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Summary

Laminar, steady flow with no heat transfer in a straight channel and over a backwards
facing step has been solved by the Finite Volume Method. The SIMPLE-algorithm
and the Upwind Differencing Scheme were used and the discretised governing equations
formulated in Cartesian coordinates were solved in MATLAB. The pressure and velocities
have been solved simultaneously. The backwards facing step domains had two different
expansion ratios of H/h = 1.5 and 2, and both a constant inlet velocity and a parabolic
inlet velocity profile were used. A known pressure was used for the outlet boundary
condition.

The thesis is a continuation from the specialisation project of the fall of 2019, and the
models created in this project were improved. The governing equations were solved
on their dimensionless form, and the results for the backwards facing step domains
were obtained for a range of low Reynolds numbers between 0.0001 and 400. The
reattachment lengths of the recirculation zones were found to be in agreement with
results found in literature, but the resolution of the grid was not high enough to show
the recirculation at the lowest Reynolds numbers. The flow into the expanded section
did not resemble the results found in literature, which likely was due to the choice of
discretisation scheme, since using the Upwind Differencing Scheme for the convective
terms can lead to some errors related to false diffusion.

A transfinite interpolation technique was used to obtain an algebraic grid for use when
solving the fluid flow problem formulated in generalised curvilinear coordinates. A
code for an elliptic grid using the algebraic grid as an initial guess was made, but the
code did not yield the satisfactory grid, most likely due to a mistake in the discretised
elliptic grid generation equations or in the code.

iii



v



Sammendrag

Lamineer, stasjoneer strgmning uten varmetransport i en rett kanal og i en kanal
utvidet over et trinn (backwards facing step) har blitt lgst ved bruk av Finite Volume
Method. SIMPLE-algoritmen og Upwind Differencing ble brukt, og de diskretiserte
stromningsligningene formulert i kartesiske koordinater ble lgst i MATLAB. Trykk og
hastighet ble beregnet samtidig. Trinnet i den utvidede kanalen hadde to hgyder pa
H/h = 1.5 og 2 relativt til hgyden pa innlgpet. P& innlgpet ble en konstant hastighet
og en parabolsk hastighetsprofil brukt, mens pa utlgpet ble et kjent trykk brukt som
grensebetingelse.

Denne oppgaven er en viderefgring av arbeid gjort i forbindelse med fordypningspros-
jektet hgsten 2019, og modellene som ble utviklet i fordypningsprosjektet har blitt
forbedret i denne oppgaven. Strgmningsligningene har blitt 1gst pa sin dimensjonslgse
form, og for den utvidede kanalen ble stromningen modellert for ulike lave Reynold-
stall mellom 0.0001 og 400. Lengen pa resurkulasjonssonene etter steget stemmer
overens med resultater fra literaturen, men grunnet det relativt lave antallet celler
brukt i beregningene er ikke resirkulasjonen synlig for de laveste Reynoldstallene.
Stregmingsmensteret over steget skiller seg fra litteraturen, noe som kan forklares med
valget av teknikk for diskretisering av konveksjonsleddene, siden Upwind Differencing
kan gi ungyaktigheter som likner diffusjon.

Transfinite Interpolation ble brukt til & generere et algebraisk nett som kan brukes til
beregning av strgmningslikningene formulert med generelle kurvilinesere koordinater.
Det ble ogsa laget en kode som genererer et elliptisk nett med det algebraiske nettet som
initialbetingelse, men denne koden ga ikke et tilfredsstillende resultat. Mest sannsynlig
er dette relatert til en feil i diskretiseringen av de elliptiske likningene, eller en feil i
koden.
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Introduction

In this thesis, laminar, steady flow with no heat transfer will be solved by the Finite
Volume Method. The Continuity equation and the Momentum equation for fluid mo-
tion will be the starting point for calculating the pressure and the velocities in z- and
y-direction. The pressure will be calculated using a semi-implicit equation derived from
the Continuity equation, and this equation and the Momentum equation will be solved
simultaneously.

The Finite Volume method is a numerical method for solving partial differential equa-
tions by expressing them as algebraic equations [1]. The appropriate equations for the
problem of interest are integrated over a control volume drawn around each computa-
tional node in the domain [2]. Finite differences are used to approximate the derivative
terms yielding a system of algebraic equations before the discretised equations are iter-
ated until convergence. For the system in this thesis, the algebraic equations are linear
and can be solved by matrix operations in MATLAB.

The fluid property ¢ is conserved across each control volume of the domain when
using the Finite Volume method, which is a clear advantage. Conservation of ¢ can
be achieved across the entirety of the domain by using consistent flux relations in the
discretisation of the governing equations. The Finite Volume method is a variant of a
Finite Difference method and is a common numerical method to use in Computational
Fluid Dynamics (CFD) software, where mass and heat transfer problems are solved
using computer simulations [2].

The flow domains will be various simple and complex geometries. Figure 1.1 shows
a straight channel with two different lengths, which will be the domains in use for
developing a two dimensional fluid flow model. The left channel is a short channel
with the length corresponding to the length of the short channel before the backwards
facing step in figure 1.2. The right channel is an extended channel corresponding to
the full length of the backwards facing step domain. Figures 1.2 and 1.3 show two
channel domains with an expansion of the channel, a backwards facing step. The first
domain in figure 1.2 is used by Melaaen [3] and the second domain is used by Biswas
et al. [4].
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I3 I =22

Figure 1.1: Straight channel domains.

Flow over a backwards facing step is an interesting topic in fluid mechanics [4][5], often
because it is fairly simple and it has one fixed separation point where separation of the
flow into layers can be observed [6].

L =22
h =1 =g
TI7TITITIIITIT) H=15
7
Y -0.5 19

T / / / /

Figure 1.2: Domain as used by Melaaen [3], used to develop the two dimensional model for fluid
flow over a backwards facing step.

L =255
L 12012 L
h =1 =25
TITITITIITITT) H=2
y 1 30
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Figure 1.3: Domain as used by Biswas et al. [4], used in the backwards facing step model with a
variation of Reynolds numbers for comparison to the results given by Biswas et al. [4].

A separation of the flow is expected around the step with a circulation zone under
the step before the flow is reattached. Armaly et al. [7] also observed a secondary
circulation zone after the first one on the northernmost wall for Reynolds numbers
higher than around 400. This separation when the fluid flows over a sharp change of
geometry is important within many fields of engineering, and has been a topic of study
since the seventies, for example by Goldstein et al. [8] and Denham and Patrick [9]
[5]. Flow separation of this sort can for example resemble the one over airfoils at large
angles of attack, flow in turbines, heat-exchangers and compressors and flow in pipes
with a rapid expansion [5][6][10]. The backwards facing step is also much used as a
quite simple but also complex enough geometry for modelling of turbulent flow [5]. It
is also a well established test geometry in CFD.

Several studies have been conducted on flow over the backwards facing step where
velocity is calculated along with the reattachment length of the flow after the separation
for large varieties of Reynolds numbers. Examples are Biswas et al. [4], Armaly et al.
[7] , Barton [11], Lee and Mateescu [12], and Nie and Armaly [13] .
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Building a model for the flow over the backwards facing step can work as a stepping
stone for extending the model to new applications. Formulation of the model equations
in generalised curvilinear coordinates around complex geometries is an interesting topic
for which the backwards facing step is a good test geometry. With this method, a grid
with different shape than a regular Cartesian coordinate grid is used, meaning that a
dense number of computational points can be placed where accuracy is needed [3][14].
This would mean that the recirculation zone after the backwards facing step could be
very well represented, while fewer nodes may be placed in the rest of the domain close
to the edges, where the results are more trivial and not of great interest.

In this thesis, all the channels are rectangular like the channel seen in figure 1.4. A
simplification was made by assuming that the channel is laying like in figure 1.4, and
gravity is acting in z-direction.

outlet
z
<\[/'a:
Y
inlet .

Figure 1.4: Example backwards facing step channel in three dimensions.

1.1 Previous Project Work

This thesis is a continuation of work that was done in a specialisation project in the
fall of 2019 [15]. In this specialisation project, the main concepts of the finite volume
method were studied, and a model was made for a one-dimensional and two-dimensional
system as well as a backwards facing step model. These models had severe issues, and
worked only for specific settings and parameter values. The models would not work
for any inlet velocity far away from 1 m/s and the viscosity had to be kept to 1 Pa-s.
The backwards facing step model was modelled by splitting the domain in two sections
exactly at the step, and using the two-dimensional model for a square channel to solve
the two domains. The computational time for these models were very long, and the
backwards facing step model took approximately 14 hours to solve with a relatively
coarse grid size.

The discretised equations in the fall project had some mistakes and the algorithm used
in the MATLAB models was wrongly implemented and therefore slow. The algorithm
used the velocities from the previous iteration for calculating the pressure correction,
which acted as an extra under-relaxation step. This made all the models converge very
slowly, and increasing the under-relaxation factors was not possible.

1.2 Objective of the Thesis

The objective of this thesis is to model laminar fluid flow in channels of regular and
complex geometries using the Finite Volume Method. Furthermore, the objective is
to cover the basic theory of grid generation for use when solving the same complex
geometries using curvilinear coordinates, and to obtain an algebraic and an elliptic
grid.
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1.3 Assumptions

The fluid flow equations will be solved in one dimension and two dimensions in MATLAB.
The flow is laminar and at steady state and will be solved using Cartesian coordinates.
The modelled fluid is water and the fluid properties will be taken to be constant with
the values given in equation (4.1.1). Heat transfer will not be calculated, and gravity
will not be taken into account, meaning the gravitational force is in z-direction.

1.4 Survey of the Thesis

Chapter 2 covers the theory behind the models. Chapter 3 provides all the discretisa-
tions of the fluid flow equations. Implementation of the models in MATLAB as well as
initial guesses and composition of the MATLAB models are given in chapter 4. Chapter
5 contains the resulting profiles and plots for the different flow parameters, as well as
the results for the Reynolds number comparison. The results are discussed in chapter
6, and a discussion of the changes done to the models from the specialisation project
is also given. Chapter 7 contains theory, derivation, implementation and results for
grid generation for use when modelling the same domain in curvilinear generalised
coordinates. Conclusions and recommendations for future work are given in chapter

8.



Theoretical Background

This chapter describes the underlying theory behind building of the fluid low models
used in this thesis. The covered theory includes fluid flow, the Finite Volume method,
discretisation of the domain, and the solution of the equations in MATLAB.

2.1 Fluid Flow

For modelling fluid flow, a set of governing equations that describe the behaviour of the
flow is used. The central equations for modelling fluid flow are the Continuity equation,
the Equation of Motion and the Heat equation. For the case of this project, convective
fluid flow with no heat transfer, the Continuity equation and the Equation of Motion
are sufficient to model the domain. All the derivations of the model equations are given
in chapter 3.

Equation (2.1.1) is the Mass Based Equation of Continuity [16][17].

dp B
5tV (pu) =0 (2.1.1)

where p is the density and u is the velocity vector. Since the density is constant, the
flow is incompressible, and the Continuity equation reduces to equation (2.1.2). In the
derivation to yield the model equations in chapter 3, this simplification is used.

V-u=0 (2.1.2)

The Equation of Motion in vector form is given in equation (2.1.3) [16][17]. It is also
known as the Momentum Equation.

0
a(pu)—i-v- (puu) = -Vp -V .0+ pg (2.1.3)

where p is the fluid density, u is a vector of velocities, p is the pressure, ¢ is the shear
stress and g is a vector of gravity constants.

5
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The Momentum Equation can also be noted in component form for each spatial coor-
dinate. These equations are shown in appendix A.2 along with the expressions for the
shear stress o.

2.1.1 Developed Flow Profile

For fully developed flow, the v-velocity and the u-velocity gradient % are zero, meaning
that the u-velocity is only dependent on the y-position [18]. The fully developed flow
takes a parabolic shape, and this profile is known as the Hagen-Poiseuille law and is
given in equation (2.1.4) [16]. umay is located at y = 0.

u(y) = Umax (1 — <z>2> (2.1.4)

where h is the height of the channel. ., is the maximum velocity and is given by
equation (2.1.5).
Umax = 2uafug (215)

where g, is the average velocity which appears as u in the expression for the Reynolds
number in equation (2.1.12). Equation (2.1.6) shows equation (2.1.4) altered to place

u(Y) = Umax (1 E (y . 2) ) (2.1.6)

Umax &t Yy = 5
Figure 2.1 shows the parabolic profile at the inlet of the narrow channel, represented
with 10 computational nodes in y-direction.

h —@==-
— @
— ~~.'.—>.~~
— ~'—>~~
— ‘Q—b‘

L — ‘.-»
h/2 S % Uppas
— ,‘_’l

— >
— o=
0 —=>

Figure 2.1: A parabolic velocity profile with up.x located at y = %

2.1.2 Wall Boundary

It is widely acknowledged that when approaching a wall, the fluid velocity goes to zero
relative to the wall, as can be seen in figure 2.1 where there are walls at y = 0 and y = h.
This is known as the no-slip condition and is caused by viscous effects close to the wall
[19]. This condition requires that the tangential component of the velocity must be
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zero at the surface. The no-penetration condition applies to the normal component of
the velocity, which must be zero at the surface if the fluid can not move through the
wall [20]. Hence, both the u- and the v-velocity are zero at the walls.

2.1.3 Reynolds Number

The Reynolds number is a dimensionless number that gives an indication of how large
the viscous terms in the Momentum equation are compared to the rest of the terms
[16][21]. The Reynolds number is defined by equation (2.1.7)[17].

_ puD
I

where p is the density of the fluid, u is the average velocity defined as the volumetric
flow rate devided by cross-sectional area, D is the diameter of the tube and p is the
fluid viscosity. For non-circular tubes, there is no intuitive diameter, and the hydraulic
diameter Dj,q is used instead [19]. Equation (2.1.7) becomes equation (2.1.8).

Re (2.1.7)

_ pUDhyd
1

where Dp,q is the hydraulic diameter. The hydraulic diameter for a rectangular duct
is defined by equation (2.1.9) [19].

Re (2.1.8)

B 2hw
 h+w
where h is the height of the channel in y-direction and w is the width of the channel
in z-direction as can be seen in figure 2.2. For the two-dimensional system, w is the

system depth and is equal to the unit length in z-direction which is 1. The hydraulic
diameter is then defined by equation (2.1.10).

hyd (2.1.9)

2h
Dhyd - m (2110)
h T
l

w =1

Figure 2.2: Rectangular duct with labels for the height h, width w and length [ used in the
calculation of the hydraulic diameter.

The magnitude of the Reynolds number categorises the flow into laminar, turbulent or
a transition between the two. The range of each category varies somewhat within the
literature. An example is given in equation (2.1.11) from Geankoplis [17].
Re <2100 Laminar
2100 <Re <4000 Transition range (2.1.11)
Re > 4000 Turbulent

Bird et al. [21] defined the ranges as given in (2.1.12).

Re < 20 Laminar flow with negligible rippling
20 <Re < 1500 Laminar flow with pronounced rippling (2.1.12)
Re > 1500 Turbulent
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2.2 The Finite Volume Method

The Finite Volume method is a numerical method for solving partial differential equa-
tions by expressing them as algebraic equations [1]. When modelling fluid flow, the
Finite Volume method is useful for discretisation of conservation laws.

2.2.1 Structure of the method

For modelling of the convective flow in this thesis, the method can be summarised in
the following main steps:

1. Discretisation of the domain, specifying node points
. Creation of three dimensional control volumes around each node
. Discretisation of the appropriate governing equations describing the fluid flow

. Integration of the equations over the control volumes

2

3

4

5. Approximation of derivative terms

6. Creation of the pressure linked equation (SIMPLE)
7

. Iteration until convergence

The full discretisation of the transport equations from the form of the governing equa-
tions to the discretised form is described in chapter 3.

The integration over the control volumes is the most important step in the method [2].
In other numerical methods the flux terms in the governing equations are calculated
at the node points along with the flow quantity in the flux term. By integration over
the control volumes in the Finite Volume method, the flux terms appear on the cell
faces instead.. This defines a flur out — fluz in balance for each control volume. The
integration over the control volumes therefore ensures conservation of the flow quantity
¢ across the control volume. By approximating the flux terms consistently everywhere,
the conservation of ¢ is accomplished for the whole domain.

For other discretisation schemes, finite differences can be used to discretise the fluid
property itself along with the flux terms as shown in figure 2.3. In the Finite Volume
method, central differences are used to approximate the flux terms only as shown in
figure 2.4 [1]. For the discretisation of the Momentum equation, this applies to the
diffusive terms. The property itself appears in the convective terms in the Momentum
equation and are instead discretised using the Upwind Differencing scheme as described
in section 2.2.2.

09
ox
i1 oi Dit1

- —l = - - - - - oLl — — — — — — ==

i

Figure 2.3: Discretisation method where the derivative %

_is calculated in the same point as ¢;.
3

For the gradient of ¢ in the point i, the general central difference expression is shown
in equation (2.2.1).
99
ox

_ Pip1 — ¢

o (2.2.1)

%
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Figure 2.4: Discretisation in the Finite Volume method where the derivatives are calculated at the
cell faces of the control volume CV around ¢;.

where 20z notes the distance from ¢; 1 to ¢; 1. Since the fluxes are given at the control
volume faces, the gradients are defined in the middle between ¢;_; and ¢; and between
¢; and ¢; 1. The central differences needed for these flux terms surrounding node ¢;
are given in equation (2.2.2).

99| _ ¢i— dina 09| dit1 — &
o = 5 = (2.2.2)

Here dx notes the distance from ¢;_; to ¢; and from ¢; to ¢; 1, e signifies the eastern
cell face and w signifies the western cell face of the control volume in figure 2.4. For
a two or three dimensional case, the expressions for the northern, southern, top and
bottom cell faces are also used.

2.2.2 The Upwind Differencing Scheme

After integration of the Momentum equation over the control volumes around the
velocity nodes, the right hand side of the equation contains velocity gradients that can
be approximated using central differences. After this, the right hand side terms contain
the values at the velocity nodes themselves. On the left hand side the values of the
velocities located on the cell faces appear instead. Equation (2.2.3) shows an example
convection-diffusion equation after integration over the control volume [2]. F and D
are defined in chapter 3.

Fe¢e - Fw¢w = De (¢E - (bP) - Dw <¢P - ¢W) (223>

The right hand side contains the terms ¢p, ¢ and ¢y located at the nodes, while the
left hand side contains ¢, and ¢,, defined at the cell faces of the control volume around
node P. A discretisation scheme is needed for these cell face values.

The Upwind Differencing Scheme is a discretisation method that adapts to the direction
of the flow. For flows that are highly convective, the convective terms in the Momentum
Equation should be influenced the most by the value at the upwind node. When using
a central differencing method, the neighbouring nodes are granted the same influence in
the discretised equation since the direction of the flow is not taken into account.

Figure 2.5 from Versteeg and Malalasekera [2] shows a visualisation of the Upwind
Differencing Scheme for eastgoing and westgoing flow (top and bottom respectively).
The arrows indicate the flow direction. In positive (eastgoing in figure 2.5) convective
flow, the western node w is located upwind from the centre node P, and should have a
much larger influence in the Momentum Equation than the downstream node e. The
cell face values ¢,, and ¢, are then assigned as in equation (2.2.4).

¢ =dw and ¢, = dp (2.2.4)
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Figure 2.5: The Upwind Differencing Scheme visualised, the top figure shows the scheme for an
eastgoing (positive) flow direction and the bottom figure shows the scheme for a westgoing
(negative) flow direction. The figure is taken from Versteeg and Malalasekera [2].

For the negative flow (westgoing in figure 2.5) it is the eastern node that should have
the greatest influence, as shown in equation (2.2.5).

bw=0¢p and ¢ = ¢p (2.2.5)

It is also possible to use different discretisation schemes than the Upwind Differencing
scheme, for example the Hybrid Discretisation Scheme or the QUICK Method [2].

2.2.3 Staggered Grid

Normally all the flow parameters and derivatives can be calculated at the same node
points in the discretised domain. This means that a single node point would have a
value for all the flow properties and derivatives. When using the Finite Volume Method,
it is necessary to use a staggered grid instead. This means that the fluid properties
are not all calculated in the same points in the domain. Instead, different grids are
used for the different parameters. The scalars (pressure as well as density and viscosity
if these are not constant) are calculated at one set of points, while the velocities are
calculated at points located between these scalar node points. This yields three unique
grids. The Continuity equation is placed at the scalar nodes in the domain, while the
x- and y- components of the Momentum equation are placed on the u-velocity grid and
the v-velocity grid, resepctively.

The staggered grids are necessary because central differencing of the fluid flow equations
cancel out the centre pressure node if the grids are not staggered. The result is that
a non-uniform pressure field can appear uniform. Important information about the
pressure field may not be well represented in the solution.
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A visualisation of the staggered grid in two dimensions can be seen in figure 2.6. N is
the number of scalar and v-velocity nodes in the domain in the z-direction and M is
the number of scalar and u-velocity nodes in the y-direction. n is equal to N and is
the number of u-velocity nodes in the z-direction and m is equal to M — 1 and is the
number of v-velocity nodes in the y-direction.

L}
Uin | Prv Yirim UnM_[PNM gUn+v1,0 PN+1,M
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\ 4
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: :
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Figure 2.6: Staggered grid in two dimensions showing the locations of the nodes, indices and
control volumes for u, v and p.

The control volumes drawn around the different node points in the centre of the figure
shows the overlap. For the scalar node points, uppercase indexing letters I and J are
used. For the velocities, the nodes are placed in between the scalar nodes and are
therefore indexed with one uppercase and one lowercase letter.

2.2.4 SIMPLE-Algorithm

The Momentum equation is used for calculation of the velocity components, but an-
other equation is needed to determine the pressure. A transformation of the continuity
equation using the SIMPLE-algorithm provides such an equation [2]. In this section,
the algorithm will be descrtibed in one dimension.

The SIMPLE-algorithm (Semi-Implicit Method for Pressure-Linked Equations) is as
the name suggests a semi-implicit method, meaning it is based on a guessing and
correcting scheme. The velocities and pressure are determined semi-implicitly at the

same time by this guessing and correcting. The method was first proposed by Patankar
and Spalding [22].
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For an arbitrary property ¢, the true value of ¢ can be expressed as a sum of a guessed
value and a correction value. For a node with a known value or if the solution is
converged, the correction value is zero. Equation (2.2.6) shown this relation when ¢ is
the correct value, ¢* is the guessed value and ¢’ is the correction.

o=0¢ + ¢ (2.2.6)

Equations (2.2.7)-(2.2.9) shows the above expression for the true values of the pressure
and velocities for a two dimensional model.

p=p"+p (2.2.7)
u=u"+u (2.2.8)
v=0v*"+1 (2.2.9)

The algorithm makes use of an initially guessed pressure to calculate the velocities, and
then uses this velocities to calculate a pressure correction. This pressure correction is
again used to calculate velocity corrections, and equations (2.2.7)-(2.2.9) are used to
determine the true values of the velocities and the pressure. For an iterative scheme
these "true” values will serve as the initial guess values in the next iteration. Figure
2.7 shows a visualisation of how the corrections are interacting. A visualisation of the
whole SIMPLE-algorithm can be seen in figure 2.8.

{Initial guess p°, u°, vo}

Find velocities from guessed
pressures and velocities
u* from p°, u° and v°
v* from p°, u® and v°

Find pressure correction
from calculated velocities
p’ from v* and v*

/

p

Find velocity correction
from pressure correction
' and v’ from p’

P o
u7v7p

Correct pressure and velocity
p from p° and p’
u from v* and o’
v from v* and v’

Figure 2.7: Correction cycle in the SIMPLE-algorithm

The velocities u* and v* in the first step in the visualisation in figure 2.7 are found
from the discretised Momentum equation and the initial guesses of both the pressure
and the velocities. Below follows the equations used for the correction of the pressure
and velocities. The derivation of these equations are given in chapter 3, but the final
equations and some brief steps are presented in the following sections.
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2.2.4.1 The Velocity Correction Equation

The velocity correction equation can be obtained by replacing u with v* and p with
p* in the Momentum equation. This new guessed velocity equation is then subtracted
from the original Momentum equation to obtain equation (2.2.10). The same procedure
is used to obtain a velocity correction for the v-velocity.

] Aq
Uiy = Uy g — W ( /I,J - p/171,J) (2.2.10)

)

A, is the control volume face area and a{®"® is the coefficient multiplied with the

centre node u; in the Momentum equation. The velocity correction itself is equation
(2.2.11).

A
/ _ X / - /
U g = 0z (PI,J p[—l,J) (2.2.11)

and likewise for other velocity components.

2.2.4.2 The Pressure Correction Equation

The pressure correction equation comes from the Continuity equation. The velocity
correction equation (2.2.10) is used and is inserted into the continuity equation. This
yields the pressure correction equation, equation (2.2.12).

/ / / / /
V1gPry T VIt1,0P 41,0 + VI-1Pi1,y T VgD g VLo = Brg (2.2.12)
with

2 2 2 2
PAL i PA  PAY i PAY L (2.2.13)

vr J - centre aqentre centre acentre

Qiy1.g iJ ar iy I

2
PAmH,J
Viy1,J = — W (2214)
1 9’

PAiz'
Vi1 =— am’t,zj (2.2.15)

i,J

A2,
Vg1 =— Pyl (2.2.16)

centre
arj+1

A2,
Vi1 =— Pluls (2.2.17)

centre
ar;j

Br. = — A Ff  + ALFL, — AJFy  + A FY, (2.2.18)

The guessed velocities in the source term are taken as the values of the velocity at
the previous iteration. The velocity terms in the source term therefore is equal to the
continuity equation at the previous iteration. For a converged solution the pressure
correction is zero, which fulfills the continuity equation.
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2.2.4.3 Under-Relaxation Factors

To avoid divergence during the iterative scheme, the non-converged solution may be
relaxed before it is sent to the next iteration.

Implementation of under-relaxation of the flow parameters makes sure the value that
is sent to the next iteration is not overwhelmingly large even if the difference between
the guessed value and the true value is vast. Under-relaxation is often crucial when
the SIMPLE-algorithm is used since the method is a guess and correct method. If the
correction would have been added directly and passed along, the value could have a
large overshoot, and this may cause divergence. Instead a fraction of the correction
is taken and added to the guess as shown in equations (2.2.19)-(2.2.21). Lowering the
under-relaxation factors increases the computational time because only a fraction of
the updated solution is passed on to the next iteration.

P =p° 4 app (2.2.19)
u™" = a(uF +u") + (1 — ay)u* (2.2.20)
V" = a, (v + ") + (1 — a,)v* (2.2.21)

The superscript ™" indicates the value that is passed on to the next iteration, ° is the
initial guess * is the secondary velocity guess calculated from the Momentum Equation,
and ’ signifies the correction.

It is suggested by Peric [23] and Peric et al. [24] that the optimal under-relaxation
factors for the pressure and the velocities are given in equation (2.2.22).

ay+a, =1 (2.2.22)

The values of o, and a, are suggested to be approximately 0.2 and 0.8 respectively.

2.2.4.4 Visualisation of the Algorithm

Figure 2.8 shows a visualisation of the SIMPLE-algorithm in two dimensions with the
calculation order and with arrows showing which parameters are passed on to the next
step of the algorithm. The superscript ° symbolises the initial guess or the value in
the previous iteration. The coefficients a; and a; are functions of the values of the
velocities at the previous iteration, and the source terms b; and b are functions of the
pressure at the previous iteration. * signifies the secondary velocity (guess) calculated
from the Momentum Equation, and ’ signifies the correction values. The superscript
" indicates the value that is passed on to the next iteration. The implementation of
the algorithm for the MATLAB model is given in chapter 4.
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Figure 2.8: Visualisation of the SIMPLE-algorithm and the implemented procedure in MATLAB
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2.3 Properties of Numerical Schemes

A numerical method that yields a result that is realistic and physical is characterised
by a set of fundamental properties, where the three most important are the conserva-
tiveness, the boundedness and the transportiveness [2]. These properties are especially
important when a small number of computational nodes are used. The accuracy of the
discretisation schemes in the Finite Volume Method in relation to these properties is
shortly accounted for in this section.

2.3.1 Conservativeness

Integrating the Momentum equation over the control volume C'V yields a set of dis-
cretised equations. In the discretisation, terms for the flux across the control volume
faces appear. Conservation of the flow across the domain is obtained when the flux
out of a control volume is equal to the flux entering the next control volume [2]. This
happens when the flux through a cell face is defined by the same expression for both
the control volumes this cell face is a part of. The flux is then represented consistently,
and the conservativeness is good.

2.3.2 Boundedness

The boundedness property states that if there is no source term, the boundary values
of the solved property ¢ should be the limits for the possible solution values of ¢ [2].
This means that the value of the property within the domain should be between the
inlet and the outlet value. In addition, in the discretised equation, the sign should be
the same for all the coefficients a. This means that if an increase in the value of the
property ¢ is observed at one node, the value of the property should also increase in
the neighbouring nodes [2].

If a numerical scheme does not possess the boundedness property, the model may not
converge, or the converged solution is "wavy” with over and undershoots [2].

2.3.3 Transportiveness

The Péclet number is a dimensonless number giving information about the rate of
convection compared to the rate of diffusion. The Péclet number is defined as in
equation (2.3.1)[2].

Pe = r -
D T/ox
If the Péclet number is large, the flow is dominated by convection and the flow is
less dependent on the downstream sections of the domain. This is often the case for
engineering problems [25]. The upwind section is then cause for most of the influence
on the node in question. The transportiveness of the numerical scheme is related to
the value of the Péclet number and if the direction of influence in the domain is in
accordance with the magnitude of Pe [2].

(2.3.1)
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2.3.4 Properties and Accuracy of the Upwind Differencing
Scheme

The Upwind Differencing scheme will be used to discretise the left hand side of the
Momentum equation in this thesis. The discretisation scheme is conservative because
the fluxes are expressed consistently over the whole domain. The coefficients a in the
discretised momentum equation are always positive, and the boundedness criteria is
therefore also met. Lastly, the transportiveness criteria is met because the direction of
the flow is accounted for. Hence the Upwind Differencing Scheme should yields results
that are realistic and physical.

The Upwind Differencing Scheme is using backwards differences, which come from
Taylor series. The scheme is therefore first order accurate [2], and the errors associated
with the neglected higher order terms may be significant. The results obtained are
stable. Unfortunately, the Upwind Differencing Scheme is known for having issues
with numerical diffusion errors, and can yield incorrect results if the flow is multi
dimensional and the direction of the flow does not line up with one of the coordinate
directions. The error that is caused by this is known as false diffusion because it
appears like diffusion in the solution, and is often large for coarse grids [2]. Decreasing
the size of the control volumes and creating a more refined solution grid may help, but
this sacrifices memory and computational time.

The central differencing scheme is conservative and second order accurate, but not func-
tional for convection-diffusion problems because it lacks the transportiveness property.
The boundedness is also not good for cases where Pe > 2 [2]. Higher order methods

may reduce the errors due to false diffusion, but they are generally less computationally
stable [2].

2.4 Discretisation of the Domain

For numerical solution of the flow equations, the domain needs to be discretised to
create points at which the fluid properties are calculated.

2.4.1 Control Volume

A control volume is drawn around each computational node in the domain. Cartesian
coordinates are used, and the unit vectors for z- and y-direction is represented by
figure 2.9. The positive flow direction of x- and y are left to right and bottom to top
respectively, as shown in the figure.

north
+Ur;

e

west
1Se9

y +;
e

T

south

Figure 2.9: Scematic representation of the positive flow direction for the velocity components, as
well as a representation of the orientation of the directions west, east, north and south.

Figure 2.10 shows a control volume drawn around the node point P. The width dz and
height dy of the control volume are noted along with the cross-sectional areas A, and
A, and the normal vectors n. The same width 0z and height dy are used for all the
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control volumes in the domain. The control volume always has three dimensions, and
figure 2.11 shows the same control volume with the third dimension also visible. The
system depth 0z is set to one in the two dimensional case. Note that the normal vectors
in z- and z-directions have negative signs because of the angle the control volume is
displayed from.

Figure 2.10: Control volume around computational node P with labels for the width dx and height
0y of the control volume as well as the normal vectors n and the cross-sectional areas A, and A,.
The unit vectors e, and e, of the coordinate system are also shown.

BE T8 A,

0z
or

Figure 2.11: The control volume in figure 2.10 seen from a different angle and with labels in all
three dimensions.

2.4.2 Global Indexing

Global indexing is used for the node points. This means that instead of using a vector
position of the form (4, j), all the node points are assigned a number from 1 to N where
N is the number of nodes, following the expression in equation (2.4.1).

u(g,i) =u(i-(j—1)+1) (2.4.1)

The counting can for example be started in the lower left corner of the domain, as
shown in figure 2.12. As can be seen from the figure, the number of computational
nodes in y-direction for the v-velocity is one less than for the scalars and the u-velocity.
There is an equal number of computational nodes in z-direction for all the variables.
The inlet velocity is located exactly at the inlet, while the outlet pressure is located
one node outside of the computational domain. Note that in figure 2.6, the velocity
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Figure 2.12: Example of a globally indexed system of node points.

node w; ; is located left of the scalar node p;; and the velocity node vy ; is located
below pr ;. With the global indices in figure 2.12, the velocity nodes u; and v are
located right and above of the scalar node p; instead.

By using this global indexing system the velocities and the pressure are stored in vectors
of size (1, N) instead of matrices of size (m, n) where m is the number of computational
points in y-direction and n is the number of computational points in x-direction.

2.5 Non-Dimensional Equations

Non-dimensionalising the governing equations means that they are transformed in to
a dimensionless form. This is done by dividing all parameters with a scale with the
same unit as the parameter itself, removing all units.

Converting the flow equations to a dimensionless form can make the problem at hand
easier to solve, and possible numerical difficulties in the solution are eliminated [2][25].
The difference between small or large values of parameters when the equation is made
dimensionless give an indication to which terms are most important in the equation.
For the regular equation, this is not the case, and larger values can simply mean that
the property is measured in a larger scale. An example is pressure compared to velocity,
where pressure has the unit Pa and is most often in order of magnitude of 105. This
may cause a problem if the velocity in m/s has a very low value, because the terms
including the velocity are very small compared to the pressure, without being of less
importance to the model. Such problems can be solved by converting the equations to
their dimensionless form.
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Dimensionless variables are noted with a circumflex y where x is an arbitrary variable.
Equation (2.5.1) shows the definition of the dimensionless variable Y.

X

= (2.5.1)

)2 =
where Y is scale with the same unit as y.

The dimensionless Continuity equation at steady state takes the same form as the
regular Continuity equation, as seen in equation (2.5.2).

V- (pa) =0 (2.5.2)
The dimensionless Momentum equation will take the same form as the regular Mo-
mentum equation except the inverse of the Reynolds number appears as a coefficient
in front of the diffusive terms as given in equation (2.5.3) [4][26].

. 1
Vo (p) = —Vp— -V 6 (2.5.3)

The derivation of the dimensionless Continuity and Momentum Equations are given in
section 3.4.

2.6 Solving Systems of Linear Algebraic Equations
in MATLAB

As mentioned above, the Finite Volume method is used to convert the fluid flow equa-
tions into systems of linear algebraic equations. The system of linear algebraic equa-
tions for the velocity in one dimension is written as in equation (2.6.1). All the velocities
u are represented in a vector due to the use of the global indexing system as described
in section 2.4.2.

A;—1Ui—1 + a;u; + A 1Uj1 = bz (261)
where a are coefficients and b is the source term. The coefficients a can be sorted in
the coefficient matrix U as shown in equation (2.6.2).

a1 a2 a3

U=|... a;—1 a; A;i1+1 . (262)

anN—2 aN-1 an|

The source terms are stored in the vector b and wu is the vector of velocities, and the
system of linear algebraic equations can be written on the form Uu = b as shown
in equation (2.6.3) [27]. The first and last points 1 and N require boundary condi-
tions.

[ar  az a3 11 we ] [ b2 ]
A;—1 a; i1 R U; = bl (263)
L ayN-2 an-1 AaN] |[UN-—-1] _bN—l_

A system of this form can be solved in MATLAB by using the divided into operator \ as
shown in equation (2.6.4) [28].
u = A\b (2.6.4)



Discretisation

In this chapter, the the discretised Continuity, Momentum and SIMPLE-equations in
two dimensions are obtained. The governing equations in two dimensions as given
in section 2.1 are the starting point for the discretisation. The discretisation of the
dimensionless Continuity and Momentum equations is also described. The governing
equations in vector and component forms as well as some necessary theorems are given
in appendix A. The discretisation of the two dimensional equations with all interme-
diate steps included can be found in appendix C.

The straight channel was first modelled in one dimension. The discretisation of the
equations in one dimension is given in appendix B.

3.1 Continuity Equation
The Continuity Equation as given in equation (2.1.1) is integrated over the control

volume C'V. The transient term is omitted because of the steady state assumption.
This yields equation (3.1.1).

/CVV- (pu) av =0 (3.1.1)

By the Gauss’ theorem in equation (A.3.1) the volume integral can be converted to a
surface integral, and equation (3.1.1) becomes equation (3.1.2).

/An- (pu) dA=0 (3.1.2)

In equation (3.1.2), n - (pu) is the component of pu normal to the surface element
dA.

21
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The four surfaces are west, east, south and north for the two dimensional case as shown
in figure 2.10. Splitting the surface integral into these four surfaces noted w, e, s and
n yields equation (3.1.3).

/ pe, -udA+ p(—e;) udA
Am,e

A:c,w

+/A p ey-udA—ir/ p(—ey) -udA=0 (3.1.3)
y,n Ay,s

Here u is the z-velocity component and v is the y-velocity component. Writing out the
integrals yields equation (3.1.4).

PUeAy e — pUywAg w + ponAyn — prsAys =0 (3.1.4)

where u is the z-velocity component and v is the y-velocity component. The Continuity
Equation takes place at all the scalar nodes in the domain, which means that the cell
face velocities u., u,, vs and v, are located at the actual velocity nodes since a staggered
grid is used. No interpolation is needed to determine the values of wu., ., vs and v,.
A visual representation of the staggered grid can be seen in figure 2.6.

The convective mass flux per unit are F° is defined as in equation (3.1.5).
F¢=pu Fy=pv (3.1.5)

Since the control volume is rectangular with equally sized opposite cell faces, the area
subscripts w, e, s and n may be omitted so that the equations only contains the terms
A, and A,. The discretised Continuity equation is then equation (3.1.6).

FC A, — FC A+ FC A, — FC A, =0 (3.1.6)

3.2 Momentum Equation

The Momentum Equation in vector form is given in equation (2.1.3). The transient
term is omitted because of the steady state assumption and the gravity term is omitted
because the gravity is assumed to be acting in z-direction which is not taken into
account in this thesis. This yields equation (3.2.1).

V-(puu)=-Vp—-V-0o (3.2.1)

The left and right hand side of the equation will be discretised separately before com-
bining the equation in the end.

3.2.1 Left Hand Side

The left hand side of the momentum equation contains the convective terms of the
equation, and the discretisation follow the same pattern as for the Continuity equation.
RHS notes the right hand side of the equation. The integral over the control volume
CV is taken to yield equation (3.2.2).

/C V- (puw)dV = RHS (3.2.2)
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By Gauss’ theorem in equation (A.3.1) the volume integral can again be converted to
a surface integral. This yields equation (3.2.3).

/An . (puu) dA = RHS (3.2.3)

n - (pu) is the component of pu normal to surface element dA. The four surfaces
are the same as for the Continuity equation, west, east, south and north for the two
dimensional case as shown in figure 2.10. The surface integral in equation (3.2.3) can
be split into an integral for each of the normal surfaces noted w, e, s and n. The normal
vectors around the control volume can be seen from figure 2.10. This yields equation
(3.2.4).

/ e, - puu dA+/ —e, - puu dA
Az,e Az,w

+/ e, - puu dA +/ —e, - puu dA =RHS (3.24)
Ayv" Ay,s

Taking the dot product of the unit vector e, or e, with one of the velocity vectors u
and integrating yields equation (3.2.5).

p(uu), Aze — p(uu), Agw + p(vu), Ay n — p(vu), A, , = RHS (3.2.5)

where u is the z-velocity component and v is the y-velocity component. Equation
(3.2.5) may then be multiplied with the unit vector e, or e, to obtain the x- and
y- components of the equation. Since the control volume is rectangular with equally
sized opposite cell faces, the area subscripts w, e, s and n may be omitted so that the
equations only contains the terms A, and A,. The z- and y- components of equation
(3.2.5) are given in equations (3.2.6) and (3.2.7) respectively.

p(uu), Ay — p(uu), Ay + p (vu), A, — p (vu), A, = RHS (3.2.6)
p(uw), Ay — p(wv), Ay + p(vv), Ay, — p(vv), A, = RHS (3.2.7)

Like for the Continuity equation, the convective mass flux per unit area F'is introduced
as shown in equation (3.2.8).

F, = pu F, = pv (3.2.8)

Unlike the coefficients F° in the Continuity equation, the coefficients F' are obtained
from interpolation. This is because the velocities u., u,, vs and v, in equations (3.2.6)
and (3.2.7) are defined at the cell faces for the control volumes around the velocity nodes
(see figure 2.6). No velocity value is calculated at these cell faces, but interpolation
yields a value of the u- and v- velocity components. Figure 3.1 shows the velocity
nodes u; ; and vy ; and the surrounding nodes with indices that are needed to define
F around the nodes w; ; and v;; for which the control volume CV is drawn around.
The expressions for F' for each component and each cell face are given in equations

(3.2.9)-(3.2.16).

Wi g+ Uit1,g Wit1,7—1 T Uit1,]

Fre = p=tmg (3.2.9) F,.=p 5 (3.2.13)
Ui—1,0 + Ui g Ui g—1 + Ui g
ro_ pU171,j+1 + U141 (3.2.11) ro_ pvl,j + U141 (3.2.15)
. 5 2. o e 2.
F, = pm‘l’j;”” (3.212) F,, = pw (3.2.16)



24 CHAPTER 3. DISCRETISATION

Ui g1
UL1,j+1 Urj+1
U; 1.J U; Prj Uiryg
VL1, Urj Urs1,
Ui g-1 Uir1J-1
Vrj-1

Figure 3.1: Node points with indices used in the expressions for the convective mass flux F.

Rewriting these with using the symbols P for the node point for which the control
volume C'V is drawn around and W, E, S and N for the neighbouring nodes yields
equations (3.2.17)-(3.2.24).

Uup +Uug Usg + Ug

Fro=pto=t (3.2.17) R (3.2.21)
Fru = qu—;uP (3.2.18) Fyow= p“S;“P (3.2.22)
Py = pUNW;_ ONC(3.2.19) F,.= p”P;”N (3.2.23)
P, =pY ‘; op (3.2.20) F,=p-s ; o (3.2.24)

The coefficients F' are taken as knowns in the equation systems, and the velocities used
to determine F' are taken as the velocities at the previous iteration.

Equations (3.2.9)-(3.2.16) inserted into equations (3.2.6) and (3.2.7) yields equations
(3.2.25) and (3.2.26) for the z- and y-components respectively.

FpeueAy — Fp Ay + Fy pun Ay — Fy sus Ay = RHS (3.2.25)

Fp v Ay — Fy Ay + Fypv, Ay — Fy v Ay = RHS (3.2.26)

The remaining velocity terms in equations (3.2.25) and (3.2.26) are still defined at the
cell face of the control volumes. This is solved by use of the Upwind Differencing Scheme
as presented in section 2.2.2. For this, the direction of the flow must be determined,
which is done using the coefficients F'. The max operator is introduced, which makes it
possible to represent the result for all the flow directions in one single equation.

Equation (3.2.27) is the discretised left hand side of the z-component momentum equa-
tion on coefficient form with the coefficients as given in equations 3.2.28-3.2.29.

apup + agup + awuw + ayuy + asus = RHS (3.2.27)



3.2. MOMENTUM EQUATION 25
with
ap = —aw —ag —any — ag + F%QAI — Fx’wa -+ Fx,nAy — Fx,sAy (3228)

ap = —max((), —Fx,eAx) an = —max(O, —FxmAy)

aw = —max(F, ,A;,0)  ag = —max(F,A,,0) (3.2.29)

Likewise, equation (3.2.30) is the discretised left hand side of the y-component mo-
mentum equation on coefficient form with the coefficients as given in equations 3.2.31-
3.2.32.

apvp + apvp + awvw + ayvy + asvg = RHS (3.2.30)
with

ap=—aw —ag —ay —as + F, A, — F, ,A, + F, A, — F, (A, (3.2.31)

ap = —maX(O7 —Fy,eAx) any = —max(O, —FymAy)

aw = —max(F,,4;,0)  ag = —max(F, ,A,,0) (3.2.32)

3.2.2 Right Hand Side

The right hand side of the Momentum equation contains the diffusive terms of the
equation. The shear stress term in equation (3.2.1) can be written out like in equa-
tion (3.2.33) for two dimensions. LHS denotes the left hand side of the momentum
equation.

do, Oo,

- — 3.2.33
ox oy ( )
The z- and y- components of the Momentum equation in vector form can be obtained
by taking the dot product with the unit vectors e, and e, respectively. The result are

equations (3.2.34) and (3.2.35) respectively.

LHS = -Vp —

Lis — 9P 0% 00wy

5 8e " B (3.2.34)

LHS = — & — 22w _ 20w (3.2.35)

The expressions for the stress tensor components o are inserted into equations (3.2.34)
and (3.2.35). The expressions are given in appendix A. V-u is zero from the Continu-
ity equation (2.1.2) for constant density, and equations (3.2.34) and (3.2.35) become
equations (3.2.36) and (3.2.37).

~_Op 0 ou 0 ou

LHS = =5 T o (“m) T oy (“ay> (3.2:36)
_ Op 0 ov 0 ov

LHS =—5, " o (“m) oy (“ay) (3.2.37)

Equations (3.2.36) and (3.2.37) can then be integrated over the control volume C'V'. For
the diffusive terms, the volume integral is split, taking dV = dA,dx and dV = dA,dy
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as seen in equations (3.2.38) and (3.2.39).

LHS = - /C’V Ox v+ /59;/ 81‘( au) dAd
+/5y /A ﬁay (,@Z) dA,dy (3.2.38)

LHS:—/CV?; dv+/6m//h£<ugi> dA,dz

/53, /A Ay ( aD dA,dy (3.2.39)

The surface integrals are taken first, yielding equations (3.2.40) and (3.2.41).

op 0 ou 0 ou
LHS = - — dV — lp=—| A.d — p=—] A,dy (3.2.40
cv Ox T s 0z <u0x> S oy <ﬂ8y> vy )

dp 0 ov 0 ov
LH = - — —pu=— 1 A — = A 241
S cv Oy v+ 5z Ox <M8x> o4z + sy Oy <M8y> vy (3 )

The volume integral for the pressure terms are taken, and by the Fundamental Theo-
rem of Calculus as given in equation (A.3.2), equations (3.2.40) and (3.2.41) become
equations (3.2.42) and (3.2.43). Since the control volume is rectangular with equally
sized opposite cell faces, the area subscripts w, e, s and n may be omitted so that the
equations only contains the terms A, and A,.

dp ou ou ou ou

LHS = — —| dzA, — A, —u—| A, — A, —u—| A 3.2.42
Gscpm +u6:1:e u@xw +M8yn Y u&ys Y ( )
Op ov ov ov ov

LHS = — —| dyA —| A, —pu—| A, —| A, —pn—| A 2.4
ayp y y+/j’8x‘e /’Laxw +lu‘ayn Y /’l’ays ) (3 3)

The above gradients are approximated with central differences. For the pressure gra-
dients equations (3.2.44) and (3.2.45) are used. The pressure points py s, pr—1,s and
pr.j—1 then line up with existing pressure nodes. P corresponds to the centre node
point for the velocity in this case, which are w; ; and vy ;.

dp Pr,g —Pi-1,J

—_ === 3.2.44
ox P ox ( )
@ _ Pry—Prj-1 (3.2.45)
Y| p oy

The velocity gradients are approximated with the central differences as shown in equa-
tions (3.2.46)-(3.2.53).

gu _ ui+17ug_ Ui, g (3246) gv _ /UIJrl,_g_ UIJ (3250)

r x x x

(9u . ULJ — UZ'_LJ 81) . ’ULj — U]_Lj

a— = (57 (3.2.47) 8— = 57 (3.2.51)
a: T T x

ou Ui, J+1 — U4, ov Vrj+1 — Vrj

— === (3.2.48) —| == (3.2.52)

Ay, oy Y|, oy

ou U g — Ujg—1 ov Vrj — Vrj-1

— == 3.2.49 — = 3.2.53

oy, oy ( ) dy|, 5y ( )
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Since the velocity gradients are defined at the control volume faces w, e, s and n, the
velocities in the right side of equations (3.2.46)-(3.2.53) line up with existing velocity
nodes. The staggered grid indices are shown in figure 2.6.

The diffusion conductance D can be introduced, and is defined as in equation (3.2.54).

D, =14 D, =X (3.2.54)

Inserting the gradients in equations (3.2.44)-(3.2.53) and the diffusion conductance D
into equations (3.2.42) and (3.2.43) yields equations (3.2.55) and (3.2.56) for the z-
and y-component respectively.

LHS = —(pI,J — pI—l,J) Ay + DA, (UH—LJ — Ui,J) - D A, (ui,J - ui—l,J)
+ Dy Ay (i g41 — i) = DyAy(uig —ui 1) (3.2.55)

LHS = —(pLJ — p17J71)Ay + D, A, (UI+1,j — UI,j) — D A, (vl,j - UI*LJ')
-+ DyAy (Ul,j-l-l - U[’j) — DyAy (’U]J' - UI,j—l) (3256)

3.2.3 Combined Momentum Equation

The left and right side of the momentum equation can be put back together and
rearranged as given in coefficient form below.

Equation (3.2.57) is the discretised z-component momentum equation with the coeffi-
cients as given in equation (3.2.58).

@i, gUi, g+ Qi1 JWig1,7 + Qi1 gUi—1,7 + Qi g1 g1 + Qi g—1Ui -1 = b; g (3.2.57)
with
a; g = —Qiy1,0 — Qi—1,] — Qi g1 — Ui g1 + FpeAy — Fp Ay + Fyn Ay — F, A,
aiy1,7 = —max(O, _Fx,eAx) - D, A,
i—1,y = —maX(Fm wAy, O) D A,
i j41 = —max(O, —Fyn ) — D,A,
ai g1 = —maX(Fy sAy, ) D,A,
bi.s == (PI,J - p[l,J) Ay
(3.2.58)

Likewise, equation (3.2.59) is the discretised y-component momentum equation with
the coefficients as given in equation (3.2.60).

arjVrj + @r41,Vr41,5 + Ar-101-1,j + @rj+10r41 + arj1vrj-1 = br; (3.2.59)
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with
ar; = —Qr41, — -1, — Q1 j41 — Q-1 + Fp Ay — FpwAy + Fy Ay — F, A,
41, = —max((), —Fx,eAx) - D, A,
ar—1; = —maX(Fx wAy, 0) - D A,
arj+1 = —max(O, Fy,nAy> D,A,
arj—1 = —maX(Fy’sAy, 0)
br; = — (pI,J —PrJ- 1>Ay

(3.2.60)

3.3 SIMPLE-Equations

In this section the velocity correction and pressure correction equations for use with
the SIMPLE-algorithm are derived.

3.3.1 Velocity Correction Equation

The discretised Momentum equation can be rewritten as an equation for the guessed
variables as described in section 2.2.4 by exchanging all the variables with the guessed
equivalents, for example u with «* and p with p°. In this case, the "guessed” velocities
u* and v* are the velocities obtained from the Momentum equation earlier in the
algorithm for the same iteration, and the guessed pressure p° is the pressure from the
previous iteration. The velocity correction equation can then be obtained by taking
the discretised Momentum equation for v and subtracting the Momentum equation for
the "guessed” velocity u* as in equation (3.3.1).

i g (Wi g — g g) + aipr,g(Wig1,g — uiyq g) + a1, (Um0 — ui_y )

+ @i g1 (Wi g1 = gyg) + aig-1(Uig-1 —uj ;)
= <_pI,J +Ppr-10 +pry—Di- 1J>A +M/bp/ (3.3.1)

From the definition of the correction values in section 2.2.4 it follows that the terms of
the form u — u* are equal to the velocity correction u’ and the terms of the form p — p°
are equal to the pressure correction p’. The velocity correction in the centre node w; ;
is kept while the velocity corrections in all the neighbouring nodes are omitted. This
yields the velocity correction equation (3.3.2) for the velocity node w; ;.

A,
Pt /
e (Pl —Pi1s) (3.3.2)
centre

ai’;'"e is the velocity equation coefficient for the node u; ;. Equation (3.3.3) shows

the v-velocity correction for the node point v;; which can be obtained in the same
way.
A

aﬁenire (p/I,J _pII,J—l) (333)
’j

/ — —
Urj =
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The true velocity value is then obtained by equation (2.2.9) as written out in equations
(3.3.4) and (3.3.5).

. A
Ui, g = Ui g — age}ire (P/[,J - p,]—l,J> (3-3-4)
2
. A
Urj ="Vr; — rejire (p/],J - pII,J—1> (3.3.5)
J

3.3.2 Pressure Correction Equation

The pressure correction equation is obtained from the Continuity equation (3.3.6) and
the velocity correction equations (3.3.4) and (3.3.5).

puiv1,0 Az — pui g Ae + pur i Ay — purjAy =0 (3.3.6)

The velocities v and v in equation (3.3.6) are replaced with equations (3.3.4) and
(3.3.5) to yield equation (3.3.7). At the boundaries of the domain, one or more of the
velocity terms in equation (3.3.6) are known. In this case, the known velocity term is
not replaced by equations (3.3.4) or (3.3.5), but the known velocity value is kept. This
is because the velocity correction is zero for a node with a known velocity [2].

Ay
pA, ( Uit 1,] — “contre D l,J_p,[,J )
a a 'y ( i )
. Ay . A
o pr <ui:<] T centre (pl J p,I—l,J)> + pAy (Ul,j-',-l - Tire (p/]”]_g_l - p,[ﬂ]>>
Ai,g arj+1
oA, (v, - =0 (3.3.7
Py U]aj qcentre (pI,J pI,J—l) - ( - )
Ij

Rearranging equation (3.3.7), collecting all the pressure correction terms on one side
and all the guessed velocities on the other yields yields equation (3.3.8) with the coef-
ficients in equation (3.3.9).

/ / / / /
vigPry Y Vis1,0Prs1 T VI-1,0Pr 1y T V1P g1 Y VII-Pr g1 = Bra (3.3.8)

with

vr g _ IOA%,HLJ + pAi,i,J + pAQZJ, 1,741 pAy, 1

centre centre centre centre
A1, a; g afj+1 ay;

U N pAac P4l J
I+1,J  — acentre
i+1,J

2
IOA:L‘,i,J
acentre

i (3.3.9)

Vi-ig = —

2
_ pAy I1,5+1
Vra+1r = qcentre
I1,j+1

IOAZ,IJ

centre

vrg-1 = — a
1,j

Br, = - Azpu:;,e + Aa:pu::,w - Aypu;,n + AypU;S
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The source term takes the form of the Continuity equation and is equal to zero for the
converged solution, since all the pressure correction terms are zero for the converged
solution. The velocities in the source term are guessed velocities that are taken as the
velocity values obtained from the Momentum equation

Figure 3.2 shows the numerical "molecule” for the pressure correction equation, showing
where each term is located on the staggered grid. The velocity terms in the source term
are located at the cell faces of the pressure control volume, and these cell faces line up
with the velocity nodes.

Prj+1

Pre1g

Figure 3.2: Shape of pressure correction equation "molecule” in two dimensions.

3.4 Dimensionless Equations

In this section the derivation of the two dimensional discretised equations given in
sections 3.1 - 3.3 are repeated for making these equations dimensionless. The steps of
the discretisation themselves are identical to what is given in sections 3.1 - 3.3, and
only the main steps are repeated in this section.

The dimensionless Continuity equation, and therefore also the dimensionless pressure
correction equation will take the same form as for the ordinary variables. The di-
mensionless Momentum equation will take close to the same form as the dimensional
version, but with a factor - before the viscous terms as shown in equation (3.4.1)

[20]. )
A An 1 -
(pii) = —Vp— —V -6 4.1
V- (pan) Vp Rev o (3.4.1)

A diacritic circumflez ~ is used to indicate that the variable ¢ is dimensionless.

3.4.1 Definition of dimensionless variables

Below follows an overview of the different dimensionless variables, lengths and oper-
ators. As given in equation (2.5.1), the numerator is the original parameter and the
denominator is the scale for that parameter in the definitions of each dimensionless
parameter.

The pressure is adjusted by subtracting the outlet pressure as defined in equation
(3.4.2) before it is made dimensionless by dividing with an appropriate scale. p is the
adjusted pressure and is zero at the outlet.

ﬁ =P — Pout (342)
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3.4.1.1 Variables

The dimensionless variables for the velocity vector G, adjusted pressure p, viscosity u
and density p is given in equations (3.4.3)-(3.4.6).

u

0a= 3.4.3
a=- (3.4.3)
s P

D= 3.4.4
5 (3.4.4)
[ (3.4.5)

Hin M
p= r_r (3.4.6)

w;y, is the scaling factor for the velocities and is the inlet velocity. If the inlet velocity is
not constant, the velocity scale is the average velocity at the inlet. All components of
the velocity are normalised with the same scale. A diacritic macron ~ is used to signify
the scale for a variable. The pressure scale p is given by equation (3.4.7) [16].

p=pc, (3.4.7)

Pin is the inlet density and p;, is the inlet viscosity. The density and viscosity are
constant over the domain and are expressed this way for simplicity in the derivation
despite p;, being equal to p and u;, being equal to pu.

3.4.1.2 Length, area, volume

All the length units are scaled with the same parameter, which is taken to be the
hydraulic diameter Djyq4. 9., 0, and J, are the width, height and depth of the control
volume respectively. The definitions and directions of d,, ¢, and J, as well as A, and
A, can be seen from figure 2.11.

Equations (3.4.8) - (3.4.19) show the definitions of the dimensionless versions of all
length scales and variants of length scales.

=g (3.48) 9= D:Zyd (3412) =5 (3416)
di = gzd (3.4.9) dj= ;}zd (3.4.13)  ds = ;}Z SRRCERE)
5 = 5; (3.4.10) 09 = gfyd (3.4.14)  §5— 5; (3.4.18)
5; - Dhydai (3.4.11) aag = Dhyd(fy (3.4.15) 382 - Dhydgz (3.4.19)

The cross sectional areas are given in equations (3.4.20)-(3.4.21) and the volume of the
control volume is given in equation (3.4.22). Since the equations will be derived for
two dimensions, the cross-sectional area in z-direction is not included.

A, (3.4.20)

o1 6z = —— A, (3.4.21)
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— dx oy dz=—1V (3.4.22)

A 1
dA = —— dA (3.4.23)
Dhyd
~ 1
AV = —— dV (3.4.24)
Dhyd

3.4.1.3 Operators, tensors
The V operator is defined by equation (3.4.25) [30].

0 0 0
=i—+4+j—+k— 4.2
\V4 lax+J8y+ 5 (3.4.25)

Since 2 35 = Dhyd 5. etc., the dimensionless V operator is given by equation (3.4.26).
V = DpyaV (3.4.26)

The stress tensors used in the 2D-equations are defined in equations (3.4.27)-(3.4.29),
with V- u = 0 from the Continuity equation (2.1.2).

[ Ou 2 ou
[ ov 2 ov
— -2@ _z/(/v/u)] - _ZM@ (3.4.28)

ou  Ov
= — | 3.4.29
g Y H -ax + ay] ( )
The dimensionless stress tensor is defined in (3.4.30) where 7 is the scale.
G="2 (3.4.30)
o

The expressions for the stress tensor components in equations (3.4.27)-(3.4.29) are
inserted into equation (3.4.30). The result is shown in equations (3.4.31)-(3.4.33).

1 Ou 1 pugy, o1
S WL oY e 3.4.31
g o [y T Dhyq 3x ( )
1 Ov 1 pgy, . 0D
5o — — == 2/ 3.4.32
009 T M@y & Diya 0y ( )
1 [du Ov 1 Wi, | 0G 00
Gag = ——1 | — + — | = i — 3.4.33
T = —GH [8:)& * 83/] & Diya la@ * ag] (3.4.33)

To make the right hand side in the above equations dimensionless, the scale 7 is defined
as in equation (3.4.34).

o= 3.4.34
Diya ( )
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The dimensionless stress tensor components are then defined as in equations (3.4.35) -
(3.4.37).

a/\

Gap = _Qﬂaif (3.4.35)
s
o

Gog = —2;182 (3.4.36)

1 |28 a”] (3.4.37)

U@g:—ul&%+&g

3.4.2 Variables as Functions of their Dimensionless Form

All varibles, geometrical length scales, operators and tensors expressed with dimen-
sionless parameters for interchanging in the transport equations are given in equations
(3.4.38)-(3.4.55).

_ N2 A
U = il (3.4.38) Av = Diya Aa (3.4.47)
2 — N2 A
(= pfi (3.4.40) dA= D,%yd dA (3.4.49)
p=pp (3.4.41) V=D,V (3.4.50)
01 = Dpyq 07 (3.442)  qV =D} ,dV (3.4.51)
0y = Dhya 07 (3443)  s=76 (3.4.52)
0 1 0 9
— == (3.4.44) = Hling ot 3.4.53
ox Dhyd oz Oz Dhyd 'uaj; ( )
0 1 0 O
P T (3.4.45) = Hling 9" 4.54
ay Dhyd 8y Uyy Dhyd luag (3 5 )
1 - .
V= \Y (3.4.46) gy |00 00 4
Diya Oy = Dy [5@ + % (3.4.55)

3.4.3 Dimensionless Continuity Equation

The Continuity equation with the transient term deleted is given in equation (2.1.2).
With the dimensionless parameters from equations (3.4.38)-(3.4.55) inserted, the con-
tinuity equation becomes equation (3.4.56).

I« p
Dhydv - (puimptt) =0 (3.4.56)

Integration over the dimensionless control volume C'V yields equation (3.4.57), and
Gauss’ theorem given in equation (A.3.1) is again applied yielding equation (3.4.58).
Equation (3.4.58) is then divided with the factor % which yields equation (3.4.59).
Equation (3.4.59) takes the same form as equation (3.1.2), and the rest of the discreti-
sation of the dimensionless Continuity equation follows the same steps as in section
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3.1.
1 - N
: U = 4.
/CAV Dhde (pumpu> dV =0 (3.4.57)
puzn/ AA n
n-(pa)dA=0 3.4.58
Daya 1 (p0) ( )

A =0 (3.4.59)
/An~ (ﬁﬁ) dA

Equation (3.4.60) is the dimensionless continuity equation with F¢ as defined in equa-
tion (3.4.61)

Fa?,eAx,e - F;,w*’zlac,w + ch,nley,n - F;SAAy,s =0 (3460)
with
e = pa Fe = po (3.4.61)

3.4.4 Dimensionless Momentum Equation

The momentum equation with the transient term delited and the gravity term ne-
glected is given in equation (3.2.1). With the dimensionless variables given in equations
(3.4.38)-(3.4.55) inserted, the Momentum equation becomes equation (3.4.62).

V.6 (3.4.62)

The scales for the pressure p = pu?, and the stress tensor & = % can be inserted to
Yy
yield equation (3.4.63).

2 o
Pling . (pat) = - Zingp - Boing . & (3.4.63)
Dhyd Dhyd

Equation (3.4.63) is then multiplied with the factor % to yield equation (3.4.64),

which is equal to equation (3.4.1).

S ~~n A~ PN % AL
V-(paa)=-Vp— — V.6 3.4.64
(paa) P Dron ( )

3.4.4.1 Left Hand Side

The left side of equation (3.4.64) can be integrated directly over the dimensionless
control volume C'V to yield equation (3.4.65). By Gauss’ theorem in equation (A.3.1)
equation (3.4.66) is obtained.

[ V- (pia)aV = RHS (3.4.65)
cv
/A n - (pad)dA = RHS (3.4.66)

Equation (3.4.66) takes the same form as equation (3.2.3), and the rest of the discreti-
sation of the left hand side of the Momentum equation follows the same steps as in
section 3.2.
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The dimensionless convective mass flux F' are defined the same way as in equations
(3.2.9)-(3.2.16). The left side of the xz-component of the dimensionless Momentum
equation is given in equation (3.4.67) with the coefficients in equations (3.4.68)-(3.4.69).

aplp + aplp + awlw + 4,y + agtis = RHS (3.4.67)
with
ap = —aw — ag — ay — ds + FpoAy — FypA, + FupA, — F, A, (3.4.68)
ap = —max/(0, —F, . A,) ay = —max LA
o oAr) (0.~ 5 ') (3.4.69)

aw = —max(f?%wflm, O) ag = —max(F Ay, 0)

Similarly, the left side of the y-component of the dimensionless Momentum equation is
given in equation (3.4.70) with the coefficients in equations (3.4.71)-(3.4.72).

aplp + app + awiw + anioy + asvs = RHS (3.4.70)
with

3.4.4.2 Right Hand Side

The difference in the form of the right side of the dimensionless Momentum equation
and the right side of the ordinary Momentum equation is the presence of the factor
é in front of the diffusive terms as seen in equation (3.4.64). The discretisation steps
for equation (3.4.64) precisely follow the steps in section 3.2, except for the equation
being integrated over the dimensionless control volume instead of the regular control

volume.

The right hand side of equation (3.4.64) can be written as equation (3.4.73).

LHS = —Vp — EV (3.4.73)

The z- and y- components of equation (3.4.73) are obtained by taking the dot product
with the unit vectors e, and e, respectively. The components of the stress tensors as
given in appendix A can then be inserted to obtain equations (3.4.74) and (3.4.75) for
x- and y respectively.

B 8p 1 (0 (. 0G 8 8u
op 1 [0 00 0 o
s = -2 — (2 (%) 4+ 2 (% 4.
5="05 " ke (af: (“a&) T (“ag)) (3.4.75)

Equations (3.4.74) and (3.4.75) can then be integrated over the dimensionless control
volume C'V. For the diffusive terms, the volume integral is split, taking dV = dA,dz
and dV = dA,dj as in equations (3.4.76) and (3.4.77).

8p o1 A
LHS = 2% VCV+—/6$/ - < ) dA,dz

1 o (.00) -
— 2 (p2E) ddzdp (3.4
" Re /@/A B (“ag) 989 (34.76)
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op oL A
LHS = — 72 VCV+—/M/ = ( > dA. di

1 o [ 90\
— T2 dd.dp (3.4
" Re /(sy/A Bl (“ag) oy (3:4.77)

Equations (3.4.76) and (3.4.77) take the same form as equations (3.2.38) and (3.2.39),
and the rest of the discretisation of the right hand side of the Momentum equation
follows the same steps as in section 3.2.

The dimensionless diffusion conductance is defined as in equation (3.4.78).

S 1 A 1
D 1 D, =—F

= ——= 4.
* " Redz Y Redy (34.78)

The discretised right hand side of the dimensionless Momentum equation for z- and y
are given in equations (3.4.79) and (3.4.80)

A

LHS = _<ﬁI,J - 131—1,‘1)121 + D, A, (ﬂiﬂ,J — @i,J) —- D, A, (ﬁi,J - fbi—LJ)
+ DyAy (.51 — tii.s) = DyAy (g —ti,5-1) (3.4.79)

LHS = <]91J — pr.y- 1)121 + D, A, ( I+1j — @I,j) — D, A, (@I,j - @1—1,3')
+

3.4.4.3 Combined Momentum Equation

Combining both sides of the z-component momentum equation yields equation (3.4.81)
with the coefficients in equation (3.4.82). Note that the equation is of the same form
as equation (3.2.57).

i gl 7 + Qi1 glip1,g + Gio1,g0i-1,7 + Qi 4105, 7401 + Q71T 71 = by g (3.4.81)
with
Qg = —Qit1,0 — Qi—1,7 — Qg1 — Qg1 + Fp Ay — Fyp Ay + Fy oAy — B, A,
&H—l,J - —HlaX((), - ac,eAx> - Dach
i1y = —maX(F%wAy, O) - D A,
Qi ji1 = —maX(O, —F, nAy) -D,A,
a; g1 = —maX(FyvsAy,O - D,A,
bi.s =— (ﬁI,J — 151—1,J> A,
(3.4.82)

Similarly, combining both sides of the y-component momentum equation yields equa-
tion (3.4.83) with the coefficients in equation (3.4.84). Note that the equation is of the
same form as equation (3.2.59).

ar,j0rj + Q41,0415 + ar-1,;01-1,; + @rj+10r,541 + arj101-1 = br; (3.4.83)
J J J
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with
ar; = —GQr415 — 15 — Qrjy1 — Arj1 + Fx,eAm - Fx,wAy + Fy,nz‘iy - ﬁ’y,sz‘iy
a1y = —max(0,—F, A,) — D,A,
ar-1; = —max(ﬁ’x,wfly, 0) — lA)xfly
arje1 = —maX(O, Fy,nfly> ﬁ fl
arj—1 = —rnax(ﬁy,SAy, O)
BI,j = (pl J = PI J— I)Ay
(3.4.84)

3.4.5 Dimensionless SIMPLE-Equations

The discretised dimensionlesss Continuity equation (3.4.56) takes the same form as
the regular discretised Continuity equation in (3.1.6) and the discretised Momentum
equation for the z- and y-component in equations (3.4.81) and (3.4.83) take the same
form as the ordinary Momentum equation for the x- and y-component in equations
(3.2.57) and (3.2.59). The dimensionless velocity and pressure correction equations will
therefore take the same forms as the ordinary velocity equation (3.3.2) and pressure
correction equation (3.3.8) which is explained in section 3.3.

The dimensionless velocity correction equation is obtained by taking the dimension-
less dimensionless Momentum equation and subtracting the dimensionless Momentum
equation for the dimensionless guessed properties. The velocity corrections of the
neighbouring nodes are omitted. The result is equation (3.4.85) for the u-velocity
component u; ; and equation (3.4.86) for the v-velocity component vy ;.
A, A
ﬁi”] - a;J acentre (pl J ﬁ/]—l,J> (3485)

i, J

A, . s

PN Yy 2 2

Urj =Vr; — agenire (p],J _p[,J_1> (3.4.86)
7‘7

The dimensionless pressure correction equation is obtained from the dimensionless dis-
cretised Continuity equation (3.4.56) and the dimensionless velocity correction equa-
tions (3.4.85) and (3.4.86). The pressure correction is obtained for the adjusted pressure
p following equation (3.4.87).

P =p—7p° (3.4.87)

The dimensionless velocity correction equations (3.4.85) and (3.4.86) are inserted into
the dimensionless continuity equation (3.4.56). The equation is rearranged to collect all
the pressure correction terms on one side of the equation. This yields the dimensionless
pressure correction equation for the adjusted pressure in equation (3.4.88) with the
coefficients in equation (3.4.89).

~ 2 A 2/ A 2 A [~ A~ 2/ A
U1.gP1 g+ Vrs1,0Prs1 + V11,0011, + V1,040 g1 + Pr0-1Pr g1 = Bra (3.4.88)
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Implementation

In this chapter, the properties of the flow are given, as well as the inlet and outlet prop-
erties, the boundary conditions and the implementation of these into the discretised
equations and the coding in MATLAB.

4.1 Properties of the Flow and the Domain

In this chapter, the fluid flow to be modelled is described, and the properties of the
flow are given.

4.1.1 Fluid Properties

The modelled fluid is water and the fluid properties will be taken to be constant with
the values given in equation (4.1.1)[31]. Gravity is assumed to be effective in z-direction
and is therefore not modelled in the two-dimensional domains.

p=997 | kg/m® | at 25°C  p=890-10"" [Pa-s] (4.1.1)

4.1.2 Domain Size

Scematic representations of the doimains used are given in chapter 1. Figure 1.1 shows
the straight channel domains and figures 1.2 and 1.3 show the backwards facing step
(BFS) domain with two different expansion ratios. The expansion ratio of the BFS-
domains is given in equation (4.1.2).

H
Expansion ratio = - (4.1.2)
where h is the height of the channel at the inlet and H is the height of the channel
after the expansion, the total height of the channel. Table 4.1 shows the sizes of the
different domains. The unit for all length scales is meter. The domain BFS 1 is used
to develop the model, and the domain BFS 2 is used to compare the results to excising

39
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Domain Total Total Step Step Expansion
length height length heigth ratio
Short channel 3 1 - - -
Long channel 22 1 - - -
BFS 1 22 1.5 3 0.5 1.5
BFS 2 35 2 5 1 2

Table 4.1: Dimensions of the different domains used for the simulations.

literature as given in Biswas et al. [4]. The dimensions for the first domain used by
Melaaen [3] were taken as example dimensions for use when developing the backwards
facing step model, and the fluid flow parameters are not matched with what was used
by Melaaen [3]. For the second domain as used by Biswas et al. [4], the Reynolds
number was matched to what is given in the article. There are still some differences
in the implementation of the simulations between this thesis and the article by Biswas
et al. [4], which are discussed in chapter 6. The expansion ratio used is actually 1.9423,
but was rounded off to 2 for simplicity.

4.2 Model Settings

In this section all necessary model settings and parameters are stated. The implemen-
tation of the boundary conditions is given in section 4.4.

4.2.1 Straight channel

Table 4.2 shows the parameters and model settings for the two dimensional straight
channel that are the same for all variations of the Reynolds number. wv;, is the inlet
v-velocity, pows is the outlet pressure, a are under-relaxation factors, N is the number
of scalar computational nodes in x-direction, M is the number of scalar computational
nodes in y-direction and Total is the total number of scalar computational nodes.

Parameter Value Unit
Vin 0 m/s
Dout 1.01325- 10> Pa
Qy, 0.01 -
Q 0.01 -
ay 0.02 -
N 88 -
M 18 -
Total 1584 -

Table 4.2: Parameters and model settings for the two dimensional model

Table 4.3 shows the different Reynolds numbers used in the simulations and the cor-
responding inlet u-velocity wu;,. The Reynolds number Re is calculated by equation
(2.1.8) with the hydraulic diameter as defined in equation (2.1.9).
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Re = 1120 Re = 560
Up 1-107% m/s 5-107* m/s

Table 4.3: Varying parameter for the two dimensional straight channel domain with different
Reynolds numbers.

4.2.2 Backwards Facing Step

4.2.2.1 Domain One

Domain one is shown in the schematic in figure 1.2 and the dimensions are described
in table 4.1 in the row labelled BFS 1. The model for this domain has a constant inlet
velocity. In the thesis by Melaaen [3], a parabolic inlet profile was used, but since this
domain is used to develop the backwards facing step model without matching the fluid
parameters, a constant inlet velocity is used.

Table 4.4 shows the parameters and model settings for the first two dimensional back-
wards facing step domain that are the same for all simulations using this domain. v;,
is the inlet v-velocity and p,, is the outlet pressure. N, 0w i the number of scalar
computational nodes in z-direction in the narrow inlet section and Ny, is the total
number of scalar computational nodes in z-direction. M,,4rron is the number of scalar
computational nodes in y-direction in the narrow inlet section and M,y is the total
number of scalar computational nodes in y-direction. Total is the total number of
scalar computational nodes.

Parameter Value Unit
Vin 0 m/s
Pout 1.01325-10° Pa
Nnarrow 12 -
Ntotal 38 -
Mnarrow 12 -
Mtotal 18 -
Total 1512

Table 4.4: Parameters and model settings for the two dimensional model

Table 4.5 shows the different Reynolds numbers for the different simulations along
with the corresponding parameters and model settings for the first two dimensional
backwards facing step domain. The Reynolds number is calculated by equation (2.1.8)
with the hydraulic diameter as defined in equation (2.1.9). «a are under-relaxation
factors.

Re = 1120 Re = 560
U 1-10% m/s 5-107* m/s

QU 0.01 0.005
Qy 0.01 0.005
ap 0.02 0.010

Table 4.5: Varying parameters for the first backwards facing step domain with different Reynolds
numbers.
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4.2.2.2 Domain Two

Domain two is shown in the schematic in figure 1.3 and the dimensions are described
in table 4.1 in the row labelled BF'S 2. The model for this domain has a parabolic inlet
velocity profile as given in equation (2.1.6)[16].

Table 4.6 shows the parameters and model settings for the second two dimensional
backwards facing step domain that are the same for all simulations using this domain.
Vi, is the inlet v-velocity and p,,; is the outlet pressure. N,urow i the number of
scalar computational nodes in z-direction in the narrow inlet section and Ny is the
total number of scalar computational nodes in z-direction. M,,4r00 1S the number of
scalar computational nodes in y-direction in the narrow inlet section and M;y; is the
total number of scalar computational nodes in y-direction. Total is the total number
of scalar computational nodes.

Parameter Value Unit
Vin 0 m/s
Pout 1.01325-10° Pa
Nnarrow 10 -
Ntotal 70 -
Miarrow 10 -
Mtotal 20 -
Total 1512

Table 4.6: Parameters and model settings for the two dimensional model

Table 4.7 shows the different Reynolds numbers for the different simulations along with
the corresponding parameters and model settings for the second backwards facing step
domain. The Reynolds number is calculated by equation (2.1.8) with the hydraulic
diameter Dp,q equal to 2h as defined by Biswas et al. [4]. « are under-relaxation
factors.

Re Ugng Umaz Ay Oy Qp
0.0001 4.46-10"" 892-107' 0.01 0.01 0.02
0.1 4.46-107% 8.92-107% 0.01 0.01 0.02

1 4.46-1077 892-1077 0.01 0.01 0.02
10 4.46-107¢ 892-107¢ 0.01 0.01 0.02
50 2.23-107°  4.46-107° 0.01 0.01  0.02

100 4.46-107° 892-1075 0.01 0.01 0.02
200 893-107° 1.79-107* 0.005 0.005 0.01
400 1.79-10~* 3.57-107* 0.005 0.005 0.01

Table 4.7: Varying parameter for the second backwards facing step domain with different Reynolds
numbers.

4.3 Initial Guesses

All the models start out with an initial guess for the velocity and pressure to be calcu-
lated from. The initial guesses for the different models are given in this section.
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4.3.1 Straight Channel

The initial guesses for both velocity components and the adjusted pressure were taken
as constants across the whole domain with the values as given in equations (4.3.1)-
(4.3.3). The guesses are defined after the definition of the dimensionless variables, and
the guess is therefore dimensionless.

fguess = Gin = 1 (4.3.1)
I — (4.3.2)
ﬁguess = ﬁout: 0 (433)

4.3.2 Backwards Facing Step

The same expressions are used for the initial guesses for both backwards facing step
domains. The initial guesses for the velocity components were taken as two different
constant values for the narrow section and wide section of the domain. The velocity
guesses for the narrow section are given by equations (4.3.4) and (4.3.5) for the constant
inlet velocity case.

ararer — g,— 1 (4.3.4)

ANATTOW __ A __
Uguess = Vin= 0
For the parabolic inlet velocity case, the velocity guesses for the narrow section are

given by equations (4.3.6) and (4.3.7).

ANarrow __ A
uguess = Umaz (436)
ANArTow __ 2. =0

guess ~  Ywn. T

The velocity guesses for the wide section should be lower than for the narrow section
since the cross section of the channel increases after the expansion. The number of
computational points for the velocities in y-direction is used for this as shown in equa-
tions (4.3.8) and (4.3.9). The decrease in guessed value from the narrow to the wide
section is then varying with the expansion ratios for the BF'S domains as given in table
4.1.

Mnarrow

~wide __ asnarrow
uguess - uguess M. (438)
total
. m
~wide __ snarrow ''‘narrow
Uguess - vguess (439)
Myotal

M arrow 18 the number of u-velocity nodes in y-direction in the narrow section and
Mioiqr is the number of u-velocity nodes in y-direction in total and in the wide section.
Mparrow 18 the number of v-velocity nodes in y-direction in the narrow section and m;zq;
is the number of v-velocity nodes in y-direction in total and in the wide section.

The guess for the adjusted pressure is taken as constant across the whole domain as
given in (4.3.10).
ﬁguess = pout =0 (4310)

4.4 Boundary Conditions

The no-slip and no-penetrate conditions are applied at the walls of the channel, which
means that both the u- and the v-velocities are zero at all walls [16].
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The momentum equations include two dimensional derivatives in both z- and y-direction,
which means that the momentum equations for the u- and v-velocity each need two
boundary conditions and two inlet /outlet conditions. The velocity at the southern and
northern walls are set to be equal to zero for both the u- and v-velocity. The inlet
u- and v-velocities are both known and are specified in section 4.2 for the different
simulation cases. This only leaves the outlet boundary.

The pressure is two dimensional in each direction z and y, which means that two
boundary conditions in each dimension are required. The boundary at the inlet as well
as the southern and northern walls are already determined by the boundary conditions
of of the velocities, and the pressure does not need to be specified. The known out-
let pressure is therefore a sufficient boundary condition for the pressure, which also
provides the last needed boundary condition for the velocities.

Below follows the implementation of the boundary conditions mentioned above for
the two dimensional straight channel. The additional boundaries and the boundary
conditions needed for the backwards facing step model are described in section 4.5.1.
The discretised momentum equation and pressure correction equations are stated for
each of the different boundaries of the domain. The velocities and pressures in the
discretised equations are noted with a letter subscript of the form up instead of the
indexed version u; ; for simplicity. The equations are given in the dimensionless form.
The velocities in the Momentum equation are given with the notations @ and v in this
section, but correspond to @* and v* in figure 2.8. The superscript * to note these
intermediate velocities are omitted in this section. The velocities & and © that occur
in the source term in the pressure correction equation in this chapter are the velocities
obtained from the Momentum equations.

Where the expressions for the convective mass flux F' need to be altered, only the
changed expression is given. The velocity correction can be directly obtained every-
where except at the outlet where a special implementation must be used.

4.4.1 Inlet

At the inlet, the velocities at the west node are known and are noted ;, for the a-
velocity and vy, for the 0-velocity. vy, is equal to zero for all the simulation models is
therefore omitted from the below discretised equations. In the case of the parabolic
inlet velocity profile where ;, is not a constant number, an index for the current row
of the domain must be added to obtain the correct value.

4.4.1.1 Convective Mass Flux

At the inlet the convective mass fluxes F%w and Fy,w become equations (4.4.1) and
(4.4.2). Both the @-velocity nodes taking part in £, are located at the inlet.

ain + @P

Fpw=1p : (4.4.1)
Ey o = pliin (4.4.2)

4.4.1.2 Momentum Equation for the x-component

The Momentum Equation for the z-component at the inlet becomes equation (4.4.3)
with the coefficients in equations (4.4.4)-(4.4.8). The western velocity node is the
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known 4, and is therefore moved to the source term.
aplip + aplp + anty + dsig = bp (4.4.3)

with

+ max(F,As,0) + DA, (4.4.4)
ip = —max(0, —Fy A, ) — DA, (4.4.5)
iy = —max(0,-F, ,A,) — D, A, (4.4.6)
ag = —max(ﬁyysfly, 0) - D,A, (4.4.7)
bp = — (ﬁp - ﬁw> A, + (max(ﬁx,wﬁy, 0) - Dx/iy) Tiin (4.4.8)

4.4.1.3 Momentum Equation for the y-component

The Momentum Equation for the y-component at the inlet becomes equation (4.4.9)
with the coefficients in equations (4.4.10)-(4.4.14). The western velocity node is the
known 9;, = 0 which is omitted from the source term.

apbp + Gpdp + anOy + dgis = bp (4.4.9)

with

+ max(F, A, 0) + DA, (4.4.10)
ap = —max(0, —Fy A, ) — DA, (4.4.11)
iy = —max(0,~F, . A,) - D,A, (4.4.12)
a5 = —max(F, . A,,0) — D,A, (4.4.13)
bp = — (ﬁp - ﬁs> A, (4.4.14)

4.4.1.4 Pressure Correction Equation

The western velocity node is ;, which is known, and no pressure correction is needed.
U, has therefore been directly inserted into the Continuity equation under the deriva-
tion of the pressure correction equation. No link is then created to the western
boundary. The result is equation (4.4.15) with the coefficients in equations (4.4.16)-
(4.4.20).

Dppp + Dbl + DnDy + DsPs = Bp (4.4.15)
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with
Up = —Vp — DUy — Dg (4.4.16)
AAQ
Py = — (4.4.17)
au,E
AAQ
Py = — oy (4.4.18)
a'u,N
AAQ
Py = — b (4.4.19)
av,P
BP = —Amﬁﬁe + Axﬁﬁm - Ayﬁ@n + Ayﬁ@s (4'4'2())

4.4.2 Outlet

At the outlet, the pressure at the eastern node is known and is noted poy:.

4.4.2.1 Convective Mass Flux

At the outlet, the convective mass flux F} . is set equal to F}, ,, as in equation (4.4.21)[2].
F, . does not need to be altered.

(4.4.21)
(4.4.22)

4.4.2.2 Momentum Equation for the z-component

The Momentum Equation for the z-component at the outlet becomes equation (4.4.23)
with the coefficients in equations (4.4.24)-(4.4.28). The eastern velocity node dy, is
outside of the domain, and the connection to this node is broken by setting ar equal
to zero [2].

aplp + awiw + anly + dsig = bp (4.4.23)
with
ap = —aw — an — ds + FroAy — FpA, + E, A, — F, A, (4.4.24)
aw = —max(0, ~F, A, ) — DA, (4.4.25)
iy = —max(0,—F, . A,) - D,A, (4.4.26)
a5 = —max(F, . A,,0) — DA, (4.4.27)

bp = — (ﬁp — pw ) A, (4.4.28)
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4.4.2.3 Momentum Equation for the y-component

The Momentum Equation for the y-component at the outlet becomes equation (4.4.29)
with the coefficients in equations (4.4.30)-(4.4.34). The eastern velocity node dy is
outside of the domain, and the connection to this node is broken by setting ar equal
to zero [2].

apOp + Gwdw + anOy + agds = bp (4.4.29)
with
ap = —aw — ay — g + FyoAy — Fp Ay + Fy A, — E, A, (4.4.30)
aw = —max(F,,A;,0) - D,A, (4.4.31)
an = —max(O, —Fyvnfly) — lA)y/Aly (4.4.32)
as = —max(F,.4,,0) — D,A, (4.4.33)
b~ (- 4)4 @i

4.4.2.4 Pressure Correction Equation

At the outlet, the eastern pressure node is known, and the pressure correction is zero
for the known pressure. The pressure correction can therefore be set to zero at the
eastern node which yields equation (4.4.15) with the coefficients in equations (4.4.36)-
(4.4.40).

Dpplp + Dw Py + OnDly + Dshs = Bp (4.4.35)
with
AAQ
Dp= Loy Dy — i (4.4.36)
CL%
AAQ
Py = — o (4.4.37)
a’u,P
AAQ
v =— 'Omy (4.4.38)
av,N
o pA
Ug = agentyre (4.4.39)
BP = _Azﬁﬁe + Axﬁaw - Ayﬁ@n + Ayﬁf)s (4440)

4.4.2.5 Velocity Correction Equation

Since the pressure correction at the eastern node at the outlet is zero, the eastern node
vanishes from the @-velocity correction equation, yielding equation (4.4.41).

p = 0 — a;t (—w) (4.4.41)

The v-velocity correction equation does not need to be altered.
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4.4.3 Walls

As described at the beginning of this section, all wall velocities are zero and the no-slip
and no-penetrate conditions are used. The 0-velocity nodes coincide with the wall at
both the northern and southern boundary of the domain. Due to the staggered grid,
the i-velocity nodes are placed so that the faces of the control volumes around the
nodes line up with the walls, while the nodes themselves are located at a distance 67/2
from the wall. 07 is the height of the dimensionless control volumes.

4.4.3.1 Convective Mass Flux

Both velocities are zero at the walls. The convective mass fluxes become equations
(4.4.42)-(4.4.43) for the northern wall and equations (4.4.44)-(4.4.45) for the southern
wall.

o = POp (4.4.43)
s =0 (4.4.44)
B, = g@p (4.4.45)

4.4.3.2 Momentum Equation for the z-component

For implementation of the wall boundary condition, the discretised right hand side
of the Momentum Equation for the z-component right after the integration over the
control volume is taken as given in equation 4.4.46. The left hand side of the equation
may be kept as before.

8p ~ 1 04| » 1 04| =«
LH 0FA, + —fi—| Apge — —fi—| A
S = 8:B +Re'u8i"e e Re'uéVw ww
aU, ~ 1 8’& A
A,p——0—| A, (4.4.46
Re a5), v~ R g e (4440)

First taking the north boundary into account, the gradient over the north face of the
control volume is defined as equation (4.4.47) by use of a central difference.

aa ﬁwall - 2/ZP
— = —— 4.4.47
99|, 34/2 ( )

The distance from the centre node @ip to the wall is §7/2. This incorporates a shear
force into the source term of the momentum equation which slows down the flow close
to the wall. The wall shear stress is defined by equation (4.4.48), and the shear force
can be defined as in equation (4.4.49)[16].

iip

1
lpall = — 444

Uwall = " Re M5 ( 8)
[y W (4.4.49)
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The approximated gradient in equation (4.4.47) along with the approximations for
the remaining gradients are inserted back into the right hand side of the Momentum
equation for the z-component which yields equation (4.4.50).

1 4 —1ap -, 1 ap — tw -~
LHS= —ji——A,. — —i——A.
Re'u 0z ’ Re/L 0z ’
1 Ogan — Up 4 1 ap—dg 4 - £\ 4
22— Ay, — — A, — — A, (4.4.50
+ RGM 5?3 Y, Reu 5@ Y, (pP pW) ( )

Further rearranging of equation (4.4.50) and combination with the left hand side yields
the discretised Momentum Equation for the z-component (4.4.51) at the northern wall
with the coefficients as given in equations (4.4.52)-(4.4.56).

aplip + dplp + awiw + dsly = bp (4.4.51)
with

A A A
A

p = —ag — aw — ay — g + Fz,eAy - Fx,wAy + Fy,nAy - y,sAy

>
>

+max(0, —Fyn A, ) +2D,4,  (44.52)

ap = —max(0,~F, . A,) - DA, (4.4.53)
aw = —max(F,,A,,0) - D,A, (4.4.54)
ag = —max(ﬁ’wfly, 0) - D,A, (4.4.55)
b = = (B — ) A (4.4.56)

The implementation follows the same steps for the southern wall, were central differ-

encing is used to approximate the gradient of the velocity over the southern cell face

as given in equation (4.4.57).

ot ﬂP - ﬂwall

| = 2 war 4.4.57
9, 002 450

This yields the discretised Momentum Equation for the z-component (4.4.58) at the

southern wall with the coefficients as given in equations (4.4.59)-(4.4.63).

aplip + dplp + awlw + anty + dgly = bp (4.4.58)
with
&p = —ap —aw —ay — ag + Fx’eAy — Fx w/iy + Ayyn/iy — Fy,sAy
+max(F, A, 0) +2D,A, (4.4.59)
ip = —max(0, —F, A,) - DA, (4.4.60)
aw = —max(ﬁm,wfly, 0) — D, A, (4.4.61)
iy = —max(0, - F, ,A,) - D,A, (4.4.62)

bp = —(pp - ﬁw) A, (4.4.63)
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4.4.3.3 Momentum Equation for the y-component

Since the 0-velocity nodes line up with the wall, the northern or southern v-velocity
nodes can be set to zero directly. This yields equation (4.4.64) at the north wall with
the coefficients in equations (4.4.65)-(4.4.69).

aplp + gl + awow + agls = Bp (4.4.64)

with

+max(F,,4,,0) + D, A, (4.4.65)
ip = —max(F, . A,,0) — D, A, (4.4.66)
aw = —max(ﬁnwflx, 0) — D, A, (4.4.67)
a5 = —max(0,—F, A, ) — D,A, (4.4.68)
bp = — <ﬁp — ﬁs) A, (4.4.69)

Equation (4.4.70) with the coefficients in equations (4.4.71)-(4.4.75) is the correspond-
ing equation for the south wall boundary.

apbp + aglp + dwdw + oy = bp (4.4.70)

with

+max(F, .A,,0) + D, A, (4.4.71)
ip = —max(F, A, 0) — D, A, (4.4.72)
aw = —max(F, ,4,,0) — D, A, (4.4.73)
iy = —max(0, —F, .4, ) - D,A, (4.4.74)
bp = —(Fr — 55 ) A, (4.4.75)

4.4.3.4 Pressure Correction Equation

Since the velocities are known at the walls, no pressure correction is needed for these
points. The direct value of the velocities at the walls, which is zero can therefore
be directly inserted into the Continuity equation under the derivation of the pressure
correction equation. This creates no link to the northern or southern boundary which
is the wall.
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Equation 4.4.76 with the coefficients in equations (4.4.77)-(4.4.81) is the pressure cor-
rection equation for the northern wall boundary.

Dppp + Dpbl + Dwbly + Dspls = Bp (4.4.76)
with
Up=—Up —Dw — Ug (4.4.77)
AAQ
Pp=— Lo (4.4.78)
au,E
AAQ
by = —z (4.4.79)
au,P
AAQ
by = — b (4.4.80)
a’v,P
Bp = —Aupitic + Agpit, + A, pi, (4.4.81)

Equation 4.4.82 with the coefficients in equations (4.4.83)-(4.4.87) is the pressure cor-
rection equation for the southern wall boundary.

Dppp + UpDly + bwbly + DnDy = Bp (4.4.82)
with
vp=—Up—Dw — Dy (4.4.83)
AAQ
Py = =Lt (4.4.84)
au,E
AAQ
Dy = ——fenﬁe (4.4.85)
a’u,P
AAQ
N =— Afmf;e (4.4.86)
a'u,N
BP = _Ax,a/&e + A:pﬁﬁw - Ayﬁi}n (4487)

4.5 Backwards Facing Step

The model for the backwards facing step is constructed in the same way as the straight
channel model, by use of global indexing. The global indexing starts in the lower left
corner right after the step as in the simple illustration in figure 4.1 for an example
resolution of 6 nodes in y-direction and 88 nodes in z-direction. Red numbers are
scalar nodes, green nodes are u-velocity nodes and blue nodes are v-velocity nodes in
accordance with the staggered grid.
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Figure 4.1: Global indexing in the backwards facing step domains.

4.5.1 Boundary Conditions for the Backwards Facing Step

The boundary conditions for the two dimensional straight channel as described in
section 4.4 are also applicable for the backwards facing step boundaries. This covers
the inlet, outlet and walls for the backwards facing step. The southern wall is not
one continuous boundary like for the straight channel, but the southern wall boundary
condition is applied to both the two segments of southern wall in the domain. This
leaves the western wall of the step in need for a boundary condition, as well as a special
implementation around the corner of the step.

4.5.1.1 Western Wall at the Step

At the western wall after the backwards facing step, the 4-velocity nodes coincide with
the wall instead of the ¥-velocity nodes like for the northern and southern wall. Due
to the staggered grid, the v-velocity nodes are placed so that the faces of the control
volumes around the nodes line up with the walls, while the nodes themselves are located
at a distance 0%/2 from the wall where 6% is the width of the control volumes.

4.5.1.1.1 Momentum Equation for the z-Component

The wu-velocity nodes coincide with the wall and the known west velocity node can
be inserted directly. The Momentum Equation for the z-Component at the west wall
boundary becomes equation (4.5.1) with the coefficients in equations (4.5.2)-(4.5.6).
The western velocity node is known and equal to zero and is omitted from the equa-
tion.

aplip + aplp + anly + dgls = bp (4.5.1)
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with

>
>
>

+ max(ﬁx,wflx, 0) + D, A, (4.5.2)
ap = —max(0, —F, A, ) — DA, (4.5.3)
an = —max(O, —Fy,nfly) - D,A, (4.5.4)
as = —max(F,.A,,0) - D,A, (4.5.5)
b = (B — ) A (45.6)

4.5.1.1.2 Momentum Equation for the y-Component

For the v-velocity, the implementation of the boundary condition at the western wall
starts with the right side of the discretised momentum equation after the integration
over the control volume as seen in equation (4.5.7). The left hand side of the equation
is kept as before.

1 08
69A, + —p 2t
YT R0z

;o L. o0
"7 R0z

. 1 00

L 100 410
T R g

i y_aﬂafg

Y
(4.5.7)
The gradient at the western cell face is defined as equation (4.5.8) by use of a central
difference.

s — — 2
97| p

00 Op — Dyalr
— = — 458
07 52/2 (4:5.8)

w

The distance from the centre node 0p to the wall is §3/2. Like for the southern and
northern walls, this incorporates a shear force into the source term of the momentum
equation The wall shear stress and the shear force are defined in equations (4.4.48)
and (4.4.49). The approximated gradient in equation (4.5.8) in addition to the central
differences for the remaining gradients in equation (4.5.7) are inserted back into the
right hand side of the y-Momentum equation, and the equation is rearranged to yield
equation (4.5.9) in combination with the left side of the equation. The coefficients are
given in equations (4.5.10)-(4.5.14). The known 0, = 0 is omitted from the source
term.

apOp + Gpdp + andy + dgds = bp (4.5.9)
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with

+ max(ﬁx,wa, O) +2D,A, (4.5.10)

ap = —max(0,~F, . A,) — DA, (4.5.11)
iy = —max(0,~F,,A,) - D,A, (4.5.12)
a5 = —max(Fy.A,,0) - DA, (4.5.13)
bp = — <ﬁp - ﬁs) A, (4.5.14)

4.5.1.1.3 Pressure Correction Equation

The western velocity node is 1,4 which is known and equal to zero, and no pressure
correction is needed. The 9, velocity does not occur in the pressure correction at this
point. .,y can be directly inserted into the Continuity equation under the derivation
of the pressure correction equation and no link is then created to the western boundary.
The result is equation 4.5.15 with the coefficients in equations (4.5.16)-(4.5.20). The

known e = 0 is omitted from the equation.
Dppp + Dby + DnDy + DsPs = Bp (4.5.15)
with
Up = —Dgp —DUn — Vg (4.5.16)
AQ
Vg = — pnf (4.5.17)
au,E
A2
N =— pmy (4.5.18)
av,N
1212
Py = — L (45.19)
av,P

Bp = —Ayptie — Aypo, + Ay pos (4.5.20)
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4.5.1.2 Corner points

The v-velocity node directly right of the corner of the BFS-step and the u-velocity node
directly above the corner need a special treatment different from the other sections of
the domain. This is because the adjacent node cells that contribute to the equations
for these points are one wall and one normal node. This means that the wall friction
should be halved, since only half the cell face coincides with the wall. The pressure
correction equation does not need an alteration at the corner.

Figure 4.2 shows the node points around the corner. Nodes uy44 and v77 are the nodes
in question. This numbering is for a coarseness of 88 computational points in total in
the z-direction and 6 computational points in total in the y-direction and corresponds
to the global indexing in figure 4.1. This is an example resolution that is not used in
the simulations.

Figure 4.2: Indexed computational points around the backwards facing step.

The implementation for the u-velocity follows that of the southern wall, but with the

shear stress halved like seen in equation (4.5.21)
ot 1 @P - @wall
| = 4.5.21
ag|, 2 69/2 ( )

This yields equation (4.5.22) with the coefficients in equations (4.5.23)-(4.5.27).

aplip + aplp + aw iy + aniy + agiy = bp (4.5.22)
with
ap = —ap — aw — ay — g + FuoAy — FrwA, + FynA, — F, A, —
+max(F, A, 0) + D,A, (4.5.23)
ap = —maX(O, —F%eﬁy) — lA)xfly (4.5.24)
aw = —max(F,,A,,0) - D,A, (4.5.25)
oy = —max(0,—F,,A,) — D,A, (4.5.26)

bp = — (ﬁp — ﬁw> A, (4.5.27)
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Simuilarly, the implementation for the v-velocity at the corner follows that of the
western wall, but with the shear stress halved like seen in equation (4.5.28) .

00 10p — Dwaur

55 =3 5o (4.5.28)

This yields equation (4.5.29) with the coefficients as given in equations (4.5.30)-(4.5.34).
aplp 4 Gpby + andy + dgdg = bp (4.5.29)
with

A A A

dP = —ag —any —ag + Fm,eAm - F:c,wAy + y,nAy - y,sAy

+max(Fp Az, 0) + Do A, (4.5.30)
ap = —max(0, —F, A, ) — DA, (4.5.31)
iy = —max(0,~F,,A,) — D, A, (4.5.32)
is = —max(F,.A,,0) — DA, (4.5.33)
bp = — <5P — ﬁs) A, (4.5.34)

4.6 Dimensionless Equations For Comparison

For comparing the results to existing literature on flow over the backwards facing step,
an article published by Biswas et al. [4] will be used. A different scale for the geometrical
length scales in the domain is used. Instead of scaling the lengths, areas and volumes
with the hydraulic diameter Djy,q, Biswas et al. [4] scaled these parameters with h, the
initial height of the channel. Dy,q = 2h is used for the hydraulic diameter. This means

that the scaling factor used in Biswas et al. [4] is equal to 2.

5*. A parabolic inlet
profile will be used instead of a constant inlet velocity, and u,,, is used as scale instead
of u;, for the velocities and in the pressure scale.Below follow updated dimensionless
equations for implementation to obtain a model that fits the settings used by Biswas

et al. [4].

4.6.1 Variables as functions of their dimensionless form

All variables, spatial parameters, operators and tensors expressed with dimensionless
parameters for interchanging in the transport equations are given in equations (4.6.1)-
(4.6.18).
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U = Ugygll
ﬁ:pu?wgﬁ
p= L
p=pp
ox =h 0z
oy = h 6y
9 _10
o hoi
o_190
oy  hoj
1.
=V

(4.6.1)
(4.6.2)
(4.6.3)
(4.6.4)
(4.6.5)

(4.6.6)

(4.6.7)

(4.6.8)

(4.6.9)

4.6.2 Governing equations

A, =h? A,
A, =h* A,
dA = h? dA
V=hV
AV = h® dV
0=00
Ugpg - . OU
Oge = _E A gQM%
[lavg ,, ~ OO
(Tyy = — h ,u%

(4.6.10)
(4.6.11)
(4.6.12)
(4.6.13)

(4.6.14)

(4.6.15)

(4.6.16)
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The Continuity equation looks identical with the new scaling factor, as the geometrical
scale vanishes like in equation (3.4.59). The Momentum equation is made dimensionless
by interchanging the dimensionless variables in equations (4.6.1)-(4.6.18) as seen in

equations (4.6.19)-(4.6.25).
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The rest of the discretisation follows the steps as given in section (3.4).

(4.6.19)

(4.6.20)
(4.6.21)
(4.6.22)
(4.6.23)
(4.6.24)

(4.6.25)

The re-

sult is equation (4.6.26) with the coefficients in equations (4.6.27)-(4.6.32) for the

r-Momentum equation.

G, g Ui+ Qi1 gUig1,7 + Qi1 U1, g + Qi g1l g1 + Qi g—1Ui -1 = bs g

(4.6.26)
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with

a; g = —Qjt1,7 — Aj—1,7 — Qi j+1 — Qi j—1 + erﬁx — Fx,w/iy + Fy,nz‘iy - Ay,sAy
4.6.27)

Gipry = -max(0,—Fy A,) — DA, (4.6.28)

Gio1y = -—max(F,,A,,0) - D,A, (4.6.29)

Ay = —maX(O, — Ay,nfly> —D,A, (4.6.30)

G = -max(F,.A,,0) - D,A, (4.6.31)

b == (fro—hras) A (4.6.32)

Equation (4.6.33) with the coefficients in equations (4.6.34)-(4.6.39) is the y-Momentum
equation.

arjOr; + ar41,50r41,5 + ar-1,;01-1,5 + arj+10r,541 + arj—107,5-1 = 61,]- (4.6.33)
with

arj = —lr415 — -1 — Arje1 — arj-1+ ﬁx,eAx - Fm,wAy + Ay,nAy - Fy,sAy
(4.6.34)
ars1j = —maX(O, — Amflx) —D,A, (4.6.35)
ar1; = -—max(F,,A,,0) - DA, (4.6.36)
arje1 =-max(0,—F,,A,) — DA, (4.6.37)
arj1  =-max(F,.A,,0) - D,A, (4.6.38)
by == (bro— o), (16.30)

The change in the factor in front of the diffusive terms is given in the coefficient D as

given in equation (4.6.40).
.24 L2 Q
D, ==K D=1 4.6.40
Re 62 Y Redy ( )

4.7 Convergence Criteria

Three types of convergence criteria are used, which must all be satisfied when the
model is converged.

The first type criterion C] is the residual of the momentum equation on the form of
equation (4.7.1).
U-u*"—b, =R, (4.7.1)
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U is the coefficient matrix and b, is the source term for the wu-velocity, while u* is
the calculated velocity after matrix inversion in the current iteration. C is defined as

given in equation (4.7.2).

(5 is the corresponding convergence criterion for the v-velocity as defined in equation

(4.7.3).
Cy = /R, - RT (4.7.3)

The second type criterion C3 is a summation of the source term of the pressure cor-
rection B. 3 is equal to the Continuity equation, and the criterion C5 determines if
the Continuity equation is fulfilled and the pressure corrections are close to zero. Cj
is found by taking the absolute value of the sum of all the entries in the vector 5 like
defined in equation (4.7.4)

Cs=[>8 (4.7.4)

The third type convergence criteria C'y checks the difference between the velocity u*
after the matrix inversion and the initial guess u“"¢ coming into the current iteration.
C}y is defined as in equation (4.7.5).

Cy = max(|u® — u*|) (4.7.5)

(5 is the corresponding convergence criterion for the v-velocity and is defined in equa-
tion (4.7.6).
C5 = max(|v° — v*|) (4.7.6)

The convergence criteria C7, Cy, Cy and C5 can be normalised with respect to the inlet
velocity w;, or the average inlet velocity uq,y. Since the model is dimensionless and
Uin OT Ugyg is used as a scale for the velocity, they are equal to 1 in the model and are
therefore not shown in the expressions above.

The convergence criteria for all the two dimensional models were taken as in equations

(4.7.7)-(4.7.11).

C, <1078 (4.7.7)
Cy <1078 (4.7.8)
Cz < 10710 (4.7.9)
Cy <1078 (4.7.10)
Cs <107° (4.7.11)

A comparison was made testing with the limits for C;, Cs, Cy and Cs set to 1079,
1077, 107 and 107?. It was found that there was not a significant change in the results
between 1078 and 1079, so 1078 is assumed sufficient.

The convergence criteria C7, Cy and C3 are dependent on the number of computational
nodes used in the domain and will by definition be larger when a higher number of
nodes are used. The limits may need adjusting if a different set of computational nodes
than what is specified in section 4.2 is used. For the convergence criteria Cy and Cj
the max operator is used, and the criteria are therefore not dependent on the number
of computational nodes used in the domain.
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4.8 Plotting

The converged results are plotted using surface plots and velocity vector plots, also
known as quiver plots. The model results are dimensionless variables that must be
transferred back to their normal values before plotting.

4.8.1 Obtaining the Dimensional Variables

Equation (4.8.1) shows the relation for obtaining the ordinary velocity from the dimen-
sionless velocity.
u = u;u (4.8.1)

Equation (4.8.2) shows the definition of the dimensionless adjusted pressure p which is
calculated in the model.

p= pf 7 = P ;ui;;“t (4.8.2)
The ordinary pressure can be obtained by equation (4.8.3) for the plotting.
P = puip + Pou (4.8.3)
The pressure correction is obtained by equation (4.8.4).
¥ = i (454

4.8.2 Velocity Vector Plots

For the velocity vector plots, a combined velocity variable must be made, combining
the u- and v- velocity components. Due to the use of a staggered grid, the velocity
components are first obtained at the locations of the scalar node points by interpolation
as in equations (4.8.5) and (4.8.6).

1

urg = 5 (wiz1,g + Ui g) (4.8.5)
1

VL =5 (vrj-1+vr;) (4.8.6)

Figure 4.3 shows the scalar node point p; ; and the surrounding node points used to
calculate the velocities at the scalar nodes. The MATLAB plotting function quiver can

ves

i-1,J Pry U; .
i-1, o i,J

T:

IUI, 1

Figure 4.3: The points included in the calculation of velocity for quiver/contour plots.

then be used to obtain a velocity vector plot using the u- and v components u; ; and
vr,y located at the scalar nodes. The first scalar node after the inlet is located at dz/2a
halv control volume with from the inlet
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The MATLAB plotting function contour is used to create a contour plot for combination
with the vector plot. For this, the magnitude of the combined velocities is needed,
which is found by equation (4.8.7) for the velocities at scalar nodes [30].

larg| = /ui; + i, (4.8.7)

4.9 Composition and Working Principle of the Code

In this section, a map presenting the composition of the two dimensional backwards
facing step models is given. The map shows how the model is divided into scripts,
functions and other elements as can be seen from the legend on the bottom right on page
63. The map also describes how the model for the two dimensional straight channel
is build up, the difference is that the contents of the scripts labelled u_velocity,
v_velocity and pressure correction are given directly in the main and not saved
in individual scripts like for the backwards facing step models. In the two dimensional
straight channel model, the helper functions are not needed. The order of calculation
in the code follows the visualisation in figure 2.8.

The main contains the definitions of all the fluid properties and the while loop that
runs for each iteration until convergence is reached. The coefficients F' are obtained
from the velocities at the previous iteration before the velocities u_star and v_star
are obtained using F'. u_star and v_star are then used in beta to obtain the pressure
correction p_corr.

4.9.1 Code Options

Some options to plot additional parameters or to modify the models in the codes are
available in the beginning of the two dimensional straight channel model and the back-
wards facing step model with a constant inlet velocity. Some of the options were useful
in order to locate mistakes in the troubleshooting phase of the work, and others create
extra plots that may be interesting. These options are explained in this section.

4.9.1.1 Plot Initial Guesses

The option plotInitialProfiles plots the initial guesses of the velocities and the
pressure.

4.9.1.2 Plot Profiles After Each Iteration

With the option plotiterationwise enabled, the velocity, pressure and pressure cor-
rection profiles are plotted after every iteration before pausing. This option was useful
when troubleshooting, as it made it possible to see in an easy manner if the solution
is developing in the correct direction after each update.

The option printSetPlotIt plots the velocity, pressure and pressure correction profiles
are plotted each iteration specified and saved to a .gif file. The option gifIntermediates
additionally creates a .gif file with the initial guess, intermediate, correction and new
values of the two velocity components.
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[ main ] Define the system dimensions and the fluid properties.
Define initial guesses for the velocities and the pressure.

while The loop runs until the defined maximum number

iterations is reached or the solution is converged.

u_velocity

—

Coefficients F

—

for Loop runs through all the computational points.
it else Helper functions = Optional
| F _xe, F_xw, F_xn and F_xs are filled in. The
v it else statement checks if the current point
u_star in the For loop is at a boundary, and if so,
\—l the appropriate boundary condition is applied.
for Loop runs through all the computational points.
if else Helper functions | Optional
i | The coefficient matriz U and the source term
vector bu are filled in. The if else
t = U\b
L . statement checks if the current point in the
l—‘ for loop is at a boundary, and if so, the
P — appropriate boundary condition is applied.
Coefficients Fy
for Loop runs through all the computational points.
if else Helper functions Optional

I | F ye, F yw, F_yn and F_ys are filled in. The
it else statement checks if the current point

v_star . . .
= in the For loop is at a boundary, and if so, the

\—l appropriate boundary condition is applied.

for Loop runs through all the computational points.

—

if else Helper functions | Optional

| The coefficient matrix V and the source term
v
vector bv are filled in. The if else
v_star = V\bv . Lo
statement checks if the current point in the
for loop is at a boundary, and if so, the
pressure appropriate boundary condition is applied.
correction
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pressure
correction

p_corr
for Loop runs through all the computational points.
if else Helper functions = Optional
v | The coefficient matrix T and the source term

vector beta are filled in. The if else
statement checks if the current point in the
for loop is at a boundary, and if so, the
appropriate boundary condition is applied.

p_corr = T\beta

u_corr, v_corr Velocity corrections.

|

u_new, v_new, p_new | Under-relaxation and correction.

|

Check convergence Check residuals, continuity and change from last iteration.
plot Plot velocity and pressure profiles. Legend:
[ main ]
Helper functions: script
getRowUnder Helper functions for filling in the function

coefficients needed for the backwards facing
step model, where the index of the point
getRowNumber below or above is not always intuitive. Specific part

getRowOver loop / statement

4.9.1.3 Disable Solution of v-velocity

With the option solvvel, the solution of the v-velocity component can be switched
off. In that case, the v-velocity component is set to zero across the whole domain.
This is not a realistic result for the models with a constant inlet velocity, but was still
a method to try to isolate the errors during debugging, as approximately one third of
the code is decoupled from the main.

4.9.1.4 Additional Plots

The options plotCircVels and plotCorrVels enables plotting of the intermediate
velocities u* and v* and the velocity corrections v’ and v’ respectively. In combination
with the plotiterationwise option, this allows for all the calculations and updates
in the models to be investigated.

4.9.1.5 Remove the Backwards Facing Step

The option onlyChannel in the backwards facing step model blocks off the backwards
facing step so that the domain becomes a straight channel. This was useful when
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debugging the backwards facing step model, as it could be discovered if a mistake was
related to the step.



Results

The results for the fluid flow models for two dimensions are given in this chapter. Three
different MATLAB models were used to obtain the results, one for the two dimensional
straight channel, one for the backwards facing step domain as used by Melaaen [3] and
one for the backwards facing step domain as used by Biswas et al. [4]. The results for
the one dimensional model are given in appendix B.

5.1 Two Dimensional Straight Channel

In this section, the results from the two dimensional straight channel model are given.
The MATLAB code channel _2D.m was used to obtain the results, and the code is given
in appendix E.

Table 5.1 shows the number of iterations and convergence times for the two dimensional
model for different channel lengths L. The short channel with length L = 3 corresponds
to the inlet section before the backwards facing step domain in figure 1.2 as used by
Melaaen [3], and shows the behaviour of the flow when it is not fully developed. The
long channel with L = 22 corresponds to the length of the whole backwards facing step
domain. N and M are the number of scalar node points in z- and y-direction, and
Total signifies the total amount of scalar node pints. 18 times 88 points were chosen as
the resolution because this corresponds to the maximum possible resolution obtained
for the BF'S models.

Re L N M Total Iterations Time

560 3 m 88 18 1584 2098 19 min

560 22m 88 18 1584 2075 20 min
1120 3m 88 18 1584 2105 21 min
1120 22m 88 18 1584 2096 19 min

Table 5.1: Different convergence times for different numbers of computational nodes for the two
dimensional model.

The plots shown below are for the simulation with Reynolds number Re = 560.

65



66 CHAPTER 5. RESULTS

5.1.1 Short channel

In this section, the surface plots of the fluid flow parameters in a short channel with
length L = 3 are given. The height of the channel is h = 1. 18 times 88 computational
points were used for all the plots below and they are shown from both the inlet and
the outlet. The Reynolds number Re is equal to 560.

Figure 5.1 shows the u-velocity component profile for the short channel seen from the
inlet and figure 5.2 shows the same profile seen from the outlet. As can be seen, the
profile is not fully developed as the outlet profile is not yet a proper parabola.

Figure 5.3 shows the v-velocity component profile for the short channel seen from the
inlet and figure 5.4 shows the same profile seen from the outlet. There is an increase in
the v-velocity near the southern wall and a decrease near the northern wall after the
inlet. The positive flow direction for the v-velocity is upwards, which means that this
increase and decrease reflects a flow inwards towards the centre of the channel. This
corresponds well to the behaviour that is to be expected due to the friction from the
walls with a constant inlet velocity profile. The friction is largest towards the inlet,
since the inlet u-velocity is constant for all y. As can be seen, the profile is not fully
developed as the velocity at the outlet has not reached zero.

Figure 5.5 shows the pressure profile for the short channel seen from the inlet and
figure 5.6 shows the same profile seen from the outlet. Note that the scale has a low
variation, which means that the pressure is close to constant across the domain. The
slight increase in pressure at the walls at the inlet corresponds to the sharp velocity
gradients in these points, as can be seen at the came location in the velocity plots in
figures 5.1 and 5.3.

Figure 5.7 shows the pressure correction for the short channel seen from the inlet and
figure 5.8 shows the same profile seen from the outlet. Note that the scale is of order
of magnitude 107° Pa. When converged, the pressure correction should be close to
zero across the domain for the continuity equation to be fulfilled. The outlet pressure
is known and the pressure correction is therefore plotted as zero at the last point in
the plot at the outlet. The pressure correction does not smoothly approach zero at the
outlet as there is a small increase in the centre of the channel and decrease towards
the walls of the channel. This may mean that the outlet boundary condition is not
completely satisfied.

The flow in this case is not fully developed, which may cause some problems. At the
outlet, the velocity gradients g—g and % are not specified to be zero, which would be
another possible outlet boundary condition instead of specifying the outlet pressure.
For the last computational point, the convective mass flux at the east cell face F, . is
still specified to be equal to F, ,,, the convective mass flux at the west cell face. This

is not completely accurate when the flow is not developed.
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Figure 5.2: u-velocity seen from the outlet for the two dimensional model in a straight channel

with L = 3.
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Figure 5.3: v-velocity seen from the inlet for the two dimensional model in a straight channel with
L=3.
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Figure 5.4: v-velocity seen from the outlet for the two dimensional model in a straight channel
with L = 3.
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Figure 5.5: Pressure p seen from the inlet for the two dimensional model in a straight channel with
L =3.
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Figure 5.6: Pressure p seen from the outlet for the two dimensional model in a straight channel
with L = 3.
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5.1.2 Long channel

In this section, the surface plots of the fluid flow parameters in a long channel with
length L = 22 are given. The height of the channel is h = 1 like for the inlet section in
the BFS domain. 18 times 88 computational points were used for all the plots below
and they are shown from both the inlet and the outlet. The Reynolds number is Re =
560 for the plots below.

Figure 5.9 shows the u-velocity component profile for the long channel seen from the
inlet and figure 5.10 shows the same profile seen from the outlet. The flow is still
not fully developed, despite that the profile at the outlet looks to have reached the
parabolic profile. A check up of the values in MATLAB reveals that the velocity gradient
at the outlet is not zero, and the flow is therefore not fully developed.

Figure 5.11 shows the v-velocity component profile for the long channel seen from the
inlet and figure 5.12 shows the same profile seen from the outlet. There is again a flow
towards the centre of the channel right after the inlet like for the short channel. This
is seen from the increase in the v-velocity near the southern wall and the decrease near
the northern wall after the inlet and is due to the friction from the walls. The same
amount of computational points were used for the short and the long channel. This
means that the inlet section, were the largest changes in the v-velocity occur, is less
accurately represented for the extended channel. The v-velocity reaches a value close
to zero at approximately 10 m.

Figure 5.13 shows the pressure profile for the long channel seen from the inlet and
figure 5.14 shows the same profile seen from the outlet. The scale of the plot is again
of low variation, and the pressure is close to constant across the domain like for the
short channel.

Figure 5.15 shows the pressure correction for the long channel seen from the inlet and
figure 5.16 shows the same profile seen from the outlet. Note that the scale is of order
of magnitude 107!% Pa. When converged, the pressure correction should be close to
zero across the domain for the continuity equation to be fulfilled. The outlet pressure
is known and the pressure correction is therefore zero at the outlet.

Like for the short channel, the pressure correction profile has a small wave-like jump
at the points directly before the outlet which is due to the fact that the flow is not
fully developed. The magnitude of this is very small and therefore insignificant to the
converged solution. Increasing the length of the channel until the flow is fully developed
removes this issue. For the height of 1 m, this does not occur until approximately
x = 50.

For the simulation with Re = 1120, the long channel L = 22 is visibly not long enough
for the flow do be fully developed. The wu-velocity profile does not reach a parabolic
profile at the outlet, and the v-velocity profile is not completely equal to zero at the
outlet.



72 CHAPTER 5. RESULTS

x10~%

8.00 _
=N
— 6.00 _ = \\\\\\\\\\\\\\\\\&\\\\\\\\\\.\\
< 2.00 7SS

o

y-direction [m] 0 0 a-direction [m)]

Figure 5.9: u-velocity seen from the inlet for the two dimensional model in a straight channel with
L =22
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Figure 5.10: u-velocity seen from the outlet for the two dimensional model in a straight channel
with L = 22.
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Figure 5.11: v-velocity seen from the inlet for the two dimensional model in a straight channel
with L = 22.
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Figure 5.12: v-velocity seen from the outlet for the two dimensional model in a straight channel

with L = 22.
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Figure 5.13: Pressure p seen from the inlet for the two dimensional model in a straight channel
with L = 22.
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Figure 5.14: Pressure p seen from the outlet for the two dimensional model in a straight channel
with L = 22.
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5.2 Backwards Facing Step Model

In this section, the results for the flow over the backwards facing step are given. The
two domains shown in figures 1.2 and 1.3 were used, the first was used to develop the
model and the second was used to compare the result with Biswas et al. [4] for different
Reynolds numbers. The results for the domain in figure 1.2 are shown in section 5.2.1
and the results for the domain in figure 1.3 are shown in section 5.2.2.

5.2.1 Constant Inlet Velocity

In this section, the results for the flow over the backwards facing step domain as used
by Melaaen [3] are given. The domain has a total length of L = 22 m which corresponds
to the length of the long channel as shown in section 5.1.2. All the dimensions of the
domain are given by figure 1.2 and in table 4.1. The MATLAB code channel BFS.m
was used to obtain the results, and is given in appendix E. 18 times 88 computational
points with a total of 1512 scalar nodes were used for all the plots below and they
are shown from both the inlet and the outlet. This resolution is around the highest
possible resolution for the model with the current settings without the model stopping
due to singularity in one or more of the coefficient matrices.

Table 5.2 shows the two different inlet u-velocities used as given in section 4.4 and the
corresponding number of iterations and computational time before convergence was
reached. The under-relaxation factors were reduced to half for Re = 560 in comparison
to Re = 1120 as described in section 4.2.

Uin Re  Tterations Time
1-107% 1120 10261 1 h 35 min
5-107% 560 12286 1 h 44 min

Table 5.2: Number of iterations and convergence time for the backwards facing step model with a
constant inlet velocity.

Below the plotted results for Re = 560 are shown. The hydraulic diameter Dp,q is
defined as in equation (2.1.9), and is equal to h.

5.2.1.1 Surface Plots

Figure 5.17 shows the u-velocity component profile for the flow over the backwards
facing step seen from the inlet and figure 5.18 shows the same profile seen from the
outlet. As can be seen, the profile is fully developed at around x = 8 as the outlet
profile is parabolic and the profile does not change further. The recirculation zone after
the step is visible, but is easier to see from the velocity vector plots given in section
5.2.1.2 where the u- and v-velocity components are combined.

Figure 5.19 shows the v-velocity component profile for the flow over the backwards
facing step seen from the inlet and figure 5.20 shows the same profile seen from the
outlet. As can be seen, the profile at the inlet follows the pattern from the flow in the
straight channel as presented in section 5.1, where there is a preliminary flow towards
the centre of the channel. The flow is fully developed as the outlet profile is zero.

Figure 5.21 shows the pressure profile for the flow over the backwards facing step seen
from the inlet and figure 5.22 shows the same profile seen from the outlet. Like for the
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two dimensional straight channel plots the scale is of low variation, and the pressure is
close to constant across the domain.

Figure 5.23 shows the pressure correction for the flow over the backwards facing step
seen from the inlet, and figure 5.24 shows the same profile seen from the outlet. Unlike
the result from the two dimensional straight channel, the pressure correction is equal to
zero towards the outlet because the flow is fully developed. The same outlet boundary
condition and implementation was used in all cases.
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Figure 5.17: wu-velocity seen from the inlet for the backwards facing step model.
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Figure 5.18: u-velocity seen from the outlet for the backwards facing step model.
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Figure 5.19: v-velocity seen from the inlet for the backwards facing step model.
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Figure 5.20: v-velocity seen from the outlet for the backwards facing step model.
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Figure 5.21: Pressure p seen from the inlet for the backwards facing step model.
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Figure 5.22: Pressure p seen from the outlet for the backwards facing step model.
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Figure 5.23: Pressure correction p’ seen from the inlet for the backwards facing step model.
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Figure 5.24: Pressure correction p’ seen from the outlet for the backwards facing step model.
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5.2.1.2 Velocity Vector Plots

In the velocity vector plots shown in this section, the velocities are represented as
arrows. The background color signifies the value of the velocity at each point. In all
the velocity vector plots presented in this thesis, dark blue represents the lowest value
and yellow is the highest possible value as seen in figure 5.25. The actual value of the
velocities varies for all the plots. The arrows show the direction of the velocity in each
point, but the magnitude is also reflected in the length of each arrow. The arrows are
scaled relatively, which means that the highest velocity in the domain is assigned a
specific arrow length and all the other arrow lengths are scaled accordingly. The points
at which each velocity is calculated are located at the beginning of the stem of each
arrow.
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Figure 5.25: Color scale used in the velocity vector plots.

Figure 5.26 shows the velocity vector plot for the combined u and v-velocity for the
flow over the backwards facing step.

......

IS J g + - 44 Hadggdddagdadadagdddd g gy

— L0 -
= 3 IS

— B E R E L E R R L AP R E R E R R E R E R EE R EREEEEEEE R RN RS
_E S obebodobo e g S e ] A bbb bbbl bbbl bt e et A bbb bbb 5
3 ;

o

—

.-

T

= 0.5

0.0

0 2 4 6 8 10 12 14 16 18 20 22
z-direction [m)]

Figure 5.26: Velocity vector plot for the backwards facing step model.

Figure 5.27 shows a zoomed in version of the same velocity plot as in figure 5.26. The
plot is zoomed in to show the flow from the steps to three times the width of the step.
The length of the arrows is scaled to 3 times the length of the arrows in figure 5.26. The
recirculation zone is visible. Since the resolution is quite low, it is hard to determine
where the flow separation due to the recirculation zone ends, but it is clear that it is
somewhere at around 6 m. This is equivalent to around 12 times the step height.
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Figure 5.27: Velocity vector plot for the backwards facing step model zoomed in on the
recirculation zone after the step.

5.2.2 Parabolic Inlet Velocity Profile

In this section, the results for the flow over the backwards facing step domain as used
by Biswas et al. [4] are given for a variety of low Reynolds numbers. The domain has
different dimensions from the domain used to obtain the results in section 5.2.1, all
dimensions are given by figure 1.3 and in table 4.1. The total length of this domain is
L = 35.

A parabolic profile was used at the inlet for the u-velocity instead of the constant inlet
velocity used in section 5.2.1. The MATLAB code channel BFS_parabolic.m was used
to obtain the results, and is given in appendix E. 20 times 70 computational points
with a total of 1300 scalar nodes were used for all the simulations. The results were
obtained for a variety of Reynolds numbers and will be compared in chapter 6 to the
results found by Biswas et al. [4].

Table 5.3 shows the different Reynolds numbers used for the flow over the backwards
facing step with a parabolic inlet velocity profile as specified in table 4.7. The number
of iterations and the convergence times for the model are also shown. Biswas et al.
[4] provides results for Reynolds numbers between 0.0001 and 100, and the higher
Reynolds numbers were added to see how the model behaves. For the two higher
Reynolds numbers, the under-relaxation factors were halved compared to the lower
Reynolds numbers to achieve convergence. The hydraulic diameter Dy,q is defined as
2h like by Biswas et al. [4]. Still & is used as a scaling parameter for all the spacial
dimensions, which means that the Reynolds numbers in this section are equivalent the
Reynolds numbers in section 5.2.1.
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Re [-] Iterations [-] Time
0.0001 1879 11 min
0.1 1879 13 min
1 1879 13 min

10 2033 13 min

20 2599 18 min

100 3284 22 min

200* 10280 63 min
400* 18726 117 min

Table 5.3: Number of iterations and convergence time for the backwards facing step model with
parabolic inlet profile for a range of Reynolds numbers. * Under-relaxation factors were halved.

5.2.2.1 Velocity Vector Plots

In this section, the velocity vector plots for the set of Reynolds numbers as shown in
table 5.3 are given. In all the velocity vector plots dark blue represents the lowest value
of the velocity in the domain for the current settings and yellow is the highest possible
value for the velocity (see figure 5.25). The whole domain is shown in all the plots,
which makes it difficult to see the recirculation zones after the step in detail. Zoomed
in plots of the recirculation zones for the different Reynolds numbers are compared in
section 5.2.2.2.

Figure 5.28 shows the velocity vector plot for the combined u and v-velocity for the
flow over the backwards facing step with the Reynolds number Re = 0.0001. There is
no visible recirculation zone.
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Figure 5.28: Velocity vector plot for the backwards facing step model with Re = 0.0001.

Figure 5.29 shows the velocity vector plot with Reynolds number Re = 0.1. There is
still no visible recirculation zone.
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Figure 5.29: Velocity vector plot for the backwards facing step model with Re = 0.1.

Figure 5.30 shows the velocity vector plot with Reynolds number Re = 1. There is
no visible recirculation zone. Figure 5.31 shows the velocity vector plot with Reynolds
number Re = 10. The recirculation zone is not prominent for the Reynolds numbers
between 0.0001 and 10, and the velocity plots look very similar. Figure 5.32 shows the
velocity vector plot with Reynolds number Re = 50. The recirculation zone is starting
to develop after the step. Figure 5.33 shows the velocity vector with Reynolds number
Re = 100. The recirculation zone is visible. Figure 5.34 shows the velocity vector with
Re = 200. The recirculation zone is now easy to spot. Figure 5.35 shows the velocity
vector with Re = 400. The recirculation zone is visible, and a secondary recirculation
zone is appearing at the northern wall after the first zone next to the step. This zone
was observed by Armaly et al. [7] for Reynolds numbers larger than 400.
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Figure 5.30: Velocity vector plot for the backwards facing step model with Re = 1.

2.0

=
ot

=
o

y-direction [m]

<
w

0.0

0 5 10 15 20 25 30 35

z-direction |[m)]

Figure 5.31: Velocity vector plot for the backwards facing step model with Re = 10.
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Figure 5.32: Velocity vector plot for the backwards facing step model with Re = 50.
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Figure 5.33: Velocity vector plot for the backwards facing step model with Re = 100.
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Figure 5.34: Velocity vector plot for the backwards facing step model with Re = 200.
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Figure 5.35: Velocity vector plot for the backwards facing step model with Re = 400.
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5.2.2.2 Comparison of Recirculation Zone

Figure 5.36 show zoomed in versions of the velocity vector plots given in section 5.2.2.1.
The plots show the recirculation zones after the backwards facing step for the same set
of low Reynolds numbers as used by Biswas et al. [4]. The section shown is the flow
between x = 5 to five times the step height at z = 10. The length of the arrows is
scaled 3 times in comparison to the arrows in figures 5.28-5.35.

Figure 5.37 show the same zoomed in versions of the velocity vector plots as in figure
5.36 with the addition of two higher Reynolds numbers of 200 and 400 as given in table
4.7. The section shown is the flow between the step at z = 5 to 7.5 times the step
height at x = 12.5. The length of the arrows is scaled 3 times in comparison to the
arrows in figures 5.28-5.35.

As can be seen from figures 5.36 and 5.37, there is seemingly a slight flow out from
the wall of the step to the very left of the figure. This is especially apparent from
the northernmost point east of the step, which can also be seen in figure 5.27. This
behaviour is not physical, as there should be no flow through the wall. The point in
question is not located directly at the wall and a nonzero velocity value here would be
feasible. It appears that the velocity is not affected by the v-velocity component at all
in any of the cases. This may mean that there is an error in the implementation of the
boundary condition at this western wall. Although there is seemingly a slight velocity
out from the wall here, it should not be a large problem, since the magnitude of the
velocity is very small compared to the rest of the channel.

Figure 5.38 shows the flow plots from Biswas et al. [4] for comparison to the results
for the Reynolds number study from Biswas et al. [4] who also used the Finite Volume
method for the results and the SIMPLE algorithm for obtaining the pressure. The
whole height of the domain are shown, but in x-direction the plots are cropped to
include 1 m of the inlet section before the expansion and 3 meters after the expansion.
The origin of the coordinate system is located at the corner of the backwards facing
step, so that x = 3 in figure 5.38 corresponds to x = 8 in figure 5.36.

Due to the coarseness of the grid used in the simulations in this thesis, the recirculation
in the corner for the Reynolds numbers lower than 10 are not visible in figure 5.36. For
Re =50 and Re = 100 the recirculation can be seen, and the reattachment lengths are
in accordance with the results in figure 5.38. The reattachment length is the length of
the recirculation zone from the step and until the end of the zone, where the flow no
longer curves back towards the step at the southern wall. The agreement of the results
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