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Preface

This thesis was written during the spring of 2020. It concludes the work per-
formed as the final part of a master’s degree program within Chemical Engi-
neering and Biotechnology at Norwegian University of Science and Technology
(NTNU). This project was an extension of a specialization project, completed
during the autumn of 2019. The work and results of this preliminary project are
also utilized in this thesis. The relevant content from the preliminary project
has been included, in condensed form, to give the reader a comprehensive un-
derstanding of the problem. Both projects were written in collaboration with
Cybernetica AS, who proposed the projects, and Inovyn Norge, who provided
necessary process data, from their facilities in Porsgrunn.

June 2020, Trondheim, Norway
Anne Øyen Hal̊as
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Abstract

The objective of this thesis is to study the implementation of Nonlinear Model
Predictive Control (NMPC) on a reactor for an emulsion polymerization pro-
cess. A model is derived using first principles and serves as a plant replacement
model, in addition to an integrated part of the controller. The majority of this
model was previously developed, and some customization is done to make it
applicable for NMPC. The control system is tuned, and the performance is
demonstrated by simulations.

The theoretical aspects of polymers and emulsion polymerization are ex-
plicitly provided in this thesis. Necessary model equations describing this pro-
cess is implemented in C code, in one of Cybernetica’s templates for polymer
processes. The process studied is the emulsion polymerization of Vinyl Chlo-
ride Monomer (VCM) to the desired product Poly-Vinyl Chloride (PVC). The
model is validated and modified against process data provided by Inovyn Norge.
It is concluded that the model gave satisfactory results compared to process
data. It is emphasized that the model can be done applicable for other systems
than PVC, with some effort and an understanding of the process.

The concepts behind optimization, Model Predictive Control (MPC) and
state- and parameter estimation is provided. In addition, is some specific as-
pects of control and NMPC implementation on this process, presented. Some
deviations between the model used as plant replacement, and in the controller,
is deliberately implemented. This is done to imitate the fact that a model
never will be an exact representation of reality. A Kalman Filter (KF) was
implemented as the state- and parameter estimator, and was tuned and tested.

The implementation of NMPC, in combination with state- and parameter
estimation, on the reactor, is considered successful in this project. The results
indicate that the control system can exploit the cooling capacity by feeding
reactants and controlling the temperature in an efficient matter. This is done
by still ensuring safe operation and meeting quality requirements.
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Sammendrag

Målet med dette prosjektet er å studere implementering av ulineær modell-
prediktiv regulering (NMPC) for en reaktor for emulsjonpolymerisasjon. En
modell utledes ved bruk av fysiske prinsipper, og brukes til å erstatte m̊alte data
fra prosessanlegget. Den brukes ogs̊a som modell for NMPC’en. Størsteparten
av denne modellen ble utviklet i et tidligere prosjekt, men noen tilpasninger
utføres for å gjøre den anvendelig for NMPC. Ytelsen til kontrollsystemet testes
og demonstreres ved simuleringer.

De teoretiske aspektene ved polymerer og emulsjonspolymerisasjon er spesi-
fikt utdypet i denne oppgaven. Modellikningene som beskriver denne prosessen
er implementert i C-kode, i en av Cyberneticas maler for polymerprosesser.
Prosessen som studeres er emulsjonspolymerisasjonen av vinyl klorid (VCM),
til det ønskede produktet poly-vinyl klorid (PVC). Modellen valideres og mod-
ifiseres mot prosessdata fra Inovyn Norge. Modellen ga akseptable resultater
sammenlignet med prosessdata. Det understrekes at modellen kan gjøres an-
vendelig for andre systemer enn PVC, med litt anstrengelse og forst̊aelse av
prosessen.

Konseptene bak optimalisering, MPC (Modellprediktiv regulering) og tilstands-
og parameterestimering er gitt. I tillegg er noen spesifikke aspekter ved regu-
lering og NMPC implementering av en semi-batch reaktor for emulsjonspoly-
merisasjon presentert. Noen avvik mellom modellene som ble brukt til å er-
statte m̊alte data for prosessanlegget, og i NMPC’en, ble bevisst implementert.
Dette skal etterligne det faktum at en modell aldri vil være en eksakt represen-
tasjon av virkeligheten. Et Kalman Filter (KF) ble implementert som tilstand-
og parameterestimator. Applikasjonen testes s̊a b̊ade med og uten estimatoren.

Implementeringen av NMPC, i kombinasjon med estimering av tilstand og
parametere, ansees som vellykket i dette prosjektet. Resultatene indikerer at
kontrollsystemet er i stand til å utnytte kjølekapasiteten ved å føde reaktanter
og kontrollere temperaturen p̊a en effektiv m̊ate. Sikker drift og kvalitetskrav
er da opprettholdt.
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Nomenclature

For consistency reasons, this will be the strategy used for the nomenclature

• Descriptive sub- and superscripts are of roman type, so are units.

• Italic type represents a quantity or a running number (indices).

• Compounds will be described using capital letters; Monomer (M), Wa-
ter (W), Surfactant/Emulgator (S), Initiator (I), Polymer (P), Chain-
transfer agents (AX), Radical (R). The relevant compound for compound-
specific properties will be denoted with subscripts, for example, the molec-
ular weight of monomer: MM.

• Phases will be described using lower case letters; Polymer phase (p),
water phase (w), gas phase (g), free phase (f). The given phase for
phase-specific properties will be denoted with superscripts, for example,
the volume of the gas phase: V g.

• Dotted variables indicated time-derivatives, for example change in reactor
mass; ṁR.

• Hatted variables indicate flow, for example, the mass flow of fresh water;
m̂fresh. Note that volume flows are excepted from this standard, and is
denoted by q.

Latin symbols

Symbol Description Unit

A Jacobian matrices

AJ,amb Jacket-ambient area m2

AR,amb Reactor-ambient area m2

AR,J Reactor-jacket area m2

as Interfacial area of the particles m2/molecule

B Jacobian matrices

C The relative rate coefficient of radical termination
i polymer phase

xiii



NOMENCLATURE

CTA Chain transfer agent

c Rate coefficient for termination in Smith and
Ewart’s balance of number of radicals per par-
ticle

cp,i Heat capacity of component i J/kg/K

cp,J Heat capacity of jacket content J/kg/K

cp,rec Heat capacity of the recycled stream J/kg/K

cp,steel Heat capacity of steel J/kg/K

Di Number of inactive polymer chains of chain
length i

d Diameter of the particles m

du Weight vector

dx Weight vector

f Efficiency factor for the initiator

f( · ) Process model

f1 Efficiency factor for Initiator 1

f2 Efficiency factor for Initiator 2

f̂0
M Fugacity of monomer at standard state Pa

f̂ jM Fugacity of monomer in phase j, j = f, p, g, w Pa

g( · ) Measurement model

H Output matrix

h( · ) Function that adds noise to the parameters

hfg Latent heat of steam J/kg

I Initiator

I1 Initiator 1

I2 Initiator 2

[i] Concentration of component i, i = M, I, S, P, W,
AX, R

mol/m3

[i]
j

Concentration of component i in phase j, i = M,
I, S, P, W, AX, j = f, p, g, w

mol/m3

J Objective function

K1 Monomer in water solubility constant

Kk Estimator gain matric

k Current time sample

k′ Rate coefficient for desorption in Smith and
Ewart’s balance of number of radicals per par-
ticle

k′′ Constant in Smith and Ewart’s equation for nu-
cleation

k′′′ The rate coefficient describing the radical exit
from the particles to the water phase in Li and
Brook’s prediction
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NOMENCLATURE

kads Rate constant for radical adsorption from water
phase

m3/mol/s

kAX
ct Rate constant for chain transfer to chain transfer

agents
m3/mol/s

kM
ct Rate constant for chain transfer to monomer m3/mol/s

kP
ct Rate constant for chain transfer to polymer m3/mol/s

kd Rate constant for decomposition of initiator 1/s

kd1
Rate constant for decomposition of Initiator 1 1/s

kd2
Rate constant for decomposition of Initiator 2 1/s

kdes Rate constant for desorption of radicals 1/s

ki Rate constant for chain initiation 1/s

kA
i Rate constant for chain initiation by radical frag-

ment from the chain transfer agent
1/s

kp Rate constant for propagation m3/mol/s

kt Rate constant for termination m3/mol/s

kw
t Rate constant for termination in water phase m3/mol/s

ktc Rate constant for termination by combination m3/mol/s

ktd Rate constant for termination by disproportiona-
tion

m3/mol/s

M Monomer

M Control horizon

Mi Molecular weight of component i, i = M, I, S, P,
W, AX

kg/mol

Mn Number average molecular weight kg/mol

Mw Weight average molecular weight kg/mol

m̂fresh Mass flow of fresh water feed kg/s

m̂delayed
fresh Mass flow of fresh water feed, taken into account

the delay in the pipe lines
kg/s

mi Mass of component i, i = M, I, S, P, W, AX kg

m̂i Mass flow of component i, i = M, I, S, P, W, AX kg/s

mj
i Mass of component i in phase j, i = M, I, S, P,

W, AX, j = f, p, g, w
kg

mJ Mass of content contained inside jacket (water) kg

m̂J Mass flow of jacket content kg/s

mall particles
P Mass of all polymer particles kg

mone particle
P Mass of one polymer particle kg

m̂rec Mass flow of recycled water, before addition of
fresh water

kg/s

msteal Mass of steal (reactor) kg

m̂steam Mass flow of steam kg/s

N Prediction horizon

NA Avogadros constant 1/mol
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NOMENCLATURE

Nn Number of particles containing n radicals

NT Total number of particles mol

n Number of radicals

n̄ Average number of radicals per particle

ni Moles of specie i, i = M, I, S, P, W, AX, R mol

n̂i Molar flow of specie i, i = M, I, S, P, W, AX mol/s

ni,0 Initial moles of specie i, i = M, I, S, P, W, AX,
R

mol

nji Moles of specie i in phase j, j = f, p, g, w, i =
M, I, S, P, W, AX, R

mol

nu Number of inputs

nx Number of states

Pi Growing polymer of chain length i

Pi Number of active polymer chains of chain length
i

Pf Weighting matrix

P̄k A priori covariance

P̂k A posteriori covariance

Ptot Total amount of radicals mol

p Unknown parameter which will be subject for es-
timation

pM Partial pressure of monomer Pa

psat
M Saturation pressure of monomer Pa

pR Pressure in the reactor Pa

pW Partial pressure of water Pa

psat
W Saturation pressure of water Pa

Q Covariance matrix for process noise

Q̇ Heat transfer W

Q1 Weighting matrix

q Volume flow m3/s

qfresh Volume flow of fresh water m3/s

qsteam Volume flow of steam m3/s

R Covariance matrix for measurement noise

R · Radical

R1 Weighting matrix

R2 Weighting matrix

R3 Weighting matrix

Rfresh Design parameter for the valve opening of fresh
water

Rsteam Design parameter for the valve opening of steam

Rg Gas constant Pam3/K/mol

Rd Reaction rate for composition of initiator mol/s
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NOMENCLATURE

Rd1 Reaction rate for decomposition of Initiator 1 mol/s

Rd2
Reaction rate for decomposition of Initiator 2 mol/s

RI Total rate of formation of radicals that can be
used for polymerization

mol/s

RI1 Rate of formation of radicals produced from Ini-
tiator 1 that can be used for initiation

mol/s

RI2 Rate of formation of radicals produced from Ini-
tiator 2 that can be used for initiation

mol/s

Ri Reaction rate for chain initiation mol/s

Ri Net generation or consumption of a specie i
through chemical reactions

mol/s

Rp Reaction rate for propagation mol/s

Rt Reaction rate for termination mol/s

Rw
t Reaction rate for termination in water phase mol/s

r Weighting vector

S Surfactant

S Amount of surfactants

Tamb Ambient temperature K

Tfeed,i Temperature of reactant i fed into the reactor,
i = M, I, S, W, AX

K

Tfresh Temperature of the fresh water feed K

TJ Temperature of water inside the jacket K

Tmin
J Minimum temperature possible for the water con-

tained in the jacket
K

TJ,in Inlet jacket temperature K

TJ,out Outlet jacket temperature K

TR Reactor temperature K

Trec Temperature of the recycled cooling water, after
the heat exchanger

K

T̄XM
Conversion average temperature K

tbatch Batch time s

UJ,amb Heat transfer coefficient between jacket and am-
bient

W/m2/K

UR,amb Heat transfer coefficient between reactor and am-
bient

W/m2/K

UR,J Heat transfer coefficient between reactor and
jacket

W/m2/K

u Inputs of the system

V Volume m3

Vf (·) Terminal cost function

Vfluid,s Volume of liquid and solid in the system if no
monomer or water was present in the gas phase

m3
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NOMENCLATURE

V j Volume of phase j, j = f, p, g, w m3

V ji Volume of component i in phase j, j =f, p, g, w,
i = M, I, S, P, W, AX

m3

VR Volume of the reactor m3

v Process noise

vp,k Noise on the parameters

vp Volume of one polymer particle m3

w Measurement noise

wl The liquid volume fraction in the reactor

XM Monomer conversion

Xc
M Critical monomer conversion

x States of the system

x′ Augmented states

xref Reference value of the state

x̄k A priori estimates

x̂k A posteriori estimates

y Measurements

yi Volume fraction of component i in gas phase, i =
M,W

z Valve position

zfresh Valve position of the fresh water feed

zsteam Valve position of the steam inlet

E Indices for equality constrains

I Indices for inequality constrains

Greek symbols

Symbol Description Unit

αM Monomer activity

ρ′ Rate coefficient for adsorption in Smith
and Ewart’s balance of number of radicals
per particle

rad/m3

ρ′′ Rate of formation of radicals per volume
water (Smith and Ewart’s equation for nu-
cleation)

ρfresh Density of the recycled stream kg/m3

ρsteam Density of steam kg/m3

ρi Density of component i, i = M, I, S, P, W,
AX

kg/m3

ρji Density of component i in phase j, i = M,
I, S, P, W, AX, j = f, p, g, w

kg/m3
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NOMENCLATURE

µ Rate of increase in particle volume (Smith
and Ewart’s equation for nucleation)

m3/s

µk k’th live moment mol/m3

φ Set of decision variables

ψ Parameter in Li and Brook’s prediction

ϕ Volume fraction of polymer in the polymer
particles

ε Ratio between termination by dispropor-
tionation and the total termination

ε Slack variable

χ Flory-Huggins interaction parameter

χf Terminal constraints

θ Collection of process parameters

ν Internal control signal

νk k’th dead moment mol/m3

νmax Maximum value of internal control signal

νmin Minimum value of internal control signal

σ The average rate radicals enters the par-
ticles from water phase in Li and Brook’s
prediction

τfresh Time constant for delay in pipe lines for
fresh water feed

s

∆Hcooling capacity Available (maximum) cooling capacity W

∆Hcooling demand Cooling demand W

∆Hrx Heat of reaction W
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Chapter 1

Introduction

This chapter aims to give the reader an introduction to this thesis. The back-
ground for this project will be presented by reviewing some of the historical as-
pects of polymer and polymer science. The present perspective of the field will
then highlight the motivation of implementing model-based control schemes,
such as Model Predictive Control (MPC), to polymerization processes. The
objective of this project will then be presented. Finally, the structure of the
remaining chapters of this thesis will be covered.
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CHAPTER 1. INTRODUCTION

1.1 Background and motivation

The first polymers used were natural occurring products, like cotton, starch and
wool (Sperling, 2005). Polymer technology was utilized in the developments
of fibres, additives, coating and leathers. Little was, however, known about
the chemistry of these materials. Before 1770, when Joseph Priestley discov-
ered natural rubbers was well applicable for erasers, natural rubbers were not
utilized extensively. Synthetic rubbers were not produced to any particular
extent before the late 1930s (Seymour, 1989). The research within polymer
science was created in need to make new kinds of plastics, fibres and coatings,
in addition to making an understanding of the relationship between the chem-
ical structure and the resulting physical properties (Sperling, 2005). Synthetic
polymers can today be produced through a variety of different processes and
mechanisms (Kiparissides, 1996).

During the 1940s, Harkins (1945, 1946, 1947), published a framework that
qualitatively describes the emulsion polymerization process. His theory has
later been treated by numerous of other workers, as by Smith and Ewart (1948).
It has later become evident that the mechanism of emulsion polymerization is
much more complex than theories of the early workers. In addition, these
theories have shown trends not to be applicable for all emulsion polymeriza-
tion systems (Okamura and Motoyama, 1962; Peggion et al., 1964; Gardon,
1968a,b).

A number of different mechanisms have been proposed, for example by Min
and Ray (1974), who proposed a more general modeling framework. Also, J.
Ugelstad performed a significant work on kinetics and mechanisms of emul-
sion polymerization (1967; 1976), particulary on the polymerization of Vinyl
Chloride Monomer (VCM) (1969; 1970; 1973).

The field of emulsion polymerization is by this time, quite well-understood
(Gilbert, 1995). However, the polymer industry becomes more and more com-
petitive. This increases the pressure on reducing the production cost and more
strict product quality requirements. It is, therefore, essential to make use of the
available resources and the knowledge people possess. By developing mathe-
matical models describing the process, the behaviour of the system can be
predicted. The system’s response to different reactor configurations and opera-
tional conditions can then be explored (Kiparissides, 1996). This does, however,
require a modeller with a deep understanding of the problem. Model-based con-
trol schemes are attractive to ensure both safe and stable operations. It can
also be beneficial when aiming to meet the quality requirement, improve qual-
ity and reduce process variability, which can have significant economic benefits
(Valappil and Georgakis, 2002). Model-based control schemes, such as MPC,
can also be used to reduce emissions and waste, which can be advantageous
both from an economic and environmental point of view.

Significant improvement can be obtained regarding plant operation and eco-
nomics by implementing MPC. The dynamics of polymerization processes are
highly nonlinear, and some, important, property measurements are not avail-
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1.2. SCOPE OF WORK

able during operation (Özkan et al., 2001). Other environmental measurements,
however, like temperature, can readily be obtained (Kiparissides, 1996; Mutha
et al., 1997). A model that predicts the behaviour of the quality parameters
from the available measurements is, therefore, necessary. A challenge in on-line
optimization is to develop a model with sufficient complexity to capture the
dynamics of the system. The model should, however, not be too complicated
for the solver not to find a solution in between samples. The optimization
problem should be solved within the available sampling time (Rawlings et al.,
2017).

1.2 Scope of work

From an industrial point of view, an interesting aspect would be to explore
the possibility of shortening the duration of one batch. By exploiting the cool-
ing capacity more efficiently, the production rate can be increased and thus
decreasing the batch duration. As long as reducing the batch time does not
compromise the quality of the product, the batch time will be the most critical
economic variable in many systems. Dosing chemicals in an appropriate matter
might also be a candidate for increasing the efficiency of the operation. The
objective of this project is to investigate and implement Nonlinear Model Pre-
dictive Control (NMPC) of a semi-batch reactor for an emulsion polymerization
process, for the purpose of the above-mentioned challenges.

In advance of this thesis, a preliminary project was conducted. This project
included developing a dynamic model for an industrial polymerization process.
More specifically, an emulsion polymerization process carried out in a semi-
batch reactor. The model was validated against an industrial case, by data
provided by Inovyn Norge. The results showed promising results for further
implementation of NMPC.

This master project has consisted of a wide range of various tasks. Some
important modelling aspects remained after the preliminary work to make the
model applicable for NMPC. The first task of this project was to finalize the
model and validate the model against process data. An environment for control
system testing was then to be established, in which the model served as a plant
replacement simulator, and as an integrated part of the controller. Schemes
for state- and parameter estimation was then to be investigated, and assessed
if it provides more efficient control. This is of particular interest for systems
where the models in the plant replacement simulator and integrated into the
controller, are dissimilar. The selected solution was to be implemented in
Cybernetica’s on-line environment, and the performance of the control system
should be tested.

1.3 Thesis structure

This remaining chapters of this thesis will be structured in the following way.
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CHAPTER 1. INTRODUCTION

Chapter 2 will introduce the theoretical aspects of polymerization pro-
cesses. This will be done first on a general basis, before free-radical poly-
merization will be reviewed. This will together found the basis for the final,
and most relevant topic for the purpose of this project; emulsion polymer-
ization processes.

Chapter 3 will introduce the theoretical aspects of optimization, linear and
nonlinear MPC, and state- and parameter estimation. The general theory
of optimization problems will be stated first. The concept of MPC will then
be presented, whereas the need for state- and parameter estimation will
become clear.

Chapter 4 will give a description of the relevant process and the control
structure of the system. Necessary information regarding reactor designed
and chemical dosage will be reviewed to provide the reader with a proper
understanding of the relevant process.

Chapter 5 provides the finalization of the set of model equation which
will be used when implementing the NMPC application. There was done a
thoroughly modelling work in the preliminary project, which is summarized
in Appendix A, and Chapter 5 merely completes this work.

Chapter 6 introduces some key considerations when developing a control
system for the relevant process. It will provide the reader with a comprehen-
sive understanding of the addressed problem, and highlight the motivation
for implementation of NMPC.

Chapter 7 presents the results of a selected number of simulations, which
is considered of particular relevancy. They are then discussed consecutively.

Chapter 8 will give a conclusion based on the previous chapters. Finally,
some recommendations and remarks on further work have been made.
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Chapter 2

Theoretical aspects of poly-
merization

This section will give the reader an introduction to the theory behind poly-
merization processes. This is important when introducing the relevant process
and the established model, in addition to the implementation of the control
scheme. Polymerization processes will be described on a general basis, with a
focus on emulsion polymerization specifically.

There was done thoroughly researched regarding the theory of polymeriza-
tion during the preliminary project. This to be able to establish the model
for the process (Chapter 5 and Appendix A). The theoretical basis will be
presented here.
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CHAPTER 2. THEORETICAL ASPECTS OF POLYMERIZATION

2.1 Polymerization processes

Polymers are macromolecules built up of smaller molecule units, called monomers
(Odian, 1991). Polymers may consist of more than thousands of monomer units.
Hence polymers are typically high molecular weight compounds. For monomers
to form polymers, they have to have either reactive functional groups, double
bonds or triple bonds. The reaction of generating polymers is called polymer-
ization and is commonly a highly exothermic reaction (Kumar, 2003).

The properties of the polymer may be highly dependent on the arrangement
of the polymer chains, called the microstructure. Polymers can be divided into
three different classes, based on their structure (Painter, 1997);

1. Linear polymers

2. Branched polymers

3. Network polymers

Linear polymers are arranged in a linear sequence. The simplest type of poly-
mer is linear homopolymer and is made up of one type of monomer (Painter,
1997). In comparison, polymers built up of two or more types of monomers
are referred to as copolymers. Branched polymers may contain up to several
secondary chains, either long or short, connected to the primary chain (Asua,
2008).

When linear chains pack into a three-dimensional form, they form a crys-
talline phase. Properties such as stiffness, strength and optical clarity are af-
fected by the crystallinity of the three-dimensional polymer. Highly branched
polymers are incapable of forming such a crystalline phase, as their branches
prevent them of regular package. The density of linear polymers may, therefore,
be higher than the equivalent branched polymer (Painter, 1997).

A network is defined to be a polymer where every unit is interconnected
through some pathway. The network remains mixed with the monomer unless
all the monomer units are connected to the network. A network can be formed
in various ways, as by cross-linkage of linear polymers or by the formation of
highly branched polymers (Painter, 1997). When a critical number of polymers
has undergone cross-linkage or branching, polymers that initially was soluble
might become insoluble (Flory, 1941). This phenomena is called gelation. A gel
is defined to be the part of a polymer belonging to the infinite three-dimensional
network (Asua, 2008).

There are multiple ways of classification within polymer science. One is the
classification based on the mechanism of the polymerization reaction. In this
case, the polymerization reactions are distinguished between step-growth and
chain-growth polymerization (Odian, 1991).

The reaction mechanism of step-growth was introduced by Flory (1946), by
the following scheme

x−mer + y−mer −−→ (x + y)−mer (2.1.1)

6



2.1. POLYMERIZATION PROCESSES

Here, x and y represent the chain length of the mer, and can, for example,
be monomer, dimer and trimer. Step-growth polymerization consists of a re-
action between the functional groups, where the reaction between monomers
or polymers generates polymers with a longer chain length. This results in a
slow-building of chains. All chains will be active throughout the batch, and
the long-chained polymers will only be formed at the end.

In comparison to step-growth polymerization, chain-growth polymerization
will show the presence of high-molecular-weight polymer chains at any given
conversion, not only towards the end. For chain-growth polymerization, an
initiator is used to generate a specie with a reactive centre. This reactive centre
could be a free-radical, anion or cation. The polymerization reaction occurs
by the propagation of the reactive centre by addition of monomer by a chain
reaction. One of the most common example of a chain-growth reaction is the
polymerization of vinyl monomers (Odian, 1991). Vinyl Chloride Monomer
(VCM) is an example of such a monomer, and its corresponding polymer is
Poly-Vinyl Chloride (PVC). PVC is an example of a linear homopolymer, and
can be described by the following chemical formula.

[−C2H3Cl−]i (2.1.2)

Here, i represents the number of repeated monomer units. Chain-growth poly-
merization consist mainly of the following features; initiation, propagation, ter-
mination and chain transfer. This will be described in detail in Section 2.2.

2.1.1 Molecular Weight Distribution

The molecular weight of a polymer can determine many of its important phys-
ical properties. A collection of polymer chains may have a large range of
lengths, and both an average chain length and the Molecular Weight Distri-
bution (MWD) can be useful when examining the physical properties. The
MWD describes the number of chains with a particular molecular weight, and
can also give information about which kinetic phenomena that is present in a
system. The MWDs can be modelled, and some properties can also be mea-
sured. This opens up the opportunity to optimize properties of the polymer,
which is affected by the MWD (Gilbert, 1995).

The properties of the polymer are affected by the whole MWD, but it is often
described using average molecular weights. The number average molecular
weight, Mn, and the weight average molecular weight, Mw, are described by
Equation 2.1.3 and 2.1.4, respectively.

Mn =

∑
i(Di + Pi)∑
(Di + Pi)

MM (2.1.3)

Mw =

∑
i2(Di + Pi)∑
i(Di + Pi)

MM (2.1.4)

Here, i represent the number of repeated monomer units, Di represent the
number of inactive chains of length i, Pi represent the number of active chains
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CHAPTER 2. THEORETICAL ASPECTS OF POLYMERIZATION

of length i, and MM represent the molecular weight of the monomer. Calcu-
lation of these molecular weights are elaborated in Appendix A.4. The ratio
between the weight and number average molecular weight is defined to be the
Polydispersity Index (PDI) of the MWD. The PDI is therefore described by
Equation 2.1.5 (Asua, 2008).

PDI =
Mw

Mn

(2.1.5)

For a system where all chains are of the same length, the number and
weight average molecular weight will be equal. Thus the PDI will be 1. In
reality, there will always be some deviation between the two, and the weight
average molecular weight will be larger than the number average. The PDI will
be larger than 1.

PDI > 1 (2.1.6)

2.2 Free-radical polymerization

Free-radical polymerization is a type of chain-growth polymerization. As a con-
sequence, individual polymer chains can grow very rapidly and will eventually
terminate. New, active polymers are continuously generated throughout the
process by initiation. The system will contain both living and dead radicals of
different chain lengths at any given time, due to continuous initiation, propaga-
tion, termination and chain transfer (Gilbert, 1995). The steps of free-radical
polymerization will now be presented.

2.2.1 Reaction mechanisms

Initiation

Initiation is necessary for the polymerization to start, as it is the first reaction
step in the free-radical polymerization process and generates radicals. Chemi-
cal compounds that through reactions yield radicals are referred to as initiators.
Initiation consist of two main steps; initiator decomposition and chain initia-
tion. Radicals are formed through the initiator decomposition step. They are
highly reactive species, and if there is monomer present, they react rapidly
by chain initiation. The decomposition of initiator is a much slower reaction
step than the chain initiation, and will, therefore, be the rate-determining step
in the initiation mechanism. The choice of initiators and which characteris-
tics they possess is, therefore, highly important in free-radical polymerization
processes (Mishra and Yagci, 2016).

There are several methods of initiation, such as thermal initiation and
reduction-oxidation initiating systems (Redox initiation). In thermal initia-
tion, thermal energy will cause bond dissociation, leading to radical fragments.
The activation energy of initiators is important, as they should be stable at
room temperature, but highly reactive at certain temperature rise. Peroxides
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2.2. FREE-RADICAL POLYMERIZATION

are examples of chemical compounds that meet this requirement, and radical
fragments are formed by cleavage of the O−O-bond. For thermal initiation sys-
tems, initiator decomposition is most commonly described by Equation 2.2.1,
where one initiator molecule yields two radicals by homolytic decomposition
(Matyjaszewski and Davis, 2003).

I
kd−−→ 2R· (2.2.1)

Here, I represent the initiator, kd the rate constant for decomposition of the
initiator, and R · represent a radical fragment. R · will, in this thesis, represent
a radical, of chain length zero, generated from any arbitrary initiation mech-
anism. The rate of initiator decomposition can be described by the following
equation

Rd = kd[I] (2.2.2)

where Rd represent the reaction rate of initiator decomposition, and [I] repre-
sent the concentration of initiator. Not all radicals that are formed by initiator
decomposition can take part in further polymerization. They may terminate
and react further to inactive molecules. An initiator efficiency factor, f , is
therefore introduced. This parameter will have a value between 0 and 1. The
rate of radical formation that can be used for polymerization can then be de-
scribed by Equation 2.2.3.

RI = 2fkd[I] (2.2.3)

Here, RI represent the rate of radical formation that can be used for chain
initiation. Since one initiator molecule will give rise to two radical fragments,
the equation is multiplied by two (Asua, 2008).

Redox systems consist of a reducing agent and an oxidizing agent. It is
commonly used in industry because of their low activation energy. Redox
systems can, therefore, be performed at a lower temperature, that is under
50◦C. The typical redox initiation mechanism is shown below (Mishra and
Yagci, 2016).

ROOH + Mtn −−→ RO · + Mtn+1 + OH− (2.2.4)

Here, ROOH represent a hydroperoxide, Mt represent the metal compound,
RO · represent a alkoxyl radical, and OH– the hydroxide. The alkoxyl radical
will be the specie that will dominantly further take part in the polymerization.
The metal compound will form a complex with additives of the reaction mix-
ture, and cycle up and down in valency, and act as a catalyst of the reaction
(Matyjaszewski and Davis, 2003).

The chain initiation step can be described by Equation 2.2.5.

R · + M
ki−−→ P1 (2.2.5)

Here, M represent the monomer, ki the rate constant for chain initiation, and
P1 represent a growing polymer chain of length one. The rate of chain initiation
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will be given by the following equation

Ri = ki[M][R · ] (2.2.6)

where Ri represent the rate of chain initiation, [M] represent the concentration
of monomer and [R · ] represent the concentration of radicals with no attached
monomer unit (Mishra and Yagci, 2016).

Propagation

Propagation consist of adding monomer units to a growing polymer chain,
and is described by the following reaction mechanism for homo-polymerization
reactions

Pi + M
kp−−→ Pi+1 (2.2.7)

where kp represent the rate constant for propagation, and Pi and Pi+1 represent
a growing polymer chain of length i and i+1, respectively (Butté et al., 2002).
It is here assumed that the rate constant for propagation is independent of
chain length. There have, however, been done work that indicates that kp has
a significant chain-length dependence for the first addition steps, as by Heuts
and Russell (2006).

When assuming chain initiation is negligible contribution to the overall
consumption of monomer, the production rate will be given as the propagation
rate. This is described by Equation 2.2.8.

Rp = kp[M]Ptot (2.2.8)

Here, [M] represent the concentration of monomer, and Ptot the total amount
of radicals (Asua, 2008).

Termination

Termination involves a reaction between two radicals, leading to inactive poly-
mer chains, unable to undergo further polymerization. The rate of termination
is determined by how often, how close two growing polymers approach each
other and how long they stay close. Due to this diffusion dependency, the
rate of termination can vary as a function of the viscosity of the reaction mix-
ture, which may change during the batch time. This introduces the aspects of
chain-length dependency termination, or alternatively conversion dependency
(Stevenson, 1986). This is a complex feature and is, therefore, often neglected
in terms of modelling.

Termination can occur by two modes; combination or disproportionation.
The reaction mechanisms are shown in Equation 2.2.9 for combination, and
2.2.10 for disproportionation.

Pi + Pj
ktc−−→ Di+j (2.2.9)

Pi + Pj
ktd−−→ Di + Dj (2.2.10)
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Here, Pi and Pj represent a growing polymer chain i and j respectively, and
Di, Dj and Di+j represent a dead polymer chain of length i, j and i+j respec-
tively. ktc represent the rate constant for termination by combination, and ktd

represent the rate constant for termination by disproportionation. The total
termination rate constant will be given by the sum of the reaction rates of the
two modes, expressed by kt, in Equation 2.2.11.

kt = ktc + ktd (2.2.11)

The total reaction rate of termination will then be given by Rt in Equation
2.2.12.

Rt =
ktPtot

2

V
(2.2.12)

where V represent the volume of which the termination takes place (Painter,
1997; Butté et al., 2002).

Which one of the modes that are dominant vary from one emulsion system
to another. For instance, Abdel-Alim and Hamielec (1972) reported that termi-
nation by disproportionation probably is the most dominant mode for emulsion
polymerization of PVC.

Chain transfer

Chain transfer is a reaction where a growing polymer chain is terminated, and
a new chain is initiated in its place. These reactions have commonly little effect
on the rate of polymerization but can have the ability to affect the MWD. This
is because they change the size of the chain lengths produced. Many compounds
can take part in chain transfer reactions, such as monomer, Chain Transfer
Agent (CTA), polymer, solvents and initiator. CTAs are often added to the
reaction mixture to alter the MWD deliberately (Painter, 1997). Equation
2.2.14, 2.2.13 and 2.2.15 shows the reaction mechanism for chain transfer to
CTA, monomer and polymer, respectively.

Pi + AX
kAX
ct−−→ DiX + A ·

A · + M
kAi−−→ P1

(2.2.13)

Pi + M
kMct−−→ Di + P1

(2.2.14)

Pi + Dj

kPct−−→ Di + Pj (2.2.15)

Here, Pi, Pj and P1 is growing polymer chains of length i, j and one, respectively.
AX represent the CTA, and A · the radical fragment from the CTA. Di and
Dj is dead polymers of chain length i and j, respectively. kAX

ct represent the

rate constant for chain transfer to CTA, and kA
i represent the rate constant for

chain initiation by the radical fragment from the CTA. kM
ct and kP

ct represent the
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rate constant for chain transfer to monomer and polymer, respectively (Butté
et al., 2002; Mishra and Yagci, 2016).

2.3 Emulsion polymerization

Emulsion polymerization is a type of free-radical polymerization. It is usually
carried out in batch or semi-batch reactors for commercial use, and almost
complete conversion can be obtained (Matyjaszewski and Davis, 2003).

The basic principle of emulsion polymerization is to disperse a sparingly
water-soluble monomer in the continuous water phase. The recipe for emulsion
polymerization systems consists of water, a monomer which is sparingly soluble
in water, surfactant and a water-soluble initiator generating radicals (Braun
et al., 2012).

The system consists of three or four different phases, depending on the
course of the reaction. The four different phases are; water phase, polymer
phase, gas phase and free phase. The water phase consists of water, surfac-
tants, initiator, and radicals generated from initiator degradation. Surfactants
will form micelles above Critical Micelle Concentration (CMC). These micelles
will then be swelled by monomer. A fraction of these micelles will be trans-
formed into polymer particles. The polymer phase consists of monomer, and
growing polymer chains as monomer are consumed by propagation. In the gas
phase, the monomer will occupy the largest fraction due to its volatility, in
addition to some water and inert. The composition of the gas phase will vary
throughout the batch, depending on the amount of monomer in the system.
The so-called free phase consists of monomer droplets and acts as a reservoir
for the polymerization reaction (Chern, 2006).

Emulsion polymerization is a complex process, with multiple phases and
simultaneous reactions. A schematic illustration developed by Morrison et al.
(1994) is shown in Figure 2.1. The figure shows the many outcomes of the
species in an emulsion polymerization process. The initiator generates radicals
in the water phase. Here, the radical may propagate or terminate, by reaction
mechanisms described in Section 2.2.1. After some steps of aqueous propaga-
tion, the growing polymer radical may enter the polymer particles. Here, it
might propagate further, undergo termination or chain transfer. Short-length
radicals generated from chain transfer mechanism can exit from the particles.
It may now undergo the same reaction mechanism as before.

Due to its complexity, emulsion polymerization processes may be hard to
understand, model and control. The process, its course of reactions, phenomena
and how it distinguishes from bulk polymerization will be described in more
detail in the upcoming subchapters.

2.3.1 Development of the process during the batch

The emulsion polymerization process is often divided into three different inter-
vals, all of which has its own characteristics.
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Figure 2.1: Schematic illustration of free-radical polymerization in emulsion poly-
merization processes (Morrison et al., 1994).

• Interval I consists of particle nucleation

• Interval II consists of particle growth

• Interval III the residual monomer is consumed, and the batch reaches
towards its end

The evolution of the batch is illustrated in Figure 2.2. This division shall prove
to be important for modelling purposes (Chapter 5 and Appendix A) and can
be recognized when evaluating process measurements data as reactor pressure.

Interval I: Particle nucleation

The surfactants have one hydrophilic and one hydrophobic part, and above
CMC, they form micelles (Hiemenz, 1997). Monomer diffuses from the monomer
droplets and the aqueous phase, into the micelles and swell them. The micelles
dissolve the monomer, in a process called solubilization (Harkins, 1947, 1950).

Adsorption is a critical phenomenon in emulsion polymerization and is fol-
lowed by the entry of radicals into the micelles or polymer particles. Radicals
may also enter monomer droplets, but the surface area of micelles is much larger
than those of droplets, and it is, therefore, more likely for the radicals to enter
the micelles. In emulsion polymerization, initiators are mostly water-soluble.
Radicals are, therefore, formed in the water phase, and the chain initiation step
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Figure 2.2: Illustration by Chern (2006) of the polymerization rate as function of
conversion during the different intervals of emulsion polymerization.

will also take place in this phase (Matyjaszewski and Davis, 2003; Mishra and
Yagci, 2016). The product of initiator decomposition is often hydrophilic, and
will, therefore, not enter the organic polymer phase. They will instead undergo
a few steps of propagation with monomer dissolved in the water phase, forming
oligomers. As monomer is added to the growing polymer chain, the polymer
chains become more and more water-insoluble. It will eventually reach a crit-
ical chain length, diffuse to the surface of the micelle, and enter it. As of the
time a micelle contains a polymer chain, it will be referred to as a polymer
particle. This is what is called particle formation by heterogeneous nucleation,
or micellar nucleation. The growing chain may now propagate further inside
the polymer particle (Asua, 2002).

It is important to notice that not all generated radicals will be able to
undergo adsorption. This was briefly discussed in Section 2.2.1, and is due to
bi-reactions in water-phase, making the radicals inactive and unable to undergo
further polymerization. Another reason for the oligomers not to undergo ad-
sorption would be that they propagate in water phase until they have become
insoluble. They have then formed a new polymer particle by the collapse of
the chains upon themselves and is called homogenous nucleation (Fitch, 1973;
Hansen and Ugelstad, 1978).

The number of particles will increase during the first interval, as a growing
number of micelles becomes polymer particles. Consequently, the polymeriza-
tion rate will also be increasing in this interval, as shown in Figure 2.2. The
particle nucleation may be very complex in emulsion polymerization systems
and can vary dependent on operational conditions as the type of monomer(s),
initiators, recipe or temperature. No general mechanism can capture all the
different aspects of nucleation in a given system (Matyjaszewski and Davis,
2003).

The cease of nucleation marks the end of the rapid Interval I. At this point,
0.1-1% of the micelles will have become polymer particles. The remaining sur-
factants will now contribute to stabilizing the growing particles (Chern, 2006).
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For emulsion polymerization of styrene, experiments indicates that Interval I
ends at a conversion of 5-10% (De La Rosa et al., 1999), and 6-7% for VCM
(Ugelstad et al., 1969).

Interval II: Particle growth and point of inversion

Interval II is characterized by particle growth and is the longest interval. All
four phases are present; polymer phase, free phase, water phase and gas phase.
During this interval, the number of particles and the concentration of monomer
inside the particles remains approximately constant. Consequently, so will the
polymerization rate (Gilbert, 1995; Matyjaszewski and Davis, 2003). This is
shown in Figure 2.2. During the polymerization process, monomer from the
monomer droplets diffuse into the particles as monomer inside the particles is
consumed (Harkins, 1947).

The growing chain may also terminate by bimolecular reactions inside the
particle, or desorb out of the particle and into the water phase again (Asua,
2008). The end of Interval II is characterized by the cease of monomer in free
phase (Gilbert, 1995). This is also referred to as the inversion point.

Interval III: Consumption of residual monomer

Interval III is characterized by the consumption of residual monomer (Chern,
2006). As the free phase has ceased to exist, there will only be three phases
in this interval; polymer phase, water phase and gas phase. As the residual
monomer is consumed, the concentration of monomer in polymer, gas and wa-
ter phase will decrease. Due to the decreasing concentration of monomer, the
polymerization rate cannot be maintained, and will decrease, as shown in Fig-
ure 2.2. The reaction will continue until the monomer is fully consumed, or the
reaction is stopped for other limiting reasons. Due to monomer being trans-
ported from gas phase to liquid phase, the inversion point is also characterized
by a pressure drop. As a result, the temperature in the gas phase will also
experience a decrease.

For many systems, the particle volume will decrease slightly during Interval
III. This is due to the contraction by polymerization, and the residual monomer
is consumed. The decrease in monomer concentration also leads to an increased
viscosity within the particles, so the termination rate constant will, as a result,
decrease. This decrease in kt for increasing conversions, is known as the gel
effect (Ugelstad and Hansen, 1976).

2.3.2 Radical distribution

Describing the whereabouts of the radicals is important to describe other phe-
nomena, as propagation. Smith and Ewart (1948) presented a theory based
on Harkins’ work, a quantitative description of the the emulsion polymeriza-
tion process. Smith and Ewart formulated a balance describing the number
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of particles Nn containing n radicals. The following infinite set of Ordinary
Differential Equations (ODEs) were obtained

dNn
dt

= ρ′
(
Nn−1 −Nn

)
+ k′

(
(n+ 1)Nn+1 − nNn

)
+c
(

(n+ 2)(n+ 1)Nn+2 − n(n− 1)Nn

) (2.3.1)

Here, n = [0, 1, ...,∞], ρ′, k′ and c is the rate coefficient for adsorption, des-
orption and termination respectively. Several people have reported different
ways of solving these equations, as Stockmayer (1957), O’toole (1965) and
Hawkett et al. (1977). However, Smith and Ewart presented three different
limiting cases when determining the number of radicals per particle. These are
presented below

Case 1: n̄� 0.5 In this case, the probability of desorption is so high,
that at any time only a small number of particles
will contain a free radical. As a result, the number
of radicals will be much smaller than unity (Smith
and Ewart, 1948) These systems are characterized by
small particles, water-soluble monomers and a large
number of particles (Asua, 2008). As will be de-
scribed in Section 2.3.5, desorption of radicals into
water phase can only occur if short polymer chains
are generated inside the particles. That is, chain
transfer mechanisms generating these short-length
polymers is dominant in these systems. Ugelstad
et al. (1969) reported that this is the case for the
polymerization of PVC, where the number of radicals
per particle was calculated to be within the range of
0.0005 to 0.1.

Case 2: n̄ = 0.5 This situation occurs if the probability of desorption
is low, and adsorption and termination will be dom-
inating. The probability of mutual termination of
two radicals in the same particle is large enough so
that the time frame the particle contains two rad-
icals is negligible compared to the time it contains
one. The particle will then either contain zero or
one radical and in average contain 0.5 radicals per
particle (Smith and Ewart, 1948; Matyjaszewski and
Davis, 2003)

Case 3: n̄� 0.5 For the case of a number of radicals per particle to
be higher than 0.5, the adsorption of radicals has
to dominant, and termination is no longer instanta-
neous open entry (Matyjaszewski and Davis, 2003).
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These systems typically contain large particles and
high concentration of initiators (Asua, 2008).

An average number of radicals per particle can be calculated by the following
equation.

n̄ =

∑∞
n=0 nNn∑∞
n=0Nn

(2.3.2)

Here, n̄ represent the average number of radicals per particle, Nn represent the
number of particles containing n radicals. This calculation requires solving the
system of ODEs presented in Equation 2.3.1, and estimation of the unknown
parameters. Methods for calculation n̄ have been explored, for example by Li
and Brooks (1993), in which the reader is advised to Appendix A.3.3.

Systems that satisfy either Case 1 and 2 are often referred to as a zero-one
system. In these cases, the probability of the particle containing more than one
radical is much less than containing zero and one.

2.3.3 Number of particles

Smith and Ewart stated that particles are nucleated by radicals entering the
micelles and that monomer-swollen polymer particles are the locus of propa-
gation. This is some of the assumptions that build the background for the
theory. Furthermore, the particle nucleation will stop when the concentration
of surfactant in the water phase is below CMC. The decreasing concentration
of surfactant in the water phase is described to be due to surfactants adsorbing
onto newly formed, growing, particles. Eventually, the micelles will cease to
exist, and no new particles can be formed through heterogeneous nucleation.
The following equation was obtained by Smith and Ewart for calculating the
number of particles nucleated.

NT = k′′

(
ρ′′

µ

)0.4(
asS
)0.6

(2.3.3)

Here, NT represent the number of particles, k′′ a parameter within the range
of 0.37− 0.53, ρ′′ the rate of radical formation per volume of water, µ the rate
of particle growth in volume units, as the interfacial area of the particles, and
S the amount of surfactant. The limits of the k′′-parameter is derived from
two idealized situations, and the reader is encouraged to read Smith and Ewart
(1948) work for an elaboration.

This theory has later proven not to apply to all systems, for example by
Peggion et al. (1964) for polymerization of PVC. Fitch (1973) proposed a model
describing the initiation of free-radicals and growth in the continuous medium
would be more likely. This could be followed by either homogeneous nucleation
or capture by colloidal particles already present or previously formed.

Smith (1948) suggested that the case of emulsion polymerization of styrene
was an example of Case 2 described in Section 2.3.2. However, Hansen and
Ugelstad (1979) proposed that high desorptions rates cause the deviations in
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the calculation of the number of particles in the system. Even for the system of
emulsion polymerization of styrene, there will be a small effect of desorption of
radicals, leading to an average number of radicals of particle slightly below 0.5.
The desorbed radicals may also take part in particle formation, which leads to
a higher number of particles. If chain transfer to monomer or CTA is eminent,
this can reinforce this effect, as it leads to the formation of short-length polymer
chains, that more easily can desorb.

The work of Harkins (1945, 1946, 1947) and Smith and Ewart (1948) is
considered to be pioneer work within emulsion polymerization. In light of
subsequent work, some statements are now seen to be incorrect. Others remain
to be the common understanding of the process. Most of the subsequent work
are based upon these theories.

Seeded systems

Emulsion polymerization processes are complex, and each interval has its own
characteristics. To understand the different intervals, it would be beneficial to
investigate them separately. The nucleation stage is particularly challenging to
describe and model, which introduce to the concept of seeded systems. In such
systems are the particles pre-formed, and the number of particles are known
and will not variate. The polymerization process can then start directly in
Interval II, and the irreproducible of nucleation formation from one batch to
another is overcome (Gilbert, 1995; Asua, 2008).

2.3.4 Polymerization rate

The polymerization rate in an emulsion polymerization process can be de-
scribed similar to other free-radical polymerization processes, by Equation
2.2.8. By assuming that most of the polymerization reactions take place inside
the particles, the following expression can be obtained.

Rp = kp[M]pPtot (2.3.4)

Here, [M]p represent the concentration of monomer inside the particles, which
is determined thermodynamically and assumed to be the same in every particle
(Ugelstad et al., 1969; Gilbert, 1995). Ptot is, as earlier mentioned, the total
amount of radicals in the system. For emulsion polymerization, the relevant
radicals will be placed inside the particles. This parameter may change during
the batch, and the number of radicals inside a particle can vary from one
particle to another. It is, therefore, often necessary, and also more practical,
to simplify the system by calculating an average number of radicals inside the
particles, n̄. Ptot can then be approximated by Equation 2.3.5.

Ptot = n̄NT (2.3.5)
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where NT represent the total amount of particles in the system. Finally, the
polymerization rate can be described by Equation 2.3.6.

Rp = kp[M]pn̄NT (2.3.6)

Note that the units of NT is moles of particles. This parameter is in some
literature given in number of particles. In that case, the polymerization rate
will be given by the following equation

Rp = kp[M]p
n̄NT

NA
(2.3.7)

where NA is Avogadro’s constant.

2.3.5 Other phenomena in emulsion polymerization

Desorption

As already mentioned, radicals may undergo desorption from the polymer rad-
icals, and diffuse into the water phase. This will decrease the average number
of radicals per particle, and also increase the number of radicals in the water
phase. The radical distribution was discussed theoretically in detail in Section
2.3.2, and for modelling purposes the reader is advised to read Appendix A.3.3.

A growing radical contained in the particle above the critical chain length
is most likely not to go into the water phase again as it will have high free en-
ergy in the organic environment. The only possibility for desorption to occur
is the formation of radicals below the critical chain length inside the particles.
The only possible method for this is through chain transfer reaction inside
the particles. Chain transfer gives rise to growing polymer radicals of a suffi-
ciently short length for desorption. Also, after the chain transfer has occurred,
the short-length radical must diffuse through the interior of the particle with-
out undergoing too many propagation steps to again make it water-insoluble
(Gilbert, 1995).

Radicals that have undergone desorption can have many fates, as was illus-
trated by Figure 2.1 (Morrison et al., 1994). It may enter other particles they
may or may not already contain a growing polymer chain. Another possibility
is that it will undergo termination in the water phase. It may also propagate
further in the water phase until it becomes insoluble and thereby form a new
polymer particle by homogeneous nucleation (Gilbert, 1995).

Compartmentalization

Segregation of growing polymer chains inside the polymer particles is called
compartmentalization, and is characteristic for emulsion polymerization (Butté
et al., 2002). In bulk polymerization, growing chains have equal access to
one another, and can, therefore, easily terminate. In emulsion polymerization,
however, only growing particles contained inside the same particle can react
with each other and terminate. This significantly reduces the termination rate,
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as polymer chains mostly are contained in separate particles. As a result,
the termination rate in emulsion polymerization is experienced to be much
lower than those of bulk polymerization. As the termination rate is reduced,
the lifetime of a growing particle will increase. The polymerization rate is
also found to be higher in emulsion polymerization, and molecular weights are
found to be higher, most likely as a result of the effect of compartmentalization
(Gilbert, 1995).

Since radicals contained in different particles cannot terminate by the bi-
molecular reaction, the overall radical concentration is much higher in emulsion
polymerization than those of bulk polymerization. Consequently, the poly-
merization rate is observed to be higher for emulsion polymerization. As the
number of particles in a system increases, the concentration of radicals will
increase, and participate in increasing polymerization rate. The frequency of
radical adsorption decreases with an increasing number of particles. Therefore,
by increasing the number of particles, a second radical would be less likely to
enter and contribute to bimolecular termination, resulting in higher molecular
weights. To summarize; increasing the number of particles will contribute to
increasing the polymerization rate, and increasing molecular weights (Asua,
2004).
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Chapter 3

Theoretical aspects of opti-
mization, MPC and estima-
tion

This chapter will give the reader an introduction to optimization problems,
Model Predictive Control (MPC), and state- and parameter estimation. Firstly,
the theoretical background of optimization problems will be presented, which
is essential when later introducing concepts of MPC. MPC will bind together
the concepts of optimization and control. The need for state- and parameter
estimation will become evident when discussing MPC, and an introduction to
some well-known approaches will be given.

The theory provided in this section, in addition to the theory of polymeriza-
tion process (Chapter 2), will prove essential when later discussing the relevant
case; control of semi-batch reactor for emulsion polymerization (Chapter 6).
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CHAPTER 3. THEORETICAL ASPECTS OF OPTIMIZATION, MPC
AND ESTIMATION

3.1 The optimization problem

The material in this sections is adapted from Hovd (2004), Nocedal (2006),
Foss and Heirung (2013) and Rawlings et al. (2017).

Optimization is widely used within many fields, as engineering, science,
economics and in industry. Solving optimization problems can be used in a
large variety of applications, for example, controlling a chemical process to
optimize the performance and minimizing emissions.

When solving an optimization problem, an objective function must be con-
structed. The objective function is a measure of the performance of the system,
and could, for example, be profit, time, energy consumption or a combination
of such quantities. This function depend on some variables, often called de-
cision variables, which may be limited to some constraines. The goal of the
optimization problem is to find the values of these variables which minimizes
(or maximizes) the objective.

A collection of different optimization algorithms are available to solve an
optimization problem. An optimization problem can be expressed using the
following notation

min
φ∈Rn

J(φ) (3.1.1a)

subject to

ci(φ) = 0, i ∈ E (3.1.1b)

ci(φ) ≥ 0, i ∈ I (3.1.1c)

Here, f(φ) represent the objective function, φ is the set of decision variables,
and E and I are indices for equality and inequality constrains, respectively.

When the objective function and the constrains all are linear functions, the
problem is called a Linear Programming (LP) problem. Nonlinear Program-
ming (NLP) problems, on the other hand, will consist of at least one nonlinear
constraint or objective function. When facing nonlinear optimization problems,
NLP solvers are needed. There are two main classes of such solvers, Sequential
Quadratic Programming (SQP) and interior point methods. SQP is one of the
most effective methods for nonlinear constrained optimization. A SQP prob-
lem consist of a sequence of Quadratic Programming (QP) problems, which are
approximations to the nonlinear model. A QP problem consist of a quadratic
objective function and all linear constraints (Hovd, 2004).

There are many solving methods for optimization problems, and many of
them are iterative. They require an initial point, in addition to a termina-
tion criteria. Some algorithms require feasible initial points, while others, for
example, the SQP method, does not (Foss and Heirung, 2013).

3.1.1 Dynamic systems

Dynamic systems are characterized by that they change over time. Such sys-
tems can be optimized in two different ways; by quasi-dynamic optimization
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or dynamic optimization. Quasi-dynamic optimization optimizes a system by
repetitively optimizing a static model. Dynamic optimization, on the other
hand, optimizes a dynamic model. The latter approach is often necessary when
the dynamics of a system plays an important role, and the operation conditions
changes frequently (Foss and Heirung, 2013). Polymerization processes is an
example of such a system.

Models of dynamic system may be represented in different ways, as by Ordi-
nary Differential Equations (ODEs), Differential Algebraic Equations (DAEs)
or transfer functions. Most nonlinear system descriptions derived from physical
arguments are continuous time models, as shown in Equation 3.1.2.

ẋ = f(x, u) (3.1.2a)

where

u ∈ Rnu (3.1.2b)

x ∈ Rnx (3.1.2c)

Here, f( · ) represent the process model, nu the number of inputs u, and nx the
number of states x (Rawlings et al., 2017).

Process measurements, however, are often sampled at discrete points in
time, usually equidistant. The continuous time differential equation can then be
replaced by a discrete time difference equation. Such system can be described
in the following form

xk+1 = f(xk, uk) (3.1.3a)

where

uk ∈ Rnu (3.1.3b)

xk ∈ Rnx (3.1.3c)

k denoted the sampling number, and is connected to time, t, by k = t∆, where
∆ represent the sample time. The input uk is constant within the interval
[k, k + 1〉, while the states only are defined at discrete points in time. A linear
approximation of f( · ) may be found by Taylor approximation, and will be
given by Equation 3.1.4.

xk+1 = Akxk +Bkuk (3.1.4)

Here, Ak and Bk represent Jacobian matrices, and will be time-dependent.
For a dynamic optimization problem, the following objective function can

be defined.

J(φ) = J(x1, ..., xk, u0, ..., uk)

=

N−1∑
k=0

Jk(xk+1, uk)
(3.1.5)
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Here, N represent the prediction horizon, and (x1, ..., xk, u0, ..., uk) represent
the decision variables. The number of decision variables will increase linearly
with the prediction horizon. The objective function sums up the contributions
of each time step through Jk. x0 is not a decision variable, and may be known
or estimated. xk+1 is the state at the end of a time step, and is why uk is
paired with xk+1.

Linear systems

Linear systems will first be reviewed, followed by an expansion to nonlinear
system. The QP problem for linear systems may be described by Equation
3.1.6.

min
φ∈Rn

J(φ) =

N−1∑
k=0

(
1

2
x>k+1Q1,k+1xk+1+

d>xt+1
xt+1 +

1

2
u>k R1,kuk + d>ukuk

)
(3.1.6a)

subject to

xk+1 = Akxk +Bkuk, k = 0, 1, ..., N − 1 (3.1.6b)

x0, u−1 = given (3.1.6c)

xlow
k ≤ xk ≤ xhigh

k , k = 0, 1, ..., N (3.1.6d)

ulow
k ≤ uk ≤ uhigh

k , k = 0, 1, ..., N − 1 (3.1.6e)

−∆umax ≤ ∆uk ≤ ∆umax, k = 0, 1, ..., N − 1 (3.1.6f)

where

Q1,k ≥ 0, k = 0, 1, ..., N (3.1.6g)

R1,k ≥ 0, k = 0, 1, ..., N − 1 (3.1.6h)

∆uk = uk − uk−1 (3.1.6i)

This formulation makes it possible to penalize some states or inputs differently
then others, by adjusting the values of the elements of the matrices Q1,k and
R1,k. The quadratic objective function is widely used, and is a useful for-
mulation for a dynamic optimization problem. It can easily be extended, for
example by penalizing control moves by adding the following term

1

2
∆u>k R2,k∆uk, R2,k ≥ 0 (3.1.7)

In practice, this would penalize wear on equipment, and adjust the aggres-
siveness of the controller. Note that deviation variables are being used in the
formulation in Equation 3.1.6, meaning that xk represents the deviation be-
tween the actual value and the reference value (Foss and Heirung, 2013).

xk − xrefk (3.1.8)
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Nonlinear systems

For nonlinear system, Equation 3.1.6 may be rewritten to the following equation

min
φ∈Rn

J(φ) =

N−1∑
k=0

(
1

2
x>k+1Q1,k+1xk+1+

d>xt+1
xt+1 +

1

2
u>k R1,kuk + d>ukuk

)
(3.1.9a)

subject to

xk+1 = f(xk, uk), k = 0, 1, ..., N − 1 (3.1.9b)

x0, u−1 = given (3.1.9c)

xlow
k ≤ xk ≤ xhigh

k , k = 0, 1, ..., N (3.1.9d)

ulow
k ≤ uk ≤ uhigh

k , k = 0, 1, ..., N − 1 (3.1.9e)

−∆umax ≤ ∆uk ≤ ∆umax, k = 0, 1, ..., N − 1 (3.1.9f)

where

Q1,k ≥ 0, k = 0, 1, ..., N (3.1.9g)

R1,k ≥ 0, k = 0, 1, ..., N − 1 (3.1.9h)

∆uk = uk − uk−1 (3.1.9i)

As for linear systems, penalties for control moves (Equation 3.1.7), in addition
to other terms may also be added to this objective function (Foss and Heirung,
2013).

The main difference compared to the linear system, is the introduction of
nonlinear equality constrains, f(xk, uk). A nonlinear model often results in a
non-convex optimization problem, and raises the need for a NLP solver, for
example, the SQP approach. Optimization of such problems is often much
more time consuming than convex problems (Hovd, 2004).

3.2 Model Predictive Control

The concept of MPC is to use a dynamic model to predict the future behaviour
of a system and optimize some objective function to produce the best decisions.
An important advantage of MPC is its ability to handle constraints, both for
controllers and states. It has, therefore, been widely used in industries where
satisfying the constraints are important, simultaneously to operating close to
these constraints (Rawlings et al., 2017).

The concept of MPC is illustrated in Figure 3.1. In MPC, the current
control move is found by solving on-line, at each sample instant, a finite horizon
open-loop optimal control problem. The current state of the plant is used as
the initial state. This results in a sequence of control actions, where only the
first action is applied to the plant (Mayne et al., 2000). Essentially, a similar
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problem is solved over and over again, at each time step. Hence, MPC is using
a moving horizon approach, where the horizon is shifted one sample from one
optimization problem to the next (Foss and Heirung, 2013).

Figure 3.1: Illustration of the concept of MPC1 from Foss and Heirung (2013)

MPC couples open-loop optimization with feedback by using the current
state as the initial state in the optimization problem. This state can be obtained
in a number of ways. One way is to use the first predicted state value, which is
called State Feedback MPC. A drawback with this approach is that it does not
account for error in the model or disturbances. Another approach is, therefore,
to compute an estimate of the states which is dependent on the latest plant
measurements, and use this as the initial state of the optimization problem.
This is called Output Feedback MPC, and the estimate of the current state
can for example be found by using Kalman Filter (KF) or Moving Horizon
Estimation (MHE) (Foss and Heirung, 2013). This will be discussed further in
Section 3.3.

The MPC generally predicts the behaviour of the outputs over a finite set
of future time intervals, called the prediction horizon. The prediction horizon
should be set long enough to capture the steady-state effect of the control
inputs. The MPC computes a series of control inputs, spread over a finite
control horizon. The performance increase as the control and prediction horizon
increases, but at the expense of additional computation (Qin and Badgwell,
2003). In this thesis, the prediction horizon and control horizon will be denoted
N and M , respectively. Both are tuning parameters in the MPC, and N must
be at least as long as M .

1In this master thesis, k is used to denote the sampling number. t is however used in this
figure.
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A objective function for linear MPC, resembles to the QP problem in Equa-
tion 3.1.6. Typically, the objective function of MPC also contain a penalty for
control moves, as described by Equation 3.1.7. The objective function may
then be described by Equation 3.2.1.

min
φ∈Rn

J(φ) =

N−1∑
k=0

(
1

2
x>k+1Q1,k+1xk+1 + d>xk+1

xk+1 +
1

2
u>k R1,kuk

+ d>ukuk +
1

2
∆u>k R2,k∆uk

) (3.2.1a)

subject to

xk+1 = Akxk +Bkuk (3.2.1b)

x0, u−1 = given (3.2.1c)

xlow
k ≤ xk ≤ xhigh

k (3.2.1d)

ulow
k ≤ uk ≤ uhigh

k (3.2.1e)

−∆umax ≤ ∆uk ≤ ∆umax (3.2.1f)

where

Q1,k ≥ 0 (3.2.1g)

R1,k ≥ 0 (3.2.1h)

R2,k ≥ 0 (3.2.1i)

∆uk = uk − uk−1 (3.2.1j)

Linear MPC is a QP problem. The extension from linear MPC to a Nonlin-
ear Model Predictive Control (NMPC), involves the introduction of a nonlinear
model. The objective function for the nonlinear case is very much alike the lin-
ear case and can be described by Equation 3.2.2.

min
φ∈Rn

J(φ) =

N−1∑
k=0

(
1

2
x>k+1Q1,k+1xk+1 + d>xk+1

xk+1 +
1

2
u>k R1,kuk

+ d>ukuk +
1

2
∆u>k R2,k∆uk

) (3.2.2a)

subject to

xk+1 = f(xk, uk) (3.2.2b)

x0, u−1 = given (3.2.2c)

xlow
k ≤ xk ≤ xhigh

k (3.2.2d)

ulow
k ≤ uk ≤ uhigh

k (3.2.2e)

−∆umax ≤ ∆uk ≤ ∆umax (3.2.2f)
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where

Q1,k ≥ 0 (3.2.2g)

R1,k ≥ 0 (3.2.2h)

R2,k ≥ 0 (3.2.2i)

∆uk = uk − uk−1 (3.2.2j)

This transforms the QP problem of the linear MPC, to a nonlinear and non-
convex problem, raising the need for a NLP solver (Foss and Heirung, 2013).

3.2.1 Feasibility and Stability

Constraints on the controller inputs are often related to physical limits, while
constraints on states or output often are merely desirable. The optimization
problem may, therefore, often define input constraints as hard constraints. Con-
straints on states and outputs may be relaxed in some manner and are called
soft constraints. For example, it is physically impossible to open or close a
valve more than 0% or 100%. Soft constraints, on the other hand, may be vio-
lated, usually at some cost, by introducing slack variables, ε. An advantage of
introducing soft constraints is that the control problem will not be infeasible,
as it can be relaxed by choosing an appropriate value of ε (Rawlings et al.,
2017).

An optimization problem is infeasible if there exist no set of values of the
decision variable so that all the constraints are fulfilled. If a large disturbance
happens when using MPC and operating close to the constraint, such infea-
sibilities may occur. It is then crucial for the controller not to ’give up’, and
effectively steer the process into an operating region where all the constraints
again are fulfilled. This can be ensured by introducing slack variables (Hovd,
2004).

Slack variables introduce additional terms to the objective function. Taking
the linear system as an example, the QP problem in Equation 3.2.1 can now
be written in the following way

min
φ∈Rn

J(φ) =

N−1∑
k=0

(
1

2
x>k+1Q1,k+1xk+1 + d>xk+1

xk+1 +
1

2
u>k R1,kuk

+ d>ukuk +
1

2
∆u>k R2,k∆uk +

1

2
ε>R3ε+ r>ε

) (3.2.3a)

subject to

xk+1 = Akxk +Bkuk (3.2.3b)

x0, u−1 = given (3.2.3c)

xlow
k − ε ≤ xk ≤ xhigh

k + ε (3.2.3d)

ulow
k ≤ uk ≤ uhigh

k (3.2.3e)

−∆umax ≤ ∆uk ≤ ∆umax (3.2.3f)

28



3.2. MODEL PREDICTIVE CONTROL

where

Q1,k ≥ 0 (3.2.3g)

R1,k ≥ 0 (3.2.3h)

R2,k ≥ 0 (3.2.3i)

∆uk = uk − uk−1 (3.2.3j)

ε ∈ Rnx ≥ 0 (3.2.3k)

r ∈ Rnx ≥ 0 (3.2.3l)

R3 ∈ diag{r1, ..., rnx}, ri ≥ 0, i = {1, ..., nx} (3.2.3m)

The additional terms are 1
2ε
>R3ε and r>ε, and it is desirable to drive these

terms to zero. They should only be nonzero when the constraints are violated
(Foss and Heirung, 2013).

Feasibility is, however, not a guarantee for stability, i.e. the trajectories may
not converge. It can be ensured by reformulating the optimization problem.
This can be done in several ways, for example, by adding a terminal cost
function (Vf (xN )) and terminal constraints (χf ). Equation 3.2.3 can then be
expressed in the following way

min
φ∈Rn

J(φ) =

N−1∑
k=0

(
1

2
x>k+1Q1,k+1xk+1 + d>xk+1

xk+1 +
1

2
u>k R1,kuk

+ d>ukuk +
1

2
∆u>k R2,k∆uk +

1

2
ε>Sε+ ρ>ε

)
+ Vf (xN )

(3.2.4a)

subject to

xk+1 = Akxk +Bkuk (3.2.4b)

x0, u−1 = given (3.2.4c)

xlow
k − ε ≤ xk ≤ xhigh

k + ε (3.2.4d)

ulow
k ≤ uk ≤ uhigh

k (3.2.4e)

−∆umax ≤ ∆uk ≤ ∆umax (3.2.4f)

where

Q1,k ≥ 0 (3.2.4g)

R1,k ≥ 0 (3.2.4h)

R2,k ≥ 0 (3.2.4i)

∆uk = uk − uk−1 (3.2.4j)

ε ∈ Rnx ≥ 0 (3.2.4k)

ρ ∈ Rnx ≥ 0 (3.2.4l)

S ∈ diag{s1, ..., snx}, si ≥ 0, i = {1, ..., nx} (3.2.4m)

xN ∈ χf (3.2.4n)
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The terminal cost, Vf (xN ), may be expressed as a quadratic function

Vf (xN ) =
1

2
x>NPfxN , Pf ≥ 0 (3.2.5)

Stability can also be achieved with sufficiently long enough prediction horizon
compared to the control horizon (Alamir and Bornard, 1995; Hovd, 2004; Foss
and Heirung, 2013).

3.2.2 Horizon Parameterization: Input blocking and co-
incidence points

Input blocking, or move blocking is a common way to parameterize the control
input sequence (Rawlings et al., 2017). The user may then specify points on the
control horizon, which will or will not be computed, and the control trajectory
is forced to remain constant for some steps. This will reduce the number
of decision variables and reduce runtime, especially for NMPC applications.
This can, however, be at the expense of performance (Foss and Heirung, 2013;
Qin and Badgwell, 2003). Figure 3.2 illustrates the parameterization of the
input and size of the control horizon. The example shown is the control of
the temperature of a reactor (output) using a Split Range Controller (SRC)
(input). In this case, the input is parameterized with four parameters, which
determines the input at 0, 500, 1000, 2000 and 4000 seconds. Hence, the control
horizon is 4000 seconds. After the final block, the input will remain constant.

Figure 3.2: Illustration of the concept of input blocking, with a control horizon of
4000 seconds. Here, the input is parameterized with four parameters, which deter-
mines the input at 0, 500, 1000, 2000 and 4000 seconds.

Like input blocking, there are also techniques to reduce the number of points
in the prediction horizon. This is done by using coincidence points, which is a
number of appropriate chosen points in the prediction horizon. The length of
the prediction horizon will remain the same, but the runtime can be reduced
significantly. For short prediction horizons, the coincidence points may be
set at every sampling point. For longer prediction horizons, the calculation
may, for example, be simplified by choosing coincidence points at equidistant
intervals (Zhu and Zhou, 2009). Figure 3.3 illustrates the parameterization of
the output, and the length of the prediction horizon. The coincidence points are
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marked by black dots. In this case, the output is weighted every 500 seconds,
starting at 500 seconds and ending at 5000 seconds. That is, the output is
weighted in equidistant intervals. The prediction horizon, in this case, is 5000
seconds.

Figure 3.3: Illustration of the concept of coincidence points (black dots), by using
temperature of a reactor (solid) and its setpoint (dashed), as an example. Here, the
output is weighted at every 500 seconds, starting at 500 seconds and ending at 5000
seconds. That is, the prediction horizon is parameterized by equidistant intervals and
the prediction horizon is 5000 seconds.

3.3 State- and parameter estimation

As mentioned in Section 3.2, MPC uses the current state as the initial state
in the optimization problem. The state could be obtained by prediction, but
this approach does not account for any errors in the model or disturbances.
Another approach is to compute an estimate of the states depending on plant
measurements. Model errors and disturbances are expected, and it is, therefore,
necessary to update the process model to ensure good quality of the predictions
of the process behaviour. The update will, however, not be as dramatic if the
model predicts the behaviour of the plant by high accuracy, compared to a
more poor model (Hovd, 2004; Foss and Heirung, 2013).

Which measurements that should be used to update the model most be
determined in advance. For instance, the emulsion polymerization process of
Poly-Vinyl Chloride (PVC) at Inovyn’s facilities, the reactor temperature is
measured. If the temperature also is calculated by the model, the deviation
between the two can be used to update the model, making the model reflect the
actual process even better. Temperature measurements are often candidates
for model updating, as these measurements often are fast, accurate, frequently
sampled and not very delayed.

There is a number of approaches that may be used for estimation, as MHE
and KF, which probably are some of the most common and recognized ap-
proaches. The basic KF (first proposed by Kalman (1960)) is derived for linear
system, and may be extended for nonlinear systems, as in the Extended Kalman
Filter (EKF). MHE is optimization-based, where the state estimation is deter-
mined on-line by solving a finite horizon state estimation problem (Rao et al.,
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2003). The material is adapted from Simon (2006), and the reader is advised
to this book for a more elaborated description. In this thesis, KF was used,
and will, therefore, be elaborated in the following subchapters, both for linear
and nonlinear time discrete systems.

3.3.1 Kalman Filter for linear systems

It is assumed that a linear model is formulated discretely in the following way

xk+1 = Akxk +Bkuk + vk (3.3.1)

yk = Hkxk + wk (3.3.2)

Here, vk is a vector of process noise and wk is a vector of measurement noise.
They are assumed to be white, zero-mean and uncorrelated. vk has the known
covariance matrix Qk, and wk has the known covariance matrix Rk. Hk is often
called the output matrix and decides which states, or combination of states,
that will go into the measurement vector, yk.

The purpose of the estimator is to give an estimate of the state at k, which
in this case is to be used as the initial state of the optimization problem.
Depending on the amount of information the system is given, either a a priori
or a a posteriori estimate can be calculated. The a priori estimate will be
denoted as x̄k, and is calculated when the system holds the measurements
from y1 to yk−1. The a posteriori estimate will be denoted as x̂k, and can be
calculated when the system holds the measurements from y1 to yk.

x̄k, a priori estimate (3.3.3)

x̂k, a posteriori estimate (3.3.4)

x̄k is estimated before yk is processed, and x̂k is estimated after yk is processed.
The calculation of the a priori estimates are often referred to as the prediction,
and predict the states for the current time step, k, by the model and information
from the previous time step, k−1. The calculation of the a posteriori estimates
are often referred to as the correction and corrects the prediction done at the
current time step, k.

Pk will be used to denote the covariance of the estimation error, and follows
the same notation as for the state estimates.

P̄k = E[(xk − x̄k)(xk − x̄k)>], a priori covariance (3.3.5)

P̂k = E[(xk − x̂k)(xk − x̂k)>], a posteriori covariance (3.3.6)

The time update for the state, from the a posteriori time at k − 1 to the a
priori time at k, is obtained by the following equation.

x̄k = Fk−1x̂k−1 +Gk−1uk−1 (3.3.7)

Here, F and G is Jacobian matrices. As no information about the measurement
at the current time step, k, is yet obtained, the estimate is only updated based
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on available information. Then, the time update for the covariance matrix is
performed

P̄k = Fk−1P̂k−1F
>
k−1 +Qk−1 (3.3.8)

As already mentioned, Qk represent the covariance matrix for the process noise.
When information about the measurements at k is obtained, the measurement-
update can be performed

x̂k = x̄k +Kk(yk −Hkx̄k) (3.3.9)

Kk = P̄kH
>
k

(
HkP̄kH

>
k +Rk

)−1
(3.3.10)

P̂k = (I −KkHk)P̄k (3.3.11)

Here, Kk is the estimator gain matrix, Rk represent the covariance matrix for
the measurement noise, and Hk represent the output matrix. Both x̄k and x̂k
are estimates of xk, but x̂k is expected to be more accurate, as more information
is used to calculate this estimate.

3.3.2 Extended Kalman Filter

An abbreviated summary of the theoretical aspects of the discrete-time EKF
will now be presented to illustrate some similarities and differences to the linear
case. All systems will, to some extent, be nonlinear. However, many systems
will be close enough to linear so that linear estimation approaches may be used.
EKF is probably the most common used for nonlinear state estimation. The
idea of the EKF is to linearize a nonlinear system around the Kalman filter
estimate, which is based on a linearized system (Simon, 2006).

It is assumed that a nonlinear model is formulated discretely

xk+1 = f(xk, vk, uk) (3.3.12)

yk = g(xk, wk) (3.3.13)

Here, f( · ) represent the the nonlinear process model, and g represent a non-
linear model of the measurements. The a priori estimates are calculated by
the following equations

x̄k = f(x̂k−1, 0, uk−1) (3.3.14)

ȳk = g(x̄k, 0) (3.3.15)

P̄k = FP̂k−1F
> + LQk−1L

> (3.3.16)

Again, Qk represent the covariance matrix for the process noise. Note that
during the Taylor series expansion, the state equation was linearized around
xk−1 = x̂k−1 and vk−1 = 0, and the measurement equation around xk = x̄k
and wk = 0. Here, F and L are given by the following relations, evaluated at
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the posteriori state estimate at k − 1, that is x = x̂k−1.

F =
∂f

∂x

∣∣∣∣
x̂k−1

(3.3.17)

L =
∂f

∂v

∣∣∣∣
x̂k−1

(3.3.18)

The a posteriori estimates are calculated by the following equations

x̂k = x̄k +Kk(yk + ȳk) (3.3.19)

Kk = P̄kH
>
k

(
HkP̄kH

>
k +MkRkM

>
k

)−1

(3.3.20)

P̂k = (I −KkHk)P̄k (3.3.21)

Here, Kk is the estimator gain matrix, yk is the process measurement, and Rk
is the measurement noise covariance matrix. I represent the identity matrix,
and H and M are given by the following relations, evaluated at the current a
priori state estimate, that is x = x̄k.

Hk =
∂g

∂x

∣∣∣∣
x̄k

(3.3.22)

Mk =
∂g

∂w

∣∣∣∣
x̄k

(3.3.23)

Other linearization techniques may be used to reduce the error that occurs
by linearizing. Iterative EKF and higher-order EKF are examples of such
approaches. These approaches typically has a higher accuracy than EKF, but
it often comes at the price of longer runtime.

The specific algorithm used in this thesis was a divided difference approach,
which resembles very much to the EKF. The differences lie in the way the
covariance matrixes are updated, while the state update is generally the same
for EKF and the divided difference approach. The reader is advised to read
Schei (1997) and Noergaard et al. (2000) on this topic.

3.3.3 Parameter estimation

The theory stated above can also be used to estimate unknown process param-
eters. Consider the following nonlinear system

xk+1 = f(xk, vk, uk, p) (3.3.24)

p = unknown process parameter (3.3.25)

Here, p is a vector of unknown process parameters, which should be subject
to on-line parameter estimation. p will be a subset of the entire collection of
process parameters, θ.

p ∈ θ (3.3.26)
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The states are augmented with the parameter vector, and will be denoted x′k

x′k =

(
xk
pk

)
(3.3.27)

Noise can then be included in the parameters the following way

pk+1 = h(pk, vp,k) (3.3.28)

Here, h( · ) is a function that includes the noise, vp,k, to the parameters. The
augmented model can then be described by the following equations

x′k+1 =

(
f(xk, vk, uk)

h(pk, vp,k)

)
= f(x′k, vk, uk, vp,k) (3.3.29)

The augmented state vector, x′k, can now be estimated. This can for example
be done by using some of the approaches mentioned in previous subchapters
(Simon, 2006). Examples of parameters which could benefit from parameter
estimation may be overall and individual heat transfer coefficients, thermal
conductivities, model correction factors, and so on. Take a emulsion polymer-
ization reactor with a cooling jacket as an example. The reactor content may
vary throughout the batch as the process reaches higher monomer conversion.
The viscosity of the content might change, which can have an significant effect
on the heat transfer coefficient between the reactor and the cooling jacket. As
a result, the heat transfer coefficient may then also vary. The heat transfer
coefficient can then be a promising candidate for estimation.
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Chapter 4

Process description and con-
trol structure

The purpose of this section is to give the reader insight into the process by
describing reactor design and chemical dosage. This chapter will, therefore,
contain a summarized description of the process and its control structure. To-
gether with the modelling of the process, which will be described in Chapter 5,
this will be important when later discussing the topic of controlling the reactor.
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4.1 Process description

The recipe of this process is confidential, and will, therefore, not be stated in
this report. Some of the chemicals used will also be kept confidential.

In this process, two different surfactants are used and will be denoted Sur-
factant 1 and Surfactant 2, or just generalized Surfactant if there is no need to
distinguish between the two. Two different initiators are used, and will in the
same manner be denoted Initiator 1 and Initiator 2, or just Initiator. Initia-
tor 1 is a hydroperoxide, ROOH, and Initiator 2 a persulfate. Some additives,
which will be denoted Additives, are both initial dosed and post-dosed. Neither
the amount nor composition of the additives are relevant for the model, but
they still are important for the real process. Vinyl Chloride Monomer (VCM) is
the monomer which will polymerize to the desired product, Poly-Vinyl Chloride
(PVC).

Figure 4.1: An illustration of the relevant process. A stirred semi-batch reactor is
surrounded by a cooling jacket with in- and outlet streams (light grey). The process
consists of four phases; gas, free, polymer and water phase. The reactor is initially
loaded with monomer, water, surfactant, initiator and other additives. During the
batch, surfactant, water, initiator and additives are post-dosed. Nothing is drained
from the reactor before the batch is over.

The reaction unit will consist of three or four phases, depending on the
current interval, as described in Section 2.3.1. They are all shown in Figure 4.1;
gas phase, polymer phase, free phase and water phase. Initially, the reactor is
loaded with water, monomer, some surfactants, initiator and additives. During
the batch, Initiator 1, water, surfactants and additives are post-dosed. That
is, many of the chemicals may be post-dosed, but the amount of monomer is
only dependent on the initial loading.

The initiation mechanism taking place is a combined reduction-oxidation
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and thermal system. Even though some initiator is initially dosed, the poly-
merization will not start taking place before some additives are dosed.

In this thesis, the initial loading of the reactor is assumed not to vary from
one batch to another. This is for the purpose of modelling and simulation.
The required feed rate and the total amount of surfactants and additives, may,
however, variate with different temperature and initiator conditions. It is as-
sumed in the calculations that neither water, surfactants or additives will be
rate determining. This might not be the case in the real plant, and the addition
of these species might be necessary.

4.2 Control structure

The reactor is a continuously stirred semi-batch, where nothing is drained from
the reactor before the batch is finished. As shown in Figure 4.2, the reactor
is surrounded by a cooling jacket. The inlet cooling water is located at the
bottom of the reactor, while the outlet at the top. Some of the cooling water
is drained, and some are recycled.

The jacket is used to regulate the temperature inside the reactor. This is
done by regulating the temperature of the inlet of the jacket, by either heating
the recycled stream or feeding cold, fresh water into the circuit. Its primary
function, however, is to cool the reaction unit. As polymerization processes may
be highly exothermic, controlling the temperature, avoiding reaction runaway
and ensuring safe production are important. The structure is shown in Figure
4.2.

Figure 4.2: An illustration of the relevant process, as in Figure 4.1, including the
valves which are relevant for this project. The temperature of the cooling jacket can
be controlled by either heating the recycled water, or by addition of cold, fresh water.
A Split Range Controller (SRC) is controlling these two valves.
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The valve position of the steam inlet and fresh water inlet is regulated by
a SRC, which will be described in detail in Section 5.2. The SRC will control
the temperature of the inlet cooling water, which in its turn will contribute to
heating or cooling the reactor content. The second manipulated variable is the
feed rate of initiator into the system. These two control signals will be the only
manipulated variables considered in this thesis.
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Chapter 5

Modelling of a semi-batch re-
actor for emulsion polymer-
ization

As already mentioned, a preliminary project was conducted in advance of this
master thesis. The main goal of this preliminary work was to establish a model
describing an industrial polymerization process, more specifically an emulsion
polymerization. The model was validated against process data, and param-
eters were adjusted to minimize the error between the model and measured
outputs. The results were then evaluated. As polymerization processes often
have troublesome nonlinear dynamics (Ray and Villa, 2000), it was discussed
if Nonlinear Model Predictive Control (NMPC) could be beneficial for this
process. The work conducted during the previous project and its associated
equations and assumptions can be found in Appendix A.

Some modelling work remained after the previous project. During the initial
phase of this master thesis, some work was, therefore, carried out to finalize
the model and making it suitable for NMPC. The model equations that follows
in this section is a continuation of the preliminary project. The finalization
includes the following features, which will be described in this chapter;

• Modelling parameters describing the product quality important to the
manufacturer

• Complete the modelling of the cooling circuit

• A description of the unmodelled aspects

• Definition of a termination criteria

• A description of the maximum cooling capacity of the system.
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CHAPTER 5. MODELLING OF A SEMI-BATCH REACTOR FOR
EMULSION POLYMERIZATION

5.1 Conversion average temperature

The K-value is a quality parameter, calculated as a function of the conversion
average temperature, K(T̄XM). The relation will not be given as it is confiden-
tial. However, it is a measure of the quality of the end product. The conversion
average temperature is defined by the following equation.

T̄XM =

∫ t
0
RpTRdt∫ t
0
Rpdt

(5.1.1)

where T̄XM
is the conversion average temperature, Rp is the polymerization rate

and TR is the temperature in the reactor. This will introduce one additional
state to the system, as the integral in the denominator can be described as∫ t

0

Rpdt = XM

∫ t

0

n̂Mdt (5.1.2)

where XM is a state describing the monomer conversion, and the second inte-
gral represent the total molar amount of fed monomer into the reactor. Conse-
quently, the conversion average temperature can be described by the following
equation

T̄XM
=

∫ t
0
RpTRdt

XM

∫ t
0
n̂Mdt

(5.1.3)

5.2 Cooling circuit

For the preliminary work, the measured inlet temperature and the initiator
feed were the inputs of the system. At the real plant, the cooling system is
partially closed, as was shown by Figure 4.2. Some of the water is recycled,
while some are drained. The temperature can be adjusted by either heating the
recycled stream using a heat exchanger or cooled by adding cold, fresh water.
The opening of these valves is controlled using a Split Range Controller (SRC).

The model was updated so that the inlet temperature could be calculated
by the model. Figure 5.1 shows the cooling circuit, which also was shown in
Figure 4.2, in addition to the temperature of the flows.

Figure 5.1: Illustration of the cooling circuit, in addition to temperature of the
flows.
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By making a steady state mass and energy balance over the mixing point,
the inlet temperature can be calculated by the following equation.

TJ,in =
Tfreshm̂fresh + Trecm̂rec

m̂fresh + m̂rec
(5.2.1)

where Tfresh is the temperature of the fresh water, m̂fresh is the mass flow of
the fresh water, Trec is the temperature of the recycled water after the heat
exchanger, and m̂rec is the mass flow of the recycled water. In this derivation
it was assumed that the heat capacity was independent of temperature. This
was done as it was assumed that the change in temperature, and followingly
the heat capacity, would be quite small.

Both valves were assumed to follow an exponential characteristic, and is
given by the following equation.

q(z) = azR, 0 ≤ z ≤ 1 (5.2.2)

Here, q(z) represent a volume flow, a is a constant, R is a design parameter,
and z is the valve opening. By using the following end condition, a can be
obtained.

q(1) = qmax (5.2.3)

Here, qmax represent the maximum volume flow through the pipe. q(z) will
then be given by the following equation.

q(z) = qmaxzR (5.2.4)

The volume flow of steam (qsteam) and fresh water (qfresh) can then be calcu-
lated.

qfresh = qmax
freshzfresh

Rfresh (5.2.5)

qsteam = qmax
steamzsteam

Rsteam (5.2.6)

Here, zfresh represent the valve opening of the feed of fresh water, zsteam rep-
resent the valve opening of steam into the heat exchanger, Rfresh is the design
parameter for the valve for fresh water, and Rsteam is the design parameter for
the valve for steam. By using Equation 5.2.5 and 5.2.6, the mass flows, m̂fresh

and m̂steam can be calculated.

m̂fresh = qfreshρfresh (5.2.7)

m̂steam = qsteamρsteam (5.2.8)

Here, ρfresh represent the density of the fresh water, and ρsteam represent the
density of the steam. The heat transfer from the steam to the recycled water
can then be calculated.

Q̇ = m̂steamhfg (5.2.9)
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Here, hfg is the latent heat of vaporization. The temperature of the recycled
water after the heat exchanger, but before the feed for fresh water, can then
be calculated.

Trec =
Q̇

m̂reccp,rec
+ TJ,out (5.2.10)

Here, cp,rec represent the heat capacity of the recycled stream. The temperature
of the inlet stream can then be calculated using Equation 5.2.1.

It is assumed that m̂rec is kept at a constant value. Note that heating and
cooling is not used simultaneously. So when heating, the TJ,in corresponds to
Trec and when cooling, Trec corresponds to TJ,out.

As mentioned, this is controlled using SRC, and the criteria for this con-
troller is summarized in Equation 5.2.11 and 5.2.12, and visualized by Figure
5.2.

zfresh = zmax
fresh − 1

ν∗ ν

zsteam = zmin
steam

}
for νmin ≤ ν ≤ ν∗ (5.2.11)

zfresh = zmin
fresh

zsteam = zmin
steam + 1

zmax
steam−ν∗

(ν − ν∗)

}
for ν∗ < ν ≤ νmax (5.2.12)

Here, ν represent the internal control signal of the SRC, νmin and νmax represent
the minimum and maximum value of the internal control signal respectively,
and ν∗ represent the critical value of the internal control signal.

Figure 5.2: The split range controller action, equivalent to what is described by
Equation 5.2.11 and Equation 5.2.12. For values of the internal control signal below
ν∗, fresh water is fed into the circuit. For values over ν∗, steam is used to heat of the
recycled water. For the critical value ν∗, neither fresh water or steam are used.

A delay to the feed of fresh water into the cooling circuit was also added.
This introduces one additional state to the system and is described by the
following Ordinary Differential Equation (ODE).

dm̂delayed
fresh

dt
=

(
m̂fresh − m̂delayed

fresh

)
1

τfresh
(5.2.13)
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Here, m̂delayed
fresh represent the state for the delayed mass flow of fresh water into

the cooling circuit. This state is meant to capture the delay in the pipelines.
That is; the time from opening the valve, until the fresh water has reached
to cooling jacket. m̂fresh is the non-delayed fresh water feed, calculated by
Equation 5.2.7, and τfresh represent a time constant for the delay.

5.3 Unmodelled aspects

During the preliminary work, the correction factor for the kinetic model (CF ),
and the heat transfer coefficient between the reactor and the jacket (UR,J),
were estimated during the batch for three different datasets. Profiles for these
parameters were then found. These results can be found in Appendix B, rep-
resented by Figure B.2. During the initial phase of this master thesis, average
profiles were found, and polynomials describing these parameters as a function
of conversion were obtained. These polynomials will be considered to describe
the unmodelled aspects of the process.

5.4 Termination criteria and batch time

An important aspect for control purposes is the batch time. This parameter can
be included in the NMPC-criteria and minimized to shorten the total duration
of the batch. The batch time is defined to begin the moment the polymerization
starts and ends when 96% monomer conversion has been reached. Equation
5.4.1 represents the ODE describing the evolution of the batch time.

dtbatch

dt
=

{
1 for 0 < XM ≤ 96%

0 else
(5.4.1)

5.5 Maximum cooling capacity

Maximum cooling capacity is important in terms of safety. Polymerization
processes may be extremely exothermic, and the cooling demand can not exceed
the available cooling capacity.

The available cooling capacity will be defined by the following equation.

∆Hcooling capacity = UR,JAR,J(Tmin
J − TR) (5.5.1)

where Tmin
J will be the minimum temperature possible for the water contained

in the jacket, UR,J is the heat transfer coefficient between the reactor and the
jacket and AR,J is the area of heat transfer between the reactor and the jacket.
This will be equivalent to the feed temperature of fresh water into the cooling
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circuit. The cooling demand can be calculated.

∆Hcooling demand =

dTR

dt

(∑
micp,i +msteelcp,steel

)
−(

−∆HrxRp − UR,ambAR,amb(Tamb − TR)

+
∑
m̂feed,icp,i(Tfeed,i − TR)

)
= UR,JAR,J(TJ − TR)

(5.5.2)

Details on the right hand side of this equation can be found in Appendix A.2.
To ensure that the cooling demand do not exceed the available cooling capacity,
the relationship described in Equation 5.5.3 must be satisfied.

−∆Hcooling capacity > −∆Hcooling demand (5.5.3)
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Chapter 6

Control of a semi-batch re-
actor for emulsion polymer-
ization

This chapter will introduce some key consideration on control of a semi-batch
reactor for an emulsion polymerization process. This includes control of the
batch time, temperature control, pressure control, quality parameter control
and safety considerations. All of these topics are presented to motivate for the
implementation of Nonlinear Model Predictive Control (NMPC), and formula-
tion of the optimization problem.

This chapter will bind together the previous chapters, and the goal is to
provide a comprehensive understanding of the problem addressed in this thesis.
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CHAPTER 6. CONTROL OF A SEMI-BATCH REACTOR FOR
EMULSION POLYMERIZATION

6.1 The control problem

Controlling a semi-batch reactor for emulsion polymerization can be complex
due to multiple reasons. During the different intervals of the batch (See Section
2.3.1), operational conditions may change. The viscosity of the reactor content
can vary throughout the batch, leading to variations in the cooling capacity and
cooling demand. Sudden or local changes in the liquid phase viscosity can cause
the rate of the termination reaction to slow down, and there will be nothing to
hold back to propagation, causing a sudden increase in production rate. Such
changes may cause unexpected temperature increase and instabilities in the
system. The quality of the polymer is also an important aspect as it determines
the market value of the product. These parameters are often not measurable on-
line, and the model must, therefore, estimate them. The operational conditions
must ensure that the quality requirements of the polymer are met, at least
within a reasonable error interval.

The dynamics of the polymerization process is highly nonlinear. Conse-
quently, if Model Predictive Control (MPC) was to be implemented, a Non-
linear Programming (NLP) solver would be needed, which often is much more
time consuming than linear solvers. MPC is, therefore, referred to as NMPC
for the relevant process in this thesis.

When building a control problem, some of the main decisions are which vari-
ables to optimize, defining the constraints and the formulation of the objective
function. The rest of this chapter will introduce some of these aspects.

6.2 Minimization of batch time

The batch time was defined in Chapter 5, by Equation 5.4.1. The batch time
is an essential parameter for the manufacturer, as it is expensive to operate a
reactor. These costs include salaries, materials, power for production, mainte-
nance, wear of equipment, in addition to a whole range of other factors. Shorter
batch times can lead to higher production volume and thus higher profitabil-
ity. Besides, there would be more room for flexibility in terms of scheduling
and maintenance. Minimizing the batch time will, therefore, be equivalent to
reducing some of the expenses related to the operation.

As already mentioned, the batch time could be minimized if it is included
in the objective function of the optimization problem in some fashion. This
can be performed in numerous ways. One alternative is to introduce a setpoint
for the batch time, and the objective function will penalize for any deviation
from this setpoint. The setpoint could be set to some desired value or some
unrealizable value. If the setpoint is set to zero, every additional time step will
be penalized, and the optimization problem will always work towards minimum
batch time. Another opportunity is to define an upper constraint for the batch
time.

The above-mentioned approach will, however, require a prediction horizon
at least as long as the duration of the batch, which can be computational
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demanding. If the solver cannot find a solution in between samples, the con-
troller will fall further and further behind. Rephrased, the numerical efficiency
will be too low, and the model does not fulfil the real-time requirement. This
is not a unique issue related to minimizing the batch time, but for all opti-
mization problem if it is too computational demanding. Prediction horizons,
control horizons, horizon parameterization, number of controlled and manipu-
lated variables, the model itself and numerous other aspects will be important
factors affecting the runtime. An alternative would be to define a setpoint to
the production rate. A high setpoint for this variable would make the optimize
work to maximize the production rate, and thus minimizing the batch time.

An important aspect of minimization of the batch time is not setting the
penalty for setpoint deviation as high that the NMPC never will start the batch.
In addition, some terminating criteria most be pre-defined. In this model, the
termination criteria was set to the point the reaction reached 96% conversion.
It is, therefore, important that the model predicts this behaviour, for example,
by freezing the state of the batch time when the system reaches this criterion.
Figure 6.1 shows the intuitive relation of the reactor batch time as function
of time. The simulation, the setpoint and the prediction are shown in the
figure. In the first 720 seconds, pre-dosing of chemicals are executed. When
the polymerization process is started, the batch time follows the relation given
in Equation 5.4.1. When the batch is finished according to the termination
criteria, the state is frozen, which is shown as the plateau at the end of the
prediction. When minimizing the batch time, it is desirable to shift this plateau
as far down as possible, while still meeting other requirements, as safety and
quality.

Figure 6.1: Batch time as function of time. The figure shows the simulation (solid)
and the setpoint (dashed). Predicted values are illustrated in bold. The pre-dosing
of chemicals are illustrated in the figure, in addition to the finalization of the batch.
In between this time frame, the polymerization reaction is taking place.

6.3 Temperature and pressure control

As already emphasized, is the polymerization reaction a highly exothermic pro-
cess. Controlling the reactor temperature (TR) is, therefore, important, both
for safety consideration, but also to meet quality requirements which may be
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temperature-dependent. An example of this is the conversion average temper-
ature (T̄XM

), which was elaborated in Section 5.1. The reactor temperature
will be dependent on different factors, as heat transfer between a cooling or
heating unit, heat transfer between the reactor and the environment, and the
heat of reaction. The reactor temperature can be controlled to meet a certain
setpoint requirement, be kept within some constraints, or both.

In the case of the process described in Chapter 4, there are two main ways
to heat the reactor, and one to actively cool down the reactor. For heating,
steam can be used to heat the recycled water in the cooling circuit, or initiator
can be dosed to speed up the reaction, thus increase the heat of reaction. The
only actuator for cooling is the feed of fresh water into the cooling circuit. If
initiator is not in excess, and the valve for initiator feed is closed, the reaction
will of slow down, resulting in less heat from the reaction. From this point of
view, the initiator feed can be considered as an actuator for cooling, but the
time delay will be significantly large. In reality, the plant might have other
methods for controlling the reaction. This could, for example, be by adding
inhibitors to the reaction mixture. Consequently, the reaction will slow down,
thus lowering the heat of reaction. This is, however, not considered in this
project, and can, therefore, not be used as an actuator.

In Section 5.5, the concept of maximum cooling capacity and cooling de-
mand was introduced, making the cooling demand not to exceed the maximum
cooling capacity. When implementing the NMPC, this can be included in the
objective function by adding a constraint on the cooling demand. When this
constraint is included in the prediction, the objective function will penalize
for violation of the constraint, and the controller will seek not to perform any
action that will lead to violation of the constraint.

Controlling the pressure in a reactor is an important concept, and pres-
surized systems are usually equipped with a range of safety features, as, for
example, pressure-relief valves. However, minimizing the use of such features is
desirable. This motivates the implementation of an upper-pressure constraint.
The penalty for not satisfying the constraint should be set high enough that
no present or future control action will lead to violation. The reactor pressure
and temperature are highly correlated, and the reader is advised to Appendix
A for further elaboration on the modelling of this relation. Given a certain
reactor temperature, the reactor pressure will consequently also be given. The
reactor temperature is an important factor for speeding up the reaction. If the
goal is to minimize the batch time, the NMPC could be implemented to find
an optimal trajectory for the reactor temperature, simultaneously keeping the
pressure below some upper constraint. Optimal trajectory for the reactor tem-
perature will in the case of the relevant process means the optimal trajectory
for Split Range Controller (SRC) and the initiator feed, as these are the two
actuators.
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6.4 Quality parameter control

In Section 5.1 the concept of the K-value, its relation to the conversion av-
erage temperature, T̄XM

, and the calculation of this variable were introduced.
Controlling this parameters are important, as it quantifies the quality of the
product.

For the conversion average temperature, only the parameter value at the
end of the batch will be of any importance for the final product. That is,
the value of the parameter has no significance during the batch, but when the
batch is finished, it must satisfy the required setpoint. This can be performed
by introducing a setpoint for the conversion average temperature, which only
is weighted at the end of the batch. This will, however, require a prediction
horizon at least as long as the batch time. If not, there will be a chance that
by the time the end of the batch is within the horizon, there will be too late for
the controllers to take action to meet the requirement. As already mentioned,
too long prediction horizons is computationally demanding, and the solver may
take too long finding a solution to the optimization problem.

Alternatively, the setpoint can be weighted at the end of the prediction
horizon, which can be defined as long or short as desired. The point at which
the deviation from the setpoint is weighted will shift together with the end
of the prediction horizon, making this system always meet the requirement at
the end of the horizon. When the end of the batch is reached, the states for
computing the quality parameter is frozen.

6.5 Initiator feed as actuator and cost of initia-
tor

The initiator feed is an important actuator to minimize the batch time. High
initiator feed results in a large number of radicals in the water phase, nw

R, and
hence also the average number of radicals per particle, n̄, which contributes to
high production rates. The reader is advised to read Appendix A for the mod-
elling of these variables. For cheap initiators, any reduction in the batch time
will be economically profitable. For expensive initiators, a trade-off between
lowering the batch time and using more initiator most be considered. The ini-
tiator feed may, however, be limited by the requirements as not violating the
cooling capacity and fulfilling some quality parameter.

A penalty for any additional feed of initiator can be included in the objective
function of the optimization problem to reduce the usage of this chemical.
This can be performed in numerous ways. One possible solution could be to
penalize the waste of initiator in the system, that is the rate of termination
in the water phase, Rw

t . The rate of termination was described in Section
2.2.1, and the reader is advised to Appendix A.3.3 for the details on modelling
termination in the water phase specifically. The setpoint may be set to zero,
and the optimizer will always work towards minimum waste of initiator. An
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alternative, and perhaps a more intuitive approach, would be to introduce a
variable that tracks the total cost of fed initiator to the system and let the
setpoint of this variable be zero. The optimizer will then always work towards
minimizing the cost of the initiator. As for the case of minimizing the batch
time, it is important not to penalize the setpoint deviation too much. This can
cause the batch never to reach the required termination criterion.
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Chapter 7

Results and discussion

The purpose of this chapter is to present the results of this project. It aims to
demonstrate the concept of estimation and Nonlinear Model Predictive Control
(NMPC) by addressing the relevant problems described in Chapter 6. The
content of the different sections are listed below, and they will be discussed
consecutively.

• Section 7.1 present the results from the finalization of the model. Here,
the results from the on-line estimation performed in the preliminary
project are made part of the model, and the model outputs are com-
pared to measured data.

• Section 7.2 present the choice of decision variables, setpoints and con-
straint for this NMPC implementation.

• Section 7.3 present the result from Case Study 1, where the effect of state-
and parameter estimation was investigated.

• Section 7.4 present the result from Case Study 2, where a relationship
between the total amount of fed initiator and the batch time was estab-
lished.

• Section 7.5 present the result from Case Study 3, where different lengths
of the control and prediction horizon were tested.

• Section 7.6 present the result from Case Study 4, where different horizon
parameterization were tested.

Cybernetica’s ModelFit was used when validating the finalized model. For
all the following case studies, Cybernetica’s CENIT was used. The interested
reader is advised to Appendix F for a more elaborate description of the software.
Prior to simulations presented in this chapter, the model and controllers were
tested in CENIT. This, introductory case, and its results can be found in
Appendix G.
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7.1 Results from the finalization of the model

Some simulations were performed to validate the new aspects of the model,
which were described in Chapter 5. The results from modelling the conversion
average temperature, including the pre-estimated parameters and modelling
the cooling circuit are compared to data from Inovyn.

7.1.1 Conversion average temperature

Figure 7.1 shows the conversion average temperature calculated both by Inovyn
and the model, from a recursive simulation. The model developed in this
project shows some deviations from Inovyn’s calculation in the beginning and at
the end of the batch, but throughout the batch, they show a close resemblance
to each other.

Figure 7.1: A plot showing the conversion average temperature calculated both by
Inovyn and the model. The simulation is run recursively.

7.1.2 Unmodelled aspects

As already emphasized in Section 5.3, some deviations were experienced be-
tween measured and modelled output during the preliminary work when the
simulation is run ballistic. An example of this is shown in Appendix B. Three
batches were, therefore, run recursively, with Kalman Filter (KF), and it was
attempted to find some polynomials which would describe the unmodelled as-
pects. Figure 7.2 shows the estimated parameter profiles of the correction
factor, CF , and the heat transfer coefficient, UR,J. It shows the profiles for
the three datasets, which were used to find an average, and polynomials were
then generated to fit the average. These two polynomials will be considered to
describe the unmodelled aspects of the batch.

Three, new, batches were then simulated ballistic with these polynomials
as part of the model. This was done to validate the generated polynomials
and ensure that they gave satisfactory results also for other, arbitrary, batches.
Figure 7.3 shows the modelled reactor temperature for one of these datasets,
both when taking into account (b), and not taking into account these pre-
estimated profiles (a). Significant improvement can be seen when examining
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the results.

(a) The correction factor, CF , as func-
tion of conversion

(b) The heat transfer coefficient be-
tween the reactor and the jacket, UR,J,
as function of conversion

Figure 7.2: The estimated profiles when performing recursive filtering on three
datasets during the preliminary work, in addition to the average and the generated
polynomials.

(a) Without the pre-estimated profiles

(b) With the pre-estimated profiles

Figure 7.3: Modelled and measured reactor temperature from a ballistic simulation
of a new, arbitrary, batch.

7.1.3 Cooling circuit

The design parameters for the choke openings, Rsteam and Rfresh, and the time
constant for the delay of fresh water, τfresh, was tuned to fit measured data
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by trial-and-error. Their values are summarized in Table 7.1. The table also
states the parameter values necessary for the Split Range Controller (SRC)
block calculation, provided from the manufacturer. The inlet temperature,
TJ,in, was then calculated as described in Section 5.2.

Table 7.1: Design parameters for the valve opening for fresh water and steam, time
constant for the delay of fresh water into the cooling circuit, and parameter values
necessary for the SRC block calculation.

Parameter Unit Value

Rfresh 1.0

Rsteam 1.5

τfresh s 167

νmin 0

νmax 1

ν∗ 0.75

zmin
fresh 0

zmax
fresh 1

zmin
steam 0

zmax
steam 1

Figure 7.4 shows the measured and modelled jacket temperatures, for both
inlet (a) and outlet (b) of the jacket. The simulation is run ballistic, with the
pre-estimated profiles of CF and UR,J. Some deviations can be seen. However,
the modelled temperatures generally have a large resembles the measurements.

(a) Inlet jacket temperature

(b) Outlet jacket temperature

Figure 7.4: Jacket temperatures, both measured and modelled temperature. The
simulation is run ballistic, with the pre-estimated profiles of CF and UR,J.
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7.1.4 Discussion

When controlling this emulsion polymerization reaction, quality parameter set-
point must be reached. In this case, the desired quality parameter, the K-value,
is a function of the conversion average temperature, T̄XM . This parameter was
therefore modelled as described in Section 5.1. Data was provided from In-
ovyn, and compared to the model in Figure 7.1. When comparing the model
and Inovyn’s calculation, some deviation could be seen at the start and the
end of the batch. For a recursive simulation without the pre-estimated profiles,
the modelled and measured reactor temperature almost perfectly matches (As
shown in Figure B.1). This means that the reactor temperature most likely is
not the cause of the deviation in the conversion average temperatures. This
indicates that there is some deviation in the modelled production rate, and the
production rate calculated by Inovyn. This parameter is not easily measur-
able, and reasoning which calculation would be the best reflection of reality is
therefore difficult. As measurement cannot be acquired, and the deviations in
conversion average temperature not are severe, the modelling of this parameter
is considered sufficient for control purpose and for this project.

Figure 7.2 illustrates that all three datasets show the same trends for the
estimation of the correction factor, CF , and the heat transfer coefficient be-
tween the reactor and the jacket, UR,J. The rapid change towards the end can
be due to a decreasing concentration of monomer inside the particles during
Interval III of the process. The KF try to compensate for this by increasing
the correction factor and lowering the heat transfer coefficient. An increasing
correction factor causes higher propagation rate, which leads to more heat of
reaction and hence also high reactor temperature. Lowering the heat transfer
coefficient causes less efficient cooling, which also contributes to higher reactor
temperature. Higher reactor temperature will, in its turn contribute to higher
production rate. The decreasing heat transfer coefficient can also be explained
by increasing viscosity of the reaction mixture, causes the heat transfer to be
less efficient.

Some deviation between the estimated profiles for the three datasets can
be seen, particularly towards the end of the batch. During the preliminary
project, input data indicated when the polymerization stage was ending, and
the estimation is switched off. However, the model keeps the polymerization
reaction going until the termination criteria are reached. Batches where the
input indicates that the polymerization stage finishes early, will not have time
to reach such high correction factor, or low heat transfer coefficient, as other
batches. Another reason can be due to model error, which the KF tries to
compensate for. Different profiles can then be due to different magnitudes of
the model error. Some deviations between the three datasets are, however, to
be expected due to disturbances and variations from one batch to another.

However, the resemblance between the estimated profiles for the three
batches is evident. An average of these profiles will, therefore, be a well-suited
description of the unmodelled aspects. During the initial phase of this project,
average profiles of the two estimated parameters were found, followed by finding

57



CHAPTER 7. RESULTS AND DISCUSSION

polynomials describing these averages. The purpose of finding these polynomi-
als was to implement this in the application easily. They could not be functions
of time, as this would cause a mismatch when simulating batches of different
duration. The polynomials are therefore functions of conversion. In addition
to the three datasets, Figure 7.2 shows the averages and the fitted polynomials.
The polynomials were, by inspection, considered valid approximations of the
averages.

The mismatch between measured and the modelled temperature is expected
to be smaller for the case with these polynomials in the model, compared to
without. This was shown by the ballistic simulation of the reactor temperature
in Figure 7.3, where the modelled temperature in Figure 7.3b shows notable
smaller mismatch to the measured temperature, than Figure 7.3a. The im-
provement is not as significant as the recursive simulation performed during
the preliminary work (Figure B.1), nor can this be expected. There will always
be some deviation in operation, and there will be disturbances from one batch
to the other. An average or a fitted curve will not necessarily be represen-
tative for all possible batches. However, it was decided that the polynomials
gave a large improvement of the modelled outputs, and they were therefore
implemented and accepted to represent the unmodelled aspects of the system.

During the preliminary project, the inlet jacket temperature was used as
input directly. When validating the model, this was a good approach to filter
out any error that could have been added through modelling the inlet jacket
temperature. For control purposes, however, it would be unrealistic to choose
the inlet jacket temperature as an actuator. A model describing the cooling
circuit was therefore derived, as described in Section 5.2, with the pre-estimated
profiles. The new model was tested on a new, arbitrary batch for verification.
The results were presented by Figure 7.4, and shows that the model output
has a considerable resemblance to the measured output. Some deviations can
be seen throughout the batch. The deviations at the beginning of the batch
could be due to the initialization of the batch, which is set to be equal from
one simulation to another. Alternatively, the deviations can be explained by
the same reasoning as for the reactor temperature in Figure 7.3. The pre-
estimated profiles will result in some error in the model due to variations from
one batch to another. Another reason for the deviation can be that a delay in
the effect of heating the recycled water, is not included in the model. This can
theoretically be done in the same manner as for the fresh water feed. It was
however decided not to include this feature as it would introduce an additional
state to the system, and the yield of this introduction would be small. In
addition, steam is used much less frequently than the fresh water feed, as the
heat of reaction itself often is sufficient for heating. As penalization for any
control move is implemented, the system will work to minimize the use of the
actuator. Overall, the values of the design parameter for the valve opening for
fresh water and steam, in addition to the time constant for the delay of fresh
water into the cooling circuit (Table 7.1), gave satisfactory result with respect
to the jacket temperatures.
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Some aspects were left unmodelled during this work for several reasons. The
model should, however, capture the most critical dynamics of the system. When
modelling, there is almost no limit to how complex the model can be made. A
more complex model will often lead to more accurate results if performed by a
skilled and knowledgeable modeller. For a NMPC application with a state- and
parameter estimator, this means not as dramatic updates, as for a less perfect
model. However, a higher complexity will require more computational power,
and a trade-off between simplicity and complexity had to be found.

One of the unmodelled aspects is the initiator system, which was modelled
as a thermal system, but in reality, it is a combined redox-thermal system.
In addition, perfect mixture and equilibrium between phases at all time is
assumed. However, establishing equilibrium will have some time delay. It can
be limited by mass transfer, and a time constant can be introduced to capture
this delay. The procedure would then be the same as for the delay in fresh
water feed, as described in Section 5.5. This will introduce additional states to
the system, and also affect the pressure in the reactor.

The actuator for the initiator feed was set to be in mass units directly. How-
ever, controlling the valve position would probably be closer to reality. This
would then require an equation describing the relationship between valve posi-
tion and the feed of initiator. This approach would be similar to the modelling
of the fresh water feed in Section 5.5. It would, however, require more infor-
mation about the valve position from measured data. Some delay in pipelines
may also be realistic.

The particles were assumed to be monodisperse, and the rate of adsorp-
tion and desorption were modelled independently of particle size. The size
of the particles can be found easily enough if monodispersity is assumed, but
to further model the dependency of the kinetic parameters on the particle size
based on first principles would require a much more elaborate description of the
system. This includes, for example, information about diffusion coefficients.

Both termination and propagation were modelled independently of chain
length. If this was to be included in the model, a full dynamic population
balance had to be done over the radials. Furthermore, the dependency of chain
length on termination and propagation had to be found, as the rate constants.
The result would be a large number of rate constants, which had to be found
experimentally, or by estimation. Either approach would be very challenging,
and probably a reason why chain length dependency rarely is included when
modelling such systems.

The features just mentioned are only some of the aspects which are left
unmodelled. If some were implemented successfully, CF and UR,J could be re-
estimated, new polynomials could be found, and a more accurate model may
be obtained. Some of the features will, however, be more easily implemented
than others. In addition, the complexity of the model will increase, and so will
the computational load.
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7.2 Implementation of the NMPC

When building the objective function, the decision variable and their setpoints
and constraints were mainly obtained from engineering intuition or demands
from the manufacturer.

At the plant, the operators are notified when the reactor pressure exceeds 10
barg. The upper constraint for the pressure was therefore set to 10 barg. The
lower limit is set to -1 barg. Even though -1 barg is an unrealistic value for
a pressurized tank during polymerization, process indicators logged negative
gauge pressures during loading and drainage. Setting the lower limit to -1 barg
accounts for this singularity.

The lower limit for the cooling demand was set to the maximum cooling
capacity, as described in Section 5.5 and reasoned in Section 6.3. The upper
limit was set unrealistically high, making sure that the upper boundary not
will be active when the jacket is used for heating, and the cooling demand is
positive. This would be the case when the temperature in the reactor is lower
than the jacket, at which the recycled stream is heated with steam.

A setpoint for the production rate was specified and set unrealistically high
for the optimizer always working towards maximizing the production rate and
thereby minimizing the batch time. The duration of an average batch lies
between 6 and 7 hours, and minimizing the batch time directly would require
a prediction horizon at least as long. This was attempted, but it became
clear that the optimizer could not find a solution in between samples. The
measurements are logged every 10 seconds, and the optimizer could, on average,
not find a solution within this time frame. Note that the coincidence points for
Rp after the batch is finished, is removed. This was done for the controller not
aiming to increase the production rate when the termination point is reached,
as this would cause the batch never to end.

A setpoint for the monomer conversion was specified, and set to 100%. This
will also contribute to minimizing the batch time, but as the system approaches
100% conversion, the deviation, and hence also the penalty for the deviation,
will decrease. It was therefore decided to have setpoints both for the production
rate and the monomer conversion. Note that even though the setpoint is at
100% conversion, the termination criteria at 96%.

The conversion average temperature is the quality parameter used for this
reaction, which by the manufacturer is determined to be 57◦C. After ensuring
safe operation, meeting this requirement is considered the most important. As
it is only the end-value of this parameter that is of any significant meaning,
this decision variable will only have one coincidence point, which will be lo-
cated at the end of the prediction horizon. Weighting setpoint at the end of
a shorter prediction horizon ensures that not any action that can cause the
quality parameter not being able to reach its setpoint. At least if it is weighted
properly.

A setpoint was added to the waste of initiator, that is the rate of termination
in the water phase: Rw

t . The reader is advised to read Appendix A.3.3 for an
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elaboration on this subject. Its respective setpoint was set to zero. This is
not a realistic value, as it would cause no feed of initiator, and the reaction
would die out rather quickly in lack of radicals. It will, however, work towards
minimizing the use of initiator, as discussed in Section 6.5. Note that an
alternative would be to track the amount of initiator fed to the reactor, or the
cost of fed initiator. However, it was decided to choose Rw

t as the controlled
variable as it will capture the dynamics of the kinetic model. For example,
kinetics will make feeding initiator some points during a batch more efficient
than others.

All outputs, except the conversion average temperature, has identical pa-
rameterization for the coincidence points. Some coincidence point for the pro-
duction rate is also deleted consecutively. The inputs are also parameterized
identically by input blocking. The parameter values for the SRC block calcu-
lation is as stated in Table 7.1. The lower limit for the feed of initiator is 0,
and the upper limit was set to 10 g/s.

The setpoints and constraints mentioned in this section are summarized
below. Unless something else is explicitly stated, these are the decision variables
and their respective setpoints and constraints, in the optimization problem.

Pressure control: An upper and lower limit of the pressure was speci-

fied; phigh
R = 10 barg, plow

R = −1 barg.

Cooling demand
control:

An lower limit of the cooling demand was specified;

∆Hcooling demand, low = ∆Hcooling capacity.

Production rate
control:

The setpoint was set unrealiticly high, for the NMPC
to work towards maximizing the production rate:
Rsp

p = high, with coincidence points only before the
termination criteria.

Monomer conversion
control:

A setpoint was defined for the monomer conversion:
Xsp

M = 100%.

Conversion average
temperature control:

A setpoint was defined for the conversion average
temperature: T̄ sp

XM
= 57◦C. Note that for all simu-

lations, the T̄XM is only weighted at the end of the
prediction horizon, by one coincidence point.

Initiator feed control: The setpoint for the waste of initiator was set to zero:
Rw,sp

t = 0.

Constraints for the
SRC:

Lower and upper limit for the SRC: νmin = 0,
νmax = 1.

Constraints for the
feed rate of initiator:

Lower and upper limit for the feed rate of initiator:
m̂min

I1
= 0, m̂max

I1
= 10 g/s.
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7.3 Case Study 1: Effect of state- and parame-
ter estimation

A simulation without state- and parameter estimation was performed. This
was done to establish an opinion about the need for including the KF. During
this simulation, the same features as listed in Section 7.2 were included in the
optimization problem.

The aspects of the system which is considered unmodelled (See Section 5.3),
is only included in the simulator, and not in the estimator. This makes the
model used in the simulator, and the model used in the controller, dissimilar.
A large deviation in the outputs between the simulator and the estimator is,
therefore, to be expected, especially when no state- and parameter estimation is
implemented. Two separate case studies will, therefore, be performed to study
the effect of the KF. The cases are listed below, and they will be presented
systematically.

Case Study 1.1: Pre-estimated profiles were included in the simula-
tor, but not in the prediction. State- and parameter
estimation not active.

Case Study 1.2: Pre-estimated profiles were included in the simula-
tor, and also in the prediction. State- and parameter
estimation active.

The goal of Case Study 1 was to confirm the bias between the model in the
estimator and simulator, and then to tune the Kalman filter for smooth esti-
mation. This will show the effect of the Kalman Filter, utilized in Case Study
1.2.

7.3.1 Case Study 1.1: Inactive Kalman Filter

Figure 7.5 - 7.8 show the results from Case Study 1.1. The KF was not active
during this case study. Hence, neither state or parameter estimation were per-
formed on-line. The pre-estimated profiles were not included in the prediction.

Figure 7.5a shows the valve positions for the feed of fresh water and steam,
from the internal input signal (the SRC) calculated by CENIT, and their upper
constraint. The valve position of fresh water feed increases rapidly at the
beginning of the batch and decays throughout the batch. Steam is mainly
utilized towards the end. Figure 7.5b shows the feed of initiator to the system,
calculated by CENIT. The feed of initiator is quite steady during the batch
before it increases rapidly towards the end.
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(a) Valve position for fresh water (blue)
and steam (red), in addition to their up-
per constraint (dotted)

(b) Feed rate of initiator

Figure 7.5: Inputs calculated by CENIT, with inactive Kalman Filter, and pre-
estimated profiles not in prediction.

Figure 7.6a shows the reactor pressure calculated by the simulator (solid)
and the estimator (dashed), in addition to the upper constraint (dotted). As
can be seen, both the simulator and the estimator violates the upper constraint.
At the real plant, such high pressure could not be obtained as the operators
would take action by venting or adding inhibitors. Alternatively, would other
safety feature been activated before the pressure reaches such high values. Fig-
ure 7.6b shows the reactor temperature calculated by the simulator (solid) and
the estimator (dashed). As can be seen, the simulated temperature reaches
values far over 100◦C. When analyzing logged data from the plant, the reactor
temperature rarely goes above 90◦C. The high reactor temperature is correlated
to the high reactor pressure.

(a) Simulated (solid), estimated (dashed)
reactor pressure and upper-constraint
(dotted)

(b) Simulated (solid) and estimated
(dashed) reactor temperature

Figure 7.6: Reactor pressure and temperature, from simulation with inactive
Kalman Filter, and pre-estimated profiles not in prediction.

Figure 7.7a shows the conversion average temperature calculated by the
simulator (solid), the estimator (dashed) and its setpoint (dotted). As can
be seen, only the estimator reaches the setpoint of 57◦C, and the fluctuations
are much smaller for the estimated profile. Figure 7.7b shows the monomer
conversion calculated by the simulator (solid) and the estimator (dashed), both
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reaching the termination criteria of 96%, approximately at the same time.

(a) Simulated (solid), estimated (dashed)
conversion average temperature and its
setpoint (dotted)

(b) Simulated (solid), estimated (dashed)
monomer conversion and its setpoint (dot-
ted)

Figure 7.7: Conversions, from simulation with inactive Kalman Filter, and pre-
estimated profiles not in prediction.

Figure 7.8a shows the correction factor calculated by the simulator (solid)
and the estimator (dashed). As can be seen, the correction factor for the
simulator follows the polynomial shown in Figure 7.2. The correction factor
for the estimator is constant due to no model updates. Figure 7.8b shows the
heat transfer coefficient calculated by the simulator (solid) and the estimator
(dashed). Again, the heat transfer coefficient for the simulator follows the
polynomial shown in Figure 7.2, while the estimated value is constant.

(a) Simulated (solid) and estimated
(dashed) correction factor for the kinetic
model

(b) Simulated (solid) and estimated
(dashed) heat transfer coefficient between
reactor and jacket

Figure 7.8: Parameters, from simulation with inactive Kalman Filter, and pre-
estimated profiles not in prediction.

7.3.2 Case Study 1.2: Active Kalman Filter

In this case study, the KF was active. Hence, state- and parameter estimation
were performed on-line. The pre-estimated profiles for the unmodelled aspects
were included in the prediction. The reactor temperature, TR, and the outlet
jacket temperature, TJ,out, were used as active measurements, while the esti-
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mated parameters were the correction factor for the kinetic model, CF , and the
heat transfer coefficient between the reactor and the jacket, UR,J. The relevant
results are shown in Figure 7.9 - 7.12. Note that both simulated and estimated
calculations are shown for the relevant outputs (pressure, temperatures, conver-
sions). However, compared to Case Study 1.1, they almost perfectly coincide,
and the difference between them is therefore not visible.

Figure 7.9a shows the valve position of the feed of fresh water and steam, in
addition to their upper constraint. Note that the valve positions are calculated
from the actual manipulated input, the SRC (not shown), by CENIT. Steam is
almost never utilized, except at the very end of the batch. Figure 7.9b shows
the feed for initiator. The feed of initiator increases early in the batch, before
it decays and remains approximately steady throughout the batch.

(a) Valve position for fresh water (blue)
and steam (red), in addition to their up-
per constraint (dotted)

(b) Feed rate of initiator

Figure 7.9: Inputs calculated by CENIT, from simulation with active Kalman Filter,
and pre-estimated profiles in prediction.

Figure 7.10a shows the reactor pressure and its upper constraint, which was
not violated. Figure 7.10b shows the reactor temperature, which fluctuates a
bit through the batch, before increasing considerably at the end.

(a) Simulated (solid), estimated (dashed)
reactor pressure and upper-constraint
(dotted)

(b) Simulated (solid) and estimated
(dashed) reactor temperature

Figure 7.10: Reactor pressure and temperature, from simulation with active Kalman
Filter, and pre-estimated profiles in prediction.
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Figure 7.11a shows the conversion average temperature which reaches the
setpoint (dotted) of 57◦C at the end of the batch. Figure 7.11b shows the
monomer conversion, which reaches the termination criteria of 96% at the end.

(a) Simulated (solid) estimated (dashed)
conversion average temperature, and its
setpoint (dotted)

(b) Simulated (solid), estimated (dashed)
monomer conversion and its setpoint (dot-
ted)

Figure 7.11: Conversions, from the simulation with active Kalman Filter, and pre-
estimated profiles in prediction.

Figure 7.12a shows the correction factor calculated by the simulator (solid)
and the estimator (dashed). As can be seen, the correction factor for the
simulator follows the polynomial shown in Figure 7.2. The correction factor
estimated by the KF follows the same trend as the simulator but does not reach
as high values towards the end. Figure 7.12b shows the heat transfer coefficient
calculated by the simulator (solid) and the estimator (dashed). Again, the heat
transfer coefficient for the simulator follows the polynomial shown in Figure 7.2,
while the estimated value follows the same trend as the simulator, but does not
reach as low values towards the end.

(a) Simulated (solid) and estimated (dot-
ted) correction factor for the kinetic
model

(b) Simulated (solid) and estimated (dot-
ted) heat transfer coefficient between re-
actor and jacket

Figure 7.12: Parameters, from simulation with active Kalman Filter, and pre-
estimated profiles in prediction.
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7.3.3 Discussion

Case Study 1.1, showed that there was a significant need for implementing a
state- and parameter estimator. This was an expected result as the simulator
and estimator deliberately had different models integrated. If the models were
similar, however, there would be no need for estimation, and the output from
the simulator and the estimation would yield the same results.

The observant reader may have noticed the resemblance between the simu-
lated reactor temperature in Figure 7.6b, and the evolution of the pre-estimated
profile of the correction factor for the kinetic model in Figure 7.2. This is a
result of the reactor temperature being very dependent on the rate constant of
many of the kinetic parameter (ki, kd, kp, kt), which will all vary linearly with
the correction factor. In the first approximately 3 hours of the batch, the re-
actor temperature in the simulator experience a decrease due to the correction
factor. The temperature in the estimator does not experience the same and
is on the correct course to reach the setpoint for the conversion average tem-
perature (Figure 7.7a). The controller will therefore not perform any action to
adjust the temperature, at least not dramatically. As a result, the conversion
average temperature decreases in the simulator, and the monomer conversion
at this point almost flattens out (Figure 7.7b).

Figure 7.6a shows that the pressure constraint was violated for the case
where the KF was inactive. In addition, the reactor temperature shows much
higher values than any of the logged material from previous batches provided
from Inovyn. The batch was re-simulated with larger penalties for violating
the pressure constraint, without any significant improvement. This can be ex-
plained by the following reasoning; Figure 7.7b shows that the estimator is
approaching the termination criteria (96% monomer conversion) at about -1.5
hour, and at this point, it will be within the prediction horizon. To obtain
the final temperature increase to reach the setpoint of the conversion average
temperature (Figure 7.7a), it increases the temperature by using steam and
keep on feeding initiator. However, the correction factor for the kinetic model
rapidly increases to high values in this case for the simulator (Figure 7.8a),
which causes a large temperature increase. This is evident from Figure 7.6b,
where the simulator calculates very high temperatures. Consequently, the re-
actor pressure also increases.

The steep increase for Case Study 1.1 in the monomer conversion and the
conversion average temperature for the simulator is a result of this increase in
temperature. The NMPC aims for the estimator to obtain its required con-
straints and setpoints, and the off-set in the simulator may, therefore, be sig-
nificant when the deviation between the model for the estimator and simulator
is this large.

Overall, the results from Case Study 1.1 emphasized the need for state- and
parameter estimation, and the results from Case Study 1.2 showed significant
improvements after this implementation. The estimated parameters from Case
Study 1.2 (Figure 7.12), did not perfectly coincide with their simulated values,
which would be the idealized case. A reason for the deviation can be that the
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KF was not tuned aggressively enough. Other tuning values could have been
explored to minimize this deviation, which could yield improved prediction.
However, the results were considered satisfactory.
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7.4 Case Study 2: Initiator feed versus batch
time

An interesting aspect of this polymerization process is the relationship between
the amount of necessary initiator, and the batch time. Several simulations were
therefore performed with the objective to establish this relationship. If such
a relation is successfully found, one could go back and check what amount
of initiator is necessary to achieve a certain batch time. For a cheap initiator
where any reduction in the batch time would be profitable, finding the maximal
amount of initiator that still would ensure safe operation and satisfy quality
parameter, is desirable. During this case study, the same features as listed in
Section 7.2 were included in the optimization problem.

Figure 7.13 shows the data points that were obtained for a prediction hori-
zon of 1000 samples, and a control horizon of 200 samples. For the prediction
horizon, coincidence points were chosen every 50 samples. For the control hori-
zon, inputs were parameterized with three parameters, which determines the
input at 0, 50, 100 and 200 samples. The results indicate an inverse exponen-
tial, or almost linear, relationship.

Figure 7.13: Initiator feed versus batch time. The prediction horizon for this
simulation was 1000 samples (coincidence points every 50 sample), and the control
horizon 200 samples (inputs determined at 0, 50, 100 and 200 samples).

7.4.1 Example simulations

The results from some selected data points will now be presented. This is to
illustrate the different operation for some batches shown in Figure 7.13. One
batch will have a very long batch time, while the other has significant lower
batch time.

Case Study 2.1: Long batch time

Figure 7.14 shows the results from a simulation with a long batch time. Both
fresh water and steam are utilized during the batch, illustrated in Figure 7.14a.
Only a small amount of initiator is fed, which is shown in Figure 7.14b. Ini-
tiator is mainly fed early in the batch batch, approximately at -6 hours. In
total 4167 g, and the batch duration was 7.9 hours. Figure 7.14c shows that
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the conversion average temperature (solid) reaches its setpoint (dashed). The
conversion average temperature is kept below its setpoint during the whole
batch. Figure 7.14d shows the reactor temperature, which varies throughout
the batch and decreases towards the end. The average number of radicals per
particle is kept within a value of approximately 0 and 0.1, shown by Figure
7.14e. Figure 7.14f shows that the cooling demand (solid) does not exceed the
cooling capacity (dotted).

(a) Valve position for fresh water (blue)
and steam (red), in addition to their up-
per constraint (dotted)

(b) Feed rate of initiator

(c) Conversion average temperature
(solid), and setpoint (dashed)

(d) Reactor temperature

(e) Average number of radicals per parti-
cle, n̄

(f) Cooling efficiency (solid), and maximum
cooling capacity (dotted)

Figure 7.14: Results from simulation of a batch with a long batch time (Case Study
2.1).

Case Study 2.2: Short batch time

Figure 7.15 show the results from a simulation with a short batch time. Only
fresh water is utilized during the batch, as illustrated in Figure 7.15a. A large
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amount of initiator is fed, which is shown in Figure 7.15b. Initiator is mainly
fed early in the batch, approximately at -4 hours. In total, 13399 g of initiator
was fed, and the batch duration was 4.2 hours. Figure 7.15c shows that the
conversion average temperature (solid) reaches its setpoint (dashed). Figure
7.15d shows the reactor temperature, which varies throughout the batch, in-
creasing at the end. The average number of radicals per particle is kept within
a value of approximately 0 and 0.15, shown by Figure 7.15e. Figure 7.15f shows
that the cooling demand (solid) does not exceed the cooling capacity (dotted).
A much smaller cooling margin, that is, the gap between the cooling efficiency
and the maximum cooling capacity, can be observed for this case in comparison
to Case Study 2.1.

(a) Valve position for fresh water (blue)
and steam (red), in addition to their up-
per constraint (dotted)

(b) Feed rate of initiator

(c) Conversion average temperature
(solid), and setpoint (dashed)

(d) Reactor temperature

(e) Average number of radicals per parti-
cle, n̄

(f) Cooling efficiency (solid), and maximum
cooling capacity (dotted)

Figure 7.15: Results from simulation of a batch with a short batch time (Case
Study 2.2).
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7.4.2 Discussion

As already stated, Figure 7.13 showed an inversely exponential, or possibly
linear, relation between the total amount of initiator fed to the reactor and the
batch time. For an inverse exponential function, when operating conditions are
such that batch time gets very shorts, the effect of adding additional initiator
will be small. When the operating condition is such that the batch time gets
very long, the effect of adding additional initiator will be large. From a quan-
titative perspective, this might be the case for an inverse exponential relation.
Examining the data point at the far right, only 2.2 kg of initiator, will reduce
the batch time by 1.70 hours. To obtain the same amount of reduction in batch
time from this point, another 6.04 kg of initiator is needed.

The relationship between the total amount of initiator added and the batch
time is reasonable in the sense that adding more initiator, naturally will lead
to shorter batch times. More initiator fed to the system means higher reaction
rates and a greater amount of initiator decomposes to radicals. This results
in a larger amount of radicals in the water phase. This will increase the rate
of termination in the water phase, but also the rate at which radicals enter
the particles. Once a larger number of radicals have entered the particles,
the termination in the polymer phase will increase, but so will the rate of
propagation. Overall, the production rate will increase when a larger amount
of initiator is added.

There is also a qualitative argument that can be made to reason for an
inverse exponential relation. When studying the kinetic expressions for the
propagation and termination rate, which was established in the Section 2.2.1,
the rate of propagation is linearly dependent on the total amount of radicals in
the system by Equation 2.2.8, while the termination is quadratically dependent
by Equation 2.2.12. Summarized, the following relations hold;

Rp ∝ n̄
Rt ∝ n̄2

The purpose of emphasizing these relations is that for higher values of n̄, ter-
mination reactions will be more prominent, and high values of n̄ are obtained
by large amounts of fed initiator. In other words, the addition of initiator has
the purpose of speeding up the reaction, but at a certain point, the termina-
tion reactions will become more dominant. This makes the addition of more
initiator less effective for large values of n̄.

In both cases, a large portion of initiator is fed early in the batch. This
can be reasoned by the nucleation of particles, which result in an increasing
production rate. The theoretical aspects of this were introduces in Section
2.3.1. As a result, a larger amount of initiator is required, leading to a high
feed rate. The increment in initiator feed is, however, not in the very beginning.
This can be justified by pre-dosing of both Initiator 1 and 2. Initiator will at
this point be in excess, and there is not necessary to add initiator to the system
immediately.
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When comparing the cooling efficiency for Case Study 2.1 and Case Study
2.2, by examining Figure 7.14f and Figure 7.15f, it is obvious that the cooling
capacity is better utilized for the shortest batch. The cooling margin is much
smaller for Case Study 2.2. It is, however, never violated. The valve posi-
tion of fresh water is more stable and even saturates at some points. Steam is
nor utilized, and all of this leads to fewer fluctuations in reactor temperature.
Hence, the reactor pressure and the conversion average temperature will also
have more stable profiles. The feed of initiator is higher for Case Study 2.2,
resulting in a larger values of n̄. This increases the production rate and reduces
the batch time. During the last phase of the batch, the reactor temperature
raises for the short batch, while decreases for the longest batch. From an in-
dustrial perspective, it is desirable for the reactor to obtain a high temperature
towards the end. Vinyl Chloride Monomer (VCM) is toxic, and high reactor
temperature results in the residual VCM being burned off.

At the real plant, there are several different reasons why it would be unreal-
istic to add up to 16 kilos of initiator. Firstly, there is the safety aspect. Even
though the NMPC is implemented to stay under some pressure boundary and
to ensure enough cooling capacity at all time, all scenarios can not possibly be
foreseen or modelled. 16 kilos of initiator is almost four times as much as a
typical batch is operating under today at the plant. If the application were to
be tested in industry, a less aggressive tuning would be a more realistic starting
point. It is important to remember that the simulator uses a plant-replacement
model, which never could resemble the real plant perfectly.
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7.5 Case Study 3: Length of horizons

This case study was performed to investigate the possibility of a different rela-
tionship between the amount of initiator and batch time for different horizons.
Table 7.2 shows the different horizon parameterization that was examined dur-
ing this case study. The numbers in parenthesis indicate the parameterization.
Note that one sample, in this case, is equivalent to 10 seconds. Some example
simulations from these case studies will be presented afterwards.

Table 7.2: Length of prediction horizon and control horizon for all the different case
studies simulated in Section 7.5. Numbers in parenthesis indicates the parameteriza-
tion. Both horizons is given in number of samples.

Control horizon Prediction horizon

Case Study 3.1 200 (0, 50, 100, 200) 750 (every 50)

Case Study 3.2 200 (0, 50, 100, 200) 1000 (every 50)

Case Study 3.3 400 (0, 50, 100, 200, 400) 1500 (every 50)

Figure 7.16 shows the relationship established between the total amount
of initiator fed to the reactor. The different data points for each case study
were obtained only by adjusting the weights in the objective function of the
optimization problem. The figure shows that for a specific batch time, approx-
imately the same amount of initiator is needed, independently of the length of
the horizon. This can be seen, for example, at a batch time of 5.5 hours, which
corresponds to approximately 8 kilos of initiator, for all three cases.

Figure 7.16: Initiator feed versus batch time, for the cases described by Table 7.2.

7.5.1 Example Simulations 1: Similar tuning

The results from some selected data point will now be presented. All three
case studies were simulated with the same tuning, except different control and
prediction horizons. Only the most important results will be presented; valve
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positions, feed of initiator, reactor temperature, conversion average tempera-
ture and batch time.

Case Study 3.1.1: M = 200, N = 750

This case study has the same control and prediction horizons as described for
Case Study 3.1 in Table 7.2. Figure 7.17 shows the main results from Case
Study 3.1.1. The valve positions (Figure 7.17a), the feed of initiator (Figure
7.17b), the reactor temperature (Figure 7.17c) and the conversion average tem-
perature (Figure 7.17d). In total 7199 g of initiator was used, and the duration
of the batch was approximately 5.47 hours. As can be seen, mainly fresh wa-
ter is utilized, in addition to some steam. Initiator is fed mainly early in the
batch, and a low feed rate can also be observed throughout the batch. The
reactor temperature varies through the batch and increases towards the end.
As a result, the conversion average temperature also increases towards the end,
reaching its setpoint.

(a) Valve position for fresh water (blue)
and steam (red), in addition to their up-
per constraint (dotted)

(b) Feed rate of initiator

(c) Reactor temperature (d) Conversion average temperature
(solid) and its setpoint (dashed)

Figure 7.17: Results from Case Study 3.1.1.

Case Study 3.2.1: M = 200, N = 1000

This case study has the same control and prediction horizons as described for
Case Study 3.2 in Table 7.2. Figure 7.18 shows the main results from Case
Study 3.2.1. The valve positions (Figure 7.18a), the feed of initiator (Figure
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7.18b), the reactor temperature (Figure 7.18c) and the conversion average tem-
perature (Figure 7.18d). In total 7791 g of initiator was used, and the duration
of the batch was approximately 5.40 hours. As can be seen, mainly fresh water
is utilized, in addition to some steam towards the end of the batch. Initia-
tor is fed mainly early in the batch, and a low feed rate can also be observed
throughout the batch. The reactor temperature varies through the batch and
increases towards the end. As a result, the conversion average temperature also
increases towards the end, reaching its setpoint.

(a) Valve position for fresh water (blue)
and steam (red), in addition to their up-
per constraint (dotted)

(b) Feed rate of initiator

(c) Reactor temperature (d) Conversion average temperature
(solid) and its setpoint (dashed)

Figure 7.18: Results from Case Study 3.2.1.

Case Study 3.3.1: M = 400, N = 1500

This case study has the same control and prediction horizons as described for
Case Study 3.3 in Table 7.2. Figure 7.19 shows the main results from Case
Study 3.3.1. The valve positions (Figure 7.19a), the feed of initiator (Figure
7.19b), the reactor temperature (Figure 7.19c) and the conversion average tem-
perature (Figure 7.19d). In total 7095 g of initiator was used, and the duration
of the batch was approximately 5.54 hours. As can be seen, mainly fresh water
is utilized, which even saturates at some point. In addition to some steam
towards the end of the batch. A more spread feed of initiator can be observed
for this case. The reactor temperature varies through the batch, and increases
towards the end. It does, however, not reach as high temperature as the other
cases. Also, the conversion average temperature lies above its setpoint a large
fraction of the batch for this case.
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(a) Valve position for fresh water (blue)
and steam (red), in addition to their up-
per constraint (dotted)

(b) Feed rate of initiator

(c) Reactor temperature (d) Conversion average temperature
(solid) and its setpoint (dashed)

Figure 7.19: Results from Case Study 3.3.1.

7.5.2 Example Simulations 2: Dissimilar tuning

It was attempted to change the penalties on Case Study 3.2.1 to obtain more
similar results with respect to the total amount of fed initiator. This was
obtained by changing the size of the penalty on the waste of initiator’s deviation
from setpoint (Rw

t ). This will be denoted Case Study 3.2.2.

Case Study 3.2.2: M = 200, N = 1000

This case study has the same control and prediction horizons as described for
Case Study 3.2 in Table 7.2. Figure 7.20 shows the main results from Case
Study 3.2.2. The valve positions (Figure 7.20a), the feed of initiator (Figure
7.20b), the reactor temperature (Figure 7.20c) and the conversion average tem-
perature (Figure 7.20d). In total 7181 g of initiator was used, and the duration
of the batch was approximately 5.75 hours. As can be seen, mainly fresh wa-
ter is utilized, in addition to some steam. Initiator is fed mainly early in the
batch, and a low feed rate can also be observed throughout the batch. The
reactor temperature varies through the batch and increases towards the end.
As a result, the conversion average temperature also increases towards the end,
reaching its setpoint.
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(a) Valve position for fresh water (blue)
and steam (red), in addition to their up-
per constraint (dotted)

(b) Feed rate of initiator

(c) Reactor temperature (d) Conversion average temperature
(solid) and its setpoint (dashed)

Figure 7.20: Results from Case Study 3.2.2.

7.5.3 Summarized results from example simulations

Figure 7.21 summarized the results found with respect to batch time and ini-
tiator, from Example Simulations 1 and Example Simulations 2. As can be
seen, Case Study 3.2.1 and Case Study 3.2.2 are less efficient in terms of the
trade-off between initiator and batch time.

Figure 7.21: Summarized results from the example simulations shown both with
similar and dissimilar penalties. Case Study 3.1.1, Case Study 3.2.1 and Case Study
3.3.1 all have the same tuning, while Case Study 3.2.2 have other values of the tuning
parameters.

7.5.4 Discussion

Figure 7.16 showed the relation between the total amount of fed initiator and
the batch time, for different lengths of control and prediction horizons. Before
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conducting the case study, one hypothesis was that with longer horizons, the
NMPC would be able to predict a more efficient profile for the two controllers
(the SRC and initiator feed). However, the figure shows no obvious trend of
this. Case Study 3.1, Case Study 3.2 and Case Study 3.3 follow the same trend
as was established by Case Study 2 for the relation between total amount of
initiator and batch time.

It might also seem like the collection of all data points are more spread
in the right half of the figure, and more concentrated to the left. This can
be seen in context to the results from Case Study 2, where the addition of
initiator at for batches with already a small amount of initiator, will have a
more significant effect than for systems already containing a large amount of
initiator. The system will then also be more sensitive to disturbances, and a
larger amount of outliers can be expected.

Figure 7.16 did not show any precise results in terms of the relation between
the total amount of fed initiator and control and prediction horizon. However,
the simulations are insensitive to this variable change and manage to produce
approximately the same result independently of the length of the horizons. This
indicates a robust application and that the yield of additional computational
power is low for this parameter change. Approximately the same result can
be obtained by using long horizons, which requires high computational power,
as for shorter horizons, which has shorter runtime. Short horizon would then
be preferred to ensure that the real-time criterion is kept. To confirm this,
however, the additional case studies were performed.

When comparing the data points from Example Simulations 1 in Figure
7.21, the simulation for Case Study 3.2.1 used much more initiator then Case
Study 3.1.1 and Case Study 3.3.1, without obtaining any shorter batch time.
The conversion average temperature for Case Study 3.2.1 (Figure 7.17d), is
much lower throughout the batch then Case Study 3.1.1 (Figure 7.18d). This
can be due to a longer prediction horizon for Case Study 3.2.1. The setpoint will
then be obtained further into the prediction horizon, and lower temperatures
can therefore be allowed during the batch. Lower temperatures will, however,
cause a lower production rate, and therefore longer batch times.

It was attempted to alter the penalty on Rw
t deviations from its setpoints,

to obtain the same amount of fed initiator. This is shown by the dark green
data point in Figure 7.21 (Case Study 3.2.2). However, a longer batch time
was then obtained. This supports the argument in the previous paragraph; a
longer prediction horizon compared to Case Study 3.1.1 can lead to generally
lower reactor temperature throughout the batch.

When examining Case Study 3.3.1, which has both longer control and pre-
diction horizon, a higher reactor temperature was obtained during the middle
part of the simulation compared to the other two. As a result, the conversion
average temperature lies above the setpoint a large fraction of the batch. It
manages, however, to obtain a large enough temperature drop, before increas-
ing towards the end. The final temperature increase is, as already mentioned,
important to burn off the residual monomer. Besides, it can lead to the batch
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time being significantly reduced due to an increased production rate at high
temperatures. This does require the conversion average temperature to ap-
proach its setpoint from underneath the final part of the batch, unless the
NMPC would rather cool the reactor content in order to reach the setpoint.

Comparing all four data points in Figure 7.21, Case Study 3.1.1 or Case
Study 3.1.1, would be preferable, as both shortest batch time and least initiator
is used in these cases. To ensure that the setpoint for the conversion average
temperature is reached from below, Case Study 3.1.1 would be the favourable
choice. This will also be the least computational demanding case.
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7.6 Case Study 4: Horizon parameterization

The purpose of this case study was to investigate the effect of variously located
coincidence points and input blocking. The different cases investigated is sum-
marized in Table 7.3. The effect on input blocking will be investigated firstly
(Case Study 4.1), followed by the effect on coincidence points (Case Study 4.2).
In all cases, the length of the control horizon and the prediction horizon were
kept constant.

Table 7.3: Horizon parameterization for all the different cases simulated in Case
Study 4. Numbers in parenthesis indicates the parameterization. Case Study 4.1
involves the investigation of input blocking, and Case Study 4.2 involves the investi-
gation of coincidence points. Both horizons is given in number of samples.

Control horizon Prediction horizon

Case Study 4.1.1 200 (0, 50, 100, 200) 1000 (every 50)

Case Study 4.1.2 200 (0, 25, 50, 100, 150, 200) 1000 (every 50)

Case Study 4.1.3 200 (0, 25, 50, 75, 100, 150, 200) 1000 (every 50)

Case Study 4.2.1 200 (0, 50, 100, 200) 1000 (every 20)

Case Study 4.2.2 200 (0, 50, 100, 200) 1000 (every 50)

Case Study 4.2.3 200 (0, 50, 100, 200) 1000 (every 125)

Table 7.4 summarizes the results for Case Study 4 in terms of runtime.
For Case Study 4.1, no other tuning parameters were change except the in-
put parameterization. For Case Study 4.2, no other tuning parameters were
changed except the distance between every coincidence point, and hence also
the number of coincidence points.

Table 7.4: The results from Case Study 4. The max time CENIT used to solve the
optimization problem for one sample and the mean time CENIT uses. Note that all
values represent av average, where three simulations have been performed for every
case study.

CENIT mean [s] CENIT max [s]

Case Study 4.1.1 2.738 8.308

Case Study 4.1.2 3.104 10.030

Case Study 4.1.3 3.634 10.604

Case Study 4.2.1 3.102 11.406

Case Study 4.2.2 2.738 8.308

Case Study 4.2.3 2.614 7.080

As can be seen when examining the results from Case Study 4.1, the mean
time CENIT used for every sample1, from start to finish2, increases with an

1Sample meaning real-time sample. The optimizer solves the finite horizon open-loop
optimal control problem for each sample instant.

2Finish here meaning when the batch reaches the terminal criteria (96% conversion)

81



CHAPTER 7. RESULTS AND DISCUSSION

increasing number of parameters the control horizon is parameterized by. The
same applies for the maximum time spent on one sample. For all simulations
in Case Study 4.1, the setpoint for the conversion average temperature was
reached with a sufficient margin of error. In addition, they all fit into the
relation found between the total amount of initiator and batch time in Figure
7.16, for any length of the horizon. The maximum time CENIT used to solve a
sample exceeds the sampling time for Case Study 4.1.2 and Case Study 4.1.3.

As can be seen, when examining the results form Case Study 4.2, the mean
time CENIT used for every sample decreases with decreasing number of coinci-
dence points. The same trend can be seen for the maximum time CENIT uses
for a sample during a batch. For all simulations in Case Study 4.2, the setpoint
for the conversion average temperature was reached, with a sufficient margin of
error. In addition, they all fit into the relation found between the total amount
of initiator and batch time in Figure 7.16, for any length of the horizon. The
maximum time CENIT used to solve a sample exceeds the sampling time for
Case Study 4.2.1.

7.6.1 Case Study 4.1: Simulation results

Some example simulation from Case Study 4.1 will now be presented to illus-
trate the performance of the application. The horizon parameterization and
lengths are as given in for Case Study 4.1 in Table 7.3.

Case Study 4.1.1

Figure 7.22 shows the results from a simulation with the horizon parameteriza-
tion described for Case Study 4.1.1. The valve positions (Figure 7.22a), feed of
initiator (7.22b) reactor temperature (Figure 7.22c) and the conversion average
temperature (Figure 7.22d) is illustrated. In total, 7791 g of initiator was used,
and the batch time was 5.49 hours. As can be seen, fresh water is mainly uti-
lized, even though some steam is used towards the end of the batch. Initiator
is fed mainly early in the batch, while an approximately constant feed rate
is maintained throughout the batch. The reactor temperature varies during
the batch and increases towards the end. As a result, the conversion aver-
age temperature also increases at the end of the batch, reaching its respective
setpoint.
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(a) Valve position for fresh water (blue)
and steam (red), in addition to their up-
per constraint (dotted)

(b) Feed rate of initiator

(c) Reactor temperature (d) Conversion average temperature
(solid) and its setpoint (dashed)

Figure 7.22: Results from Case Study 4.1.1.

Case Study 4.1.2

Figure 7.23 shows the results from a simulation with the horizon parameteriza-
tion described for Case Study 4.1.2. The valve positions (Figure 7.23a), feed of
initiator (7.23b) reactor temperature (Figure 7.23c) and the conversion average
temperature (Figure 7.23d) is illustrated. In total, 8053 g of initiator was used,
and the batch time was 5.39 hours. As can be seen, also here, fresh water is
mainly utilized, and only a small portion of steam. Initiator is fed mainly early
in the batch. A low feed rate can also be observed during the middle of the
batch, in addition to a bigger portion towards the end. The reactor tempera-
ture varies during the batch and increases towards the end. However, it does
not reach as high temperature as for Case Study 4.1.1. The conversion aver-
age temperature also increases at the end of the batch, reaching its respective
setpoint. The increment is, however, not as steep as the previous case.
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(a) Valve position for fresh water (blue)
and steam (red), in addition to their up-
per constraint (dotted)

(b) Feed rate of initiator

(c) Reactor temperature (d) Conversion average temperature
(solid) and its setpoint (dashed)

Figure 7.23: Results from Case Study 4.1.2.

Case Study 4.1.3

Figure 7.24 shows the results from a simulation with the horizon described for
Case Study 4.1.3. The valve positions (Figure 7.24a), feed of initiator (7.24b)
reactor temperature (Figure 7.24c) and the conversion average temperature
(Figure 7.24d) is illustrated. In total, 8374 g of initiator was used, and the
batch time was 5.30 hours. As can be seen, also here, fresh water is mainly
utilized. Initiator is fed mainly early in the batch, in addition to a smaller
portion throughout the batch. The reactor temperature varies during the batch
and increases towards the end. It resembles much to the temperature profile
from Case Study 4.1.1. The conversion average temperature also increases at
the end of the batch, reaching its respective setpoint.
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(a) Valve position for fresh water (blue)
and steam (red), in addition to their up-
per constraint (dotted)

(b) Feed rate of initiator

(c) Reactor temperature (d) Conversion average temperature
(solid) and its setpoint (dashed)

Figure 7.24: Results from Case Study 4.1.3.

Summarization

Figure 7.25 summarized the data point found from Case Study 4.1, with respect
to total amount of fed initiator and batch time. As can be seen, the results
agree with the other data points found in Case Study 3 (Figure 7.16). In
addition, an increasing number of blocks the control horizon is parameterized
results in shorter batch time. Hence, also a larger amount of initiator is used.

Figure 7.25: Summarized results from Case Study 4.1.1, Case Study 4.1.2 and Case
Study 4.1.3.

85



CHAPTER 7. RESULTS AND DISCUSSION

7.6.2 Case Study 4.2: Simulation results

Some example simulation from Case Study 4.2 will now be presented to illus-
trate the performance of the application. The horizon parameterization and
lengths are as given in Table 7.3.

Case Study 4.2.1

Figure 7.26 shows the results from a simulation with the horizon described for
Case Study 4.2.1. The valve positions (Figure 7.26a), feed of initiator (7.26b)
reactor temperature (Figure 7.26c) and the conversion average temperature
(Figure 7.26d) is illustrated. In total, 7291 g of initiator was used, and the
batch time was 5.86 hours. As can be seen, fresh water is mainly utilized, in
addition to some small fraction of steam. Initiator is fed mainly early in the
batch, in addition to some small portion throughout the batch. The reactor
temperature varies during the batch and decreases towards the end. A rela-
tively low conversion average temperature is maintained throughout the batch,
and even crosses the setpoint before it decreases toward the end. However, it
reaches its respective setpoint.

(a) Valve positions for fresh water (blue)
and steam (red), in addition the their up-
per constraint (dotted)

(b) Feed rate of initiator

(c) Reactor temperature (d) Conversion average temperature

Figure 7.26: Results from Case Study 4.2.1.

Case Study 4.2.2

Figure 7.27 shows the results from a simulation with the horizon described
for Case Study 4.2.2. Note that this case is equivalent to Case Study 4.1.1.
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The valve positions (Figure 7.27a), feed of initiator (7.27b) reactor tempera-
ture (Figure 7.27c) and the conversion average temperature (Figure 7.27d) is
illustrated. In total, 7791 g of initiator was used, and the batch time was 5.49
hours. As can be seen, fresh water is mainly utilized, even though some steam
is used towards the end of the batch. Initiator is fed mainly early in the batch,
while an approximately constant feed rate is maintained throughout the batch.
The reactor temperature varies during the batch and increases towards the end.
As a result, the conversion average temperature also increases at the end of the
batch, reaching its respective setpoint.

(a) Valve positions for fresh water (blue)
and steam (red), in addition the their up-
per constraint (dotted)

(b) Feed rate of initiator

(c) Reactor temperature (d) Conversion average temperature

Figure 7.27: Results from Case Study 4.2.2.

Case Study 4.2.3

Figure 7.28 shows the results from a simulation with the horizon described for
Case Study 4.2.3. The valve positions (Figure 7.28a), feed of initiator (7.28b)
reactor temperature (Figure 7.28c) and the conversion average temperature
(Figure 7.28d) is illustrated. In total, 7971 g of initiator was used, and the
batch time was 5.44 hours. As can be seen, fresh water is mainly utilized, even
though some steam is used towards the end of the batch. Initiator is fed mainly
early in the batch, while an approximately constant feed rate is maintained
throughout the batch. The reactor temperature varies during the batch and
increases towards the end. As a result, the conversion average temperature also
increases at the end of the batch, reaching its respective setpoint.
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(a) Valve positions for fresh water (blue)
and steam (red), in addition the their up-
per constraint (dotted)

(b) Feed rate of initiator

(c) Reactor temperature (d) Conversion average temperature

Figure 7.28: Results from Case Study 4.2.3.

Summarization

Figure 7.29 summarized the data point found from Case Study 4.2, with respect
to total amount of fed initiator and batch time. As can be seen, the data point
from Case Study 4.2.1 stands out in the sense that it used more initiator and
obtains a longer batch time than the other two. The data points for Case Study
4.2.2 and Case Study 4.2.3 almost coincide.

Figure 7.29: Summarized results from Case Study 4.2.1, Case Study 4.2.2 and Case
Study 4.2.3.

7.6.3 Discussion

Case Study 4.1 showed expected results with respect to the mean time CENIT
used to solve one sample. An increasing number of parameters the control

88



7.6. CASE STUDY 4: HORIZON PARAMETERIZATION

horizon is parameterized by increases the size of the problem the optimizer has
to solve.

Fewer input blocks could have led to less accurate prediction. However, the
example simulations presented from Case Study 4.1 did not show any indication
of reduced performance. Even more extreme causes could have been tested to
verify this, for example, by using only one input block. However, the data points
fit into the relation found between initiator and batch time. By adjusting the
penalties of the objective function, the data points in Figure 7.25, could have
been forced to coincide. The results indicate that the case studies have enough
inputs blocks to predict the behaviour of the process sufficiently. As there
was no sign of that a reduction in the number of input parameters lead to
reduced controller performance, the tuning of the case with the best numerical
efficiency, Case Study 4.1.1, would, therefore, be preferable.

Case Study 4.2 showed expected results for the mean time CENIT used to
solve one sample, and the maximum time CENIT used to solve one sample.
An increasing number of coincidence points increases the size of the problem
the optimized has to solve.

The data points from Figure 7.29 also fit into the relation found between
initiator and batch time. An increasing number of coincidence points can lead
to a more accurate prediction. However, Case Study 4.1.1 results in a decreas-
ing temperature at the end of the batch, even though it is parameterized with
the largest number of coincidence point. This behaviour in the reactor temper-
ature is undesirable. One reason for the temperature decrease could be that
increasing coincidence points on the waste of initiator, Rw

t , causes larger penal-
ties on the feed of initiator. If this is dominating over batch time minimizing
outputs, as monomer conversion (XM) and production rate (Rp), it can cause
less feed of initiator. This can, however, be easily counteracted by adjusting
the weights.

As can be seen from the result (Table 7.4), the maximum time CENIT
used for one sample exceeds the sampling time, meaning that the real-time
criterion was not adhered at all times (Case Study 4.1.2, Case Study 4.1.3,
Case Study 4.2.1). If this happens repetitively and often, the optimization
problem is too demanding to be solved for every sample. The problem can
be simplified by, for example, a simplified model, fewer coincidence points,
fewer input parameters, shorter prediction horizon and shorter control horizon.
However, the simulations in these case studies showed such long runtimes only
for a few samples throughout the batch. When the average runtime also is this
low, these few violations will not be critical for the overall performance.
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Chapter 8

Conclusion, further work and
recommendations

This chapter aims to summarize the findings of this project. Some comments
on further work and recommendations will be made.

The purpose of this project was to finalize a mathematical model for emul-
sion polymerization of Poly-Vinyl Chloride (PVC) in a semi-batch reactor,
and further implement Nonlinear Model Predictive Control (NMPC) using this
model in Cybernetica’s software. The aim was to build a working application,
testing it with different tuning parameters, and evaluating its usability.
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8.1 Conclusion

This report established the necessary theoretical background of polymerization,
optimization, Model Predictive Control (MPC) and state- and parameter es-
timation. In resemblance to the preliminary project, the remaining modelling
work was developed based on first principles. The results were then simulated
and validated against process data. An environment for the control system
was developed based on the process model and implemented in Cybernetica’s
software. Schemes for the on-line state- and parameter estimation was then
implemented and investigated. The performance of the application in terms of
runtime and accuracy, was then evaluated.

Firstly, the quality parameter was validated against Inovyn’s calculations.
The small deviation was considered tolerable for control purposes and for this
project. Also, the simulations where the pre-estimated polynomials describing
the unmodelled aspects were included, gave significant improvements for ballis-
tic simulations. The model outputs, as, for example, the reactor temperatures,
were of much larger resemblance to the measurements when the polynomials
were implemented. The mismatch was however more significant than for a
recursive simulation, which was expected.

When performing Case Study 1.1, it became evident that there was a need
to implement a state- and parameter estimator. This was expected, as the
plant replacement model and the model integrated into the controller, were
dissimilar. Significant improvement was then obtained by implementing and
tuning a Kalman Filter. There is a resemblance in the correction factor for the
kinetic model, CF , and the heat transfer coefficient between the reactor and the
jacket, UR,J, from the simulator and the estimator after included the Kalman
Filter. This was as expected since the Kalman Filter updates the model to
minimize the error between the model outputs and the measurements, and the
difference between the two is precisely these profiles. The ideal situation would
be that the Kalman Filter estimates profiles the same as the pre-estimated ones.
Overall, the implementation of the Kalman Filter was regarded as successful.

For the studied simulations, the feed of initiator was high early in the batch,
however, not in the very beginning. It was argued that this was due to particle
nucleation, and that the lack of immediate increment was due to pre-loading
of initiator.

The relation between the total amount of initiator feed and batch time
was found. It was concluded to follow an inverse exponential function, which
coincides with the ratio between the propagation and termination reaction, and
their relationship to the average number of radicals per particle (Case Study
2). Approximately the same results were shown for different lengths of the
prediction and control horizon (Case Study 3). However, it was argued that
a short control and prediction horizon would be preferable. This indicates a
robust application, and that the yield of additional computational power for
the purpose of lowering the amount of initiator is low.
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8.2 Further work and recommendations

For further work, the model could have been extended in complexity. The aver-
age runtime of most of the case studies performed indicates that the real-time
criterion is satisfied the majority of the time. A more complex model could,
therefore, be beneficial, even though it would increase the computational load.
A time delay on the effect of opening the valve for steam could be implemented,
or implementation of a more advanced model over the heat exchanger, in gen-
eral, could have been investigated. More data on this part of the process would
then probably be needed.

Different tuning values for the noise on the states and parameters should
also be investigated, aiming for the profiles estimated by the Kalman Filter, and
in the simulator, to match even better. This could lead to better prediction,
and hence also better performance.

NMPC in combination a Real-Time Optimizer (RTO), was not investigated
in this project. This could be beneficial as the value of the conversion average
temperature only should be weighted at the end of the batch time. For further
work, a higher-level RTO could be implemented with larger sampling time.
The RTO would then provide some setpoints to the NMPC.

8.3 Closing comment

The established model and the use of NMPC one the reactor, were considered
successful in this project. The implementation of the Kalman Filter as the
state- and parameter estimator showed promising results. The results indicate
that the control system ensures safe operation with respect to pressure and
cooling capacity, in addition to fulfilling quality parameter setpoints. However,
this can not be confirmed before the application is implemented and tested at
the facility.
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Appendix A

Model equations

In advance of this master thesis, a preliminary project was conducted. The
assumptions and model equations that follow in this appendix is therefore
adapted from this project. They are re-stated as they are used as the model in
the Nonlinear Model Predictive Control (NMPC) implementation.

The main goal of this preliminary work was to establish a model describing
an industrial polymerization process, more specifically an emulsion polymer-
ization. The model was to be validated against process data, and parameters
were adjusted to minimize the error between the model and measured outputs.
The results were then evaluated. As polymerization processes often have trou-
blesome nonlinear dynamics (Ray and Villa, 2000), it was discussed if NMPC
could be beneficial for this process.

Firstly, the assumptions made will be stated in Appendix A.1, followed by
the model equation for the pheriphery model in Appendix A.2 and the kinetic
model in Appendix A.3. The kinetic parameters estimated or found by trial-
and-error can be found in Appendix B, the physical properties will be stated
in Appendix C and the derivation and calculation of the monomer distribution
are elaborated in Appendix D.

A.1 Assumptions

Unless something else is stated, these assumptions will be applicable for the
preliminary work and also this master thesis. When establishing the model,
some assumptions had to be made, both for clarification and simplification.
They are all listed below.

1. Coagulation between particles is neglected.

2. Due to the complexity of the redox initiation mechanism, the ini-
tiation is assumed to be described by thermal initiation. Two in-
dependent thermal initiation mechanism is therefore assumed to be
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present in the reactor. Initiator is assumed to dissolve in the water
phase only.

3. Both monomer droplets and polymer particles are assumed to be
monodisperse for the sake of volume calculations.

4. The reaction unit is divided into three or four phases, according
to Section 2.3.1. Equilibrium between phases is maintained at all
times, and the mixture is assumed to be ideal. The gas phase is
assumed to be a real gas described by the ideal gas law, corrected
by the compressibility factor z.

5. Small polymer radicals may desorb out of the particles, and be re-
absorb to particles. The average number of radicals per particle
is assumed to be small due to rapid desorption and reabsorption.
(Ugelstad et al., 1969; Gilbert, 1995)

6. Molecular weight is mainly determined by chain transfer to monomer
(Ugelstad et al., 1969). Chain transfer to polymer and Chain Trans-
fer Agent (CTA) is neglected.

7. Quality parameters are estimated from moments of the Molecular
Weight Distribution (MWD).

8. Solvability of monomer in the polymer particles is calculated by the
Flory-Huggins equation. Solvability of monomer in water is assumed
to follow Henry’s law.

9. Nucleation occurs through classical micellar mechanism, controlled
by a sufficient amount of surfactant. Homogeneous nucleation is
assumed to be neglected. The nucleation stage is though modelled
as seeded polymerization.

10. Termination rate is independent of chain-length.

A.2 Periphery Model

The periphery model may take into account the heat loss from the reaction
unit, mechanical power as stirring, energy change due to dosing or drainage
of chemicals, or energy transfer between the reactor and a cooling jacket. In
this case, an energy balance over the reactor will introduce two more states in
the system; the temperature in the reactor and the outlet temperature of the
cooling jacket. These balances have to take into account the heat generated
from the reaction, heat loss the environment, heat transfer between the reactor
and the jacket, and change in energy due to dosing of chemicals. Equation
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A.2.1 and A.2.2 represent the state equations for the reactor temperature and
the outlet jacket temperature, respectively.

dTR

dt
=

−∆HrxRp − UR,ambAR,amb(Tamb − TR)
+ UR,JAR,J(TJ − TR) +

∑
m̂feed,icp,i(Tfeed,i − TR)∑

micp,i +msteelcp,steel
(A.2.1)

dTJ,out

dt
=

−UJ,ambAJ,amb(Tamb − TJ)
− UR,JAR,J(TJ − TR) + m̂Jcp,J(TJ,in − TJ,out)

mJcp,J
(A.2.2)

In Equation A.2.1, the first term represent the heat of reaction, the second
term represent heat loss to the environment, the third term represent heat
transfer between the reactor and the jacket, and the last term represent change
in energy due to post-dosing of chemicals. The reaction unit is considered to
be the total weight of the reactor, that is both steel and the content inside the
reactor.

In Equation A.2.2, the first term represents the heat loss to the environment,
the second term represents heat transfer between the reactor and the jacket,
and the second term represents the change in energy due to water flowing
through the jacket.

Note that in these two equations, TJ, represent the temperature in the
jacket, which can be calculated as the average between the in- and outlet
stream, as shown in Equation A.2.2.

TJ =
TJ,in + TJ,out

2
(A.2.3)

A.3 Kinetic Model

The kinetics model describing the process are chosen in such a way that the
model is believed to give accurate results, without introducing unnecessary
complexity. A more complex model might be more precise, but it will also
most likely require higher computational power. Finding a trade-off and con-
sidering the dividend of extra complexity, was therefore important during the
preliminary work.

A.3.1 Number of particles

In the preliminary work, it was decided that the number of polymer particles
was to be calculated from a previous batch. This was done by a backwards
calculation, knowing the amount of fed monomer, the monomer conversion,
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particle size and the particle density. The number was therefore kept constant
during the whole batch. The calculated is shown in Equation A.3.1

NT =
mall particles

P

mone particle
P

=
mMXM

vpρP
=

mMXM

4π(d/2)3

3 ρP

(A.3.1)

where mM represent the amount of fed monomer, XM is the monomer conver-
sion, vp is the volume of one polymer particle, ρP is the density of the polymer
particle, and d is the diameter of the particle. The diameter and the density
of the particles is measured after at the end of the batch.

There was several reason for not taking in hand the expression for this quan-
tity derived by Smith and Ewart (1948). This backwards calculation will not
introduce any additional states to the system, reducing the need for computa-
tional power. Also, some of the parameters in Smith and Ewart equations may
not be readily obtained, and some studies even indicate that emulsion poly-
merization of Poly-Vinyl Chloride (PVC) does not follow Smith and Ewart’s
theory (Peggion et al., 1964).

A.3.2 Monomer Distribution

This model calculates the amount of monomer in all phases. In addition, the
volume of each phase is calculated, and the reactor pressure. This provides a
full description of the system, at every point through the batch. The model
bases on the Flory-Huggins equation (Flory, 1953), and a model developed
by Xie et al. (1987) for the case of polymerization of PVC. The C code for
the monomer distribution can be found in Appendix D. Some assumptions
were made to establish the model for the monomer distribution, and these are
summarized below.

1. Equilibrium between phases established immediately

2. The polymer is insoluble in its own monomer

3. The solubility of monomer in water follows Henry’s law

4. The solubility of monomer in the polymer follows the Flory-Huggins
equation

5. The Pressure, Vapour and Temperature (PVT) properties of the
vapour phase follow ideal gas law1

The calculation of the monomer distribution will be dependent on the cur-
rent interval of the process. Due to the short length of Interval I, Interval I
and II will be merged for the purpose of calculation of the monomer distribu-
tion, volumes and reactor pressure. The system is then considered as seeded

1In this master thesis, the compressibility factor z is taken into account to describe the
deviation of a real gas from an ideal gas.
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for modelling purposes. Interval III will be calculated separately because of
different conditions before and after the point of inversion.

Firstly, Assumption 1 assumes that the equilibrium between the phases is
established immediately. As a result, the fugacity of monomer in all four phases
has to be equal;

f̂g
M = f̂ f

M = f̂w
M = f̂p

M (A.3.2)

The activity of monomer will be given by the ratio between the monomer
fugacity coefficient in the polymer phase over the coefficient in a standard
state.

αM =
f̂p

M

f̂0
M

(A.3.3)

Then, from Assumption 4 and the Flory-Huggins equation, the volume fraction
of polymer in polymer phase can be obtained

lnαM = ln

(
f̂p

M

f̂0
M

)
= ln (1− ϕ) + ϕ+ χϕ2 (A.3.4)

where ϕ represent the volume fraction of polymer in the polymer particles, and
χ represent the Flory-Huggins interaction parameter (Kiparissides, 1996). The
code for calculating the monomer distribution in Interval I and II can be found
in Appendix D.3, and for Interval III in Appendix D.4.

Interval I and II

For the first two intervals, the activity of monomer is assumed to be equal to
one. This simplifies the Flory-Huggins equation to Equation A.3.5.

0 = ln (1− ϕ) + ϕ+ χϕ2 (A.3.5)

ϕ can then easily be obtained, and the volume fraction of polymer in polymer
phase can be calculated. The amount of monomer in polymer phase can then
be calculated by Equation A.3.6. The derivation can be found in Appendix
D.2.

mp
M = V p

Mρ
l
M =

mPρ
l
M

ρp

(
1− ϕ
ϕ

)
(A.3.6)

Here, V p
M represent the volume of monomer in polymer phase, ρlM represent

the density of monomer in liquid phase, mP is the total mass of polymer in
the reactor and ρP represent the density of the polymer. The partial pressure
of water and monomer will be equal to their respectively saturation pressures.
The reactor pressure will then, as a result, be the sum of the saturation pres-
sures. This is shown in Equation A.3.7. The volume fraction of water (W)
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and monomer (M) in gas phase can then be calculated by Equation A.3.8 and
A.3.9.

pR = pM + pW

= psat
M + psat

W

(A.3.7)

yM =
psat

M

pR
(A.3.8)

yW =
psat

W

pR
(A.3.9)

Here pR represent the reactor pressure, pM and pW represent of partial pressure
of monomer and water respectively, psat

M and psat
W represent the saturation pres-

sure of monomer and water respectively, and yM and yW represent the volume
fraction of monomer and water respectively.

The mass of monomer in the gas phase can then be calculated. The deriva-
tion can be found in Appendix D.1.

mg
M = V gyMρ

g
M =

(VR − Vfluid,s)yMρ
g
M

1− MWyWpR
zRgT gρlW

− yMρ
g
M

ρlM

(A.3.10)

Here, ρg
M represent the density of monomer in gas phase, ρl

W represent the
density of water in liquid phase, and MW represent the molecular weight of
water. For Interval I and II, the temperature in the gas phase, T g, will be equal
to the temperature in liquid phase. The compressability factor z is calculated
from fugacity parameters, VR is the total volume of the reactor, and Vfluid,s

is the volume of the liquid and solid material if no monomer and water was
contained in the gas phase. The calculation of Vfluid,s is shown in Equation
A.3.11.

Vfluid,s =
mW

ρl
W

+
mM

ρl
M

+
mP

ρP
(A.3.11)

As already mention in Assumption 3, the solubility of monomer in water
phase is assumed to follow Henry’s law. The mass of monomer in water phase
will then be given by Equation A.3.12.

mw
M = K1αMmW (A.3.12)

where K1 represent the monomer in water solubility constant, and will be
expressed as 0.088 kg VCM/kg H2O (Nilsson et al., 1978).

The mass of monomer in the free phase can then be calculated by mass
conservation. This is shown in Equation A.3.13.

mf
M = mM −mp

M −m
g
M −m

w
M (A.3.13)
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When the mass and densities of each component in every phase are cal-
culated, the volume of all phases can be calculated from Equation A.3.14 -
A.3.18.

V g =
mg

M

yMρ
g
M

(A.3.14)

V p =
mP

ρP
+
mp

M

ρl
M

(A.3.15)

V f =
mf

M

ρl
M

(A.3.16)

V w =
∑
i

mw
i

ρl
i

, i = component in water phase (A.3.17)

V l = VR − V g = V p + V f + V w (A.3.18)

To be able to calculate the production rate of polymer (See Equation
A.3.34), the concentration of monomer in the polymer phase has to be ob-
tained. This parameter can be calculated by the following equation.

[M]p =
mp

M

MMV p
(A.3.19)

where MM represent the molecular weight of monomer.

Interval III

For Interval III, the activity of monomer is no longer equal to 1. The partial
pressure of monomer will no longer be equal to its saturation pressure, and the
temperature in the gas phase will not be equal to the temperature in the liquid
phase. In this interval, the temperature in the gas phase will be modelled to
be equal to the saturation temperature. The partial pressure of monomer will
be given by the following equation

pM = psat
M αM (A.3.20)

The reactor pressure will then be given by Equation A.3.21.

pR = psat
M αM + psat

W (A.3.21)

Equation A.3.5 can not be utilized in this interval. The volume fraction of
polymer in the polymer phase will be found iteratively in this interval. The
activity is then found by inverse calculation of the Flory-Huggins equation. The
approach for this calculation can be found in Algorithm 1, and the belonging
code can be found in Appendix D.4.
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Set mass of monomer in the polymer phase to be the sum of monomer in the
system (initial value);

for i = 1:3 do
Calculate volume fraction from initial value;
Inversely calculate the activity;
Calculate saturation pressures, pressure, saturation temperature and
densities;

Calculate z and volume fractions;
Calculate monomer in gas and water phase;
Calculate monomer in the polymer phase from mass balance;
Set the initial value to be the sum of some weight of the previous initial
value and some weight of the value just calculated;

end
Follow same procedure as for Interval I and II for the remaining calculations

Algorithm 1: Monomer distribution calculation for Interval III

A.3.3 Radical Distribution

Modelling the radical distribution is necessary to calculate the polymerization
rate, as it is a function of the number of radicals inside a particle. In the
preliminary work, this parameter was modelled to be the average of all particles.
As mention, in emulsion polymerization number of radicals inside a particle
will vary both in time and from one particle to another. This was done by
utilizing Li and Brooks (1993) prediction. This approximation introduces few
additional states to the system and is a good compromise between accuracy
and complexity. The result of Li and Brooks work was the following Ordinary
Differential Equation (ODE) describing the average number of radicals per
particle.

dn̄

dt
= σ − k′′′n̄− ψCn̄2 (A.3.22)

Here, n̄ represent the average number of radicals per particle, σ is the average
rate radicals enters the particles from water phase, k′′′ is the rate coefficient
describing the radical exit from the particles to the water phase, C is the
relative rate coefficient of radical termination i polymer phase, and ψ will be
a parameter that varies between 0 and 2. These parameters is calculated by
Equation A.3.23 - A.3.26.

σ = kads
nw

R

V w
(A.3.23)

k′′′ = kdes (A.3.24)

C =
kp

tNT

V p
=
kp

t

vp
(A.3.25)
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ψ =
2(2σ + k′′′)

2σ + k′′′ + C
(A.3.26)

Here, kads is the rate constant for radical adsorption on the particles, nw
R is the

number of radicals in water phase, V w is the volume of the water phase, kdes

is the desorption rate of radicals from the particles, kp
t is the rate constant for

termination in particle phase, V p is the total volume of the polymer phase and
vp is the volume of one polymer particle.

By Equation A.3.23, it becomes clear that it is necessary to have information
about the number of radicals in the water phase. This is done by introducing
another ODE describing the change of radicals in this phase. The following
ODE is obtained by setting up a material balance over the radicals in the
water phase.

dnw
R

dt
= RI + kdesn̄NT − kadsNT

nw
R

V w
− kw

t

(
nw

R

V w

)2

V w (A.3.27)

where nw
R represents the moles of radicals in water phase, RI is the total rate

of radical formation that can be used for initiation, V w is the volume of the
water phase and kw

t is the radical termination in water phase. Note that the
last term in the equation will represent the rate of termination in water phase,
Rw

t .

Rw
t = kw

t

(
nw

R

V w

)2

V w (A.3.28)

Since it is assumed that no long-chained polymer will be present in the water
phase, and that after termination the radicals will be inactive and incapable to
undergo polymerization, this will be equivalent to a loss, or ’waste’, of initiator.

By implementation of Equation A.3.22 and A.3.27, the model will give a
approximate description of the radical distribution of the system.

A.3.4 Chemical Reactions

The main chemical reactions taking place in this system is initiation, propa-
gation, termination and chain transfer, as described in Section 2.2. Equation
A.3.29 and A.3.30 are used to describe the decomposition of initiator, and
Equation A.3.31 - A.3.33 are used to describe the chain initiation.

Rd1
= kd1

[I1]w (A.3.29)

Rd2
= kd2

[I2]w (A.3.30)

RI1 = f1kd1 [I1]w (A.3.31)

RI2 = 2f2kd2 [I2]w (A.3.32)

RI = RI1 +RI2 (A.3.33)
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Here, Rd1
and Rd2

describe the rate of decomposition of Initiator 1 and 2, kd1

and kd2
represent the rate constant for decomposition of Initiator 1 and 2, [I1]w

and [I2]w represent the concentration of Initiator 1 and 2 in water phase. RI1

and RI2 represent the rate of formation of radicals from Initiator 1 and 2 which
can be used for polymerization, and RI represent the total rate of formation
of radicals that can be used for polymerization. As Initiator 1 represent the
redox initiator, which is assumed to give one radical fragment for each initiator
molecule, Equation A.3.31 is not multiplied by 2, in comparison with Equation
A.3.32.

The rate of reaction, which is defined to be the propagation reaction, is
defined by Equation A.3.34.

Rp = kp[M]pPtot (A.3.34)

Here, kp is the rate constant for the propagation and [M]p is the concentration
of monomer in polymer phase, and Ptot is the total moles of radicals inside the
polymer particles. As the number of radicals inside a particle will vary through
the batch, and also number of radicals will vary from one particle to another,
using n̄ is often sufficient to calculate Ptot. In that case, Ptot will be calculated
by Ptot = n̄NT.

Rp = kp[M]pn̄NT (A.3.35)

An ODE describing the monomer conversion can be established when the pro-
duction rate is calculated.

dXM

dt
=

Rp∫ t
0
n̂Mdt

(A.3.36)

Here, n̂M represent the molar flow of monomer into the reactor, and the integral
will then represent the total amount of monomer fed into the reactor from the
beginning of the batch until time t.

Termination and chain transfer can have a big impact on the MWD of
the system. The model separates between termination by combination and
disproportionation, and it requires a ratio between the two defined by the
following equation.

ε = 1− ktc

ktd

ktd = εkt

ktc = (1− ε)kt

(A.3.37)

An expression for the rate of termination can be found by the following equation

Rt = kt

(
n̄NT

Vp

)2

Vp (A.3.38)

In the case of polymerization of PVC, it is assumed that termination by dis-
proportionation will be the dominant mode of termination (Abdel-Alim and
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Hamielec, 1972), and ε will be set to 1. Note that the model is not limited by
this choice, and ε can be set to desired value.

In addition to the reactions described in this section, termination in water
phase (kw

t ), adsorption of radicals into the polymer particles (kads) and des-
orption of radicals into the water phase (kdes), were also taken into account
when modelling the reactions of the process (From Appendix A.3.3). These
are parameters that can have a large impact on the radical distribution of the
system, and therefore also the production rate of polymer.

Finally, chain transfer may also be important in emulsion polymerization
processes. The model opens up the opportunity to include chain transfer to
monomer, polymer and chain transfer agents. These reactions may alter the
MWD of the system, as will be described in the upcoming section. In the case
of polymerization of PVC, chain transfer to monomer is expected to be of most
importance.

A correction factor, CF , was implemented in the model. This factor was
used to adjust all the kinetic parameters by the same scale easily. This is shown
in Equation A.3.39.

kp = k
′

pCF

kt = k
′

tCF

kw
t = kw′

t CF

kd1 = k′d1
CF

kd2 = k′d2
CF

kdes = k
′

desCF

kads = k
′

adsCF

kM
ct = kM′

ct CF

kAX
ct = kAX′

ct CF

kP
ct = kP′

ct CF

(A.3.39)

Here, the dashed parameters represent their values before correction.

A.3.5 Material Balances

A balance over every species in the reactor has to be performed. The result will
be a set of ODEs, taking into account dosing and consumption of chemicals.
In this industrial case, there is no drainage of chemicals during the batch. The
general expression for the rate of change of a specie in molar basis is given in
the equation below.

dni
dt

= n̂i +Ri (A.3.40)
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where n̂i represent the dosing of specie i, and Ri represent the net generation or
consumption of specie i through chemical reactions. The main chemical species
in the reactor will be water (W), monomer (M), polymer (P), surfactant (S)
and initiator (I1 and I2), and their balances is described by Equation A.3.41 -
A.3.46.

dnM

dt
= n̂M −Rp, nM(0) = nM,0 (A.3.41)

dnI1

dt
= n̂I1 −Rd1 , nI1(0) = nI1,0 (A.3.42)

dnI2

dt
= n̂I2 −Rd2

, nI2(0) = nI2,0 (A.3.43)

dnS

dt
= n̂S, nS(0) = nS,0 (A.3.44)

dnW

dt
= n̂W, nW(0) = nW,0 (A.3.45)

As indicated by the equations, it is assumed that surfactant and water not
will take part in any reactions, but merely depend on the dosing. The rate of
change of monomer will depend on the dosing, and the rate of propagation.
It is assumed that the consumption of monomer through propagation is much
larger than those of chain initiation. Even though the chain initiation is not
included in this balance, it is important for the generation of oligomers used
in further polymerization. The rate of change of initiator will depend on the
dosing, and the decomposition rate of the initiators.

There is no need to establish a balance over the amount of polymer in the
reactor, as this will be directly given by the amount of consumed monomer.
Regardless, since the molecular weight of the polymer will vary through the
batch and is not easily obtained without measurements, a balance would be
difficult to obtain. The calculation of the mass of polymer in the reactor is
given by Equation A.3.46.

mP = XMMM

∫ t

0

n̂Mdt (A.3.46)

Here, MM represent the molecular weight of monomer.

A.4 Molecular Weight Distribution and Moment
Balances

The theory of MWD was briefly introduced in Section 2.1.1, and the procedure
for calculating these will now be described. As described in Section 2.1.1, the
concept of MWD introduces a problematic aspect when modelling the system.
The average molecular weights in the form they are written in Equation 2.1.3
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BALANCES

and 2.1.4, introduce a large number of individual species and requires the num-
ber of both active and inactive chains, of every possible chain length. To be
able to track the average molecular weights, moment balances are introduced
(Asua, 2008; Matyjaszewski and Davis, 2003).

[µk] =

∞∑
i=1

ik[Pi] (A.4.1)

[νk] =
∞∑
i=1

ik[Di] (A.4.2)

Here µk represent live moments, and νk represent dead moments. Equation
2.1.3 and 2.1.4 can then be rewritten to the following equations

Mn =
µ1 + ν1

µ0 + ν0
MM (A.4.3)

Mw =
µ2 + ν2

µ1 + ν1
MM (A.4.4)

Here µ0, µ1 and µ2 represent the zeroth, first and second live moment respec-
tively, and ν0, ν1 and ν2 represent the zeroth, first and second dead moment
respectively. For modelling purposes during the preliminary project, the ze-
roth, first and second, both live and dead, moments had to be calculated.
They were therefore re-stated below. Note that the equation take into account
chain transfer to monomer, CTA and polymer, in addition to termination by
both combination and disproportionation. An example of the derivation of
these balances is given in Appendix E.

d[µ0]

dt
= RI − (ktd + ktc)[µ0]2 (A.4.5)

d[µ1]

dt
= RI + kM

ct [M]([µ0]− [µ1]) + kAX
ct [AX]([µ0]− [µ1]) + kp[M][µ0]

+(ktd + ktc)[µ0][µ1] + kP
ct([µ0][ν2]− [µ1][ν1])

(A.4.6)

d[µ2]

dt
= RI + kM

ct [M]([µ0]− [µ2]) + kAX
ct [AX]([µ0]− [µ2]) + kp[M]([µ0]

−2[µ1]) + (ktd + ktc)[µ0][µ1] + kP
ct([µ0][ν3]− [µ2][ν2])

(A.4.7)

d[ν0]

dt
= kM

ct [M][µ0] + kAX
ct [AX][µ0] + (ktd + (0.5ktc)[µ0]2 (A.4.8)

d[ν1]

dt
= kM

ct [M][µ1] + kAX
ct [AX][µ1] + (ktd + ktc)[µ0][µ1] + kP

ct([µ1][ν1]

−[µ0][ν2])
(A.4.9)
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d[ν2]

dt
= kM

ct [M][µ2] + kAX
ct [AX][µ2] + (ktd + ktc)[µ0][µ2] + ktc[µ1]2

+kP
ct([µ2][ν1]− [µ0][ν3])

(A.4.10)

The MWD calculation only require the zeroth, first and second moments
dead moments. But as can be seen the ODE for the second moments are
dependent on the third live moment, [ν3]. Setting up a balance for this moment
will only yield another, unknown, variable. The set suffers from a moment
closure problem (Asua, 2008). Hulburt and Katz (1964) purposed to describe
the MWD as a truncate series of Laguerre polynomials, and a steady state
approximation of [ν3] will as a result be given by A.4.11, only described by
[ν0], [ν1] and [ν2].

[ν3] =
[ν2]

[ν0][ν1]
(2[ν0][ν2]− [ν1]2) (A.4.11)

These equations states the necessary information to calculate the number and
weight average molecular weights, and hence also the Polydispersity Index
(PDI) of the distribution.
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Appendix B

Results from preliminary work

The kinetic parameters used in the simulations are shown in Table B.1, and
were obtained during the preliminary project. The rate constants for the prop-
agation and termination were found in literature (Kiparissides et al., 1997),
while the others were found by estimation in ModelFit or trial-and-error. The
rate constant for chain transfer to Chain Transfer Agent (CTA) and polymer
is set to zero, at it was assumed that chain transfer to monomer was dominat-
ing. Also, as literature indicated that termination by disproportionation would
be dominating in systems of emulsion polymerization of Poly-Vinyl Chloride
(PVC) (Abdel-Alim and Hamielec, 1972), ε was set to one.

Table B.1: Kinetic parameters that were used as basis in the preliminary project;
Rate constant for propagation, termination, adsorption, desorption, termination in
water phase and chain transfer to monomer. In addition, the ratio between the modes
of termination, and the efficiency factor for both initiators is given. Kinetic parame-
ters for the propagation and termination was obtained from literature (Kiparissides
et al., 1997).

Parameter Value Unit

kp 5.0 · 10 4exp(−3320/TR) m3/mol/s

Kc 1.01 · 10 –7exp(−5740 (1/TR − 1/333.15) m3/mol/s

kt 2kp/Kc m3/mol/s

kads 0.500 1/ s

kdes 2.857 · 10 –4 1/ s

kwt 8.500 · 10 –3 m3/mol/s

kMct 1.05 · 10 7exp(−61203/RTR) m3/mol/s

kAX
ct 0

kPct 0

ε 1

f1 0.7

f2 0.7
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The results from the preliminary work showed deviations from measured
outputs, especially with respect to the reactor temperature. This is shown in
Figure B.1a. Tight temperature control is important in polymerization pro-
cesses, as the reactions often are exothermic and thermal runaway must be
avoided. It was concluded that recursive filtering was necessary to obtain sat-
isfactory results. State- and parameter estimation was therefore implemented
using Kalman Filter (KF). For the filtering, the parameters chosen to be esti-
mated was the correction factor for the kinetic parameters, CF , and the heat
transfer coefficient between the reactor and the jacket, UR,J. The active mea-
surements were chosen to be the reactor temperature, TR, and the outlet jacket
temperature, TJ,out. This gave a temperature profile with a much smaller bias
compared to the measurements. An example simulation is shown in Figure
B.1b. As can be seen, Figure B.1a shows a significantly larger mismatch be-
tween the measured and the modelled temperature, compared to Figure B.1b.
The filtering was then concluded to be successful.

Three arbitrary batches were simulated, all showing the same trends for the
two estimated parameters, as shown in Figure B.2.

(a) Reactor temperature from a ballistic simulation.

(b) Reactor temperature from a recursive simulation.

Figure B.1: Measured and modelled reactor temperature, both from ballistic and
recursive simulation.
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(a) The estimated profiles of the correc-
tion factor, CF , as function of conver-
sion

(b) The estimated profiles of the heat
transfer coefficient between the reactor
and the jacket, UR,J, as function of con-
version.

Figure B.2: The estimated profiles when performing recursive filtering on three
datasets during the preliminary work.
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Appendix C

Physical properties

These equation and code snippets are re-stated from the preliminary project
to show the calculation of the physical properties used in the model equations
(Appendix A).

Code given in this appendix is printed with permission from Peter Singstad,
Cybernetica AS. Heat of reaction for propagation used for the simulations is
−97.6 kJ/kg. An interval range of the heat of polymerization of Poly-Vinyl
Chloride (PVC) is given in Brandrup et al.. Densities [kg/m3], heat capacities
[J/kg/K] and saturation pressures [Pa] can be found bellow (Kiparissides et al.,
1997):

ρW = 1011.0− 0.4485θ (C.0.1)

cp,W = 4.02 exp(−1.5366 · 10−2T ) (C.0.2)

psat
W = exp(72.55− 7206.7/T − 7.1386 log(T ) + 4.046 · 10−6T 2) (C.0.3)

ρl
M = 947.1− 1.746θ − 3.24 · 10−3θ2 (C.0.4)

cp,M = 4.178(18.67 + 0.0758θ)/62.5 (C.0.5)

psat
M = exp(126.85− 5760.1/T − 17.914 log(T ) + 2.4917 · 10−2T ) (C.0.6)

ρP = 1000 exp(0.4296− 3.2743 · 10−4T ) (C.0.7)

cp,P = 0.934 (C.0.8)

θ = T − 273.15 (C.0.9)

The density of the gaseous Vinyl Chloride Monomer (VCM) is calculated
from the viral equation of state. The necessary C-code to perform this cal-
culation can be found below. Note that molecular weights, gas constant and
reactor volume are assumed to be global variables.
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double rho_vcm_g( // Out: Dens. for water , kg/m3

double T, // In: temperature , K

double p // In: Pressure , Pa

)

{

double rho , Bm , Bw , Bmw;

// Obtaining fugacity parameters from fugpar -function

fugpar( &Bm , &Bw, &Bmw , T );

// Calculating density from viral equation

rho = MWvcm * p / ( Rgas * T + Bm * p );

return rho;

}

void fugpar(

double *Bm , // Out: [m3/kmol]

double *Bw , // Out: [m3/kmol]

double *Bmw , // Out: [m3/kmol]

double T // In: [K]

)

{

double Tc_m = 432.0; // [K]

double Tc_w = 647.5; // [K]

double Tc_mw = 528.9; // [K]

double Pc_m = 56.e5; // [Pa]

double Pc_w = 220.5e5; // [Pa]

double Pc_mw = 107.e5; // [Pa]

double acfm = 0.1048; // [-]

double acfw = 0.3342; // [-]

double acfmw = 0.2195; // [-]

double Trm , Trw , Trmw;

Trm = T/Tc_m;

Trw = T/Tc_w;

Trmw = T/Tc_mw;

*Bm = Rgas*Tc_m /Pc_m *((0.083 -0.422/ pow(Trm ,1.6))

-acfm *(0.139 -0.172/ pow(Trm ,4.2)));

*Bw = Rgas*Tc_w /Pc_w *((0.083 -0.422/ pow(Trw ,1.6))

-acfw *(0.139 -0.172/ pow(Trw ,4.2)));

*Bmw = Rgas*Tc_mw/Pc_mw *((0.083 -0.422/ pow(Trmw ,1.6))

-acfmw *(0.139 -0.172/ pow(Trmw ,4.2)));

}
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Appendix D

Monomer distribution: Deriva-
tion and code

This derivation and the code snippets given is re-stated from the preliminary
project. This is done to show the reader how parts of the monomer distribution
(Appendix A.3.2) are derived and calculated.

Code given in this Appendix is printed with permission from Peter Singstad,
Cybernetica AS. The following snippets of the monomer distribution calcula-
tion that is referred to in the thesis. Note that molecular weights, gas constant
and reactor volume are assumed to be global variables. Density calculations
can be found in Appendix C.

D.1 Monomer in gas phase

To calculate the mass of monomer in gas phase, the following derivation was
done.

mg
M = V g

mρ
g
M

= V gyMρ
g
M

= (1− wl)VRyMρ
g
M

(D.1.1)

Here, VR represent the total reactor volume and wl represent the liquid volume
fraction in the reactor and is given by the following equation.

wl =

(
mM −mg

M

ρl
M

+
mP

ρP
+
mW −mg

W

ρl
W

)
/VR (D.1.2)
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Inserting this in Equation D.1.1 and rearranging

mg
M =

[
VR −

(
mM −mg

M

ρl
M

+
mP

ρP
+
mW −mg

W

ρl
W

)]
yMρ

g
M

=

[
VR −

(
mM

ρl
M

+
mP

ρP
+
mW

ρl
W

)
+
mg

M

ρl
M

+
mg

W

ρl
W

]
yMρ

g
M

=

[
VR − Vfluid,s +

mg
M

ρl
M

+
mg

W

ρl
W

]
yMρ

g
M

(D.1.3)

Here, Vfluids is given by

Vfluid,s =
mM

ρl
M

+
mP

ρP
+
mW

ρl
W

(D.1.4)

and the mass of water in gas phase, mg
W

mg
W = ng

WMW

=
pRV

g
WMW

zRgT g

=
pRV

gyWMW

zRgT g

=
pRV

g
MyWMW

zRgT gyM

=
pRm

g
MyWMW

zRgT gyMρ
g
M

(D.1.5)

Equation D.1.3 then becomes

mg
M =

VR − Vfluid,s +
mg

M

ρl
M

+

pRm
g
MyWMW

zRgT gyMρ
g
M

ρl
W

 yMρ
g
M (D.1.6)

Rearrangement gives the following equation.

mg
M =

(VR − Vfluid,s)yMρ
g
M

1− ρgMyM
ρlM
− pRyWMW

zRgT gρlW

(D.1.7)

Which was to be derived. How to calculate the z-factor can be found in Ap-
pendix D.5.

D.2 Monomer in polymer phase

To calculate the mass of monomer in the polymer phase, the following deriva-
tion was done.

mp
M = V p

Mρ
l
M

= V p(1− ϕ)ρl
M

(D.2.1)
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Here, ϕ represent the volume fraction of polymer in polymer phase. Substitut-
ing for the volume of the particle phase;

mp
M =

(
mp

M

ρl
M

+
mP

ρP

)
(1− ϕ)ρl

M (D.2.2)

Solving with respect to mp
M gives the following equation.

mp
M =

mPρ
l
M

ρp
M

(
1− ϕ
ϕ

)
(D.2.3)

Which was to be derived.

D.3 Monomer distribution for Interval I and II

The following code was used to calculate the monomer distribution in Interval
I and II. The code for the psat-function can be found in Appendix D.9, the
densities is calculated by equation provided in Appendix C, the code for the
z factor can be found in Appendix D.5.

int phase_distribution_free( // Out: Value is 1 if no

// free phase is found

double *p, // Out: Pressure , Pa

double *Tg , // Out: Gas temperature , K

double *mm_p , // Out: Mass of monomer solved in polymer

double *mm_w , // Out: Mass of monomer solved in water

double *mm_g , // Out: Mass of monomer in gas phase

double *mm_f , // Out: Mass of monomer in free phase

double *cm_p , // Out: Concentration of monomer in

// polymer phase , mol/m3

double *V_l , // Out: Volume of liquid and solids , m3

double *V_p , // Out: Volume of polymer phase , m3

double *V_g , // Out: Volume of gaseous phase , m3

double *V_f , // Out: Volume of free phase , m3

double *V_w , // Out: Volume of water phase , m3

double T, // In: Temperature , K

double mm, // In: Monomer mass , kg

double mw, // In: Water mass , kg

double mp, // In: Polymer mass , kg

double Vr, // In: Reactor volume , m3

double mm0 , // In: Amount of total added monomer

double X_M , // In: Monomer conversion

)

{

double rhoW , rhoP , rhoM , rhoG , vf , am , pM, pW, V_fluid_s ,

V_W_g_parameter , z, y_M , y_W;

// Finding saturation pressures of monomer and water

psat( &pM, &pW , T );

// Calculating total pressure , assuming saturation pressure

equals the partial pressure

*p = pM + pW;
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// The temperature in gas phase will then equal the

// temperature in liquid phase

*Tg = T;

// Activity is assumed to be 1 during Interval I and II

am = 1.0;

// Calculating densities

rhoW = rho_w( T );

rhoP = rho_pvc( T );

rhoM = rho_vcm( T );

rhoG = rho_vcm_g( *Tg , pM );

// Calculating the volume fraction of polymer in polymer phase

vf = Flory( am, T );

// Calculating compressability factor

z = z_factor(T, p);

// Calculating volume fraction of monomer and water in gas

phase

y_M = p_sat_M / p;

y_W = p_sat_W / p;

// Parameter to account for water in gas phase

V_g_parameter = (1 - molarmass_W * y_W * p / (rhoW * z *

R_un_gas * (*Tg)) - y_M * rhoG / rhoM);

// Volume of fluid and solid of all water and monomer were in

liquid phase

V_fluid_s = mw / rhoW + mp / rhoP + mm / rhoM;

// Calculating the monomer distribution

*mm_g = ( Vr - V_fluid_s ) * rhoM * y_M / V_g_parameter;

*mm_w = 0.0088 * am * mw;

*mm_p = rhoM / rhoP * (mp + 1e-20) * ( 1.0 - vf ) / vf;

*mm_f = mm - *mm_g - *mm_w - *mm_p;

// Calculating volume of gas , liquid , polymer phase , free

phase , and water phase

*V_g = *mm_g / rhoG / y_M;

*V_l = V_r - V_g;

*V_p = (*mm_p / rhoM) + (mm0 * molarmass_M * X_M) / rhoP;

*V_f = *mm_f / rhoM;

*V_w = *V_l - *V_p - *V_f;

// Concentration of monomer in polymer phase

*cm_p = *mm_p / (molarmass_M * (*V_p));

// Mass of water in gas phase

*mw_g = molarmass_W * y_W * (*V_g) * p / (z * R_un_gas * (*Tg)

);

// Checking if amount of monomer in free phase is negative.

Then there is no free phase left , and will therefore return 1

if ( *mm_f < 0 ) {

*mm_f = 0.0;
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return 1;

}

// Still some monomer in free phase left , returning 0

return 0;

}

D.4 Monomer distribution for Interval III

The following code was used to calculate the monomer distribution in Interval
III. The densities is calculated by equation provided in Appendix C, the code
for the InvFloryPVC-function can be found in Appendix D.7, the code for
the psat-function can be found in Appendix D.9, the code for the Tsat vcm-
function can be found in Appendix D.10 and the code for the z factor-function
can be found in Appendix D.5.

void phase_distribution_unfree(

double *p, // Out: Pressure , Pa

double *Tg , // Out: Gas temperature , K

double *mm_p , // Out: Mass of monomer solved in polymer

double *mm_w , // Out: Mass of monomer solved in water

double *mm_g , // Out: Mass of monomer in gas phase

double *mw_g , // Out: Mass of water in gas phase

double *cm_p , // Out: Concentration of monomer in polymer

phase

double *V_l , // Out: Volume of liquid and solids , m3

double *V_g , // Out: Volume of gas phase , m3

double *V_p , // Out: Volume of particle phase , m3

double *V_w , // Out: Volume of water phase , m3

double T, // In: Temperature , K

double mm, // In: Monomer mass , kg

double mw, // In: Water mass , kg

double mp, // In: Polymer mass , kg

double Vr, // In: Reactor volume , m3

double mm0 , // In: Amount of total added monomer

double X_M , // In: Monomer conversion

)

{

// This function assumes no free VCM in the system

double rhoW , rhoP , rhoM , rhoG , mm_p_iter , vf, am, pM , pW ,

V_fluid_s , y_M , y_W , z;

int i;

// Parameters in the numerical solution

double zeta = 0.5;

int N = 3;

// Finding the density of water , polymer and monomer

rhoW = rho_w( T );

rhoP = rho_pvc( T );

rhoM = rho_vcm( T );

// Assume first all VCM in polymer phase

mm_p_iter = mm;
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// Iteratively finding a solution

for (i = 1; i <= N; i++) {

// Calculating the volume fraction of polymer in polymer

phase

vf = rhoM * mp / ( rhoM * mp + rhoP * mm_p_iter );

// Inversely finding the activity

InvFloryPVC( &am, T, vf );

// Calculating the saturation pressure

psat( &pM, &pW , T );

if ( am > 1 ) {

am = 1.0;

}

// Calculating the reactor pressure. Partial pressure of

water is assumed to be the same as the saturation pressure.

Saturation pressure of monomer is corrected with the activity

to find the partial pressure

*p = pM * am + pW;

// Calculating the temperature of the gas phase from

partial pressure of monomer

*Tg = Tsat_vcm( pM*am );

// Finding the density of monomer in gas phase

rhoG = rho_vcm_g( *Tg , pM*am );

// Calculating the compressability factor

z = z_factor (*Tg, *p)

// Parmeter to account for water being in gas phase

V_g_parameter = (1 - molarmass_W * y_W * (*p) / (rhoW * z

* R_un_gas * (*Tg)) - y_M * rhoG / rhoM);

// Volume of fluid and solid of no water and monomer were

present in gas phase

V_fluid_s = mw / rhoW + mp / rhoP + mm / rhoM;

// Monomer distribution calculation

*mm_g = (con_V_tot - V_fluid_s) * y_M * rho_M_g /

V_W_g_parameter;

*mm_w = 0.0088 * am * mw;

*mm_p = mm - *mm_g - *mm_w;

mm_p_iter = zeta * *mm_p + (1-zeta) * mm_p_iter;

}

// Volume of gas phase , and total liquid phase (water+free+

polymer), polymer phase and water phase

*V_g = *mm_g / rhoG / y_M;

*V_l = Vr - *V_g;

*V_p = (*mm_p / rhoM) + (mm0 * molarmass_M * X_M) / rhoP;

*V_w = *V_l - *V_p

// Concentration of monomer in polymer phase
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*cm_p = *mm_p / (molarmass_M * (*V_p));

// Mass of water in gas phase

*mw_g = molarmass_W * y_W * (*V_g) * (*p) / (z * R_un_gas * (*

Tg));

}

D.5 z-factor

To calculate the compressability factor, z, the following code was used. The
code for the fugpar-function can be found in Appendix C.

double z_factor( // Out: Compressibility factor z

double T_R , // In: temperature , K

double p // In: pressure , Pa

)

{

double B_m , B_w , B_mw;

// Obtaining fugacity parameters from fugpar -function

fugPar(T_R , &B_m , &B_w , &B_mw);

// Calculating the compressibility factor from viral equation

z = 1 + (B_2 * p) / (R_un_gas * T_R * 1000);

return z;

}

D.6 ϕ for Interval I and II

To calculate the volume fraction of polymer in polymer phase for Interval I
and II, ϕ, the following code was used. Note that the activity, αM, will be one
for Interval I and II. This method solves the Flory-Huggins equation for Poly-
Vinyl Chloride (PVC). The code for the coeffFlory-function can be found in
Appendix D.8. Referance: Kiparissides et al., 1997, Ind.Eng. Chem. Res.,
36,1253-1267

double Flory( // Out: volume fraction polymer in polymer

phase.

double T, // In: temperature , K

double am // In: activity

)

{

if (am < 1.0e-15) {

return 1.0;

} else if (am > 1.0) {

am = 1.0;

}

double c0;
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double c1;

double c2;

double c3;

double c4;

coeffFlory(T, am, &c0 , &c1, &c2, &c3 , &c4);

double x = 1.0 - 0.25 *am * am * am * (1.0 + (T - 323.15) /

500);

double r, dr;

for (int i = 0; i < 4; i++) {

r = log(1 - x) + ((((c4)*x + (c3))*x + (c2))*x + (c1))*x +

c0;

dr = 1 / (x - 1) + ((4 * (c4)*x + 3 * (c3))*x + 2 * c2)*x

+ c1;

x = x - r / dr;

}

return x;

}

D.7 αM for Interval III

To calculate the activity coefficient for Vinyl Chloride Monomer (VCM), αM,
solved in PVC, for Interval III, the following code was used. This method solves
the Flory-Huggins equation for PVC. The code for the coeffFlory-function
can be found in Appendix D.8. Referance: Kiparissides et al., 1997, Ind.Eng.
Chem. Res., 36,1253-1267.

double InvFlory( // Out: monomer activity

double T, // In: temperature , K

double vf // In: volume fraction of polymer in polymer

phase

)

{

double c0;

double c1;

double c2;

double c3;

double c4;

coeffFlory(T, 1.0, &c0, &c1, &c2 , &c3, &c4);

if (vf >= 1.0) {

return 0.0;

} else if (vf <= 0.0) {

return 1.0;

} else {

c0 = log(1 - vf) + ((((c4) * vf + (c3)) * vf + (c2)) * vf

+ (c1)) * vf;

return exp(c0);

}

}
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D.8 Flory-Huggins coefficients

The code for the coeffFlory-function used in Flory and InvFlory. Returns
parameters for Flory-Huggins equation for PVC. Referance: Kiparissides et al.,
1997, Ind.Eng. Chem. Res., 36,1253-1267.

void coeffFlory(

double T,

double am,

double *c0 ,

double *c1 ,

double *c2 ,

double *c3 ,

double *c4

)

{

double Xs = 0.26;

double a = 0.15524;

double b = 0.35311;

double c = -0.50527;

double d = 11.3605;

double e = 199.96;

double f = 6244.49;

*c4 = f * b / T;

*c3 = f * c / T;

*c2 = Xs + e / T + f*a / T + f*d / (T*T);

*c1 = 1.0;

*c0 = -log(am);

}

D.9 Saturation pressure

The code for the psat-function. Referance: Kiparissides et al., 1997, Ind.Eng.
Chem. Res., 36,1253-1267.

void psat(

double T, // In: reactor temperature

double *p_sat_M , // Out: saturation pressure of monomer

double *p_sat_W // Out: saturation pressure of water

)

{

*p_sat_M = exp (126.85 - 5760.1 / T - 17.914* log(T) + 2.4917e-2 *

T);

*p_sat_W = exp (72.55 - 7206.7 / T - 7.1386* log(T) + 4.046e-6 * T

* T);

}
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D.10 Temperature of the gas phase in Interval
III

The code for the Tsat vcm-function used in phase distribution unfree-
function.

double Tsat_vcm( // Out: Saturation temperature of VCM

double p_R // In: reactor pressure

)

{

double a = 5e5 / 20;

double T_g = (p_R - 1e6) / a + 60 + TC0;

double p_sat_M;

double p_sat_W ;;

for (int i = 0; i < 5; i++) {

psat(T_g , &p_sat_M , &p_sat_W);

T_g = (p_R - p_sat_M) / a + T_g;

}

return T_g;

}
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Appendix E

Moment balances: Deriva-
tion

The moment balances for emulsion polymerization process have been exten-
sively studied the last decades, and can easily be obtained from the literature.
During the preliminary project, they were anyway derived to confirm that the
balances found in the literature were applicable for this system. The derivation
of the zeroth live moment was stated in the preliminary report as an example
and is re-stated below.

E.1 General relations

In the derivation, chain transfer to monomer, Chain Transfer Agent (CTA) and
polymer is taken into account. The following relations are used for deriving
the moment balances (Asua, 2008).

[µk] =

∞∑
i=1

ik[Pi] (E.1.1)

[νk] =

∞∑
i=1

ik[Di] (E.1.2)

d[µk]

dt
=

∞∑
n=1

d(ik[Pi])

dt
(E.1.3)

d[νk]

dt
=

∞∑
n=1

d(ik[Di])

dt
(E.1.4)
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d[Pi]

dt
=

RI + (kM
ct [M] + kAX

ct [AX])

∞∑
j=1

[Pj ]

 δ(i− 1)+

kp[M]([Pi−1]− [Pi])−

kM
ct [M] + kAX

ct [AX] + kt

∞∑
j=1

[Pj ]

 [Pi]+

kP
cti[Di]

∞∑
j=1

[Pj ]− kP
ct[Pi]

∞∑
j=1

j[Dj ]

(E.1.5)

where Pi represent live polymer chain of length i, Di represent dead polymer
chain of length i and δ(i− 1) represent the Kronecker delta, where δ(i− 1) = 1
when i = 1, and 0 otherwise.

E.2 Zeroth live moment

The zeroth live moment can be described by the following equation,

d[µ0]

dt
=

d[P1]

dt
+

∞∑
i=2

d[Pi]

dt
(E.2.1)

where the following relations apply,

d[P1]

dt
= RI +

(
kM

ct [M] + kAX
ct [AX]

) ∞∑
j=1

[Pj ]

+ kp[M]([P0]− [P1])−
(
kM

ct [M] + kAX
ct [AX] + kt

∞∑
j=1

[Pj ]
)

[P1]+

kP
ct[D1]

∞∑
j=1

[Pj ]− kP
ct

∞∑
j=1

j[Dj ]

(E.2.2)

∞∑
i=2

d[Pi]

dt
=

∞∑
i=2

(
kp[M]([Pi−1]− [Pi])−

(
kM

ct [M] + kAX
ct [AX]+

kt

∞∑
j=1

[Pj ]
)
[Pi] + kP

cti[Di]

∞∑
j=1

[Pj ]− kP
ct

∞∑
j=1

j[Dj ]
) (E.2.3)

This give the following expression describing the zeroth live moment.

d[µ0]

dt
= RI +

(
kM

ct [M] + kAX
ct [AX]

) ∞∑
j=1

[Pj ]

+ kp[M]([P0]− [P1])−
(
kM

ct [M] + kAX
ct [AX] + kt

∞∑
j=1

[Pj ]
)

[P1]+
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kP
ct[D1]

∞∑
j=1

[Pj ]− kP
ct

∞∑
j=1

j[Dj ] +

∞∑
i=2

(
kp[M]([Pi−1]− [Pi])

−
(
kM

ct [M] + kAX
ct [AX] + kt

∞∑
j=1

[Pj ]
)

[Pi]+

kP
cti[Di]

∞∑
j=1

[Pj ]− kP
ct

∞∑
j=1

j[Dj ]
)

d[µ0]

dt
= RI + (kM

ct [M] + kAX
ct [AX])[µ0]− kp[M][P1]−

(
kM

ct [M]+

kAX
ct [AX] + kt[µ0]

)
[P1] + kP

ct[D1][µ0]− kP
ct[ν1] + kp[M]

( ∞∑
i=2

[Pi−1]−

∞∑
i=2

[Pi]
)
−
(
kM

ct [M] + kAX
ct [AX] + kt[µ0]

) ∞∑
i=2

[Pi]+

kP
ct[µ0]

∞∑
i=2

i[Di]− kP
ct[ν1]

∞∑
i=2

[Pi]

Using the following relations

[P0] = 0 (E.2.4)
∞∑
i=2

[Pi−1] = [µ0] (E.2.5)

∞∑
i=2

[Pi] = [µ0]− [P1] (E.2.6)

∞∑
i=2

i[Di] = [ν1]− [D1] (E.2.7)

dµ0

dt
= RI + ([µ0]− [P1])(kM

ct [M] + kAX
ct [AX]) + kt[P1][µ0]− kp[M][P1]

+ kP
ct[D1][µ0]− kP

ct[P1][ν1] + kp[M][P1]− (kM
ct [M] + kAX

ct [AX]

+ kt[µ0])([µ0]− [P1]) + kP
ct[µ0]([ν1]− [D1])− kP

ct([µ0]− [P1])[ν1]

The zeroth live moment is then given by the following equation

d[µ0]

dt
= RI − kt[µ0]2 = RI − (ktc + ktd)[µ0]2 (E.2.8)
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Appendix F

Introduction to Cybernetica’s
software

The purpose of this chapter is to introduce the software utilized in this project.
Section F.1 consist of a short description of how the process model has been
implemented. Cybernetica’s ModelFit will then be introduced in Section F.2,
which was used both during the preliminary work and in the initial phase
of this project. ModelFit was used both for simulation, off-line parameter
estimation, and tuning the Kalman Filter (KF). A short example of an off-
line estimation will be presented. Section F.3 will give an introduction to
Cybernetica CENIT, which consist of a collection of components, and was the
software used for Nonlinear Model Predictive Control (NMPC). Section F.4
introduces Cybernetica RealSim, which will work as the plant replacement
process simulator for the application.

F.1 Process model

The process model was implemented in C code as a set of Ordinary Differen-
tial Equations (ODEs) in one of Cybernetica’s template for polymer reactions.
The process model, as well as specific code for implementation of estimators
and controllers, is contained in Cybernetica Model and Application Component,
which is linked to Cybernetica CENIT. Inside this component, all states, in-
puts, outputs, constants, parameters and constraints can be defined. Reactor
temperature, pressure, monomer conversion and some quality parameters, are
outputs that are of particular interest. To solve these ODEs, several different
solvers are available, as Euler integration, 2nd order Runge Kutta (RK2) and
Sundials CVODE. In this case, Sundials CVODE was chosen for integration.

The template encourages a separation between the periphery model and
reaction kinetics. They are implemented in separate files in the template, and
one may easily be changes independently of the other. This is done to make
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implementation trivial, and changes can be done with minimal effort. Different
reaction kinetics can in such way be tested with variable periphery models,
for example, with different cooling systems or reactor design. From another
perspective can, for example, different chemical processes be tested with the
same reactor design.

F.2 ModelFit

The template is compatible with Cybernetica’s simulation tool, ModelFit. This
program gives the opportunity to plot the result from a simulation easily. Mod-
elFit is initialized with values from the template, but values can also be changes
inside this environment. In addition to doing the simulation, initial values, pa-
rameters values, constants, measurement noise and validity, measured values
and inputs can also be edited inside this environment. Multiple datasets with
different operating conditions, constant and parameter values may easily be
simulated.

ModelFit can be used for off-line estimation of parameters and initial values.
The user may choose which parameter or initial value to be optimized, and
which measurements it should be optimized with respect to. Afterwards, the
parameter or initial values may be assigned its optimized value. The simulation
can then be run ballistic with its new values. This is done to adjust the model
and making it a better reflection of the real plant.

As the process model may be very nonlinear, ModelFit used a Sequential
Quadratic Programming (SQP) for off-line estimation of parameter and initial
values. The optimization problem is shown below

min
φ∈Rnθ

J(φ) =

ny∑
i=1

1

2
(yi − yM

i )>Q1(yi − yM
i ) (F.2.1a)

subject to the model description, for example

xk+1 = f(xk, uk, θ) (F.2.1b)

yk = g(xk, uk, θ) (F.2.1c)

where

θmin ≤ θ ≤ θmax (F.2.1d)

Here, ny is the number of measurements, y is the measurement vector, yi is
the model output value of measurement number i, yM

i is the measured value
of measurement number i, Q1 is a weighting matrix, x represent the states of
the system, f( · ) is the nonlinear model, g( · ) is the measurement equations,
u is the process input, θ represent the parameter vector with lower and upper
boundaries, and nθ is the number of parameters.

Figure F.1 shows an example of the ModelFit interface when preforming an
off-line estimation. In this example, the reaction rate coefficient of chain trans-
fer to monomer, kM

ct , and the activation energy for chain transfer to monomer,
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EM
ct , have been estimated off-line. The goal was to find an Arrhenius expres-

sion to describe the reaction rate for chain transfer to monomer. The two
parameters were estimated with respect to Inovyn’s model for number average
molecular weight, Mn. The optimized variables is shown in Figure F.1a, and
the objective function is shown in Figure F.1b is shown for this estimation.

(a) Optimized variables, kMct and EM
ct , for iteration number 0 to 14.

(b) Objective function for iteration number 0 to 14.

Figure F.1: Screenshot of ModelFit. The optimized variables (a) and the objective
function (b) for iteration number 0 to 14 for a given off-line estimation, where number
average molecular weight, Mn, was used as active measurement.

ModelFit can be used to decide which parameters should be estimated on-
line and can be used to design on-line state- and parameter estimators. This
is done in such a way that the program sees the incoming measurements as
they were on-line, and performs a state- and parameter estimation to update
the model with respect to some valid measurements. The estimators that is
available is KF and Moving Horizon Estimation (MHE). In this case, KF was
used.

ModelFit was an important tool, particularly in the preliminary project,
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and also in the initial phase of this project. The model was adjusted and
validated against process data. The aim was to develop a satisfactory model
that could further be used for process control purposes.

F.3 CENIT

Cybernetica CENIT is a Windows application, built on top of the Cybernetica
CENIT CDK software. CENIT consists of a collection of components; Cen-
itKernel, CenitMMI, the process model and a database. CenitKernel is the
main component. It communicates with the calculation algorithms, and with
the process control system through the Open Platform Communication (OPC).
Based on a prediction from the model, it performs on-line model updates and
makes the controller calculations. CenitMMI is an engineering interface used
mainly during the engineering phase. It is used to configure and supervise the
CenitKernel. Settings can easily be adjusted inside the CenitMMI environment,
for example, controller tunings, and constraints of the controlled variables and
penalties on constraints violations.

CENIT is the software used for NMPC in this thesis, and is specifically de-
signed for this purpose. CENIT uses nonlinear mechanistic models and is there-
fore well suited for nonlinear processes, as for example a polymerization batch
reactor. The NMPC may control the input action directly, or get setpoints from
a higher level, as for example a Real-Time Optimizer (RTO). The NMPC may
also provide setpoints for lower levels, as for example a Proportional-Integral-
Derivative Controller (PID).

F.4 RealSim

In this thesis, Cybernetica RealSim will work as a plant replacement process
simulator, and is used for testing the on-line application and tuning of con-
trollers. RealSim will simulate the process according to the controller input
action, and it gathers the necessary measurements to the controller. At a real
plant, however, RealSim will log the behaviour of the process.

The model used for plant replacement might be similar to the model used in
CENIT, or the models might be different to evaluate how the controllers and
estimators respond to process disturbances. As an example, in this project,
will the polynomials describing the unmodelled aspects, described in Section
5.3, only be included in the plant replacement model. The estimator will then
perform an on-line estimation, and update the state or parameter chosen to be
estimated. These profiles may or may not be included in the NMPC prediction.

Figure F.2 shows a screenshot of RealSim while running the application.
The plant replacement can either run continuously, be paused, or one sample or
module can be executed. This figure shows the process measurements simulated
by the plant replacement model. The process inputs, parameters and constant
may be edited in RealSim if the plant is paused.
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Figure F.2: Screenshot of RealSim while running the application.

XXXIX



APPENDIX F. INTRODUCTION TO CYBERNETICA’S SOFTWARE

XL



Appendix G

Testing the model and the
controllers in CENIT

An introductory case was conducted to test the two controllers; The Split Range
Controller (SRC) and the feed of initiator to the system. All subcases in this
chapter were simulated using Cybernetica’s software for Nonlinear Model Pre-
dictive Control (NMPC), CENIT. Firstly, an open-loop analysis was performed,
followed by tests where the controllers were set in feedback. Some comments
are made to both the open-loop and closed-loop cases.

Testing the controllers in feedback is important to ensure that they are im-
plementation is correct, and also for tuning purposes. They were tuned in such
way that a change in the setpoint for the controlled variable, which here was
the reactor temperature and the average number of radicals per particle, did
not result in big overshoots or off-sets, neither in the simulation or prediction.

G.1 Open-loop analysis

The model was tested with no controllers in feedback. Step changes were
performed in the SRC and the initiator feed. As the reactor is a semi-batch,
it would be difficult to perform an open-loop analysis with ongoing chemical
reactions. The chemical reaction is, therefore disconnected, and the effect on
properties as the reactor temperature is examined. In the open-loop cases, the
reactor is filled with water. Step changes in some of the disturbances were also
performed, and the effect of them was examined. An overview of the cases is
shown below, and the result will then be presented systematically.

Case 1: Step change in the SRC (u1 = ν).

Case 2: Step change in the initiator feed (u2 = m̂I1)

Case 3: Step change in a disturbance: Temperature of the fresh water
feed (d = Tfresh)
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G.1.1 Case 1: Step change in the SRC (ν)

Step changes were performed in the SRC, and is shown in Figure G.1. The du-
ration of the simulation was 10 hours. The logic for the SRC was implemented
as described in Section 5.2. Both step changes to yield fresh water feed, and
steam were preformed, that is values of ν both over and under ν∗.

Figure G.1: Manual step changes made in the internal control signal of the SRC, ν.

The valve position for the feed of fresh water and steam is shown in Figure
G.2. The SRC was manually changed so that the valve position for the fresh
water feed was changed to 50%, 100%, 50% and 0%, one hour in between. The
same procedure performed on the steam inlet. By the end of the simulation,
both valves were closed.

Figure G.2: Step changes in the feed of fresh water (blue) and steam inlet (red), as
a result of step change in the SRC shown in Figure G.1.

The total water flow in the cooling jacket is shown in Figure G.3, with the
delay of the fresh water feed taken into account and constant flow of water, is
recycled. During the first hour, neither cooling nor heating was utilized, and
the valves for both fresh water and steam were closed.
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Figure G.3: Water flow in cooling jacket as a result of step change in the SRC shown
in Figure G.1, with the delay in fresh water feed is taken into account (m̂delayed

fresh ). The
amount of water in the recycle was set constant.

The inlet jacket temperature, outlet jacket temperature, and the reactor
temperature are shown in Figure G.4. They are all the responses to the step
changes made in the internal control signal shown in Figure G.1. The starting
temperature for the reactor, and in- and outlet temperatures were set equally
to 57◦C, and the ambient temperature to 24.95◦C. As shown in the figures,
the deviation in temperature between the inlet and outlet of the jacket is quite
small, with a maximum deviation of approximately 3◦C. Some, small, temper-
ature drop can be seen at the beginning of the batch, even though both valves
are closed at this point. The reactor temperature follows the same trend as the
jacket temperature, but with some delay.

Figure G.4: The inlet jacket temperature (blue), outlet jacket temperature (red)
and reactor temperature (green) corresponding to the step changes made in the SRC
shown in Figure G.1.

G.1.2 Case 2: Step change in the initiator feed (m̂I1)

Step changes were performed in the initiator feed, and is shown in Figure G.5.
The integrated value, that is the total amount of initiator added, is shown in
Figure G.6. The duration of the simulation was 10 hours. In this case, the
feed temperature of initiator was set to a temperature of 16.85◦C, and the
initial temperature of the reactor and inlet- and outlet of the jacket were set
to 24.90◦C. The ambient temperature was set to 24.95◦C.
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Figure G.5: Manual step changes made in the feed rate of initiator solution, m̂I1 .

Figure G.6: The total amount of initiator added corresponding to the step changes
made in the initiator feed shown in Figure G.5.

As there is a deviation between the temperature of the reactor feed and the
reactor content, there will be some energy contribution from the feed. This is
shown in Figure G.7.

Figure G.7: Energy contribution from feed corresponding to the step changes made
in the initiator feed shown in Figure G.5.

As the ambient temperature is lower than the initial temperature of the
reactor and the jacket, a temperature drop will be experienced. A faster tem-
perature drop in the jacket then in the reactor is observed. This is shown in
Figure G.8.
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Figure G.8: Inlet cooling jacket temperature (blue), outlet cooling jacket tempera-
ture (red) and reactor temperature (green) corresponding to the step changes made
in the initiator feed shown in Figure G.5.

Due to the difference in the reactor and jacket temperatures, there will
be some energy transfer between the reactor and the jacket. This is shown in
Figure G.9. The energy transfer is observed to be largest when the temperature
deviation between the jacket and the reactor is most evident.

Figure G.9: Cooling effect corresponding to the step changes made in the initiator
feed shown in Figure G.5.

G.1.3 Case 3: Step change in a disturbance (Tfresh)

Step changes in the temperature of the fresh water feed (Tfresh) were performed.
In the model, this temperature was set constant. In reality, however, one could
imagine that this temperature may change depending on process operation or
season. The step changes, reactor temperature, and jacket temperatures are
all shown in Figure G.10. The initial temperature of the outlet and inlet of the
jacket, the reactor and the fresh water feed, were set to 3◦C, and the SRC was
set manually to 0.375, corresponding to 50% opening of the valve for the fresh
water.
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Figure G.10: Outlet and inlet temperature of jacket, and reactor temperature cor-
responding to the step changes in the fresh water feed.

The cooling efficiency (the energy transfer between the reactor and the
jacket) is shown in Figure G.11. It is observed to be positive for reactor tem-
peratures lower than the jacket temperatures, and negative for reactor temper-
atures higher than the jacket temperatures.

Figure G.11: Heat transfer between the reactor and the jacket corresponding to the
step changes in Tfresh shown in Figure G.10.

G.1.4 Comments to the open-loop analysis

The open-loop analysis showed that the connection between the SRC and the
valve position for fresh water and steam was implemented correctly according
to the definition made in Section 5.2. The temperature profiles in Figure G.4,
shows that the difference in inlet and outlet temperature of the jacket is quite
small. This was also evident from the preliminary work where process mea-
surements were examined. This implies that the flow of water in the cooling
jacket is quite high and that the heat transfer per volume cooling fluid is low.
The profile of the reactor temperature showed meaningful results, as it follows
the temperature in the jacket, but with some delay. This is due to the heat
transfer from the reactor to the jacket. During the first hour of the batch,
both the jacket temperatures and the reactor experienced a small temperature
drop, even though both valves were closed. This is due to heat loss to the
environment.

The open-loop analysis when performing step changes in the initiator feed
shows that the connection between the control signal (m̂I1), and its correspond-
ing accumulated value (m̂acc

I1
), was implemented correctly. This is evident from
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Figure G.5 and G.6, where the accumulated variable represent the integrated
value the feed rate. Further more, the energy contribution from feeding initia-
tor (Figure G.7), showed reasonable results in the sense that the temperature of
the fed chemicals are set lower then the calculated reactor temperature, showed
in Figure G.8. This will have some cooling effect on the reactor content, evident
from Figure G.9.

The open-loop analysis, when performing a step-change in the disturbance,
shows that both the reactor temperature and the jacket temperature highly
depends on the temperature of the fresh water feed (Figure G.10). As in the
open-loop analysis, when performing step changes in the SRC, the inlet and
outlet temperature of the jacket is quite similar. The reactor temperature
will, if given enough time, approach the jacket temperature. This emphasizes
the delay in the system. Another important aspect is that when cooling the
reactor, neither the reactor temperature nor the jacket temperature can achieve
any lower temperature than the inlet of the fresh water feed. The temperature
of the fresh water feed will, therefore, be determinative for the cooling capacity
of the system. Furthermore, Figure G.11 shows logical results with respect to
the cooling effect from the jacket, as it indicates that the reactor content is
heated when the jacket temperature is higher than the reactor temperature,
and visa versa.

G.2 Testing the SRC

The SRC was tested by examining two different cases. Both cases had only
the SRC in feedback. The chemical reactions were disconnected, so the tem-
perature changes were only due to heating, cooling or energy transfer with the
environment. An overview of the cases is shown below, and the result will then
be presented.

Case 1: Setpoint changes in the reactor temperature, without reference
trajectories and SRC in feedback.

Case 2: Setpoint changes in the reactor temperature, with reference tra-
jectories and SRC in feedback.

The starting temperature of the reactor, the setpoint reactor temperature,
and the inlet and outlet temperature of the jacket were set to 25◦C initially.
The reactor setpoint temperature was then increased by 5◦C twice, followed by
a decrease by 5◦C four times. Finally, it was increased by 5◦C twice and the
end setpoint temperature is equal to 25◦C. This procedure is equal for both
cases.
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G.2.1 Case 1: Setpoint changes in the reactor temper-
ature, without reference trajectories, and SRC in
feedback.

Setpoint changes in the reactor temperature were performed, and the SRC was
set in feedback. The setpoint changes had no reference trajectories, that is,
the controller will not be able to act on the step changes in advance. The
response of the SRC was examined. The reactor temperature and the setpoint
changes are shown in Figure G.12. To illustrate the concept of no reference
trajectory, Figure G.13 is included. As the figure illustrates, there are no
setpoint changes seen in the prediction. No visible overshoots were observed
from this simulation.

Figure G.12: Reactor temperature (solid) and reactor setpoint temperature
(dashed).

Figure G.13: Illustrating the concept of no reference trajectory of the reactor tem-
perature (solid), with its respective setpoint (dashed). No setpoint changes is seen in
the prediction. Time instant is 5310 seconds.

The valve position of steam and fresh water is shown in Figure G.14, and
temperatures in the jacket is shown in Figure G.15.

XLVIII



G.2. TESTING THE SRC

Figure G.14: The valve position of fresh water (blue) and steam (red) corresponding
to the setpoint changes made in the reactor temperature shown in Figure G.12.

Figure G.15: The inlet jacket temperature (blue) and outlet jacket temperature
(red) corresponding to the setpoint changes made in the reactor temperature shown
in Figure G.12.

G.2.2 Case 2: Setpoint changes in the reactor tempera-
ture, with reference trajectories, and SRC in feed-
back.

Setpoint changes in the reactor temperature were performed, and the SRC
was set in feedback. The reactor temperature is shown in Figure G.16. The
setpoint changes had reference trajectories, such that the controller will be able
to act on the step changes in advance. This is shown in Figure G.17, where to
positive time frame shows the prediction of the reactor temperature and the
setpoint changes. More significant overshoots can be seen from this simulation
compared to the case without the setpoints in the prediction.
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Figure G.16: Reactor temperature (solid) and reactor setpoint temperature
(dashed).

Figure G.17: Illustrating the concept of reference trajectory, showing both sim-
ulated and predicted reactor temperature (solid) and reactor setpoint temperature
(dashed). Time instant is 5310 seconds.

The valve position of steam and fresh water is shown in Figure G.18, and
temperatures in the jacket is shown in Figure G.19.

Figure G.18: The valve position of fresh water (blue) and steam (red) corresponding
to the setpoint changes made in the reactor temperature shown in Figure G.16.
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Figure G.19: The temperatures in the jacket, both inlet (blue) and outlet (red),
corresponding to the setpoint changes made in the reactor temperature shown in
Figure G.16.

G.2.3 Comments to the SRC testing

For both cases, the reactor temperature reaches its setpoints, and the corre-
sponding valve positions (Figure G.14) and jacket temperatures (Figure G.15)
is reasonable in that sense that opening the valve for steam leads to heating,
and opening the valve for fresh water leads to cooling, both of jacket content
and reactor. Also, for the cases where the setpoint for the reactor temperature
over the ambient temperature, the controller will keep heating to compensate
for the heat loss to the environment.

When comparing the cases with and without the reference trajectory, it is
evident that the controllers are more aggressive if the reference trajectory is
included. This can be seen by comparing the valve positions (Figure G.14 and
G.18), and also the reactor temperature profiles (Figure G.13 and G.17) as more
significant overshoots was experienced. In the case of no reference trajectory,
the controllers do not start to aim for the setpoint before it is simulated by
the plant replacement model. The reactor temperature is typically a controlled
variable, and predictions may, therefore, exist for such variables. Reference
trajectories can for example be used if the temperature is to be kept at a
certain setpoint. Alternatively, some trajectory for the temperature may be
pre-generated to obtain certain quality requirement.

Other variables might be disturbances, which is not as easy to predict a
reference trajectory for. This can, for example, be changes in the fresh water
feed or changes in the ambient temperature. Either way, the controller showed
satisfactory results, making the controlled variable reach its setpoint within an
acceptable range. The tuning could, however, be further explored to reduce
the overshoots.

G.3 Testing the initiator feed

The initiator feed was tested by making setpoint changes in the average number
of radicals per particle, n̄. The reactor temperature should be insensitive to
changes in the initiator dosage, except for the sudden change of temperature
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due to the feed. It was therefore kept constant during this simulation, and the
effect of the initiator dosing on n̄ was examined.

For testing the initiator dosage, only the case without reference trajectory
with the initiator feed in feedback is shown. However, a similar case can be sim-
ulated with reference trajectories, as shown for the temperature in the previous
section.

The reactor is initially loaded with some Initiator 1 and 2, but Initiator 1
is the only initiator which is post-dosed. The setpoint for the average number
of radicals per particle, n̄, was initially set to 0.1, then changed to 0.125, 0.15,
0.125, 0.1, 0.75, 0.5, 0.75 and 0.1, one hour in between. The setpoint changes
is shown in Figure G.20 and the feed rate of initiator is shown in Figure G.21.

Figure G.20: The average number of radicals per particle (solid) and its setpoint
(dashed).

Figure G.21: The feed rate of initiator corresponding to the setpoint changes in the
average number of radicals per particle, n̄, in Figure G.20.

G.3.1 Comments to the initiator feed testing

The results of testing the controller for initiator dosing showed logical results.
The desired valve for the average number of radicals per particle could easily
be achieved by controlling the feed of initiator. Due to termination, continuous
feed of initiator is needed to maintain the setpoint. The controlled variable does
not show any significant overshoot or off-set. This indicates a good trade-off
between aggressive and slow control.
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