models (based on first

principles, observed plant dynamics, or a combination of both) for the control of such processes.

Various authors have focussed on the optimal operation aspect of TES systems in the literature.

Powell [3] demonstrates the benefit of integrating TES with various energy systems by solving an

open-loop optimization problem. Uncertainties in the forecast of supply and demand profiles were

not explicitly accounted in that work. Mdoe [4] later implemented a multistage nonlinear model

predictive control (NMPC) to account for uncertainties in the supply and demand side temperatures

for a two plant TES system. Data-driven approaches were proposed for scenario selection to

represent the uncertainty using fewer number of scenarios for multistage NMPC [5]. Principal

2

component analysis was used to identify correlations between historical supply and demand

profiles, and to build such scenarios for the optimal operation of a TES system [6].

Optimal design for TES systems

During the design stage of an energy storage system, one is primarily interested in modelling the

long term profitability of the system. One key issue is addressing the significant uncertainty that

exists in the demand and supply profiles during the design phase. Stochastic programming provides

a systematic framework to model such problems that require decision making in the presence of

uncertainty [7]. The operations research community has long studied location and capacity sizing

problems for energy storage systems in electrical networks. Model simplifications are usually used

to represent the problem as a two-stage linear stochastic program. This approach was used to solve

an electricity network design and capacity expansion problem in the presence of uncertainty in

future profiles [8]. A similar approach is used by Lamont [9] to find the optimals size for battery

energy storage and pumped hydro-storage systems under similar uncertainties.

For the TES system, a similar approach was followed during the specialization project [10] in the

Fall Semester of 2019. The system was modelled in terms of heat duties to get the design problem

as a two-stage linear stochastic program. The solution of the linear model was then used to find the

physical design parameters (the tank volume and the heat exchanger area) using some heuristics.

This approach was extended to include a comparison between the stochastic formulation and a

bilevel formulation for the TES design problem by Thombre et al. [11]. However, the issue with

such approaches is that they do not use the physical design parameters (like the tank volume or

heat exchanger area) directly in the optimization problem, but need to be calculated based on some

heuristics from the solution of the approximate linear problem. Such an approach does not give us

the optimal physical design parameters for the given uncertainty information. A major issue that

arises is due to the linear model approximation that is unable to capture the essential nonlinear

dynamics that is present in the system. Hence in some scenarios, the linear problem assume

recourse actions that are infeasible to be achieved in reality (for example - transfer of heat duty

from a cold stream to a hot stream across a heat exchanger).

3

To overcome these limitations in the linear model approach, we consider extending the nonlinear

dynamic models that are normally used for control applications to make optimal design decisions.

Here, we propose to frame the optimal design problem as a two-stage nonlinear stochastic program

with the first stage variables as the design parameters and the optimal operation actions as the

second stage recourse variables. Since these models represent the real dynamics of the system, no

physically infeasible recourse action would be considered in this formulation. However, this

approach has the issue of resulting in sizeable nonlinear optimization problems rather quickly. We

consider two approaches - a centralized approach and a distributed approach for solving these large

optimization problems.

Centralized approach vs Distributed approach for optimization

The two-stage nonlinear design problem can be solved directly using standard nonlinear

optimization solvers, which we refer to as the centralized optimization strategy. The problem

associated with this is - when the size of the problem grows large, the number of variables that

need to be simultaneously held in memory to run this scheme increases, which is expected to be

the limiting factor for its application in practice. To address this issue, we explore a distributed

optimization approach.

In the distributed optimization strategy, we take advantage of the inherent structure of the problem

and use decomposition methods to solve smaller subproblems iteratively. Application of this

strategy for scenario decomposition related to multistage NMPC can be found in [12].

Krishnamoorthy et al. presented a primal decomposition algorithm [13] and a dual decomposition

algorithm [14] for scenario decomposition in multistage NMPC. The progressive hedging

algorithm (PHA) was used for scenario decomposition in a two-stage NMPC by Lucia [15].

In our work, we aim to use the alternating direction method of multipliers (ADMM) algorithm to

form parallelizable subproblems in a two-stage NLP, in a more general fashion. The hope is to be

able to solve more complex models and multiple scenarios, without the penalty in computational

memory required.

4

1.1. Objective of the Thesis

The main objective of this work has been to explore the ADMM algorithm to solve structured

nonlinear programming problems (NLP). Based on the information discussed previously, we use

nonlinear dynamic models for optimal design of a TES system to present our appoach. The main

focus thus has been on

1. Framing the optimal design problem for a TES system using a nonlinear dynamic model as

a two-stage stochastic NLP.

2. Investigating a distributed optimization strategy using ADMM for solving the optimal

design problem.

This thesis thus aims to present the methodology and ideas in the context of optimal design of

a simple TES case, however it can be applied easily solving structured NLPs found in many

different areas.

1.2. Structure of the thesis

The thesis comprises of the following chapters which focus on the following.

In Chapter 2, some technical preliminaries associated with distributed optimization and the ADMM

algorithm are presented. A quick background of augmented Lagrangian (AL) methods is provided

to solve optimization problems with equality constraints. The basic ADMM algorithm is then

presented, which extends the AL method to allow for parallel implementation. Next, we outline

how structured NLPs can be presented as a general form consensus problem which is a common

form in which many distributed optimization algorithms are presented in literature. The chapter

ends by applying the ADMM algorithm to structured NLP and applying any simplifications that

occur due to the particular structure present in the problem.

Chapter 3 introduces the TES system under consideration, and the mathematical model used to

describe the dynamics of the process. The model is then used to describe the optimal operation

problem. An illustrative example is used to analyze the open-loop optimization solution. The

chapter ends by motivating the optimal design problem by demonstrating the effect design

variables have on optimal operation.

5

Chapter 4 formally defines the optimal design problem. A simple deterministic case is first shown

to explain the basic components involved in the optimization problem. Next, uncertainty is

accounted for in the design, and the problem is converted to a two-stage stochastic NLP. An

illustrative example is used to compare and contrast the stochastic solution with the solution if we

had taken a deterministic approach to design. The chapter next argues how the problem size grows

rapidly when considering more scenarios and increasing the prediction horizon. Partitioning the

problem is considered for solving the large NLP to reduce memory usage.

In Chapter 5, we demonstrate the approach for scenario decomposition in the context of two-stage

NLPs. The problem is shown to be parallelizable by applying the ADMM algorithm. An illustrative

example of splitting two scenarios into two partitions is shown using the simplified TES model to

comment on the convergence behaviour of the ADMM algorithm.

In Chapter 6, we demonstrate how long prediction horizons that would be required in the design

problem could be partitioned and solved using ADMM. A general framework is presented for

partitioning a single prediction horizon into many partitions. An illustrative example of splitting a

prediction horizon into two partitions using the simplified TES model is presented to comment on

the convergence behaviour of the algorithm.

Chapter 7 provides the concluding remarks and presents opportunities for extending this approach

in the future.

6

Chapter 2. Preliminaries on distributed optimization with ADMM

This chapter quickly reviews some basic concepts that we use in later chapters. The standard

ADMM algorithm is introduced using a simple equality constrained optimization problem. We

then present structured NLPs that are of our interest as a general form consensus problem. We

conclude the chapter by applying the ADMM to the structured NLPs and simplifying some of the

steps that arise from the structure of the problem itself.

Distributed optimization refers to the general approach of solving a large optimization problem by

breaking it into smaller subproblems and solving each of them separately. These subproblems can

be solved either sequentially (one subproblem after the other) or in parallel (using separate

machines / processors etc.) and put back together to give us the solution to the original large

problem. Primal and dual decomposition methods are some of the popular decomposition methods,

but they offer feasible iterates and provide convergence under very strong assumptions even in the

case of convex optimization problems. A comprehensive review of primal and dual decomposition

methods is done by Palomar [16]. Since our aim is to use distributed optimization for a nonlinear

optimization problem, we have not considered them in much detail. Instead, we focus on

augmented Lagrangian (AL) method which offer more robust convergence properties than primal

or dual methods.

2.1. Method of Multipliers

This section we will discuss the method of multipliers, which is an important precursor to

understanding the alternating direction method of multipliers (ADMM).

Consider the simple equality constrained optimization problem of the form

,
min

x z
 () ()f x g z+ (2.1a)

 0Ax Bz+ = (2.1b)

The method of multipliers (MM) or more commonly known as AL method was first introduced by

Hestenes and Powell [17]. It was introduced as a way to improve the robustness of standard dual

methods which only yield convergence under very strict assumptions like strict convexity and

7

finiteness of f and g. The MM scheme solves an optimization problem of the form (2.1) by

minimizing the augmented Lagrangian function, given as

()
2

2
(, ,) : () ()

2

TL x z f x g z Ax Bz Ax Bz

 = + + + + + (2.2)

where is the associated Lagrange multiplier of the constraint, and is any chosen penalty

parameter. The MM scheme is based on the fundamental result that there exists a sufficiently large

penalty parameter 0 such that the minimizer of the AL function (2.2) is a minimizer of the

original problem (2.1). The augmented Lagrangian can thus be seen as the unaugmented

Lagrangian of the problem

,
min

x z
 2

2
() ()f x g z Ax Bz+ + + (2.3a)

.s t 0Ax Bz+ = (2.3b)

This problem is clearly equivalent to the original problem (2.1) since, for any feasible primal

variable (x,z), the term added to the original objective is zero. The benefit of including the penalty

term is that the dual problem of (2.3) can be shown to be differentiable under milder conditions

than the dual of the original problem (2.1) [18]. The augmented Lagrangian method is related to

the quadratic penalty method [19], but it reduces the possibility of ill-conditioning by explicitly

introducing an estimate of the Lagrange multiplier into the function to be minimized [19]. An

extensive analysis of the convergence properties of MM and their relation to older ideas of

Lagrangian and penalty methods can be found in the monograph by Bertsekas [20].

The MM scheme performs a minimization of the augmented Lagrangian function on the primal

variables (,)x z and then updates the Lagrange multipliers using a steepest descent step in the

space of . The gradient is given by the primal residual (,) :r x z Ax Bz= + at the current iteration

of the algorithm [21].

The standard MM scheme yields the following algorithm at iteration k

()1 1,k kx z+ +

,

: arg min (, ,)k

x z

L x z = (2.4a)

1k +
 1 1: ()k k kAx Bz + += + + (2.4b)

8

The superscript k is used to indicate the iteration number of the algorithm. The solution of the

subproblems at iteration k can be used to warm start (initialize) the solver at iteration k+1 as a way

to speed up iterations. It is important to highlight that the MM scheme jointly minimizes on the

primal variables, and the quadratic term prevents the algorithm being separable in x and z even if

the original objective function was separable. Consequently, this prevents us from directly

implementing the MM in a parallel fashion.

2.2. Alternating Direction Method of Multipliers

ADMM blends the ideas from MM and Gauss-Seidel coordination schemes to enable

decomposition and parallel implementation [18]. It is based on the key observation that minimizing

over the primal variables x and z separately (opposed to jointly being done in MM) enables

independent subproblems in each partition for structured problems. The standard ADMM scheme

has the following steps at iteration k

1kx + : arg min (, ,)k k

x

L x z = (2.5a)

1kz +
1: arg min (, ,)k k

z

L x z += (2.5b)

1k + 1 1: ()k k kAx Bz + += + + (2.5c)

Convergence

We can write the necessary and sufficient condition for optimality for the problem (2.1) at a point

* * *(, ,)x z . The primal feasibility condition is

 * * 0Ax Bz+ = (2.6)

and the dual feasibility conditions are (where 0L represents the unaugmented lagrangian of (2.1))

 * * *

0

* *

0 (, ,)

()

x

T

x

L x z

f x A

=

= +
 (2.7)

 * * *

0

* *

0 (, ,)

()

z

T

z

L x z

g z B

=

= +
 (2.8)

At iteration k+1 of ADMM, the infeasibility of the primal feasibility condition (2.6) can be

represented as ()1 1 1k k kr Ax Bz+ + += + .

9

Since 1kx + minimizes (, ,)k kL x z by definition (2.5a), the optimality condition for this step is

1

1 1

1 1 1

1 1 1

0 (, ,)

() ()

() (())

() ())

k k k

x

k T k T k k

x

k T k k k k

x

k T k T k k

x

L x z

f x A A Ax Bz

f x A r B z z

f x A A B z z

+

+ +

+ + +

+ + +

=

= + + +

= + + + −

= + + −

or equivalently,

1 1 1() ()k T k T k k

x f x A A B z z + + + + = −

The residual in the dual feasibility condition (2.7) at iteration k+1, can thus be represented as

1 1()k T k ks A B z z+ += − .

Since 1kz + minimizes 1(, ,)k kL x z + by definition (2.5b), the optimality condition for this step is

1 1

1 1 1

1 1

1 1

0 (, ,)

() ()

() ()

()

k k k

z

k T k T k k

z

k T k k

z

k T k

z

L x z

g z B B Ax Bz

g z B r

g z B

+ +

+ + +

+ +

+ +

=

= + + +

= + +

= +

Thus it shows that ADMM iterations always satisfy the dual feasibility condition (2.8).

A good stopping criterion for the algorithm is then the primal and dual residuals to be small and

below some specified positive tolerance level
2

k primalr and
2

k duals .

There are many convergence properties of ADMM discussed in the literature. A fairly general

result when applying ADMM to convex problems is presented by Boyd [18] which we quote here

Assumptions 2.1 :

• The functions : nf → + and : mg → + are closed, proper and convex

• There exists * * *(, ,)x z , not necessarily unique, for which the unaugmented Lagrangian

* * * * * *

0 0 0(, ,) (, ,) (, ,)L x z L x z L x z holds for all , ,x z

Under Assumption 2.1, ADMM iterates are shown to satisfy the following properties

10

• Residual convergence. 0kr → as k → , i.e., the iterates approach feasibility

• Objective convergence. *() ()k kf x g z p+ → as k → , i.e., the objective function of the

iterates approach the optimal value

• Dual variable convergence *k → as k → , where * is the dual optimal point

When ADMM is applied to nonconvex problems, it can be considered just as another local

optimization method. Even when the minimization steps can be carried exactly, ADMM need not

converge, and when it does converge, it need not converge to the optimal point. Although the

convergence guarantees do not exist for nonconvex NLPs, in practice however, ADMM has been

shown to perform satisfactorily under various case studies, and their convergence comparable to

that of MM [21]. It is worth explicitly stating that similar to other local optimization methods,

ADMM can converge to a different point depending on the initial values of 0 0,x z , 0 and the

penalty parameter that are used [18].

There are different extensions and variations to the standard ADMM scheme explored in the

literature to improve their convergence properties, some of which are summarized by Boyd [18].

Of particular interest to us have been schemes investigating performing multiple coordination steps

between the minimization steps (2.5a) and (2.5b) before performing the dual update step (2.5c). By

performing multiple coordination minimization steps, the expectation is that the algorithm

approaches the MM scheme (where both x and z are jointly minimized) convergence properties. In

this interpretation, the MM scheme provides the limiting performance of ADMM. Some metrics

that would be useful to monitor the progress of ADMM would be the primal and dual residuals

every iteration. The AL function decreases monotonously every iteration in the MM scheme but is

not necessary for ADMM, which is an indication of insufficient coordination steps being

undertaken in the standard ADMM scheme.

2.3. Structured NLPs as general form consensus problems

Our aim is to use distributed optimization for large nonlinear problems. We will focus our attention

on structured NLPs which could be partitioned into P blocks of the form

11

,
min

ix z

1

()
P

i i

i

f x
=

 (2.9a)

.s t i ix 1,2,...,i P= (2.9b)

 0i i iA x B z+ = 1,2,...,i P= (2.9c)

Where the variable xi
n

ix represents all the variables that correspond to block partition

 : 1, , Pi = . The vector v in the i-th partition is represented using the subscript as
iv , and the

i-th entry of the vector will be represented as ()v i to prevent any ambiguity. The feasible set is

built by constraints | () 0ii ii c xx = . The entire set of partition variables can be collected into

a single variable vector 1 2, , ,T T T T

Px x x x = where xn
x . The vector znz contains all the

coupling variables in the problem. Equation (2.9c) is called the linking (complicating) constraint

as, without it, the problem would be trivially separable and could have been solved independently.

The matrices iA and iB help map a subset or a linear combination of the partition variables to the

coupling variables. In the simplest case of consensus optimization (local variable component ()ix j

corresponds to global variable component ()z l), these would be rather sparse matrices. The

Lagrange multiplier associated with the coupling constraint in partition “i” is denoted as im

i

and the entire set of multipliers associated with the coupling constraints represented as

1 2, , ,T T T T

P = where
m .

The general form consensus optimization problems can be represented using an undirected graph,

and a simple example is shown in Figure 2-1. The left side is the partition optimization problems

with their own local variables (the solid dots here represent a scalar element of the vector) and local

constraints. The consensus constraint in this case is () () () ()1 2 31 3 3 2x x x z= == , which are

represented by links connecting each to a global copy ()3z of these private variables.

12

Figure 2-1: Representing a simple general form consensus optimization problem.

The coupling constraint for partition 1 can then be shown to be

 1 1 1 0A x B z+ =

1

1

1

1

(1)
(1)

(2)1 0 0 0 0 0 1
(2) 0

(3)0 0 0 1 1 0 0
(3)

(4)

x
z

x
z

x
z

x

− + = −

The complete NLP (2.9) could be represented in the compact form as

,
min

x z
 ()f x (2.10a)

.s t x (2.10b)

 0Ax Bz+ = (2.10c)

z(3)

x1

x2

x3

z(2)

z(1)

13

where the feasible set 1, ,i P i == . Matrices A and B can be constructed easily using the

partition matrices iA and iB given by

1

P

A

A

A

=

1

P

B

B

B

=

 (2.11)

A popular distributed optimization paradigm to exploit the structure of the original problem (2.9)

is to decompose it into partition subproblems whose solutions are coordinated by some master

coordinator scheme. Such approaches are frequently referred to as external decomposition. Some

of the well-known approaches like primal decomposition, dual decomposition and ADMM fall into

this category.

2.4. ADMM algorithm applied to structured NLPs

This section applies the general ADMM algorithm presented in the previous section to the

structured NLPs of the form (2.9). The special structure of the problem is taken advantage of,

providing simplifications and analytical solutions to some of the steps in ADMM.

We first form the augmented Lagrangian for the structured NLP (2.9) by taking the coupling

constraint to the objective term.

 () ()
2

2
1

(, ,) ()
2

P
T

i i i i i i i i i

i

L x z f x A x B z A x B z

=

= + + + + (2.12a)

We can now follow the steps we have outlined for ADMM.

Step (2.5a) in the ADMM algorithm is the update of primal variable x which can be written as

1kx + = arg min
x

 () ()
2

2
1

()
2

P
T

k k k

i i i i i i i i i

i

f x A x B z A x B z

=

+ + + + (2.13a)

 .s t i ix 1,2,...,i P= (2.13b)

For the structured NLP, we can parallelize this step in each of the partitions i as

14

1k

ix + = arg min
ix

 () ()
2

2
()

2

T
k k k

i i i i i i i i if x A x B z A x B z

+ + + + 1,2,...,i P= (2.14a)

 .s t i ix 1,2,...,i P= (2.14b)

Step (2.5b) in the ADMM algorithm is the update of the coupling variable z written directly as

1kz + =
arg min

z

 () ()
2

1 1 1

2
()

2

T
k k k kf x Ax Bz Ax Bz

+ + ++ + + + (2.15)

This step has a closed-form solution which can be derived from the first-order optimality

conditions [21] to give

1kz + ()
1

1T T k TB B B Ax B
−

+ = − + (2.16)

This requires the matrix B to have full column rank. In the context of structured NLP, it can be

shown [18] that (2.16) is an averaging operator, with the j-th element of z, has the form

1()kz j+
11
()

j

i

j

k

i

x j+

= (2.17)

where : 1, ,j P = denotes the set of partitions that are connected to the variable ()z j . In

other words, the z-update step is just an averaging of all entries of
1k

ix +
 that correspond to the

global copy ()z j . A detailed explanation with the derivation of this step is available in [18].

Step (2.5c) is the dual variable update, and can be shown to be solved in the partitions as

1k

i
+

1 1()k k k

i i i iA x B z + += + + (2.18)

15

Chapter 3. Process description and model

In this chapter, we will first describe the TES process and then derive the mathematical model to

represent the dynamic behaviour of the process. The optimal operation problem is then framed and

the behaviour of the TES system is discussed using an illustrative example. We will then see how

design parameters influence optimal operation and motivate the need for optimal design.

3.1. Process description - TES system

The flowsheet in Figure 3-1 is used to represent the heating section of a district heating network.

The district heating network uses hot water in a closed-loop as the medium to meet the heating

demands of an area. An industrial process represented by the stream qwh is given, which has some

cooling demand. This is referred to as the waste heat stream, which could be used as the cheap

source of heat for the district heating network. The heat is transferred from the waste heat stream

to the district heating circuit using the waste heat boiler (WHB). Additional heat can be added to

the water using the peak heat boiler (PHB) which uses a more expensive source of energy for

heating (fossil fuel or electricity).

The demand for energy from consumers is represented as follows. The total volumetric flow in the

district heating network is represented by qdh and is determined by the number of consumers and

their demand for hot water at any particular time. Water is returned by the consumers at a

temperature Tdh, Ret, which is assumed to be correlated only to the ambient conditions due to the

heat losses in the long return pipeline. Water is heated by PHB to temperature Tphb and must be

above a contractually specified temperature Tdh, minSup before it can be supplied to the consumers.

Hence qdh, Tdh, Ret are time-varying external inputs to our system while Tdh, minSup provides us with

a lower limit for Tphb that must always satisfy during operations. The PHB adds heat duty Qphb to

the water, and the cost associated with this is assumed to be proportional to Qphb with a per-unit

cost CQphb. The total energy that needs to be added by the district heating system is calculated as

, , () – demand dh dh dh dh minSup dh Ret

pQ q C T T= , where dh and dh

pC represent the density and the

specific heat capacity of water in the district heating circuit.

16

Figure 3-1: Flowsheet for the TES system

The supply of energy from the industrial process is represented as follows. The process has a stream

at volumetric flow qwh and temperature Twh,s up. The process requires that this stream be cooled

down to at least Twh,minRet. Similar to the consumer side, qwh and Twh, sup are determined by the

industrial process and are time-varying parameters to the system. Heat is transferred from the

process stream to the district heating system using a heat exchanger WHB. The exit temperatures

for the process stream and water are T wh,ret, and Twhb, respectively. To meet the process stream

return temperature specification of Twh,minRet, a dump cooler (DC) is used which can remove excess

heat duty Qdc by use of some external cooling utility. The use of this cooling utility has a cost

associated with it and is assumed proportional to Qdc with a per-unit cost of CQdc. The total available

supply of energy from the process is thus calculated as , , () – supply wh wh wh wh sup wh minRet

pQ q C T T= ,

where
wh and wh

pC represent the density and the specific heat capacity of the waste heat stream.

B

αqdh

Pipe Elem
e

n
t

Pipe Element

T tes

q dh

T phb T dh, minSup

T b

Q consumer

(1-α)q dh

T wh,ret

Q dc

T wh,min Ret

T wh,sup

q wh

Q Pipe, Loss

q dh

T dh, Ret

WHB

DC

TES

PHB

T whb

Q phb

17

The heating and energy storage functions are represented as follows. The water is first heated using

the WHB up to Twhb. During periods where the demand for energy exceeds the heat duty being

extracted from WHB, the water at the exit of the WHB would not be hot enough to meet the

consumer temperature specifications. Hence it will need to be heated further using the PHB in order

to satisfy the return temperature constrain Tphb >= T wh, minRet. During periods where the demand for

energy is lower than is being extracted from the WHB, we do not need additional heating from the

PHB and can directly send the water to the consumers. The temperature being sent would be higher

than the minimum return temperature specification. A TES tank is proposed to be constructed that

can be used as a buffer between these periods of excess and low demand to reduce this spec

giveaway and hence minimize the total reliance on external utilities. The TES assumed here is a

simple mixed tank design connected directly to the water stream. By splitting the total flow from

the exit of the WHB, we can store the excess energy by increasing the temperature in the tank and

similarly discharging it during periods of shortfall. The tank is assumed to be completely filled and

under perfect level control, and hence the inflow would be equal to outflow. Our aim is to find the

optimal size of this tank that needs to be installed, and also assess if any increase to the area in the

existing heat exchanger WHB would be beneficial.

3.2. Dynamic Process Model

We will first build a simple dynamic model of the process that can be used for the optimization

step. The dynamic process model is built according to the process described in the previous section.

We will assume the following main assumptions throughout to build the model.

• All fluid streams have constant properties like density () and specific heat capacity (Cp)

which do not change with temperature.

• Heat losses from pipelines or heat exchangers to the surroundings are negligible.

• Liquid holdups in pipes and pressure effects on flow rates are negligible.

• All volume elements are well mixed (without internal temperature gradients), and their exit

temperature is equal to the temperature of the volume.

• Perfect level control in TES tank.

18

The dynamic model can then be built by writing out the mass and energy balances for each of the

elements in the process with any additional assumptions being made mentioned therein.

TES Tank

The TES tank is assumed to be well-mixed, and the dynamic mass balance can then be written as

() , ,()dh tes dh tes in tes outd

V q q
dt

 = −

Under the main assumptions of constant densities and perfect level control, the mass balance

reduces to the inlet volumetric flow rate being equal to the outlet flow rate. This is already

accounted for while setting up the variables in the flowsheet and does not need to be added

separately. The variable is used to denote the proportion of the total flow qdh that is being sent

to TES.

 , , dhtes in tes out tesq q q q== =

The dynamic energy balance for the tank thus can be written as

() ,()dh tes dh tes dh dh dh whb tes tes loss

p p

d
V C T q C T T Q

dt
 = − −

The energy loss from the tank is assumed from the total surface area of the tank to the ambient, and

the rate of heat loss being proportional to the temperature difference between the tank and the

ambient temperature. Assuming a constant height/ diameter ratio for the construction of tanks for

a volume of Vtes, the heat loss can then be written as

 ()
2/3

, ()tes loss tes tes tes ambQ U V T T −

with a proportionality constant c. This gives us the dynamics of the temperature in the tank as

 () ()
1/3

()
tes tes tes ambtes dh whb tes

tes dh dh

p

cU V T TdT q T T

dt V C

−

−−
= − (3.1)

19

Peak Heat Boiler (PHB)

The peak heat boiler uses more expensive sources of energy to heat the water. The size of this

exchanger is of less interest and is modelled simply as a well-mixed tank of constant volume (Vphb)

with the additional heat duty being added directly, to capture simple dynamics in the response of

this unit. The mass balance, using the earlier assumptions simplifies to inlet and outlet volume

flows being equal, and is already accounted for while setting up the variables in the flowsheet. The

energy balance equation can be written as

() ()dh phb dh phb dh dh dh b phb phb

p p

d
V C T q C T T Q

dt
 = − +

Rearranging gives the differential equation for the dynamics of the exit temperature of PHB as

 ()phb dh b phb phb

phb dh phb dh

p

dT q T T Q

dt V V C

−
= + (3.2)

Node B

Node B is assumed to be an ideal mixer with zero volume. The energy balance gives the

temperature at the node as the algebraic equation

 (1)b tes whbT T T = + − (3.3)

Dump Cooler (DC)

We are only interested in the heat duty of this cooler. Hence, it is simply modelled as a point volume

with the heat duty removed directly. The energy balance then reduces to an algebraic equation

 (),wh wh wh wh ret dc dc

pq C T T Q − = (3.4)

The dump cooler here is used to achieve a specified return temperature to the process. In case the

energy is extracted from some flue stream being released to the environment, Qdc could easily just

represent the amount of recoverable heat being released to the environment by picking a suitable

value for Twh, minRet, and an economic penalty for wasting this energy.

20

Waste Heat Boiler (WHB)

We are concerned with finding an optimal area for this heat exchanger and will assume this as a

pure countercurrent heat exchanger. The most common way to model the steady-state energy

balance for parallel heat exchangers is to use the log mean temperature difference (LMTD) between

the temperature differences at the ends of the exchanger (
1T and 2T) as

2 1 1 2

2 1 1 2ln(/) ln(/)
LM

T T T T
T

T T T T

 − −
 = =

 (3.5)

The heat duty transferred in the heat exchanger is then calculated as,

 LMQ UA T=

 Using the LMTD directly in the dynamic energy balance is known to cause issues in optimization

due to the highly nonlinear logarithmic term. There are various approximations to the LMTD

instead that are popularly for such purposes used in the literature of the form

()

1/

1 2

1

2

n

n n

LM MT T T T

 = +

 (3.6)

The value of the exponent n used in different approximations are as shown in table

Table 3-1: Approximations commonly used for LMTD

n Approximation ()MT

1 Arithmetic Mean ()AMT

1

3

Underwood’s Mean ()UMT

0.3275 Chen’s Mean ()CMT

21

This approach was used by Mdoe [22] to model and calculate the optimal control for a different

TES system. This approach does not give us an easy way to adjust the model complexity while

building and later scaling the design problem and is not considered here. We will instead model

the heat exchanger using the popular lumped cell-based approach [23] [24].

In the lumped cell-based heat exchanger model, each stream is modelled as a series of well-mixed

tanks referred to as cells. The adjacent cells exchange heat only with each other through the

dividing wall. The advantage of this approach is that any flow configuration can be modelled and

can better represent the true dynamic behaviour by manipulating the arrangement and using a

sufficient number of these cells. The model complexity can be easily controlled by the number of

cells used to represent the heat exchanger. The arrangement for a generic countercurrent heat

exchanger with the hot stream and cold stream temperatures can then be illustrated as in Figure

3-2.

The convention followed is to number the cells in each stream in the direction of fluid flow (from

inlet to outlet) with the total number of cells set as nCell. Therefore, cold cell “i” is thermally

coupled with hot cell numbered “nCell + 1 - i” and the heat duty being transferred between them

denoted as Q(i).

In addition to the previously mentioned assumptions, the following assumptions are used while

building the lumped cell-based heat exchanger model.

• The total heat transfer area and volume in each side is uniformly distributed among the cells

(()i

A
A

nCell
= and ()i

V
V

nCell
= for i=1,2,…,nCell)

• The overall heat transfer coefficient (U) in each cell is the same and does not change with

flowrates

• Wall thermal resistance and capacitance are insignificant.

22

Figure 3-2: Lumped cell-based model of a countercurrent heat exchanger

These assumptions let us write the generic expression for heat transfer into the cold cell “i” as

() () (1) ()() ()i i hot nCell i cold iQ UA T T+ −= − 1,2,...,i nCell

In modelling the WHB, the cold side is the district heating stream, and all the cell temperatures are

represented using ()

whb

iT . The hot side is the waste heat stream, and cell temperatures are represented

as ,

()

wh ret

iT .

Cold 1

Cold 2

Cold nCell

Cold nCell-1

Hot 1

Hot 2

Hot nCell-1

Hot nCell

Tcold in

Tcold(1)

Tcold(2)

Tcold(nCell-1)

Tcold(nCell)

Thot(1)

Thot(2)

Thot(nCell-1)

Thot(nCell)

Tcold outThot in

Thot out

Q(1)

Q(2)

Q(nCell-1)

Q(nCell-1)

23

The energy balance over the i-th cold side cell is

() ().

() () (1) () ()

dh whb dh dh whb dh dh dh whb whb whb

i p i p i i i

d
V C T q C T T Q

dt
 −= − + 1,2,...,i nCell

 ,Re

0

whb dh tT T=

The cold cell “i” is thermally coupled to the hot cell “nCell +1- i” according to the numbering

scheme we have followed for the countercurrent heat exchanger. The energy balance in the coupled

hot cell can be written as,

() (). , , ,

(1) (1) () (1) ()

wh whb wh wh wh ret wh wh wh wh ret wh ret whb

nCell i p nCell i p nCell i nCell i i

d
V C T q C T T Q

dt
 + − + − − + −= − − 1,2,...,i nCell

 , ,sup

0

wh ret whT T=

The heat duty being transferred between the cells is denoted as

 ,

() () (1) ()() ()whb whb wh ret

i i nCell i iQ UA T T+ −= − 1,2,...,i nCell

 Rearranging and stacking them in standard notation gives us the differential equations for the

temperature response in the WHB as

()
()(1) () ()

() . ,

() ()

dh whb whb whb
i i iwhb

i whb dh dh dh whb dh

i p i

q T T Qd
T

dt V C V

− −
= + 1,2,...,i nCell (3.7)

 ,Re

0

whb dh tT T=

()
(), .

(1) () (1),

() . ,

() ()

wh wh ret wh ret whb
i i nCell iwh ret

i whb wh wh wh whb wh

i p i

q T T Qd
T

dt V C V

− + −
−

= + 1,2,...,i nCell (3.8)

 , ,sup

0

wh ret whT T=

24

3.3. Model as DAE

The complete dynamic behaviour of the system can be thus expressed as a set of differential-

algebraic equations (DAE) of the form

 ()lg, , ,diff diff ax f x x u p= (3.9a)

 ()lg0 , , ,diff ag x x u p= (3.9b)

The differential equations (3.1), (3.2), (3.7) and (3.8) are collected into the form of the equation

(3.9a) and the algebraic equations (3.3) and (3.4) are collected into the form of the equation (3.9b).

The differential state xdiff vector (of length 2*nCell + 2) is then defined as,

 ,

1,..., 1,...,, , ,diff tes phb whb wh ret

i nCell i nCellx T T T T= =
 =

the algebraic state vector xalg as,

 lg ,a b dcx T T =

the manipulated variable vector u as,

 , ,phb dumpu Q Q =

the time-varying parameter vector p as,

 , ,, , ,dh wh dh Ret wh Supp q q T T =

The various time-invariant parameters that are used in the simulations are specified in Table 3-2.

Table 3-2: Parameter values used in simulations

Parameter Description Value Units

dh Density of district heating stream 1000 kg/m3

25

wh Density of waste heat stream 800 kg/m3

dh

pC Specific Heat Capacity of district heating stream 4.18 kJ/kg.K

wh

pC Specific Heat Capacity of waste heat stream 3.5 kJ/kg.K

Uwhb Overall heat transfer coefficient for waste heat boiler 5.13 kW/m2K

Utes Overall heat loss coefficient for TES tank 0.0001 kW/m2K

Vphb Volume of Peak Heat Boiler 12 m3

Vwhb, dh Volume of Waste Heat Boiler (district heating side) 12 m3

Vwhb, wh Volume of Waste Heat Boiler (waste heat side) 12 m3

nCell Number of cells used in modelling WHB 5 -

Tamb Ambient Temperature 10 C

Some nominal values for the varying elements of the model are specified in Table 3-3. These values

are also used as the initial state for the differential states for all the simulations.

Table 3-3: Nominal values for Variables and Inputs

Variable Description
Nominal

Value
Units

Ttes Temperature of TES tank 45 C

Tphb Temperature at the exit of Peak Heat Boiler 56 C
whbT WHB exit Temperature of district heating stream 46 C

,wh retT WHB exit temperature for waste heat stream 71 C

Tb Temperature of Node B 55 C

Tdc Dump cooler exit temperature 30 C

 Split ratio of WHB exit stream sent to TES 0 -

Qphb Heat duty added to PHB 0 kW

Qdc Heat duty removed from Dump Cooler 0 kW

Vtes Volume of TES tank 15000 m3

Awhb Area of WHB heat exchanger 400 m2

qdh Volumetric flow rate of district heating stream 900 m3/hr.

qwh Volumetric flow rate of Waste Heat stream 900 m3/hr.

Tdh, minSup Minimum supply temperature of water to consumers 55 C

Twh, minRet Minimum return temperature of waste heat stream 30 C

Tdh, Ret Supply temperature of district heating stream 30 C

Twh, Sup Supply temperature of waste heat stream 100 C

CQphb Price per unit of energy added 0.06 USD/kWh

CQdc Price per unit of energy removed 0.006 USD/kWh

26

3.4. The Optimal Operations Problem

In this section, we illustrate the optimal operation of the TES system. The area of the heat exchanger

and the volume of the tank are kept fixed as in Table 3-3. A simple step change is in the flowrate

qwh to represent a step-change in the supply of energy (while all the other parameters are kept

constant for simplicity of discussion) to illustrate the behaviour of the system under optimal

operation. We will then show how the design parameters (volume of tank and area of heat

exchanger) affect this optimal system behaviour.

During operations, only the costs associated with the purchase of external utilities are considered

(in our case Qphb and Qdc) where CQphb and CQdc are the unit prices associated with these external

utilities. Hence for an operating period from t0 to tf, the corresponding operating cost function

(Coper) can be defined as

()

0

: () () () ()

ft

oper Qphb phb Qdump dump

t

C C t Q t C t Q t dt= + (3.10)

The optimal operations problem is to find the profile for the input variables that minimizes the

operating cost for the period. This can be formulated as the optimization problem in continuous

time as

lg(), (), ()
min

diff ax t x t u t
 ()

0

() () () ()

ft

Qphb phb Qdump dump

t

C t Q t C t Q t dt+

 (3.11a)

s.t. ()lg() (), (), (), ()diff diff ax t f x t x t u t p t=
0 ft t t (3.11b)

 ()lg0 (), (), (), ()diff ag x t x t u t p t=
0 ft t t (3.11c)

 0
ˆ(0)diffx x= (3.11d)

 ()diff diff difflbx x t ubx
0 ft t t (3.11e)

lg lg lg()a a albx x t ubx

0 ft t t (3.11f)

 ()lbu u t ubu
0 ft t t (3.11g)

The initial condition for the differential states is specified as 0x̂ . The bounds for the states and

inputs are also included in the problem (Equations 3.11e to 3.11g). This problem in infinite-

27

dimensional and can be solved by first converting it into a finite-dimensional nonlinear

programming problem (NLP), dividing it into N equally spaced sampling intervals (n = 0,1,…,N-

1). This discretization can be performed using various approaches such as single shooting, multiple

shooting, direct collocation [25]. We will use direct collocation for all our problems in this thesis.

After discretization, the optimal operations problem can be posed in the standard NLP form as

lg
1 , ,
min

diff a
n nnx x u+

 ()
1

0

N
Qphb phb Qdump dump

n n n n

n

C Q C Q
−

=

+

 (3.12a)

s.t. ()lg

1 , , ,diff diff a

n n n n nx f x x u p+ = n=0,1,…,N-1 (3.12b)

 ()lg0 , , ,diff a

n n n ng x x u p= n=0,1,…,N-1 (3.12c)

 0 0
ˆdiffx x= (3.12d)

diff diff diff

nlbx x ubx n=0,1,…,N-1 (3.12e)

lg lg lga a a

nlbx x ubx n=0,1,…,N-1 (3.12f)

nlbu u ubu n=0,1,…,N-1 (3.12g)

In compact notation, the optimal operations problem can be represented as

min
operx

 ()oper operC x (3.13a)

s.t. ()oper operx (3.13b)

where all the variables associated with the operation phase are collected into the vector

lg

0 1, , ,oper diff diff a

n n nx x x x u+
 = for all 0,1,..., 1n N= − . The operating cost function is defined as

()
1

0

N
oper oper Qphb phb Qdump dump

n n n n

n

C x C Q C Q
−

=

= + and the feasible set oper contains all the feasible points

of the constraints (3.12b to 3.12g).

All the illustrative examples in this thesis are implemented in MATLAB R2019b using CasADi

(v3.5.1) [26] framework for formulating the mathematical models and the NLP. These problems

are then solved using IPOPT [27] to find a local solution.

28

An Illustrative Example of Optimal Operation

To analyze the solution of (3.12) a simple problem is solved where a step-change in flowrate of qwh

is provided. A prediction horizon of 30 hours is considered, and the step change is shown in the

top subplot of Figure 3-3. The first 15 hours have a 20% higher flowrate than the nominal flow,

and for the next 15 hours, it is 20% lower than nominal. All other time-varying parameters are kept

constant and the nominal values are chosen to satisfy the consumer demand without the use of

heating in the PHB. It is very easy to analyze the solution of the optimal control problem. The exit

temperature response of the WHB is shown in the bottom subplot of Figure 3-3. When there is an

increased flow in the first half, the WHB exit temperature increases (in this particular case to above

the return specification of 55 C) and vice versa in the latter half.

Figure 3-3: Step change in disturbance and response in WHB exit temperatures

Optimal operation in this case is rather intuitive - try and store the excess energy in the first half

and then release it during the period of shortfall. This is the optimal solution from solving the NLP

(3.13). In the bottom subplot of Figure 3-4, the split ratio () is being manipulated to charge the

TES tank as can be seen by the increase in temperature Ttes. If TES temperature is above the

minimum return temperature (55 C), we cannot avoid sending hot water above the minimum

29

return specification and is saturated fully in an attempt to maximize the energy stored in the TES.

There is no need for Qphb during this time. When the step-change causes a fall in the supply (by

hour 15), the WHB exit temperature quickly falls below 55 C . Since the TES tank has stored

energy, is manipulated to now discharge the tank. Qphb is required to maintain the temperature

Tphb at its lower limit when the TES temperature falls below 55 C around hour 23.

Figure 3-4: Optimal operation profiles

This simple example is thus able to show the crucial nonlinear behaviour associated with the TES

system. Even though cumulatively the supply and demand for energy were the same as for the

nominal case, we do end up using peak heating to satisfy the demand profile in this simple example.

This is because of the importance of temperature (the quality of energy) in real TES systems.

Analyzing the system simply as duties would not have considered the second law of

thermodynamics which is essential while trying to find real-life equivalent parameters for

designing and operating such systems.

The primary factors affecting the quality of energy in this case are the volume of the tank and the

area of the heat exchanger. The area of the heat exchanger directly influences the temperature Twhb

30

and hence the maximum temperature that the TES tank can be charged up to. The volume of the

tank affects the amount of heat duty that is stored at a particular temperature. Both these parameters

have an important effect on the operational cost, which is analyzed in the next section.

3.5. The effect of Design on Optimal Operations

Next, we look at the effect design variables (volume of tank and area of heat exchanger in our case)

have on optimal operation under the same step-change in qwh represented in Figure 3-3.

Volume of the Tank

We redo the analysis with different tank sizes (with a constant nominal heat exchanger area) - one

lower (10,000 m3), one larger (20,000 m3), and compare it to the nominal volume (15,000 m3) of

the tank that was considered earlier. Since the heat exchanger area is the same - the exit temperature

of WHB will follow the same profile as in the bottom subplot of Figure 3-3 from before. The

optimal profile for is found by solving the OCP to first charge and later discharge the tank. The

larger tank holds more charge at the same temperature than the smaller ones. we can see from the

top subplot of Figure 3-5 as it takes longer for this temperature to approach Twhb. This, in turn,

requires less Qphb during the discharging phase as more energy could be dispatched from the larger

TES tank.

31

Figure 3-5: Optimal operation at different tank sizes

Area of the Heat Exchanger

Similar to the tank volume, we compare the optimal operation solution under 3 cases of heat

exchanger area around the nominal value of 400 m2 (and the tank volume held constant at the

nominal value). From the top subplot in Figure 3-6, we see that increasing the area results in

extracting more of the available energy from the supply stream. This means that Twhb temperatures

will be higher, the TES can be potentially be charged to a higher temperature and thus store more

energy for the same tank volume. This effect can be seen in the bottom subplot of Figure 3-6, as

less Qphb is required with an increase in the heat exchanger area for the same tank volume.

32

Figure 3-6: Optimal operation at different heat exchanger areas

We can see that these simple sizing parameters chosen during the design phase of the project have

an important influence on the operation cost of the dynamic process in the future. We would hence

like to find how these sizing parameters, for such a dynamic process with uncertain demand or

supply profiles, can be chosen by the designer. This question is explored in the coming chapters of

this thesis.

33

Chapter 4. Optimal Design Problem

In the previous chapter, we introduced the optimal control problem for the TES plant and saw the

effect of the original design variables (like heat exchanger area and tank volume) on the optimal

operation. This chapter will discuss how these design parameters are chosen.

During process design, one seeks to choose the process and equipment parameters that will

maximize the net present value (NPV) of the project. For a fixed production capacity of the plant,

this reduces to minimizing the total cost of ownership for the plant. We ignore the present value

aspects associated with actual project evaluation to make it easier for the analysis of our results and

discussions. The costs associated with the plant can be broadly split into the initial capital cost and

the operations costs. In our case, the initial capital cost is restricted to consist only the purchased

equipment cost for the heat exchanger and the TES tank. These can be estimated using simple cost

relationship of the form a + bSc where S is the characteristic size of the equipment (area in m2 for

heat exchangers and volume in m3 for tanks). The constants are taken from Sinnott [28] and are

shown in Table 4-1.

Table 4-1: Constants used for estimating design cost

Constants
Storage Tank:

(cone roof)

Heat Exchanger:

(shell and tube)

a 5700 10000

b 700 88

c 0.7 1

The design life of 20 years is considered for the plant. To compare the objective values between

the different cases easily, the total capital cost is scaled down to the associated prediction horizon

for the optimization problem. It is represented as (ignoring the constants not influencing the

optimization).

The constants Ctank and Chex are scaled-down corresponding to the considered prediction horizon

for the optimization problem (4.2). When the prediction horizon of 20 years will be considered for

the optimization problem, Ctank and Chex will be equal to the constants b in the table above.

 () ()
0.7 1

tan capital k tes hex whbC C V C A= + (4.1)

34

4.1. Optimal Design – Without Uncertainty

Consider the case where the supply and demand of energy is known perfectly for the prediction

horizon N. Then the optimal design problem can be simply formulated by extending the optimal

control problem from section 3.4 to include the contribution of capital cost in the objective. The

design parameters (Vtes, Awhb) are also now variables for the optimization with associated bounds.

The design problem is formulated as the NLP

, ,
min

tes whb
nV A u
 () () ()

1
0.7

tan

0

N
k tes HEx whb Qphb phb Qdump dump

n n n n

n

C V C A C Q C Q
−

=

+ + +

 (4.2a)

s.t. ()lg

1 , , ,diff diff a

n n n n nx f x x u p+ = n=0,1,…,N-1 (4.2b)

 ()lg0 , , ,diff a

n n n ng x x u p= n=0,1,…,N-1 (4.2c)

 0 0
ˆdiffx x= (4.2d)

diff diff diff

nlbx x ubx n=0,1,…,N-1 (4.2e)

lg lg lga a a

nlbx x ubx n=0,1,…,N-1 (4.2f)

nlbu u ubu n=0,1,…,N-1 (4.2g)

 tes tes teslbV V ubV (4.2h)

 whb whb whblbA A ubA (4.2i)

For the sake of compact notation, we represent the design problem as

,
min
des operx x

 ()() ,capital des oper des operC x C x x+ (4.3a)

s.t. (),des operx x (4.3b)

where the variables associated with design into the vector are collected into ,des tes whbx V A = . The

operation phase variable vector operx is defined as before. The capital cost depends on the design

variables, and the capital cost function is defined as () ()
0.7

tan()capital des k tes hex whbC x C V C A= + . The

operating cost now depends on both the vectors desx and operx , and the operating cost function is

35

defined as ()
1

0

,
N

oper des oper Qphb phb Qdump dump

n n n n

n

C x x C Q C Q
−

=

= + . All the feasible points to the constraints

(4.2b to 4.2i) are represented using the feasible set .

Illustrative example of optimal design – without uncertainty

We illustrate the design problem with a prediction horizon of 30 hours. The supply side profile is

given as in the top subplot of Figure 4-1, while all other parameters are held constant at their

nominal values. The main results from the solution for the NLP are given in Table 4-2 and the

associated optimal input represented in the bottomsubplot of Figure 4-1. An important point to note

here is that NLP was solved using IPOPT, which is a local optimizer; thus the solutions we obtain

are local minimizers.

Table 4-2: Optimal design for the deterministic case

Design parameters in Base design Optimal design Units

Tank volume (Vtes) 15000 11420.55 m3

Heat exchanger area (Awhb) 300 464.70 m2

Ccapital 867.9 846.5 USD

Coper 170.5 63.6 USD

Total Cost 1038.4 910.1 USD

We can see that compared to the base design, it is beneficial to increase the heat exchanger area

and reduce the tank volume from the nominal values. The trade-off between the capital cost and

the operating cost leads to a lower total cost for the period of 1 day being considered.

Comparing the state profiles between the base and optimal design in Figure 4-2, we see that the

increased heat exchanger area increases the Twhb temperature and thus the TES is able to store more

energy even for the lower tank volume as can be seen by the reduced reliance on Qphb. Any further

increase in the design parameters to store more energy would just cost more than relying on the

external utilities to satisfy the energy demand.

36

Figure 4-1:Disturbance profile and optimal input profile (base design vs optimal design)

Figure 4-2:State response (base design vs optimal design)

37

4.2. Optimal Design under Uncertainty

In reality, there is uncertainty associated with the demand and supply profiles of energy and has to

be accounted for in the design stage. We can represent each unique combination of supply and

demand profiles across the prediction horizon using different representative scenarios. Let the set

: {1,2,..., }S= denote all such representative scenarios the system is expected to face during

operation. Historical operating data from the district heating system could be used to build these

scenarios. An example of using historical data for scenario generation in a multistage NMPC is

shown by Thombre et al. [6]. Since scenario selection is not our primary focus here, we assume

these scenarios are given to us with associated probabilities represented as
s .

There are various ways to include this uncertainty information during the design stage itself. One

could potentially design the system to be optimal for any of the given scenarios. A simple approach

for process design would involve designing the plant for one particular scenario and checking its

sensitivity against other scenarios to and make modifications if needed. A more systematic

approach would be to optimize the design for a choice of risk measure which accounts all the

scenarios. Such approaches could include minimizing the total cost for the worst-case scenario, the

expected value of the total cost under all the scenarios, or any other metric we wish to choose.

A simple stochastic optimization framework is used to describe the design problem in our case

where the optimal design is defined as the one that minimizes the expected value of the total cost.

The optimal design problem can thus be framed as a two-stage nonlinear stochastic problem with

full recourse with the design decisions as the first stage variables and the operating decisions as the

second stage recourse variables. Formulating it as a two-stage program means that once the design

decisions are made, the disturbance is fully revealed, and the optimal control actions are then taken.

This is a simplifying assumption and could be relaxed further by assuming multiple stages to

represent the sequence of decisions that occur in the operations stage, reacting to uncertainties that

might be revealed over time. We do not consider this case and stick with the simple two-stage

formulation.

38

The design problem can be represented in the compact form as

,
min
des oper

sx x
 () (,)capital des oper des oper

s s s

s

C x C x x

+

(4.4.a)

. .s t (,)des oper

sx x s (4.4.b)

where each scenario s has its own second stage variables
oper

sx . The operating cost associated with

the scenario is calculated as
1

, , , ,

0

(,)
sN

oper des oper Qphb phb Qdump dump

s s n s n s n s n s

n

C x x C Q C Q
−

=

= + .

Figure 4-3: Schematic representation of two-stage stochastic design problem with 3 scenarios

A simple schematic of the two-stage design problem with 3 scenarios is represented in Figure 4-3.

There are 3 possible scenarios that could be realized, represented using the parameters pn,s. The

design decision is made in the first stage, after which the uncertainty is completely revealed. Once

the uncertainty is revealed, the control actions (un,s) and the corresponding state profiles (,

diff

n sx and

lg

,

a

n sx) are decided to minimize the operating cost for the realized scenario.

x1,1
diff

x2,1
diff

xN-2,1
diff

xN-1,1
diff

xN,1
diff

p1,1p0,1 pN-1,1pN-2,1

x1,1
alg

x2,1
alg

xN-2,1
alg

xN-1,1
alg

xN,1
alg

u1,1u0,1 uN-1,1uN-2,1

p1,2p0,2 pN-1,2pN-2,2

u1,2u0,2 uN-1,2uN-2,2

x1,2
diff

x2,2
diff

xN-2,2
diff

xN-1,2
diff

xN,2
diff

x1,2
alg

x2,2
alg

xN-2,2
alg

xN-1,2
alg

xN,2
alg

p1,3p0,3 pN-1,3pN-2,3

u1,3u0,3 uN-1,3uN-2,3

x1,3
diff

x2,3
diff

xN-2,3
diff

xN-1,3
diff

xN,3
diff

x1,3
alg

x2,3
alg

xN-2,3
alg

xN-1,3
alg

xN,3
alg

x0
diff

x
des

S1

S2

S3

39

Illustrative example of optimal design – under uncertainty

We illustrate the design problem under uncertainty where two scenarios are considered for the

supply side profile given as in Figure 4-4, while all other parameters are held at their nominal

values. Both scenarios are considered equally likely, where scenario 2 can be considered an

extreme operation of the TES as compared to scenario 1.

Figure 4-4: Scenarios used in the illustrative example

With perfect information about the profile that would be realized during operation, we would have

designed the system to be optimal for that particular scenario as in the previous section. The optimal

designs for the individual scenarios are shown in Table 4-3.

Table 4-3: Optimal design with perfect information

Optimal solution based on

the individual scenario
Scenario 1 Scenario 2 Units

Tank volume (Vtes) 11420.56 20633.38 m3

Heat exchanger area (Awhb) 464.70 368.79 m2

Ccapital 846.54 958.39 USD

Coper 63.59 441.57 USD

Total Cost 910.13 1399.96 USD

40

But in reality, we do not know which of the two scenarios would be realized during operation at

the design stage. Hence a stochastic model is used to decide the optimal design for the TES. The

total costs associated with this design when either of the scenarios are realized is shown in Table

4-4. The design from the stochastic model would have a higher cost than if we had the optimal

design for each scenario. Optimal design from the stochastic model is the one that minimizes the

expected total cost, and thus a decision that hedges against all scenarios. This example illustrates

that it is impossible, under uncertainty to find a solution that is optimal under all scenarios.

Table 4-4: Optimal design with the stochastic model

The optimal solution for

the stochastic model

Scenario 1

Scenario 2

Units

Tank volume (Vtes) 19013.51 m3

Heat exchanger Area (Awhb) 368.79 m2

Ccapital 924.86 USD

Coper 341.55 479.30 USD

Total Cost 1266.41 1404.16 USD

Expected Total Cost 1335.29 USD

4.3. Growth in Problem size and the need for Decomposition

We had considered a simple case in the previous section with a prediction horizon of 1 day and

only two scenarios. For a more realistic TES design problem, we would need the prediction horizon

to cover multiple charge/ discharge cycles. This would require the prediction horizon to cover much

longer periods depending on the type of TES system being considered (for example - months in

the case of seasonal energy storage). Since each unique combination of the time-varying parameters

represents a scenario, we would also have to consider many scenarios to represent the uncertainty.

This can lead to our two-stage NLP becoming very large, and are thus concerned with our ability

to solve the problem with the limited available memory at our disposal. Since the design problem

is not used for any real-time application, we are less concerned with the time to solve the problem,

but rather the memory required for solving it. We thus look for iterative schemes which can solve

this large NLP with limited usage of memory. The aim is to use the structure of the problem to

solve it in a distributed matter to arrive at the optimal solution for the original problem.

41

Chapter 5. Applying ADMM to scenario decomposition

In this chapter, we will see how ADMM can be used for scenario decomposition in a two-stage

NLP. We will use a simplified model of the TES system to let us focus more on the decomposition

algorithm and its results. The dynamics associated with the heat exchangers are ignored and focus

only on the TES tank sizing as the design problem. The disturbance is simply represented as the

heat duty transferred from the supplier to the TES system through the waste heat boiler as Qwhb.

The simplified system is represented in Figure 5-1, and the model equations are then

Figure 5-1: Simplified flowsheet of the TES system

the differential equation

() () ()

1/3()dh whb tes
tes tes tes tes amb

tes

d q T T
T U V T T

dt V

 −−
= − − (5.1)

and the algebraic equations

 (1)b tes whbT T T = + − (5.2)

 phb
phb b

dh dh dh

p

Q
T T

q C
= + (5.3)

,Re

whb
whb dh t

dh dh dh

p

Q
T T

q C
= + (5.4)

B

αqdh

Pipe Elem
e

n
t

Pipe Element

T tes

q dh

T phb T dh, minSup

T b

Q consumer

(1-α)q dh

Q Pipe, Loss

q dh

T dh, Ret

WHB

TES

PHB

T whb

Pipe Element

Pipe Element

Q phb

Q whb

42

The dynamic behaviour of the system can thus be expressed in the standard DAE form

 ()lg, , ,diff diff ax f x x u p= (5.5a)

 ()lg0 , , ,diff ag x x u p= (3.9b)

with the differential state vector
diff tesx T = , the algebraic state vector

lg , ,a b phb whbx T T T = . The

manipulated variable vector is , phbu Q = , and the time-varying parameter vector

,, ,dh whb dh Retp q Q T = . The variables associated with the design phase is represented as

des tesx V = . For a prediction horizon of N - the variables associated with the operation phase is

then collected as
lg

0 1, , ,oper diff diff a

n n nx x x x u+
 = for 0,1,..., 1n N= − . The operating cost function can

thus be defined as ()
1

0

,
N

oper des oper Qphb phb

n n

n

C x x C Q
−

=

= and the capital cost function as

()
0.7

tan()capital des k tesC x C V= .

5.1. Decomposing scenarios using ADMM

We will consider the two-stage stochastic formulation for the design problem used in section 4.2.

The uncertainty was represented using the scenario set : {1,2,..., }S= , and the scenario tree was

given in Figure 4-3. The design problem was represented in the compact form

,
min
des operx x

 () (),capital des oper des oper

s s s

s

C x C x x

+ (5.6a)

. .s t (),des oper

sx x (5.6b)

We can consider each scenario as a separate partition, as shown in Figure 5-2, with the number of

partitions P equal to the number of scenarios S.

43

Figure 5-2: Schematic for scenario decomposition with 3 scenarios

The length of the horizon considered in each partition i we will represent as Ni . Each partition

i has its own private variable vector which we denote as xi which is made up of the design variable

vector for this partition represented as ()des

i
x and the operation variable vector for this partition as

()oper

i
x . These vectors are as defined in the previous section, but now refer to the variables that are

local to the partition i.

lg

0 1, , ,

: () , ()

: () , () , () , () , ()

des oper

i i i

des diff diff a

i i n i i n i i n i i

x x x

x x x x u+

 =

 =

 0,1,..., 1in N= −

All the partitions need to reach consensus on their copy of the design variable to be equivalent to

the original problem.

We can construct the global variable z to contain an estimate of what the design variable in each

partition should be (represented in red in the figure above).

 desz x =

x1,1
diff

x2,1
diff

xN-2,1
diff

xN-1,1
diff

xN,1
diff

p1,1p0,1 pN-1,1pN-2,1

x1,1
alg

x2,1
alg

xN-2,1
alg

xN-1,1
alg

xN,1
alg

u1,1u0,1 uN-1,1uN-2,1

p1,2p0,2 pN-1,2pN-2,2

u1,2u0,2 uN-1,2uN-2,2

x1,2
diff

x2,2
diff

xN-2,2
diff

xN-1,2
diff

xN,2
diff

x1,2
alg

x2,2
alg

xN-2,2
alg

xN-1,2
alg

xN,2
alg

p1,3p0,3 pN-1,3pN-2,3

u1,3u0,3 uN-1,3uN-2,3

x1,3
diff

x2,3
diff

xN-2,3
diff

xN-1,3
diff

xN,3
diff

x1,3
alg

x2,3
alg

xN-2,3
alg

xN-1,3
alg

xN,3
alg

x0
diff

x
des

S1

S2

S3

x0
diff

x
des

x0
diff

x
des

P1

P2

P3

 ()des des

i
x x= i

44

The original NLP 5.6 can thus be written in the structured NLP form as

,
min

ix z
 ()

()
()

() , ()

capital des

i oper des oper

i i i

i

C x
C x x

P

 +

(5.7a)

. .s t ()() , ()des oper

i i ix x i (5.7b)

 () 0des

ix z− = i (5.7c)

ADMM for solving this problem can be derived by forming the augmented Lagrangian by adding

the coupling constraint (5.7c) to the objective term

,
min

ix z

()
() ()

2

2

()
() , () () ()

2

capital des

i oper des oper T des des

i i i i i i

i

C x
C x x x z x z

P

 + + − + −

 (5.8a)

. .s t ()() , ()des oper

i i ix x i (5.8b)

We can now directly follow the ADMM algorithm for structured NLPs we had described in section

2.4. In iteration k, we can separately solve each individual partition problem as (keeping the global

variable fixed).

min
ix

 ()
() ()

2

2

()
() , () () ()

2

capital des

i oper des oper kT des k des k

i i i i i i

C x
C x x x z x z

P

 + + − + − (5.9a)

. .s t ()() , ()des oper

i i ix x i (5.9b)

The global variable update step is the averaging operator, and since all the partitions have a copy

of the global variable, it can be written as

 1 ()k des

i i

i

z x+

=

If all the scenarios have equal probability, then it can also be written as

1

()des

i
k i

x

z
P

+ =

45

The primal residual is just in the infeasibility of the design variable and can be defined for each

partition as

 1 1 1()k des k k

i ir x z+ + += − (5.10)

The dual variable update in the partitions is thus

1k

i
+

 ()1 1()k des k k

i ix z + += + −

The dual residual in each partition is thus

1 1()k k k

is z z+ += − (5.11)

An interesting aspect to note here is that by applying ADMM for scenario decomposition in the

two-stage stochastic program here, we have ended up with the progressive hedging (PH) algorithm

described by Rockafellar and Wets [29]. The PH algorithm is a popular method used to solve two-

stage stochastic problems in a distributed manner where the second stage problems are all coupled

via the first stage variables. It can thus be shown that PH is a particular case of ADMM, and that

ADMM provides a more general framework to derive decomposition strategies for large

optimization problems [21].

5.2. Illustrative example of decomposing 2 scenarios as 2 partitions

We will use an illustrative example to demonstrate the approach discussed in the previous section.

Let us consider two scenarios with a prediction horizon of 48 hours, where the time-varying

disturbance Qwhb is only considered and shown in Figure 5-3 and scenarios have equal probability.

46

Figure 5-3: Scenarios used in the illustrative example

The design problem (5.6) can be solved as a single NLP which gives us the optimal solution for

the tank volume Vtes = 17709 m3 and the objective function value of 730.05 USD. In an actual case,

one does not expect to solve this problem centrally, but here we use this to compare our results

from the distributed algorithm. In the distributed algorithm, we split the NLP into two partitions,

each with its own local variables. The global variable z thus includes an estimate of the variable

Vtes. All the optimization problems are solved using off the shelf interior-point solver IPOPT [27];

thus, individual solutions are not necessarily global minimum. The various metrics during the

iterations of the ADMM algorithm using a constant penalty parameter () are plotted in the

following figures.

The primal and dual residuals for partition 1 (Equation 5.10 and 5.11) are shown in semi-log plots

in Figure 5-4. Each iteration, the primal and dual residuals correspond to the infeasibility in the

tank volume between the partitions converging to zero within a few iterations. This property is not

guaranteed by the ADMM algorithm in the case of nonconvex problems and should be checked

before analyzing any other results.

47

Figure 5-4: Convergence of ADMM (primal and dual residual)

As the primal residual tends to zero, the penalty term in the augmented Lagrangian goes to zero,

and its value stabilizes. The objective function value obtained from solving the problem centrally

is marked in Figure 5-5 to quickly see if ADMM is converging to the same solution. This is not

guaranteed since ADMM must be considered as just another local optimization method as we had

discussed in section 2.2. With different initial values of , ,x z and the penalty parameter , we

could expect ADMM to converge to a different local optimum altogether.

48

Figure 5-5: Convergence of ADMM (objective function value)

The local copies corresponding to the global variable are shown in Figure 5-6. We can see that

both the local variables were initialized with the initial guess for tank volume at 10,000 m3 and

later stabilizes to a constant value (residual convergence). In this particular case, we can see that

ADMM has converged to the same optimal value we had found from the central solution.

49

Figure 5-6: Convergence of ADMM (local variable Vtes)

5.3. Discussions from the illustrative example

An important aspect we had observed while solving the illustrative example is the vital role the

penalty term plays on the convergence behaviour of the algorithm. It is crucial to ensure that the

penalization term does not skew the objective of the partition problems too much. Using the design

variable as they were defined initially, resulted in the penalty term being orders of magnitude larger

than the optimal cost itself. This results in the ADMM iterations having a very low rate of

convergence from the initial guesses we had given for the design variable. To avoid this, the design

variable was scaled down to lie between 10-100 such that the penalization term ()des

i
x z− became

in the same orders of magnitude as the optimal objective function value.

The choice of the penalty parameter () for ADMM iterations also influenced the magnitude of

the penalization term. More importantly, the penalty parameter has a significant influence on the

speed of convergence of the algorithm as it is also the step length for the dual variable update

between iterations. This parameter needs to be large enough for the subproblems to converge, but

excessively large values did lead to numerical instabilities. A too-large step length caused

oscillations in the dual residual, and the solutions of the subproblems cycling between iterations.

This behaviour is in some ways similar to a line search algorithm overshooting the optimal point

if we use too large of a step length.

The time required to solve each iteration was significantly reduced by using a warm start approach,

where the solution from the previous iteration was used as the initial guess for the next iteration.

50

Chapter 6. Applying ADMM for decomposing a long scenario

When increasing the prediction horizon of the design problem, we expect the need to form

partitions within a long scenario in addition to the partitions across scenarios considered earlier. In

this chapter, ADMM is applied to partition a single long prediction horizon.

6.1. Decomposing a long scenario

We can partition a single long horizon of length N into P partitions. Each partition “i” can have its

own desired length represented as Ni. A schematic for forming 3 partitions is shown in Figure 6-1.

Figure 6-1: Schematic for partitioning a single long scenario into 3 partitions

Each partition has its own local variables as before represented as

lg

0 1

: () , ()

: () , () , () , () , ()

des oper

i i i

des diff diff a

i i n i n i n i

x x x

x x x x u+

 =

 =

 0,1,..., 1in N= −

The partitions must now reach consensus not only on their copy of the design variable, but the

adjacent partitions must now also ensure continuity of the differential states at their common

boundary (shown in red). Since the first and last partitions are only coupled on one end, this

coupling constraint can be written as

 ()des des

i
x x= i

 () ()0 1i

diff diff

N ii
x x

+
= 1,2, , 1i P= −

x1
diff

xN1
diff

p0 pN1-1

x1
alg

xN1
alg

u0 uN1-1

x0
diff

x
des

P1

xN1+1
diff

xN1+1
alg

xN1+N2
diff

xN1+N2
alg

xN1+N2+1
diff

xN1+N2+1
alg

P2

P3

xN
diff

xN
alg

xN1+N2-1
diff

xN1+N2-1
alg

pN1+N2-1

uN1+N2-1

pN1

uN1

pN1+N2

uN1+N2

x
des

x
des

51

The global variable now contains the estimate for the design variable along with the differential

state at the boundary between partitions.

 ,
i

des diff

Nz x x = 1,2, , 1i P= −

The design problem can then be written in the structured NLP form as

,
min

ix z
 () ()() () , ()capital des oper des oper

i i i

i

C x C x x

P

+

(5.12a)

 ()() , ()des oper

i i ix x i (5.12b)

 0i i iA x B z− = i (5.12c)

where the matrices Ai and Bi are sparse matrices used to link the local variables in the partition to

the corresponding global copy. Similar to the previous chapter, we form the augmented Lagrangian

by adding the coupling constraint (5.12c) to the objective term and applying the ADMM algorithm

to solve the partition problems separately as

min
ix

 () ()
()

2

2

() () , ()

2

capital des oper des oper

i i i kT k k

i i i i i i i

C x C x x
A x B z A x B z

P

+
+ − + −

(5.13a)

 ()() , ()des oper

i i ix x (5.13b)

The design variable in the global variable is linked to all the partitions, while each state variable at

a boundary is linked to the adjacent partitions only. The elements in the global variable can then

be updated as

()

1
()des

i
k

des i

x

x
P

+
=

 i

()
() ()

1 1

1 0 1

2

i

i

k k
diff diff

k Ndiff ii
N

x x
x

+ +

+
+

+
= 1,2, , 1i P= −

52

The primal residual is the infeasibility of the coupling constraint and defined for each partition as

1 1 1k k k

i i i ir A x B z+ + += − (5.14)

The dual variable is then updated in each partition as

1k

i
+

 ()1k k

i ir += +

The dual residual is

1 1()k T k ks A B z z+ += − (5.15)

It is interesting to note that our approach shares similarities to multiple shooting (MS) approach

for solving dynamic optimization problems [25]. The main difference is that in MS, the state

continuity constraints across the partitions are enforced explicitly by the optimization solver. In

contrast, our approach, they are enforced implicitly by minimizing the AL. The optimization solver

itself might be using a barrier penalty approach to enforce these equality constraints, which makes

the approaches even more similar.

6.2. Illustrative example of decomposing a scenario into 2 partitions

Let us consider a single scenario with a horizon of 48 hours with the time-varying disturbance, as

shown in Figure 6-2. The design problem can be solved as a single NLP which gives us the solution

for tank volume Vtes = 12052 m3 and the objective function value is 560.35 USD. The optimal state

profile is shown in the bottom subplot of Figure 6-3. Similar to earlier, we represent the central

solution here to compare the convergence behaviour of our distributed algorithm when the initial

condition for all the states are chosen to be the same as the centralized solver.

53

Figure 6-2: Scenario used in the illustrative example

Figure 6-3: Centralized solution (state profile)

In the distributed approach, we can split the NLP into two partitions each with a 24-hour horizon.

The global variable z contains the design variable Vtes and the differential state at the end of the

first partition. From the central solution, we can see that the value of z at the optimum was [12052,

54]. The various metrics during the iterations of the ADMM algorithm is plotted in the following

figures using a constant penalty parameter (5 =).

54

The primal and dual residuals (Equations 5.14 and 5.15) are shown in semi-log plots in Figure 6-4.

Each iteration, the primal and dual residual vectors contains the infeasibility in Vtes and the

infeasibility in the differential state Ttes continuity between the partitions. Their individual

components are represented for observing the trends rather than as a single norm here. We see that

the residuals tend to zero with more iterations. We observe oscillations in dual infeasibility, which

indicate to us that more coordination steps are necessary before performing the dual update step in

ADMM in this case.

Figure 6-4: Convergence of ADMM (primal and dual residuals)

55

As the primal residual tends to zero, the penalty term in the augmented Lagrangian goes to zero,

and it stabilizes. The objective function value that we got from solving the problem centrally is

indicated in Figure 6-5 to see if ADMM is converging to the same solution. The AL in this case,

actually increases with iterations highlighting the effect of nonconvexity present in the problem.

Figure 6-5: Convergence of ADMM (objective function value)

The local copies corresponding to the global variable are shown in Figure 6-6. Volume of the tank

is gradually updated from the initial guess towards the optimal solution which happens to match

with the solution we had found by solving the problem centrally. The behaviour of the differential

state at the boundary is more interesting here. This variable is the end temperature of the TES in

partition 1 while it is the initial temperature in partition 2. After the first iteration, the optimal for

partition 1 is to have the TES tank discharged, while for partition 2 it is optimal to start the system

with a charged TES tank. The penalty term in the augmented Lagrangian prevents partition 2 from

setting this variable at its upper limit. The global copy for this temperature is updated based on the

local copies, and the associated Lagrange multipliers are updated in each partition. The AL thus is

able to implicitly force the partitions to reach consensus on this state variable within a few

iterations.

56

Figure 6-6: Convergence of ADMM (local variables)

6.3. Discussions from the illustrative example

In this example, we had to reach consensus between partitions on two variables which had different

magnitudes in their residuals during the iterations. We could observe that with low penalty

parameter , the residual convergence in the variable with the lower residual (in our case – the

temperature) was much slower. The choice of the penalty parameter played a large role in

convergence in this example affecting the speed of convergence but also on the point ADMM

converges to. Since ADMM is a local optimization method, this behaviour is to expected and

indicates the presence of nonconvexity in the problem.

57

Chapter 7. Conclusion and future work

Our main objective at the beginning of the research period has been on utilizing the alternating

direction method of multipliers (ADMM) to get a distributed optimization algorithm to solve

structured nonlinear programming problems (NLP). A Thermal Energy Storage (TES) optimal

design problem was chosen to motivate the need for distributed optimization and demonstrate the

approach using illustrative examples. The main focus thus has been on

1. Developing a simple model of the TES process to capture the important nonlinear dynamics

present in the system.

2. Framing the design problem for a TES system as a two-stage stochastic NLP.

3. Forming partitions in the design problem by exploiting the structure present in the problem.

4. Using ADMM as the distributed optimization algorithm to coordinate between the

individual partition problems (which can now be solved in parallel) to get the solution to

the original NLP

We demonstrated the approach of forming partitions in the NLP by framing the problem in the

general consensus form and solving them using ADMM. While implementing the approach in the

illustrative examples, we were able to observe the importance of scaling the problem such that the

penalty term does not skew the objective function in the partitions. The coupling constraints and

the objective function should be scaled to systematically tune the residual convergence when

extending this approach to more complex models.

We briefly highlighted how the choices of the initial guesses for the variables and the penalty

parameter affected the ADMM algorithm in the case of nonconvex problems. Investigating the

nonconvexity is not straightforward and was not really pursued here, but is another interesting area

to explore in the future.

Although the ADMM algorithm provided opportunities to solve the partition problems in parallel

each iteration, they were solved sequentially for ease of development in all the case studies

performed. When extending this to very large problems, the implementation in a distributed

computing environment would be required.

58

References

[1] IEA, ‘Renewables 2019 – Analysis and forecast to 2024’, 2019.

[2] G. Alva, Y. Lin, and G. Fang, ‘An overview of thermal energy storage systems’, Energy, vol. 144, pp.

341–378, 2018.

[3] K. Powell, ‘Dynamic optimization of energy systems with thermal energy storage’, Prelim. Res.

Propos. Austin, Texas, USA, vol. 6, pp. 1–26, 2011.

[4] Z. N. Mdoe, ‘Optimal control of thermal energy storage under supply and demand uncertainty

Optimal control of thermal energy storage’, NTNU, 2019.

[5] M. Thombre, D. Krishnamoorthy, and J. Jäschke, ‘Data-driven online adaptation of the scenario-tree

in multistage model predictive control’, IFAC-PapersOnLine, vol. 52, no. 1, pp. 461–467, 2019.

[6] M. Thombre, Z. Mdoe, and J. Jäschke, ‘Data-Driven Robust Optimal Operation of Thermal Energy

Storage in Industrial Clusters’, 2020.

[7] J. R. Birge and F. Louveaux, Introduction to Stochastic Programming. New York, NY: Springer New

York, 2011.

[8] B. Xu et al., ‘Scalable Planning for Energy Storage in Energy and Reserve Markets’, IEEE Trans.

Power Syst., vol. 32, no. 6, pp. 4515–4527, 2017.

[9] A. D. Lamont, ‘Assessing the economic value and optimal structure of large-scale electricity storage’,

IEEE Trans. Power Syst., vol. 28, no. 2, pp. 911–921, 2013.

[10] S. Prakash, ‘Optimal Operation and Design of Thermal Energy Storage System’, 2019.

[11] M. Thombre, S. Prakash, and R. Knudsen, ‘Optimizing the Capacity of Thermal Energy Storage in

Industrial Clusters’, 2020.

[12] R. Martí, S. Lucia, D. Sarabia, R. Paulen, S. Engell, and C. De Prada, ‘Improving scenario

decomposition algorithms for robust nonlinear model predictive control’, Comput. Chem. Eng., vol.

79, pp. 30–45, 2015.

[13] D. Krishnamoorthy, B. Foss, and S. Skogestad, ‘A Distributed Algorithm for Scenario-based Model

Predictive Control using Primal Decomposition⁎’, IFAC-PapersOnLine, vol. 51, no. 18, pp. 351–356,

2018.

59

[14] D. Krishnamoorthy, ‘Novel Approaches to Online Process Optimization Under Uncertainty

Addressing the limitations of current industrial practice’, NTNU, 2019.

[15] S. Lucia, S. Subramanian, and S. Engell, ‘Non-conservative robust Nonlinear Model Predictive

Control via scenario decomposition’, Proc. IEEE Int. Conf. Control Appl., pp. 586–591, 2013.

[16] D. P. Palomar and M. Chiang, ‘A tutorial on decomposition methods for network utility maximization’,

IEEE J. Sel. Areas Commun., vol. 24, no. 8, pp. 1439–1451, 2006.

[17] M. R. Hestenes, ‘Multiplier and gradient methods’, J. Optim. Theory Appl., vol. 4, no. 5, pp. 303–320,

1969.

[18] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, ‘Distributed optimization and statistical

learning via the alternating direction method of multipliers’, Found. Trends Mach. Learn., vol. 3, no.

1, pp. 1–122, 2010.

[19] J. Nocedal, Numerical Optimization. Springer New York, 2006.

[20] D. P. Bertsekas and S. Paulo, Constrained Optimization and Lagrange Multiplier Methods. Elsevier,

1982.

[21] J. S. Rodriguez, B. Nicholson, C. Laird, and V. M. Zavala, ‘Benchmarking ADMM in nonconvex

NLPs’, Comput. Chem. Eng., vol. 119, pp. 315–325, 2018.

[22] Z. N. Mdoe, ‘Optimal control of thermal energy storage under supply and demand uncertainty

Optimal control of thermal energy storage’, 2019.

[23] K. W. Mathisen, M. Morari, and S. Skogestad, ‘Dynamic models for heat exchangers and heat

exchanger networks’, Comput. Chem. Eng., vol. 18, pp. S459–S463, 1994.

[24] P. Varbanov, J. Klemeš, and F. Friedler, ‘Cell-based dynamic heat exchanger models - direct

determination of the cell number and size’, Comput. Aided Chem. Eng., vol. 28, no. C, pp. 439–444,

2010.

[25] L. T. Biegler, Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical

Processes. 2010.

[26] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, ‘CasADi: a software framework

for nonlinear optimization and optimal control’, Math. Program. Comput., vol. 11, no. 1, pp. 1–36,

2019.

60

[27] A. Wächter and L. T. Biegler, ‘On the implementation of an interior-point filter line-search algorithm

for large-scale nonlinear programming’, Math. Program., vol. 106, no. 1, pp. 25–57, Mar. 2006.

[28] R. Sinnott and G. Towler, Chemical Engineering Design - Principles, Practice and Economics of

Plant and Process Design. 2003.

[29] R. T. Rockafellar and R. J.-B. Wets, ‘Scenarios and Policy Aggregation in Optimization Under

Uncertainty’, Math. Oper. Res., vol. 16, no. 1, pp. 119–147, Feb. 1991.

A x

A1. MATLAB Codes

This section contains some important pieces of source code developed in this project. The code is

written in MATLAB and used CasADi [26] as the symbolic framework for implementing the

nonlinear optimization problems, which were then solved using IPOPT [27].

A1.a. Main File

This file main.m is used to solve the design problem (in a centralized or distributed fashion). The

code in its current version is used to solve the problem using 2 partitions solved sequentially during

the ADMM iterations.

% Distributed Optimization using ADMM for TES Design

% 2 Nodes

% Author: Sandeep Prakash - sandeepp@stud.ntnu.no

% June 2020

%% Clearing Workspace

close all;

clear

import casadi.*

global par_sim;

global par_model;

%% Simulation Parameters

Tsim = 24*2; par_sim.Tsim = Tsim; %Design Life (in hours)

dt = 1; par_sim.dt = dt; %hours

Nsim = Tsim/dt; par_sim.Nsim = Nsim; %Discrete time steps in sim

par_sim.N_scale = 1;

Num_nodes = 2; par_sim.Num_nodes = Num_nodes; % = 1 sets centralized

par_sim.Num_colloc_points = 3;

Node_overlap = 0; par_sim.Node_overlap = Node_overlap;

%% Generating Disturbance profiles

% Initializing Model Parameters

par_model = param_model();

%Generate Disturbance and COnstraint Profiles

[dist, constr] = Generate_Profiles();

%% Checking integrator at single point

% Creating Integrator

[F,x_var, z_var, p_var, alg, diff, L] = myfunc_Integrator();

% Generating bounds and initial guesses

[x0,z0,u0,Des_var0,lbx,lbz,lbu,lbDes_var,ubx,ubz,ubu,ubDes_var] = ...

Initialization_bounds();

[x0_,z0_,u0_,Des_var0_] = scale_to_one(1, x0,z0,u0,Des_var0);

%Testing integrator at a single point

d0 = [dist.q_dh{1}(1); dist.Q_Supply{1}(1)];

Fk = F('x0',x0,'z0',z0,'p',[u0; Des_var0; d0]);

xf_ = full(Fk.xf);

zf_ = full(Fk.zf);

disp(Fk.qf);

%[xf, zf, u0, Des_var0] = scale_to_one(-1, xf_, zf_, u0_, Des_var0_)

%find_a_Steady_State(d0)

%% Setting up NLP in Nodes

opts = struct('warn_initial_bounds',false, 'print_time',false, ...

'ipopt',struct('max_iter',5000,'print_level',5));

if Num_nodes == 1

%% Setting Centralized Node (unlimited memory)

% Collecting Profiles to Node Data Structure

nodeID = 1;

N0_Data.nodeID = nodeID;

N0_Data.dist = dist;

N0_Data.constr = constr;

% create Node variables

[Jcentr,w_pubDes, w_pubL, w, w_pubR, g,p_NLP, W0, LBW, UBW, ...

lbg,ubg,p_NLP0] = create_NodeModel(N0_Data);

% w refers to central solver, whereas w0_w0 refers to initial guess

% for the variables (first 0 indicating centralized)

w0_pubDes0 = W0.w_pubDes0; w0_pubL0 = W0.w_pubL0;

lbw_pubDes = LBW.lbw_pubDes; lbw_pubL = LBW.lbw_pubL;

ubw_pubDes = UBW.ubw_pubDes; ubw_pubL = UBW.ubw_pubL;

w0_w0 = W0.w0; w0_pubR0 = W0.w_pubR0;

lbw = LBW.lbw; lbw_pubR = LBW.lbw_pubR;

ubw = UBW.ubw; ubw_pubR = UBW.ubw_pubR;

else

%% Setting Local Nodes (limited memory)

%% Collecting Profiles to Node Data Structure N1

nodeID = 1;

N1_Data.nodeID = nodeID;

N1_Data.dist = dist;

N1_Data.constr = constr;

% create Node 1 variables

[J1,w1_pubDes, w1_pubL, w1, w1_pubR, g1,p1_NLP, W1_0, LBW1, UBW1,...

lbg1,ubg1,p1_NLP0] = create_NodeModel(N1_Data);

w1_pubDes0 = W1_0.w_pubDes0; w1_pubL0 = W1_0.w_pubL0;

lbw1_pubDes = LBW1.lbw_pubDes; lbw1_pubL = LBW1.lbw_pubL;

ubw1_pubDes = UBW1.ubw_pubDes; ubw1_pubL = UBW1.ubw_pubL;

w1_w0 = W1_0.w0; w1_pubR0 = W1_0.w_pubR0;

lbw1 = LBW1.lbw; lbw1_pubR = LBW1.lbw_pubR;

ubw1 = UBW1.ubw; ubw1_pubR = UBW1.ubw_pubR;

%% Collecting Profiles to Node Data Structure N2

nodeID = 2;

N2_Data.nodeID = nodeID;

N2_Data.dist = dist;

N2_Data.constr = constr;

% create Node 2 variables

[J2,w2_pubDes, w2_pubL, w2, w2_pubR, g2,p2_NLP, W2_0, LBW2,UBW2,...

lbg2,ubg2,p2_NLP0] = create_NodeModel(N2_Data);

w2_pubDes0 = W2_0.w_pubDes0; w2_pubL0 = W2_0.w_pubL0;

lbw2_pubDes = LBW2.lbw_pubDes; lbw2_pubL = LBW2.lbw_pubL;

ubw2_pubDes = UBW2.ubw_pubDes; ubw2_pubL = UBW2.ubw_pubL;

w2_w0 = W2_0.w0; w2_pubR0 = W2_0.w_pubR0;

lbw2 = LBW2.lbw; lbw2_pubR = LBW2.lbw_pubR;

ubw2 = UBW2.ubw; ubw2_pubR = UBW2.ubw_pubR;

end

%% Solve NLP

if Num_nodes == 1

%% Solve Centralized NLP

% structure for optimizer

centr_prob = struct('x', vertcat(w_pubDes{:},w_pubL{:}, w{:},w_pubR{:}),...

'g', vertcat(g{:}), ...

'p', vertcat(p_NLP{:}), ...

'f', Jcentr);

% creating solver

centr_solver = nlpsol('solver', 'ipopt', centr_prob, opts);

% Solve the NLP

centr_sol = centr_solver('x0', vertcat(w0_pubDes0,w0_pubL0,w0_w0,w0_pubR0),...

 'lbx',vertcat(lbw_pubDes,lbw_pubL,lbw,lbw_pubR), ...

 'ubx',vertcat(ubw_pubDes,ubw_pubL,ubw,ubw_pubR), ...

 'lbg',lbg,'ubg',ubg, ...

 'p', p_NLP0);

flag_centr = centr_solver.stats()

centr_w_opt = full(centr_sol.x);

centr_lam_opt = full(centr_sol.lam_x);

%Displaying cost, End states and Volume

centr_cost = full(centr_sol.f);

centr_pubDes_star = centr_w_opt(1);

%for pausing - if any subproblem failed

if (flag_centr.success) == 1

 disp(['solved succesfully - centrally']);

 design_val = centr_pubDes_star;

% [~,~,~,design_val] = scale_to_one(-1, 0,0 ,0 ,centr_pubDes_star);

 disp(['Optimal Volume is ' num2str(design_val(1)) ' m3']);

% disp(['Optimal Area is ' num2str(centr_pubDes_star(2)) ' m2']);

 disp(['Optimal cost is ' num2str(centr_cost) ' USD']);

else

 disp(['Central solver not converged'])

 disp(['Central Solver ' flag_centr.return_status])

end

plot_NodeProfile(centr_w_opt,centr_lam_opt,N0_Data,W0)

else

%% Solve distributed problem

% Iteration Tolerance Parameters

rho = 0.05;

max_iter = 50;

toll_OpVar = 1e-1; % largest tolerance for operations variables

toll_Des = 1e-1; % largest tolerance for design variables

 iter = 1;

 nDes = size(w1_pubDes0, 1);

 nOpVar = size(w1_pubR0,1);

%Node 1 ` %Node 2

% Local copy

N1_pubR_star = w1_pubR0; N2_pubL_star = w2_pubL0;

N1_pubDes_star = w1_pubDes0; N2_pubDes_star = w2_pubDes0;

% Global copy

z_Des = (N1_pubDes_star+N2_pubDes_star)./2;

z_Oper = (N1_pubR_star+N2_pubL_star)./2;

% Primal Residual

N1_eps_primal_Des = 10.*ones(nDes,1);

N2_eps_primal_Des = N1_eps_primal_Des;

N1_eps_primal_OpVar = 10.*ones(nOpVar,1);

N2_eps_primal_OpVar = N1_eps_primal_OpVar;

%Dual Residual

eps_dual_Des = 10.*zeros(nDes,1);

eps_dual_OpVar = 10.*zeros(nOpVar,1);

%Lagrange Multiplier

N1_lambda_Des = 1.*zeros(nDes,1);

N2_lambda_Des = N1_lambda_Des;

N1_lambda_OpVar = -10.*ones(nOpVar,1);

N2_lambda_OpVar = N1_lambda_OpVar;

% Collecting for plotting etc

N1_pubR_kPlot(iter,:) = N1_pubR_star';

N2_pubL_kPlot(iter,:) = N2_pubL_star';

N1_pubDes_kPlot(iter,:) = N1_pubDes_star';

N2_pubDes_kPlot(iter,:) = N2_pubDes_star';

z_Des_kPlot(iter,:) = z_Des';

z_Oper_kPlot(iter,:) = z_Oper';

N1_eps_primal_Plot(1,:) = [N1_eps_primal_Des', N1_eps_primal_OpVar'];

N2_eps_primal_Plot(1,:) = [N2_eps_primal_Des', N2_eps_primal_OpVar'];

eps_dual_Plot(iter,:) = [eps_dual_Des'; eps_dual_OpVar'];

N1_lambda = [N1_lambda_Des; N1_lambda_OpVar];

N2_lambda = [N2_lambda_Des; N2_lambda_OpVar];

N1_lambda_plot(1,:) = N1_lambda';

N2_lambda_plot(1,:) = N2_lambda';

N1_f_opt(1) = NaN;

N2_f_opt(1) = NaN;

N1_Aug_Lagrange(1) = NaN;

N2_Aug_Lagrange(1) = NaN;

rho_Plot(1) = rho;

while (max(abs(N1_eps_primal_OpVar)) > toll_OpVar || ...

max(abs(N1_eps_primal_Des)) > toll_Des || ...

max(abs(N2_eps_primal_OpVar)) > toll_OpVar || ...

max(abs(N2_eps_primal_Des)) > toll_Des || ...

max(abs(eps_dual_Des)) > toll_Des || ...

max(abs(eps_dual_OpVar)) > toll_OpVar) && ...

(iter < max_iter)

%% Solve Node 1

%Building the Augmented Lagrange Function

J = J1;

% Adding Penalty for Design Violation

for i = 1 : nDes

J = J + N1_lambda_Des(i)* (w1_pubDes{1}(i) - z_Des(i)) ...

+ rho/2* (w1_pubDes{1}(i) - z_Des(i))^2;

end

% Adding Penalty for variable violation

indx = 1;

for i = 1: size(w1_pubR,2) %Running through all cells

for j = 1: size(w1_pubR{i},1) %Running through each element inside cell

J = J + N1_lambda_OpVar(indx,1)*(w1_pubR{i}(j) - z_Oper(indx))...

+ rho/2* (w1_pubR{i}(j) - z_Oper(indx))^2;

indx = indx+1;

end

end

% structure for optimizer

N1_prob = struct('x',vertcat(w1_pubDes{:},w1_pubL{:},w1{:},w1_pubR{:}),...

 'g', vertcat(g1{:}), ...

 'p', vertcat(p1_NLP{:}), ...

 'f', J);

% creating solver

N1_solver = nlpsol('solver', 'ipopt', N1_prob, opts);

% Solve the NLP

N1_sol = N1_solver('x0', vertcat(w1_pubDes0,w1_pubL0, w1_w0, w1_pubR0),...

 'lbx', vertcat(lbw1_pubDes,lbw1_pubL,lbw1,lbw1_pubR),...

 'ubx', vertcat(ubw1_pubDes,ubw1_pubL,ubw1,ubw1_pubR),...

 'lbg', lbg1, 'ubg', ubg1, ...

 'p', p1_NLP0);

flag1 = N1_solver.stats();

N1_w_opt = full(N1_sol.x);

N1_lambda_opt = full(N1_sol.lam_x);

N1_Aug_Lagrange(iter+1,1) = full(N1_sol.f);

%Extracting results

[N1_pubDes_star, N1_pubL_star, N1_w_star, N1_pubR_star, ~,~,~,~,~,~] = ...

 extract_NodeSolution(N1_w_opt,N1_lambda_opt,N1_Data,W1_0,par_sim);

% Calculating the value of penalty used in this iteration

N1_penalty = 0;

% Penalty value for Design Violation

for i = 1 : nDes

N1_penalty = N1_penalty +N1_lambda_Des(i)*(N1_pubDes_star(i)-z_Des(i))...

 +rho/2* (N1_pubDes_star(i)-z_Des(i))^2;

end

% Penalty for Operations Variable

for i = 1 : size(N1_pubR_star,1)

N1_penalty = N1_penalty+N1_lambda_OpVar(i,1)*(N1_pubR_star(i)-z_Oper(i))...

 +rho/2* (N1_pubR_star(i)-z_Oper(i))^2;

end

N1_f_opt(iter+1) = N1_Aug_Lagrange(iter+1) - N1_penalty;

%% Solve Node 2

%Building the Augmented Lagrange Function

J = J2;

% Penalty for Design Violation

for i = 1 : nDes

J = J + N2_lambda_Des(i)* (z_Des(i) - w2_pubDes{1}(i)) ...

 + rho/2* (z_Des(i) - w2_pubDes{1}(i))^2;

end

% Penalty for variable violation

indx = 1;

for i = 1: size(w2_pubL,2) %Running through all cells

for j = 1: size(w2_pubL{i},1) %Running through each element inside cell

J = J + N2_lambda_OpVar(indx,1)* (z_Oper(indx) - w2_pubL{i}(j))...

 + rho/2* (z_Oper(indx) - w2_pubL{i}(j))^2;

indx = indx + 1;

end

end

% structure for optimizer

N2_prob = struct('x', vertcat(w2_pubDes{:}, w2_pubL{:}, w2{:}, w2_pubR{:}),...

 'g', vertcat(g2{:}), ...

 'p', vertcat(p2_NLP{:}), ...

 'f', J);

% creating solver

N2_solver = nlpsol('solver', 'ipopt', N2_prob, opts);

% Solve the NLP

N2_sol = N2_solver('x0', vertcat(w2_pubDes0, w2_pubL0, w2_w0, w2_pubR0), ...

 'lbx', vertcat(lbw2_pubDes, lbw2_pubL, lbw2, lbw2_pubR), ...

 'ubx', vertcat(ubw2_pubDes, ubw2_pubL, ubw2, ubw2_pubR), ...

 'lbg', lbg2, 'ubg', ubg2, ...

 'p', p2_NLP0);

flag2 = N2_solver.stats();

N2_w_opt = full(N2_sol.x);

N2_lambda_opt = full(N2_sol.lam_x);

N2_Aug_Lagrange(iter+1,1) = full(N2_sol.f); %Augmented Lagrange function

%Extracting Solution Values

[N2_pubDes_star, N2_pubL_star, N2_w_star, N2_pubR_star, ~,~,~,~,~,~] = ...

 extract_NodeSolution(N2_w_opt,N2_lambda_opt,N2_Data,W2_0,par_sim);

% Calculating the value of penalty used in this iteration

N2_penalty = 0;

% Penalty for Design Violation

for i = 1 : nDes

N2_penalty =N2_penalty+N2_lambda_Des(i)*(z_Des(i)-N2_pubDes_star(i)) ...

 +rho/2* (z_Des(i)-N2_pubDes_star(i))^2;

end

% Penalty for Operations Variable

for i = 1 : size(N2_pubL_star,1)

N2_penalty =N2_penalty+N2_lambda_OpVar(i,1)*(z_Oper(i)-N2_pubL_star(i))...

 + rho/2* (z_Oper(i) - N2_pubL_star(i))^2;

end

N2_f_opt(iter+1) = N2_Aug_Lagrange(iter+1) - N2_penalty;

%% Lambda Update Step

% Update global copy

z_Des = (N1_pubDes_star + N2_pubDes_star)./2;

z_Oper = (N1_pubR_star + N2_pubL_star)./2;

% Update Dual Residual

eps_dual_Des = rho*(z_Des - z_Des_kPlot(iter,:)');

eps_dual_OpVar = rho*(z_Oper - z_Oper_kPlot(iter,:)');

% Primal Residual

N1_eps_primal_Des = N1_pubDes_star - z_Des;

N2_eps_primal_Des = z_Des - N2_pubDes_star;

N1_eps_primal_OpVar = N1_pubR_star - z_Oper;

N2_eps_primal_OpVar = z_Oper - N2_pubL_star;

% Update Lambda

N1_lambda_Des = N1_lambda_Des + rho.*(N1_eps_primal_Des);

N2_lambda_Des = N2_lambda_Des + rho.*(N2_eps_primal_Des);

N1_lambda_OpVar = N1_lambda_OpVar + rho.*(N1_eps_primal_OpVar);

N2_lambda_OpVar = N2_lambda_OpVar + rho.*(N2_eps_primal_OpVar);

% Warm Starting Solver for next iteration

w1_pubDes0 = N1_pubDes_star; w2_pubDes0 = N2_pubDes_star;

w1_pubL0 = N1_pubL_star; w2_pubL0 = N2_pubL_star;

w1_w0 = N1_w_star; w2_w0 = N2_w_star;

w1_pubR0 = N1_pubR_star; w2_pubR0 = N2_pubR_star;

%% Extention - varying rho

if iter <= max_iter

if N1_eps_primal_Plot(iter,:)*N1_eps_primal_Plot(iter,:)' > ...

10*(eps_dual_Plot(iter,:)*eps_dual_Plot(iter,:)') ...

N2_eps_primal_Plot(iter,:)*N2_eps_primal_Plot(iter,:)' > ...

10*(eps_dual_Plot(iter,:)*eps_dual_Plot(iter,:)')

rho = 2*rho;

 disp('rho increased');

elseif eps_dual_Plot(iter,:)*eps_dual_Plot(iter,:)' > ...

 10*(N1_eps_primal_Plot(iter,:)*N1_eps_primal_Plot(iter,:)') || ...

 eps_dual_Plot(iter,:)*eps_dual_Plot(iter,:)' > ...

 10*(N2_eps_primal_Plot(iter,:)*N2_eps_primal_Plot(iter,:)')

 rho = rho/2;

 disp('rho decreased');

else

rho;

disp('rho unchanged');

end

% else

% disp('rho should be stabilized');

% end

%% Collect for Plotting etc

N1_pubR_kPlot(iter+1,:) = N1_pubR_star';

N2_pubL_kPlot(iter+1,:) = N2_pubL_star';

N1_pubDes_kPlot(iter+1,:) = N1_pubDes_star';

N2_pubDes_kPlot(iter+1,:) = N2_pubDes_star';

z_Des_kPlot(iter+1,:) = z_Des';

z_Oper_kPlot(iter+1,:) = z_Oper;

N1_eps_primal_Plot(iter+1,:) = [N1_eps_primal_Des', N1_eps_primal_OpVar'];

N2_eps_primal_Plot(iter+1,:) = [N2_eps_primal_Des', N2_eps_primal_OpVar'];

N1_lambda_plot(iter+1,:) = [N1_lambda_Des', N1_lambda_OpVar'];

N2_lambda_plot(iter+1,:) = [N2_lambda_Des', N2_lambda_OpVar'];

eps_dual_Plot(iter+1,:) = [eps_dual_Des', eps_dual_OpVar'];

rho_Plot(iter+1) = rho;

% Update iteration counter for Decomposition

iter = iter + 1;

end

%% ADMM Iterations Summary Data

distr_cost = N1_f_opt(iter-1) + N2_f_opt(iter-1);

%for pausing - if any subproblem failed

if (flag1.success + flag2.success) == Num_nodes && (iter < max_iter)

disp(['Converged by decomposition in' num2str(iter) 'iterations']);

disp(['Optimal Volume is ' num2str(N1_pubDes_star(1)) '/' ...

 num2str(N2_pubDes_star(1)) ' m3']);

disp(['Optimal Area is ' num2str(N1_pubDes_star(2)) '/' ...

 num2str(N2_pubDes_star(2)) ' m2']);

disp(['Optimal Cost is ' num2str(distr_cost) ' USD']);

else

disp(['Decomposition not converged in ' num2str(iter) ' iterations'])

disp(['Optimal Volume is ' num2str(N1_pubDes_star(1)) '/ ' ...

 num2str(N2_pubDes_star(1)) ' m3']);

disp(['Optimal Area is ' num2str(N1_pubDes_star(2)) '/ ' ...

 num2str(N2_pubDes_star(2)) ' m2']);

disp(['Optimal Cost is ' num2str(distr_cost) ' USD']);

disp(['N1 ' flag1.return_status])

disp(['N2 ' flag2.return_status])

end

itergrid = linspace(1, iter, iter)';

%% Plotting ADMM

figure(3)

subplot(2,2,1) %Residuals - Prmal

semilogy(itergrid, abs(N1_eps_primal_Plot(:,nDes+1:end)),'o-b')%Operational

hold on

xlabel('iteration');

semilogy(itergrid, abs(N1_eps_primal_Plot(:,1:nDes)),'b') %Design

hold on

% yyaxis right

% plot(itergrid, N2_eps_primal_Plot(:,1:nDes),'r')

% hold on

% plot(itergrid, N2_eps_primal_Plot(:,nDes+1:end),'-.r')

legend('eps Primal - V tes', 'eps Primal - T tes');

title(['Primal Infeasibility. rho = ', num2str(rho)]);

subplot(2,2,2) %Dual Residuals

semilogy(itergrid, abs(eps_dual_Plot(:,1:nDes)),'b')

hold on;

semilogy(itergrid, abs(eps_dual_Plot(:,nDes+1:end)),'-ob')

xlabel('itearation');

% yyaxis right

% plot(itergrid, eps_dual_Plot(:,1:nDes),'r')

% hold on;

% plot(itergrid, eps_dual_Plot(:,nDes+1:end),'-.r')

legend('eps Dual - Vtes', 'eps Dual - T tes')

title(['Dual Infeasibility. rho = ', num2str(rho)]);

subplot(2,2,3) %Lambdas

plot(itergrid, N1_lambda_plot(:,1:nDes),'b')

hold on

plot(itergrid, N1_lambda_plot(:,nDes+1:end),'-.b')

hold on

plot(itergrid, N2_lambda_plot(:,1:nDes),'r')

hold on

plot(itergrid, N2_lambda_plot(:,nDes+1:end),'-.r')

% legend('lambda Vol', 'lambda A whb', 'lambda T tes')

title(['Lambdas. rho = ', num2str(rho)]);

% subplot(2,2,4) %Augmented Lagrange Function value

% plot(itergrid, N1_Aug_Lagrange,'b-.*')

% hold on

% plot(itergrid, N2_Aug_Lagrange,'r-.*')

% hold on

% plot(itergrid, N1_f_opt, 'b');

% hold on

% plot(itergrid, N2_f_opt, 'r');

% legend('N1 Aug Lagrange', 'N2 Aug Lagrange', 'N1 Opt f', 'N2 Opt f')

% title(['Aug Lag vs Objective. rho = ', num2str(rho)]);

subplot(2,2,4) %Augmented Lagrange Total

plot(itergrid, N1_Aug_Lagrange + N2_Aug_Lagrange, 'r-.o');

hold on

plot(itergrid, 186.7.*ones(iter,1),'g--');

legend('Augmented Lagrangian', 'Original Optimum');

title(['Objective Value. rho = ', num2str(rho)]);

figure(4) %Design Variables

subplot(2,2,1) %Primal Value

plot(itergrid, N1_pubDes_kPlot(:,1),'b') %Vol

hold on

plot(itergrid, N2_pubDes_kPlot(:,1),'r')

title(['Volume. rho = ', num2str(rho)]);

subplot(2,2,4)

plot(itergrid, rho_Plot)

title('rho plot');

figure(5) %Operational Variables

subplot(2,2,1)

plot(itergrid, N1_pubR_kPlot(:,1), 'bo-') %Ttes

hold on

plot(itergrid, N2_pubL_kPlot(:,1), 'ro-')

legend('Node 1 optimal value','Node 2 optimal value')

title('Loacal Variable T tes in each iteration');

xlabel('iteration'); ylabel('Temperature [deg C]');

subplot(2,2,2)

% plot(itergrid, N1_pubR_kPlot(:,2), 'b') %Tphb

% hold on

% plot(itergrid, N2_pubL_kPlot(:,2), 'r')

title(['T phb. rho = ', num2str(rho)]);

subplot(2,2,3)

% plot(itergrid, N1_pubR_kPlot(:,3:5), '') %Twhb

% hold on

% plot(itergrid, N2_pubL_kPlot(:,3:5), '')

title(['T whb. rho = ', num2str(rho)]);

subplot(2,2,4)

% plot(itergrid, N1_pubR_kPlot(:,6:8), '') %Twhb ret

% hold on

 % plot(itergrid, N2_pubL_kPlot(:,6:8), '')

title(['T whb ret. rho = ', num2str(rho)]);

plot_NodeProfile(N1_w_opt,N1_lambda_opt,N1_Data,W1_0)

plot_NodeProfile(N2_w_opt,N2_lambda_opt,N2_Data,W2_0)

end

A1.b. Specifying bounds for all the variables

The function Initialization_bounds.m is used to specify the upper and lower bounds for all the

variables in the optimization problem.

function [x0,z0,u0,Des_var0,lbx,lbz,lbu,lbDes_var,ubx,ubz,ubu,ubDes_var] =

Initialization_bounds()

global par_model;

N = par_model.Ncell_whb;

lb_Tphb = par_model.T_dh_minSup;

ub_T_dc = par_model.T_wh_minRet;

%Initial Guesses

x0 = [55]; %T_tes

z0 = [55;56] ; %T_b,T_phb

u0 = [0;0]; %alpha,Q_Phb

Des_var0 = [10000]; %V_tes

%Bounds

ubx = [100]; %T_tes,T_phb

lbx = [30];

ubz = [100 ;100]; %T_b

lbz = [30 ;lb_Tphb];

ubu = [1;1500000];

lbu = [0;0];

ubDes_var = [25000];

lbDes_var = [5000];

end

A1.c. Specifying the Dynamic model as DAE

The function myfunc_Integrator.m is used to specify the dynamic model of the TES system.

function [F,x_var, z_var, p_var, alg, diff, L] = myfunc_Integrator()

import casadi.*

global par_model;

global par_sim;

% Integration Final Time

 tf = par_sim.dt; %Hours

%Constants from parameter Structures

 rho_dh = par_model.rho_dh; %kg/m3

 Cp_dh = par_model.Cp_dh; %KJ/(kg* K)

 rho_wh = par_model.rho_wh;

 Cp_wh = par_model.Cp_wh;

 T_dh_Ret = par_model.T_dh_Ret; %Deg C

 T_wh_Sup = par_model.T_wh_Sup;

 V_whb_dh = par_model.V_whb_dh;

 V_whb_wh = par_model.V_whb_wh;

 Ncell_whb = par_model.Ncell_whb;

 U_whb = par_model.U_whb;

 coef_Qphb = par_model.coef_Qphb;

 coef_Qdc = par_model.coef_Qdc;

 V_phb = par_model.V_phb_dh;

 alpha_loss = par_model.alpha_loss;

 T_amb = par_model.T_amb;

%% Declaring Scaled CasADi variables

%Differential States

T_tes = MX.sym('T_tes',1);

%Algebraic States

T_b = MX.sym('T_b',1);

T_phb = MX.sym('T_phb',1);

% Design Variables

V_tes = MX.sym('V_tes',1);

% V_tes = 11000;

% control input

alpha = MX.sym('alpha', 1);

Q_phb = MX.sym('Q_phb',1); %KW

%% Unscaled Variables for use in Equations

[~,~,~,~,lbx,lbz,lbu,lbDes_var,ubx,ubz,ubu,ubDes_var] =

Initialization_bounds();

% Differential States

 T_tes = T_tes* (ubx(1) - lbx(1)) + lbx(1);

%Algebraic States

 T_b = T_b_* (ubz(1) - lbz(1)) + lbz(1) ;

 T_phb = T_phb_* (ubz(2) - lbz(2)) + lbz(2);

% Design Variables

 V_tes = V_tes_* (ubDes_var(1) - lbDes_var(1)) + lbDes_var(1);

% control input

 alpha = alpha_* (ubu(1) - lbu(1)) + lbu(1) ;

 Q_phb = Q_phb_* (ubu(2) - lbu(2)) + lbu(2) ;

% Time Varying Parameters

q_dh = MX.sym('q_dh_',1); %m3/hr

Q_whb = MX.sym('Q_whb_',Ncell_whb);

% Intermediate Casadi Variables

T_whb = T_dh_Ret + (Q_whb*3600)/(rho_dh*Cp_dh*q_dh);

%% Model Equations Unscaled

%All equations in per hour basis

%Differential Equations

dT_tes = (q_dh*alpha*(T_whb - T_tes))/(V_tes) - alpha_loss*(T_tes -

T_amb)/(V_tes*rho_dh*Cp_dh) ;

% dT_phb = (q_dh*(T_b - T_phb)/V_phb) + (Q_phb*3600)/(V_phb*rho_dh*Cp_dh);

%Algebraic Equations

alg1 = alpha*T_tes + (1-alpha)*T_whb - T_b ;

alg2 = (q_dh*(T_b - T_phb)/V_phb) + (Q_phb*3600)/(V_phb*rho_dh*Cp_dh);

%% Model Equations scaled

% dT_tes_ = dT_tes/ (ubx(1) - lbx(1));

%% Stacking variables and Parameters

diff = vertcat(dT_tes);

alg = vertcat(alg1,alg2);

x_var = vertcat(T_tes); %Differential States

z_var = vertcat(T_b,T_phb); %Algebraic States

 u_var = vertcat(alpha,Q_phb); %Operation handles (Manipulated Variables)

 Des_var = vertcat(V_tes); %Design variables

 Dist_var = vertcat(q_dh,Q_whb); %Disturbance values

p_var = vertcat(u_var,Des_var,Dist_var); %Parameters to be input to integrator

% Operational Objective to be minimized

L = (Q_phb*coef_Qphb);

%% Creating the Integrator

dae = struct('x',x_var,'z',z_var,'p',p_var,'ode',diff,'alg',alg,'quad',L);

opts = struct('tf',tf);

% create IDAS integrator

F = integrator('F','idas',dae,opts);

end

A1.d. Specifying parameters

The function param_model.m is used to specify the constant parameters used in the problem.

function par = param_model()

%% District Heating Parameters

 par.rho_dh = 1000; %kg/m3

 par.Cp_dh = 4; %KJ/(kg* K)

 par.T_dh_Ret = 30; %Deg C

 par.T_dh_minSup = 55;

%% Waste Heat Stream Parameters

 par.rho_wh = 1000;

 par.Cp_wh = 2;

 par.T_wh_Sup = 100;

 par.T_wh_minRet = 50;

%% Waste Heat Boiler

 par.V_whb_wh = 12;

 par.V_whb_dh = 12;

 par.U_whb = 5.13;

 par.Ncell_whb = 1;

 par.A_whb = 33;

%% Peak Heat Boiler

 par.V_phb_dh = 12;

%% Cost factors

 par.coef_Vtes = (700)/(365*10)*3; %USD/m3

 par.coef_Awhb = (880)/(365*10)*4; %USD/m2

 par.coef_Qphb = (0.06)*1; %USD/kWh

 par.coef_Qdc = par.coef_Qphb/10;

%% Heat Loss

 par.alpha_loss = 0;

 par.T_amb = 10;

end

A1.e. Specifying Disturbance profiles

The function Generate_Profiles.m is used to specify the individual scenarios.

function [disturbance, constraint] = Generate_Profiles()

%Generates profiles for Disturbances and constraints.

%% Initialize some data from parameters

global par_sim;

global par_model;

 Num_nodes = par_sim.Num_nodes;

 Nsim = par_sim.Nsim;

 overlap = par_sim.Node_overlap;

 Tsim = par_sim.Tsim;

 dt = par_sim.dt;

 rho_wh = par_model.rho_wh;

 rho_dh = par_model.rho_dh;

 Cp_wh = par_model.Cp_wh;

 Cp_dh = par_model.Cp_dh;

 T_wh_Sup = par_model.T_wh_Sup;

 T_dh_Ret = par_model.T_dh_Ret;

 T_dh_minSup0 = par_model.T_dh_minSup;

 T_wh_minRet0 = par_model.T_wh_minRet;

%First Point Values

q_dh0 = 3600*0.3; %m3/hr

q_wh0 = 3600*0.3; %m3/hr

% Q_whb_max0 = 17.22488038; %KW

Q_Supply0 = rho_wh*(q_wh0/3600)*Cp_wh*(T_wh_Sup - T_wh_minRet0);

Q_Demand0 = rho_dh*(q_dh0/3600)*Cp_dh*(T_dh_minSup0 - T_dh_Ret);

%% Build Complete Profiles

n = Nsim;

%% 20%1n/2u/2d/1n 30%1n/2u/2d/1n

 q_dh = q_dh0.*ones(n,1);

 q_wh = [q_wh0.*ones(n/12,1);q_wh0*1.2.*ones(2*n/12,1);

 q_wh0*0.8.*ones(2*n/12,1);q_wh0.*ones(n/12,1);

 q_wh0.*ones(n/12,1);q_wh0*1.3.*ones(2*n/12,1);

 q_wh0*0.7.*ones(2*n/12,1);q_wh0.*ones(n/12,1)];

 T_dh_minSup = T_dh_minSup0.*ones(n,1);

 T_wh_minRet = T_wh_minRet0.*ones(n,1);

 Q_Supply = rho_wh*Cp_wh*(q_wh/3600).*(T_wh_Sup - T_wh_minRet);

 Q_Demand = rho_dh*Cp_dh*(q_dh/3600).*(T_dh_minSup0 - T_dh_Ret);

%% From Mo Data

 q_dh = q_dh0.*ones(n,1);

 q_wh = q_wh0.*Read_MoData();

 T_dh_minSup = T_dh_minSup0.*ones(n,1);

 T_wh_minRet = T_wh_minRet0.*ones(n,1);

 Q_Supply = rho_wh*Cp_wh*(q_wh/3600).*(T_wh_Sup - T_wh_minRet);

 Q_Demand = rho_dh*Cp_dh*(q_dh/3600).*(T_dh_minSup0 - T_dh_Ret);

%% Display Complete Profile

t_plot = linspace(0,Tsim-dt,Nsim)';

figure(1)

stairs(t_plot, Q_Supply, '-r');

 xlabel('time [hrs]'); ylabel('Duty [kW]');

legend('Q whb'); title('Disturbance Profile');

%% Picking from complete profile

if Num_nodes == 1

% If Centralized

par_sim.Node_Nsim = Nsim;

 % Profile for time in Central node (in Cell structure)

 Tsim_Grid{1} = linspace(0,Tsim-dt,Nsim)';

%% Collecting profiles into Structure

 disturbance.q_dh{1} = q_dh;

 disturbance.Q_Supply{1} = Q_Supply;

 constraint.Q_Demand{1} = Q_Demand;

 constraint.T_dh_minSup{1} = T_dh_minSup;

 constraint.T_wh_minRet{1} = T_wh_minRet;

else

%% If Distributed Optimization

Node_Nsim = (Nsim/Num_nodes+overlap).*ones(1,Num_nodes);

%Initial vector of number of elements in each node

 Node_Nsim(1) = Node_Nsim(1) - overlap;

 par_sim.Node_Nsim = Node_Nsim;

 % Picking from full profile

 nstart = 1;

 for j = 1:Num_nodes

 nend = nstart + Node_Nsim(j)-1;

 Tsim_Grid{j} = t_plot(nstart:nend);

 disturbance.q_dh{j} = q_dh(nstart:nend);

 disturbance.Q_Supply{j} = Q_Supply(nstart:nend);

 constraint.Q_Demand{j} = Q_Demand(nstart:nend);

 constraint.T_dh_minSup{j} = T_dh_minSup(nstart:nend);

 constraint.T_wh_minRet{j} = T_wh_minRet(nstart:nend);

 nstart = nend - overlap + 1;

 % Plotting each node Profile

 figure(2)

 plot(Tsim_Grid{j}, disturbance.Q_Supply{j},

 '--o','MarkerSize',4*j);

 hold on

 xlabel('time in hours'); legend('Q Supply');

 end

end

par_sim.Tsim_Grid = Tsim_Grid;

end

A1.f. Building the NLP structure

The function create_NodeModel.m is generalized to create and return the NLP structure

depending on the subproblem that is calling it.

function [J, w_pubDes, w_pubL, w, w_pubR, g,p_NLP, W0, LBW, UBW,

lbg,ubg,p_NLP0] = ...

 create_NodeModel(Node_Data)

import casadi.*

global par_model;

global par_sim;

dist = Node_Data.dist; %Time varying Disturbance

constr = Node_Data.constr; %Time varying constraints

nodeID = Node_Data.nodeID;

coef_Vtes = par_model.coef_Vtes; %cost coefficient parameter for Tank

volume

coef_Awhb = par_model.coef_Awhb;

Ncells = par_model.Ncell_whb;

dt = par_sim.dt; %hour

Num_nodes = par_sim.Num_nodes;

overlap = par_sim.Node_overlap; % number of overlapping dt's. 0 is no

overlap

Nopt = par_sim.Node_Nsim(nodeID); % Number of points for optimization

problem

N_scale = par_sim.N_scale;

% Generating Initial guesses and bounds

[x0,z0,u0,Des_var0,lbx,lbz,lbu,lbDes_var,ubx,ubz,ubu,ubDes_var] =

Initialization_bounds();

 %Finding the size of each Diff state, Alg state, MV

 nx = size(x0,1);

 nz = size(z0,1);

 nu = size(u0,1); %Number of Operational MVs

 ndes = size(Des_var0,1); %Number of Design Variables

 ndist = length(fieldnames(dist)) ; %Number of Disturbance variables

% Integrator

[~,x_var, z_var, p_var, alg, diff, L] = myfunc_Integrator();

%Function to return values of diff, alg and L for a given collocation point

(x_var, z_var, p_var)

f = Function('f',{x_var,z_var,p_var},{diff,alg,L},{'x','z','p'}, ...

 {'xdot','zeval','qj'});

%% Direct Collocation Polynomials

d = 3;

% Get collocation points

tau_root = [0, collocation_points(d, 'radau')];

% Coefficients of the collocation equation (xdot = C*x)

C = zeros(d+1,d+1);

% Coefficients of the continuity equation

D = zeros(d+1, 1);

% Coefficients of the quadrature function

B = zeros(d+1, 1);

% Construct polynomial basis

for j=1:d+1

 % Construct Lagrange polynomials to get the polynomial basis at the

collocation point

 coeff = 1;

 for r=1:d+1

 if r ~= j

 coeff = conv(coeff, [1, -tau_root(r)]);

 coeff = coeff / (tau_root(j)-tau_root(r));

 end

 end

 % Evaluate the polynomial at the final time to get the coefficients of the

continuity equation

 D(j) = polyval(coeff, 1.0);

 % Evaluate the time derivative of the polynomial at all collocation points

to get the coefficients of the continuity equation

 pder = polyder(coeff);

 for r=1:d+1

 C(j,r) = polyval(pder, tau_root(r));

 end

 % Evaluate the integral of the polynomial to get the coefficients of the

quadrature function

 pint = polyint(coeff);

 B(j) = polyval(pint, 1.0);

end

%% Build NLP solver

% Empty NLP

w = {}; w0 = []; lbw = []; ubw = [];

%Variables for NLP solver - Private (excl public facing ones)

%Variables for NLP solver - Public

w_pubDes = {}; w_pubDes0 = []; lbw_pubDes = []; ubw_pubDes = []; %

Public variable - Design Parameters

w_pubL = {}; w_pubL0 = []; lbw_pubL = []; ubw_pubL = []; %

Public Variables on left edge

w_pubR = {}; w_pubR0 = []; lbw_pubR = []; ubw_pubR = []; %

Public Variables on right edge

J = 0; %Objective for NLP

Solver

g = {}; lbg = []; ubg = []; %Constraints for NLP

Solver

p_NLP = {}; p_NLP0 = []; %parameters for NLP

solver

 %Declaring Design Variables

 V_TES = MX.sym('V_TES',1);

% %Collecting the Design Variables

 Des_var = vertcat(V_TES);

 w_pubDes = {w_pubDes{:}, Des_var};

 lbw_pubDes = [lbw_pubDes; lbDes_var];

 ubw_pubDes = [ubw_pubDes; ubDes_var];

 w_pubDes0 = [w_pubDes0; Des_var0];

% %Capital Cost (normalized for number of nodes)

 J = J + (coef_Vtes*((V_TES)^0.7))/Num_nodes;

% "Lift" initial conditions

X0 = MX.sym('X0',nx);

w_pubL = {w_pubL{:}, X0};

 % If first node - then initial state is fixed at x0. Else - is a variable

for optimizer.

 if Node_Data.nodeID == 1

 lbw_pubL = [lbw_pubL; x0];

 ubw_pubL = [ubw_pubL; x0];

 else

 lbw_pubL = [lbw_pubL; lbx];

 ubw_pubL = [ubw_pubL; ubx];

 end

w_pubL0 = [w_pubL0; x0];

Xk = X0; % for linking the initial state to integrator inside collocations

%% Building the NLP

js = 1;

 for k=0:(Nopt-1)

%Time Varying Disturbances (Dk)

 Dk = MX.sym(['D_' num2str(k) '_' num2str(js)],ndist);

 p_NLP = {p_NLP{:},Dk};

 p_NLP0 = [p_NLP0;dist.q_dh{nodeID}(k+1); dist.Q_Supply{nodeID}(k+1)];

 % Calculatin the steady state point to give as better initial Guess

for NLP

% [x0, ~, ~] = find_a_Steady_State(

[dist.q_dh{nodeID}(k+1);dist.q_wh{nodeID}(k+1)]);

 % Control Input (Uk)

 Uk = MX.sym(['U_' num2str(k) '_' num2str(js)],nu);

 % If inside overlap region - adding to public variable structure

 if k <= (overlap - 1) %Left side Public Variable

 w_pubL = {w_pubL{:}, Uk};

 lbw_pubL = [lbw_pubL; lbu];

 ubw_pubL = [ubw_pubL; ubu];

 w_pubL0 = [w_pubL0; u0];

 elseif k >= (Nopt - overlap) %Right side Public Variable

 w_pubR = {w_pubR{:}, Uk};

 lbw_pubR = [lbw_pubR; lbu];

 ubw_pubR = [ubw_pubR; ubu];

 w_pubR0 = [w_pubR0; u0];

 else %Private Variables

 w = {w{:},Uk};

 lbw = [lbw;lbu];

 ubw = [ubw;ubu];

 w0 = [w0;u0];

 end

 % Declaring New Collocation variables that are handles for solver

 Xkj = {};

 Zkj = {};

 for j = 1:d

 Xkj{j} = MX.sym(['X_' num2str(k) '_' num2str(j) '_'

num2str(js)],nx);

 Zkj{j} = MX.sym(['Z_' num2str(k) '_' num2str(j) '_'

num2str(js)],nz);

 if k <= (overlap-1) %Left Public

 w_pubL = {w_pubL{:}, Xkj{j},Zkj{j}};

 lbw_pubL = [lbw_pubL; lbx;lbz];

 ubw_pubL = [ubw_pubL; ubx;ubz];

 w_pubL0 = [w_pubL0; x0;z0];

 elseif k >= (Nopt - overlap) %Right Public

 w_pubR = {w_pubR{:}, Xkj{j},Zkj{j}};

 lbw_pubR = [lbw_pubR; lbx;lbz];

 ubw_pubR = [ubw_pubR; ubx;ubz];

 w_pubR0 = [w_pubR0; x0;z0];

 else %Private Variable

 w = {w{:},Xkj{j},Zkj{j}};

 lbw = [lbw; lbx;lbz];

 ubw = [ubw; ubx;ubz];

 w0 = [w0; x0;z0];

 end

 end

%% Loop over collocation points

 Xk_end = D(1)*Xk;

 for j = 1:d

 % Expression for the state derivative of the collocation point

j

 % (collocation equation RHS i.e xdot = C*x)

 xp = C(1,j+1)*Xk; % helper state

 for r = 1:d

 xp = xp + C(r+1,j+1)*Xkj{r};

 end

 %Calculating the diff,alg and quadrature @ collocation point

 [fj,zj,qj] = f(Xkj{j}, Zkj{j}, vertcat(Uk, Des_var, Dk));

 % dynamic and algebraic constraints must satisfy

 g = {g{:}, dt*fj-xp, zj};

 lbg = [lbg; zeros(nx,1); zeros(nz,1)];

 ubg = [ubg; zeros(nx,1); zeros(nz,1)];

%% Constraints to prevent Temp Cross

g = {g{:}, Xkj{j}(8)-Xkj{j}(3), Xkj{j}(7)-Xkj{j}(4), Xkj{j}(6)-Xkj{j}(5)

};

 lbg = [lbg; zeros(Ncells,1)];

 ubg = [ubg; 80.*ones(Ncells,1)];

%% Quadrature

%Adding the OPEX for this step (quadrature at the last collocation point)

 J = J + (B(d+1)*qj*dt) ;

 % Add contribution to the end states

 Xk_end = Xk_end + D(j+1)*Xkj{j};

 end

%% Reached last collocation point

 % Imp -> Add any other albebraic constraint here :(on last collocation

point)

 %Inequality of T_phb > T_dh_minSup

% g = {g{:}, Zkj{d}(2)};

% lbg = [lbg; constr.T_dh_minSup{nodeID}(k+1)];

% ubg = [ubg; 100];

% %Inequality of T_wh_ret > T_wh_minRet

% g = {g{:}, Xkj{d}(3)};

% lbg = [lbg; constr.T_wh_minRet{nodeID}(k+1)];

% ubg = [ubg; 200];

 % New NLP variable for state at end of interval

 Xk = MX.sym(['X_' num2str(k+1) '_' num2str(js)], nx);

 %If it's not last state -> stored in private variable structure.

Else in public variable structure

 if k <= (overlap-1) %Left Public

 w_pubL = {w_pubL{:},Xk};

 lbw_pubL = [lbw_pubL;lbx];

 ubw_pubL = [ubw_pubL;ubx];

 w_pubL0 = [w_pubL0; x0];

 elseif k >= (Nopt-1 - overlap) %Right Public

 w_pubR = {w_pubR{:},Xk};

 lbw_pubR = [lbw_pubR;lbx];

 ubw_pubR = [ubw_pubR;ubx];

 w_pubR0 = [w_pubR0; x0];

 else %Private Variable

 w = {w{:},Xk};

 lbw = [lbw;lbx];

 ubw = [ubw;ubx];

 w0 = [w0; x0];

 end

 % Shooting Gap constraint

 g = {g{:},Xk_end-Xk};

 lbg = [lbg;zeros(nx,1)];

 ubg = [ubg;zeros(nx,1)];

 end

 %Collecting numeric limits into a structure to send out

 W0.w_pubDes0 = w_pubDes0; W0.w_pubL0 = w_pubL0; W0.w0 = w0;

W0.w_pubR0 = w_pubR0;

 LBW.lbw_pubDes = lbw_pubDes; LBW.lbw_pubL = lbw_pubL; LBW.lbw = lbw;

LBW.lbw_pubR = lbw_pubR;

 UBW.ubw_pubDes = ubw_pubDes; UBW.ubw_pubL = ubw_pubL; UBW.ubw = ubw;

UBW.ubw_pubR = ubw_pubR;

end

A1.g. Plotting optimum profiles

The function plot_NodeProfile.m is generalized to plot the solution of the subproblem that calls

it.

function [] = plot_NodeProfile(w,lambda,Node_Data,W0)

global par_sim;

global par_model;

 dist = Node_Data.dist; %Time varying Disturbance

 constr = Node_Data.constr; %Time varying constraints

 nodeID = Node_Data.nodeID;

 t_plot = par_sim.Tsim_Grid{nodeID};

 dt = par_sim.dt;

 par_model = param_model();

 Nwhb = par_model.Ncell_whb;

 U_whb = par_model.U_whb;

 A_whb = par_model.A_whb;

 T_dh_Ret = par_model.T_dh_Ret;

 rho_dh = par_model.rho_dh;

 Cp_dh = par_model.Cp_dh;

%% Extract Node Solution

[~, w_pubL, ~, w_pubR, Des_opt, u_opt, x_opt, z_opt,lam_Des,lam_x] =

 extract_NodeSolution(w,lambda,Node_Data,W0,par_sim);

 %Design Variables

 V_tes = Des_opt(1); lam_V_tes = lam_Des(1);

 %MVs

 alpha = u_opt(:,1);

 Q_phb = u_opt(:,2);

 %Diff States

 T_tes = x_opt(:, 1); lam_T_tes = lam_x(:,1);

 %Alg States

 T_b = z_opt(:, 1);

 T_phb = z_opt(:, 2);

 Q_whb = dist.Q_Supply{nodeID}(:,1);

 q_dh = dist.q_dh{nodeID}(:,1);

 T_whb = T_dh_Ret + (Q_whb*3600)./(rho_dh*Cp_dh.*q_dh);

%% Plotting

%TES Overall

 figure(7)

 subplot(2,2,1)

 stairs(t_plot,alpha); %alpha

 hold on

 xlabel('t in hours'); ylim([-0.1, 1])

 legend('alpha')

 % Duties

 subplot(2,2,2)

 stairs(t_plot,Q_phb); %Qphb

 hold on

 xlabel('t in hours');

 legend('Q phb')

 %Temperatures WHB

 subplot(2,2,3)

 plot(t_plot, T_whb, 'o-') %Twhb

 hold on

 xlabel('time [hrs]'); ylabel('Temperature [Deg C]');

 legend('T whb'); title('Waste Heat Boiler Exit Temp Profile');

 %Temperatures TES circuit

 subplot(2,2,4)

 plot(t_plot, T_whb,'b-o') %T whb

 hold on

 plot([t_plot; t_plot(end)+ dt], T_tes,'r-o') %Ttes

 %since states have both x0 and xN, extending tplot

 hold on

 plot(t_plot,T_phb,'mo-') %Tphb

 hold on

 xlabel('time [hrs]'); ylabel('Temperature [Deg C]');

 legend('T whb', 'T tes', 'T phb'); title('Optimal State Profiles');

end

