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Summary

Laminar, steady flow with no heat transfer in a straight channel and over a backwards
facing step has been solved by the Finite Volume Method. The SIMPLE-algorithm
and the Upwind Differencing Scheme were used and the discretised governing equations
formulated in Cartesian coordinates were solved in MATLAB. The pressure and velocities
have been solved simultaneously. The backwards facing step domains had two different
expansion ratios of H/h = 1.5 and 2, and both a constant inlet velocity and a parabolic
inlet velocity profile were used. A known pressure was used for the outlet boundary
condition.

The thesis is a continuation from the specialisation project of the fall of 2019, and the
models created in this project were improved. The governing equations were solved
on their dimensionless form, and the results for the backwards facing step domains
were obtained for a range of low Reynolds numbers between 0.0001 and 400. The
reattachment lengths of the recirculation zones were found to be in agreement with
results found in literature, but the resolution of the grid was not high enough to show
the recirculation at the lowest Reynolds numbers. The flow into the expanded section
did not resemble the results found in literature, which likely was due to the choice of
discretisation scheme, since using the Upwind Differencing Scheme for the convective
terms can lead to some errors related to false diffusion.

A transfinite interpolation technique was used to obtain an algebraic grid for use when
solving the fluid flow problem formulated in generalised curvilinear coordinates. A
code for an elliptic grid using the algebraic grid as an initial guess was made, but the
code did not yield the satisfactory grid, most likely due to a mistake in the discretised
elliptic grid generation equations or in the code.
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Sammendrag

Laminær, stasjonær strømning uten varmetransport i en rett kanal og i en kanal
utvidet over et trinn (backwards facing step) har blitt løst ved bruk av Finite Volume
Method. SIMPLE-algoritmen og Upwind Differencing ble brukt, og de diskretiserte
strømningsligningene formulert i kartesiske koordinater ble løst i MATLAB. Trykk og
hastighet ble beregnet samtidig. Trinnet i den utvidede kanalen hadde to høyder p̊a
H/h = 1.5 og 2 relativt til høyden p̊a innløpet. P̊a innløpet ble en konstant hastighet
og en parabolsk hastighetsprofil brukt, mens p̊a utløpet ble et kjent trykk brukt som
grensebetingelse.

Denne oppgaven er en videreføring av arbeid gjort i forbindelse med fordypningspros-
jektet høsten 2019, og modellene som ble utviklet i fordypningsprosjektet har blitt
forbedret i denne oppgaven. Strømningsligningene har blitt løst p̊a sin dimensjonsløse
form, og for den utvidede kanalen ble strømningen modellert for ulike lave Reynold-
stall mellom 0.0001 og 400. Lengen p̊a resurkulasjonssonene etter steget stemmer
overens med resultater fra literaturen, men grunnet det relativt lave antallet celler
brukt i beregningene er ikke resirkulasjonen synlig for de laveste Reynoldstallene.
Strømingsmønsteret over steget skiller seg fra litteraturen, noe som kan forklares med
valget av teknikk for diskretisering av konveksjonsleddene, siden Upwind Differencing
kan gi unøyaktigheter som likner diffusjon.

Transfinite Interpolation ble brukt til å generere et algebraisk nett som kan brukes til
beregning av strømningslikningene formulert med generelle kurvilineære koordinater.
Det ble ogs̊a laget en kode som genererer et elliptisk nett med det algebraiske nettet som
initialbetingelse, men denne koden ga ikke et tilfredsstillende resultat. Mest sannsynlig
er dette relatert til en feil i diskretiseringen av de elliptiske likningene, eller en feil i
koden.
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1
Introduction

In this thesis, laminar, steady flow with no heat transfer will be solved by the Finite
Volume Method. The Continuity equation and the Momentum equation for fluid mo-
tion will be the starting point for calculating the pressure and the velocities in x- and
y-direction. The pressure will be calculated using a semi-implicit equation derived from
the Continuity equation, and this equation and the Momentum equation will be solved
simultaneously.

The Finite Volume method is a numerical method for solving partial differential equa-
tions by expressing them as algebraic equations [1]. The appropriate equations for the
problem of interest are integrated over a control volume drawn around each computa-
tional node in the domain [2]. Finite differences are used to approximate the derivative
terms yielding a system of algebraic equations before the discretised equations are iter-
ated until convergence. For the system in this thesis, the algebraic equations are linear
and can be solved by matrix operations in MATLAB.

The fluid property φ is conserved across each control volume of the domain when
using the Finite Volume method, which is a clear advantage. Conservation of φ can
be achieved across the entirety of the domain by using consistent flux relations in the
discretisation of the governing equations. The Finite Volume method is a variant of a
Finite Difference method and is a common numerical method to use in Computational
Fluid Dynamics (CFD) software, where mass and heat transfer problems are solved
using computer simulations [2].

The flow domains will be various simple and complex geometries. Figure 1.1 shows
a straight channel with two different lengths, which will be the domains in use for
developing a two dimensional fluid flow model. The left channel is a short channel
with the length corresponding to the length of the short channel before the backwards
facing step in figure 1.2. The right channel is an extended channel corresponding to
the full length of the backwards facing step domain. Figures 1.2 and 1.3 show two
channel domains with an expansion of the channel, a backwards facing step. The first
domain in figure 1.2 is used by Melaaen [3] and the second domain is used by Biswas
et al. [4].

1
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y

x

l = 3

h = 1

l = 22

h = 1

Figure 1.1: Straight channel domains.

Flow over a backwards facing step is an interesting topic in fluid mechanics [4][5], often
because it is fairly simple and it has one fixed separation point where separation of the
flow into layers can be observed [6].

y

x

l = 3h = 1

L = 22

190.5

H = 1.5

Figure 1.2: Domain as used by Melaaen [3], used to develop the two dimensional model for fluid
flow over a backwards facing step.

y

x

l = 5h = 1

L = 35

301

H = 2

Figure 1.3: Domain as used by Biswas et al. [4], used in the backwards facing step model with a
variation of Reynolds numbers for comparison to the results given by Biswas et al. [4].

A separation of the flow is expected around the step with a circulation zone under
the step before the flow is reattached. Armaly et al. [7] also observed a secondary
circulation zone after the first one on the northernmost wall for Reynolds numbers
higher than around 400. This separation when the fluid flows over a sharp change of
geometry is important within many fields of engineering, and has been a topic of study
since the seventies, for example by Goldstein et al. [8] and Denham and Patrick [9]
[5]. Flow separation of this sort can for example resemble the one over airfoils at large
angles of attack, flow in turbines, heat-exchangers and compressors and flow in pipes
with a rapid expansion [5][6][10]. The backwards facing step is also much used as a
quite simple but also complex enough geometry for modelling of turbulent flow [5]. It
is also a well established test geometry in CFD.

Several studies have been conducted on flow over the backwards facing step where
velocity is calculated along with the reattachment length of the flow after the separation
for large varieties of Reynolds numbers. Examples are Biswas et al. [4], Armaly et al.
[7] , Barton [11], Lee and Mateescu [12], and Nie and Armaly [13] .
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Building a model for the flow over the backwards facing step can work as a stepping
stone for extending the model to new applications. Formulation of the model equations
in generalised curvilinear coordinates around complex geometries is an interesting topic
for which the backwards facing step is a good test geometry. With this method, a grid
with different shape than a regular Cartesian coordinate grid is used, meaning that a
dense number of computational points can be placed where accuracy is needed [3][14].
This would mean that the recirculation zone after the backwards facing step could be
very well represented, while fewer nodes may be placed in the rest of the domain close
to the edges, where the results are more trivial and not of great interest.

In this thesis, all the channels are rectangular like the channel seen in figure 1.4. A
simplification was made by assuming that the channel is laying like in figure 1.4, and
gravity is acting in z-direction.

y x
z

inlet

outlet

Figure 1.4: Example backwards facing step channel in three dimensions.

1.1 Previous Project Work
This thesis is a continuation of work that was done in a specialisation project in the
fall of 2019 [15]. In this specialisation project, the main concepts of the finite volume
method were studied, and a model was made for a one-dimensional and two-dimensional
system as well as a backwards facing step model. These models had severe issues, and
worked only for specific settings and parameter values. The models would not work
for any inlet velocity far away from 1 m/s and the viscosity had to be kept to 1 Pa·s.
The backwards facing step model was modelled by splitting the domain in two sections
exactly at the step, and using the two-dimensional model for a square channel to solve
the two domains. The computational time for these models were very long, and the
backwards facing step model took approximately 14 hours to solve with a relatively
coarse grid size.

The discretised equations in the fall project had some mistakes and the algorithm used
in the MATLAB models was wrongly implemented and therefore slow. The algorithm
used the velocities from the previous iteration for calculating the pressure correction,
which acted as an extra under-relaxation step. This made all the models converge very
slowly, and increasing the under-relaxation factors was not possible.

1.2 Objective of the Thesis
The objective of this thesis is to model laminar fluid flow in channels of regular and
complex geometries using the Finite Volume Method. Furthermore, the objective is
to cover the basic theory of grid generation for use when solving the same complex
geometries using curvilinear coordinates, and to obtain an algebraic and an elliptic
grid.
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1.3 Assumptions
The fluid flow equations will be solved in one dimension and two dimensions in MATLAB.
The flow is laminar and at steady state and will be solved using Cartesian coordinates.
The modelled fluid is water and the fluid properties will be taken to be constant with
the values given in equation (4.1.1). Heat transfer will not be calculated, and gravity
will not be taken into account, meaning the gravitational force is in z-direction.

1.4 Survey of the Thesis
Chapter 2 covers the theory behind the models. Chapter 3 provides all the discretisa-
tions of the fluid flow equations. Implementation of the models in MATLAB as well as
initial guesses and composition of the MATLAB models are given in chapter 4. Chapter
5 contains the resulting profiles and plots for the different flow parameters, as well as
the results for the Reynolds number comparison. The results are discussed in chapter
6, and a discussion of the changes done to the models from the specialisation project
is also given. Chapter 7 contains theory, derivation, implementation and results for
grid generation for use when modelling the same domain in curvilinear generalised
coordinates. Conclusions and recommendations for future work are given in chapter
8.



2
Theoretical Background

This chapter describes the underlying theory behind building of the fluid flow models
used in this thesis. The covered theory includes fluid flow, the Finite Volume method,
discretisation of the domain, and the solution of the equations in MATLAB.

2.1 Fluid Flow
For modelling fluid flow, a set of governing equations that describe the behaviour of the
flow is used. The central equations for modelling fluid flow are the Continuity equation,
the Equation of Motion and the Heat equation. For the case of this project, convective
fluid flow with no heat transfer, the Continuity equation and the Equation of Motion
are sufficient to model the domain. All the derivations of the model equations are given
in chapter 3.

Equation (2.1.1) is the Mass Based Equation of Continuity [16][17].

∂ρ

∂t
+∇ · (ρu) = 0 (2.1.1)

where ρ is the density and u is the velocity vector. Since the density is constant, the
flow is incompressible, and the Continuity equation reduces to equation (2.1.2). In the
derivation to yield the model equations in chapter 3, this simplification is used.

∇ · u = 0 (2.1.2)

The Equation of Motion in vector form is given in equation (2.1.3) [16][17]. It is also
known as the Momentum Equation.

∂

∂t
(ρu) +∇ · (ρuu) = −∇p−∇ · σ + ρg (2.1.3)

where ρ is the fluid density, u is a vector of velocities, p is the pressure, σ is the shear
stress and g is a vector of gravity constants.

5
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The Momentum Equation can also be noted in component form for each spatial coor-
dinate. These equations are shown in appendix A.2 along with the expressions for the
shear stress σ.

2.1.1 Developed Flow Profile

For fully developed flow, the v-velocity and the u-velocity gradient ∂u
∂x

are zero, meaning
that the u-velocity is only dependent on the y-position [18]. The fully developed flow
takes a parabolic shape, and this profile is known as the Hagen-Poiseuille law and is
given in equation (2.1.4) [16]. umax is located at y = 0.

u(y) = umax

(
1−

(
y

h

)2
)

(2.1.4)

where h is the height of the channel. umax is the maximum velocity and is given by
equation (2.1.5).

umax = 2uavg (2.1.5)
where uavg is the average velocity which appears as u in the expression for the Reynolds
number in equation (2.1.12). Equation (2.1.6) shows equation (2.1.4) altered to place
umax at y = h

2 .

u(y) = umax

1−
(
y − h

2
h
2

)2 (2.1.6)

Figure 2.1 shows the parabolic profile at the inlet of the narrow channel, represented
with 10 computational nodes in y-direction.

y
0

h/2

h

umax

Figure 2.1: A parabolic velocity profile with umax located at y = h
2 .

2.1.2 Wall Boundary
It is widely acknowledged that when approaching a wall, the fluid velocity goes to zero
relative to the wall, as can be seen in figure 2.1 where there are walls at y = 0 and y = h.
This is known as the no-slip condition and is caused by viscous effects close to the wall
[19]. This condition requires that the tangential component of the velocity must be
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zero at the surface. The no-penetration condition applies to the normal component of
the velocity, which must be zero at the surface if the fluid can not move through the
wall [20]. Hence, both the u- and the v-velocity are zero at the walls.

2.1.3 Reynolds Number
The Reynolds number is a dimensionless number that gives an indication of how large
the viscous terms in the Momentum equation are compared to the rest of the terms
[16][21]. The Reynolds number is defined by equation (2.1.7)[17].

Re = ρuD

µ
(2.1.7)

where ρ is the density of the fluid, u is the average velocity defined as the volumetric
flow rate devided by cross-sectional area, D is the diameter of the tube and µ is the
fluid viscosity. For non-circular tubes, there is no intuitive diameter, and the hydraulic
diameter Dhyd is used instead [19]. Equation (2.1.7) becomes equation (2.1.8).

Re = ρuDhyd

µ
(2.1.8)

where Dhyd is the hydraulic diameter. The hydraulic diameter for a rectangular duct
is defined by equation (2.1.9) [19].

Dhyd = 2hw
h+ w

(2.1.9)

where h is the height of the channel in y-direction and w is the width of the channel
in z-direction as can be seen in figure 2.2. For the two-dimensional system, w is the
system depth and is equal to the unit length in z-direction which is 1. The hydraulic
diameter is then defined by equation (2.1.10).

Dhyd = 2h
h+ 1 (2.1.10)

h

w = 1
l

Figure 2.2: Rectangular duct with labels for the height h, width w and length l used in the
calculation of the hydraulic diameter.

The magnitude of the Reynolds number categorises the flow into laminar, turbulent or
a transition between the two. The range of each category varies somewhat within the
literature. An example is given in equation (2.1.11) from Geankoplis [17].

Re < 2100 Laminar
2100 ≤Re ≤ 4000 Transition range

Re > 4000 Turbulent
(2.1.11)

Bird et al. [21] defined the ranges as given in (2.1.12).

Re < 20 Laminar flow with negligible rippling
20 <Re < 1500 Laminar flow with pronounced rippling

Re > 1500 Turbulent
(2.1.12)
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2.2 The Finite Volume Method
The Finite Volume method is a numerical method for solving partial differential equa-
tions by expressing them as algebraic equations [1]. When modelling fluid flow, the
Finite Volume method is useful for discretisation of conservation laws.

2.2.1 Structure of the method
For modelling of the convective flow in this thesis, the method can be summarised in
the following main steps:

1. Discretisation of the domain, specifying node points

2. Creation of three dimensional control volumes around each node

3. Discretisation of the appropriate governing equations describing the fluid flow

4. Integration of the equations over the control volumes

5. Approximation of derivative terms

6. Creation of the pressure linked equation (SIMPLE)

7. Iteration until convergence

The full discretisation of the transport equations from the form of the governing equa-
tions to the discretised form is described in chapter 3.

The integration over the control volumes is the most important step in the method [2].
In other numerical methods the flux terms in the governing equations are calculated
at the node points along with the flow quantity in the flux term. By integration over
the control volumes in the Finite Volume method, the flux terms appear on the cell
faces instead.. This defines a flux out − flux in balance for each control volume. The
integration over the control volumes therefore ensures conservation of the flow quantity
φ across the control volume. By approximating the flux terms consistently everywhere,
the conservation of φ is accomplished for the whole domain.

For other discretisation schemes, finite differences can be used to discretise the fluid
property itself along with the flux terms as shown in figure 2.3. In the Finite Volume
method, central differences are used to approximate the flux terms only as shown in
figure 2.4 [1]. For the discretisation of the Momentum equation, this applies to the
diffusive terms. The property itself appears in the convective terms in the Momentum
equation and are instead discretised using the Upwind Differencing scheme as described
in section 2.2.2.

Figure 2.3: Discretisation method where the derivative ∂φ
∂x

∣∣∣
i

is calculated in the same point as φi.

For the gradient of φ in the point i, the general central difference expression is shown
in equation (2.2.1).

∂φ

∂x

∣∣∣∣∣
i

= φi+1 − φi−1

2δx (2.2.1)
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CV

Figure 2.4: Discretisation in the Finite Volume method where the derivatives are calculated at the
cell faces of the control volume CV around φi.

where 2δx notes the distance from φi+1 to φi−1. Since the fluxes are given at the control
volume faces, the gradients are defined in the middle between φi−1 and φi and between
φi and φi+1. The central differences needed for these flux terms surrounding node φi
are given in equation (2.2.2).

∂φ

∂x

∣∣∣∣∣
w

= φi − φi−1

δx

∂φ

∂x

∣∣∣∣∣
e

= φi+1 − φi
δx

(2.2.2)

Here δx notes the distance from φi−1 to φi and from φi to φi+1, e signifies the eastern
cell face and w signifies the western cell face of the control volume in figure 2.4. For
a two or three dimensional case, the expressions for the northern, southern, top and
bottom cell faces are also used.

2.2.2 The Upwind Differencing Scheme
After integration of the Momentum equation over the control volumes around the
velocity nodes, the right hand side of the equation contains velocity gradients that can
be approximated using central differences. After this, the right hand side terms contain
the values at the velocity nodes themselves. On the left hand side the values of the
velocities located on the cell faces appear instead. Equation (2.2.3) shows an example
convection-diffusion equation after integration over the control volume [2]. F and D
are defined in chapter 3.

Feφe − Fwφw = De (φE − φP )−Dw (φP − φW ) (2.2.3)

The right hand side contains the terms φP , φE and φW located at the nodes, while the
left hand side contains φe and φw defined at the cell faces of the control volume around
node P . A discretisation scheme is needed for these cell face values.

The Upwind Differencing Scheme is a discretisation method that adapts to the direction
of the flow. For flows that are highly convective, the convective terms in the Momentum
Equation should be influenced the most by the value at the upwind node. When using
a central differencing method, the neighbouring nodes are granted the same influence in
the discretised equation since the direction of the flow is not taken into account.

Figure 2.5 from Versteeg and Malalasekera [2] shows a visualisation of the Upwind
Differencing Scheme for eastgoing and westgoing flow (top and bottom respectively).
The arrows indicate the flow direction. In positive (eastgoing in figure 2.5) convective
flow, the western node w is located upwind from the centre node P , and should have a
much larger influence in the Momentum Equation than the downstream node e. The
cell face values φw and φe are then assigned as in equation (2.2.4).

φw = φW and φe = φP (2.2.4)
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Figure 2.5: The Upwind Differencing Scheme visualised, the top figure shows the scheme for an
eastgoing (positive) flow direction and the bottom figure shows the scheme for a westgoing

(negative) flow direction. The figure is taken from Versteeg and Malalasekera [2].

For the negative flow (westgoing in figure 2.5) it is the eastern node that should have
the greatest influence, as shown in equation (2.2.5).

φw = φP and φe = φE (2.2.5)

It is also possible to use different discretisation schemes than the Upwind Differencing
scheme, for example the Hybrid Discretisation Scheme or the QUICK Method [2].

2.2.3 Staggered Grid
Normally all the flow parameters and derivatives can be calculated at the same node
points in the discretised domain. This means that a single node point would have a
value for all the flow properties and derivatives. When using the Finite Volume Method,
it is necessary to use a staggered grid instead. This means that the fluid properties
are not all calculated in the same points in the domain. Instead, different grids are
used for the different parameters. The scalars (pressure as well as density and viscosity
if these are not constant) are calculated at one set of points, while the velocities are
calculated at points located between these scalar node points. This yields three unique
grids. The Continuity equation is placed at the scalar nodes in the domain, while the
x- and y- components of the Momentum equation are placed on the u-velocity grid and
the v-velocity grid, resepctively.

The staggered grids are necessary because central differencing of the fluid flow equations
cancel out the centre pressure node if the grids are not staggered. The result is that
a non-uniform pressure field can appear uniform. Important information about the
pressure field may not be well represented in the solution.
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A visualisation of the staggered grid in two dimensions can be seen in figure 2.6. N is
the number of scalar and v-velocity nodes in the domain in the x-direction and M is
the number of scalar and u-velocity nodes in the y-direction. n is equal to N and is
the number of u-velocity nodes in the x-direction and m is equal to M − 1 and is the
number of v-velocity nodes in the y-direction.

pN,Jp1,Ju1,J un+1,Jun,Ju2,J pN+1,JpI,J ui+1,Jui,J

pN,1p1,1u1,1 un+1,1un,1u2,1 pN+1,1pI,1 ui+1,1ui,1

pN,Mp1,Mu1,M un+1,Mun,Mu2,M pN+1,MpI,M ui+1,Mui,M

vI,2

vI,m

v1,2

v1,m

vN,2

vN,m

vI,j+1v1,j+1 vN,j+1

vI,jv1,j vN,j

vI,1v1,1 vN,1

vI,m+1v1,m+1 vN,m+1

Figure 2.6: Staggered grid in two dimensions showing the locations of the nodes, indices and
control volumes for u, v and p.

The control volumes drawn around the different node points in the centre of the figure
shows the overlap. For the scalar node points, uppercase indexing letters I and J are
used. For the velocities, the nodes are placed in between the scalar nodes and are
therefore indexed with one uppercase and one lowercase letter.

2.2.4 SIMPLE-Algorithm
The Momentum equation is used for calculation of the velocity components, but an-
other equation is needed to determine the pressure. A transformation of the continuity
equation using the SIMPLE-algorithm provides such an equation [2]. In this section,
the algorithm will be descrtibed in one dimension.

The SIMPLE-algorithm (Semi-Implicit Method for Pressure-Linked Equations) is as
the name suggests a semi-implicit method, meaning it is based on a guessing and
correcting scheme. The velocities and pressure are determined semi-implicitly at the
same time by this guessing and correcting. The method was first proposed by Patankar
and Spalding [22].
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For an arbitrary property φ, the true value of φ can be expressed as a sum of a guessed
value and a correction value. For a node with a known value or if the solution is
converged, the correction value is zero. Equation (2.2.6) shown this relation when φ is
the correct value, φ∗ is the guessed value and φ′ is the correction.

φ = φ∗ + φ′ (2.2.6)

Equations (2.2.7)-(2.2.9) shows the above expression for the true values of the pressure
and velocities for a two dimensional model.

p = p∗ + p′ (2.2.7)
u = u∗ + u′ (2.2.8)
v = v∗ + v′ (2.2.9)

The algorithm makes use of an initially guessed pressure to calculate the velocities, and
then uses this velocities to calculate a pressure correction. This pressure correction is
again used to calculate velocity corrections, and equations (2.2.7)-(2.2.9) are used to
determine the true values of the velocities and the pressure. For an iterative scheme
these ”true” values will serve as the initial guess values in the next iteration. Figure
2.7 shows a visualisation of how the corrections are interacting. A visualisation of the
whole SIMPLE-algorithm can be seen in figure 2.8.

Initial guess p◦, u◦, v◦

Find velocities from guessed
pressures and velocities
u∗ from p◦, u◦ and v◦

v∗ from p◦, u◦ and v◦

Find pressure correction
from calculated velocities

p′ from u∗ and v∗

Find velocity correction
from pressure correction

u′ and v′ from p′

Correct pressure and velocity
p from p◦ and p′

u from u∗ and u′

v from v∗ and v′

u∗, v∗

p′

u′, v′, p′

Figure 2.7: Correction cycle in the SIMPLE-algorithm

The velocities u∗ and v∗ in the first step in the visualisation in figure 2.7 are found
from the discretised Momentum equation and the initial guesses of both the pressure
and the velocities. Below follows the equations used for the correction of the pressure
and velocities. The derivation of these equations are given in chapter 3, but the final
equations and some brief steps are presented in the following sections.
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2.2.4.1 The Velocity Correction Equation

The velocity correction equation can be obtained by replacing u with u∗ and p with
p∗ in the Momentum equation. This new guessed velocity equation is then subtracted
from the original Momentum equation to obtain equation (2.2.10). The same procedure
is used to obtain a velocity correction for the v-velocity.

ui,J = u∗i,J −
Ax

acentrei,J

(
p′I,J − p′I−1,J

)
(2.2.10)

Ax is the control volume face area and acentrei is the coefficient multiplied with the
centre node ui in the Momentum equation. The velocity correction itself is equation
(2.2.11).

u′i,J = − Ax
acentrei,J

(
p′I,J − p′I−1,J

)
(2.2.11)

and likewise for other velocity components.

2.2.4.2 The Pressure Correction Equation

The pressure correction equation comes from the Continuity equation. The velocity
correction equation (2.2.10) is used and is inserted into the continuity equation. This
yields the pressure correction equation, equation (2.2.12).

νI,Jp
′
I,J + νI+1,Jp

′
I+1,J + νI−1,Jp

′
I−1,J + νI,J+1p

′
I,J+1 + νI,J−1p

′
I,J−1 = βI,J (2.2.12)

with

νI,J =
ρA2

x,i+1,J

acentrei+1,J
+
ρA2

x,i,J

acentrei,J

+
ρA2

y,I,j+1

acentreI,j+1
+
ρA2

y,I,j

acentreI,j

(2.2.13)

νI+1,J = −
ρA2

x,i+1,J

acentrei+1,J
(2.2.14)

νI−1,J = −
ρA2

x,i,J

acentrei,J

(2.2.15)

νI,J+1 = −
ρA2

y,I,j+1

acentreI,j+1
(2.2.16)

νI,J−1 = −
ρA2

y,I,j

acentreI,j

(2.2.17)

βI,J = − AxF
c
x,e + AxF

c
x,w − AyF c

y,n + AyF
c
y,s (2.2.18)

The guessed velocities in the source term are taken as the values of the velocity at
the previous iteration. The velocity terms in the source term therefore is equal to the
continuity equation at the previous iteration. For a converged solution the pressure
correction is zero, which fulfills the continuity equation.
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2.2.4.3 Under-Relaxation Factors

To avoid divergence during the iterative scheme, the non-converged solution may be
relaxed before it is sent to the next iteration.

Implementation of under-relaxation of the flow parameters makes sure the value that
is sent to the next iteration is not overwhelmingly large even if the difference between
the guessed value and the true value is vast. Under-relaxation is often crucial when
the SIMPLE-algorithm is used since the method is a guess and correct method. If the
correction would have been added directly and passed along, the value could have a
large overshoot, and this may cause divergence. Instead a fraction of the correction
is taken and added to the guess as shown in equations (2.2.19)-(2.2.21). Lowering the
under-relaxation factors increases the computational time because only a fraction of
the updated solution is passed on to the next iteration.

pnew = p◦ + αpp
′ (2.2.19)

unew = αu(u∗ + u′) + (1− αu)u∗ (2.2.20)
vnew = αv(v∗ + v′) + (1− αv)v∗ (2.2.21)

The superscript new indicates the value that is passed on to the next iteration, ◦ is the
initial guess ∗ is the secondary velocity guess calculated from the Momentum Equation,
and ′ signifies the correction.

It is suggested by Peric [23] and Peric et al. [24] that the optimal under-relaxation
factors for the pressure and the velocities are given in equation (2.2.22).

αu + αp = 1 (2.2.22)

The values of αp and αu are suggested to be approximately 0.2 and 0.8 respectively.

2.2.4.4 Visualisation of the Algorithm

Figure 2.8 shows a visualisation of the SIMPLE-algorithm in two dimensions with the
calculation order and with arrows showing which parameters are passed on to the next
step of the algorithm. The superscript ◦ symbolises the initial guess or the value in
the previous iteration. The coefficients a◦u and a◦v are functions of the values of the
velocities at the previous iteration, and the source terms b◦u and b◦v are functions of the
pressure at the previous iteration. ∗ signifies the secondary velocity (guess) calculated
from the Momentum Equation, and ′ signifies the correction values. The superscript
new indicates the value that is passed on to the next iteration. The implementation of
the algorithm for the MATLAB model is given in chapter 4.
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Start

Solve discretized equations
a◦i,Ju

∗
i,J+Σa◦nbu∗nb = −

(
p◦I,J−p◦I−1,J

)
AxJ+b◦i,J

a◦I,jv
∗
I,j +Σa◦nbv∗nb = −

(
p◦I,J −p◦I,J−1

)
Ay + b◦I,j

Solve pressure correction
νI,Jp

′
I,J + Σνnbp′nb = βI,J

Find velocity correction
u′i,J = − Ax

acentre
i,J

(
p′I,J − p′I−1,J

)
v′I,j = − Ay

acentre
I,j

(
p′I,J − p′I,J−1

)

Under-relaxation and correction
pnew = p◦ + αpp

′

unew = αu(u∗ + u′) + (1− αu)u◦
vnew = αv(v∗ + v′) + (1− αv) v◦

Convergence?
Set

p◦ = pnew,
u◦ = unew,
v◦ = vnew

Stop

Initial guess p◦, u◦, v◦
a◦u(u◦), b◦u(p◦)
a◦v(v◦), b◦v(p◦)

u∗i,J , v∗I,j

p′I,J

u′i,J , v′I,j

Yes

No

Figure 2.8: Visualisation of the SIMPLE-algorithm and the implemented procedure in MATLAB
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2.3 Properties of Numerical Schemes
A numerical method that yields a result that is realistic and physical is characterised
by a set of fundamental properties, where the three most important are the conserva-
tiveness, the boundedness and the transportiveness [2]. These properties are especially
important when a small number of computational nodes are used. The accuracy of the
discretisation schemes in the Finite Volume Method in relation to these properties is
shortly accounted for in this section.

2.3.1 Conservativeness
Integrating the Momentum equation over the control volume CV yields a set of dis-
cretised equations. In the discretisation, terms for the flux across the control volume
faces appear. Conservation of the flow across the domain is obtained when the flux
out of a control volume is equal to the flux entering the next control volume [2]. This
happens when the flux through a cell face is defined by the same expression for both
the control volumes this cell face is a part of. The flux is then represented consistently,
and the conservativeness is good.

2.3.2 Boundedness
The boundedness property states that if there is no source term, the boundary values
of the solved property φ should be the limits for the possible solution values of φ [2].
This means that the value of the property within the domain should be between the
inlet and the outlet value. In addition, in the discretised equation, the sign should be
the same for all the coefficients a. This means that if an increase in the value of the
property φ is observed at one node, the value of the property should also increase in
the neighbouring nodes [2].

If a numerical scheme does not possess the boundedness property, the model may not
converge, or the converged solution is ”wavy” with over and undershoots [2].

2.3.3 Transportiveness
The Péclet number is a dimensonless number giving information about the rate of
convection compared to the rate of diffusion. The Péclet number is defined as in
equation (2.3.1)[2].

Pe = F

D
= ρu

Γ/δx (2.3.1)

If the Péclet number is large, the flow is dominated by convection and the flow is
less dependent on the downstream sections of the domain. This is often the case for
engineering problems [25]. The upwind section is then cause for most of the influence
on the node in question. The transportiveness of the numerical scheme is related to
the value of the Péclet number and if the direction of influence in the domain is in
accordance with the magnitude of Pe [2].
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2.3.4 Properties and Accuracy of the Upwind Differencing
Scheme

The Upwind Differencing scheme will be used to discretise the left hand side of the
Momentum equation in this thesis. The discretisation scheme is conservative because
the fluxes are expressed consistently over the whole domain. The coefficients a in the
discretised momentum equation are always positive, and the boundedness criteria is
therefore also met. Lastly, the transportiveness criteria is met because the direction of
the flow is accounted for. Hence the Upwind Differencing Scheme should yields results
that are realistic and physical.

The Upwind Differencing Scheme is using backwards differences, which come from
Taylor series. The scheme is therefore first order accurate [2], and the errors associated
with the neglected higher order terms may be significant. The results obtained are
stable. Unfortunately, the Upwind Differencing Scheme is known for having issues
with numerical diffusion errors, and can yield incorrect results if the flow is multi
dimensional and the direction of the flow does not line up with one of the coordinate
directions. The error that is caused by this is known as false diffusion because it
appears like diffusion in the solution, and is often large for coarse grids [2]. Decreasing
the size of the control volumes and creating a more refined solution grid may help, but
this sacrifices memory and computational time.

The central differencing scheme is conservative and second order accurate, but not func-
tional for convection-diffusion problems because it lacks the transportiveness property.
The boundedness is also not good for cases where Pe > 2 [2]. Higher order methods
may reduce the errors due to false diffusion, but they are generally less computationally
stable [2].

2.4 Discretisation of the Domain
For numerical solution of the flow equations, the domain needs to be discretised to
create points at which the fluid properties are calculated.

2.4.1 Control Volume
A control volume is drawn around each computational node in the domain. Cartesian
coordinates are used, and the unit vectors for x- and y-direction is represented by
figure 2.9. The positive flow direction of x- and y are left to right and bottom to top
respectively, as shown in the figure.

Figure 2.9: Scematic representation of the positive flow direction for the velocity components, as
well as a representation of the orientation of the directions west, east, north and south.

Figure 2.10 shows a control volume drawn around the node point P . The width δx and
height δy of the control volume are noted along with the cross-sectional areas Ax and
Ay and the normal vectors n. The same width δx and height δy are used for all the
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control volumes in the domain. The control volume always has three dimensions, and
figure 2.11 shows the same control volume with the third dimension also visible. The
system depth δz is set to one in the two dimensional case. Note that the normal vectors
in x- and z-directions have negative signs because of the angle the control volume is
displayed from.

ey 

ex  

n = ey  

n = ex 

n =   ey  

n =   ex  

ey 

ex  

Ax,e Ax,w 

Ay,n 

Ay,s 𝛿x 

𝛿x 

𝛿y 𝛿y 

P 

Figure 2.10: Control volume around computational node P with labels for the width δx and height
δy of the control volume as well as the normal vectors n and the cross-sectional areas Ax and Ay.

The unit vectors ex and ey of the coordinate system are also shown.

n =   ez  
ey 

ex  

Az

𝛿x 
𝛿z 

𝛿y 

ez 

Ay

Ax

n =   ex  

n = ey  

P

Figure 2.11: The control volume in figure 2.10 seen from a different angle and with labels in all
three dimensions.

2.4.2 Global Indexing
Global indexing is used for the node points. This means that instead of using a vector
position of the form (i, j), all the node points are assigned a number from 1 to N where
N is the number of nodes, following the expression in equation (2.4.1).

u(j, i) = u(i · (j − 1) + i) (2.4.1)

The counting can for example be started in the lower left corner of the domain, as
shown in figure 2.12. As can be seen from the figure, the number of computational
nodes in y-direction for the v-velocity is one less than for the scalars and the u-velocity.
There is an equal number of computational nodes in x-direction for all the variables.
The inlet velocity is located exactly at the inlet, while the outlet pressure is located
one node outside of the computational domain. Note that in figure 2.6, the velocity
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p1 u1

v1

p2 u2 p3 u3 p4 u4 p5

v2 v3 v4 v5
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Figure 2.12: Example of a globally indexed system of node points.

node ui,J is located left of the scalar node pI,J and the velocity node vI,j is located
below pI,J . With the global indices in figure 2.12, the velocity nodes uk and vk are
located right and above of the scalar node pk instead.

By using this global indexing system the velocities and the pressure are stored in vectors
of size (1, N) instead of matrices of size (m,n) where m is the number of computational
points in y-direction and n is the number of computational points in x-direction.

2.5 Non-Dimensional Equations
Non-dimensionalising the governing equations means that they are transformed in to
a dimensionless form. This is done by dividing all parameters with a scale with the
same unit as the parameter itself, removing all units.

Converting the flow equations to a dimensionless form can make the problem at hand
easier to solve, and possible numerical difficulties in the solution are eliminated [2][25].
The difference between small or large values of parameters when the equation is made
dimensionless give an indication to which terms are most important in the equation.
For the regular equation, this is not the case, and larger values can simply mean that
the property is measured in a larger scale. An example is pressure compared to velocity,
where pressure has the unit Pa and is most often in order of magnitude of 105. This
may cause a problem if the velocity in m/s has a very low value, because the terms
including the velocity are very small compared to the pressure, without being of less
importance to the model. Such problems can be solved by converting the equations to
their dimensionless form.
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Dimensionless variables are noted with a circumflex χ̂ where χ is an arbitrary variable.
Equation (2.5.1) shows the definition of the dimensionless variable χ̂.

χ̂ = χ

χ
(2.5.1)

where χ is scale with the same unit as χ.

The dimensionless Continuity equation at steady state takes the same form as the
regular Continuity equation, as seen in equation (2.5.2).

∇̂ ·
(
ρ̂û
)

= 0 (2.5.2)
The dimensionless Momentum equation will take the same form as the regular Mo-
mentum equation except the inverse of the Reynolds number appears as a coefficient
in front of the diffusive terms as given in equation (2.5.3) [4][26].

∇̂ · (ρ̂ûû) = −∇̂ ˆ̃p− 1
Re
∇̂ · σ̂ (2.5.3)

The derivation of the dimensionless Continuity and Momentum Equations are given in
section 3.4.

2.6 Solving Systems of Linear Algebraic Equations
in MATLAB

As mentioned above, the Finite Volume method is used to convert the fluid flow equa-
tions into systems of linear algebraic equations. The system of linear algebraic equa-
tions for the velocity in one dimension is written as in equation (2.6.1). All the velocities
u are represented in a vector due to the use of the global indexing system as described
in section 2.4.2.

ai−1ui−1 + aiui + ai+1ui+1 = bi (2.6.1)
where a are coefficients and b is the source term. The coefficients a can be sorted in
the coefficient matrix U as shown in equation (2.6.2).

U =



a1 a2 a3
. . .

. . . ai−1 ai ai+1 . . .
. . .

aN−2 aN−1 aN


(2.6.2)

The source terms are stored in the vector b and u is the vector of velocities, and the
system of linear algebraic equations can be written on the form Uu = b as shown
in equation (2.6.3) [27]. The first and last points 1 and N require boundary condi-
tions. 

a1 a2 a3
. . .

. . . ai−1 ai ai+1 . . .
. . .

aN−2 aN−1 aN





u2
...
ui
...

uN−1


=



b2
...
bi
...

bN−1


(2.6.3)

A system of this form can be solved in MATLAB by using the divided into operator \ as
shown in equation (2.6.4) [28].

u = A\b (2.6.4)



3
Discretisation

In this chapter, the the discretised Continuity, Momentum and SIMPLE-equations in
two dimensions are obtained. The governing equations in two dimensions as given
in section 2.1 are the starting point for the discretisation. The discretisation of the
dimensionless Continuity and Momentum equations is also described. The governing
equations in vector and component forms as well as some necessary theorems are given
in appendix A. The discretisation of the two dimensional equations with all interme-
diate steps included can be found in appendix C.

The straight channel was first modelled in one dimension. The discretisation of the
equations in one dimension is given in appendix B.

3.1 Continuity Equation
The Continuity Equation as given in equation (2.1.1) is integrated over the control
volume CV . The transient term is omitted because of the steady state assumption.
This yields equation (3.1.1). ∫

CV
∇ ·

(
ρu
)
dV = 0 (3.1.1)

By the Gauss’ theorem in equation (A.3.1) the volume integral can be converted to a
surface integral, and equation (3.1.1) becomes equation (3.1.2).∫

A
n ·

(
ρu
)
dA = 0 (3.1.2)

In equation (3.1.2), n · (ρu) is the component of ρu normal to the surface element
dA.

21
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The four surfaces are west, east, south and north for the two dimensional case as shown
in figure 2.10. Splitting the surface integral into these four surfaces noted w, e, s and
n yields equation (3.1.3).
∫
Ax,e

ρ ex · u dA+
∫
Ax,w

ρ (−ex) · u dA

+
∫
Ay,n

ρ ey · u dA+
∫
Ay,s

ρ (−ey) · u dA = 0 (3.1.3)

Here u is the x-velocity component and v is the y-velocity component. Writing out the
integrals yields equation (3.1.4).

ρueAx,e − ρuwAx,w + ρvnAy,n − ρvsAy,s = 0 (3.1.4)

where u is the x-velocity component and v is the y-velocity component. The Continuity
Equation takes place at all the scalar nodes in the domain, which means that the cell
face velocities ue, uw, vs and vn are located at the actual velocity nodes since a staggered
grid is used. No interpolation is needed to determine the values of ue, uw, vs and vn.
A visual representation of the staggered grid can be seen in figure 2.6.

The convective mass flux per unit are F c is defined as in equation (3.1.5).

F c
x = ρu F c

y = ρv (3.1.5)

Since the control volume is rectangular with equally sized opposite cell faces, the area
subscripts w, e, s and n may be omitted so that the equations only contains the terms
Ax and Ay. The discretised Continuity equation is then equation (3.1.6).

F c
x,eAx − F c

x,wAx + F c
y,nAy − F c

y,sAy = 0 (3.1.6)

3.2 Momentum Equation
The Momentum Equation in vector form is given in equation (2.1.3). The transient
term is omitted because of the steady state assumption and the gravity term is omitted
because the gravity is assumed to be acting in z-direction which is not taken into
account in this thesis. This yields equation (3.2.1).

∇ · (ρuu) = −∇p−∇ · σ (3.2.1)

The left and right hand side of the equation will be discretised separately before com-
bining the equation in the end.

3.2.1 Left Hand Side
The left hand side of the momentum equation contains the convective terms of the
equation, and the discretisation follow the same pattern as for the Continuity equation.
RHS notes the right hand side of the equation. The integral over the control volume
CV is taken to yield equation (3.2.2).∫

CV
∇ · (ρuu) dV = RHS (3.2.2)
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By Gauss’ theorem in equation (A.3.1) the volume integral can again be converted to
a surface integral. This yields equation (3.2.3).∫

A
n · (ρuu) dA = RHS (3.2.3)

n · (ρu) is the component of ρu normal to surface element dA. The four surfaces
are the same as for the Continuity equation, west, east, south and north for the two
dimensional case as shown in figure 2.10. The surface integral in equation (3.2.3) can
be split into an integral for each of the normal surfaces noted w, e, s and n. The normal
vectors around the control volume can be seen from figure 2.10. This yields equation
(3.2.4).∫

Ax,e

ex · ρuu dA+
∫
Ax,w

−ex · ρuu dA

+
∫
Ay,n

ey · ρuu dA+
∫
Ay,s

−ey · ρuu dA = RHS (3.2.4)

Taking the dot product of the unit vector ex or ey with one of the velocity vectors u
and integrating yields equation (3.2.5).

ρ (uu)eAx,e − ρ (uu)w Ax,w + ρ (vu)nAy,n − ρ (vu)sAy,s = RHS (3.2.5)

where u is the x-velocity component and v is the y-velocity component. Equation
(3.2.5) may then be multiplied with the unit vector ex or ey to obtain the x- and
y- components of the equation. Since the control volume is rectangular with equally
sized opposite cell faces, the area subscripts w, e, s and n may be omitted so that the
equations only contains the terms Ax and Ay. The x- and y- components of equation
(3.2.5) are given in equations (3.2.6) and (3.2.7) respectively.

ρ (uu)eAx − ρ (uu)w Ax + ρ (vu)nAy − ρ (vu)sAy = RHS (3.2.6)

ρ (uv)eAx − ρ (uv)w Ax + ρ (vv)nAy − ρ (vv)sAy = RHS (3.2.7)
Like for the Continuity equation, the convective mass flux per unit area F is introduced
as shown in equation (3.2.8).

Fx = ρu Fy = ρv (3.2.8)

Unlike the coefficients F c in the Continuity equation, the coefficients F are obtained
from interpolation. This is because the velocities ue, uw, vs and vn in equations (3.2.6)
and (3.2.7) are defined at the cell faces for the control volumes around the velocity nodes
(see figure 2.6). No velocity value is calculated at these cell faces, but interpolation
yields a value of the u- and v- velocity components. Figure 3.1 shows the velocity
nodes ui,J and vI,j and the surrounding nodes with indices that are needed to define
F around the nodes ui,J and vI,j for which the control volume CV is drawn around.
The expressions for F for each component and each cell face are given in equations
(3.2.9)-(3.2.16).

Fx,e = ρ
ui,J + ui+1,J

2 (3.2.9)

Fx,w = ρ
ui−1,J + ui,J

2 (3.2.10)

Fx,n = ρ
vI−1,j+1 + vI,j+1

2 (3.2.11)

Fx,s = ρ
vI−1,j + vI,j

2 (3.2.12)

Fy,e = ρ
ui+1,J−1 + ui+1,J

2 (3.2.13)

Fy,w = ρ
ui,J−1 + ui,J

2 (3.2.14)

Fy,n = ρ
vI,j + vI,j+1

2 (3.2.15)

Fy,s = ρ
vI,j−1 + vI,j

2 (3.2.16)
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ui+1,J

ui+1,J-1

vI+1,j

vI-1,j+1

vI-1,j

ui-1,J ui,J

ui,J-1

ui,J+1

pI,J

vI,j+1

vI,j

vI,j-1

Figure 3.1: Node points with indices used in the expressions for the convective mass flux F .

Rewriting these with using the symbols P for the node point for which the control
volume CV is drawn around and W , E, S and N for the neighbouring nodes yields
equations (3.2.17)-(3.2.24).

Fx,e = ρ
uP + uE

2 (3.2.17)

Fx,w = ρ
uW + uP

2 (3.2.18)

Fx,n = ρ
vNW + vN

2 (3.2.19)

Fx,s = ρ
vW + vP

2 (3.2.20)

Fy,e = ρ
uSE + uE

2 (3.2.21)

Fy,w = ρ
uS + uP

2 (3.2.22)

Fy,n = ρ
vP + vN

2 (3.2.23)

Fy,s = ρ
vS + vP

2 (3.2.24)

The coefficients F are taken as knowns in the equation systems, and the velocities used
to determine F are taken as the velocities at the previous iteration.

Equations (3.2.9)-(3.2.16) inserted into equations (3.2.6) and (3.2.7) yields equations
(3.2.25) and (3.2.26) for the x- and y-components respectively.

Fx,eueAx − Fx,wuwAx + Fy,nunAy − Fy,susAy = RHS (3.2.25)

Fx,eveAx − Fx,wvwAx + Fy,nvnAy − Fy,svsAy = RHS (3.2.26)
The remaining velocity terms in equations (3.2.25) and (3.2.26) are still defined at the
cell face of the control volumes. This is solved by use of the Upwind Differencing Scheme
as presented in section 2.2.2. For this, the direction of the flow must be determined,
which is done using the coefficients F . The max operator is introduced, which makes it
possible to represent the result for all the flow directions in one single equation.

Equation (3.2.27) is the discretised left hand side of the x-component momentum equa-
tion on coefficient form with the coefficients as given in equations 3.2.28-3.2.29.

aPuP + aEuE + aWuW + ayuN + aSuS = RHS (3.2.27)
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with

aP = −aW − aE − aN − aS + Fx,eAx − Fx,wAx + Fx,nAy − Fx,sAy (3.2.28)

aE = −max
(
0,−Fx,eAx

)
aN = −max

(
0,−Fx,nAy

)
aW = −max

(
Fx,wAx, 0

)
aS = −max

(
Fx,sAy, 0

) (3.2.29)

Likewise, equation (3.2.30) is the discretised left hand side of the y-component mo-
mentum equation on coefficient form with the coefficients as given in equations 3.2.31-
3.2.32.

aPvP + aEvE + aWvW + aNvN + aSvS = RHS (3.2.30)

with

aP = −aW − aE − aN − aS + Fy,eAx − Fy,wAx + Fy,nAy − Fy,sAy (3.2.31)

aE = −max
(
0,−Fy,eAx

)
aN = −max

(
0,−Fy,nAy

)
aW = −max

(
Fy,wAx, 0

)
aS = −max

(
Fy,sAy, 0

) (3.2.32)

3.2.2 Right Hand Side
The right hand side of the Momentum equation contains the diffusive terms of the
equation. The shear stress term in equation (3.2.1) can be written out like in equa-
tion (3.2.33) for two dimensions. LHS denotes the left hand side of the momentum
equation.

LHS = −∇p− ∂σx

∂x
− ∂σy

∂y
(3.2.33)

The x- and y- components of the Momentum equation in vector form can be obtained
by taking the dot product with the unit vectors ex and ey respectively. The result are
equations (3.2.34) and (3.2.35) respectively.

LHS = −∂p
∂x
− ∂σxx

∂x
− ∂σxy

∂y
(3.2.34)

LHS = −∂p
∂y
− ∂σyx

∂x
− ∂σyy

∂y
(3.2.35)

The expressions for the stress tensor components σ are inserted into equations (3.2.34)
and (3.2.35). The expressions are given in appendix A. ∇·u is zero from the Continu-
ity equation (2.1.2) for constant density, and equations (3.2.34) and (3.2.35) become
equations (3.2.36) and (3.2.37).

LHS = −∂p
∂x

+ ∂

∂x

(
µ
∂u

∂x

)
+ ∂

∂y

(
µ
∂u

∂y

)
(3.2.36)

LHS = −∂p
∂y

+ ∂

∂x

(
µ
∂v

∂x

)
+ ∂

∂y

(
µ
∂v

∂y

)
(3.2.37)

Equations (3.2.36) and (3.2.37) can then be integrated over the control volume CV . For
the diffusive terms, the volume integral is split, taking dV = dAxdx and dV = dAydy
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as seen in equations (3.2.38) and (3.2.39).

LHS = −
∫
CV

∂p

∂x
dV +

∫
δx

∫
Ax

∂

∂x

(
µ
∂u

∂x

)
dAxdx

+
∫
δy

∫
Ay

∂

∂y

(
µ
∂u

∂y

)
dAydy (3.2.38)

LHS = −
∫
CV

∂p

∂y
dV +

∫
δx

∫
Ax

∂

∂x

(
µ
∂v

∂x

)
dAxdx

+
∫
δy

∫
Ay

∂

∂y

(
µ
∂v

∂y

)
dAydy (3.2.39)

The surface integrals are taken first, yielding equations (3.2.40) and (3.2.41).

LHS = −
∫
CV

∂p

∂x
dV +

∫
δx

∂

∂x

(
µ
∂u

∂x

)
Axdx +

∫
δy

∂

∂y

(
µ
∂u

∂y

)
Aydy (3.2.40)

LHS = −
∫
CV

∂p

∂y
dV +

∫
δx

∂

∂x

(
µ
∂v

∂x

)
Axdx +

∫
δy

∂

∂y

(
µ
∂v

∂y

)
Aydy (3.2.41)

The volume integral for the pressure terms are taken, and by the Fundamental Theo-
rem of Calculus as given in equation (A.3.2), equations (3.2.40) and (3.2.41) become
equations (3.2.42) and (3.2.43). Since the control volume is rectangular with equally
sized opposite cell faces, the area subscripts w, e, s and n may be omitted so that the
equations only contains the terms Ax and Ay.

LHS = − ∂p
∂x

∣∣∣∣∣
P

δxAx + µ
∂u

∂x

∣∣∣∣∣
e

Ax − µ
∂u

∂x

∣∣∣∣∣
w

Ax + µ
∂u

∂y

∣∣∣∣∣
n

Ay − µ
∂u

∂y

∣∣∣∣∣
s

Ay (3.2.42)

LHS = − ∂p
∂y

∣∣∣∣∣
P

δyAy + µ
∂v

∂x

∣∣∣∣∣
e

Ax − µ
∂v

∂x

∣∣∣∣∣
w

Ax + µ
∂v

∂y

∣∣∣∣∣
n

Ay − µ
∂v

∂y

∣∣∣∣∣
s

Ay (3.2.43)

The above gradients are approximated with central differences. For the pressure gra-
dients equations (3.2.44) and (3.2.45) are used. The pressure points pI,J , pI−1,J and
pI,J−1 then line up with existing pressure nodes. P corresponds to the centre node
point for the velocity in this case, which are ui,J and vI,j.

∂p

∂x

∣∣∣∣∣
P

= pI,J − pI−1,J

δx
(3.2.44)

∂p

∂y

∣∣∣∣∣
P

= pI,J − pI,J−1

δy
(3.2.45)

The velocity gradients are approximated with the central differences as shown in equa-
tions (3.2.46)-(3.2.53).

∂u

∂x

∣∣∣∣∣
e

= ui+1,J − ui,J
δx

blank (3.2.46)

∂u

∂x

∣∣∣∣∣
w

= ui,J − ui−1,J

δx
(3.2.47)

∂u

∂y

∣∣∣∣∣
n

= ui,J+1 − ui,J
δy

(3.2.48)

∂u

∂y

∣∣∣∣∣
s

= ui,J − ui,J−1

δy
(3.2.49)

∂v

∂x

∣∣∣∣∣
e

= vI+1,j − vI,j
δx

(3.2.50)

∂v

∂x

∣∣∣∣∣
w

= vI,j − vI−1,j

δx
(3.2.51)

∂v

∂y

∣∣∣∣∣
n

= vI,j+1 − vI,j
δy

(3.2.52)

∂v

∂y

∣∣∣∣∣
s

= vI,j − vI,j−1

δy
(3.2.53)
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Since the velocity gradients are defined at the control volume faces w, e, s and n, the
velocities in the right side of equations (3.2.46)-(3.2.53) line up with existing velocity
nodes. The staggered grid indices are shown in figure 2.6.

The diffusion conductanceD can be introduced, and is defined as in equation (3.2.54).

Dx = µ

δx
Dy = µ

δy
(3.2.54)

Inserting the gradients in equations (3.2.44)-(3.2.53) and the diffusion conductance D
into equations (3.2.42) and (3.2.43) yields equations (3.2.55) and (3.2.56) for the x-
and y-component respectively.

LHS = −
(
pI,J − pI−1,J

)
Ax +DxAx

(
ui+1,J − ui,J

)
−DxAx

(
ui,J − ui−1,J

)
+DyAy

(
ui,J+1 − ui,J

)
−DyAy

(
ui,J − ui,J−1

)
(3.2.55)

LHS = −
(
pI,J − pI,J−1

)
Ay +DxAx

(
vI+1,j − vI,j

)
−DxAx

(
vI,j − vI−1,j

)
+DyAy

(
vI,j+1 − vI,j

)
−DyAy

(
vI,j − vI,j−1

)
(3.2.56)

3.2.3 Combined Momentum Equation
The left and right side of the momentum equation can be put back together and
rearranged as given in coefficient form below.

Equation (3.2.57) is the discretised x-component momentum equation with the coeffi-
cients as given in equation (3.2.58).

ai,Jui,J + ai+1,Jui+1,J + ai−1,Jui−1,J + ai,J+1ui,J+1 + ai,J−1ui,J−1 = bi,J (3.2.57)

with

ai,J = −ai+1,J − ai−1,J − ai,J+1 − ai,J−1 + Fx,eAx − Fx,wAy + Fy,nAy − Fy,sAy

ai+1,J = −max
(
0,−Fx,eAx

)
−DxAx

ai−1,J = −max
(
Fx,wAy, 0

)
−DxAy

ai,J+1 = −max
(
0,−Fy,nAy

)
−DyAy

ai,J−1 = −max
(
Fy,sAy, 0

)
−DyAy

bi,J = −
(
pI,J − pI−1,J

)
Ax

(3.2.58)
Likewise, equation (3.2.59) is the discretised y-component momentum equation with
the coefficients as given in equation (3.2.60).

aI,jvI,j + aI+1,jvI+1,j + aI−1,jvI−1,j + aI,j+1vI,j+1 + aI,j−1vI,j−1 = bI,j (3.2.59)
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with

aI,j = −aI+1,j − aI−1,j − aI,j+1 − aI,j−1 + Fx,eAx − Fx,wAy + Fy,nAy − Fy,sAy

aI+1,j = −max
(
0,−Fx,eAx

)
−DxAx

aI−1,j = −max
(
Fx,wAy, 0

)
−DxAy

aI,j+1 = −max
(
0,−Fy,nAy

)
−DyAy

aI,j−1 = −max
(
Fy,sAy, 0

)
−DyAy

bI,j = −
(
pI,J − pI,J−1

)
Ay

(3.2.60)

3.3 SIMPLE-Equations
In this section the velocity correction and pressure correction equations for use with
the SIMPLE-algorithm are derived.

3.3.1 Velocity Correction Equation
The discretised Momentum equation can be rewritten as an equation for the guessed
variables as described in section 2.2.4 by exchanging all the variables with the guessed
equivalents, for example u with u∗ and p with p◦. In this case, the ”guessed” velocities
u∗ and v∗ are the velocities obtained from the Momentum equation earlier in the
algorithm for the same iteration, and the guessed pressure p◦ is the pressure from the
previous iteration. The velocity correction equation can then be obtained by taking
the discretised Momentum equation for u and subtracting the Momentum equation for
the ”guessed” velocity u∗ as in equation (3.3.1).

ai,J(ui,J − u∗i,J) + ai+1,J(ui+1,J − u∗i+1,J) + ai−1,J(ui−1,J − u∗i−1,J)
+ ai,J+1(ui,J+1 − u∗i,J+1) + ai,J−1(ui,J−1 − u∗i,J−1)

=
(
− pI,J + pI−1,J + p◦I,J − p◦I−1,J

)
Ax +����

�bρi,J − b
ρ
i,J (3.3.1)

From the definition of the correction values in section 2.2.4 it follows that the terms of
the form u−u∗ are equal to the velocity correction u′ and the terms of the form p− p◦
are equal to the pressure correction p′. The velocity correction in the centre node u′i,J
is kept while the velocity corrections in all the neighbouring nodes are omitted. This
yields the velocity correction equation (3.3.2) for the velocity node ui,J .

u′i,J = − Ax
acentrei,J

(
p′I,J − p′I−1,J

)
(3.3.2)

acentrei,J is the velocity equation coefficient for the node ui,J . Equation (3.3.3) shows
the v-velocity correction for the node point vI,j which can be obtained in the same
way.

v′I,j = − Ay
acentreI,j

(
p′I,J − p′I,J−1

)
(3.3.3)
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The true velocity value is then obtained by equation (2.2.9) as written out in equations
(3.3.4) and (3.3.5).

ui,J = u∗i,J −
Ax

acentrei,J

(
p′I,J − p′I−1,J

)
(3.3.4)

vI,j = v∗I,j −
Ay

acentreI,j

(
p′I,J − p′I,J−1

)
(3.3.5)

3.3.2 Pressure Correction Equation
The pressure correction equation is obtained from the Continuity equation (3.3.6) and
the velocity correction equations (3.3.4) and (3.3.5).

ρui+1,JAx − ρui,JAx + ρvI,j+1Ay − ρvI,jAy = 0 (3.3.6)

The velocities u and v in equation (3.3.6) are replaced with equations (3.3.4) and
(3.3.5) to yield equation (3.3.7). At the boundaries of the domain, one or more of the
velocity terms in equation (3.3.6) are known. In this case, the known velocity term is
not replaced by equations (3.3.4) or (3.3.5), but the known velocity value is kept. This
is because the velocity correction is zero for a node with a known velocity [2].

ρAx

(
u∗i+1,J −

Ax
acentrei+1,J

(
p′I+1,J − p′I,J

))

− ρAx
(
u∗i,J −

Ax
acentrei,J

(
p′I,J − p′I−1,J

))
+ ρAy

(
v∗I,j+1 −

Ay
acentreI,j+1

(
p′I,J+1 − p′I,J

))

− ρAy
(
v∗I,j −

Ay
acentreI,j

(
p′I,J − p′I,J−1

))
= 0 (3.3.7)

Rearranging equation (3.3.7), collecting all the pressure correction terms on one side
and all the guessed velocities on the other yields yields equation (3.3.8) with the coef-
ficients in equation (3.3.9).

νI,Jp
′
I,J + νI+1,Jp

′
I+1,J + νI−1,Jp

′
I−1,J + νI,J+1p

′
I,J+1 + νI,J−1p

′
I,J−1 = βI,J (3.3.8)

with
νI,J =

ρA2
x,i+1,J

acentrei+1,J
+
ρA2

x,i,J

acentrei,J

+
ρA2

y,I,j+1

acentreI,j+1
+
ρA2

y,I,j

acentreI,j

νI+1,J = −
ρA2

x,i+1,J

acentrei+1,J

νI−1,J = −
ρA2

x,i,J

acentrei,J

νI,J+1 = −
ρA2

y,I,j+1

acentreI,j+1

νI,J−1 = −
ρA2

y,I,j

acentreI,j

βI,J = − Axρu
∗
x,e + Axρu

∗
x,w − Ayρu∗y,n + Ayρu

∗
y,s

(3.3.9)
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The source term takes the form of the Continuity equation and is equal to zero for the
converged solution, since all the pressure correction terms are zero for the converged
solution. The velocities in the source term are guessed velocities that are taken as the
velocity values obtained from the Momentum equation

Figure 3.2 shows the numerical ”molecule” for the pressure correction equation, showing
where each term is located on the staggered grid. The velocity terms in the source term
are located at the cell faces of the pressure control volume, and these cell faces line up
with the velocity nodes.

Figure 3.2: Shape of pressure correction equation ”molecule” in two dimensions.

3.4 Dimensionless Equations
In this section the derivation of the two dimensional discretised equations given in
sections 3.1 - 3.3 are repeated for making these equations dimensionless. The steps of
the discretisation themselves are identical to what is given in sections 3.1 - 3.3, and
only the main steps are repeated in this section.

The dimensionless Continuity equation, and therefore also the dimensionless pressure
correction equation will take the same form as for the ordinary variables. The di-
mensionless Momentum equation will take close to the same form as the dimensional
version, but with a factor 1

Re
before the viscous terms as shown in equation (3.4.1)

[29].
∇̂ · (ρ̂ûû) = −∇̂ ˆ̃p− 1

Re
∇̂ · σ̂ (3.4.1)

A diacritic circumflex ô is used to indicate that the variable φ is dimensionless.

3.4.1 Definition of dimensionless variables
Below follows an overview of the different dimensionless variables, lengths and oper-
ators. As given in equation (2.5.1), the numerator is the original parameter and the
denominator is the scale for that parameter in the definitions of each dimensionless
parameter.

The pressure is adjusted by subtracting the outlet pressure as defined in equation
(3.4.2) before it is made dimensionless by dividing with an appropriate scale. p̃ is the
adjusted pressure and is zero at the outlet.

p̃ = p− pout (3.4.2)
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3.4.1.1 Variables

The dimensionless variables for the velocity vector û, adjusted pressure p̃, viscosity µ
and density ρ is given in equations (3.4.3)-(3.4.6).

û = u
uin

(3.4.3)

ˆ̃p = p̃

p
(3.4.4)

µ̂ = µ

µin
= µ

µ
(3.4.5)

ρ̂ = ρ

ρin
= ρ

ρ
(3.4.6)

uin is the scaling factor for the velocities and is the inlet velocity. If the inlet velocity is
not constant, the velocity scale is the average velocity at the inlet. All components of
the velocity are normalised with the same scale. A diacritic macron o is used to signify
the scale for a variable. The pressure scale p is given by equation (3.4.7) [16].

p = ρu2
in (3.4.7)

ρin is the inlet density and µin is the inlet viscosity. The density and viscosity are
constant over the domain and are expressed this way for simplicity in the derivation
despite ρin being equal to ρ and µin being equal to µ.

3.4.1.2 Length, area, volume

All the length units are scaled with the same parameter, which is taken to be the
hydraulic diameter Dhyd. δx, δy and δz are the width, height and depth of the control
volume respectively. The definitions and directions of δx, δy and δz as well as Ax and
Ay can be seen from figure 2.11.

Equations (3.4.8) - (3.4.19) show the definitions of the dimensionless versions of all
length scales and variants of length scales.

x̂ = x

Dhyd

(3.4.8)

dx̂ = dx

Dhyd

(3.4.9)

δx̂ = δx

Dhyd

(3.4.10)

∂

∂x̂
= Dhyd

∂

∂x
(3.4.11)

ŷ = y

Dhyd

(3.4.12)

dŷ = dy

Dhyd

(3.4.13)

δŷ = δy

Dhyd

(3.4.14)

∂

∂ŷ
= Dhyd

∂

∂y
(3.4.15)

ẑ = z

Dhyd

(3.4.16)

dẑ = dz

Dhyd

(3.4.17)

δẑ = δz

Dhyd

(3.4.18)

∂

∂ẑ
= Dhyd

∂

∂z
(3.4.19)

The cross sectional areas are given in equations (3.4.20)-(3.4.21) and the volume of the
control volume is given in equation (3.4.22). Since the equations will be derived for
two dimensions, the cross-sectional area in z-direction is not included.

Âx = δŷ δẑ = 1
D2
hyd

δy δz = 1
D2
hyd

Ax (3.4.20)

Ây = δx̂ δẑ = 1
D2
hyd

δx δz = 1
D2
hyd

Ay (3.4.21)
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V̂ = δx̂ δŷ δẑ = 1
D3
hyd

δx δy δz = 1
D3
hyd

V (3.4.22)

Similarly the differentials of A and V are given in equations (3.4.23) and (3.4.24).

dÂ = 1
D2
hyd

dA (3.4.23)

dV̂ = 1
D3
hyd

dV (3.4.24)

3.4.1.3 Operators, tensors

The ∇ operator is defined by equation (3.4.25) [30].

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(3.4.25)

Since ∂
∂x̂

= Dhyd
∂
∂x

etc., the dimensionless∇ operator is given by equation (3.4.26).

∇̂ = Dhyd∇ (3.4.26)

The stress tensors used in the 2D-equations are defined in equations (3.4.27)-(3.4.29),
with ∇ · u = 0 from the Continuity equation (2.1.2).

σxx =− µ
[
2∂u
∂x
−
��

��
�2

3 (∇ · u)
]

= −2µ∂u
∂x

(3.4.27)

σyy =− µ
[
2∂v
∂y
−
��

�
��2

3 (∇ · u)
]

= −2µ∂v
∂y

(3.4.28)

σxy =− µ
[
∂u

∂x
+ ∂v

∂y

]
(3.4.29)

The dimensionless stress tensor is defined in (3.4.30) where σ is the scale.

σ̂ = σ

σ
(3.4.30)

The expressions for the stress tensor components in equations (3.4.27)-(3.4.29) are
inserted into equation (3.4.30). The result is shown in equations (3.4.31)-(3.4.33).

σ̂x̂x̂ = − 1
σ

2µ∂u
∂x

= − 1
σ

µuin
Dhyd

2µ̂∂û
∂x̂

(3.4.31)

σ̂ŷŷ = − 1
σ

2µ∂v
∂y

= − 1
σ

µuin
Dhyd

2µ̂∂v̂
∂ŷ

(3.4.32)

σ̂x̂ŷ = − 1
σ
µ

[
∂u

∂x
+ ∂v

∂y

]
= − 1

σ

µuin
Dhyd

µ̂

[
∂û

∂x̂
+ ∂v̂

∂ŷ

]
(3.4.33)

To make the right hand side in the above equations dimensionless, the scale σ is defined
as in equation (3.4.34).

σ = µuin
Dhyd

(3.4.34)
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The dimensionless stress tensor components are then defined as in equations (3.4.35) -
(3.4.37).

σ̂x̂x̂ = −2µ̂∂û
∂x̂

(3.4.35)

σ̂ŷŷ = −2µ̂∂v̂
∂ŷ

(3.4.36)

σ̂x̂ŷ = −µ̂
[
∂û

∂x̂
+ ∂v̂

∂ŷ

]
(3.4.37)

3.4.2 Variables as Functions of their Dimensionless Form
All varibles, geometrical length scales, operators and tensors expressed with dimen-
sionless parameters for interchanging in the transport equations are given in equations
(3.4.38)-(3.4.55).

u = uinû (3.4.38)

p̃ = ρu2
in

ˆ̃p (3.4.39)

µ = µµ̂ (3.4.40)

ρ = ρρ̂ (3.4.41)

δx = Dhyd δx̂ (3.4.42)

δy = Dhyd δŷ (3.4.43)

∂

∂x
= 1
Dhyd

∂

∂x̂
(3.4.44)

∂

∂y
= 1
Dhyd

∂

∂ŷ
(3.4.45)

∇ = 1
Dhyd

∇̂ (3.4.46)

Ax = D2
hyd Âx (3.4.47)

Ay = D2
hyd Ây (3.4.48)

dA = D2
hyd dÂ (3.4.49)

V = D3
hyd V̂ (3.4.50)

dV = D3
hyd dV̂ (3.4.51)

σ = σσ̂ (3.4.52)

σxx = −µuin
Dhyd

2µ̂∂û
∂x̂

(3.4.53)

σyy = −µuin
Dhyd

2µ̂∂v̂
∂ŷ

(3.4.54)

σxy = −µuin
Dhyd

µ̂

[
∂û

∂x̂
+ ∂v̂

∂ŷ

]
(3.4.55)

3.4.3 Dimensionless Continuity Equation
The Continuity equation with the transient term deleted is given in equation (2.1.2).
With the dimensionless parameters from equations (3.4.38)-(3.4.55) inserted, the con-
tinuity equation becomes equation (3.4.56).

1
Dhyd

∇̂ ·
(
ρuinρ̂û

)
= 0 (3.4.56)

Integration over the dimensionless control volume ĈV yields equation (3.4.57), and
Gauss’ theorem given in equation (A.3.1) is again applied yielding equation (3.4.58).
Equation (3.4.58) is then divided with the factor ρuin

Dhyd
which yields equation (3.4.59).

Equation (3.4.59) takes the same form as equation (3.1.2), and the rest of the discreti-
sation of the dimensionless Continuity equation follows the same steps as in section
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3.1. ∫
ĈV

1
Dhyd

∇̂ ·
(
ρuinρ̂û

)
dV̂ = 0 (3.4.57)

ρuin
Dhyd

∫
Â

n ·
(
ρ̂û
)
dÂ = 0 (3.4.58)∫

Ân·
(
ρ̂û
)
dÂ

= 0 (3.4.59)

Equation (3.4.60) is the dimensionless continuity equation with F̂ c as defined in equa-
tion (3.4.61)

F̂ c
x,eÂx,e − F̂ c

x,wÂx,w + F̂ c
y,nÂy,n − F̂ c

y,sÂy,s = 0 (3.4.60)

with
F̂ c
x = ρ̂û F̂ c

y = ρ̂v̂ (3.4.61)

3.4.4 Dimensionless Momentum Equation
The momentum equation with the transient term delited and the gravity term ne-
glected is given in equation (3.2.1). With the dimensionless variables given in equations
(3.4.38)-(3.4.55) inserted, the Momentum equation becomes equation (3.4.62).

ρu2
in

Dhyd

∇̂ · (ρ̂ûû) = − p

Dhyd

∇̂ ˆ̃p− σ

Dhyd

∇̂ · σ̂ (3.4.62)

The scales for the pressure p = ρu2
in and the stress tensor σ = µuin

Dhyd
can be inserted to

yield equation (3.4.63).

ρu2
in

Dhyd

∇̂ · (ρ̂ûû) = − ρu
2
in

Dhyd

∇̂ ˆ̃p− µuin
D2
hyd

∇̂ · σ̂ (3.4.63)

Equation (3.4.63) is then multiplied with the factor Dhyd

ρu2
in

to yield equation (3.4.64),
which is equal to equation (3.4.1).

∇̂ · (ρ̂ûû) = −∇̂ ˆ̃p− µ

ρuinDhyd

∇̂ · σ̂ (3.4.64)

3.4.4.1 Left Hand Side

The left side of equation (3.4.64) can be integrated directly over the dimensionless
control volume ĈV to yield equation (3.4.65). By Gauss’ theorem in equation (A.3.1)
equation (3.4.66) is obtained. ∫

CV
∇̂ · (ρ̂ûû) dV̂ = RHS (3.4.65)∫

Â
n · (ρ̂ûû) dÂ = RHS (3.4.66)

Equation (3.4.66) takes the same form as equation (3.2.3), and the rest of the discreti-
sation of the left hand side of the Momentum equation follows the same steps as in
section 3.2.
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The dimensionless convective mass flux F̂ are defined the same way as in equations
(3.2.9)-(3.2.16). The left side of the x-component of the dimensionless Momentum
equation is given in equation (3.4.67) with the coefficients in equations (3.4.68)-(3.4.69).

âP ûP + âEûE + âW ûW + âyûN + âSûS = RHS (3.4.67)

with

âP = −âW − âE − âN − âS + F̂x,eÂx − F̂x,wÂx + F̂x,nÂy − F̂x,sÂy (3.4.68)

âE = −max
(
0,−F̂x,eÂx

)
âN = −max

(
0,−F̂x,nÂy

)
âW = −max

(
F̂x,wÂx, 0

)
âS = −max

(
F̂x,sÂy, 0

) (3.4.69)

Similarly, the left side of the y-component of the dimensionless Momentum equation is
given in equation (3.4.70) with the coefficients in equations (3.4.71)-(3.4.72).

âP v̂P + âE v̂E + âW v̂W + âN v̂N + âS v̂S = RHS (3.4.70)

with

âP = −âW − âE − âN − âS + F̂y,eÂx − F̂y,wÂx + F̂y,nÂy − F̂y,sÂy (3.4.71)

âE = −max
(
0,−F̂y,eÂx

)
âN = −max

(
0,−F̂y,nÂy

)
âW = −max

(
F̂y,wÂx, 0

)
âS = −max

(
F̂y,sÂy, 0

) (3.4.72)

3.4.4.2 Right Hand Side

The difference in the form of the right side of the dimensionless Momentum equation
and the right side of the ordinary Momentum equation is the presence of the factor
1
Re

in front of the diffusive terms as seen in equation (3.4.64). The discretisation steps
for equation (3.4.64) precisely follow the steps in section 3.2, except for the equation
being integrated over the dimensionless control volume instead of the regular control
volume.

The right hand side of equation (3.4.64) can be written as equation (3.4.73).

LHS = −∇̂ ˆ̃p− 1
Re
∇̂ · σ̂ (3.4.73)

The x- and y- components of equation (3.4.73) are obtained by taking the dot product
with the unit vectors ex and ey respectively. The components of the stress tensors as
given in appendix A can then be inserted to obtain equations (3.4.74) and (3.4.75) for
x- and y respectively.

LHS = −∂
ˆ̃p

∂x̂
+ 1
Re

(
∂

∂x̂

(
µ̂
∂û

∂x̂

)
+ ∂

∂ŷ

(
µ̂
∂û

∂ŷ

))
(3.4.74)

LHS = −∂
ˆ̃p

∂ŷ
+ 1
Re

(
∂

∂x̂

(
µ̂
∂v̂

∂x̂

)
+ ∂

∂ŷ

(
µ̂
∂v̂

∂ŷ

))
(3.4.75)

Equations (3.4.74) and (3.4.75) can then be integrated over the dimensionless control
volume ĈV . For the diffusive terms, the volume integral is split, taking dV̂ = dÂxdx̂
and dV̂ = dÂydŷ as in equations (3.4.76) and (3.4.77).

LHS = −∂
ˆ̃p

∂x̂
V̂CV + 1

Re

∫
δx̂

∫
Âx

∂

∂x̂

(
µ̂
∂û

∂x̂

)
dÂxdx̂

+ 1
Re

∫
δŷ

∫
Âŷ

∂

∂ŷ

(
µ̂
∂û

∂ŷ

)
dÂŷdŷ (3.4.76)
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LHS = −∂
ˆ̃p

∂ŷ
V̂CV + 1

Re

∫
δx̂

∫
Âx

∂

∂x̂

(
µ̂
∂v̂

∂x̂

)
dÂxdx̂

+ 1
Re

∫
δŷ

∫
Âŷ

∂

∂ŷ

(
µ̂
∂v̂

∂ŷ

)
dÂŷdŷ (3.4.77)

Equations (3.4.76) and (3.4.77) take the same form as equations (3.2.38) and (3.2.39),
and the rest of the discretisation of the right hand side of the Momentum equation
follows the same steps as in section 3.2.

The dimensionless diffusion conductance is defined as in equation (3.4.78).

D̂x = 1
Re

µ̂

δx̂
D̂y = 1

Re

µ̂

δŷ
(3.4.78)

The discretised right hand side of the dimensionless Momentum equation for x- and y
are given in equations (3.4.79) and (3.4.80)

LHS = −
(

ˆ̃pI,J − ˆ̃pI−1,J
)
Âx + D̂xÂx

(
ûi+1,J − ûi,J

)
− D̂xÂx

(
ûi,J − ûi−1,J

)
+ D̂yÂy

(
ûi,J+1 − ûi,J

)
− D̂yÂy

(
ûi,J − ûi,J−1

)
(3.4.79)

LHS = −
(

ˆ̃pI,J − ˆ̃pI,J−1
)
Ây + D̂xÂx

(
v̂I+1,j − v̂I,j

)
− D̂xÂx

(
v̂I,j − v̂I−1,j

)
+ D̂yÂy

(
v̂I,j+1 − v̂I,j

)
− D̂yÂy

(
v̂I,j − v̂I,j−1

)
(3.4.80)

3.4.4.3 Combined Momentum Equation

Combining both sides of the x-component momentum equation yields equation (3.4.81)
with the coefficients in equation (3.4.82). Note that the equation is of the same form
as equation (3.2.57).

âi,J ûi,J + âi+1,J ûi+1,J + âi−1,J ûi−1,J + âi,J+1ûi,J+1 + âi,J−1ûi,J−1 = b̂i,J (3.4.81)

with

âi,J = −âi+1,J − âi−1,J − âi,J+1 − âi,J−1 + F̂x,eÂx − F̂x,wÂy + F̂y,nÂy − F̂y,sÂy

âi+1,J = −max
(
0,−F̂x,eÂx

)
− D̂xÂx

âi−1,J = −max
(
F̂x,wÂy, 0

)
− D̂xÂy

âi,J+1 = −max
(
0,−F̂y,nÂy

)
− D̂yÂy

âi,J−1 = −max
(
F̂y,sÂy, 0

)
− D̂yÂy

b̂i,J = −
(

ˆ̃pI,J − ˆ̃pI−1,J

)
Âx

(3.4.82)
Similarly, combining both sides of the y-component momentum equation yields equa-
tion (3.4.83) with the coefficients in equation (3.4.84). Note that the equation is of the
same form as equation (3.2.59).

âI,j v̂I,j + âI+1,j v̂I+1,j + âI−1,j v̂I−1,j + âI,j+1v̂I,j+1 + âI,j−1v̂I,j−1 = b̂I,j (3.4.83)
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with

âI,j = −âI+1,j − âI−1,j − âI,j+1 − âI,j−1 + F̂x,eÂx − F̂x,wÂy + F̂y,nÂy − F̂y,sÂy

âI+1,j = −max
(
0,−F̂x,eÂx

)
− D̂xÂx

âI−1,j = −max
(
F̂x,wÂy, 0

)
− D̂xÂy

âI,j+1 = −max
(
0,−F̂y,nÂy

)
− D̂yÂy

âI,j−1 = −max
(
F̂y,sÂy, 0

)
− D̂yÂy

b̂I,j = −
(

ˆ̃pI,J − ˆ̃pI,J−1

)
Ây

(3.4.84)

3.4.5 Dimensionless SIMPLE-Equations
The discretised dimensionlesss Continuity equation (3.4.56) takes the same form as
the regular discretised Continuity equation in (3.1.6) and the discretised Momentum
equation for the x- and y-component in equations (3.4.81) and (3.4.83) take the same
form as the ordinary Momentum equation for the x- and y-component in equations
(3.2.57) and (3.2.59). The dimensionless velocity and pressure correction equations will
therefore take the same forms as the ordinary velocity equation (3.3.2) and pressure
correction equation (3.3.8) which is explained in section 3.3.

The dimensionless velocity correction equation is obtained by taking the dimension-
less dimensionless Momentum equation and subtracting the dimensionless Momentum
equation for the dimensionless guessed properties. The velocity corrections of the
neighbouring nodes are omitted. The result is equation (3.4.85) for the u-velocity
component ui,J and equation (3.4.86) for the v-velocity component vI,j.

ûi,J = û∗i,J −
Âx

âcentrei,J

(
ˆ̃p′I,J − ˆ̃p′I−1,J

)
(3.4.85)

v̂I,j = v̂∗I,j −
Ây

âcentreI,j

(
ˆ̃p′I,J − ˆ̃p′I,J−1

)
(3.4.86)

The dimensionless pressure correction equation is obtained from the dimensionless dis-
cretised Continuity equation (3.4.56) and the dimensionless velocity correction equa-
tions (3.4.85) and (3.4.86). The pressure correction is obtained for the adjusted pressure
ˆ̃p following equation (3.4.87).

ˆ̃p′ = ˆ̃p− ˆ̃p∗ (3.4.87)

The dimensionless velocity correction equations (3.4.85) and (3.4.86) are inserted into
the dimensionless continuity equation (3.4.56). The equation is rearranged to collect all
the pressure correction terms on one side of the equation. This yields the dimensionless
pressure correction equation for the adjusted pressure in equation (3.4.88) with the
coefficients in equation (3.4.89).

ν̂I,J ˆ̃p′I,J + ν̂I+1,J ˆ̃p′I+1,J + ν̂I−1,J ˆ̃p′I−1,J + ν̂I,J+1 ˆ̃p′I,J+1 + ν̂I,J−1 ˆ̃p′I,J−1 = β̂I,J (3.4.88)
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with

ν̂I,J = ρ̂
Â2
x

âcentrei+1,J
+ ρ̂

Â2
x

âcentrei,J

+ ρ̂
Â2
y

âcentreI,j+1
+ ρ̂

Â2
y

âcentreI,j

ν̂I+1,J = − ρ̂
Â2
x

âcentrei+1,J

ν̂I−1,J = − ρ̂
Â2
x

âcentrei,J

ν̂I,J+1 = − ρ̂
Â2
y

âcentreI,j+1

ν̂I,J−1 = − ρ̂
Â2
y

âcentreI,j

β̂I,J = − Âxρ̂û
∗
x,e + Âxρ̂û

∗
x,w − Âyρ̂û∗y,n + Âyρ̂û

∗
y,s

(3.4.89)



4
Implementation

In this chapter, the properties of the flow are given, as well as the inlet and outlet prop-
erties, the boundary conditions and the implementation of these into the discretised
equations and the coding in MATLAB.

4.1 Properties of the Flow and the Domain
In this chapter, the fluid flow to be modelled is described, and the properties of the
flow are given.

4.1.1 Fluid Properties
The modelled fluid is water and the fluid properties will be taken to be constant with
the values given in equation (4.1.1)[31]. Gravity is assumed to be effective in z-direction
and is therefore not modelled in the two-dimensional domains.

ρ = 997
[

kg/m3
]

at 25◦C µ = 8.90 · 10−4 [ Pa· s ] (4.1.1)

4.1.2 Domain Size
Scematic representations of the doimains used are given in chapter 1. Figure 1.1 shows
the straight channel domains and figures 1.2 and 1.3 show the backwards facing step
(BFS) domain with two different expansion ratios. The expansion ratio of the BFS-
domains is given in equation (4.1.2).

Expansion ratio = H

h
(4.1.2)

where h is the height of the channel at the inlet and H is the height of the channel
after the expansion, the total height of the channel. Table 4.1 shows the sizes of the
different domains. The unit for all length scales is meter. The domain BFS 1 is used
to develop the model, and the domain BFS 2 is used to compare the results to excising

39
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Domain Total
length

Total
height

Step
length

Step
heigth

Expansion
ratio

Short channel 3 1 - - -
Long channel 22 1 - - -
BFS 1 22 1.5 3 0.5 1.5
BFS 2 35 2 5 1 2

Table 4.1: Dimensions of the different domains used for the simulations.

literature as given in Biswas et al. [4]. The dimensions for the first domain used by
Melaaen [3] were taken as example dimensions for use when developing the backwards
facing step model, and the fluid flow parameters are not matched with what was used
by Melaaen [3]. For the second domain as used by Biswas et al. [4], the Reynolds
number was matched to what is given in the article. There are still some differences
in the implementation of the simulations between this thesis and the article by Biswas
et al. [4], which are discussed in chapter 6. The expansion ratio used is actually 1.9423,
but was rounded off to 2 for simplicity.

4.2 Model Settings

In this section all necessary model settings and parameters are stated. The implemen-
tation of the boundary conditions is given in section 4.4.

4.2.1 Straight channel

Table 4.2 shows the parameters and model settings for the two dimensional straight
channel that are the same for all variations of the Reynolds number. vin is the inlet
v-velocity, pout is the outlet pressure, α are under-relaxation factors, N is the number
of scalar computational nodes in x-direction, M is the number of scalar computational
nodes in y-direction and Total is the total number of scalar computational nodes.

Parameter 000Value Unit
vin 0000 m/s
pout 0001.01325 · 105 Pa
αu 0000.01 -
αv 0000.01 -
αp 0000.02 -
N 0088 -
M 0018 -

Total 1584 -

Table 4.2: Parameters and model settings for the two dimensional model

Table 4.3 shows the different Reynolds numbers used in the simulations and the cor-
responding inlet u-velocity uin. The Reynolds number Re is calculated by equation
(2.1.8) with the hydraulic diameter as defined in equation (2.1.9).
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Re = 1120 Re = 560
uin 1 · 10−3 m/s 5 · 10−4 m/s

Table 4.3: Varying parameter for the two dimensional straight channel domain with different
Reynolds numbers.

4.2.2 Backwards Facing Step

4.2.2.1 Domain One

Domain one is shown in the schematic in figure 1.2 and the dimensions are described
in table 4.1 in the row labelled BFS 1. The model for this domain has a constant inlet
velocity. In the thesis by Melaaen [3], a parabolic inlet profile was used, but since this
domain is used to develop the backwards facing step model without matching the fluid
parameters, a constant inlet velocity is used.

Table 4.4 shows the parameters and model settings for the first two dimensional back-
wards facing step domain that are the same for all simulations using this domain. vin
is the inlet v-velocity and pout is the outlet pressure. Nnarrow is the number of scalar
computational nodes in x-direction in the narrow inlet section and Ntotal is the total
number of scalar computational nodes in x-direction. Mnarrow is the number of scalar
computational nodes in y-direction in the narrow inlet section and Mtotal is the total
number of scalar computational nodes in y-direction. Total is the total number of
scalar computational nodes.

Parameter 000Value Unit
vin 0000 m/s
pout 0001.01325 · 105 Pa
Nnarrow 0012 -
Ntotal 0088 -
Mnarrow 0012 -
Mtotal 0018 -
Total 1512

Table 4.4: Parameters and model settings for the two dimensional model

Table 4.5 shows the different Reynolds numbers for the different simulations along
with the corresponding parameters and model settings for the first two dimensional
backwards facing step domain. The Reynolds number is calculated by equation (2.1.8)
with the hydraulic diameter as defined in equation (2.1.9). α are under-relaxation
factors.

Re = 1120 Re = 560
uin 1 · 10−3 m/s 5 · 10−4 m/s
αu 0000.01 0000.005
αv 0000.01 0000.005
αp 0000.02 0000.010

Table 4.5: Varying parameters for the first backwards facing step domain with different Reynolds
numbers.
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4.2.2.2 Domain Two

Domain two is shown in the schematic in figure 1.3 and the dimensions are described
in table 4.1 in the row labelled BFS 2. The model for this domain has a parabolic inlet
velocity profile as given in equation (2.1.6)[16].

Table 4.6 shows the parameters and model settings for the second two dimensional
backwards facing step domain that are the same for all simulations using this domain.
vin is the inlet v-velocity and pout is the outlet pressure. Nnarrow is the number of
scalar computational nodes in x-direction in the narrow inlet section and Ntotal is the
total number of scalar computational nodes in x-direction. Mnarrow is the number of
scalar computational nodes in y-direction in the narrow inlet section and Mtotal is the
total number of scalar computational nodes in y-direction. Total is the total number
of scalar computational nodes.

Parameter 000Value Unit
vin 0000 m/s
pout 0001.01325 · 105 Pa
Nnarrow 0010 -
Ntotal 0070 -
Mnarrow 0010 -
Mtotal 0020 -
Total 1512

Table 4.6: Parameters and model settings for the two dimensional model

Table 4.7 shows the different Reynolds numbers for the different simulations along with
the corresponding parameters and model settings for the second backwards facing step
domain. The Reynolds number is calculated by equation (2.1.8) with the hydraulic
diameter Dhyd equal to 2h as defined by Biswas et al. [4]. α are under-relaxation
factors.

Re uavg umax αu αv αp
0000.0001 4.46 · 10−11 8.92 · 10−11 0.01 0.01 0.02
0000.1 4.46 · 10−8 8.92 · 10−8 0.01 0.01 0.02
0001 4.46 · 10−7 8.92 · 10−7 0.01 0.01 0.02
0010 4.46 · 10−6 8.92 · 10−6 0.01 0.01 0.02
0050 2.23 · 10−5 4.46 · 10−5 0.01 0.01 0.02
0100 4.46 · 10−5 8.92 · 10−5 0.01 0.01 0.02
0200 8.93 · 10−5 1.79 · 10−4 0.005 0.005 0.01
0400 1.79 · 10−4 3.57 · 10−4 0.005 0.005 0.01

Table 4.7: Varying parameter for the second backwards facing step domain with different Reynolds
numbers.

4.3 Initial Guesses
All the models start out with an initial guess for the velocity and pressure to be calcu-
lated from. The initial guesses for the different models are given in this section.
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4.3.1 Straight Channel
The initial guesses for both velocity components and the adjusted pressure were taken
as constants across the whole domain with the values as given in equations (4.3.1)-
(4.3.3). The guesses are defined after the definition of the dimensionless variables, and
the guess is therefore dimensionless.

ûguess = ûin = 1 (4.3.1)
v̂guess = v̂in = 0 (4.3.2)
ˆ̃pguess = ˆ̃pout= 0 (4.3.3)

4.3.2 Backwards Facing Step
The same expressions are used for the initial guesses for both backwards facing step
domains. The initial guesses for the velocity components were taken as two different
constant values for the narrow section and wide section of the domain. The velocity
guesses for the narrow section are given by equations (4.3.4) and (4.3.5) for the constant
inlet velocity case.

ûnarrowguess = ûin= 1 (4.3.4)
v̂narrowguess = v̂in= 0 (4.3.5)

For the parabolic inlet velocity case, the velocity guesses for the narrow section are
given by equations (4.3.6) and (4.3.7).

ûnarrowguess = ûmax (4.3.6)
v̂narrowguess = v̂in = 0 (4.3.7)

The velocity guesses for the wide section should be lower than for the narrow section
since the cross section of the channel increases after the expansion. The number of
computational points for the velocities in y-direction is used for this as shown in equa-
tions (4.3.8) and (4.3.9). The decrease in guessed value from the narrow to the wide
section is then varying with the expansion ratios for the BFS domains as given in table
4.1.

ûwideguess = ûnarrowguess

Mnarrow

Mtotal

(4.3.8)

v̂wideguess = v̂narrowguess

mnarrow

mtotal

(4.3.9)

Mnarrow is the number of u-velocity nodes in y-direction in the narrow section and
Mtotal is the number of u-velocity nodes in y-direction in total and in the wide section.
mnarrow is the number of v-velocity nodes in y-direction in the narrow section and mtotal

is the number of v-velocity nodes in y-direction in total and in the wide section.

The guess for the adjusted pressure is taken as constant across the whole domain as
given in (4.3.10).

ˆ̃pguess = ˆ̃pout = 0 (4.3.10)

4.4 Boundary Conditions
The no-slip and no-penetrate conditions are applied at the walls of the channel, which
means that both the u- and the v-velocities are zero at all walls [16].
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The momentum equations include two dimensional derivatives in both x- and y-direction,
which means that the momentum equations for the u- and v-velocity each need two
boundary conditions and two inlet/outlet conditions. The velocity at the southern and
northern walls are set to be equal to zero for both the u- and v-velocity. The inlet
u- and v-velocities are both known and are specified in section 4.2 for the different
simulation cases. This only leaves the outlet boundary.

The pressure is two dimensional in each direction x and y, which means that two
boundary conditions in each dimension are required. The boundary at the inlet as well
as the southern and northern walls are already determined by the boundary conditions
of of the velocities, and the pressure does not need to be specified. The known out-
let pressure is therefore a sufficient boundary condition for the pressure, which also
provides the last needed boundary condition for the velocities.

Below follows the implementation of the boundary conditions mentioned above for
the two dimensional straight channel. The additional boundaries and the boundary
conditions needed for the backwards facing step model are described in section 4.5.1.
The discretised momentum equation and pressure correction equations are stated for
each of the different boundaries of the domain. The velocities and pressures in the
discretised equations are noted with a letter subscript of the form uP instead of the
indexed version ui,J for simplicity. The equations are given in the dimensionless form.
The velocities in the Momentum equation are given with the notations û and v̂ in this
section, but correspond to û∗ and v̂∗ in figure 2.8. The superscript ∗ to note these
intermediate velocities are omitted in this section. The velocities û and v̂ that occur
in the source term in the pressure correction equation in this chapter are the velocities
obtained from the Momentum equations.

Where the expressions for the convective mass flux F need to be altered, only the
changed expression is given. The velocity correction can be directly obtained every-
where except at the outlet where a special implementation must be used.

4.4.1 Inlet
At the inlet, the velocities at the west node are known and are noted ûin for the û-
velocity and v̂in for the v̂-velocity. v̂in is equal to zero for all the simulation models is
therefore omitted from the below discretised equations. In the case of the parabolic
inlet velocity profile where ûin is not a constant number, an index for the current row
of the domain must be added to obtain the correct value.

4.4.1.1 Convective Mass Flux

At the inlet the convective mass fluxes F̂x,w and F̂y,w become equations (4.4.1) and
(4.4.2). Both the û-velocity nodes taking part in F̂y,w are located at the inlet.

F̂x,w = ρ̂
ûin + ûP

2 (4.4.1)

F̂y,w = ρ̂ûin (4.4.2)

4.4.1.2 Momentum Equation for the x-component

The Momentum Equation for the x-component at the inlet becomes equation (4.4.3)
with the coefficients in equations (4.4.4)-(4.4.8). The western velocity node is the
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known ûin and is therefore moved to the source term.

âP ûP + âEûE + âN ûN + âSûS = b̂P (4.4.3)

with

âP = −âE − âN − âS + F̂x,eÂx − F̂x,wÂy + F̂y,nÂy − F̂y,sÂy

+ max
(
F̂x,wÂx, 0

)
+ D̂xÂx (4.4.4)

âE = −max
(
0,−F̂x,eÂx

)
− D̂xÂx (4.4.5)

âN = −max
(
0,−F̂y,nÂy

)
− D̂yÂy (4.4.6)

âS = −max
(
F̂y,sÂy, 0

)
− D̂yÂy (4.4.7)

b̂P = −
(

ˆ̃pP − ˆ̃pW
)
Âx +

(
max

(
F̂x,wÂy, 0

)
− D̂xÂy

)
ûin (4.4.8)

4.4.1.3 Momentum Equation for the y-component

The Momentum Equation for the y-component at the inlet becomes equation (4.4.9)
with the coefficients in equations (4.4.10)-(4.4.14). The western velocity node is the
known v̂in = 0 which is omitted from the source term.

âP v̂P + âE v̂E + âN v̂N + âS v̂S = b̂P (4.4.9)

with

âP = −âE − âN − âS + F̂x,eÂx − F̂x,wÂy + F̂y,nÂy − F̂y,sÂy

+ max
(
F̂x,wÂx, 0

)
+ D̂xÂx (4.4.10)

âE = −max
(
0,−F̂x,eÂx

)
− D̂xÂx (4.4.11)

âN = −max
(
0,−F̂y,nÂy

)
− D̂yÂy (4.4.12)

âS = −max
(
F̂y,sÂy, 0

)
− D̂yÂy (4.4.13)

b̂P = −
(

ˆ̃pP − ˆ̃pS
)
Ây (4.4.14)

4.4.1.4 Pressure Correction Equation

The western velocity node is ûin which is known, and no pressure correction is needed.
ûin has therefore been directly inserted into the Continuity equation under the deriva-
tion of the pressure correction equation. No link is then created to the western
boundary. The result is equation (4.4.15) with the coefficients in equations (4.4.16)-
(4.4.20).

ν̂P ˆ̃p′P + ν̂E ˆ̃p′E + ν̂N ˆ̃p′N + ν̂S ˆ̃p′S = β̂P (4.4.15)
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with

ν̂P = −ν̂E − ν̂N − ν̂S (4.4.16)

ν̂E = − ρ̂Â2
x

âcentreu,E

(4.4.17)

ν̂N = −
ρ̂Â2

y

âcentrev,N

(4.4.18)

ν̂S = −
ρ̂Â2

y

âcentrev,P

(4.4.19)

β̂P = −Âxρ̂ûe + Âxρ̂ûin − Âyρ̂v̂n + Âyρ̂v̂s (4.4.20)

4.4.2 Outlet

At the outlet, the pressure at the eastern node is known and is noted ˆ̃pout.

4.4.2.1 Convective Mass Flux

At the outlet, the convective mass flux F̂x,e is set equal to F̂x,w as in equation (4.4.21)[2].
F̂y,e does not need to be altered.

F̂x,e = F̂x,w = ρ̂
ûW + ûP

2 (4.4.21)

(4.4.22)

4.4.2.2 Momentum Equation for the x-component

The Momentum Equation for the x-component at the outlet becomes equation (4.4.23)
with the coefficients in equations (4.4.24)-(4.4.28). The eastern velocity node ûW is
outside of the domain, and the connection to this node is broken by setting âE equal
to zero [2].

âP ûP + âW ûW + âN ûN + âSûS = b̂P (4.4.23)

with

âP = −âW − âN − âS + F̂x,eÂx − F̂x,wÂy + F̂y,nÂy − F̂y,sÂy (4.4.24)

âW = −max
(
0,−F̂x,wÂx

)
− D̂xÂx (4.4.25)

âN = −max
(
0,−F̂y,nÂy

)
− D̂yÂy (4.4.26)

âS = −max
(
F̂y,sÂy, 0

)
− D̂yÂy (4.4.27)

b̂P = −
(

ˆ̃pP − ˆ̃pW
)
Âx (4.4.28)
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4.4.2.3 Momentum Equation for the y-component

The Momentum Equation for the y-component at the outlet becomes equation (4.4.29)
with the coefficients in equations (4.4.30)-(4.4.34). The eastern velocity node ûW is
outside of the domain, and the connection to this node is broken by setting âE equal
to zero [2].

âP v̂P + âW v̂W + âN v̂N + âS v̂S = b̂P (4.4.29)
with

âP = −âW − âN − âS + F̂x,eÂx − F̂x,wÂx + F̂y,nÂy − F̂y,sÂy (4.4.30)

âW = −max
(
F̂x,wÂx, 0

)
− D̂xÂy (4.4.31)

âN = −max
(
0,−F̂y,nÂy

)
− D̂yÂy (4.4.32)

âS = −max
(
F̂y,sÂy, 0

)
− D̂yÂy (4.4.33)

b̂P = −
(

ˆ̃pP − ˆ̃pS
)
Ây (4.4.34)

4.4.2.4 Pressure Correction Equation

At the outlet, the eastern pressure node is known, and the pressure correction is zero
for the known pressure. The pressure correction can therefore be set to zero at the
eastern node which yields equation (4.4.15) with the coefficients in equations (4.4.36)-
(4.4.40).

ν̂P ˆ̃p′P + ν̂W ˆ̃p′W + ν̂N ˆ̃p′N + ν̂S ˆ̃p′S = β̂P (4.4.35)
with

ν̂P = ρ̂Â2
x

âcentreu,E

− ν̂W − ν̂N − ν̂S (4.4.36)

ν̂W = − ρ̂Â2
x

âcentreu,P

(4.4.37)

ν̂N = −
ρ̂Â2

y

âcentrev,N

(4.4.38)

ν̂S =
ρ̂Â2

y

âcentrev,P

(4.4.39)

β̂P = −Âxρ̂ûe + Âxρ̂ûw − Âyρ̂v̂n + Âyρ̂v̂s (4.4.40)

4.4.2.5 Velocity Correction Equation

Since the pressure correction at the eastern node at the outlet is zero, the eastern node
vanishes from the û-velocity correction equation, yielding equation (4.4.41).

ûP = û∗P −
Âx

âcentreP

(
− ˆ̃p′W

)
(4.4.41)

The v̂-velocity correction equation does not need to be altered.



48 CHAPTER 4. IMPLEMENTATION

4.4.3 Walls
As described at the beginning of this section, all wall velocities are zero and the no-slip
and no-penetrate conditions are used. The v̂-velocity nodes coincide with the wall at
both the northern and southern boundary of the domain. Due to the staggered grid,
the û-velocity nodes are placed so that the faces of the control volumes around the
nodes line up with the walls, while the nodes themselves are located at a distance δŷ/2
from the wall. δŷ is the height of the dimensionless control volumes.

4.4.3.1 Convective Mass Flux

Both velocities are zero at the walls. The convective mass fluxes become equations
(4.4.42)-(4.4.43) for the northern wall and equations (4.4.44)-(4.4.45) for the southern
wall.

F̂x,n = 0 (4.4.42)
F̂y,n = ρ̂v̂P (4.4.43)

F̂x,s = 0 (4.4.44)

F̂y,s = ρ̂

2 v̂P (4.4.45)

4.4.3.2 Momentum Equation for the x-component

For implementation of the wall boundary condition, the discretised right hand side
of the Momentum Equation for the x-component right after the integration over the
control volume is taken as given in equation 4.4.46. The left hand side of the equation
may be kept as before.

LHS = − ∂
ˆ̃p

∂x̂

∣∣∣∣∣
P

δx̂Âx + 1
Re

µ̂
∂û

∂x̂

∣∣∣∣∣
e

Âx,e −
1
Re

µ̂
∂û

∂x̂

∣∣∣∣∣
w

Âx,w

+ 1
Re

µ̂
∂û

∂ŷ

∣∣∣∣∣
n

Ây,n −
1
Re

µ̂
∂û

∂ŷ

∣∣∣∣∣
s

Ây,s (4.4.46)

First taking the north boundary into account, the gradient over the north face of the
control volume is defined as equation (4.4.47) by use of a central difference.

∂û

∂ŷ

∣∣∣∣∣
n

= ûwall − ûP
δŷ/2 (4.4.47)

The distance from the centre node ûP to the wall is δŷ/2. This incorporates a shear
force into the source term of the momentum equation which slows down the flow close
to the wall. The wall shear stress is defined by equation (4.4.48), and the shear force
can be defined as in equation (4.4.49)[16].

ûwall = − 1
Re

µ̂
ûP
δŷ/2 (4.4.48)

F̂s = − 1
Re

µ̂Ây
ûP
δŷ/2 (4.4.49)
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The approximated gradient in equation (4.4.47) along with the approximations for
the remaining gradients are inserted back into the right hand side of the Momentum
equation for the x-component which yields equation (4.4.50).

LHS = 1
Re

µ̂
ûE − ûP
δx̂

Âx,e −
1
Re

µ̂
ûP − ûW

δx̂
Âx,w

+ 2 1
Re

µ̂�
��ûwall − ûP
δŷ

Ây,n −
1
Re

µ̂
ûP − ûS
δŷ

Ây,s −
(

ˆ̃pP − ˆ̃pW
)
Âx (4.4.50)

Further rearranging of equation (4.4.50) and combination with the left hand side yields
the discretised Momentum Equation for the x-component (4.4.51) at the northern wall
with the coefficients as given in equations (4.4.52)-(4.4.56).

âP ûP + âEûE + âW ûW + âSûN = b̂P (4.4.51)
with

âP = −âE − âW − âN − âS + F̂x,eÂy − F̂x,wÂy + F̂y,nÂy − F̂y,sÂy

+ max
(
0,−F̂y,nÂy

)
+ 2D̂yÂy (4.4.52)

âE = −max
(
0,−F̂x,eÂy

)
− D̂xÂy (4.4.53)

âW = −max
(
F̂x,wÂy, 0

)
− D̂xÂy (4.4.54)

âS = −max
(
F̂y,sÂy, 0

)
− D̂yÂy (4.4.55)

b̂P = −
(

ˆ̃pP − ˆ̃pW
)
Âx (4.4.56)

The implementation follows the same steps for the southern wall, were central differ-
encing is used to approximate the gradient of the velocity over the southern cell face
as given in equation (4.4.57).

∂û

∂ŷ

∣∣∣∣∣
s

= ûP − ûwall
δŷ/2 (4.4.57)

This yields the discretised Momentum Equation for the x-component (4.4.58) at the
southern wall with the coefficients as given in equations (4.4.59)-(4.4.63).

âP ûP + âEûE + âW ûW + âN ûN + âSûN = b̂P (4.4.58)
with

âP = −âE − âW − âN − âS + F̂x,eÂy − F̂x,wÂy + F̂y,nÂy − F̂y,sÂy

+ max
(
F̂y,sÂy, 0

)
+ 2D̂yÂy (4.4.59)

âE = −max
(
0,−F̂x,eÂy

)
− D̂xÂy (4.4.60)

âW = −max
(
F̂x,wÂy, 0

)
− D̂xÂy (4.4.61)

âN = −max
(
0,−F̂y,nÂy

)
− D̂yÂy (4.4.62)

b̂P = −
(

ˆ̃pP − ˆ̃pW
)
Âx (4.4.63)
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4.4.3.3 Momentum Equation for the y-component

Since the v̂-velocity nodes line up with the wall, the northern or southern v̂-velocity
nodes can be set to zero directly. This yields equation (4.4.64) at the north wall with
the coefficients in equations (4.4.65)-(4.4.69).

âP v̂P + âE v̂E + âW v̂W + âS v̂S = b̂P (4.4.64)

with

âP = −âE − âW − âS + F̂x,eÂx − F̂x,wÂx + F̂y,nÂy − F̂y,sÂy

+ max
(
F̂y,nÂy, 0

)
+ D̂yÂy (4.4.65)

âE = −max
(
F̂x,eÂx, 0

)
− D̂xÂy (4.4.66)

âW = −max
(
F̂x,wÂx, 0

)
− D̂xÂy (4.4.67)

âS = −max
(
0,−F̂y,sÂy

)
− D̂yÂy (4.4.68)

b̂P = −
(

ˆ̃pP − ˆ̃pS
)
Ây (4.4.69)

Equation (4.4.70) with the coefficients in equations (4.4.71)-(4.4.75) is the correspond-
ing equation for the south wall boundary.

âP v̂P + âE v̂E + âW v̂W + âN v̂N = b̂P (4.4.70)

with

âP = −âE − âW − âN + F̂x,eÂx − F̂x,wÂx + F̂y,nÂy − F̂y,sÂy

+ max
(
F̂y,sÂy, 0

)
+ D̂yÂy (4.4.71)

âE = −max
(
F̂x,eÂx, 0

)
− D̂xÂy (4.4.72)

âW = −max
(
F̂x,wÂx, 0

)
− D̂xÂy (4.4.73)

âN = −max
(
0,−F̂y,nÂy

)
− D̂yÂy (4.4.74)

b̂P = −
(

ˆ̃pP − ˆ̃pS
)
Ây (4.4.75)

4.4.3.4 Pressure Correction Equation

Since the velocities are known at the walls, no pressure correction is needed for these
points. The direct value of the velocities at the walls, which is zero can therefore
be directly inserted into the Continuity equation under the derivation of the pressure
correction equation. This creates no link to the northern or southern boundary which
is the wall.
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Equation 4.4.76 with the coefficients in equations (4.4.77)-(4.4.81) is the pressure cor-
rection equation for the northern wall boundary.

ν̂P ˆ̃p′P + ν̂E ˆ̃p′E + ν̂W ˆ̃p′W + ν̂S ˆ̃p′S = β̂P (4.4.76)

with

ν̂P = −ν̂E − ν̂W − ν̂S (4.4.77)

ν̂E = − ρ̂Â2
x

âcentreu,E

(4.4.78)

ν̂W = − ρ̂Â2
x

âcentreu,P

(4.4.79)

ν̂S = −
ρ̂Â2

y

âcentrev,P

(4.4.80)

β̂P = −Âxρ̂ûe + Âxρ̂ûw + Âyρ̂v̂s (4.4.81)

Equation 4.4.82 with the coefficients in equations (4.4.83)-(4.4.87) is the pressure cor-
rection equation for the southern wall boundary.

ν̂P ˆ̃p′P + ν̂E ˆ̃p′E + ν̂W ˆ̃p′W + ν̂N ˆ̃p′N = β̂P (4.4.82)

with

ν̂P = −ν̂E − ν̂W − ν̂N (4.4.83)

ν̂E = − ρ̂Â2
x

âcentreu,E

(4.4.84)

ν̂W = − ρ̂Â2
x

âcentreu,P

(4.4.85)

ν̂N = −
ρ̂Â2

y

âcentrev,N

(4.4.86)

β̂P = −Âxρ̂ûe + Âxρ̂ûw − Âyρ̂v̂n (4.4.87)

4.5 Backwards Facing Step
The model for the backwards facing step is constructed in the same way as the straight
channel model, by use of global indexing. The global indexing starts in the lower left
corner right after the step as in the simple illustration in figure 4.1 for an example
resolution of 6 nodes in y-direction and 88 nodes in x-direction. Red numbers are
scalar nodes, green nodes are u-velocity nodes and blue nodes are v-velocity nodes in
accordance with the staggered grid.
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Figure 4.1: Global indexing in the backwards facing step domains.

4.5.1 Boundary Conditions for the Backwards Facing Step

The boundary conditions for the two dimensional straight channel as described in
section 4.4 are also applicable for the backwards facing step boundaries. This covers
the inlet, outlet and walls for the backwards facing step. The southern wall is not
one continuous boundary like for the straight channel, but the southern wall boundary
condition is applied to both the two segments of southern wall in the domain. This
leaves the western wall of the step in need for a boundary condition, as well as a special
implementation around the corner of the step.

4.5.1.1 Western Wall at the Step

At the western wall after the backwards facing step, the û-velocity nodes coincide with
the wall instead of the v̂-velocity nodes like for the northern and southern wall. Due
to the staggered grid, the v̂-velocity nodes are placed so that the faces of the control
volumes around the nodes line up with the walls, while the nodes themselves are located
at a distance δx̂/2 from the wall where δx̂ is the width of the control volumes.

4.5.1.1.1 Momentum Equation for the x-Component

The u-velocity nodes coincide with the wall and the known west velocity node can
be inserted directly. The Momentum Equation for the x-Component at the west wall
boundary becomes equation (4.5.1) with the coefficients in equations (4.5.2)-(4.5.6).
The western velocity node is known and equal to zero and is omitted from the equa-
tion.

âP ûP + âEûE + âN ûN + âSûS = b̂P (4.5.1)
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with

âP = −âE − âN − âS + F̂x,eÂx − F̂x,wÂy + F̂y,nÂy − F̂y,sÂy

+ max
(
F̂x,wÂx, 0

)
+ D̂xÂx (4.5.2)

âE = −max
(
0,−F̂x,eÂx

)
− D̂xÂx (4.5.3)

âN = −max
(
0,−F̂y,nÂy

)
− D̂yÂy (4.5.4)

âS = −max
(
F̂y,sÂy, 0

)
− D̂yÂy (4.5.5)

b̂P = −
(

ˆ̃pP − ˆ̃pW
)
Âx (4.5.6)

4.5.1.1.2 Momentum Equation for the y-Component

For the v-velocity, the implementation of the boundary condition at the western wall
starts with the right side of the discretised momentum equation after the integration
over the control volume as seen in equation (4.5.7). The left hand side of the equation
is kept as before.

LHS = − ∂ ˆ̃p
∂ŷ

∣∣∣∣∣
P

δŷÂy + 1
Re

µ̂
∂v̂

∂x̂

∣∣∣∣∣
e

Âx −
1
Re

µ̂
∂v̂

∂x̂

∣∣∣∣∣
w

Âx + 1
Re

µ̂
∂v̂

∂ŷ

∣∣∣∣∣
n

Ây −
1
Re

µ̂
∂v̂

∂ŷ

∣∣∣∣∣
s

Ây

(4.5.7)
The gradient at the western cell face is defined as equation (4.5.8) by use of a central
difference.

∂v̂

∂x̂

∣∣∣∣∣
w

= v̂P − v̂wall
δx̂/2 (4.5.8)

The distance from the centre node v̂P to the wall is δŷ/2. Like for the southern and
northern walls, this incorporates a shear force into the source term of the momentum
equation The wall shear stress and the shear force are defined in equations (4.4.48)
and (4.4.49). The approximated gradient in equation (4.5.8) in addition to the central
differences for the remaining gradients in equation (4.5.7) are inserted back into the
right hand side of the y-Momentum equation, and the equation is rearranged to yield
equation (4.5.9) in combination with the left side of the equation. The coefficients are
given in equations (4.5.10)-(4.5.14). The known v̂wall = 0 is omitted from the source
term.

âP v̂P + âE v̂E + âN v̂N + âS v̂S = b̂P (4.5.9)
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with

âP = −âE − âN − âS + F̂x,eÂx − F̂x,wÂy + F̂y,nÂy − F̂y,sÂy

+ max
(
F̂x,wÂx, 0

)
+ 2D̂xÂx (4.5.10)

âE = −max
(
0,−F̂x,eÂx

)
− D̂xÂx (4.5.11)

âN = −max
(
0,−F̂y,nÂy

)
− D̂yÂy (4.5.12)

âS = −max
(
F̂y,sÂy, 0

)
− D̂yÂy (4.5.13)

b̂P = −
(

ˆ̃pP − ˆ̃pS
)
Ây (4.5.14)

4.5.1.1.3 Pressure Correction Equation

The western velocity node is ûwall which is known and equal to zero, and no pressure
correction is needed. The v̂wall velocity does not occur in the pressure correction at this
point. ûwall can be directly inserted into the Continuity equation under the derivation
of the pressure correction equation and no link is then created to the western boundary.
The result is equation 4.5.15 with the coefficients in equations (4.5.16)-(4.5.20). The
known ûwall = 0 is omitted from the equation.

ν̂P ˆ̃p′P + ν̂E ˆ̃p′E + ν̂N ˆ̃p′N + ν̂S ˆ̃p′S = β̂P (4.5.15)

with

ν̂P = −ν̂E − ν̂N − ν̂S (4.5.16)

ν̂E = − ρÂ2
x

âcentreu,E

(4.5.17)

ν̂N = −
ρÂ2

y

âcentrev,N

(4.5.18)

ν̂S = −
ρÂ2

y

âcentrev,P

(4.5.19)

β̂P = −Âxρ̂ûe − Âyρ̂v̂n + Âyρ̂v̂s (4.5.20)
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4.5.1.2 Corner points

The v-velocity node directly right of the corner of the BFS-step and the u-velocity node
directly above the corner need a special treatment different from the other sections of
the domain. This is because the adjacent node cells that contribute to the equations
for these points are one wall and one normal node. This means that the wall friction
should be halved, since only half the cell face coincides with the wall. The pressure
correction equation does not need an alteration at the corner.

Figure 4.2 shows the node points around the corner. Nodes u164 and v77 are the nodes
in question. This numbering is for a coarseness of 88 computational points in total in
the x-direction and 6 computational points in total in the y-direction and corresponds
to the global indexing in figure 4.1. This is an example resolution that is not used in
the simulations.

p77

v77

u77

p164 p165u164

v164 v165

u165

Figure 4.2: Indexed computational points around the backwards facing step.

The implementation for the u-velocity follows that of the southern wall, but with the
shear stress halved like seen in equation (4.5.21)

∂û

∂ŷ

∣∣∣∣∣
s

= 1
2
ûP − ûwall
δŷ/2 (4.5.21)

This yields equation (4.5.22) with the coefficients in equations (4.5.23)-(4.5.27).

âP ûP + âEûE + âW ûW + âN ûN + âSûN = b̂P (4.5.22)
with

âP = −âE − âW − âN − âS + F̂x,eÂy − F̂x,wÂy + F̂y,nÂy − F̂y,sÂy−

+ max
(
F̂y,sÂy, 0

)
+ D̂yÂy (4.5.23)

âE = −max
(
0,−F̂x,eÂy

)
− D̂xÂy (4.5.24)

âW = −max
(
F̂x,wÂy, 0

)
− D̂xÂy (4.5.25)

âN = −max
(
0,−F̂y,nÂy

)
− D̂yÂy (4.5.26)

b̂P = −
(

ˆ̃pP − ˆ̃pW
)
Âx (4.5.27)
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Simuilarly, the implementation for the v-velocity at the corner follows that of the
western wall, but with the shear stress halved like seen in equation (4.5.28) .

∂v̂

∂x̂

∣∣∣∣∣
w

= 1
2
v̂P − v̂wall
δx̂/2 (4.5.28)

This yields equation (4.5.29) with the coefficients as given in equations (4.5.30)-(4.5.34).

âP v̂P + âE v̂E + âN v̂N + âS v̂S = b̂P (4.5.29)

with

âP = −âE − âN − âS + F̂x,eÂx − F̂x,wÂy + F̂y,nÂy − F̂y,sÂy

+ max
(
F̂x,wÂx, 0

)
+ D̂xÂx (4.5.30)

âE = −max
(
0,−F̂x,eÂx

)
− D̂xÂx (4.5.31)

âN = −max
(
0,−F̂y,nÂy

)
− D̂yÂy (4.5.32)

âS = −max
(
F̂y,sÂy, 0

)
− D̂yÂy (4.5.33)

b̂P = −
(

ˆ̃pP − ˆ̃pS
)
Ây (4.5.34)

4.6 Dimensionless Equations For Comparison

For comparing the results to existing literature on flow over the backwards facing step,
an article published by Biswas et al. [4] will be used. A different scale for the geometrical
length scales in the domain is used. Instead of scaling the lengths, areas and volumes
with the hydraulic diameter Dhyd, Biswas et al. [4] scaled these parameters with h, the
initial height of the channel. Dhyd = 2h is used for the hydraulic diameter. This means
that the scaling factor used in Biswas et al. [4] is equal to Dhyd

2 . A parabolic inlet
profile will be used instead of a constant inlet velocity, and uavg is used as scale instead
of uin for the velocities and in the pressure scale.Below follow updated dimensionless
equations for implementation to obtain a model that fits the settings used by Biswas
et al. [4].

4.6.1 Variables as functions of their dimensionless form

All variables, spatial parameters, operators and tensors expressed with dimensionless
parameters for interchanging in the transport equations are given in equations (4.6.1)-
(4.6.18).
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u = uavgû (4.6.1)

p̃ = ρu2
avg

ˆ̃p (4.6.2)

µ = µµ̂ (4.6.3)

ρ = ρρ̂ (4.6.4)

δx = h δx̂ (4.6.5)

δy = h δŷ (4.6.6)

∂

∂x
= 1
h

∂

∂x̂
(4.6.7)

∂

∂y
= 1
h

∂

∂ŷ
(4.6.8)

∇ = 1
h
∇̂ (4.6.9)

Ax = h2 Âx (4.6.10)

Ay = h2 Ây (4.6.11)

dA = h2 dÂ (4.6.12)

V = h3 V̂ (4.6.13)

dV = h3 dV̂ (4.6.14)

σ = σσ̂ (4.6.15)

σxx = −µuavg
h

2µ̂∂û
∂x̂

(4.6.16)

σyy = −µuavg
h

2µ̂∂v̂
∂ŷ

(4.6.17)

σxy = −µuavg
h

µ̂

[
∂û

∂x̂
+ ∂v̂

∂ŷ

]
(4.6.18)

4.6.2 Governing equations

The Continuity equation looks identical with the new scaling factor, as the geometrical
scale vanishes like in equation (3.4.59). The Momentum equation is made dimensionless
by interchanging the dimensionless variables in equations (4.6.1)-(4.6.18) as seen in
equations (4.6.19)-(4.6.25).

∇ · (ρuu) = −∇p̃−∇ · σ (4.6.19)
ρu2

in

h
∇̂ · (ρ̂ûû) = −p

h
∇̂ ˆ̃p− σ

h
∇̂ · σ̂ (4.6.20)

ρu2
in

h
∇̂ · (ρ̂ûû) = −ρu

2
in

h
∇̂ ˆ̃p− µuavg

h2 ∇̂ · σ̂ (4.6.21)

∇̂ · (ρ̂ûû) = −∇̂ ˆ̃p− µuavg
h2

h

ρu2
in

∇̂ · σ̂ (4.6.22)

∇̂ · (ρ̂ûû) = −∇̂ ˆ̃p− µ

ρuavgh
∇̂ · σ̂ (4.6.23)

∇̂ · (ρ̂ûû) = −∇̂ ˆ̃p− µuavg
h2

h

ρu2
in

∇̂ · σ̂ (4.6.24)

∇̂ · (ρ̂ûû) = −∇̂ ˆ̃p− 2
Re
∇̂ · σ̂ (4.6.25)

The rest of the discretisation follows the steps as given in section (3.4). The re-
sult is equation (4.6.26) with the coefficients in equations (4.6.27)-(4.6.32) for the
x-Momentum equation.

âi,J ûi,J + âi+1,J ûi+1,J + âi−1,J ûi−1,J + âi,J+1ûi,J+1 + âi,J−1ûi,J−1 = b̂i,J (4.6.26)
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with

âi,J = −âi+1,J − âi−1,J − âi,J+1 − âi,J−1 + F̂x,eÂx − F̂x,wÂy + F̂y,nÂy − F̂y,sÂy
(4.6.27)

âi+1,J = −max
(
0,−F̂x,eÂx

)
− D̂xÂx (4.6.28)

âi−1,J = −max
(
F̂x,wÂy, 0

)
− D̂xÂy (4.6.29)

âi,J+1 = −max
(
0,−F̂y,nÂy

)
− D̂yÂy (4.6.30)

âi,J−1 = −max
(
F̂y,sÂy, 0

)
− D̂yÂy (4.6.31)

b̂i,J = −
(

ˆ̃pI,J − ˆ̃pI−1,J

)
Âx (4.6.32)

Equation (4.6.33) with the coefficients in equations (4.6.34)-(4.6.39) is the y-Momentum
equation.

âI,j v̂I,j + âI+1,j v̂I+1,j + âI−1,j v̂I−1,j + âI,j+1v̂I,j+1 + âI,j−1v̂I,j−1 = b̂I,j (4.6.33)

with

âI,j = −âI+1,j − âI−1,j − âI,j+1 − âI,j−1 + F̂x,eÂx − F̂x,wÂy + F̂y,nÂy − F̂y,sÂy
(4.6.34)

âI+1,j = −max
(
0,−F̂x,eÂx

)
− D̂xÂx (4.6.35)

âI−1,j = −max
(
F̂x,wÂy, 0

)
− D̂xÂy (4.6.36)

âI,j+1 = −max
(
0,−F̂y,nÂy

)
− D̂yÂy (4.6.37)

âI,j−1 = −max
(
F̂y,sÂy, 0

)
− D̂yÂy (4.6.38)

b̂I,j = −
(

ˆ̃pI,J − ˆ̃pI,J−1

)
Ây (4.6.39)

The change in the factor in front of the diffusive terms is given in the coefficient D as
given in equation (4.6.40).

D̂x = 2
Re

µ̂

δx̂
D̂y = 2

Re

µ̂

δŷ
(4.6.40)

4.7 Convergence Criteria
Three types of convergence criteria are used, which must all be satisfied when the
model is converged.

The first type criterion C1 is the residual of the momentum equation on the form of
equation (4.7.1).

U · u∗ − bu = Ru (4.7.1)
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U is the coefficient matrix and bu is the source term for the u-velocity, while u∗ is
the calculated velocity after matrix inversion in the current iteration. C1 is defined as
given in equation (4.7.2).

C1 =
√
Ru ·RT

u (4.7.2)

C2 is the corresponding convergence criterion for the v-velocity as defined in equation
(4.7.3).

C2 =
√
Rv ·RT

v (4.7.3)

The second type criterion C3 is a summation of the source term of the pressure cor-
rection β. β is equal to the Continuity equation, and the criterion C3 determines if
the Continuity equation is fulfilled and the pressure corrections are close to zero. C3
is found by taking the absolute value of the sum of all the entries in the vector β like
defined in equation (4.7.4)

C3 =
∣∣∣∑ β

∣∣∣ (4.7.4)

The third type convergence criteria C4 checks the difference between the velocity u∗

after the matrix inversion and the initial guess ucirc coming into the current iteration.
C4 is defined as in equation (4.7.5).

C4 = max(|u◦ − u∗|) (4.7.5)

C5 is the corresponding convergence criterion for the v-velocity and is defined in equa-
tion (4.7.6).

C5 = max(|v◦ − v∗|) (4.7.6)

The convergence criteria C1, C2, C4 and C5 can be normalised with respect to the inlet
velocity uin or the average inlet velocity uavg. Since the model is dimensionless and
uin or uavg is used as a scale for the velocity, they are equal to 1 in the model and are
therefore not shown in the expressions above.

The convergence criteria for all the two dimensional models were taken as in equations
(4.7.7)-(4.7.11).

C1 < 10−8 (4.7.7)
C2 < 10−8 (4.7.8)
C3 < 10−10 (4.7.9)
C4 < 10−8 (4.7.10)
C5 < 10−8 (4.7.11)

A comparison was made testing with the limits for C1, C2, C4 and C5 set to 10−6,
10−7, 10−8 and 10−9. It was found that there was not a significant change in the results
between 10−8 and 10−9, so 10−8 is assumed sufficient.

The convergence criteria C1, C2 and C3 are dependent on the number of computational
nodes used in the domain and will by definition be larger when a higher number of
nodes are used. The limits may need adjusting if a different set of computational nodes
than what is specified in section 4.2 is used. For the convergence criteria C4 and C5
the max operator is used, and the criteria are therefore not dependent on the number
of computational nodes used in the domain.
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4.8 Plotting
The converged results are plotted using surface plots and velocity vector plots, also
known as quiver plots. The model results are dimensionless variables that must be
transferred back to their normal values before plotting.

4.8.1 Obtaining the Dimensional Variables
Equation (4.8.1) shows the relation for obtaining the ordinary velocity from the dimen-
sionless velocity.

u = uinû (4.8.1)
Equation (4.8.2) shows the definition of the dimensionless adjusted pressure ˆ̃p which is
calculated in the model.

ˆ̃p = p̃

ρu2
in

= p− pout
ρu2

in

(4.8.2)

The ordinary pressure can be obtained by equation (4.8.3) for the plotting.

p = ρu2
in

ˆ̃p+ pout (4.8.3)

The pressure correction is obtained by equation (4.8.4).

p′ = ρu2
inp̂
′ (4.8.4)

4.8.2 Velocity Vector Plots
For the velocity vector plots, a combined velocity variable must be made, combining
the u- and v- velocity components. Due to the use of a staggered grid, the velocity
components are first obtained at the locations of the scalar node points by interpolation
as in equations (4.8.5) and (4.8.6).

uI,J = 1
2 (ui−1,J + ui,J) (4.8.5)

vI,J = 1
2 (vI,j−1 + vI,j) (4.8.6)

Figure 4.3 shows the scalar node point pI,J and the surrounding node points used to
calculate the velocities at the scalar nodes. The MATLAB plotting function quiver can

vI,j-1

pI,J

vI,j

ui,Jui-1,J

Figure 4.3: The points included in the calculation of velocity for quiver/contour plots.

then be used to obtain a velocity vector plot using the u- and v components uI,J and
vI,J located at the scalar nodes. The first scalar node after the inlet is located at δx/2a
halv control volume with from the inlet
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The MATLAB plotting function contour is used to create a contour plot for combination
with the vector plot. For this, the magnitude of the combined velocities is needed,
which is found by equation (4.8.7) for the velocities at scalar nodes [30].

|uI,J | =
√
u2
I,J + v2

I,J (4.8.7)

4.9 Composition and Working Principle of the Code
In this section, a map presenting the composition of the two dimensional backwards
facing step models is given. The map shows how the model is divided into scripts,
functions and other elements as can be seen from the legend on the bottom right on page
63. The map also describes how the model for the two dimensional straight channel
is build up, the difference is that the contents of the scripts labelled u velocity,
v velocity and pressure correction are given directly in the main and not saved
in individual scripts like for the backwards facing step models. In the two dimensional
straight channel model, the helper functions are not needed. The order of calculation
in the code follows the visualisation in figure 2.8.

The main contains the definitions of all the fluid properties and the while loop that
runs for each iteration until convergence is reached. The coefficients F are obtained
from the velocities at the previous iteration before the velocities u star and v star
are obtained using F . u star and v star are then used in beta to obtain the pressure
correction p corr.

4.9.1 Code Options
Some options to plot additional parameters or to modify the models in the codes are
available in the beginning of the two dimensional straight channel model and the back-
wards facing step model with a constant inlet velocity. Some of the options were useful
in order to locate mistakes in the troubleshooting phase of the work, and others create
extra plots that may be interesting. These options are explained in this section.

4.9.1.1 Plot Initial Guesses

The option plotInitialProfiles plots the initial guesses of the velocities and the
pressure.

4.9.1.2 Plot Profiles After Each Iteration

With the option plotiterationwise enabled, the velocity, pressure and pressure cor-
rection profiles are plotted after every iteration before pausing. This option was useful
when troubleshooting, as it made it possible to see in an easy manner if the solution
is developing in the correct direction after each update.

The option printSetPlotIt plots the velocity, pressure and pressure correction profiles
are plotted each iteration specified and saved to a .gif file. The option gifIntermediates
additionally creates a .gif file with the initial guess, intermediate, correction and new
values of the two velocity components.
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main

u_velocity

v_velocity

for

Define the system dimensions and the fluid properties. 
Define initial guesses for the velocities and the pressure. 

while The loop runs until the defined maximum number 
iterations is reached or the solution is converged.

Loop runs through all the computational points. 

F_xe, F_xw, F_xn and F_xs are filled in. The 
if else statement checks if the current point 
in the for loop is at a boundary, and if so, 
the appropriate boundary condition is applied.

if else

Coefficients Fx

u_star = U\bu

for Loop runs through all the computational points. 

The coefficient matrix U and the source term 
vector bu are filled in. The if else
statement checks if the current point in the 
for loop is at a boundary, and if so, the 
appropriate boundary condition is applied.

if else

u_star

Helper functions Optional

for

F_ye, F_yw, F_yn and F_ys are filled in. The 
if else statement checks if the current point 
in the for loop is at a boundary, and if so, the 
appropriate boundary condition is applied.  

if else

Coefficients Fy

v_star = V\bv

for

The coefficient matrix V and the source term 
vector bv are filled in. The if else
statement checks if the current point in the 
for loop is at a boundary, and if so, the 
appropriate boundary condition is applied.

if else

v_star

pressure
correction

Loop runs through all the computational points. 

Loop runs through all the computational points. 

Helper functions

Helper functions

Helper functions

Optional

Optional

Optional
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Helper functions for filling in the 
coefficients needed for the backwards facing 
step model, where the index of the point 
below or above is not always intuitive.  

getRowUnder

getRowOver

getRowNumber

Helper functions:

The coefficient matrix T and the source term 
vector beta are filled in. The if else
statement checks if the current point in the 
for loop is at a boundary, and if so, the 
appropriate boundary condition is applied.

pressure
correction

p_corr = T\beta

for

if else

p_corr

main

script

function

loop / statement

Specific part

Legend:

u_corr, v_corr

u_new, v_new, p_new

Velocity corrections. 

Under-relaxation and correction. 

Check convergence

plot

Check residuals, continuity and change from last iteration.

Plot velocity and pressure profiles.

Helper functions

Loop runs through all the computational points. 

Optional

4.9.1.3 Disable Solution of v-velocity

With the option solvvel, the solution of the v-velocity component can be switched
off. In that case, the v-velocity component is set to zero across the whole domain.
This is not a realistic result for the models with a constant inlet velocity, but was still
a method to try to isolate the errors during debugging, as approximately one third of
the code is decoupled from the main.

4.9.1.4 Additional Plots

The options plotCircVels and plotCorrVels enables plotting of the intermediate
velocities u∗ and v∗ and the velocity corrections u′ and v′ respectively. In combination
with the plotiterationwise option, this allows for all the calculations and updates
in the models to be investigated.

4.9.1.5 Remove the Backwards Facing Step

The option onlyChannel in the backwards facing step model blocks off the backwards
facing step so that the domain becomes a straight channel. This was useful when
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debugging the backwards facing step model, as it could be discovered if a mistake was
related to the step.



5
Results

The results for the fluid flow models for two dimensions are given in this chapter. Three
different MATLAB models were used to obtain the results, one for the two dimensional
straight channel, one for the backwards facing step domain as used by Melaaen [3] and
one for the backwards facing step domain as used by Biswas et al. [4]. The results for
the one dimensional model are given in appendix B.

5.1 Two Dimensional Straight Channel
In this section, the results from the two dimensional straight channel model are given.
The MATLAB code channel 2D.m was used to obtain the results, and the code is given
in appendix E.

Table 5.1 shows the number of iterations and convergence times for the two dimensional
model for different channel lengths L. The short channel with length L = 3 corresponds
to the inlet section before the backwards facing step domain in figure 1.2 as used by
Melaaen [3], and shows the behaviour of the flow when it is not fully developed. The
long channel with L = 22 corresponds to the length of the whole backwards facing step
domain. N and M are the number of scalar node points in x- and y-direction, and
Total signifies the total amount of scalar node pints. 18 times 88 points were chosen as
the resolution because this corresponds to the maximum possible resolution obtained
for the BFS models.

Rei L0 N M Total Iterations Time
560 3 m 88 18 1584 2098 19 min
560 22 m 88 18 1584 2075 20 min

1120 3 m 88 18 1584 2105 21 min
1120 22 m 88 18 1584 2096 19 min

Table 5.1: Different convergence times for different numbers of computational nodes for the two
dimensional model.

The plots shown below are for the simulation with Reynolds number Re = 560.

65



66 CHAPTER 5. RESULTS

5.1.1 Short channel
In this section, the surface plots of the fluid flow parameters in a short channel with
length L = 3 are given. The height of the channel is h = 1. 18 times 88 computational
points were used for all the plots below and they are shown from both the inlet and
the outlet. The Reynolds number Re is equal to 560.

Figure 5.1 shows the u-velocity component profile for the short channel seen from the
inlet and figure 5.2 shows the same profile seen from the outlet. As can be seen, the
profile is not fully developed as the outlet profile is not yet a proper parabola.

Figure 5.3 shows the v-velocity component profile for the short channel seen from the
inlet and figure 5.4 shows the same profile seen from the outlet. There is an increase in
the v-velocity near the southern wall and a decrease near the northern wall after the
inlet. The positive flow direction for the v-velocity is upwards, which means that this
increase and decrease reflects a flow inwards towards the centre of the channel. This
corresponds well to the behaviour that is to be expected due to the friction from the
walls with a constant inlet velocity profile. The friction is largest towards the inlet,
since the inlet u-velocity is constant for all y. As can be seen, the profile is not fully
developed as the velocity at the outlet has not reached zero.

Figure 5.5 shows the pressure profile for the short channel seen from the inlet and
figure 5.6 shows the same profile seen from the outlet. Note that the scale has a low
variation, which means that the pressure is close to constant across the domain. The
slight increase in pressure at the walls at the inlet corresponds to the sharp velocity
gradients in these points, as can be seen at the came location in the velocity plots in
figures 5.1 and 5.3.

Figure 5.7 shows the pressure correction for the short channel seen from the inlet and
figure 5.8 shows the same profile seen from the outlet. Note that the scale is of order
of magnitude 10−10 Pa. When converged, the pressure correction should be close to
zero across the domain for the continuity equation to be fulfilled. The outlet pressure
is known and the pressure correction is therefore plotted as zero at the last point in
the plot at the outlet. The pressure correction does not smoothly approach zero at the
outlet as there is a small increase in the centre of the channel and decrease towards
the walls of the channel. This may mean that the outlet boundary condition is not
completely satisfied.

The flow in this case is not fully developed, which may cause some problems. At the
outlet, the velocity gradients ∂u

∂x
and ∂v

∂x
are not specified to be zero, which would be

another possible outlet boundary condition instead of specifying the outlet pressure.
For the last computational point, the convective mass flux at the east cell face Fx,e is
still specified to be equal to Fx,w, the convective mass flux at the west cell face. This
is not completely accurate when the flow is not developed.
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Figure 5.1: u-velocity seen from the inlet for the two dimensional model in a straight channel with
L = 3.

Figure 5.2: u-velocity seen from the outlet for the two dimensional model in a straight channel
with L = 3.



68 CHAPTER 5. RESULTS

Figure 5.3: v-velocity seen from the inlet for the two dimensional model in a straight channel with
L = 3.

Figure 5.4: v-velocity seen from the outlet for the two dimensional model in a straight channel
with L = 3.



5.1. TWO DIMENSIONAL STRAIGHT CHANNEL 69

Figure 5.5: Pressure p seen from the inlet for the two dimensional model in a straight channel with
L = 3.

Figure 5.6: Pressure p seen from the outlet for the two dimensional model in a straight channel
with L = 3.



70 CHAPTER 5. RESULTS

Figure 5.7: Pressure correction p′ seen from the inlet for the two dimensional model in a straight
channel with L = 3.

Figure 5.8: Pressure correction p′ seen from the outlet for the two dimensional model in a straight
channel with L = 3.
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5.1.2 Long channel
In this section, the surface plots of the fluid flow parameters in a long channel with
length L = 22 are given. The height of the channel is h = 1 like for the inlet section in
the BFS domain. 18 times 88 computational points were used for all the plots below
and they are shown from both the inlet and the outlet. The Reynolds number is Re =
560 for the plots below.

Figure 5.9 shows the u-velocity component profile for the long channel seen from the
inlet and figure 5.10 shows the same profile seen from the outlet. The flow is still
not fully developed, despite that the profile at the outlet looks to have reached the
parabolic profile. A check up of the values in MATLAB reveals that the velocity gradient
at the outlet is not zero, and the flow is therefore not fully developed.

Figure 5.11 shows the v-velocity component profile for the long channel seen from the
inlet and figure 5.12 shows the same profile seen from the outlet. There is again a flow
towards the centre of the channel right after the inlet like for the short channel. This
is seen from the increase in the v-velocity near the southern wall and the decrease near
the northern wall after the inlet and is due to the friction from the walls. The same
amount of computational points were used for the short and the long channel. This
means that the inlet section, were the largest changes in the v-velocity occur, is less
accurately represented for the extended channel. The v-velocity reaches a value close
to zero at approximately 10 m.

Figure 5.13 shows the pressure profile for the long channel seen from the inlet and
figure 5.14 shows the same profile seen from the outlet. The scale of the plot is again
of low variation, and the pressure is close to constant across the domain like for the
short channel.

Figure 5.15 shows the pressure correction for the long channel seen from the inlet and
figure 5.16 shows the same profile seen from the outlet. Note that the scale is of order
of magnitude 10−10 Pa. When converged, the pressure correction should be close to
zero across the domain for the continuity equation to be fulfilled. The outlet pressure
is known and the pressure correction is therefore zero at the outlet.

Like for the short channel, the pressure correction profile has a small wave-like jump
at the points directly before the outlet which is due to the fact that the flow is not
fully developed. The magnitude of this is very small and therefore insignificant to the
converged solution. Increasing the length of the channel until the flow is fully developed
removes this issue. For the height of 1 m, this does not occur until approximately
x = 50.

For the simulation with Re = 1120, the long channel L = 22 is visibly not long enough
for the flow do be fully developed. The u-velocity profile does not reach a parabolic
profile at the outlet, and the v-velocity profile is not completely equal to zero at the
outlet.
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Figure 5.9: u-velocity seen from the inlet for the two dimensional model in a straight channel with
L = 22.

Figure 5.10: u-velocity seen from the outlet for the two dimensional model in a straight channel
with L = 22.
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Figure 5.11: v-velocity seen from the inlet for the two dimensional model in a straight channel
with L = 22.

Figure 5.12: v-velocity seen from the outlet for the two dimensional model in a straight channel
with L = 22.
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Figure 5.13: Pressure p seen from the inlet for the two dimensional model in a straight channel
with L = 22.

Figure 5.14: Pressure p seen from the outlet for the two dimensional model in a straight channel
with L = 22.
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Figure 5.15: Pressure correction p′ seen from the inlet for the two dimensional model in a straight
channel with L = 22.

Figure 5.16: Pressure correction p′ seen from the outlet for the two dimensional model in a
straight channel with L = 22.
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5.2 Backwards Facing Step Model
In this section, the results for the flow over the backwards facing step are given. The
two domains shown in figures 1.2 and 1.3 were used, the first was used to develop the
model and the second was used to compare the result with Biswas et al. [4] for different
Reynolds numbers. The results for the domain in figure 1.2 are shown in section 5.2.1
and the results for the domain in figure 1.3 are shown in section 5.2.2.

5.2.1 Constant Inlet Velocity
In this section, the results for the flow over the backwards facing step domain as used
by Melaaen [3] are given. The domain has a total length of L = 22 m which corresponds
to the length of the long channel as shown in section 5.1.2. All the dimensions of the
domain are given by figure 1.2 and in table 4.1. The MATLAB code channel BFS.m
was used to obtain the results, and is given in appendix E. 18 times 88 computational
points with a total of 1512 scalar nodes were used for all the plots below and they
are shown from both the inlet and the outlet. This resolution is around the highest
possible resolution for the model with the current settings without the model stopping
due to singularity in one or more of the coefficient matrices.

Table 5.2 shows the two different inlet u-velocities used as given in section 4.4 and the
corresponding number of iterations and computational time before convergence was
reached. The under-relaxation factors were reduced to half for Re = 560 in comparison
to Re = 1120 as described in section 4.2.

uin Re Iterations Time
1 · 10−3 1120 10261 1 h 35 min
5 · 10−4 0560 12286 1 h 44 min

Table 5.2: Number of iterations and convergence time for the backwards facing step model with a
constant inlet velocity.

Below the plotted results for Re = 560 are shown. The hydraulic diameter Dhyd is
defined as in equation (2.1.9), and is equal to h.

5.2.1.1 Surface Plots

Figure 5.17 shows the u-velocity component profile for the flow over the backwards
facing step seen from the inlet and figure 5.18 shows the same profile seen from the
outlet. As can be seen, the profile is fully developed at around x = 8 as the outlet
profile is parabolic and the profile does not change further. The recirculation zone after
the step is visible, but is easier to see from the velocity vector plots given in section
5.2.1.2 where the u- and v-velocity components are combined.

Figure 5.19 shows the v-velocity component profile for the flow over the backwards
facing step seen from the inlet and figure 5.20 shows the same profile seen from the
outlet. As can be seen, the profile at the inlet follows the pattern from the flow in the
straight channel as presented in section 5.1, where there is a preliminary flow towards
the centre of the channel. The flow is fully developed as the outlet profile is zero.

Figure 5.21 shows the pressure profile for the flow over the backwards facing step seen
from the inlet and figure 5.22 shows the same profile seen from the outlet. Like for the
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two dimensional straight channel plots the scale is of low variation, and the pressure is
close to constant across the domain.

Figure 5.23 shows the pressure correction for the flow over the backwards facing step
seen from the inlet, and figure 5.24 shows the same profile seen from the outlet. Unlike
the result from the two dimensional straight channel, the pressure correction is equal to
zero towards the outlet because the flow is fully developed. The same outlet boundary
condition and implementation was used in all cases.

Figure 5.17: u-velocity seen from the inlet for the backwards facing step model.

Figure 5.18: u-velocity seen from the outlet for the backwards facing step model.
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Figure 5.19: v-velocity seen from the inlet for the backwards facing step model.

Figure 5.20: v-velocity seen from the outlet for the backwards facing step model.

Figure 5.21: Pressure p seen from the inlet for the backwards facing step model.
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Figure 5.22: Pressure p seen from the outlet for the backwards facing step model.

Figure 5.23: Pressure correction p′ seen from the inlet for the backwards facing step model.

Figure 5.24: Pressure correction p′ seen from the outlet for the backwards facing step model.
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5.2.1.2 Velocity Vector Plots

In the velocity vector plots shown in this section, the velocities are represented as
arrows. The background color signifies the value of the velocity at each point. In all
the velocity vector plots presented in this thesis, dark blue represents the lowest value
and yellow is the highest possible value as seen in figure 5.25. The actual value of the
velocities varies for all the plots. The arrows show the direction of the velocity in each
point, but the magnitude is also reflected in the length of each arrow. The arrows are
scaled relatively, which means that the highest velocity in the domain is assigned a
specific arrow length and all the other arrow lengths are scaled accordingly. The points
at which each velocity is calculated are located at the beginning of the stem of each
arrow.

|uI,J|min |uI,J|max

Figure 5.25: Color scale used in the velocity vector plots.

Figure 5.26 shows the velocity vector plot for the combined u and v-velocity for the
flow over the backwards facing step.

Figure 5.26: Velocity vector plot for the backwards facing step model.

Figure 5.27 shows a zoomed in version of the same velocity plot as in figure 5.26. The
plot is zoomed in to show the flow from the steps to three times the width of the step.
The length of the arrows is scaled to 3 times the length of the arrows in figure 5.26. The
recirculation zone is visible. Since the resolution is quite low, it is hard to determine
where the flow separation due to the recirculation zone ends, but it is clear that it is
somewhere at around 6 m. This is equivalent to around 12 times the step height.



5.2. BACKWARDS FACING STEP MODEL 81

Figure 5.27: Velocity vector plot for the backwards facing step model zoomed in on the
recirculation zone after the step.

5.2.2 Parabolic Inlet Velocity Profile

In this section, the results for the flow over the backwards facing step domain as used
by Biswas et al. [4] are given for a variety of low Reynolds numbers. The domain has
different dimensions from the domain used to obtain the results in section 5.2.1, all
dimensions are given by figure 1.3 and in table 4.1. The total length of this domain is
L = 35.

A parabolic profile was used at the inlet for the u-velocity instead of the constant inlet
velocity used in section 5.2.1. The MATLAB code channel BFS parabolic.m was used
to obtain the results, and is given in appendix E. 20 times 70 computational points
with a total of 1300 scalar nodes were used for all the simulations. The results were
obtained for a variety of Reynolds numbers and will be compared in chapter 6 to the
results found by Biswas et al. [4].

Table 5.3 shows the different Reynolds numbers used for the flow over the backwards
facing step with a parabolic inlet velocity profile as specified in table 4.7. The number
of iterations and the convergence times for the model are also shown. Biswas et al.
[4] provides results for Reynolds numbers between 0.0001 and 100, and the higher
Reynolds numbers were added to see how the model behaves. For the two higher
Reynolds numbers, the under-relaxation factors were halved compared to the lower
Reynolds numbers to achieve convergence. The hydraulic diameter Dhyd is defined as
2h like by Biswas et al. [4]. Still h is used as a scaling parameter for all the spacial
dimensions, which means that the Reynolds numbers in this section are equivalent the
Reynolds numbers in section 5.2.1.
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Re [-] Iterations [-] Time
0000.0001 01879 11 min
0000.1000 01879 13 min
0001.0000 01879 13 min
0010.0000 02033 13 min
0050.0000 02599 18 min
0100.0000 03284 22 min
0200*0000 10280 63 min
0400*0000 18726 117 min

Table 5.3: Number of iterations and convergence time for the backwards facing step model with
parabolic inlet profile for a range of Reynolds numbers. * Under-relaxation factors were halved.

5.2.2.1 Velocity Vector Plots

In this section, the velocity vector plots for the set of Reynolds numbers as shown in
table 5.3 are given. In all the velocity vector plots dark blue represents the lowest value
of the velocity in the domain for the current settings and yellow is the highest possible
value for the velocity (see figure 5.25). The whole domain is shown in all the plots,
which makes it difficult to see the recirculation zones after the step in detail. Zoomed
in plots of the recirculation zones for the different Reynolds numbers are compared in
section 5.2.2.2.

Figure 5.28 shows the velocity vector plot for the combined u and v-velocity for the
flow over the backwards facing step with the Reynolds number Re = 0.0001. There is
no visible recirculation zone.

Figure 5.28: Velocity vector plot for the backwards facing step model with Re = 0.0001.

Figure 5.29 shows the velocity vector plot with Reynolds number Re = 0.1. There is
still no visible recirculation zone.
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Figure 5.29: Velocity vector plot for the backwards facing step model with Re = 0.1.

Figure 5.30 shows the velocity vector plot with Reynolds number Re = 1. There is
no visible recirculation zone. Figure 5.31 shows the velocity vector plot with Reynolds
number Re = 10. The recirculation zone is not prominent for the Reynolds numbers
between 0.0001 and 10, and the velocity plots look very similar. Figure 5.32 shows the
velocity vector plot with Reynolds number Re = 50. The recirculation zone is starting
to develop after the step. Figure 5.33 shows the velocity vector with Reynolds number
Re = 100. The recirculation zone is visible. Figure 5.34 shows the velocity vector with
Re = 200. The recirculation zone is now easy to spot. Figure 5.35 shows the velocity
vector with Re = 400. The recirculation zone is visible, and a secondary recirculation
zone is appearing at the northern wall after the first zone next to the step. This zone
was observed by Armaly et al. [7] for Reynolds numbers larger than 400.
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Figure 5.30: Velocity vector plot for the backwards facing step model with Re = 1.

Figure 5.31: Velocity vector plot for the backwards facing step model with Re = 10.
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Figure 5.32: Velocity vector plot for the backwards facing step model with Re = 50.

Figure 5.33: Velocity vector plot for the backwards facing step model with Re = 100.
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Figure 5.34: Velocity vector plot for the backwards facing step model with Re = 200.

Figure 5.35: Velocity vector plot for the backwards facing step model with Re = 400.
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5.2.2.2 Comparison of Recirculation Zone

Figure 5.36 show zoomed in versions of the velocity vector plots given in section 5.2.2.1.
The plots show the recirculation zones after the backwards facing step for the same set
of low Reynolds numbers as used by Biswas et al. [4]. The section shown is the flow
between x = 5 to five times the step height at x = 10. The length of the arrows is
scaled 3 times in comparison to the arrows in figures 5.28-5.35.

Figure 5.37 show the same zoomed in versions of the velocity vector plots as in figure
5.36 with the addition of two higher Reynolds numbers of 200 and 400 as given in table
4.7. The section shown is the flow between the step at x = 5 to 7.5 times the step
height at x = 12.5. The length of the arrows is scaled 3 times in comparison to the
arrows in figures 5.28-5.35.

As can be seen from figures 5.36 and 5.37, there is seemingly a slight flow out from
the wall of the step to the very left of the figure. This is especially apparent from
the northernmost point east of the step, which can also be seen in figure 5.27. This
behaviour is not physical, as there should be no flow through the wall. The point in
question is not located directly at the wall and a nonzero velocity value here would be
feasible. It appears that the velocity is not affected by the v-velocity component at all
in any of the cases. This may mean that there is an error in the implementation of the
boundary condition at this western wall. Although there is seemingly a slight velocity
out from the wall here, it should not be a large problem, since the magnitude of the
velocity is very small compared to the rest of the channel.

Figure 5.38 shows the flow plots from Biswas et al. [4] for comparison to the results
for the Reynolds number study from Biswas et al. [4] who also used the Finite Volume
method for the results and the SIMPLE algorithm for obtaining the pressure. The
whole height of the domain are shown, but in x-direction the plots are cropped to
include 1 m of the inlet section before the expansion and 3 meters after the expansion.
The origin of the coordinate system is located at the corner of the backwards facing
step, so that x = 3 in figure 5.38 corresponds to x = 8 in figure 5.36.

Due to the coarseness of the grid used in the simulations in this thesis, the recirculation
in the corner for the Reynolds numbers lower than 10 are not visible in figure 5.36. For
Re = 50 and Re = 100 the recirculation can be seen, and the reattachment lengths are
in accordance with the results in figure 5.38. The reattachment length is the length of
the recirculation zone from the step and until the end of the zone, where the flow no
longer curves back towards the step at the southern wall. The agreement of the results
are discussed further in chapter 6.



88 CHAPTER 5. RESULTS

Figure 5.36: Comparison of the recirculation zone over the backwards facing step for different
Reynolds numbers. a) Re = 0.0001, b) Re = 0.1, c) Re = 1, d) Re = 10, e) Re = 50 and f) Re = 100.
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Figure 5.37: Comparison of the recirculation zone over the backwards facing step for different
Reynolds numbers. a) Re = 0.0001, b) Re = 0.1, c) Re = 1, d) Re = 10, e) Re = 50, f) Re = 100,

g) Re = 200 and h) Re = 400.
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Figure 5.38: Flow over the step as found by Biswas et al. [4]. a) Re = 0.0001, b) Re = 0.1, c)
Re = 1, d) Re = 10, e) Re = 50, f) Re = 100.



6
Discussion

In this section, the results as presented in chapter 5 are further discussed, the accuracy
of the models that were developed during the work with this thesis are assessed and
the improvements from the models developed in the previous project on the topic are
discussed.

6.1 Straight Channel Model
The two dimensional model yields good results that fit the expectations. The profiles
are symmetrical around the centre of the channel due to the lack of gravity in the
modelled dimensions. There are some minor inaccuracies at the outlet when the flow is
not fully developed, which is visible from the pressure correction profile. The boundary
conditions applied are tailored to fully developed flow, so for this domain a longer
channel is needed to obtain the correct results at the outlet.

6.2 Backwards Facing Step Model
In this section, the results from the backwards facing step models are discussed fur-
ther, and the differences between the results and the findings by Biswas et al. [4] are
discussed.

The flow becomes fully developed in all the simulations that were performed. In the
simulations with a constant inlet velocity, the Reynolds number is quite high and close
to the turbulent transition region, depending on the definition of this region. According
to the definition in equation (2.1.11), the Reynolds numbers are well within the laminar
range, but according to the definition in equation (2.1.12) only the four lowest Reynolds
numbers in section 5.2.2 are in the laminar range. This may mean that the results in
section 5.2.1 are less accurate than the results in section 5.2.2, which are obtained for
a range of low Reynolds numbers.
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Armaly et al. [7] and Biswas et al. [4] state that the flow over the backwards facing
step is of two dimensional behaviour for Reynolds numbers below 400. In the first
domain, the Reynolds numbers were chosen to be higher than this, which means that
they might be inaccurate due to the lack of impact from the third dimension. The
results from the second domain are all obtained for Reynolds numbers lower than and
including 400 and should therefore be more accurate. It can be seen from the plots in
section 5.2.1 that the recirculation zone is not as smoothly represented as for the plots
in section 5.2.2.

6.2.1 Convergence
The convergence times for the models can be seen from tables 5.2 and 5.3. In the
first simulations with a constant inlet velocity, the computational time increases from
Re = 1120 to Re = 560. The under-relaxation factors had to be halved for the
simulations with Re = 560 to converge, which is probably the main reason for this.
Another possible reason could be that because the recirculation zone is smaller for the
lower Reynolds number, but less computational nodes are available in the area of the
zone. This means that the model is struggling to determine the properties at each
point because there are too few discrete points in the domain to accurately describe
the behaviour.

In the second set of simulations, with the parabolic inlet profile, the convergence times
are significantly lower for the lowest Reynolds numbers than in the first domain. At
Re = 200 and 400, the under-relaxation factors were halved to achieve convergence,
which partly can explain why the convergence times peak at these Reynolds numbers.
Looking at the trend from the lowest Reynolds numbers and to the higher, it is clear
that the computational time is increasing with the increased Reynolds numbers. This
might be due to the apparent lack of recirculation zone for the lowest Reynolds numbers,
and the streamline behaviour of the flow makes it easy for the model to determine the
properties in each node. At the Reynolds numbers where the recirculation starts to
appear, the computational time increases. Like for the first simulation domain, the
coarseness of the grid due to the relatively few computational nodes might mean that
the model struggles to place the recirculation at the discrete points.

In general, the reason for the longer convergence times for the first backwards facing
step domain may be that the step height is equal to a half of the inlet height. With
the resolution used, the section below the step is only represented by 6 scalar node
points in the y-direction, which might not be enough to represent the recirculation
accurately, making the model struggle to determine the values at each points. In the
second backwards facing step domain, the step is of the same height as the inlet, and is
represented by 10 scalar node points in y -direction. This might relax the model since
there is less need to force the behaviour of many points into a small set of points.

A higher resolution was not possible to obtain as the models would not converge, or the
under-relaxation factors had to be decreased to minuscule values, yielding very long
computational times.
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6.2.2 Under-relaxation
As specified in section 4, the under-relaxation factors are generally around the mag-
nitude of 0.01 for the backwards facing step and the straight channel models. The
factors had to be halved for Re = 560 in the first domain, and for the highest Reynolds
numbers of 200 and 400 in the second domain.

0.01 is a low value, but higher choices of under-relaxation factors lead to divergence.
This could for example have been because the initial guesses were too far away from the
solution, or it could be affected by the number of computational nodes. In general it
was found that for the straight channel, the under-relaxation factors could be increased
when the number of computational nodes was decreased. For the much simpler one-
dimensional model as presented in appendix B, the under-relaxation of the velocity is
set to 1 and 0.05 for the pressure.

As mentioned in section 2, a suggested relation for the choice of under-relaxation factors
are given by equation (2.2.22), where αu + αp = 1, ideally with αp and αu equal to
approximately 0.2 and 0.8 respectively. This suggestion is very far away from what
was a feasible choice of under-relaxation for the two dimensional models in this thesis,
but fits better for the one-dimensional model.

6.2.3 Accuracy of Results
As can be seen by comparing figures 5.36 and 5.38, the recirculation zones after the
backwards facing step are consistent with what was found by Biswas et al. [4]. The
reattachment lengths for Re = 100 and Re = 400 are stated in the text in the article
to be 2.6 and 7.708 times the step height respectively. This fits well with the profiles
in 5.37, where 2.6 times the step height corresponds to x = 7.6 and 7.708 times the
step height corresponds to x = 12.7 which is just outside the edge of the plot.

On the other hand, by comparing figures 5.28-5.34 to figure 5.38, it is apparent that
the flow changes directions over the step in a sharper manner than the literature result.
That is, the v-velocity component is larger in magnitude than expected in this area.
Differences in the solution method or model setup may mean that the results are not
directly comparable. The dimensions of the domain as well as the fluid parameters were
matched to the specifications given by Biswas et al. [4], but there are other differences
that may explain the deviations.

Since the Upwind Difference Scheme is used as the discretisation scheme for the model
equations in this thesis, the model is first order accurate. This was chosen because
of the simplicity and the stable solution. Biswas et al. [4] instead used a central
differencing scheme, which is second order accurate. This means that the results found
in this thesis are more stable, but have been more smoothed out and are less precise.
As described in section 2.3, the Upwind Differencing Scheme is prone to false diffusion
in the results for flows that do not align with one of the coordinate vectors. At the
step, the flow takes a more diagonal direction into the expanded section, which may
explain the difference in the flow over the step. As mentioned, this effect is worst at
low resolutions, which is also the case for this thesis.

Biswas et al. [4] are using a much larger number of computational nodes, which is
why the results are able to show the recirculation zones also for the lowest Reynolds
numbers. It is specified that approximately 44000 control volumes were used for the
corresponding case, with 160 control volumes in y-direction. Also a local grid refining
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technique is used in the corner after the step, yielding a more finely meshed grid
here.

Another difference is that the channel is rotated 90 degrees around the x-axis in [4],
so that the y-direction is the natural choice if gravity is included. It is not specified in
the article if gravity is implemented, but if it is this may cause some differences in the
results since gravity is neglected in this thesis.

6.3 Model Improvements from Specialisation Project

As mentioned in the introduction, this thesis is a continuation of work done in the fall
specialisation project. Models for the one-dimensional and two dimensional straight
channels as well as the backwards facing step flow was developed in this project, and
the improvements done to the models are discussed in this section. Debugging and
troubleshooting of the MATLAB models took up a vast amount of the time during the
course of this thesis work.

The issues with the previous code were mainly that the convergence time was vast and
that the fluid properties could not be varied, which made it clear that something was
wrong in the model.

The large convergence times were due to the fact that the SIMPLE-algorithm was
wrongly implemented. The main issue was that the pressure correction was obtained
not by using the velocities from the current iteration, but from the previous, acting
like an additional under-relaxation of the solution. In addition, the velocity corrections
were not performed correctly. Correcting the algorithm reduced the computational
time.

For the backwards facing step model, the domain had been split into two computa-
tional sub-domains for simplicity with an artificial boundary located at the step. The
velocities and pressure for the narrow and wide section were therefore solved separately.
This way the code for the straight channel could be implemented directly for the back-
wards facing step model with the addition of new boundary conditions for the artificial
boundary. This unsophisticated method in addition to the slow and wrong solution
algorithm caused the model to take approximately 14 hours to converge with the same
resolution as is used in this thesis. Instead, in this thesis, the backwards facing step
domain is solved as one globally indexed domain, which reduced the computational
time drastically.

The second problem was related to that the fluid parameters had to be kept to a set of
values, since the models only ran with uin = 1 and µ = 1 without divergence. It became
clear that this was related to numerical issues, since the desired low velocity values of a
around 10−5 were overshadowed by the high pressure values of magnitude 105. The low
velocities were then likely rounded off to zero in the computations. As a remedy, an
adjusted reference pressure was implemented instead, so that the pressure was scaled
to zero at the outlet. This removed the large differences in magnitude between the
velocities and the pressure, and allowed for the two dimensional straight channel to
run with the desired fluid parameters. This model still did not work properly, and
even though it converged, but the v-velocity profile had a visibly wrong spear-like
behaviour at the outlet. The backwards facing step model still did not run without
divergence.
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The solution to these still present numerical issues was to transform the fluid flow
equations into their dimensionless form. This way, all the fluid parameters were defined
as desired, and scaled to and solved with values close to one, resembling the values
used in the functioning model from the fall project. This way, the models became
more robust to the choice of fluid parameters and can be solved for a range of different
Reynolds numbers.

In the troubleshooting phase to discover the mistakes as discussed above, different
tests were performed, some of which are explained in section 4.9.1. Adjustments to the
boundary conditions are an example of tests that were employed to locate the mistakes.
A typo in the velocity scripts that had occurred during the troubleshooting phase took
a lot of time to locate.
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7
Grid Generation

In this chapter the basic theory behind grid generation is given. Grid generation
is used to obtain a mesh in the domain for use when solving the same models as
described earlier in this thesis in generalised curvilinear coordinates instead of Cartesian
coordinates. The discretisation of these grid generation equations is also given. The
discretised governing equations formulated in generalised curvilinear coordinates are
stated. The implementation of the grid generation equations in MATLAB is explained,
and the results are given.

7.1 Theory
This section includes the theory behind grid generation for use when solving fluid flow
in generalised curvilinear coordinates. The equations used are for two dimensions.

7.1.1 Generalised Curvilinear Coordinates
Curvilinear coordinates are coordinates that may be located on curved lines. Gener-
alised coordinates are coordinates that are defined relative to coordinates in a simpler
reference domain [32]. The reference domain, for example a square, can be divided
into points in a simple matter, for example defined by a Cartesian approach. Each
point in the reference domain then has a mapping to a point in the physical domain
defined by the general coordinates. These mappings across the whole domain creates
a non-uniform grid in the physical space.

Equation (7.1.1) shows the mapping from the curvilinear coordinates q1, q2 to the
Cartesian coordinates x, y.

(q1, q2)→ (x, y) (7.1.1)

7.1.2 Grid generation
To produce the grid in the physical domain, a grid generator is needed [3]. The solution
method for the fluid flow is not dependent on this grid generation. The function of the

97
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grid generator is to make an automatic distribution of grid lines which section off the
control volumes in the domain and to provide a connection between the computational
and physical domain. Then the corner points of the control volumes can be transformed
back into regular control volumes in the physical domain for solving. The properties
of the generated grid effects the accuracy, stability and convergence rate of the model,
and some models may be more sensitive to the choice of grid generator than other
models.

A structured grid will be produced with the equations chosen in this work. This
means that the curvilinear mesh in the physical domain is generated so that for each
curvilinear coordinate, one coordinate line coincides with the boundary of the physical
domain [32][33]. A two dimensional structured grid consists of quadrilateral cells, while
an unstructured grid consists of triangles [34].

The first step to produce a structured grid is to distribute the boundary grid points
for the domain. After this the inner grid points can be obtained. The grid inside the
domain is called the volume grid [33]. The volume grid can be found algebraically or by
using PDEs, commonly elliptic or hyperbolic equations. When using PDEs to generate
the grid, a valid grid is needed for an initial guess. This grid can be generated by use
of an algebraic method.

By using an algebraic generator, the transformation between the physical and compu-
tational space is described by a direct function. The Transfinite Interpolation (TFI)
technique is the most common algebraic grid generator and was first introduced by
Gordon and Hall [35]. By first defining the computational points along the boundary
of the domain, the central points are obtained by interpolation.

Elliptic equations are most common to use when using PDE generators and were first
introduced by Thompson et al. [36]. A smooth grid will be created for the whole do-
main. There is also flexibility in the use in that it is possible to adjust grid spacing
and expansion ratio near the boundaries, and the angle between the grid lines and the
boundary can be controlled. A few disadvantages to the method are that the compu-
tational time is higher than other methods, and that there are numerical difficulties
associated with the method [33].

Figure 7.1 shows an example of a structured grid that has been obtained using the
elliptic grid generation equations as described above. The figure is taken from Mohebbi
[34].
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b) Structured grid generated using elliptic grid generation technique 

Figure 2-1 Unstructured and structured grids 

 
 
Two structured grid generation methods considered in this study are Elliptic 
Grid Generation (PDE) and Transfinite Interpolation Grid Generation 
(Algebraic). Elliptic grid generation was proposed by Thompson [74] and is 
based on solving a system of elliptic partial differential equations to distribute 
nodes in the interior of the physical domain. This type of grid generator gives 
rise to grids which are uniformly distributed, even for non-smooth boundaries. 
Structured grid generation methods have been extensively studied in 
references [75-78]. Three unstructured grid generation procedures mainly used 
for the finite element method are the Delaunay triangulation, the advancing 
front method, and the finite octree method [79]. Unstructured grid generations 
techniques are covered in the course computational geometry [76, 78, 80-82] 
which is not within the scope of the thesis. 
 
 

2.2 Elliptic Grid Generation 
In order to obtain the numerical solution of a 2D heat conduction problem 
with a regular geometry, the finite difference method (FDM) has a major 
advantage: its computational simplicity enables us to generate uniformly 

Figure 7.1: Example of a structured grid obtained by use of the elliptic grid generation.
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7.1.3 Procedure and Equations
For the grid generation in this thesis, the TFI method is used to obtain an initial grid
which serves as an initial grid for an elliptic grid generator. This grid generation can
generally be described by the following steps:

1. Define where the corner or boundary points in the physical domain are located
in the computational domain

2. Find the location of the boundary points in the physical domain using the TFI
method

3. Find the inner computational points of the physical domain using the TFI method

4. Iterate using the elliptic equation with the inner points from the previous step
as an initial guess to generate a better grid

These four steps and the equations used are described below.

7.1.3.1 Map corners

Figure 7.2 shows the physical and computational domain and the position of the corner
points of the physical domain in the computational domain.

Physical domain Computational domain

F

E

B C

 D

A

A F E

B C

D

(q1 , q2 )

(q1 , q2 )

(q1 , q2 )

(q1 , q2 )

22

11 12

21

Figure 7.2: Transformation between the physical and the computational domain when using a grid
generator.

Equations (7.1.2) to (7.1.5) shows the coordinates of the boundary points in the com-
putational domain as seen in figure 7.2.

Line segment A B : q1 = q1
1 (7.1.2)

Line segment B C : q2 = q2
2 (7.1.3)

Line segment C D : q1 = q1
2 (7.1.4)

Line segment D A : q2 = q2
1 (7.1.5)

In this thesis, the grid spacing δq1 and δq2 for both dimensions in the computational
domain are chosen to be equal to unity. The span of values of the curvilinear coordinates
q1 and q2 can be chosen freely, and setting both the width and the height of the
grid in the computational space to unity yields a square mesh over the whole square
computational domain [37].
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7.1.3.2 TFI - Define Boundary Points and Internal Points

The boundary points are defined using Transfinite Interpolation. Equations (7.1.6) and
(7.1.7) are the linear Lagrange interpolation functions written individually for q1 and
q2 respectively. These equations are used to distribute points on the boundary in the
computational domain in figure 7.2 [3]. The boundary is defined by lines where either
q1 or q2 is constant.

r(q1, q2) =
2∑

n=1
φn

(
q1

I

)
r
(
q1
n, q

2
)

(7.1.6)

r(q1, q2) =
2∑

m=1
ψm

(
q2

J

)
r
(
q1, q2

m

)
(7.1.7)

r is the position vector and I and J are the maximum values of q1 and q2 respectively.
φ and ψ are Lagrange interpolation polynomials, also known as blending functions
[3][32][33].

Equation (7.1.8) provides the internal grid points.

r(q1, q2) =
2∑

n=1
φn

(
q1

I

)
r
(
q1
n, q

2
)

+
2∑

m=1
ψm

(
q2

J

)
r
(
q1, q2

m

)

−
2∑

n=1

2∑
m=1

φn

(
q1

I

)
ψm

(
q2

J

)
r
(
q1
n, q

2
m

)
(7.1.8)

7.1.3.3 Iterate using Elliptic Generation System

The elliptic generation system generates an elliptic grid by solving partial differential
equations. Equation (7.1.9) is a system of Poisson equations where the curvilinear
coordinates q1 and q2 are then the dependent variables and the Cartesian coordinates
x and y are the independent variables [33]. This equation is discretised and iterated
until the satisfactory grid is achieved.

gij
∂2r

∂qi∂qj
+ P j ∂r

∂qj
= 0 (7.1.9)

gij are the contravariant tensor components and P j are the control functions. Einstein
summation notation is used [38][16]. The discretisation of equation (7.1.9) is given in
section 7.4. It is common to use second-order central finite differences, which yields a
set of linear algebraic equations that is easy to solve [33].

7.2 Governing Equations in General Coordinates
In this section, the governing equations in generalised curvilinear coordinates are stated.
These equations can be used to solve the fluid flow problem over the backwards facing
step domain in generalised curvilinear coordinates after a grid is obtained using the
methods described in this chapter. They are included in this thesis to provide an
impression of what the next step is after the grid generation in order to achieve the
finished fluid flow model using generalised coordinates. The equations are taken from
Melaaen [3], where the procedure with details is explained in sections 3.2 - 3.3. The
equations are stated with the notation used by Melaaen [3] since the steps and the
meaning behind all symbols are stated there. ξi corresponds to qi above.
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Equation (7.2.1) is Navier-Stokes equation in Cartesian coordinates.

∂

∂t
(ρuk) + ∂

∂xi
(ρuiuk) = ∂

∂xi

(
µ
∂uk
∂xi

)
+ Suk

(7.2.1)

The source term Suk
is defined as in equation (7.2.2).

Suk
= ∂

∂xi

(
−pδik + µ

∂ui
∂xk
− 2

3µδik
∂ul
∂xl

)
+Bk (7.2.2)

When the source term Suk
in equation (7.2.2) is integrated over the control volume

CV , the pressure term in the source term becomes equation (7.2.3).
∫
δV
− ∂p

∂xk
dV = −

(
∂p

∂xk

)
P

δVP = −
(
Ajk

∂p

∂ξj

)
P

(7.2.3)

The second term in the source term Suk
in equation (7.2.2) becomes equation (7.2.5)

∫
δV
∇ ·

(
µ
∂U

∂xk

)
dV =

∫
δA
µ
∂U

∂xk
· dA (7.2.4)

=
[
µ
∂U

∂xk
·A

]e
w

+
[
µ
∂U

∂xk
·A

]n
s

(7.2.5)

where the last terms are given in equation (7.2.6).

µ
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(7.2.6)

This yields the discretised equation in equation (7.2.7).

aPukP
=
∑
nb

anbuknb
+ bun −

(
Ajk

∂p

∂ξj

)
P

+ a0
Pu

0
kP

(7.2.7)

with
buk

= bNO + S̄1P +
∫
δV
∇ ·

(
µ
∂U

∂xk

)
dV (7.2.8)

7.3 Discretisation of the Grid Generation Equations
The two sets of equations needed to produce the grid are discretised in this section in
two dimensions. Some parts are written out in three dimensions in appendix D.

7.3.1 Transfinite Interpolation

7.3.1.1 Boundary Points

Equations (7.3.1) and (7.3.2) are the linear Lagrange interpolation functions written
individually for q1 and q2 respectively.

r(q1, q2) = φ1

(
q1

q1
2

)
r
(
q1

1, q
2
)

+ φ2

(
q1

q1
2

)
r
(
q1

2, q
2
)

(7.3.1)
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r(q1, q2) = ψ1

(
q2

q2
2

)
r
(
q1, q2

1

)
+ ψ2

(
q2

q2
2

)
r
(
q1, q2

2

)
(7.3.2)

q1
1 and q2

1 are the minimum values of q1 and q2 respectively and q1
2 and q2

2 are the
maximum values of q1 and q2 respectively, as seen from figure 7.2. The functions φ and
ψ are Lagrange interpolation polynomials and are defined in equations (7.3.17)-(7.3.20)
[32]. The position vector r is given in equation (7.3.3) for Cartesian coordinates in two
dimensions.

r = xex + yey (7.3.3)

Equation (7.3.1) is used for the line segments B C and A D in figure 7.2, and
equation (7.3.2) is used for the line segments A B and D C in figure 7.2. Note
that the line segments should always be considered in the positive direction for the
coordinate. For instance, the line segments A D goes from A to D and not the
other way around.

The constant coordinate for each line segment as specified in equations (7.1.2)-(7.1.5)
can be inserted into equation (7.3.1) or (7.3.1) depending on the line segment as spec-
ified in the above paragraph.

Equation (7.3.4) applies to line segment A B , where q1 in equation (7.3.2) has been
replaced with q1

1.
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(7.3.4)

Equation (7.3.5) applies to line segment B C , where q2 in equation (7.3.1) has been
replaced with q2

2.
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(7.3.5)

Equation (7.3.6) applies to line segment D C , where q1 in equation (7.3.2) has been
replaced with q1

2.
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(7.3.6)

Equation (7.3.7) applies to line segment A D , where q2 in equation (7.3.1) has been
replaced with q2

1.
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2
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(7.3.7)

Equations (7.3.4)-(7.3.7) can be written component wise for the Cartesian components
x and y by inserting equation (7.3.3) for r and multiplying with the unit vectors ex
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and ey respectively. The results are given in equations (7.3.8)-(7.3.15).
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y
(
q1

1, q
2
)

= ψ1

(
q2

q2
2

)
y
(
q1

1, q
2
1

)
+ ψ2

(
q2

q2
2

)
y
(
q1

1, q
2
2

)
(7.3.9)

B C : x
(
q1, q2

2

)
= φ1

(
q1

q1
2

)
x
(
q1

1, q
2
2

)
+ φ2

(
q1

q1
2

)
x
(
q1

2, q
2
2

)
(7.3.10)

y
(
q1, q2

2

)
= φ1

(
q1

q1
2

)
y
(
q1

1, q
2
2

)
+ φ2

(
q1

q1
2

)
y
(
q1

2, q
2
2

)
(7.3.11)
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(7.3.15)

In equations (7.3.8)-(7.3.15) the x- and y-points on the right hand side correspond to
the corner points in figure 7.2, and are known values that can be inserted.

The functions φ and ψ are Lagrange interpolation polynomials, and are defined by
equation (7.3.16) [32].

φn

(
qi

qimax

)
=

N∏
k=1

qi − qik
qin − qik

(k 6= n) (7.3.16)

The functions φ and ψ are chosen to be linear functions as given in equations (7.3.17)-
(7.3.20). This yields equally spaced points on the boundaries [3]. φ is applied for q1

and ψ is applied for q2.
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)
= q2

q2
2

(7.3.20)

More complex functions can also be used, Melaaen [3] suggests use of Lagrangian inter-
polation polynomials, which makes it possible to have more control over the distance
between the grid lines.
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φ and ψ can then be inserted into equations (7.3.8)-(7.3.15) to yield equations (7.3.21)-
(7.3.28).
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1

)
+ q2

q2
2
y
(
q1

2, q
2
2

)
(7.3.26)

A D : x
(
q1, q2

1

)
=
(

1− q1

q1
2

)
x
(
q1

1, q
2
1

)
+ q1

q1
2
x
(
q1

2, q
2
1

)
(7.3.27)

y
(
q1, q2

1

)
=
(

1− q1

q1
2

)
y
(
q1

1, q
2
1

)
+ q1

q1
2
y
(
q1

2, q
2
1

)
(7.3.28)

The x- and y-points in equations (7.3.21)-(7.3.28) can be written on the form xAB as
in equations (7.3.29)-(7.3.36).

A B : xAB =
(

1− q2

q2
2

)
xA + q2

q2
2
xB (7.3.29)

yAB =
(

1− q2

q2
2

)
yA + q2

q2
2
yB (7.3.30)

B C : xBC =
(

1− q1

q1
2

)
xB + q1

q1
2
xC (7.3.31)

yBC =
(

1− q1

q1
2

)
yB + q1

q1
2
yC (7.3.32)

D C : xDC =
(

1− q2

q2
2

)
xD + q2

q2
2
xC (7.3.33)

yDC =
(

1− q2

q2
2

)
yD + q2

q2
2
yC (7.3.34)

A D : xAD =
(

1− q1

q1
2

)
xA + q1

q1
2
xD (7.3.35)

yAD =
(

1− q1

q1
2

)
yA + q1

q1
2
yD (7.3.36)
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7.3.1.2 Internal Points

Equation (7.1.8), written out in equation (7.3.37) yields the distribution of grid points
inside the domain when the boundary points are known from equations (7.3.1) and
(7.3.2) above.

r(q1, q2) = φ1

(
q1

q1
2

)
r
(
q1

1, q
2
)
+φ2

(
q1

q1
2

)
r
(
q1

2, q
2
)
+ψ1

(
q2

q2
2

)
r
(
q1, q2

1

)
+ψ2

(
q2

q2
2

)
r
(
q1, q2

2

)
+ φ1

(
q1

q1
2

)
ψ1

(
q2

q2
2

)
r
(
q1

1, q
2
1

)
+ φ1

(
q1

q1
2

)
ψ2

(
q2

q2
2

)
r
(
q1

1, q
2
2

)
+ φ2

(
q1

q1
2

)
ψ1

(
q2

q2
2

)
r
(
q1

2, q
2
1

)
+ φ2

(
q1

q1
2

)
ψ2

(
q2

q2
2

)
r
(
q1

2, q
2
2

)
(7.3.37)

The components of equation (7.3.37) can be obtained like for the boundary points
equations above, by replacing the position vector r with its definition in equation (7.3.3)
and multiplying with the unit vectors ex and ey to obtain the x- and y-component
respectively as given in equations (7.3.38) and (7.3.39).

x(q1, q2) = φ1

(
q1

q1
2

)
x
(
q1

1, q
2
)
+φ2

(
q1

q1
2

)
x
(
q1

2, q
2
)
+ψ1

(
q2

q2
2

)
x
(
q1, q2

1

)
+ψ2

(
q2

q2
2

)
x
(
q1, q2

2

)
+ φ1

(
q1

q1
2

)
ψ1

(
q2

q2
2

)
x
(
q1

1, q
2
1

)
+ φ1

(
q1

q1
2

)
ψ2

(
q2

q2
2

)
x
(
q1

1, q
2
2

)
+ φ2

(
q1

q1
2

)
ψ1

(
q2

q2
2

)
x
(
q1

2, q
2
1

)
+ φ2

(
q1

q1
2

)
ψ2

(
q2

q2
2

)
x
(
q1

2, q
2
2

)
(7.3.38)

y(q1, q2) = φ1

(
q1

q1
2

)
y
(
q1

1, q
2
)
+φ2

(
q1

q1
2

)
y
(
q1

2, q
2
)
+ψ1

(
q2

q2
2

)
y
(
q1, q2

1

)
+ψ2

(
q2

q2
2

)
y
(
q1, q2

2

)
+ φ1

(
q1

q1
2

)
ψ1

(
q2

q2
2

)
y
(
q1

1, q
2
1

)
+ φ1

(
q1

q1
2

)
ψ2

(
q2

q2
2

)
y
(
q1

1, q
2
2

)
+ φ2

(
q1

q1
2

)
ψ1

(
q2

q2
2

)
y
(
q1

2, q
2
1

)
+ φ2

(
q1

q1
2

)
ψ2

(
q2

q2
2

)
y
(
q1

2, q
2
2

)
(7.3.39)

The same functions φ and ψ in equations (7.3.17)-(7.3.20) are inserted, yielding equa-
tions (7.3.40) and (7.3.41).

x(q1, q2) =
(

1− q1

q1
2

)
x
(
q1

1, q
2
)

+ q1

q1
2
x
(
q1

2, q
2
)

+
(

1− q2

q2
2

)
x
(
q1, q2

1

)
+ q2

q2
2
x
(
q1, q2

2

)
+
(

1− q1

q1
2

)(
1− q2

q2
2

)
x
(
q1

1, q
2
1

)
+
(

1− q1

q1
2

)
q2

q2
2
x
(
q1

1, q
2
2

)
+ q1

q1
2

(
1− q2

q2
2

)
x
(
q1

2, q
2
1

)
+ q1

q1
2

q2

q2
2
x
(
q1

2, q
2
2

)
(7.3.40)

y(q1, q2) =
(

1− q1

q1
2

)
y
(
q1

1, q
2
)

+ q1

q1
2
y
(
q1

2, q
2
)

+
(

1− q2

q2
2

)
y
(
q1, q2

1

)
+ q2

q2
2
y
(
q1, q2

2

)
+
(

1− q1

q1
2

)(
1− q2

q2
2

)
y
(
q1

1, q
2
1

)
+
(

1− q1

q1
2

)
q2

q2
2
y
(
q1

1, q
2
2

)
+ q1

q1
2

(
1− q2

q2
2

)
y
(
q1

2, q
2
1

)
+ q1

q1
2

q2

q2
2
y
(
q1

2, q
2
2

)
(7.3.41)
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The x- and y-points in equations (7.3.40)-(7.3.41) can be written on the form xAB as
in equations (7.3.42)-(7.3.43).

x =
(

1− q1

q1
2

)
xAB + q1

q1
2
xDC +

(
1− q2

q2
2

)
xAD + q2

q2
2
xBC

+
(

1− q1

q1
2

)(
1− q2

q2
2

)
xA +

(
1− q1

q1
2

)
q2

q2
2
xB + q1

q1
2

(
1− q2

q2
2

)
xD + q1

q1
2

q2

q2
2
xC (7.3.42)

y =
(

1− q1

q1
2

)
yAB + q1

q1
2
yDC +

(
1− q2

q2
2

)
yAD + q2

q2
2
yBC

+
(

1− q1

q1
2

)(
1− q2

q2
2

)
yA +

(
1− q1

q1
2

)
q2

q2
2
yB + q1

q1
2

(
1− q2

q2
2

)
yD + q1

q1
2

q2

q2
2
yC (7.3.43)

7.3.2 Elliptic Generation System
The equation to be discretised to obtain the improved grid is equation (7.3.44) [3].

gij
∂2r

∂qi∂qj
+ P j ∂r

∂ξj
= 0 (7.3.44)

gij is the contravariant tensor components, P j = ∇2qj are the control functions. Ein-
stein summation notation is used [16][38].

gij
∂

∂qi

(
∂r
∂qj

)
+∇2qj

∂r
∂qj

= 0 (7.3.45)

The position vector r is given in equation (7.3.3) for Cartesian coordinates in two
dimensions. The r-vector is inserted into equation (7.3.45) and simplified to yield
equation (7.3.46). The derivative of the base vectors ex and ey are zero.

gij
∂

∂qi

(
∂

∂qj
(xex + yey)

)
+∇2qj

∂

∂qj
(xex + yey) = 0

gij
∂

∂qi

(
∂

∂qj
(xex)

)
+ gij

∂

∂qi

(
∂

∂qj
(yey)

)
+∇2qj

∂

∂qj
(xex) +∇2qj

∂

∂qj
(yey) = 0

gij
∂

∂qi

(
∂x

∂qj

)
ex + gij

∂

∂qi

(
∂y

∂qj

)
ey +∇2qj

∂x

∂qj
ex +∇2qj

∂y

∂qj
ey = 0

(7.3.46)

The x-component of equation (7.3.46) can then be obtained by taking the dot product
with ex. The result is equation (7.3.48).

gij
∂

∂qi

(
∂x

∂qj

)
ex · ex + gij

∂

∂qi

(
∂y

∂qj

)
ey · ex

+∇2qj
∂x

∂qj
ex · ex +∇2qj

∂y

∂qj
ey · ex = 0 · ex (7.3.47)
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gij
∂

∂qi

(
∂x

∂qj

)
+∇2qj

∂x

∂qj
= 0 (7.3.48)

Similarly, the y-component of equation (7.3.46) is obtained by taking the dot product
with ey. The result is equation (7.3.50).

gij
∂

∂qi

(
∂x

∂qj

)
ex · ey + gij

∂

∂qi

(
∂y

∂qj

)
ey · ey

+∇2qj
∂x

∂qj
ex · ey +∇2qj

∂y

∂qj
ey · ey = 0 · ey (7.3.49)

gij
∂

∂qi

(
∂y

∂qj

)
+∇2qj

∂y

∂qj
= 0 (7.3.50)

The above equations are written using Einstein’s summation notation, and these sum-
mations as shown in equations (7.3.51) and (7.3.52).

2∑
i=1

2∑
j=1

(
gij

∂

∂qi

(
∂x

∂qj

)
+∇2qj

∂x

∂qj

)
= 0 (7.3.51)

2∑
i=1

2∑
j=1

(
gij

∂

∂qi

(
∂y

∂qj

)
+∇2qj

∂y

∂qj

)
= 0 (7.3.52)

Taking the sums yields equations (7.3.53) and (7.3.54) for the x- and y-component
respectively.

g11 ∂

∂q1

(
∂x

∂q1

)
+ g12 ∂

∂q1

(
∂x

∂q2

)

+ g21 ∂

∂q2

(
∂x

∂q1

)
+ g22 ∂

∂q2

(
∂x

∂q2

)

+∇2q1 ∂x

∂q1 +∇2q2 ∂x

∂q2 = 0 (7.3.53)

g11 ∂

∂q1

(
∂y

∂q1

)
+ g12 ∂

∂q1

(
∂y

∂q2

)

+ g21 ∂

∂q2

(
∂y

∂q1

)
+ g22 ∂

∂q2

(
∂y

∂q2

)

+∇2q1 ∂y

∂q1 +∇2q2 ∂y

∂q2 = 0 (7.3.54)

7.3.2.1 Central differencing

The derivatives in equations (7.3.53) and (7.3.54) are approximated with central dif-
ferences. This differencing will be given first before the rest of the unknown terms gij
and ∇2qi are specified.
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The central differences for discretising the derivatives are given by equations (7.3.55)-
(7.3.59).

∂ϕ

∂q1

∣∣∣∣∣
i,j

= ϕi+1,j − ϕi−1,j

2δq1 (7.3.55)

∂ϕ

∂q2

∣∣∣∣∣
i,j

= ϕi,j+1 − ϕi,j−1

2δq2 (7.3.56)

∂2ϕ

(∂q1)2

∣∣∣∣∣
i,j

= ϕi+1,j + ϕi−1,j − 2ϕi,j
(δq1)2 (7.3.57)

∂2ϕ

(∂q2)2

∣∣∣∣∣
i,j

= ϕi,j+1 + ϕi,j−1 − 2ϕi,j
(δq2)2 (7.3.58)

∂2ϕ

∂q1∂q2

∣∣∣∣∣
i,j

= ϕi+1,j+1 + ϕi−1,j−1 − ϕi+1,j−1 − ϕi−1,j+1

4δq1δq2 (7.3.59)

δq1 and δq2 are the length and width of the control volumes in the computational
domain. In this case, they are set equal to unity since the grid spacing is chosen to be
one for both dimensions. This yields equations (7.3.60)- (7.3.64).

∂ϕ

∂q1

∣∣∣∣∣
i,j

= ϕi+1,j − ϕi−1,j

2 (7.3.60)

∂ϕ

∂q2

∣∣∣∣∣
i,j

= ϕi,j+1 − ϕi,j−1

2 (7.3.61)

∂2ϕ

(∂q1)2

∣∣∣∣∣
i,j

= (ϕi+1,j + ϕi−1,j − 2ϕi,j) (7.3.62)

∂2ϕ

(∂q2)2

∣∣∣∣∣
i,j

= (ϕi,j+1 + ϕi,j−1 − 2ϕi,j) (7.3.63)

∂2ϕ

∂q1∂q2

∣∣∣∣∣
i,j

= ϕi+1,j+1 + ϕi−1,j−1 − ϕi+1,j−1 − ϕi−1,j+1

4 (7.3.64)

Equations (7.3.60)- (7.3.64) inserted into equations (7.3.53) and (7.3.54) with ϕ being
x and y respectively, this yields equations (7.3.65) and (7.3.66).

g11 (xi+1,j + xi−1,j − 2xi,j) + g12xi+1,j+1 + xi−1,j−1 − xi+1,j−1 − xi−1,j+1

4
+ g21xi+1,j+1 + xi−1,j−1 − xi+1,j−1 − xi−1,j+1

4 + g22 (xi,j+1 + xi,j−1 − 2xi,j)

+∇2q1yi+1,j − yi−1,j

2 +∇2q2yi,j+1 − yi,j−1

2 = 0 (7.3.65)

g11 (yi+1,j + yi−1,j − 2yi,j) + g12yi+1,j+1 + yi−1,j−1 − yi+1,j−1 − yi−1,j+1

4
+ g21yi+1,j+1 + yi−1,j−1 − yi+1,j−1 − yi−1,j+1

4 + g22 (yi,j+1 + yi,j−1 − 2yi,j)

+∇2q1yi+1,j − yi−1,j

2 +∇2q2yi,j+1 − yi,j−1

2 = 0 (7.3.66)
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Rearranged to gather the same terms, equations (7.3.65) and (7.3.66) become equations
(7.3.67) and (7.3.68).

xi,j
(
−2g11 − 2g22

)
+ xi+1,j

(
g11 + ∇

2q1

2

)
+ xi−1,j

(
g11 − ∇

2q1

2

)

+ xi,j+1

(
g22 + ∇

2q2

2

)
+ xi,j−1

(
g22 − ∇

2q2

2

)

+ xi+1,j+1

(
g12

4 + g21

4

)
+ xi−1,j+1

(
−g

12

4 −
g21

4

)

+ xi+1,j−1

(
−g

12

4 −
g21

4

)
+ xi−1,j−1

(
g12

4 + g21

4

)
= 0 (7.3.67)

yi,j
(
−2g11 − 2g22

)
+ yi+1,j

(
g11 + ∇

2q1

2

)
+ yi−1,j

(
g11 − ∇

2q1

2

)

+ yi,j+1

(
g22 + ∇

2q2

2

)
+ yi,j−1

(
g22 − ∇

2q2

2

)

+ yi+1,j+1

(
g12

4 + g21

4

)
+ yi−1,j+1

(
−g

12

4 −
g21

4

)

+ yi+1,j−1

(
−g

12

4 −
g21

4

)
+ yi−1,j−1

(
g12

4 + g21

4

)
= 0 (7.3.68)

Equations (7.3.67) and (7.3.68) can be written in coefficient form for simplicity. Equa-
tion (7.3.69) shows the discretised elliptic grid generation for the x-component.

cxi,jxi,j + cxi+1,jxi+1,j + cxi−1,jxi−1,j + cxi,j+1xi,j+1 + cxi,j−1xi,j−1

+ cxi+1,j+1xi+1,j+1 + cxi−1,j+1xi−1,j+1 + cxi+1,j−1xi+1,j−1 + cxi−1,j−1xi−1,j−1 = 0 (7.3.69)

with

cxi,j = −2g11 − 2g22 (7.3.70)

cxi+1,j = −g11 + ∇
2q1

2 (7.3.71)

cxi−1,j = −g11 − ∇
2q1

2 (7.3.72)

cxi,j+1 = −g22 + ∇
2q2

2 (7.3.73)

cxi,j−1 = −g22 − ∇
2q2

2 (7.3.74)

cxi+1,j+1 = −g
12

4 + g21

4 (7.3.75)

cxi−1,j+1 = −g
12

4 −
g21

4 (7.3.76)

cxi+1,j−1 = −g
12

4 −
g21

4 (7.3.77)

cxi−1,j−1 = −g
12

4 + g21

4 (7.3.78)
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Equation (7.3.79) shows the discretised elliptic grid generation for the y-component.

cyi,jyi,j + cyi+1,jyi+1,j + cyi−1,jyi−1,j + cyi,j+1yi,j+1 + cyi,j−1yi,j−1

+ cyi+1,j+1yi+1,j+1 + cyi−1,j+1yi−1,j+1 + cyi+1,j−1yi+1,j−1 + cyi−1,j−1yi−1,j−1 = 0 (7.3.79)

with

cyi,j = −2g11 − 2g22 (7.3.80)

cyi+1,j = −g11 + ∇
2q1

2 (7.3.81)

cyi−1,j = −g11 − ∇
2q1

2 (7.3.82)

cyi,j+1 = −g22 + ∇
2q2

2 (7.3.83)

cyi,j−1 = −g22 − ∇
2q2

2 (7.3.84)

cyi+1,j+1 = −g
12

4 + g21

4 (7.3.85)

cyi−1,j+1 = −g
12

4 −
g21

4 (7.3.86)

cyi+1,j−1 = −g
12

4 −
g21

4 (7.3.87)

cyi−1,j−1 = −g
12

4 + g21

4 (7.3.88)

The contravariant tensor components gij and the Poisson equations ∇2qi still need
defining, which is given in the next section.

7.3.2.2 Contravariant Tensor Components

The next step is to obtain an expression for the contravariant tensor components gij,
which is given by equation (7.3.89).

gij = A(i) ·A(j)

J2 (7.3.89)

Below follow some definitions of the parameters that make up this equation. A(i) is
given first and J is given from equation (7.3.117).

A(i) is the face area vector and contains the face areas of the cells in the grid in the
physical domain [3]. It is necessary to define A(i) using all three dimensions, and
the expressions for A(i) will be simplified to two dimensions after the expressions are
obtained.

A(i) is given by equation (7.3.90) [39].

A(k) = Akjej = gl × gm (7.3.90)

where ej is the Cartesian base vector and gl and gl are general base vectors. εklm is
the permutation symbol and is given by equation (7.3.91)[40].

εklm =


+1→ klm = 123, 231 or 312
−1→ klm = 321, 213 or 132

0→ any indeces are the same
(7.3.91)
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k, l and m in equation (7.3.90) are cyclic which means that the order of the indices
cannot be interchanged and still produce the same result [27][30][41]. k, l and m in
equation (7.3.90) are cyclic and follow the order of the positive value of the permutation
symbol as given in equation (7.3.91). This means that klm take the values 123, 231 or
312.

The general base vector gi is defined as in equation (7.3.92).

gi = ∂xj

∂qi
ej (7.3.92)

where ∂xj

∂qi can also be noted J ji as defined by equation (7.3.93).

J ji = ∂xj

∂qi
(7.3.93)

Equation (7.3.90) can then be rewritten to yield equation (7.3.94) by use of equation
(7.3.92).

A(k) = ∂xp

∂ql
ep ×

∂xq

∂qm
eq (7.3.94)

The indeces p and q are selected for xj in equation (7.3.92) as j does not take the
same index for gl and gm. Writing out the cross product yields equation (7.3.95). [40]
[42]

A(k) = ∂xp

∂ql
∂xq

∂qm
ep × eq

= ∂xp

∂ql
∂xq

∂qm
εpqrer (7.3.95)

εpqr is the permutation symbol as given in equation (7.3.91) and r is the third possible
index for x not equal to p or q. Now the components of A(k) in Cartesian coordinates
can be found by taking the dot product with each unit vector ei where i is equal to 1,
2, 3, as shown in equation (7.3.96), which comes from equation (7.3.90).

A
(k)
i = A(k) · ei (7.3.96)

This yields equations (7.3.97), (7.3.98) and (7.3.99) for the three components.

A
(k)
1 = A(k) · e1

= ∂xp

∂ql
∂xq

∂qm
εpqrer · e1

= ∂xp

∂ql
∂xq

∂qm
εpq1

= ∂x2

∂ql
∂x3

∂qm
− ∂x3

∂ql
∂x2

∂qm
(7.3.97)

A
(k)
2 = A(k) · e2

= ∂xp

∂ql
∂xq

∂qm
εpqrer · e2

= ∂xp

∂ql
∂xq

∂qm
εpq2

= ∂x3

∂ql
∂x1

∂qm
− ∂x1

∂ql
∂x3

∂qm
(7.3.98)
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A
(k)
3 = A(k) · e3

= ∂xp

∂ql
∂xq

∂qm
εpqrer · e3

= ∂xp

∂ql
∂xq

∂qm
εpq3

= ∂x1

∂ql
∂x2

∂qm
− ∂x2

∂ql
∂x1

∂qm
(7.3.99)

Further, all the nine compontents of the three area vectors are given by equations
(7.3.100)-(7.3.108), which are obtained by filling in the cyclic values of klm which are
123, 231 or 312.

A1
1 = ∂x2

∂q2
∂x3

∂q3 −
∂x3

∂q2
∂x2

∂q3 (7.3.100)

A2
1 = ∂x2

∂q3
∂x3

∂q1 −
∂x3

∂q3
∂x2

∂q1 (7.3.101)

A3
1 = ∂x2

∂q1
∂x3

∂q2 −
∂x3

∂q1
∂x2

∂q2 (7.3.102)

A1
2 = ∂x3

∂q2
∂x1

∂q3 −
∂x1

∂q2
∂x3

∂q3 (7.3.103)

A2
2 = ∂x3

∂q3
∂x1

∂q1 −
∂x1

∂q3
∂x3

∂q1 (7.3.104)

A3
2 = ∂x3

∂q1
∂x1

∂q2 −
∂x1

∂q1
∂x3

∂q2 (7.3.105)

A1
3 = ∂x1

∂q2
∂x2

∂q3 −
∂x2

∂q2
∂x1

∂q3 (7.3.106)

A2
3 = ∂x1

∂q3
∂x2

∂q1 −
∂x2

∂q3
∂x1

∂q1 (7.3.107)

A3
3 = ∂x1

∂q1
∂x2

∂q2 −
∂x2

∂q1
∂x1

∂q2 (7.3.108)

For simplification to two dimensions, all derivatives ∂x3

∂q3 are equal to one, and all deriva-
tives of the form ∂x3

∂qi and ∂xi

∂q3 where i 6= 3 are zero. x is inserted for x1 and y is inserted
for x2 This yields equations (7.3.109)-(7.3.112).

A1
1 = − ∂y

∂q2 (7.3.109)

A2
1 = − ∂y

∂q1 (7.3.110)

A1
2 = − ∂x

∂q2 (7.3.111)

A2
2 = − ∂x

∂q1 (7.3.112)

The area components are discretised using the central differences as given in equations
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(7.3.60)- (7.3.64). This yields equations (7.3.113)-(7.3.116).

A1
1 = −yi,j+1 − yi,j−1

2 (7.3.113)

A2
1 = −yi+1,j − yi−1,j

2 (7.3.114)

A1
2 = −xi,j+1 − xi,j−1

2 (7.3.115)

A2
2 = −xi+1,j − xi−1,j

2 (7.3.116)

Now that the area components are accounted for, J in equation (7.3.89) needs to be
defined. J is the Jacobi determinant and is given by equation (7.3.117).

J = det
(
J ji
)

(7.3.117)

=
∣∣∣∣∣

∂x
∂q1

∂x
∂q2

∂y
∂q1

∂y
∂q2

∣∣∣∣∣ (7.3.118)

= ∂x

∂q1
∂y

∂q2 −
∂y

∂q1
∂x

∂q2 (7.3.119)

The derivatives in equation (7.3.119) are then discretised with central differences as
given in equations (7.3.60)- (7.3.64). This yields equation (7.3.120).

J = 1
4 (xi+1,j − xi−1,j) (yi,j+1 − yi,j−1)− 1

4 (yi+1,j − yi−1,j) (xi,j+1 − xi,j−1) (7.3.120)

Equation (7.3.89) defining gij can be written out to yield equation (7.3.121).

gij = Ai ·Aj

J2 = Aikek · A
j
l el

J2 = AikA
j
l δkl

J2 = AikA
j
k

J2 (7.3.121)

Now all the components of gij can be written out as in equations (7.3.122)-(7.3.125).

g11= A1
kA

1
k

J2 = A1
1A

1
1 + A1

2A
1
2

J2 (7.3.122)

g21= A2
kA

1
k

J2 = A2
1A

1
1 + A2

2A
1
2

J2 (7.3.123)

g12= A1
kA

2
k

J2 = A1
1A

2
1 + A1

2A
2
2

J2 (7.3.124)

g22= A2
kA

2
k

J2 = A2
1A

2
1 + A2

2A
2
2

J2 (7.3.125)

7.3.2.3 Control Functions in the Poisson Equations

The choice of the control functions in equation 7.3.126 affects the generated grid and
can be used to control the density of generated nodes around one specific point [34].
They can be taken as a constant number or found by use of relation.

P i = ∇2qi i = 1, 2 (7.3.126)

Mohebbi [34] has done a comparison with different values for the control functions.
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7.4 Implementation

7.4.1 Initialisation
The settings of the grid needs to be specified first. An initialisation of the coordinates
q1 and q2 is done as shown in equations (7.4.1) and (7.4.2).

q1 = 0:N (7.4.1)

q2 = 0:M (7.4.2)
N is the number of points in q1/x-direction and M is the number of points in q2/y-
direction. The dimensions of the physical domain are needed before the values of x
and y at each corner point can be specified.

x max = 35 (7.4.3)

y max = 2 (7.4.4)
step h = 1 (7.4.5)
step w = 5 (7.4.6)

where x max is L in figure 1.3, the total length of the physical domain including the
step, y max is H in figure 1.3, the total height of the physical domain including step
and step h and step w are h and l in figure 1.3, the height and length of the step.

The values of x and y at each corner point in figure 7.2 are specified as in equations
(7.4.7)-(7.4.18).

xA = 0 (7.4.7)
xB = 0 (7.4.8)
xC = x max (7.4.9)
xD = x max (7.4.10)
xE = step w (7.4.11)
xF = step w (7.4.12)

yA = step h (7.4.13)
yB = y max (7.4.14)
yC = y max (7.4.15)
yD = 0 (7.4.16)
yE = 0 (7.4.17)
yF = step h (7.4.18)

7.4.2 Transfinite Interpolation
Equations (7.4.19)-(7.4.24) are implemented in MATLAB to yield the x- and y-points in
the line segments A B , B C and D C in figure 7.2.
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A B : xAB =
(

1− q2

q2
2

)
xA + q2

q2
2
xB (7.4.19)

yAB =
(

1− q2

q2
2

)
yA + q2

q2
2
yB (7.4.20)

B C : xBC =
(

1− q1

q1
2

)
xB + q1

q1
2
xC (7.4.21)

yBC =
(

1− q1

q1
2

)
yB + q1

q1
2
yC (7.4.22)

C D : xDC =
(

1− q2

q2
2

)
xD + q2

q2
2
xC (7.4.23)

yDC =
(

1− q2

q2
2

)
yD + q2

q2
2
yC (7.4.24)

The line segment A D needs to be split into the three line segments A F , F E and
E D for this calculation. The placement of the points E and F in the computa-

tional domain determines how the boundary points between A and D are distributed
between the three sub-line segments. The variables AFpoints and FEpoints specify
how many points go in these respective segments out of the N points in total for A D .
Vectors of coordinates q1 for the line segments A F , F E and E D noted q1

AF , q1
FE

and q1
ED were then created as shown in equations (7.4.25)-(7.4.27).

q1AF = 0:AFpoints (7.4.25)
q1FE = 0:FEpoints (7.4.26)
q1ED = 0:(N-AFpoints-FEpoints) (7.4.27)

Note that each new vector of q1-coordinates line segment starts from zero. This is
because the coordinates are unique to the line segment in question, as the fraction
q1/q1

2 in equations (7.3.35) and (7.3.36) should go from 0 to 1 along the line segment.
The boundary points for the line segments A F , F E and E D are then found by
equations (7.4.28)-(7.4.33).

A F : xAF =
(

1− q1
AF

q1
AF,2

)
xA + q1

AF

q1
AF,2

xF (7.4.28)

yAF =
(

1− q1
AF

q1
AF,2

)
yA + q1

AF

q1
AF,2

yF (7.4.29)

F E : xFE =
(

1− q1
FE

q1
FE,2

)
xF + q1

FE

q1
FE,2

xE (7.4.30)

yFE =
(

1− q1
FE

q1
FE,2

)
yF + q1

FE

q1
FE,2

yE (7.4.31)

E D : xED =
(

1− q1
ED

q1
ED,2

)
xE + q1

ED

q1
ED,2

xD (7.4.32)

yED =
(

1− q1
ED

q1
ED,2

)
yE + q1

ED

q1
ED,2

yD (7.4.33)
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For the calculation of the centre points, the line segment A D must be put back
together. This is done as shown in equations (7.4.34) and (7.4.35).

xAD = [xAF xFE(2:end-1) xED] (7.4.34)

yAD = [yAF yFE(2:end-1) yED] (7.4.35)

Note that since each sub-line segment go from a corner point to another, points E
and F are overlapped. This is solved by taking only the points from position 2 to
end-1 for the line segment E F . xAD and yAD are then N long and can be used to
calculate the centre points of the domain.

Equations (7.4.36)-(7.4.37) are implemented in MATLAB to yield the points in the centre
of the domain.

x =
(

1− q1

q1
2

)
xAB + q1

q1
2
xDC +

(
1− q2

q2
2

)
xAD + q2

q2
2
xBC

+
(

1− q1

q1
2

)(
1− q2

q2
2

)
xA +

(
1− q1

q1
2

)
q2

q2
2
xB + q1

q1
2

(
1− q2

q2
2

)
xD + q1

q1
2

q2

q2
2
xC (7.4.36)

y =
(

1− q1

q1
2

)
yAB + q1

q1
2
yDC +

(
1− q2

q2
2

)
yAD + q2

q2
2
yBC

+
(

1− q1

q1
2

)(
1− q2

q2
2

)
yA +

(
1− q1

q1
2

)
q2

q2
2
yB + q1

q1
2

(
1− q2

q2
2

)
yD + q1

q1
2

q2

q2
2
yC (7.4.37)

A double for loop shown below over the indices of q1 and q2 is used to calculate the
points, where the first index i runs for the q1-coordinate direction and the second index
j runs for the q2-coordinate direction.

1 for j =1: length (q2)
2 for i = 1: length (q1)
3 x(j,i) = (1-q1(i)/q1(end))*xAB(j) +( q1(i)/q1(end))*xDC(j)...
4 +(1 - q2(j)/q2(end))*xAD(i) +( q2(j)/q2(end))*xBC(i)...
5 -(1-q1(i)/q1(end))*(1 - q2(j)/q2(end))*xA ...
6 -(1-q1(i)/q1(end))*( q2(j)/q2(end))*xB ...
7 -(q1(i)/q1(end))*(1 - q2(j)/q2(end))*xD ...
8 -(q1(i)/q1(end))*( q2(j)/q2(end))*xC;
9 y(j,i) = (1-q1(i)/q1(end))*yAB(j) +( q1(i)/q1(end))*yDC(j)...

10 +(1 - q2(j)/q2(end))*yAD(i) +( q2(j)/q2(end))*yBC(i)...
11 -(1-q1(i)/q1(end))*(1 - q2(j)/q2(end))*yA ...
12 -(1-q1(i)/q1(end))*( q2(j)/q2(end))*yB ...
13 -(q1(i)/q1(end))*(1 - q2(j)/q2(end))*yD ...
14 -(q1(i)/q1(end))*( q2(j)/q2(end))*yC;
15 end %for
16 end %for

q1, xBC , xAD, yBC and yAD in equations (7.4.36) and (7.4.37) are therefore indexed
with i, while q2, xAB, xDC , yAB and yDC are indexed with j. The rest of the code is
shown in appendix E.6.

The points along the boundary of the domain as found by equations (7.4.19)-(7.4.33)
do not need to be inserted in the matrices x and y above. The boundary points will in
addition to the centre points be inserted into the matrices by use of equations (7.4.36)
and (7.4.37) since the boundary values of q1 and q2 are included in the for loop.
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7.4.3 Elliptic Grid Generator
The discretised elliptic grid generation equation for x and y in equations (7.3.69) and
(7.3.79) are implemented in MATLAB the same way as the Momentum equations (3.2.57)
and (3.2.59) and solved iteratively. The discretised equations are represented on the
form Xx = bx and Y y = by and are solved using the devided into operator in MATLAB
as described in section 2.6.

7.4.3.1 Initial guess

The initial guess is the algebraic grid obtained from the Transfinite interpolation equa-
tion.

7.4.3.2 Boundary Conditions

The source terms bx and by are equal to zero from equations (7.3.69) and (7.3.79).
At any of the four boundaries east, west, north or south, boundary conditions are
applied. The values of x and y are known at all boundaries from the TFI grid. The
known x- and y-values noted xedge and yedge are then multiplied with the appropriate
coefficient cx and cy and moved to the source term as seen in equations (7.4.38) and
(7.4.39).

cxi,jxi,j +
∑

cxnbxnb =
∑
−cxedgexedge (7.4.38)

cyi,jyi,j +
∑

cynbynb =
∑
−cyedgeyedge (7.4.39)

The subscript nb symbolises all the neighbouring nodes, and cx and cy are given in
equations (7.3.69) and (7.3.79).

7.4.3.3 Control Functions

The values of the control functions P j can be chosen and adjusted to yield the grid
with the desired qualities. P j = 0 reduces the Poisson equation (7.1.9) to the Laplace
equation [33].

7.4.3.4 Under-Relaxation

The solution is relaxed at the end of the iteration like shown in equations (7.4.40) and
(7.4.41)[34] before xnew and ynew are passed on to the next iteration.

xnew = (1− α)x+ αx◦ (7.4.40)

ynew = (1− α)y + αy◦ (7.4.41)
The under-relaxation factor alpha is set to 0.001.

7.4.3.5 Convergence Criteria

The discretised elliptic grid generation equations (7.3.69) and (7.3.79) are equal to zero,
and the solution is converged when this is true.

The convergence criteria used are defined in equations (7.4.42) and (7.4.43).

Cx = max (|x− x◦|) (7.4.42)

Cy = max (|y − y◦|) (7.4.43)
x and y are obtained in the current iteration, and x◦ and y◦ are the result from the
previous iteration. The limits for both Cx and Cy were set to 10−3.
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7.4.3.6 Code Setup

A while loop is set up running until the solution is converged. Global indexing is used
for the entries of the matrices x and y as obtained from the TFI equation.

The area components A(k)
i , the Jacobi determinant J and the contravariant tensor

components gij are obtained from x and y at the previous iteration.

A for loop runs through all the points in the globally indexed vectors x and y. If a point
is at a boundary of the domain, the appropriate boundary condition is applied.

The new points xnew and ynew are obtained by use of the devided into operator \
in MATLAB, and they are under-relaxed before being passed on to the next iteration.
.

7.5 Results and Discussion
The results from the grid generation are presented and discussed in this section.

7.5.1 Transfinite Interpolation
The code transfinite.m was used to obtain the results for the transfinite interpolation
model and is given in appendix E. Figure 7.3 shows the obtained grid by use of the
transfinite interpolation equations (7.4.19) - (7.4.37). 72 nodes were used in x-direction
and 22 nodes were used in y-direction. Here the points in line segment AD were split

Figure 7.3: Grid obtained by transfinite interpolation.
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into three segments for AF FE ED. A different ratio would have yielded more points
in the line section ED which may be beneficial.

7.5.2 Elliptic Grid Generation
The code elliptic.m is used for the elliptic grid model, and is given in appendix E.
The transfinite interpolation grid obtained from transfinite.m is used as an initial
guess. The code does not work properly and does not yield the desired grid.

Figure 7.4 shows the elliptic grid after 100 iterations. This is around the number of
iterations before the solution starts to move away from the domain to a larger extent,
yielding node points outside of the domain. The solution diverges after 859 iterations.
After 100 iterations, the convergence criteria are still very large.

Figure 7.4: Elliptic grid after 100 iterations.

As can be seen, the grid points have started to move slightly, bending some of the
lines as expected. The corner of the backwards facing step and the eastern boundary
seems to be the locations where the solution is starting to fail. At the corner of the
backwards facing step, the node points are starting to seep into the domain. At the
eastern boundary, the second last line is starting to oscillate.

Since the model runs and produces a result, the fundamentals of the code are most
likely correct. It is therefore likely that the errors in the solution are caused by a small
typo in the code or by a mistake in the derivation of the elliptic grid equations. As
mentioned in the theory section, there are numerical difficulties associated with the
elliptic generation method [33]. There is therefore a slight chance that tuning of the
parameters may yield a functioning model, but this is unlikely.
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The boundary points on the southern boundary (line segment AD) are not equally
spaced in the current implementation. Modifying the transfinite interpolation grid to
have equally spaced points on this boundary might help with the inaccuracies around
the corner.



8
Conclusion

Modelling the fluid flow with dimensionless equations makes the models more robust
to choice of inlet condition, and modelling of a range of different Reynolds numbers
is possible. The straight channel model and the backwards facing step models yield
expected results. The results for the recirculation zones for the backwards facing step
model for Reynolds numbers between 0.0001 and 400 are in agreement with results
found in literature. For Reynolds numbers lower than 50, the resolution of the grid
is not high enough to represent the recirculation zones. A higher resolution could not
be obtained. The flow over the step has a higher magnitude v-velocity than expected,
leading to sharper turns in the flow direction over the step. This is likely due to
the choice of discretisation scheme, since the Upwind Differencing Scheme is prone
to problems with false diffusion. The models are all sensitive to the values of the
under-relaxation factors, and the factors are around magnitude 0.01 for all the two
dimensional cases. The under-relaxation factors generally had to be lowered for the
higher Reynolds numbers. For the models were grids of lower resolutions were possible,
the under-relaxation factors could be increased.

The transfinite interpolation technique produces the algebraic grid for use when solving
the fluid flow problem formulated in generalised curvilinear coordinates. The code for
an elliptic grid using the algebraic grid as an initial guess does not yield the satisfactory
grid, most likely due to a mistake in the discretised elliptic grid generation equation or
in the code.

8.1 Recommendations for Future Work
• Repeat simulations using a higher order differencing scheme to avoid false diffu-

sion over the backwards facing step

• Modify backwards facing step model to simulate with a higher resolution to ac-
curately represent the recirculation zones for low Reynolds numbers

• Correctly solve the elliptic grid generation equation

121
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• Solve the flow problem formulated in generalised curvilinear coordinates with the
obtained elliptic grid
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A
Governing Equations

A.1 The Mass Based Equation of Continuity
The continuity equation in vector form is shown in equation A.1.1 [16].

∂ρ

∂t
+∇ · (ρu) = 0 (A.1.1)

A.2 The Equation of Motion
The momentum equation in vector form is shown in equation A.2.1 [16].

∂

∂t
(ρu) +∇ · (ρuu) = −∇p−∇ · σ + ρg (A.2.1)

The x-component of the two dimensional momentum equation is shown in equation
A.2.2.

∂

∂t
(ρu) + ∂

∂x
(ρuu) + ∂

∂y
(ρvu) = −∂p

∂x
− ∂σxx

∂x
− ∂σyx

∂y
+ ρgx (A.2.2)

The y-component of the two dimensional momentum equation is shown in equation
A.2.3.

∂

∂t
(ρv) + ∂

∂x
(ρuv) + ∂

∂y
(ρvv) = −∂p

∂y
− ∂σxy

∂x
− ∂σyy

∂y
+ ρgy (A.2.3)

The stress tensors σ for two dimensional systems are shown in equations A.2.4, A.2.5
and A.2.6.

σxx = −µ
[
2∂u
∂x
− 2

3

(
∇ · v

)]
(A.2.4)

σyy = −µ
[
2∂v
∂y
− 2

3

(
∇ · v

)]
(A.2.5)

σxy = σyx = −µ
[
∂u

∂y
+ ∂v

∂x

]
(A.2.6)
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A.3 Other Equations and Theorems

Gauss’ theorem
Gauss’ theorem is shown in equation A.3.1 [2].∫

CV
∇ · φ dV =

∫
A

n · φ dA (A.3.1)

where n is normal to φ.

The Fundamental Theorem of Calculus
The Fundamental Theorem of Calculus is shown in equation A.3.2 [30].∫ b

a

d

dx
f(x)dx = f(b)− f(a) (A.3.2)



B
One Dimensional Model

This chapter includes all discretisation, properties of the flow and results for the one
dimensional straight channel model. The one dimensional model was developed for
learning how the Finite Volume method is used for governing fluid flow equations. The
expected result is a linear profile for both the velocity and pressure.

B.1 Discretisation
In this section, the discretisation of the Continuity equation, the Momentum equation
and the SIMPLE-equations in one dimension is given. The steps are explained in short
comments.

Continuity Equation
Continuity equation with the transient term deleted is integrated over the control
volume CV . Gauss’ theorem in equation A.3.1 is applied, and the resulting surface
integral is split into the two control volume surfaces e and w.∫

CV
∇ ·

(
ρu
)
dV = 0∫

A
n ·

(
ρu
)
dA = 0∫

Ae

n ·
(
ρu
)
dAe +

∫
Aw

n ·
(
ρu
)
dAw = 0(

ρuA
)
e
−
(
ρuA

)
w

= 0

The convective mass flux per unit area F is

F c = ρu

and is defined at the pressure node cell faces which coincide with the velocity nodes so
that no approximation of F c is needed. The Continuity equation becomes:

FeAe − FwAw = 0

133



134 APPENDIX B. ONE DIMENSIONAL MODEL

Momentum Equation

Left Side

∇ · (ρuu) = RHS∫
CV
∇ · (ρuu) dV = RHS

∫
A

n · (ρuu) dA = RHS

∫
Ae

n · (ρuu) dAe +
∫
Aw

n · (ρuu) dAw = RHS

(ρuuA)e − (ρuuA)w = RHS

The upwind differencing scheme is used for one of the velocity terms. The other term
is used with the Continuity equation to determine the flow direction.

For eastgoing flow:
φw = φW and φe = φP

For westgoing flow:
φw = φP and φe = φE

Left hand side of the momentum equation for eastgoing flow:

FeAeuP − FwAwuW = RHS

Left hand side of the momentum equation for westgoing flow:

FeAeuE − FwAwuP = RHS

Result:

(
max(FwAw, 0) + max(0,−FeAe) + FeAe − FwAw

)
uP

−max(0,−FeAe) uE −max(FwAw, 0) uW = RHS

(
max(FwAw, 0) + max(0,−FeAe) + FeAe − FwAw

)
ui

−max(0,−FeAe) ui+1 −max(FwAw, 0) ui−1 = RHS
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Right Side

∇·u is zero for incompressible flow from the Continuity equation. This means that ∂u
∂x

is zero for the one dimensional problem, but is kept for practice, since there would be
no equation to solve if the term is not kept.

LHS = −∇p−
∑
i

∂σi

∂xi

LHS = −∇p− ∂σx

∂x

LHS = ex ·
(
−∇p− ∂σx

∂x

)

LHS = −∂p
∂x
− ∂σxx

∂x

LHS = −∂p
∂x
− ∂

∂x

(
−µ

[
2∂u
∂x
− 2

3

(
∇ · u

)])

LHS = −∂p
∂x
− ∂

∂x

(
−2µ∂u

∂x

)

LHS = −
∫
CV

∂p

∂x
dV −

∫
A

∫
δx

∂

∂x

(
−2µ∂u

∂x

)
dAdx

LHS = −∂p
∂x

∆V −
∫
δx

∂

∂x

(
−2µ∂u

∂x

)
A dx

LHS = −∂p
∂x

∆V −
(
−2µ∂u

∂x
A

)
e

+
(
−2µ∂u

∂x
A

)
w

LHS = −∂p
∂x
δxA+ 2µ

(
∂u

∂x
A

)
e

− 2µ
(
∂u

∂x
A

)
w

The derivatives are approximated using central differences:
∂p

∂x

∣∣∣∣∣
i

= pI − pI−1

δx

∂u

∂x

∣∣∣∣∣
e

= ui+1 − ui
δx

∂u

∂x

∣∣∣∣∣
w

= ui − ui−1

δx

The convective mass flux per unit area F and the diffusion conductance D:

F = ρu D = µ

δx

F at the velocity cell faces is approximated with linear interpolation:

Fe = ρ
ui + ui+1

2 Fw = ρ
ui−1 + ui

2
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Fe and Fw are taken as known from the previous iteration. Ae and Aw are equal and are
noted A. De and Dw are then noted D since all the node distances are equal. Inserting
the central differences as well as F and D into the right side of the equation:

LHS = −
(
pI − pI−1

��δx

)
��δxA+ 2µA

(
ui+1 − ui

δx

)
− 2µA

(
ui − ui−1

δx

)

LHS = − (pI − pI−1)A+ 2µA
δx

(
ui+1 − ui

)
− 2µA

δx

(
ui − ui−1

)
LHS = − (pI − pI−1)A+ 2DeA

(
ui+1 − ui

)
− 2DwA

(
ui − ui−1

)
LHS = 2DeAui+1 − 2DeAui − 2DwAui + 2DwAui−1 − (pI − pI−1)A

LHS = (−2DeA− 2DwA)ui + 2DeAui+1 + 2DwAui−1 − (pI − pI−1)A

Final Discretised Momentum Equation

(
4AD + max(FwA, 0) + max(0,−FeA) + FeA− FwA

)
ui +(

− 2AD −max(0,−FeA)
)
ui+1 +

(
− 2AD −max(FwA, 0)

)
ui−1

= −A (pI − pI−1)cs
Coefficient form

aiui + ai−1ui−1 + ai+1ui+1 = bi

with
ai = −ai−1 − ai+1 + FeA− FwA

ai+1 = −2AD −max(0,−FeA)

ai−1 = −2AD −max(FwA, 0)

bi = −A (pI − pI−1)

SIMPLE-Equations

Velocity Correction Equation

The Momentum equation with the variables replaced with their ”guessed” variables
labelled ∗ are subtracted from the Momentum equation. u∗ is the velocity obtained from
the Momentum equation earlier in the solution algorithm, and the guessed pressure p◦
is the pressure at the previous iteration. The velocity corrections are then omitted for
all the neighbouring nodes.

ai(ui − u∗i ) + ai−1(ui−1 − u∗i−1) + ai+1(ui+1 − u∗i+1) =(
− (pI − pI−1) +

(
p∗I − p∗I−1

) )
A+����bi − bi

ai(ui − u∗i ) + ai−1(ui−1 − u∗i−1) + ai+1(ui+1 − u∗i+1) =(
− pI + pI−1 + p∗I − p∗I−1

)
A

ai(ui − u∗i ) +
��

���
���

���:omit
ai−1u

′
i−1 + ai+1u

′
i+1 = −

(
p′I − p′I−1

)
A
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ui = u∗i −
A

acentrei

(
p′I − p′I−1

)

Pressure Correction Equation

The pressure correction equation is obtained from the continuity equation, by inserting
the velocity correction equation for unknown velocity nodes. The ”guessed” velocity
u∗ is obtained from the Momentum equation.

ρA

(
u∗i+1 −

A

acentrei+1

(
p′I+1 − p′I

))
− ρA

(
u∗i −

Ai
acentrei

(
p′I − p′I−1

))
= 0

ρAu∗i+1 −
ρA2

acentrei+1

(
p′I+1 − p′I

)
− ρAu∗i + ρA2

acentrei

(
p′I − p′I−1

)
= 0

− ρA2

acentrei+1

(
p′I+1 − p′I

)
+ ρA2

acentrei

(
p′I − p′I−1

)
+ ρAu∗i+1 − ρAu∗i = 0

p′I
ρA2

acentrei+1
− p′I+1

ρA2

acentrei+1
+ p′I

ρA2

acentrei

− p′I−1
ρA2

acentrei

+ ρAu∗i+1 − ρAu∗i = 0

Pressure correction equation:

p′IνI + p′I+1νI+1 + p′I−1νI−1 = βI

Coefficients:

νI = −νI+1 − νI−1 (B.1.1)

νI+1 = − ρA2

acentrei+1
(B.1.2)

νI−1 = − ρA2

acentrei

(B.1.3)

βI = −ρAu∗i+1 + ρAu∗i (B.1.4)

B.2 Boundary Conditions

Inlet
In the Momentum equation, the western node is the known inlet velocity uin

aiui + ai+1ui+1 = bi

with

ai = −ai−1 − ai+1 + FeA− FwA+ 2AD + max(FwA, 0)

ai+1 = −2AD −max(0,−FeA)

bi = −A (pI − pI−1) + (2AD + max(FwA, 0))uin

In the pressure correction equation, the western node is the known inlet velocity uin
which can be inserted directly during the derivation of the equation. No link is created
for the western node.

ρA

(
u∗i+1 −

A

acentrei+1

(
p′I+1 − p′I

))
− ρAuin = 0



138 APPENDIX B. ONE DIMENSIONAL MODEL

Rearranged, this yields
νIp
′
I + νI+1p

′
I+1 = βI

with

νI = −ν2

νI+1 = − ρA2

acentreI+1

βI = −ρAu∗i+1 + ρuin

Outlet
At the outlet the pressure is known, and the eastern velocity coefficient aE = aN + 1 in
the Momentum equation is set equal to zero to break the connection. This yields

aiui + ai−1ui−1 = bi

with

ai = −ai−1 + FeA− FwA

ai−1 = −2AD −max(FwA, 0)

bi = −A (pout − pI−1)

Fe is set to be equal to Fw.

In the pressure correction equation, the pressure correction at the eastern known is
zero because the velocity is known. This yields

p′IνI + p′I−1νI−1 = βI

with

νI = ρA2

acentrei+1
− νI−1

νI−1 = − ρA2

acentrei

βI = −Aρu∗i+1 + Aρu∗Fi

B.3 Implementation

Properties of the Flow and the Domain
The modelled fluid is water and the fluid properties are be taken to be constant with the
values given in equation (4.1.1). Gravity is assumed to be effective in y- or z-direction
and is therefore not modelled in the one-dimensional case.

The channel is taken to be 3 m long. The values for the known inlet velocity and the
outlet pressure are

uin = 1 · 10−3 pout = 1 · 105 (B.3.1)
αu = 1 αp = 0.05 (B.3.2)
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Initial Guesses
The initial u-velocity and pressure are both set to a constant value across the domain.
The initial guesses are shown in equation (B.3.3).

u◦ = 1.5 · 10−3
[

m/s
]

for all u p◦ = 1.5 · 105
[

Pa
]

for all p (B.3.3)

Convergence criteria

The convergence criteria used are

C1 < 10−6 (B.3.4)
C3 < 10−6 (B.3.5)
C4 < 10−6 (B.3.6)

The definitions of C1, C3 and C4 are given in section 4.7. The convergence criteria
C1 and C4 have been normalised with respect to the inlet velocity uin for the one
dimensional model.

B.4 Results and Discussion
The results for the one dimensional model are given in this section. The one dimen-
sional model is not made dimensionless because it worked with the desired Reynolds
number.

Table B.1 shows the convergence times and number of iterations needed to solve the
one dimensional model.

N Iterations Time
10 972 1 sec
50 984 2 sec
100 947 3 sec
400 3202 36 sec

Table B.1: Different convergence times for different numbers of computational nodes for the one
dimensional model.

The maximum amount of node points with these settings is approximately 415 node
points.

Figure B.1 shows the one-dimensional u-velocity profile, figure B.2 shows the pressure
profile and figure B.3 shows the pressure correction, all with 400 computational points.
Note that the scale is 10−8 Pa, and that the order of magnitude of the pressure in figure
B.2 is 105. As can be seen, the pressure correction goes to zero towards the outlet.
The known outlet pressure is the next node outside of the domain and not plotted in
figures in figure B.2. Therefore the exact point where the pressure correction is zero
is not included in figure B.3. The velocity and pressure profiles are both flat and
equal to the known value at the inlet or outlet. This is expected, since the density is
constant and the gradient ∂u

∂x
must then be zero from Continuity. This means that the

velocity is constant over the whole domain, and as a consequence of this the pressure is
constant also. The pressure correction is close to zero across the whole domain which
is the case when the Continuity equation is fulfilled and convergence is reached.
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Figure B.1: Velocity profile for the one dimensional model.

Figure B.2: Pressure profile for the one dimensional model.
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Figure B.3: Pressure correction for the one dimensional model.
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C
Detailed Two Dimensional

Discretisation

In this chapter, some supplements to the discretisation in the main document are given.
The discretisation of the Continuity and Momentum equations as given in section 3
are repeated with all the intermediate steps included.

C.1 Continuity Equation

The transient term is neglected. The equation is integrated over the control volume
CV , and Gauss theorem in equation (A.3.1) is applied. u is the x-velocity component,
v is the y-velocity component.

∇ ·
(
ρu
)

= 0
∫
CV
∇ ·

(
ρu
)
dV = 0

∫
A

n ·
(
ρu
)
dA = 0

∫
Ax,e

ρ ex · u dA+
∫
Ax,w

ρ (−ex) · u dA+
∫
Ay,n

ρ ey · u dA+
∫
Ay,s

ρ (−ey) · u dA = 0

∫
Ax,e

ρu dA−
∫
Ax,w

ρu dA+
∫
Ay,n

ρv dA−
∫
Ay,s

ρv dA = 0

ρueAx,e − ρuwAx,w + ρvnAy,n − ρvsAy,s = 0

143
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C.2 Momentum equation
The transient term is neglected, and the vector form Momentum equation is then

∇ · (ρuu) = −∇p−∇ · σ + ρg

Left Hand Side
The equation is integrated over the control volume CV , and Gauss theorem in equation
(A.3.1) is applied. Taking the dot product with the unit vector ex or ey yields the
component x and y-components of the equation. u is the x-velocity component, v is
the y-velocity component.

∇ · (ρuu) = RHS∫
CV
∇ · (ρuu) dV = RHS

∫
A

n · (ρuu) dA = RHS

∫
Ax,e

ex · ρuu dA+
∫
Ax,w

−ex · ρuu dA+
∫
Ay,n

ey · ρuu dA+
∫
Ay,s

−ey · ρuu dA = RHS

∫
Ax,e

ρuu dA−
∫
Ax,w

ρuu dA+
∫
Ay,n

ρvu dA−
∫
Ay,s

ρvu dA = RHS

ρ (uu)eAx,e − ρ (uu)w Ax,w + ρ (vu)nAy,n − ρ (vu)sAy,s = RHS

x-component

ex ·
(
ρ (uu)eAx,e − ρ (uu)w Ax,w + ρ (vu)nAy,n − ρ (vu)sAy,s

)
= RHS

ρ (uu)eAx,e − ρ (uu)w Ax,w + ρ (vu)nAy,n − ρ (vu)sAy,s = RHS

Fx,eueAx,e − Fx,wuwAx,w + Fx,nunAy,n − Fx,susAy,s = RHS

y-component

ey ·
(
ρ (uu)eAx,e − ρ (uu)w Ax,w + ρ (vu)nAy,n − ρ (vu)sAy,s

)
= RHS

ρ (uv)eAx,e − ρ (uv)w Ax,w + ρ (vv)nAy,n − ρ (vv)sAy,s = RHS

Fy,eveAx,e − Fy,wvwAx,w + Fy,nvnAy,n − Fy,svsAy,s = RHS
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Upwind Differencing

Positive x-flow, Positive y-flow

ue = uP and uw = uW

un = uP and us = uS

ve = vP and vw = vW

vn = vP and vs = vS

x-component is:

Fx,euPAx,e − Fx,wuWAx,w + Fy,nuPAy,n − Fy,suSAy,s = RHS

y-component is:

Fx,evPAx,e − Fx,wvWAx,w + Fy,nvPAy,n − Fy,svSAy,s = RHS

Negative x-flow, Positive y-flow

ue = uE and uw = uP

un = uP and us = uS

ve = vE and vw = vP

vn = vP and vs = vS

x-component is:

Fx,euEAx,e − Fx,wuPAx,w + Fy,nuPAy,n − Fy,suSAy,s = RHS

y-component is:

Fx,evEAx,e − Fx,wvPAx,w + Fy,nvPAy,n − Fy,svSAy,s = RHS
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Positive x-flow, Negative y-flow

ue = uP and uw = uW

un = uN and us = uP

ve = vP and vw = vW

vn = vN and vs = vP

x-component is:

Fx,euPAx,e − Fx,wuWAx,w + Fy,nuNAy,n − Fy,suPAy,s = RHS

y-component is:

Fx,evPAx,e − Fx,wvWAx,w + Fy,nvNAy,n − Fy,svPAy,s = RHS

Negative x-flow, Negative y-flow

ue = uE and uw = uP

un = uN and us = uP

ve = vE and vw = vP

vn = vN and vs = vP

x-component is:

Fx,euEAx,e − Fx,wuPAx,w + Fy,nuNAy,n − Fy,suPAy,s = RHS

y-component is:

Fx,evEAx,e − Fx,wvPAx,w + Fy,nvNAy,n − Fy,svPAy,s = RHS
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All Flow Directions

x-component:
(

max
(
0,−Fx,eAx,e

)
+ max

(
Fx,wAx,w, 0

)
+ max

(
0,−Fy,nAy,n

)
+ max

(
Fy,sAy,s, 0

)
+ Fx,eAx,e − Fx,wAx,w + Fy,nAy,n − Fy,sAy,s

)
uP

+
(
−max

(
0,−Fx,eAx,e

))
uE +

(
−max

(
Fx,wAx,w, 0

))
uW

+
(
−max

(
0,−Fy,nAy,n

))
uN +

(
−max

(
Fy,sAy,s, 0

))
uS = RHS

y-component:
(

max
(
0,−Fx,eAx,e

)
+ max

(
Fx,wAx,w, 0

)
+ max

(
0,−Fy,nAy,n

)
+ max

(
Fy,sAy,s, 0

)
+ Fx,eAx,e − Fx,wAx,w + Fy,nAy,n − Fy,sAy,s

)
vP

+
(
−max

(
0,−Fx,eAx,e

))
vE +

(
−max

(
Fx,wAx,w, 0

))
vW

+
(
−max

(
0,−Fy,nAy,n

))
vN +

(
−max

(
Fy,sAy,s, 0

))
vS = RHS

Right Hand Side
The right hand side of the Momentum equation is rearranged, and the x- and y-
components of the equation are obtained by taking the dot product with the unit
vectors ex or ey before the integration over the control volume CV . The gravity term
is neglected. The area integral is taken first, and Fundamental Theorem of Algebra is
applied to the remaining integral. ∇ · u is zero from Continuity.

x-component

LHS = −ex ·
(
−∇p− ∂σx

∂x
− ∂σy

∂y

)

LHS = −∂p
∂x
− ∂σxx

∂x
− ∂σxy

∂y

LHS = −∂p
∂x
−
(
− ∂

∂x
µ

[
2∂u
∂x
− 2

3

(
���∇ · u

)])
−
(
− ∂

∂y
µ

[
∂u

∂y
+ ∂v

∂x

])

LHS = −∂p
∂x
−
(
− ∂

∂x
µ

[
2∂u
∂x

])
−
(
− ∂

∂y
µ

[
∂u

∂y
+ ∂v

∂x

])

LHS = −∂p
∂x

+ ∂

∂x

(
2µ∂u
∂x

)
+ ∂

∂y

(
µ
∂u

∂y

)
+ ∂

∂y

(
µ
∂v

∂x

)

LHS = −∂p
∂x

+ ∂

∂x

(
2µ∂u
∂x

)
+ ∂

∂y

(
µ
∂u

∂y

)
+ ∂

∂x

(
µ
∂v

∂y

)
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LHS = −∂p
∂x

+ ∂

∂x

(
µ
∂u

∂x

)
+ ∂

∂y

(
µ
∂u

∂y

)
+ ∂

∂x

µ(
��

��
�∂u

∂x
+ ∂v

∂y

)

LHS = −∂p
∂x

+ ∂

∂x

(
µ
∂u

∂x

)
+ ∂

∂y

(
µ
∂u

∂y

)

LHS = −
∫
CV

∂p

∂x
dV +

∫
CV

∂

∂x

(
µ
∂u

∂x

)
dV +

∫
CV

∂

∂y

(
µ
∂u

∂y

)
dV

LHS = −∂p
∂x

∆V +
∫
δx

∫
Ax

∂

∂x

(
µ
∂u

∂x

)
dAdx+

∫
δy

∫
Ay

∂

∂y

(
µ
∂u

∂y

)
dAdy

LHS = −∂p
∂x

∆V +
∫
δx

∂

∂x

(
µ
∂u

∂x

)
Axdx+

∫
δx

∂

∂y

(
µ
∂u

∂y

)
Aydy

LHS = −∂p
∂x

∆V +
(
µ
∂u

∂x
Ax

)
e

−
(
µ
∂u

∂x
Ax

)
w

+
(
µ
∂u

∂y
Ay

)
n

−
(
µ
∂u

∂y
Ay

)
s

LHS = − ∂p
∂x

∣∣∣∣∣
i,J

∆V + µ
∂u

∂x

∣∣∣∣∣
e

Ax,e − µ
∂u

∂x

∣∣∣∣∣
w

Ax,w + µ
∂u

∂y

∣∣∣∣∣
n

Ay,n − µ
∂u

∂y

∣∣∣∣∣
s

Ay,s

LHS = − ∂p
∂x

∣∣∣∣∣
i,J

δxAx + µ
∂u

∂x

∣∣∣∣∣
e

Ax,e − µ
∂u

∂x

∣∣∣∣∣
w

Ax,w + µ
∂u

∂y

∣∣∣∣∣
n

Ay,n − µ
∂u

∂y

∣∣∣∣∣
s

Ay,s

The derivative terms above are approximated with the following central differences:

∂p

∂x

∣∣∣∣∣
i,J

= pI,J − pI−1,J

δx

∂u

∂x

∣∣∣∣∣
e

= ui+1,J − ui,J
δx

∂u

∂x

∣∣∣∣∣
w

= ui,J − ui−1,J

δx

∂u

∂y

∣∣∣∣∣
n

= ui,J+1 − ui,J
δy

∂u

∂y

∣∣∣∣∣
s

= ui,J − ui,J−1

δy

The diffusion conductances Dx = µ
δx

and Dy = µ
δy

are introduced. For a rectangular
control volume, Ax = Ax,w = Ax and Ay,n = Ay,s = Ay. Inserting this and the finite
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differences yields:

LHS = −pI,J − pI−1,J

��δx
��δxAx + µ

ui+1,J − ui,J
δx

Ax − µ
ui,J − ui−1,J

δx
Ax

= −+ µ
ui,J+1 − ui,J

δy
Ay − µ

ui,J − ui,J−1

δy
Ay

LHS = −
(
pI,J − pI−1,J

)
Ax + µAx

δx

(
ui+1,J − ui,J

)
− µAx

δx

(
ui,J − ui−1,J

)

= −+ µAy
δy

(
ui,J+1 − ui,J

)
− µAy

δy

(
ui,J − ui,J−1

)

LHS = −
(
pI,J − pI−1,J

)
Ax +DxAx

(
ui+1,J − ui,J

)
−DxAx

(
ui,J − ui−1,J

)
= −+DyAy

(
ui,J+1 − ui,J

)
−DyAy

(
ui,J − ui,J−1

)
LHS = DxAxui+1,J −DxAxui,J −DxAxui,J +DxAxui−1,J

= −+DyAyui,J+1 −DyAyui,J −DyAyui,J +DyAyui,J−1 −
(
pI,J − pI−1,J

)
Ax

LHS =
(
−DxAx −DxAx −DyAy −DyAy

)
ui,J +DxAxui+1,J +DxAxui−1,J

= −+DyAyui,J+1 +DyAyui,J−1 −
(
pI,J − pI−1,J

)
Ax

y-component

LHS = −ey ·
(
−∇p− ∂σx

∂x
− ∂σy

∂y

)

LHS = −∂p
∂y
− ∂σyx

∂x
− ∂σyy

∂y

LHS = −∂p
∂y
−
(
− ∂

∂x
µ

[
∂u

∂y
+ ∂v

∂x

])
−
(
− ∂

∂y
µ

[
2∂v
∂y
− 2

3

(
���∇ · u

)])

LHS = −∂p
∂y
−
(
− ∂

∂x
µ

[
∂u

∂y
+ ∂v

∂x

])
−
(
− ∂

∂y
µ

[
2∂v
∂y

])

LHS = −∂p
∂y

+ ∂

∂x

(
µ
∂u

∂y

)
+ ∂

∂x

(
µ
∂v

∂x

)
+ ∂

∂y

(
2µ∂v
∂y

)

LHS = −∂p
∂y

+ ∂

∂y

(
µ
∂u

∂x

)
+ ∂

∂x

(
µ
∂v

∂x

)
+ ∂

∂y

(
2µ∂v
∂y

)

LHS = −∂p
∂y

+ ∂

∂y

µ(
�
��

��∂u

∂x
+ ∂v

∂y

)+ ∂

∂x

(
µ
∂v

∂x

)
+ ∂

∂y

(
µ
∂v

∂y

)

LHS = −∂p
∂y

+ ∂

∂x

(
µ
∂v

∂x

)
+ ∂

∂y

(
µ
∂v

∂y

)
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LHS = −
∫
CV

∂p

∂y
dV +

∫
CV

∂

∂x

(
µ
∂v

∂x

)
dV +

∫
CV

∂

∂y

(
µ
∂v

∂y

)
dV

LHS = −∂p
∂y

∆V +
∫
CV

∂

∂x

(
µ
∂v

∂x

)
dxAx +

∫
CV

∂

∂y

(
µ
∂v

∂y

)
dyAy

LHS = −∂p
∂y

∆V +
(
µ
∂v

∂x
Ax

)
e

−
(
µ
∂v

∂x
Ax

)
w

+
(
µ
∂v

∂y
Ay

)
n

−
(
µ
∂v

∂y
Ay

)
s

LHS = − ∂p
∂y

∣∣∣∣∣
I,j

∆V + µ
∂v

∂x

∣∣∣∣∣
e

Ax,e − µ
∂v

∂x

∣∣∣∣∣
w

Ax,w + µ
∂v

∂y

∣∣∣∣∣
n

Ay,n − µ
∂v

∂y

∣∣∣∣∣
s

Ay,s

LHS = − ∂p
∂y

∣∣∣∣∣
I,j

δyAy + µ
∂v

∂x

∣∣∣∣∣
e

Ax,e − µ
∂v

∂x

∣∣∣∣∣
w

Ax,w + µ
∂v

∂y

∣∣∣∣∣
n

Ay,n − µ
∂v

∂y

∣∣∣∣∣
s

Ay,s

The derivative terms above are approximated with the following central differences:

∂p

∂y

∣∣∣∣∣
I,j

= pI,J − pI,J−1

δy

∂v

∂x

∣∣∣∣∣
e

= vI+1,j − vI,j
δx

∂v

∂x

∣∣∣∣∣
w

= vI,j − vI−1,j

δx

∂v

∂y

∣∣∣∣∣
n

= vI,j+1 − vI,j
δy

∂v

∂y

∣∣∣∣∣
s

= vI,j − vI,j−1

δy

The diffusion conductances Dx = µ
δx

and Dy = µ
δy

are introduced. For a rectangular
control volume, Ax = Ax,w = Ax and Ay,n = Ay,s = Ay. Inserting this and the finite
differences yields:

LHS = −pI,J − pI,J−1

��δy
��δyAy + µ

vI+1,j − vI,j
δx

Ax,e − µ
vI,j − vI−1,j

δx
Ax,w

= −+ µ
vI,j+1 − vI,j

δy
Ay,n − µ

vI,j − vI,j−1

δy
Ay,s

LHS = −
(
pI,J − pI,J−1

)
Ay + µAx,e

δx

(
vI+1,j − vI,j

)
− µAx,w

δx

(
vI,j − vI−1,j

)

= −+ µAy,n
δy

(
vI,j+1 − vI,j

)
− µAy,s

δy

(
vI,j − vI,j−1

)
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LHS = −
(
pI,J − pI,J−1

)
Ay +DxAx,e

(
vI+1,j − vI,j

)
−DxAx,w

(
vI,j − vI−1,j

)
= −+DyAy,n

(
vI,j+1 − vI,j

)
−DyAy,s

(
vI,j − vI,j−1

)
LHS = DxAx,evI+1,j −DxAx,evI,j −DxAx,wvI,j +DxAx,wvI−1,j

= −+DyAy,nvI,j+1 −DyAy,nvI,j −DyAy,svI,j +DyAy,svI,j−1 −
(
pI,J − pI,J−1

)
Ay

LHS =
(
−DxAx,e −DxAx,w −DyAy,n −DyAy,s

)
vI,jDxAx,evI+1,j +DxAx,wvI−1,j

= −+DyAy,nvI,j+1 +DyAy,svI,j−1 −
(
pI,J − pI,J−1

)
Ay

Both Sides Combined

x-component

(
max

(
0,−Fx,eAx

)
+ max

(
Fx,wAy, 0

)
+ max

(
0,−Fy,nAy

)
+ max

(
Fy,sAy, 0

)
+ Fx,eAx − Fx,wAy + Fy,nAy − Fy,sAy +DxAx +DxAy

+DyAy +DyAy

)
ui,J +

(
−max

(
0,−Fx,eAx

)
−DxAx

)
ui+1,J

+
(
−max

(
Fx,wAy, 0

)
−DxAy

)
ui−1,J +

(
−max

(
0,−Fy,nAy

)
−DyAy

)
ui,J+1

+
(
−max

(
Fy,sAy, 0

)
−DyAy

)
ui,J−1 = −

(
pI,J − pI−1,J

)
Ax

On coefficient form:

ai,Jui,J + ai+1,Jui+1,J + ai−1,Jui−1,J + ai,J+1ui,J+1 + ai,J−1ui,J−1 = bi,J

with

ai,J = −ai+1,J − ai−1,J − ai,J+1 − ai,J−1 + Fx,eAx − Fx,wAy + Fy,nAy − Fy,sAy

ai+1,J = −max
(
0,−Fx,eAx

)
−DxAx

ai−1,J = −max
(
Fx,wAy, 0

)
−DxAy

ai,J+1 = −max
(
0,−Fy,nAy

)
−DyAy

ai,J−1 = −max
(
Fy,sAy, 0

)
−DyAy

bi,J = −
(
pI,J − pI−1,J

)
Ax
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y-component

(
max

(
0,−Fx,eAx

)
+ max

(
Fx,wAy, 0

)
+ max

(
0,−Fy,nAy

)
+ max

(
Fy,sAy, 0

)
+ Fx,eAx − Fx,wAy + Fy,nAy − Fy,sAy +DxAx +DxAy

+DyAy +DyAy

)
vI,j +

(
−max

(
0,−Fx,eAx

)
−DxAx

)
vI+1,j

+
(
−max

(
Fx,wAy, 0

)
−DxAy

)
vI−1,j +

(
−max

(
0,−Fy,nAy

)
−DyAy

)
vI,j+1

+
(
−max

(
Fy,sAy, 0

)
−DyAy

)
vI,j−1 = −

(
pI,J − pI,J−1

)
Ax

On coefficient form:

aI,jvI,j + aI+1,jvI+1,j + aI−1,jvI−1,j + aI,j+1vI,j+1 + aI,j−1vI,j−1 = bI,j

with

aI,j = −aI+1,j − aI−1,j − aI,j+1 − aI,j−1 + Fx,eAx − Fx,wAy + Fy,nAy − Fy,sAy

aI+1,j = −max
(
0,−Fx,eAx

)
−DxAx

aI−1,j = −max
(
Fx,wAy, 0

)
−DxAy

aI,j+1 = −max
(
0,−Fy,nAy

)
−DyAy

aI,j−1 = −max
(
Fy,sAy, 0

)
−DyAy

bI,j = −
(
pI,J − pI,J−1

)
Ay

C.3 SIMPLE-Equations

Velocity Correction Equation

x-component

The Momentum equation for the correct properties:

ai,Jui,J + ai+1,Jui+1,J + ai−1,Jui−1,J + ai,J+1ui,J+1 + ai,J−1ui,J−1

= −
(
pI,J − pI−1,J

)
Ax,i,J + bi,J

The Momentum equation for the intermediate / guessed properties:

ai,Ju
∗
i,J + ai+1,Ju

∗
i+1,J + ai−1,Ju

∗
i−1,J + ai,J+1u

∗
i,J+1 + ai,J−1u

∗
i,J−1

= −
(
p∗I,J − p∗I−1,J

)
Ax,i,J + bi,J

The guessed velocity Momentum equation is subtracted from the correct velocity Mo-
mentum equation. The correction terms for all the neighbouring nodes are neglected,
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keeping only the correction in the center node:

ai,J(ui,J − u∗i,J) + ai+1,J(ui+1,J − u∗i+1,J) + ai−1,J(ui−1,J − u∗i−1,J)
+ ai,J+1(ui,J+1 − u∗i,J+1) + ai,J−1(ui,J−1 − u∗i,J−1)

=
(
− pI,J + pI−1,J + p∗I,J − p∗I−1,J

)
Ax,i,J +����

�
bi,J − bi,J

acentrei,J (ui,J − u∗i,J) +����
��ai+1,Ju
′
i+1,J +����

��ai−1,Ju
′
i−1,J +����

��ai,J+1u
′
i,J+1 +����

��ai,J−1u
′
i,J−1

= −
(
p′I,J − p′I−1,J

)
Ax,i,J

The velocity correction equation is then:

ui,J = u∗i,J −
Ax,i,J
acentrei,J

(
p′I,J − p′I−1,J

)

y-component

The Momentum equation for the correct properties:

aI,jvI,j + aI+1,jvI+1,j + aI−1,jvI−1,j + aI,j+1vI,j+1 + aI,j−1vI,j−1

= −
(
pI,J − pI,J−1

)
Ay,I,j + bi,J

The Momentum equation for the intermediate / guessed properties:

aI,jv
∗
I,j + aI+1,jv

∗
I+1,j + aI−1,jv

∗
I−1,j + aI,j+1v

∗
I,j+1 + aI,j−1v

∗
I,j−1

= −
(
p∗I,J − p∗I,J−1

)
Ay,I,j + bi,J

The guessed velocity Momentum equation is subtracted from the correct velocity Mo-
mentum equation. The correction terms for all the neighbouring nodes are neglected,
keeping only the correction in the center node:

aI,j(vI,j − v∗I,j) + aI+1,j(vI+1,j − v∗I+1,j) + aI−1,j(vI−1,j − v∗I−1,j)
+ aI,j+1(vI,j+1 − v∗I,j+1) + aI,j−1(vI,j−1 − v∗I,j−1)

=
(
− pI,J + pI,J−1 + p∗I,J − p∗I,J−1

)
Ay,I,j +����

�
bI,j − bI,j

acentreI,j (vI,j−v∗I,j)+����
��aI+1,jv
′
I+1,j+����

��aI−1,jv
′
I−1,j+����

��aI,j+1v
′
I,j+1+����

��aI,j−1v
′
I,j−1 = −

(
p′I,J − p′I,J−1

)
Ay,I,j

The velocity correction equation is then:

vI,j = v∗I,j −
Ay,I,j
acentreI,j

(
p′I,J − p′I,J−1

)
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Pressure Correction Equation
The velocity correction equations and the Continuity equation are used to produce the
pressure correction equation. The Continuity equation is:

ρui+1,JAx,i+1,J − ρui,JAx,i,J + ρvI,j+1Ay,I,j+1 − ρvI,jAy,I,j = 0

The velocity correction equations are inserted for ui+1,J , ui,J , vI,j+1 and vI,j, and the
equation is rearranged:

ρAx,i+1,J

(
u∗i+1,J −

Ax,i+1,J

acentrei+1,J

(
p′I+1,J − p′I,J

))
− ρAx,i,J

(
u∗i,J −

Ax,i,J
acentrei,J

(
p′I,J − p′I−1,J

))

+ρAy,I,j+1

(
v∗I,j+1 −

Ay,I,j+1

acentreI,j+1

(
p′I,J+1 − p′I,J

))
−ρAy,I,j

(
v∗I,j −

Ay,I,j
acentreI,j

(
p′I,J − p′I,J−1

))
= 0

ρAx,i+1,Ju
∗
i+1,J −

ρA2
x,i+1,J

acentrei+1,J

(
p′I+1,J − p′I,J

)
− ρAx,i,Ju∗i,J +

ρA2
x,i,J

acentrei,J

(
p′I,J − p′I−1,J

)

+ ρAy,I,j+1v
∗
I,j+1−

ρA2
y,I,j+1

acentreI,j+1

(
p′I,J+1 − p′I,J

)
− ρAy,I,jv∗I,j +

ρA2
y,I,j

acentreI,j

(
p′I,J − p′I,J−1

)
= 0

−
ρA2

x,i+1,J

acentrei+1,J

(
p′I+1,J − p′I,J

)
+
ρA2

x,i,J

acentrei,J

(
p′I,J − p′I−1,J

)

−
ρA2

y,I,j+1

acentreI,j+1

(
p′I,J+1 − p′I,J

)
+
ρA2

y,I,j

acentreI,j

(
p′I,J − p′I,J−1

)
= −ρAx,i+1,Ju

∗
i+1,J + ρAx,i,Ju

∗
i,J − ρAy,I,j+1v

∗
I,j+1 + ρAy,I,jv

∗
I,j

−
ρA2

x,i+1,J

acentrei+1,J
p′I+1,J +

ρA2
x,i+1,J

acentrei+1,J
p′I,J +

ρA2
x,i,J

acentrei,J

p′I,J −
ρA2

x,i,J

acentrei,J

p′I−1,J

−
ρA2

y,I,j+1

acentreI,j+1
p′I,J+1 +

ρA2
y,I,j+1

acentreI,j+1
p′I,J +

ρA2
y,I,j

acentreI,j

p′I,J −
ρA2

y,I,j

acentreI,j

p′I,J−1

= −ρAx,i+1,Ju
∗
i+1,J + ρAx,i,Ju

∗
i,J − ρAy,I,j+1v

∗
I,j+1 + ρAy,I,jv

∗
I,j

(
ρA2

x,i+1,J

acentrei+1,J
+
ρA2

x,i,J

acentrei,J

+
ρA2

y,I,j+1

acentreI,j+1
+
ρA2

y,I,j

acentreI,j

)
p′I,J

−
ρA2

x,i+1,J

acentrei+1,J
p′I+1,J −

ρA2
x,i,J

acentrei,J

p′I−1,J −
ρA2

y,I,j+1

acentreI,j+1
p′I,J+1 −

ρA2
y,I,j

acentreI,j

p′I,J−1

= −ρAx,i+1,Ju
∗
i+1,J + ρAx,i,Ju

∗
i,J − ρAy,I,j+1v

∗
I,j+1 + ρAy,I,jv

∗
I,j

(
ρA2

x,i+1,J

acentrei+1,J
+
ρA2

x,i,J

acentrei,J

+
ρA2

y,I,j+1

acentreI,j+1
+
ρA2

y,I,j

acentreI,j

)
p′I,J

−
ρA2

x,i+1,J

acentrei+1,J
p′I+1,J −

ρA2
x,i,J

acentrei,J

p′I−1,J −
ρA2

y,I,j+1

acentreI,j+1
p′I,J+1 −

ρA2
y,I,j

acentreI,j

p′I,J−1

= −Ax,i+1,JF
∗
i+1,J + Ax,i,JF

∗
i,J − Ay,I,j+1F

∗
I,j+1 + Ay,I,jF

∗
I,j
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The pressure correction equation is:

νI,Jp
′
I,J + νI+1,Jp

′
I+1,J + νI−1,Jp

′
I−1,J + νI,J+1p

′
I,J+1 + νI,J−1p

′
I,J−1 = βI,J

with

νI,J =
ρA2

x,i+1,J

acentrei+1,J
+
ρA2

x,i,J

acentrei,J

+
ρA2

y,I,j+1

acentreI,j+1
+
ρA2

y,I,j

acentreI,j

νI+1,J = −
ρA2

x,i+1,J

acentrei+1,J

νI−1,J = −
ρA2

x,i,J

acentrei,J

νI,J+1 = −
ρA2

y,I,j+1

acentreI,j+1

νI,J−1 = −
ρA2

y,I,j

acentreI,j

βI,J = −Ax,i+1,JF
∗
i+1,J + Ax,i,JF

∗
i,J − Ay,I,j+1F

∗
I,j+1 + Ay,I,jF

∗
I,j
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D
Elliptic Grid Generation in Three

Dimensions

D.1 Elliptic Grid Generation Equation
The equation to be discretised is equation (7.1.9). For a three dimensional system, the
summations as shown in equations (D.1.2) (D.1.3) and (D.1.4) are taken, all sums from
1 to 3. The position vector r is expressed as in equation (D.1.1).

r = xex + yey + zez (D.1.1)

3∑
i=1

3∑
j=1

3∑
k=1

(
gij

∂

∂qi

(
∂x

∂qj

)
+∇2qj

∂x

∂qj

)
= 0 (D.1.2)

3∑
i=1

3∑
j=1

3∑
k=1

(
gij

∂

∂qi

(
∂y

∂qj

)
+∇2qj

∂y

∂qj

)
= 0 (D.1.3)

3∑
i=1

3∑
j=1

3∑
k=1

(
gij

∂

∂qi

(
∂z

∂qj

)
+∇2qj

∂z

∂qj

)
= 0 (D.1.4)

Taking the sums yields equations (D.1.5) (D.1.6) and (D.1.7) for the x-, y- and z
components respectively.

g11 ∂

∂q1

(
∂x

∂q1

)
+ g12 ∂

∂q1

(
∂x

∂q2

)
+ g13 ∂

∂q1

(
∂x

∂q3

)

+ g21 ∂

∂q2

(
∂x

∂q1

)
+ g22 ∂

∂q2

(
∂x

∂q2

)
+ g23 ∂

∂q2

(
∂x

∂q3

)

+ g31 ∂

∂q3

(
∂x

∂q1

)
+ g32 ∂

∂q3

(
∂x

∂q2

)
+ g33 ∂

∂q3

(
∂x

∂q3

)

+∇2q1 ∂x

∂q1 +∇2q2 ∂x

∂q2 +∇2q3 ∂x

∂q3 = 0 (D.1.5)
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g11 ∂

∂q1

(
∂y

∂q1

)
+ g12 ∂

∂q1

(
∂y

∂q2

)
+ g13 ∂

∂q1

(
∂y

∂q3

)

+ g21 ∂

∂q2

(
∂y

∂q1

)
+ g22 ∂

∂q2

(
∂y

∂q2

)
+ g23 ∂

∂q2

(
∂y

∂q3

)

+ g31 ∂

∂q3

(
∂y

∂q1

)
+ g32 ∂

∂q3

(
∂y

∂q2

)
+ g33 ∂

∂q3

(
∂y

∂q3

)

+∇2q1 ∂y

∂q1 +∇2q2 ∂y

∂q2 +∇2q3 ∂y

∂q3 = 0 (D.1.6)

g11 ∂

∂q1

(
∂z

∂q1

)
+ g12 ∂

∂q1

(
∂z

∂q2

)
+ g13 ∂

∂q1

(
∂z

∂q3

)

+ g21 ∂

∂q2

(
∂z

∂q1

)
+ g22 ∂

∂q2

(
∂z

∂q2

)
+ g23 ∂

∂q2

(
∂z

∂q3

)

+ g31 ∂

∂q3

(
∂z

∂q1

)
+ g32 ∂

∂q3

(
∂z

∂q2

)
+ g33 ∂

∂q3

(
∂z

∂q3

)

+∇2q1 ∂z

∂q1 +∇2q2 ∂z

∂q2 +∇2q3 ∂z

∂q3 = 0 (D.1.7)

D.2 Expression for the Contravariant Tensor Com-
ponents

Area components:

A1
1 = ∂x2

∂q2
∂x3

∂q3 −
∂x3

∂q2
∂x2

∂q3 (D.2.1)

A2
1 = ∂x2

∂q3
∂x3

∂q1 −
∂x3

∂q3
∂x2

∂q1 (D.2.2)

A3
1 = ∂x2

∂q1
∂x3

∂q2 −
∂x3

∂q1
∂x2

∂q2 (D.2.3)

A1
2 = ∂x3

∂q2
∂x1

∂q3 −
∂x1

∂q2
∂x3

∂q3 (D.2.4)

A2
2 = ∂x3

∂q3
∂x1

∂q1 −
∂x1

∂q3
∂x3

∂q1 (D.2.5)

A3
2 = ∂x3

∂q1
∂x1

∂q2 −
∂x1

∂q1
∂x3

∂q2 (D.2.6)

A1
3 = ∂x1

∂q2
∂x2

∂q3 −
∂x2

∂q2
∂x1

∂q3 (D.2.7)

A2
3 = ∂x1

∂q3
∂x2

∂q1 −
∂x2

∂q3
∂x1

∂q1 (D.2.8)

A3
3 = ∂x1

∂q1
∂x2

∂q2 −
∂x2

∂q1
∂x1

∂q2 (D.2.9)
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Jacobi determinant:

J = det
(
J ij
)

(D.2.10)

=

∣∣∣∣∣∣∣∣
∂x1

∂q1
∂x1

∂q2
∂x1

∂q3

∂x2

∂q1
∂x2

∂q2
∂x2

∂q3

∂x3

∂q1
∂x3

∂q2
∂x3

∂q3

∣∣∣∣∣∣∣∣ (D.2.11)

= ∂x1

∂q1

∣∣∣∣∣∣
∂x2

∂q2
∂x2

∂q3

∂x3

∂q2
∂x3

∂q3

∣∣∣∣∣∣− ∂x1

∂q2

∣∣∣∣∣∣
∂x2

∂q1
∂x2

∂q3

∂x3

∂q1
∂x3

∂q3

∣∣∣∣∣∣+ ∂x1

∂q3

∣∣∣∣∣∣
∂x2

∂q1
∂x2

∂q2

∂x3

∂q1
∂x3

∂q2

∣∣∣∣∣∣ (D.2.12)

= ∂x1

∂q1

(
∂x2

∂q2
∂x3

∂q3 −
∂x3

∂q2
∂x2

∂q3

)
− ∂x1

∂q2

(
∂x2

∂q1
∂x3

∂q3 −
∂x3

∂q1
∂x2

∂q3

)

= + ∂x1

∂q3

(
∂x2

∂q1
∂x3

∂q2 −
∂x3

∂q1
∂x2

∂q2

)
(D.2.13)

= ∂x1

∂q1
∂x2

∂q2
∂x3

∂q3 −
∂x1

∂q1
∂x3

∂q2
∂x2

∂q3 −
∂x1

∂q2
∂x2

∂q1
∂x3

∂q3 + ∂x1

∂q2
∂x3

∂q1
∂x2

∂q3

= + ∂x1

∂q3
∂x2

∂q1
∂x3

∂q2 −
∂x1

∂q3
∂x3

∂q1
∂x2

∂q2 (D.2.14)

Contravariant tensor components summed over k:

gij = Ai ·Aj

J2 = Aikek · A
j
l eL

j2 = AikA
j
l δkl

J2 = AikA
j
k

J2 (D.2.15)

Components of gij:

g11= A1
kA

1
k

J2 = A1
1A

1
1 + A1

2A
1
2 + A1

3A
1
3

J2 (D.2.16)

g21= A2
kA

1
k

J2 = A2
1A

1
1 + A2

2A
1
2 + A2

3A
1
3

J2 (D.2.17)

g31= A3
kA

1
k

J2 = A3
1A

1
1 + A3

2A
1
2 + A3

3A
1
3

J2 (D.2.18)

g12= A1
kA

2
k

J2 = A1
1A

2
1 + A1

2A
2
2 + A1

3A
2
3

J2 (D.2.19)

g22= A2
kA

2
k

J2 = A2
1A

2
1 + A2

2A
2
2 + A2

3A
2
3

J2 (D.2.20)

g32= A3
kA

2
k

J2 = A3
1A

2
1 + A3

2A
2
2 + A3

3A
2
3

J2 (D.2.21)

g13= A1
kA

3
k

J2 = A1
1A

3
1 + A1

2A
3
2 + A1

3A
3
3

J2 (D.2.22)

g23= A2
kA

3
k

J2 = A2
1A

3
1 + A2

2A
3
2 + A2

3A
3
3

J2 (D.2.23)

g33= A3
kA

3
k

J2 = A3
1A

3
1 + A3

2A
3
2 + A3

3A
3
3

J2 (D.2.24)
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E
MATLAB Code

A list of the names of the parameters as used in MATLAB and the codes used to solve the
models are given in this chapter. A map of how the scripts and functions are used is
given in section 4.9. The appendix Table of Contents is helpful to find a specific code.
The use of each code is explained. All the codes can also be found in the attached
.zip file.

E.1 Codes Sorted by Model
Below follows a grouped list of all the codes used in this thesis. The models are
separated into four general groups with the following codes:

1. 1D: The one-dimensional model for the straight channel

• channel 1D.m

2. 2D: The two-dimensional model for the straight channel, dimensionless.

• channel 2D.m

• plot 2D.m

3. BFS: The two-dimensional model for the backwards facing step model, dimen-
sionless with constant and parabolic inlet:

• channel BFS.m

• channel BFS parabolc.m

• BFS u velocity.m

• BFS u velocity parabolc.m

• BFS pressurecorrection.m

• BFS pressurecorrection parabolc.m
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• BFS v velocity.m

• BFS v velocity parabolc.m

• isWide.m

• getRowNumber.m

• getRowOver.m

• getRowUnder.m

• global2matrix.m

• plot BFS.m

• plot BFS parabolc.m

• plotColoredQuiver.m

• plotColoredQuiver parabolic.m

• plotVelocityCorrection.m

• plotIntermediates.m

• plot BFS iterations.m

• plotVelInts BFS iterations.m

4. GG: Grid generation codes

• elliptic.m

• getCol.m

• getRow.m

• global2matrix.m

• matrix2global.m

• transfinite.m

E.2 List of MATLAB parameters
A list of MATLAB parameters is given in this section, containing the names used in
MATLAB for the fluid flow parameters.

The list includes the names for the parameters used in MATLAB for each group of models,
as well as the unit, description, corresponding symbol in derivations if it exists, and
which models the parameter appears in.

Parameters solely used for plotting are excluded from the list, as well as some param-
eters for intermediate calculations.
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R
A

M
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ER
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1D 2D

0BFS0

G
G

Name Type Unit Description Symbol Appears in
A Number m2 Surface area of control volume in x-direction. A
A11 Vector m2 Face area component A1

1
A12 Vector m2 Face area component A1

2
A21 Vector m2 Face area component A2

1
A22 Vector m2 Face area component A2

2
AM11 Matrix m2 Face area component A1

1
AM12 Matrix m2 Face area component A1

2
AM21 Matrix m2 Face area component A2

1
AM22 Matrix m2 Face area component A2

2
A x Number - Dimensionless surface area of control volume in x-direction. Âx
A x true Number m2 Surface area of control volume in x-direction. Ax
A y Number - Dimensionless cross-sectional area in x-direction. Ây
A y true Number m2 Cross-sectional area in y-direction. Ax
alpha - - Under-relaxation factor α
alpha p Number - Under-relaxation factor for pressure αp
alpha u Number - Under-relaxation factor for u-velocity αu
alpha v Number - Under-relaxation factor for v-velocity αv
au Vector kg/s Centre node coefficient for u-velocity acentreu

au Vector - Centre node coefficient for u-velocity acentreu

av Vector - Centre node coefficient for v-velocity acentrev

beta Vector Pa Source term in pressure correction equation β

beta Vector - Source term in pressure correction equation β̂
bu Vector m/s Source term in u-velocity equation bi,J
bu Vector - Source term in u-velocity equation ˆbi,J

Continued on next page
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MATLAB
C

O
D

E

Continued from previous page

1D 2D

0BFS0

G
G

Name Type Unit Description Symbol Appears in
bv Vector - Source term in v-velocity equation ˆbI,j
bx Vector - Source term for x
by Vector - Source term for y
c1 Number - Convergence criterion, u-velocity residual C1
c1 diff Number - Distance from value of c1 to limit
c1 lim Number - c1 limit
c2 Number - Convergence criterion, v-velocity residual C2
c2 diff Number - Distance from value of c2 to limit
c2 lim Number - c2 limit
c3 Number Pa Convergence criterion, continuity C3
c3 Number - Convergence criterion, continuity C3
c3 diff Number Pa Distance from value of c3 to limit
c3 diff Number - Distance from value of c3 to limit
c3 lim Number - c3 limit
c4 Number - Convergence criterion, iteration change u-velocity C4
c4 diff Number - Distance from value of c4 to limit
c4 lim Number - c4 limit
c5 Number - Convergence criterion, iteration change v-velocity C5
c5 diff Number - Distance from value of c5 to limit
c5 lim Number - c5 limit
conv Boolean - True if the model is converged
cx Number - Convergence criterion for x Cx
cx lim Number - cx limit
cy Number - Convergence criterion for y Cx

Continued on next page
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Continued from previous page

1D 2D

0BFS0

G
G

Name Type Unit Description Symbol Appears in
cy lim Number - cy limit
D hyd Number m Hydraulic diameter Dhyd

D Number Pa·s/m Diffusion conductance D

D x Number - Dimensionless diffusion conductance in x-direction D̂x

D y Number - Dimensionless diffusion conductance in y-direction D̂y

del x Number m Control volume width δx
del x Number - Dimensionless control volume width δ̂x
del x true Number m Control volume width δx
del y Number - Dimensionless control volume height δ̂y
del y true Number m Control volume height δy
E coeff Number - Eastern node coefficient in velocity or pressure corr. equation âE
eP coeff Number - Eastern node contribution to centre node
etest Boolean - True if node point is at eastern boundary
F e Vector - Dimensionless convective mass flux for u-velocity, east cell face Fe
F xe Vector - Dimensionless convective mass flux for u-velocity, east cell face F̂x,e
F xn Vector - Dimensionless convective mass flux for u-velocity, north cell face F̂x,e
F xs Vector - Dimensionless convective mass flux for u-velocity, south cell face F̂x,s
F xw Vector - Dimensionless convective mass flux for u-velocity, west cell face F̂x,w
F ye Vector - Dimensionless convective mass flux for v-velocity, east cell face F̂y,e
F yn Vector - Dimensionless convective mass flux for v-velocity, north cell face F̂y,n
F ys Vector - Dimensionless convective mass flux for v-velocity, south cell face F̂y,s
F yw Vector - Dimensionless convective mass flux for v-velocity, west cell face F̂y,w
F w Vector kg/sm2 Dimensionless convective mass flux for u-velocity, west cell face Fw
filler Matrix - Filler value placed where the step is in the BFS models

Continued on next page
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Name Type Unit Description Symbol Appears in
g11 Vector m2 Contravariant tensor component g11

g12 Vector m2 Contravariant tensor component g12

g21 Vector m2 Contravariant tensor component g21

g22 Vector m2 Contravariant tensor component g22

gM11 Matrix m2 Contravariant tensor component g11

gM12 Matrix m2 Contravariant tensor component g12

gM21 Matrix m2 Contravariant tensor component g21

gM22 Matrix m2 Contravariant tensor component g22

h Number m Narrow channel height h
h Number m Height of step h
H Number m Backwards facing step height
H total Number m Channel height after step H
it Number - Current iteration number
l Number m Narrow channel length l
L Number m Channel length after the backwards facing step
L total Number m Total channel length L
M Number - # of scalar nodes in y-dir.
M - - Length of q2-vector
m narrow Number - # of v-vel. nodes in y-dir. in narrow channel
M narrow Number - # of u-vel./pressure corr. nodes in y-dir. in narrow channel
m total Number - # of v-vel. nodes in y-dir. in total
M total Number - # of u-vel./pressure corr. nodes in y-dir. in total
m wide Number - # of v-vel. nodes in y-dir. under step
M wide Number - # of u-vel./pressure corr. nodes in y-dir. under step
maxits Number - Stop if not converged after this number of iterations

Continued on next page
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Name Type Unit Description Symbol Appears in
mu Number Pa·s Viscosity µ
mu Number - Dimensionless viscosity µ̂
mu true Number Pa·s Viscosity µ
N Number - # of scalar nodes in x-dir.
N - - Length of q1-vector
N coeff Number - Northern node coefficient in velocity or pressure corr. equation âN
N narrow Number - # of nodes in x-dir. in narrow channel
N total Number - # of nodes in x-dir. in total
N wide Number - # of nodes in x-dir. after step
nP coeff Number - Northern node contribution to centre node
ntest Boolean - True if node point is at northern boundary
onlyChannel Boolean - True if step section is disabled
P1 - - Poisson control function P 1

P2 - - Poisson control function P 2

p atm Number Pa Atmospheric pressure
p circ Vector Pa Initial guess for pressure p◦

p circ Vector - Initial guess for pressure p̂◦

p corr Vector Pa Pressure correction p′

p corr Vector - Pressure correction p̂′

p guess Vector Pa Pressure guess p◦

p guess Vector - Pressure guess p◦

p new Vector Pa Pressure for next iteration pnew

p new Vector - Pressure for next iteration p̂new

p out Number Pa Outlet pressure p̂out
p out Vector - Outlet pressure p̂out

Continued on next page
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Name Type Unit Description Symbol Appears in
p out tilde Vector - Adjusted outlet pressure ˆ̃pout
plotinit... Boolean - Option for plotting the initial guess profiles
q1 Vector - Curvilinear coordinate q1

q2 Vector - Curvilinear coordinate q2

Re Number - Reynolds number Re
rho Number kg/m3 Density ρ
rho Number - Dimensionless density ρ̂
rho true Number kg/m3 Density ρ
runitera... Boolean - Option for plotting after each iteration
s Number Distribution parameter for line segment AD
S coeff Number Southern node coefficient in velocity or pressure corr. equation âS
scorner Boolean - True if node point is at the BFS corner
sP coeff Number Southern node contribution to centre node
stest Boolean - True if node point is at southern boundary
sys width Number m Height and width of the system in 1D h
T Matrix sm Coefficients for pressure T

T Matrix - Coefficients for pressure T̂
totalpoints Number - Total number of scalar points
totalpoin... Number - Total number of v-velocity nodes
U Matrix kg/s Coefficients for u-velocity U

U Matrix - Coefficients for u-velocity Û
u bulk Number m/s Bulk inlet u-velocity uavg
u bulk d... Number Dimensionless bulk inlet u-velocity ûavg
u circ Vector m/s Initial guess for u-velocity u◦

Continued on next page
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Name Type Unit Description Symbol Appears in
u circ Vector - Initial guess for u-velocity û◦

u corr Vector Pa u-velocity correction u′

u corr Vector - u-velocity correction û′

u guess Number m/s u-velocity guess
u in Number m/s u-velocity at inlet uin
u in Number - Dimensionless u-velocity at inlet ûin
u in Vector - Dimensionless u-velocity profile at inlet ûin
u in true Number m/s u-velocity at inlet ûin
u in true Vector m/s u-velocity profile at inlet ûin
u new Vector Pa u-velocity for next iteration unew

u new Vector - u-velocity for next iteration ûnew

u max Number m/s Max inlet u-velocity umax
u star Vector - u-velocity after matrix inversion û∗

V Matrix - Coefficients for v-velocity Û
v circ Vector - Initial guess for v-velocity v̂◦

v corr Vector - v-velocity correction v̂′

v guess Number m/s v-velocity guess
v in Number - Dimensionless v-velocity at inlet v̂in
v in true Number m/s v-velocity at inlet v̂in
v new Vector - v-velocity for next iteration v̂new

v star Vector - v-velocity after matrix inversion v̂∗

W coeff Number Western node coefficient in velocity or pressure corr. equation âW
wP coeff Number Western node contribution to centre node
wtest Boolean - True if node point is at western boundary

Continued on next page
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Name Type Unit Description Symbol Appears in
wwall Boolean - True if node point is at the wall after the BFS
X Matrix - Coefficients for x
x Matrix - x-coordinate x
xA Number - Location of point A, x-coordinate
xAB Vector - Boundary points, x-coordinate xAB
xAD Vector - Boundary points, x-coordinate xAD
xAF Vector - Boundary points, x-coordinate xAF
xB Number - Location of point B, x-coordinate
xBC Vector - Boundary points, x-coordinate xBC
xC Number - Location of point C, x-coordinate
xD Number - Location of point D, x-coordinate
xDC Vector - Boundary points, x-coordinate xDC
xE Number - Location of point E, x-coordinate
xED Vector - Boundary points, x-coordinate xED
xF Number - Location of point F , x-coordinate
xFE Vector - Boundary points, x-coordinate xFE
xx Vector - x after matrix inversion x
x mat Matrix - x after matrix inversion x
x max Number - Total length of physical domain L
Y Matrix - Coefficients for y
y Matrix - y-coordinate y
yA Number - Location of point A, y-coordinate
yAB Vector - Boundary points, y-coordinate yAB
yAD Vector - Boundary points, y-coordinate yAD
yAF Vector - Boundary points, y-coordinate yAF

Continued on next page
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Name Type Unit Description Symbol Appears in
yB Number - Location of point B, y-coordinate
yBC Vector - Boundary points, y-coordinate yBC
yC Number - Location of point C, y-coordinate
yD Number - Location of point D, y-coordinate
yDC Vector - Boundary points, y-coordinate yDC
yE Number - Location of point E, y-coordinate
yED Vector - Boundary points, y-coordinate yED
yF Number - Location of point F , y-coordinate
yFE Vector - Boundary points, y-coordinate yFE
yy Vector - y after matrix inversion y
y mat Matrix - y after matrix inversion y
y max Number - Total height of physical domain H
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E.3 One Dimensional Straight Channel
The code channel 1D.m solves and plots the solution to the one dimensional flow
problem.

1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % One dimensional fluid flow in a straight channel %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4
5 clc
6 clear
7 close all
8 tic
9

10 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11 %% Solver specifications
12 maxits = 20000;
13 N = 100; % Number of scalar nodal points
14 runiterationwise = 0; % Plots the profiles after each iteration
15 plotinitialprofiles = 0; % Plot the initial guesses
16
17 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18 %% Initial guesses
19
20 p_out = 1e5; % Pa
21 u_in = 1e -3; % m/s
22 p_guess = 1.5 e5; % Pa
23 u_guess = 1.5e -3; % m/s
24
25 % Creating a linear profile for the initial guess of the pressure
26 pprofile = [ linspace (p_guess ,p_out ,N+1) , p_out ];
27 p_circ = pprofile (2: end -1);
28
29 % Creating a linear profile for the initial guess of the velocity
30 uprofile = linspace (u_in ,u_guess ,N+1);
31 % Placing the velocities in the staggered grid
32 u_circ = 0.5*( uprofile (2: end)+ uprofile (1: end -1));
33
34 alpha_u = 1; % Under - relaxation of the velocity
35 alpha_p = 0.05; % Under - relaxation of the pressure
36 % 1 corresponds to no under - relaxation
37
38 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
39 %% Parameters and system specifications
40 L = 3; % Channel length [m]
41
42 x_0 = 0; % Channel start [m]
43 x_N = L; % Channel end [m]
44 mu = 8.90 * 10ˆ -4; % Viscosity [Pa s]
45
46 sys_width = 1; % Height of the channel is set to unity
47 % for the one dimensional model
48
49 del_x = x_N/N; % Width of the control volume [m]
50 A = del_x * sys_width ;% Cross - sectional area [mˆ2]
51
52
53 rho = 1e3; % Density [kg/mˆ3]
54
55 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
56 %% Initialisation
57
58 p_corr = zeros (1, N);
59 p_new = zeros (1, N);
60
61 u_star = zeros (1, N);
62 u_corr = zeros (1, N);
63 u_new = zeros (1, N);
64
65 F_e = zeros (1, N);
66 F_w = zeros (1, N);
67 D = mu/ del_x ;
68
69 U = zeros (N, N);
70 bu = zeros (1, N);
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71
72 T = zeros (N, N);
73 beta = zeros (1, N);
74 a_u = zeros (1, N);
75
76 xu_plot = linspace (x_0 , x_N , N+1); % staggered grid
77 xp_plot = linspace (x_0+ del_x /2, x_N+ del_x /2, N+1);
78
79 if plotinitialprofiles == 1
80 figure
81 plot(xu_plot , [u_in , u_circ ])
82 hold on
83 plot( xu_plot (1:2) , [u_in , u_circ (1)],’r’)
84 title (’Initial guess $u$ ’, ’interpreter ’, ’latex ’)
85 figure
86 plot(xp_plot , [p_circ , p_out ])
87 hold on
88 plot( xp_plot (end -1: end), [ p_circ (end),p_out ],’r’)
89 title (’Initial guess $p$ ’, ’interpreter ’, ’latex ’)
90 end %if
91
92 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
93 %% While loop
94 conv = 0;
95 it = 1;
96 while conv == 0
97
98 %% Solve momentum equation
99 % Calculation of coefficients F_e:

100 for i = 1: length ( u_circ ) -1
101 F_e(i) = rho *1/2*( u_circ (i+1)+ u_circ (i));
102 end %for
103 F_e(end) = rho *1/2*( u_circ (end)+ u_circ (end -1)); % F_e = F_w
104
105 % Calculation of coefficients F_w:
106 F_w (1) = rho *1/2*( u_circ (1)+u_in);
107 for i = 2: length ( u_circ )
108 F_w(i) = rho *1/2*( u_circ (i)+ u_circ (i -1));
109 end %for
110
111 % u_2 (u(1))
112 U(1 ,1) = 4*D*A + max (0, -F_e (1)*A) + max(F_w (1)*A ,0) ...
113 + F_e (1)*A - F_w (1)*A;
114 U(1 ,2) = -2*D*A - max (0, -F_e (1)*A);
115 bu (1) = ( 2*D*A + max(F_w (1)*A, 0))*u_in ...
116 - A*( p_circ (2) - p_circ (1));
117
118
119 % u_centers
120 for j = 2: length ( u_circ ) -1
121 U(j,j) = 4*D*A + max (0, -F_e(j)*A) + max(F_w(j)*A, 0) ...
122 + F_e(j)*A - F_w(j)*A ;
123 U(j,j+1) = -2*D*A- max (0, -F_e(j)*A);
124 U(j,j -1) = -2*D*A- max(F_w(j)*A, 0);
125 bu(j) = - ( p_circ (j+1) - p_circ (j))*A;
126
127
128 end %for
129
130 % u_n +1 (u(end))
131 U(end ,end) = 4*D*A + max(F_w(end)*A, 0) ...
132 + F_e(end)*A - F_w(end)*A ;
133 U(end ,end -1) = -2*D*A -max(F_w(end)*A, 0);
134 bu(end) = - ( p_out - p_circ (end))*A;
135
136 % Matrix inversion
137 u_star = U\bu ’;
138
139 %% Solve pressure correction equation
140 % aˆcenter - coefficients in the momentum equation
141 for i = 1: length (U)
142 a_u(i) = U(i,i);
143 end %for
144
145 % p_1
146 T(1 ,1) = rho*A/a_u (1);
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147 T(1 ,2) = - rho*A/a_u (1);
148 beta (1) = rho *(- u_star (1) + u_in);
149
150 % p_centers
151 for j = 2: length ( p_corr ) -1
152 T(j,j) = rho*A*(1/ a_u(j) + 1/ a_u(j -1));
153 T(j,j+1) = - rho*A/a_u(j);
154 T(j,j -1) = - rho*A/a_u(j -1);
155 beta(j) = rho *(- u_star (j) + u_star (j -1));
156 end %for
157
158 % p_N
159 T(end ,end) = rho*A*(1/ a_u(end)+1/ a_u(end -1));
160 T(end ,end -1) = - rho*A/a_u(end);
161 beta(end) = rho *(- u_star (end) + u_star (end -1));
162
163 % Matrix inversion
164 p_corr = T\beta ’;
165
166 %% Velocity correction
167 for j = 1: length ( p_corr ) -1
168 u_corr (j) = - A/a_u(j)*( p_corr (j+1) -p_corr (j));
169 end %for
170 u_corr (end) = - A/a_u(end)*(- p_corr (end));
171 % pressure correction is zero for the known outlet pressure
172
173 %% Under - relaxation
174 % Pressure
175 p_new = p_circ + alpha_p * p_corr ’;
176
177 % Under - relaxation of u
178 u_new = alpha_u *( u_star ’ + u_corr ) + (1- alpha_u )* u_circ ;
179
180 %% Check convergence
181 if isnan ( rcond (U)) || isnan ( rcond (T))
182 fprintf (’Stopped due to singularity in matrix \n’)
183 fprintf (’RCOND velocity : %e \ nRCOND pressure : %e\n’ ,...
184 rcond (U), rcond (T))
185 fprintf (’Problem occured after %d iterations \n’, it -1)
186 return
187 end %if
188
189 c1 = 1/ u_in*sqrt ((U*u_star -bu ’) ’*(U*u_star -bu ’)); % coefficient summed
190 c3 = abs(sum(beta)); % continuity
191 c4 = 1/ u_in*max(abs( u_circ - u_star ’)); % change from last iteration
192
193 c1_lim = 10ˆ -6;
194 c3_lim = 10ˆ -6;
195 c4_lim = 10ˆ -6;
196
197 c1_diff = c1 - c1_lim ;
198 c3_diff = c3 - c3_lim ;
199 c4_diff = c4 - c4_lim ;
200
201 if (c1 < c1_lim ) && (c3 < c3_lim ) && (c4 < c4_lim ) || (it == maxits )
202 conv = 1; % While loop is stopped
203 if (it == maxits )
204 fprintf (’Stopped at max iterations (%d)\n’,it);
205 else
206 fprintf (’Solution converged after %d iterations \n’,it);
207 end %if
208
209 fprintf (’c1\ tMomentum residual \t\t%.2e\ tLimit : %.2e\n’,c1 , c1_lim );
210 fprintf (’c3\ tPressure correction \t\t%.2e\ tLimit : %.2e\n’,c3 , c3_lim );
211 fprintf (’c4\ tDiff . last iteration \t%.2e\ tLimit : %.2e\n’,c4 , c4_lim );
212
213 if max ([ c1_diff c3_diff c4_diff ]) == c1_diff
214 fprintf (’Limiting criteria is c1\ tMomentum residual \n’)
215 elseif max ([ c1_diff c3_diff c4_diff ]) == c3_diff
216 fprintf (’Limiting criteria is c3\ tPressure correction \n’)
217 elseif max ([ c1_diff c3_diff c4_diff ]) == c4_diff
218 fprintf (’Limiting criteria is c4\ tDiff . last iteration \n’)
219 end %if
220
221
222 else
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223 u_circ = u_new ; % Not converged , updated variables .
224 p_circ = p_new ;
225 it = it + 1;
226
227
228 end %if
229 if runiterationwise == 1 || conv == 1
230 % For iterationwise plotting and for when the model is stopped
231 % Plot after each iteration and close before proceding to the next
232
233 u_new_plot = [u_in u_new ];
234
235 % Discretied x-node points
236 p_plot = [ p_new p_out ];
237 p_corr_plot = [p_corr ’ 0];
238
239 fu = figure ;
240 plot(xu_plot , u_new_plot )
241 s = sprintf (’Plot of $u ˆ{ new}$ after %d iterations ’, it -1 );
242 % f = title (s);
243 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
244 set(gca ,’TickLabelInterpreter ’,’latex ’)
245 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
246 xlim ([0 ,3])
247 ylabel (’Velocity $u$ , [m/s]’, ’interpreter ’, ’latex ’)
248 % set(fu , ’Position ’, [5 ,217 ,414.6667 ,420]) ;
249 %[left bottom width height ]
250 saveas (gcf ,’unew1D .png ’)
251
252
253 fp = figure ;
254 plot(xp_plot , p_plot )
255 s = sprintf (’Plot of $p ˆ{ new}$ after %d iterations ’, it -1 );
256 % f = title (s);
257 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
258 set(gca ,’TickLabelInterpreter ’,’latex ’)
259 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
260 xlim ([0 ,3])
261 ylabel (’Pressure $p$ , [Pa]’, ’interpreter ’, ’latex ’)
262 % set(fp , ’Position ’, [419.6667 ,217 ,434.6667 ,420]) ;
263 % [left bottom width height ]
264 saveas (gcf ,’pnew1D .png ’)
265
266 fpcorr = figure ;
267 plot(xp_plot , p_corr_plot )
268 s = sprintf (’Plot of $p ˆ{ corr}$ after %d iterations ’, it -1 );
269 % f = title (s);
270 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
271 set(gca ,’TickLabelInterpreter ’,’latex ’)
272 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
273 xlim ([0 ,3])
274 ylabel (’Pressure correction $p$ , [Pa]’, ’interpreter ’, ’latex ’)
275 % set(fpcorr , ’Position ’, [855 ,217.6667 ,424 ,422.6667]) ;
276 % [left bottom width height ]
277 saveas (gcf ,’pcorr1D .png ’)
278
279 if conv ˜= 1 % if not converged
280 pause
281 close all
282 end %if
283 end % if
284
285 end % while
286
287 toc
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E.4 Two Dimensional Straight Channel
The code channel 2D.m solves the two dimensional flow problem. The code plot 2D.m
plots the solution to the two dimensional flow problem.

E.4.1 Codes

E.4.1.1 channel 2D.m

1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Two dimensional fluid flow in a straight channel , dimensionless %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 clear
5 clc
6 close all
7 tic
8
9 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 %% Solver specifications
11 maxits = 100000; % Maximum number of iterations , stop if iterations exceed
12 N = 88; % Number of scalar nodal points in x- direction
13 M = 18; % Number of scalar nodal points in y- direction
14 runiterationwise = 0; % Plots the profiles after each iteration
15 plotinitialprofiles = 0; % Plot the initial guesses
16 solvvel = true; % Solve for v- velocity
17 contplots = false ; % Show plots of continuity + cont_x and cont_y
18 v_out_zero = false ; % Use v_out = zero as boundary condition
19
20 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21 %% System specifications
22 m = M - 1; % Number of y- velocity nodes in y- direction
23 L = 22; % Channel length
24 h = 1; % Channel height
25 D_hyd = 4*h *1/(1+1+ h+h); % Hydraulic diameter for Reynolds number
26
27 x_0 = 0; % Defining the domain using x and y
28 x_N = L;
29 y_0 = 0;
30 y_M = h;
31
32 mu_true = 8.90 * 10ˆ -4; % Viscosity of water
33
34 del_z_true = 1; % System depth
35 del_x_true = x_N/N; % Control volume width
36 del_y_true = y_M/M; % Control volume height
37 A_x_true = del_y_true * del_z_true ; % Cross - sectional area in x- direction
38 A_y_true = del_x_true * del_z_true ; % Cross - sectional area in y- direction
39
40 rho_true = 997; % Density of water
41 u_in_true = 0.0005; % Inlet u- velocity
42 g_x = 0; % No gravitation
43 g_y = 0; % No gravitation
44
45
46 Re = rho_true * D_hyd * u_in_true / mu_true ; % Reynolds number
47
48 p_atm = 101325; % Atmospheric presssure at outlet
49 p_out_tilde = 0; % Adjusted pressure
50 p_out = ones (1,M)* p_out_tilde ; % Outlet pressure profile
51
52 alpha_u = 0.01; % Under - relaxation factor for u
53 alpha_v = 0.01; % Under - relaxation factor for v
54 alpha_p = 0.02; % Under - relaxation factor for p
55
56 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
57 %% Dimensionless parameters
58 mu = 1; % Dimensionless viscosity
59 rho = 1; % Dimensionless density
60 del_x = del_x_true / D_hyd ; % Dimensionless control volume width
61 del_y = del_y_true / D_hyd ; % Dimensionless control volume height
62 A_x = A_x_true / D_hyd ˆ2; % Dimensionless cross - sectional area in x- direction
63 A_y = A_y_true / D_hyd ˆ2; % Dimensionless cross - sectional area in y- direction
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64 D_x = 1/ Re*mu/ del_x ; % Dimensionless diffusion conductance in x- direction
65 D_y = 1/ Re*mu/ del_y ; % Dimensionless diffusion conductance in y- direction
66 u_in = 1; % Inlet u- velocity
67 v_in = 0; % Inlet u- velocity
68 u_guess = 1.0; % % Initial guess for u- velocity
69 v_guess = 0.0; % % Initial guess for v- velocity
70 u_circ = ones (1,M*N)* u_guess ; % Initial guess vector for u- velocity
71 v_circ = ones (1,m*N)* v_guess ; % Initial guess vector for v- velocity
72 p_guess = 0/( rho_true * u_in_true ˆ2); % Initial guess for pressure
73 p_circ_vector = linspace (p_guess , p_out_tilde ,N) ’; % Linear profile from
74 % guess to known outlet pressure
75 p_circ = zeros (M*N ,1);
76 for j = 1:M % Filling in initial pressure vector with the linear profile
77 p_circ ((j -1)*N+1:j*N) = p_circ_vector ;
78 end %for
79
80 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
81 %% Initialization of solution vectors
82 p_corr = zeros (1, M*N); % Pressure correction
83 p_new = zeros (1, M*N); % New pressure
84
85 u_star = zeros (1, M*N); % u- velocity after matrix inversion
86 u_corr = zeros (1, M*N); % u- velocity correction
87 u_new = zeros (1, M*N); % New u- velocity
88 U = zeros (M*N, M*N); % u- velocity coefficient matrix
89 bu = zeros (1, M*N); % u- velocity source term vector
90
91 v_star = zeros (1, m*N); % v- velocity after matrix inversion
92 v_corr = zeros (1, m*N); % v- velocity correction
93 v_new = zeros (1, m*N); % New v- velocity
94 V = zeros (m*N, m*N); % v- velocity coefficient matrix
95 bv = zeros (1, m*N); % v- velocity source term vector
96
97 F_xe = zeros (1, M*N); % Convective mass flux per unit area
98 F_xw = zeros (1, M*N);
99 F_xn = zeros (1, M*N);

100 F_xs = zeros (1, M*N);
101 F_ye = zeros (1, m*N);
102 F_yw = zeros (1, m*N);
103 F_yn = zeros (1, m*N);
104 F_ys = zeros (1, m*N);
105
106 T = zeros (M*N, M*N); % Pressure correction coefficient matrix

% for pressure
107 beta = zeros (1, M*N); % Pressure correction source term vector
108
109 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
110 %% Plots of initial guesses
111 if plotinitialprofiles == true
112 f111 = figure ;
113 surf( linspace (x_0+ del_x /2, x_N+ del_x /2, N+1) ,...
114 linspace (y_0+ del_y /2, y_M - del_y /2, M) ,...
115 [ global2matrix (p_circ ,N,M) p_out ’]); % surf(x,y,z)
116 s = sprintf (’Initial guess $p_{circ}$’);
117 f = title (s);
118 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
119 set(gca ,’TickLabelInterpreter ’,’latex ’)
120 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
121 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
122 zlabel (’Pressure $p$ , [Pa]’, ’interpreter ’, ’latex ’)
123
124 u_circ_carthesian = ones(M,N+1)* u_guess ;
125 u_circ_carthesian (: ,1) = u_in;
126
127 f122 = figure ;
128 surf( linspace (x_0 , x_N , N+1) ,... % surf(x,y,z)
129 linspace (y_0+ del_y /2, y_M - del_y /2, M),u_circ_carthesian );
130 s = sprintf (’Initial guess $u_{circ}$’);
131 f = title (s);
132 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
133 set(gca ,’TickLabelInterpreter ’,’latex ’)
134 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
135 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
136 zlabel (’Velocity $u$ , [m/s]’, ’interpreter ’, ’latex ’)
137
138 v_circ_carthesian = ones(M+1,N+1)* v_guess ;
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139 v_circ_carthesian (1 ,:) = 0;
140 v_circ_carthesian (M+1 ,:) = 0;
141 v_circ_carthesian (: ,1) = 0;
142
143 f133 = figure ;
144 surf( linspace (-x_0 - del_x /2, x_N+ del_x /2, N+1) ,...
145 linspace (y_0 , y_M , M+1) ,v_circ_carthesian ); % surf(x,y,z)
146 % set(f,’edgecolor ’,’none ’)
147 s = sprintf (’Initial guess $v_{circ}$’);
148 f = title (s);
149 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
150 set(gca ,’TickLabelInterpreter ’,’latex ’)
151 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
152 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
153 zlabel (’Velocity $v$ , [m/s]’, ’interpreter ’, ’latex ’)
154 pause
155 close all
156 end % if
157
158 % Defining x and y points for the staggered grid for plotting
159 xu_plot = linspace (x_0 , x_N , N+1);
160 yu_plot = [0, linspace (y_0+ del_y /2, y_M - del_y /2, M),h];
161 xv_plot = [0, linspace (x_0+ del_x /2, x_N - del_x /2, N)];
162 yv_plot = linspace (y_0 , y_M , M+1);
163 xp_plot = linspace (x_0+ del_x /2, x_N+ del_x /2, N+1) + del_x_true /2;
164 yp_plot = linspace (y_0+ del_y /2, y_M - del_y /2, M) + del_y_true /2;
165
166 %% Specifications before iteration
167 if solvvel == false % Not solve for v- velocity
168 v_out_zero = false ; % Turn off outlet boundary condition for v
169 end %if
170
171 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
172 %% While loop
173 conv = 0; % 0 is not converged , 1 when converged
174 it = 1; % The current iteration
175
176 % Coefficients in matrix , example :
177 % sP_coeff is part of the a_P - coefficient at the diagonal position in the
178 % matrix , while S_coeff is the coefficient in the matrix for the south node
179 while conv == 0 % it <= maxits %
180 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
181 %% Generation of F
182 % Generation of F_x:
183 for i = 1:M*N
184
185 etest = mod(i, N) == 0;
186 wtest = mod(i-1, N) == 0;
187 ntest = M*N - (N - 1) <= i && i <= N*M ;
188 stest = 1 <= i && i <= N ;
189
190 % Northeastern corner
191 if etest == true && ntest == true
192 F_xe(i) = rho /2*( u_circ (i -1)+ u_circ (i)); % F_xe = F_xw
193 F_xn(i) = 0; % v_NorthWall = 0;
194
195 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
196 F_xs(i) = rho /2* v_circ (i-N);
197
198 % Southeastern corner
199 elseif etest == true && stest == true
200 F_xe(i) = rho /2*( u_circ (i -1)+ u_circ (i)); % F_xe = F_xw
201 F_xs(i) = 0; % v_SouthWall = 0;
202
203 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
204 F_xn(i) = rho /2* v_circ (i);
205
206 % Northwestern corner
207 elseif wtest == true && ntest == true
208 F_xw(i) = rho /2*( u_in+ u_circ (i)); % Inlet
209 F_xn(i) = 0; % v_NorthWall = 0;
210
211 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
212 F_xs(i) = rho /2*( v_circ (i-N) + v_circ (i-N+1));
213
214 % Southwestern corner
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215 elseif wtest == true && stest == true
216 F_xw(i) = rho /2*( u_in+ u_circ (i)); % Inlet
217 F_xs(i) = 0; % v_SouthWall = 0;
218
219 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
220 F_xn(i) = rho /2*( v_circ (i) + v_circ (i+1));
221
222 % At eastern boundary (x = L)
223 elseif etest == true && ntest == false && stest == false
224 F_xe(i) = rho /2*( u_circ (i -1)+ u_circ (i)); % F_xe = F_xw
225
226 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
227 F_xn(i) = rho /2* v_circ (i);
228 F_xs(i) = rho /2* v_circ (i-N);
229
230 % At western boundary (x = 0)
231 elseif wtest == true && ntest == false && stest == false
232 F_xw(i) = rho /2*( u_in+ u_circ (i)); % Inlet
233
234 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
235 F_xn(i) = rho /2*( v_circ (i) + v_circ (i+1));
236 F_xs(i) = rho /2*( v_circ (i-N) + v_circ (i-N+1));
237
238 % At northern boundary (y = h)
239 elseif ntest == true && etest == false && wtest == false
240 F_xn(i) = 0; % v_NorthWall = 0;
241
242 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
243 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
244 F_xs(i) = rho /2*( v_circ (i-N) + v_circ (i-N+1));
245
246 % At southern boundary (y = 0)
247 elseif stest == true && etest == false && wtest == false
248 F_xs(i) = 0; % v_SouthWall = 0;
249
250 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
251 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
252 F_xn(i) = rho /2*( v_circ (i) + v_circ (i+1));
253
254 %Not at any boundary
255 else
256 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
257 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
258 F_xn(i) = rho /2*( v_circ (i) + v_circ (i+1));
259 F_xs(i) = rho /2*( v_circ (i-N) + v_circ (i-N+1));
260
261 end % if
262
263 etest = false ;
264 wtest = false ;
265 ntest = false ;
266 stest = false ;
267
268 end %for
269
270 % Generation of F_y:
271 for i = 1:m*N % Global indexing system
272
273 % Eastern boundary requires no special treatment (x = L)
274 wtest = mod(i-1, N) == 0;
275 ntest = m*N - (N - 1) <= i && i <= m*N ;
276 stest = 1 <= i && i <= N ;
277
278 % Northwestern corner
279 if wtest == true && ntest == true
280 F_yw(i) = rho*u_in; % inlet
281 F_yn(i) = rho /2* v_circ (i); % v_NorthWall = 0;
282
283 F_ye(i) = rho /2*( u_circ (i) + u_circ (i+N));
284 F_ys(i) = rho /2*( v_circ (i) + v_circ (i-N));
285
286 % Southwestern corner
287 elseif wtest == true && stest == true
288 F_yw(i) = rho*u_in; % inlet
289 F_ys(i) = rho /2* v_circ (i); % v_SouthWall = 0;
290
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291 F_ye(i) = rho /2*( u_circ (i) + u_circ (i+N));
292 F_yn(i) = rho /2*( v_circ (i) + v_circ (i+N));
293
294 % At western boundary (x = 0)
295 elseif wtest == true && ntest == false && stest == false
296 F_yw(i) = rho*u_in; % inlet
297
298 F_ye(i) = rho /2*( u_circ (i) + u_circ (i+N));
299 F_yn(i) = rho /2*( v_circ (i) + v_circ (i+N));
300 F_ys(i) = rho /2*( v_circ (i) + v_circ (i-N));
301
302 % At northern boundary (y = h)
303 elseif ntest == true && wtest == false
304 F_yn(i) = rho /2* v_circ (i); % v_NorthWall = 0;
305
306 F_ye(i) = rho /2*( u_circ (i) + u_circ (i+N));
307 F_yw(i) = rho /2*( u_circ (i -1) + u_circ (i -1+N));
308 F_ys(i) = rho /2*( v_circ (i) + v_circ (i-N));
309
310 % At southern boundary (y = 0)
311 elseif stest == true && wtest == false
312 F_ys(i) = rho /2* v_circ (i); % v_SouthWall = 0;
313
314 F_ye(i) = rho /2*( u_circ (i) + u_circ (i+N));
315 F_yw(i) = rho /2*( u_circ (i -1) + u_circ (i -1+N));
316 F_yn(i) = rho /2*( v_circ (i) + v_circ (i+N));
317
318 %Not at any boundary
319 else
320 F_ye(i) = rho /2*( u_circ (i) + u_circ (i+N));
321 F_yw(i) = rho /2*( u_circ (i -1) + u_circ (i -1+N));
322 F_yn(i) = rho /2*( v_circ (i) + v_circ (i+N));
323 F_ys(i) = rho /2*( v_circ (i) + v_circ (i-N));
324
325 end % if
326
327 etest = false ;
328 wtest = false ;
329 ntest = false ;
330 stest = false ;
331
332 end % for
333
334 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
335 %% u- velocity
336 for i = 1:M*N % Global indexing system
337
338 etest = mod(i, N) == 0;
339 wtest = mod(i-1, N) == 0;
340 ntest = M*N - (N - 1) <= i && i <= N*M ;
341 stest = 1 <= i && i <= N ;
342
343 % Northeastern corner
344 if etest == true && ntest == true
345 % At eastern boundary (x = L)
346 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
347 eP_coeff = F_xe(i)*A_x;
348
349 bu(i) = -( p_out (end)-p_circ (i))*A_x;
350
351 % At northern boundary
352 nP_coeff = F_xn(i)*A_y + max(0,- F_xn(i)*A_y) + 2* D_y*A_y;
353 %wall shear stress
354
355 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
356 wP_coeff = -W_coeff - F_xw(i)*A_x;
357 U(i, i -1) = W_coeff ;
358
359 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
360 sP_coeff = -S_coeff - F_xs(i)*A_y;
361 U(i, i-N) = S_coeff ;
362
363 % Southeastern corner
364 elseif etest == true && stest == true
365 % At eastern boundary (x = L)
366 E_coeff = -max(0,- F_xe(i)*A_x) - D_x*A_x;
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367 eP_coeff = F_xe(i)*A_x;
368
369 bu(i) = -( p_out (1) -p_circ (i))*A_x;
370
371 % At southern boundary (y = 0)
372 sP_coeff = -F_xs(i)*A_y +max(F_xs(i)*A_y ,0)+ 2* D_y*A_y;
373 %wall shear stress
374
375 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
376 wP_coeff = -W_coeff - F_xw(i)*A_x;
377 U(i, i -1) = W_coeff ;
378
379 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
380 nP_coeff = -N_coeff + F_xn(i)*A_y;
381 U(i, i+N) = N_coeff ;
382
383 % Northwestern corner
384 elseif wtest == true && ntest == true
385 % At western boundary (x = 0)
386 wP_coeff = max(F_xw(i)*A_x ,0) + D_x*A_x - F_xw(i)*A_x;
387
388 % At northern boundary
389 nP_coeff = F_xn(i)*A_y + max(0,- F_xn(i)*A_y)+ 2* D_y*A_y;
390 %wall shear stress
391
392 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x ...
393 +( max(F_xw(i)*A_x ,0) + D_x*A_x)*u_in;
394
395 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
396 eP_coeff = -E_coeff + F_xe(i)*A_x;
397 U(i, i+1) = E_coeff ;
398
399 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
400 sP_coeff = -S_coeff - F_xs(i)*A_y;
401 U(i, i-N) = S_coeff ;
402
403 % Southwestern corner
404 elseif wtest == true && stest == true
405 % At western boundary (x = 0)
406 wP_coeff = max(F_xw(i)*A_x ,0) + D_x*A_x - F_xw(i)*A_x;
407
408 % At southern boundary (y = 0)
409 sP_coeff = -F_xs(i)*A_y +max(F_xs(i)*A_y ,0)+ 2* D_y*A_y;
410 %wall shear stress
411
412 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x ...
413 +( max(F_xw(i)*A_x ,0) + D_x*A_x)*u_in;
414
415 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
416 eP_coeff = -E_coeff + F_xe(i)*A_x;
417 U(i, i+1) = E_coeff ;
418
419 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
420 nP_coeff = -N_coeff + F_xn(i)*A_y;
421 U(i, i+N) = N_coeff ;
422
423 % At eastern boundary (x = L)
424 elseif etest == true && ntest == false && stest == false
425 % At eastern boundary (x = L)
426 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
427 eP_coeff = F_xe(i)*A_x;
428
429 bu(i) = -( p_out ( floor ((i -1)/N)+1) -p_circ (i))*A_x;
430
431 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
432 wP_coeff = -W_coeff - F_xw(i)*A_x;
433 U(i, i -1) = W_coeff ;
434
435 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
436 nP_coeff = -N_coeff + F_xn(i)*A_y;
437 U(i, i+N) = N_coeff ;
438
439 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
440 sP_coeff = -S_coeff - F_xs(i)*A_y;
441 U(i, i-N) = S_coeff ;
442
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443 % At western boundary (x = 0)
444 elseif wtest == true && ntest == false && stest == false
445 % At western boundary (x = 0)
446 wP_coeff = max(F_xw(i)*A_x ,0) + D_x*A_x - F_xw(i)*A_x;
447
448 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x ...
449 +( max(F_xw(i)*A_x ,0) + D_x*A_x)*u_in;
450
451 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
452 eP_coeff = -E_coeff + F_xe(i)*A_x;
453 U(i, i+1) = E_coeff ;
454
455 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
456 nP_coeff = -N_coeff + F_xn(i)*A_y;
457 U(i, i+N) = N_coeff ;
458
459 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
460 sP_coeff = -S_coeff - F_xs(i)*A_y;
461 U(i, i-N) = S_coeff ;
462
463 % At northern boundary (y = h)
464 elseif ntest == true && etest == false && wtest == false
465 % At northern boundary
466 nP_coeff = F_xn(i)*A_y + max(0,- F_xn(i)*A_y)+ 2* D_y*A_y;
467 %wall shear stress
468
469 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x;
470 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
471 eP_coeff = -E_coeff + F_xe(i)*A_x;
472 U(i, i+1) = E_coeff ;
473
474 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
475 wP_coeff = -W_coeff - F_xw(i)*A_x;
476 U(i, i -1) = W_coeff ;
477
478 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
479 sP_coeff = -S_coeff - F_xs(i)*A_y;
480 U(i, i-N) = S_coeff ;
481
482 % At southern boundary (y = 0)
483 elseif stest == true && etest == false && wtest == false
484 % At southern boundary (y = 0)
485 sP_coeff = -F_xs(i)*A_y +max(F_xs(i)*A_y ,0)+ 2* D_y*A_y;
486 %wall shear stress
487
488 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x;
489
490 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
491 eP_coeff = -E_coeff + F_xe(i)*A_x;
492 U(i, i+1) = E_coeff ;
493
494 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
495 wP_coeff = -W_coeff - F_xw(i)*A_x;
496 U(i, i -1) = W_coeff ;
497
498 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
499 nP_coeff = -N_coeff + F_xn(i)*A_y;
500 U(i, i+N) = N_coeff ;
501
502 %Not at any boundary
503 else
504 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x;
505 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
506 eP_coeff = -E_coeff + F_xe(i)*A_x;
507 U(i, i+1) = E_coeff ;
508
509 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
510 wP_coeff = -W_coeff - F_xw(i)*A_x;
511 U(i, i -1) = W_coeff ;
512
513 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
514 nP_coeff = -N_coeff + F_xn(i)*A_y;
515 U(i, i+N) = N_coeff ;
516
517 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
518 sP_coeff = -S_coeff - F_xs(i)*A_y;



E.4. TWO DIMENSIONAL STRAIGHT CHANNEL 183

519 U(i, i-N) = S_coeff ;
520
521 end % if
522
523 % Filling in the rest of the matrix , adding all point coefficients
524 U(i,i) = wP_coeff + eP_coeff + nP_coeff + sP_coeff ;
525
526 etest = false ;
527 wtest = false ;
528 ntest = false ;
529 stest = false ;
530
531 end %for
532
533 u_star = U\bu ’;
534
535 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
536 %% v- velocity
537 for i = 1:m*N % Global indexing system
538 bv(i) = -( p_circ (i+N)-p_circ (i))*A_y + rho*g_y* del_y *A_y;
539
540 etest = mod(i, N) == 0;
541 wtest = mod(i-1, N) == 0;
542 ntest = m*N - (N - 1) <= i && i <= m*N ;
543 stest = 1 <= i && i <= N ;
544
545 % Northeastern corner
546 if etest == true && ntest == true
547
548 % At eastern boundary (x = L)
549 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
550 eP_coeff = F_ye(i)*A_x;
551
552 if v_out_zero == true
553 eP_coeff = eP_coeff + 1e+30;
554 end %if
555
556 % At northern boundary
557 nP_coeff = F_yn(i)*A_y + max (0, -F_yn(i)*A_y) + D_y*A_y;
558
559 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
560 wP_coeff = -W_coeff - F_yw(i)*A_x;
561 V(i, i -1) = W_coeff ;
562
563 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
564 sP_coeff = -S_coeff - F_ys(i)*A_y;
565 V(i, i-N) = S_coeff ;
566
567 % Southeastern corner
568 elseif etest == true && stest == true
569
570 % At eastern boundary (x = L)
571 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
572 eP_coeff = F_ye(i)*A_x;
573 if v_out_zero == true
574 eP_coeff = eP_coeff + 1e+30;
575 end %if
576 % At southern boundary (y = 0) ,
577 sP_coeff = -F_ys(i)*A_y + max(F_ys(i)*A_y ,0) + D_y*A_y;
578
579 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
580 wP_coeff = -W_coeff - F_yw(i)*A_x;
581 V(i, i -1) = W_coeff ;
582
583 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
584 nP_coeff = -N_coeff + F_yn(i)*A_y;
585 V(i, i+N) = N_coeff ;
586
587 % Northwestern corner
588 elseif wtest == true && ntest == true
589
590 % At western boundary (x = 0)
591 wP_coeff = - F_yw(i)*A_x + max(F_yw(i)*A_x ,0) + 2* D_x*A_x;
592
593 % At northern boundary
594 nP_coeff = F_yn(i)*A_y + max (0, -F_yn(i)*A_y) + D_y*A_y ;
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595
596 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
597 eP_coeff = -E_coeff + F_ye(i)*A_x;
598 V(i, i+1) = E_coeff ;
599
600 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
601 sP_coeff = -S_coeff - F_ys(i)*A_y;
602 V(i, i-N) = S_coeff ;
603
604 % Southwestern corner
605 elseif wtest == true && stest == true
606
607 % At western boundary (x = 0)
608 wP_coeff = - F_yw(i)*A_x + max(F_yw(i)*A_x ,0) + 2* D_x*A_x;
609
610 % At southern boundary (y = 0) ,
611 sP_coeff = -F_ys(i)*A_y + max(F_ys(i)*A_y ,0) + D_y*A_y;
612
613 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
614 eP_coeff = -E_coeff + F_ye(i)*A_x;
615 V(i, i+1) = E_coeff ;
616
617 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
618 nP_coeff = -N_coeff + F_yn(i)*A_y;
619 V(i, i+N) = N_coeff ;
620
621 % At eastern boundary (x = L)
622 elseif etest == true && ntest == false && stest == false
623
624 % At eastern boundary (x = L)
625 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
626 eP_coeff = F_ye(i)*A_x;
627 if v_out_zero == true
628 eP_coeff = eP_coeff + 1e+30;
629 end %if
630
631 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
632 wP_coeff = -W_coeff - F_yw(i)*A_x;
633 V(i, i -1) = W_coeff ;
634
635 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
636 nP_coeff = -N_coeff + F_yn(i)*A_y;
637 V(i, i+N) = N_coeff ;
638
639 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
640 sP_coeff = -S_coeff - F_ys(i)*A_y;
641 V(i, i-N) = S_coeff ;
642
643 % At western boundary (x = 0)
644 elseif wtest == true && ntest == false && stest == false
645
646 % At western boundary (x = 0)
647 wP_coeff = - F_yw(i)*A_x + max(F_yw(i)*A_x ,0) + 2* D_x*A_x;
648
649 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
650 eP_coeff = -E_coeff + F_ye(i)*A_x;
651 V(i, i+1) = E_coeff ;
652
653 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
654 nP_coeff = -N_coeff + F_yn(i)*A_y;
655 V(i, i+N) = N_coeff ;
656
657 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
658 sP_coeff = -S_coeff - F_ys(i)*A_y;
659 V(i, i-N) = S_coeff ;
660
661 % At northern boundary (y = h)
662 elseif ntest == true && etest == false && wtest == false
663
664 % At northern boundary
665 nP_coeff = F_yn(i)*A_y + max (0, -F_yn(i)*A_y) + D_y*A_y ;
666
667 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
668 eP_coeff = -E_coeff + F_ye(i)*A_x;
669 V(i, i+1) = E_coeff ;
670
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671 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
672 wP_coeff = -W_coeff - F_yw(i)*A_x;
673 V(i, i -1) = W_coeff ;
674
675 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
676 sP_coeff = -S_coeff - F_ys(i)*A_y;
677 V(i, i-N) = S_coeff ;
678
679 % At southern boundary (y = 0)
680 elseif stest == true && etest == false && wtest == false
681
682 % At southern boundary (y = 0) ,
683 sP_coeff = -F_ys(i)*A_y + max(F_ys(i)*A_y ,0) + D_y*A_y;
684
685 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
686 eP_coeff = -E_coeff + F_ye(i)*A_x;
687 V(i, i+1) = E_coeff ;
688
689 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
690 wP_coeff = -W_coeff - F_yw(i)*A_x;
691 V(i, i -1) = W_coeff ;
692
693 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
694 nP_coeff = -N_coeff + F_yn(i)*A_y;
695 V(i, i+N) = N_coeff ;
696
697 %Not at any boundary
698 else
699
700 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
701 eP_coeff = -E_coeff + F_ye(i)*A_x;
702 V(i, i+1) = E_coeff ;
703
704 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
705 wP_coeff = -W_coeff - F_yw(i)*A_x;
706 V(i, i -1) = W_coeff ;
707
708 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
709 nP_coeff = -N_coeff + F_yn(i)*A_y;
710 V(i, i+N) = N_coeff ;
711
712 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
713 sP_coeff = -S_coeff - F_ys(i)*A_y;
714 V(i, i-N) = S_coeff ;
715
716 end % if
717
718 % Filling in the rest of the matrix , adding all point coefficients
719 V(i,i) = wP_coeff + eP_coeff + nP_coeff + sP_coeff ;
720
721 etest = false ;
722 wtest = false ;
723 ntest = false ;
724 stest = false ;
725
726 end % for
727 v_star = V\bv ’;
728 if solvvel == false
729 v_star = zeros ( length ( v_star ) ,1);
730 end %if
731
732 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
733 %% Pressure correction
734 au = diag(U); % aˆcenter - coefficients for u- velocity
735 av = diag(V); % aˆcenter - coefficients for v- velocity
736
737 for i = 1:M*N % Global indexing system
738
739 etest = mod(i, N) == 0;
740 wtest = mod(i-1, N) == 0;
741 ntest = M*N - (N - 1) <= i && i <= N*M ;
742 stest = 1 <= i && i <= N ;
743
744 % Northeastern corner
745 if etest == true && ntest == true
746
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747 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
748 + A_y* v_star (i-N));
749
750 % At eastern boundary (x = L)
751 eP_coeff = rho*A_x ˆ2/ au(i);
752
753 % At northern boundary
754 nP_coeff = 0 ;
755
756 W_coeff = -rho*A_x ˆ2/ au(i -1);
757 wP_coeff = -W_coeff ;
758 T(i, i -1) = W_coeff ;
759
760 S_coeff = -rho*A_y ˆ2/ av(i-N);
761 sP_coeff = -S_coeff ;
762 T(i, i-N) = S_coeff ;
763
764 % Southeastern corner
765 elseif etest == true && stest == true
766
767 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
768 -A_y* v_star (i));
769
770 % At eastern boundary (x = L)
771 eP_coeff = rho*A_x ˆ2/ au(i);
772
773 % At southern boundary (y = 0)
774 sP_coeff = 0;
775
776 W_coeff = -rho*A_x ˆ2/ au(i -1);
777 wP_coeff = -W_coeff ;
778 T(i, i -1) = W_coeff ;
779
780 N_coeff = -rho*A_y ˆ2/ av(i);
781 nP_coeff = -N_coeff ;
782 T(i, i+N) = N_coeff ;
783
784 % Northwestern corner
785 elseif wtest == true && ntest == true
786
787 beta(i) = rho *(- A_x* u_star (i) +A_x*u_in ...
788 + A_y* v_star (i-N));
789
790 % At western boundary (x = 0)
791 wP_coeff = 0;
792
793 % At northern boundary
794 nP_coeff = 0 ;
795
796 E_coeff = -rho*A_x ˆ2/ au(i);
797 eP_coeff = -E_coeff ;
798 T(i, i+1) = E_coeff ;
799
800 S_coeff = -rho*A_y ˆ2/ av(i-N);
801 sP_coeff = -S_coeff ;
802 T(i, i-N) = S_coeff ;
803
804 % Southwestern corner
805 elseif wtest == true && stest == true
806 beta(i) = rho *(- A_x* u_star (i) +A_x*u_in ...
807 -A_y* v_star (i));
808
809 % At western boundary (x = 0)
810 wP_coeff = 0;
811
812 % At southern boundary (y = 0)
813 sP_coeff = 0;
814
815 E_coeff = -rho*A_x ˆ2/ au(i);
816 eP_coeff = -E_coeff ;
817 T(i, i+1) = E_coeff ;
818
819 N_coeff = -rho*A_y ˆ2/ av(i);
820 nP_coeff = -N_coeff ;
821 T(i, i+N) = N_coeff ;
822
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823 % At eastern boundary (x = L)
824 elseif etest == true && ntest == false && stest == false
825
826 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
827 -A_y* v_star (i) + A_y* v_star (i-N));
828
829 % At eastern boundary (x = L)
830 eP_coeff = rho*A_x ˆ2/ au(i);
831
832 W_coeff = -rho*A_x ˆ2/ au(i -1);
833 wP_coeff = -W_coeff ;
834 T(i, i -1) = W_coeff ;
835
836 N_coeff = -rho*A_y ˆ2/ av(i);
837 nP_coeff = -N_coeff ;
838 T(i, i+N) = N_coeff ;
839
840 S_coeff = -rho*A_y ˆ2/ av(i-N);
841 sP_coeff = -S_coeff ;
842 T(i, i-N) = S_coeff ;
843
844 % At western boundary (x = 0)
845 elseif wtest == true && ntest == false && stest == false
846
847 beta(i) = rho *(- A_x* u_star (i) +A_x*u_in ...
848 -A_y* v_star (i) + A_y* v_star (i-N));
849
850 % At western boundary (x = 0)
851 wP_coeff = 0;
852
853 E_coeff = -rho*A_x ˆ2/ au(i);
854 eP_coeff = -E_coeff ;
855 T(i, i+1) = E_coeff ;
856
857 N_coeff = -rho*A_y ˆ2/ av(i);
858 nP_coeff = -N_coeff ;
859 T(i, i+N) = N_coeff ;
860
861 S_coeff =- rho*A_y ˆ2/ av(i-N);
862 sP_coeff = -S_coeff ;
863 T(i, i-N) = S_coeff ;
864
865 % At northern boundary (y = h)
866 elseif ntest == true && etest == false && wtest == false
867
868 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
869 + A_y* v_star (i-N));
870
871 % At northern boundary
872 nP_coeff = 0 ;
873
874 E_coeff = -rho*A_x ˆ2/ au(i);
875 eP_coeff = -E_coeff ;
876 T(i, i+1) = E_coeff ;
877
878 W_coeff = -rho*A_x ˆ2/ au(i -1);
879 wP_coeff = -W_coeff ;
880 T(i, i -1) = W_coeff ;
881
882 S_coeff = -rho*A_y ˆ2/ av(i-N);
883 sP_coeff = -S_coeff ;
884 T(i, i-N) = S_coeff ;
885
886 % At southern boundary (y = 0)
887 elseif stest == true && etest == false && wtest == false
888
889 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
890 -A_y* v_star (i));
891
892 % At southern boundary (y = 0)
893 sP_coeff = 0;
894
895 E_coeff = -rho*A_x ˆ2/ au(i);
896 eP_coeff = -E_coeff ;
897 T(i, i+1) = E_coeff ;
898
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899 W_coeff = -rho*A_x ˆ2/ au(i -1);
900 wP_coeff = -W_coeff ;
901 T(i, i -1) = W_coeff ;
902
903 N_coeff = -rho*A_y ˆ2/ av(i);
904 nP_coeff = -N_coeff ;
905 T(i, i+N) = N_coeff ;
906
907 %Not at any boundary
908 else
909
910 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
911 -A_y* v_star (i) + A_y* v_star (i-N));
912
913 E_coeff = -rho*A_x ˆ2/ au(i);
914 eP_coeff = -E_coeff ;
915 T(i, i+1) = E_coeff ;
916
917 W_coeff = -rho*A_x ˆ2/ au(i -1);
918 wP_coeff = -W_coeff ;
919 T(i, i -1) = W_coeff ;
920
921 N_coeff = -rho*A_y ˆ2/ av(i);
922 nP_coeff = -N_coeff ;
923 T(i, i+N) = N_coeff ;
924
925 S_coeff = -rho*A_y ˆ2/ av(i-N);
926 sP_coeff = -S_coeff ;
927 T(i, i-N) = S_coeff ;
928
929 end % if
930
931 % Filling in the rest of the matrix , adding all point coefficients
932 T(i,i) = wP_coeff + eP_coeff + nP_coeff + sP_coeff ;
933
934 etest = false ;
935 wtest = false ;
936 ntest = false ;
937 stest = false ;
938 end % for
939 p_corr = T\beta ’;
940
941 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
942 %% Velocity correction
943
944 for j = 1: length ( p_corr )
945 if mod(j, N) == 0 % eastern boundary
946 u_corr (j) = - A_x/au(j)*(- p_corr (j));
947 % pressure correction is zero for known outlet pressure
948 else
949 u_corr (j) = - A_x/au(j)*( p_corr (j+1) -p_corr (j));
950 end % if
951 end %for
952
953 for k = 1: length ( p_corr )-N
954 v_corr (k) = - A_y/av(k)*( p_corr (k+N)-p_corr (k));
955 end %for
956
957 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
958 %% Under - relaxation
959
960 p_new = p_circ + alpha_p * p_corr ;
961 u_new = alpha_u *( u_star ’ + u_corr ) + (1- alpha_u )* u_circ ;
962 v_new = alpha_v *( v_star ’ + v_corr ) + (1- alpha_v )* v_circ ;
963
964 if solvvel == false
965 v_new = zeros (1, length ( v_new ));
966 annoSolvvel = ’$v$ - velocity : Not solved ’;
967 else
968 annoSolvvel = ’$v$ - velocity : Solved ’;
969 end %if
970
971 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
972 %% Check convergence
973 % Make sure there are no mistakes in the matrix operations above
974 if ˜ isvector ( u_new ) || ˜ isvector ( p_new ) || ˜ isvector ( p_new )
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975 fprintf (’u_new - %dx%d\n’,size(u_new ,1) ,size(u_new ,2))
976 fprintf (’v_new - %dx%d\n’,size(v_new ,1) ,size(v_new ,2))
977 fprintf (’p_new - %dx%d\n’,size(p_new ,1) ,size(p_new ,2))
978 error (’Matrix addition gone wrong ’)
979 end
980
981 if isnan ( rcond (U)) || isnan ( rcond (V)) || isnan ( rcond (T))
982 % clc % Remove if warnings are desired
983 fprintf (’Stopped due to singularity in matrix \n’)
984 fprintf (’RCOND u- velocity : %e \ nRCOND v- velocity : %e \n’ ,...
985 rcond (U), rcond (V))
986 fprintf (’RCOND pressure : %e\n’,rcond (T))
987 fprintf (’Problem occured after %d iterations \n’, it)
988 return
989 end %if
990
991 c1 = 1/ u_in*sqrt ((U*u_star -bu ’) ’*(U*u_star -bu ’)); % residuals
992 c2 = 1/ u_in*sqrt ((V*v_star -bv ’) ’*(V*v_star -bv ’)); % residuals
993 c3 = abs(sum(beta)); % continuity fulfulled
994 c4 = 1/ u_in*max(abs( u_circ - u_star ’)) ; % change from last iteration
995 c5 = 1/ u_in*max(abs( v_circ - v_star ’)) ; % change from last iteration
996
997
998 c1_lim = 10ˆ -8; % Limits
999 c2_lim = 10ˆ -8;

1000 c3_lim = 10ˆ -10;
1001 c4_lim = 10ˆ -8;
1002 c5_lim = 10ˆ -8;
1003
1004
1005 if solvvel == false % Overwrite if v- velocity is not solved for
1006 c2 = 0;
1007 c5 = 0;
1008 end %if
1009
1010 c1_diff = c1 - c1_lim ; % How far away from convergence
1011 c2_diff = c2 - c2_lim ;
1012 c3_diff = c3 - c3_lim ;
1013 c4_diff = c4 - c4_lim ;
1014 c5_diff = c5 - c5_lim ;
1015
1016 if (c1 < c1_lim ) && (c2 < c2_lim ) && (c3 < c3_lim ) && (c4 < c4_lim )...
1017 && (c5 < c5_lim ) || (it == maxits )
1018 conv = 1; % Converged
1019 if (it == maxits )
1020 fprintf (’Stopped at max iterations (%d)\n’,it);
1021 else
1022 fprintf (’Solution converged after %d iterations \n’,it);
1023 end %if
1024
1025 fprintf (’c1\ tMomentum residual u\t\t%.2e\ tLimit : %.2e\n’ ,...
1026 c1 , c1_lim );
1027 fprintf (’c2\ tMomentum residual v\t\t%.2e\ tLimit : %.2e\n’ ,...
1028 c2 , c2_lim );
1029 fprintf (’c3\ tPressure correction \t\t%.2e\ tLimit : %.2e\n’ ,...
1030 c3 , c3_lim );
1031 fprintf (’c4\ tDiff . last iteration u\t%.2e\ tLimit : %.2e\n’ ,...
1032 c4 , c4_lim );
1033 fprintf (’c5\ tDiff . last iteration v\t%.2e\ tLimit : %.2e\n’ ,...
1034 c5 , c5_lim );
1035
1036 if max ([ c1_diff c2_diff c3_diff c4_diff c5_diff ]) == c1_diff
1037 fprintf (’Limiting criteria is c1\ tMomentum residual u\n’)
1038 elseif max ([ c1_diff c2_diff c3_diff c4_diff c5_diff ]) == c2_diff
1039 fprintf (’Limiting criteria is c2\ tMomentum residual v\n’)
1040 elseif max ([ c1_diff c2_diff c3_diff c4_diff c5_diff ]) == c3_diff
1041 fprintf (’Limiting criteria is c3\ tPressure correction \n’)
1042 elseif max ([ c1_diff c2_diff c3_diff c4_diff c5_diff ]) == c4_diff
1043 fprintf (’Limiting criteria is c4\ tDiff . last iteration u\n’)
1044 elseif max ([ c1_diff c2_diff c3_diff c4_diff c5_diff ]) == c5_diff
1045 fprintf (’Limiting criteria is c5\ tDiff . last iteration u\n’)
1046 end %if
1047
1048 else
1049
1050 u_circ = u_new ; % Not converged , updated variables
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1051 v_circ = v_new ; % Not converged , updated variables
1052 p_circ = p_new ; % Not converged , updated variables
1053
1054 end % if
1055
1056 if runiterationwise == 1 || conv == 1
1057 plot_2D
1058 if conv == 0 % if not converged
1059 pause
1060 close all
1061 end %if
1062 end %if
1063
1064 it = it + 1; % Update number of iterations
1065
1066 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1067 end % while
1068 toc

E.4.1.2 plot 2D.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Plotting of the two dimensional fluid flow %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4
5 %% Velocities and pressure back to matrices
6
7 u_new_plot = zeros (M+2,N+1);
8
9 u_new_plot (: ,1) = u_in_true ;

10 u_star_plot (: ,1) = u_in_true ;
11
12 u_new_plot (1 ,1) = Inf; % The walls at the inlet are blocked out
13 u_new_plot (end ,1) = Inf;
14
15 for j = 1:M
16 for i = 1:N
17 u_new_plot (j+1,i+1) = u_new ((j -1)*N + i)* u_in_true ;
18 end % for
19 end % for
20
21
22 v_new_plot = zeros (M+1,N+1);
23
24 for j = 1:m % The rest of the points are zero
25 for i = 1:N
26 v_new_plot (j+1,i+1) = v_new ((j -1)*N + i)* u_in_true ;
27 end % for
28 end % for
29
30
31 p_plot = zeros (M,N+1);
32 p_corrplot = zeros (M,N+1);
33
34 p_plot (:,N+1) = p_atm ;
35
36 for j = 1:M % The rest of the points are zero
37 for i = 1:N
38 p_plot (j,i) = p_new ((j -1)*N + i)* rho_true * u_in_true + p_atm ;
39 % ;
40 p_corrplot (j,i) = p_corr ((j -1)*N + i)* rho_true * u_in_true ;
41 end % for
42 end % for
43
44 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
45 %% Plot
46 az_outlet = 45; % Azimuth angle for setting viewpoint in figures
47 el_outlet = 30; % Elevation height for setting viewpoint in figures
48
49 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
50 f1 = figure ;
51 f = surf(xu_plot ,yu_plot , u_new_plot ); % surf(x,y,z)
52 s = sprintf (’Plot of $u_{new}$ after %d iterations ’, it );
53 % f = title (s);
54 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
55 set(gca ,’TickLabelInterpreter ’,’latex ’)
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56 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
57 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
58 zlabel (’Velocity $u$ , [m/s]’, ’interpreter ’, ’latex ’)
59 ztickformat (’%.2f’)
60 saveas (gcf ,’unew2D .png ’)
61
62 f1_outlet = figure ;
63 f = surf(xu_plot ,yu_plot , u_new_plot ); % surf(x,y,z)
64 view(az_outlet , el_outlet )
65 s = sprintf (’Plot of $u_{new}$ after %d iterations ’, it );
66 % f = title (s);
67 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
68 set(gca ,’TickLabelInterpreter ’,’latex ’)
69 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
70 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
71 zlabel (’Velocity $u$ , [m/s]’, ’interpreter ’, ’latex ’)
72 ztickformat (’%.2f’)
73 saveas (gcf ,’unewoutlet2D .png ’)
74
75 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
76 f2 = figure ;
77 f = surf(xv_plot ,yv_plot , v_new_plot ); % surf(x,y,z)
78 s = sprintf (’Plot of $v_{new}$ after %d iterations ’, it );
79 % f = title (s);
80 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
81 set(gca ,’TickLabelInterpreter ’,’latex ’)
82 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
83 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
84 zlabel (’Velocity $v$ , [m/s]’, ’interpreter ’, ’latex ’)
85 ztickformat (’%.2f’)
86 saveas (gcf ,’vnew2D .png ’)
87
88 f2_outlet = figure ;
89 f = surf(xv_plot ,yv_plot , v_new_plot ); % surf(x,y,z)
90 view(az_outlet , el_outlet )
91 s = sprintf (’Plot of $v_{new}$ after %d iterations ’, it );
92 % f = title (s);
93 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
94 set(gca ,’TickLabelInterpreter ’,’latex ’)
95 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
96 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
97 zlabel (’Velocity $v$ , [m/s]’, ’interpreter ’, ’latex ’)
98 ztickformat (’%.2f’)
99 saveas (gcf ,’vnewoutlet2D .png ’)

100
101 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
102 f3 = figure ;
103 surf(xp_plot ,yp_plot , p_corrplot ); % surf(x,y,z)
104 s = sprintf (’Plot of $p ˆ{ corr}$ after %d iterations ’, it );
105 % f = title (s);
106 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
107 set(gca ,’TickLabelInterpreter ’,’latex ’)
108 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
109 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
110 zlabel (’Pressure correction $p ’’$, [Pa]’, ’interpreter ’, ’latex ’)
111 ztickformat (’%.2f’)
112 % zlim ([ -0.1 0.1])
113 saveas (gcf ,’pcorr2D .png ’)
114
115 f3_outlet = figure ;
116 surf(xp_plot ,yp_plot , p_corrplot ); % surf(x,y,z)
117 view(az_outlet , el_outlet )
118 s = sprintf (’Plot of $p ˆ{ corr}$ after %d iterations ’, it );
119 % f = title (s);
120 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
121 set(gca ,’TickLabelInterpreter ’,’latex ’)
122 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
123 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
124 zlabel (’Pressure correction $p ’’$, [Pa]’, ’interpreter ’, ’latex ’)
125 % zlim ([ -0.1 0.1])
126 ztickformat (’%.2f’)
127 saveas (gcf ,’pcorroutlet2D .png ’)
128
129 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
130 f4 = figure ;
131 f = surf(xp_plot ,yp_plot , p_plot ); % surf(x,y,z)
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132 s = sprintf (’Plot of $p_{new}$ after %d iterations ’, it );
133 % f = title (s);
134 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
135 set(gca ,’TickLabelInterpreter ’,’latex ’)
136 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
137 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
138 zlabel (’Pressure $p$ , [Pa]’, ’interpreter ’, ’latex ’)
139 ztickformat (’%.7f’)
140 saveas (gcf ,’pnew2D .png ’)
141
142 f4_outlet = figure ;
143 f = surf(xp_plot ,yp_plot , p_plot ); % surf(x,y,z)
144 view(az_outlet , el_outlet )
145 s = sprintf (’Plot of $p_{new}$ after %d iterations ’, it );
146 % f = title (s);
147 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
148 set(gca ,’TickLabelInterpreter ’,’latex ’)
149 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
150 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
151 zlabel (’Pressure $p$ , [Pa]’, ’interpreter ’, ’latex ’)
152 ztickformat (’%.7f’)
153 saveas (gcf ,’pnewoutlet2D .png ’)
154
155 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
156 %% Plotting the continuity
157
158 for i = 1:M*N % Global indexing system
159
160 etest = mod(i, N) == 0;
161 wtest = mod(i-1, N) == 0;
162 ntest = M*N - (N - 1) <= i && i <= N*M ;
163 stest = 1 <= i && i <= N ;
164
165 % Northeastern corner
166 if etest == true && ntest == true
167 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
168 + A_y* v_star (i-N));
169 cont_x (i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1)) ;
170 cont_y (i) = rho *( A_y* v_star (i-N)) ;
171
172 % Southeastern corner
173 elseif etest == true && stest == true
174 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
175 -A_y* v_star (i));
176 cont_x (i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1)) ;
177 cont_y (i) = rho *(- A_y* v_star (i)) ;
178
179 % Northwestern corner
180 elseif wtest == true && ntest == true
181 beta(i) = rho *(- A_x* u_star (i) +A_x*u_in ...
182 + A_y* v_star (i-N));
183 cont_x (i) = rho *(- A_x* u_star (i) +A_x*u_in);
184 cont_y (i) = rho *( A_y* v_star (i-N));
185
186 % Southwestern corner
187 elseif wtest == true && stest == true
188 beta(i) = rho *(- A_x* u_star (i) +A_x*u_in ...
189 -A_y* v_star (i));
190 cont_x (i) = rho *(- A_x* u_star (i) +A_x*u_in) ;
191 cont_y (i) = rho *(- A_y* v_star (i)) ;
192
193 % At eastern boundary (x = L)
194 elseif etest == true && ntest == false && stest == false
195 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
196 -A_y* v_star (i) + A_y* v_star (i-N));
197 cont_x (i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1)) ;
198 cont_y (i) = rho *(- A_y* v_star (i) + A_y* v_star (i-N)) ;
199
200 % At western boundary (x = 0)
201 elseif wtest == true && ntest == false && stest == false
202 beta(i) = rho *(- A_x* u_star (i) +A_x*u_in ...
203 -A_y* v_star (i) + A_y* v_star (i-N));
204 cont_x (i) = rho *(- A_x* u_star (i) +A_x*u_in) ;
205 cont_y (i) = rho *(- A_y* v_star (i) + A_y* v_star (i-N)) ;
206
207 % At northern boundary (y = h)
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208 elseif ntest == true && etest == false && wtest == false
209 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
210 + A_y* v_star (i-N));
211 cont_x (i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1)) ;
212 cont_y (i) = rho *( A_y* v_star (i-N)) ;
213
214 % At southern boundary (y = 0)
215 elseif stest == true && etest == false && wtest == false
216 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
217 -A_y* v_star (i));
218 cont_x (i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1));
219 cont_y (i) = rho *(- A_y* v_star (i));
220
221 %Not at any boundary
222 else
223 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
224 -A_y* v_star (i) + A_y* v_star (i-N));
225 cont_x (i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1)) ;
226 cont_y (i) = rho *(- A_y* v_star (i) + A_y* v_star (i-N)) ;
227
228
229 end % if
230 end %for
231
232 beta_plot = zeros (M,N);
233 cont_x_plot = zeros (M,N);
234 cont_y_plot = zeros (M,N);
235
236 for j = 1:M % the rest of the points are zero
237 for i = 1:N
238 cont_x_plot (j,i) = cont_x ((j -1)*N + i);
239 cont_y_plot (j,i) = cont_y ((j -1)*N + i);
240 beta_plot (j,i) = beta ((j -1)*N + i);
241 end % for
242 end % for
243
244
245 if contplots
246 f5 = figure ;
247 f = surf( xp_plot (1: end -1) ,yp_plot , cont_x_plot ); % surf(x,y,z)
248 s = sprintf (...
249 ’Plot of $x - $component of continuity after %d iterations ’, it );
250 f = title (s);
251 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
252 set(gca ,’TickLabelInterpreter ’,’latex ’)
253 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
254 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
255 zlabel (’Mass flow rate [kg/s]’, ’interpreter ’, ’latex ’)
256 ztickformat (’%.2f’)
257 saveas (gcf ,’cont_x .png ’)
258
259
260 f6 = figure ;
261 f = surf( xp_plot (1: end -1) ,yp_plot , cont_y_plot ); % surf(x,y,z)
262 s = sprintf (...
263 ’Plot of $y - $component of continuity after %d iterations ’, it );
264 f = title (s);
265 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
266 set(gca ,’TickLabelInterpreter ’,’latex ’)
267 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
268 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
269 zlabel (’Mass flow rate [kg/s]’, ’interpreter ’, ’latex ’)
270 ztickformat (’%.2f’)
271 saveas (gcf ,’cont_y .png ’)
272
273 f7 = figure ;
274 f = surf( xp_plot (1: end -1) ,yp_plot , beta_plot ); % surf(x,y,z)
275 s = sprintf (...
276 ’Plot of $\\ beta$ ( continuity ) after %d iterations ’, it );
277 f = title (s);
278 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
279 set(gca ,’TickLabelInterpreter ’,’latex ’)
280 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
281 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
282 zlabel (’Mass flow rate [kg/s]’, ’interpreter ’, ’latex ’)
283 ztickformat (’%.2f’)
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284 saveas (gcf ,’beta.png ’)
285 end

E.5 Backwards Facing Step Model
See figure in section 4.9 for a map of the working principle of the backwards facing
step codes.

E.5.1 Constant Inlet Velocity
The code channel BFS.m solves the two dimensional backwards facing step problem.
The code BFS u velocity.m contains the calculations of the Momentum equation for
the u-velocity component, BFS v velocity.m contains the calculations of the Momen-
tum equation for the v-velocity component and BFS pressurecorrection.m contains
the calculations of the Momentum equation for the u-velocity component.

The code plot BFS.m plots the surface plots for the velocities, pressure and pressure
correction. The code plotVelocityQuiver.m plots the velocity quiver plots. The
code plotColoredQuiver.m plots the velocity quiver plots with the contour plot for
background colour. The code plotVelocityCorrection.m is used to plot the velocity
corrections. The code plotIntermediates.m is used to plot the intermediate velocities
u∗ and v∗ corrections. The code plot BFS iterations.m is used to plot the velocities,
pressurre and pressure correction for every specified iteration and saves them to a .gif
file. The code plotVelocityCorrection.m is used to plot the initial, intermediate,
corrected and new velocities and saving them to a .gif file.

The code isWide.m is used to check if a node point is in the narrow or wide section
in the backwards facing step simulations. The code getRowNumber.m is used for the
globally indexed vectors to obtain the row number in the corresponding matrix given
the dimensions of the matrix. The code getRowUnder.m is used for the globally in-
dexed vectors to obtain the row number directly below the node in the corresponding
matrix given the dimensions of the matrix. The code getRowOver.m is used for the
globally indexed vectors to obtain the row number directly above the node in the cor-
responding matrix given the dimensions of the matrix. The code global2matrix.m is
used to convert the globally indexed vectors into their corresponding matrices given
the dimensions of the matrix.

E.5.1.1 channel BFS.m

1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Two dimensional fluid flow over a backwards facing step , dimensionless %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 close all
5 clear
6 clc
7 tic
8 warning on
9

10 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11 %% Solver specs
12 maxits = 25000; % Maximum number of iterations , stop if iterations exceed
13
14 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
15 %% Options
16 plotiterationwise = false ; % Plots the profiles after each iteration
17 solvvel = true; % Solve for v- velocity
18 plotCircVels = false ; % Plot u_circ and v_circ
19 plotCorrVels = false ; % Plot u_corr and v_corr
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20 showVelociyQuiver = true; % Plot velocity quiver plots
21 plotInitialProfiles = false ; % Plot the initial guesses
22 onlyChannel = false ;% Turn off the BFS , transform model to straight channel
23
24 % Make .gif file of the profiles before convergence is reached :
25 printSetPlotIt = false ;
26 % Also create a .gif of the u-and v- velocities with their intermediates :
27 gifIntermediates = false ;
28 % Vector of the iterations for which to save the plots to the .gif files :
29 itSaves = [1 2 3 4 5 10:10:100 100:100: maxits ];
30
31 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
32 %% System specifications
33 % Specify number of narrow points , leave the rest
34 N_narrow = 12; % Number of scalar nodal points in narrow section in x-dir.
35 M_narrow = 12; % Number of scalar nodal points in narrow section in y-dir.
36
37 l = 3; % Narrow channel length
38 h = 1; % Narrow channel height
39 L = 19; % Wide channel length
40 H = 0.5; % Wide channel height
41
42 L_total = l + L; % Total channel length
43 H_total = h + H; % Total channel height
44
45 x_0 = 0; % Defining the domain using x and y
46 x_N = L_total ;
47 y_0 = 0;
48 y_M = H_total ;
49
50
51 if mod(N_narrow ,3) ˜=0 || mod(M_narrow ,2) ˜=0
52 msg = ’Points don ’’t match dimensions ’;
53 error (msg)
54 end %if
55
56 N_wide = N_narrow *19/3; % # scalar nodal points in wide section in x-dir.
57 M_wide = M_narrow *1/2; % # scalar nodal points in wide section in y-dir.
58
59 N_total = N_narrow + N_wide ;% Total # of scalar nodal points in x- direction
60 M_total = M_narrow + M_wide ;% Total # of scalar nodal points in y- direction
61
62 m_total = M_total - 1; % Total number of y- velocity nodes in y- direction
63 m_wide = M_wide ;% Number of y- velocity nodes in y- direction in wide section
64 m_narrow = M_narrow - 1;% # of y- velocity nodes in y-dir. in narrow section
65
66 % Total number of computational points in the domain ...
67 totalpoints = N_narrow * M_narrow + N_wide * M_total ; % ... for u and P
68 totalpoints_v = N_narrow * m_narrow + N_wide * m_total ; % ... for v
69
70 D_hyd = 4*h *1/(1+1+ h+h); % Hydraulic diameter
71 mu_true = 8.90 * 10ˆ -4; % Viscosity of water
72
73 del_z_true = 1; % System depth
74 del_x_true = L_total / N_total ; % Control volume width
75 del_y_true = H_total / M_total ; % Control volume height
76 A_x_true = del_y_true * del_z_true ; % Cross - sectional area in x- direction
77 A_y_true = del_x_true * del_z_true ; % Cross - sectional area in y- direction
78
79 rho_true = 997; % Density of water
80 u_in_true = 0.0005; % Inlet u- velocity
81
82 g_x = 0; % No gravitation
83 g_y = 0; % No gravitation
84
85 Re = rho_true * D_hyd * u_in_true / mu_true ; % Reynolds number
86
87 p_atm = 101325; % Atmospheric presssure at outlet
88 p_out_tilde = 0; % Adjusted pressure
89 p_out = ones (1, M_total )* p_out_tilde ; % Outlet pressure profile
90
91 alpha_u = 0.005; % Under - relaxation factor for u
92 alpha_v = 0.005; % Under - relaxation factor for v
93 alpha_p = 0.01; % Under - relaxation factor for p
94
95 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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96 %% Dimensionless parameters
97 mu = 1; % Dimensionless viscosity
98 rho = 1; % Dimensionless density
99 del_x = del_x_true / D_hyd ; % Dimensionless control volume width

100 del_y = del_y_true / D_hyd ; % Dimensionless control volume height
101 A_x = A_x_true / D_hyd ˆ2; % Dimensionless cross - sectional area in x- direction
102 A_y = A_y_true / D_hyd ˆ2; % Dimensionless cross - sectional area in y- direction
103 D_x = 1/ Re*mu/ del_x ; % Dimensionless diffusion conductance in x- direction
104 D_y = 1/ Re*mu/ del_y ; % Dimensionless diffusion conductance in y- direction
105 u_in = 1; % Inlet u- velocity
106 v_in = 0; % Inlet u- velocity
107 u_guess = 1.0; % Initial guess for u- velocity
108 v_guess = 0.0; % Initial guess for v- velocity
109 p_guess = 0/( rho_true * u_in_true ˆ2); % Initial guess for pressure
110
111 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
112 %% Initialisation of p
113 % Filling in initial pressure vector with the linear profile .
114 % This section is set up for if gravity is added , but could be more compact
115 % if the option to add gravity was not there .
116
117 p_circ_y_wide = linspace (p_guess , p_guess +rho*g_y*H_total , M_total );
118 p_circ_carthesian_wide = zeros (M_total , N_wide );
119 for j = 1: M_total
120 for i = 1: N_wide
121 p_circ_carthesian_wide (j,i) = p_circ_y_wide (j);
122 end %for
123 end %for
124
125 p_circ_y_narrow = p_circ_y_wide ( M_wide +1: end);
126 p_circ_carthesian_narrow = zeros (M_narrow , N_narrow );
127 for j = 1: M_narrow
128 for i = 1: N_narrow
129 p_circ_carthesian_narrow (j,i) = p_circ_y_narrow (j);
130 end %for
131 end %for
132
133 filler = zeros (M_wide , N_narrow );
134 p_circ_carthesian = [[ filler ; p_circ_carthesian_narrow ] ...
135 p_circ_carthesian_wide ];
136 p_circ_carthesian = flip( p_circ_carthesian ,1);
137
138 p_circ = p_circ_carthesian (1 ,:); % Take the first vector
139
140 for i = 2: M_total
141 row = p_circ_carthesian (i);
142 if i <= M_narrow % Take whole row
143 p_circ = [p_circ , p_circ_carthesian (i ,:) ];
144 else % Take part of the row
145 p_circ = [p_circ , p_circ_carthesian (i, N_narrow +1: N_total )];
146 end %if
147 end %for
148
149 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
150 %% Initialisation of u and v
151
152 u_circ = ones( totalpoints ,1)* u_guess ; % Fill in guess in the initial vector
153 if ˜ onlyChannel % Only for the normal mode with the BFS enabled
154 for i = 1: totalpoints
155 if isWide (i, N_narrow , N_wide , M_wide )% Lower guess after expansion
156 u_circ (i) = u_guess *( M_narrow / M_total );
157 end %if
158 end %for
159 end %if
160
161
162 v_circ = ones( totalpoints_v ,1)* v_guess ; % Fill in guess in the initial vec.
163 if ˜ onlyChannel % Only for the normal mode with the BFS enabled
164 for i = 1: totalpoints_v
165 if isWide (i, N_narrow , N_wide , M_wide )% Lower guess after expansion
166 v_circ (i) = v_guess *( m_narrow / m_total );
167 end %if
168 end %for
169 end %if
170
171 if plotInitialProfiles == true % Plot the initial profiles if desired
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172 it = 0;
173 u_new = u_circ ;
174 v_new = v_circ ;
175 p_new = p_circ ;
176 if printSetPlotIt == true
177 plotProfilesITSAVE_subplots ;
178 else
179 plotProfiles_dimensionless
180 pause
181 close all
182 end % if
183 end %if
184
185 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
186 %% Initialisation of solution vectors
187 p_new = zeros (1, totalpoints ); % New pressure
188
189 u_corr = zeros (1, totalpoints ); % u- velocity correction
190 u_new = zeros (1, totalpoints ); % New u- velocity
191
192 v_corr = zeros (1, totalpoints_v ); % v- velocity correction
193 v_new = zeros (1, totalpoints_v ); % New v- velocity
194
195 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
196 %% While loop
197 conv = 0; % 0 is not converged , 1 when converged
198 it = 1; % The current iteration
199
200 while conv == 0
201 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
202 %% Calculate velocities and pressure correction
203 % Run the scripts :
204 % Velocities
205 BFS_u_velocity
206 BFS_v_velocity
207 if solvvel == false
208 v_star = zeros ( totalpoints_v ,1);
209 end %if
210
211 % Pressure correction
212 BFS_pressurecorrection
213
214 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
215 %% Velocity correction
216
217 startCorr = 1;
218 for j = startCorr : totalpoints
219 if ( i <= N_wide * M_wide && mod(i, N_wide ) == 0 ) ... % Below step
220 || ( i > N_wide * M_wide && mod(i- N_wide *M_wide , N_total ) == 0)
221 % Eastern boundary : eastern pressure is known , no press . corr.
222 u_corr (j) = - A_x/au(j)*(- p_corr (j));
223 else
224 u_corr (j) = - A_x/au(j)*( p_corr (j+1) -p_corr (j));
225 end % if
226 end %for
227
228 for k = startCorr : totalpoints_v
229 v_corr (k) = - A_y/av(k)*...
230 ( p_corr ( getRowOver (k, N_wide , M_wide , N_total ))-p_corr (k));
231 end %for
232
233 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
234 %% Under - relaxation
235
236 u_new = alpha_u *( u_star + u_corr ’) + (1- alpha_u )* u_circ ;
237
238 if solvvel == false
239 v_new = zeros ( totalpoints_v ,1);
240 else
241 v_new = alpha_v *( v_star + v_corr ’) + (1- alpha_v )* v_circ ;
242 end %if
243
244 p_new = p_circ + alpha_p * p_corr ’;
245
246 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
247 %% Check convergence
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248 % Make sure there are no mistakes in the matrix operations above
249 if ˜ isvector ( u_new ) || ˜ isvector ( p_new ) || ˜ isvector ( p_new )
250 fprintf (’u_new - %dx%d\n’,size(u_new ,1) ,size(u_new ,2))
251 fprintf (’v_new - %dx%d\n’,size(v_new ,1) ,size(v_new ,2))
252 fprintf (’p_new - %dx%d\n’,size(p_new ,1) ,size(p_new ,2))
253 error (’Matrix addition gone wrong ’)
254 end
255
256 if isnan ( rcond (U)) || isnan ( rcond (V)) || isnan ( rcond (T))
257 % clc % Remove if warnings are desired
258 fprintf (’Stopped due to singularity in matrix \n’)
259 fprintf (’RCOND u- velocity : %e \ nRCOND v- velocity : %e \n’ ,...
260 rcond (U), rcond (V))
261 fprintf (’RCOND pressure correction : %e\n’,rcond (T))
262 fprintf (’Problem occured after %d iterations \n’, it)
263 toc
264 return
265 end %if
266
267 c1 = 1/ u_in*sqrt ((U*u_star -bu ’) ’*(U*u_star -bu ’)); % residuals
268 c2 = 1/ u_in*sqrt ((V*v_star -bv ’) ’*(V*v_star -bv ’)); % residuals
269 c3 = abs(sum(beta)); % continuity fulfulled
270 c4 = 1/ u_in*max(abs( u_circ - u_star )) ; % change from last iteration
271 c5 = 1/ u_in*max(abs( v_circ - v_star )) ; % change from last iteration
272
273 c1_lim = 10ˆ -8; % Limits
274 c2_lim = 10ˆ -8;
275 c3_lim = 10ˆ -10;
276 c4_lim = 10ˆ -8;
277 c5_lim = 10ˆ -8;
278
279 if solvvel == false % Overwrite if v- velocity is not solved for
280 c2 = 0;
281 c5 = 0;
282 end %if
283
284 c1_diff = c1 - c1_lim ; % How far away from convergence
285 c2_diff = c2 - c2_lim ;
286 c3_diff = c3 - c3_lim ;
287 c4_diff = c4 - c4_lim ;
288 c5_diff = c5 - c5_lim ;
289
290
291 if (c1 < c1_lim ) && (c2 < c2_lim ) && (c3 < c3_lim ) && (c4 < c4_lim ) ...
292 && (c5 < c5_lim ) || (it == maxits )
293 conv = 1; % Converged
294 if (it == maxits )
295 fprintf (’Stopped at max iterations (%d)\n’,it);
296 else
297 fprintf (’Solution converged after %d iterations \n’,it);
298 end %if
299
300 fprintf (’c1\ tMomentum residual u\t\t%.2e\ tLimit : %.2e\n’ ,...
301 c1 , c1_lim );
302 fprintf (’c2\ tMomentum residual v\t\t%.2e\ tLimit : %.2e\n’ ,...
303 c2 , c2_lim );
304 fprintf (’c3\ tPressure correction \t\t%.2e\ tLimit : %.2e\n’ ,...
305 c3 , c3_lim );
306 fprintf (’c4\ tDiff . last iteration u\t%.2e\ tLimit : %.2e\n’ ,...
307 c4 , c4_lim );
308 fprintf (’c5\ tDiff . last iteration v\t%.2e\ tLimit : %.2e\n’ ,...
309 c5 , c5_lim );
310
311 if max ([ c1_diff c2_diff c3_diff c4_diff c5_diff ]) == c1_diff
312 fprintf (’Limiting criteria is c1\ tMomentum residual u\n’)
313 elseif max ([ c1_diff c2_diff c3_diff c4_diff c5_diff ]) == c2_diff
314 fprintf (’Limiting criteria is c2\ tMomentum residual v\n’)
315 elseif max ([ c1_diff c2_diff c3_diff c4_diff c5_diff ]) == c3_diff
316 fprintf (’Limiting criteria is c3\ tPressure correction \n’)
317 elseif max ([ c1_diff c2_diff c3_diff c4_diff c5_diff ]) == c4_diff
318 fprintf (’Limiting criteria is c4\ tDiff . last iteration u\n’)
319 elseif max ([ c1_diff c2_diff c3_diff c4_diff c5_diff ]) == c5_diff
320 fprintf (’Limiting criteria is c5\ tDiff . last iteration u\n’)
321 end %if
322
323 showStep = false ;
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324 if plotCircVels == true
325 plotIntermediates
326 end
327 if plotCorrVels == true
328 plotVelocityCorrection
329 end
330 plot_BFS
331 if showVelociyQuiver == true
332 plotVelocityQuiver
333 plotColoredQuiver
334 end %if
335
336 else
337 if plotiterationwise == true
338 showStep = false ;
339 if plotCircVels == true
340 plotIntermediates
341 end
342 if plotCorrVels == true
343 plotVelocityCorrection
344 end
345 plot_BFS
346 if showVelociyQuiver == true
347 plotVelocityQuiver
348 plotColoredQuiver
349 end %if
350 pause
351 close all
352 end %if
353 if printSetPlotIt && ismember (it , itSaves )
354 plot_BFS_iterations
355 if gifIntermediates == true
356 plotVelInts_BFS_iterations ;
357 end %if
358 end
359
360 u_circ = u_new ; % Not converged , updated variables
361 v_circ = v_new ; % Not converged , updated variables
362 p_circ = p_new ; % Not converged , updated variables
363
364 it = it + 1; % Update number of iterations
365 end % if
366 end % while
367 toc

E.5.1.2 BFS u velocity.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % u- velocity script for the BFS model %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4
5 U = zeros ( totalpoints , totalpoints ); % Initialisation of coefficient matrix
6 bu = zeros (1, totalpoints ); % Initialisation of source term vector
7
8 F_xe = zeros (1, totalpoints ); % Initialisation of convective mass fluxes
9 F_xw = zeros (1, totalpoints );

10 F_xn = zeros (1, totalpoints );
11 F_xs = zeros (1, totalpoints );
12
13 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
14 %% Generation of F_x , Convective mass fluxes
15
16
17 for i = 1: totalpoints
18
19 etest = ( i <= N_wide * M_wide && mod(i, N_wide ) == 0 )... % below step
20 || ( i > N_wide * M_wide && mod(i- N_wide *M_wide , N_total ) == 0);
21 wtest = i > N_wide * M_wide && mod(i-1- N_wide *M_wide , N_total ) == 0;
22 ntest = totalpoints - N_total < i && i <= totalpoints ;
23 if ˜ onlyChannel % Normal mode
24 wwall = i <= N_wide * M_wide && mod(i-1, N_wide ) == 0;
25 stest = (1 <= i && i <= N_wide ) ... % Excluding the corner value
26 || ( N_wide * M_wide < i && i < N_wide * M_wide + N_narrow ) ;
27 scorner = i == N_wide * M_wide + N_narrow ; % Only the corner value
28 else % No step mode
29 wwall = i <= N_wide * M_wide && mod(i-1, N_wide ) == 0;
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30 stest = i <= N_wide * M_wide + N_total ; % Excluding the corner value
31 scorner = false ; % Only the corner value
32 end %if
33
34
35 % Northeastern corner
36 if etest && ˜ wtest && ntest && ˜ stest && ˜ wwall && ˜ scorner
37 F_xe(i) = rho /2*( u_circ (i)+ u_circ (i -1));
38 F_xn(i) = 0;
39
40 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
41 F_xs(i) = rho /2* v_circ (i- N_total );
42
43 % Southeastern corner
44 elseif etest && ˜ wtest && ˜ ntest && stest && ˜ wwall && ˜ scorner
45 F_xe(i) = rho /2*( u_circ (i)+ u_circ (i -1));
46 F_xs(i) = 0;
47
48 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
49 F_xn(i) = rho /2* v_circ (i);
50
51 % Northwestern corner
52 elseif ˜ etest && wtest && ntest && ˜ stest && ˜ wwall && ˜ scorner
53 F_xw(i) = rho /2*( u_in+ u_circ (i));
54 F_xn(i) = 0;
55
56 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
57 F_xs(i) = rho /2*( v_circ (i- N_total ) + v_circ (i- N_total +1));
58
59 % Southwestern corner at inlet
60 elseif ˜ etest && wtest && ˜ ntest && stest && ˜ wwall && ˜ scorner
61 F_xw(i) = rho /2*( u_in+ u_circ (i));
62 F_xs(i) = 0;
63
64 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
65 F_xn(i) = rho /2*( v_circ (i) + v_circ (i+1));
66
67 % Southwestern corner at step
68 elseif ˜ etest && ˜ wtest && ˜ ntest && stest && wwall && ˜ scorner
69 F_xw(i) = rho /2*(0 + u_circ (i));
70 F_xs(i) = 0;
71
72 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
73 F_xn(i) = rho /2*( v_circ (i) + v_circ (i+1));
74
75 % At corner
76 elseif ˜ etest && ˜ wtest && ˜ ntest && ˜ stest && ˜ wwall && scorner
77 F_xs(i) = rho /2*(0 + ...
78 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )+1));
79 F_xs(i)= 0;
80
81 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
82 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
83 F_xn(i) = rho /2*( v_circ (i) + v_circ (i+1));
84
85 % At eastern boundary (x = L)
86 elseif etest && ˜ wtest && ˜ ntest && ˜ stest && ˜ wwall && ˜ scorner
87 F_xe(i) = rho /2*( u_circ (i -1)+ u_circ (i));
88
89 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
90 F_xn(i) = rho /2* v_circ (i);
91 F_xs(i) = rho /2* v_circ ( getRowUnder (i, N_wide , M_wide , N_total ));

92
93 % At western boundary (x = 0)
94 elseif ˜ etest && wtest && ˜ ntest && ˜ stest && ˜ wwall && ˜ scorner
95 F_xw(i) = rho /2*( u_in+ u_circ (i));
96
97 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
98 F_xn(i) = rho /2*( v_circ (i) + v_circ (i+1));
99 F_xs(i) = rho /2*(...

100 v_circ ( getRowUnder (i, N_wide , M_wide , N_total ) ) +...
101 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )+1 ) );
102
103 % At western wall at step
104 elseif ˜ etest && ˜ wtest && ˜ ntest && ˜ stest && wwall && ˜ scorner
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105 F_xw(i) = rho /2*(0+ u_circ (i));
106
107 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
108 F_xn(i) = rho /2*( v_circ (i) + v_circ (i+1));
109 F_xs(i) = rho /2*(...
110 v_circ ( getRowUnder (i, N_wide , M_wide , N_total ) ) +...
111 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )+1 ) );
112
113
114
115 % At northern boundary (y = h)
116 elseif ˜ etest && ˜ wtest && ntest && ˜ stest && ˜ wwall && ˜ scorner
117 F_xn(i) = 0;
118
119 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
120 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
121 F_xs(i) = rho /2*(...
122 v_circ ( getRowUnder (i, N_wide , M_wide , N_total ) ) +...
123 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )+1 ) );
124
125
126 % At southern boundary (y = 0)
127 elseif ˜ etest && ˜ wtest && ˜ ntest && stest && ˜ wwall && ˜ scorner
128 F_xs(i) = 0;
129
130 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
131 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
132 F_xn(i) = rho /2*( v_circ (i) + v_circ (i+1));
133
134 % Not at any boundary
135 else
136 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
137 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
138 F_xn(i) = rho /2*( v_circ (i) + v_circ (i+1));
139 F_xs(i) = rho /2*(...
140 v_circ ( getRowUnder (i, N_wide , M_wide , N_total ) ) +...
141 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )+1 ) );
142
143
144 end % if
145 etest = false ;
146 wtest = false ;
147 wwall = false ;
148 ntest = false ;
149 stest = false ;
150 scorner = false ;
151 end %for
152
153
154
155 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
156 %% u- velocity
157
158
159 for i = 1: totalpoints % Global indexing system
160
161 etest = ( i <= N_wide * M_wide && mod(i, N_wide ) == 0 )... % below step
162 || ( i > N_wide * M_wide && mod(i- N_wide *M_wide , N_total ) == 0);
163 wtest = i > N_wide * M_wide && mod(i-1- N_wide *M_wide , N_total ) == 0;
164 ntest = totalpoints - N_total < i && i <= totalpoints ;
165 if ˜ onlyChannel % Normal mode
166 wwall = i <= N_wide * M_wide && mod(i-1, N_wide ) == 0;
167 stest = (1 <= i && i <= N_wide ) ... % Excluding the corner value
168 || ( N_wide * M_wide < i && i < N_wide * M_wide + N_narrow ) ;
169 scorner = i == N_wide * M_wide + N_narrow ; % Only the corner value
170 else % No step mode
171 wwall = i <= N_wide * M_wide && mod(i-1, N_wide ) == 0;
172 stest = i <= N_wide * M_wide + N_total ; % Excluding the corner value
173 scorner = false ; % Only the corner value
174 end %if
175
176
177 % Northeastern corner
178 if etest && ˜ wtest && ntest && ˜ stest && ˜ wwall && ˜ scorner
179
180 bu(i) = -( p_out (end)-p_circ (i))*A_x;
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181
182 % At eastern boundary (x = L)
183 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
184 eP_coeff = F_xe(i)*A_x;
185
186 % At northern boundary
187 nP_coeff = F_xn(i)*A_y + max(0,- F_xn(i)*A_y) + 2* D_y*A_y;
188
189 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
190 wP_coeff = -W_coeff - F_xw(i)*A_x;
191 U(i, i -1) = W_coeff ;
192
193 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
194 sP_coeff = -S_coeff - F_xs(i)*A_y;
195 U(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
196
197
198 % Southeastern corner
199 elseif etest && ˜ wtest && ˜ ntest && stest && ˜ wwall && ˜ scorner
200
201 bu(i) = -( p_out (1) -p_circ (i))*A_x;
202
203 % At eastern boundary (x = L)
204 E_coeff = -max(0,- F_xe(i)*A_x) - D_x*A_x;
205 eP_coeff = F_xe(i)*A_x;
206
207 % At southern boundary (y = 0)
208 sP_coeff = -F_xs(i)*A_y +max(F_xs(i)*A_y ,0)+ 2* D_y*A_y;
209
210 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
211 wP_coeff = -W_coeff - F_xw(i)*A_x;
212 U(i, i -1) = W_coeff ;
213
214 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
215 nP_coeff = -N_coeff + F_xn(i)*A_y;
216 U(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
217
218
219 % Northwestern corner
220 elseif ˜ etest && wtest && ntest && ˜ stest && ˜ wwall && ˜ scorner
221
222 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x ...
223 +( max(F_xw(i)*A_x ,0) + D_x*A_x)*u_in;
224
225 % At western boundary (x = 0)
226 wP_coeff = max(F_xw(i)*A_x ,0) + D_x*A_x - F_xw(i)*A_x;
227
228 % At northern boundary
229 nP_coeff = F_xn(i)*A_y + max(0,- F_xn(i)*A_y)+ 2* D_y*A_y;
230
231 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
232 eP_coeff = -E_coeff + F_xe(i)*A_x;
233 U(i, i+1) = E_coeff ;
234
235 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
236 sP_coeff = -S_coeff - F_xs(i)*A_y;
237 U(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
238
239
240 % Southwestern corner at inlet
241 elseif ˜ etest && wtest && ˜ ntest && stest && ˜ wwall && ˜ scorner
242
243 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x ...
244 +( max(F_xw(i)*A_x ,0) + D_x*A_x)*u_in;
245
246 % At western boundary (x = 0)
247 wP_coeff = max(F_xw(i)*A_x ,0) + D_x*A_x - F_xw(i)*A_x;
248
249 % At southern boundary (y = 0)
250 sP_coeff = -F_xs(i)*A_y +max(F_xs(i)*A_y ,0)+ 2* D_y*A_y;
251
252 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
253 eP_coeff = -E_coeff + F_xe(i)*A_x;
254 U(i, i+1) = E_coeff ;
255
256 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
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257 nP_coeff = -N_coeff + F_xn(i)*A_y;
258 U(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
259
260
261 % Southwestern corner at step
262 elseif ˜ etest && ˜ wtest && ˜ ntest && stest && wwall && ˜ scorner
263
264 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x ...
265 +( max(F_xw(i)*A_x ,0) + D_x*A_x)*0;
266
267 % At western boundary (x = 0)
268 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
269 wP_coeff = -W_coeff - F_xw(i)*A_x;
270
271 % At southern boundary (y = 0)
272 S_coeff = -max(F_xs(i)*A_y ,0) - 2* D_y*A_y;
273 sP_coeff = -S_coeff -F_xs(i)*A_y;
274
275 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
276 eP_coeff = -E_coeff + F_xe(i)*A_x;
277 U(i, i+1) = E_coeff ;
278
279 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
280 nP_coeff = -N_coeff + F_xn(i)*A_y;
281 U(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
282
283
284 % At corner
285 elseif ˜ etest && ˜ wtest && ˜ ntest && ˜ stest && ˜ wwall && scorner
286
287 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x;
288
289 % At southern boundary (y = 0)
290 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
291 sP_coeff = -S_coeff - F_xs(i)*A_y;
292
293
294 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
295 eP_coeff = -E_coeff + F_xe(i)*A_x;
296 U(i, i+1) = E_coeff ;
297
298 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
299 wP_coeff = -W_coeff - F_xw(i)*A_x;
300 U(i, i -1) = W_coeff ;
301
302 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
303 nP_coeff = -N_coeff + F_xn(i)*A_y;
304 U(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
305
306
307 % At eastern boundary (x = L)
308 elseif etest && ˜ wtest && ˜ ntest && ˜ stest && ˜ wwall && ˜ scorner
309
310 bu(i) = -( p_out (1) -p_circ (i))*A_x;
311
312 % At eastern boundary (x = L)
313 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
314 eP_coeff = F_xe(i)*A_x;
315
316 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
317 wP_coeff = -W_coeff - F_xw(i)*A_x;
318 U(i, i -1) = W_coeff ;
319
320 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
321 nP_coeff = -N_coeff + F_xn(i)*A_y;
322 U(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
323
324 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
325 sP_coeff = -S_coeff - F_xs(i)*A_y;
326 U(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
327
328
329 % At western boundary (x = 0)
330 elseif ˜ etest && wtest && ˜ ntest && ˜ stest && ˜ wwall && ˜ scorner
331
332 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x ...
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333 +( max(F_xw(i)*A_x ,0) + D_x*A_x)*u_in;
334
335 % At western boundary (x = 0)
336 wP_coeff = max(F_xw(i)*A_x ,0) + D_x*A_x - F_xw(i)*A_x;
337
338 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
339 eP_coeff = -E_coeff + F_xe(i)*A_x;
340 U(i, i+1) = E_coeff ;
341
342 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
343 nP_coeff = -N_coeff + F_xn(i)*A_y;
344 U(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
345
346 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
347 sP_coeff = -S_coeff - F_xs(i)*A_y;
348 U(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
349
350
351 % At western wall
352 elseif ˜ etest && ˜ wtest && ˜ ntest && ˜ stest && wwall && ˜ scorner
353
354 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x ...
355 +( max(F_xw(i)*A_x ,0) + D_x*A_x)*0;
356
357 % At western boundary (x = 0)
358 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
359 wP_coeff = -W_coeff - F_xw(i)*A_x;
360
361 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
362 eP_coeff = -E_coeff + F_xe(i)*A_x;
363 U(i, i+1) = E_coeff ;
364
365 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
366 nP_coeff = -N_coeff + F_xn(i)*A_y;
367 U(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
368
369 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
370 sP_coeff = -S_coeff - F_xs(i)*A_y;
371 U(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
372
373
374 % At northern boundary (y = h)
375 elseif ˜ etest && ˜ wtest && ntest && ˜ stest && ˜ wwall && ˜ scorner
376
377 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x;
378
379 % At northern boundary
380 nP_coeff = F_xn(i)*A_y + max(0,- F_xn(i)*A_y)+ 2* D_y*A_y;
381
382 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
383 eP_coeff = -E_coeff + F_xe(i)*A_x;
384 U(i, i+1) = E_coeff ;
385
386 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
387 wP_coeff = -W_coeff - F_xw(i)*A_x;
388 U(i, i -1) = W_coeff ;
389
390 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
391 sP_coeff = -S_coeff - F_xs(i)*A_y;
392 U(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
393
394
395 % At southern boundary (y = 0)
396 elseif ˜ etest && ˜ wtest && ˜ ntest && stest && ˜ wwall && ˜ scorner
397
398 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x;
399
400 % At southern boundary (y = 0)
401 sP_coeff = -F_xs(i)*A_y +max(F_xs(i)*A_y ,0)+ 2* D_y*A_y;
402
403 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
404 eP_coeff = -E_coeff + F_xe(i)*A_x;
405 U(i, i+1) = E_coeff ;
406
407 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
408 wP_coeff = -W_coeff - F_xw(i)*A_x;
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409 U(i, i -1) = W_coeff ;
410
411 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
412 nP_coeff = -N_coeff + F_xn(i)*A_y;
413 U(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
414
415
416 %Not at any boundary
417 else
418
419 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x;
420 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
421 eP_coeff = -E_coeff + F_xe(i)*A_x;
422 U(i, i+1) = E_coeff ;
423
424 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
425 wP_coeff = -W_coeff - F_xw(i)*A_x;
426 U(i, i -1) = W_coeff ;
427
428 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
429 nP_coeff = -N_coeff + F_xn(i)*A_y;
430 U(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
431
432 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
433 sP_coeff = -S_coeff - F_xs(i)*A_y;
434 U(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
435
436 end % if
437
438 % Filling in the rest of the matrix , adding all point coefficients
439 U(i,i) = wP_coeff + eP_coeff + nP_coeff + sP_coeff ;
440
441 % If the step is disabled the points below the step are blocked out
442 if onlyChannel && i <= N_wide * M_wide
443 U(i,i) = U(i,i) + 10e+30;
444 end %if
445
446 etest = false ;
447 wtest = false ;
448 ntest = false ;
449 stest = false ;
450 wwall = false ;
451
452 end %for
453 u_star = U\bu ’; % Matrix inversion

E.5.1.3 BFS v velocity.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % v- velocity script for the BFS model %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4
5 V = zeros ( totalpoints_v , totalpoints_v ); % Initialisation of coeff . matrix
6 bv = zeros (1, totalpoints_v ); % Initialisation of source term vector
7
8 F_ye = zeros (1, totalpoints_v ); % Initialisation of convective mass fluxes
9 F_yw = zeros (1, totalpoints_v );

10 F_yn = zeros (1, totalpoints_v );
11 F_ys = zeros (1, totalpoints_v );
12
13
14
15
16 %% Generation of F_y , Convective mass fluxes
17
18 for i = 1: totalpoints_v % Global indexing system
19
20 % Eastern boundary requires no special treatment (x = L)
21 etest = ( i <= N_wide * m_wide && mod(i, N_wide ) == 0 ) ... % below step
22 || ( i > N_wide * m_wide && mod(i- N_wide *m_wide , N_total ) == 0);
23 wtest = i > N_wide * m_wide && mod(i-1- N_wide *m_wide , N_total ) == 0;
24 ntest = totalpoints_v - N_total < i && i <= totalpoints_v ;
25 if ˜ onlyChannel % Normal mode
26 wwall = i <= N_wide * m_wide && mod(i-1, N_wide ) == 0; %
27 stest = (1 <= i && i <= N_wide ) ... % Excluding the corner value
28 || ( N_wide * m_wide < i && i <= N_wide * m_wide + N_narrow ) ;
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29 wcorner = i == N_wide *( m_wide -1) + 1; % Only the corner value
30 else % No step mode
31 wwall = i <= N_wide * m_wide && mod(i-1, N_wide ) == 0; %
32 stest = i <= N_wide * m_wide + N_total ; % Excluding the corner value
33 wcorner = false ; % Only the corner value
34 end %if
35
36
37
38 % Northwestern corner
39 if wtest && ntest && ˜ stest && ˜ wwall && ˜ wcorner
40 F_yw(i) = rho /2*( u_in+u_in);
41 F_yn(i) = rho /2* v_circ (i);
42
43 F_ye(i) = rho /2*( u_circ (i) + ...
44 u_circ ( getRowOver (i, N_wide , M_wide , N_total )));
45 F_ys(i) = rho /2*( v_circ (i) + ...
46 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )));
47
48 % Southwestern corner at inlet
49 elseif wtest && ˜ ntest && stest && ˜ wwall && ˜ wcorner
50 F_yw(i) = rho*u_in;
51 F_ys(i) = rho /2* v_circ (i);
52
53 F_ye(i) = rho /2*( u_circ (i) + ...
54 u_circ ( getRowOver (i, N_wide , M_wide , N_total )));
55 F_yn(i) = rho /2*( v_circ (i) + ...
56 v_circ ( getRowOver (i, N_wide , M_wide , N_total )));
57
58
59 % Southwestern corner at step
60 elseif ˜ wtest && ˜ ntest && stest && wwall && ˜ wcorner
61 F_yw(i) = rho *0;
62 F_ys(i) = rho /2* v_circ (i);
63
64 F_ye(i) = rho /2*( u_circ (i) + ...
65 u_circ ( getRowOver (i, N_wide , M_wide , N_total )));
66 F_yn(i) = rho /2*( v_circ (i) + ...
67 v_circ ( getRowOver (i, N_wide , M_wide , N_total )));
68
69
70 % At western boundary (x = 0)
71 elseif wtest && ˜ ntest && ˜ stest && ˜ wwall && ˜ wcorner
72 F_yw(i) = rho*u_in;
73
74 F_ye(i) = rho /2*( u_circ (i) + ...
75 u_circ ( getRowOver (i, N_wide , M_wide , N_total )));
76 F_yn(i) = rho /2*( v_circ (i) + ...
77 v_circ ( getRowOver (i, N_wide , M_wide , N_total )));
78 F_ys(i) = rho /2*( v_circ (i) + ...
79 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )));
80
81
82 % At western wall
83 elseif ˜ wtest && ˜ ntest && ˜ stest && wwall && ˜ wcorner
84 F_yw(i) = rho *0;
85
86 F_ye(i) = rho /2*( u_circ (i) + ...
87 u_circ ( getRowOver (i, N_wide , M_wide , N_total )));
88 F_yn(i) = rho /2*( v_circ (i) + ...
89 v_circ ( getRowOver (i, N_wide , M_wide , N_total )));
90 F_ys(i) = rho /2*( v_circ (i) + ...
91 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )));
92
93
94 % At corner , right point from the corner
95 elseif ˜ wtest && ˜ ntest && ˜ stest && wwall && wcorner
96 F_yw(i)= 0;
97
98 F_ye(i) = rho /2*( u_circ (i) + ...
99 u_circ ( getRowOver (i, N_wide , M_wide , N_total )));

100 F_yn(i) = rho /2*( v_circ (i) + ...
101 v_circ ( getRowOver (i, N_wide , M_wide , N_total )));
102 F_ys(i) = rho /2*( v_circ (i) + ...
103 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )));
104
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105 % At northern boundary (y = h)
106 elseif ˜ wtest && ntest && ˜ stest && ˜ wwall && ˜ wcorner
107 F_yn(i) = rho /2* v_circ (i);
108
109 F_ye(i) = rho /2*( u_circ (i) + ...
110 u_circ ( getRowOver (i, N_wide , M_wide , N_total )));
111 F_yw(i) = rho /2*( u_circ (i -1) + ...
112 u_circ ( getRowOver (i, N_wide , M_wide , N_total ) -1));
113 F_ys(i) = rho /2*( v_circ (i) + ...
114 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )));
115
116
117 % At southern boundary (y = 0)
118 elseif ˜ wtest && ˜ ntest && stest && ˜ wwall && ˜ wcorner
119 F_ys(i) = rho /2* v_circ (i);
120
121 F_ye(i) = rho /2*( u_circ (i) + ...
122 u_circ ( getRowOver (i, N_wide , M_wide , N_total )));
123 F_yw(i) = rho /2*( u_circ (i -1) + ...
124 u_circ ( getRowOver (i, N_wide , M_wide , N_total ) -1));
125 F_yn(i) = rho /2*( v_circ (i) + ...
126 v_circ ( getRowOver (i, N_wide , M_wide , N_total )));
127
128
129 %Not at any boundary , including eastern boundary
130 else
131 F_ye(i) = rho /2*( u_circ (i) + ...
132 u_circ ( getRowOver (i, N_wide , M_wide , N_total )));
133 F_yw(i) = rho /2*( u_circ (i -1) + ...
134 u_circ ( getRowOver (i, N_wide , M_wide , N_total ) -1));
135
136 F_yn(i) = rho /2*( v_circ (i) + ...
137 v_circ ( getRowOver (i, N_wide , M_wide , N_total )));
138 F_ys(i) = rho /2*( v_circ (i) + ...
139 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )));
140
141 end % if
142 etest = false ;
143 wtest = false ;
144 ntest = false ;
145 stest = false ;
146 wwall = false ;
147 wcorner = false ;
148
149 end % for
150
151 %% v- velocity
152
153
154 for i = 1: totalpoints_v % Global indexing system
155
156 etest = ( i <= N_wide * m_wide && mod(i, N_wide ) == 0 ) ... % below step
157 || ( i > N_wide * m_wide && mod(i- N_wide *m_wide , N_total ) == 0);
158 wtest = i > N_wide * m_wide && mod(i-1- N_wide *m_wide , N_total ) == 0;
159 ntest = totalpoints_v - N_total < i && i <= totalpoints_v ;
160 if ˜ onlyChannel % Normal mode
161 wwall = i <= N_wide * m_wide && mod(i-1, N_wide ) == 0; %
162 stest = (1 <= i && i <= N_wide ) ... % Excluding the corner value
163 || ( N_wide * m_wide < i && i <= N_wide * m_wide + N_narrow ) ;
164 wcorner = i == N_wide *( m_wide -1) + 1; % Only the corner value
165 else % No step mode
166 wwall = i <= N_wide * m_wide && mod(i-1, N_wide ) == 0; %
167 stest = i <= N_wide * m_wide + N_total ; % Excluding the corner value
168 wcorner = false ; % Only the corner value
169 end %if
170
171
172
173 % Northeastern corner
174 if etest && ˜ wtest && ntest && ˜ stest && ˜ wwall && ˜ wcorner
175
176 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
177 -p_circ (i))*A_y + rho*g_y* del_y *A_y;
178
179 % At eastern boundary (x = L)
180 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
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181 eP_coeff = F_ye(i)*A_x;
182
183 % At northern boundary
184 nP_coeff = F_yn(i)*A_y + max (0, -F_yn(i)*A_y) + D_y*A_y;
185
186 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
187 wP_coeff = -W_coeff - F_yw(i)*A_x;
188 V(i, i -1) = W_coeff ;
189
190 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
191 sP_coeff = -S_coeff - F_ys(i)*A_y;
192 V(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
193
194 % Southeastern corner
195 elseif etest && ˜ wtest && ˜ ntest && stest && ˜ wwall && ˜ wcorner
196 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
197 -p_circ (i))*A_y + rho*g_y* del_y *A_y;
198
199 % At eastern boundary (x = L)
200 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
201 eP_coeff = F_ye(i)*A_x;
202
203 % At southern boundary (y = 0) ,
204 sP_coeff = -F_ys(i)*A_y + max(F_ys(i)*A_y ,0) + D_y*A_y;
205
206 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
207 wP_coeff = -W_coeff - F_yw(i)*A_x;
208 V(i, i -1) = W_coeff ;
209
210 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
211 nP_coeff = -N_coeff + F_yn(i)*A_y;
212 V(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
213
214
215 % Northwestern corner
216 elseif ˜ etest && wtest && ntest && ˜ stest && ˜ wwall && ˜ wcorner
217 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total )) -...
218 p_circ (i))*A_y + rho*g_y* del_y *A_y;
219
220 % At western boundary (x = 0)
221 wP_coeff = - F_yw(i)*A_x + max(F_yw(i)*A_x ,0) + 2* D_x*A_x;
222
223 % At northern boundary
224 nP_coeff = F_yn(i)*A_y + max (0, -F_yn(i)*A_y) + D_y*A_y ;
225
226 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
227 eP_coeff = -E_coeff + F_ye(i)*A_x;
228 V(i, i+1) = E_coeff ;
229
230 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
231 sP_coeff = -S_coeff - F_ys(i)*A_y;
232 V(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
233
234 % Southwestern corner at inlet
235 elseif ˜ etest && wtest && ˜ ntest && stest && ˜ wwall && ˜ wcorner
236
237 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
238 -p_circ (i))*A_y + rho*g_y* del_y *A_y;
239
240 % At western boundary (x = 0)
241 wP_coeff = - F_yw(i)*A_x + max(F_yw(i)*A_x ,0) + 2* D_x*A_x;
242
243 % At southern boundary (y = 0) ,
244 sP_coeff = -F_ys(i)*A_y + max(F_ys(i)*A_y ,0) + D_y*A_y;
245
246 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
247 eP_coeff = -E_coeff + F_ye(i)*A_x;
248 V(i, i+1) = E_coeff ;
249
250 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
251 nP_coeff = -N_coeff + F_yn(i)*A_y;
252 V(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
253
254 % Southwestern corner at step
255 elseif ˜ etest && ˜ wtest && ˜ ntest && stest && wwall && ˜ wcorner
256
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257 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
258 -p_circ (i))*A_y + rho*g_y* del_y *A_y +...
259 0*( - max(F_yw(i)*A_x ,0) - 2* D_x*A_x);
260
261 % At western boundary (x = 0)
262 W_coeff = -max(F_yw(i)*A_x ,0) - 2* D_x*A_x;
263 wP_coeff = -W_coeff - F_yw(i)*A_x;
264
265 % At southern boundary (y = 0) ,
266 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
267 sP_coeff = -S_coeff - F_ys(i)*A_y;
268
269 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
270 eP_coeff = -E_coeff + F_ye(i)*A_x;
271 V(i, i+1) = E_coeff ;
272
273 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
274 nP_coeff = -N_coeff + F_yn(i)*A_y;
275 V(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
276
277 % At eastern boundary (x = L)
278 elseif etest && ˜ wtest && ˜ ntest && ˜ stest && ˜ wwall && ˜ wcorner
279
280 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
281 -p_circ (i))*A_y + rho*g_y* del_y *A_y;
282
283 % At eastern boundary (x = L)
284 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
285 eP_coeff = F_ye(i)*A_x;
286
287 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
288 wP_coeff = -W_coeff - F_yw(i)*A_x;
289 V(i, i -1) = W_coeff ;
290
291 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
292 nP_coeff = -N_coeff + F_yn(i)*A_y;
293 V(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
294
295 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
296 sP_coeff = -S_coeff - F_ys(i)*A_y;
297 V(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
298
299 % At western boundary (x = 0)
300 elseif ˜ etest && wtest && ˜ ntest && ˜ stest && ˜ wwall && ˜ wcorner
301
302 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
303 -p_circ (i))*A_y + rho*g_y* del_y *A_y;
304
305 % At western boundary (x = 0)
306 wP_coeff = - F_yw(i)*A_x + max(F_yw(i)*A_x ,0) + 2* D_x*A_x;
307
308 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
309 eP_coeff = -E_coeff + F_ye(i)*A_x;
310 V(i, i+1) = E_coeff ;
311
312 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
313 nP_coeff = -N_coeff + F_yn(i)*A_y;
314 V(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
315
316 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
317 sP_coeff = -S_coeff - F_ys(i)*A_y;
318 V(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
319
320 % At west wall (x = 0) [ EXCLUDED CORNER ]
321 elseif ˜ etest && ˜ wtest && ˜ ntest && ˜ stest && wwall && ˜ wcorner
322
323 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
324 -p_circ (i))*A_y + rho*g_y* del_y *A_y +...
325 0*( - max(F_yw(i)*A_x ,0) - 2* D_x*A_x);
326
327 % At western boundary (x = 0)
328 W_coeff = -max(F_yw(i)*A_x ,0) - 2* D_x*A_x;
329 wP_coeff = -W_coeff - F_yw(i)*A_x;
330
331 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
332 eP_coeff = -E_coeff + F_ye(i)*A_x;
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333 V(i, i+1) = E_coeff ;
334
335 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
336 nP_coeff = -N_coeff + F_yn(i)*A_y;
337 V(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
338
339 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
340 sP_coeff = -S_coeff - F_ys(i)*A_y;
341 V(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
342
343 % At corner
344 elseif ˜ etest && ˜ wtest && ˜ ntest && ˜ stest && wwall && wcorner
345
346 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
347 -p_circ (i))*A_y + rho*g_y* del_y *A_y +...
348 0*( - max(F_yw(i)*A_x ,0) - D_x*A_x);
349
350 % At western boundary (x = 0)
351 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
352 wP_coeff = -W_coeff - F_yw(i)*A_x;
353
354 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
355 eP_coeff = -E_coeff + F_ye(i)*A_x;
356 V(i, i+1) = E_coeff ;
357
358 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
359 nP_coeff = -N_coeff + F_yn(i)*A_y;
360 V(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
361
362 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
363 sP_coeff = -S_coeff - F_ys(i)*A_y;
364 V(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
365
366
367 % At northern boundary (y = h)
368 elseif ˜ etest && ˜ wtest && ntest && ˜ stest && ˜ wwall && ˜ wcorner
369
370 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
371 -p_circ (i))*A_y + rho*g_y* del_y *A_y;
372
373 % At northern boundary
374 nP_coeff = F_yn(i)*A_y + max (0, -F_yn(i)*A_y) + D_y*A_y ;
375
376 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
377 eP_coeff = -E_coeff + F_ye(i)*A_x;
378 V(i, i+1) = E_coeff ;
379
380 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
381 wP_coeff = -W_coeff - F_yw(i)*A_x;
382 V(i, i -1) = W_coeff ;
383
384 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
385 sP_coeff = -S_coeff - F_ys(i)*A_y;
386 V(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
387
388
389 % At southern boundary (y = 0)
390 elseif ˜ etest && ˜ wtest && ˜ ntest && stest && ˜ wwall && ˜ wcorner
391
392 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
393 -p_circ (i))*A_y + rho*g_y* del_y *A_y;
394
395 % At southern boundary (y = 0) ,
396 sP_coeff = -F_ys(i)*A_y + max(F_ys(i)*A_y ,0) + D_y*A_y;
397
398 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
399 eP_coeff = -E_coeff + F_ye(i)*A_x;
400 V(i, i+1) = E_coeff ;
401
402 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
403 wP_coeff = -W_coeff - F_yw(i)*A_x;
404 V(i, i -1) = W_coeff ;
405
406 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
407 nP_coeff = -N_coeff + F_yn(i)*A_y;
408 V(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
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409
410 %Not at any boundary
411 else
412
413 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
414 -p_circ (i))*A_y + rho*g_y* del_y *A_y;
415
416 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
417 eP_coeff = -E_coeff + F_ye(i)*A_x;
418 V(i, i+1) = E_coeff ;
419
420 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
421 wP_coeff = -W_coeff - F_yw(i)*A_x;
422 V(i, i -1) = W_coeff ;
423
424 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
425 nP_coeff = -N_coeff + F_yn(i)*A_y;
426 V(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
427
428 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
429 sP_coeff = -S_coeff - F_ys(i)*A_y;
430 V(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
431
432 end % if
433
434 % Filling in the rest of the matrix , adding all point coefficients
435 V(i,i) = wP_coeff + eP_coeff + nP_coeff + sP_coeff ;
436
437 % If the step is disabled the points below the step are blocked out
438 if onlyChannel && i <= N_wide * m_wide
439 V(i,i) = V(i,i) + 10e+30;
440 end %if
441
442 etest = false ;
443 wtest = false ;
444 ntest = false ;
445 stest = false ;
446 wwall = false ;
447
448 end % for
449 v_star = V\bv ’; % Matrix inversion

E.5.1.4 BFS pressurecorrection.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Pressure correction script for the BFS model %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4
5 T = zeros ( totalpoints , totalpoints ); % Initialisation of coefficient matrix
6 beta = zeros (1, totalpoints ); % Initialisation of source term vector
7
8 au = diag(U); % aˆcenter - coefficients from the momentum equations
9 av = diag(V);

10
11
12 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
13 %% Calculation
14 for i = 1: totalpoints % Global indexing system
15
16 etest = ( i <= N_wide * M_wide && mod(i, N_wide ) == 0 ) ... % below step
17 || ( i > N_wide * M_wide && mod(i- N_wide *M_wide , N_total ) == 0);
18 ntest = totalpoints - N_total < i && i <= totalpoints ;
19 wtest = i > N_wide * M_wide && mod(i-1- N_wide *M_wide , N_total ) == 0;
20
21 if ˜ onlyChannel % Normal Mode
22 wwall = i <= N_wide * M_wide && mod(i-1, N_wide ) == 0;
23 stest = (1 <= i && i <= N_wide ) ... % Excluding the corner value
24 || ( N_wide * M_wide < i && i <= N_wide * M_wide + N_narrow ) ;
25 else % No step mode
26 wwall = i <= N_wide * M_wide && mod(i-1, N_wide ) == 0;
27 stest = i <= N_wide * M_wide + N_total ; % Excluding the corner value
28 end
29
30
31 % Northeastern corner
32 if etest && ˜ wtest && ntest && ˜ stest && ˜ wwall
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33
34 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
35 + A_y* v_star ( getRowUnder (i, N_wide , M_wide , N_total )));
36
37 % At eastern boundary (x = L)
38 eP_coeff = rho*A_x ˆ2/ au(i);
39
40 % At northern boundary (y = h) (y = H)
41 nP_coeff = 0 ;
42
43 W_coeff = -rho*A_x ˆ2/ au(i -1);
44 wP_coeff = -W_coeff ;
45 T(i, i -1) = W_coeff ;
46
47 S_coeff = -rho*A_y ˆ2/ av( getRowUnder (i, N_wide , M_wide , N_total ));
48 sP_coeff = -S_coeff ;
49 T(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
50
51
52 % Southeastern corner
53 elseif etest && ˜ wtest && ˜ ntest && stest && ˜ wwall
54
55 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
56 -A_y* v_star (i));
57
58 % At eastern boundary (x = L)
59 eP_coeff = rho*A_x ˆ2/ au(i);
60
61 % At southern boundary (y = 0)
62 sP_coeff = 0;
63
64 W_coeff = -rho*A_x ˆ2/ au(i -1);
65 wP_coeff = -W_coeff ;
66 T(i, i -1) = W_coeff ;
67
68 N_coeff = -rho*A_y ˆ2/ av(i);
69 nP_coeff = -N_coeff ;
70 T(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
71
72
73 % Northwestern corner
74 elseif ˜ etest && wtest && ntest && ˜ stest && ˜ wwall
75
76 beta(i) = rho *(- A_x* u_star (i) +A_x*u_in ...
77 + A_y* v_star ( getRowUnder (i, N_wide , M_wide , N_total )));
78
79 % At western boundary (x = 0)
80 wP_coeff = 0;
81
82 % At northern boundary (y = h) (y = H)
83 nP_coeff = 0 ;
84
85 E_coeff = -rho*A_x ˆ2/ au(i);
86 eP_coeff = -E_coeff ;
87 T(i, i+1) = E_coeff ;
88
89 S_coeff = -rho*A_y ˆ2/ av( getRowUnder (i, N_wide , M_wide , N_total ));
90 sP_coeff = -S_coeff ;
91 T(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
92
93
94 % Southwestern corner at inlet
95 elseif ˜ etest && wtest && ˜ ntest && stest && ˜ wwall
96
97 beta(i) = rho *(- A_x* u_star (i) +A_x*u_in ...
98 -A_y* v_star (i));
99

100 % At western boundary (x = 0)
101 wP_coeff = 0;
102
103 % At southern boundary (y = 0)
104 sP_coeff = 0;
105
106 E_coeff = -rho*A_x ˆ2/ au(i);
107 eP_coeff = -E_coeff ;
108 T(i, i+1) = E_coeff ;
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109
110 N_coeff = -rho*A_y ˆ2/ av(i);
111 nP_coeff = -N_coeff ;
112 T(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
113
114
115 % Southwestern corner at step
116 elseif ˜ etest && ˜ wtest && ˜ ntest && stest && wwall
117
118 beta(i) = rho *(- A_x* u_circ (i)...
119 +A_x *0 -A_y* v_circ (i)); % wall /" inlet " velocity is zero
120
121 % At western boundary (x = 0)
122 wP_coeff = 0;
123
124 % At southern boundary (y = 0)
125 sP_coeff = 0;
126
127 E_coeff = -rho*A_x ˆ2/ au(i);
128 eP_coeff = -E_coeff ;
129 T(i, i+1) = E_coeff ;
130
131 N_coeff = -rho*A_y ˆ2/ av(i);
132 nP_coeff = -N_coeff ;
133 T(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
134
135
136 % At eastern boundary (x = L)
137 elseif etest && ˜ wtest && ˜ ntest && ˜ stest && ˜ wwall
138
139 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
140 -A_y* v_star (i) + A_y* v_star ( getRowUnder (i, N_wide , M_wide , N_total )));
141
142 % At eastern boundary (x = L)
143 eP_coeff = rho*A_x ˆ2/ au(i);
144
145
146 W_coeff = -rho*A_x ˆ2/ au(i -1);
147 wP_coeff = -W_coeff ;
148 T(i, i -1) = W_coeff ;
149
150 N_coeff = -rho*A_y ˆ2/ av(i);
151 nP_coeff = -N_coeff ;
152 T(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
153
154 S_coeff = -rho*A_y ˆ2/ av( getRowUnder (i, N_wide , M_wide , N_total ));
155 sP_coeff = -S_coeff ;
156 T(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
157
158
159 % At western boundary at inlet (x = 0)
160 elseif ˜ etest && wtest && ˜ ntest && ˜ stest && ˜ wwall
161
162 beta(i) = rho *(- A_x* u_star (i) +A_x*u_in -A_y* v_star (i) ...
163 + A_y* v_star ( getRowUnder (i, N_wide , M_wide , N_total )));
164
165 % At western boundary (x = 0)
166 wP_coeff = 0;
167
168 E_coeff = -rho*A_x ˆ2/ au(i);
169 eP_coeff = -E_coeff ;
170 T(i, i+1) = E_coeff ;
171
172 N_coeff = -rho*A_y ˆ2/ av(i);
173 nP_coeff = -N_coeff ;
174 T(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
175
176 S_coeff =- rho*A_y ˆ2/ av( getRowUnder (i, N_wide , M_wide , N_total ));
177 sP_coeff = -S_coeff ;
178 T(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
179
180
181 % At western wall
182 elseif ˜ etest && ˜ wtest && ˜ ntest && ˜ stest && wwall
183
184 beta(i) = rho *(- A_x* u_circ (i)... % West wall / inlet velocity is zero
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185 +A_x *0 -A_y* v_circ (i) +...
186 A_y* v_circ ( getRowUnder (i, N_wide , M_wide , N_total )));
187
188 % At western boundary (x = 0)
189 wP_coeff = 0;
190
191 E_coeff = -rho*A_x ˆ2/ au(i);
192 eP_coeff = -E_coeff ;
193 T(i, i+1) = E_coeff ;
194
195 N_coeff = -rho*A_y ˆ2/ av(i);
196 nP_coeff = -N_coeff ;
197 T(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
198
199 S_coeff =- rho*A_y ˆ2/ av( getRowUnder (i, N_wide , M_wide , N_total ));
200 sP_coeff = -S_coeff ;
201 T(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
202
203
204 % At northern boundary (y = h)
205 elseif ˜ etest && ˜ wtest && ntest && ˜ stest && ˜ wwall
206
207 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
208 + A_y* v_star ( getRowUnder (i, N_wide , M_wide , N_total )));
209
210 % At northern boundary (y = h)
211 nP_coeff = 0 ;
212
213 E_coeff = -rho*A_x ˆ2/ au(i);
214 eP_coeff = -E_coeff ;
215 T(i, i+1) = E_coeff ;
216
217 W_coeff = -rho*A_x ˆ2/ au(i -1);
218 wP_coeff = -W_coeff ;
219 T(i, i -1) = W_coeff ;
220
221 S_coeff = -rho*A_y ˆ2/ av( getRowUnder (i, N_wide , M_wide , N_total ));
222 sP_coeff = -S_coeff ;
223 T(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
224
225
226 % At southern boundary (y = 0)
227 elseif ˜ etest && ˜ wtest && ˜ ntest && stest && ˜ wwall
228
229 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
230 -A_y* v_star (i));
231
232 % At southern boundary (y = 0)
233 sP_coeff = 0;
234
235 E_coeff = -rho*A_x ˆ2/ au(i);
236 eP_coeff = -E_coeff ;
237 T(i, i+1) = E_coeff ;
238
239 W_coeff = -rho*A_x ˆ2/ au(i -1);
240 wP_coeff = -W_coeff ;
241 T(i, i -1) = W_coeff ;
242
243 N_coeff = -rho*A_y ˆ2/ av(i);
244 nP_coeff = -N_coeff ;
245 T(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
246
247
248 %Not at any boundary
249 else
250
251 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) -A_y* v_star (i) + ...
252 A_y* v_star ( getRowUnder (i, N_wide , M_wide , N_total )));
253
254 E_coeff = -rho*A_x ˆ2/ au(i);
255 eP_coeff = -E_coeff ;
256 T(i, i+1) = E_coeff ;
257
258 W_coeff = -rho*A_x ˆ2/ au(i -1);
259 wP_coeff = -W_coeff ;
260 T(i, i -1) = W_coeff ;
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261
262 N_coeff = -rho*A_y ˆ2/ av(i);
263 nP_coeff = -N_coeff ;
264 T(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
265
266 S_coeff = -rho*A_y ˆ2/ av( getRowUnder (i, N_wide , M_wide , N_total ));
267 sP_coeff = -S_coeff ;
268 T(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
269
270 end % if
271
272 % Filling in the rest of the matrix , adding all point coefficients
273 T(i,i) = wP_coeff + eP_coeff + nP_coeff + sP_coeff ;
274
275 % If the step is disabled the points below the step are blocked out
276 if onlyChannel && i <= N_wide * M_wide
277 T(i,i) = T(i,i) + 10e+30;
278 end %if
279
280 etest = false ;
281 wtest = false ;
282 ntest = false ;
283 stest = false ;
284 wwall = false ;
285
286 end %for
287 p_corr = T\beta ’; % Matrix inversion

E.5.1.5 plot BFS.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Surface plots for velocities , pressure and pressure correction %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 showOutletView = true;% Save profiles seen from outlet in addition to inlet
5 az = 37.5; % Viewpoints when seen from outlet
6 el = 30;
7 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 %% Settings
9 % filler is a value that is filled in where the step is. showStep can be

10 % adjusted if it is desirable to plot the profiles with zero at the step.
11 if ˜ exist (’showStep ’,’var ’)
12 filler = Inf;
13 else
14 if showStep == true
15 filler = 0;
16 else
17 filler = Inf;
18 end %if
19 end %if
20
21 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22 %% Velocities to matrices
23 % u- velocity
24
25 u_fullplot = zeros ( M_total +2, N_total +1);
26 u_fullplot ( M_wide +2: end -1 ,1) = u_in;
27 u_fullplot (2: M_wide +1, N_narrow +2: end) = ...
28 global2matrix ( u_new (1: N_wide * M_wide ), N_wide , M_wide );
29 u_fullplot ( M_wide +2: end -1 ,2: end) = ...
30 global2matrix ( u_new ( N_wide * M_wide +1: end), N_total , M_narrow );
31 u_fullplot (1: M_wide , 1: N_narrow ) = filler ;
32
33 % Transformation from dimensionless to regular
34 u_fullplot = u_fullplot * u_in_true ;
35
36 % Create a mesh for the plotting
37 [xu_plot , yu_plot ] = meshgrid (x_0: del_x_true :x_N ,...
38 [0, y_0+ del_y_true /2: del_y_true :y_M - del_y_true /2, H_total ]);
39
40 % y- points are adjusted at the inlet because the southern wall of the
41 % narrow channel does not align with the u- velocity nodes in the wide sec.
42 jj = [ linspace (0, H_total -h, M_total - M_narrow +1) ,...
43 linspace (H_total -h+ del_y_true /2, y_M - del_y_true /2, M_narrow ), H_total ];
44 for i = 1: N_narrow
45 for j = 1: M_total
46 % alter the points of the plot for the wall of the narrow section
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47 yu_plot (j,i) = jj(j);
48 end %for
49 end %for
50
51 % v- velocity
52 v_fullplot = zeros ( m_total +2, N_total +1); % Inlet is zero
53 v_fullplot (2: m_wide +1, N_narrow +2: end) = ...
54 global2matrix ( v_new (1: N_wide * m_wide ), N_wide , m_wide );
55 v_fullplot ( m_wide +2: end -1 ,2: end) = ...
56 global2matrix ( v_new ( N_wide * m_wide +1: end), N_total , m_narrow );
57 v_fullplot (1: m_wide , 1: N_narrow ) = filler ;
58
59 % Transformation from dimensionless to regular
60 v_fullplot = v_fullplot * u_in_true ;
61
62 % Create a mesh for the plotting
63 [xv_plot , yv_plot ] = meshgrid (x_0: del_x_true :x_N , y_0: del_y_true :y_M);
64
65
66 f1 = figure ;
67 f = surf(xu_plot ,yu_plot , u_fullplot );
68 % set(f,’edgecolor ’,’none ’)
69 s = sprintf (’Plot of $u_{new}$ after %d iterations ’, it );
70 % f = title (s);
71 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
72 set(gca ,’TickLabelInterpreter ’,’latex ’)
73 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
74 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
75 zlabel (’Velocity $u$ , [m/s]’, ’interpreter ’, ’latex ’)
76 ztickformat (’%.2f’)
77 set(f1 , ’Position ’, [3.6667 40.3333 555.3333 284.6667]) ;
78 %[left bottom width height ]
79 saveas (gcf ,’unewBFS .png ’)
80 if showOutletView
81 view(az ,el)
82 saveas (gcf ,’unewoutletBFS .png ’)
83 view (37.5 ,30) % back to normal
84 end % if
85
86
87 f2 = figure ;
88 f = surf(xv_plot ,yv_plot , v_fullplot ); % surf(x,y,z)
89 % set(f,’edgecolor ’,’none ’)
90 s = sprintf (’Plot of $v_{new}$ after %d iterations ’, it );
91 % f = title (s);
92 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
93 set(gca ,’TickLabelInterpreter ’,’latex ’)
94 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
95 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
96 zlabel (’Velocity $v$ , [m/s]’, ’interpreter ’, ’latex ’)
97 ztickformat (’%.2f’)
98 set(f2 , ’Position ’, [3.6667 327.0000 554.0000 314.0000]) ;
99 %[left bottom width height ]

100 saveas (gcf ,’vnewBFS .png ’)
101 if showOutletView
102 view(az ,el)
103 saveas (gcf ,’vnewoutletBFS .png ’)
104 view (37.5 ,30) % back to normal
105 end % if
106
107 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
108 %% Pressure to matrix
109
110 p_fullplot = zeros (M_total , N_total +1);
111 p_fullplot (1: M_wide , N_narrow +1: end -1) = ...
112 global2matrix ( p_new (1: N_wide * M_wide ), N_wide , M_wide );
113 p_fullplot ( M_wide +1: end ,1: end -1) = ...
114 global2matrix ( p_new ( N_wide * M_wide +1: end), N_total , M_narrow );
115 p_fullplot (1: M_wide , 1: N_narrow ) = filler ;
116 p_fullplot (:, end) = p_out ;
117
118 % Transformation from dimensionless to regular
119 p_fullplot = p_fullplot * rho_true * u_in_true + p_atm ;
120
121 % Create a mesh for the plotting
122 [xp_plot , yp_plot ] = meshgrid (...
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123 x_0: del_x_true :x_N , ...
124 y_0+ del_y_true /2: del_y_true :y_M - del_y_true /2);
125 xp_plot = xp_plot + del_x_true /2;
126 yp_plot = yp_plot + del_y_true /2;
127
128 f3 = figure ;
129 f = surf(xp_plot ,yp_plot , p_fullplot );
130 % set(f,’edgecolor ’,’none ’)
131 s = sprintf (’Plot of $p_{new}$ after %d iterations ’, it );
132 % f = title (s);
133 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
134 set(gca ,’TickLabelInterpreter ’,’latex ’)
135 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
136 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
137 zlabel (’Pressure $p$ , [Pa]’, ’interpreter ’, ’latex ’)
138 ztickformat (’%.7f’)
139 set(f3 , ’Position ’, [ 721.6667 40.3333 560.0000 287.3333]) ;
140 %[left bottom width height ]
141 saveas (gcf ,’pnewBFS .png ’)
142 if showOutletView
143 view(az ,el)
144 saveas (gcf ,’pnewoutletBFS .png ’)
145 view (37.5 ,30) % back to normal
146 end % if
147
148 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
149 %% Pressure correction to matrix
150 if it > 0 % Don ’t plot in case of initial profiles ( plotinitialprofiles )
151
152 p_corrplot = zeros (M_total , N_total +1);
153 p_corrplot (1: M_wide , N_narrow +1: end -1) = ...
154 global2matrix ( p_corr (1: N_wide * M_wide ), N_wide , M_wide );
155 p_corrplot ( M_wide +1: end ,1: end -1) = ...
156 global2matrix ( p_corr ( N_wide * M_wide +1: end), N_total , M_narrow );
157 p_corrplot (1: M_wide , 1: N_narrow ) = filler ;
158
159 % Transformation from dimensionless to regular
160 p_corrplot = p_corrplot * rho_true * u_in_true ;
161
162 % Create a mesh for the plotting
163 [xp_plot , yp_plot ] = meshgrid (...
164 x_0: del_x_true :x_N , ...
165 y_0+ del_y_true /2: del_y_true :y_M - del_y_true /2);
166
167 f4 = figure ;
168 f = surf(xp_plot ,yp_plot , p_corrplot ); % surf(x,y,z)
169 % set(f,’edgecolor ’,’none ’)
170 s = sprintf (’Plot of $p_{corr}$ after %d iterations ’, it );
171 % f = title (s);
172 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
173 set(gca ,’TickLabelInterpreter ’,’latex ’)
174 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
175 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
176 ztickformat (’%.2f’)
177 zlabel (’Pressure correction $p ’’$, [Pa]’, ’interpreter ’, ’latex ’)
178 set(f4 , ’Position ’, [719.6667 329.6667 560.0000 311.3333]) ;
179 saveas (gcf ,’pcorrBFS .png ’)
180
181
182 if showOutletView
183 view(az ,el)
184 saveas (gcf ,’pcorroutletBFS .png ’)
185 view (37.5 ,30) % back to normal
186 end % if
187 end %if

E.5.1.6 plotVelocityQuiver.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Velocity quiver plots %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 filler = 0; % For the quiver plots , the velocities at the step are set to
5 % zero and not Inf , rectangles are therefore used to block
6 % out the step from the plots afterwards .
7
8 % u- velocity
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9 u_fullplot = zeros ( M_total +2, N_total +1);
10 u_fullplot ( M_wide +2: end -1 ,1) = u_in;
11 u_fullplot (2: M_wide +1, N_narrow +2: end) = ...
12 global2matrix ( u_new (1: N_wide * M_wide ), N_wide , M_wide );
13 u_fullplot ( M_wide +2: end -1 ,2: end) = ...
14 global2matrix ( u_new ( N_wide * M_wide +1: end), N_total , M_narrow );
15 u_fullplot (1: M_wide , 1: N_narrow ) = 0;
16
17 % Transformation from dimensionless to regular
18 u_fullplot = u_fullplot * u_in_true ;
19
20
21 % v- velocity
22 v_fullplot = zeros ( m_total +2, N_total +1);
23 v_fullplot (2: m_wide +1, N_narrow +2: end) = ...
24 global2matrix ( v_new (1: N_wide * m_wide ), N_wide , m_wide );
25 v_fullplot ( m_wide +2: end -1 ,2: end) = ...
26 global2matrix ( v_new ( N_wide * m_wide +1: end), N_total , m_narrow );
27 v_fullplot (1: m_wide , 1: N_narrow ) = filler ;
28
29 % Transformation from dimensionless to regular
30 v_fullplot = v_fullplot * u_in_true ;
31
32
33 uSN = zeros (M_total , N_total );
34 vSN = zeros (M_total , N_total );
35 for i = 2: N_total +1
36 for j = 1: M_total
37 uSN(j,i -1) = 1/2*( u_fullplot (j+1,i -1) + u_fullplot (j+1,i));
38 end %for
39 end %for
40 for j = 2: M_total +1
41 for i = 1: N_total
42 vSN(j-1,i) = 1/2*( v_fullplot (j-1,i) + v_fullplot (j,i));
43 end %for
44 end %for
45
46 % Need to make a combined velocitiy vector
47 combvel = sqrt(uSN .ˆ2 + vSN .ˆ2);
48
49 % Create a mesh for the plotting
50 [xSN ,ySN] = meshgrid (...
51 x_0: del_x :x_N -del_x , ...
52 y_0+ del_y /2: del_y :y_M - del_y /2);
53
54
55 fq1 = figure ;
56 qn = quiver ( xSN , ySN , uSN , vSN ,’LineWidth ’ ,0.5,’Color ’,’k’);
57
58 % Block out the step
59 r = rectangle (’Position ’ ,[0.03 -0.05 3 0.55]) ;
60 r. FaceColor = [1 1 1];
61 r. EdgeColor = ’none ’;%’k ’;
62 r. LineWidth = .0000010;
63
64 s = rectangle (’Position ’ ,[0.03 -0.05 22 0.05]) ;
65 s. FaceColor = [1 1 1];
66 s. EdgeColor = ’none ’;%’k ’;
67 s. LineWidth = .0000010;
68
69 t = rectangle (’Position ’ ,[0.03 1.5 22 0.05]) ;
70 t. FaceColor = [1 1 1];
71 t. EdgeColor = ’none ’;%’k ’;
72 t. LineWidth = .0000010;
73
74 hold on
75 set(qn ,’AutoScale ’,’on ’, ’LineWidth ’ ,0.1,’AutoScaleFactor ’, 0.7 ,...
76 ’Marker ’,’o’,’MarkerSize ’ ,1,’ShowArrowHead ’,’on ’)
77 s = sprintf (’Plot of velocities as vectors after %d iterations ’, it );
78 % f = title (s);
79 ax = gca;
80 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
81 set(gca ,’TickLabelInterpreter ’,’latex ’)
82 ax. FontSize = 12;
83 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
84 xlim ([0 ,22])
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85 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
86 ylim ([ -0.05 ,1.55])
87 ytickformat (’%.1f’)
88 set(fq1 ,’Position ’, [3 250 717 420]) ;
89 saveas (gcf ,’velocityquiver .png ’)
90 ax. Layer = ’top ’;
91
92
93 fq2 = figure ;
94 qn = quiver (...
95 xSN , ySN , uSN , vSN ,...% u_fullplot (1: end -1 ,:)
96 ’LineWidth ’ ,0.5,’Color ’,’k’);
97
98 r = rectangle (’Position ’ ,[0.03 -0.05 3 0.55]) ;
99 r. FaceColor = [1 1 1];

100 r. EdgeColor = ’none ’;%’k ’;
101 r. LineWidth = .0000010;
102
103 s = rectangle (’Position ’ ,[0.03 -0.05 22 0.05]) ;
104 s. FaceColor = [1 1 1];
105 s. EdgeColor = ’none ’;%’k ’;
106 s. LineWidth = .0000010;
107
108 hold on
109 set(qn ,’AutoScale ’,’on ’, ’AutoScaleFactor ’, 1.5 , ’Marker ’,’o’ ,...
110 ’MarkerSize ’ ,1,’MaxHeadSize ’ ,0.01);%’ShowArrowHead ’,’off ’)
111 % qw = quiver (...
112 % xv_plot , yv_plot , uplot (1: end -1 ,:) , vplot ,...
113 % ’LineWidth ’,0.5,’ Color ’,’k ’);
114 s = sprintf (...
115 ’Plot of velocities as vectors after %d iterations scales x 1.5 ’, it );
116 % f = title (s);
117 ax = gca;
118 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
119 set(gca ,’TickLabelInterpreter ’,’latex ’)
120 ax. FontSize = 12;
121 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
122 xlim ([l-l/4,l*3])
123 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
124 ylim ([0 ,H+H/4])
125 ytickformat (’%.1f’)
126 set(fq2 ,’Position ’, [724 250 560 420]) ;
127 saveas (gcf ,’velocityquiver_zoomed .png ’)
128 ax. Layer = ’top ’;
129
130
131 fq3 = figure ;
132 qn = quiver (...
133 xSN (1: M_wide , N_narrow +1: N_narrow *2) , ...
134 ySN (1: M_wide , N_narrow +1: N_narrow *2) ,...
135 uSN (1: M_wide , N_narrow +1: N_narrow *2) , ...
136 vSN (1: M_wide , N_narrow +1: N_narrow *2) ,...% u_fullplot (1: end -1 ,:)
137 ’LineWidth ’ ,0.5,’Color ’,’k’);
138
139 r = rectangle (’Position ’ ,[0.03 -0.05 3 0.55]) ;
140 r. FaceColor = [1 1 1];
141 r. EdgeColor = ’none ’;%’k ’;
142 r. LineWidth = .0000010;
143
144 s = rectangle (’Position ’ ,[0.03 -0.05 22 0.05]) ;
145 s. FaceColor = [1 1 1];
146 s. EdgeColor = ’none ’;%’k ’;
147 s. LineWidth = .0000010;
148
149 hold on
150 set(qn ,’AutoScale ’,’on ’, ’LineWidth ’ ,0.1,’AutoScaleFactor ’, 0.7 ,...
151 ’Marker ’,’o’,’MarkerSize ’ ,1,’ShowArrowHead ’,’on ’)
152 % qw = quiver (...
153 % xv_plot , yv_plot , uplot (1: end -1 ,:) , vplot ,...
154 % ’LineWidth ’,0.5,’ Color ’,’k ’);
155 s = sprintf (...
156 ’Plot of velocities as vectors after %d iterations , scaled * 2’, it );
157 % f = title (s);
158 ax = gca;
159 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
160 set(gca ,’TickLabelInterpreter ’,’latex ’)
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161 ax. FontSize = 12;
162 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
163 xlim ([l ,2*l])
164 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
165 ylim ([0 ,H])
166 ytickformat (’%.1f’)
167 set(fq3 ,’Position ’, [724 250 560 420]) ;
168 saveas (gcf ,’velocityquiver_zoomed .png ’)
169 ax. Layer = ’top ’;

E.5.1.7 plotColoredQuiver.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Colored velocity quiver plots %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 filler = 0; % For the quiver plots , the velocities at the step are set to
5 % zero and not Inf , rectangles are therefore used to block
6 % out the step from the plots afterwards .
7 levels = 50; % Number of different colors for the representation
8 showvals = false ; % Show the value of each color
9 lines = ’none ’; % Show lines in between each color

10
11 % u- velocity
12 u_fullplot = zeros ( M_total +2, N_total +1);
13 u_fullplot ( M_wide +2: end -1 ,1) = u_in;
14 u_fullplot (2: M_wide +1, N_narrow +2: end) = ...
15 global2matrix ( u_new (1: N_wide * M_wide ), N_wide , M_wide );
16 u_fullplot ( M_wide +2: end -1 ,2: end) = ...
17 global2matrix ( u_new ( N_wide * M_wide +1: end), N_total , M_narrow );
18 u_fullplot (1: M_wide , 1: N_narrow ) = 0;
19
20 % Transformation from dimensionless to regular
21 u_fullplot = u_fullplot * u_in_true ;
22
23
24 % v- velocity
25 v_fullplot = zeros ( m_total +2, N_total +1);
26 v_fullplot (2: m_wide +1, N_narrow +2: end) = ...
27 global2matrix ( v_new (1: N_wide * m_wide ), N_wide , m_wide );
28 v_fullplot ( m_wide +2: end -1 ,2: end) = ...
29 global2matrix ( v_new ( N_wide * m_wide +1: end), N_total , m_narrow );
30 v_fullplot (1: m_wide , 1: N_narrow ) = filler ;
31
32 % Transformation from dimensionless to regular
33 v_fullplot = v_fullplot * u_in_true ;
34
35
36 uSN = zeros (M_total , N_total );
37 vSN = zeros (M_total , N_total );
38 for i = 2: N_total +1
39 for j = 1: M_total
40 uSN(j,i -1) = 1/2*( u_fullplot (j+1,i -1) + u_fullplot (j+1,i));
41 end %for
42 end %for
43 for j = 2: M_total +1
44 for i = 1: N_total
45 vSN(j-1,i) = 1/2*( v_fullplot (j-1,i) + v_fullplot (j,i));
46 end %for
47 end %for
48
49
50 % Need to make a combined velocitiy vector
51 combvel = sqrt(uSN .ˆ2 + vSN .ˆ2);
52
53
54
55 % Create a mesh for the plotting
56 [xSN ,ySN] = meshgrid (...
57 x_0+ del_x_true /2: del_x_true :x_N - del_x_true /2, ...
58 y_0+ del_y_true /2: del_y_true :y_M - del_y_true /2);
59
60 combvelwall = [ zeros (1, N_total ); combvel ; zeros (1, N_total )];
61
62 fq1 = figure ;
63 % Contour plot
64 [M,c] = contourf ([ xSN (1 ,:) ; xSN ;xSN(end ,:) ] ,...
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65 [ones (1, N_total )*y_0; ySN ; ones (1, N_total )*y_M], ...
66 combvelwall , levels );
67 c. LineColor = lines ;
68 hold on
69 qn = quiver ( xSN , ySN , uSN , vSN ,’LineWidth ’ ,0.5,’Color ’,’k’);
70
71 % Block out the step
72 r = rectangle (’Position ’ ,[0.03 -0.05 3 0.55]) ;
73 r. FaceColor = [1 1 1];
74 r. EdgeColor = ’none ’;%’k ’;
75 r. LineWidth = .0000010;
76
77
78 hold on
79 set(qn ,’AutoScale ’,’on ’, ’LineWidth ’ ,0.1,’AutoScaleFactor ’, 0.7 ,...
80 ’Marker ’,’o’,’MarkerSize ’ ,1,’ShowArrowHead ’,’on ’)
81 s = sprintf (’Plot of velocities as vectors after %d iterations ’, it );
82 % f = title (s);
83 ax = gca;
84 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
85 set(gca ,’TickLabelInterpreter ’,’latex ’)
86 ax. FontSize = 12;
87 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
88 xlim ([0 ,22])
89 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
90 ylim ([ -0.05 ,1.55])
91 ytickformat (’%.1f’)
92 set(fq1 ,’Position ’, [3 250 717 420]) ;
93 saveas (gcf ,’velocityquiver .png ’)
94 ax. Layer = ’top ’;
95
96
97 fq2 = figure ;
98 [M,c] = contourf ([ xSN (1 ,:) ; xSN ;xSN(end ,:) ] ,...
99 [ones (1, N_total )*y_0; ySN ; ones (1, N_total )*y_M], ...

100 combvelwall , levels );
101 c. LineColor = lines ;
102 hold on
103 qn = quiver (...
104 xSN , ySN , uSN , vSN ,...% u_fullplot (1: end -1 ,:)
105 ’LineWidth ’ ,0.5,’Color ’,’k’);
106
107 r = rectangle (’Position ’ ,[0.03 -0.05 3 0.55]) ;
108 r. FaceColor = [1 1 1];
109 r. EdgeColor = ’none ’;%’k ’;
110 r. LineWidth = .0000010;
111
112
113 hold on
114 set(qn ,’AutoScale ’,’on ’, ’AutoScaleFactor ’, 2.1 , ’Marker ’,’o’ ,...
115 ’MarkerSize ’ ,1,’MaxHeadSize ’ ,0.01);%’ShowArrowHead ’,’off ’)
116 % qw = quiver (...
117 % xv_plot , yv_plot , uplot (1: end -1 ,:) , vplot ,...
118 % ’LineWidth ’,0.5,’ Color ’,’k ’);
119 s = sprintf (...
120 ’Plot of velocities as vectors after %d iterations scales x 1.5 ’, it );
121 % f = title (s);
122 ax = gca;
123 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
124 set(gca ,’TickLabelInterpreter ’,’latex ’)
125 ax. FontSize = 12;
126 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
127 xlim ([l-l/4,l*3])
128 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
129 ylim ([0 ,H+H/4])
130 ytickformat (’%.1f’)
131 set(fq2 ,’Position ’, [724 250 560 420]) ;
132 saveas (gcf ,’velocityquiver1zoomed .png ’)
133 ax. Layer = ’top ’;
134
135
136 fq3 = figure ;
137 [M,c] = contourf ([ xSN (1 ,:) ; xSN ;xSN(end ,:) ] ,...
138 [ones (1, N_total )*y_0; ySN ; ones (1, N_total )*y_M], ...
139 combvelwall , levels );
140 c. LineColor = lines ;
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141 hold on
142 qn = quiver (...
143 xSN (1: M_wide , N_narrow +1: N_narrow *2) , ...
144 ySN (1: M_wide , N_narrow +1: N_narrow *2) ,...
145 uSN (1: M_wide , N_narrow +1: N_narrow *2) , ...
146 vSN (1: M_wide , N_narrow +1: N_narrow *2) ,...% u_fullplot (1: end -1 ,:)
147 ’LineWidth ’ ,0.5,’Color ’,’k’);
148
149 r = rectangle (’Position ’ ,[0.03 -0.05 3 0.55]) ;
150 r. FaceColor = [1 1 1];
151 r. EdgeColor = ’none ’;%’k ’;
152 r. LineWidth = .0000010;
153
154 hold on
155 set(qn ,’AutoScale ’,’on ’, ’LineWidth ’ ,0.1,’AutoScaleFactor ’, 2.1 ,...
156 ’Marker ’,’o’,’MarkerSize ’ ,1,’ShowArrowHead ’,’on ’)
157 % qw = quiver (...
158 % xv_plot , yv_plot , uplot (1: end -1 ,:) , vplot ,...
159 % ’LineWidth ’,0.5,’ Color ’,’k ’);
160 s = sprintf (...
161 ’Plot of velocities as vectors after %d iterations , scaled * 2’, it );
162 % f = title (s);
163 ax = gca;
164 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
165 set(gca ,’TickLabelInterpreter ’,’latex ’)
166 ax. FontSize = 12;
167 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
168 xlim ([l ,2*l])
169 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
170 ylim ([0 ,H])
171 ytickformat (’%.1f’)
172 set(fq3 ,’Position ’, [724 250 560 420]) ;
173 saveas (gcf ,’velocityquiver2zoomed .png ’)
174 ax. Layer = ’top ’;

E.5.1.8 plotVelocityCorrection.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Surface plots for velocity corrections %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 %% Settings
5 % filler is a value that is filled in where the step is. showStep can be
6 % adjusted if it is desirable to plot the profiles with zero at the step.
7 if ˜ exist (’showStep ’,’var ’)
8 filler = Inf;
9 else

10 if showStep == true
11 filler = 0;
12 else
13 filler = Inf;
14 end %if
15 end %if
16
17 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18 %% Velocities to matrices
19 % u- velocity
20
21 u_fullplot = zeros ( M_total +2, N_total +1);
22 u_fullplot ( M_wide +2: end -1 ,1) = 0;
23 u_fullplot (2: M_wide +1, N_narrow +2: end) = ...
24 global2matrix ( u_corr (1: N_wide * M_wide ), N_wide , M_wide );
25 u_fullplot ( M_wide +2: end -1 ,2: end) = ...
26 global2matrix ( u_corr ( N_wide * M_wide +1: end), N_total , M_narrow );
27 u_fullplot (1: M_wide , 1: N_narrow ) = filler ;
28
29 % Transformation from dimensionless to regular
30 u_fullplot = u_fullplot * u_in_true ;
31
32 % Create a mesh for the plotting
33 [xu_plot , yu_plot ] = meshgrid (...
34 x_0: del_x_true :x_N , ...
35 [0, y_0+ del_y_true /2: del_y_true :y_M - del_y_true /2, H_total ]);
36
37 % y- points are adjusted at the inlet because the southern wall of the
38 % narrow channel does not align with the u- velocity nodes in the wide sec.
39 for i = 1: N_narrow
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40 % alter the points of the plot for the wall of the narrow section
41 yu_plot (:,i) = [ linspace (0, H_total -h, M_total - M_narrow +1) , ...
42 linspace (H_total -h+ del_y_true /2, y_M - del_y_true /2, M_narrow ), ...
43 H_total ];
44 end %for
45
46
47 % v- velocity
48 v_fullplot = zeros ( m_total +2, N_total +1); % Inlet is zero
49 v_fullplot (2: m_wide +1, N_narrow +2: end) = ...
50 global2matrix ( v_corr (1: N_wide * m_wide ), N_wide , m_wide );
51 v_fullplot ( m_wide +2: end -1 ,2: end) = ...
52 global2matrix ( v_corr ( N_wide * m_wide +1: end), N_total , m_narrow );
53 v_fullplot (1: m_wide , 1: N_narrow ) = filler ;
54
55 % Transformation from dimensionless to regular
56 v_fullplot = v_fullplot * u_in_true ;
57
58 % Create a mesh for the plotting
59 [xv_plot , yv_plot ] = meshgrid (...
60 x_0: del_x_true :x_N , ...
61 y_0: del_y_true :y_M);
62
63 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64 %% Plot
65
66 f1 = figure ;
67 f = surf(xu_plot ,yu_plot , u_fullplot ); % surf(x,y,z)
68 % set(f,’edgecolor ’,’none ’)
69 s = sprintf (’Plot of $u_{corr}$ after %d iterations ’, it );
70 % f = title (s);
71 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
72 set(gca ,’TickLabelInterpreter ’,’latex ’)
73 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
74 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
75 zlabel (’Velocity $u$ , [m/s]’, ’interpreter ’, ’latex ’)
76 ztickformat (’%.2f’)
77 set(f1 , ’Position ’, [3.6667 40.3333 555.3333 284.6667]) ; %[left bottom width

height ]
78 saveas (gcf ,’ucorrBFS .png ’)
79
80 f2 = figure ;
81 f = surf(xv_plot ,yv_plot , v_fullplot ); % surf(x,y,z)
82 % set(f,’edgecolor ’,’none ’)
83 s = sprintf (’Plot of $v_{corr}$ after %d iterations ’, it );
84 % f = title (s);
85 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
86 set(gca ,’TickLabelInterpreter ’,’latex ’)
87 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
88 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
89 zlabel (’Velocity $v$ , [m/s]’, ’interpreter ’, ’latex ’)
90 ztickformat (’%.2f’)
91 set(f2 , ’Position ’, [3.6667 327.0000 554.0000 314.0000]) ; %[left bottom width

height ]
92 saveas (gcf ,’vcorrBFS .png ’)

E.5.1.9 plotIntermediates.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Surface plots for the intermediate velocities %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 showOutletView = true;% Save profiles seen from outlet in addition to inlet
5 az = 37.5; % Viewpoints when seen from outlet
6 el = 30;
7 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 %% Settings
9 % filler is a value that is filled in where the step is. showStep can be

10 % adjusted if it is desirable to plot the profiles with zero at the step.
11 if ˜ exist (’showStep ’,’var ’)
12 filler = Inf;
13 else
14 if showStep == true
15 filler = 0;
16 else
17 filler = Inf;
18 end %if
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19 end %if
20
21 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22 %% Velocities to matrices
23 % u- velocity
24
25 u_fullplot = zeros ( M_total +2, N_total +1);
26 u_fullplot ( M_wide +2: end -1 ,1) = u_in;
27 u_fullplot (2: M_wide +1, N_narrow +2: end) = ...
28 global2matrix ( u_star (1: N_wide * M_wide ), N_wide , M_wide );
29 u_fullplot ( M_wide +2: end -1 ,2: end) = ...
30 global2matrix ( u_star ( N_wide * M_wide +1: end), N_total , M_narrow );
31 u_fullplot (1: M_wide , 1: N_narrow ) = filler ;
32
33 % Transformation from dimensionless to regular
34 u_fullplot = u_fullplot * u_in_true ;
35
36 % Create a mesh for the plotting
37 [xu_plot , yu_plot ] = meshgrid (x_0: del_x_true :x_N ,...
38 [0, y_0+ del_y_true /2: del_y_true :y_M - del_y_true /2, H_total ]);
39
40 % y- points are adjusted at the inlet because the southern wall of the
41 % narrow channel does not align with the u- velocity nodes in the wide sec.
42 jj = [ linspace (0, H_total -h, M_total - M_narrow +1) , linspace (H_total -h+ del_y_true /2, y_M

- del_y_true /2, M_narrow ), H_total ];
43 for i = 1: N_narrow
44 for j = 1: M_total
45 % alter the points of the plot for the wall of the narrow section
46 yu_plot (j,i) = jj(j);
47 end %for
48 end %for
49
50 % v- velocity
51 v_fullplot = zeros ( m_total +2, N_total +1); % Inlet is zero
52 v_fullplot (2: m_wide +1, N_narrow +2: end) = ...
53 global2matrix ( v_star (1: N_wide * m_wide ), N_wide , m_wide );
54 v_fullplot ( m_wide +2: end -1 ,2: end) = ...
55 global2matrix ( v_star ( N_wide * m_wide +1: end), N_total , m_narrow );
56 v_fullplot (1: m_wide , 1: N_narrow ) = filler ;
57
58 % Transformation from dimensionless to regular
59 v_fullplot = v_fullplot * u_in_true ;
60
61 % Create a mesh for the plotting
62 [xv_plot , yv_plot ] = meshgrid (x_0: del_x_true :x_N , y_0: del_y_true :y_M);
63
64
65 f1 = figure ;
66 f = surf(xu_plot ,yu_plot , u_fullplot ); % surf(x,y,z)
67 % set(f,’edgecolor ’,’none ’)
68 s = sprintf (’Plot of $u_{star}$ after %d iterations ’, it );
69 f = title (s);
70 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
71 set(gca ,’TickLabelInterpreter ’,’latex ’)
72 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
73 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
74 zlabel (’Velocity $u$ , [m/s]’, ’interpreter ’, ’latex ’)
75 ztickformat (’%.2f’)
76 set(f1 , ’Position ’, [3.6667 40.3333 555.3333 284.6667]) ; %[left bottom width

height ]
77 saveas (gcf ,’ustarBFS .png ’)
78 if showOutletView
79 view(az ,el)
80 saveas (gcf ,’ustaroutletBFS .png ’)
81 view (37.5 ,30) % back to normal
82 end % if
83
84 f2 = figure ;
85 f = surf(xv_plot ,yv_plot , v_fullplot ); % surf(x,y,z)
86 % set(f,’edgecolor ’,’none ’)
87 s = sprintf (’Plot of $v_{star}$ after %d iterations ’, it );
88 f = title (s);
89 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
90 set(gca ,’TickLabelInterpreter ’,’latex ’)
91 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
92 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)



E.5. BACKWARDS FACING STEP MODEL 225

93 zlabel (’Velocity $v$ , [m/s]’, ’interpreter ’, ’latex ’)
94 ztickformat (’%.2f’)
95 set(f2 , ’Position ’, [3.6667 327.0000 554.0000 314.0000]) ; %[left bottom width

height ]
96 saveas (gcf ,’vstarBFS .png ’)
97 if showOutletView
98 view(az ,el)
99 saveas (gcf ,’vstaroutletBFS .png ’)

100 view (37.5 ,30) % back to normal
101 end % if

E.5.1.10 plot BFS iterations.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Plots for velocities , pressure and pressure correction %
3 % saved for each specified iteration %
4 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 %% Settings
6 % filler is a value that is filled in where the step is. showStep can be
7 % adjusted if it is desirable to plot the profiles with zero at the step.
8 if ˜ exist (’showStep ’,’var ’)
9 filler = Inf;

10 else
11 if showStep == true
12 filler = 0;
13 else
14 filler = Inf;
15 end %if
16 end %if
17
18 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19 %% Velocities to matrices
20 % u- velocity
21
22 u_fullplot = zeros ( M_total +2, N_total +1);
23 u_fullplot ( M_wide +2: end -1 ,1) = u_in;
24 u_fullplot (2: M_wide +1, N_narrow +2: end) = ...
25 global2matrix ( u_new (1: N_wide * M_wide ), N_wide , M_wide );
26 u_fullplot ( M_wide +2: end -1 ,2: end) = ...
27 global2matrix ( u_new ( N_wide * M_wide +1: end), N_total , M_narrow );
28 u_fullplot (1: M_wide , 1: N_narrow ) = filler ;
29
30 % Transformation from dimensionless to regular
31 u_fullplot = u_fullplot * u_in_true ;
32
33 % Create a mesh for the plotting
34 [xu_plot , yu_plot ] = meshgrid (x_0: del_x_true :x_N ,...
35 [0, y_0+ del_y_true /2: del_y_true :y_M - del_y_true /2, H_total ]);
36
37 % y- points are adjusted at the inlet because the southern wall of the
38 % narrow channel does not align with the u- velocity nodes in the wide sec.
39 jj = [ linspace (0, H_total -h, M_total - M_narrow +1) , ...
40 linspace (H_total -h+ del_y_true /2, y_M - del_y_true /2, M_narrow ), H_total ];
41 for i = 1: N_narrow
42 for j = 1: M_total
43 % alter the points of the plot for the wall of the narrow section
44 yu_plot (j,i) = jj(j);
45 end %for
46 end %for
47
48 % v- velocity
49 v_fullplot = zeros ( m_total +2, N_total +1); % Inlet is zero
50 v_fullplot (2: m_wide +1, N_narrow +2: end) = ...
51 global2matrix ( v_new (1: N_wide * m_wide ), N_wide , m_wide );
52 v_fullplot ( m_wide +2: end -1 ,2: end) = ...
53 global2matrix ( v_new ( N_wide * m_wide +1: end), N_total , m_narrow );
54 v_fullplot (1: m_wide , 1: N_narrow ) = filler ;
55
56 % Transformation from dimensionless to regular
57 v_fullplot = v_fullplot * u_in_true ;
58
59 % Create a mesh for the plotting
60 [xv_plot , yv_plot ] = meshgrid (x_0: del_x_true :x_N , y_0: del_y_true :y_M);
61
62
63 %% Plot velocities
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64 f1 = figure (’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1]);
65
66
67 subplot (2 ,2 ,1);
68 f = surf(xu_plot ,yu_plot , u_fullplot ); % surf(x,y,z)
69 s = sprintf (’Plot of $u_{new}$ after %d iterations ’, it );
70 f = title (s);
71 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
72 set(gca ,’TickLabelInterpreter ’,’latex ’)
73 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
74 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
75 zlabel (’Velocity $u$ , [m/s]’, ’interpreter ’, ’latex ’)
76 ztickformat (’%.2f’)
77
78 subplot (2 ,2 ,3);
79 f = surf(xv_plot ,yv_plot , v_fullplot ); % surf(x,y,z)
80 s = sprintf (’Plot of $v_{new}$ after %d iterations ’, it );
81 f = title (s);
82 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
83 set(gca ,’TickLabelInterpreter ’,’latex ’)
84 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
85 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
86 zlabel (’Velocity $v$ , [m/s]’, ’interpreter ’, ’latex ’)
87 ztickformat (’%.2f’)
88 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
89 %% Pressure
90
91 p_fullplot = zeros (M_total , N_total +1);
92 p_fullplot (1: M_wide , N_narrow +1: end -1) = ...
93 global2matrix ( p_new (1: N_wide * M_wide ), N_wide , M_wide );
94 p_fullplot ( M_wide +1: end ,1: end -1) = ...
95 global2matrix ( p_new ( N_wide * M_wide +1: end), N_total , M_narrow );
96 p_fullplot (1: M_wide , 1: N_narrow ) = filler ;
97 p_fullplot (:, end) = p_out ;
98
99 % Transformation from dimensionless to regular

100 p_fullplot = p_fullplot * rho_true * u_in_true + p_atm ;
101
102 % Create a mesh for the plotting
103 [xp_plot , yp_plot ] = meshgrid (...
104 x_0: del_x_true :x_N , ...
105 y_0+ del_y_true /2: del_y_true :y_M - del_y_true /2);
106
107 subplot (2 ,2 ,2);
108 f = surf(xp_plot ,yp_plot , p_fullplot ); % surf(x,y,z)
109 s = sprintf (’Plot of $p_{new}$ after %d iterations ’, it );
110 f = title (s);
111 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
112 set(gca ,’TickLabelInterpreter ’,’latex ’)
113 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
114 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
115 zlabel (’Pressure $p$ , [Pa]’, ’interpreter ’, ’latex ’)
116 ztickformat (’%.7f’)
117
118 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
119 %% Pressure correction to matrix
120
121 p_corrplot = zeros (M_total , N_total +1);
122 p_corrplot (1: M_wide , N_narrow +1: end -1) = ...
123 global2matrix ( p_corr (1: N_wide * M_wide ), N_wide , M_wide );
124 p_corrplot ( M_wide +1: end ,1: end -1) = ...
125 global2matrix ( p_corr ( N_wide * M_wide +1: end), N_total , M_narrow );
126 p_corrplot (1: M_wide , 1: N_narrow ) = filler ;
127
128 % Transformation from dimensionless to regular
129 p_corrplot = p_corrplot * rho_true * u_in_true ;
130
131 % Create a mesh for the plotting
132 [xp_plot , yp_plot ] = meshgrid (...
133 x_0: del_x_true :x_N , ...
134 y_0+ del_y_true /2: del_y_true :y_M - del_y_true /2);
135
136
137 subplot (2 ,2 ,4);
138 f = surf(xp_plot ,yp_plot , p_corrplot ); % surf(x,y,z)
139 s = sprintf (’Plot of $p_{corr}$ after %d iterations ’, it );
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140 f = title (s);
141 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
142 set(gca ,’TickLabelInterpreter ’,’latex ’)
143 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
144 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
145 zlabel (’Pressure correction $p ’’$, [Pa]’, ’interpreter ’, ’latex ’)
146 ztickformat (’%.2f’)
147
148 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
149 %% Make .gif
150
151 axis tight manual % this ensures that getframe () returns a consistent size
152 filename = ’itdev_allfour .gif ’;
153 % Capture the plot as an image
154 frame = getframe (f1);
155 im = frame2im ( frame );
156 [imind ,cm] = rgb2ind (im ,256) ;
157 % Write to the GIF File
158 if (it == 1 && plotInitialProfiles == false ) || ...
159 (it == 0 && plotInitialProfiles == true)
160 imwrite (imind ,cm ,filename ,’gif ’, ’Loopcount ’,inf);
161 else
162 imwrite (imind ,cm ,filename ,’gif ’,’WriteMode ’,’append ’);
163 end
164
165 close all

E.5.1.11 plotVelInts BFS iterations.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Plots for velocity intermediates and %
3 % saved for each specified iteration %
4 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 %% Settings
6 % filler is a value that is filled in where the step is. showStep can be
7 % adjusted if it is desirable to plot the profiles with zero at the step.
8 if ˜ exist (’showStep ’,’var ’)
9 filler = Inf;

10 else
11 if showStep == true
12 filler = 0;
13 else
14 filler = Inf;
15 end %if
16 end %if
17
18 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19 %% u- velocity
20 u_circplot = zeros ( M_total +2, N_total +1);
21 u_circplot ( M_wide +2: end -1 ,1) = u_in;
22 u_circplot (2: M_wide +1, N_narrow +2: end) = ...
23 global2matrix ( u_circ (1: N_wide * M_wide ), N_wide , M_wide );
24 u_circplot ( M_wide +2: end -1 ,2: end) = ...
25 global2matrix ( u_circ ( N_wide * M_wide +1: end), N_total , M_narrow );
26 u_circplot (1: M_wide , 1: N_narrow ) = filler ;
27
28 % Transformation from dimensionless to regular
29 u_circplot = u_circplot * u_in_true ;
30
31
32 u_starplot = zeros ( M_total +2, N_total +1);
33 u_starplot ( M_wide +2: end -1 ,1) = u_in;
34 u_starplot (2: M_wide +1, N_narrow +2: end) = ...
35 global2matrix ( u_star (1: N_wide * M_wide ), N_wide , M_wide );
36 u_starplot ( M_wide +2: end -1 ,2: end) = ...
37 global2matrix ( u_star ( N_wide * M_wide +1: end), N_total , M_narrow );
38 u_starplot (1: M_wide , 1: N_narrow ) = filler ;
39
40 % Transformation from dimensionless to regular
41 u_starplot = u_starplot * u_in_true ;
42
43
44 u_corrplot = zeros ( M_total +2, N_total +1);
45 u_corrplot ( M_wide +2: end -1 ,1) = 0; % no correction at known
46 u_corrplot (2: M_wide +1, N_narrow +2: end) = ...
47 global2matrix ( u_corr (1: N_wide * M_wide ), N_wide , M_wide );
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48 u_corrplot ( M_wide +2: end -1 ,2: end) = ...
49 global2matrix ( u_corr ( N_wide * M_wide +1: end), N_total , M_narrow );
50 u_corrplot (1: M_wide , 1: N_narrow ) = filler ;
51
52 % Transformation from dimensionless to regular
53 u_corrplot = u_corrplot * u_in_true ;
54
55
56 u_newplot = zeros ( M_total +2, N_total +1);
57 u_newplot ( M_wide +2: end -1 ,1) = u_in;
58 u_newplot (2: M_wide +1, N_narrow +2: end) = ...
59 global2matrix ( u_new (1: N_wide * M_wide ), N_wide , M_wide );
60 u_newplot ( M_wide +2: end -1 ,2: end) = ...
61 global2matrix ( u_new ( N_wide * M_wide +1: end), N_total , M_narrow );
62 u_newplot (1: M_wide , 1: N_narrow ) = filler ;
63
64 % Transformation from dimensionless to regular
65 u_newplot = u_newplot * u_in_true ;
66
67
68 % Create a mesh for the plotting
69 [xu_plot , yu_plot ] = meshgrid (...
70 x_0: del_x_true :x_N , ...
71 [0, y_0+ del_y_true /2: del_y_true :y_M - del_y_true /2, H_total ]);
72
73 for i = 1: N_narrow % alter the points of the plot for the wall of the narrow section
74 yu_plot (:,i) = [ linspace (0, H_total -h, M_total - M_narrow +1) , linspace (H_total -h+

del_y_true /2, y_M - del_y_true /2, M_narrow ), H_total ];
75 % yu_plot (i ,:) = [ linspace (0, H_total -h, M-M+1) , linspace (H_total -h+ del_y_true /2,

y_M - del_y_true /2, M), H_total ];
76 end %for
77
78
79 f0 = figure (’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1]);
80
81
82 subplot (2 ,2 ,1);
83 f = surf(xu_plot ,yu_plot , u_circplot ); % surf(x,y,z)
84
85 s = sprintf (’Plot of $u_{circ}$ after %d iterations ’, it );
86 f = title (s);
87 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
88 set(gca ,’TickLabelInterpreter ’,’latex ’)
89 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
90 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
91 zlabel (’Velocity $u$ , [m/s]’, ’interpreter ’, ’latex ’)
92 ztickformat (’%.2f’)
93
94
95 subplot (2 ,2 ,3);
96 f = surf(xu_plot ,yu_plot , u_starplot ); % surf(x,y,z)
97 s = sprintf (’Plot of $u_{star}$ after %d iterations ’, it );
98 f = title (s);
99 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)

100 set(gca ,’TickLabelInterpreter ’,’latex ’)
101 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
102 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
103 zlabel (’Velocity $v$ , [m/s]’, ’interpreter ’, ’latex ’)
104 ztickformat (’%.2f’)
105
106
107 subplot (2 ,2 ,2);
108 f = surf(xu_plot ,yu_plot , u_corrplot ); % surf(x,y,z)
109 s = sprintf (’Plot of $u_{corr}$ after %d iterations ’, it );
110 f = title (s);
111 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
112 set(gca ,’TickLabelInterpreter ’,’latex ’)
113 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
114 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
115 zlabel (’Velocity , [m/s]’, ’interpreter ’, ’latex ’)
116 ztickformat (’%.2f’)
117
118
119 subplot (2 ,2 ,4);
120 f = surf(xu_plot ,yu_plot , u_newplot ); % surf(x,y,z)
121 s = sprintf (’Plot of $u_{new}$ after %d iterations ’, it );
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122 f = title (s);
123 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
124 set(gca ,’TickLabelInterpreter ’,’latex ’)
125 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
126 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
127 zlabel (’Velocity , [m/s]’, ’interpreter ’, ’latex ’)
128 ztickformat (’%.2f’)
129
130
131
132 axis tight manual % this ensures that getframe () returns a consistent size
133 filename = ’itdev_uintermediates .gif ’;
134 % Capture the plot as an image
135 frame = getframe (f0);
136 im = frame2im ( frame );
137 [imind ,cm] = rgb2ind (im ,256) ;
138 % Write to the GIF File
139 if it == 1
140 imwrite (imind ,cm ,filename ,’gif ’, ’Loopcount ’,inf);
141 else
142 imwrite (imind ,cm ,filename ,’gif ’,’WriteMode ’,’append ’);
143 end
144
145 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
146 %% v- velocity
147 v_circplot = zeros ( m_total +2, N_total +1);
148 v_circplot (2: m_wide +1, N_narrow +2: end) = ...
149 global2matrix ( v_circ (1: N_wide * m_wide ), N_wide , m_wide );
150 v_circplot ( m_wide +2: end -1 ,2: end) = ...
151 global2matrix ( v_circ ( N_wide * m_wide +1: end), N_total , m_narrow );
152 v_circplot (1: m_wide , 1: N_narrow ) = filler ;
153
154 % Transformation from dimensionless to regular
155 v_circplot = v_circplot * u_in_true ;
156
157
158 v_starplot = zeros ( m_total +2, N_total +1);
159 v_starplot (2: m_wide +1, N_narrow +2: end) = ...
160 global2matrix ( v_star (1: N_wide * m_wide ), N_wide , m_wide );
161 v_starplot ( m_wide +2: end -1 ,2: end) = ...
162 global2matrix ( v_star ( N_wide * m_wide +1: end), N_total , m_narrow );
163 v_starplot (1: m_wide , 1: N_narrow ) = filler ;
164
165 % Transformation from dimensionless to regular
166 v_starplot = v_starplot * u_in_true ;
167
168
169 v_corrplot = zeros ( m_total +2, N_total +1);
170 v_corrplot (2: m_wide +1, N_narrow +2: end) = ...
171 global2matrix ( v_corr (1: N_wide * m_wide ), N_wide , m_wide );
172 v_corrplot ( m_wide +2: end -1 ,2: end) = ...
173 global2matrix ( v_corr ( N_wide * m_wide +1: end), N_total , m_narrow );
174 v_corrplot (1: m_wide , 1: N_narrow ) = filler ;
175
176 % Transformation from dimensionless to regular
177 v_corrplot = v_corrplot * u_in_true ;
178
179
180 v_newplot = zeros ( m_total +2, N_total +1);
181 v_newplot (2: m_wide +1, N_narrow +2: end) = ...
182 global2matrix ( v_new (1: N_wide * m_wide ), N_wide , m_wide );
183 v_newplot ( m_wide +2: end -1 ,2: end) = ...
184 global2matrix ( v_new ( N_wide * m_wide +1: end), N_total , m_narrow );
185 v_newplot (1: m_wide , 1: N_narrow ) = filler ;
186
187 % Transformation from dimensionless to regular
188 v_newplot = v_newplot * u_in_true ;
189
190
191 % Create a mesh for the plotting
192 [xv_plot , yv_plot ] = meshgrid (...
193 x_0: del_x_true :x_N , ...
194 y_0: del_y_true :y_M);
195
196
197 f2 = figure (’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1]);
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198
199
200 subplot (2 ,2 ,1);
201 f = surf(xv_plot ,yv_plot , v_circplot ); % surf(x,y,z)
202 s = sprintf (’Plot of $v_{circ}$ after %d iterations ’, it );
203 f = title (s);
204 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
205 set(gca ,’TickLabelInterpreter ’,’latex ’)
206 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
207 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
208 zlabel (’Velocity $u$ , [m/s]’, ’interpreter ’, ’latex ’)
209 ztickformat (’%.2f’)
210
211
212 subplot (2 ,2 ,3);
213 f = surf(xv_plot ,yv_plot , v_starplot ); % surf(x,y,z)
214 s = sprintf (’Plot of $v_{star}$ after %d iterations ’, it );
215 f = title (s);
216 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
217 set(gca ,’TickLabelInterpreter ’,’latex ’)
218 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
219 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
220 zlabel (’Velocity , [m/s]’, ’interpreter ’, ’latex ’)
221 ztickformat (’%.2f’)
222
223
224 subplot (2 ,2 ,2);
225 f = surf(xv_plot ,yv_plot , v_corrplot ); % surf(x,y,z)
226 s = sprintf (’Plot of $v_{corr}$ after %d iterations ’, it );
227 f = title (s);
228 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
229 set(gca ,’TickLabelInterpreter ’,’latex ’)
230 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
231 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
232 zlabel (’Velocity , [m/s]’, ’interpreter ’, ’latex ’)
233 ztickformat (’%.2f’)
234
235
236 subplot (2 ,2 ,4);
237 f = surf(xv_plot ,yv_plot , v_newplot );
238 s = sprintf (’Plot of $v_{new}$ after %d iterations ’, it );
239 f = title (s);
240 set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
241 set(gca ,’TickLabelInterpreter ’,’latex ’)
242 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
243 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
244 zlabel (’Pressure $p$ , [Pa]’, ’interpreter ’, ’latex ’)
245 ztickformat (’%.2f’)
246
247
248 axis tight manual % this ensures that getframe () returns a consistent size
249 filename = ’itdev_vintermediates .gif ’;
250 % Capture the plot as an image
251 frame = getframe (f2);
252 im = frame2im ( frame );
253 [imind ,cm] = rgb2ind (im ,256) ;
254 % Write to the GIF File
255 if it == 1
256 imwrite (imind ,cm ,filename ,’gif ’, ’Loopcount ’,inf);
257 else
258 imwrite (imind ,cm ,filename ,’gif ’,’WriteMode ’,’append ’);
259 end
260 close all

E.5.1.12 isWide.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Function checkin if a node is in the wide section or not %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 function res = isWide (a, N_narrow , N_wide , M_wide )
5 res = ones (1, length (a))* false ;
6 for j = 1: length (a)
7 i = a(j);
8 rownumber = getRowNumber (i, N_wide , M_wide , N_narrow + N_wide );
9 if rownumber <= M_wide || i - M_wide * N_wide - ...

10 (rownumber -M_wide -1) *( N_narrow + N_wide ) > N_narrow
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11 res(j) = true;
12 end %if
13 end %for
14 end % function

E.5.1.13 getRowNumber.m

1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Function giving the row number of a node %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % getRowNumber .m returns the row number of an arbitrary computational point
5 % in the domaindefined by N and M in the main BFC_globaldomain_spring .m
6 function rownumber = getRowNumber (a, N_wide , M_wide , N_total )
7 rownumber = zeros ( length (a) ,1);
8 for j = 1: length (a)
9 i = a(j);

10 if i <= N_wide * M_wide
11 rownumber (j) = floor (( N_wide +i -1)/ N_wide );
12 elseif i > N_wide * M_wide
13 rownumber (j) = M_wide + floor ((i- N_wide *M_wide -1)/ N_total )+1;
14 end %if
15 end %for
16 end % function

E.5.1.14 getRowUnder.m

1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Function giving the row number of a node below itself %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % getRowUnder .m returns the index of the point directly below itself .
5 function index = getRowUnder (i, N_wide , M_wide , N_total )
6 index = zeros (1, length (i));
7 for j = 1: length (i)
8 if i(j) <= N_wide * M_wide
9 index (j) = i(j)-N_wide ;

10 elseif i(j) > N_wide * M_wide
11 index (j) = i(j)-N_total ;
12 end %if
13 end %for
14 end % function

E.5.1.15 getRowOver.m

1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Function giving the row number of a node above itself %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % getRowOver .m returns the index of the point directly above itself .
5 function index = getRowOver (i, N_wide , M_wide , N_total )
6 index = zeros (1, length (i));
7 for j = 1: length (i)
8 if i(j) <= N_wide *( M_wide -1)
9 index (j) = i(j)+ N_wide ;

10 elseif i(j) > N_wide *( M_wide -1)
11 index (j) = i(j)+ N_total ;
12 end %if
13 end %for
14 end % function

E.5.1.16 global2matrix.m

1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Function transforming a globally indexed vector into a matrix %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 function [ matrix ] = global2matrix (glob , N, M)
5 for j = 1:M % "down" % the rest of the points are zero
6 for i = 1:N % "left"
7 matrix (j,i) = glob ((j -1)*N + i);
8 end % for
9 end % for

10 end % function
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E.5.2 Parabolic Inlet Velocity Profile
The code channel BFS parabolic.m solves the two dimensional backwards facing step
problem. The code BFS u velocity parabolic.m contains the calculations of the Mo-
mentum equation for the u-velocity component. The code BFS v velocity parabolic.m
contains the calculations of the Momentum equation for the v-velocity component. The
code BFS pressurecorrection parabolic.m contains the calculations of the Momen-
tum equation for the u-velocity component. The code plotColoredQuiver parabolic.m
plots the velocity quiver plots with the contour plot for background colour.

The same helper functions isWide.m, getRowNumber.m, getRowUnder.m, getRowOver.m
and global2matrix.m as given in section E.5.1 are used.

E.5.2.1 channel BFS parabolic.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Two dimensional fluid flow over a backwards facing step , dimensionless %
3 % Model adjusted to Reynolds number comparison %
4 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 close all
6 clear
7 clc
8 tic
9 warning on

10
11 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12 %% Solver specs
13 maxits = 50000; % Maximum number of iterations , stop if iterations exceed
14 % Choose which inlet profile to use
15 run(’inletprofileRe400 .m’)
16
17 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18 %% System specifications
19 % Specify number of narrow points , leave the rest
20
21 N_narrow = 10; % Number of scalar nodal points in narrow section in x-dir.
22 M_narrow = 10; % Number of scalar nodal points in narrow section in x-dir.
23
24 l = 5; % Narrow channel length
25 h = 1; % Narrow channel height
26 L = 30; % Wide channel length
27 H = 1; % Wide channel height
28
29 L_total = l + L; % Total channel length
30 H_total = h + H; % Total channel height
31
32 x_0 = 0; % Defining the domain using x and y
33 x_N = L_total ;
34 y_0 = 0;
35 y_M = H_total ;
36
37 N_wide = N_narrow *L/l; % # scalar nodal points in wide section in x-dir.
38 M_wide = M_narrow *H/h; % # scalar nodal points in wide section in y-dir.
39
40 % For extension to the wide channel the number of nodes in the narrow
41 % section needs to meet these criteria :
42 if floor ( N_narrow )˜= N_narrow || floor ( N_wide )˜= N_wide || ...
43 floor ( M_narrow )˜= M_narrow || floor ( M_wide )˜= M_wide
44 msg = ’Points don ’’t match dimensions ’;
45 error (msg)
46 end %if
47 N_total = N_narrow + N_wide ;% Total # of scalar nodal points in x- direction
48 M_total = M_narrow + M_wide ;% Total # of scalar nodal points in y- direction
49
50 m_total = M_total - 1; % Total number of y- velocity nodes in y- direction
51 m_wide = M_wide ;% Number of y- velocity nodes in y- direction in wide section
52 m_narrow = M_narrow - 1;% # of y- velocity nodes in y-dir. in narrow section
53
54 % Total number of computational points in the domain ...
55 totalpoints = N_narrow * M_narrow + N_wide * M_total ; % ... for u and P
56 totalpoints_v = N_narrow * m_narrow + N_wide * m_total ; % ... for v
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57
58 D_hyd = 2*h; % Hydraulic diameter
59 mu_true = 8.90 * 10ˆ -4; % Viscosity of water
60
61 del_z_true = 1; % System depth
62 del_x_true = L_total / N_total ; % Control volume width
63 del_y_true = H_total / M_total ; % Control volume height
64 A_x_true = del_y_true * del_z_true ; % Cross - sectional area in x- direction
65 A_y_true = del_x_true * del_z_true ; % Cross - sectional area in y- direction
66
67 rho_true = 997; % Density of water
68 u_in_true = u_bulk ; % Inlet u- velocity
69
70 g_x = 0; % No gravitation
71 g_y = 0; % No gravitation
72
73 Re = rho_true * D_hyd * u_in_true / mu_true ; % Reynolds number
74
75 p_atm = 101325; % Atmospheric presssure at outlet
76 p_out_tilde = 0; % Adjusted pressure
77 p_out = ones (1, M_total )* p_out_tilde ; % Outlet pressure profile
78
79 alpha_u = 0.01; % Under - relaxation factor for u
80 alpha_v = 0.01; % Under - relaxation factor for v
81 alpha_p = 0.02; % Under - relaxation factor for p
82 alpha_u = 0.005; % Under - relaxation factor for u
83 alpha_v = 0.005; % Under - relaxation factor for v
84 alpha_p = 0.01; % Under - relaxation factor for p
85
86 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
87 %% Dimensionless parameters
88 mu = 1; % Dimensionless viscosity
89 rho = 1; % Dimensionless density
90 del_x = del_x_true /h; % Dimensionless control volume width
91 del_y = del_y_true /h; % Dimensionless control volume height
92 A_x = A_x_true /hˆ2; % Dimensionless cross - sectional area in x- direction
93 A_y = A_y_true /hˆ2; % Dimensionless cross - sectional area in y- direction
94 D_x = 2/ Re*mu/ del_x ; % Dimensionless diffusion conductance in x- direction
95 D_y = 2/ Re*mu/ del_y ; % Dimensionless diffusion conductance in y- direction
96 u_in = u_in/ u_in_true ; % Inlet u- velocity
97 u_bulk_dimless = u_bulk / u_in_true ; % Bulk inlet velocity ( which is 1)
98 v_in = 0; % Inlet u- velocity
99 u_guess = u_max ; % Initial guess for u- velocity

100 v_guess = 0.0; % Initial guess for v- velocity
101 p_guess = 0/( rho_true * u_in_true ˆ2); % Initial guess for pressure
102
103 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
104 %% Initialisation of p
105 % Filling in initial pressure vector with the linear profile .
106 % This section is set up for if gravity is added , but could be more compact
107 % if the option to add gravity was not there .
108
109 p_circ_y_wide = linspace (p_guess , p_guess +rho*g_y*H_total , M_total );
110 p_circ_carthesian_wide = zeros (M_total , N_wide );
111 for j = 1: M_total
112 for i = 1: N_wide
113 p_circ_carthesian_wide (j,i) = p_circ_y_wide (j);
114 end %for
115 end %for
116
117 p_circ_y_narrow = p_circ_y_wide ( M_wide +1: end);
118 p_circ_carthesian_narrow = zeros (M_narrow , N_narrow );
119 for j = 1: M_narrow
120 for i = 1: N_narrow
121 p_circ_carthesian_narrow (j,i) = p_circ_y_narrow (j);
122 end %for
123 end %for
124
125 filler = zeros (M_wide , N_narrow );
126 p_circ_carthesian = [[ filler ; p_circ_carthesian_narrow ] ...
127 p_circ_carthesian_wide ];
128 p_circ_carthesian = flip( p_circ_carthesian ,1);
129
130 p_circ = p_circ_carthesian (1 ,:); % Take the first vector
131
132 for i = 2: M_total
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133 row = p_circ_carthesian (i);
134 if i <= M_narrow % Take whole row
135 p_circ = [p_circ , p_circ_carthesian (i ,:) ];
136 else % Take part of the row
137 p_circ = [p_circ , p_circ_carthesian (i, N_narrow +1: N_total )];
138 end %if
139 end %for
140
141
142 %% Initialisation of u and v
143
144 u_circ = ones( totalpoints ,1)* u_guess ; % Fill in guess in the initial vector
145 for i = 1: totalpoints
146 if isWide (i, N_narrow , N_wide , M_wide )% Lower guess after expansion
147 u_circ (i) = u_guess *( M_narrow / M_total );
148 end %if
149 end %for
150
151
152 v_circ = ones( totalpoints_v ,1)* v_guess ; % Fill in guess in the initial vec.
153 for i = 1: totalpoints_v
154 if isWide (i, N_narrow , N_wide , M_wide )% Lower guess after expansion
155 v_circ (i) = v_guess *( m_narrow / m_total );
156 end %if
157 end %for
158
159
160 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
161 %% Initialisation of solution vectors
162 p_new = zeros (1, totalpoints ); % New pressure
163
164 u_corr = zeros (1, totalpoints ); % u- velocity correction
165 u_new = zeros (1, totalpoints ); % New u- velocity
166
167 v_corr = zeros (1, totalpoints_v ); % v- velocity correction
168 v_new = zeros (1, totalpoints_v ); % New v- velocity
169
170 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
171 %% While loop
172 conv = 0; % 0 is not converged , 1 when converged
173 it = 1; % The current iteration
174
175 while conv == 0
176 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
177 %% Calculate velocities and pressure correction
178 % Run the scripts :
179 % Velocities
180 BFS_u_velocity_parabolic
181 BFS_v_velocity_parabolic
182
183 % Pressure correction
184 BFS_pressurecorrection_parabolic
185
186 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
187 %% Velocity correction
188
189 startCorr = 1;
190 for j = startCorr : totalpoints
191 if ( i <= N_wide * M_wide && mod(i, N_wide ) == 0 ) ... % Below step
192 || ( i > N_wide * M_wide && mod(i- N_wide *M_wide , N_total ) == 0)
193 % Eastern boundary : eastern pressure is known , no press . corr.
194 u_corr (j) = - A_x/au(j)*(- p_corr (j));
195 else
196 u_corr (j) = - A_x/au(j)*( p_corr (j+1) -p_corr (j));
197 end % if
198 end %for
199
200 for k = startCorr : totalpoints_v
201 v_corr (k) = - A_y/av(k)*...
202 ( p_corr ( getRowOver (k, N_wide , M_wide , N_total ))-p_corr (k));
203 end %for
204
205 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
206 %% Under - relaxation
207
208 u_new = alpha_u *( u_star + u_corr ’) + (1- alpha_u )* u_circ ;
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209
210 v_new = alpha_v *( v_star + v_corr ’) + (1- alpha_v )* v_circ ;
211
212 p_new = p_circ + alpha_p * p_corr ’;
213
214 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
215 %% Check convergence
216 % Make sure there are no mistakes in the matrix operations above
217 if ˜ isvector ( u_new ) || ˜ isvector ( p_new ) || ˜ isvector ( p_new )
218 fprintf (’u_new - %dx%d\n’,size(u_new ,1) ,size(u_new ,2))
219 fprintf (’v_new - %dx%d\n’,size(v_new ,1) ,size(v_new ,2))
220 fprintf (’p_new - %dx%d\n’,size(p_new ,1) ,size(p_new ,2))
221 error (’Matrix addition gone wrong ’)
222 end
223
224 if isnan ( rcond (U)) || isnan ( rcond (V)) || isnan ( rcond (T))
225 % clc % Remove if warnings are desired
226 fprintf (’Stopped due to singularity in matrix \n’)
227 fprintf (’RCOND u- velocity : %e \ nRCOND v- velocity : %e \n’ ,...
228 rcond (U), rcond (V))
229 fprintf (’RCOND pressure correction : %e\n’,rcond (T))
230 fprintf (’Problem occured after %d iterations \n’, it)
231 toc
232 return
233 end %if
234
235 c1 = 1/ u_bulk_dimless *sqrt ((U*u_star -bu ’) ’*(U*u_star -bu ’)); % residuals
236 c2 = 1/ u_bulk_dimless *sqrt ((V*v_star -bv ’) ’*(V*v_star -bv ’)); % residuals
237 c3 = abs(sum(beta)); % continuity fulfulled
238 c4 = 1/ u_bulk_dimless *max(abs( u_circ - u_star )) ; % change from last iteration
239 c5 = 1/ u_bulk_dimless *max(abs( v_circ - v_star )) ; % change from last iteration
240
241 c1_lim = 10ˆ -8; % Limits
242 c2_lim = 10ˆ -8;
243 c3_lim = 10ˆ -10;
244 c4_lim = 10ˆ -8;
245 c5_lim = 10ˆ -8;
246
247 c1_diff = c1 - c1_lim ; % How far away from convergence
248 c2_diff = c2 - c2_lim ;
249 c3_diff = c3 - c3_lim ;
250 c4_diff = c4 - c4_lim ;
251 c5_diff = c5 - c5_lim ;
252
253
254 if (c1 < c1_lim ) && (c2 < c2_lim ) && (c3 < c3_lim ) && (c4 < c4_lim ) ...
255 && (c5 < c5_lim ) || (it == maxits )
256 conv = 1; % Converged
257 if (it == maxits )
258 fprintf (’Stopped at max iterations (%d)\n’,it);
259 else
260 fprintf (’Solution converged after %d iterations \n’,it);
261 end %if
262
263 fprintf (’c1\ tMomentum residual u\t\t%.2e\ tLimit : %.2e\n’ ,...
264 c1 , c1_lim );
265 fprintf (’c2\ tMomentum residual v\t\t%.2e\ tLimit : %.2e\n’ ,...
266 c2 , c2_lim );
267 fprintf (’c3\ tPressure correction \t\t%.2e\ tLimit : %.2e\n’ ,...
268 c3 , c3_lim );
269 fprintf (’c4\ tDiff . last iteration u\t%.2e\ tLimit : %.2e\n’ ,...
270 c4 , c4_lim );
271 fprintf (’c5\ tDiff . last iteration v\t%.2e\ tLimit : %.2e\n’ ,...
272 c5 , c5_lim );
273
274 if max ([ c1_diff c2_diff c3_diff c4_diff c5_diff ]) == c1_diff
275 fprintf (’Limiting criteria is c1\ tMomentum residual u\n’)
276 elseif max ([ c1_diff c2_diff c3_diff c4_diff c5_diff ]) == c2_diff
277 fprintf (’Limiting criteria is c2\ tMomentum residual v\n’)
278 elseif max ([ c1_diff c2_diff c3_diff c4_diff c5_diff ]) == c3_diff
279 fprintf (’Limiting criteria is c3\ tPressure correction \n’)
280 elseif max ([ c1_diff c2_diff c3_diff c4_diff c5_diff ]) == c4_diff
281 fprintf (’Limiting criteria is c4\ tDiff . last iteration u\n’)
282 elseif max ([ c1_diff c2_diff c3_diff c4_diff c5_diff ]) == c5_diff
283 fprintf (’Limiting criteria is c5\ tDiff . last iteration u\n’)
284 end %if
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285
286 plotColoredQuiver_parabolic
287
288 else
289
290 u_circ = u_new ; % Not converged , updated variables
291 v_circ = v_new ; % Not converged , updated variables
292 p_circ = p_new ; % Not converged , updated variables
293
294 it = it + 1; % Update number of iterations
295 end % if
296 end % while
297 toc

E.5.2.2 BFS u velocity parabolic.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % u- velocity script for the BFS model %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4
5 U = zeros ( totalpoints , totalpoints ); % Initialisation of coefficient matrix
6 bu = zeros (1, totalpoints ); % Initialisation of source term vector
7
8 F_xe = zeros (1, totalpoints ); % Initialisation of convective mass fluxes
9 F_xw = zeros (1, totalpoints );

10 F_xn = zeros (1, totalpoints );
11 F_xs = zeros (1, totalpoints );
12
13 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
14 %% Generation of F_x , Convective mass fluxes
15
16
17 for i = 1: totalpoints
18
19 etest = ( i <= N_wide * M_wide && mod(i, N_wide ) == 0 )... % below step
20 || ( i > N_wide * M_wide && mod(i- N_wide *M_wide , N_total ) == 0);
21 wtest = i > N_wide * M_wide && mod(i-1- N_wide *M_wide , N_total ) == 0;
22 ntest = totalpoints - N_total < i && i <= totalpoints ;
23 wwall = i <= N_wide * M_wide && mod(i-1, N_wide ) == 0;
24 stest = (1 <= i && i <= N_wide ) ... % Excluding the corner value
25 || ( N_wide * M_wide < i && i < N_wide * M_wide + N_narrow ) ;
26 scorner = i == N_wide * M_wide + N_narrow ; % Only the corner value
27
28
29 % Northeastern corner
30 if etest && ˜ wtest && ntest && ˜ stest && ˜ wwall && ˜ scorner
31 F_xe(i) = rho /2*( u_circ (i)+ u_circ (i -1));
32 F_xn(i) = 0;
33
34 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
35 F_xs(i) = rho /2* v_circ (i- N_total );
36
37 % Southeastern corner
38 elseif etest && ˜ wtest && ˜ ntest && stest && ˜ wwall && ˜ scorner
39 F_xe(i) = rho /2*( u_circ (i)+ u_circ (i -1));
40 F_xs(i) = 0;
41
42 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
43 F_xn(i) = rho /2* v_circ (i);
44
45 % Northwestern corner
46 elseif ˜ etest && wtest && ntest && ˜ stest && ˜ wwall && ˜ scorner
47 F_xw(i) = rho /2*(...
48 u_in( getRowNumber (i, N_wide , M_wide , N_total ))+ u_circ (i));
49 F_xn(i) = 0;
50
51 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
52 F_xs(i) = rho /2*( v_circ (i- N_total ) + v_circ (i- N_total +1));
53
54 % Southwestern corner at inlet
55 elseif ˜ etest && wtest && ˜ ntest && stest && ˜ wwall && ˜ scorner
56 F_xw(i) = rho /2*(...
57 u_in( getRowNumber (i, N_wide , M_wide , N_total ))+ u_circ (i));
58 F_xs(i) = 0;
59
60 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
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61 F_xn(i) = rho /2*( v_circ (i) + v_circ (i+1));
62
63 % Southwestern corner at step
64 elseif ˜ etest && ˜ wtest && ˜ ntest && stest && wwall && ˜ scorner
65 F_xw(i) = rho /2*(0 + u_circ (i));
66 F_xs(i) = 0;
67
68 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
69 F_xn(i) = rho /2*( v_circ (i) + v_circ (i+1));
70
71 % At corner
72 elseif ˜ etest && ˜ wtest && ˜ ntest && ˜ stest && ˜ wwall && scorner
73 F_xs(i) = rho /2*(0 + ...
74 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )+1));
75 F_xs(i)= 0;
76
77 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
78 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
79 F_xn(i) = rho /2*( v_circ (i) + v_circ (i+1));
80
81 % At eastern boundary (x = L)
82 elseif etest && ˜ wtest && ˜ ntest && ˜ stest && ˜ wwall && ˜ scorner
83 F_xe(i) = rho /2*( u_circ (i -1)+ u_circ (i));
84
85 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
86 F_xn(i) = rho /2* v_circ (i);
87 F_xs(i) = rho /2* v_circ ( getRowUnder (i, N_wide , M_wide , N_total ));

88
89 % At western boundary (x = 0)
90 elseif ˜ etest && wtest && ˜ ntest && ˜ stest && ˜ wwall && ˜ scorner
91 F_xw(i) = rho /2*(...
92 u_in( getRowNumber (i, N_wide , M_wide , N_total ))+ u_circ (i));
93
94 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
95 F_xn(i) = rho /2*( v_circ (i) + v_circ (i+1));
96 F_xs(i) = rho /2*(...
97 v_circ ( getRowUnder (i, N_wide , M_wide , N_total ) ) +...
98 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )+1 ) );
99

100 % At western wall at step
101 elseif ˜ etest && ˜ wtest && ˜ ntest && ˜ stest && wwall && ˜ scorner
102 F_xw(i) = rho /2*(0+ u_circ (i));
103
104 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
105 F_xn(i) = rho /2*( v_circ (i) + v_circ (i+1));
106 F_xs(i) = rho /2*(...
107 v_circ ( getRowUnder (i, N_wide , M_wide , N_total ) ) +...
108 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )+1 ) );
109
110
111
112 % At northern boundary (y = h)
113 elseif ˜ etest && ˜ wtest && ntest && ˜ stest && ˜ wwall && ˜ scorner
114 F_xn(i) = 0;
115
116 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
117 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
118 F_xs(i) = rho /2*(...
119 v_circ ( getRowUnder (i, N_wide , M_wide , N_total ) ) +...
120 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )+1 ) );
121
122
123 % At southern boundary (y = 0)
124 elseif ˜ etest && ˜ wtest && ˜ ntest && stest && ˜ wwall && ˜ scorner
125 F_xs(i) = 0;
126
127 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
128 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
129 F_xn(i) = rho /2*( v_circ (i) + v_circ (i+1));
130
131 % Not at any boundary
132 else
133 F_xe(i) = rho /2*( u_circ (i+1)+ u_circ (i));
134 F_xw(i) = rho /2*( u_circ (i -1)+ u_circ (i));
135 F_xn(i) = rho /2*( v_circ (i) + v_circ (i+1));
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136 F_xs(i) = rho /2*(...
137 v_circ ( getRowUnder (i, N_wide , M_wide , N_total ) ) +...
138 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )+1 ) );
139
140
141 end % if
142 etest = false ;
143 wtest = false ;
144 wwall = false ;
145 ntest = false ;
146 stest = false ;
147 scorner = false ;
148 end %for
149
150
151
152 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
153 %% u- velocity
154
155 for i = 1: totalpoints % Global indexing system
156
157 etest = ( i <= N_wide * M_wide && mod(i, N_wide ) == 0 )... % below step
158 || ( i > N_wide * M_wide && mod(i- N_wide *M_wide , N_total ) == 0);
159 wtest = i > N_wide * M_wide && mod(i-1- N_wide *M_wide , N_total ) == 0;
160 ntest = totalpoints - N_total < i && i <= totalpoints ;
161 wwall = i <= N_wide * M_wide && mod(i-1, N_wide ) == 0;
162 stest = (1 <= i && i <= N_wide ) ... % Excluding the corner value
163 || ( N_wide * M_wide < i && i < N_wide * M_wide + N_narrow ) ;
164 scorner = i == N_wide * M_wide + N_narrow ; % Only the corner value
165
166
167
168 % Northeastern corner
169 if etest && ˜ wtest && ntest && ˜ stest && ˜ wwall && ˜ scorner
170
171 bu(i) = -( p_out (end)-p_circ (i))*A_x;
172
173 % At eastern boundary (x = L)
174 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
175 eP_coeff = F_xe(i)*A_x;
176
177 % At northern boundary
178 nP_coeff = F_xn(i)*A_y + max(0,- F_xn(i)*A_y) + 2* D_y*A_y;
179
180 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
181 wP_coeff = -W_coeff - F_xw(i)*A_x;
182 U(i, i -1) = W_coeff ;
183
184 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
185 sP_coeff = -S_coeff - F_xs(i)*A_y;
186 U(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
187
188
189 % Southeastern corner
190 elseif etest && ˜ wtest && ˜ ntest && stest && ˜ wwall && ˜ scorner
191
192 bu(i) = -( p_out (1) -p_circ (i))*A_x;
193
194 % At eastern boundary (x = L)
195 E_coeff = -max(0,- F_xe(i)*A_x) - D_x*A_x;
196 eP_coeff = F_xe(i)*A_x;
197
198 % At southern boundary (y = 0)
199 sP_coeff = -F_xs(i)*A_y +max(F_xs(i)*A_y ,0)+ 2* D_y*A_y;
200
201 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
202 wP_coeff = -W_coeff - F_xw(i)*A_x;
203 U(i, i -1) = W_coeff ;
204
205 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
206 nP_coeff = -N_coeff + F_xn(i)*A_y;
207 U(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
208
209
210 % Northwestern corner
211 elseif ˜ etest && wtest && ntest && ˜ stest && ˜ wwall && ˜ scorner
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212
213 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x +( max(F_xw(i)*A_x ,0) ...
214 + D_x*A_x)*u_in( getRowNumber (i, N_wide , M_wide , N_total ));
215
216 % At western boundary (x = 0)
217 wP_coeff = max(F_xw(i)*A_x ,0) + D_x*A_x - F_xw(i)*A_x;
218
219 % At northern boundary
220 nP_coeff = F_xn(i)*A_y + max(0,- F_xn(i)*A_y)+ 2* D_y*A_y;
221
222 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
223 eP_coeff = -E_coeff + F_xe(i)*A_x;
224 U(i, i+1) = E_coeff ;
225
226 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
227 sP_coeff = -S_coeff - F_xs(i)*A_y;
228 U(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
229
230
231 % Southwestern corner at inlet
232 elseif ˜ etest && wtest && ˜ ntest && stest && ˜ wwall && ˜ scorner
233
234 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x +( max(F_xw(i)*A_x ,0) ...
235 + D_x*A_x)*u_in( getRowNumber (i, N_wide , M_wide , N_total ));
236
237 % At western boundary (x = 0)
238 wP_coeff = max(F_xw(i)*A_x ,0) + D_x*A_x - F_xw(i)*A_x;
239
240 % At southern boundary (y = 0)
241 sP_coeff = -F_xs(i)*A_y +max(F_xs(i)*A_y ,0)+ 2* D_y*A_y;
242
243 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
244 eP_coeff = -E_coeff + F_xe(i)*A_x;
245 U(i, i+1) = E_coeff ;
246
247 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
248 nP_coeff = -N_coeff + F_xn(i)*A_y;
249 U(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
250
251
252 % Southwestern corner at step
253 elseif ˜ etest && ˜ wtest && ˜ ntest && stest && wwall && ˜ scorner
254
255 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x ...
256 +( max(F_xw(i)*A_x ,0) + D_x*A_x)*0;
257
258 % At western boundary (x = 0)
259 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
260 wP_coeff = -W_coeff - F_xw(i)*A_x;
261
262 % At southern boundary (y = 0)
263 S_coeff = -max(F_xs(i)*A_y ,0) - 2* D_y*A_y;
264 sP_coeff = -S_coeff -F_xs(i)*A_y;
265
266 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
267 eP_coeff = -E_coeff + F_xe(i)*A_x;
268 U(i, i+1) = E_coeff ;
269
270 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
271 nP_coeff = -N_coeff + F_xn(i)*A_y;
272 U(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
273
274
275 % At corner
276 elseif ˜ etest && ˜ wtest && ˜ ntest && ˜ stest && ˜ wwall && scorner
277
278 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x;
279
280 % At southern boundary (y = 0)
281 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
282 sP_coeff = -S_coeff - F_xs(i)*A_y;
283
284
285 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
286 eP_coeff = -E_coeff + F_xe(i)*A_x;
287 U(i, i+1) = E_coeff ;
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288
289 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
290 wP_coeff = -W_coeff - F_xw(i)*A_x;
291 U(i, i -1) = W_coeff ;
292
293 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
294 nP_coeff = -N_coeff + F_xn(i)*A_y;
295 U(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
296
297
298 % At eastern boundary (x = L)
299 elseif etest && ˜ wtest && ˜ ntest && ˜ stest && ˜ wwall && ˜ scorner
300
301 bu(i) = -( p_out (1) -p_circ (i))*A_x;
302
303 % At eastern boundary (x = L)
304 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
305 eP_coeff = F_xe(i)*A_x;
306
307 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
308 wP_coeff = -W_coeff - F_xw(i)*A_x;
309 U(i, i -1) = W_coeff ;
310
311 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
312 nP_coeff = -N_coeff + F_xn(i)*A_y;
313 U(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
314
315 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
316 sP_coeff = -S_coeff - F_xs(i)*A_y;
317 U(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
318
319
320 % At western boundary (x = 0)
321 elseif ˜ etest && wtest && ˜ ntest && ˜ stest && ˜ wwall && ˜ scorner
322
323 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x +( max(F_xw(i)*A_x ,0) ...
324 + D_x*A_x)*u_in( getRowNumber (i, N_wide , M_wide , N_total ));
325
326 % At western boundary (x = 0)
327 wP_coeff = max(F_xw(i)*A_x ,0) + D_x*A_x - F_xw(i)*A_x;
328
329 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
330 eP_coeff = -E_coeff + F_xe(i)*A_x;
331 U(i, i+1) = E_coeff ;
332
333 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
334 nP_coeff = -N_coeff + F_xn(i)*A_y;
335 U(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
336
337 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
338 sP_coeff = -S_coeff - F_xs(i)*A_y;
339 U(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
340
341
342 % At western wall
343 elseif ˜ etest && ˜ wtest && ˜ ntest && ˜ stest && wwall && ˜ scorner
344
345 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x ...
346 +( max(F_xw(i)*A_x ,0) + D_x*A_x)*0;
347
348 % At western boundary (x = 0)
349 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
350 wP_coeff = -W_coeff - F_xw(i)*A_x;
351
352 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
353 eP_coeff = -E_coeff + F_xe(i)*A_x;
354 U(i, i+1) = E_coeff ;
355
356 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
357 nP_coeff = -N_coeff + F_xn(i)*A_y;
358 U(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
359
360 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
361 sP_coeff = -S_coeff - F_xs(i)*A_y;
362 U(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
363
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364
365 % At northern boundary (y = h)
366 elseif ˜ etest && ˜ wtest && ntest && ˜ stest && ˜ wwall && ˜ scorner
367
368 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x;
369
370 % At northern boundary
371 nP_coeff = F_xn(i)*A_y + max(0,- F_xn(i)*A_y)+ 2* D_y*A_y;
372
373 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
374 eP_coeff = -E_coeff + F_xe(i)*A_x;
375 U(i, i+1) = E_coeff ;
376
377 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
378 wP_coeff = -W_coeff - F_xw(i)*A_x;
379 U(i, i -1) = W_coeff ;
380
381 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
382 sP_coeff = -S_coeff - F_xs(i)*A_y;
383 U(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
384
385
386 % At southern boundary (y = 0)
387 elseif ˜ etest && ˜ wtest && ˜ ntest && stest && ˜ wwall && ˜ scorner
388
389 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x;
390
391 % At southern boundary (y = 0)
392 sP_coeff = -F_xs(i)*A_y +max(F_xs(i)*A_y ,0)+ 2* D_y*A_y;
393
394 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
395 eP_coeff = -E_coeff + F_xe(i)*A_x;
396 U(i, i+1) = E_coeff ;
397
398 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
399 wP_coeff = -W_coeff - F_xw(i)*A_x;
400 U(i, i -1) = W_coeff ;
401
402 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
403 nP_coeff = -N_coeff + F_xn(i)*A_y;
404 U(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
405
406
407 %Not at any boundary
408 else
409
410 bu(i) = -( p_circ (i+1) -p_circ (i))*A_x;
411 E_coeff = -max (0,- F_xe(i)*A_x) - D_x*A_x;
412 eP_coeff = -E_coeff + F_xe(i)*A_x;
413 U(i, i+1) = E_coeff ;
414
415 W_coeff = -max(F_xw(i)*A_x ,0) - D_x*A_x;
416 wP_coeff = -W_coeff - F_xw(i)*A_x;
417 U(i, i -1) = W_coeff ;
418
419 N_coeff = -max(0,- F_xn(i)*A_y) - D_y*A_y;
420 nP_coeff = -N_coeff + F_xn(i)*A_y;
421 U(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
422
423 S_coeff = -max(F_xs(i)*A_y ,0) - D_y*A_y;
424 sP_coeff = -S_coeff - F_xs(i)*A_y;
425 U(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
426
427 end % if
428
429 % Filling in the rest of the matrix , adding all point coefficients
430 U(i,i) = wP_coeff + eP_coeff + nP_coeff + sP_coeff ;
431
432 etest = false ;
433 wtest = false ;
434 ntest = false ;
435 stest = false ;
436 wwall = false ;
437
438 end %for
439 u_star = U\bu ’; % Matrix inversion
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E.5.2.3 BFS v velocity parabolic.m

1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % v- velocity script for the BFS model %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4
5 V = zeros ( totalpoints_v , totalpoints_v ); % Initialisation of coeff . matrix
6 bv = zeros (1, totalpoints_v ); % Initialisation of source term vector
7
8 F_ye = zeros (1, totalpoints_v ); % Initialisation of convective mass fluxes
9 F_yw = zeros (1, totalpoints_v );

10 F_yn = zeros (1, totalpoints_v );
11 F_ys = zeros (1, totalpoints_v );
12
13
14
15
16 %% Generation of F_y , Convective mass fluxes
17
18
19 for i = 1: totalpoints_v % Global indexing system
20
21 etest = ( i <= N_wide * m_wide && mod(i, N_wide ) == 0 ) ... % below step
22 || ( i > N_wide * m_wide && mod(i- N_wide *m_wide , N_total ) == 0);
23 wtest = i > N_wide * m_wide && mod(i-1- N_wide *m_wide , N_total ) == 0;
24 ntest = totalpoints_v - N_total < i && i <= totalpoints_v ;
25 wwall = i <= N_wide * m_wide && mod(i-1, N_wide ) == 0; %
26 stest = (1 <= i && i <= N_wide ) ... % Excluding the corner value
27 || ( N_wide * m_wide < i && i <= N_wide * m_wide + N_narrow ) ;
28 wcorner = i == N_wide *( m_wide -1) + 1; % Only the corner value
29
30
31
32 % Northwestern corner
33 if wtest && ntest && ˜ stest && ˜ wwall && ˜ wcorner
34 F_yw(i) = rho /2*( u_in( getRowNumber (i, N_wide , M_wide , N_total ))...
35 +u_in( getRowNumber (i, N_wide , M_wide , N_total )));
36 F_yn(i) = rho /2* v_circ (i);
37
38 F_ye(i) = rho /2*( u_circ (i) + ...
39 u_circ ( getRowOver (i, N_wide , M_wide , N_total )));
40 F_ys(i) = rho /2*( v_circ (i) + ...
41 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )));
42
43 % Southwestern corner at inlet
44 elseif wtest && ˜ ntest && stest && ˜ wwall && ˜ wcorner
45 F_yw(i) = rho*u_in( getRowNumber (i, N_wide , M_wide , N_total ));
46 F_ys(i) = rho /2* v_circ (i);
47
48 F_ye(i) = rho /2*( u_circ (i) + ...
49 u_circ ( getRowOver (i, N_wide , M_wide , N_total )));
50 F_yn(i) = rho /2*( v_circ (i) + ...
51 v_circ ( getRowOver (i, N_wide , M_wide , N_total )));
52
53
54 % Southwestern corner at step
55 elseif ˜ wtest && ˜ ntest && stest && wwall && ˜ wcorner
56 F_yw(i) = rho *0;
57 F_ys(i) = rho /2* v_circ (i);
58
59 F_ye(i) = rho /2*( u_circ (i) + ...
60 u_circ ( getRowOver (i, N_wide , M_wide , N_total )));
61 F_yn(i) = rho /2*( v_circ (i) + ...
62 v_circ ( getRowOver (i, N_wide , M_wide , N_total )));
63
64
65 % At western boundary (x = 0)
66 elseif wtest && ˜ ntest && ˜ stest && ˜ wwall && ˜ wcorner
67 F_yw(i) = rho*u_in( getRowNumber (i, N_wide , M_wide , N_total ));
68
69 F_ye(i) = rho /2*( u_circ (i) + ...
70 u_circ ( getRowOver (i, N_wide , M_wide , N_total )));
71 F_yn(i) = rho /2*( v_circ (i) + ...
72 v_circ ( getRowOver (i, N_wide , M_wide , N_total )));
73 F_ys(i) = rho /2*( v_circ (i) + ...
74 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )));
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75
76
77 % At western wall
78 elseif ˜ wtest && ˜ ntest && ˜ stest && wwall && ˜ wcorner
79 F_yw(i) = rho *0;
80
81 F_ye(i) = rho /2*( u_circ (i) + ...
82 u_circ ( getRowOver (i, N_wide , M_wide , N_total )));
83 F_yn(i) = rho /2*( v_circ (i) + ...
84 v_circ ( getRowOver (i, N_wide , M_wide , N_total )));
85 F_ys(i) = rho /2*( v_circ (i) + ...
86 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )));
87
88
89 % At corner , right point from the corner
90 elseif ˜ wtest && ˜ ntest && ˜ stest && wwall && wcorner
91 F_yw(i)= 0;
92
93 F_ye(i) = rho /2*( u_circ (i) + ...
94 u_circ ( getRowOver (i, N_wide , M_wide , N_total )));
95 F_yn(i) = rho /2*( v_circ (i) + ...
96 v_circ ( getRowOver (i, N_wide , M_wide , N_total )));
97 F_ys(i) = rho /2*( v_circ (i) + ...
98 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )));
99

100 % At northern boundary (y = h)
101 elseif ˜ wtest && ntest && ˜ stest && ˜ wwall && ˜ wcorner
102 F_yn(i) = rho /2* v_circ (i);
103
104 F_ye(i) = rho /2*( u_circ (i) + ...
105 u_circ ( getRowOver (i, N_wide , M_wide , N_total )));
106 F_yw(i) = rho /2*( u_circ (i -1) + ...
107 u_circ ( getRowOver (i, N_wide , M_wide , N_total ) -1));
108 F_ys(i) = rho /2*( v_circ (i) + ...
109 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )));
110
111
112 % At southern boundary (y = 0)
113 elseif ˜ wtest && ˜ ntest && stest && ˜ wwall && ˜ wcorner
114 F_ys(i) = rho /2* v_circ (i);
115
116 F_ye(i) = rho /2*( u_circ (i) + ...
117 u_circ ( getRowOver (i, N_wide , M_wide , N_total )));
118 F_yw(i) = rho /2*( u_circ (i -1) + ...
119 u_circ ( getRowOver (i, N_wide , M_wide , N_total ) -1));
120 F_yn(i) = rho /2*( v_circ (i) + ...
121 v_circ ( getRowOver (i, N_wide , M_wide , N_total )));
122
123
124 %Not at any boundary , including eastern boundary
125 else
126 F_ye(i) = rho /2*( u_circ (i) + ...
127 u_circ ( getRowOver (i, N_wide , M_wide , N_total )));
128 F_yw(i) = rho /2*( u_circ (i -1) + ...
129 u_circ ( getRowOver (i, N_wide , M_wide , N_total ) -1));
130
131 F_yn(i) = rho /2*( v_circ (i) + ...
132 v_circ ( getRowOver (i, N_wide , M_wide , N_total )));
133 F_ys(i) = rho /2*( v_circ (i) + ...
134 v_circ ( getRowUnder (i, N_wide , M_wide , N_total )));
135
136 end % if
137 etest = false ;
138 wtest = false ;
139 ntest = false ;
140 stest = false ;
141 wwall = false ;
142 wcorner = false ;
143
144 end % for
145
146 %% v- velocity
147
148 for i = 1: totalpoints_v % Global indexing system
149
150 etest = ( i <= N_wide * m_wide && mod(i, N_wide ) == 0 ) ... % below step
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151 || ( i > N_wide * m_wide && mod(i- N_wide *m_wide , N_total ) == 0);
152 wtest = i > N_wide * m_wide && mod(i-1- N_wide *m_wide , N_total ) == 0;
153 ntest = totalpoints_v - N_total < i && i <= totalpoints_v ;
154 wwall = i <= N_wide * m_wide && mod(i-1, N_wide ) == 0; %
155 stest = (1 <= i && i <= N_wide ) ... % Excluding the corner value
156 || ( N_wide * m_wide < i && i <= N_wide * m_wide + N_narrow ) ;
157 wcorner = i == N_wide *( m_wide -1) + 1; % Only the corner value
158
159
160
161
162 % Northeastern corner
163 if etest && ˜ wtest && ntest && ˜ stest && ˜ wwall && ˜ wcorner
164
165 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
166 -p_circ (i))*A_y + rho*g_y* del_y *A_y;
167
168 % At eastern boundary (x = L)
169 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
170 eP_coeff = F_ye(i)*A_x;
171
172
173 % At northern boundary
174 nP_coeff = F_yn(i)*A_y + max (0, -F_yn(i)*A_y) + D_y*A_y;
175
176 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
177 wP_coeff = -W_coeff - F_yw(i)*A_x;
178 V(i, i -1) = W_coeff ;
179
180 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
181 sP_coeff = -S_coeff - F_ys(i)*A_y;
182 V(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
183
184 % Southeastern corner
185 elseif etest && ˜ wtest && ˜ ntest && stest && ˜ wwall && ˜ wcorner
186 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
187 -p_circ (i))*A_y + rho*g_y* del_y *A_y;
188
189 % At eastern boundary (x = L)
190 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
191 eP_coeff = F_ye(i)*A_x;
192
193 % At southern boundary (y = 0) ,
194 sP_coeff = -F_ys(i)*A_y + max(F_ys(i)*A_y ,0) + D_y*A_y;
195
196 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
197 wP_coeff = -W_coeff - F_yw(i)*A_x;
198 V(i, i -1) = W_coeff ;
199
200 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
201 nP_coeff = -N_coeff + F_yn(i)*A_y;
202 V(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
203
204
205 % Northwestern corner
206 elseif ˜ etest && wtest && ntest && ˜ stest && ˜ wwall && ˜ wcorner
207 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total )) -...
208 p_circ (i))*A_y + rho*g_y* del_y *A_y;
209
210 % At western boundary (x = 0)
211 wP_coeff = - F_yw(i)*A_x + max(F_yw(i)*A_x ,0) + 2* D_x*A_x;
212
213 % At northern boundary
214 nP_coeff = F_yn(i)*A_y + max (0, -F_yn(i)*A_y) + D_y*A_y ;
215
216 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
217 eP_coeff = -E_coeff + F_ye(i)*A_x;
218 V(i, i+1) = E_coeff ;
219
220 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
221 sP_coeff = -S_coeff - F_ys(i)*A_y;
222 V(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
223
224 % Southwestern corner at inlet
225 elseif ˜ etest && wtest && ˜ ntest && stest && ˜ wwall && ˜ wcorner
226
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227 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
228 -p_circ (i))*A_y + rho*g_y* del_y *A_y;
229
230 % At western boundary (x = 0)
231 wP_coeff = - F_yw(i)*A_x + max(F_yw(i)*A_x ,0) + 2* D_x*A_x;
232
233 % At southern boundary (y = 0) ,
234 sP_coeff = -F_ys(i)*A_y + max(F_ys(i)*A_y ,0) + D_y*A_y;
235
236 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
237 eP_coeff = -E_coeff + F_ye(i)*A_x;
238 V(i, i+1) = E_coeff ;
239
240 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
241 nP_coeff = -N_coeff + F_yn(i)*A_y;
242 V(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
243
244 % Southwestern corner at step
245 elseif ˜ etest && ˜ wtest && ˜ ntest && stest && wwall && ˜ wcorner
246
247 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
248 -p_circ (i))*A_y + rho*g_y* del_y *A_y +...
249 0*( - max(F_yw(i)*A_x ,0) - 2* D_x*A_x);
250
251 % At western boundary (x = 0)
252 W_coeff = -max(F_yw(i)*A_x ,0) - 2* D_x*A_x;
253 wP_coeff = -W_coeff - F_yw(i)*A_x;
254
255 % At southern boundary (y = 0) ,
256 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
257 sP_coeff = -S_coeff - F_ys(i)*A_y;
258
259 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
260 eP_coeff = -E_coeff + F_ye(i)*A_x;
261 V(i, i+1) = E_coeff ;
262
263 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
264 nP_coeff = -N_coeff + F_yn(i)*A_y;
265 V(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
266
267 % At eastern boundary (x = L)
268 elseif etest && ˜ wtest && ˜ ntest && ˜ stest && ˜ wwall && ˜ wcorner
269
270 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
271 -p_circ (i))*A_y + rho*g_y* del_y *A_y;
272
273 % At eastern boundary (x = L)
274 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
275 eP_coeff = F_ye(i)*A_x;
276
277 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
278 wP_coeff = -W_coeff - F_yw(i)*A_x;
279 V(i, i -1) = W_coeff ;
280
281 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
282 nP_coeff = -N_coeff + F_yn(i)*A_y;
283 V(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
284
285 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
286 sP_coeff = -S_coeff - F_ys(i)*A_y;
287 V(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
288
289 % At western boundary (x = 0)
290 elseif ˜ etest && wtest && ˜ ntest && ˜ stest && ˜ wwall && ˜ wcorner
291
292 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
293 -p_circ (i))*A_y + rho*g_y* del_y *A_y;
294
295 % At western boundary (x = 0)
296 wP_coeff = - F_yw(i)*A_x + max(F_yw(i)*A_x ,0) + 2* D_x*A_x;
297
298 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
299 eP_coeff = -E_coeff + F_ye(i)*A_x;
300 V(i, i+1) = E_coeff ;
301
302 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
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303 nP_coeff = -N_coeff + F_yn(i)*A_y;
304 V(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
305
306 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
307 sP_coeff = -S_coeff - F_ys(i)*A_y;
308 V(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
309
310 % At west wall (x = 0) [ EXCLUDED CORNER ]
311 elseif ˜ etest && ˜ wtest && ˜ ntest && ˜ stest && wwall && ˜ wcorner
312
313 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
314 -p_circ (i))*A_y + rho*g_y* del_y *A_y +...
315 0*( - max(F_yw(i)*A_x ,0) - 2* D_x*A_x);
316
317 % At western boundary (x = 0)
318 W_coeff = -max(F_yw(i)*A_x ,0) - 2* D_x*A_x;
319 wP_coeff = -W_coeff - F_yw(i)*A_x;
320
321 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
322 eP_coeff = -E_coeff + F_ye(i)*A_x;
323 V(i, i+1) = E_coeff ;
324
325 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
326 nP_coeff = -N_coeff + F_yn(i)*A_y;
327 V(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
328
329 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
330 sP_coeff = -S_coeff - F_ys(i)*A_y;
331 V(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
332
333 % At corner
334 elseif ˜ etest && ˜ wtest && ˜ ntest && ˜ stest && wwall && wcorner
335
336 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
337 -p_circ (i))*A_y + rho*g_y* del_y *A_y +...
338 0*( - max(F_yw(i)*A_x ,0) - D_x*A_x);
339
340 % At western boundary (x = 0)
341 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
342 wP_coeff = -W_coeff - F_yw(i)*A_x;
343
344 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
345 eP_coeff = -E_coeff + F_ye(i)*A_x;
346 V(i, i+1) = E_coeff ;
347
348 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
349 nP_coeff = -N_coeff + F_yn(i)*A_y;
350 V(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
351
352 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
353 sP_coeff = -S_coeff - F_ys(i)*A_y;
354 V(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
355
356
357 % At northern boundary (y = h)
358 elseif ˜ etest && ˜ wtest && ntest && ˜ stest && ˜ wwall && ˜ wcorner
359
360 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
361 -p_circ (i))*A_y + rho*g_y* del_y *A_y;
362
363 % At northern boundary
364 nP_coeff = F_yn(i)*A_y + max (0, -F_yn(i)*A_y) + D_y*A_y ;
365
366 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
367 eP_coeff = -E_coeff + F_ye(i)*A_x;
368 V(i, i+1) = E_coeff ;
369
370 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
371 wP_coeff = -W_coeff - F_yw(i)*A_x;
372 V(i, i -1) = W_coeff ;
373
374 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
375 sP_coeff = -S_coeff - F_ys(i)*A_y;
376 V(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
377
378
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379 % At southern boundary (y = 0)
380 elseif ˜ etest && ˜ wtest && ˜ ntest && stest && ˜ wwall && ˜ wcorner
381
382 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
383 -p_circ (i))*A_y + rho*g_y* del_y *A_y;
384
385 % At southern boundary (y = 0) ,
386 sP_coeff = -F_ys(i)*A_y + max(F_ys(i)*A_y ,0) + D_y*A_y;
387
388 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
389 eP_coeff = -E_coeff + F_ye(i)*A_x;
390 V(i, i+1) = E_coeff ;
391
392 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
393 wP_coeff = -W_coeff - F_yw(i)*A_x;
394 V(i, i -1) = W_coeff ;
395
396 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
397 nP_coeff = -N_coeff + F_yn(i)*A_y;
398 V(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
399
400 %Not at any boundary
401 else
402
403 bv(i) = -( p_circ ( getRowOver (i, N_wide , M_wide , N_total ))...
404 -p_circ (i))*A_y + rho*g_y* del_y *A_y;
405
406 E_coeff = -max (0,- F_ye(i)*A_x) - D_x*A_x;
407 eP_coeff = -E_coeff + F_ye(i)*A_x;
408 V(i, i+1) = E_coeff ;
409
410 W_coeff = -max(F_yw(i)*A_x ,0) - D_x*A_x;
411 wP_coeff = -W_coeff - F_yw(i)*A_x;
412 V(i, i -1) = W_coeff ;
413
414 N_coeff = -max(0,- F_yn(i)*A_y) - D_y*A_y;
415 nP_coeff = -N_coeff + F_yn(i)*A_y;
416 V(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
417
418 S_coeff = -max(F_ys(i)*A_y ,0) - D_y*A_y;
419 sP_coeff = -S_coeff - F_ys(i)*A_y;
420 V(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
421
422 end % if
423
424 % Filling in the rest of the matrix , adding all point coefficients
425 V(i,i) = wP_coeff + eP_coeff + nP_coeff + sP_coeff ;
426
427
428 etest = false ;
429 wtest = false ;
430 ntest = false ;
431 stest = false ;
432 wwall = false ;
433
434 end % for
435 v_star = V\bv ’; % Matrix inversion

E.5.2.4 BFS pressurecorrection parabolic.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Pressure correction script for the BFS model %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4
5 T = zeros ( totalpoints , totalpoints ); % Initialisation of coefficient matrix
6 beta = zeros (1, totalpoints ); % Initialisation of source term vector
7
8 au = diag(U); % aˆcenter - coefficients from the momentum equations
9 av = diag(V);

10
11 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12 %% Calculation
13 for i = 1: totalpoints % Global indexing system
14
15 etest = ( i <= N_wide * M_wide && mod(i, N_wide ) == 0 ) ... % below step
16 || ( i > N_wide * M_wide && mod(i- N_wide *M_wide , N_total ) == 0);
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17 ntest = totalpoints - N_total < i && i <= totalpoints ;
18 wtest = i > N_wide * M_wide && mod(i-1- N_wide *M_wide , N_total ) == 0;
19 wwall = i <= N_wide * M_wide && mod(i-1, N_wide ) == 0;
20 stest = (1 <= i && i <= N_wide ) ... % Excluding the corner value
21 || ( N_wide * M_wide < i && i <= N_wide * M_wide + N_narrow ) ;
22
23
24
25 % Northeastern corner
26 if etest && ˜ wtest && ntest && ˜ stest && ˜ wwall
27
28 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
29 + A_y* v_star ( getRowUnder (i, N_wide , M_wide , N_total )));
30
31 % At eastern boundary (x = L)
32 eP_coeff = rho*A_x ˆ2/ au(i);
33
34 % At northern boundary (y = h) (y = H)
35 nP_coeff = 0 ;
36
37 W_coeff = -rho*A_x ˆ2/ au(i -1);
38 wP_coeff = -W_coeff ;
39 T(i, i -1) = W_coeff ;
40
41 S_coeff = -rho*A_y ˆ2/ av( getRowUnder (i, N_wide , M_wide , N_total ));
42 sP_coeff = -S_coeff ;
43 T(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
44
45
46 % Southeastern corner
47 elseif etest && ˜ wtest && ˜ ntest && stest && ˜ wwall
48
49 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
50 -A_y* v_star (i));
51
52 % At eastern boundary (x = L)
53 eP_coeff = rho*A_x ˆ2/ au(i);
54
55 % At southern boundary (y = 0)
56 sP_coeff = 0;
57
58 W_coeff = -rho*A_x ˆ2/ au(i -1);
59 wP_coeff = -W_coeff ;
60 T(i, i -1) = W_coeff ;
61
62 N_coeff = -rho*A_y ˆ2/ av(i);
63 nP_coeff = -N_coeff ;
64 T(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
65
66
67 % Northwestern corner
68 elseif ˜ etest && wtest && ntest && ˜ stest && ˜ wwall
69
70 beta(i) = rho *(- A_x* u_star (i) ...
71 +A_x*u_in( getRowNumber (i, N_wide , M_wide , N_total )) ...
72 + A_y* v_star ( getRowUnder (i, N_wide , M_wide , N_total )));
73
74 % At western boundary (x = 0)
75 wP_coeff = 0;
76
77 % At northern boundary (y = h) (y = H)
78 nP_coeff = 0 ;
79
80 E_coeff = -rho*A_x ˆ2/ au(i);
81 eP_coeff = -E_coeff ;
82 T(i, i+1) = E_coeff ;
83
84 S_coeff = -rho*A_y ˆ2/ av( getRowUnder (i, N_wide , M_wide , N_total ));
85 sP_coeff = -S_coeff ;
86 T(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
87
88
89 % Southwestern corner at inlet
90 elseif ˜ etest && wtest && ˜ ntest && stest && ˜ wwall
91
92 beta(i) = rho *(- A_x* u_star (i) ...
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93 +A_x*u_in( getRowNumber (i, N_wide , M_wide , N_total )) ...
94 -A_y* v_star (i));
95
96 % At western boundary (x = 0)
97 wP_coeff = 0;
98
99 % At southern boundary (y = 0)

100 sP_coeff = 0;
101
102 E_coeff = -rho*A_x ˆ2/ au(i);
103 eP_coeff = -E_coeff ;
104 T(i, i+1) = E_coeff ;
105
106 N_coeff = -rho*A_y ˆ2/ av(i);
107 nP_coeff = -N_coeff ;
108 T(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
109
110
111 % Southwestern corner at step
112 elseif ˜ etest && ˜ wtest && ˜ ntest && stest && wwall
113
114 beta(i) = rho *(- A_x* u_circ (i)...
115 +A_x *0 -A_y* v_circ (i)); % wall /" inlet " velocity is zero
116
117 % At western boundary (x = 0)
118 wP_coeff = 0;
119
120 % At southern boundary (y = 0)
121 sP_coeff = 0;
122
123 E_coeff = -rho*A_x ˆ2/ au(i);
124 eP_coeff = -E_coeff ;
125 T(i, i+1) = E_coeff ;
126
127 N_coeff = -rho*A_y ˆ2/ av(i);
128 nP_coeff = -N_coeff ;
129 T(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
130
131
132 % At eastern boundary (x = L)
133 elseif etest && ˜ wtest && ˜ ntest && ˜ stest && ˜ wwall
134
135 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
136 -A_y* v_star (i) + ...
137 A_y* v_star ( getRowUnder (i, N_wide , M_wide , N_total )));
138
139 % At eastern boundary (x = L)
140 eP_coeff = rho*A_x ˆ2/ au(i);
141
142
143 W_coeff = -rho*A_x ˆ2/ au(i -1);
144 wP_coeff = -W_coeff ;
145 T(i, i -1) = W_coeff ;
146
147 N_coeff = -rho*A_y ˆ2/ av(i);
148 nP_coeff = -N_coeff ;
149 T(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
150
151 S_coeff = -rho*A_y ˆ2/ av( getRowUnder (i, N_wide , M_wide , N_total ));
152 sP_coeff = -S_coeff ;
153 T(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
154
155
156 % At western boundary at inlet (x = 0)
157 elseif ˜ etest && wtest && ˜ ntest && ˜ stest && ˜ wwall
158
159 beta(i) = rho *(- A_x* u_star (i) ...
160 +A_x*u_in( getRowNumber (i, N_wide , M_wide , N_total )) ...
161 -A_y* v_star (i) ...
162 + A_y* v_star ( getRowUnder (i, N_wide , M_wide , N_total )));
163
164 % At western boundary (x = 0)
165 wP_coeff = 0;
166
167 E_coeff = -rho*A_x ˆ2/ au(i);
168 eP_coeff = -E_coeff ;
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169 T(i, i+1) = E_coeff ;
170
171 N_coeff = -rho*A_y ˆ2/ av(i);
172 nP_coeff = -N_coeff ;
173 T(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
174
175 S_coeff =- rho*A_y ˆ2/ av( getRowUnder (i, N_wide , M_wide , N_total ));
176 sP_coeff = -S_coeff ;
177 T(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
178
179
180 % At western wall
181 elseif ˜ etest && ˜ wtest && ˜ ntest && ˜ stest && wwall
182
183 beta(i) = rho *(- A_x* u_circ (i)...
184 +A_x *0 -A_y* v_circ (i) +...
185 A_y* v_circ ( getRowUnder (i, N_wide , M_wide , N_total )));
186
187 % At western boundary (x = 0)
188 wP_coeff = 0;
189
190 E_coeff = -rho*A_x ˆ2/ au(i);
191 eP_coeff = -E_coeff ;
192 T(i, i+1) = E_coeff ;
193
194 N_coeff = -rho*A_y ˆ2/ av(i);
195 nP_coeff = -N_coeff ;
196 T(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
197
198 S_coeff =- rho*A_y ˆ2/ av( getRowUnder (i, N_wide , M_wide , N_total ));
199 sP_coeff = -S_coeff ;
200 T(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
201
202
203 % At northern boundary (y = h)
204 elseif ˜ etest && ˜ wtest && ntest && ˜ stest && ˜ wwall
205
206 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
207 + A_y* v_star ( getRowUnder (i, N_wide , M_wide , N_total )));
208
209 % At northern boundary (y = h)
210 nP_coeff = 0 ;
211
212 E_coeff = -rho*A_x ˆ2/ au(i);
213 eP_coeff = -E_coeff ;
214 T(i, i+1) = E_coeff ;
215
216 W_coeff = -rho*A_x ˆ2/ au(i -1);
217 wP_coeff = -W_coeff ;
218 T(i, i -1) = W_coeff ;
219
220 S_coeff = -rho*A_y ˆ2/ av( getRowUnder (i, N_wide , M_wide , N_total ));
221 sP_coeff = -S_coeff ;
222 T(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
223
224
225 % At southern boundary (y = 0)
226 elseif ˜ etest && ˜ wtest && ˜ ntest && stest && ˜ wwall
227
228 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) ...
229 -A_y* v_star (i));
230
231 % At southern boundary (y = 0)
232 sP_coeff = 0;
233
234 E_coeff = -rho*A_x ˆ2/ au(i);
235 eP_coeff = -E_coeff ;
236 T(i, i+1) = E_coeff ;
237
238 W_coeff = -rho*A_x ˆ2/ au(i -1);
239 wP_coeff = -W_coeff ;
240 T(i, i -1) = W_coeff ;
241
242 N_coeff = -rho*A_y ˆ2/ av(i);
243 nP_coeff = -N_coeff ;
244 T(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
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245
246
247 %Not at any boundary
248 else
249
250 beta(i) = rho *(- A_x* u_star (i) +A_x* u_star (i -1) -A_y* v_star (i) + ...
251 A_y* v_star ( getRowUnder (i, N_wide , M_wide , N_total )));
252
253 E_coeff = -rho*A_x ˆ2/ au(i);
254 eP_coeff = -E_coeff ;
255 T(i, i+1) = E_coeff ;
256
257 W_coeff = -rho*A_x ˆ2/ au(i -1);
258 wP_coeff = -W_coeff ;
259 T(i, i -1) = W_coeff ;
260
261 N_coeff = -rho*A_y ˆ2/ av(i);
262 nP_coeff = -N_coeff ;
263 T(i, getRowOver (i, N_wide , M_wide , N_total )) = N_coeff ;
264
265 S_coeff = -rho*A_y ˆ2/ av( getRowUnder (i, N_wide , M_wide , N_total ));
266 sP_coeff = -S_coeff ;
267 T(i, getRowUnder (i, N_wide , M_wide , N_total )) = S_coeff ;
268
269 end % if
270
271 % Filling in the rest of the matrix , adding all point coefficients
272 T(i,i) = wP_coeff + eP_coeff + nP_coeff + sP_coeff ;
273
274
275 etest = false ;
276 wtest = false ;
277 ntest = false ;
278 stest = false ;
279 wwall = false ;
280
281 end %for
282 p_corr = T\beta ’; % Matrix inversion

E.5.2.5 plotColoredQuiver parabolic.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Colored velocity quiver plots %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 filler = 0; % For the quiver plots , the velocities at the step are set to
5 % zero and not Inf , rectangles are therefore used to block
6 % out the step from the plots afterwards .
7 levels = 50; % Number of different colors for the representation
8 showvals = false ; % Show the value of each color
9 lines = ’none ’; % Show lines in between each color

10
11 % u- velocity
12 u_fullplot = zeros ( M_total +2, N_total +1);
13 u_fullplot (2: end -1 ,1) = u_in;
14 u_fullplot (2: M_wide +1, N_narrow +2: end) = ...
15 global2matrix ( u_new (1: N_wide * M_wide ), N_wide , M_wide );
16 u_fullplot ( M_wide +2: end -1 ,2: end) = ...
17 global2matrix ( u_new ( N_wide * M_wide +1: end), N_total , M_narrow );
18 u_fullplot (1: M_wide , 1: N_narrow ) = 0;
19
20 % Transformation from dimensionless to regular
21 u_fullplot = u_fullplot * u_in_true ;
22
23
24 % v- velocity
25 v_fullplot = zeros ( m_total +2, N_total +1);
26 v_fullplot (2: m_wide +1, N_narrow +2: end) = ...
27 global2matrix ( v_new (1: N_wide * m_wide ), N_wide , m_wide );
28 v_fullplot ( m_wide +2: end -1 ,2: end) = ...
29 global2matrix ( v_new ( N_wide * m_wide +1: end), N_total , m_narrow );
30 v_fullplot (1: m_wide , 1: N_narrow ) = filler ;
31
32 % Transformation from dimensionless to regular
33 v_fullplot = v_fullplot * u_in_true ;
34
35
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36 uSN = zeros (M_total , N_total );
37 vSN = zeros (M_total , N_total );
38 for i = 2: N_total +1
39 for j = 1: M_total
40 uSN(j,i -1) = 1/2*( u_fullplot (j+1,i -1) + u_fullplot (j+1,i));
41 end %for
42 end %for
43 for j = 2: M_total +1
44 for i = 1: N_total
45 vSN(j-1,i) = 1/2*( v_fullplot (j-1,i) + v_fullplot (j,i));
46 end %for
47 end %for
48
49 % Need to make a combined velocitiy vector
50 combvel = sqrt(uSN .ˆ2 + vSN .ˆ2);
51
52 % Create a mesh for the plotting
53 [xSN ,ySN] = meshgrid (...
54 x_0+ del_x_true /2: del_x_true :x_N - del_x_true /2, ...
55 y_0+ del_y_true /2: del_y_true :y_M - del_y_true /2);
56
57 combvelwall = [ zeros (1, N_total ); combvel ; zeros (1, N_total )];
58
59
60 fq1 = figure ;
61 % Contour plot
62 [M,c] = contourf ([ xSN (1 ,:) ; xSN ;xSN(end ,:) ] ,...
63 [ones (1, N_total )*y_0; ySN ; ones (1, N_total )*y_M], ...
64 combvelwall , levels );
65 c. LineColor = lines ;
66 hold on
67 qn = quiver ( xSN , ySN , uSN , vSN ,’LineWidth ’ ,0.5,’Color ’,’k’);
68
69 % Block out the step
70 r = rectangle (’Position ’ ,[0.03 0 l 1]);
71 r. FaceColor = [1 1 1];
72 r. EdgeColor = ’none ’;%’k ’;
73 r. LineWidth = .0000010;
74
75 hold on
76 set(qn ,’AutoScale ’,’on ’, ’LineWidth ’ ,0.1,’AutoScaleFactor ’, 0.7 ,...
77 ’Marker ’,’o’,’MarkerSize ’ ,1,’ShowArrowHead ’,’on ’)
78 s = sprintf (’Plot of velocities as vectors after %d iterations ’, it );
79 % f = title (s);
80 ax = gca;
81 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
82 set(gca ,’TickLabelInterpreter ’,’latex ’)
83 ax. FontSize = 12;
84 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
85 xlim ([0 , L_total ])
86 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
87 ytickformat (’%.1f’)
88 set(fq1 ,’Position ’, [3 250 717 420]) ;
89 saveas (gcf ,’velocityquiver .png ’)
90 ax. Layer = ’top ’;
91
92
93 fq2 = figure ;
94 [M,c] = contourf ([ xSN (1 ,:) ; xSN ;xSN(end ,:) ] ,...
95 [ones (1, N_total )*y_0; ySN ; ones (1, N_total )*y_M], ...
96 combvelwall , levels );
97 c. LineColor = lines ;
98 hold on
99 qn = quiver (...

100 xSN , ySN , uSN , vSN ,...% u_fullplot (1: end -1 ,:)
101 ’LineWidth ’ ,0.5,’Color ’,’k’);
102
103 r = rectangle (’Position ’ ,[0.03 0 l 1]);
104 r. FaceColor = [1 1 1];
105 r. EdgeColor = ’none ’;%’k ’;
106 r. LineWidth = .0000010;
107
108
109 hold on
110 set(qn ,’AutoScale ’,’on ’, ’AutoScaleFactor ’, 2.1 , ’Marker ’,’o’ ,...
111 ’MarkerSize ’ ,1,’MaxHeadSize ’ ,0.01);%’ShowArrowHead ’,’off ’)
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112 % qw = quiver (...
113 % xv_plot , yv_plot , uplot (1: end -1 ,:) , vplot ,...
114 % ’LineWidth ’,0.5,’ Color ’,’k ’);
115 s = sprintf (...
116 ’Plot of velocities as vectors after %d iterations scales x 1.5 ’, it );
117 % f = title (s);
118 ax = gca;
119 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
120 set(gca ,’TickLabelInterpreter ’,’latex ’)
121 ax. FontSize = 12;
122 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
123 xlim ([l-l/4,l*3])
124 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
125 ylim ([0 ,H+H/4])
126 ytickformat (’%.1f’)
127 set(fq2 ,’Position ’, [724 250 560 420]) ;
128 saveas (gcf ,’velocityquiver1zoomed .png ’)
129 ax. Layer = ’top ’;
130
131
132 fq3 = figure ;
133 [M,c] = contourf ([ xSN (1 ,:) ; xSN ;xSN(end ,:) ] ,...
134 [ones (1, N_total )*y_0; ySN ; ones (1, N_total )*y_M], ...
135 combvelwall , levels );
136 c. LineColor = lines ;
137 hold on
138 qn = quiver (...
139 xSN (1: M_wide , N_narrow +1: N_narrow *2) , ...
140 ySN (1: M_wide , N_narrow +1: N_narrow *2) ,...
141 uSN (1: M_wide , N_narrow +1: N_narrow *2) , ...
142 vSN (1: M_wide , N_narrow +1: N_narrow *2) ,...% u_fullplot (1: end -1 ,:)
143 ’LineWidth ’ ,0.5,’Color ’,’k’);
144
145 r = rectangle (’Position ’ ,[0.03 0 l 1]);
146 r. FaceColor = [1 1 1];
147 r. EdgeColor = ’none ’;%’k ’;
148 r. LineWidth = .0000010;
149
150
151 hold on
152 set(qn ,’AutoScale ’,’on ’, ’LineWidth ’ ,0.1,’AutoScaleFactor ’, 2.1 ,...
153 ’Marker ’,’o’,’MarkerSize ’ ,1,’ShowArrowHead ’,’on ’)
154 % qw = quiver (...
155 % xv_plot , yv_plot , uplot (1: end -1 ,:) , vplot ,...
156 % ’LineWidth ’,0.5,’ Color ’,’k ’);
157 s = sprintf (...
158 ’Plot of velocities as vectors after %d iterations , scaled * 2’, it );
159 % f = title (s);
160 ax = gca;
161 % set(f, ’interpreter ’, ’latex ’, ’fontsize ’, 16)
162 set(gca ,’TickLabelInterpreter ’,’latex ’)
163 ax. FontSize = 12;
164 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
165 xlim ([l ,2*l])
166 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
167 ylim ([0 ,H])
168 ytickformat (’%.1f’)
169 set(fq3 ,’Position ’, [724 250 560 420]) ;
170 saveas (gcf ,’velocityquiver2zoomed .png ’)
171 ax. Layer = ’top ’;

E.6 Grid Generation

The code transfinite.m is used to get the algebraic grid by use of Transfinite In-
terpolation. The code elliptic.m is used to get the grid by use of the elliptic grid
generation equation. The code getCol.m is used to get the column of the initial guess
matrix for each point in the globally indexed vector when filling in the coefficient ma-
trix. The code getRow.m is used to get the row of the initial guess matrix for each
point in the globally indexed vector when filling in the coefficient matrix. The code
matrix2global.m is used to convert the matrices into their corresponding globally
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indexed vectors given the dimensions of the matrix. The code global2matrix.m is
used to convert the globally indexed vectors into their corresponding matrices given
the dimensions of the matrix.

E.6.1 Codes

E.6.1.1 transfinite.m

1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Transfinite Interpolation %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 close all
5 clc
6 %% Settings
7 N = 71; % Number of points in q1/x- direction
8 M = 21; % Number of points in q2/y- direction
9

10 x_max = 35; % Total length of physical domain ( including step)
11 y_max = 2; % Total height of physical domain ( including step)
12
13 h = 1; % Height of the step
14 l = 5; % Length / width of the step
15
16 % Placement of points E and F splits the line segment AD in s equal pieces .
17 s = 3;
18
19
20 %% Boundary points
21 q1 = 0:N; % Specifying the q1 - points with spacing of delta q1 = 1
22 q2 = 0:M; % Specifying the q1 - points with spacing of delta q1 = 1
23
24 % Specifying the locations of points A-F in the physical domain
25 xA = 0;
26 xB = 0;
27 xC = x_max ;
28 xD = x_max ;
29 xE = l;
30 xF = l;
31
32 yA = h;
33 yB = y_max ;
34 yC = y_max ;
35 yD = 0;
36 yE = 0;
37 yF = h;
38
39 % Place points E and F to split the line segment AD in s equal pieces .
40 AFfrac = 1/s; % Fraction of total width of q1
41 AEfrac = 1/s; % Fraction of total width of q1
42 AFpoints = ceil( AFfrac * N); % Number of q1 - points in line segment AF
43 FEpoints = floor ( AEfrac * N); % Number of q1 - points in line segment FE
44
45 q1AF = 0: AFpoints ; % Vector of coordinates q1 for the line segment AF
46 q1FE = 0: FEpoints ; % Vector of coordinates q1 for the line segment FE
47 q1ED = 0:(N-AFpoints - FEpoints ); % Vector of coordinates q1 for ...
48 % the line segment ED
49
50 % Calculation of the boundary points :
51 xAB = (1-q2/q2(end))* xA + q2/q2(end)*xB;
52 xBC = (1-q1/q1(end))* xB + q1/q1(end)*xC;
53 xDC = (1-q2/q2(end))* xD + q2/q2(end)*xC;
54 xED = (1- q1ED/q1ED(end))* xE + q1ED/q1ED(end)*xD;
55 xFE = (1- q1FE/q1FE(end))* xF + q1FE/q1FE(end)*xE;
56 xAF = (1- q1AF/q1AF(end))* xA + q1AF/q1AF(end)*xF;
57
58 yAB = (1-q2/q2(end))* yA + q2/q2(end)*yB;
59 yBC = (1-q1/q1(end))* yB + q1/q1(end)*yC;
60 yDC = (1-q2/q2(end))* yD + q2/q2(end)*yC;
61 yED = (1- q1ED/q1ED(end))* yE + q1ED/q1ED(end)*yD;
62 yFE = (1- q1FE/q1FE(end))* yF + q1FE/q1FE(end)*yE;
63 yAF = (1- q1AF/q1AF(end))* yA + q1AF/q1AF(end)*yF;
64
65 % Plot with the boundary points
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66 % figure
67 % plot(xAB ,yAB ,’x’,xBC ,yBC ,’x’,xDC ,yDC ,’x ’ ,...
68 % xED ,yED ,’x’,xFE ,yFE ,’x’,xAF ,yAF ,’x ’)
69 % % xlim ([ -0.1 ,1.1])
70 % % ylim ([ -0.1 ,1.1])
71 % legend ({’$AB$ ’,’$BC$ ’,’$CD$ ’,’$DE$ ’,’$EF$ ’,’$FA$ ’} ,...
72 % ’Interpreter ’,’latex ’,’Location ’,’best ’)
73
74 %% Center domain points
75 % Combining the x- and y- points for the line segments AF , FE and ED to ...
76 % one vector for AD. The points located exactly at F and E are ...
77 % overlapping and removed from xFE by taking xFE (2: end -1). Likewise for y.
78
79 xAD = [xAF xFE (2: end -1) xED ];% Combining the x- points for the line segment
80 yAD = [yAF yFE (2: end -1) yED ];% Combining the y- points for the line segment
81
82 % Initialising the matrix x of points in the physical domain
83 x = zeros ( length (q2),length (q1));
84 % Initialising the matrix y of points in the physical domain
85 y = zeros ( length (q2),length (q1));
86
87 % Calculating the center points
88 for j =1: length (q2)
89 for i = 1: length (q1)
90 x(j,i) = (1-q1(i)/q1(end))* xAB(j) +( q1(i)/q1(end)) *xDC(j)...
91 +(1 - q2(j)/q2(end))*xAD(i) +( q2(j)/q2(end))* xBC(i)...
92 -(1-q1(i)/q1(end))* (1-q2(j)/q2(end))* xA ...
93 -(1-q1(i)/q1(end))* (q2(j)/q2(end))* xB ...
94 -(q1(i)/q1(end))*(1 - q2(j)/q2(end))* xD ...
95 -(q1(i)/q1(end))*( q2(j)/q2(end))* xC;
96 y(j,i) = (1-q1(i)/q1(end))* yAB(j) +( q1(i)/q1(end)) *yDC(j)...
97 +(1 - q2(j)/q2(end))*yAD(i) +( q2(j)/q2(end))* yBC(i)...
98 -(1-q1(i)/q1(end))* (1-q2(j)/q2(end))* yA ...
99 -(1-q1(i)/q1(end))* (q2(j)/q2(end))* yB ...

100 -(q1(i)/q1(end))*(1 - q2(j)/q2(end))* yD ...
101 -(q1(i)/q1(end))*( q2(j)/q2(end))* yC;
102 end %for
103 end %for
104
105 % Plotting the resulting grid
106 figure
107 plot(x,y,’k’,x’,y’,’k’)
108 xlim ([xA ,xD ])
109 ylim ([yD ,yC ])
110 set(gca ,’TickLabelInterpreter ’,’latex ’)
111 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
112 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
113 saveas (gcf ,’transfinite .png ’)

E.6.1.2 elliptic.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Elliptic grid generation %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 close all
5 clc
6 clear
7
8 maxits = 75;
9

10 P1 = 0; % Poisson control function
11 P2 = 0; % Poisson control function
12 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
13 %% Create the algebraic grid for an initial guess
14 transfinite
15 N = length (q1);
16 M = length (q2);
17 n = N -2; % dimensions of the inner point matrix to be solved for
18 m = M -2; % with the elliptic grid generation equations below
19 alpha = 0.001;
20
21 conv = 0;
22 it = 1;
23
24 while conv == 0
25
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26 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27 %% Area Components
28 AM11 = zeros (m,n); % Indexed top bottom
29 AM12 = zeros (m,n); % Aˆ1 _2
30 AM21 = zeros (m,n); % Aˆ2 _1
31 AM22 = zeros (m,n);
32 for i = 2:N -1
33 for j = 2:M -1
34 AM11(j-1,i -1) = 1/2*( y(j+1,i) - y(j-1,i));
35 AM21(j-1,i -1) = -1/2*(y(j,i+1) - y(j,i -1));
36 AM12(j-1,i -1) = -1/2*(x(j+1,i) - x(j-1,i));
37 AM22(j-1,i -1) = 1/2*( x(j,i+1) - x(j,i -1));
38 end %for
39 end %for
40
41 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
42 %% Jacobi Determinant
43 J2 = zeros (m,n);
44 for i = 2:N -1
45 for j = 2:M -1
46 J2(j-1,i -1) = (1/4*( x(j,i+1) -x(j,i -1))*(y(j+1,i)-y(j-1,i))...
47 - 1/4*( y(j,i+1) -y(j,i -1))*(x(j+1,i)-x(j-1,i)))ˆ2;
48 end %for
49 end %for
50
51 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
52 %% Contravariant Tensor Components
53 gM11 = zeros (m,n);
54 gM12 = zeros (m,n);
55 gM21 = zeros (m,n);
56 gM22 = zeros (m,n);
57 for i = 1:n
58 for j = 1:m
59 gM11(j,i) = 1/ J2(j,i)*...
60 (AM11(j,i)*AM11(j,i) + AM12(j,i)*AM12(j,i));
61 gM21(j,i) = 1/ J2(j,i)*...
62 (AM21(j,i)*AM11(j,i) + AM22(j,i)*AM12(j,i));
63 gM12(j,i) = 1/ J2(j,i)*...
64 (AM11(j,i)*AM21(j,i) + AM12(j,i)*AM22(j,i));
65 gM22(j,i) = 1/ J2(j,i)*...
66 (AM21(j,i)*AM21(j,i) + AM22(j,i)*AM22(j,i));
67 end %for
68 end %for
69
70 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
71 %% Matrices 2 Globals
72 A11 = matrix2global (AM11 ,n,m);
73 A12 = matrix2global (AM12 ,n,m);
74 A21 = matrix2global (AM21 ,n,m);
75 A22 = matrix2global (AM22 ,n,m);
76
77 g11 = matrix2global (gM11 ,n,m);
78 g12 = matrix2global (gM12 ,n,m);
79 g21 = matrix2global (gM21 ,n,m);
80 g22 = matrix2global (gM22 ,n,m);
81
82 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
83 %% New x and y
84 X = zeros (n*m,n*m);
85 Y = zeros (n*m,n*m);
86
87 % The source term is zero and is updated if the point is at a boundary
88 bx = zeros (1,n*m);
89 by = zeros (1,n*m);
90
91
92 for i = 1:n*m
93
94 etest = mod(i, n) == 0;
95 ntest = n*m - n < i;
96 wtest = mod(i-1, n) == 0;
97 stest = i <= n;
98
99 % Northeastern corner

100 if etest && ˜ wtest && ntest && ˜ stest
101
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102 X(i,i) = -2* g11(i) -2* g22(i);
103 % X(i,i+1) =( g11(i)+P1 /2) ;
104 bx(i) = bx(i) - x( getRow (i,n),getCol (i,n)+1) *( g11(i)+P1 /2);
105 X(i,i -1) =( g11(i)-P1 /2) ;
106 % X(i+n,i)=( g22(i)+P2 /2) ;
107 bx(i) = bx(i) - x( getRow (i,n)+1, getCol (i,n))*( g22(i)+P2 /2);
108 X(i-n,i)=( g22(i)-P2 /2) ;
109 % X(i+n,i+1) =( g12(i)/4+ g21(i)/4) ;
110 bx(i) = bx(i)...
111 - x( getRow (i,n)+1, getCol (i,n)+1) *( g12(i)/4+ g21(i)/4) ;
112 % X(i+n,i -1) =(- g12(i)/4- g21(i)/4) ;
113 bx(i) = bx(i)...
114 - x( getRow (i,n)+1, getCol (i,n) -1)*(- g12(i)/4- g21(i)/4) ;
115 % X(i-n,i+1) =(- g12(i)/4- g21(i)/4) ;
116 bx(i) = bx(i)...
117 - x( getRow (i,n) -1, getCol (i,n)+1) *(- g12(i)/4- g21(i)/4);
118 X(i-n,i -1) =( g12(i)/4+ g21(i)/4);
119
120 Y(i,i) = -2* g11(i) -2* g22(i);
121 % Y(i,i+1) =( g11(i)+P1 /2) ;
122 by(i) = by(i) - y( getRow (i,n),getCol (i,n)+1) *( g11(i)+P1 /2);
123 Y(i,i -1) =( g11(i)-P1 /2) ;
124 % Y(i+n,i)=( g22(i)+P2 /2) ;
125 by(i) = by(i) - y( getRow (i,n)+1, getCol (i,n))*( g22(i)+P2 /2);
126 Y(i-n,i)=( g22(i)-P2 /2) ;
127 % Y(i+n,i+1) =( g12(i)/4+ g21(i)/4) ;
128 by(i) = by(i)...
129 - y( getRow (i,n)+1, getCol (i,n)+1) *( g12(i)/4+ g21(i)/4) ;
130 % Y(i+n,i -1) =(- g12(i)/4- g21(i)/4) ;
131 by(i) = by(i)...
132 - y( getRow (i,n)+1, getCol (i,n) -1)*(- g12(i)/4- g21(i)/4) ;
133 % Y(i-n,i+1) =(- g12(i)/4- g21(i)/4) ;
134 by(i) = by(i)...
135 - y( getRow (i,n) -1, getCol (i,n)+1) *(- g12(i)/4- g21(i)/4);
136 Y(i-n,i -1) =( g12(i)/4+ g21(i)/4);
137
138 % Southeastern corner
139 elseif etest && ˜ wtest && ˜ ntest && stest
140
141 X(i,i) = -2* g11(i) -2* g22(i);
142 % X(i,i+1) =( g11(i)+P1 /2) ;
143 bx(i) = bx(i) - x( getRow (i,n),getCol (i,n)+1) *( g11(i)+P1 /2);
144 X(i,i -1) =( g11(i)-P1 /2) ;
145 X(i+n,i)=( g22(i)+P2 /2) ;
146 % X(i-n,i)=( g22(i)-P2 /2) ;
147 bx(i) = bx(i) - x( getRow (i,n) -1, getCol (i,n))*( g22(i)-P2 /2);
148 % X(i+n,i+1) =( g12(i)/4+ g21(i)/4) ;
149 bx(i) = bx(i)...
150 - x( getRow (i,n)+1, getCol (i,n)+1) *( g12(i)/4+ g21(i)/4);
151 X(i+n,i -1) =(- g12(i)/4- g21(i)/4) ;
152 % X(i-n,i+1) =(- g12(i)/4- g21(i)/4) ;
153 bx(i) = bx(i)...
154 - x( getRow (i,n) -1, getCol (i,n)+1) *(- g12(i)/4- g21(i)/4);
155 % X(i-n,i -1) =( g12(i)/4+ g21(i)/4);
156 bx(i) = bx(i)...
157 - x( getRow (i,n) -1, getCol (i,n) -1)*( g12(i)/4+ g21(i)/4);
158
159
160 Y(i,i) = -2* g11(i) -2* g22(i);
161 % Y(i,i+1) =( g11(i)+P1 /2) ;
162 by(i) = by(i) - y( getRow (i,n),getCol (i,n)+1) *( g11(i)+P1 /2);
163 Y(i,i -1) =( g11(i)-P1 /2) ;
164 Y(i+n,i)=( g22(i)+P2 /2) ;
165 % Y(i-n,i)=( g22(i)-P2 /2) ;
166 by(i) = by(i) - y( getRow (i,n) -1, getCol (i,n))*( g22(i)-P2 /2);
167 % Y(i+n,i+1) =( g12(i)/4+ g21(i)/4) ;
168 by(i) = by(i)...
169 - y( getRow (i,n)+1, getCol (i,n)+1) *( g12(i)/4+ g21(i)/4);
170 Y(i+n,i -1) =(- g12(i)/4- g21(i)/4) ;
171 % Y(i-n,i+1) =(- g12(i)/4- g21(i)/4) ;
172 by(i) = by(i)...
173 - y( getRow (i,n) -1, getCol (i,n)+1) *(- g12(i)/4- g21(i)/4);
174 % Y(i-n,i -1) =( g12(i)/4+ g21(i)/4);
175 by(i) = by(i)...
176 - y( getRow (i,n) -1, getCol (i,n) -1)*( g12(i)/4+ g21(i)/4);
177
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178 % Northwestern corner
179 elseif ˜ etest && wtest && ntest && ˜ stest
180
181 X(i,i) = -2* g11(i) -2* g22(i);
182 X(i,i+1) =( g11(i)+P1 /2) ;
183 % X(i,i -1) =( g11(i)-P1 /2) ;
184 bx(i) = bx(i) - x( getRow (i,n),getCol (i,n) -1)*( g11(i)-P1 /2);
185 % X(i+n,i)=( g22(i)+P2 /2) ;
186 bx(i) = bx(i) - x( getRow (i,n)+1, getCol (i,n))*( g22(i)+P2 /2);
187 X(i-n,i)=( g22(i)-P2 /2) ;
188 % X(i+n,i+1) =( g12(i)/4+ g21(i)/4) ;
189 bx(i) = bx(i)...
190 - x( getRow (i,n)+1, getCol (i,n)+1) *( g12(i)/4+ g21(i)/4) ;
191 % X(i+n,i -1) =(- g12(i)/4- g21(i)/4) ;
192 bx(i) = bx(i)...
193 - x( getRow (i,n)+1, getCol (i,n) -1)*(- g12(i)/4- g21(i)/4) ;
194 X(i-n,i+1) =(- g12(i)/4- g21(i)/4) ;
195 % X(i-n,i -1) =( g12(i)/4+ g21(i)/4);
196 bx(i) = bx(i)...
197 - x( getRow (i,n) -1, getCol (i,n) -1)*( g12(i)/4+ g21(i)/4);
198
199 Y(i,i) = -2* g11(i) -2* g22(i);
200 Y(i,i+1) =( g11(i)+P1 /2) ;
201 % Y(i,i -1) =( g11(i)-P1 /2) ;
202 by(i) = by(i) - y( getRow (i,n),getCol (i,n) -1)*( g11(i)-P1 /2);
203 % Y(i+n,i)=( g22(i)+P2 /2) ;
204 by(i) = by(i) - y( getRow (i,n)+1, getCol (i,n))*( g22(i)+P2 /2);
205 Y(i-n,i)=( g22(i)-P2 /2) ;
206 % Y(i+n,i+1) =( g12(i)/4+ g21(i)/4) ;
207 by(i) = by(i)...
208 - y( getRow (i,n)+1, getCol (i,n)+1) *( g12(i)/4+ g21(i)/4) ;
209 % Y(i+n,i -1) =(- g12(i)/4- g21(i)/4) ;
210 by(i) = by(i)...
211 - y( getRow (i,n)+1, getCol (i,n) -1)*(- g12(i)/4- g21(i)/4) ;
212 Y(i-n,i+1) =(- g12(i)/4- g21(i)/4) ;
213 % Y(i-n,i -1) =( g12(i)/4+ g21(i)/4);
214 by(i) = by(i)...
215 - y( getRow (i,n) -1, getCol (i,n) -1)*( g12(i)/4+ g21(i)/4);
216
217
218 % Southwestern corner
219 elseif ˜ etest && wtest && ˜ ntest && stest
220
221 X(i,i) = -2* g11(i) -2* g22(i);
222 X(i,i+1) =( g11(i)+P1 /2) ;
223 % X(i,i -1) =( g11(i)-P1 /2) ;
224 bx(i) = bx(i) - x( getRow (i,n),getCol (i,n) -1)*( g11(i)-P1 /2);
225 X(i+n,i)=( g22(i)+P2 /2) ;
226 % X(i-n,i)=( g22(i)-P2 /2) ;
227 bx(i) = bx(i) - x( getRow (i,n) -1, getCol (i,n))*( g22(i)-P2 /2);
228 X(i+n,i+1) =( g12(i)/4+ g21(i)/4) ;
229 % X(i+n,i -1) =(- g12(i)/4- g21(i)/4) ;
230 bx(i) = bx(i)...
231 - x( getRow (i,n)+1, getCol (i,n) -1)*(- g12(i)/4- g21(i)/4);
232 % X(i-n,i+1) =(- g12(i)/4- g21(i)/4) ;
233 bx(i) = bx(i)...
234 - x( getRow (i,n) -1, getCol (i,n)+1) *(- g12(i)/4- g21(i)/4);
235 % X(i-n,i -1) =( g12(i)/4+ g21(i)/4);
236 bx(i) = bx(i)...
237 - x( getRow (i,n) -1, getCol (i,n) -1)*( g12(i)/4+ g21(i)/4);
238
239 Y(i,i) = -2* g11(i) -2* g22(i);
240 Y(i,i+1) =( g11(i)+P1 /2) ;
241 % Y(i,i -1) =( g11(i)-P1 /2) ;
242 by(i) = by(i) - y( getRow (i,n),getCol (i,n) -1)*( g11(i)-P1 /2);
243 Y(i+n,i)=( g22(i)+P2 /2) ;
244 % Y(i-n,i)=( g22(i)-P2 /2) ;
245 by(i) = by(i)...
246 - y( getRow (i,n) -1, getCol (i,n))*( g22(i)-P2 /2);
247 Y(i+n,i+1) =( g12(i)/4+ g21(i)/4) ;
248 % Y(i+n,i -1) =(- g12(i)/4- g21(i)/4) ;
249 by(i) = by(i)...
250 - y( getRow (i,n)+1, getCol (i,n) -1)*(- g12(i)/4- g21(i)/4);
251 % Y(i-n,i+1) =(- g12(i)/4- g21(i)/4) ;
252 by(i) = by(i)...
253 - y( getRow (i,n) -1, getCol (i,n)+1) *(- g12(i)/4- g21(i)/4);
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254 % Y(i-n,i -1) =( g12(i)/4+ g21(i)/4);
255 by(i) = by(i)...
256 - y( getRow (i,n) -1, getCol (i,n) -1)*( g12(i)/4+ g21(i)/4);
257
258 % At eastern boundary (x = L)
259 elseif etest && ˜ wtest && ˜ ntest && ˜ stest
260
261 X(i,i) = -2* g11(i) -2* g22(i);
262 % X(i,i+1) =( g11(i)+P1 /2) ;
263 bx(i) = bx(i) - x( getRow (i,n),getCol (i,n)+1) *( g11(i)+P1 /2);
264 X(i,i -1) =( g11(i)-P1 /2) ;
265 X(i+n,i)=( g22(i)+P2 /2) ;
266 X(i-n,i)=( g22(i)-P2 /2) ;
267 % X(i+n,i+1) =( g12(i)/4+ g21(i)/4) ;
268 bx(i) = bx(i)...
269 - x( getRow (i,n)+1, getCol (i,n)+1) *( g12(i)/4+ g21(i)/4);
270 X(i+n,i -1) =(- g12(i)/4- g21(i)/4) ;
271 % X(i-n,i+1) =(- g12(i)/4- g21(i)/4) ;
272 bx(i) = bx(i)...
273 - x( getRow (i,n) -1, getCol (i,n)+1) *(- g12(i)/4- g21(i)/4);
274 X(i-n,i -1) =( g12(i)/4+ g21(i)/4);
275
276 Y(i,i) = -2* g11(i) -2* g22(i);
277 % Y(i,i+1) =( g11(i)+P1 /2) ;
278 by(i) = by(i) - y( getRow (i,n),getCol (i,n)+1) *( g11(i)+P1 /2);
279 Y(i,i -1) =( g11(i)-P1 /2) ;
280 Y(i+n,i)=( g22(i)+P2 /2) ;
281 Y(i-n,i)=( g22(i)-P2 /2) ;
282 % Y(i+n,i+1) =( g12(i)/4+ g21(i)/4) ;
283 by(i) = by(i)...
284 - y( getRow (i,n)+1, getCol (i,n)+1) *( g12(i)/4+ g21(i)/4);
285 Y(i+n,i -1) =(- g12(i)/4- g21(i)/4) ;
286 % Y(i-n,i+1) =(- g12(i)/4- g21(i)/4) ;
287 by(i) = by(i)...
288 - y( getRow (i,n) -1, getCol (i,n)+1) *(- g12(i)/4- g21(i)/4);
289 Y(i-n,i -1) =( g12(i)/4+ g21(i)/4);
290
291 % At western boundary
292 elseif ˜ etest && wtest && ˜ ntest && ˜ stest
293
294 X(i,i) = -2* g11(i) -2* g22(i);
295 X(i,i+1) =( g11(i)+P1 /2) ;
296 % X(i,i -1) =( g11(i)-P1 /2) ;
297 bx(i) = bx(i) - x( getRow (i,n),getCol (i,n) -1)*( g11(i)-P1 /2);
298 X(i+n,i)=( g22(i)+P2 /2) ;
299 X(i-n,i)=( g22(i)-P2 /2) ;
300 X(i+n,i+1) =( g12(i)/4+ g21(i)/4) ;
301 % X(i+n,i -1) =(- g12(i)/4- g21(i)/4) ;
302 bx(i) = bx(i)...
303 - x( getRow (i,n)+1, getCol (i,n) -1)*(- g12(i)/4- g21(i)/4);
304 X(i-n,i+1) =(- g12(i)/4- g21(i)/4) ;
305 % X(i-n,i -1) =( g12(i)/4+ g21(i)/4);
306 bx(i) = bx(i)...
307 - x( getRow (i,n) -1, getCol (i,n) -1)*( g12(i)/4+ g21(i)/4);
308
309 Y(i,i) = -2* g11(i) -2* g22(i);
310 Y(i,i+1) =( g11(i)+P1 /2) ;
311 % Y(i,i -1) =( g11(i)-P1 /2) ;
312 by(i) = by(i) - y( getRow (i,n),getCol (i,n) -1)*( g11(i)-P1 /2);
313 Y(i+n,i)=( g22(i)+P2 /2) ;
314 Y(i-n,i)=( g22(i)-P2 /2) ;
315 Y(i+n,i+1) =( g12(i)/4+ g21(i)/4) ;
316 % Y(i+n,i -1) =(- g12(i)/4- g21(i)/4) ;
317 by(i) = by(i)...
318 - y( getRow (i,n)+1, getCol (i,n) -1)*(- g12(i)/4- g21(i)/4);
319 Y(i-n,i+1) =(- g12(i)/4- g21(i)/4) ;
320 % Y(i-n,i -1) =( g12(i)/4+ g21(i)/4);
321 by(i) = by(i)...
322 - y( getRow (i,n) -1, getCol (i,n) -1)*( g12(i)/4+ g21(i)/4);
323
324 % At northern boundary (y = h)
325 elseif ˜ etest && ˜ wtest && ntest && ˜ stest
326
327 X(i,i) = -2* g11(i) -2* g22(i);
328 X(i,i+1) =( g11(i)+P1 /2) ;
329 X(i,i -1) =( g11(i)-P1 /2) ;
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330 % X(i+n,i)=( g22(i)+P2 /2) ;
331 bx(i) = bx(i) - x( getRow (i,n)+1, getCol (i,n))*( g22(i)+P2 /2);
332 X(i-n,i)=( g22(i)-P2 /2) ;
333 % X(i+n,i+1) =( g12(i)/4+ g21(i)/4) ;
334 bx(i) = bx(i)...
335 - x( getRow (i,n)+1, getCol (i,n)+1) *( g12(i)/4+ g21(i)/4) ;
336 % X(i+n,i -1) =(- g12(i)/4- g21(i)/4) ;
337 bx(i) = bx(i)...
338 - x( getRow (i,n)+1, getCol (i,n) -1)*(- g12(i)/4- g21(i)/4) ;
339 X(i-n,i+1) =(- g12(i)/4- g21(i)/4) ;
340 X(i-n,i -1) =( g12(i)/4+ g21(i)/4);
341
342 Y(i,i) = -2* g11(i) -2* g22(i);
343 Y(i,i+1) =( g11(i)+P1 /2) ;
344 Y(i,i -1) =( g11(i)-P1 /2) ;
345 % Y(i+n,i)=( g22(i)+P2 /2) ;
346 by(i) = by(i) - y( getRow (i,n)+1, getCol (i,n))*( g22(i)+P2 /2);
347 Y(i-n,i)=( g22(i)-P2 /2) ;
348 % Y(i+n,i+1) =( g12(i)/4+ g21(i)/4) ;
349 by(i) = by(i)...
350 - y( getRow (i,n)+1, getCol (i,n)+1) *( g12(i)/4+ g21(i)/4) ;
351 % Y(i+n,i -1) =(- g12(i)/4- g21(i)/4) ;
352 by(i) = by(i)...
353 - y( getRow (i,n)+1, getCol (i,n) -1)*(- g12(i)/4- g21(i)/4) ;
354 Y(i-n,i+1) =(- g12(i)/4- g21(i)/4) ;
355 Y(i-n,i -1) =( g12(i)/4+ g21(i)/4);
356
357
358 % At southern boundary (y = 0)
359 elseif ˜ etest && ˜ wtest && ˜ ntest && stest
360
361 X(i,i) = -2* g11(i) -2* g22(i);
362 X(i,i+1) =( g11(i)+P1 /2) ;
363 X(i,i -1) =( g11(i)-P1 /2) ;
364 X(i+n,i)=( g22(i)+P2 /2) ;
365 % X(i-n,i)=( g22(i)-P2 /2) ;
366 bx(i) = bx(i) - x( getRow (i,n) -1, getCol (i,n))*( g22(i)-P2 /2);
367 X(i+n,i+1) =( g12(i)/4+ g21(i)/4) ;
368 X(i+n,i -1) =(- g12(i)/4- g21(i)/4) ;
369 % X(i-n,i+1) =(- g12(i)/4- g21(i)/4) ;
370 bx(i) = bx(i)...
371 - x( getRow (i,n) -1, getCol (i,n)+1) *(- g12(i)/4- g21(i)/4);
372 % X(i-n,i -1) =( g12(i)/4+ g21(i)/4);
373 bx(i) = bx(i)...
374 - x( getRow (i,n) -1, getCol (i,n) -1)*( g12(i)/4+ g21(i)/4);
375
376 Y(i,i) = -2* g11(i) -2* g22(i);
377 Y(i,i+1) =( g11(i)+P1 /2) ;
378 Y(i,i -1) =( g11(i)-P1 /2) ;
379 Y(i+n,i)=( g22(i)+P2 /2) ;
380 % Y(i-n,i)=( g22(i)-P2 /2) ;
381 by(i) = by(i) - y( getRow (i,n) -1, getCol (i,n))*( g22(i)-P2 /2);
382 Y(i+n,i+1) =( g12(i)/4+ g21(i)/4) ;
383 Y(i+n,i -1) =(- g12(i)/4- g21(i)/4) ;
384 % Y(i-n,i+1) =(- g12(i)/4- g21(i)/4) ;
385 by(i) = by(i)...
386 - y( getRow (i,n) -1, getCol (i,n)+1) *(- g12(i)/4- g21(i)/4);
387 % Y(i-n,i -1) =( g12(i)/4+ g21(i)/4);
388 by(i) = by(i)...
389 - y( getRow (i,n) -1, getCol (i,n) -1)*( g12(i)/4+ g21(i)/4);
390
391 %Not at any boundary
392 else
393
394 X(i,i) = -2* g11(i) -2* g22(i);
395 X(i,i+1) =( g11(i)+P1 /2) ;
396 X(i,i -1) =( g11(i)-P1 /2) ;
397 X(i+n,i)=( g22(i)+P2 /2) ;
398 X(i-n,i)=( g22(i)-P2 /2) ;
399 X(i+n,i+1) =( g12(i)/4+ g21(i)/4) ;
400 X(i+n,i -1) =(- g12(i)/4- g21(i)/4) ;
401 X(i-n,i+1) =(- g12(i)/4- g21(i)/4) ;
402 X(i-n,i -1) =( g12(i)/4+ g21(i)/4);
403
404 Y(i,i) = -2* g11(i) -2* g22(i);
405 Y(i,i+1) =( g11(i)+P1 /2) ;
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406 Y(i,i -1) =( g11(i)-P1 /2) ;
407 Y(i+n,i)=( g22(i)+P2 /2) ;
408 Y(i-n,i)=( g22(i)-P2 /2) ;
409 Y(i+n,i+1) =( g12(i)/4+ g21(i)/4) ;
410 Y(i+n,i -1) =(- g12(i)/4- g21(i)/4) ;
411 Y(i-n,i+1) =(- g12(i)/4- g21(i)/4) ;
412 Y(i-n,i -1) =( g12(i)/4+ g21(i)/4);
413
414 end % if
415
416 etest = false ;
417 wtest = false ;
418 ntest = false ;
419 stest = false ;
420
421 end %for
422
423 xx = X\bx ’; % Matrix inversion
424 yy = Y\by ’; % Matrix inversion
425
426 x_mat = global2matrix (xx , n, m);
427 y_mat = global2matrix (yy , n, m);
428
429 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
430 %% Check convergence
431 cx = max(max(abs(x_mat -x(2:M -1 ,2:N -1))));
432 cy = max(max(abs(y_mat -y(2:M -1 ,2:N -1))));
433
434 cx_lim = 10ˆ -3;
435 cy_lim = 10ˆ -3;
436
437 if (cx < cx_lim && cy < cy_lim ) || it == maxits
438 conv = 1; % Stop
439 else
440
441 it = it + 1;
442 end %if
443
444 % Under - relaxation :
445 x(2:M -1 ,2:N -1) = (1- alpha )*x(2:M -1 ,2:N -1) + alpha * x_mat ;
446 y(2:M -1 ,2:N -1) = (1- alpha )*y(2:M -1 ,2:N -1) + alpha * y_mat ;
447
448
449
450 end % while
451 figure
452 plot(x,y,’k’,x’,y’,’k’)
453 xlim ([xA ,xD ])
454 ylim ([yD ,yC ])
455 set(gca ,’TickLabelInterpreter ’,’latex ’)
456 xlabel (’$x$ - direction [m]’, ’interpreter ’, ’latex ’)
457 ylabel (’$y$ - direction [m]’, ’interpreter ’, ’latex ’)
458 saveas (gcf ,’elliptic .png ’)

E.6.1.3 getCol.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Function giving the column number of a node %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 function colnumber = getCol (a, N)
5 colnumber = zeros ( length (a) ,1);
6 for j = 1: length (a)
7 i = a(j);
8 colnumber (j) = mod(i-1, N)+1;
9 end %for

10
11 % Adjusting since the x matrix also contains boundary points
12 colnumber = colnumber +1;
13 end % function

E.6.1.4 getRow.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Function giving the row number of a node %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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4 function rownumber = getRow (a, N)
5 rownumber = zeros ( length (a) ,1);
6 for j = 1: length (a)
7 i = a(j);
8 rownumber (j) = floor ((N+i -1)/N);
9 end %for

10 % Adjusting since the x matrix also contains boundary points
11 rownumber = rownumber + 1;
12 end % function

E.6.1.5 matrix2global.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Function transforming a matrix into a globally indexed vector %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 function res = matrix2global (vec , N, M)
5 for j = 1:M
6 vstart = 1;
7 rowstartpoint = N*M + (j-M -1)*N + 1;
8 rowendpoint = N*M + (j-M)*N;
9 res( rowstartpoint : rowendpoint ) = vec(j, vstart :N);

10 end %for
11 end % function

E.6.1.6 global2matrix.m
1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Function transforming a globally indexed vector into a matrix %
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 function [ matrix ] = global2matrix (glob , N, M)
5 for j = 1:M % "down" % the rest of the points are zero
6 for i = 1:N % "left"
7 matrix (j,i) = glob ((j -1)*N + i);
8 end % for
9 end % for

10 end % function
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