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ABSTRACT NTNU

Abstract

Industrial fermentation produces a wide variety of products during this day and age. Typical
products include fuels, industrial chemicals, food and beverage additives, healthcare products,
and microbial enzymes to name just a few. Efficiently fermenting these products with optimal
substrates will allow profitable and cheaper bio-alternatives. A specific substrate of interest in
this study is spent sulfite liquor or SSL. Along with the bacteria and substrate selection, optimally
controlling and monitoring the fermentation process is essential. Investigating further into new
bacteria strains, carbon media combinations, and fermentation models will aid the progress in
the microbial process research field.

Microbial bio-catalytic processes are non-linear systems with some unknown dynamics and are
highly dependent on the specific conditions of the process. However, models which contain
knowledge about the process and the application of estimators to acquire information of the
states is beneficial for bio-process development. The use of the information carried by the carbon
dioxide measurements seems to have yet to be investigated for online measurements of other
states. This work applies an Unscented Kalman Filter for biomass estimations and compares
the performances with an Extended Kalman Filter. The aim of this work is to obtain reliable
values of on-line signals with in-situ near-infrared spectroscopy and infrared measurements for
the carbon dioxide. Simultaneously, GABA amongst other results have also been acquired from
a new Corynebacterium glutamicum strain during the fermentation experimentation.

The results of this work shows successful implementation of a non-linear unstructured kinetic
model used alongside both an Unscented and an Extended Kalman filter for state estimation. The
results from the model and Kalman filter combination have been found to have a low amount of
error when following the C. glutamicum raw sensor data. The Unscented Kalman filter performed
better than the Extended Kalman filter, due to the non-linear nature of the fermentation. The
state estimators have been applied to a fermentation with C. glutamicum wild type strain for
biomass and substrate estimation. To extend the model and estimated state with a product, a
C. glutamicum strain for GABA production on SSL was acquired. The HPLC measurements
of GABA were not entirely correct due to the signal saturation in the measurements, therefore
the need to improve the HPLC method is required. This complication made the experiments
not available for parameter estimation. The original plan was to have an available model for
the GABA producer strain and to then test the estimators. However, due to the spread of the
COVID-19 pandemic and its resultant time limitations, only preliminary non-GABA producing
results have been collected.
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SAMMENDRAG NTNU

Sammendrag

Fermenteringsindustrien i dag produserer et bredt utvalg av produkter. Typiske produkter
inkluderer brensel, industrielle kjemikalier, tilsetningsstoffer til mat og drikke, helseprodukter og
mikrobielle enzymer for å nevne noen få. Effektiv fermentering av disse produktene med optimale
substrater vil tillate billigere og mer lønnsomme bioalternativer. Et spesifikt underlag av interesse
blir Spent Sulfite Liquor, eller SSL, i denne studien. Sammen med valg av bakterier og substrat
er det viktig å kontrollere og overvåke gjæringsprosessen optimalt. Videre undersøkelser i nye
bakteriestammer, kombinasjoner av karbonmedier og gjæringsmodeller vil hjelpe fremdriften
innen mikrobiell prosessforskningsfelt.

Mikrobielle biokatalytiske prosesser er ikke-lineære systemer med noe ukjent dynamikk og er
svært avhengige av de spesifikke forholdene i prosessen. Imidlertid er modeller som inneholder
kunnskap om prosessen og anvendelsen av estimatorer for å skaffe informasjon om delstatene
gunstig for bioprosessutvikling. Bruken av informasjonen fra karbondioksydmålingene ser ut
til å være ennå ikke undersøkt for målinger av andre stater på nettet. Dette arbeidet bruker
et usentrert Kalman-filter for estimering av biomasse og sammenligner forestillingene med et
utvidet Kalman-filter. Målet med dette arbeidet er å oppnå pålitelige verdier av online signaler
med in-situ nær-infrarød spektroskopi og infrarød måling for karbondioksid. Samtidig er GABA
blant andre resultater også ervervet fra en ny Corynebacterium glutamicum stamme under
gjæringseksperimenteringen.

Resultatene av dette arbeidet viser vellykket implementering av en ikke-lineær, ustrukturert
kinetisk modell brukt sammen med både et usentrert og et utvidet Kalman-filter for
tilstandsestimering. Resultatene fra modellen og Kalman-filterkombinasjonen har vist seg å ha
en lav mengde feil når du følger C. glutamicum rå sensordata. Det usentrerte Kalman-filteret
presterte bedre enn det utvidede Kalman-filteret, på grunn av den ikke-lineære karakteren
av gjæringen. Staten estimatorer har blitt brukt til en gjæring med C. glutamicum villtype
stamme for estimering av biomasse og underlag. For å utvide modellen og estimert tilstand
med et produkt, a C. glutamicum -stamme for GABA-produksjon på SSL ble anskaffet.
HPLC-målingene av GABA var ikke helt riktige på grunn av signalmetningen i målingene,
derfor er behovet for å forbedre HPLC-metoden nødvendig. Denne komplikasjonen gjorde
at eksperimentene ikke var tilgjengelige for parameterestimering. Den opprinnelige planen
var å ha en tilgjengelig modell for GABA-produsentstammen og deretter teste estimatorene.
På grunn av spredningen av pandemien og tidsbegrensningene har imidlertid bare foreløpige
ikke-GABA-produserende resultater blitt samlet.

ii
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1 Introduction

Understanding the overall intracellular kinetics and formation of products within a cell is a
very demanding and complex task [1]. However, doing so allows researchers to take advantage
of this knowledge and manipulate microbial cells to produce highly complex molecules at
a cost effective rate [2]. Bacteria have been used recently in history to produce numerous
pharmacological and food-use molecules [3]. In specific, fermentation currently is utilized
to produce fuels, industrial chemicals, food and beverage additives, healthcare products, and
microbial enzymes to name just a few [4, 5]. The previous statement is exemplified in Figure 1.1.
Therefore, investigating further into this broad research field is very worthwhile for countless
industries.

Figure 1.1: Applications of microbial fermentation in various industrial sectors [5]. These sectors include:
food and beverage, soil, enzymes, cosmetics, chemicals, pharmaceuticals, biofuels, and wastewater
treatment.
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High frequency measurements are of great importance in monitoring and control applications
however information of all states in a desirable frequency is not possible. In a fermentation
system the protocols to quantify offline biomass, X , through cell dry weight, CDW, has a main
disadvantage of often infrequent and delayed measurements. An alternative is to determine
online optical density, OD, through specific absorbance wave lengths, in particular in-situ

near-infrared, NIR, probes for monitoring OD values [6]. The correlation between OD data
with the concentration of biomass has challenges of discrepancies in the NIR probes estimations
under low concentrations and with different stirring regimes. Noise is generated in the NIR
signal at high stirring regimes due to formation of small bubbles.

Previous reports include a model-free Extended Kalman filter, EKF, for parameter and state
estimation which use macroscopic and elemental balances with transfer rates of O2 and CO2

in the liquid phase as secondary measurements with the use of delayed measurements, model
equations and secondary variables, as the carbon dioxide evolution rate, CER [7, 8]. An
interesting paper includes the application of a Sigma-Point Kalman filter, or SPKF, with NIR
spectroscopy coupled with partial least squares modeling while holding the process noise constant
and varying the measurement noise with linear regression from past data [9]. Furthermore, since
different measurements contain valuable information about the cell growth and can make the
estimator more robust, this combination of NIR and carbon dioxide concentration signals can be
fused to obtain more accurate biomass values. The solution this work proposes uses available
information from the online measurements and combines them by using an Unscented Kalman
filter, or UKF, describing the system through an unstructured model with Monod-like kinetics.
Within this approach, random effects due to measurement noise are filtered out and the estimators
will give more accurate values for states such as biomass and substrate concentrations.
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1.1 Motivation

The motivation of this thesis is to develop an estimator and model to monitor the process of a
new strain of bacteria in conjunction with a new carbon source. Gamma-Aminobutyric Acid,
or GABA, was desired to be produced from this new strain and spent sulfite liquor as a carbon
source to aid in formulating the system. Studies of Corynebacterium glutamicum for GABA
production have only just begun so looking into new strains and carbon sources is paramount
for success in this endeavor [10–14]. This includes conducting fermentation experiments to
investigate the stability of the strain in a bioreactor. As of now, this strain has only been fermented
in flasks, so the behavior in a bioreactor is still unknown. The stability of the strain will be
judged in the presence of multiple differing carbon sources, as the goal is to see how the strain
performs with spent sulfite liquor as the source of sugars. Along with determining the stability
it is unknown whether the consumption of the sugars is parallel or consecutive. Lastly, the
performance regarding the production of the product in question will also be evaluated. Once
data is obtained for the variables in question a model and an estimator can then be implemented
with the pertinent states and parameters. The estimator will help to reduce the amount of
necessary measurements as these measurements of the product and sugars have a long delay.
The only way to overcome the measurement limitations is to have an estimator, or observer, in
conjunction with the model. Once the model and observer are properly working this system
should closely follow the raw data of the multiple unique experiments. Ultimately, this system
can be used to control various bio-processes accordingly.

1.2 Objective

In order to better understand any circumstance which can occur with this highly volatile
fermentation process, a mathematical model should be developed. This model should include the
differential state equations of volume, biomass, product, substrate, and carbon dioxide. These
states are the main factors of the fermentation characteristics and can be measured scientifically
and accurately [15]. Most importantly this model should be able to use fast, reliable data, such
as the carbon dioxide concentration, to determine the product and biomass production. In
conjunction with this model an estimator will also be developed. This estimator, or observer, will
be of the Kalman filter variety. In conclusion, the objective of this thesis is to analyze a simple,
robust model and estimator which can be efficiently implemented to monitor fermentation and
allow further control applications.
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1.3 Outline

The thesis is divided into eight sections which are described briefly in this outline [16]:

1. Introduction - This section introduces the context of the thesis, motivation of the work,
describes methodological objectives to solving the problem of interest, and outlines the
structure of the thesis for the reader.

2. Background - This section provides background information for fermentation,
Corynebacterium glutamicum, GABA, SSL, and model theory including observers.
This section gives the foundation of knowledge required to understand the results and
conclusions.

3. Materials and Methods - This section details the chemicals, bacteria, equipment,
documented methods, and the different types of experimentation done which allows for
reproduction of any experiments of interest.

4. Modeling - This section delves into the state ordinary differential equations which
ultimately model the behavior of a specific fermentation process when given the initial
conditions. The section also describes the usage of parameter estimation in conjunction
with the model, which is vital for accurate control.

5. Kalman Filters - This section derives both the Unscented and Extended Kalman filter for
use in fermentation applications.

6. Results and Discussion - This section presents the results of the model, Kalman filters,
GABA production, and poses a careful analysis of said results.

7. Conclusion - This section serves to provide an overview of the thesis work while giving
special attention to concisely summarize the results and discussion.

8. Further Work - This section offers insight of what the future of this research area might
bring, specifically relating to this thesis. This section also involves doing more experiments
to verify that the results are indeed correct.
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2 Background

2.1 Fermentation

Industrial fermentation consists of upstream and downstream processes. The upstream process,
known as USP, always involves the production microorganism (bacteria or fungi), the carbon
source (sugars used by the microorganism), and broth medium (which can be aerated, inoculated,
stirred, and monitored) [17, 18]. The important production microorganism parameters involve
the robustness, the productivity, the yield, and the economic efficiency. The important aspect of
carbon and medium optimization involves maximizing profit margin as well as product yield as
a function of the carbon source and nutrients provided. In many cases the medium of choice are
byproducts of other industrial processes, often involving sugar or lignocellulosic products. These
three main constituents are then combined to begin the fermentation process [19]. Optimizing
industrial fermentation involves rigorous control of environmental conditions in order to obtain
high growth of biomass and yield of product. It is also important for the fermentation equipment
to be inert and sterilized adequately. The operation and type of fermentation equipment also
directly influences the fermentation kinetics. The downstream process, or DSP, involves any
process after the fermentation in the process flow diagram as seen in Figure 2.1. For example, this
involves any isolation, purification, filtration, harvesting, and storage [20]. During these processes
the inefficiencies accumulate and turn into various wastes. For example, if the microorganism
were to produce an undesired product then said product would need to be separated creating
waste, or if the microorganisms are ingesting an inefficient substrate generating waste [21].

Figure 2.1: Simplified fermentation process flow diagram [19]. A medium, carbon source, and
microorganism are required to start the upstream fermentation process successfully. Once product
is being made the downstream process can then isolate and purify the desired product. During the
upstream and downstream processes wastes are created, as the process is not completely efficient.
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2.1.1 Fermentation Conditions

Fermentation can be divided into two main categories: aerobic and anaerobic. Aerobic
fermentation is the process in which cells utilize sugars for metabolism in the presence of
oxygen [22]. The aerobic condition often is faster but needs more energy input through agitation
which aerates the culture. However, the aerobic condition also produces much more cellular
energy. The aerobic condition produces 38 ATP per glucose molecule to be exact [23]. The
anaerobic condition is fermentation in the absence of oxygen. This requires less energy input
though it is much slower compared to aerobic fermentation [24]. The slower anaerobic process
also only produces 2 ATP per glucose molecule [25]. Seen in Figure 2.2, the pathways for
each condition are shown. In the anaerobic condition, lactate (which can be turned into ATP),
alcohols/other products, and carbon dioxide are produced. In the aerobic condition, oxygen
allows for respiration of the cell creating ATP, carbon dioxide, and water. Most industrial
fermentations use the aerobic condition as time is very valuable compared to the cost of utilities
[17].

Figure 2.2: Depiction of anaerobic and aerobic fermentation pathways [26]. The substrate carbohydrates
are first converted to pyruvate. Depending on the aerobic conditions, the pyruvate will go through either
the lactate or pyruvate dehydrogenase. Depending on the enzyme used, the product will either be lactate
along with carbon dioxide and other products or acetyl-CoA which provides ATP to the cell for use and
produces carbon dioxide and water.
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2.2 Corynebacterium Glutamicum

Corynebacterium glutamicum, or C. glutamicum has a long history of utilization as an industrial
organism. C. glutamicum is a gram-positive, non-pathogenetic bacteria which was engineered
to serve industrial purposes since 1970 [27, 28]. C. glutamicum can be found in soil, sewage,
vegetables, and fruits [29]. C. glutamicum has also been found to be capable of using multiple
sugars and organic acids for respiration [30]. Corynebacteria have been found to be nutritionally
fastidious, meaning the need for vitamins and other amino acids in the carbon medium to survive
and replicate. In particular, C. glutamicum has the ability to metabolize glucose, xylose, sucrose,
fructose, and mannose [31, 32]. The main product of industrial applications are various amino
acids [33, 34]. The largest section, being the l-glutamate amino acid, produces around 1.5
million tons per year [27]! New product segments such as biofuels, xylitol, putrescine, and
gamma-aminobutyric acid are now being turned to for C. glutamicum production [35–38].

This study primarily delves into the fermentation using different strains of C. glutamicum

with differing carbon sources to either produce GABA or no products as a control. The
two strains being studied are the wild type strain, used in the first experiment for a baseline,
and the GMO strain. This GMO strain in question is known as C. glutamicum ATCC13032
(pVWx1-galBmut-manA)(pEKEx3-xylAB). This strain is the wild type strain modified with
three vectors, or plasmids, incorporated into the bacteria. These vectors enable the bacteria to
use galactose, mannose, and xylose as a carbon source. This specific strain also enables the
bacteria to produce GABA, as the wild type strain cannot produce GABA without modifications.
Without the respective vectors, researchers typically use solely glucose as it is very reliable in a
bioreactor setting for research.

It has been shown that the growth rate of the wild type strain is approximately 0.54 1
hr

, which is
considerably higher than the 0.40 1

hr
growth rate of the infamous E. coli [39]. When the bacteria

is in the stationary phase it plateaus in the number of living cells where the division and death
are in equilibrium. This, along with many favorable traits, is a big factor in why a GMO C.

Glutamicum strain is an attractive option [40].
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Figure 2.3 shows the inner workings of a typical bacteria cell. It can be seen that there is no
nucleus, therefore inserting new DNA as a plasmid is relatively easy for GMO bacteria strains.
Important bacteria structures include flagella, pili or fimbriae, and cell wall [41]. Bacteria are
fairly robust especially if the population can move with their flagellum. Chemotaxis using
flagellum has been found to be very important in survivability of bacteria cultures [42].

Figure 2.3: The schematic diagram of bacterial cell structure [43]. In order to not destroy the bacteria,
the cell membrane and wall must stay intact. Plasmids are inserted into the bacteria in order to introduce
new genetic material which the bacteria can use.

8



2 BACKGROUND NTNU

2.3 Gamma-Aminobutyric Acid

Gamma-aminobutyric acid, also known as GABA, is a four carbon non-protein amino acid which
is produced by the decarboxylation of glutamate found widely in organisms [44]. Glutamate
is the most common industrial product for the wild type C. glutamicum. GABA has been
found to have neurological affects which many scientists contend have been central in neural
control theory since 1950 [45]. Apparently it is the primary neurotransmitter inhibitor for
20 to 40% of the cortical neurons [46]. An example of a significant breakthrough has been
the finding of significant reductions of GABA concentrations in varying epileptic syndromes
[47]. Another massive potential use for GABA is as a bio-plastic polyamide 4 or PA4 [48, 49].
PA4 is biodegradable in the soil compared to the commonly used polyamide 6 which has poor
biodegradability [50, 51]. Therefore, satisfying this huge demand of GABA economically can
only be met by using microorganisms for its production [52]. GABA, produced from glutamate,
can be seen along with its pathways in Figure 2.4. The most important pathway being the
glutamate decarboxylase, or GAD, which is a pyridoxal 5′-phosphate-dependent enzyme that
catalyzes the α-decarboxylation of glutamate to GABA [14, 53].

Figure 2.4: The gamma-aminobutyric acid (GABA) metabolic pathways in the new strain [54]. Enzymes
are indicated in bold while those specifically associated with the GABA are in bold and highlighted in
grey. It can be seen that glutamate can easily be converted into GABA.
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Table 2.1 shows the current state of GABA fermentation research. It can be seen that fed-batch
fermentation experiments can help limit high substrate concentration inhibition [55, 56]. It has
also been determined that cell and GAD production is very dependent on the medium composition
and fermentation conditions [57, 58]. The study which produced the highest concentration of
GABA, 204.5 g

L
, was with E. coli with sodium glutamate in a fed-batch fermentation [59].

However the highest productivity, 34.3 g/L/hr, was also with E. coli with glutamic acid in a
fed-batch fermentation [60].

When looking at the results of strictly Corynebacterium glutamicum only, the highest
concentration of GABA produced was 61 g

L
using glucose [61]. The highest productivity for

strictly C. glutamicum was 0.904 g/L/hr using glucose from the same study [61]. These
maximums were achieved with a glucose medium under fed-batch fermentation conditions.

Table 2.1: The current progress in GABA production indicating the different bacteria strains, substrates,
fermentation conditions, and productivity [38, 62].

Strains Substrates
Fermentation

conditions

GABA
Ref.

Titer (g/L)
Productivity

(g/L/hr)

Bifidobacterium

dentium

NFBC2243

MRS and MSG

medium

One-step,

batch
12.32 0.171 [63]

Corynebacterium

glutamicum GAD
Glucose medium

One-step,

batch
12.37 0.172 [14]

C. glutamicum

GAD pknG
Glucose medium

One-step,

batch
31.1 0.259 [11]

C. glutamicum Glucose
One-step,

fed-batch
38.6 0.536 [10]

C. glutamicum Glucose
One-step,

batch
31.1 0.259 [64]

C. glutamicum Glucose
One-step,

fed-batch
26.32 0.439 [65]

C. glutamicum Glucose
One-step,

fed-batch
61 0.904 [61]

Continued on next page
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Table 2.1 – Continued from previous page

Strains Substrates
Fermentation

conditions

GABA
Ref.

Titer (g/L)
Productivity

(g/L/hr)

C. glutamicum G01

and L. plantarum

GB01-21

Cassava powder
Two-step,

fed-batch
80.5 2.68 [62]

Escherichia coli Glutamic acid

IPTG

induction,

one-step,

fed-batch

38.6 34.3 [60]

E. coli Sodium glutamate

IPTG

induction,

one-step,

fed-batch

204.5 8.52 [59]

Lactobacillus

brevis
Sodium glutamate

Two-step,

fed-batch
103.1 0.536 [66]

L. brevis IFO12005
Komeshochukusu and

GYP

One-step,

batch
1.05 0.022 [67]

L. brevis GABA

057
GYP medium

One-step,

batch
23.38 0.487 [68]

L. brevis GYP medium
One-step,

batch
4.6 0.19 [69]

L. brevis MRSS medium
One-step,

batch
15.37 0.32 [70]

L. brevis GABA

100

Black raspberry with

MSG medium

One-step,

batch
13.0 0.0451 [71]

L. brevis NCL912 Glucose medium
One-step,

batch
35.66 0.743 [72]

L. brevis BJ20 Kimchi
One-step,

batch
2.465 0.0037 [73]

L. brevis DPC6108
MRS and MSG

medium

One-step,

batch
20.47 0.284 [63]

Lactobacillus

buchneri MS
MRS broth

One-step,

batch
25.88 0.54 [74]

Continued on next page
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Table 2.1 – Continued from previous page

Strains Substrates
Fermentation

conditions

GABA
Ref.

Titer (g/L)
Productivity

(g/L/hr)

Lactoccoccus lactis

subsp. lactis

Brown rice juice,

germinated soybean

juice, and skim milk

with MSG medium

One-step,

batch
7.2 0.05 [75]

L. lactis subsp.

lactis 017
Skim milk

One-step,

batch
2.7 0.056 [76]

L. lactis subsp.

lactis B

Brown rice juice,

germinated soybean

juice, and skim milk

One-step,

batch
6.41 0.321 [77]

Lactobacillus

paracasei NFRI

7415

MRS broth
One-step,

batch
31.15 0.325 [57]

Lactobacillus

plantarum

DSM19463

MRS medium
One-step,

batch
0.4981 0.062 [78]

Streptococcus

salivarius subsp.

thermophilus Y2

MSG medium
One-step,

batch
7.985 0.321 [79]
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2.4 Spent Sulfite Liquor

C. glutamicum efforts have recently shifted to finding alternative carbon sources. Currently, the
carbon feed within the industry still heavily relies on only glucose and fructose [80]. Alternative
carbon sources such as galactose, arabinose, glycerol, and xylose have been recently been
established for utilization [81–84]. Taking bio-byproducts of popular processes, which have little
to no direct use, can be a popular option for the carbon source in fermentation. For instance, SSL
or spent sulfite liquor, is a common bio-byproduct in the pulp and paper industry using sulfite
cooking [85]. A common flow diagram for sulfite processes can be seen in Figure 2.5. This
process flow diagram, or PFD, shows how wood chips and white liquor combine in digesters
which form unbleached pulp and black liquor which is also known as spent sulfite liquor. This
concentrated liquor is typically used in a boiler for steam generation which recovers some
energy in the process. SSL can also be neutralized and then the byproducts taken from the liquor,
however it is not very efficient [86]. Consequently, many researchers are working on a better and
more efficient use of SSL. Fermentation of SSL is an option being explored for many differing
strains of bacterium. Many of these strains can have some success but are usually limited
by either inhibitory compounds or not being able to utilize all the available sugars effectively [87].

Figure 2.5: Process flow diagram of the sulfite pulp process [88]. The two end products are SSL, or black
liquor, and pulp from wood chips and fresh white liquor. The equipment involved in this process are:
digesters, bleaching tanks, storage tanks, and washing/drying tanks.
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Norway, in particular, has some of the largest bio-refineries in the world and being able to utilize
SSL for more varied purposes would be highly beneficial [89, 90]. However, SSL does have
some toxins which can potentially inhibit the fermentation process. In order to determine the
effects of the potentially harmful toxins, fermentations will be done with three different carbon
sources (non-synthetic SSL, synthetic SSL, and glucose). The common SSL solution contains
many varying levels of monosaccharides and toxins, seen in Table 2.2.

Table 2.2: Typical industrial spent sulfite liquor for both weak and strong concentrations [91]. SSL
has a composition of arabinose, xylose, galatose, glucose, mannose, furfural, HMF, acetic acid, and
lignosulfates.

Industrial SSL Components Weak SSL (g/L) Strong SSL (g/L)

Arabinose (C5) 1.67 14.44

Xylose (C5) 25.01 138.24

Galactose (C6) 2.44 17.60

Glucose (C6) 2.35 19.21

Mannose (C6) 1.73 7.41

Furfural 0.17 0.12

HMF 0.03 0.04

Acetic Acid 6.92 5.03

Lignosulfonates 47.32 427.05

In the synthetic SSL substrate version for the experiment, the common monosaccharides are
reduced to the primary sugars while also excluding the toxins. The toxins which non-synthetic
SSL contains are mainly sulfite, furfural, and acetic acid which inhibit product capabilities from
monosaccharides with microorganisms [92].
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2.5 Model Theory

Having strict control and complete understanding of the key variables in any industrial process
is vital to properly fermenting products [93]. When developing a model for industrial use,
mathematical models will increase in complexity due to the larger scales. This scaling ultimately
influences the environmental conditions which alters the kinetics, the mixing, the homogeneity
of the temperature, and the balance of the pH in the mixture [94]. Many mechanistic models are
obtained from empirical observations via experimentation. This allows for a deeper understanding
and foundation for a model whose formulation requires very specialized knowledge. Fortunately,
non-mechanistic models can be a viable alternative system. These models are able to describe
the general behavior of fermentation without knowledge of the kinetics of the process. Figure
2.6 details the various types of model structures. Mechanistic models can be formulated as
structured, unstructured, segregated, and unsegregated. A mechanistic model is often referred to
as a white box model or WBM. These WBMs can accurately describe microorganism processes
while understanding the phenomena correlated to these processes. Non-mechanistic models can
be formulated using statistics, a neural network, or fuzzy logic. A non-mechanistic model is
often referred to as a black box model or BBM. This naming convention is due to the opaque
nature of the inner workings of BBMs.

Figure 2.6: A mechanistic model is based on deterministic principles [15]. On the other hand, empirical
models represent input-output relations without the knowledge of a mechanism. Fermentation process
models are usually represented with a combination of both mechanistic and empirical models.
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2.5.1 Unstructured Mechanistic Models

Unstructured mechanistic models or unstructured kinetic models, known as UKMs, provide
a general global point of view of the process. These UKMs consist mainly of mathematical
descriptions for semi-empirical observations. These descriptions can model the cell and medium
concentration as an average using ideal conditions. This assumption is not entirely true, of course,
but does allow for a much simpler model system. An example of an UKM being utilized can be
seen in the Monod equation in Section 4 which describes the biomass growth as a function of
substrate [95]. However, the simplicity of the Monod equation does not capture more complex
cellular kinetics such as inhibition. In order to make a UKM dynamic, the model is described as
a set of ordinary differential equations, or ODEs [96]. This dynamic morphological UKM is the
premise of the model structure presented in Section 4.

2.5.2 Structured Mechanistic Models

Structured mechanistic models or structured kinetic models, known as SKMs, describe the
changes in the cell population via modeling the internal structure of the microorganism. Doing so
will consequently increase the complexity of variables and parameters mathematically required
to model the fermentation processes. A particular SKM, for example, is the morphological SKM,
which describes the kinetics of the substrate consumption along with the carbon dioxide and
product formation [97].

2.5.3 Non-Mechanistic Models

Non-mechanistic models, known as BBMs, involve artificial intelligence such as neural networks
or statistical models. Implementing BBMs are relatively straightforward and are gaining interest
for various applications. The downside of these models is understanding the input-output
relationship and troubleshooting this nontrivial tool [98]. Lastly, there are also gray box
models, or GBMs, which are a hybrid of both mechanistic and non-mechanistic models. GBMs
combine WBMs with artificial intelligence which can provide better performance and lessen
noise associated with measurements [99].
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2.5.4 State Estimator

The main objective of state observers or estimators is to estimate states which are difficult to
measure. An example are dynamic parameters which determine growth kinetics, production
rate, and cell death rate. These difficulties can be due to the lack of sensors or non-adequate
measurement frequency/delay [100, 101]. Using observers in conjunction with a UKM is quite
complimentary. The state observer can merge vital information of the UKM and conventional
in-situ probe measurements. By using both sources of information the accuracy can be
dramatically increased. For example, if the model is lacking the measurements the observer can
prevent failures and vice versa. The main types of observers currently are: Luenberger based,
finite dimensional, Bayesian, interval, and even artificial intelligence [102]. This study will look
into the Bayesian Kalman filters [103]. Bayesian observers use the probability distribution
estimation of stochastic state variables using the available process data [104]. The particular
Kalman filters being tested are the Unscented Kalman filter, or UKF, and the Extended Kalman
filter, or EKF. The UKF is a nonlinear observer while the EKF is a linear observer [105]. This
hybrid implementation of the Kalman filters with the UKM ultimately makes for a highly
versatile and rapid system for various fermentation processes [106]. The details of this filter are
discussed in Section 5.
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Table 2.3 showcases the various types of parameter estimation methods used for biochemical
processes. As seen below the most common observer used in biochemical processes is the
sliding mode observer. The Kalman filter is definitely explored less when applied to bioreactors
and fermentors. This study showcases another use-case for a Kalman filter in a biochemical
application.

Table 2.3: Application of recent observers in strictly biochemical process systems [102].

Observer Objective/estimate(s) System Positive highlight(s) Ref.

Adaptive state observer Growth rate, kinetic
coefficient

Bioreactor Guaranteed convergence
factor

[107]

Continuous-discrete-interval Process kinetics Bioreactor Avoids growth of interval
sizes during estimation

[108]

Continuous-discrete-Extended
Kalman filter

Biomass, substrate
concentration

Bioreactor Accurate estimates, reduced
error

[109]

Exponential Microorganisms
concentration

Bioreactor Guaranteed convergence [110]

Extended Luenberger
observer-Asymptotic observer

Biomass concentration Bioreactor Stable rate of convergence [111]

Particle filter Yield parameter Fermentor Good estimation based on
maximization algorithm

theory

[112]

Reduced-order Substrate concentration Bioreactor Robust estimation [113]

Sliding mode observer Substrate concentration,
specific growth rate

Fermentation process Smooth estimates [114]

Sliding mode observer Specific growth rate Fed-batch bioreactor Accurate and error free
estimation

[115]

Sliding mode observer Substrate concentration Bioreactor Proven stability factor [116]

Sliding mode observer Biomass and substrate
concentration

Bioreactor Proven stability factor [117]

Quasi-unknown input
observer

Faults in concentration,
flow rates, light

intensity

Bioreactor Satisfactory estimates [118]

Unscented Kalman filter Biomass concentration Fermentor Effective estimation despite
using the simplified
mechanistic model

[119]
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2.5.5 Process Optimization

The goal of every industrial bio-process is to produce quality products at an optimal rate, keep
the process in a stable and robust state, and sustain a minimum operating cost which maximizes
profits [120]. These goals can be condensed into theories, which if followed correctly, can
achieve the industrial bio-processing goals. Seen from Figure 2.7, the “Ring of Fire” method can
be explained as follows [121]:

1. Determine the objective functions to optimize which are formulated from various process
variables.

2. Analyze the data for quality and consistency.

3. Convert the data to information descriptors and utilize them for the design of experiments.

4. Obtain hypotheses from the various experiments to formulate mechanistic models.

5. Utilize the models for real time predictive control with the objective function in mind as
desired.

Figure 2.7: Diagram known as the ”Ring of Fire” [121]. This method shows the loop in which objective
functions are formulated to be accurately converted into scalable information descriptors. These descriptors
can then be used in tandem with a controller to manage the process inputs.
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3 Materials and Methods

3.1 Bio-process

Fermentation was performed as fed-batch cultivations in stirred tank reactors as seen in Section
3.5. The inoculum for the fed-batch cultivations, also referred to as growth culture, is produced
in a flask. The media for the preculture is composed of a complex media 2YT seen in Table 3.1.
After 24 hours of aerobic fermentation and depletion of the provided nutrients, the inoculum is
ready to start the main culture.

Table 3.1: Inoculum 2xYT microbial medium powder composition [122]. It is an excellent growth
medium for culturing Escherichia coli, particularly laboratory or recombinant strains.

2YT Components Concentration (g/L)

Tryptone 16

Yeast Extract 10

Sodium Chloride 5

Total 31

3.2 Cultivation

Using spore suspension of a newly developed C. glutamicum strain for GABA production
multiple separate fed-batch cultivations, denoted by the media glucose, synthetic SSL and
non-synthetic SSL, were performed in multiple 2.7 liter parallel bioreactor systems (Infors AG,
Switzerland). At the end of the batch processes, indicated by an increase in pO2 (pO2 value
raised from 30% to 60% for the first time), the cell broth was transferred to the reactors filled with
1425 mL defined fed-batch media. The fed-batch processes were run for 120 hours. Dissolved
oxygen was controlled at 30% by stirrer speed (200 - 1100 rpm), while the reactor was aerated
with 2.0 L

min
of air. The temperature was kept at 30°C and the pH value was maintained at 7 by

addition of KOH or H3PO4. Glucose (circa 200 g
L

) or synthetic SSL were supplied as feeds.

3.3 Medium Composition

Once the inoculum is ready the flask broth is added to a defined carbon free minimal fed-batch
media (CGXII) with a starting OD value of 1 [123]. Besides inoculum (5% v/v), carbon source
(20% v/v) and minimal media (75% v/v), a carbon source feed was used in the fed-batch phase
which is detailed in Table 3.2. The pH was controlled at 7 by automatic addition of phosphoric
acid (10% (w/w)) and potassium hydroxide (4 M).
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Table 3.2: Medium compositions in both the 1.5 L of broth and 500 mL of feed for the fermentation
experiments. This composition consists of CGXII, carbon source, and the inoculum.

Overall Broth Components Concentration (%), in 1.5 L for broth and 500 mL for feed respectively

CGXII 75

Carbon Source 20

Inoculum 5

3.3.1 Broth Substrate Composition

There will be four different fermentations using glucose, synthetic SSL, and SSL. The glucose,
used as a control, will be an equal amount of carbon source as the synthetic and non-synthetic
SSL (glucose, xylose, and mannose), excluding Arabinose, which is seen in Table 3.3.

Table 3.3: Total amount of sugars in the initial broth for the different experiments.

Experiment Type Mass of sugars in 300 mL of broth (g)

Synthetic SSL 60.3

Glucose 57.3

SSL 60.3

Glucose with wild type strain 66.7

The synthetic SSL composition without any dilution used can be seen in Table 3.4. Looking
at the dilution column in the table, the total amount of sugars required for a 20% dilution is
40.2 g

L
. However, considering the Arabinose is not consumed, the total available carbon source

concentration becomes 38.2 g
L

. Consequently, the amount of usable sugars in 1.5 liters is 57.3
grams.

Table 3.4: Synthetic SSL broth composition, which excludes any toxins that can influence the fermentation
process of the microorganisms found in non-synthetic SSL.

Monosaccharides in synthetic SSL broth Concentration without dilution (g/L) Concentration with 20% dilution (g/L) Weight of sugars in required 1.5 L (g)

Arabinose (C5) 10 2 3

Xylose (C5) 45 9 13.5

Glucose (C6) 36 7.2 10.8

Mannose (C6) 110 22 33

Total 201 40.2 60.3 (57.3)
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3.3.2 Feed Substrate Composition

To compare the four fermentations every feed needs to have the same amount of sugars. In order
to get the feed details the second column in Table 3.5, which corresponds to the composition of
the non-diluted synthetic SSL, is looked at. This column is then halved in order to correspond to
half a liter of feed. These numbers are found in Table 3.5. Excluding the unusable Arabinose the
total amount of feed sugars is 95.5 grams. Therefore, 95.5 grams of glucose in 500 mL for the
glucose fermentation will be used as well.

Table 3.5: Synthetic and non-synthetic spent sulfite liquor feed compositions used for fed-batch
fermentations.

Monosaccharides in synthetic SSL feed Concentration without dilution (g/L) Weight of sugars in required 0.5 L (g)

Arabinose (C5) 10 5

Xylose (C5) 45 22.5

Glucose (C6) 36 18

Mannose (C6) 110 55

Total 201 100.5 (95.5)

3.4 Measurements

For online analytics, carbon dioxide and oxygen in the off gas were quantified by a gas analyzer
BlueInOne sensor (BlueSens, Germany) using infrared and paramagnetic principle respectively.
Offline samples were collected every 2 hours by Numera© (Securecell, Switzerland) autosampler
and cooled down to 4°C until use. Dilution of the samples (1:10) and/or filtration were performed
automatically by the Numera© system when needed. Optical density of the samples were
analyzed via spectrophotometry (Genesys 10S UV-Vis, Thermo Scientific, U.S.), in order
to determine the biomass concentration. Sugars were analyzed by high performance liquid
chromatography, or HPLC (Agilent Technologies, U.S.). Cell cultures were diluted (1:10) and
filtered by the Numera© system (Securecells, Switzerland) and the supernatants were used
for analysis or stored at -20°C. The quantification of sugars was done using a 300 × 7.8 mm
NUCLEOGEL®SUGAR 810 Pb column (Macherey-Nagel, Germany) pre-warmed at 80ºC and
detected by a refractive index detector (RefractoMax 520, Thermo Scientific, U.S.). The system
was run isocratically with deionized water at 0.4 mL

min
as mobile phase.
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3.5 Bioreactor System

The fermentations were performed in Labfors5 bioreactor systems (Infors HT, Switzerland),
consisting of a working volume of 2 liters each. The reaction vessels are equipped with stainless
steel components. Each bioreactor contains four baffles, an impeller with two six-bladed Rushton
turbines, an L-sparger for gassing, an off-gas condenser, four ports for feeding with one for
sampling and a heating jacket. Sensors for data collection are as follows: a temperature sensor
(Pt element, Pt100 1/3 DIN-B), pH electrode (Hamilton; Reno, USA), and a pO2 electrode
(Hamilton; Reno, USA) were installed. Off-gas measurements, oxygen and carbon dioxide,
were determined via a BlueInOne sensor (BlueSens, Germany). For optical density, which
can be correlated to biomass, online measurement using a NIR probe (ASD12-N, Optek) was
installed. Planning, control, and monitoring of the data was done with the software EVE (Infors
HT, Switzerland). The fully equipped reactors, containing the batch media of 1.5 Liters, were
sterilized at 121°C for 20 minutes. A depiction of the basic premise for the experimental
apparatus can be seen in Figure 3.1.

Figure 3.1: Basic experimental stirred tank bioreactor diagram used for simplicity. The labeled equipment
are as follows: impellers, stirrer motor, baffles, air sparger, heat exchange jacket, ports for broth/feed,
exhaust condenser, exhaust analyzer for carbon dioxide and oxygen, ports for acid, base, and antifoam,
probes for temperature, partial pressure of oxygen, optical density, and pH, and lastly the sample port for
the analysis of biomass, substrate, and product. Due to the simplification of the diagram, it should not be
taken as a 1:1 replica for sizing and/or exact placement of ports/equipment.
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3.6 Signal Processing

The signals for NIR and carbon dioxide were collected every 10 seconds and calibrated with the
regression curves obtained from previous experiments to convert them to g

L
of biomass, or cell

dry weight (CDW).

3.6.1 NIR to Cell Dry Weight

The NIR probe is an invasive probe (ASD12-N Absorption Probe, Optek GmbH) which measures
absorbance in the culture broth in a range of 0.05 − 4 concentration units or CU. The calibration
curve from NIR to g

L
of biomass, or CDW, is seen below in Equation 1.

CDWNIR = 110.3 · (NIR)2 − 3.254 ·NIR + 1.878 (1)

3.6.2 Carbon Dioxide to Cell Dry Weight

The signals for carbon dioxide were measured with a non-invasive infrared probe (BlueInOne
Ferm, BlueSens GmbH). This sensor gives signals for carbon dioxide composition in the off-gas.
To relate the signals to the cell growth, the measurements from the off-gas concentration were
integrated over time to have the value of total carbon dioxide produced at each time point and
divided by the culture volume. In this way the signal was related to the biomass growth since the
carbon dioxide is a product in the the aerobic fermentation and is usually a valuable measurement
to detect cell activity [124]. The calibration curve from CO2 to g

L
of biomass, or CDW, is seen

below in Equation 2.

CDWCO2 = 0.759 · CO2 + 1.817 (2)

3.6.3 CDW Sensor Fusion

The two aforementioned sensors in Equations 1 and 2 carry information about the cellular growth.
By using nonlinear least-squares data fitting (lsqnonlin) for three different experiments, the two
signals are merged in Equation 3 by using a factor α = 0.6655 as detailed below.

CDW = α · CDWNIR + (1 − α) · CDWCO2 (3)
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3.6.4 Carbon Dioxide to Substrate

The signals for the carbon dioxide are measured with the non-invasive infrared probe (BlueInOne
Ferm, BlueSens GmbH). As mentioned previously, this sensor gives signals for carbon dioxide
composition in the off-gas. To relate the signals to the substrate concentration the signal
from the off-gas measurement device, which gives the percentage of carbon dioxide in the
off-gas, was correlated to the sugar concentration using least-squares regression (lsqnonlin). The
measurement of sugar concentrations is normally carried out by HPLC analysis but this method
is time consuming and does not allow an online monitoring technique. To overcome this barrier,
it may very well be viable to relate the formation of carbon dioxide to the sugar concentration
as carbon dioxide is a product of the respiration in aerobic fermentations. Respiration requires
the presence of substrate in order to utilize energy making the byproduct carbon dioxide. In this
way the infrared, or IR, signal of the percentage of carbon dioxide in the off-gas is related to the
substrate concentration. The linear relation between CO2 % to g

L
of glucose is seen below in

Equation 4, where β = 4.502.

SCO2 = β · CO2% (4)
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3.7 Design of Experiments

Description and explanation of experiments:

1. The first experiment was the wild type strain along with glucose. This experiment used
glucose which produced no GABA and is used as a baseline or reference to compare with
the other experiments. This baseline experiment will be able to determine differences
when other variables are added into the comparison.

2. The second experiment was the new GMO strain with glucose to produce GABA. This
experiment is a steppingstone to start investigating a new strain but while also keeping the
medium and other variables constant. Thus, the characteristics of the new GMO strain will
be compared directly with the established, well tested wild type strain. It is unknown how
the production of GABA will influence the behavior of the strain.

3. The third experiment was the new GMO strain with synthetic SSL to produce GABA. This
experiment steps further into the fray by introducing another unstudied variable. This
variable being the substrate. However, with the synthetic SSL there are no toxins involved.
The reasoning for this is to strictly study the consumption behavior the new strain has in
the synthetic SSL medium. It is unknown whether it consumes the sugars consecutively
or parallel. Leaving out the toxins will also enable an easier analysis of how the toxins
inhibit the bacteria which will be done in the final experiment.

4. The fourth experiment was of the new GMO strain with SSL, including toxins, to produce
GABA. This experiment will allow the study of how the strain behaves under the influence
of toxins and multiple sugar sources.

5. The fifth experiment looks into the cell dry weight, or CDW, of the biomass during
fermentation. The experiment uses the same wild type strain with glucose substrate seen
in experiment one. The CDW is done by taking the difference of the weight of a filter
when passing a liquid biomass sample through it. Doing so verifies if the NIR probe
measurements are accurate and true to what is happening during fermentation. It was
speculated the NIR measurements were becoming unreliable due to the darkening of the
broth.
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4 Modeling

4.1 Carbon Dioxide Evolution

The complex network of reactions in which carbon dioxide can partake, seen in Figure 4.1, makes
the carbon dioxide state particularly hard to model [125–130]. It can be seen the carbon dioxide
produced from the bacteria is first dissolved in the medium and then can undergo reversible side
reaction forming bicarbonate. The dissolved carbon dioxide can then transfer from the liquid
phase to the gaseous phase in which it may be interpreted by the non-invasive carbon dioxide
sensor. Therefore, the complexity of properly measuring carbon dioxide is much harder in reality.
The OCER must be reverse engineered in order to understand the CER of the microorganism.
Working backwards from OCER enables the CTR to be acquired. Summing the bicarbonate
side reactions along with the CTR will then provide the desired CER. The numerous equations
presented in Section 4 will showcase how the calculated CER, or CCER, is attained.

Figure 4.1: Simplified schematic representing the numerous paths carbon dioxide evolution can undergo
[126]. The microbial cell produces a specific amount of carbon dioxide based on the CER. This carbon
dioxide can reversibly react with hydroxide and/or water which creates bicarbonate. The carbon dioxide
can also transfer from the liquid phase to the gaseous phase based on the CTR. Ultimately, the gaseous
carbon dioxide is analyzed by the sensor giving the OCER.

Equation 5 is the carbon dioxide and water reaction forming bicarbonate and hydrogen ions
[125, 131]. This reaction is portrayed in the left, or liquid, side of Figure 4.1. This is a reversible
reaction with reaction constants k1 and k−1.

CO2 +H2O
k1


k−1

H+ +HCO−3 (5)
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Equation 6 is the carbon dioxide and hydroxide reaction forming bicarbonate [125, 131]. This
reaction is also portrayed in the left, liquid, side of Figure 4.1. This is also a reversible reaction
with the reaction constants k2 and k−2.

CO2 +OH−
k2


k−2

HCO−3 (6)

Equation 7 are the corresponding equilibrium constants for reaction Equations 5 and 6 [126].
Equating the equilibrium constants will allow for the creation of Equation 8.

K1 =
[H+][HCO−3 ]

[CO2]
·K2 =

[HCO−3 ]

[OH−][CO2]
=

K1

KW

(7)

Equation 8 gives the equilibrium constant K2, and is created by canceling out the reactant and
product terms in Equation 7. This equation enables the relationship between K1 and K2 using
the water dissociation constant, KW .

K2 =
K1

KW

(8)

Equation 9 is the equation for the equilibrium constant, K1 , as a function of temperature inside
the bioreactor [132].

K1 = exp(−11.582 − 918.9

T
) (9)

Equation 10 is the rate of reaction one as seen in Equation 5. The rate, r1, is a function of the
forward reaction minus the reverse reaction [126].

r1 = k1 · [CO2] − k−1 · [HCO−3 ] · [H+] = k1 · [CO2] − k−1 · 10(−pH) · [H+] (10)
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Equation 11 is the rate of reaction two as seen in Equation 6. The rate, r2, is a function of the
forward reaction minus the reverse reaction [126].

r2 = k2 · [CO2] · [OH−] − k−2 · [HCO−3 ] = k2 · [CO2] · 10(pH−14) − k−2 · [HCO−3 ] (11)

Equation 12 is the equation for the reverse reaction constant, k−1, as a function of the forward
reaction constant, k1 and the equilibrium constant, K1 [133].

k−1 =
k1
K1

(12)

Equation 13 is the equation for the reverse reaction constant, k−2, as a function of the forward
reaction constant, k2 and the equilibrium constant, K2 [133].

k−2 =
k2
K2

(13)
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4.2 Carbon Dioxide Solubility and Phase Transfer

Equation 14 is the formula for the saturation concentration of carbon dioxide. This equation is
necessary for the experiments as there was no measurement device that records the saturation
concentration of carbon dioxide. This equation uses Henry’s law which is able to convert the
partial pressure of carbon dioxide into the saturation concentration of carbon dioxide [134].

CO∗2 =
PCO2

H
(14)

Equation 15 involves ideal gas law which substitutes the partial pressure of carbon dioxide with
the molar concentration of carbon dioxide, ideal gas constant, and temperature. At a relatively
constant temperature, Henry’s law claims the amount of a given gas which dissolves in a given
type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium
with that liquid [135].

CO∗2 =
CO2mol

H
·R · T (15)

Equation 16 is an expression for the value of Henry’s constant, H , depending on temperature
[132]. The constants at the end of the equation change the units from Pa·L

mol
to atm·m3

mol
for unit

consistency.

H = [101330 · exp(11.549 − 2440.4

T
)] · 1

101325
· 1

1000
(16)

Equation 17 is the equation for the volumetric carbon dioxide transfer coefficient, kLaCO2

[136, 137]. This equation is a function of the RPS of the impeller, the minimum impeller speed
for complete dispersion of the sparged gas, and the superficial gas velocity. Lastly, the units are
converted from 1

s
to 1

hr
.

kLaCO2 = [1.59 · (
N

Ncd

)1.342 · (VG)0.93] · 3600 (17)
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Equation 18 is the equation for the minimum impeller speed for complete dispersion of the
sparged gas [136, 137]. It is a function of the volumetric gas flow rate, the diameter of the
bioreactor, and the diameter of the impeller.

Ncd =
4 · (QG)0.5 · (DB)0.25

D2
(18)

Equation 19 is the equation for the superficial gas velocity [138, 139]. This is determined by
taking the volumetric gas flow rate and dividing it by the cross-sectional area of the bioreactor.

VG =
QG

A
=
Af/(60 · 100)

π · (DB

2
)2

(19)

Equation 20 is the expression for the driving force potential. This is calculated by taking
the difference of the saturation concentration of carbon dioxide based off the carbon dioxide
concentration leaving the bioreactor, CO∗2, and the carbon dioxide dissolved in the liquid phase,
CO2d .

∆Cmoy = CO∗2 − CO2d (20)

4.3 Simplified Microorganism Kinetics

Equation 21 is the formula for the specific rate of biomass growth. This is equation is termed the
“Monod” equation [95]. It has become a popular method to describe how the rate of biomass
grows. The growth is dependent on maximum growth rate and the available substrate. The
substrate specific constant determines the optimum substrate concentration for the bacteria.
For example, when the substrate concentration is lower than the substrate specific constant, µ
becomes smaller than the maximum.

µ = µmax ·
S

(kS + S)
(21)
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4.4 Model Equations

Equation 22 is the differential equation describing how the volume changes as a function of time.
It is simply how much feed is put into the system as this is a batch-fed reaction. If there is no
feed going into the reactor the volume in the reactor stays constant. However, in practice this
is technically not the case as samples are taken from the reactor. These sample volumes are
assumed to be negligible compared to the reactor volume. If even greater precision is desired,
implementing the change of volume due to samples taken could be easily added into the model
[140].

dV

dt
= F (22)

Equation 23 is the differential equation which describes how the biomass changes as a function
of time. This equation has three terms in total. The first term describes how the biomass grows
given the substrate concentration. The second term involves the cell death coefficient and the
biomass concentration. This term describes how the bacteria dies thus the negative sign. The
third term considers the dilution of biomass due to feeding [140].

dX

dt
= µ ·X − kd ·X − F

V
·X (23)

Equation 24 is the differential equation describing how the substrate changes as a function of
time. This equation includes two terms in total. The first term accounts for the substrate taken
by the bacteria to produce biomass thus the negative sign. The amount of biomass formed per
grams of substrate is defined by the yield coefficient. The second term accounts for the addition
of sugar from the feed as well as the dilution due to the feed. The substrate concentration
influences the specific rate of biomass growth as seen in Equation 4-3. Therefore there is an
optimal concentration of substrate which the bacterium prefers for biomass growth [140].

dS

dt
= − 1

YX
S

· µ ·X +
F

V
· Sin −

F

V
· S (24)
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Equation 25 is the differential equation which describes how carbon dioxide changes as a function
of time [140]. This equation is also equivalent to the carbon dioxide transfer rate or CTR. This
equation has two terms in total. The first term considers the carbon dioxide formation due to
growth. The second term describes the dilution of carbon dioxide concentration in the broth due
to feeding.

dCO2

dt
= CTR =

µ ·X
YCO2

X

− F

V
· CO2 (25)

Equation 26 is the differential equation which describes the bicarbonate formation during the
fermentation process. This equation has two terms in total. The first term takes the reaction of
carbon dioxide in account as seen in Equations 5 and 6. The second term takes into account the
reverse of reactions [126].

dHCO−3
dt

= (k1 + k2 · 10pH−14) · CO2d − (k−2 + k−1 · 10−pH) ·HCO−3 (26)

Equation 27 is the differential equation for the change of the carbon dioxide concentration
dissolved in the liquid phase. This equation considers the diffusion of the carbon dioxide
concentration from the liquid phase to the gaseous phase. The higher the transfer coefficient and
driving force potential results in more carbon dioxide which can be expelled from the broth and
allows the broth to be oxygenated for more bacterial respiration. [126]

dCO2d

dt
= kLaCO2 · ∆Cmoy (27)

Equation 28 is the carbon dioxide evolution rate equation. There are three terms in total for
this equation. The first is the change of the dissolved carbon dioxide concentration term found
in Equation 27. The second and third terms are the same forward and reverse carbon dioxide
reactions seen in Equation 26 [126]. Lastly, the equation is converted from moles to grams for
easy structure compilation.

CER = MCO2 · [dCO2d + (k1 + k2 · 10pH−14) · CO2d − (k−2 + k−1 · 10−pH) ·HCO−3 ] (28)

33



4 MODELING NTNU

Equation 29 is the calculated CER or CCER. This equation takes into account the carbon dioxide
in the gaseous phase, the bicarbonate in the liquid phase, and the carbon dioxide dissolved in the
liquid phase. Looking again at Figure 4.1, the summation of these three terms derives the CCER
of the microorganism.

CCER = CO2 +HCO3 + CO2d (29)

Equation 30 is the differential equation which describes how the product, in this case GABA,
changes as a function of time [140]. The equation has two terms in total. The first term describes
the substrate consumption by defining how much product the bacterium can yield given the
amount of biomass. The second term describes the dilution of product concentration due to feed
into the bioreactor.

dP

dt
=

1

Y P
X

· µ ·X − F

V
· P (30)

Table 4.1 displays the constants used in the equations found in Section 4. These terms are given
a description, a value along with their units, and a reference. Estimated parameter values are
found in Section 4.5.

Table 4.1: Model constants for the glucose experiment with no GABA production

Term Description Value Units Ref.

D Diameter of impeller 0.046 m [141]

DB Diameter of bioreactor 0.115 m [141]

k1 Forward rate constant for r1 129.6 1
hr

[142]

k2 Forward rate constant for r2 4176 · 104 L
mol·hr [142]

KW Water dissociation constant 1.5849 · 10−14 mol2

L2 [143]

MCO2 Molar mass of carbon dioxide 44 g
mol

[144]

R Ideal gas constant 8.205736 · 10−5 atm·m3

K·mol
[145]

ρCO2 Density of carbon dioxide 1.98 g
L

[146]
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Table 4.2 displays the most important equations in Section 4 pertaining to the dynamic UKM.
This includes the nonlinear ordinary differential equations for volume, biomass, substrate, carbon
dioxide, bicarbonate, and product. This ODE is solved via the ode15s function in Matlab.

Table 4.2: Main equation of states model overview for Section 4.

dV

dt
= F (22 revisited)

dX

dt
= µ ·X − kd ·X − F

V
·X (23 revisited)

dS

dt
= − 1

YX
S

· µ ·X +
F

V
· Sin −

F

V
· S (24 revisited)

dCO2

dt
=
µ ·X
YCO2

X

− F

V
· CO2 (25 revisited)

dHCO−3
dt

= (k1 + k2 · 10pH−14) · CO2d − (k2 + k1 · 10−pH) ·HCO−3 (26 revisited)

dCO2d

dt
= kLaCO2 · ∆Cmoy (27 revisited)

dP

dt
=

1

Y P
X

· µ ·X − F

V
· P (30 revisited)
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4.5 Parameter Estimation

Parameter estimation is necessary to be able to properly and adequately use the models given
above. This is due to many of these parameters being difficult to calculate and, also, can change
from experiment to experiment. Therefore the best way to obtain a value is by parameter
estimation. Equation 31 is the general optimization equation which finds the minimal distance
between the experimental and model parameters of interest, represented as the vector y. Where
M is the number of parameters, N is the number of data for each parameter, and y being the
states of interest for both the model and the experiment. This iterative process works towards a
solution which “matches” these experimental and model states. Which should, in theory, provide
accurate parameter values for the processes if the model is completely correct [140].

J = min(
N∑
i=1

M∑
j=1

[(yexp,i − ymodel,i)j]
2) (31)

The estimated parameter values of the model structure are found in Table 4.3. These parameters
involve values obtained using the Kalman filters detailed in Section 5.

Table 4.3: Model parameters estimated by the Kalman filter for the glucose experiment with no GABA
production

Term Description Value Units

kd Cell death coefficient 0.0074 1
hr

kS Substrate specific constant 0.006 g
L

µmax Maximum specific growth rate 0.1529 1
hr

YX
S

Yield coefficient of biomass per substrate consumed 0.4719 gbiomass

gSubstrate

YCO2
X

Yield coefficient of CO2 per biomass consumed 0.788 gCO2

gbiomass

36



5 KALMAN FILTERS NTNU

5 Kalman Filters

5.1 Extended Kalman Filter

The Extended Kalman filter, or EKF, is implemented as in Simon’s ”Optimal state estimation”
[147]. The system is given with continuous-time dynamics and discrete-time measurements as
follows:

ẋ = f(x, u, ω) (32)

yk = Hxk (33)

ω ∼ (0, Q) (34)

vk ∼ (0, R) (35)

For k = 1, · · ·, Nend, state estimate and its covariance are calculated as:

˙̂x = f(x̂, u, 0) (36)

Ṗ = AP + PAT +Q (37)

Equations 36 and 37 are integrated from (k − 1)+ to k− where:

A =
∂f

∂x

The measurements yk are incorporated at time k as follows:

Kk = P−k H
T (HP−k H

T +R)−1 (38)

x̂+k = x̂−k +Kk(yk −Hx̂−k ) (39)

P+
k = (I −KkH)P−k (I −KkH)T +KkRK

T
k (40)
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5.2 Unscented Kalman Filter

The system is given as in Equations 32-35. The state estimate and the covariance for the
Unscented Kalman filter, or UKF, are implemented as follows [147]. To propagate the system
from time (k − 1)+ to k−, we choose the sigma points as:

x̂
(i)
k−1 = x̂

(+)
k−1 + x̃(i) i = 1, · · ·, 2n

x̃(i) =

(√
nPk−1

+

)
i

T

i = 1, · · ·, n

x̃(n+i) = −
(√

nPk−1
+

)
i

T

i = 1, · · ·, n (41)

The matrix square root was calculated by using Cholesky factorization. We transform the sigma
points using the non-linear system f(·):

x̂
(i)
k = f(x̂

(i)
k−1, uk) (42)

Combine them to obtain the a priori state estimate at time k:

x̂−k =
1

2n

2n∑
i=1

x̂
(i)
k (43)

And estimate the a priori error covariance as:

P̂−k =
1

2n

2n∑
i=1

(x̂
(i)
k − x̂−k )(x̂

(i)
k − x̂−k )T +Q (44)

For the measurement updates, we transform the sigma points into ŷ(i)k :

ŷ
(i)
k = Hx̂

(i)
k (45)
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And combine them to obtain the predicted measurement at time k:

ŷk =
1

2n

2n∑
i=1

ŷ
(i)
k (46)

We estimate the covariance of the predicted measurements as:

Py =
1

2n

2n∑
i=1

(ŷ
(i)
k − ŷk)(ŷ

(i)
k − ŷk)T +R (47)

And the cross covariance between x̂−k and ŷk as:

Pxy =
1

2n

2n∑
i=1

(x̂
(i)
k − x̂−k )(ŷ

(i)
k − ŷk)T (48)

The measurement update is:

Kk = PxyPy
−1 (49)

x̂+k = x̂−k +Kk(yk − ŷk) (50)

Pk
+ = Pk

− +KkPyKk
T (51)
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6 Results and Discussion

6.1 GABA Production

Table 6.1 shows the production and productivity of the C. glutamicum strain tested using glucose,
synthetic SSL, and SSL as substrates. It can be seen the synthetic SSL medium allows for a
higher productivity of GABA compared to simply utilizing glucose. The diversity of sugars
involved in the synthetic SSL allows the bacteria to be more efficient when using solely glucose.
However, the results showcased in this table may not be entirely correct due to saturated HPLC
peaks. The saturated GABA peaks on the HPLC most likely mean the numbers presented are
in reality conservative. These obtained conservative results are 2.473 g

L
and 0.055 g/L/hr

for the glucose experiment and 6.832 g
L

and 0.152 g/L/hr for the synthetic SSL experiment.
Unfortunately, due to laboratory constraints mandated by the Covid-19 pandemic, the SSL
experiment was not able to be fully analyzed. These GABA results are quite small when looking
at the results from other experiments in Table 2.1. Therefore, the method for HPLC analysis
should be modified and tried again in order to fully encapsulate the GABA peaks. That in turn
should provide the correct results for the fermentations investigated.

Table 6.1: GABA production with GMO strain, substrates, fermentation condition, and productivity.

Strains Substrates
Fermentation

conditions

GABA
Ref.

Titer (g/L)
Productivity

(g/L/hr)

Corynebacterium

glutamicum

ATCC13032

Glucose

medium
Fed-batch 2.473 0.055 This

Study

C. glutamicum

ATCC13032

Synthetic

SSL

medium

Fed-batch 6.832 0.152 This

Study

C. glutamicum

ATCC13032

SSL

medium
Fed-batch TBD TBD This

Study
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6.2 Biomass and Carbon Dioxide Production

Figure 6.1 details the carbon dioxide and biomass concentrations throughout the duration of
the experiment. This fed-batch experiment was given the feed from hours 20 to 24. It can
be seen the carbon dioxide closely follows the same growth as the biomass concentration.
The stagnant stages of carbon dioxide indicate there is no energy usage during the aerobic
fermentation. Consequently, the biomass population is slowly dying given by the slightly
negative curve. This confirms the assumption which correlates the fast, easily measurable carbon
dioxide concentrations with the noise-laden NIR probe measures for biomass concentration. The
end phase of the fermentation shows the biomass peak and then decay to what looks to be at
least a partial steady state concentration.

Figure 6.1: Carbon dioxide concentration versus biomass concentration, which is calculated via the NIR
probe, for the wild type non-product fed-batch fermentation experiment. The units for the concentrations
are in grams per liter. The slope increases when substrate is available and levels off when the biomass is
substrate starved.
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6.2.1 Bicarbonate and Carbon Dioxide Analysis

Figure 6.2 demonstrates the carbon dioxide concentration along with the base, KOH , fed
throughout the time of the experiment. It can be seen the base fed into the reactor follows quite
closely with the carbon dioxide emitted. This should be the case as a solution of carbon dioxide
is slightly acidic. This acidity derives from the bicarbonate formation seen in Equations 5 and 6.
The reason why carbon dioxide solutions are slightly acidic is due to the equilibrium with water
which produces hydrogen ions which are acidic. This plot depicts the direct relationship during
the experiment and shows that CER is occurring.

Figure 6.2: Carbon dioxide concentration versus base concentration for the wild type non-product
fed-batch fermentation experiment. The units for the carbon dioxide concentration is in grams per liter.
The amount of base supplied to the system is shown in units of mL. The slope increases when substrate is
available and levels off when the biomass is substrate starved.
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Figure 6.3 shows both the carbon dioxide off-gas and the carbon dioxide via the calculated
CER. It can be seen the CCER follows the measured carbon dioxide off-gas perfectly! Thus,
the modeling and formulation which were utilized worked successfully. This also shows that
Equation 29, the formula for CCER, has negligible dissociated and dissolved carbon dioxide
terms. This is due to the small magnitudes of the dissolved carbon dioxide and bicarbonate seen
in Figure 6.4. Consequently, modeling the liquid phase of bicarbonate and carbon dioxide is not
required to perfectly model the fermentation process.

Figure 6.3: Carbon dioxide off-gas concentration versus carbon dioxide concentration, calculated by
using the carbon dioxide evolution rate, for the wild type non-product fed-batch fermentation. The units
for the concentrations are in grams per liter. The slope increases when substrate is available and levels off
when the biomass is substrate starved.
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Figure 6.4 displays the bicarbonate and dissolved carbon dioxide concentrations throughout the
duration of the experiment. These results were simulated within the model and the states of
both during the experiment are provided. It can be seen the order of magnitude, 10−3, for the
concentrations are relatively the same. The beginning of the experiment starts at a concentration
close to zero and ends with the concentration also very close to zero. Therefore, the carbon
dioxide and bicarbonate which enters the system also leaves the system. As detailed, the dissolved
carbon dioxide terms used in the model are negligible and do not need to be considered.

Figure 6.4: Bicarbonate concentration versus dissolved carbon dioxide concentration for the wild type
non-product fermentation fed-batch fermentation. The units for the concentrations are in moles per liter.
Peaks can be seen when the biomass converts substrate to cellular energy.
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6.3 Kalman Filters

Below details the results of the Kalman filters. The initial conditions of volume, CDW, substrate,
and carbon dioxide were given as:

[ht]x0 =

[
1.5 1.2 20 0

]T
x̂+0 = x0

P0
+ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(52)

And the measurement and process noises are:

R =


10−4 0 0 0

0 1.954 0 0

0 0 10−2 0

0 0 0 0.2



Q =


0.1 0 0 0

0 1.954 · 10−2 0 0

0 0 10−4 0

0 0 0 1


(53)

With the measurement matrix simply as:

H =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(54)
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The measurements available for the filter are the volume, the CDW as defined in Equation 3, the
substrate, and the carbon dioxide:

y =


V

CDW

S

CO2


(55)

6.3.1 Biomass Analysis

The filters receive signals from the sensors every 60 seconds. The results for the biomass are
reported in Figure 6.5. The UKF is able to filter the signal and remove the noise following the
measurements while the EKF results gain trust in the predictions over the observations. This
makes it difficult to regain the correct variance and makes the filter divergent. The actual errors
between the true and estimated states tend to be larger than those predicted by the calculated
covariance matrix. This deviation is observed when the system at steady state is perturbed by the
input (around 23 hrs Fig. 6.5). The performance of the UKF shows if higher order information is
available about the distribution it can then be incorporated to improve the estimate.

Figure 6.5: Biomass plots for the CDW experiment with the model, EKF and UKF implemented. The
Kalman filters are used to smooth the signal from the biomass sensor. The filters are compared with
the performances of the model in (a). The UKF is able to filter out the noise while the EKF diverges
from the off-line measurements. The UKF performance is then directly compared in (b) with the sensor
measurements. Utilizing the UKF, noise from the sensor following the measurements is able to filtered
out.
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6.3.2 Substrate Analysis

By exploiting the information carried by the IR off-gas measurement, it is also possible to
have online measurements of the substrate. However, this is possible only during the fed-batch
phase and not during the batch phase. This is because during that phase the carbon dioxide
production is not linearly related to the substrate concentration. The filter therefore starts
receiving measurements at the end of the batch as visible in Figure 6.6. The results demonstrate
the filter can be tuned appropriately and allows for online measurements of the substrate as
well. However, it is preferable to add the information from the real measurement to prevent any
possible failure. The observability of the system can be investigated by using Lie derivatives
[148]. The limitation of the estimation for the sugars derives from an inaccurate measurement of
the volume. The volume measurement needs to be improved to allow for more accurate estimates.
Taking into account the volume increase due to the acid, base and antifoam is most likely the
best solution.

Figure 6.6: Substrate plots for the CDW experiment with the model, EKF and UKF implemented. In this
case, the model dynamics seem to accurately describe the sugar consumption. However, it is preferable to
add the information from the real measurement to prevent any possible failure. Both filters here have a
comparable performance. The filter is used as a smother to correct the signal from the substrate sensor.
The estimation results are compared with the performances of the model in (a) and then in (b) with the
sensor measurements. As already said for the biomass, and in this case, the estimator is blind to the offline
measurements. The limitation on the estimation of the sugars comes from an inaccurate measurement of
the volume which needs to be improved to allow the filters to give accurate estimates.
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7 Conclusion

The results of this work demonstrates successful implementation of a non-linear unstructured
kinetic model used alongside both an Unscented and an Extended Kalman filter for state
estimation. The available online measurements were shown to effectively describe the dynamic
behavior of the process which can lead to closer estimations of all the important states of interest.
The results from the estimators show, in this specific case, the Unscented Kalman Filter seems
to be a suitable estimator for monitoring of biomass and substrate. The estimator allows for
frequent measurement without the presence of noise or the use of any offline measurements.
Parameter estimation can be included to correct the uncertainty of the model and allow for using
the filters for more accurate prediction of the states. The results from the present approach are
quite promising and can be further exploited by increasing the number of measurements and
thus the estimated states like product formation. The initial aim was to test the estimators for
the GABA producing strain which includes product estimation under the presence of a complex
sugar mixture such as SSL. However, this was not possible due to the University and laboratory
restrictions which became necessary during the spread of the COVID-19 pandemic.
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8 Further Work

Further work involving this research includes verifying HPLC measurements for the sugars and
GABA from the SSL experiment, verifying fermentation results by doing duplicate identical
experiments, implementing the product model in the UKM, and looking into the possibility to
estimate the product in a strain developed to deplete multiple sugars such as SSL. Unfortunately,
the product model could not be investigated due to the lab being at capacity for use of the
HPLC after the lab restrictions were put into place due to the COVID-19 pandemic. This
product state will be studied once the results have been obtained from the HPLC. Multiple
identical experiments should be accomplished in order to properly verify the effectiveness of
the estimator. The results of the present approach can be exploited further by increasing the
number of measurements which will then allow for more estimated states. This is another way to
accomplish the determination of product formation.
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and carbon dioxide evolution rate in aerobic thermophilic sludge digestion. Periodica Polytechnica

Chemical Engineering, 51(1):17–22, 2007.

[130] L Wu, HC Lange, WM Van Gulik, and JJ Heijnen. Determination of in vivo oxygen uptake

and carbon dioxide evolution rates from off-gas measurements under highly dynamic conditions.

Biotechnology and bioengineering, 81(4):448–458, 2003.

59



REFERENCES NTNU

[131] Jeffrey M Smith, Stowell W Davison, and Gregory F Payne. Development of a strategy to control

the dissolved concentrations of oxygen and carbon dioxide at constant shear in a plant cell bioreactor.

Biotechnology and bioengineering, 35(11):1088–1101, 1990.

[132] IG Minkevich and M Neubert. Influence of carbon dioxide solubility on the accuracy of

measurements of carbon dioxide production rate by gas balance technique. Acta biotechnologica,

5(2):137–143, 1985.

[133] Jessie A Key and David W Ball. Introductory Chemistry-1st Canadian Edition. BCcampus, 2014.

[134] William Henry. Iii. experiments on the quantity of gases absorbed by water, at different temperatures,

and under different pressures. Philosophical Transactions of the Royal Society of London, pages

29–274, 1803.

[135] Clifford Pickover. Archimedes to Hawking: laws of science and the great minds behind them.

Oxford University Press, 2008.

[136] D Moutafchieva, D Popova, M Dimitrova, and S Tchaoushev. Experimental determination

of the volumetric mass transfer coefficient. Journal of Chemical Technology and Metallurgy,

48(4):351–356, 2013.

[137] Archis A Yawalkar, Albertus BM Heesink, Geert F Versteeg, and Vishwas G Pangarkar. Gas—liquid

mass transfer coefficient in stirred tank reactors. The Canadian Journal of Chemical Engineering,

80(5):840–848, 2002.

[138] DOE Fundamentals Handbook. Thermodynamics, heat transfer and fluid flow. US Department of

Energy, 1:53–96, 1992.

[139] Mark Ramsey et al. Schlumberger oilfield glossary, 2019.

[140] Olympia Roeva and Stoyan Tzonkov. Modelling of escherichia coli cultivations: acetate inhibition

in a fed-batch culture. Bioautomation, 4:1–11, 2006.

[141] Infors HT. Infors HT Labfors 5 Operating Manual. Infors HT.

[142] BRW Pinsent, L Pearson, and FJW Roughton. The kinetics of combination of carbon dioxide with

hydroxide ions. Transactions of the Faraday Society, 52:1512–1520, 1956.

[143] Daniel L Purich and R Donald Allison. Handbook of biochemical kinetics: a guide to dynamic

processes in the molecular life sciences. Elsevier, 1999.

[144] Daniel L Reger, Scott R Goode, and David W Ball. Chemistry: principles and practice. Cengage

Learning, 2009.

[145] Barry N Taylor, Peter J Mohr, and M Douma. The nist reference on constants, units, and uncertainty.

available online from:. physics. nist. gov/cuu/index, 2007.

60



REFERENCES NTNU

[146] Spencer L Seager and Michael R Slabaugh. Chemistry for today: General, organic, and

biochemistry. Cengage learning, 2013.

[147] Dan Simon. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley

& Sons, 2006.

[148] Henk Nijmeijer and Arjan Van der Schaft. Nonlinear dynamical control systems, volume 175.

Springer, 1990.

[149] Alexandra Hofer, Paul Kroll, and Christoph Herwig. Glucose monitoring and control using numera,

lucullus pims and cedex® bio ht analyzer, 2018.

[150] Securecell. Numera – the unique pat solution. https://securecell.ch/wp-content/

uploads/2019/09/Numera_Flyer.pdf. Accessed: 2019-12-13.

61



APPENDICES NTNU

Appendices

A Auto-Sampling Experimental Setup

A.1 Numera and Lucullus Overview

The Ring of Fire method can be implemented in the same manner for the hardware and software which

pertains to Numera© and Lucullus© . The resemblance between Figure 2.7 and Figure A.1 is striking.

Therefore, this configuration of Numera© and Lucullus© should be able to accomplish the ultimate goals

of an industrial bio-process. The intricacies of the hardware mentioned can be found in Section A.2.

Figure A.1: With the ”Ring of Fire” theory in mind, the Numera and Lucullus modules can effectively
achieve the same steps. These steps include: monitoring, measuring, control, and optimization [149].
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A.2 Numera© Setup

The hardware required for the Numera© and Lucullus© system described in Section A.1 can be configured

as seen in Figure A.2. This system is very modular and can be quite complex depending on the desired

outcome. Starting from the left, the system can have up to twelve bioreactors working simultaneously.

In the middle of the figure, the Numera© modules involve various operations that can be done to the

process. For example, the multiplexer brings the samples from the bioreactor to the other modules. The

dilution module simply dilutes the sample to make it readily available for testing. The filtering module

can separate the biomass from the substrates and products in the samples. This separation is useful for

testing samples in the HPLC for an accurate concentration of substrate and/or products. Once the sample

has been diluted and/or filtered, the sample is injected into vials by the autosampler. These modules are

overseen and controlled via the control module which is connected to the Lucullus© software and the

bioreactors. Once the samples are collected, Lucullus© can control third party analyzers and automatically

start taking data from it. Along with the automatic sampling and analysis, the system still allows for

manual samples for offline analysis as well. Therefore, in theory, this system can take samples, analyze

samples, interpret the samples, and control the bio-process via the results. Thus, if implemented correctly,

drastically reduces the effort required for experiments. Once this system and knowledge is perfected, it

may be able to play a much greater role in how industrial microbiology evolves.

Figure A.2: Diagram of physical equipment, interaction, and setup for the combination Numera© and
Lucullus© [150]. This automated sampling configuration starts with the bioreactors on the left, with the
various modules in the middle, and the sample injector on the right. This process is choreographed and
controlled with the Lucullus software, which can control the entire workflow process of Numera©. This
configuration can also have additional third-party equipment synced as well as offline measurements.
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B Experiment Data

B.1 Wild Type Strain Data Using Glucose

Table B.1: Wild type strain using glucose (with no GABA production) sugar and biomass experiment
data

Sugars Biomass

Real Time time (days) Concentration (mM) C glucose (g · L−1) Real Time time (days) Sample OD diluted Dilution OD real

27/06/19 13:00 0.000 20 27/06/19 13:00 0.00 1

27/06/19 14:55 0.080 n.a. 27/06/19 14:39 0.07 B1 0.227 10 2.27

27/06/19 16:42 0.154 n.a. 27/06/19 16:13 0.13 B2 0.165 20 3.3

27/06/19 18:42 0.238 92.0596 16.62228138 27/06/19 18:13 0.22 B3 0.164 40 6.56

27/06/19 20:42 0.321 63.7044 11.50246646 27/06/19 20:13 0.30 B4 0.138 80 11.04

27/06/19 22:42 0.404 36.4319 6.578143864 27/06/19 22:13 0.38 B5 0.154 100 15.4

28/06/19 0:42 0.488 2.6294 0.474764464 28/06/19 0:13 0.47 B6 0.212 100 21.2

28/06/19 2:42 0.571 2.2176 0.400409856 28/06/19 2:13 0.55 B7 0.212 100 21.2

28/06/19 4:42 0.654 1.1908 0.215010848 28/06/19 4:13 0.63 B8 0.209 100 20.9

28/06/19 6:42 0.738 2.2812 0.411893472 28/06/19 6:13 0.72 B9 0.208 100 20.8

28/06/19 8:42 0.821 2.2932 0.414060192 28/06/19 8:13 0.80 B10 0.208 100 20.8

28/06/19 10:42 0.904 1.1784 0.212771904 28/06/19 10:13 0.88 B11 0.205 100 20.5

28/06/19 12:42 0.988 19.026 3.43533456 28/06/19 12:13 0.97 B12 0.226 100 22.6

28/06/19 14:42 1.071 61.9318 11.18240581 28/06/19 14:13 1.05 B13 0.164 200 32.8

28/06/19 16:42 1.154 4.4986 0.812267216 28/06/19 16:13 1.13 B14 0.217 200 43.4

28/06/19 18:42 1.238 0.967 0.17460152 28/06/19 18:13 1.22 B15 0.201 200 40.2

28/06/19 20:42 1.321 n.a. 28/06/19 20:13 1.30 B16 0.189 200 37.8

28/06/19 22:42 1.404 0.9008 0.162648448 28/06/19 22:13 1.38 B17 0.183 200 36.6

29/06/19 0:42 1.488 1.7024 0.307385344 29/06/19 0:13 1.47 B18 n.a. 200

29/06/19 2:42 1.571 n.a. 29/06/19 2:13 1.55 B19 0.177 200 35.4

29/06/19 4:42 1.654 n.a. 29/06/19 4:13 1.63 B20 0.177 200 35.4

29/06/19 6:42 1.738 n.a. 29/06/19 6:13 1.72 B21 0.176 200 35.2

29/06/19 8:42 1.821 n.a. 29/06/19 8:13 1.80 B22 0.18 200 36

29/06/19 10:42 1.904 n.a. 29/06/19 10:13 1.88 B23 0.169 200 33.8

29/06/19 12:42 1.988 n.a. 29/06/19 12:13 1.97 B24 0.168 200 33.6

29/06/19 14:42 2.071 n.a. 29/06/19 14:13 2.05 B25 0.183 200 36.6

29/06/19 16:42 2.154 n.a. 29/06/19 16:13 2.13 B26 0.168 200 33.6

29/06/19 18:42 2.238 n.a. 29/06/19 18:13 2.22 B27 0.173 200 34.6

29/06/19 20:42 2.321 n.a. 29/06/19 20:13 2.30 B28 0.17 200 34

29/06/19 22:42 2.404 n.a. 29/06/19 22:13 2.38 B29 0.154 200 30.8

30/06/19 0:42 2.488 n.a. 30/06/19 0:13 2.47 B30 0.164 200 32.8

30/06/19 2:42 2.571 n.a. 30/06/19 2:13 2.55 B31 0.169 200 33.8

30/06/19 4:42 2.654 n.a. 30/06/19 4:13 2.63 B32 0.159 200 31.8

30/06/19 6:42 2.738 n.a. 30/06/19 6:13 2.72 B33 0.161 200 32.2

30/06/19 8:42 2.821 n.a. 30/06/19 8:13 2.80 B34 0.161 200 32.2

30/06/19 10:42 2.904 n.a. 30/06/19 10:13 2.88 B35 0.157 200 31.4

30/06/19 12:42 2.988 n.a. 30/06/19 12:13 2.97 B36 0.157 200 31.4
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B.2 GMO Strain Data Using Glucose

Table B.2: GMO strain using glucose (with GABA production) sugar and biomass experiment data

Sugars Biomass GABA

Real Time time (days) Concentration (mM) C glucose (g · L−1) Real Time time (days) Sample OD diluted Dilution OD real Real Time time (days) Concentration (mM) C GABA (g · L−1)

10/22/19 14:30 0.000 40.2 10/22/19 14:30 0.00 1 10/22/19 14:30 0.000 0

10/22/19 16:10 0.069 252.2133 45.53963345 10/22/19 15:40 0.05 B1 0.203 10 2.03 10/22/19 16:10 0.069 0.0555 0.00572316

10/22/19 18:10 0.153 250.042 45.14758352 10/22/19 17:40 0.13 B2 0.221 10 2.21 10/22/19 18:10 0.153 0.0537 0.005537544

10/22/19 20:10 0.236 245.619 44.34896664 10/22/19 19:40 0.22 B3 0.119 20 2.38 10/22/19 20:10 0.236 0.0932 0.009610784

10/22/19 22:10 0.319 244.8233 44.20529505 10/22/19 21:40 0.30 B4 0.125 20 2.5 10/22/19 22:10 0.319 0.1584 0.016334208

10/23/19 0:10 0.403 242.135 43.7198956 10/22/19 23:40 0.38 B5 0.124 20 2.48 10/23/19 0:10 0.403 0.2138 0.022047056

10/23/19 2:10 0.486 233.2524 42.11605334 10/23/19 1:40 0.47 B6 0.125 20 2.5 10/23/19 2:10 0.486 0.2741 0.028265192

10/23/19 4:10 0.569 231.8741 41.8671875 10/23/19 3:40 0.55 B7 0.132 20 2.64 10/23/19 4:10 0.569 0.3688 0.038030656

10/23/19 6:10 0.653 232.0904 41.90624262 10/23/19 5:40 0.63 B8 0.13 20 2.6 10/23/19 6:10 0.653 0.2988 0.030812256

10/23/19 8:10 0.736 225.6759 40.7480405 10/23/19 7:40 0.72 B9 0.14 20 2.8 10/23/19 8:10 0.736 0.289 0.02980168

10/23/19 10:10 0.819 224.3556 40.50964714 10/23/19 9:40 0.80 B10 0.15 20 3 10/23/19 10:10 0.819 0.3409 0.035153608

10/23/19 12:10 0.903 227.4536 41.06902202 10/23/19 11:40 0.88 B11 0.165 20 3.3 10/23/19 12:10 0.903 0.4516 0.046568992

10/23/19 14:10 0.986 231.7255 41.84035628 10/23/19 13:40 0.97 B12 0.189 20 3.78 10/23/19 14:10 0.986 0.3383 0.034885496

10/23/19 16:10 1.069 224.6022 40.55417323 10/23/19 15:40 1.05 B13 0.226 20 4.52 10/23/19 16:10 1.069 0.1935 0.01995372

10/23/19 18:10 1.153 218.1775 39.3941294 10/23/19 17:40 1.13 B14 0.138 40 5.52 10/23/19 18:10 1.153 0.1259 0.012982808

10/23/19 20:10 1.236 214.698 38.76587088 10/23/19 19:40 1.22 B15 0.175 40 7 10/23/19 20:10 1.236 0.1167 0.012034104

10/23/19 22:10 1.319 201.1098 36.31238549 10/23/19 21:40 1.30 B16 0.219 40 8.76 10/23/19 22:10 1.319 0.1818 0.018747216

10/24/19 0:10 1.403 185.5253 33.49844817 10/23/19 23:40 1.38 B17 0.222 50 11.1 10/24/19 0:10 1.403 0.2704 0.027883648

10/24/19 2:10 1.486 162.9542 29.42301035 10/24/19 1:40 1.47 B18 0.143 100 14.3 10/24/19 2:10 1.486 0.0698 0.007197776

10/24/19 4:10 1.569 120.6785 21.78970996 10/24/19 3:40 1.55 B19 0.196 100 19.6 10/24/19 4:10 1.569 0.1768 0.018231616

10/24/19 6:10 1.653 59.6386 10.76834562 10/24/19 5:40 1.63 B20 0.023 1000 23 10/24/19 6:10 1.653 0.3737 0.038535944

10/24/19 8:10 1.736 7.13 1.2873928 10/24/19 7:40 1.72 B21 0.037 1000 37 10/24/19 8:10 1.736 0.0217 0.002237704

10/24/19 10:10 1.819 7.2059 1.301097304 10/24/19 9:40 1.80 B22 0.04 1000 40 10/24/19 10:10 1.819 0.0204 0.002103648

10/24/19 12:10 1.903 8.8023 1.589343288 10/24/19 11:40 1.88 B23 0.036 1000 36 10/24/19 12:10 1.903 0.018 0.00185616

10/24/19 14:10 1.986 6.8411 1.235229016 10/24/19 13:40 1.97 B24 0.034 1000 34 10/24/19 14:10 1.986 0.0112 0.001154944

10/24/19 16:10 2.069 0 0 10/24/19 15:40 2.05 B25 0.033 1000 33 10/24/19 16:10 2.069 0.016 0.00164992

10/24/19 18:10 2.153 0 0 10/24/19 17:40 2.13 B26 0.072 500 36 10/24/19 18:10 2.153 0.0117 0.001206504

10/24/19 20:10 2.236 92.6994 16.73780366 10/24/19 19:40 2.22 B27 0.063 500 31.5 10/24/19 20:10 2.236 0.327 0.03372024

10/24/19 22:10 2.319 289.6961 52.30752782 10/24/19 21:40 2.30 B28 0.059 500 29.5 10/24/19 22:10 2.319 0.7142 0.073648304

10/25/19 0:10 2.403 287.0516 51.8300369 10/24/19 23:40 2.38 B29 0.05 500 25 10/25/19 0:10 2.403 0.808 0.08332096

10/25/19 2:10 2.486 281.4058 50.81063125 10/25/19 1:40 2.47 B30 0.049 500 24.5 10/25/19 2:10 2.486 0.7016 0.072348992

10/25/19 4:10 2.569 264.234 47.71009104 10/25/19 3:40 2.55 B31 0.048 500 24 10/25/19 4:10 2.569 0.7444 0.076762528

10/25/19 6:10 2.653 253.8206 45.82984754 10/25/19 5:40 2.63 B32 0.048 500 24 10/25/19 6:10 2.653 0.9042 0.093241104

10/25/19 8:10 2.736 244.149 44.08354344 10/25/19 7:40 2.72 B33 0.047 500 23.5 10/25/19 8:10 2.736 0.8992 0.092725504

10/25/19 10:10 2.819 236.74 42.7457744 10/25/19 9:40 2.80 B34 0.046 500 23 10/25/19 10:10 2.819 0.761 0.07847432

10/25/19 12:10 2.903 226.7913 40.94943713 10/25/19 11:40 2.88 B35 0.046 500 23 10/25/19 12:10 2.903 0.9272 0.095612864

10/25/19 14:10 2.986 222.3868 40.15416061 10/25/19 13:40 2.97 B36 0.047 500 23.5 10/25/19 14:10 2.986 0.8046 0.082970352

10/25/19 16:10 3.069 126.513 22.84318728 10/25/19 15:40 3.05 B37 0.047 500 23.5 10/25/19 16:10 3.069 0.6239 0.064336568

10/25/19 18:10 3.153 118.4162 21.38122907 10/25/19 17:40 3.13 B38 0.045 500 22.5 10/25/19 18:10 3.153 0.7685 0.07924772

10/25/19 20:10 3.236 109.9353 19.84991777 10/25/19 19:40 3.22 B39 0.046 500 23 10/25/19 20:10 3.236 0.7224 0.074493888

10/25/19 22:10 3.319 102.3113 18.47332833 10/25/19 21:40 3.30 B40 0.047 500 23.5 10/25/19 22:10 3.319 0.6114 0.063047568

10/26/19 0:10 3.403 89.1343 16.09408921 10/25/19 23:40 3.38 B41 0.046 500 23 10/26/19 0:10 3.403 0.701 0.07228712

10/26/19 2:10 3.486 87.4167 15.78395935 10/26/19 1:40 3.47 B42 0.0455 500 22.75 10/26/19 2:10 3.486 0.666 0.06867792

10/26/19 4:10 3.569 78.4602 14.16677371 10/26/19 3:40 3.55 B43 0.045 500 22.5 10/26/19 4:10 3.569 0.5496 0.056674752

10/26/19 6:10 3.653 69.2319 12.50051186 10/26/19 5:40 3.63 B44 0.042 500 21 10/26/19 6:10 3.653 0.6023 0.062109176

10/26/19 8:10 3.736 69.2204 12.49843542 10/26/19 7:40 3.72 B45 0.041 500 20.5 10/26/19 8:10 3.736 0.5376 0.055437312

10/26/19 10:10 3.819 47.9286 8.653988016 10/26/19 9:40 3.80 B46 0.04 500 20 10/26/19 10:10 3.819 0.3766 0.038834992

10/26/19 12:10 3.903 54.9792 9.927044352 10/26/19 11:40 3.88 B47 0.037 500 18.5 10/26/19 12:10 3.903 0.5879 0.060624248

10/26/19 14:10 3.986 49.3834 8.916666704 10/26/19 13:40 3.97 B48 0.036 500 18 10/26/19 14:10 3.986 0.476 0.04908512

10/26/19 16:10 4.069 42.0424 7.591175744 10/26/19 15:40 4.05 B49 0.036 500 18 10/26/19 16:10 4.069 0.5214 0.053766768

10/26/19 18:10 4.153 37.108 6.70022048 10/26/19 17:40 4.13 B50 0.036 500 18 10/26/19 18:10 4.153 0.5315 0.05480828

10/26/19 20:10 4.236 32.8353 5.928741768 10/26/19 19:40 4.22 B51 0.04 500 20 10/26/19 20:10 4.236 0.5137 0.052972744

10/26/19 22:10 4.319 26.881 4.85363336 10/26/19 21:40 4.30 B52 0.039 500 19.5 10/26/19 22:10 4.319 0.4287 0.044207544

10/27/19 0:10 4.403 22.8283 4.121877848 10/26/19 23:40 4.38 B53 0.036 500 18 10/27/19 0:10 4.403 0.4396 0.045331552

10/27/19 2:10 4.486 17.657 3.18814792 10/27/19 1:40 4.47 B54 0.037 500 18.5 10/27/19 2:10 4.486 0.3848 0.039680576

10/27/19 4:10 4.569 13.5377 2.444367112 10/27/19 3:40 4.55 B55 0.037 500 18.5 10/27/19 4:10 4.569 0.3971 0.040948952

10/27/19 6:10 4.653 9.372 1.69220832 10/27/19 5:40 4.63 B56 0.039 500 19.5 10/27/19 6:10 4.653 0.3556 0.036669472

10/27/19 8:10 4.736 0 0 10/27/19 7:40 4.72 B57 0.038 500 19 10/27/19 8:10 4.736 0.32 0.0329984

10/27/19 10:10 4.819 0 0 10/27/19 9:40 4.80 B58 0.039 500 19.5 10/27/19 10:10 4.819 0.3059 0.031544408

10/27/19 12:10 4.903 0 0 10/27/19 11:40 4.88 B59 0.036 500 18 10/27/19 12:10 4.903 0.2566 0.026460592

10/27/19 14:10 4.986 0 0 10/27/19 13:40 4.97 B60 0.04 500 20 10/27/19 14:10 4.986 0.1719 0.017726328

IV



APPENDICES NTNU

B.3 GMO Strain Data Using Synthetic SSL

Table B.3: GMO strain using synthetic SSL (with GABA production) sugar, biomass, and GABA
experiment data

Sugars Biomass GABA

Real Time time (days) Concentration (mM) C glucose (g · L−1) Xylose (mM) Xylose (g · L−1) Mannose (mM) Mannose (g · L−1) Real Time time (days) Sample OD diluted Dilution OD real Real Time time (days) Concentration (mM) C GABA (g · L−1)

10/22/19 14:30 0.000 7.2 9 22 10/22/19 14:30 0.00 1 10/22/19 14:30 0.000 0

10/22/19 15:10 0.028 49.3533 8.911231848 67.8446 10.1855098 133.0271 23.96563023 10/22/19 14:40 0.01 A1 0.179 10 1.79 10/22/19 15:10 0.028 0.0593 0.006115016

10/22/19 17:10 0.111 48.4042 8.739862352 68.7386 10.31972602 135.2908 24.37344936 10/22/19 16:40 0.09 A2 0.201 10 2.01 10/22/19 17:10 0.111 0.0771 0.007950552

10/22/19 19:10 0.194 45.2872 8.177056832 68.0841 10.22146593 134.3606 24.20586825 10/22/19 18:40 0.17 A3 0.114 20 2.28 10/22/19 19:10 0.194 0.1185 0.01221972

10/22/19 21:10 0.278 44.07 7.9572792 69.8737 10.49013858 137.8339 24.83160409 10/22/19 20:40 0.26 A4 0.117 20 2.34 10/22/19 21:10 0.278 0.1662 0.017138544

10/22/19 23:10 0.361 41.567 7.50533752 68.4511 10.27656364 136.4413 24.58071884 10/22/19 22:40 0.34 A5 0.118 20 2.36 10/22/19 23:10 0.361 0.2325 0.0239754

10/23/19 1:10 0.444 37.645 6.7971812 70.1513 10.53181467 132.897 23.94219193 10/23/19 0:40 0.42 A6 0.116 20 2.32 10/23/19 1:10 0.444 0.2446 0.025223152

10/23/19 3:10 0.528 35.2914 6.372215184 68.4455 10.27572292 131.2688 23.64886193 10/23/19 2:40 0.51 A7 0.114 20 2.28 10/23/19 3:10 0.528 0.3183 0.032823096

10/23/19 5:10 0.611 30.6196 5.528674976 62.607 9.39918891 126.9497 22.87075015 10/23/19 4:40 0.59 A8 0.115 20 2.3 10/23/19 5:10 0.611 0.0447 0.004609464

10/23/19 7:10 0.694 28.6656 5.175860736 62.2229 9.341523977 126.1689 22.73008435 10/23/19 6:40 0.67 A9 0.125 20 2.5 10/23/19 7:10 0.694 0.0465 0.00479508

10/23/19 9:10 0.778 26.6858 4.818388048 62.0336 9.313104368 126.5172 22.79283268 10/23/19 8:40 0.76 A10 0.13 20 2.6 10/23/19 9:10 0.778 0.2043 0.021067416

10/23/19 11:10 0.861 28.4698 5.140507088 64.6483 9.705649279 133.3967 24.03221589 10/23/19 10:40 0.84 A11 0.137 20 2.74 10/23/19 11:10 0.861 0.1942 0.020025904

10/23/19 13:10 0.944 27.0536 4.884798016 68.7991 10.32880888 136.8141 24.647881 10/23/19 12:40 0.92 A12 0.155 20 3.1 10/23/19 13:10 0.944 0.0831 0.008569272

10/23/19 15:10 1.028 23.7717 4.292218152 67.1348 10.07894752 135.8283 24.47028321 10/23/19 14:40 1.01 A13 0.184 20 3.68 10/23/19 15:10 1.028 0.0822 0.008476464

10/23/19 17:10 1.111 19.7211 3.560841816 65.6359 9.853917667 134.501 24.23116216 10/23/19 16:40 1.09 A14 0.114 40 4.56 10/23/19 17:10 1.111 0.1203 0.012405336

10/23/19 19:10 1.194 13.2763 2.397168728 63.5308 9.537879004 133.7093 24.08853265 10/23/19 18:40 1.17 A15 0.145 40 5.8 10/23/19 19:10 1.194 0.1762 0.018169744

10/23/19 21:10 1.278 0 0 58.7233 8.816129029 131.5998 23.70849357 10/23/19 20:40 1.26 A16 0.202 40 8.08 10/23/19 21:10 1.278 0.282 0.02907984

10/23/19 23:10 1.361 0 0 52.5618 7.891103034 124.8511 22.49267477 10/23/19 22:40 1.34 A17 0.21 50 10.5 10/23/19 23:10 1.361 0.3251 0.033524312

10/24/19 1:10 1.444 0 0 42.2014 6.335696182 113.5243 20.45208379 10/24/19 0:40 1.42 A18 0.152 100 15.2 10/24/19 1:10 1.444 0.0619 0.006383128

10/24/19 3:10 1.528 0 0 31.1927 4.682960051 97.18 17.50756008 10/24/19 2:40 1.51 A19 0.214 100 21.4 10/24/19 3:10 1.528 0.0908 0.009363296

10/24/19 5:10 1.611 0 0 17.4262 2.616195406 66.1315 11.91398651 10/24/19 4:40 1.59 A20 0.029 1000 29 10/24/19 5:10 1.611 0.2619 0.027007128

10/24/19 7:10 1.694 0 0 9.2766 1.392695958 23.0099 4.145371544 10/24/19 6:40 1.67 A21 0.039 1000 39 10/24/19 7:10 1.694 0.5524 0.056963488

10/24/19 9:10 1.778 0 0 9.9821 1.498612673 0 0 10/24/19 8:40 1.76 A22 0.037 1000 37 10/24/19 9:10 1.778 0.0479 0.004939448

10/24/19 11:10 1.861 0 0 10.64255 1.597766032 0 0 10/24/19 10:40 1.84 A23 0.037 1000 37 10/24/19 11:10 1.861 0.0461 0.004753832

10/24/19 13:10 1.944 0 0 11.303 1.69691939 0 0 10/24/19 12:40 1.92 A24 0.035 1000 35 10/24/19 13:10 1.944 0.0443 0.004568216

10/24/19 15:10 2.028 0 0 11.1062 1.667373806 0 0 10/24/19 14:40 2.01 A25 0.033 1000 33 10/24/19 15:10 2.028 0.0147 0.001515864

10/24/19 17:10 2.111 0 0 10.0135 1.503326755 0 0 10/24/19 16:40 2.09 A26 0.07 500 35 10/24/19 17:10 2.111 0.018 0.00185616

10/24/19 19:10 2.194 0 0 0 0 0 0 10/24/19 18:40 2.17 A27 0.072 500 36 10/24/19 19:10 2.194 0.1675 0.0172726

10/24/19 21:10 2.278 42.3684 7.650038304 63.7217 9.566538821 133.6839 24.08395669 10/24/19 20:40 2.26 A28 0.072 500 36 10/24/19 21:10 2.278 0.5346 0.055127952

10/24/19 23:10 2.361 54.1782 9.782415792 82.7893 12.42915761 182.2908 32.84078136 10/24/19 22:40 2.34 A29 0.067 500 33.5 10/24/19 23:10 2.361 0.7689 0.079288968

10/25/19 1:10 2.444 48.4143 8.741686008 78.9549 11.85349914 181.855 32.76226938 10/25/19 0:40 2.42 A30 0.061 500 30.5 10/25/19 1:10 2.444 1.1011 0.113545432

10/25/19 3:10 2.528 42.8732 7.741184992 75.5313 11.33951407 181.0178 32.61144278 10/25/19 2:40 2.51 A31 0.058 500 29 10/25/19 3:10 2.528 1.2013 0.123878056

10/25/19 5:10 2.611 38.2242 6.901761552 73.1716 10.98525231 181.9687 32.78275312 10/25/19 4:40 2.59 A32 0.056 500 28 10/25/19 5:10 2.611 1.1113 0.114597256

10/25/19 7:10 2.694 33.5657 6.060622792 70.4592 10.5780397 180.8565 32.58238361 10/25/19 6:40 2.67 A33 0.055 500 27.5 10/25/19 7:10 2.694 1.4731 0.151906072

10/25/19 9:10 2.778 28.8496 5.209083776 67.9055 10.19465272 179.454 32.32971482 10/25/19 8:40 2.76 A34 0.053 500 26.5 10/25/19 9:10 2.778 1.453 0.14983336

10/25/19 11:10 2.861 23.3325 4.2129162 62.986 9.45608818 171.8434 30.95861957 10/25/19 10:40 2.84 A35 0.049 500 24.5 10/25/19 11:10 2.861 1.4128 0.145687936

10/25/19 13:10 2.944 19.5508 3.530092448 62.1464 9.330039032 175.2029 31.56385365 10/25/19 12:40 2.92 A36 0.052 500 26 10/25/19 13:10 2.944 1.4024 0.144615488

10/25/19 15:10 3.028 7.1078 1.283384368 23.21 3.4845173 128.4127 23.13431838 10/25/19 14:40 3.01 A37 0.04 500 20 10/25/19 15:10 3.028 1.8828 0.194154336

10/25/19 17:10 3.111 7.4212 1.339971872 20.5341 3.082784433 123.189 22.19323748 10/25/19 16:40 3.09 A38 0.027 500 13.5 10/25/19 17:10 3.111 1.9698 0.203125776

10/25/19 19:10 3.194 7.7124 1.392550944 18.5772 2.788995036 119.9205 21.6043976 10/25/19 18:40 3.17 A39 0.036 500 18 10/25/19 19:10 3.194 2.1099 0.217572888

10/25/19 21:10 3.278 8.2795 1.49494652 17.7985 2.672088805 116.0448 20.90616699 10/25/19 20:40 3.26 A40 0.029 500 14.5 10/25/19 21:10 3.278 2.2126 0.228163312

10/25/19 23:10 3.361 8.3647 1.510330232 16.5159 2.479532067 111.2747 20.04680485 10/25/19 22:40 3.34 A41 0.029 500 14.5 10/25/19 23:10 3.361 2.0353 0.209880136

10/26/19 1:10 3.444 7.691 1.38868696 12.8682 1.931902866 106.8163 19.24359734 10/26/19 0:40 3.42 A42 0.025 500 12.5 10/26/19 1:10 3.444 2.5349 0.261398888

10/26/19 3:10 3.528 8.1426 1.470227856 12.7271 1.910719523 103.5933 18.66295455 10/26/19 2:40 3.51 A43 0.026 500 13 10/26/19 3:10 3.528 2.1987 0.226729944

10/26/19 5:10 3.611 8.0579 1.454934424 11.91855 1.789331912 94.59335 17.04155956 10/26/19 4:40 3.59 A44 0.026 500 13 10/26/19 5:10 3.611 0.6284 0.064800608

10/26/19 7:10 3.695 7.9732 1.439640992 11.11 1.6679443 85.5934 15.42016457 10/26/19 6:40 3.67 A45 0.026 500 13 10/26/19 7:10 3.695 1.8206 0.187740272

10/26/19 9:10 3.778 9.0381 1.631919336 12.5384 1.882389992 92.2077 16.6117704 10/26/19 8:40 3.76 A46 0.026 500 13 10/26/19 9:10 3.778 2.7367 0.282208504

10/26/19 11:10 3.861 8.7405 1.57818468 14.933 2.24189129 87.5411 15.77105441 10/26/19 10:40 3.84 A47 0.023 500 11.5 10/26/19 11:10 3.861 2.7904 0.287746048

10/26/19 13:10 3.945 9.0815 1.63975564 14.2331 2.136815303 80.8757 14.57024261 10/26/19 12:40 3.92 A48 0.02 500 10 10/26/19 13:10 3.945 2.7474 0.283311888

10/26/19 15:10 4.028 9.1426 1.650787856 13.0355 1.957019615 78.2407 14.09553155 10/26/19 14:40 4.01 A49 0.025 500 12.5 10/26/19 15:10 4.028 2.2733 0.234422696

10/26/19 17:10 4.111 9.303875 1.67990767 14.0653 2.111623489 77.1744 13.90343121 10/26/19 16:40 4.09 A50 0.024 500 12 10/26/19 17:10 4.111 2.7584 0.284446208

10/26/19 19:10 4.195 9.46515 1.709027484 12.2062 1.832516806 70.77565 12.750658 10/26/19 18:40 4.17 A51 0.017 500 8.5 10/26/19 19:10 4.195 2.3557 0.242919784

10/26/19 21:10 4.278 9.76788 1.763688413 9.9373 1.491886849 64.3769 11.5978848 10/26/19 20:40 4.26 A52 0.022 500 11 10/26/19 21:10 4.278 2.3087 0.238073144

10/26/19 23:10 4.361 10.07061 1.818349342 13.0145 1.953866885 65.8183 11.85756165 10/26/19 22:40 4.34 A53 0.019 500 9.5 10/26/19 23:10 4.361 2.4649 0.254180488

10/27/19 1:10 4.445 10.37334 1.87301027 12.9251 1.940445263 62.9123 11.33402832 10/27/19 0:40 4.42 A54 0.022 500 11 10/27/19 1:10 4.445 2.3913 0.246590856

10/27/19 3:10 4.528 10.1426 1.831347856 9.3938 1.410291194 56.1832 10.12174058 10/27/19 2:40 4.51 A55 0.018 500 9 10/27/19 3:10 4.528 2.0872 0.215232064

10/27/19 5:10 4.611 10.409335 1.879509528 12.6551 1.899910163 58.1797 10.48142203 10/27/19 4:40 4.59 A56 0.023 500 11.5 10/27/19 5:10 4.611 2.3531 0.242651672

10/27/19 7:10 4.695 10.67607 1.927671199 14.0053 2.102615689 53.76035 9.685249615 10/27/19 6:40 4.67 A57 0.024 500 12 10/27/19 7:10 4.695 2.2024 0.227111488

10/27/19 9:10 4.778 8.6953 1.570023368 10.2794 1.543246322 49.341 8.889077196 10/27/19 8:40 4.76 A58 0.025 500 12.5 10/27/19 9:10 4.778 1.8419 0.189936728

10/27/19 11:10 4.861 7.9382 1.433321392 10.6637 1.600941281 49.8014 8.972021018 10/27/19 10:40 4.84 A59 0.022 500 11 10/27/19 11:10 4.861 1.7372 0.179140064

10/27/19 13:10 4.945 7.2396 1.307182176 11.6498 1.748984474 47.0463 8.475673223 10/27/19 12:40 4.92 A60 0.019 500 9.5 10/27/19 13:10 4.945 1.2754 0.131519248

V
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B.4 GMO Strain Data Using SSL

Table B.4: GMO strain using SSL (with GABA production) biomass data

Sugars Biomass GABA

Real Time time (days) Concentration (mM) C glucose (g · L−1) Xylose (mM) Xylose (g · L−1) Mannose (mM) Mannose (g · L−1) Real Time time (days) Sample OD diluted Dilution OD real Real Time time (days) Concentration (mM) C GABA (g · L−1)

2/25/20 12:40 0.000 7.2 9 22 2/25/20 12:40 0.00 0.125 10 1.25 2/25/20 12:40 0.000

2/25/20 13:03 0.016 2/25/20 13:03 0.02 B1 0.126 10 1.26 2/25/20 13:03 0.016

2/25/20 14:58 0.096 2/25/20 14:58 0.10 B2 0.187 10 1.87 2/25/20 14:58 0.096

2/25/20 16:58 0.179 2/25/20 16:58 0.18 B3 0.02 100 2 2/25/20 16:58 0.179

2/25/20 18:58 0.263 2/25/20 18:58 0.26 B4 0.025 100 2.5 2/25/20 18:58 0.263

2/25/20 20:58 0.346 2/25/20 20:58 0.35 B5 0.049 100 4.9 2/25/20 20:58 0.346

2/25/20 22:58 0.429 2/25/20 22:58 0.43 B6 0.064 100 6.4 2/25/20 22:58 0.429

2/26/20 0:58 0.513 2/26/20 0:58 0.51 B7 0.083 100 8.3 2/26/20 0:58 0.513

2/26/20 2:58 0.596 2/26/20 2:58 0.60 B8 0.109 100 10.9 2/26/20 2:58 0.596

2/26/20 4:58 0.679 2/26/20 4:58 0.68 B9 0.1 100 10 2/26/20 4:58 0.679

2/26/20 6:58 0.763 2/26/20 6:58 0.76 B10 0.06 100 6 2/26/20 6:58 0.763

2/26/20 8:58 0.846 2/26/20 8:58 0.85 B11 0.076 100 7.6 2/26/20 8:58 0.846

2/26/20 10:58 0.929 2/26/20 10:58 0.93 B12 0.077 100 7.7 2/26/20 10:58 0.929

2/26/20 12:58 1.013 2/26/20 12:58 1.01 B13 0.086 100 8.6 2/26/20 12:58 1.013

2/26/20 14:58 1.096 2/26/20 14:58 1.10 B14 0.091 100 9.1 2/26/20 14:58 1.096

2/26/20 16:58 1.179 2/26/20 16:58 1.18 B15 0.105 100 10.5 2/26/20 16:58 1.179

2/26/20 18:58 1.263 2/26/20 18:58 1.26 B16 0.101 100 10.1 2/26/20 18:58 1.263

2/26/20 20:58 1.346 2/26/20 20:58 1.35 B17 0.121 100 12.1 2/26/20 20:58 1.346

2/26/20 22:58 1.429 2/26/20 22:58 1.43 B18 0.124 100 12.4 2/26/20 22:58 1.429

2/27/20 0:58 1.513 2/27/20 0:58 1.51 B19 0.136 100 13.6 2/27/20 0:58 1.513

2/27/20 2:58 1.596 2/27/20 2:58 1.60 B20 0.175 100 17.5 2/27/20 2:58 1.596

2/27/20 4:58 1.679 2/27/20 4:58 1.68 B21 0.196 100 19.6 2/27/20 4:58 1.679

2/27/20 6:58 1.763 2/27/20 6:58 1.76 B22 0.207 100 20.7 2/27/20 6:58 1.763

2/27/20 8:58 1.846 2/27/20 8:58 1.85 B23 0.044 500 22 2/27/20 8:58 1.846

2/27/20 10:58 1.929 2/27/20 10:58 1.93 B24 0.0525 500 26.25 2/27/20 10:58 1.929

2/27/20 12:58 2.013 2/27/20 12:58 2.01 B25 0.061 500 30.5 2/27/20 12:58 2.013

2/27/20 14:58 2.096 2/27/20 14:58 2.10 B26 0.099 500 49.5 2/27/20 14:58 2.096

2/27/20 16:58 2.179 2/27/20 16:58 2.18 B27 0.106 500 53 2/27/20 16:58 2.179

2/27/20 18:58 2.263 2/27/20 18:58 2.26 B28 0.084 500 42 2/27/20 18:58 2.263

2/27/20 20:58 2.346 2/27/20 20:58 2.35 B29 0.103 500 51.5 2/27/20 20:58 2.346

2/27/20 22:58 2.429 2/27/20 22:58 2.43 B30 0.08 500 40 2/27/20 22:58 2.429

2/28/20 0:58 2.513 2/28/20 0:58 2.51 B31 0.101 500 50.5 2/28/20 0:58 2.513

2/28/20 2:58 2.596 2/28/20 2:58 2.60 B32 0.093 500 46.5 2/28/20 2:58 2.596

2/28/20 4:58 2.679 2/28/20 4:58 2.68 B33 0.093 500 46 2/28/20 4:58 2.679

2/28/20 6:58 2.763 2/28/20 6:58 2.76 B34 0.092 500 37 2/28/20 6:58 2.763

2/28/20 8:58 2.846 2/28/20 8:58 2.85 B35 0.074 500 49 2/28/20 8:58 2.846

2/28/20 10:58 2.929 2/28/20 10:58 2.93 B36 0.098 500 49 2/28/20 10:58 2.929

2/28/20 12:58 3.013 2/28/20 12:58 3.01 B37 0.103 500 51.5 2/28/20 12:58 3.013

2/28/20 14:55 3.094 2/28/20 14:55 3.09 B38 0.119 500 59.5 2/28/20 14:55 3.094

2/28/20 17:58 3.221 2/28/20 17:58 3.22 B39 0.138 500 69 2/28/20 17:58 3.221

2/28/20 20:58 3.346 2/28/20 20:58 3.35 B40 0.165 500 82.5 2/28/20 20:58 3.346

2/28/20 23:58 3.471 2/28/20 23:58 3.47 B41 0.192 500 96 2/28/20 23:58 3.471

2/29/20 2:58 3.596 2/29/20 2:58 3.60 B42 0.179 500 89.5 2/29/20 2:58 3.596

2/29/20 5:58 3.721 2/29/20 5:58 3.72 B43 0.169 500 84.5 2/29/20 5:58 3.721

2/29/20 8:58 3.846 2/29/20 8:58 3.85 B44 0.164 500 82 2/29/20 8:58 3.846

2/29/20 11:58 3.971 2/29/20 11:58 3.97 B45 0.158 500 79 2/29/20 11:58 3.971

2/29/20 14:58 4.096 2/29/20 14:58 4.10 B46 0.155 500 77.5 2/29/20 14:58 4.096

2/29/20 17:58 4.221 2/29/20 17:58 4.22 B47 0.151 500 75.5 2/29/20 17:58 4.221

2/29/20 20:58 4.346 2/29/20 20:58 4.35 B48 0.149 500 74.5 2/29/20 20:58 4.346

2/29/20 23:58 4.471 2/29/20 23:58 4.47 B49 0.15 500 75 2/29/20 23:58 4.471

3/1/20 2:58 4.596 3/1/20 2:58 4.60 B50 0.151 500 75.5 3/1/20 2:58 4.596

VI
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B.5 Cell Dry Weight Experiment Data

Table B.5: Wild type strain using glucose (with no GABA production) cell dry weight experiment biomass
data

Time (hr) CDW (g · L−1) Std (g · L−1) OD600 (g · L−1)

0 1.211111 0.4565031 1.09

2.9166667 2.333333 0.3138766 1.7

5.8333333 4.111111 1.1864461 7.6

8.8333333 6.111111 0.7622255 13.3

10.833333 10.41667 0.15 20.1

11.333333 7.466667 0.6480741 22.4

11.833333 9.65 0.05 21.5

13.166667 9.488889 1.2413652 21.2

21.5 8.522222 0.7804715 20.8

22.833333 11.82222 1.5329307 23.4

26.5 21.55 0.8833333 55.6

29.5 19 1.596524 22.3

46.333333 17.58333 0.1166667 19.3

VII
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Table B.6: Wild type strain using glucose (with no GABA production) cell dry weight experiment sugar
data

Sugars

Real Time time (days) Concentration (mM) C glucose (g · L−1)

18/04/20 13:10 0

18/04/20 13:39 0.020139 145.6949 26.22508

18/04/20 16:31 0.139583 106.8665 19.23597

18/04/20 19:32 0.265278 89.9962 16.19932

18/04/20 22:32 0.390278 26.7797 4.820346

19/04/20 1:32 0.515278 n.a

19/04/20 4:32 0.640278 n.a

19/04/20 7:32 0.765278 n.a

19/04/20 10:32 0.890278 n.a

19/04/20 13:32 1.015278 98.6901 17.76422

19/04/20 16:32 1.140278 n.a

19/04/20 19:32 1.265278 n.a

19/04/20 22:32 1.390278 n.a

20/04/20 1:32 1.515278 n.a

20/04/20 4:32 1.640278 n.a

20/04/20 7:32 1.765278 n.a

20/04/20 10:32 1.890278 n.a

VIII
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C Additional Media Composition

C.1 CGXII

Table C.7: Composition of CGXII used in the broth and feed medium for each experiment

Component Concentration (g/L)

(NH4)2SO4 10.00

CH4N2 5.00

KH2PO4 0.26

K2HPO4 0.53

Ca-stock 1000X 1.00

Mg-stock 1000X 1.00

IX
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