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Abstract

In this work a set of algorithms for refining crystal orientations and/or projection
center estimates specifically after, but not limited to, dictionary indexing of EBSD
patterns are presented. The algorithms are implemented in the Python 3 program-
ming language as an extension of the open-source Python library kikuchipy. The
algorithms allow for parallel computations and can be run efficiently on a simple
laptop, as well as on a computing cluster. Additionally, they have support for han-
dling experimental data sets that can be larger than memory. The refinement can
be done with a wide variety of derivative-free optimization methods implemented
in the SciPy library, both local and global, such as Nelder-Mead and Differential
Evolution. The implementation provides reasonable parameters for inexperienced
users, while simultaneously providing the ability for customization for more ad-
vanced users.
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Sammendrag

I dette arbeidet er et sett med algoritmer for forbedring av krystallorientering og
projeksjonssenter estimater spesielt etter, men ikke begrenset til, dictionary index-
ing av EBSD mønster presentert. Algoritmene er utviklet i programmeringsspråket
Python 3 som en utvidelse av open-source Python-biblioteket kikuchipy. Algo-
ritmene kan gjøre beregninger parallelt, og kan kjøres effektivt på en bærbar
datamaskin, samt på dataklynger. I tillegg har algoritmene støtte for å arbeide
med eksperimentelle datasett som er større enn tilgjengelig minne. Forbedringen
kan gjøres med et vidt utvalgt av derivatfrie optimaliseringsalgoritmer som er im-
plementert i SciPy biblioteket, både lokale og globale, som for eksempel Nelder-
Mead og Differential Evolution. Implementasjonen tilbyr rimelige parametere for
uerfarne brukere, samtidig som den tillater erfarne brukere å finpusse på param-
etere.
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Chapter 1

Introduction

1.1 Background and Motivation

Electron backscatter diffraction (EBSD) is a characterization technique for poly-
crystalline materials utilizing a scanning electron microscope (SEM). Its ability to
routinely and reliably determine individual grain properties, such as grain orien-
tation and phase, has lead to its popularity in materials science and geology [5]. A
typical experimental setup consists of a stationary beam of high energy electrons,
around 20 keV, which scans a sample that is tilted 70◦ with respect to the horizon-
tal. The sample tilt is in place to ensure that the EBSD patterns on the detector are
of sufficient intensity. The EBSD patterns are a result of the high energy electrons
in the SEM chamber entering the sample, with an interaction volume around 20
nm beneath the target point, which backscatter and diffract [5]. The electrons’
path will depend on the crystal lattice and its orientation, thus the EBSD patterns
represent a gnomonic projection of the crystal lattice [5, 6]. This property of EBSD
patterns allows for indexing, where one can label the experimental EBSD patterns
with unit cell orientations and phase identity.

There are two general strategies for EBSD pattern indexing, Hough indexing
(HI), and dynamical simulation based pattern matching methods, first described
by Winkelmann et al. [7]. HI attempts to localize bands in the EBSD patterns by
transforming these to peaks in Hough space, which are easy for a computer to
localize. By calculating the angles between the bands and comparing these to a
lookup table based on the crystal structure, one can index the EBSD patterns [5,
8]. The effectiveness of HI is entirely based around its ability to detect bands. Thus,
if the EBSD patterns contain a lot of noise, or there are bands from a neighboring
grain present, the indexing success rate for HI will suffer [9, 10]. Pattern matching
methods attempt to match a dynamical simulated pattern with the experimental
EBSD pattern. In this work the dictionary indexing (DI) approach [11] has been
the pattern matching method of choice. Image processing techniques which com-
pare all the pixels in the pattern are used to determine the similarity between the
simulated patterns in the dictionary, consisting of patterns with uniformly sampled
orientations from the Rodrigues fundamental zone, and the experimental EBSD
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pattern. A high similarity is a good indication that there is a match. Naturally,
in order for DI to provide good indexing results, a sufficiently large dictionary of
EBSD patterns needs to be simulated. However, due to the discrete nature of the
dictionary, DI only provides reasonable initial guesses for the orientations and an
orientation refinement is required [9].

1.2 Aim and Scope of the Work

The aim of this work has been to develop an open-source refinement module, with
scalable parallelism, for kikuchipy [3], an open-source Python library for process-
ing and analysis of EBSD patterns, that can improve the crystal orientations and
the projection center estimates of EBSD indexing results. Accessibility has been a
core value during this work and the refinement process should run efficiently on
a simple laptop and large clusters while handling experimental data that can be
larger than memory. Furthermore, the barrier to entry should be as low as pos-
sible, such that an inexperienced user can get very reasonable refinement results
with no knowledge about the process. This is achieved by providing reasonable
default parameters. However, the implementation should also be customizable in
order for the advanced user to fine-tune the refinement parameters for optimal
results. Refinement is the final step of the kikuchipy DI routine implemented in
[1] and [2].



Chapter 2

Theoretical Background

The theoretical background in this work builds on the theoretical background in
the author’s project thesis[2].

2.1 Electron Backscatter Diffraction

EBSD is a SEM based characterization technique for polycrystalline materials,
suited to determine grain orientations and phase. An experimental schematic is
shown in Figure 2.1. A stationary beam of high energy electrons, around 20 keV,
scans an area of the sample with a step size of around 10-1000 nm with one EBSD
pattern per scan point. The working distance between the objective lens and the
sample is usually around 10-30 mm. The sample is tilted approximately 70◦ with
respect to the horizontal in order to increase the EBSD pattern intensity on the
detector, which usually is orthogonal to the incident beam direction [5]. The de-
tector traditionally consisted of a phosphor screen connected to a charge-coupled
device (CCD) camera, however, there are newer detectors that can directly detect
backscattered electrons leading to sharper EBSD patterns [12, 13]. The EBSD pat-
terns typically range from 50-500 pixels in both the x- and y-direction. The EBSD
patterns represent the gnomonic projection of the Kikuchi sphere, which can be
thought of as a unique map of the backscattered electron yield for a crystal lattice
[5, 6]. The theory around the creation of EBSD patterns is based on the Bloch
wave theory of electron diffraction, described in [7]. Simplified, the crystal lattice
and the incidence angle of the incoming electrons, relative to the crystal planes,
channel electrons further in certain directions. Together with the variable proba-
bility of inelastic scattering due to diffraction, this makes up the general theory of
EBSD patterns consisting of inelastic scattering and both incident and outgoing
diffraction [6]. Figure 2.2 shows an EBSD pattern of silicon. The pattern is con-
structed of Kikuchi bands, which are contained within Kikuchi lines representing
Kossel cones. The angular width of the Kikuchi bands is twice the Bragg angle,
θhkl . From Bragg’s law

2 · dhkl · sinθhkl = n ·λ (2.1)

3
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where dhkl is the interplanar spacing, n is the order of reflection, and λ is the
wavelength of the incident electron beam, one can relate the width of the bands
to the interplanar spacing. The geometric projection is represented by the center
of the bands, and the interplanar angles can be found by comparing the angle
between geometric projections [5].

x
y

Scan

Detector

(nx x ny) patterns in map

(sx x sy) px per pattern

5 μm

x
y

70o

Bulk
sample

Electron
probe
~20 kV

Figure 2.1: Schematic of an experimental setup during an EBSD scan with differ-
ent EBSD patterns for each scan location in the region of interest. Adapted from
[14].

Figure 2.2: EBSD pattern from a single crystal silicon scan at 20 keV.
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2.2 Indexing of EBSD Patterns

2.2.1 Hough Indexing

HI is a quick automated indexing routine, which gets its name due to the Hough
transformation of the EBSD pattern. The algorithm is described in detail in [8].
The transformation makes it easier for a computer to localize straight lines, as
these become peaks in Hough space. The polar equation of a straight line is given
by:

ρ = x cosθ + y sinθ (2.2)

where ρ is the distance of the line from the origin, and θ is the angle between the
x-axis and the normal from the origin to the line. [5]

Figure 2.3 shows the transformation of three points of a straight line. The
overlap in parameter space is stored as a peak representing a Kikuchi band. After
the transformation, interplanar angles and spacings are calculated and compared
against lookup-tables for each of the candidate phases. The best fitting values are
then assigned to each of the experimental EBSD patterns in the scan.
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Figure 2.3: Hough transform of three points on a straight line. Points on the same
straight line, intersect in Hough space and create peaks of high intensity.

2.2.2 Pattern Matching

The newer approach to EBSD indexing is based around pattern matching utiliz-
ing dynamical simulations, first described by Winkelmann et al. [7]. Several pat-
tern matching implementations exist, such as EMsoft [15], AstroEBSD [16], and
kikuchipy [3]. In this work when dealing with pattern matching, a method called
dictionary indexing (DI) is used. This work is an extension to the kikuchipy imple-
mentation, which is based on the EMsoft implementation described by Callahan
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and De Graef [6]. The central component of DI is the dynamical simulation of
master patterns prior to indexing. The master patterns are the 2D representation
of the Kikuchi sphere, which can be thought of as enclosing a unit cell within
a unit sphere and storing the backscattered electron yield for any given exit di-
rection. A method for mapping uniform grids on a sphere, and the inverse, was
presented by Roşca [17]. The inverse mapping, described by Equation (2.3) and
Equation (2.4), can transform a Cartesian coordinate, (x , y, z), and map it to a
point (X , Y ) on the 2D, square, equal-area Roşca-Lambert projection.

(X , Y ) = sign(x)
Æ

2(1− z)
�p
π

2
,

2
p
π

arctan
y
x

�

, |y| ≤ |x | (2.3)

(X , Y ) = sign(y)
Æ

2(1− z)
�

2
p
π

arctan
x
y

,
p
π

2

�

, |x | ≤ |y| (2.4)

Thus, it is possible to map each of the Kikuchi hemispheres down to the 2D-plane
in the form of the northern and southern master patterns. If the candidate phase is
centrosymmetric, the hemispheres will be identical and it is possible to represent
the full Kikuchi sphere with only one of the hemispheres. The master pattern for
silicon, simulated in EMsoft 5.0, is shown in Figure 2.4.

Figure 2.4: Roşca-Lambert and stereographic projection of the silicon master pat-
tern simulated in EMsoft 5.0.

To simulate EBSD patterns, a model of the experimental geometry is required.
A schematic of the experimental model is shown in Figure 2.5. In the model the
sample is located in the EDAX TSL (RD, TD, ND) sample reference frame, with the
origin located at the top left corner of the sample. The detector reference frame
follows the right hand rule and is defined as xd having direction opposite to TD,
yd directed upwards towards the pole piece, and zd normal to the detector screen.
θc represents the detector tilt, and σ represents the sample tilt with respect to the
horizontal plane. L is the distance between the detector screen and the interaction
point P on the sample. λ is the distance between the detector screen and the point
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of intersection between the detector axis and incident beam direction, Q, which
is located a distance ζc below the pole piece. W describes the working distance
between the pole piece and the interaction point. The projection/pattern center
is defined as the location on the detector screen with the shortest distance to the
interaction point. Changing the length of L by ∆L does not alter the projection
center. The change results in a zoom around the projection center coordinates,
(xpc , ypc), that is inverse to ∆L.

Figure 2.5: Schematic of the experimental geometry used in the simulation of
EBSD patterns. From [6].

By creating vectors between an arbitrary point on the detector screen, (xd ,
yd , 0) in the detector reference frame, to the interaction point P, and modifying
the vector to be in the sample reference frame, one has obtained inverse electron
channeling directions between the detector and sample. It has been shown by
Callahan and De Graef [6] that the detector screen coordinates can be represented
in the sample reference frame by the following equation:

rg = [(ypc − yd) · cosα+ L · sinα, xpc − xd ,−(ypc − yd) · sinα+ L · cosα] (2.5)

where the interaction point, P, is represented by the coordinates (xpc , ypc , L) in
detector reference frame. α is defined as the angle between the ND-axis and the
detector normal, given by:

α=
π

2
−σ+ θc (2.6)

with σ and θc defined as above. The length of rg is given by:

|rg |=
q

L2 + (ypc − yd)2 + (xpc + xd)2 (2.7)



8 :

The direction cosines from an arbitrary point on the detector screen, (xd , yd),
to the interaction point, P, can thus be described in the sample reference frame by:

r̂g(xd , yd) =
rg

|rg |
(2.8)

The direction cosines for every point on the detector screen are then mapped to
points on the master pattern using Equation (2.3) and Equation (2.4). The EBSD
patterns are then created using a four-point interpolation of the mapping. For
every point on the EBSD pattern, the direction cosines to the corresponding point
(xd , yd) on the detector screen and its neighbors, (xd+1, yd), (xd , yd+1), (xd+1,
yd+1), are given weights depending on how close they are to integer values. As
an example the mapping (X , Y ) = (10.3, 7.5) would create the weights a = 0.3,
b = 0.5 and c = 0.7, d = 0.5. The weight assignment is shown in Table 2.1.

Table 2.1: Four-point interpolation weight assignment.

Point Weights
(xd , yd) c · d
(xd + 1, yd) a · d
(xd , yd + 1) c · b
(xd + 1, yd + 1) a · b

To simulate an EBSD pattern with for a rotated crystal, the initial direction
cosines for the experimental geometry needs to be rotated, for example by a unit
quaternion, and the the mapping and interpolation can be done as above. How-
ever, the steps detailed above is just to simulate a single EBSD pattern, and as the
name implies, DI requires a dictionary or a collection of simulated EBSD patterns
to match against the experimental EBSD patterns. The Rodrigues fundamental
zone (RFZ) is a polyhedron in Rodrigues space, whose shape is governed by the
crystal symmetry of the material, which contains all the unique orientations of
the unit cell [18]. Thus, in order to create a sufficient dictionary for indexing, a
uniform sampling of the RFZ is required. Naturally, the sampling will be discrete
with a specific angular step size. In reality, the orientations are somewhere in-
between the discrete values and DI without orientation refinement only provides
reasonable initial guesses, and there is a need for a refinement step [9].

After the dictionaries have been created for each of the candidate phases, every
experimental EBSD pattern is compared to every simulated EBSD pattern using
image processing techniques, such as the normalized dot product (NDP) [19] or
the normalized cross correlation coefficient (NCC) [20], to determine the similar-
ity between the two patterns. The orientations for the simulated patterns with the
highest similarity metric are stored and used to index the experimental pattern.
The main difference between HI and DI comes from the fact that DI utilizes ev-
ery pixel in the pattern to do the indexing, while HI relies on band localization.
As a consequence, with increasing levels of noise in the experimental data, the
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process of localizing bands becomes harder. Figure 2.6 shows the indexing results
of both HI and DI with increasing levels of camera gain on recrystallized nickel.
As the noise in the experimental pattern increases, so does the difficulty in local-
izing bands and HI simply collapses, while DI will still assign the best matching
orientation in the dictionary, regardless how low the similarity metric is.

H
I

D
I

Figure 2.6: Comparison of Hough Indexing and Dictionary Indexing with increas-
ing levels of camera gain, ranging from 0 dB to 22 dB, on recrystallized nickel.
Adapted from [10].

2.3 Optimization

Optimization is the process of maximizing or minimizing an objective function
value f (x) in D dimensions, where x ∈ RD [21]. The properties of the objective
function and the sufficiency of local optimums determine the suitable optimiza-
tion methods for the problem. The forward model used to simulate EBSD patterns
in this work does not have an analytical expression as a function of projection cen-
ter and crystal orientation, thus, derivative free optimizers (DFOs) are required
to solve the optimization problem which wants to maximize the similarity be-
tween simulated and experimental patterns [9]. The implementation in this work
supports the following local DFOs: Nelder-Mead [22, 23], modified Powell’s algo-
rithm [24], and the stochastic, global DFOs: Basin-hopping [25], Dual Annealing
[26], and Differential Evolution [27].
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In this work there are three different optimization problems for the refine-
ment process. Two are in three dimensions, where either the projection center
coordinates (x∗, y∗, z∗) or the orientation represented by the Bunge-Euler angles
(φ1,Φ,φ2) are to be optimized. The third combines the parameter spaces and
ends up having a six dimensional space where (φ1,Φ,φ2, x∗, y∗, z∗) are to be op-
timized. Pang et al. [28] has described the optimization landscape in detail, and
highlighted the fact that for x ∈ R6 the parameters interfere with each other, creat-
ing a sloppy optimization landscape where a solution to the optimization problem,
can in reality be incorrect.
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Software Tools

The majority of this work was done in Python 3, which has become an increas-
ingly popular programming language, partly due to the enormous Python Package
Index (PyPI) with over 309 000 projects available for download [29]. This chap-
ter attempts to shine a light on the packages used in this work which have been
crucial for the implementation and performance of the algorithms.

3.1 Python Package Dependencies

The following Python packages are used inside of the refinement algorithms pre-
sented in this work.

3.1.1 NumPy

NumPy is an open-source Python library that provides homogeneous, in-memory,
multidimensional Python array objects operating on the CPU [30]. It is at the core
of numerical computations in Python, and all of the following Python packages
use NumPy under the hood, or in the case of another Python package, Numba,
is able to translate it to efficient machine code. In this work NumPy 1.19.2 was
used.

3.1.2 SciPy

SciPy is an open-source Python library with a collection of user-friendly and ef-
ficient numerical algorithms for numerical integration, interpolation, linear alge-
bra, statistics, and most importantly for this work, optimization [31]. The opti-
mization module provides the refinement process with all minimization methods
used in the implementation. In this work SciPy 1.5.2 was used.

11
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3.1.3 Dask

Dask is an open-source Python library for parallel computing [32]. The task of
refining dictionary indexed EBSD data falls under a category known as embar-
rassingly parallel workloads, Furthermore, Dask allows the code to scale up to
large clusters, while still running efficiently on a simple laptop. The library also
facilitates working on larger-than-memory data sets. In this work Dask Delayed
was used to make the algorithms, which otherwise would run sequentially, run in
parallel. In this work Dask 2.30.0 was used.

3.1.4 Numba

Numba is a an open-source just-in-time compiler, which compiles code at run time,
and translates a subset of Python and NumPy code into efficient machine code
with comparable performance to compiled languages such as C and FORTRAN
[33]. As the refinement is an iterative process, Numba has been an important part
in getting the runtime of the process down to an acceptable state. In this work
Numba 0.51.2 was used.

3.1.5 orix

orix is an open-source Python library for analysing orientations and crystal sym-
metry [34, 35]. In the refinement algorithms orix’ CrystalMap class is used to read
and write orientation and similarity metric data related to the experimental EBSD
data. The orientations are stored in orix Rotation objects which uses NumPy in-
ternally. The arrays can easily be extracted prior to any computation allowing the
algorithms to avoid pure Python objects, before creating new refined Rotation ob-
jects. Additionally, orix provides a sampling of the RFZ used for the creation of
the dictionary used in DI. In this work orix 0.5.1 was used.

3.2 kikuchipy

The refinement algorithms are built as an extension to kikuchipy [3], and expects
signal classes from kikuchipy as input. This is the case for the master patterns
used in the simulation of EBSD patterns in the refinement process, and for the
experimental patterns the simulated patterns are compared up against. The dif-
ferent signal classes inherit from HyperSpy, an open-source Python library for
multi-dimensional data analysis [36]. In this work kikuchipy 0.4.dev0 was used.

3.3 EMsoft

EMsoft is a collection of open-source programs for simulation and analysis of var-
ious electron microscopy techniques [15]. The master patterns used in both the
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initial DI step and the following refinement were simulated in EMsoft 5.0. Fur-
thermore, EMsoft 4.2 was used in Chapter 5 to sample the RFZ, and in Chapter 6
to calculate the misorientation angle in degrees.





Chapter 4

Algorithms

The refinement of resulting orientations and projection center estimates from
EBSD indexing is an optimization problem consisting of n smaller optimization
problems, where n is equal to the number of experimental patterns. As each of
the sub-problems are independent of each other, the task is embarrassingly paral-
lel [37]. Figure 4.1 shows how an example task graph for the refinement of three
patterns would look like, where it is clear that each of the refinement steps do not
need to communicate with each other. The refinement process of a single pattern
is roughly described by the flowchart in Figure 4.2.

group_results

refinement

refinement

refinement

Figure 4.1: Example task graph of the refinement process of three experimental
patterns. The refinement of each pattern does not need to communicate with
each other, highlighting the embarrassingly parallel nature of the optimization
problem.

The implementation in this work consists of three different methods. The

15
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Indexed
experimental

pattern
Extract parameters

Optimize parameters
Simulate pattern

using current
parameters

Refined indexing
result

Optimum
or max

iterations
Update parameters

No

Yes

Figure 4.2: Description of single pattern refinement, where the parameters that
are optimized could be the Bunge-Euler angles, projection center coordinates, or
both.

methods either refine the resulting orientations from any sort of indexing rou-
tine, individual projection centers with specified orientations, or both at the same
time. The methods are structured similarly, and for every experimental pattern
and set of parameters, a wrapper function is called to prepare the parameters
before being directed to the user specified SciPy optimization method. The opti-
mization method takes in an objective function, that depends on the parameters
being refined. All the supported optimization methods are minimization methods
attempting to minimize the objective function value. The objective functions sim-
ulate a single EBSD pattern, as described in Section 2.2.2, and uses the normalized
cross-correlation coefficient (NCC)

r =

∑n
1(x i − x̄)(yi − ȳ)
q

∑n
1(x i − x̄)2 ·
∑n

1(yi − ȳ)2
(4.1)

where x i and yi represents the individual pixel values, with x̄ and ȳ being the
mean pixel value across the patterns for the experimental and simulated patterns,
respectively, to calculate the similarities between the patterns. If the two patterns
were identical the NCC value would be r = 1, and lower similarity would result
in a smaller r. The objective function attempts to maximize the r-value, and the
best parameter values are stored and after every experimental pattern has been
refined the updated parameters are returned to the user.

Until the refinement process is merged into kikuchipy, the latest implementa-
tion of the algorithms can be found on GitHub [38]. The source code is also in
Appendix A.
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Experimental

All the experimental data presented in this work has been indexed, prior to re-
finement, in the way described in the kikuchipy user guides [3] with a few minor
modifications described in the following sections. The dictionary indexing pro-
cedure in kikuchipy starts with the loading of experimental data, followed by a
pattern processing step where the static and dynamic backgrounds of the exper-
imental patterns are removed. An EMsoft master pattern is then loaded, and a
dictionary is created by simulating a set of orientations. The orientations are a
result of a uniform sampling of the RFZ with a specified characteristic length. The
characteristic length of the sampling with orix was set to 1.4◦. Once the dictio-
nary is in place we match every pattern in the dictionary with every pattern in the
experimental data set and save the best orientation per scan point. The inverse
pole figure (IPFs) maps presented in Chapter 6 are colored according to the color
key in figure 5.1 created in MTEX [39].

m-3m

[001] [011]

[111]
_

Figure 5.1: m-3m IPF color key.
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5.1 Refinement Performance Metrics

In this section various tests are described which evaluates the performance of the
refinement algorithms. Both, the actual refinement results and the behaviour of
the code when given more resources are evaluated.

5.1.1 Testing of Various Optimization Algorithms

The refinement algorithms support the local optimizers: Nelder-Mead and the
modified Powell’s algorithm, and the global optimizers: basin-hopping, dual an-
nealing, and differential evolution. To test the different algorithms and their effec-
tiveness, the orientation refinement algorithm was run on the small experimental
Nickel test data set included in kikuchipy. The data set is cut-out of scan 1 in the
data set presented in Section 5.2. The dictionary used in the pattern matching was
created using the EMsoft sampling routine with N = 100 resulting in a dictionary
of 333 227 patterns.

The comparison was tested using the default SciPy parameters. Basin-hopping
and dual annealing both used Nelder-Mead as their local minimizers. Differential
evolution and dual annealing had their bounds set to ±1◦ for the Bunge-Euler
angles (φ1, Φ, φ2).

5.1.2 Effects of Inaccurate Projection Center Estimates

To test the limits of the refinement algorithms, due to inaccurate projection cen-
ter estimates, inspiration was taken from Singh et al. [9] and 1000 uniformly
distributed orientations were sampled using orix, and a simulated experimental
data set was created using kikuchipy from those orientations. The ground truth
projection center (x∗, y∗, z∗), in TSL notation, was set to (0.5070,0.7230, 0.5613),
with the inaccurate projection center, (x∗i , y∗i , z∗i ), defined as:

x∗i = x∗ · (1+
ε

100
),

y∗i = y∗ · (1+
ε

100
),

z∗i = z∗ · (1+
ε

100
),

where ε ∈ [−7,7], for a total of ±7% error in the projection center parameters.
For each inaccurate set of projection center estimates, a dictionary was first

sampled using orix, before being generated and matched to the simulated experi-
mental data in kikuchipy. Orientation solutions from the pattern matching routine
were then refined using the algorithms presented in this work with the Nelder-
Mead method as the optimizer of choice.
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5.1.3 Effect of Improved Resources

To evaluate how the implementation behaves given more resources, Code list-
ing B.1, which attempts to time the orientation refinement of 10 000 (100×100)
EBSD patterns indexed using a characteristic length of 4◦, was run on the NTNU
IDUN computing cluster [4] with varying number of available cores.

5.2 Nickel Acquired with Increasing Camera Gain

To test the effect of increasing noise on the orientation refinement, scan 1, scan 6,
and scan 10 were taken from Ånes et al. [40], in which ten nickel data sets were
collected consecutively, from the same region of interest, with increasing camera
gain. The data was obtained with a NORDIF UF-1100 camera on a Hitachi SU-6600
FEG SEM [10]. The general acquisition parameters are presented in Table 5.1,
with the scan specific parameters in Table 5.2.

Table 5.1: Acquisition parameters for the nickel data set, with the projection
center, (x∗, y∗, z∗), in TSL convention [10].

Voltage 20 kV (x∗, y∗, z∗) (0.4210, 0.7794, 0.5049)
Scan size (sx × sy) (300× 223.5) µm2 Scan step size 1.5 µm
Detector size (dx × dy) (480× 480) Binning 8

Table 5.2: Camera gain and exposure time, t, for the different nickel scans.
Adapted from [10].

Scan 1 6 10
Gain [dB] 0 15 24
t [ms] 3.50 0.65 0.25

The nickel master pattern, shown in Figure 5.2 was simulated in EMsoft 5.0
using the crystal data in Table 5.3 and the Monte Carlo and master pattern param-
eters in Table 5.4. Prior to indexing, the patterns in each scan had their static and
dynamic backgrounds removed. Additionally, in order to increase the signal-to-
noise ratio in the experimental patterns further the patterns were averaged with
their nearest neighbors using a (3× 3) Gaussian window, the interested reader is
encouraged to visit the kikuchipy pattern processing user guide for more details.

5.3 Simulated Large Scan of Nickel

The DI implementation in kikuchipy assumes a single, fixed projection center to
keep the dictionary a manageable size. This assumption is only valid for small
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Figure 5.2: Nickel master pattern at 20 keV, in the Roşca-Lambert projection sim-
ulated in EMsoft 5.0

Table 5.3: Crystal data parameters used in the DI routine.

Parameter Ni Si
Crystal system Cubic Cubic
Space group 225 227
a [nm] 0.35236 0.54307
(α, β , γ) (90◦ , 90◦ , 90◦) (90◦ , 90◦ , 90◦)
Fractional Coordinates (0, 0, 0) (0, 0, 0)
Site occuptation 1 1
Debye-Waller factor [nm2] 0.0035 0.005

scans where the projection center shift is negligible [9]. It has been shown by
Singh et al. [9] that the projection center shift can be compensated by an equiva-
lent rotation. The orientation refinement algorithm is tested on a simulated, single
crystal, large scan of nickel with the parameters given in Table 5.5. The projection
center shift is assumed to follow the model given in Singh et al. [9] so that:

xnew
PC = xPC −∆xT D (5.1)

ynew
PC = yPC −∆xRD cosα (5.2)

Lnew = L −∆xRD sinα (5.3)

where (xPC , yPC , L) is the projection center in EMsoft convention, α = π
2 − σ +

θc , where σ is the sample tilt and θc is the camera elevation. ∆xT D and ∆xRD
represent the step size in the TD and RD direction, respectively. Figure 5.3 shows
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Table 5.4: Monte Carlo and master pattern simulation parameters.

Parameter
Mode Full
Sample tilt from horizontal 70◦

Sample tilt around RD axis 0◦

Pixels along x-direction of square projection 501
Number of incident electrons 2e9
Multiplier 1
Incident beam energy 20 keV
Minimum energy to consider 5 keV
Energy bin size 1 keV
Maximum depth to consider for exit depth statistics 100 nm
Depth step size 1 nm
Strong beam cutoff 4
Weak beam cutoff 8
Complete cutoff 50
Maximum excitation error to include 1 nm−1

Smallest d-spacing to take into account 0.05 nm
NUmber of pixels along x-direction of the square master pattern 500

the simulated pattern at the center of the scan with the projection center marked
in yellow. The projection center for this pattern is also the one that is used during
the DI. Figure 5.4 shows the simulated patterns at the corner of the simulated large
scan, with the original projection center marked in yellow. The patterns show a
large projection center shift, and thus the assumption of a constant projection
center is not valid for scans of this size. The master pattern used during the DI is
the same as in Section 5.2

Singh et al. [9] proposed an orientation and projection center correction step
after the initial DI and orientation refinement, followed by a final orientation re-
finement. Code listing B.5 gives a Python method to calculate the proposed orien-
tation correction. In this work the initial and final refinement steps of the three-step
refinement were done using the Nelder-Mead algorithm with the default param-
eters.
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Center

Figure 5.3: Simulated nickel pattern at the center of the simulated large scan,
with the projection center marked with a yellow marker.

Table 5.5: Parameters for simulated, single crystal, large scan of nickel. Projection
center, (x∗, y∗, z∗), is given in TSL convention.

Voltage 20 kV (x∗, y∗, z∗) (0.5, 0.7083, 0.4464)
Scan size (sx × sy) (2000× 3000) µm2 Scan step size 20 µm
Detector size (dx × dy) (480× 480) Binning 4.8
Pixel size 70 µm Sample tilt 70◦

Detector tilt 0◦ Bunge-Euler angles (270◦ , 45◦ , 45◦)

5.4 Single Crystal Silicon Wafer

The three-step refinement was also tested on a real, large, single crystal silicon
scan. The patterns were acquired by a NORDIF UF-420 detector on a Zeiss Supra
55VP FEG SEM. The acquisition parameters are presented in Table 5.5, where the
projection center was estimated in kikuchipy using the moving-screen technique
from Hjelen et al. [41]. The silicon master pattern used under DI was simulated
in EMsoft 5.0 using the crystal data in Table 5.3 and the Monte Carlo and master
pattern parameters in Table 5.4.

Figure 5.5 shows an experimental EBSD pattern from the center of the large
scan before and after processing in kikuchipy. The Kikuchi bands are now more
defined, however, due to the circular nature of the detector the areas outside the
scope of the detector do not contain any useful information, while they are still
part of the square pattern used in the pattern matching routine. This might lead to
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Top Left Top Right

Bottom Left Bottom Right

Figure 5.4: Simulated nickel patterns at the corners of the simulated large scan,
with the original projection center marked with a yellow marker.

misindexing, and as an attempted workaround scikit-image’s triangular threshold
filter [42]was used to create a mask that could be applied to the experimental and
simulated patterns. The code for the mask creation is available in Code listing B.6.
Figure 5.6 shows the transformation of the central experimental pattern and the
simulated pattern for the (0◦, 0◦, 0◦) orientation.

Table 5.6: Acquisition parameters for the single crystal silicon data set, with the
projection center, (x∗, y∗, z∗), in TSL convention.

Voltage 20 kV (x∗, y∗, z∗) (0.5123, 0.8606, 0.4981)
Scan size (sx × sy) (1960× 2000)µm2 Scan step size 40 µm
Detector size (dx × dy) (480× 480) Binning 1
Sample tilt 70◦ Detector tilt 0◦
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Figure 5.5: EBSD pattern at location 23, 24 in the Si scan before and after pattern
processing in kikuchipy.

Figure 5.6: Experimental and simulated EBSD patterns from the Si scan after
they have had a mask applied to them.



Chapter 6

Results and Discussion

In this chapter the performance of the refinement algorithms are evaluated in
different ways. These include the how the algorithms react to being given more
resources to work with, the effects of inaccurate simulation parameters, and re-
fining orientations from dictionary indexed data sets with vastly different size
properties.

6.1 Refinement Performance Metrics

6.1.1 Testing of Various Optimization Algorithms

Table 6.1 shows the performance of the different optimizers. As one would expect
the local optimizers finish much more quickly than the global optimizers as they
have a narrower search space. What is not expected is that the local optimizers
perform just as well as the global ones. The reasoning behind this is that the the
default SciPy parameters are not well suited for this data set, making the global
optimizers perform suboptimally. In order for the global optimizers to perform
as expected, effort needs to be put in to ensure that the optimization parameters
are suited for the data set in question. This was not the focus of this work, so
just the default parameters were tested. However, the current implementation
of the refinement algorithms support this fine tuning for almost every parameter.
Another reason for the good performance of the local optimizers can be attributed
to the fact that the dictionary indexing routine contributes with very reasonable
initial guesses for the local search.

6.1.2 Effects of Inaccurate Projection Center Estimates

Figure 6.1 shows the mean score against percent error in the projection center
parameters. The mean score is defined as the mean of the NCC values assigned to
the 1000 simulated patterns. The need for a refinement step after DI as discussed
in Singh et al. [9] becomes clear as even for completely accurate projection cen-
ters the pattern matching routine is unable to get very accurate orientations for
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Table 6.1: Performance of various optimization algorithms, on an Intel i7-4790
CPU @ 3.60 GHz, attempting to refine the built in nickel data set in kikuchipy.

Method Runtime [s] Mean Score Min Score Max Score
DI 104 0.39671 0.13579 0.48152
Nelder-Mead 57 0.44130 0.15170 0.52853
Powell 176 0.44122 0.15169 0.52853
Basin-hopping 8317 0.44144 0.15170 0.52853
Dual Annealing 5774 0.44072 0.15073 0.52853
Differential Evolution 376 0.44040 0.14956 0.52824

pristine patterns. The orientation refinement algorithm presented in this work is
able to get very high accurate orientations when the projection center estimate is
accurate. However, once the error increases, the benefit of an orientation refine-
ment step falls off quickly and is only marginally better than just DI alone. The full
refinement algorithm presented in this work attempts to refine both orientations
and projection centers simultaneously, at the cost of longer computation time. The
full refinement algorithm using Nelder-Mead is able to get near perfect accurate
orientations and projection centers for errors up to 5%. Due to Nelder-Mead be-
ing a local optimizer the full refinement completely collapses for larger errors. It
should be noted that the simulated data is as good as a match one can get for
the pattern matching routine so the realistic error for when the refinement breaks
down, is probably lower.

6.1.3 Effect of Improved Resources

The effect on runtime by increasing the number of available CPU cores is shown
in Figure 6.2. From the figure it is evident that increasing the number of available
CPU cores for the static workload in this evaluation helps increase performance up
to a certain point. This proves that there is some degree of parallelism in the im-
plementation of the refinement algorithms presented in this work. Furthermore,
from Amdahl’s law [37] we have:

S =
1

1− p+ p
n

(6.1)

where S is the maximum speedup, for n cores and p is the fraction of the com-
putation that can be done in parallel. In Figure 6.3 the achieved speedup of the
orientation refinement is plotted with different p-values. From the figure it is clear
that the implementation has a high fraction of parallel computations, and that the
benefit of increasing the numbers of core stops at around 10 cores for the work-
load used in B.1.
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Figure 6.1: Mean NCC-score after refinement of DI results with varying percent
error in the projection center parameters used during indexing.
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Figure 6.2: Plot of the change in runtime from running the orientation refinement
on the NTNU IDUN [4] cluster with increasing number of CPU cores.
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Figure 6.3: Plot of Amdahl’s law for different p-values, together with the speedup
achieved from running the orientation refinement on the NTNU IDUN [4] cluster
with increasing number of CPU cores.
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6.2 Nickel Acquired with Increasing Camera Gain

The effects of the pattern processing steps prior to indexing are shown in Fig-
ure 6.4, where the first row contains the acquired EBSD patterns and the second
row contains the same patterns, but after the pattern processing. It is clear that the
pattern processing has increased the signal-to-noise ratio and made the Kikuchi
band features more distinct.

Scan 1 Scan 6 Scan 10

Figure 6.4: Effects of removing the static and dynamic background, and averag-
ing each pattern with its nearest neighbors using a (3× 3) Gaussian window in
kikuchipy for different scans with increasing gain, at the same location.

Figure 6.5 shows the IPFs after DI in kikuchipy with orix sampling. The ro-
bustness of DI to noise is highlighted, as the camera gain increases towards the
right the IPF of the different scans stay more or less the same. Figure 6.6 shows
the IPFs after being refined with the orientation refinement algorithm presented
in this work. The refinement does not drastically alter the orientations indexed by
DI. However, it does smooth out the grain orientations.

Scan 1

25 m

Scan 6 Scan 10

Figure 6.5: IPFs of kikuchipy DI results using orix sampling.

To better see the effect of the refinement, the Gaussian kernel estimation, with
a smoothing factor of 0.2, of the PDF of the NCC-scores for each of the scans before
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Figure 6.6: IPFs of refined kikuchipy DI results using orix sampling.

and after refinement is shown in Figure 6.7. The PDF is clearly shifted towards
the right after refinement, as expected. The distance of the shift is not equal for
all the scans, with scan 1 clearly having the larger shift. This is caused by the
lower similarity between the simulated and experimental patterns as more noise
is introduced into the experimental data.
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Figure 6.7: Gaussian kernel estimation, with a smoothing factor of 0.2, of the
PDF to the NCC-scores in the different scans with orix sampling.

Figure 6.7 displays a small peak towards the low end of the NCC scale for
the PDFs of scan 1 and scan 6, whose mean NCC values are much higher. It is
suspected that certain areas of the two scans must be wrongly indexed. An easy
way to check is to plot the IPFs again, but now set the alpha of each pixel based on
the corresponding NCC value. The lowest value would be completely dark, with
the best value being transparent. 6.8 shows the IPF of scan 1 with the scores added
on top. Clearly there are grains, highlighted in red circles, where the DI routine has
been unable to properly match from the dictionary to the experimental patterns
as these grains are completely dark.

To check if the problem lies in the kikuchipy DI routine, the scans were indexed
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25 m

Figure 6.8: Scan 1 after DI in kikuchipy with orix sampling, where the NCC scores
are added on top of the image. The red circles highlight areas with very low NCC
scores, indicating poor matches.

again but now the dictionary was simulated using orientations from the sampling
routine in EMsoft with N = 100. Figure 6.9 shows the IPFs after DI in kikuchipy
with EMsoft sampling. While the majority of the IPFs are similar to the IPFs in
Figure 6.5, there are now red colored grains, which were not present when orix
sampling was used.

Scan 1

25 m

Scan 6 Scan 10

Figure 6.9: IPFs of kikuchipy DI results using EMsoft sampling.

Figure 6.10 shows the difference in NCC scores in scan 1 between DI using
EMsoft sampling and DI using orix sampling, with the red circles highlighting the
same positions as in Figure 6.8. The large NCC score difference, together with
presence of red colored grains is a strong indication that the orix sampling is not
good enough for orientations with <100>-normals parallel to the out-of-plane
direction].

Figure 6.11 shows the IPFs of the refined kikuchipy DI results with EMsoft
sampling. And, just as with orix sampling, there are no major changes between
the final orientations. Figure 6.12 shows the Gaussian kernel estimation, with a
smoothing factor of 0.2, for the PDFs of the NCC-scores for the different scans.
The same properties are observed as for the orix sampling, with one exception
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Figure 6.10: NCC-score difference for DI results for scan 1, using EMsoft sampling
and orix sampling.

being that the small peaks for scan 1 and scan 6 have no disappeared due to the
improved sampling routine.

Scan 1

25 m

Scan 6 Scan 10

Figure 6.11: IPFs of refined kikuchipy DI results using EMsoft sampling.
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Figure 6.12: Gaussian kernel estimation, with a smoothing factor of 0.2, of the
probability density function to the NCC-scores in the different scans with EMsoft
sampling
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6.3 Simulated Large Scan Ni

Figure 6.13 shows the misorientation angle in degrees for each pixel with the cen-
tral pixel. The different maps are for the different steps of the three-step refine-
ment. A) DI, B) orientation refinement using Nelder-Mead, C) orientation and
projection center correction step from Singh et al. [9], and D) final refinement
using Nelder-Mead.
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Figure 6.13: Misorientation angle in degrees, to the central pixel in the simulated
large Ni scan. A) DI, B) orientation refinement using Nelder-Mead, C) orientation
and projection center correction step, and D) final orientation refinement using
Nelder-Mead.

It seems that for this simulated large scan the three-step refinement process
works really well. However, we note that this is an extreme case where the patterns
to be indexed are as close as possible to the dictionary as they are created from
the same source. Furthermore, the projection center model is completely accurate
as the simulated data set is built from it, which would not be the case in reality.
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6.4 Single Crystal Silicon Wafer

The following section is for the large single crystal silicon wafer scan presented in
Section 5.4. Figure 6.14 shows the misorientation angle in degrees for each pixel
with the central pixel at the different stages of the three-step refinement. However,
the misorientation has been capped at 10◦. From the figure it is pretty clear that
neither the DI scan nor the refined result is a single crystal while doing the same
approach as for the simulated large Ni scan.
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Figure 6.14: Misorientation angle in degrees, capped at 10◦, to the central pixel
in the Si wafer scan with orix sampling. A) DI, B) orientation refinement using
Nelder-Mead, C) orientation and projection center correction step, and D) final
orientation refinement using Nelder-Mead.

The orientation of the single crystal silicon was known to be around (133.3◦,
88.7◦, 177.8◦). To investigate why the previous simulated large Ni scan gave ex-
cellent results, while the real large Si scan gave poor results, the method used to
simulate the large Ni scan was used to simulate a large Si scan with an orientation
set to (133.3◦, 88.7◦, 177.8◦).

6.4.1 Simulated Large Scan Si

Figure 6.15 shows the misorientation angle in degrees for each pixel with the cen-
tral pixel at the different stages of the three-step refinement. Again the maximum
misorientation has been set to 10◦ so that it is easier to see smaller variations
inside the scan. The orientation (133.3◦, 88.7◦, 177.8◦) has <100>-normal close
to parallel with the out-of-plane direction, so the same three-step refinement was
tested using sampling from EMsoft with N = 100.
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Figure 6.15: Misorientation angle in degrees, capped at 10◦, to the central pixel
in the simulated large Si scan with orix sampling. A) DI, B) orientation refinement
using Nelder-Mead, C) orientation and projection center correction step, and D)
final orientation refinement using Nelder-Mead.

Figure 6.16 shows the misorientation angle in degrees for each pixel with the
central pixel at the different stages of the three-step refinement, with maximum
misorientation capped at 10◦. Using the EMsoft sampling the expected behaviour
is seen, except for a few points which are clearly misindexed. Again the impor-
tance of a good sampling of the RFZ is highlighted and the fact that the sampling
provided in orix is not sufficient enough for orientations with <100>-normals
parallel to the out-of-plane direction.

6.4.2 Comparison of Orientation Sampling Tools

Based on the results obtained from the simulated large Si scan, the Si wafer was
then run through the DI process and the three-step refinement using the orienta-
tion sampling provided by EMsoft. Figure 6.17 shows the degree of misorientation
for each pixel with the central pixel at the different stages of the three-step refine-
ment, with a maximum misorientation set to 10◦. The process of using EMsoft
sampling provides a much better results. However, the result is far from satis-
factory as there are large misorientations towards the top corners of the scan. In
Figure 6.18 the experimental patterns and their matching simulations from DI are
shown. It is evident that at the center, where the projection center estimates are
solid, that a good match is found. However, towards the corners DI can no longer
guarantee this. The similarity metric used in DI does not account for rotations nor
translations, and thus for large scans such as the Si wafer other pattern matching
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Figure 6.16: Misorientation angle in degrees, capped at 10◦, to the central pixel
in the simulated large Si scan with EMsoft sampling. A) DI, B) orientation refine-
ment using Nelder-Mead, C) orientation and projection center correction step,
and D) final orientation refinement using Nelder-Mead.

methods, such as Refined Template Matching [43] might be more suited.
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Figure 6.17: Degree of misorientation, capped at 10◦, to the central pixel in the Si
wafer scan with EMsoft sampling. A) DI, B) orientation refinement using Nelder-
Mead, C) orientation and projection center correction step, and D) final orienta-
tion refinement using Nelder-Mead.
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Top Left Center

Figure 6.18: The EBSD patterns being used in the DI routine at the top left and
center of the scan, compared to the orientation that matched using DI with EMsoft
sampling.



Chapter 7

Conclusion

This work has been able to produce a set of algorithms able to refine both the
crystal orientations and projection center estimates after EBSD indexing. The im-
plementation is able to run in parallel, with larger-than-memory data sets, both on
a normal computer and on a computing cluster. The refinement routines are able
to produce reasonable results with just the data to be refined and no experience
in optimization is required from the user. Simultaneously, the implementation is
flexible enough that if an advanced user wanted to fine-tune the optimization pa-
rameters for their specific data set, they could. Additionally, it was concluded that
the fundamental sampling method provided by orix is not good enough for ori-
entations with <100>-normals parallel to the out-of-plane direction, and that a
proper sampling routine is crucial in order for DI to work. Furthermore, it seems
like DI is not a suited routine for indexing experimental scans where the shift in
projection center is large.
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Chapter 8

Further Work

Going forward the focus should first and foremost be on writing documentation
for the implementation, as well as writing unit tests, so that the the refinement
feature branch can be merged into the main branch of kikuchipy. Furthermore, it
is likely that implementing other pattern matching routines, such as Refined Tem-
plate Matching, would be beneficial in the long run, and it would be a nice routine
to have in the kikuchipy library. Additionally, I would like to see further develop-
ment of Python equivalent methods of those found in the MTEX Toolbox [39],
which does a lot of orientation analysis. Having similar tools available in Python
would allow for easier integration of both orientation and pattern analysis.
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Appendix A

Refinement Implementation

In this chapter the code used in the refinement process, including optimization
code, similarity metrics and single pattern simulation code is presented. As men-
tioned in Chapter 4, the latest updates and a better overview of the source code
can be found on GitHub [38] until it is merged into the master branch of kikuchipy.

Code listing A.1: Required imports for the code listings presented in this chapter.

import sys
from typing import, Union

import dask
from dask.diagnostics import ProgressBar
import numba
import numpy as np
from orix.crystal_map import CrystalMap
from orix.quaternion import Rotation
import scipy.optimize

A.1 Calling Functions

The calling functions are static methods of the Refinement class.

A.1.1 Full Refinement

Code listing A.2: Full refinement method.

@staticmethod
def refine_xmap(

xmap,
mp,
exp,
det,
energy,
mask=1,
method="minimize",
method_kwargs=None,
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trust_region=None,
compute=True,

):
if method == "minimize" and not method_kwargs:

method_kwargs = {"method": "Nelder-Mead"}
elif not method_kwargs:

method_kwargs = {}
method = getattr(scipy.optimize, method)

# Convert from Quaternions to Euler angles
with np.errstate(divide="ignore", invalid="ignore"):

euler = Rotation.to_euler(xmap.rotations)

# Extract best rotation from xmap if given more than 1
if len(euler.shape) > 2:

euler = euler[:, 0, :]

if not trust_region:
trust_region = [

0.0174532925,
0.0174532925,
0.0174532925,
0.05,
0.05,
0.05,

]
else:

trust_region = (
np.deg2rad(trust_region[:3]).tolist() + trust_region[3:]

)

exp.rescale_intensity(dtype_out=np.float32)
exp_data = exp.data
exp_shape = exp_data.shape

pc = det.pc

# Set the PC equal across the scan if not given
if len(pc) == 1:

pc_val = pc[0]
pc = np.full((exp_shape[0] * exp_shape[1], 3), pc_val)

# Should raise error here if len pc not equal to scan size

# 2D nav-dim
if len(exp_shape) == 4:

exp_data = exp_data.reshape(
(exp_shape[0] * exp_shape[1], exp_shape[2], exp_shape[3])

)
elif len(exp_shape) == 2: # 0D nav-dim

exp_data = exp_data.reshape(((1,) + exp_data.shape))

(
master_north,
master_south,
npx,
npy,
scale,

) = _get_single_pattern_params(mp, det, energy)

theta_c = np.deg2rad(det.tilt)
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sigma = np.deg2rad(det.sample_tilt)
alpha = (np.pi / 2) - sigma + theta_c

detector_data = [det.ncols, det.nrows, det.px_size, alpha]

pre_args = (
master_north,
master_south,
npx,
npy,
scale,
detector_data,
mask,

)

pre_args = dask.delayed(pre_args)
trust_region = dask.delayed(trust_region)

if isinstance(exp_data, dask.array.core.Array):
patterns_in_chunk = exp_data.chunks[0]
partitons = exp_data.to_delayed() # List of delayed objects
# equal to the number of chunks
inner_index = 0
refined_params = []
for k, part in enumerate(partitons):

data = part[0, 0]
num_patterns = patterns_in_chunk[k]
for i in range(num_patterns):

res = dask.delayed(_refine_xmap_solver)(
euler[i + inner_index],
pc[i + inner_index],
data[i],
pre_args,
method,
method_kwargs,
trust_region,

)
refined_params.append(res)

inner_index += num_patterns # Increase the index for
# the next chunk

else: # NumPy array
refined_params = [

dask.delayed(_refine_xmap_solver)(
euler[i],
pc[i],
exp_data[i],
pre_args,
method,
method_kwargs,
trust_region,

)
for i in range(euler.shape[0])

]
if compute:

with ProgressBar():
print(

f"Refining {xmap.rotations.shape[0]} orientations and "
f"projection centers:",
file=sys.stdout,
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)
results = dask.compute(*refined_params, scheduler="threads")
refined_euler = np.empty((euler.shape[0], 3), dtype=np.float32)
refined_pc = np.empty((euler.shape[0], 3), dtype=np.float32)
refined_scores = np.empty((euler.shape[0]), dtype=np.float32)
for i in range(euler.shape[0]):

refined_scores[i] = results[i][0]

refined_euler[i][0] = results[i][1]
refined_euler[i][1] = results[i][2]
refined_euler[i][2] = results[i][3]

refined_pc[i][0] = results[i][4]
refined_pc[i][1] = results[i][5]
refined_pc[i][2] = results[i][6]

new_det = det.deepcopy()
new_det.pc = refined_pc
refined_rotations = Rotation.from_euler(refined_euler)
xmap_dict = xmap.__dict__

output = CrystalMap(
rotations=refined_rotations,
phase_id=xmap_dict["_phase_id"],
x=xmap_dict["_x"],
y=xmap_dict["_y"],
phase_list=xmap_dict["phases"],
prop={

"scores": refined_scores,
},
is_in_data=xmap_dict["is_in_data"],
scan_unit=xmap_dict["scan_unit"],

)
else:

output = dask.delayed(refined_params)
new_det = -1

return output, new_det

A.1.2 Orientation Refinement

Code listing A.3: Orientation refinement method.

@staticmethod
def refine_orientations(

xmap,
mp,
exp,
det,
energy,
mask=1,
method="minimize",
method_kwargs=None,
trust_region=None,
compute=True,

):
if method == "minimize" and not method_kwargs:

method_kwargs = {"method": "Nelder-Mead"}
elif not method_kwargs:
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method_kwargs = {}
method = getattr(scipy.optimize, method)

# Convert from Quaternions to Euler angles
with np.errstate(divide="ignore", invalid="ignore"):

euler = Rotation.to_euler(xmap.rotations)

# Extract best rotation from xmap if given more than 1
if len(euler.shape) > 2:

euler = euler[:, 0, :]

exp.rescale_intensity(dtype_out=np.float32) # Here we are rescaling
# the input, we should probably not do this! :)
exp_data = exp.data
exp_shape = exp_data.shape

if len(exp_shape) == 4:
exp_data = exp_data.reshape(

(exp_shape[0] * exp_shape[1], exp_shape[2], exp_shape[3])
)

elif len(exp_shape) == 2: # 0D nav-dim
exp_data = exp_data.reshape(((1,) + exp_data.shape))

if not trust_region:
trust_region = [0.0174532925, 0.0174532925, 0.0174532925] # 1 deg

else:
trust_region = np.deg2rad(trust_region)

scan_points = exp_data.shape[0]

theta_c = np.deg2rad(det.tilt)
sigma = np.deg2rad(det.sample_tilt)
alpha = (np.pi / 2) - sigma + theta_c

dncols = det.ncols
dnrows = det.nrows
px_size = det.px_size

pc_emsoft = det.pc_emsoft()
if len(pc_emsoft) == 1:

xpc = np.full(scan_points, pc_emsoft[..., 0])
ypc = np.full(scan_points, pc_emsoft[..., 1])
L = np.full(scan_points, pc_emsoft[..., 2])

else: # Should raise error here if shape mismatch with exp!!
xpc = pc_emsoft[..., 0]
ypc = pc_emsoft[..., 1]
L = pc_emsoft[..., 2]

(
master_north,
master_south,
npx,
npy,
scale,

) = _get_single_pattern_params(mp, det, energy)

pre_args = (
master_north,
master_south,
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npx,
npy,
scale,
mask,

)

pre_args = dask.delayed(pre_args)
trust_region = dask.delayed(trust_region)

if isinstance(exp_data, dask.array.core.Array):
patterns_in_chunk = exp_data.chunks[0]
partitons = exp_data.to_delayed() # List of delayed objects
# equal to the number of chunks
inner_index = 0
refined_params = []
for k, part in enumerate(partitons):

data = part[0, 0]
num_patterns = patterns_in_chunk[k]

dc = dask.delayed(_fast_get_dc_multiple_pc)(
xpc[inner_index : num_patterns + inner_index],
ypc[inner_index : num_patterns + inner_index],
L[inner_index : num_patterns + inner_index],
num_patterns,
dncols,
dnrows,
px_size,
alpha,

)

for i in range(num_patterns):
res = dask.delayed(_refine_orientations_solver)(

data[i],
euler[inner_index + i],
dc[i],
method,
method_kwargs,
pre_args,
trust_region,

)
refined_params.append(res)

inner_index += num_patterns # Increase the index for
# the next chunk

else: # numpy array
dc = _fast_get_dc_multiple_pc(

xpc, ypc, L, scan_points, dncols, dnrows, px_size, alpha
)

refined_params = [
dask.delayed(_refine_orientations_solver)(

exp_data[i],
euler[i],
dc[i],
method,
method_kwargs,
pre_args,
trust_region,

)
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for i in range(euler.shape[0])
]

if compute:
with ProgressBar():

print(
f"Refining {xmap.rotations.shape[0]} orientations:",
file=sys.stdout,

)
results = dask.compute(*refined_params)
refined_euler = np.empty(

(xmap.rotations.shape[0], 3), dtype=np.float32
)
refined_scores = np.empty(

(xmap.rotations.shape[0]), dtype=np.float32
)
for i in range(xmap.rotations.shape[0]):

refined_scores[i] = results[i][0]

refined_euler[i][0] = results[i][1]
refined_euler[i][1] = results[i][2]
refined_euler[i][2] = results[i][3]

refined_rotations = Rotation.from_euler(refined_euler)

xmap_dict = xmap.__dict__

output = CrystalMap(
rotations=refined_rotations,
phase_id=xmap_dict["_phase_id"],
x=xmap_dict["_x"],
y=xmap_dict["_y"],
phase_list=xmap_dict["phases"],
prop={

"scores": refined_scores,
},
is_in_data=xmap_dict["is_in_data"],
scan_unit=xmap_dict["scan_unit"],

)
else:

output = dask.delayed(refined_params)
return output

A.1.3 Projection Center Refinement

Code listing A.4: Projection center refinement method.

@staticmethod
def refine_projection_center(

xmap,
mp,
exp,
det,
energy,
mask=1,
method="minimize",
method_kwargs=None,
trust_region=None,
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compute=True,
):

if method == "minimize" and not method_kwargs:
method_kwargs = {"method": "Nelder-Mead"}

elif not method_kwargs:
method_kwargs = {}

method = getattr(scipy.optimize, method)

# Extract best rotation from xmap if given more than 1
if len(xmap.rotations.shape) > 1:

r = xmap.rotations[:, 0].data
else:

r = xmap.rotations.data

exp.rescale_intensity(dtype_out=np.float32)
exp_data = exp.data
exp_shape = exp_data.shape

pc = det.pc

# Set the PC equal across the scan if not given
if len(pc) == 1:

pc_val = pc[0]
pc = np.full((exp_shape[0] * exp_shape[1], 3), pc_val)

# Should raise error here if len pc not equal to scan size

# 2D nav-dim
if len(exp_shape) == 4:

exp_data = exp_data.reshape(
(exp_shape[0] * exp_shape[1], exp_shape[2], exp_shape[3])

)
elif len(exp_shape) == 2: # 0D nav-dim

exp_data = exp_data.reshape(((1,) + exp_data.shape))

if not trust_region:
trust_region = [0.05, 0.05, 0.05]

(
master_north,
master_south,
npx,
npy,
scale,

) = _get_single_pattern_params(mp, det, energy)

theta_c = np.deg2rad(det.tilt)
sigma = np.deg2rad(det.sample_tilt)
alpha = (np.pi / 2) - sigma + theta_c

detector_data = [det.ncols, det.nrows, det.px_size, alpha]

pre_args = (
master_north,
master_south,
npx,
npy,
scale,
detector_data,
mask,

)
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pre_args = dask.delayed(pre_args)
trust_region = dask.delayed(trust_region)

if isinstance(exp_data, dask.array.core.Array):
patterns_in_chunk = exp_data.chunks[0]
partitons = exp_data.to_delayed() # List of delayed objects
# equal to the number of chunks
inner_index = 0
refined_params = []
for k, part in enumerate(partitons):

data = part[0, 0]
num_patterns = patterns_in_chunk[k]
for i in range(num_patterns):

res = dask.delayed(_refine_pc_solver)(
data[i],
r[i + inner_index],
pc[i + inner_index],
method,
method_kwargs,
pre_args,
trust_region,

)
refined_params.append(res)

inner_index += num_patterns # Increase the index for
# the next chunk

else: # NumPy array
refined_params = [

dask.delayed(_refine_pc_solver)(
exp_data[i],
r[i],
pc[i],
method,
method_kwargs,
pre_args,
trust_region,

)
for i in range(xmap.rotations.shape[0])

]

output = refined_params
if compute:

with ProgressBar():
print(

f"Refining {xmap.rotations.shape[0]} projection centers:",
file=sys.stdout,

)
results = dask.compute(*refined_params)

refined_pc = np.empty(
(xmap.rotations.shape[0], 3), dtype=np.float32

)
refined_scores = np.empty(

(xmap.rotations.shape[0]), dtype=np.float32
)
for i in range(xmap.rotations.shape[0]):

refined_scores[i] = results[i][0]

refined_pc[i][0] = results[i][1]
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refined_pc[i][1] = results[i][2]
refined_pc[i][2] = results[i][3]

new_det = det.deepcopy()
new_det.pc = refined_pc

output = (refined_scores, new_det)

return output

A.2 Solver Functions

A.2.1 Full Refinement

Code listing A.5: Full refinement solver method.

def _refine_xmap_solver(
r, pc, exp, pre_args, method, method_kwargs, trust_region

):
phi1_0 = r[..., 0]
Phi_0 = r[..., 1]
phi2_0 = r[..., 2]
eu_x0 = np.array((phi1_0, Phi_0, phi2_0))

args = (exp,) + pre_args

full_x0 = np.concatenate((eu_x0, pc), axis=None)

if method.__name__ == "minimize":
soln = method(

_full_objective_function_euler,
x0=full_x0,
args=args,
**method_kwargs,

)
elif method.__name__ == "differential_evolution":

soln = method(
_full_objective_function_euler,
bounds=[

(full_x0[0] - trust_region[0], full_x0[0] + trust_region[0]),
(full_x0[1] - trust_region[1], full_x0[1] + trust_region[1]),
(full_x0[2] - trust_region[2], full_x0[2] + trust_region[2]),
(full_x0[3] - trust_region[3], full_x0[3] + trust_region[3]),
(full_x0[4] - trust_region[4], full_x0[4] + trust_region[4]),
(full_x0[5] - trust_region[5], full_x0[5] + trust_region[5]),

],
args=args,
**method_kwargs,

)
elif method.__name__ == "dual_annealing":

soln = method(
_full_objective_function_euler,
bounds=[

(full_x0[0] - trust_region[0], full_x0[0] + trust_region[0]),
(full_x0[1] - trust_region[1], full_x0[1] + trust_region[1]),
(full_x0[2] - trust_region[2], full_x0[2] + trust_region[2]),
(full_x0[3] - trust_region[3], full_x0[3] + trust_region[3]),
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(full_x0[4] - trust_region[4], full_x0[4] + trust_region[4]),
(full_x0[5] - trust_region[5], full_x0[5] + trust_region[5]),

],
args=args,
**method_kwargs,

)
elif method.__name__ == "basinhopping":

method_kwargs["minimizer_kwargs"]["args"] = args
soln = method(

_full_objective_function_euler,
x0=full_x0,
**method_kwargs,

)

score = 1 - soln.fun
phi1 = soln.x[0]
Phi = soln.x[1]
phi2 = soln.x[2]
pcx = soln.x[3]
pxy = soln.x[4]
pxz = soln.x[5]

return (score, phi1, Phi, phi2, pcx, pxy, pxz)

A.2.2 Orientation Refinement

Code listing A.6: Orientation refinement solver function.

def _refine_orientations_solver(
exp, r, dc, method, method_kwargs, pre_args, trust_region

):

phi1 = r[..., 0]
Phi = r[..., 1]
phi2 = r[..., 2]

args = (exp,) + pre_args + (dc,)

r_x0 = np.array((phi1, Phi, phi2), dtype=np.float32)

if method.__name__ == "minimize":
soln = method(

_orientation_objective_function_euler,
x0=r_x0,
args=args,
**method_kwargs,

)
elif method.__name__ == "differential_evolution":

soln = method(
_orientation_objective_function_euler,
bounds=[

(r_x0[0] - trust_region[0], r_x0[0] + trust_region[0]),
(r_x0[1] - trust_region[1], r_x0[1] + trust_region[1]),
(r_x0[2] - trust_region[2], r_x0[2] + trust_region[2]),

],
args=args,
**method_kwargs,

)
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elif method.__name__ == "dual_annealing":
soln = method(

_orientation_objective_function_euler,
bounds=[

(r_x0[0] - trust_region[0], r_x0[0] + trust_region[0]),
(r_x0[1] - trust_region[1], r_x0[1] + trust_region[1]),
(r_x0[2] - trust_region[2], r_x0[2] + trust_region[2]),

],
args=args,
**method_kwargs,

)
elif method.__name__ == "basinhopping":

method_kwargs["minimizer_kwargs"]["args"] = args
soln = method(

_orientation_objective_function_euler,
x0=r_x0,
**method_kwargs,

)

score = 1 - soln.fun
refined_phi1 = soln.x[0]
refined_Phi = soln.x[1]
refined_phi2 = soln.x[2]

return (score, refined_phi1, refined_Phi, refined_phi2)

A.2.3 Projection Center Refinement

Code listing A.7: Solver function for projection center refinement.

def _refine_pc_solver(
exp, r, pc, method, method_kwargs, pre_args, trust_region

):
args = (exp,) + pre_args + (r,)
pc_x0 = pc

if method.__name__ == "minimize":
soln = method(

_projection_center_objective_function,
x0=pc_x0,
args=args,
**method_kwargs,

)
elif method.__name__ == "differential_evolution":

soln = method(
_projection_center_objective_function,
bounds=[

(pc_x0[0] - trust_region[0], pc_x0[0] + trust_region[0]),
(pc_x0[1] - trust_region[1], pc_x0[1] + trust_region[1]),
(pc_x0[2] - trust_region[2], pc_x0[2] + trust_region[2]),

],
args=args,
**method_kwargs,

)
elif method.__name__ == "dual_annealing":

soln = method(
_projection_center_objective_function,
bounds=[
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(pc_x0[0] - trust_region[0], pc_x0[0] + trust_region[0]),
(pc_x0[1] - trust_region[1], pc_x0[1] + trust_region[1]),
(pc_x0[2] - trust_region[2], pc_x0[2] + trust_region[2]),

],
args=args,
**method_kwargs,

)
elif method.__name__ == "basinhopping":

method_kwargs["minimizer_kwargs"]["args"] = args
soln = method(

_projection_center_objective_function,
x0=pc_x0,
**method_kwargs,

)

score = 1 - soln.fun
pcx = soln.x[0]
pcy = soln.x[1]
pcz = soln.x[2]
return (score, pcx, pcy, pcz)

A.3 Objective Functions

A.3.1 Full Refinement

Code listing A.8: Objective function for the full refinement.

def _full_objective_function_euler(x, *args):
experimental = args[0]
master_north = args[1]
master_south = args[2]
npx = args[3]
npy = args[4]
scale = args[5]
detector_data = args[6]
mask = args[7]

detector_ncols = detector_data[0]
detector_nrows = detector_data[1]
detector_px_size = detector_data[2]

# From Orix.rotation.from_euler()
phi1 = x[0]
Phi = x[1]
phi2 = x[2]

alpha = phi1
beta = Phi
gamma = phi2

sigma = 0.5 * np.add(alpha, gamma)
delta = 0.5 * np.subtract(alpha, gamma)
c = np.cos(beta / 2)
s = np.sin(beta / 2)

# Using P = 1 from A.6
q = np.zeros((4,))
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q[..., 0] = c * np.cos(sigma)
q[..., 1] = -s * np.cos(delta)
q[..., 2] = -s * np.sin(delta)
q[..., 3] = -c * np.sin(sigma)

for i in [1, 2, 3, 0]: # flip the zero element last
q[..., i] = np.where(q[..., 0] < 0, -q[..., i], q[..., i])

rotation = q

x_star = x[3]
y_star = x[4]
z_star = x[5]

xpc = detector_ncols * (x_star - 0.5) # Might be sign issue here?
xpc = -xpc
ypc = detector_nrows * (0.5 - y_star)
L = detector_nrows * detector_px_size * z_star

alpha2 = detector_data[3] # Different alpha
dc = _fast_get_dc(

xpc, ypc, L, detector_ncols, detector_nrows, detector_px_size, alpha2
)

sim_pattern = _fast_simulate_single_pattern(
rotation,
dc,
master_north,
master_south,
npx,
npy,
scale,

)
sim_pattern = sim_pattern * mask

result = py_ncc(experimental, sim_pattern)
return 1 - result

A.3.2 Orientation Refinement

Code listing A.9: Objective function for the orientation refinement.

def _orientation_objective_function_euler(x, *args):
experimental = args[0]
master_north = args[1]
master_south = args[2]
npx = args[3]
npy = args[4]
scale = args[5]
mask = args[6]
dc = args[7]

# From Orix.rotation.from_euler()
alpha = x[0] # psi1
beta = x[1] # Psi
gamma = x[2] # psi3

sigma = 0.5 * np.add(alpha, gamma)
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delta = 0.5 * np.subtract(alpha, gamma)
c = np.cos(beta / 2)
s = np.sin(beta / 2)

# Using P = 1 from A.6
q = np.zeros((4,))
q[..., 0] = c * np.cos(sigma)
q[..., 1] = -s * np.cos(delta)
q[..., 2] = -s * np.sin(delta)
q[..., 3] = -c * np.sin(sigma)

for i in [1, 2, 3, 0]: # flip the zero element last
q[..., i] = np.where(q[..., 0] < 0, -q[..., i], q[..., i])

r = q

sim_pattern = _fast_simulate_single_pattern(
r,
dc,
master_north,
master_south,
npx,
npy,
scale,

)

sim_pattern = sim_pattern * mask

result = py_ncc(experimental, sim_pattern)
return 1 - result

A.3.3 Projection Center Refinement

Code listing A.10: Projection center refinement objective function.

def _projection_center_objective_function(x, *args):
x_star = x[0]
y_star = x[1]
z_star = x[2]

experimental = args[0]
master_north = args[1]
master_south = args[2]
npx = args[3]
npy = args[4]
scale = args[5]
detector_data = args[6]
mask = args[7]
rotation = args[8]

detector_ncols = detector_data[0]
detector_nrows = detector_data[1]
detector_px_size = detector_data[2]
alpha = detector_data[3]

xpc = detector_ncols * (x_star - 0.5) # Might be sign issue here?
xpc = -xpc
ypc = detector_nrows * (0.5 - y_star)
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L = detector_nrows * detector_px_size * z_star

dc = _fast_get_dc(
xpc, ypc, L, detector_ncols, detector_nrows, detector_px_size, alpha

)

sim_pattern = _fast_simulate_single_pattern(
rotation,
dc,
master_north,
master_south,
npx,
npy,
scale,

)

sim_pattern = sim_pattern * mask

result = py_ncc(experimental, sim_pattern)
return 1 - result

A.4 Single Pattern Simulation Functions

A.4.1 Compute Single Pattern

Code listing A.11: Method to simulate a single EBSD pattern.

@numba.njit(nogil=True)
def _fast_simulate_single_pattern(

r,
dc,
master_north,
master_south,
npx,
npy,
scale,

):

# From orix.quaternion.Quaternion.__mul__

a = r[0]
b = r[1]
c = r[2]
d = r[3]

x = dc[..., 0]
y = dc[..., 1]
z = dc[..., 2]

x_new = (a ** 2 + b ** 2 - c ** 2 - d ** 2) * x + 2 * (
(a * c + b * d) * z + (b * c - a * d) * y

)
y_new = (a ** 2 - b ** 2 + c ** 2 - d ** 2) * y + 2 * (

(a * d + b * c) * x + (c * d - a * b) * z
)
z_new = (a ** 2 - b ** 2 - c ** 2 + d ** 2) * z + 2 * (

(a * b + c * d) * y + (b * d - a * c) * x
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)
rotated_dc = np.stack((x_new, y_new, z_new), axis=-1)

(
nii,
nij,
niip,
nijp,
di,
dj,
dim,
djm,

) = _fast_get_lambert_interpolation_parameters(
rotated_direction_cosines=rotated_dc,
npx=npx,
npy=npy,
scale=scale,

)
pattern = np.zeros(shape=rotated_dc.shape[0:-1], dtype=np.float32)
for i in range(rotated_dc.shape[0]):

for j in range(rotated_dc.shape[1]):
_nii = nii[i][j]
_nij = nij[i][j]
_niip = niip[i][j]
_nijp = nijp[i][j]
_di = di[i][j]
_dj = dj[i][j]
_dim = dim[i][j]
_djm = djm[i][j]
if rotated_dc[..., 2][i][j] >= 0:

pattern[i][j] = (
master_north[_nii, _nij] * _dim * _djm
+ master_north[_niip, _nij] * _di * _djm
+ master_north[_nii, _nijp] * _dim * _dj
+ master_north[_niip, _nijp] * _di * _dj

)
else:

pattern[i][j] = (
master_south[_nii, _nij] * _dim * _djm
+ master_south[_niip, _nij] * _di * _djm
+ master_south[_nii, _nijp] * _dim * _dj
+ master_south[_niip, _nijp] * _di * _dj

)
return pattern

A.4.2 Master Pattern Data Extraction

Code listing A.12: Method to extract data from master patterns.

def _get_single_pattern_params(mp, detector, energy):
# This method is already a part of the EBSDMasterPattern.get_patterns so
# it could probably replace it?
if mp.projection != "lambert":

raise NotImplementedError(
"Master pattern must be in the square Lambert projection"

)
# if len(detector.pc) > 1:
# raise NotImplementedError(
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# "Detector must have exactly one projection center"
# )

# Get the master pattern arrays created by a desired energy
north_slice = ()
if "energy" in [i.name for i in mp.axes_manager.navigation_axes]:

energies = mp.axes_manager["energy"].axis
north_slice += ((np.abs(energies - energy)).argmin(),)

south_slice = north_slice
if mp.hemisphere == "both":

north_slice = (0,) + north_slice
south_slice = (1,) + south_slice

elif not mp.phase.point_group.contains_inversion:
raise AttributeError(

"For crystals of point groups without inversion symmetry, like "
f"the current {mp.phase.point_group.name}, both hemispheres "
"must be present in the master pattern signal"

)
master_north = mp.data[north_slice]
master_south = mp.data[south_slice]
npx, npy = mp.axes_manager.signal_shape
scale = (npx - 1) / 2

return master_north, master_south, npx, npy, scale

A.4.3 Computation of Direction Cosines with Multiple Projection Cen-
ters

Code listing A.13: Method to calculate direction cosines when the experimental
geometry has multiple projection centers.

@numba.njit(nogil=True)
def _fast_get_dc_multiple_pc(

xpc, ypc, L, scan_points, ncols, nrows, px_size, alpha
):

nrows = int(nrows)
ncols = int(ncols)

ca = np.cos(alpha)
sa = np.sin(alpha)

# 1 DC per scan point
r_g_array = np.zeros((scan_points, nrows, ncols, 3), dtype=np.float32)
for k in range(scan_points):

det_x = (
-1
* ((-xpc[k] - (1.0 - ncols) * 0.5) - np.arange(0, ncols))
* px_size

)
det_y = ((ypc[k] - (1.0 - nrows) * 0.5) - np.arange(0, nrows)) * px_size
L2 = L[k]
for i in range(nrows):

for j in range(ncols):
x = det_y[nrows - i - 1] * ca + sa * L2
y = det_x[j]
z = -sa * det_y[nrows - i - 1] + ca * L2
r_g_array[k][i][j][0] = x
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r_g_array[k][i][j][1] = y
r_g_array[k][i][j][2] = z

norm = np.sqrt(np.sum(np.square(r_g_array), axis=-1))
norm = np.expand_dims(norm, axis=-1)
r_g_array = r_g_array / norm

return r_g_array

A.4.4 Computation of Direction Cosines with a single, fixed Projec-
tion Center

Code listing A.14: Method to calculate direction cosines when the experimental
geometry has a single, fixed projection center.

@numba.njit(nogil=True)
def _fast_get_dc(xpc, ypc, L, ncols, nrows, px_size, alpha):

# alpha: alpha = (np.pi / 2) - sigma + theta_c
# Detector coordinates in microns
nrows = int(nrows)
ncols = int(ncols)
det_x = -1 * ((-xpc - (1.0 - ncols) * 0.5) - np.arange(0, ncols)) * px_size
det_y = ((ypc - (1.0 - nrows) * 0.5) - np.arange(0, nrows)) * px_size

# Auxilliary angle to rotate between reference frames

ca = np.cos(alpha)
sa = np.sin(alpha)

r_g_array = np.zeros((nrows, ncols, 3), dtype=np.float32)

for i in range(nrows):
for j in range(ncols):

x = det_y[nrows - i - 1] * ca + sa * L
y = det_x[j]
z = -sa * det_y[nrows - i - 1] + ca * L
r_g_array[i][j][0] = x
r_g_array[i][j][1] = y
r_g_array[i][j][2] = z

norm = np.sqrt(np.sum(np.square(r_g_array), axis=-1))
norm = np.expand_dims(norm, axis=-1)
r_g_array = r_g_array / norm

return r_g_array

A.4.5 Lambert Projection of Direction Cosines

Code listing A.15: Project a vector to the Lambert projection.

@numba.njit(nogil=True)
def _fast_lambert_projection(v):

w = np.atleast_2d(v)
norm = np.sqrt(np.sum(np.square(w), axis=-1))
norm = np.expand_dims(norm, axis=-1)



70 :

w = w / norm

x = w[..., 0]
y = w[..., 1]
z = w[..., 2]

# Arrays used in both setting X and Y
sqrt_z = np.sqrt(2 * (1 - np.abs(z)))
sign_x = np.sign(x)
sign_y = np.sign(y)
abs_yx = np.abs(y) <= np.abs(x)

# Reusable constants
sqrt_pi = np.sqrt(np.pi)
sqrt_pi_half = sqrt_pi / 2
two_over_sqrt_pi = 2 / sqrt_pi

# Ensure (0, 0) is returned where |z| = 1
lambert = np.zeros(x.shape + (2,), dtype=np.float32)
# z_not_one = np.abs(z) != 1

# I believe it currently returns invalid results for the vector [0, 0, 1]
# as discussed in https://github.com/pyxem/kikuchipy/issues/272

# Numba does not support the fix implemented in the main code
# one workaround could be to implement a standard loop setting the values

# Equations (10a) and (10b) from Callahan and De Graef (2013)
lambert[..., 0] = np.where(

abs_yx,
sign_x * sqrt_z * sqrt_pi_half,
sign_y * sqrt_z * (two_over_sqrt_pi * np.arctan(x / y)),

)
lambert[..., 1] = np.where(

abs_yx,
sign_x * sqrt_z * (two_over_sqrt_pi * np.arctan(y / x)),
sign_y * sqrt_z * sqrt_pi_half,

)
return lambert

A.4.6 Lambert Projection Interpolation Parameters

Code listing A.16: Fast method to get the Lambert interpolation parameters.

@numba.njit(nogil=True)
def _fast_get_lambert_interpolation_parameters(

rotated_direction_cosines: np.ndarray,
npx: int,
npy: int,
scale: Union[int, float],

) -> tuple:

xy = (
scale
* _fast_lambert_projection(rotated_direction_cosines)
/ (np.sqrt(np.pi / 2))

)
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i = xy[..., 1]
j = xy[..., 0]
nii = (i + scale).astype(np.int32)
nij = (j + scale).astype(np.int32)
niip = nii + 1
nijp = nij + 1
niip = np.where(niip < npx, niip, nii).astype(np.int32)
nijp = np.where(nijp < npy, nijp, nij).astype(np.int32)
nii = np.where(nii < 0, niip, nii).astype(np.int32)
nij = np.where(nij < 0, nijp, nij).astype(np.int32)
di = i - nii + scale
dj = j - nij + scale
dim = 1.0 - di
djm = 1.0 - dj

return nii, nij, niip, nijp, di, dj, dim, djm

A.5 Similarity Metrics

A.5.1 Normalized Cross Correlation Coefficient

Code listing A.17: Quick NCC calculation.

@numba.njit(fastmath=True)
def py_ncc(a, b):

# Input should already be np.float32
abar = np.mean(a)
bbar = np.mean(b)
astar = a - abar
bstar = b - bbar
return np.sum(astar * bstar) / np.sqrt(

np.sum(np.square(astar)) * np.sum(np.square(bstar))
)

A.5.2 Normalized Dot Product

Code listing A.18: Quick NDP calculation.

@numba.njit(fastmath=True)
def py_ndp(a, b):

# Input should already be np.float32
return np.sum(a * b) / np.sqrt(np.sum(np.square(a)) * np.sum(np.square(b)))
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Code Examples

B.1 Scalability Evaluation Script

Code listing B.1: Script to time the performance of the orientation refinement.

import numpy as np
from orix import sampling, plot, io
import kikuchipy as kp
from orix.quaternion import Rotation
import time
import os
from kikuchipy.indexing.refinement import Refinement

r = Rotation.random(10000)

mp = kp.data.nickel_ebsd_master_pattern_small(projection="lambert", energy=20)

detector = kp.detectors.EBSDDetector(
shape=(100, 100),
pc=[0.421, 0.7794, 0.5049],
sample_tilt=70,
convention="tsl",

)

s = mp.get_patterns(
rotations=r,
detector=detector,
energy=20,
dtype_out=np.uint8,
compute=True
)

ni = mp.phase
r_fz = sampling.get_sample_fundamental(

resolution=4, space_group=ni.space_group.number
)
r_fz

sim = mp.get_patterns(
rotations=r_fz,

73
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detector=detector,
energy=20,
dtype_out=np.uint8,
compute=True
)

xmap = s.match_patterns(sim, n_slices=10, keep_n=2)

start = time.time()
r_xmap = Refinement.refine_orientations(

xmap=xmap,
mp=mp,
exp=s,
det=detector,
energy=20

)
end = time.time()

print("Cores: ", len(os.sched_getaffinity(0)), "Time: ", end - start)

B.2 Effect of Inaccurate Projection Center

Code listing B.2: Simulation of ground truth.

import kikuchipy as kp
from orix import sampling
from orix.quaternion import Rotation

detector = kp.detectors.EBSDDetector(
shape=(60, 60),
pc=(0.5070, 0.7230, 0.5613),
px_size=59.2,
sample_tilt=70,
convention="tsl"

)

mp_ni = kp.load("Ni-master.h5",
projection="lambert",
hemisphere="both",
energy=20

)

r = Rotation.random(1000)

ground_truth = mp_ni.get_patterns(
rotations=r,
detector=detector,
energy=20,
dtype_out=np.float32,
compute=True

)
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Code listing B.3: DI with erorr in projection center parameters, followed by re-
finement.

r_ni = sampling.sample_generators.get_sample_fundamental(
resolution=1.4,
space_group=225

)

error = 7 # Some number between -7 and 7

detector = kp.detectors.EBSDDetector(
shape=(60, 60),
pc=(
0.5070*(1 + error/100),
0.7230*(1 + error/100),
0.5613*(1 + error/100)
),
px_size=59.2,
sample_tilt=70,
convention="tsl"

)

ni_dict = mp_ni.get_patterns(
rotations=r_ni,
detector=detector,
energy=20,
dtype_out=np.uint8,
compute=False

)

di_xmap = ground_truth.match_patterns(
[ni_dict],
keep_n=1,
n_slices=30,
return_merged_crystal_map=False

)

o_xmap = Refinement.refine_orientations(
di_xmap,
mp_ni,
ground_truth,
detector,
20,
method_kwargs={’method’: "Nelder-Mead"}

)

opc_xmap, _ = Refinement.refine_xmap(
di_xmap,
mp_ni,
ground_truth,
detector,
20,
method_kwargs={’method’: "Nelder-Mead"}

)
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B.3 Projection Center Correction Step

Code listing B.4: Projection Center correction factor method.

import numpy as np
import kikuchipy as kp

def pc_correction(detector, sx, sy, stepsize):
rows, cols = detector.shape
pc_estimate = detector.pc_emsoft()
xpc = -pc_estimate[...,0][0]
ypc = pc_estimate[...,1][0]
L = pc_estimate[...,2][0]

delta = stepsize/detector.px_size

theta_c = np.radians(detector.tilt)
sigma = np.radians(detector.sample_tilt)
alpha = (np.pi / 2) - sigma + theta_c

ca = np.cos(alpha)
sa = np.sin(alpha)

new_xpc = ((1-sx) * 0.5 + np.arange(0, sx))
new_xpc = xpc - (new_xpc*delta)
new_xpc = np.tile(new_xpc, (sy, 1))
new_xpc = np.ravel(new_xpc)

new_ypc = -((1-sy) * 0.5 + np.arange(0, sy))
new_ypc = ypc - (new_ypc * ca*delta)
new_ypc = np.transpose([new_ypc] * sx)
new_ypc = np.ravel(new_ypc)

new_L = -((1-sy) * 0.5 + np.arange(0, sy))
new_L = L - (new_L * sa * delta * detector.px_size)
new_L = np.transpose([new_L] * sx)
new_L = np.ravel(new_L)
new_pc = np.column_stack((new_xpc, new_ypc, new_L))

new_detector = kp.detectors.EBSDDetector(
shape=(rows, cols),
pc=new_pc,
px_size=detector.px_size,
sample_tilt=detector.sample_tilt,
tilt=detector.tilt,
binning=detector.binning,
convention="emsoft4"

)

return new_detector

B.4 Orientation Correction Step

Code listing B.5: Orientation correction factor method.
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from orix.quaternion import Rotation

def orientation_correction_factor(rxmap, rows, cols, org_det):
old_rdata = rxmap.rotations.data.reshape((rows, cols, 4))
new_rdata = np.zeros_like(old_rdata)

old_rotations = Rotation(old_rdata)

M = rows + 1
N = cols + 1

M = M // 2
N = N // 2

L = org_det.pc_emsoft()[..., 2][0]
delta = org_det.px_size

sigma = np.deg2rad(org_det.sample_tilt)
theta_c = np.deg2rad(org_det.tilt)

alpha = np.pi / 2 - sigma + theta_c

ca = np.cos(alpha)
sa = np.sin(alpha)
# https://github.com/EMsoft-org/EMsoft/blob/develop/Source/
# EMsoftHDFLib/EBSDDImod.f90#L810
# (J. Appl. Cryst. (2017). 50, 1664 1676 , eq.15)

initialx = 49
initialy = 74

i = np.arange(1, rows+1)
j = np.arange(1, cols + 1)

stepx = 20
stepy = 20

dpcx = - ( initialx - j) * stepx
dpcy = - ( initialy - i) * stepy

# Shift to the detector reference frame and px units
dpcx = - dpcx / delta
dpcl = - dpcy * sa
dpcy = - dpcy * ca / delta

for i in range(rows):
for j in range(cols):

dx = dpcx[j]
dy = dpcy[i]
if (dx != 0) or (dy != 0):

current = old_rotations[i, j]
rho = dx**2 + dy**2
nn = -1* np.array((dx*ca, -dy, -dx*sa)) / np.sqrt(rho)
omega = np.arccos(L / np.sqrt(L**2 + delta**2 * rho))
nnn = np.sin(omega*0.5) * nn
qq = np.array((np.cos(omega*0.5), nnn[0], nnn[1], nnn[2]))
temp = Rotation(qq)
new_r = current * temp
new_rdata[i, j] = new_r.data

else:
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new_rdata[i, j] = old_rdata[i, j]

corrected_rotations = Rotation(new_rdata)
return corrected_rotations

B.5 scikit-image Mask from Experimental Pattern.

Code listing B.6: Creation of threshold mask using scikit-image.

from skimage.filters import threshold_triangle

# Raw Experimental Data
image = experimental.data[24, 24]

thresh_tri = threshold_triangle(image)
si_mask = image > thresh_tri
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