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Abstract:  

The main target of this work was to develop a stable and fast numerical algorithm for crystal 

plasticity with arbitrary slip systems and crystal elasticity. By the use of a regularized yield 

surface, the methods from the continuum plasticity are applicable, where the plasticity models 

are solved with integration over time as they are presented in the form of rate equations. For 

this purpose, the integration of the local constitutive equations is carried out by an iterative 

process which includes solving for elastic and plastic parts of the total strain increment, and 

eventually, updating the stress and internal state variables. This MSc work studies the 

implementation of a fully implicit Newton-Raphson method, modified with a line search 

algorithm for solving the return mapping problem. Firstly the isotropic Hosford yield surface 

for continuum plasticity is considered for validating the algorithms, then a crystal plasticity 

yield surface with a high exponent is approached. The line search algorithm is proved to 

be very robust and efficient. Improving the first guess makes it even more efficient. The 

statistical analysis regarding the convergence behavior of the models is presented and the 

potential for further improvement is discussed.  
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1 Introduction 

Numerical simulation of the metal forming processes is now one of the main methods to 

investigate the behavior of parts and products in sophisticated manufacturing conditions.  The 

simulation programs used in industry are based on the material models of the plastic 

deformation of metals. The efficiency and accuracy of such finite element codes that are used 

for solid mechanics analysis, is influenced by the constitutive models they use. In consequence, 

a vast number of plasticity models are proposed in the literature and used in finite element 

calculations. 

Industrial materials that can undergo a plastic deformation often have an elastic range with a 

purely elastic response. This range is defined by a closed domain in stress or strain space and 

its boundary is called the yield surface. This boundary is defined by a yield criterion which is 

the main feature of most plasticity models. 

Mechanical properties of metals are considerably influenced by their complex anisotropic 

microstructure. In a single crystal, plastic flow is anisotropic and therefore cannot be modeled 

using a simple constitutive equation that doesn’t consider the slip activity in the crystal. [1] 

Crystal plasticity models take into account the microstructure, grain orientations, and their 

plastic properties to derive macroscopic properties like the yield surface, through multiscale 

modeling. In other words, the prominent aspect of crystal plasticity theory is the explicit 

modeling of slip systems within the crystal lattice to establish a model that explains the plastic 

slip.  

Such models, when implemented in numerical simulations, are capable of a more accurate 

estimation of the material response. furthermore, by modeling the rotations of individual grains 

in polycrystalline materials, they predict the evolution of texture and therefore, account for the 

anisotropic effects arisen from texture and grain shapes. 

The objective of this work is to implement a return mapping algorithm for obtaining rate-

independent crystal yield surface and to study the achievable improvements by using 

modifications proven to be effective for other models. 
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1.1 Notational Convention 

A coordinate-free approach is used in this work to present the structure of models and other 

governing equations in a convenient manner. To denote vectors, a vector symbol above the 

letter is used whereas bold-face letters refer to second-order tensors. For the fourth-order 

tensors, an outline capital letter is used. Scalar parameters are presented with italic normal 

letters. This approach is summarized in table 1: 

 
Scalar Vector Second-order tensor 

Fourth-order 

tensor 

Latin a �⃗� A  

Greek α, λ σ⃗⃗⃗ 𝝈 

Table 1- Notational convention employed in this work. 

The cartesian components of vectors and tensors are referred to as: ai, Aij, and Aijkl.  

Moreover, to simplify the operations and increase the running speed of the solution, and since 

the stress is a symmetric tensor, Mandel-Notation is used. By reducing the order of tensor, the 

original [3x3] tensor is reduced to a [1x6] vectors, as described below: 

In matrix notation, the stress tensor is represented as: 

𝝈 = [

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

] 

In Voigt notation, it is simplified to a [1x6] vector where only six components are used: the 

three on the diagonal, and the others being off-diagonal components: 

σ⃗⃗⃗ =  [𝜎11 𝜎22 𝜎33    𝜎23 𝜎13 𝜎12] 

Mandel notation uses the same components from the original tensor but all the off-diagonal 

components will be multiplied by √2. 

σ⃗⃗⃗ =  [𝜎11 𝜎22 𝜎33    √2 𝜎23 √2 𝜎13 √2 𝜎12] 
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The main advantage of using Mandel notation is that it allows using the same conventional 

operations used with vectors. for example, when calculating the 𝝈: 𝝈 for the original [3x3] 

tensor, which is equal to the square root of the sum of the squares of the tensor components, 

using Voigt notation will not give the same result as the original second-order tensor. Mandel 

notation, however, will count for the double appearance of the off-diagonal components by 

using the √2 coefficient. 

The other advantage of using the Mandel form of tensors is avoiding fourth-order tensor 

operations. For instance, the fourth-order [3x3x3x3] stiffness and compliance matrices which 

were reduced to [6x6] matrices by using the minor symmetries (resulted from the symmetry of 

the stress and strain tensors) can be represented in Mandel notation. Such symmetric tensor of 

rank four with only 36 distinct components can be expressed in Mandel Notation as: 

𝑪 =

(

 
 
 
 
 

𝐶1111 𝐶1122 𝐶1133 √2𝐶1123 √2𝐶1113 √2𝐶1112

𝐶2211 𝐶2222 𝐶2233 √2𝐶2223 √2𝐶2213 √2𝐶2212

𝐶3311 𝐶3322 𝐶3333 √2𝐶3323 √2𝐶3313 √2𝐶3312

√2𝐶2311 √2𝐶2322 √2𝐶2333 2𝐶2323 2𝐶2313 2𝐶2312

√2𝐶1311 √2𝐶1322 √2𝐶1333 2𝐶1323 2𝐶1313 2𝐶1312

√2𝐶1211 √2𝐶1222 √2𝐶1233 2𝐶1223 2𝐶1213 2𝐶1212 )

 
 
 
 
 

 

 

In the case of stiffness and compliance matrices, the most general anisotropic linear elastic 

material will have 21 material constants and the matrix above will be symmetric.[1] 

Using Mandel notation will replace the “:” operator (double dot production) between two 

tensors with matrix multiplication as described. in indicial notation: 

if 𝐀 and 𝐁, both rank two tensors →     𝑨: 𝑩 = 𝐴𝑖𝑗𝐵𝑖𝑗 

if  a rank four tensor and 𝐁 a rank two tensor →     : 𝑩 = 𝐴𝑖𝑗𝑘𝑙𝐵𝑘𝑙𝒆𝑖⊗𝒆𝑗 

But when written in Mandel notation, second-order tensors will be converted to vectors and 

fourth-order tensors will be reduced to second-order tensors, considerably decreasing the 

calculation load. This operation will affect double dot production as followed: 
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𝑨:𝑩 = �⃗� ∙ �⃗⃗� 

: 𝑩 = 𝑨 ∙  �⃗⃗� 

To have the formulations similar to the way they are implemented in the code, they are 

presented in Mandel notation as much as possible. If stress and strain tensors are written as 

vectors, and elastic moduli in a second-order tensor mode, the Mandel notation is employed. 
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2 Theoretical background 

The topics studied in this work, mainly include yield functions, crystal plasticity model, and 

general closest point projection algorithm. Each of them will be introduced and reviewed 

briefly in the following. 

2.1 Yield function 

A yield surface is defined as a surface in stress space such that it bounds stress states which 

can be reached without initiating plastic strains. Mathematically, this surface can be 

represented by a yield function. Over the past two centuries, several yield criteria have been 

proposed. Although the two criteria commonly attributed to von Mises and Tresca are the most 

representative of initial yielding in metallic isotropic materials. [2] 

2.1.1 Von misses yield function 

This criterion is based on the determination of the energy associated with shape change 

(distortion energy) in a material. According to von Mises’s theory, a ductile solid will yield 

when the maximum value of the distortion energy per unit volume reaches a critical value for 

that material. This criterion should hold for the uniaxial stress state and therefore, the critical 

value of the distortional energy can be obtained from the uniaxial test. [3] 

Mathematically, the yield function for the von Mises criterion suggests that the yielding of 

material begins when the von Mises stress reaches the yield stress 𝜎𝑦: 

𝑓(𝝈) = 𝜎𝑣 − 𝜎𝑦 = 0                                                                                                                         (1.1) 

Where 𝜎𝑣 can be expressed in terms of the deviatoric stress of 𝝈′ and second deviatoric stress 

invariant, 𝐽2, as follows: 

𝜎𝑣 = √3𝐽2 = √
3

2
𝝈′: 𝝈′     , 𝝈′ = 𝝈 −

1

3
(tr(𝝈))𝑰                                                                         (1.2)    
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This yield criterion can be stated in principal stress components as [2]: 

(𝜎1 − 𝜎2)
2 + (𝜎2 − 𝜎3)

2 + (𝜎3 − 𝜎1)
2 = 2𝜎𝑦

2                                                                           (1.3) 

And as a function of stress tensor components:  

(𝜎11 − 𝜎22)
2 + (𝜎22 − 𝜎33)

2 + (𝜎33 − 𝜎11)
2 + 6(𝜎23

2 + 𝜎31
2 + 𝜎12

2) = 2𝜎𝑦
2                (1.4) 

This yield criterion can be defined as a circular cylinder which forms a circle in an intersection 

with the deviatoric plane with the radius of √
2

3
𝜎𝑦, as shown in figure 1. 

2.1.2 Tresca yield function 

The second yield criterion presented in this section has a very direct physical interpretation. 

According to the Tresca yield criterion, yielding in a material starts when the maximum shear 

stress reaches the Tresca yield shear stress which is determined by uniaxial stress. This criterion 

is also known as the maximum shear stress criterion and represents the yield criterion for the 

Tresca material model. [3] Mathematically it can be represented as: 

𝜏𝑚𝑎𝑥 =
1

2
(𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛)                                                                                                                   (1.5) 

Where 𝜎𝑚𝑎𝑥 and 𝜎𝑚𝑖𝑛 are the maximum and minimum principal stresses in the material. In the 

case of the uniaxial stress, 𝜎1 = 𝜎𝑦 and 𝜎2 = 𝜎3 = 0, therefore the maximum shear stress of 

this criterion will be: 

𝜏𝑚𝑎𝑥 =
𝜎𝑦

2
                                                                                                                                            (1.6) 

In the principal stress space, as shown in figure 1, this criterion is represented by a regular 

hexagonal cylindrical yield surface with a regular hexagonal yield curve. 

Tresca yield criterion is arguably more conservative failure theory than distortion energy theory 

or von Mises criterion since it is contained within the latter. Certain stress states that happen to 

exist between these two yield surfaces are considered to fail according to the Tresca yield 

criterion whereas according to the von Mises criterion they should still be in the elastic domain. 
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Figure 1- The mathematical representation of the von Mises and Tresca yield surfaces, in three-dimensional 

stress space. [4] 

 

2.1.3 Hosford yield function 

The Hosford yield criterion is a generalization of the von Mises and Tresca yield surfaces and 

often lies between these two yield surfaces. The value of exponent “a” in the expression of 

effective stress defines the shape of the final yield surface. If “a” is chosen to be 2 or 4, the 

yield surface will be a von Mises yield surface. however, if a = 1 or in the limit as a → ∞, the 

yield surface is a Tresca yield surface. for 1<a<2 and 4<a<∞ the yield surface lies between 

the two yield surfaces.[5] 

Depending on the choice of the exponent “a”, the Hosford model is the description of the yield 

surface for the material. The plastic flow direction can be obtained using the associated flow 

rule. 

The yield function which defines the yield surface is given by: 

𝑓(𝝈) = 𝜑(𝝈) − 𝜎𝑦                                                                                                                               (1.7) 
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Where 𝜑 is the effective stress of the Hosford Model which is given by: 

𝜑(𝝈) = {
1

2
[|𝜎1 − 𝜎2|

𝑎 + |𝜎2 − 𝜎3|
𝑎 + |𝜎3 − 𝜎1|

𝑎]}

1
𝑎⁄

                                                            (1.8) 

The exponent “a” is a material model parameter and σi are the principal stress values. 

σy in yield function expression depends on the hardening law, which can be defined separately. 

For the case of perfect plasticity which is considered to be the case in this work, it is equal to 

the yield strength. If the hardening of material is also to be considered, then the equivalent 

plastic strain should also be given to the yield function in any iteration of the solution. 

To find the principal stress values, σi, in the effective stress equation, three eigenvalues and 

eigenvectors of the given stress tensor is found using the numpy.linalg.eig function. For the 

stress tensor σ, these will be the principal stresses and their directions. This library uses 

LAPACK ("Linear Algebra Package") routine for solving the eigenvalue problems. LAPACK 

is a standard software library for numerical linear algebra. [6] 

To avoid numerical overflow problem when calculating effective stress, the principal stresses 

in this expression are scaled with von Mises stress. 

By using von Mises stress for scaling, effective stress can be obtained by the following 

expression: 

𝜑(𝛔) = 𝜎𝑣 {
1

2
[|𝜎1 − 𝜎2|

𝑎 + |𝜎2 − 𝜎3|
𝑎 + |�̅�3 − 𝜎1|

𝑎]}

1
𝑎⁄

   ,      𝜎𝑖 =
𝜎𝑖
𝜎𝑣⁄                          (1.9) 

For integrating the model and solving the return mapping with an incremental solution, first 

and second derivatives (normal to the yield surface and Hessian, respectively) of the effective 

stress are needed. The following expressions are used for this purpose, as derived and presented 

by Scherzinger (2016) [7]. 

The first derivative can be expressed in terms of the principal stress directions, �̂�𝑖 (eigenvectors 

of the given stress tensor): 
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𝜕𝜑

𝜕𝝈
=∑

𝜕𝜑

𝜕𝜎𝑖
�̂�𝑖

3

𝑖=1

⊗ �̂�𝑖                                                                                                                      (1.10) 

The partial derivatives are given by equation 1.11 and to avoid numerical overflow and to 

improve the accuracy, another scaling is applied, using the value of the effective stress. The 

other partials can be obtained using the same pattern: 

𝜕𝜑

𝜕𝜎1
=
1

2
[(�̂�1 − �̂�2)|�̂�1 − �̂�2|

𝑎−2 − (�̂�3 − �̂�1)|�̂�3 − �̂�1|
𝑎−2] ,      �̂�𝑖 =

𝜎𝑖
𝜑⁄                         (1.11) 

The second derivative of the effective stress with respect to the stress is also presented based 

on eigenvectors: 

𝜕2𝜑

𝜕𝛔𝜕𝛔
= 𝐻𝑖𝑗𝑘𝑙 �̂�𝑖⊗ �̂�𝑗⊗ �̂�𝑘⊗ �̂�𝑙                                                                                              (1.12) 

Where the non-zero 𝐻𝑖𝑗𝑘𝑙 components can be obtained using the following patterns and 

permuting the indices: 

𝐻1111 =
𝜕2𝜑

𝜕𝜎1𝜕𝜎1
       , 𝐻1122 =

𝜕2𝜑

𝜕𝜎1𝜕𝜎2
                                                                             (1.13) 

𝐻1212 =
1

2

𝜕𝜑 𝜕𝜎1 − 𝜕𝜑 𝜕𝜎2⁄⁄

(𝜎1 − 𝜎2)
                                                                                                     (1.14) 

When (𝜎1 − 𝜎2) = 0 in equation 1.14, it can be obtained by equation 1.15 which is derived 

using the limit. 

𝐻1212 =
1

2
(
𝜕2𝜑

𝜕𝜎1𝜕𝜎1
−

𝜕2𝜑

𝜕𝜎1𝜕𝜎2
)                                                                                                     (1.15) 

And finally, the second derivatives of the effective stress are to be obtained with equations 1.16 

and 1.17, using the scaled principal stresses: 

𝜕2𝜑

𝜕𝜎1𝜕𝜎1
=
𝑎 − 1

𝜑
{
1

2
[|�̂�1 − �̂�2|

𝑎−2 + |�̂�3 − �̂�1|
𝑎−2] −

𝜕𝜑

𝜕𝜎1

𝜕𝜑

𝜕𝜎1
}                                            (1.16) 
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𝜕2𝜑

𝜕𝜎1𝜕𝜎2
=
𝑎 − 1

𝜑
{−
1

2
|�̂�1 − �̂�2|

𝑎−2 −
𝜕𝜑

𝜕𝜎1

𝜕𝜑

𝜕𝜎2
}                                                                        (1.17) 

with the other non-zero derivatives following the same pattern. 

 

2.2 Crystal Plasticity  

The concept of crystal plasticity relies on the precise knowledge of the kinematics of plastic 

slip with respect to the crystallographic slip systems. It tries to explain the plastic deformation 

according to the driving force for the activation of plastic slip, namely the corresponding 

resolved shear stress, which will be discussed in the following. 

Unlike the elastic response of crystalline materials that may be approximated by an isotropic 

description, the plastic deformation of a single crystal has an anisotropic nature which can be 

explained by the presence of a finite number of distinct slip systems that are defined by its 

crystalline structure. [8] 

2.2.1 Schmid’s law 

The extent of the slip in a single crystal is determined by the magnitude of the shear stress 

resulted from external loads. Depending on the orientation of the grain with respect to the 

applied load, the produced shear stress can differ between zero to a maximum magnitude, 

determined by the angles formed between the applied load, normal of the slip plane, and the 

slip direction, as shown in figure 2. [9] This statement is now commonly referred to as Schmid’s 

law. 

In mathematical terms, Schmid’s law can be presented as follows: 

𝜏 = 𝜎 𝑐𝑜𝑠𝜑 cos 𝜆 

Where 𝜑 and 𝜆 are the angles that slip plane normal and slip direction make with the loading 

axis, respectively. The factor 𝑐𝑜𝑠𝜑 cos 𝜆 in this equation is called the Schmid’s factor. [10] 
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Figure 2- A single crystal specimen subjected to uniaxial tension, highlighting the slip and normal 

unit vectors of an arbitrary slip system [9] 

Assuming that the axial stress is constant, the resolved shear stresses on each slip system will 

be different, depending on the angles that plane’s normal and slip direction make with the axis 

of loading, and plastic slip occurs in the one for which the resolved shear stress is maximum 

and has reached a critical value, referred to as the critical resolved shear stress, 𝜏𝑐. Critical 

resolved shear stress is a material property and has to be determined experimentally. [10] All 

the physical conditions of the material that affects dislocation movement in a crystal lattice 

including temperature, dislocation density, impurities as well as loading condition such as 

strain rate, can influence the value of the critical resolved shear stress. [11] 

For the slip system α, if  �⃗⃗⃗�𝛼 is the slip plane normal unity vector, and  �⃗⃗�𝛼 the slip direction 

unity vector, Schmid’s equation can be written in terms of these vectors: 

𝑷𝛼 =
1

2
(�⃗⃗⃗�𝛼⊗ �⃗⃗�𝛼 + �⃗⃗�𝛼⊗ �⃗⃗⃗�𝛼)                                                                                                  (1.18) 

𝜏 = 𝝈 ∶  𝑷𝛼                                                                                                                                         (1.19)  

An FCC crystal contains 12 slip systems, considering four octahedral planes with three close-

packed directions on each plane. Slip plane normal and slip direction unity vectors for these 12 

slip systems are presented in Table 2. [12] 
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α �⃗⃗⃗�𝛼 �⃗⃗�𝛼 α �⃗⃗⃗�𝛼 �⃗⃗�𝛼 

1 1 √3⁄ (1,1,1) 1 √2⁄ (1, 1̅, 0) 7 1 √3⁄ (1, 1̅, 1) 1 √2⁄ (1,1,0) 

2 1 √3⁄ (1,1,1) 1 √2⁄ (0,1, 1̅) 8 1 √3⁄ (1, 1̅, 1) 1 √2⁄ (0,1,1) 

3 1 √3⁄ (1,1,1) 1 √2⁄ (1,0, 1̅) 9 1 √3⁄ (1, 1̅, 1) 1 √2⁄ (1,0, 1̅) 

4 1 √3⁄ (1̅, 1,1) 1 √2⁄ (1,1,0) 10 1 √3⁄ (1,1, 1̅) 1 √2⁄ (1, 1̅, 0) 

5 1 √3⁄ (1̅, 1,1) 1 √2⁄ (0,1, 1̅) 11 1 √3⁄ (1,1, 1̅) 1 √2⁄ (0,1,1) 

6 1 √3⁄ (1̅, 1,1) 1 √2⁄ (1,0,1) 12 1 √3⁄ (1,1, 1̅) 1 √2⁄ (1,0,1) 

Table 2- Slip direction and slip plane normal with respect to an orthonormal basis for the FCC crystal. 

 

2.2.2 Rate independent crystal yield surface 

Based on equation 1.19, the strain-rate independent crystal yield surface can mathematically 

be expressed as the following yield criteria : 

|𝜏| = |𝝈 ∶  𝑷𝛼| ≤ 𝜏𝑐
𝛼                                                                                                                         (1.20) 

Where 𝜏𝑐
𝛼 is the critical resolved shear stress for slip, on slip system α. This equation defines a 

convex envelope of the linear facets from each slip system. 

If slip on a certain slip plane occurs with different critical resolved shear stresses for forward 

and reverse slip, the yield surface should consider them as two different slip systems, sharing 

the same plane, yet with opposite slip direction vectors. This study assumes all the critical 

resolved shear stress values for all slip systems to be the same but the structure of code will be 

based on 24 slip systems to set a flexible framework for further development. 
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The inner envelope of the yield surfaces for all the slip systems given by equation 1.20 is 

expressed as: 

𝑓(𝝈) = (∑ ⟨
𝝈:𝑷𝛼

𝜏𝑐
𝛼 ⟩

𝑛𝑁

𝛼=0

)

1
𝑛

− 1 = 0                                                                                               (1.21) 

This equation serves as the yield function of the model and to be able to perform the 

incremental solution presented in the next section, first and second derivatives with respect to 

the stress tensor are required. The following expressions presented by Holmedal and Mánik are 

used for this purpose: 

𝜕𝑓

𝜕𝝈
= ∑  ⟨

𝝈: 𝑷𝛼

(𝑓 + 1)𝜏𝑐
𝛼⟩

𝑛−1
1

𝜏𝑐
𝛼 𝑷

𝛼                                                                                              (1.22)

𝑁

𝛼=0

 

𝜕2𝑓

𝜕𝝈𝜕𝝈
=
(𝑛 − 1)

(𝑓 + 1)
(∑ ⟨

𝝈:𝑷𝛼

(𝑓 + 1)𝜏𝑐
𝛼⟩

𝑛−2
𝑷𝛼⊗𝑷𝛼

(𝜏𝑐
𝛼)2

𝑁

𝛼=0

−
𝜕𝑓

𝜕𝝈
⊗
𝜕𝑓

𝜕𝝈
)                                      (1.23) 

 

2.3 Return mapping algorithm 

The classical plasticity models are solved with integration over time as they are presented in 

the form of rate equations. such solutions involve the integration of the local constitutive 

equations by an iterative process. These local integration algorithms should be solved for 

elastic and plastic parts of the total strain increment, and eventually, update the stress and 

internal state variables. For non-trivial elastoplastic models, this procedure is done in two main 

steps. Initially, the strain increment is assumed to be purely elastic. The outcome of such an 

assumption then should be corrected by subsequent steps that maps the stress onto a suitably 

updated yield surface. this procedure is referred to as the return mapping algorithm. [13] Figure 

3 demonstrates the geometric interpretation of this process in stress space. 
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Figure 3- A geometric interpretation of the iteration scheme for the return mapping algorithm. [14] 

For the case of isotropic von Mises plasticity models, since the normal to the yield surface is 

identical to the normal calculated from the trail stress (due to the shape of this specific yield 

surface in 5-dimensional stress space), the return mapping will be simplified to radial return 

map that can obtain the final solution in one iteration only. [13] 

However, for a single crystal with anisotropic behavior, this will bot be the case since the 

predictor and corrector flow directions will not be equivalent. In this case, the algorithm should 

enforce the normality condition by solving for the amount and direction of the plastic flow. 

[13] This procedure requires a considerable amount of additional computational load that can 

be an obstacle for implementing it in large scale simulations. For that reason, numerous studies 

have been conducted to increase the efficiency of these algorithms. 

the governing formulations defining the framework of the return mapping algorithm will be 

presented in the next chapter. 
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3 Method 

 

3.1 Return Mapping Algorithm 

In this section, the overall procedure of the numerical implementation of the Hosford, as well 

as rate-independent regularized crystal yield surface using a return mapping algorithm, is 

presented.  

3.1.1 Step 1: Trial Stress 

Having the initial stress and strain increment, trail stress is calculated, with the assumption that 

the strain increment is elastic (Elastic Predictor). 

𝝈𝑛+1
𝑡𝑟𝑖𝑎𝑙 = 𝝈𝑛 + : ∆𝜺                                                                                                                          (3.1)  

When tensors are provided in Mandel notation: 

�⃗�𝑛+1
𝑡𝑟𝑖𝑎𝑙 = �⃗�𝑛 + 𝑪 ∙ ∆𝜀                                                                                                                        (3.2)  

All the following equations in this chapter assume that the tensors are presented in Mandel 

notation. 

Next is to determine if such trail stress causes plastic deformation. Using the yield function of 

the Hosford Model (eq x) or the crystal plasticity model (eq x): 

if 𝑓(�⃗�𝑡𝑟𝑖𝑎𝑙) ≤ 0  →   the strain increment is elastic and �⃗�𝑡𝑟𝑖𝑎𝑙  will be the true �⃗�𝑛+1  

if 𝑓(�⃗�𝑡𝑟𝑖𝑎𝑙) > 0 →   plastic deformation occurs and return mapping will be used to find �⃗�𝑛+1  

To have a uniform distribution of trail stresses and with the goal of comparing with some 

existing results in the literature, instead of providing initial stress state and the strain increment, 

trial stresses are given as an input to the model. It’s worth mentioning that if the chosen trial 

stresses include a statistically uniform distribution of stress states with large enough 

magnitudes, it would cover effectively the range of possible combinations of initial stresses 

and strain increments that can be faced in numerical simulation applications. 
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3.1.2  Step 2: Return mapping 

If the trial stress is large enough to cause plastic deformation, the return mapping is solved 

using a Newton-Raphson algorithm for the computation of the closest point projection from 

the trial state onto the yield surface.  

This will be done by defining two residuals for the model. The first residual is the yield function 

of the model and the second one, the plastic strain residual: 

𝑓(�⃗�) = 𝜑(�⃗�) − 𝜎𝑦                                  for Hosford Model                                                        (3.3) 

𝑓(�⃗�) = (∑ ⟨
�⃗� ∙ �⃗⃗�𝛼

𝜏𝑐
𝛼 ⟩

𝑛𝑁

𝛼=0

)

1
𝑛

− 1       for Crystal plasticity Model                                             (3.4) 

𝑟(�⃗�, ∆𝜆) = −∆𝜀𝑝(�⃗�) + ∆𝜆
𝜕𝑓

𝜕�⃗�
                                                                                                        (3.5)  

Where ∆𝜀𝑝 is the plastic strain increment and ∆𝜆 is the incremental consistency parameter. 

For Hosford mode, from the yield function expression, it can be concluded that 
∂f

∂σ⃗⃗⃗
=
∂φ

∂σ⃗⃗⃗
. 

These two residuals will define a measure of convergence as: 

𝜓 =
1

2
[𝑟 ∙ 𝑟 + (

𝑓

2𝐺
)
2

]                        for Hosford Model                                                         (3.6) 

𝜓 =
1

2
[𝑟 ∙ 𝑟 + 𝑓2]                       for Crystal plasticity Model                                                (3.7) 

For the Hosford Model, shear modulus (G) is used for scaling the yield function and therefore 

the convergence parameter 𝜓  will be dimensionless. The acceptable solution should result in 

a convergence parameter, less than a specified threshold. In other words, the iterative algorithm 

should continue until finding a �⃗� and Δλ that makes both residuals small enough. To fulfill this 

aim, after each iteration, the stress and consistency parameter will be updated using their 

incremental values. After iteration k: 
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�⃗�𝑘+1 = �⃗�𝑘 + ∆�⃗�                                                                                                                                 (3.8) 

∆𝜆𝑘+1 = ∆𝜆𝑘 + ∆(∆𝜆)                                                                                                                     (3.9) 

Where Δ�⃗� is the amount of change in the stress and Δ(Δλ), change in incremental consistency 

parameter in step k, and are to be found for each increment having the Hessian matrix of the 

return mapping algorithm: 

𝑯𝑘
−1 = 𝑪−1 + ∆𝜆𝑘

𝜕2𝑓𝑘

𝜕�⃗⃗⃗� 𝜕�⃗⃗⃗�
                                                                                                                (3.10)  

The incremental values will then can be obtained by the following equations: 

∆(∆𝜆) =
𝑓𝑘 − 𝑟𝑘 ∙ 𝑯𝑘 ∙

𝜕𝑓𝑘
𝜕�⃗�

𝜕𝑓𝑘
𝜕�⃗�

∙ 𝑯𝑘 ∙
𝜕𝑓𝑘
𝜕�⃗�

                                                                                                           (3.11) 

∆�⃗� = −𝑯𝑘 ∙ (𝑟𝑘 + ∆(∆𝜆)
𝜕𝑓𝑘
𝜕�⃗�
)                                                                                                     (3.12) 

Having the stress increment, plastic strain increment used in the plastic strain residual can also 

be calculated by: 

∆𝜀𝑝
𝑘+1 = ∆𝜀𝑝

𝑘 − 𝑪−1 ∙  ∆�⃗�                                                                                                               (3.13) 

After each iteration, the value of residuals and then the convergence measure 𝜓 will be 

calculated. For the Hosford model, if this parameter is less than a defined tolerance say 𝜓𝑙𝑖𝑚𝑖𝑡, 

the solution will be recognized as converged. For the crystal plasticity model, however, both 

the yield function and plastic residual are checked to make sure both the residuals are smaller 

than defined limit values. 

 the flowchart of such a routine is summarized in the figure below: 
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Finding Incremental Values:

Δσ , Δ(Δλ) , f(k) , r(k) 

f(k) , r(k)

σ(trial)

Yield Function

f(σ(trial))
Yield Strength f >0

No

σ (n+1)=σ(trial)

Yes

ψ  < ψ(limit) ?

Yes, Solution ConvergedFinish

No , K=K+1

σ (trial) Δλ =0  Δεp=[0] 

σ =      

σ+Δσ

Δλ= 

Δλ+Δ(Δλ)
Δεp

Return Map Algorithm

Convergence Parameter:

ψ

 

Figure 4- the overview of the return mapping algorithm 
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3.2 Line search modification 

In this section, the implementation of a line search modification for improving the effectiveness 

of the return mapping algorithm using Newton-Raphson is discussed. Results and effectiveness 

of line search modification will be discussed in the next chapter. 

Line search adds one simple step to the Newton-Raphson method. By defining a new variable 

denoted as α here, it tries to modify the direction of search found by the Newton algorithm by 

reducing the step size of each iteration, if necessary. This modification is based on the idea that 

there might be a solution where only a fraction (α) of the incremental values (Δ�⃗� and Δ(Δλ)) 

are used in each step and then that step might take the variables closer to the final solution than 

the condition where whole the incremental values are used for updating the stress and strain 

variables. As mentioned before, the convergency parameter 𝜓  is used as the measure of 

improvement of the solution in each step and therefore can serve as the merit function of the 

line search as well. By introducing the line search modification, equations 3.8 and 3.9 will be 

modified as: 

�⃗�𝑘+1 = �⃗�𝑘 + 𝛼𝑘∆𝜎 ⃗⃗⃗⃗                                                                                                                           (3.14) 

∆𝜆𝑘+1 = ∆𝜆𝑘 + 𝛼𝑘∆(∆𝜆)                                                                                                               (3.15) 

Where 𝛼𝑘 is the step size and should be found in a way that minimizes the merit function for 

each step. For step k: 

𝜓(𝛼𝑘) =
1

2
[𝑟(𝛼𝑘) ∙ 𝑟 ⃗⃗⃗(𝛼𝑘) + (

𝑓(𝛼𝑘)

2𝐺
)
2

]               for Hosford Model                                  (3.16) 

𝜓(𝛼𝑘) =
1

2
[𝑟(𝛼𝑘) ∙ 𝑟(𝛼𝑘) + 𝑓

2]                       for Crystal plasticity Model                       (3.17) 

The main challenge of line search is now to find a reasonable value of 𝛼𝑘 or Newton step size, 

varying from 0 to 1, that gives enough decrease in the merit function. The 𝛼𝑘 = 1 condition 

will be the same as the Newton step, so the residuals will be calculated using the whole 

incremental values whereas the 𝛼𝑘 = 0  is simply evaluating the merit function using the 

starting residuals for that certain step. Finding merit function for any other α value comes with 
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some computational cost so determining the actual α value that minimizes the merit function 

is a difficult problem. One idea is to rely on a proper approximation that makes merit function 

sufficiently small in each step instead of trying to find the exact minimum point. Since   

𝜓′(0) = −2𝜓(0) for this case The quadratic approximation is suggested to be one solution 

[15]: 

�̂�(𝛼𝑘) = (1 − 2𝛼𝑘 + 𝛼𝑘
2)𝜓(0) + 𝛼𝑘

2𝜓(1)              (3.18) 

Where �̂�(𝛼𝑘) is a quadratic approximation to 𝜓(𝛼𝑘) and the value of αk that minimizes the 

approximation is: 

𝛼𝑘 =
𝜓(0)

𝜓(1) + 𝜓(0)
                                                           (3.19) 

Having the residuals before each Newton step as well as the results of the Newton-Raphson 

solution algorithm, 𝜓(0)  and 𝜓(1)  can be easily obtained without extra computational cost. 

Next is to check if such αk results in a sufficient decrease in the merit function, and otherwise, 

α should be found in an iterative solution denoted with j: 

𝛼𝑘
𝑗+1

=
(𝛼𝑘

𝑗
)
2
𝜓(0)

𝜓(𝛼𝑘
𝑗
) − (1 − 2𝛼𝑘

𝑗
)𝜓(0)

                         (3.20) 

After each j iteration, the new α will be used to obtain the merit function using equations 3.16 

and 3.17 and if the solution meets the following condition known as the Goldstein’s condition 

[16], such α will be said to be a proper approximation and will be used for modifying the 

Newton step. If the algorithm can not find such value of α that can satisfy this condition after 

a determined maximum number of j iterations, the last value will be used. 

𝜓𝑘
𝑗+1

< (1 − 2𝛽𝛼𝑘
𝑗
)𝜓(0)𝑘                                      (3.21) 

Another condition should be defined to avoid choosing very small α values since it will result 

in an overall high number of return mapping iterations. So, if 𝛼𝑘
𝑗+1

 is smaller than a certain 

fraction of 𝛼𝑘
𝑗
 , denoted as 𝜂, 𝜂 𝛼𝑘

𝑗
  will be chosen to be the new value of α. The parameters β 

and 𝜂 are chosen as suggested by the literature [15], 𝛽 = 10−4 and 𝜂 =0.1 
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The figure below illustrates the flowchart of a return mapping algorithm, modified with a line 

search technique. 
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Figure 5-Return mapping algorithm with line search optimization 
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3.3 Projecting the trial stress 

In addition, an effort has been made to improve the convergence speed of the solution by 

projecting the initial trial stress onto the yield surface and using this projected stress as the 

starting guess point of the iterations to find the solution. 

The projection is performed using equations 3.22 and 3.23 for the Hosford continuum model 

and crystal plasticity model, respectively: 

�⃗�projected
trial =

𝜎𝑦 �⃗�
trial

𝑓(�⃗�) + 𝜎𝑦
                                                                                                                   (3.22) 

�⃗�projected
trial =

�⃗�trial

𝑓(�⃗�) + 1
                                                                                                                     (3.23) 

Such operation will update the initial plastic strain increment and incremental consistency 

parameter accordingly. Using the projected stress state, these initial guesses will be obtained 

using the following equations: 

∆𝜀𝑝 = −(𝐂
−1 ∙ (�⃗�projected

trial − �⃗�trial ))                                                                                       (3.24)  

∆𝜆 = ∆𝜀𝑝  ∙  �⃗�projected
trial  /𝜎𝑦             for Hosford model                                                             (3.25) 

∆𝜆 = ∆𝜀𝑝  ∙  �⃗�projected
trial             for Crystal plasticity model                                                    (3.26) 
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3.4 Parameters of the models 

The parameters used in this study are presented in the following table.  

General Parameters 

Elastic Module, E 72000 MPa 

Poisson's ratio, 𝜈 0.33 

Yield Strength, 𝜎𝑜 or 𝜎𝑦 200 MPa 

Line Search Parameter, β 10-4 

Line Search Parameter, η 0.1 

Maximum number of line search iterations, Jmax 5 

For the Continuum model 

Merit function tolerance, 𝜓𝑙𝑖𝑚𝑖𝑡 10-15 

For the Crystal plasticity model 

Critical resolved shear stress, same for all slip systems 12.9 MPa 

Yield residual limit 10-8 

Plastic strain residual limit 10-20 

𝐶11 106.75 GPa 

𝐶12 60.41 GPa 

𝐶44 28.34 GPa 

Table 3- values used for the parameters of the models and algorithms 
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For the Hosford Model, the isotropic stiffness tensor is defined using Lame constants as 

followed [17]: 

𝜆 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
     ,   𝜇 = 𝐺 =

𝐸

2(1 + 𝜈)
 

𝐂 =

(

 
 
 

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ)

 
 
 

 

For the crystal plasticity model, due to the cubic symmetry of the FCC aluminum, the 

constitutive law can be parameterized by only 3 material constants and therefore the stiffness 

tensor can be written as: [1] 

𝐂 =

(

 
 
 
 

𝐶11 𝐶12 𝐶12 0 0 0
𝐶12 𝐶11 𝐶12 0 0 0
𝐶12 𝐶12 𝐶11 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 0
0 0 0 0 0 𝐶44)

 
 
 
 

 

The material parameters used in this study are the constants given for the AA 1050 alloys in 

literature. [18]  
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4 Results 

The return mapping algorithm along with the modifications presented in the previous chapter 

is implemented in a python 3.7 code. This chapter is divided into two main sections presenting 

the results generated by two models discussed in this work: continuum plasticity isotropic 

Hosford model, and rate-independent crystal plasticity model. Each model is tested with 

feeding two sets of stress states as the trial stress. The first set of stresses are chosen so that 

they uniformly cover the π-plane (for Hosford model) or the 𝜎11 − 𝜎22 plane (for crystal 

plasticity model) as a section of the whole stress space. This is chosen so that the results can 

be compared with the results published by Scherzinger (2016) in a paper investigating the 

implementation of the line search algorithm for the Hosford yield surface. [7]  

However, to evaluate the efficiency of the algorithm for the crystal plasticity model, one must 

analyze such a set that effectively covers all possible stress states, including those with shear 

components. To this end, another set with 10,000 stress states, uniformly distributed in 5-

dimensional stress space is used. To capture the effect of stress state magnitude, seven iso-

potential layers are given to each model. Each layer is populated with stress states obtained 

with multiplying stress tensors with a factor to generate trial stresses with 
𝜎von Mises

𝜎0⁄  (for 

Hosford  model) or yield function (for crystal plasticity model) in the range of 

[2,5,10,15,20,25,30]. 

To be able to evaluate the effect of line search and projection modifications, separately and 

together, four different settings are used for each run, along with a case name to denote each 

setting, as described in the following table. 

Case Line Search  Trial stress projection 

L1_P1 ✓ ✓ 

L1_P0 ✓  

L0_P1  ✓ 

L0_P0   

Table 4- Different configurations used for analyzing the models 
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The number of iterations for each trail stress along with the final converged stress tensor is 

recorded. moreover, the value of merit function, as well as two other residuals and the obtained 

stress state in each return mapping step, are stored.  

No hardening model is implemented and both of the models are considering perfect plasticity 

to be the case.  

4.1 Continuum Plasticity Hosford Model 

The effectiveness of the modifications is tested by running the algorithm for Hosford Model 

with the exponents of a = 4, 6, 8, and 100. To evaluate the convergence behavior of different 

trial stress states in the π-plane, outside of yield surface with von Misses stress up to 30 times 

the yield strength, a color-coded map is used where colors represent the number of iterations 

for each stress state. Nearly 100,000 stress states are analyzed for generating each graph.  

In addition, the shape of the yield surface obtained using each exponent for the L1_P1 cases 

are presented. 

For the case of a=4, where the obtained yield surface will be a von Mises yield surface, the 

Newton algorithm reduces to the radial return algorithm. However, with increasing the 

exponent, the closest point projection problem no longer gives a radial return and in addition 

to the consistency parameter, plastic flow direction should be determined in each iteration. 

Exponents 6 and 8 have shown to be a proper choice for modeling BCC and FCC structures, 

respectively. [19] Exponent 100 represents a yield surface fairly close to the Tresca yield 

surface and is a good choice to evaluate the reliability of the model implementation when using 

higher exponents. 

 For a=4, Fig 6 shows the generated results for the four different configurations that were 

tested. 
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Figure 6 - Iteration Map graphs for Hosford Model, with exponent a=4 

 

As expected, all the trial stress states converge with one iteration for all the cases, however for 

higher exponents of 6 and 8, return map algorithm with Newton-Raphson solution, fails to have 

all the stress states converged within iteration numbers less than 40, as shown in Figures 7 and 

8, respectively. 
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Figure 7- Iteration Map graphs for Hosford Model, with exponent a=6 

For exponent 6, the Newton-Raphson solution fails to converge 8.8% of the given trial stresses 

in less than 40 iterations. With increasing the exponent to 8, the failed portion increases to 

52.5%. Implementing the line search is proven to considerably improve convergence behavior 

in both of these cases, resulting in full convergency for the set of analyzed stress states. 

Projecting trial stresses to the yield surface before performing the return map, results in yet 
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more improvement such that even without line search optimization, all the trial stresses 

converge in less than 4 iterations for a=6 and 6 iterations for the a=8 case. 

  

  

Figure 8- Iteration Map graphs for Hosford Model, with exponent a=8 

Testing the algorithm on the extreme case of a=100 emphasizes the improvement that is 

achievable by modifying the return map to include a line search, as shown in figure 9.  

However, starting from projected trial stress doesn’t seem to give much improvement without 

the line search, as both cases fail to converge %88 and %92 of the tested trial stresses, with and 

without trial stress projection modification, respectively. On the other hand, the expansion of 
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the area with darker blue shades shows that projection modification accelerates the 

convergence process when the line search is employed. 

  

  

Figure 9- Iteration Map graphs for Hosford Model, with exponent a=100 

 

For the exponents of 6, 8 and100, results for the pure Newton-Raphson return map and line 

search modification can be compared with the plots generated by Scherzinger (2016), as 

presented in figure 10. This comparison validates the accuracy and reliability of the python 

code tool developed for this work. 
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a=6 

 
a=8 

 
a=100 

 
Figure 10- Comparison of the Newton algorithm and the line search algorithm for the Hosford model with 

a=6,8,100 [7] 
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Figure 11 shows the yield surfaces generated by the algorithm for different exponents, using 

the L1_P1 setting where all the tested trial stresses are successfully converged. As expected, 

a=4 which indicates the von Mises yield surface with a circular cylinder with the axis along 

the hydrostatic axis makes a full circle when projected on the π-plane. With Increasing the 

exponent, the curvature increases near to the principal stress axes and for a=100 the result is 

very similar to the π-plane section of the Tresca hexagonal cylinder.  

  

  

Figure 11- The generated yield surfaces with different exponents for L1_P1 configuration 
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The next step is to test the algorithm with the set of trial stresses including full tensor 

components. Instead of return map plots, the results of this part are presented as histograms 

showing the iteration distributions for each case. 

First, stress state tensors are analyzed with the Newton-Raphson algorithm. The portion of 

stress states that didn’t converge after 60 iterations are measured and presented in figure 12. 

Only for the von Mises (a=4) case, all the points converge unconditionally. With increasing 

the exponent, the portion of unconverged points increases, up to %78 for the a=100 case. Using 

projection modification improves convergency for exponents 6 and 8, yet it doesn’t have a 

considerable effect on a=100 case, with the maximum allowed iteration of 60. The same 

behavior is observed when looking at the π-plane iteration maps for these exponents.   

 

Figure 12- Convergence behavior of the algorithm for the Hosford model, without line search modification, for 

different exponents. 

The effectiveness of the projection modification when using the exponents 6 and 8 is more 

clear when plotting the iteration distribution curves for each case. As shown in figure 13, when 

using the projected stress states as the starting point of the solution, all of the analyzed points 

converge in less than 6 iterations whereas the same curves without projection modification are 

broader and even some portion of the points fail to converge within the limited number of 

iterations.  
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Figure 13- Distribution of the number of iterations for the Hosford model for different cases without line search 

modification 

Same as the results observed for the first set of points (tensors without off-diagonal 

components), applying line search modification dramatically improves the convergence 

behavior. The results approve that it is possible to achieve %100 convergence for the analyzed 

sets with and without projection modification. Iteration distribution graphs give a clear 

overview of the results, as shown in figure 14. 
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Figure 14- Distribution of the number of iterations for the Hosford Model for different cases with line search 

modification 

With Increasing the exponent n, iteration distribution curves broaden, increasing the average 

iteration for convergence for higher exponents. However, even for the case of a=100, there is 

a certain portion of points (possibly the ones that can converge with a simple radial return) that 

converge in less than three iterations. For a=6 and 8, Using the projected stress states 

effectively pushes the curves towards lower iterations, creating sharp peaks where the majority 

of the points converge with almost the same iterations. This is better shown in figure 15, 

demonstrating the number of iterations where a certain portion of stress states from the tested 
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set are converged. With the projection modification applied, the slope of lines is decreased to 

almost zero for exponents less than 8, meaning such cases have almost the same convergence 

behavior.  

a) Without projection modification 

 

b) With projection modification 

 

Figure 15- The number of iterations that take to have a certain portion of stress tensors from the set converged 

when line search modification is applied. 



37 

 

 

In the case of the Hosford model, the π-plane set of points can correctly present the general 

behavior of the model. The reason for this is that every trial stress with only the principal 

components behaves the same as all the other stress states that have the same principal stresses 

(eigenvalues and vectors), due to the isotopic nature of this model. As shown in figure 16, The 

results of applying the algorithm on both stress sets were more or less the same because these 

two sets of points, although including different trail stresses but were large enough to represent 

the whole space. This is not the case for the crystal plasticity model. 

 

Figure 16- Comparing the results of applying the algorithm on two sets of points, with the line search 

modification 

4.2 Crystal Plasticity Model 

The results of applying the discussed modifications on the return mapping algorithm for the 

crystal plasticity model are presented in this section. Unlike the Hosford model, the results that 

can be deduced from the analysis of the first set of points (𝜎11 − 𝜎22 plane), can not be 

generalized due to the anisotropic nature of the crystal plasticity model. The followings are the 

results of analyzing the set of tensors with full components, as it is more general and 

comprehensive. The 𝜎11 − 𝜎22 plane iteration map plots are presented in Appendix A. 

For better understanding the behavior of algorithm and modifications, different cases were tried 

with the n exponent varying in the range of 20 to 10,000. First, tensors were analyzed using the 

Newton-Raphson solution, starting with the original as well as projected stress states. As shown 

in figure 17, the algorithm has a very limited capability, even for the lower exponents in this 

range. The best achievable result is observed to be for the exponent 20 with projected stress 
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states, where only 7 percent of the points are converged. For higher exponents, almost no 

convergence is observed when using full Newton step increments in each iteration. 

 

Figure 17- Convergence behavior of the algorithm for the Crystal plasticity model, without line search 

modification, for different exponents 

 

Figure 18- Convergence behavior of the algorithm for the Crystal plasticity model, with line search 

modification, for different exponents 
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Same as the results of the continuum model, introducing line search modification demonstrates 

a significant improvement, as shown in figure 18. Up to n=300, the algorithm is capable of 

reducing the residuals to the defined limits and finding the converged solution for all the 70,000 

tested stress states in the range of f=[2 to 30], with less than 200 iterations. However, by 

increasing the exponent to n=10,000, a certain portion of the given stress states fail to converge 

within the limited iterations. Almost %12 of the analyzed set does not converge with k<200 

which proves that the line search optimization is not sufficiently effective for this case. 

However, considering the shape of the iteration distribution curve, presented in figure 19, it 

seems that 200 iteration is simply just not enough, as it is in the broadening range of the curve, 

and increasing the maximum allowed iterations will have all the stress states converged, 

eventually. 

Achieving %100 convergence for the exponent n=10,000 is possible with much fewer 

iterations when the return mapping is performed using the projected stress states. As shown in 

figures 18 and 19, the effect of projection modification is significant, particularly for higher 

exponents. The distribution curves are narrowed showing a distinct peak. For the case of 

n=10,000, the peak is decreased from almost 120 to 47. 
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Figure 19- Distribution of the number of iterations for Crystal plasticity model, for different cases with line 

search modification 

 

Another effect of projection modification can be observed in fig 20 showing the number of 

iterations for achieving a certain converged portion of points. It seems that the solution is less 

sensitive to the value of the exponent, allowing the algorithm to handle higher exponents 

without failure. 
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a) Without projection modification 

 

b) With projection modification 

 

Figure 20- The number of iterations that take to have a certain portion of stress tensors from the set converged 

when line search modification is applied. 
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For all the exponents higher than 20, the average number of iterations is decreased by 

introducing the projection modification. This improvement is more emphasized when using 

higher exponents as shown in figure 21. For the solution without projection modification, a 

dotted line is used for exponents higher than 300, because not all the points are converged for 

these cases and the values do not represent the true average number of “iterations to 

convergence”. With increasing the maximum number of allowed iterations, this part of the line 

is expected to shift to even higher values, slightly for n=500 and 1000 and considerably for 

n=10,000, considering their ratio of convergence being %99.99, %99.91 ad %88.2 respectively. 

 

Figure 21- Average number of iterations for convergence for a point, with line search modification for crystal 

plasticity model 
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5 Discussion 

To understand the mechanism by which, line search and projection modifications improve the 

effectiveness of the return mapping algorithm solved by the Newton-Raphson method, the 

following graphs are made, illustrating the path by which the trial stress converges towards the 

yield surface. In addition, the value of merit function after each step is stored and plotted to 

demonstrate the alteration of the merit function value as the solution proceeds. The initial stress 

tensor used for generating the following data is: 

σ⃗⃗⃗ =  [𝜎11 𝜎22 𝜎33    𝜎23 𝜎13 𝜎12] =  [500 300 −600    0 0 0] MPa 

Hosford model with the exponent of 8 is applied to this stress state. The von mises stress for 

this case is almost 5 times the yield strength. 

5.1 Line search modification  

A comparison between the Newton-Raphson algorithm and the line search implemented one is 

presented in figures 22 and 23. While the Newton algorithm fails to converge this specific trial 

stress, line search modification successfully converges it in 8 iterations.  

 

Figure 22- return path visualization for a test tensor. Hosford Model with the exponent of a=8 is applied. 
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Both of the algorithms share the first two steps. Based on the routine described in chapter 3 for 

line search implementation, this is possible only if the Newton step is able to sufficiently 

decrease residuals, hence the merit function. 

in step 3 however, residuals increase with taking a full Newton step which is reflected as 

divergence in figure 22. This increase is captured by the algorithm which consequently initiates 

the line search subroutine. By using α values suggested by the quadratic approximation and 

search direction found by the Newton algorithm, the next stress, consistency parameter, and 

plastic strain increment values are computed so that the merit function sufficiently decreases. 

Eventually, within 8 iterations, this leads to finding such a solution lying on the yield surface 

that satisfies the defined convergence criterion. 

 

Figure 23- Merit function as a function of iteration count, for Hosford model with the exponent of 8 for a test 

trial stress state 

As described in chapter 3, the line search algorithm uses a quadratic approximation to evaluate 

the value of α that minimizes the merit function in an iterative solution. Figure 24 provides a 

graphical explanation of such a procedure, plotted for k=3 using the discussed trial stress tensor. 

The solid blue line indicates the quadratic approximation with a minimum at α=0.264. To 

investigate how close this approximation is to the α that will result in maximum achievable 

improvement, the actual merit function curve is plotted alongside. Even though the 

approximation doesn’t accurately detect the best possible value for α, but by decreasing the 
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merit function from almost 2.8 times its value before taking step k=3, to almost half of that, it 

leads to sufficient improvement so that the solution converges, eventually.   

 

Figure 24- Quadratic approximation compared with the actual merit function curve. Hosford mode, n=8 

With increasing the exponent a, the curvature of yield surface near to the principal stress axes 

increases. It has been observed in previous studies [7, 15] that the Newton-Raphson algorithm 

faces difficulty when processing stress states that return to such areas. The generated iteration 

maps presented in the previous chapter approve this observation. With higher exponents, the 

Newton algorithm’s success becomes limited to only the stress states that will converge with 

the simple radial return, without much need for changing the plastic flow direction.  

Figure 25 shows another example when the Hosford model with the exponent of 100 is applied. 

This case provides a better explanation for the divergence when a full Newton step is taken. 

The value of the merit function with full Newton step for this case is 7.3 times its value after 

the previous newton step, which emphasizes on the fact that how a significant change of the 

flow direction with a small change in the stress state can prevent the algorithm from finding 

the correct flow direction when using higher exponents.  
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Figure 25- Quadratic approximation compared with the actual merit function curve. Hosford mode, n=100 

 

5.2 Potential for improvement 

It goes without saying that the efficiency of the line search subroutine implemented in the 

Newton-Raphson algorithm is expected to directly affect the convergence behavior of the 

models. In an effort to qualify the level of this dependency, and to demonstrate the best 

achievable result by a perfect line search algorithm, iteration map of the Hosford model with 

the exponent 100 is generated using such value of α that truly minimizes the residuals. This 

approach not only can be used to estimate the potential for improvement of the line search 

algorithm but also provides information about the distribution of the true value of α that 

minimizes the residuals.  For this purpose, the optimization and root-finding package from the 

scipy open-source library is used. As a scalar function, the merit function was asked to be 

minimized using the single variable of α bounded in [0,1] range, with the tolerance of 10-5 for 

α, using the “minimize_scalar” module. This module uses the Brent method to find a local 

minimum in this interval. Brent's Method combines the golden section search with parabolic 

interpolation. Parabolic interpolation fits a parabola through a selected set of points, then uses 

this parabola to estimate the function's minimum [20]. Figure 26 shows the result when such 

an approach is applied. 
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Quadratic approximation, although proven to be very effective for the studied models, still can 

not capture the true minimum as shown in figures 24 and 25.  Comparing with figure 9, It can 

be seen that a perfect line search algorithm can considerably improve the convergence 

behavior. The iteration distribution graph of such a case, presented in figure 27, shows that all 

the trial stress states in the tested set are converged with less than 9 iterations with the average 

of ~6, while the average iteration to convergence for the same model, with quadratic 

approximation, is 16.  

 

Figure 26- Iteration map for the perfect line search algorithm for Hosford model with the exponent of a=100 
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Figure 27- Iteration distribution  for the perfect line search algorithm for Hosford model with the exponent of 

a=100 

Applying the perfect line search approach using Brent’s method, to the crystal plasticity model 

does approve the same conclusion. As can be seen in figure 28, the average number of iterations 

decreases drastically when the true minimum is found using Brent’s minimizer algorithm. It 

appears that the exponent n does not affect the average iterations to convergence and all the 

points converge in almost 10 and 14 iterations with and without the projection modification, 

respectively. 

 

Figure 28- Average number of iterations for convergence for a point, with line search modification (quadratic 

approximation) for crystal plasticity model compared with the results of the perfect line search approach. 
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This is more emphasized comparing the iteration distribution graph of the two cases, one with 

quadratic approximation and the other applying the true minimizer module, as presented in 

figure 29. When using Brent’s method, all the curves tend to show a peak at 10 to 15 with not 

much broadening, unlike the graphs generated from quadratic approximation results. 

a) Line search with quadratic approximation 

 

b) Perfect line search 

 

Figure 29- Distribution of the number of iterations for Crystal plasticity model, for different cases, compared to 

the same cases when applying the perfect line search approach 
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It is of interest to know how the distribution of the α value obtained by quadratic approximation 

differs from the value found by the Brent minimizer algorithm. Figure 30 shows this 

distribution plotted for both cases.  

a) Line search with quadratic approximation 

 

b) Perfect line search 

 

Figure 30- Distribution of the α value obtained by the line search algorithm, for Crystal plasticity model, for 

different cases, compared to the same cases when applying the perfect line search approach 
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As described in section 3.2, to avoid very small values of α, a condition is defined using a 

parameter denoted as 𝜂. The appearance of discrete peaks shown in figure 30-a is a direct result 

of this condition. The quadratic approximation can not capture the true minimum point when 

it happens to be in the range of 0.5 to 1. The perfect line search α distribution graph shows two 

distinct peaks for each curve. One α being 1 or very close to that which corresponds to the 

newton step and one on very small values of α in the range of 10-4 to 10-1. This algorithm 

always finds a minimum for the merit function curve in the range of 0 to 1 which is expected 

considering its negative slope at α=0. 

Figure 31 shows how detecting the true minimum can improve the convergence by visualizing 

the stress state after each Newton step on the π-plane. In the first step, quadratic approximation 

decides to continue with α=1 while the Brent algorithm detects the true minimum at α=0.72 

and as a result, the subsequent steps require less correction. 

 

Figure 31- return path visualization for a test tensor. Hosford Model with the exponent of a=8 is applied to 

compare the perfect line search to the quadratic approximation. 

It has been observed that Brent’s algorithm requires almost 25 iterations for finding the α at 

the minimum point with the tolerance of 10-5, which is much more than the quadratic 

approximation iterations (2-3 on average). But by reducing the newton iterations with a proper 

choice of α, it converges faster than the line search with the exponent n=10,000. A comparison 

between the analysis time for different cases is presented in figure 32. It should be mentioned 
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that this plot can vary if the algorithm is implemented using another programming language 

and the purpose is just to emphasize on the fact that detecting the true minimum point of the 

merit function, even with relatively higher computational cost in each step, can eventually 

reduce the number of iterations and therefore the computation time. 

 

Figure 32- Comparison of the analysis time needed for each trial stress, when line search is employed against 

the Brent algorithm, referred to as the perfect line search here.  

 

 

5.3 Projection of the trail stress 

According to the results obtained for the Hosford model with a=8, using the projected trial 

stress as the initial guess has significantly improved the convergence behavior. Figure 33 shows 

the convergence path for the same discussed test tensor, compared with the case where the 

projected stress is used as the initial guess. When using the projected initial guess, the algorithm 

will have to mainly deal with decreasing the plastic residual since the yield function residual is 

already decreased with the projection, compared with the other case with trial stress far from 

the yield surface with a very high yield function residual. 
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Figure 33- return path visualization for a test tensor for Hosford Model with the exponent of a=8, showing the 

effect of using the projected trial stress 
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6 Conclusions 

 

The followings are the conclusions of the present study: 

• Using the Mandel notation comes with a significant improvement in the running speed of 

the algorithm. For instance, carrying a double production operation between a fourth-order 

stiffness tensor and a second-order strain tensor is almost 30 times faster when using 

Mandel-converted second-order stiffness tensor and strain vector. 

• A line search subroutine with a quadratic approximation is implemented for the Newton-

Raphson algorithm to solve the return mapping problem for the isotropic Hosford model. 

the results of this implementation were compared against a study investigating the same 

model using the same parameters. The comparison validated the present implementation, 

providing the basis for applying it to the crystal plasticity model, which was the main goal 

of this study. 

• For the Hosford model with the model parameter of a=6,8,100, applying the line search 

modification to a large set of points uniformly distributed in 5-dimensional stress space 

showed a significant improvement in convergence behavior  The algorithm successfully 

handles all the trail stress states with up to f=60.  

• For typical exponents in continuum plasticity, 6-12, improving the first guess by using the 

projected trail stress instead, significantly reduces the calculation time by decreasing the 

required Newton iterations. 

• The return mapping algorithm with line search modification is also tested for the crystal 

plasticity model. The observations show a very limited capability for the Newton algorithm 

even for lower exponents. Line search modification has improved the convergence 

behavior significantly to the extent that up to n=300, full convergence for the analyzed set 

of points is achieved. 

• The effect of improving the first guess on increasing the reliability as well as the efficiency 

of the algorithm is emphasized with applying on the crystal plasticity model, particularly 

for higher exponents. For n=10000, All the tested stress states are converged in less than 

120 iterations with an average of 46 iterations per point when using the projected first 
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guess. For n=300, using projection modification has decreased the average iteration 

numbers from 46 to almost half. 

• The efficiency of quadratic approximation is tested with comparing it against another 

subroutine which was capable of detecting the minimum point with high precision. The 

quantitive comparison suggests that the quadratic approximation, although proven to be 

very effective for the studied cases, is not the excellent method for improving the Newton 

solution. For all the exponents of 20 to 10,000, the alternative tested method resulted in 

fewer newton steps with the difference in required newton steps increasing with using 

higher exponents. For the case of n=10,000, this difference is large enough to make the 

overall solution faster when the alternative method is employed for finding the optimum 

vale of α. 
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8 Appendix A - σ11-σ22-plane iteration map and yield 

surface for crystal plasticity model 
 

 

  

  

Figure 34- Iteration Map graphs for Crystal plasticity model, with exponent n=20 
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Figure 35- Iteration Map graphs for Crystal plasticity model, with exponent n=10,000 

 

 

 

 

 

 

 



60 

 

 

 

 

 
Figure 36- The generated yield surfaces by crystal plasticity model, with different exponents of 20,100,10000 

for L1_P1 configuration 


