## Kristoffer Smedal Olsen Sara Linnea Larsson Grayston

# Experimental Assessment of the Compression Strength of Conventional Ceramic Foam Filters, at Room Temperature and 730°C

Eksperimentell Vurdering av Kompresjonsstyrken til Konvensjonelle Keramiske Filtre (CFF), i Romtemperatur og ved 730°C

Bachelor's project in Material Sciences Supervisor: PhD candidate Are Bergin, Dr. Robert Fritzsch and Prof. Ragnhild E. Aune

NTNU Norwegian University of Science and Technology Faculty of Natural Sciences Department of Materials Science and Engineering





Project number: IMA-B-14 Availability: Open

# Experimental Assessment of the Compression Strength of Conventional Ceramic Foam Filters, at Room Temperature and 730°C

Eksperimentell Vurdering av Kompresjonsstyrken til Konvensjonelle Keramiske Filtre (CFF), i Romtemperatur og ved 730°C

Authors Sara Linnea Larsson Grayston Kristoffer Smedal Olsen Supervisors PhD candidate Are Bergin Dr. Robert Fritzsch Prof. Ragnhild E. Aune

May 29, 2020

#### Abstract

Ceramic foam filters (CFFs) play an important part when recycling aluminium due to an often high amount of non-metallic inclusions in secondary aluminium, which will decrease the mechanical properties of the product. CFFs are designed to filter out the unwanted particles resulting in a better end product. While the mechanical properties of ceramic foams are well documented at room temperature, there has been done, at the time of writing, little to no research on the mechanical strength at working temperatures. This thesis will focus on the compressive strength of different manufacturers at room and working temperatures (730 °C) with different holding times.

Several analytical methods were used to get a broader understanding of the structural properties of the CFFs. Included methods were: geometric measurements of samples, light microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and mercury intrusion porosimetry. Of special interest was how structural properties affected the strut strength, which is an important parameter when testing compressive strength.

The compressive strength of conventional CFFs from four different manufacturers with varying pore density and composition was measured at room temperature and at 730 °C. While the procedures for room temperature testing is well established, the method for compressive testing at high temperatures had to be established. When testing at room temperatures the filter properties closely resembled established models dependent on relative density and strut thickness. The Sivex non-phosphorous filter was found to have the highest strength, and the Selee filter had the lowest strength.

When testing the compressive strength at working temperatures, there is generally a decrease in strength for longer holding times at working temperature. Since the methods for compression testing at high temperatures was under development, some inconsistencies were found where the filters from Lanik and Selee diverted from the trend.

#### Sammendrag

Keramiske filtre (CFF) spiller en viktig rolle når aluminium resirkuleres på grunn av at sekundært aluminium ofte inneholder en stor mengde ikke-metalliske partikler som vil redusere de mekaniske egenskapene til produktet. CFF-er er designet for å filtrere ut uønskede partikler, noe som resulterer i et bedre sluttprodukt. Mens de mekaniske egenskapene til keramisk porøse strukturer er godt dokumentert ved romtemperatur, har det i skrivende stund blitt gjort lite til ingen undersøkelser om den mekaniske styrken ved arbeidstemperaturer. Denne oppgaven vil fokusere på den kompressible styrken til forskjellige produsenter ved rom- og arbeidstemperaturer (730 °C) med forskjellige holdetider.

Flere analytiske metoder ble brukt for å få en bredere forståelse av de strukturelle egenskapene til CFF-ene. Inkluderte metoder var: geometriske målinger av prøver, lysmikroskopi, skanning elektronmikroskop (SEM), energidispersiv spektroskopi (EDS) og porosimetri med kvikksølv. Av spesiell interesse var hvordan strukturelle egenskaper påvirker styrken i strukturen, som er en viktig parameter når man tester kompresjonsstyrken.

Kompresjonstyrken til konvensjonelle CFF-er fra fire forskjellige produsenter med varierende poretetthet og sammensetning ble målt ved romtemperatur og ved 730 °C. Mens prosedyrene for testing av romtemperatur er godt etablert, måtte metoden for kompresjonstesting ved høye temperaturer etableres. Under testing ved romtemperatur lignet filteregenskapene godt på etablerte modeller avhengig av relativ tetthet og tykkelsen til strukturen. Sivex filter uten fosfor ble målt til å ha den høyeste styrken i kompresjon, og Selee hadde den laveste styrken i kompresjon.

Ved testing av kompresjonstyrken ved arbeidstemperaturer, er det generelt en reduksjon i styrke for lengre holdetid. Siden metodene for kompresjonstesting ved høye temperaturer var under utvikling, ble det funnet noen uoverensstemmelser der Lanik og Selee filtrene divergerte fra normen.

# Preface

This bachelor thesis is assigned and funded by the Institute of Material Sciences at NTNU, and is a part of the doctorate degree by PhD candidate Are Bergin. The purpose of this thesis is to test the mechanical properties of ceramic foam filters at different temperatures and holding times.

The experimental work was conducted at the Department of Material Sciences and Engineering at Gløshaugen spring 2020.

Due to the current global situation the work was affected by the Covid-19 virus. This has impacted the range of work that was originally planned and affected communication to some extent.

We want to thank our supervisors PhD candidate Are Bergin, Dr. Robert Fritzsch, and Prof. Ragnhild E. Aune in addition to Dr.-ing. Claudia Voigt for guidance and assistance with both theoretical and experimental work. We would also like to thank Pål Christian Skare for excellent help and guidance during the experimental work. We would like to express our sincere thanks to those who proof-read and endured us during this project.

a Gular Oh

Kristoffer Smedal Olsen

Sara Linnea Larsson Grayston

# Contents

| Lis | st of                                                     | Figures                                                        |                                                   | vii                                          |
|-----|-----------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------|----------------------------------------------|
| Lis | st of                                                     | Tables                                                         |                                                   | viii                                         |
| 1   | Intro                                                     | oductio                                                        | n                                                 | 1                                            |
| 2   | Obje                                                      | ective                                                         |                                                   | 2                                            |
| 3   | <ul><li>3.1</li><li>3.2</li><li>3.3</li><li>3.4</li></ul> | Uniaxi<br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br>Filter<br>Phospl | ural Properties                                   | 5<br>5<br>6<br>7<br>7<br>8<br>8              |
|     | 3.5                                                       | High 7                                                         | Cemperature Behavior of Ceramics                  | 9                                            |
| 4   | <b>Exp</b><br>4.1<br>4.2<br>4.3                           | Analyt<br>4.1.1<br>4.1.2<br>4.1.3<br>Mecha<br>4.2.1            | tal Procedures and Analysis         tical Methods | $13 \\ 13 \\ 14 \\ 14 \\ 15 \\ 16$           |
| 5   | <b>Resi</b><br>5.1                                        | Analyt<br>5.1.1<br>5.1.2<br>5.1.3<br>5.1.4                     | <b>H</b> Discussion         tical Methods         | 19<br>22<br>24<br>24<br>27<br>27<br>28<br>30 |
| 6   | <b>Con</b> 6.1                                            | <b>clusion</b><br>Furthe                                       | r Work                                            | <b>34</b><br>34                              |

## Bibliography

| 7 | Appendix                                                                                                                 | 37  |
|---|--------------------------------------------------------------------------------------------------------------------------|-----|
| Α | The results from the compressive strength testing of all the filter types, filter porosities and experimental parameters | 38  |
| В | Raw data from room temperature compressive tests                                                                         | 40  |
| С | Raw data from working temperatures compressive tests                                                                     | 47  |
| D | Microscopic photos with strut thickness displayed of the filters                                                         | 54  |
| Ε | EDS RawData Sivex 30                                                                                                     | 67  |
| F | EDS RawData Sivex 65                                                                                                     | 75  |
| G | EDS RawData Sivex 80                                                                                                     | 79  |
| Н | EDS RawData SivexNP 30                                                                                                   | 89  |
| I | EDS RawData Drache 30                                                                                                    | 99  |
| J | EDS RawData Drache 60                                                                                                    | 105 |
| κ | EDS RawData Lanik 30                                                                                                     | 116 |
| L | EDS RawData Lanik 60                                                                                                     | 122 |
| Μ | EDS RawData Selee 30                                                                                                     | 131 |
| Ν | Risk Assessment Cold Testing                                                                                             | 141 |
| 0 | Risk Assessment Hot Testing                                                                                              | 144 |
| Ρ | Project Plan                                                                                                             | 147 |
| Q | Popular Science Article                                                                                                  | 149 |

35

# **List of Figures**

| 1.1                                     | (a) Illustrates the inside of a filter, (b) illustrates how the molten metal flow through the filter and impurities is left behind                  | 1  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3.1                                     | Microscope picture of a ceramic foam filter                                                                                                         | 3  |
| 3.2                                     | A SEM image of a strut at 200x and 800x magnification.                                                                                              | 4  |
| 3.3                                     | The pentagonal dodecahedron structure.                                                                                                              | 5  |
| 3.4                                     | The structure of a unit cell from Gibson and Ashbys model [6] where:<br>(a) shows a cubic model of an open-cell foam, (b) shows fracture under      | 6  |
| 25                                      | compression, and (c) shows the cross-section of a hollow strut. $\ldots$                                                                            | 6  |
| 3.5                                     | An axisymmetric unit cell [6].                                                                                                                      | 7  |
| $\begin{array}{c} 3.6\\ 3.7\end{array}$ | Illustration of the placement of a filter in the filter bowl at a foundry<br>Temperature dependence of bending strength (inert strength) of alumina | 8  |
| 3.8                                     | [23]                                                                                                                                                | 9  |
|                                         | temperature [12]. $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$                                                           | 10 |
| 3.9                                     | Alumina-silica phase diagram [25]                                                                                                                   | 11 |
| 4.1                                     | The MTS 880 Hydraulic Tensile Testing Machine 100 kN                                                                                                | 13 |
| 4.2                                     | The SEM Ultra 55 LE machine from Zeiss [26].                                                                                                        | 14 |
| 4.3                                     | The equipment used for the preparation of the samples                                                                                               | 15 |
| 4.4                                     | A sample with a thermocouple wire attached                                                                                                          | 16 |
| 5.1                                     | Microscopic photos of the 30 ppi samples at 30x magnification                                                                                       | 20 |
| 5.2                                     | Microscopic photos of the other sample ppis at 30x magnification                                                                                    | 21 |
| 5.3                                     | SEM photos of the Drache 30 ppi filter at 200x magnification                                                                                        | 22 |
| 5.4                                     | SEM photos of different 30 ppi filters at 800x magnification.                                                                                       | 23 |
| 5.5                                     | Cumulative pore volume dependent of pore size                                                                                                       | 26 |
| 5.6                                     | Compressive strength of cylindrical and cubic samples at room temperature.                                                                          | 27 |
| 5.7                                     | Compressive strength at room temperature of varying ppi filters                                                                                     | 28 |
| 5.8                                     | A sample of Sivex 80. Note the ridges around the middle                                                                                             | 29 |
| 5.9                                     | Pictures of Lanik samples.                                                                                                                          | 29 |
| 5.10                                    | Compressive strength of 30 ppi filters dependent on relative density                                                                                | 30 |
| 5.11                                    | The temperature drop when the filter is moved from the oven into room                                                                               |    |
|                                         | temperature. The increment to the trendline shows the average drop in                                                                               |    |
|                                         | temperature per second                                                                                                                              | 31 |
| 5.12                                    | Compression tests of 30 ppi filters at working temperatures with varying                                                                            |    |
|                                         | holding times compared with room temperature tests                                                                                                  | 32 |

# List of Tables

| The different manufacturers, ppi's, and the number of filters tested at the |                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| different holding times in the heated oven                                  | 12                                                                                                                                                                                                                                                                                                                                           |
| The different tests performed to analyse the effect of sample shape         | 12                                                                                                                                                                                                                                                                                                                                           |
| Ten-minute holding time at 800 °C                                           | 17                                                                                                                                                                                                                                                                                                                                           |
| One-hour holding time at 800 °C.                                            | 18                                                                                                                                                                                                                                                                                                                                           |
| Two-hour holding time at 800 °C                                             | 18                                                                                                                                                                                                                                                                                                                                           |
| Average strut/wall thickness.                                               | 21                                                                                                                                                                                                                                                                                                                                           |
| Elements found in the EDS-analysis from the different filters               | 24                                                                                                                                                                                                                                                                                                                                           |
| Results from porosimetry.                                                   | 25                                                                                                                                                                                                                                                                                                                                           |
|                                                                             | different holding times in the heated oven.The different tests performed to analyse the effect of sample shape.Ten-minute holding time at 800 °C.One-hour holding time at 800 °C.Two-hour holding time at 800 °C.Two-hour holding time at 800 °C.Average strut/wall thickness.Elements found in the EDS-analysis from the different filters. |

# **1** Introduction

When producing and recycling aluminium there are several stages and methods of cleaning the metal of impurities. These methods are split into two groups; furnace processes and in-line processes. The furnace processes are used while the metal is still in the furnace and includes fluxing, temperature control, settling, and skimming. After the furnace, inclusions can still form in transit to the casting table, for example by oxidation. The in-line processes include degassing and filtration [1].

There are mainly two types of filters used when filtering aluminium, not counting experimental filters such as the advanced compact filter from Rio Tinto Alcan [2]. For more critical and demanding products, deep bed filters (DBF) are used due to a high efficiency, but they are however more expensive and less flexible when changing alloys in a cast-house [1]. Ceramic foam filters (CFF) have a lower efficiency but are cheaper and more flexible. This study will focus on CFFs.

CFFs are manufactured in two ways: by replication and foaming. However, for metal melt filters the replication technique is mainly used as they yield an open-cell structure while foaming tends to yield a more closed cell structure. The replication technique consists of coating a polymer foam with a ceramic slurry, drying, and then burning out the remaining polymer. The used polymer foam, normally polyurethane, specifies the porosity as the resulting ceramic foam will copy the structural characteristics. While this process results in a structure well suited for filtration, it also results in a multitude of flaws and hollow struts and therefore low mechanical properties compared to foaming techniques, due to burning out the polymer [3].

The micro structure of these CFFs that comes from the replication process, is engineered to accumulate impurities in the multiple cavities [4]. How the filter looks like inside is illustrated in Figure 1.1. The priming process of the filter is an important step in filtration of aluminium, explained further in Chapter 3.3.

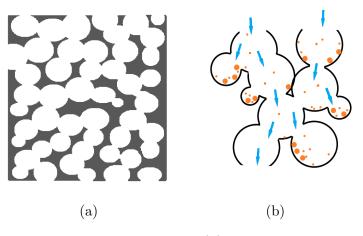



Figure 1.1: (a) Illustrates the inside of a filter, (b) illustrates how the molten metal flow through the filter and impurities is left behind.

# 2 Objective

The objective of this thesis is to determine the compressive strength of ceramic foam filters from various manufacturers with varied porosities. The experimental work is defined in two parts, the first being compressive testing at room temperatures, to determine the geometry of the samples and what ppi to go forward with. The second part is testing the compressive strength at working temperatures, 730 °C, while varying the holding time at working temperature. Various analytical methods will be used to compare the results from compression testing with the structural properties of the filters.

# 3 Background

# 3.1 Structural Properties

Ceramic foams are comprised of two structural components, struts and cell-walls, as seen in Figure 3.1. The distribution and ratio of struts and cell-walls is dependent on whether the foam is closed- or open-celled, whereby highly porous open-celled foams consist mostly of struts while closed-celled foams will have more filled cell-walls. Due to the manufacturing process, specifically incomplete sintering, macro and micro flaws can arise, such as micro cracks, pores in the struts, and triangular strut cavities, as seen in Figure 3.2. Upon compression, such flaws will facilitate crack propagation, leading to a decreased strength [5].

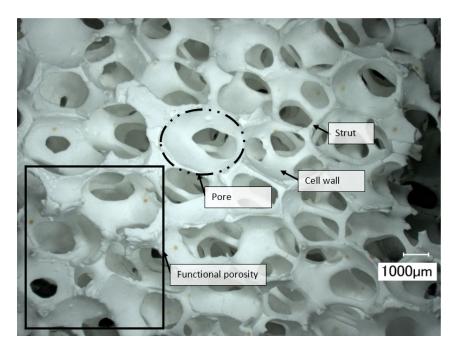



Figure 3.1: Microscope picture of a ceramic foam filter.

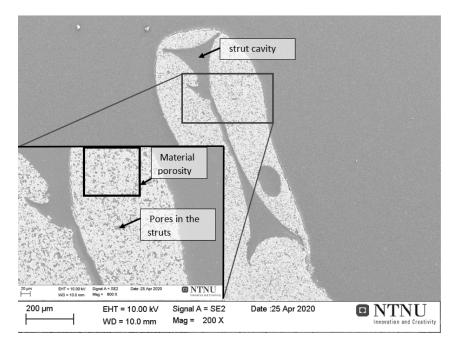



Figure 3.2: A SEM image of a strut at 200x and 800x magnification.

There are four types of densities used when characterizing foams; pore density, foam density, strut density and relative density. The pore density is the number of pores in a certain area, measured in pores per inch (ppi), and is used as a reference to different porosities from the manufacturer. For example Sivex 30 and Sivex 65 refers to different pore densities from the same manufacturer. The foam density ( $\rho^*$ ) is the density of the entire foam, calculated by the total weight and volume of the foam (measured in  $g/cm^3$ ). The strut density ( $\rho_s$ ) is the density ( $g/cm^3$ ) of the struts composing the foam. The strut density is measured by mercury intrusion porosimetry, see Chapter 4.1.3. The strut density can be calculated into material porosity ( $p_s$ ) by Equation 3.1.

$$p_s = 1 - \rho_s \tag{3.1}$$

Relative density  $(\rho^*/\rho_s)$  describes the ratio between foam density and pore density. Gibson and Ashby [6] detail two ways to calculate relative density, depending on the porosity of the foams. An open cell foam with a relative density less then 0.1 will have the relative density [7]:

$$(\rho^*/\rho_s) = (t/l)^2 \tag{3.2}$$

When the relative density is higher than 0.1, greater consideration must be taken with regards to cell corners and the shape of the cell. If approximating the shape of the cell to a pentagonal dodecahedron as seen in Figure 3.3, Equation 3.3 is better suited to model relative density [7]. The pentagonal dodecahedron shape of unit cells is further supported by Lacroix et al. [8]. If the unit cell can be better approximated to a different structure Equation 3.3 would not apply as it is specific to the pentagonal dodecahedron. The relative density can also be given as functional porosity, as seen in Equation 3.4.

$$(\rho^*/\rho_s) = \frac{(t/l)^2 + 0.766(t/l)^3}{0.766(1+t/l)^3}$$
(3.3)

$$p = 1 - (\rho^* / \rho_s) \tag{3.4}$$

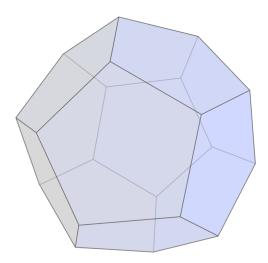



Figure 3.3: The pentagonal dodecahedron structure.

## 3.2 Uniaxial Compression of Brittle Foams

When characterizing ceramic foams various properties are used, such as porosity, density, permeability and mechanical strength. For the description of mechanical strength, the compressive and bending strength are taken into consideration. This thesis will focus on the compressive strength. Compressive strength is measured by compressing the sample between two loading plates with a constant loading rate. The force used to maintain the loading rate is recorded. Often a compliant loading pad is used, which is a rubber pad placed between the loading plates and the sample, used to distribute the pressure more evenly across the sample. The compressive strength ( $\sigma_{cr}$ ) is defined as:

$$\sigma_{cr} = \frac{F_{max}}{A} \tag{3.5}$$

Where  $F_{max}$  is the maximum force recorded and A is the area of applied load. The measurement apparatus and method is according to NS-EN-993-5:2018 [9]. Voigt et al. [10] looked at how changing various parameters could alter the compressive strength. They found that the size of the sample and loading plate has a significant impact on the compressive strength, while the loading rate has less of an impact.

### 3.2.1 Gibson and Ashbys Model

A frequently used model for prediction of the mechanical properties of cellular materials was developed by Gibson and Ashby [6]. They detailed a simplified unit cell with rectangular struts as seen in Figure 3.4a. When the unit cell is placed in compression, individual struts will break as seen in Figure 3.4b. This model suggests that failure occurs at a certain critical load, where numerous cells break at the same time leading to catastrophic failure.

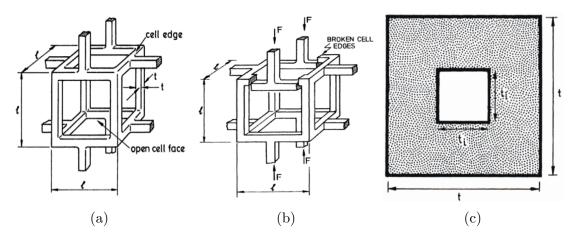



Figure 3.4: The structure of a unit cell from Gibson and Ashbys model [6] where: (a) shows a cubic model of an open-cell foam, (b) shows fracture under compression, and (c) shows the cross-section of a hollow strut.

Gibson and Ashby proposed that the compression strength is dependent on the bending strength of the struts. This is due to how individual struts break, as seen in Figure 3.4b. Based on the bending strength, the following equation is proposed [6]:

$$\sigma_{cr} = C\sigma_{fs} (\rho^*/\rho_s)^{3/2} \frac{1 + (t_i/t)^2}{\sqrt{1 - (t_i/t)^2)}}$$
(3.6)

Where  $\sigma_{fs}$  is the strength of the struts,  $(\rho^*/\rho_s)$  is the relative density, t is the length of the struts, and  $t_i$  is the length of holes in the struts often created due to the manufacturing process (see Figure 3.4c). C is a constant found to be 0.65 by Gibson and Ashby [6]. If one assumes that the struts are not hollow, the equation can be simplified to:

$$\sigma_{cr} = C\sigma_{fs} (\rho^* / \rho_s)^{3/2} \tag{3.7}$$

As seen in Equation 3.6, the compressive strength of a foam is dependent on the strength and geometry of the struts and the relative density of the material. The strut strength is further dependent on strut diameter, or thickness, and cell size. The compressive strength increases with increased strut diameter, while the affect of cell size is disputed [11].

Equation 3.7 has however been found inaccurate with regards to the constant C. Brezny et al. [11] found C to be between 0.13 - 0.23, while Goretta et al. [12] found C to be 0.08. This discrepancy could be due to the cell structure. Most ceramic foams below a certain foam porosity will distribute the material in the cell faces resembling a closed cell. Since the constant is dependent on the geometry of the cell, this could have a significant impact. In addition, Gibson and Ashby does not take into account the variation in strut strength that arises from variations in strut thickness and material porosity [12].

### 3.2.2 Damage Accumulation Model

The other model for compressive failure is the damage accumulation model. This model suggests that failure occurs after a certain number of struts have failed. The struts will not fail simultaneously as in the Gibson and Ashby model, but propagate from cell to cell, often starting at a pre-existing flaw [11]. This model is quite similar to failure of brittle materials, where failure propagates from cracks or other inhomogenities [13].

### 3.2.3 Anisotropy of Cells

Most polymer foams are anisotropic, which means that the structure and properties vary with spatial direction. The anisotropy is commonly seen as an elongation of the cells, usually axisymmetric, which comes from the production of the polymer foam used in the replication process. Figure 3.5 shows an axisymmetric cell. An axisymmetric cell is symmetric around its axis, implying that the length and width are equal.

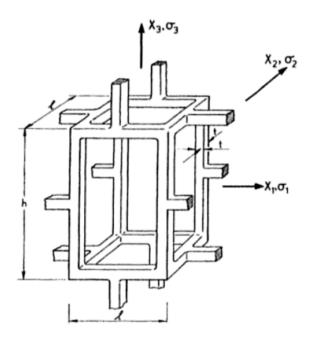



Figure 3.5: An axisymmetric unit cell [6].

$$R = \frac{h}{l} \tag{3.8}$$

A fundamental parameter characterizing an axisymmetric cell is the ratio (R) between the height and length of the cell (Equation 3.8). The relation between the compression strength in the different directions  $X_1$  and  $X_3$ , as seen in Figure 3.5, will then be [6]:

$$\frac{\sigma_3}{\sigma_1} = \frac{2R}{1 + \left(\frac{1}{R}\right)} \tag{3.9}$$

### 3.2.4 Failure of Ceramic Foam Filters

Brezny and Green [14] found that different ceramic foams follow different fracture models. A vitreous carbon foam followed Gibson and Ashbys model, while an alumina-mullite foam followed the damage accumulation model. They proposed that the cause could be a greater amount of flaws (such as strut cavities or cracks) in the structure, mostly due to the replication manufacturing process. This could result in a greater variation in strut strength, causing the struts to break at different times. Failure would then happen after a certain amount of the weaker struts have broken. Since the ceramic foam filters studied in this paper are made using replication, similar results are expected.

## 3.3 Filter Priming in Advance of Aluminium Filtration

The priming of a CFF is the last step before the filtration process in the cast house. The priming allows molten metal, like aluminium, to flow through the filter and leave impurities behind in the numerous pores inside the filter, as illustrated in Figure 1.1. The greatest challenge when filtering aluminium is the reaction in Equation 3.10, where  $2 \text{ Al}_2\text{O}_3$  is an oxide layer that instantly forms when in contact with oxygen. This problem is further complicated with increased ppi. To fully submerge the filter, the oxide layer must therefore be broken [15] [16].

$$4 \operatorname{Al}(l) + 3 \operatorname{O}_2 \to 2 \operatorname{Al}_2 \operatorname{O}_3 \tag{3.10}$$

In Figure 3.6 the filter bowl setup in the foundry is illustrated, and the filter placement is represented. To properly prime the filters, it is necessary to place it in the filter bowl tightly. The filter box is tilted with a 3° to the horizontal plane, so that air can get out during the priming [17]. Then the filter bowl and the filter is preheated to 750 °C. After the preheat, the metal is heated up and used to prime the filter. When the filter is thoroughly primed and the molten aluminium flows through, the filtration of aluminium begins. There are different ways to prime a filter other than using gravity only; Drain Free Filtration (DFF) explained by Tundal et al. [17], Advanced Compact Filter (ACF) explained by Breton et al. [4], and Electro Magnetic Field (EM) explained by Fritzsch et al. [15].

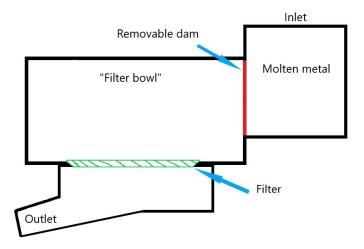



Figure 3.6: Illustration of the placement of a filter in the filter bowl at a foundry.

### 3.4 Phosphate Bonded Filters

Ceramic foam filters for continuous aluminium casting mainly consist of alumina,  $Al_2O_3$ , and use different kinds of binder material. Inorganic binders, like phosphate or silica, are used to lower the sintering temperature of alumina as to decrease energy usage. Phosphate binders will lower the sintering temperature from 1600 °C to 1300 °C and result in a relatively high bending and compressive strength [18][19]. However, phosphate bonded filters have been found to be chemically unstable at higher temperatures, especially in contact with aluminium. When the filters are used with aluminium alloys containing magnesium, the following reaction results [20][21]:

$$3AlPO_4 + 3Mg \Rightarrow Mg_3P_2 + 3MgO + AlP \tag{3.11}$$

Aubrey et al. [21] shows that the magnesium reaction in Equation 3.11 will cause corrosion and reduce the compressive strength of the filter. Additionally, phosphate bonded filters will produce phosphine after being immersed in aluminium and in contact with water which represents a health risk.

Alternative filters have been developed that do not use phosphate binders. Pyrotek uses colloidal silica and boric oxide as a binder [22]. Non-phosphate filters will thereby reduce the degradation from contact with magnesium and potentially increase compressive strength.

### 3.5 High Temperature Behavior of Ceramics

Little research has been done on the mechanical properties of cellular ceramics with relation to temperature dependence. Since compression of cellular ceramics dependence on the bending strength, it is of interest to investigate the dependence of bending strength with temperature. In Figure 3.7 the bending strength of alumina is shown plotted against temperature. This graph shows a significant drop in strength at working temperatures (730 °C). This indicates that the compressive strength should exhibit a similar reduction. Goretta et al. [12] performed compressive strength tests at different temperatures of open cell alumina, consisting of 99 % alumina and relative densities between 0.09 and 0.24. As seen in Figure 3.8 there was little change to the crushing strength at 800 °C. Per the authors knowledge there has been done little to no research into the effect of longer holding times at working temperatures.

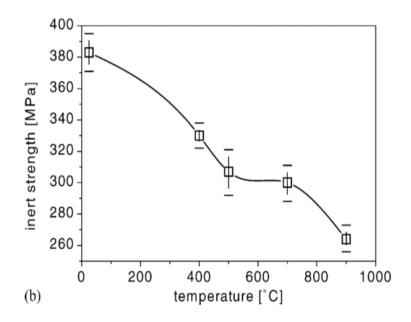



Figure 3.7: Temperature dependence of bending strength (inert strength) of alumina [23].

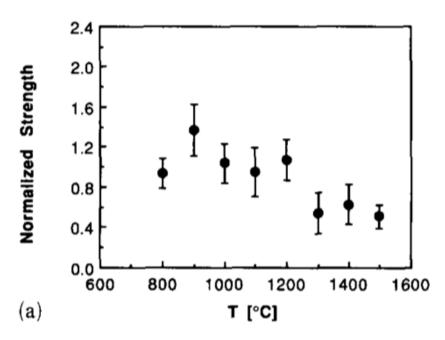



Figure 3.8: The crushing strength of porous open-cell alumina dependent on temperature [12].

CFFs are susceptible to thermal shock. When a ceramic material is non-homogeneous or anisotropic (as CFFs are) and exposed to temperature change, different components of the material will expand differently. This could occur even if the temperature change is constant through the material. However, a rapid change from room temperature to working temperatures will introduce a temperature gradient. This results in different expansion rates across the structure, leading to further thermal strain [24].

As silica is a common component in many CFFs, the phase diagram between alumina and silica (Figure 3.9) becomes relevant. As seen, silica has a lower melting point then alumina. Although the experiments forthwith do not reach 1600 °C, ceramics can transition into a glassy phase at lower temperatures.

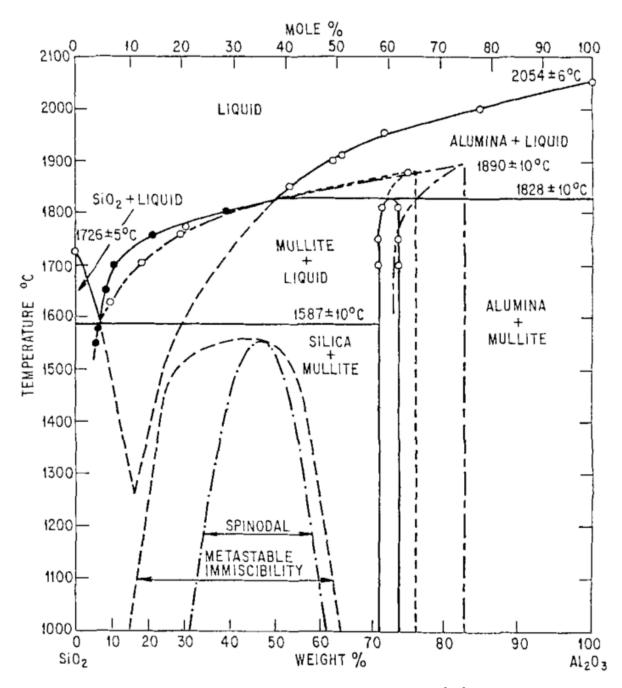



Figure 3.9: Alumina-silica phase diagram [25].

# 4 Experimental Procedures and Analysis

The compression tests that were performed on the CFFs included: testing of the effect of sample shapes (circular and square), testing at room temperature, testing the effect of thermal shock with a ten-minute oven holding time at 800 °C, and testing the effect in compression with different oven holding times at one-hour and two-hour at 800 °C. The testing was performed on CFFs from four different manufacturers: Sivex (Pyrotek, Czech Republic), Ceralu Al<sub>2</sub>O<sub>3</sub> (Drache, Germany), VUKOPOR (RA (Lanik, Czech Republic)) and SELEE (R) CS-X (Selee, United States). These are hereby referred to as Sivex, Drache, Lanik and Selee respectively. The various filter samples tested is summarized in Table 4.1. Samples with both cylindrical and cubic shapes were also tested, shown in Table 4.2.

Table 4.1: The different manufacturers, ppi's, and the number of filters tested at the different holding times in the heated oven.

| Filter manufacturer | ppi | Cold tests | 730°C 10 min | $730^\circ\mathrm{C}$ 1 h | $730^{\circ}\mathrm{C}$ 2 h |
|---------------------|-----|------------|--------------|---------------------------|-----------------------------|
| Sivex               | 30  | 22         | 10           | 10                        | 10                          |
|                     | 65  | 22         | 10           | -                         | -                           |
|                     | 80  | 22         | 10           | -                         | -                           |
| Sivex NP            | 30  | 22         | 10           | 10                        | 10                          |
| Drache              | 30  | 22         | 10           | 10                        | 10                          |
|                     | 60  | 22         | 10           | -                         | -                           |
| Lanik               | 30  | 22         | 10           | 10                        | 10                          |
|                     | 60  | 22         | -            | -                         | -                           |
| Selee               | 30  | 22         | 10           | 10                        | 10                          |

Table 4.2: The different tests performed to analyse the effect of sample shape.

| Filter manufacturer | ppi | Cold tests |
|---------------------|-----|------------|
| Sivex               | 30  | 22         |
| cylinder            | 65  | 22         |
|                     | 80  | 22         |
| Sivex               | 30  | 22         |
| cubic               | 65  | 22         |
|                     | 80  | 22         |

As detailed by Voigt et al. [10] it is important to use identical measurements and procedures. Sample size and the size of the loading plate can affect the results. The method for compression testing is based on NS-EN-993-5:2018 Methods of test for dense shaped refractory products. Determination of cold chrushing strength [9]. A compliant

loading pad was considered, but due to the high temperatures it could not be used.

All compression testing was performed with "MTS 880 Hydraulic Tensile Testing Machine 100 kN", as shown in Figure 4.1. The compression speed was constant at 2 mm/min with a circular loading plate with 50 mm diameter. The compression was done perpendicular to the elongation of the pores.



Figure 4.1: The MTS 880 Hydraulic Tensile Testing Machine 100 kN.

# 4.1 Analytical Methods

Several analytical tests were performed on the filters from the different manufacturers were made prior to mechanical testing. Microscopic pictures were taken to determine the wall thickness of the different filters. Additionally, a Scanning Electron Microscopy-analysis (SEM) was used to analyze the surface of the filter-walls. Based on the SEM-analysis, an Energy Dispersive Spectroscopy (EDS) was performed on different areas of the surface to determine the various elements present in the filters. Lastly, a mercury intrusion porosimetry test of the filters was performed to find the material- and the relative- density of the samples.

## 4.1.1 Microscopic Analysis

The light microscopic images were taken with the Keyence VHX-2000 with lens VHZ20R, to look at the pores in the filters and measure the strut thickness of the different filters from the different manufacturers.

## 4.1.2 SEM- and EDS- Analysis

Samples were cut out of different filters and prepared to be analyzed. The SEM apparatus used was an Ultra 55 LE (Zeiss) shown in Figure 4.2, which had the EDS apparatus XFlash Detector 4010 energy-dispersive X-ray microanalysis attached. The samples were put in an epoxy-resin (Epofix, manufactured by Struers) and then honed to a smooth surface.

Before the SEM analyze, the samples were carbon sputtered to make them conductive, since ceramic materials are a non-conductiv material.



Figure 4.2: The SEM Ultra 55 LE machine from Zeiss [26].

### 4.1.3 Porosimetry Measurement

Additionally, mercury intrusion porosimetry measurements at the ceramic foam filters were conducted using an Autopore 5 (Micromeritics, USA). A penetrometer with 15  $cm^3$  cup volume and 0.392  $cm^3$  stem volume were used which allow the measurement of relatively large samples ( $10 x 10 x 10 mm^3$ ). The measurements consisted of 295 measuring points between 0.15 MPa and 420 MPa and the equilibrium time was five seconds. The pressure p was converted into the corresponding pore radius r with the help of the Washburn equation, see Equation 4.1:

$$p = 2\gamma \cos\Theta/r \tag{4.1}$$

whereas  $\theta$  (140 ° was used) is the contact angle and  $\gamma$  the surface tension (0.485 Nm<sup>-1</sup> was used) of mercury.

## 4.2 Mechanical Testing at Room Temperature

The cold compression strength tests were conducted at room temperature and 22 samples were tested per CFF type. The tested CFF samples were taken from filters for continuous casting (600 mm x 600 mm x 50 mm). There were two possibilities for cutting the samples: usage of a band saw for the cubic samples and usage of a hollow drill which result in cylindrical samples. As mention in Chapter 3.2; the size and shape of the filter sample and of the loading plate influence the compression strength, and for that reason the first task was to investigate the influence of the samples form. The influence of sample form was tested using Sivex filters with functional pore sizes of 30 ppi, 65 ppi and 80 ppi. The circumference of the loading plate and the cylindrical filters was identical. The same loading plate were used for the cubic formed filters, resulting in samples surface area larger than the loading plate.

### 4.2.1 Preparation of Samples

Filters were cut into smaller samples, as shown in Figure 4.3a, from the 50 mm x 600 mm x 600 mm square filters. The cylindrical samples were cut by using the core drill "Eibenstock EFB152PX Tile Drilling Machine Wet 120.0 mm" as seen in Figure 4.3b, dressed with a diamond bit and water cooling attached. The cubic samples were cut with a band saw into 50 mm x 50 mm x 50 mm cubes, while the cylindrical samples had a height and diameter of 50 mm x 50 mm. Some of the filters were dried in oven shown in Figure 4.3c overnight at approximately 100 °C. The filters that were not dried in the oven, were dried on a cardboard box at room temperature. After the drying all the filters, they were weighted and its height and diameter was measured before performing the compression testing. The balance used was "Mettler Toledo SB32001 DeltaRange Balance" shown in Figure 4.3d, with an accuracy of  $\pm 0.1$  g.



(a) Example of the filter samples used.



(b) Eibenstock EFB152PX Tile Drilling Machine Wet 120.0 mm.





(d) The Mettler Toledo SB32001 Delta Range Balance used.

(c) Oven used for drying the samples after cutting and prior to compression test.

Figure 4.3: The equipment used for the preparation of the samples.

## 4.3 Mechanical Testing at 730 °C

Compression strength measurement at room temperature is an important part for the development of new compositions and quality control, but has limited value, since the compressive strength at the much higher operating temperature could be expected to be significantly different. Therefore, mechanical testing of CFF samples was also performed at temperatures between 650 °C to 750 °C in order to document the effect temperature has on the samples compressive strength.

To reach the chosen test temperature of 730 °C, the oven was preheated to 800 °C. The development of the sample temperature was monitored and controlled by using a temperature drop test. A thermocouple wire were attached to a sample as shown in Figure 4.4, while the oven preheated to 800 °C. When the oven reached the desired temperature of 800 °C, the sample with the thermocouple wire attached was put into the oven. The temperature of the sample was measured continuously. When the sample reached the desired temperature, the samples were transferred with great caution from the oven to the compression test machine. By doing this, the filters got minimal time exposed to the room temperature air. This procedure was done four times with cylindrical Sivex 30 ppi samples, and once using cylindrical Sivex 80 ppi, to get a more statistical precise result.



Figure 4.4: A sample with a thermocouple wire attached.

### 4.3.1 Different Holding Times

The mechanical tests at 730 °C were performed with three different holding times in the oven to determine the influence of this parameter. Particular attention was on the heating/testing procedure to reach optimal testing conditions. For every holding time this procedure was adapted to the time the samples were in the oven.

Ten samples of each CFF type were tested at the different oven holding times. Due to capacity limitations of the oven, samples were heated in batches of six. The samples were places in a systematic order to avoid mixing them.

#### Ten - Minute Holding Time at 800 °C

Ten samples per filter type were tested with ten minutes holding time in the oven at 800 °C. The first filter went into the oven, and after ten minutes, the second filter were put in the oven while the first was taken out of the oven and transferred to the compression machine for the compression test. When the second filter were ready to be compressed, the third filter was put in the oven as the second filter were taken out. This system continued with the remaining filters, with the time for the take out and put in as shown in Table 4.3.

| Sample No. | Time going in the oven [min] | Time out of oven [min] |  |  |  |  |  |  |
|------------|------------------------------|------------------------|--|--|--|--|--|--|
| 1          | 0                            | 10                     |  |  |  |  |  |  |
| 2          | 10                           | 20                     |  |  |  |  |  |  |
| 3          | 20                           | 30                     |  |  |  |  |  |  |
| 4          | 30                           | 40                     |  |  |  |  |  |  |
| 5          | 40                           | 50                     |  |  |  |  |  |  |
| 6          | 50                           | 60                     |  |  |  |  |  |  |
| 7          | 60                           | 70                     |  |  |  |  |  |  |
| 8          | 70                           | 80                     |  |  |  |  |  |  |
| 9          | 80                           | 90                     |  |  |  |  |  |  |
| 10         | 90                           | 100                    |  |  |  |  |  |  |

Table 4.3: Ten-minute holding time at 800 °C.

### One - Hour Holding Time at 800 °C

Ten samples per filter type were tested with one-hour holding time at 800 °C, to document whether the high temperature and holding time affects the ceramic bonding in the filters. The heating schedule (sample number, when it was put in to and taken out of the oven) is summarized in Table 4.4.

The first sample was put in the oven at 800 °C, after ten minutes, sample number two was put in the oven. Taking care with placing the samples in the oven, the process was repeated until all six filters were in the oven. Once the first sample had been in the oven for one hour it was quickly transferred to the compression test machine and tested. It was crucial to use as little time as possible to move the sample out of the oven to the testing machine, as tested in temperature drop testing. When the second sample was tested, the seventh sample was put in the oven in sample number one's place. This system continued through the remaining samples, this way all the samples had a one hour holding time in the oven at 800 °C.

|            | 0                            |                        |
|------------|------------------------------|------------------------|
| Sample No. | Time going in the oven [min] | Time out of oven [min] |
| 1          | 0                            | 60                     |
| 2          | 10                           | 70                     |
| 3          | 20                           | 80                     |
| 4          | 30                           | 90                     |
| 5          | 40                           | 100                    |
| 6          | 50                           | 110                    |
| 7          | 70                           | 130                    |
| 8          | 80                           | 140                    |
| 9          | 90                           | 150                    |
| 10         | 100                          | 160                    |

Table 4.4: One-hour holding time at 800 °C.

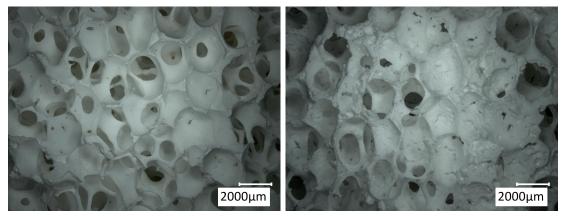
### Two - Hour Holding Time at 800 °C

Ten samples per filter type were tested with a two-hour holding time at 800 °C, to see if the high temperature and holding time affects the ceramic bonding strength in the filter material. The heating schedule is summarized in Table 4.5.

The procedure to the two-hour holding time was similar to the one hour holding time in the oven. The difference was a longer wait between putting samples number six in the oven and the start of compression testing of sample number one. This wait was 70 minutes long due to the oven limitations. When sample one had been in the oven for the two-hours, it was removed from the oven for compression strength testing. After putting sample number ten in the oven, there were a new waiting period of 90 minutes due to oven limitations. When the sixth sample had been in the oven for two hours, the second round of testing began with ten minutes in between each test.

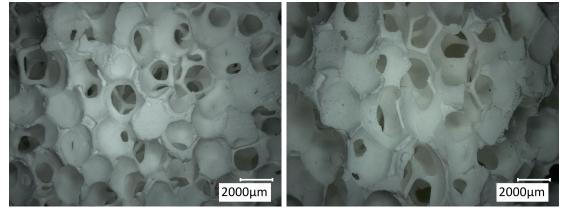
| Table 4.5. Two-nour nothing time at 600°C. |                              |                        |  |  |  |  |  |  |
|--------------------------------------------|------------------------------|------------------------|--|--|--|--|--|--|
| Sample No.                                 | Time going in the oven [min] | Time out of oven [min] |  |  |  |  |  |  |
| 1                                          | 0                            | 120                    |  |  |  |  |  |  |
| 2                                          | 10                           | 130                    |  |  |  |  |  |  |
| 3                                          | 20                           | 140                    |  |  |  |  |  |  |
| 4                                          | 30                           | 150                    |  |  |  |  |  |  |
| 5                                          | 40                           | 160                    |  |  |  |  |  |  |
| 6                                          | 50                           | 170                    |  |  |  |  |  |  |
| 7                                          | 130                          | 250                    |  |  |  |  |  |  |
| 8                                          | 140                          | 260                    |  |  |  |  |  |  |
| 9                                          | 150                          | 270                    |  |  |  |  |  |  |
| 10                                         | 160                          | 280                    |  |  |  |  |  |  |

Table 4.5: Two-hour holding time at 800 °C.


# **5** Results and Discussion

# 5.1 Analytical Methods

The following analytical methods were conducted on the different filter samples before cold and warm compression testing. Geometric and weight measurements of individual samples are shown as foam density in Appendix A.


## 5.1.1 Microscope Pictures

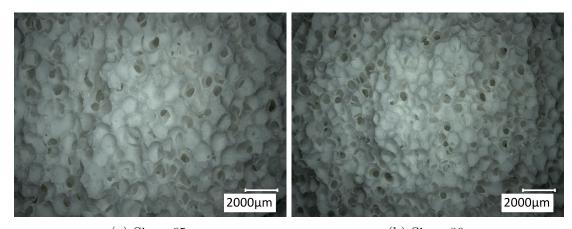
All sample were studied under the light microscope, as seen in Figure 5.1 for the 30 ppi samples, and Figure 5.2 for the 60 - 80 ppis samples. Although these foams are classified as open-celled structures, the microscope images shows a significant amount of closed cells. The images indicates that decreasing cell/pore size correlates with increasing pore density and increasing presence of closed cells. As discussed in Chapter 3.1, it is common that foams with a relative density over 0.1 will have more filled wall faces than struts, which further increases with increasing relative density. Struts and cell walls will subsequently be collectively referred to as struts.

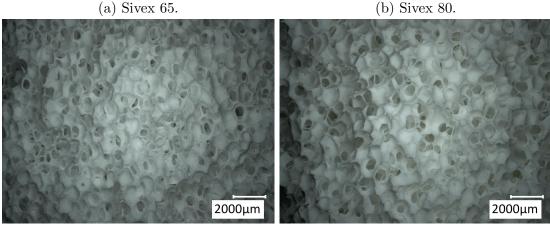




(b) SivexNP 30.

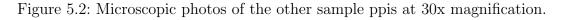



(c) Drache 30.


(d) Lanik 30.



(e) Selee 30.


Figure 5.1: Microscopic photos of the 30 ppi samples at 30x magnification.





(c) Drache 60.

(d) Lanik 60.



### Strut Thickness

Table 5.1 shows the average strut thickness found by measuring the struts under the light microscope. As seen the strut thickness seems to be half as large with 60 and 80 ppi filters compared to 30 ppi filters. While this is positive for the function of the filters (as it results in greater permeability), it would result in weaker struts and potentially lower compressive strength. While SivexNP and Lanik 30 appear to have thicker struts, the sizeable standard deviation indicates large inaccuracies. However, a large standard deviation was expected due to the substantial variation in the structure of the foams.

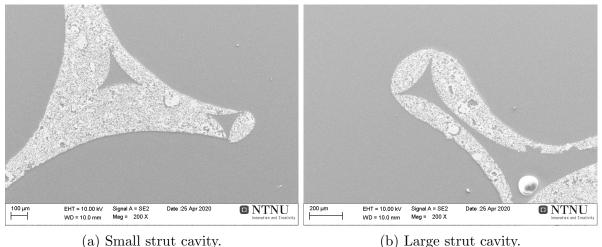

| Table 5.1. Hverage strate/ wall threathess. |                        |               |  |  |  |  |  |  |  |
|---------------------------------------------|------------------------|---------------|--|--|--|--|--|--|--|
| Filter                                      | Average Thickness (µm) | St. Dev. (µm) |  |  |  |  |  |  |  |
| Sivex 30                                    | 291                    | 73            |  |  |  |  |  |  |  |
| Sivex 65                                    | 162                    | 53            |  |  |  |  |  |  |  |
| Sivex 80                                    | 147                    | 43            |  |  |  |  |  |  |  |
| Sivex NP 30                                 | 341                    | 74            |  |  |  |  |  |  |  |
| Drache 30                                   | 319                    | 111           |  |  |  |  |  |  |  |
| Drache 60                                   | 130                    | 37            |  |  |  |  |  |  |  |
| Lanik 30                                    | 337                    | 54            |  |  |  |  |  |  |  |
| Lanik 60                                    | 130                    | 51            |  |  |  |  |  |  |  |
| Selee 30                                    | 295                    | 62            |  |  |  |  |  |  |  |

Table 5.1: Average strut/wall thickness.

### 5.1.2 Scanning Electron Microscopy-Analysis (SEM)

A SEM-analysis was conducted on samples from the different manufacturers prior to compression testing. SEM-analysis shows the surface of the filter, and how the different elements sintered together in the filter walls. The analysis also show pores in the structure, which can affect the mechanical strength in the material. One of these that is frequent in all of the filters are the triangular hole left in the structure after the melt out process.

Figure 5.3a and 5.3b shows two different struts from the same sample. Visible is the large variation in the strut cavities left from the production process. The large difference in strut structure is evident, as Figure 5.3a has two small triangular cavities while Figure 5.3b has one large cavity, almost comprising the entire width of the strut in some areas. This large variation was common in all filter samples. Note that Figure 5.3 are two-dimensional images of a three-dimensional structure. According to Equation 3.6 the size of the cavities has a significant impact on the compressive strength, as an increase of  $(t_i/t)$  will decrease the strength. The average size of the strut cavities can be seen from Figure 5.5, where Sivex has significantly smaller strut cavities, possibly increasing the compressive strength.



(b) Large strut cavity.

Figure 5.3: SEM photos of the Drache 30 ppi filter at 200x magnification.

Figure 5.4 shows the SEM photos at 800x magnification of all the 30 ppi filters. While all the filters have material pores ranging in diameter from a couple  $\mu$ m to 20  $\mu$ m, the average size and distribution varies.

As shown in Figures 5.4a, 5.4c, and 5.4d Sivex, Drache, and Lanik seem to have a similar average pore size, where most of the pores are smaller than 10  $\mu$ m. However, the distribution is quite different where Drache has the largest areas with dense material, while in the Lanik sample the pores are finely distributed. Denser material lends to a higher compression strength. However, there are many pores with sharp edges, which could result in weaker struts leading to decreased strut strength.

Figures 5.4b and 5.4e indicate that SivexNP and Selee have larger pores, with several pores exceeding 20  $\mu$ m. However, Selee has fewer, but larger pores, which could lead to decreased compressive strength, as discussed in Chapter 3.1.

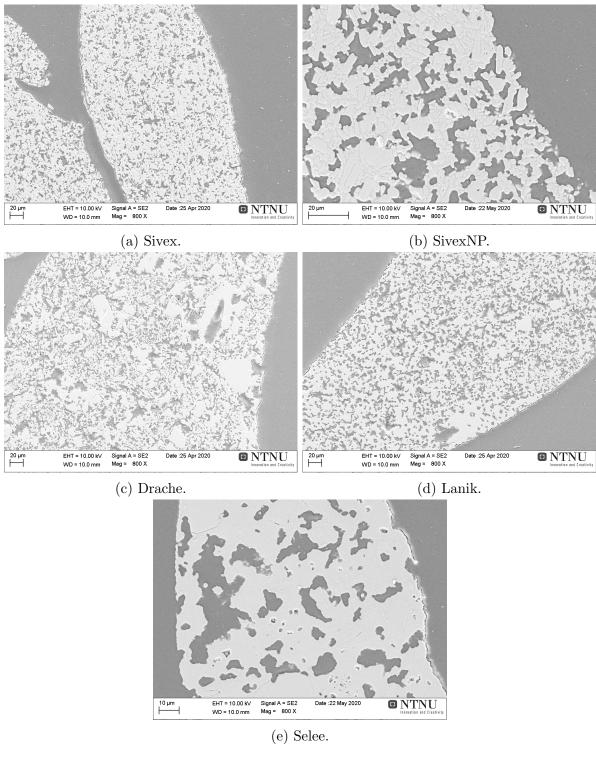



Figure 5.4: SEM photos of different 30 ppi filters at 800x magnification.

## 5.1.3 Energy Dispersive Spectroscopy (EDS)

The EDS-analyses picks up the energy of X-ray photons from the different elements, with different constraints. These constraints involve a limit of detection and energy-resolution, and no indication of elements lighter than beryllium. This can cause a misinterpretation of the elements present in a filter. Elements as boron may not show, due to the similar output energy as neighboring elements. This indicates that boron may show as carbon, and because of the carbon sputtering prior to the EDS-analysis, it will not show. Here, the elements with an atomic % (at.%) less than 1 will be excluded from the results. The results form the EDS-analysis is listed in Table 5.2.

| Sample      |       | Average at. %St. Dev. at. % |       |      |      |      |      |      |      |      |      |      |
|-------------|-------|-----------------------------|-------|------|------|------|------|------|------|------|------|------|
| Elements    | Ο     | Al                          | Si    | Р    | Mg   | Ca   | 0    | Al   | Si   | Р    | Mg   | Ca   |
| Sivex 30    | 48.06 | 46.38                       | -     | 4.51 | -    | -    | 0.43 | 1.05 | -    | 0.53 | -    | -    |
| Sivex 65    | 47.63 | 47.28                       | -     | 3.99 | -    | -    | 0.33 | 0.64 | -    | 0.52 | -    | -    |
| Sivex 80    | 49.27 | 43.98                       | -     | 6.23 | -    | -    | 0.32 | 0.63 | -    | 0.21 | -    | -    |
| Sivex NP 30 | 49.15 | 43.93                       | 5.48  | -    | -    | -    | 0.66 | 1.95 | 1.09 | -    | -    | -    |
| Drache 30   | 48.35 | 45.01                       | 3.53  | 1.98 | -    | -    | 0.50 | 1.07 | 0.67 | 0.51 | -    | -    |
| Drache 60   | 47.42 | 46.53                       | 3.426 | 1.44 | -    | -    | 0.45 | 2.09 | 1.40 | 0.49 | -    | -    |
| Lanik 30    | 47.73 | 43.40                       | 7.84  | -    | 1.08 | -    | 0.40 | 1.18 | 0.88 | -    | 0.11 | -    |
| Lanik 60    | 47.85 | 44.38                       | 6.65  | -    | 1.07 | -    | 0.23 | 0.44 | 0.34 | -    | 0.12 | -    |
| Selee 30    | 53.24 | 26.51                       | 18.15 | -    | -    | 1.56 | 0.36 | 1.14 | 1.02 | -    | -    | 0.25 |

Table 5.2: Elements found in the EDS-analysis from the different filters.

As shown, all the samples except Selee seem to be alumina based, where Sivex appears to have a higher content of phosphorus. SivexNP 30, Lanik 30 and Selee 30 appear to be phosphorus free, and instead having higher content of silicon. Selee further diverges from the others with an apparently high ratio of oxygen and silicon compared to aluminium. The high content of silica could be explained by the presence of a mullite phase. XRD analysis could be used to determine the phase composition. According to the patent for SivexNP, the filter could also include boron, which an EDS analysis would not detect [22].

### 5.1.4 Mercury Intrusion Porosimetry

### Density

Table 5.3 shows the material and relative densities. Relative density was calculated from the material density and the foam density in Appendix A. As supported by the SEM pictures in Figure 5.4, the Drache, Sivex and Lanik 30 filters seem to have a high material density and low relative density. While SivexNP and Selee exhibit a lower material density. While Sivex and Drache 30 have a similar material density, Sivex 30 has a significantly higher relative density, possibly due to smaller pores. SivexNP has a relatively high relative density compared to the other 30 ppi filters, indicating less empty space in the filter. This could be impacted by the thicker struts leading to more material per cell. Otherwise the order of relative density is well matched to the material density, as a lower material density yields a higher relative density.

| Sample      | Material Density $\pm$ St. Dev. (g/cm <sup>3</sup> ) | Relative Density |
|-------------|------------------------------------------------------|------------------|
| Sivex 30    | $2.145 {\pm} 0.015$                                  | 0.192            |
| Sivex 65    | $2.249 {\pm} 0.012$                                  | 0.217            |
| Sivex 80    | $2.088 \pm 0.040$                                    | 0.245            |
| Sivex NP 30 | $1.738 \pm 0.047$                                    | 0.226            |
| Drache 30   | $2.281 \pm 0.224$                                    | 0.182            |
| Drache 60   | $2.157 {\pm} 0.033$                                  | 0.214            |
| Lanik 30    | $2.029 \pm 0.024$                                    | 0.199            |
| Lanik 60    | $2.076 {\pm} 0.006$                                  | 0.204            |
| Selee 30    | 1.687                                                | 0.193            |

Table 5.3: Results from porosimetry.

### Pore Size

Figure 5.5 presents the cumulative pore volume in dependence on the pore size of the different filter types. Each measurement possesses two main increases of the cumulative pore volume. The first increase at mean pore sizes between 30 µm and 150 µm is the filling of the strut cavities resulted from the decomposition of the polyure than foam [27]. There are significant differences between the filter types whereby the repeat measurement (two measurements per filter type) show a good agreement. It is notable that within one producer the mean pore size decreases with increasing pore density (ppi-number). A comparison between the producer gives no correlation which can be explained by the usage of polyurethane from different producers and different shrinkages during sintering caused by the slurry composition. The second main increase is caused by the mercury filling of the material porosity. It should be pointed out that the amount of intruded pore volume will not be consider due to sample taking issues discussed in Voigt et al. [27]. The mean pore size of the second increase of the intruded pore volume of the phosphate bonded Sivex filters (30, 65 and 80 ppi) show a pore size of around 1.5 µm and are in good agreement. This indicated the usage of the same slurry for the different pore densities (ppi-numbers). The Lanik filters possess a mean pore size of the second increase in the intruded pore volume of around 2.2 µm and are in good agreement. The Drache filter show a comparable mean pore size at the beginning of the second increase in the intruded pore volume of around 2.8 µm but then the 60 ppi measurement shows a smaller gradient. The SivexNP and Selee filter (both are non phosphate compositions) presents significant larger pore size for the material pores which is consistent with the SEM images. The main pore size of the second increase is for the SivexNP around 4.1 µm and for the Selee a main pore size is difficult to define.

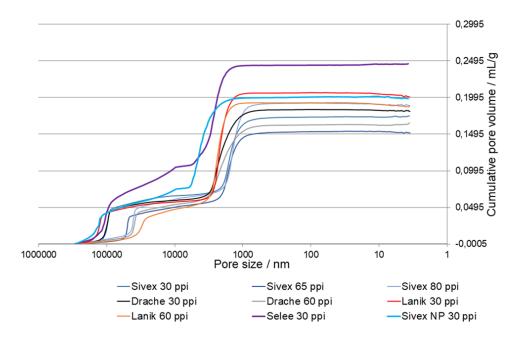



Figure 5.5: Cumulative pore volume dependent of pore size.

### 5.2 Compression Testing

The compression tests were performed in accordance with the procedures detailed in the method section. The results are summarized in Appendix A, and represent the peak values recorded for compression strength. Due to time constrictions and availability of the 30 ppi filters, they were prioritised for the different tests at a working temperature of 730  $^{\circ}$ C.

### 5.2.1 The Effect of Sample Shape

Figure 5.6 shows the compressive strength of cylindrical and cubic samples from the Sivex filters. The cubic samples exhibit a higher compressive strength, which was expected due to the rise in sample size [10]. The compression strength is comparable for the 30 ppi filters, while the difference increases with higher pore density where the cubic samples have the higher compressive strength. A statistical analysis using p-value was done, with a null hypothesis of a strong correlation between the compressive strengths of the cylindrical and cubic samples, meaning a significant resemblance between the values. The p-values for 30, 65 and 80 ppi respectively were 0.26, 0.04 and 5.39e-7. While the p-value suggests a correlation for the 30 ppi samples, there is little correlation between the 65 and 80 ppi filters, suggesting that the compressive strength is not sufficiently similar between the cylindrical and cubic samples. Therefore, cylindrical and cubic samples cannot be used interchangeably. While both shapes can be used according to the standard [9], the cylindrical tests exhibit a smaller standard deviation, see Appendix A. This could be due to the fact that the loading plates cover the entirety of the cylindrical sample surface, while the cubic samples had corners that were not being compressed, causing stress anisotropy in the sample. It was therefore decided to proceed with cylindrical samples.

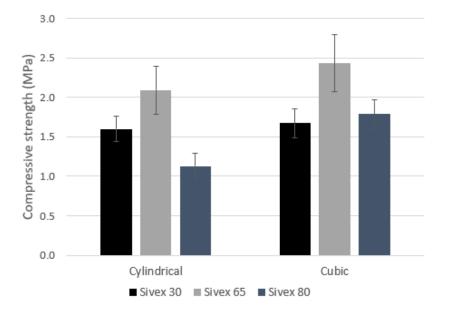



Figure 5.6: Compressive strength of cylindrical and cubic samples at room temperature.

### 5.2.2 Room Temperature Testing

### Pore Density

Figure 5.7 shows the compressive strength plotted against pore density, showing three different responses to increased pore density. Sivex 65 shows an increase from 30 ppi, as could be expected from the higher relative density and material density. While both Sivex 65 and Sivex 80 have similar strut thickness (around half of Sivex 30), Sivex 80 exhibits a decreased strength compared to 30 ppi. This could potentially be due to the lower material density or impacted by a lesser phosphorus content. There could be a fault with the filter used in the test. As shown in Figure 5.8, there was a ring around the middle indicating a possible production fault. In addition, there was significantly more "snowing" from Sivex 80, snowing being lose particles emanating from the sample when moved or shaken. The Drache filters appear to have no noticeable change from 30 to 60 ppi, while Lanik exhibits a significant decrease in strength from 30 to 60 ppi, however due to the decrease in size of the Lanik 60 it is not comparative. The results suggests that compressive strength isn't necessarily directly dependent on pore density, but rather a combination of relative density and strut thickness.

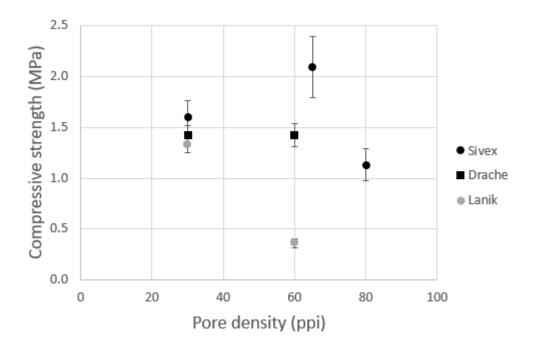



Figure 5.7: Compressive strength at room temperature of varying ppi filters.



Figure 5.8: A sample of Sivex 80. Note the ridges around the middle.

The method of shaping the filter samples, by cutting them with a diamond bit, could yield variable results. The Lanik filters had a tendency to crumble, which resulted in cavities in the samples, especially around the middle, see Figure 5.9. The Lanik 60 filter had a diameter of 43 mm compared to the standard 50 mm, and as detailed by Voigt et al. [10] the sample size has a significant impact on compressive strength. This could explain the low compressive strength of the Lanik 60 filters.



(a) Lanik 30.

(b) Lanik 60.

Figure 5.9: Pictures of Lanik samples.

### **Comparison With Established Models**

Equation 3.6 suggests that the crushing strength increases with an increased strut strength, relative density, and  $t_i/t$ . Relative density is given in Table 5.3, and although strut strength was not measured, it can be discussed by examining the material porosity, composition and strut thickness. When looking at the lowest and highest strength filters they fit Gibson and Ashbys model well. Sivex NP had a high strength combined with the highest relative density and strut thickness. Although, the material porosity does also

seem to be quite high. Meanwhile, the Selee filter has the lowest strength, moderately low relative density and strut thickness as well as a seemingly high material porosity. Selee also has a different composition than the other filters, using mullite instead of pure alumina.

Figure 5.10 shows the compressive strength plotted against relative density, with a trendline (Equation 5.1):

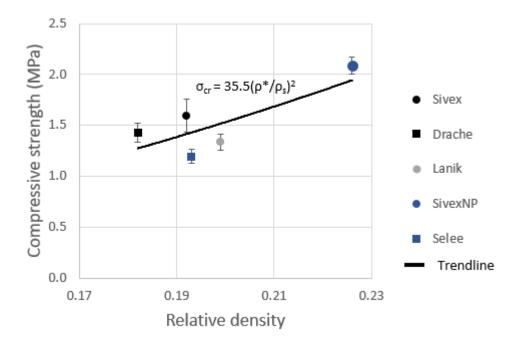



Figure 5.10: Compressive strength of 30 ppi filters dependent on relative density.

$$\sigma_{cr} = 35.5(\rho^*/\rho_s)^2 \tag{5.1}$$

This trend is quite similar to that found by Goretta et al. [12], with a slightly higher exponent than the one proposed by Gibson and Ashby's model in Equation 3.6 and 3.7. A higher exponent would indicate a higher dependence on relative density. However, the trend from Figure 5.10 was made from five data-points and does not fit perfectly and, unlike Goretta et al. and Brezny et al. [11], Equation 5.1 does not factor in the strut strength. This can for example be seen for Drache and Sivex, where the compressive strength is high compared to the trend. This could be due to the slightly higher material density, less porous struts, and in Sivex's case smaller strut cavities. These factors would comparatively increase the strut strength.

### 5.2.3 Temperature Drop Test

Figure 5.11 shows the measured temperature rate and the temperature drop of five samples, where test one - four are Sivex 30 ppi filters while test five is a Sivex 80 ppi sample. As seen in the graph demonstrated by the trendline, the average temperature drop is 2.07 °C/second. The time it took between the sample exiting the oven and completing the compression test was determined to be  $35 \pm 5$  seconds. In this time the temperature of the sample will be approximately 730 °C based on the average temperature drop rate and the time used by moving the sample. The time it takes a sample to reach 800 °C is

approximately 480 seconds, around eigth minutes. This implies that a ten minute heating time in the oven will be sufficient for heating the samples to the given temperature. This gives the filters a temperature around 730 - 740 °C at the time of the compression test. It is assumed that the filters made from the different manufacturers does have a relative similar temperature drop rate. The exception being the difference in the ppi.

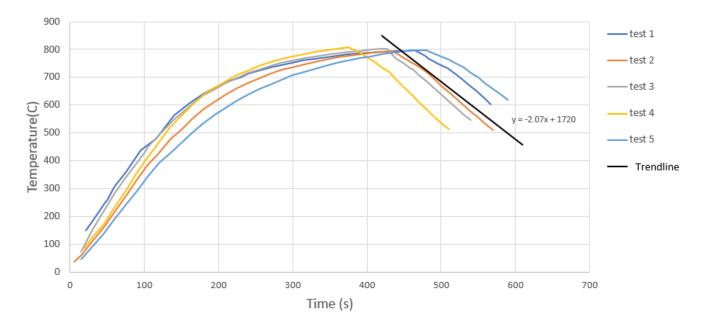



Figure 5.11: The temperature drop when the filter is moved from the oven into room temperature. The increment to the trendline shows the average drop in temperature per second.

### 5.2.4 Compression Strength Measurements at 730 °C

Figure 5.12 shows the results from compressive tests while the samples are hot after different holding times (ref. Appendix A). The compressive strength of the samples generally decrease with higher temperature and longer holding times. The two exceptions are Selee and Lanik. Lanik decreases significantly after ten-minutes, followed by an increase after one-hour, and decreases again after two-hours. The nearly opposite happens with Selee, where the compressive strength is higher at two-hours than at one-hour. In both these cases two separate filters were used, where room temperature and one-hour samples were taken from one filter and ten-minute and two-hour samples were taken from another filter. As previously seen with the Sivex 80 filter see Figure 5.8, flaws can arise in individual samples, which could result in the different results. In addition, the one-hour tests were done by the supervisor, so slight changes in method could arise. The Lanik filter was tested a second time by the supervisor with a ten-minute holding, yielding an average compressive strength of 0.915 MPa. While there were only tested four samples and the loading plate was different, the difference is significant indicating that there could be some variation in how the tests were performed. Alternatively, Selee has a different composition than the other filters, containing a high amount of silica. This could result in the Selee filters transitioning into a more glassy phase after two-hours, thereby softening pores and cracks, possibly regaining some strength and explaining the high compressive strength observed at the two hour holding time.

Not counting Selee and Lanik the average temperature drop was 18%, 27%, and 26% respectively for ten-minutes, one-hour, and two-hours.

Note that while the averages of SivexNP resemble the pattern of Lanik, the standard deviation is sufficiently high as to overlap. However, SivexNP shows a large decrease in compressive strength at increased temperature indicating that while it is the strongest at room temperature, it is comparable with Sivex and Drache at higher temperatures.

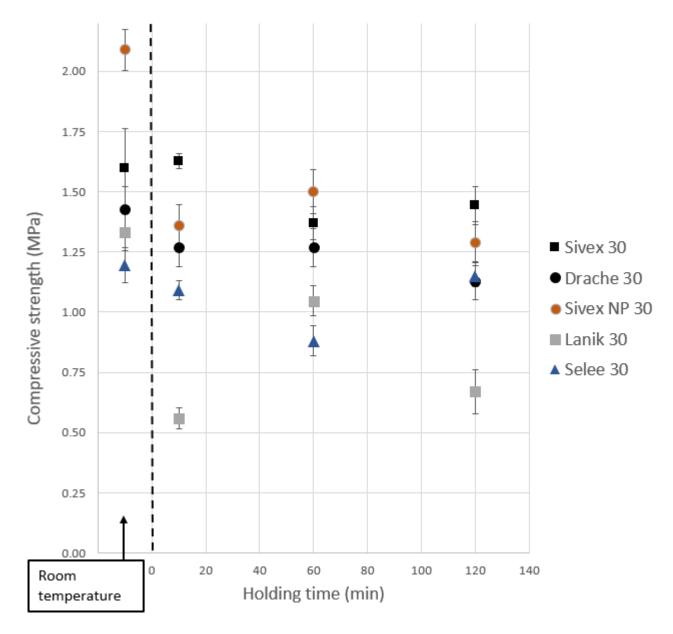



Figure 5.12: Compression tests of 30 ppi filters at working temperatures with varying holding times compared with room temperature tests.

Furthermore, The method used for heating the samples could have an affect on the measured compressive strength. Each time a new sample was placed in the oven or taken out, there was a 30 °C temperature drop in the oven. Therefore, there were fluctuations in the temperature, especially during one- and two-hour holding times. In addition, there would be a temperature shock whenever placing and removing the sample from the oven. An ideal test environment would be to have the compression test machine inside an oven,

so that the samples could be heated from room temperature without large fluctuations. However, this would significantly increase the time for each test. Additionally for future testing, it is recommended to take samples from one filter, as the mechanical properties vary greatly between different filters.

## 6 Conclusion

Compression tests of various filters were performed, from different manufacturers and pore densities, at room and working temperatures. The results resembled previous studies and models, where the compression strength had a significant dependence on relative density, where SivexNP exhibited the highest compressive strength at 2.09 MPa, and the Selee filter had the lowest compressive strength at 1.20 MPa. While the strut strength was not measured, it was discussed through various analytical methods such as; microscopy, mercury intrusion porosimetry, SEM, and EDS analysis, to characterize the structural properties of the CFFs. A significant match between structural properties and the compressive strength was found.

For the compressive testing at working temperatures, the compressive strength generally decreased with increased holding time with 18 %, 27 %, and 26 % respectively for ten-minutes, one-hour, and two-hours. While the Lanik and Selee filters exhibited a different pattern, it was attributed to flaws in the testing procedure and variations in quality between individual filters.

### 6.1 Further Work

This thesis may be used as a groundwork for future work in compression testing ceramic foam filters. Based on the procedures that have been created in coordination with this test, it is possible to conduct a larger scale test. It would be interesting to study the structure of the filters after holding time in the oven. If it has changed, and if this affects the compressive strength, particularly with regards to the material porosity.

It would be interesting to test the repeatability of the results, as there were some inconsistencies, in particular with regards to different holding times. Future refinement of the methods and possibly a different setup for compressive tests at working temperatures would be of interest to achieve more accurate results.

Measuring the strut strength of the different manufacturers at different temperatures could be of interest, as it is an important factor when characterizing the compressive strength of brittle foams. This could also give a better indication as to the affect of various structural parameters.

At the time of writing preliminary tests have been done on samples primed with molten aluminium at working temperatures. The progress of these tests will be interesting, as it closely resembles working conditions in the cast house.

## Bibliography

- D.C Chesonis. A holistic approach to molten metal cleanliness. Light Metals 2017, pages 1411–1417, 2017.
- [2] F. Breton, P. Waite, and P. Robichaud. Advanced compact filtration(acf): an efficient and flexible filtration process. *Light Metals 2013*, pages 967–972, 2013.
- [3] M. Scheffler and P. Colombo. *Cellular Ceramics: Structure, Manufacturing, Properties, and Applications.* Wiley-VCH, 2005.
- [4] F. Breton, P. Waite, and P. Robichaud. Advanced compact filtration (acf): an efficient and flexible filtration process. Sadler B.A. (eds) Light Metals 2013. The Minerals, Metals & Materials Series. Springer, Cham, pages 967 – 972, 2016.
- [5] E.G. Ramalho W.L. Torquato W. Acchar, F.B.M. Souza. Mechanical characterization of cellular ceramics. *Materials science and engineering A*, 513 - 514:340–343, 2009.
- [6] L. J. Gibson and M. F. Ashby. *Cellular Solids: Structure and Properties*. Cambridge University Press, 2. edition, 1997.
- [7] L. J. Gibson and M. F. Ashby. The mechanics of three-dimensional cellular materials. proceedings of the royal society of London. Series A: mathematical and physical science, 32:3959–3967, 1982.
- [8] T. T. Huu, M. Lacroix, C. P. Huu, D. Schewich, and D. Edouard. Towards a more realistic modeling of solid foam: use of the pentagonal dodecahedron geometry. *Chemical engineering science*, 64:5131–5142, 2009.
- [9] Methods of test for dense shaped refractory products-part 5: Determination of cold crushing strength, standard ns-en 993-5. 2018.
- [10] C. Voigt, J. Storm, M. Abendroth, C. G. Aneziris, M. Kuna, and J. Hubralkova. The influence of the measurement parameters on the crushing strength of reticulated ceramic foams. *Materials Research Society*, 28:2288–2299, 2013.
- [11] R. Brezny and D. J. Green. Fracture behaviour of open-cell ceramics. Journal of the American Ceramic Society, 72:1145–52, 1989.
- [12] K. C. Goretta, R. Brezny, C. Q. Dam, D. J. Green, A. R. de Arellano-Lopez, and A. Dominguez-Rodriguez. High temperature mechanical behaviour of porous opencell al<sub>2</sub>o<sub>3</sub>. Materials science and engineering, 24:151–158, 1990.
- [13] G. Heness, N. Booth, and B. Ben-Nissan. Does size matter? the effect of volume on the compressive strength of open cell brittle ceramics. Advanced Materials Research, 41-42:221–226, 2008.

- [14] R. Brezny and D. J. Green. Uniaxial strength behavior of brittle cellular materials. Journal of the American Ceramic Society, 76:2185–2192, 1993.
- [15] R. Fritzsch, M. W. Kennedy, J. A. Bakken, and R. E. Aune. Electromagnetic priming of ceramic foam filters (cff) for liquid aluminum filtration. Sadler B.A. (eds) Light Metals 2013. The Minerals, Metals & Materials Series. Springer, Cham, pages 973 - 979, 2016.
- [16] S. Bao, M. Syvertsen, A. Kvithyld, and T. Engh. Wetting behavior of aluminium and filtration with Al<sub>2</sub>O<sub>3</sub> and sic ceramic foam filters. *Transactions of Nonferrous Metals Society of China*, 24:3922 – 3928, 2014.
- [17] U. Tundal, I. Steen, Å. Strømsvåg, T. Haugen, J. O. Fagerlie, and A. Håkonsen. Drain free filtration (dff) — a new cff technology. *Chesonis C. (eds) Light Metals* 2019. The Minerals, Metals & Materials Series. Springer, Cham, pages 1097 – 1104, 2019.
- [18] A. Nishiwra. Technology of monolithic refractories. 1984.
- [19] J. A. Fernando and D. D. L. Chung. Improving an alumina fiber filter membrane for hot gas filtration using an acid phosphate binder. *Journal of materials science*, 36:5079–5085, 2001.
- [20] C. K. Solem, R. Fritzsch, and R. E. Aune. Prelimenary experimental study of the thermal stability and chemical reactivity of the phosphate-based binder used in al2o3based ceramic foam filters(cffs). 2018.
- [21] L. S. Aubrey, R. Olson, and D. D. Smith. Development of a phosphate-free reticulated foam filter material for aluminium cast houses. *Materials science forum*, 630:137–146, 2009.
- [22] Milton Keynes. Pyrotek engineering materials limited, 2019. US patent 2019/0240605.
- [23] R. Nejma, K. H. Lang, and D. Lohe. Influence of the temperature on the strength and the subcritical crack growth rate of alumina. *Materials Science and Engineering* A, 387-389:832–836, 2004.
- [24] W. D. Kingery. Factors affecting thermal stress resistance of ceramic materials. American ceramic society, 38:3–15, 1955.
- [25] F. J. Klug, S. Prochazka, and R. H. Doremus. Alumina-silica phase diagram in the mullite region. *Ceramic int.*, 44:22963–22975, 2018.
- [26] ZEISS.com. Ultra 55 le (zeiss), 2020. Retrieved: 17.05.2020.
- [27] C. Voigt, J. Hubálková, L. Ditscherlein, R. Ditscherlein, U. Peuker, H. Giesche, and C.G. Aneziris. Characterization of reticulated ceramic foams with mercury intrusion porosimetry and mercury probe atomic force microscopy. *Ceramic int.*, 44:22963– 22975, 2018.

## 7 Appendix

A The results from the compressive strength testing of all the filter types, filter porosities and experimental parameters

| Sample           |         |              |            |          |      |      |                 |
|------------------|---------|--------------|------------|----------|------|------|-----------------|
|                  | Average | St. Dev.     | Average    | St. Dev. | Min  | Max  | Diff. from cold |
|                  |         | Room         | temperat   | ure      |      |      |                 |
| Sivex 30         | 0.412   | 0.024        | 1.60       | 0.33     | 1.06 | 2.19 | _               |
| Sivex 30 (cubic) | 0.371   | 0.027        | 1.67       | 0.37     | 0.82 | 2.21 | _               |
| Sivex 65         | 0.489   | 0.023        | 2.09       | 0.60     | 1.17 | 3.43 | _               |
| Sivex 65 (cubic) | 0.493   | 0.030        | 2.43       | 0.72     | 1.31 | 4.25 | _               |
| Sivex 80         | 0.511   | 0.031        | 1.04       | 0.30     | 0.46 | 1.54 | _               |
| Sivex 80 (cubic) | 0.441   | 0.031        | 1.79       | 0.37     | 0.83 | 2.39 | _               |
| Sivex Np 30      | 0.391   | 0.011        | 2.09       | 0.17     | 1.65 | 2.48 | _               |
| Drache 30        | 0.415   | 0.016        | 1.43       | 0.19     | 1.11 | 1.79 | _               |
| Drache 60        | 0.460   | 0.017        | 1.43       | 0.22     | 0.98 | 1.79 | _               |
| Lanik 30         | 0.404   | 0.011        | 1.33       | 0.15     | 1.07 | 1.62 | _               |
| Lanik 60         | 0.423   | 0.028        | 0.36       | 0.08     | 0.21 | 0.53 | _               |
| Selee 30         | 0.325   | 0.011        | 1.20       | 0.14     | 0.90 | 1.50 | _               |
|                  | 11      | 10 min hold  | ing time   | at 800°C |      |      | 1               |
| Sivex 30         | 0.416   | 0.008        | 1.63       | 0.06     | 1.50 | 1.71 | +0.03           |
| Sivex 65         | 0.478   | 0.017        | 1.30       | 0.44     | 0.36 | 1.88 | -0.79           |
| Sivex NP 30      | 0.363   | 0.014        | 1.36       | 0.17     | 1.07 | 1.60 | -0.73           |
| Drache 30        | 0.384   | 0.019        | 1.27       | 0.19     | 0.88 | 1.50 | -0.16           |
| Drache 60        | 0.547   | 0.002        | 1.11       | 0.27     | 0.56 | 1.58 | -0.32           |
| Lanik 30         | 0.391   | 0.017        | 0.56       | 0.09     | 0.36 | 0.73 | -0.77           |
| Selee 30         | 0.344   | 0.006        | 1.09       | 0.08     | 1.01 | 1.26 | -0.11           |
|                  |         | 1 hour hold  | ing time a | at 800°C |      | •    | ·               |
| Sivex 30         | 0.382   | 0.017        | 1.37       | 0.13     | 1.21 | 1.59 | -0.23           |
| Sivex NP 30      | 0.392   | 0.011        | 1.50       | 0.18     | 1.20 | 1.70 | -0.59           |
| Drache 30        | 0.423   | 0.014        | 1.27       | 0.16     | 0.97 | 1.56 | -0.16           |
| Lanik 30         | 0.398   | 0.010        | 1.05       | 0.12     | 0.83 | 1.21 | -0.29           |
| Selee 30         | 0.320   | 0.011        | 0.88       | 0.13     | 0.62 | 1.08 | -0.31           |
|                  |         | 2 hours hold | ing time   | at 800°C |      |      |                 |
| Sivex 30         | 0.401   | 0.022        | 1.44       | 0.16     | 1.14 | 1.69 | -0.16           |
| Sivex NP 30      | 0.391   | 0.003        | 1.29       | 0.17     | 1.00 | 1.50 | -0.80           |
| Drache 30        | 0.404   | 0.020        | 1.13       | 0.16     | 0.88 | 1.39 | -0.30           |
| Lanik 30         | 0.375   | 0.037        | 0.67       | 0.18     | 0.54 | 1.16 | -0.66           |
| Selee 30         | 0.342   | 0.009        | 1.15       | 0.09     | 0.97 | 1.31 | -0.05           |

Table 0.1: Results from compression testing of all combinations of filter type, filter porosity and experimental parameters.

# B Raw data from room temperature compressive tests

## Sivex cylindrical:

| produsent                             | er<br>sys navn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ppi | g<br>Weight                                                                                                                                                                                                                                                                                                                                                                                                                                            | mm<br>Height                                                                                                                                                                                                          | mm<br>Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | dm3<br>volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kg/m3<br>density                                                                                                                                                                                                                                                                       | kN<br>max force                                                                                                                                                                                                                   | Mpa<br>Crushing strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sivex                                 | Sivexcy30_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | 48.80                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.12                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| sylinder                              | Sivexcy30_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | 45.40                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.20                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        | 3.674                                                                                                                                                                                                                             | 1.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| synnaer                               | Sivexcy30_3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | 43.90                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.12                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 433.858                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30  | 43.80                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.12                                                                                                                                                                                                                 | 50.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   | 2.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                       | Sivexcy30_4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | 43.80                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.05                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   | 1.864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Sivexcy30_5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | 42.90                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.05                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 420.377                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   | 1.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                       | Sivexcy30_6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | Sivexcy30_7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | 43.20                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.17                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | Sivexcy30_8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | 43.80                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.00                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 434.766                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | Sivexcy30_9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | 42.00                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.05                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 414.516                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | Sivexcy30_10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30  | 41.70                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.32                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        | 2.851                                                                                                                                                                                                                             | 1.452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Sivexcy30_11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30  | 42.60                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.01                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        | 3.585                                                                                                                                                                                                                             | 1.826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Sivexcy30_12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30  | 41.90                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49.90                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 416.246                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   | 1.551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Sivexcy30_13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30  | 41.60                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.03                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        | 3.284                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | Sivexcy30_14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30  | 40.50                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.14                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 399.309                                                                                                                                                                                                                                                                                | 3.210                                                                                                                                                                                                                             | 1.635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Sivexcy30_15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30  | 42.00                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49.94                                                                                                                                                                                                                 | 50.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 416.577                                                                                                                                                                                                                                                                                | 3.228                                                                                                                                                                                                                             | 1.644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Sivexcy30_16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30  | 41.20                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.07                                                                                                                                                                                                                 | 50.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 406.298                                                                                                                                                                                                                                                                                | 2.925                                                                                                                                                                                                                             | 1.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Sivexcy30_17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30  | 38.60                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.01                                                                                                                                                                                                                 | 50.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 389.041                                                                                                                                                                                                                                                                                | 2.520                                                                                                                                                                                                                             | 1.283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Sivexcy30_18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30  | 38.40                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.24                                                                                                                                                                                                                 | 50.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 384.183                                                                                                                                                                                                                                                                                | 2.170                                                                                                                                                                                                                             | 1.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Sivexcy30_19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30  | 38.20                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.14                                                                                                                                                                                                                 | 50.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 377.078                                                                                                                                                                                                                                                                                | 2.274                                                                                                                                                                                                                             | 1.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Sivexcy30 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30  | 37.10                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.46                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        | 2.233                                                                                                                                                                                                                             | 1.137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Sivexcy30 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30  | 36.90                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.19                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 365.321                                                                                                                                                                                                                                                                                | 2.076                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | Sivexcy30_22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30  | 37.40                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.17                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        | 2.263                                                                                                                                                                                                                             | 1.153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Average                               | 5100222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50  | 41.67                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.12                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        | 3.140                                                                                                                                                                                                                             | 1.599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 41.07                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.12                                                                                                                                                                                                                 | 50.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        | 5.140                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Standard de                           | eviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24.238                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   | 0.327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Max. value                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 48.80                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.46                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Min. value                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 36.90                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49.90                                                                                                                                                                                                                 | 50.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 364.328                                                                                                                                                                                                                                                                                | 2.076                                                                                                                                                                                                                             | 1.057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Max. Min. d                           | lifference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 11.900                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.560                                                                                                                                                                                                                 | 0.680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 117.576                                                                                                                                                                                                                                                                                | 2.224                                                                                                                                                                                                                             | 1.133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| navn på filte                         | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | g                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mm .                                                                                                                                                                                                                  | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | dm3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kg/m3                                                                                                                                                                                                                                                                                  | kN                                                                                                                                                                                                                                | Мра                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       | er<br>sys navn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ppi | g<br>Weight                                                                                                                                                                                                                                                                                                                                                                                                                                            | mm<br>Height                                                                                                                                                                                                          | mm<br>Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | dm3<br>volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kg/m3<br>density                                                                                                                                                                                                                                                                       | kN<br>max force                                                                                                                                                                                                                   | Mpa<br>Crushing strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| produsent                             | sys navn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   | Crushing strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| produsent                             | sys navn<br>sivexcy65_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Height<br>50.41                                                                                                                                                                                                       | Diameter<br>47.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | volume<br>0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | density<br>520.695                                                                                                                                                                                                                                                                     | max force<br>3.983                                                                                                                                                                                                                | Crushing strength<br>2.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| produsent                             | sys navn<br>sivexcy65_1<br>sivexcy65_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | Weight<br>47.3<br>49.5                                                                                                                                                                                                                                                                                                                                                                                                                                 | Height<br>50.41<br>50.33                                                                                                                                                                                              | Diameter<br>47.90<br>50.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | volume<br>0.091<br>0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | density<br>520.695<br>494.743                                                                                                                                                                                                                                                          | max force<br>3.983<br>3.985                                                                                                                                                                                                       | Crushing strength<br>2.029<br>2.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| produsent                             | sys navn<br>sivexcy65_1<br>sivexcy65_2<br>sivexcy65_3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | Weight<br>47.3<br>49.5<br>48.1                                                                                                                                                                                                                                                                                                                                                                                                                         | Height<br>50.41<br>50.33<br>50.40                                                                                                                                                                                     | Diameter<br>47.90<br>50.31<br>50.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | volume<br>0.091<br>0.100<br>0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | density<br>520.695<br>494.743<br>477.801                                                                                                                                                                                                                                               | max force<br>3.983<br>3.985<br>3.983                                                                                                                                                                                              | Crushing strength<br>2.029<br>2.030<br>2.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| produsent                             | sys navn<br>sivexcy65_1<br>sivexcy65_2<br>sivexcy65_3<br>sivexcy65_4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9                                                                                                                                                                                                                                                                                                                                                                                                                 | Height<br>50.41<br>50.33<br>50.40<br>50.51                                                                                                                                                                            | Diameter<br>47.90<br>50.31<br>50.43<br>49.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | volume<br>0.091<br>0.100<br>0.101<br>0.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | density<br>520.695<br>494.743<br>477.801<br>510.264                                                                                                                                                                                                                                    | max force<br>3.983<br>3.985<br>3.983<br>5.160                                                                                                                                                                                     | Crushing strength<br>2.029<br>2.030<br>2.029<br>2.628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| navn på filte<br>produsent<br>sivex65 | sys navn<br>sivexcy65_1<br>sivexcy65_2<br>sivexcy65_3<br>sivexcy65_4<br>sivexcy65_5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                         | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.36                                                                                                                                                                   | Diameter<br>47.90<br>50.31<br>50.43<br>49.15<br>49.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | volume<br>0.091<br>0.100<br>0.101<br>0.096<br>0.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725                                                                                                                                                                                                                         | max force<br>3.983<br>3.985<br>3.983<br>5.160<br>4.219                                                                                                                                                                            | Crushing strength<br>2.029<br>2.030<br>2.029<br>2.628<br>2.149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| produsent                             | sys navn<br>sivexcy65_1<br>sivexcy65_2<br>sivexcy65_3<br>sivexcy65_4<br>sivexcy65_5<br>sivexcy65_6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6                                                                                                                                                                                                                                                                                                                                                                                                 | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.36<br>50.67                                                                                                                                                          | Diameter<br>47.90<br>50.31<br>50.43<br>49.15<br>49.80<br>50.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | volume<br>0.091<br>0.100<br>0.101<br>0.096<br>0.098<br>0.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229                                                                                                                                                                                                              | max force<br>3.983<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772                                                                                                                                                                   | Crushing strength<br>2.029<br>2.030<br>2.029<br>2.628<br>2.149<br>2.940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| produsent                             | sys navn<br>sivexcy65_1<br>sivexcy65_2<br>sivexcy65_3<br>sivexcy65_4<br>sivexcy65_5<br>sivexcy65_6<br>sivexcy65_7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5                                                                                                                                                                                                                                                                                                                                                                                         | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.36<br>50.67<br>50.94                                                                                                                                                 | Diameter<br>47.90<br>50.31<br>50.43<br>49.15<br>49.80<br>50.76<br>47.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | volume<br>0.091<br>0.100<br>0.101<br>0.096<br>0.098<br>0.103<br>0.092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013                                                                                                                                                                                                   | max force<br>3.983<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544                                                                                                                                                          | Crushing strength<br>2.029<br>2.030<br>2.029<br>2.628<br>2.149<br>2.940<br>2.314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| produsent                             | sys navn<br>sivexcy65_1<br>sivexcy65_2<br>sivexcy65_3<br>sivexcy65_4<br>sivexcy65_5<br>sivexcy65_6<br>sivexcy65_7<br>sivexcy65_8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>51.8                                                                                                                                                                                                                                                                                                                                                                                 | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.36<br>50.67<br>50.94<br>50.66                                                                                                                                        | Diameter<br>47.90<br>50.31<br>50.43<br>49.15<br>49.80<br>50.76<br>47.87<br>50.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | volume<br>0.091<br>0.100<br>0.010<br>0.098<br>0.103<br>0.092<br>0.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080                                                                                                                                                                                        | max force<br>3.983<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>5.965                                                                                                                                                 | Crushing strength<br>2.029<br>2.030<br>2.029<br>2.628<br>2.149<br>2.940<br>2.314<br>3.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| produsent                             | sys navn<br>sivexcy65_1<br>sivexcy65_2<br>sivexcy65_3<br>sivexcy65_4<br>sivexcy65_5<br>sivexcy65_6<br>sivexcy65_7<br>sivexcy65_8<br>sivexcy65_9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>51.8<br>55.0                                                                                                                                                                                                                                                                                                                                                                         | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.36<br>50.67<br>50.94<br>50.66<br>51.06                                                                                                                               | Diameter<br>47.90<br>50.31<br>50.43<br>49.15<br>49.80<br>50.76<br>47.87<br>50.77<br>50.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | volume<br>0.091<br>0.100<br>0.096<br>0.098<br>0.103<br>0.092<br>0.103<br>0.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080<br>532.920                                                                                                                                                                             | max force<br>3.983<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>5.965<br>5.264                                                                                                                                        | Crushing strength<br>2.029<br>2.030<br>2.029<br>2.628<br>2.149<br>2.940<br>2.314<br>3.038<br>2.681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| produsent                             | sys navn<br>sivexcy65_1<br>sivexcy65_2<br>sivexcy65_3<br>sivexcy65_4<br>sivexcy65_5<br>sivexcy65_6<br>sivexcy65_7<br>sivexcy65_8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>51.8                                                                                                                                                                                                                                                                                                                                                                                 | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.36<br>50.67<br>50.94<br>50.66                                                                                                                                        | Diameter<br>47.90<br>50.31<br>50.43<br>49.15<br>49.80<br>50.76<br>47.87<br>50.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | volume<br>0.091<br>0.100<br>0.010<br>0.098<br>0.103<br>0.092<br>0.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080                                                                                                                                                                                        | max force<br>3.983<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>5.965                                                                                                                                                 | Crushing strength<br>2.029<br>2.030<br>2.029<br>2.628<br>2.149<br>2.940<br>2.314<br>3.038<br>2.681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| produsent                             | sys navn<br>sivexcy65_1<br>sivexcy65_2<br>sivexcy65_3<br>sivexcy65_4<br>sivexcy65_5<br>sivexcy65_6<br>sivexcy65_7<br>sivexcy65_8<br>sivexcy65_9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>51.8<br>55.0                                                                                                                                                                                                                                                                                                                                                                         | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.36<br>50.67<br>50.94<br>50.66<br>51.06                                                                                                                               | Diameter<br>47.90<br>50.31<br>50.43<br>49.15<br>49.80<br>50.76<br>47.87<br>50.77<br>50.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | volume<br>0.091<br>0.100<br>0.096<br>0.098<br>0.103<br>0.092<br>0.103<br>0.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080<br>532.920                                                                                                                                                                             | max force<br>3.983<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>5.965<br>5.264                                                                                                                                        | Crushing strength<br>2.029<br>2.030<br>2.029<br>2.628<br>2.149<br>2.940<br>2.314<br>3.038<br>2.681<br>2.285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| produsent                             | sys navn<br>sivexcy65_1<br>sivexcy65_2<br>sivexcy65_3<br>sivexcy65_4<br>sivexcy65_5<br>sivexcy65_6<br>sivexcy65_7<br>sivexcy65_8<br>sivexcy65_9<br>sivexcy65_10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>51.8<br>55.0<br>47.9                                                                                                                                                                                                                                                                                                                                                                 | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.36<br>50.67<br>50.94<br>50.66<br>51.06<br>50.86                                                                                                                      | Diameter<br>47.90<br>50.31<br>49.15<br>49.80<br>50.76<br>47.87<br>50.77<br>50.73<br>50.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | volume<br>0.091<br>0.100<br>0.096<br>0.098<br>0.103<br>0.092<br>0.103<br>0.103<br>0.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080<br>532.920<br>466.686                                                                                                                                                                  | max force<br>3.983<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>5.965<br>5.264<br>4.487                                                                                                                               | Crushing strength<br>2.025<br>2.030<br>2.025<br>2.628<br>2.149<br>2.940<br>2.314<br>3.038<br>2.681<br>2.285<br>3.430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| produsent                             | sys navn<br>sivexcy65_1<br>sivexcy65_2<br>sivexcy65_3<br>sivexcy65_4<br>sivexcy65_5<br>sivexcy65_7<br>sivexcy65_8<br>sivexcy65_9<br>sivexcy65_10<br>sivexcy65_11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>51.8<br>55.0<br>47.9<br>51.2                                                                                                                                                                                                                                                                                                                                                         | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.36<br>50.67<br>50.94<br>50.66<br>51.06<br>50.86<br>50.86                                                                                                             | Diameter<br>47.90<br>50.31<br>49.15<br>49.80<br>50.76<br>47.87<br>50.77<br>50.73<br>50.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | volume<br>0.091<br>0.100<br>0.096<br>0.098<br>0.103<br>0.092<br>0.103<br>0.103<br>0.103<br>0.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080<br>532.920<br>466.686<br>498.446                                                                                                                                                       | max force<br>3.983<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>5.965<br>5.264<br>4.487<br>6.734                                                                                                                      | Crushing strength<br>2.025<br>2.030<br>2.025<br>2.628<br>2.149<br>2.940<br>2.314<br>3.038<br>2.681<br>2.285<br>3.430<br>2.153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| produsent                             | sys navn           sivexcy65_1           sivexcy65_2           sivexcy65_3           sivexcy65_4           sivexcy65_5           sivexcy65_6           sivexcy65_7           sivexcy65_8           sivexcy65_9           sivexcy65_10           sivexcy65_11                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>51.8<br>55.0<br>47.9<br>51.2<br>47.6                                                                                                                                                                                                                                                                                                                                                 | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.36<br>50.67<br>50.94<br>50.66<br>51.06<br>50.86<br>50.82                                                                                                             | Diameter           47.90           50.31           50.43           49.15           49.80           50.76           47.87           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.74           50.75           50.75           50.75           50.75           50.75                                                                                                                                                                                                                                                                                                                                |         | volume<br>0.091<br>0.100<br>0.096<br>0.098<br>0.103<br>0.092<br>0.103<br>0.103<br>0.103<br>0.103<br>0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080<br>532.920<br>466.686<br>498.446<br>483.105                                                                                                                                            | max force<br>3.983<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>5.965<br>5.264<br>4.487<br>6.734<br>4.228                                                                                                             | Crushing strength<br>2.029<br>2.030<br>2.029<br>2.622<br>2.149<br>2.940<br>2.314<br>3.038<br>2.265<br>3.430<br>2.265<br>3.430<br>2.153<br>1.936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| produsent                             | sys navn           sivexcy65_1           sivexcy65_2           sivexcy65_3           sivexcy65_4           sivexcy65_5           sivexcy65_6           sivexcy65_7           sivexcy65_9           sivexcy65_10           sivexcy65_11           sivexcy65_12           sivexcy65_13                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>51.8<br>51.8<br>55.0<br>47.9<br>51.2<br>47.6<br>49.4                                                                                                                                                                                                                                                                                                                                 | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.36<br>50.67<br>50.94<br>50.66<br>50.66<br>50.86<br>50.86<br>50.87<br>50.81                                                                                           | Diameter<br>47.90<br>50.31<br>50.43<br>49.15<br>49.80<br>50.76<br>47.87<br>50.73<br>50.73<br>50.69<br>50.83<br>49.66<br>49.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | volume<br>0.091<br>0.100<br>0.096<br>0.098<br>0.103<br>0.092<br>0.103<br>0.103<br>0.103<br>0.103<br>0.103<br>0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080<br>532.920<br>466.686<br>498.446<br>483.105<br>499.114                                                                                                                                 | max force<br>3.983<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>5.965<br>5.264<br>4.487<br>6.734<br>4.228<br>3.801                                                                                                    | Crushing strength<br>2.029<br>2.030<br>2.029<br>2.628<br>2.149<br>2.940<br>2.314<br>3.038<br>2.683<br>2.268<br>3.430<br>2.285<br>3.430<br>2.153<br>1.936<br>1.981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| produsent                             | sys navn           sivexcy65_1           sivexcy65_2           sivexcy65_3           sivexcy65_4           sivexcy65_5           sivexcy65_6           sivexcy65_7           sivexcy65_9           sivexcy65_10           sivexcy65_11           sivexcy65_12           sivexcy65_13           sivexcy65_14                                                                                                                                                                                                                                                                                                                                                                                                                                |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>51.8<br>55.0<br>47.9<br>51.2<br>47.6<br>49.4<br>49.3<br>47.9                                                                                                                                                                                                                                                                                                                         | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.36<br>50.67<br>50.94<br>50.66<br>51.06<br>50.86<br>50.86<br>50.82<br>50.87<br>50.61<br>50.44<br>50.81                                                                | Diameter           47.90           50.31           50.43           49.15           49.80           50.76           47.87           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.73           50.83           49.66           49.90           50.80           50.81                                                                                                                                                                                                |         | volume<br>0.091<br>0.100<br>0.096<br>0.098<br>0.103<br>0.092<br>0.103<br>0.103<br>0.103<br>0.103<br>0.099<br>0.099<br>0.102<br>0.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080<br>532.920<br>466.686<br>498.446<br>483.105<br>499.114<br>482.230<br>479.935                                                                                                           | max force<br>3.983<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>5.965<br>5.264<br>4.487<br>6.734<br>4.228<br>3.801<br>3.890<br>2.755                                                                                  | Crushing strength<br>2.029<br>2.030<br>2.029<br>2.622<br>2.149<br>2.940<br>2.314<br>3.038<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.691<br>2.681<br>2.681<br>2.681<br>2.691<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.691<br>2.6912 |
| produsent                             | sys navn           sivexcy65_1           sivexcy65_2           sivexcy65_3           sivexcy65_4           sivexcy65_5           sivexcy65_6           sivexcy65_7           sivexcy65_8           sivexcy65_10           sivexcy65_11           sivexcy65_12           sivexcy65_13           sivexcy65_14           sivexcy65_15                                                                                                                                                                                                                                                                                                                                                                                                         |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>51.8<br>55.0<br>47.9<br>55.2<br>47.6<br>49.4<br>49.3<br>47.9<br>48.0                                                                                                                                                                                                                                                                                                                 | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.36<br>50.67<br>50.94<br>50.66<br>51.06<br>50.86<br>50.82<br>50.87<br>50.61<br>50.44<br>50.81<br>50.81                                                                | Diameter           47.90           50.31           50.43           49.15           49.80           50.76           47.87           50.73           50.73           50.73           50.73           50.73           50.73           50.83           49.66           49.90           50.83           49.90           50.80           50.81           50.82           50.83                                                                                                                                                                                                                                                                                                                                                                                                                                |         | volume<br>0.091<br>0.100<br>0.096<br>0.098<br>0.103<br>0.092<br>0.103<br>0.103<br>0.103<br>0.099<br>0.099<br>0.099<br>0.009<br>0.102<br>0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080<br>532.920<br>466.686<br>498.446<br>483.105<br>499.114<br>482.230<br>479.935<br>474.357                                                                                                | max force<br>3.983<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>5.965<br>5.264<br>4.487<br>6.734<br>4.228<br>3.801<br>3.890<br>2.755<br>3.883                                                                         | Crushing strength<br>2.029<br>2.030<br>2.029<br>2.628<br>2.149<br>2.940<br>2.314<br>3.038<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.681<br>2.692<br>2.681<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692<br>2.692  |
| produsent                             | Sys navn           sivexcy65_1           sivexcy65_2           sivexcy65_3           sivexcy65_4           sivexcy65_5           sivexcy65_6           sivexcy65_8           sivexcy65_10           sivexcy65_10           sivexcy65_11           sivexcy65_12           sivexcy65_13           sivexcy65_14           sivexcy65_15           sivexcy65_16           sivexcy65_17                                                                                                                                                                                                                                                                                                                                                          |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>51.8<br>55.0<br>47.9<br>51.2<br>47.9<br>4.4<br>9.3<br>47.9<br>48.0<br>47.9                                                                                                                                                                                                                                                                                                           | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.36<br>50.67<br>50.94<br>50.66<br>51.06<br>50.82<br>50.62<br>50.87<br>50.61<br>50.84<br>50.81<br>50.56                                                                | Diameter           47.90           50.31           50.43           49.15           49.80           50.76           47.87           50.73           50.73           50.73           50.63           49.66           49.90           50.83           49.90           50.83           49.90           50.84           50.75           50.83           49.90           50.84           50.85           50.81           50.83           50.84           50.85                                                                                                                                                                                                                                                                                                                                                |         | volume<br>0.091<br>0.100<br>0.096<br>0.098<br>0.103<br>0.092<br>0.103<br>0.103<br>0.103<br>0.103<br>0.099<br>0.099<br>0.099<br>0.102<br>0.100<br>0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080<br>532.920<br>466.686<br>498.446<br>4483.105<br>499.114<br>482.230<br>479.935<br>474.357<br>465.869                                                                                    | max force<br>3.983<br>3.985<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>5.965<br>5.264<br>4.487<br>6.734<br>4.228<br>3.801<br>3.890<br>2.755<br>3.883<br>3.288                                                       | Crushing strength<br>2.029<br>2.030<br>2.029<br>2.628<br>2.149<br>2.314<br>3.038<br>2.681<br>2.285<br>3.430<br>2.285<br>3.430<br>2.155<br>1.936<br>1.936<br>1.936<br>1.937<br>1.937<br>1.978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| produsent                             | Sys navn           sivexcy65_1           sivexcy65_2           sivexcy65_3           sivexcy65_4           sivexcy65_5           sivexcy65_6           sivexcy65_8           sivexcy65_9           sivexcy65_10           sivexcy65_11           sivexcy65_12           sivexcy65_13           sivexcy65_14           sivexcy65_15           sivexcy65_17           sivexcy65_17           sivexcy65_17           sivexcy65_17           sivexcy65_17           sivexcy65_18                                                                                                                                                                                                                                                               |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>51.8<br>55.0<br>47.9<br>51.2<br>47.9<br>47.9<br>48.0<br>47.9<br>48.0<br>47.3<br>47.3                                                                                                                                                                                                                                                                                                 | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.36<br>50.67<br>50.94<br>50.66<br>51.06<br>50.86<br>50.82<br>50.87<br>50.61<br>50.44<br>50.81<br>50.56<br>50.57<br>49.37                                              | Diameter           47.90           50.31           50.43           49.15           49.80           50.76           47.87           50.78           50.79           50.73           60.73           50.68           49.66           49.90           50.83           50.84           50.85           50.81           50.82           50.83           50.84           50.85           50.85           50.81           50.85           50.85           50.85           50.85                                                                                                                                                                                                                                                                                                                                |         | volume<br>0.091<br>0.100<br>0.096<br>0.098<br>0.103<br>0.092<br>0.103<br>0.103<br>0.103<br>0.099<br>0.099<br>0.099<br>0.102<br>0.100<br>0.101<br>0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080<br>532.920<br>466.686<br>498.446<br>483.105<br>499.114<br>482.230<br>479.935<br>474.357<br>465.869<br>481.285                                                                          | max force<br>3.983<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>5.965<br>5.264<br>4.487<br>6.734<br>4.228<br>3.801<br>3.890<br>2.755<br>3.883<br>3.288<br>2.562                                                       | Crushing strength<br>2.025<br>2.030<br>2.025<br>2.628<br>2.145<br>2.940<br>2.314<br>3.038<br>2.681<br>2.285<br>3.430<br>2.285<br>3.430<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.9355<br>1.9355<br>1.9355<br>1.9355<br>1.9355<br>1.9355<br>1.9355<br>1.93555<br>1.935555<br>1.93555555555555555555555555555555555555                                                                                                                                                                                                                                                                     |
| produsent                             | Sys navn           sivexcy65_1           sivexcy65_2           sivexcy65_3           sivexcy65_4           sivexcy65_5           sivexcy65_6           sivexcy65_8           sivexcy65_9           sivexcy65_10           sivexcy65_11           sivexcy65_12           sivexcy65_13           sivexcy65_14           sivexcy65_15           sivexcy65_16           sivexcy65_17           sivexcy65_18           sivexcy65_18           sivexcy65_19                                                                                                                                                                                                                                                                                      |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>51.8<br>55.0<br>47.9<br>51.2<br>47.6<br>47.6<br>49.4<br>49.3<br>47.9<br>48.0<br>47.3<br>47.8<br>44.9                                                                                                                                                                                                                                                                                 | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.36<br>50.67<br>50.94<br>50.66<br>51.06<br>50.82<br>50.61<br>50.61<br>50.64<br>50.61<br>50.54<br>50.57<br>49.37<br>50.56                                              | Diameter           47.90           50.31           50.43           49.15           49.80           50.76           47.87           50.78           50.79           50.73           50.74           50.75           50.77           50.78           649.90           50.80           50.81           50.80           50.80           50.80           50.41           50.50           50.50           50.50           50.61           48.71                                                                                                                                                                                                                                                                                                                                                               |         | volume<br>0.091<br>0.100<br>0.098<br>0.098<br>0.103<br>0.092<br>0.103<br>0.103<br>0.103<br>0.103<br>0.099<br>0.099<br>0.099<br>0.102<br>0.100<br>0.101<br>0.102<br>0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080<br>532.920<br>466.686<br>498.446<br>483.105<br>499.114<br>482.230<br>479.935<br>474.357<br>465.869<br>481.285                                                                          | max force<br>3.983<br>3.985<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>5.965<br>5.264<br>4.487<br>6.734<br>4.228<br>3.801<br>3.890<br>2.755<br>3.883<br>3.288<br>2.562<br>2.188                                     | Crushing strength<br>2.029<br>2.030<br>2.029<br>2.628<br>2.149<br>2.314<br>3.038<br>2.681<br>2.285<br>3.430<br>2.285<br>3.430<br>1.933<br>1.933<br>1.933<br>1.933<br>1.933<br>1.933<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.935<br>1.9355<br>1.9355<br>1.9355<br>1.93555<br>1.93555<br>1.93555555555555555555555555555555555555                                                                                                                                                                                                                                                                                            |
| produsent                             | Sys navn           sivexcy65_1           sivexcy65_2           sivexcy65_3           sivexcy65_4           sivexcy65_5           sivexcy65_6           sivexcy65_8           sivexcy65_9           sivexcy65_10           sivexcy65_11           sivexcy65_12           sivexcy65_13           sivexcy65_14           sivexcy65_15           sivexcy65_16           sivexcy65_17           sivexcy65_18           sivexcy65_19           sivexcy65_19                                                                                                                                                                                                                                                                                      |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>51.8<br>55.0<br>47.9<br>51.2<br>47.6<br>49.4<br>49.3<br>47.9<br>48.0<br>47.3<br>47.8<br>44.9                                                                                                                                                                                                                                                                                         | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.66<br>50.66<br>51.06<br>50.86<br>50.62<br>50.81<br>50.61<br>50.44<br>50.81<br>50.56<br>50.57<br>49.37<br>50.56<br>51.01                                              | Diameter           47.90           50.31           50.43           49.15           49.80           50.76           47.87           50.76           50.77           50.78           60.97           50.83           49.80           49.80           50.81           50.81           50.81           50.81           50.81           50.61           50.62           50.63           60.50.61           60.50.61           60.50.61           60.50.61           60.50.61           60.50.61           60.50.61           60.50.61                                                                                                                                                                                                                                                                        |         | volume<br>0.091<br>0.100<br>0.096<br>0.098<br>0.103<br>0.092<br>0.103<br>0.103<br>0.103<br>0.099<br>0.099<br>0.099<br>0.102<br>0.100<br>0.101<br>0.102<br>0.099<br>0.094<br>0.094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080<br>532.920<br>466.686<br>498.446<br>498.446<br>498.446<br>498.445<br>499.114<br>482.230<br>479.935<br>474.357<br>465.869<br>481.285<br>476.555<br>442.022                              | max force<br>3.983<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>5.965<br>5.264<br>4.487<br>6.734<br>4.228<br>3.801<br>2.755<br>3.883<br>3.288<br>2.562<br>2.188<br>2.693                                              | Crushing strength<br>2.025<br>2.030<br>2.025<br>2.628<br>2.145<br>2.940<br>2.314<br>3.038<br>2.683<br>2.285<br>3.430<br>2.155<br>1.936<br>1.937<br>1.936<br>1.937<br>1.976<br>1.140<br>1.976<br>1.305<br>1.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| produsent                             | Sys navn           sivexcy65_1           sivexcy65_2           sivexcy65_3           sivexcy65_4           sivexcy65_5           sivexcy65_6           sivexcy65_8           sivexcy65_9           sivexcy65_10           sivexcy65_11           sivexcy65_12           sivexcy65_13           sivexcy65_14           sivexcy65_15           sivexcy65_16           sivexcy65_17           sivexcy65_18           sivexcy65_19           sivexcy65_20           sivexcy65_21                                                                                                                                                                                                                                                               |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>51.8<br>55.0<br>47.9<br>51.2<br>47.6<br>49.4<br>49.3<br>47.9<br>48.0<br>47.3<br>47.8<br>44.9<br>45.7<br>43.4                                                                                                                                                                                                                                                                         | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.66<br>50.66<br>51.06<br>50.86<br>50.62<br>50.81<br>50.44<br>50.81<br>50.56<br>50.57<br>49.37<br>50.56<br>51.01                                                       | Diameter           47.90           50.31           50.43           49.15           49.80           50.76           47.87           50.76           47.87           50.76           47.87           50.77           50.78           64.9.90           49.90           50.83           49.90           50.81           50.82           50.81           50.81           50.81           50.81           50.81           50.81           50.81           60.81           50.82           50.83           60.83           60.84           70.85           80.85           80.85           80.85           80.85           80.85           80.85           80.85           80.85           80.85           80.85           80.85           80.85           80.85           80.85           80.85           80 |         | volume<br>0.091<br>0.100<br>0.096<br>0.098<br>0.103<br>0.092<br>0.103<br>0.103<br>0.103<br>0.099<br>0.099<br>0.102<br>0.100<br>0.101<br>0.102<br>0.102<br>0.103<br>0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080<br>532.920<br>466.686<br>498.446<br>483.105<br>499.114<br>482.230<br>479.335<br>474.357<br>465.869<br>481.285<br>476.555<br>442.022<br>446.304                                         | max force<br>3.983<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>5.965<br>5.264<br>4.487<br>6.734<br>4.228<br>3.801<br>3.890<br>2.755<br>3.883<br>3.288<br>2.562<br>2.188<br>2.693<br>2.918                            | Crushing strength<br>2.025<br>2.030<br>2.025<br>2.628<br>2.145<br>2.940<br>2.314<br>3.038<br>2.683<br>2.285<br>3.430<br>2.155<br>1.936<br>1.936<br>1.937<br>1.936<br>1.937<br>1.140<br>1.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| produsent                             | Sys navn           sivexcy65_1           sivexcy65_2           sivexcy65_3           sivexcy65_4           sivexcy65_5           sivexcy65_6           sivexcy65_8           sivexcy65_9           sivexcy65_10           sivexcy65_11           sivexcy65_12           sivexcy65_13           sivexcy65_14           sivexcy65_15           sivexcy65_16           sivexcy65_17           sivexcy65_18           sivexcy65_19           sivexcy65_19                                                                                                                                                                                                                                                                                      |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>51.8<br>55.0<br>47.9<br>51.2<br>47.6<br>49.4<br>49.3<br>47.9<br>48.0<br>47.3<br>47.8<br>44.9                                                                                                                                                                                                                                                                                         | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.66<br>50.66<br>51.06<br>50.86<br>50.62<br>50.81<br>50.61<br>50.44<br>50.81<br>50.56<br>50.57<br>49.37<br>50.56<br>51.01                                              | Jiameter           47.90           50.31           50.43           49.15           49.80           49.80           49.80           50.77           70.77           50.73           50.73           50.73           50.83           49.90           50.83           49.90           50.83           60.950.80           50.80           50.81           50.82           50.83           60.950.80           50.81           50.82           60.83           80.81           90.80           80.81           80.81           80.81           80.81           80.81           80.81           80.81           80.81           80.81           80.81           80.81           80.81           80.81           80.81           80.81           80.81           80.81           80.81           80.81        |         | volume<br>0.091<br>0.100<br>0.096<br>0.098<br>0.103<br>0.092<br>0.103<br>0.103<br>0.103<br>0.099<br>0.099<br>0.099<br>0.102<br>0.100<br>0.101<br>0.102<br>0.099<br>0.094<br>0.094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080<br>532.920<br>466.686<br>498.446<br>483.105<br>499.114<br>482.230<br>479.335<br>474.357<br>465.869<br>481.285<br>476.555<br>442.022<br>446.304                                         | max force<br>3.983<br>3.985<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>4.546<br>5.965<br>5.264<br>4.487<br>6.734<br>4.228<br>3.801<br>3.890<br>2.755<br>3.883<br>3.288<br>2.562<br>2.188<br>2.693<br>2.918<br>2.463 | Crushing strength<br>2.029<br>2.030<br>2.029<br>2.622<br>2.149<br>2.940<br>2.314<br>3.038<br>2.681<br>2.285<br>3.430<br>2.153<br>1.936<br>1.936<br>1.937<br>1.675<br>1.035<br>1.335<br>1.335<br>1.335<br>1.335<br>1.335<br>1.335<br>1.335<br>1.335<br>1.335<br>1.335<br>1.335<br>1.335<br>1.335<br>1.436<br>1.357<br>1.436<br>1.357<br>1.436<br>1.357<br>1.436<br>1.437<br>1.436<br>1.357<br>1.436<br>1.437<br>1.436<br>1.437<br>1.436<br>1.437<br>1.436<br>1.437<br>1.446<br>1.254<br>1.254<br>1.254<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.455<br>1.4555<br>1.455<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.4555<br>1.45555<br>1.4555<br>1.455555<br>1.455555<br>1.4555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| produsent<br>sivex65                  | Sys navn           sivexcy65_1           sivexcy65_2           sivexcy65_3           sivexcy65_4           sivexcy65_5           sivexcy65_6           sivexcy65_8           sivexcy65_9           sivexcy65_10           sivexcy65_11           sivexcy65_12           sivexcy65_13           sivexcy65_14           sivexcy65_15           sivexcy65_16           sivexcy65_17           sivexcy65_18           sivexcy65_19           sivexcy65_20           sivexcy65_21                                                                                                                                                                                                                                                               |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>51.8<br>55.0<br>47.9<br>51.2<br>47.6<br>49.4<br>49.3<br>47.9<br>48.0<br>47.3<br>47.8<br>44.9<br>45.7<br>43.4                                                                                                                                                                                                                                                                         | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.66<br>50.66<br>51.06<br>50.86<br>50.62<br>50.81<br>50.44<br>50.81<br>50.56<br>50.57<br>49.37<br>50.56<br>51.01                                                       | Diameter         47.90         50.31         50.43         49.15         49.16         49.17         50.76         47.87         50.76         47.87         50.73         50.74         50.75         60.77         50.83         49.60         49.60         50.83         60.50.61         50.80         50.62         50.63         60.50.61         50.61         50.62         50.63         60.50.61         50.61         50.62         50.63         60.50.61         50.62         50.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63                                                                      |         | volume<br>0.091<br>0.100<br>0.096<br>0.098<br>0.103<br>0.092<br>0.103<br>0.103<br>0.103<br>0.099<br>0.099<br>0.102<br>0.100<br>0.101<br>0.102<br>0.102<br>0.103<br>0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080<br>532.920<br>466.686<br>498.446<br>483.105<br>499.114<br>482.230<br>479.935<br>474.357<br>465.869<br>481.285<br>476.555<br>442.022<br>446.304<br>478.612                              | max force<br>3.983<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>5.965<br>5.264<br>4.487<br>6.734<br>4.228<br>3.801<br>3.890<br>2.755<br>3.883<br>3.288<br>2.562<br>2.188<br>2.693<br>2.918<br>2.918                   | Crushing strength<br>2.029<br>2.030<br>2.029<br>2.628<br>2.149<br>2.940<br>2.314<br>3.038<br>2.681<br>2.285<br>3.430<br>2.153<br>1.936<br>1.936<br>1.936<br>1.937<br>1.675<br>1.305<br>1.305<br>1.314<br>2.254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| produsent                             | sys navn           sivexcy65_1           sivexcy65_2           sivexcy65_3           sivexcy65_6           sivexcy65_7           sivexcy65_8           sivexcy65_9           sivexcy65_10           sivexcy65_11           sivexcy65_12           sivexcy65_13           sivexcy65_14           sivexcy65_15           sivexcy65_16           sivexcy65_17           sivexcy65_18           sivexcy65_18           sivexcy65_12           sivexcy65_20           sivexcy65_21           sivexcy65_22 |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>55.0<br>47.9<br>51.2<br>47.6<br>49.4<br>49.3<br>47.9<br>48.0<br>47.3<br>47.8<br>47.8<br>47.8<br>47.8<br>47.8<br>47.8<br>47.9<br>48.0<br>47.3                                                                                                                                                                                                                                         | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.67<br>50.94<br>50.66<br>51.06<br>50.86<br>50.62<br>50.87<br>50.61<br>50.84<br>50.84<br>50.57<br>49.37<br>50.56<br>50.57<br>49.37<br>50.56<br>51.01<br>50.88          | Diameter         47.90         50.31         50.43         49.15         49.16         49.17         50.76         47.87         50.76         47.87         50.73         50.74         50.75         60.77         50.83         49.60         49.60         50.83         60.50.61         50.80         50.62         50.63         60.50.61         50.61         50.62         50.63         60.50.61         50.61         50.62         50.63         60.50.61         50.62         50.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63         60.63                                                                      |         | volume<br>0.091<br>0.100<br>0.096<br>0.098<br>0.103<br>0.092<br>0.103<br>0.103<br>0.103<br>0.103<br>0.099<br>0.102<br>0.100<br>0.100<br>0.101<br>0.102<br>0.099<br>0.094<br>0.094<br>0.094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080<br>532.920<br>466.686<br>498.446<br>483.105<br>499.114<br>482.230<br>479.935<br>474.357<br>465.869<br>481.285<br>476.555<br>442.022<br>446.304<br>478.612                              | max force<br>3.983<br>3.985<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>4.546<br>5.965<br>5.264<br>4.487<br>6.734<br>4.228<br>3.801<br>3.890<br>2.755<br>3.883<br>3.288<br>2.562<br>2.188<br>2.693<br>2.918<br>2.463 | Crushing strength<br>2.029<br>2.030<br>2.029<br>2.628<br>2.149<br>2.940<br>2.314<br>3.038<br>2.681<br>2.285<br>3.430<br>2.153<br>1.936<br>1.936<br>1.943<br>1.978<br>1.675<br>1.305<br>1.305<br>1.305<br>1.372<br>1.486<br>1.254<br>2.153<br>1.254<br>2.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| produsent<br>sivex65                  | sys navn           sivexcy65_1           sivexcy65_2           sivexcy65_3           sivexcy65_6           sivexcy65_7           sivexcy65_8           sivexcy65_9           sivexcy65_10           sivexcy65_11           sivexcy65_12           sivexcy65_13           sivexcy65_14           sivexcy65_15           sivexcy65_16           sivexcy65_17           sivexcy65_18           sivexcy65_18           sivexcy65_12           sivexcy65_20           sivexcy65_21           sivexcy65_22 |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>55.0<br>47.9<br>51.2<br>47.6<br>49.4<br>49.3<br>47.9<br>48.0<br>47.3<br>47.8<br>47.8<br>47.8<br>47.8<br>47.8<br>47.8<br>47.9<br>48.0<br>47.3<br>47.8<br>47.9<br>48.0<br>47.3<br>47.8<br>47.9<br>48.0<br>47.3<br>47.8<br>47.9<br>47.3<br>47.9<br>47.3<br>47.9<br>47.3<br>47.9<br>47.3<br>47.9<br>47.3<br>47.9<br>47.3<br>47.9<br>47.9<br>47.9<br>47.9<br>47.9<br>47.9<br>47.9<br>47.9 | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.67<br>50.94<br>50.66<br>51.06<br>50.86<br>50.62<br>50.87<br>50.61<br>50.84<br>50.84<br>50.57<br>49.37<br>50.56<br>50.57<br>49.37<br>50.56<br>51.01<br>50.88          | Diameter           47.90           50.31           50.43           49.15           49.80           50.76           47.87           50.73           50.73           50.73           50.73           50.83           49.90           50.83           49.90           50.83           49.90           50.83           49.90           50.83           49.90           50.80           50.81           50.83           49.90           50.80           50.81           49.93           48.71           50.80           49.33           47.68           49.9                                                                                                                                                                                                                                                 |         | volume<br>0.091<br>0.100<br>0.096<br>0.098<br>0.103<br>0.092<br>0.103<br>0.103<br>0.103<br>0.103<br>0.099<br>0.102<br>0.100<br>0.100<br>0.101<br>0.102<br>0.099<br>0.094<br>0.094<br>0.094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080<br>532.920<br>466.686<br>498.446<br>483.105<br>499.114<br>482.230<br>479.935<br>474.357<br>465.869<br>481.285<br>476.555<br>442.022<br>446.304<br>478.612<br>489.0<br>23.345           | max force<br>3.983<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>5.965<br>5.264<br>4.487<br>6.734<br>4.228<br>3.801<br>3.890<br>2.755<br>3.883<br>3.288<br>2.562<br>2.188<br>2.693<br>2.918<br>2.693<br>4.0            | Crushing strength<br>2.029<br>2.030<br>2.029<br>2.628<br>2.149<br>2.940<br>2.314<br>3.038<br>2.285<br>3.430<br>2.153<br>1.936<br>1.936<br>1.981<br>1.403<br>1.978<br>1.675<br>1.305<br>1.305<br>1.114<br>2.325<br>1.486<br>1.254<br>2.11<br>0.602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| produsent<br>sivex65                  | sys navn           sivexcy65_1           sivexcy65_2           sivexcy65_3           sivexcy65_6           sivexcy65_7           sivexcy65_8           sivexcy65_9           sivexcy65_10           sivexcy65_11           sivexcy65_12           sivexcy65_13           sivexcy65_14           sivexcy65_15           sivexcy65_16           sivexcy65_17           sivexcy65_18           sivexcy65_18           sivexcy65_12           sivexcy65_20           sivexcy65_21           sivexcy65_22 |     | Weight<br>47.3<br>49.5<br>48.1<br>48.9<br>50.0<br>51.6<br>48.5<br>51.8<br>51.8<br>55.0<br>47.9<br>51.2<br>47.6<br>49.4<br>49.3<br>47.9<br>48.0<br>47.3<br>47.8<br>44.9<br>44.9<br>44.9                                                                                                                                                                                                                                                                 | Height<br>50.41<br>50.33<br>50.40<br>50.51<br>50.36<br>50.67<br>50.94<br>50.66<br>50.62<br>50.87<br>50.61<br>50.44<br>50.44<br>50.81<br>50.56<br>50.57<br>49.37<br>49.37<br>50.56<br>51.01<br>50.88<br>51.02<br>50.88 | Diameter         47.90         50.31         50.43         49.15         49.80         50.76         49.80         50.77         50.73         50.73         50.73         50.73         50.73         50.83         49.90         50.83         60.50.81         50.83         50.83         60.50.81         50.83         60.43         60.50.81         60.80         49.33         47.68         49.3         49.3         49.3         49.3         49.3         49.3         49.3         49.3         49.3         50.80                                                                                                                                                                                                                                                                        | #DIV/0! | volume<br>0.091<br>0.100<br>0.098<br>0.098<br>0.103<br>0.092<br>0.103<br>0.103<br>0.103<br>0.103<br>0.103<br>0.103<br>0.099<br>0.099<br>0.102<br>0.100<br>0.101<br>0.102<br>0.099<br>0.0103<br>0.099<br>0.102<br>0.0103<br>0.099<br>0.102<br>0.0101<br>0.102<br>0.099<br>0.0102<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101<br>0.0101 | density<br>520.695<br>494.743<br>477.801<br>510.264<br>509.725<br>503.229<br>529.013<br>505.080<br>532.920<br>466.686<br>498.446<br>483.105<br>499.114<br>482.230<br>479.335<br>474.357<br>465.869<br>481.285<br>476.555<br>442.022<br>446.304<br>478.612<br>489.00<br>23.345<br>532.9 | max force<br>3.983<br>3.985<br>3.983<br>5.160<br>4.219<br>5.772<br>4.544<br>5.965<br>5.264<br>4.487<br>6.734<br>4.228<br>3.801<br>3.890<br>2.755<br>3.883<br>3.288<br>2.562<br>2.188<br>2.693<br>2.918<br>2.693<br>4.0            | Crushing strength<br>2.029<br>2.030<br>2.029<br>2.628<br>2.149<br>2.940<br>2.314<br>3.038<br>2.651<br>2.255<br>3.430<br>2.153<br>1.936<br>1.936<br>1.937<br>1.675<br>1.305<br>1.114<br>2.137<br>1.146<br>1.254<br>2.153<br>1.254<br>2.255<br>1.255<br>1.255<br>1.305<br>1.114<br>1.254<br>2.155<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.255<br>1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| navn på filte | er           |     | g      | mm     | mm       | dm3    | kg/m3   | kN        | Мра               |
|---------------|--------------|-----|--------|--------|----------|--------|---------|-----------|-------------------|
| produsent     | sys navn     | ppi | Weight | Height | Diameter | volume | density | max force | Crushing strength |
| sivex         | sivexcy80_1  | 80  | 50.30  | 49.43  | 48.61    | 0.092  | 548.323 | 2.546     | 1.297             |
| sylinder      | sivexcy80_2  | 80  | 51.30  | 49.58  | 48.26    | 0.091  | 565.648 | 2.263     | 1.153             |
|               | sivexcy80_3  | 80  | 50.70  | 49.59  | 48.71    | 0.092  | 548.640 | 1.322     | 0.673             |
|               | sivexcy80_4  | 80  | 50.90  | 49.35  | 48.30    | 0.090  | 562.920 | 3.018     | 1.537             |
|               | sivexcy80_5  | 80  | 41.50  | 49.69  | 47.48    | 0.088  | 471.702 | 2.087     | 1.063             |
|               | sivexcy80_6  | 80  | 49.30  | 49.76  | 48.95    | 0.094  | 526.467 | 2.414     | 1.229             |
|               | sivexcy80_7  | 80  | 49.00  | 49.35  | 47.71    | 0.088  | 555.393 | 2.441     | 1.243             |
|               | sivexcy80_8  | 80  | 42.30  | 49.56  | 47.45    | 0.088  | 482.666 | 2.363     | 1.203             |
|               | sivexcy80_9  | 80  | 44.40  | 49.75  | 47.67    | 0.089  | 500.046 | 2.469     | 1.257             |
|               | sivexcy80_10 | 80  | 43.70  | 49.49  | 47.31    | 0.087  | 502.306 | 2.076     | 1.057             |
|               | sivexcy80_11 | 80  | 45.30  | 49.66  | 47.80    | 0.089  | 508.330 | 1.509     | 0.769             |
|               | sivexcy80_12 | 80  | 45.00  | 49.54  | 47.90    | 0.089  | 504.076 | 2.452     | 1.249             |
|               | sivexcy80_13 | 80  | 46.40  | 49.69  | 47.60    | 0.088  | 524.741 | 2.834     | 1.443             |
|               | sivexcy80_14 | 80  | 48.70  | 49.71  | 48.81    | 0.093  | 523.574 | 2.451     | 1.248             |
|               | sivexcy80_15 | 80  | 47.60  | 49.38  | 48.19    | 0.090  | 528.509 | 1.135     | 0.578             |
|               | sivexcy80_16 | 80  | 43.30  | 49.62  | 48.12    | 0.090  | 479.833 | 1.888     | 0.962             |
|               | sivexcy80_17 | 80  | 42.80  | 49.56  | 48.05    | 0.090  | 476.251 | 1.322     | 0.673             |
|               | sivexcy80_18 | 80  | 41.80  | 49.44  | 47.46    | 0.087  | 477.917 | 1.702     | 0.867             |
|               | sivexcy80_19 | 80  | 43.30  | 49.58  | 47.69    | 0.089  | 488.919 | 1.984     | 1.010             |
|               | sivexcy80_20 | 80  | 48.90  | 49.76  | 48.65    | 0.092  | 528.656 | 2.643     | 1.346             |
|               | sivexcy80_21 | 80  | 43.30  | 49.80  | 47.76    | 0.089  | 485.333 | 0.901     | 0.459             |
|               | sivexcy80_22 | 80  | 40.50  | 50.00  | 47.63    | 0.089  | 454.605 | 1.229     | 0.626             |
| Average       |              |     | 45.92  | 49.60  | 48.01    | 0.090  | 511.130 | 2.048     | 1.043             |
| standard de   | viation      |     |        |        |          |        | 31.525  |           | 0.296             |
| Max. value    |              |     | 51.30  | 50.00  | 48.95    | 0.094  | 565.648 | 3.018     | 1.537             |
| Min. value    |              |     | 40.50  | 49.35  | 47.31    | 0.087  | 454.605 | 0.901     | 0.459             |
| Max. Min. d   | ifference    |     | 10.800 | 0.650  | 1.640    | 0.007  | 111.043 | 2.117     | 1.078             |

## Sivex cubic:

| navn på filter      |              |     | g      | mm     | mm     | mm    | dm3    | kg/m3   | kN        | MPa               |
|---------------------|--------------|-----|--------|--------|--------|-------|--------|---------|-----------|-------------------|
| produsent           | sys navn     | ppi | Weight | Height | lengde | Width | volume | density | max force | Crushing strength |
| Sivex (kvadrat)     | sivexsq30_1  | 30  | 49.9   | 50.26  | 50.82  | 48.84 | 0.125  | 400.007 | 4.143     | 2.110             |
|                     | sivexsq30_2  | 30  | 44.8   | 50.25  | 48.96  | 48.86 | 0.120  | 372.689 | 3.017     | 1.537             |
|                     | sivexsq30_3  | 30  | 46.0   | 50.29  | 49.38  | 49.49 | 0.123  | 374.290 | 3.211     | 1.635             |
|                     | sivexsq30_4  | 30  | 44.9   | 50.31  | 51.14  | 49.15 | 0.126  | 355.065 | 2.851     | 1.452             |
|                     | sivexsq30_5  | 30  | 50.7   | 50.37  | 49.24  | 50.62 | 0.126  | 403.827 | 3.646     | 1.857             |
|                     | sivexsq30_6  | 30  | 44.6   | 50.22  | 48.95  | 50.32 | 0.124  | 360.549 | 3.210     | 1.635             |
|                     | sivexsq30_7  | 30  | 44.9   | 50.23  | 49.37  | 48.97 | 0.121  | 369.734 | 3.018     | 1.537             |
|                     | sivexsq30_8  | 30  | 45.3   | 50.28  | 49.02  | 50.42 | 0.124  | 364.525 | 3.031     | 1.544             |
|                     | sivexsq30_9  | 30  | 47.5   | 50.44  | 50.26  | 49.04 | 0.124  | 382.072 | 3.772     | 1.921             |
|                     | sivexsq30_10 | 30  | 48.4   | 50.41  | 49.87  | 50.48 | 0.127  | 381.391 | 3.772     | 1.921             |
|                     | sivexsq30_11 | 30  | 37.7   | 50.74  | 49.20  | 48.25 | 0.120  | 312.989 | 1.702     | 0.867             |
|                     | sivexsq30_12 | 30  | 49.2   | 50.23  | 49.52  | 50.02 | 0.124  | 395.437 | 4.340     | 2.210             |
|                     | sivexsq30_13 | 30  | 38.5   | 50.82  | 49.41  | 49.21 | 0.124  | 311.572 | 1.608     | 0.819             |
|                     | sivexsq30_14 | 30  | 50.0   | 50.42  | 50.57  | 49.37 | 0.126  | 397.361 | 3.626     | 1.847             |
|                     | sivexsq30_15 | 30  | 44.9   | 50.34  | 49.79  | 48.87 | 0.122  | 366.563 | 3.959     | 2.016             |
|                     | sivexsq30_16 | 30  | 47.4   | 50.34  | 49.31  | 49.27 | 0.122  | 387.568 | 3.298     | 1.680             |
|                     | sivexsq30_17 | 30  | 47.2   | 50.08  | 49.16  | 49.76 | 0.123  | 385.288 | 3.585     | 1.826             |
|                     | sivexsq30_18 | 30  | 43.0   | 50.39  | 50.01  | 48.66 | 0.123  | 350.667 | 3.181     | 1.620             |
|                     | sivexsq30_19 | 30  | 42.2   | 50.30  | 49.64  | 49.90 | 0.125  | 338.698 | 2.450     | 1.248             |
|                     | sivexsq30_20 | 30  | 43.6   | 50.46  | 49.31  | 49.59 | 0.123  | 353.354 | 2.514     | 1.280             |
|                     | sivexsq30_21 | 30  | 48.3   | 50.23  | 50.08  | 49.02 | 0.123  | 391.693 | 4.007     | 2.041             |
|                     | sivexsq30_22 | 30  | 51.0   | 49.93  | 48.67  | 49.05 | 0.119  | 427.866 | 4.339     | 2.210             |
| Average             |              |     | 45.9   | 50.33  | 49.62  | 49.42 | 0.123  | 371.964 | 3.285     | 1.673             |
| standard deviation  |              |     |        |        |        |       |        | 27.525  |           | 0.373             |
| Max. value          |              |     | 51.0   | 50.82  | 51.14  | 50.62 | 0.127  | 427.866 | 4.340     | 2.210             |
| Min. value          |              |     | 37.7   | 49.93  | 48.67  | 48.25 | 0.119  | 311.572 | 1.608     | 0.819             |
| Max. Min. Differend | e            |     | 13.3   |        | 2.47   | 2.37  |        |         |           | 1.391             |

| navn på filter       |              |     | g      | mm     | mm     | mm    | dm3    | kg/m3   | kN        | MPa               |
|----------------------|--------------|-----|--------|--------|--------|-------|--------|---------|-----------|-------------------|
| produsent            | sys navn     | ррі | Weight | Height | lengde | Width | volume | density | max force | Crushing strength |
|                      | sivexsq65_01 |     | 67.6   | 50.38  | 50.55  | 50.69 | 0.129  | 523.655 | 6.873     |                   |
|                      | sivexsq65_02 |     | 68.7   | 50.44  | 50.78  | 50.60 | 0.130  | 530.076 | 6.413     | 3.266             |
|                      | sivexsq65_03 |     | 61.7   | 50.66  | 50.16  | 50.93 | 0.129  | 476.748 | 2.895     | 1.474             |
|                      | sivexsq65_04 |     | 64.9   | 50.99  | 50.26  | 49.74 | 0.127  | 509.133 | 5.017     | 2.555             |
|                      | sivexsq65_05 |     | 56.7   | 50.92  | 50.51  | 50.42 | 0.130  | 437.235 | 2.947     | 1.501             |
|                      | sivexsq65_06 |     | 66.2   | 50.53  | 50.87  | 51.03 | 0.131  | 504.686 | 5.492     | 2.797             |
|                      | sivexsq65_07 |     | 65.9   | 50.69  | 50.31  | 50.86 | 0.130  | 508.080 | 5.191     | 2.644             |
|                      | sivexsq65_08 |     | 66.3   | 50.94  | 50.99  | 50.66 | 0.132  | 503.854 | 4.673     | 2.380             |
|                      | sivexsq65_09 |     | 69.1   | 50.67  | 50.72  | 50.96 | 0.131  | 527.617 | 8.344     | 4.250             |
|                      | sivexsq65_10 |     | 67.0   | 50.82  | 50.94  | 50.55 | 0.131  | 511.988 | 5.198     | 2.647             |
|                      | sivexsq65_11 |     | 64.1   | 50.76  | 50.60  | 50.76 | 0.130  | 491.659 | 4.358     | 2.220             |
|                      | sivexsq65_12 |     | 65.9   | 50.76  | 49.44  | 50.94 | 0.128  | 515.497 | 4.782     | 2.435             |
|                      | sivexsq65_13 |     | 70.0   | 50.74  | 50.65  | 51.04 | 0.131  | 533.651 | 6.901     | 3.515             |
|                      | sivexsq65_14 |     | 62.5   | 50.92  | 50.80  | 49.85 | 0.129  | 484.689 | 4.030     | 2.052             |
|                      | sivexsq65_15 |     | 62.8   | 50.39  | 51.13  | 50.86 | 0.131  | 479.251 | 4.829     | 2.459             |
|                      | sivexsq65_16 |     | 55.7   | 50.98  | 50.26  | 51.14 | 0.131  | 425.081 | 3.323     | 1.692             |
|                      | sivexsq65_17 |     | 60.0   | 50.90  | 51.06  | 50.97 | 0.132  | 452.937 | 2.755     | 1.403             |
|                      | sivexsq65_18 |     | 66.9   | 50.55  | 50.93  | 51.02 | 0.131  | 509.320 | 5.094     | 2.594             |
|                      | sivexsq65_19 |     | 66.3   | 51.07  | 50.71  | 51.20 | 0.133  | 500.016 | 5.553     | 2.828             |
|                      | sivexsq65_20 |     | 57.7   | 50.83  | 50.91  | 50.28 | 0.130  | 443.463 | 2.562     | 1.305             |
|                      | sivexsq65_21 |     | 69.0   | 50.99  | 50.83  | 51.24 | 0.133  | 519.559 | 5.785     | 2.946             |
|                      | sivexsq65_22 |     | 62.8   | 50.93  | 50.08  | 51.35 | 0.131  | 479.492 | 4.164     | 2.121             |
| Average              |              |     | 64.4   | 50.77  | 50.61  | 50.78 | 0.130  | 493.986 | 4.872     | 2.433             |
| standard deviation   |              |     | 3.971  | 0.202  | 0.389  | 0.404 | 0.001  | 30.348  | 1.444     | 0.717             |
| Max. value           |              |     | 70.0   | 51.07  | 51.13  | 51.35 | 0.133  | 533.651 | 8.344     | 4.250             |
| Min. value           |              |     | 55.7   | 50.38  | 49.44  | 49.74 | 0.127  | 425.081 | 2.562     | 1.305             |
| Max. Min. Difference |              |     | 14.3   | 0.69   | 1.69   | 1.61  | 0.005  | 108.570 | 5.782     | 2.945             |

| navn på filter       |              |     | g      | mm     | mm     | mm    | dm3    | kg/m3   | kN        | MPa               |
|----------------------|--------------|-----|--------|--------|--------|-------|--------|---------|-----------|-------------------|
| produsent            | sys navn     | ppi | Weight | Height | lengde | Width | volume | density | max force | Crushing strength |
| Sivex (kvadrat)      | sivexsq80_1  |     | 59.0   | 50.82  | 49.66  | 50.72 | 0.128  | 460.926 | 3.959     | 2.016             |
| nummer forskjøvet    | sivexsq80_2  | 80  | 55.1   | 45.85  | 44.97  | 46.23 | 0.095  | 578.050 | 3.017     | 1.537             |
| på kompressjonstest  | sivexsq80_3  | 80  | 53.2   | 50.11  | 49.43  | 49.75 | 0.123  | 431.721 | 3.917     | 1.995             |
|                      | sivexsq80_4  | 80  | 54.4   | 50.02  | 49.57  | 50.06 | 0.124  | 438.274 | 4.434     | 2.258             |
|                      | sivexsq80_5  | 80  | 53.8   | 50.42  | 49.51  | 49.96 | 0.125  | 431.384 | 3.958     | 2.016             |
|                      | sivexsq80_6  | 80  | 53.7   | 50.48  | 49.80  | 49.47 | 0.124  | 431.801 | 3.585     | 1.826             |
|                      | sivexsq80_7  | 80  | 55.0   | 50.34  | 50.01  | 49.36 | 0.124  | 442.606 | 3.772     | 1.921             |
|                      | sivexsq80_8  | 80  | 54.6   | 50.48  | 49.58  | 50.15 | 0.126  | 435.007 | 3.871     | 1.971             |
|                      | sivexsq80_9  | 80  | 54.3   | 50.35  | 50.31  | 50.03 | 0.127  | 428.465 | 2.954     | 1.504             |
|                      | sivexsq80_10 | 80  | 52.9   | 50.62  | 50.26  | 49.26 | 0.125  | 422.101 | 3.209     | 1.634             |
|                      | sivexsq80_11 | 80  | 54.6   | 50.53  | 49.81  | 50.24 | 0.126  | 431.795 | 3.678     | 1.873             |
|                      | sivexsq80_12 | 80  | 53.2   | 50.63  | 49.66  | 49.65 | 0.125  | 426.165 | 3.520     | 1.793             |
| true number          | sivexsq80_13 | 80  | 55.4   | 50.75  | 50.56  | 49.68 | 0.127  | 434.595 | 3.492     | 1.778             |
|                      | sivexsq80_14 | 80  | 54.3   | 50.99  | 49.36  | 49.75 | 0.125  | 433.657 | 4.130     | 2.103             |
|                      | sivexsq80_15 | 80  | 55.0   | 50.74  | 50.58  | 49.10 | 0.126  | 436.467 | 2.736     | 1.393             |
|                      | sivexsq80_16 | 80  | 54.0   | 50.54  | 50.97  | 49.75 | 0.128  | 421.358 | 1.873     | 0.954             |
|                      | sivexsq80_17 | 80  | 55.6   | 51.00  | 50.56  | 49.80 | 0.128  | 432.980 | 3.398     | 1.731             |
|                      | sivexsq80_18 | 80  | 53.9   | 50.90  | 50.44  | 49.67 | 0.128  | 422.670 | 3.300     | 1.681             |
|                      | sivexsq80_19 | 80  | 52.8   | 50.42  | 50.24  | 49.66 | 0.126  | 419.735 | 1.635     | 0.833             |
|                      | sivexsq80_20 | 80  | 55.9   | 50.40  | 49.92  | 49.49 | 0.125  | 448.941 | 4.692     | 2.390             |
|                      | sivexsq80_21 | 80  | 57.9   | 50.50  | 49.56  | 49.86 | 0.125  | 463.985 | 4.102     | 2.089             |
|                      | sivexsq80_22 | 80  | 56.7   | 50.90  | 49.06  | 50.65 | 0.126  | 448.289 | 4.050     | 2.063             |
| Average              |              |     | 54.8   | 50.35  | 49.72  | 49.65 | 0.124  | 441.862 | 3.513     | 1.789             |
| standard deviation   |              |     |        |        |        |       |        | 31.830  |           | 0.369             |
| Max. value           |              |     | 59.0   | 51.00  | 50.97  | 50.72 | 0.128  | 578.050 | 4.692     | 2.390             |
| Min. value           |              |     | 52.8   | 45.85  | 44.97  | 46.23 | 0.095  | 419.735 | 1.635     | 0.833             |
| Max. Min. Difference |              |     | 6.2    | 5.15   | 6.00   | 4.49  | 0.033  | 158.316 | 3.057     | 1.557             |

## Sivex NP:

| navn på filter       |              |     | g      | mm     | mm     | mm    | dm3    | kg/m3    | kN        | MPa               |
|----------------------|--------------|-----|--------|--------|--------|-------|--------|----------|-----------|-------------------|
| produsent            | sys navn     | ррі | Weight | Height | Lengde | Width | volume | density  | max force | Crushing strength |
|                      | SivexNP30_01 | 30  | 39.5   | 50.29  |        | 51.15 | 0.103  | 382.238  | 3.699     | 1.884             |
|                      | SivexNP30_02 | 30  | 41.2   | 51.25  |        | 51.07 | 0.105  | 392.448  | 4.073     | 2.074             |
|                      | SivexNP30_03 | 30  | 41.9   | 50.37  |        | 50.85 | 0.102  | 409.61   | 4.263     | 2.171             |
|                      | SivexNP30_04 | 30  | 41.7   | 50.5   |        | 50.84 | 0.103  | 406.765  | 4.034     | 2.054             |
|                      | SivexNP30_05 | 30  | 36.9   | 50.56  |        | 50.92 | 0.103  | 358.387  | 3.229     | 1.645             |
|                      | SivexNP30_06 | 30  | 42.2   | 50.58  |        | 50.83 | 0.103  | 411.153  | 4.872     | 2.481             |
|                      | SivexNP30_07 | 30  | 38.7   | 50.57  |        | 50.87 | 0.103  | 376.534  | 3.855     | 1.963             |
|                      | SivexNP30_08 | 30  | 40.3   | 50.35  |        | 50.84 | 0.102  | 394.28   | 3.883     | 1.978             |
|                      | SivexNP30_09 | 30  | 39.9   | 50.72  |        | 50.9  | 0.103  | 386.606  | 4.07      | 2.073             |
|                      | SivexNP30_10 | 30  | 40.4   | 50.47  |        | 50.89 | 0.103  | 393.544  | 4.269     | 2.174             |
|                      | SivexNP30_11 | 30  | 40.6   | 50.63  |        | 50.86 | 0.103  | 394.708  | 3.883     | 1.978             |
|                      | SivexNP30_12 | 30  | 40.6   | 50.77  |        | 50.87 | 0.103  | 393.464  | 4.451     | 2.267             |
|                      | SivexNP30_13 | 30  | 40.2   | 50.42  |        | 50.89 | 0.103  | 391.984  | 3.883     | 1.978             |
|                      | SivexNP30_14 | 30  | 40.1   | 50.37  |        | 50.86 | 0.102  | 391.859  | 3.985     | 2.03              |
|                      | SivexNP30_15 | 30  | 40.5   | 50.52  |        | 50.74 | 0.102  | 396.461  | 4.264     | 2.172             |
|                      | SivexNP30_16 | 30  | 41.6   | 50.43  |        | 50.86 | 0.102  | 406.033  | 4.545     | 2.315             |
|                      | SivexNP30_17 | 30  | 38.8   | 50.51  |        | 50.75 | 0.102  | 379.745  | 4.358     | 2.22              |
|                      | SivexNP30_18 | 30  | 40.3   | 50.62  |        | 50.8  | 0.103  | 392.795  | 4.36      | 2.221             |
|                      | SivexNP30_19 | 30  | 40.4   | 50.67  |        | 50.82 | 0.103  | 393.071  | 3.883     | 1.978             |
|                      | SivexNP30_20 | 30  | 39.3   | 50.51  |        | 50.75 | 0.102  | 384.639  | 3.859     | 1.965             |
|                      | SivexNP30_21 | 30  | 40.8   | 50.87  |        | 50.85 | 0.103  | 394.936  | 4.451     | 2.267             |
|                      | SivexNP30_22 | 30  | 39.9   | 50.45  |        | 50.82 | 0.102  | 389.899  | 4.07      | 2.073             |
| Average              |              |     | 40.3   | 50.57  |        | 50.87 | 0.103  | 391.871  | 4.102     | 2.089             |
| standard deviation   |              |     |        |        |        |       |        | 11.36442 |           | 0.171712046       |
| Max. value           |              |     | 42.2   | 51.25  |        | 51.15 |        |          |           | 2.481             |
| Min. value           |              |     | 36.9   | 50.29  |        | 50.74 | 0.102  | 358.387  | 3.229     | 1.645             |
| Max. Min. Difference |              |     | 5.3    | 0.96   |        | 0.41  | 0.003  | 52.766   | 1.643     | 0.837             |

## Drache:

| navn på filt | er            |     | g      | mm     | mm     | mm    | dm3    | kg/m3   | kN        | MPa               |
|--------------|---------------|-----|--------|--------|--------|-------|--------|---------|-----------|-------------------|
| produsent    | sys navn      | ррі | Weight | Height | Lengde | Width | volume | density | max force | Crushing strength |
|              | drachecy30_01 | 30  | 39.4   | 48.76  |        | 50.92 | 0.099  | 396.795 | 2.755     | 1.403             |
|              | drachecy30_02 | 30  | 39.8   | 48.60  |        | 50.45 | 0.097  | 409.670 | 2.755     | 1.403             |
|              | drachecy30_03 | 30  | 41.0   | 48.71  |        | 50.91 | 0.099  | 413.494 | 2.754     | 1.403             |
|              | drachecy30_04 | 30  | 41.6   | 48.82  |        | 50.86 | 0.099  | 419.424 | 2.948     | 1.501             |
|              | drachecy30_05 | 30  | 42.7   | 48.67  |        | 50.98 | 0.099  | 429.810 | 3.129     | 1.594             |
|              | drachecy30_06 | 30  | 42.1   | 48.63  |        | 50.91 | 0.099  | 425.287 | 3.230     | 1.645             |
|              | drachecy30_07 | 30  | 40.5   | 48.69  |        | 50.79 | 0.099  | 410.553 | 2.988     | 1.522             |
|              | drachecy30_08 | 30  | 39.6   | 48.67  |        | 50.76 | 0.098  | 402.069 | 2.474     | 1.260             |
|              | drachecy30_09 | 30  | 42.6   | 48.48  |        | 50.73 | 0.098  | 434.738 | 3.149     | 1.604             |
|              | drachecy30_10 | 30  | 43.1   | 48.70  |        | 50.58 | 0.098  | 440.454 | 3.362     | 1.712             |
|              | drachecy30_11 | 30  | 42.1   | 48.76  |        | 50.66 | 0.098  | 428.349 | 3.515     | 1.790             |
|              | drachecy30_12 | 30  | 42.4   | 48.65  |        | 50.63 | 0.098  | 432.890 | 3.269     | 1.665             |
|              | drachecy30_13 | 30  | 42.9   | 48.75  |        | 51.04 | 0.100  | 430.102 | 2.562     | 1.305             |
|              | drachecy30_14 | 30  | 42.9   | 48.56  |        | 50.74 | 0.098  | 436.906 | 2.233     | 1.137             |
|              | drachecy30_15 | 30  | 40.5   | 48.58  |        | 50.87 | 0.099  | 410.189 | 2.190     | 1.115             |
|              | drachecy30_16 | 30  | 38.3   | 48.70  |        | 50.44 | 0.097  | 393.577 | 2.771     | 1.411             |
|              | drachecy30_17 | 30  | 37.7   | 48.81  |        | 50.73 | 0.099  | 382.132 | 2.647     | 1.348             |
|              | drachecy30_18 | 30  | 38.2   | 48.86  |        | 50.67 | 0.099  | 387.720 | 2.764     | 1.408             |
|              | drachecy30_19 | 30  | 39.2   | 48.66  |        | 50.85 | 0.099  | 396.682 | 2.755     | 1.403             |
|              | drachecy30_20 | 30  | 40.1   | 48.77  |        | 50.86 | 0.099  | 404.715 | 2.176     | 1.108             |
|              | drachecy30_21 | 30  | 41.3   | 48.65  |        | 50.86 | 0.099  | 417.854 | 2.490     | 1.268             |
|              | drachecy30 22 | 30  | 42.5   | 48.76  |        | 50.81 | 0.099  | 429.870 | 2.755     | 1.403             |
| Average      |               |     | 40.9   | 48.69  |        | 50.78 | 0.099  | 415.149 | 2.803     | 1.428             |
| standard de  | viation       |     |        |        |        |       |        | 16.671  |           | 0.185             |
| Max. value   |               |     | 43.1   | 48.86  |        | 51.04 | 0.100  | 440.454 | 3.515     |                   |
| Min. value   |               |     | 37.7   |        |        | 50.44 |        |         |           |                   |
| Max. Min. D  | ifference     |     | 5.4    |        |        | 0.60  |        | 58.323  |           |                   |

| navn på filt | er            |     | g      | mm     | mm     | mm    | dm3    | kg/m3   | kN        | MPa               |
|--------------|---------------|-----|--------|--------|--------|-------|--------|---------|-----------|-------------------|
| produsent    | sys navn      | ppi | Weight | Height | Lengde | Width | volume | density | max force | Crushing strength |
|              |               |     |        |        |        |       |        |         |           |                   |
|              | Drachecy60_01 | 60  | 37.4   | 47.97  | -      | 48.19 | 0.087  | 427.463 | 2.129     | 1.084             |
|              | Drachecy60_02 | 60  | 38.1   | 48.05  | -      | 47.57 | 0.085  | 446.144 | 2.375     | 1.210             |
|              | Drachecy60_03 | 60  | 38.4   | 47.81  | -      | 48.40 | 0.088  | 436.548 | 2.475     | 1.261             |
|              | Drachecy60_04 | 60  | 39.3   | 48.05  | -      | 47.90 | 0.087  | 453.877 | 2.282     | 1.162             |
|              | Drachecy60_05 | 60  | 40.9   | 47.90  | -      | 48.07 | 0.087  | 470.489 | 2.656     | 1.353             |
|              | Drachecy60_06 | 60  | 39.6   | 47.82  | -      | 47.40 | 0.084  | 469.288 | 2.607     | 1.328             |
|              | Drachecy60_07 | 60  | 40.6   | 47.79  | -      | 48.14 | 0.087  | 466.753 | 2.755     | 1.403             |
|              | Drachecy60_08 | 60  | 40.8   | 47.98  | -      | 47.50 | 0.085  | 479.869 | 2.755     | 1.403             |
|              | Drachecy60_09 | 60  | 39.7   | 48.05  | -      | 47.03 | 0.083  | 475.617 | 2.188     | 1.114             |
|              | Drachecy60_10 | 60  | 40.8   | 48.05  | -      | 48.30 | 0.088  | 463.428 | 2.562     | 1.305             |
|              | Drachecy60_11 | 60  | 41.7   | 47.89  | -      | 48.42 | 0.088  | 472.881 | 2.581     | 1.314             |
|              | Drachecy60_12 | 60  | 39.7   | 47.88  | -      | 48.76 | 0.089  | 444.037 | 2.988     | 1.52              |
|              | Drachecy60_13 | 60  | 41.1   | 47.90  | -      | 48.53 | 0.089  | 463.870 | 3.276     | 1.668             |
|              | Drachecy60_14 | 60  | 41.8   | 47.88  | -      | 47.86 | 0.086  | 485.274 | 3.036     | 1.540             |
|              | Drachecy60_15 | 60  | 40.5   | 47.99  | -      | 47.17 | 0.084  | 482.928 | 2.562     | 1.30              |
|              | Drachecy60_16 | 60  | 42.8   | 48.18  | -      | 48.88 | 0.090  | 473.396 | 1.847     | 0.941             |
|              | Drachecy60_17 | 60  | 39.6   | 48.44  | -      | 49.84 | 0.095  | 419.030 | 2.234     | 1.138             |
|              | Drachecy60_18 | 60  | 45.5   | 48.00  | -      | 50.65 | 0.097  | 470.459 | 2.562     | 1.305             |
|              | Drachecy60_19 | 60  | 46.0   | 47.96  | -      | 50.64 | 0.097  | 476.213 | 3.352     | 1.707             |
|              | Drachecy60_20 | 60  | 44.0   | 47.90  | -      | 50.37 | 0.095  | 460.981 | 3.509     | 1.78              |
|              | Drachecy60_21 | 60  | 42.2   | 47.90  | -      | 50.09 | 0.094  | 447.080 | 3.324     | 1.693             |
|              | Drachecy60_22 | 60  | 40.9   | 48.03  | -      | 49.43 | 0.092  | 443.751 | 2.734     | 1.392             |
| Average      |               |     | 41.0   | 47.97  |        | 48.60 | 0.089  | 460.426 | 2.672     | 1.36              |
| standard de  | eviation      |     |        |        |        |       |        |         |           | 0.215             |
| Max. value   |               |     | 46.0   | 48.44  |        | 50.65 | 0.097  | 485.274 | 3.509     | 1.787             |
| Min. value   |               |     | 37.4   | 47.79  |        | 47.03 | 0.083  | 419.030 | 1.847     | 0.941             |
| Max. Min. [  | Difference    |     | 8.6    | 0.65   |        | 3.62  | 0.013  | 66.244  | 1.662     | 0.846             |
|              |               |     |        |        |        |       |        |         |           |                   |

## Lanik:

| navn på filt | er           |     | g      | g          | mm     | mm     | mm    | dm3    | kg/m3   | kN        | MPa              |
|--------------|--------------|-----|--------|------------|--------|--------|-------|--------|---------|-----------|------------------|
| produsent    | sys navn     | ppi | Weight | weight dry | Height | Lengde | Width | volume | density | max force | Crushing strengt |
|              | lanikcy30_01 | 30  | 36.6   | 36.9       | 47.68  |        | 50.80 | 0.097  | 378.728 | 2.170     | 1.105            |
|              | lanikcy30_02 | 30  | 37.8   | 37.7       | 47.81  |        | 50.30 | 0.095  | 397.876 | 2.486     | 1.266            |
|              | lanikcy30_03 | 30  | 38.5   | 38.3       | 47.69  |        | 50.26 | 0.095  | 406.910 | 2.985     | 1.520            |
|              | lanikcy30_04 | 30  | 38.7   | 38.5       | 47.63  |        | 50.04 | 0.094  | 413.148 | 3.185     | 1.622            |
|              | lanikcy30_05 | 30  | 39.1   | 39.0       | 47.80  |        | 50.82 | 0.097  | 403.264 | 3.044     | 1.550            |
|              | lanikcy30_06 | 30  | 38.3   | 38.3       | 47.69  |        | 50.59 | 0.096  | 399.533 | 2.739     | 1.395            |
|              | lanikcy30_07 | 30  | 38.3   | 37.4       | 47.61  |        | 50.34 | 0.095  | 404.189 | 2.631     | 1.340            |
|              | lanikcy30_08 | 30  | 39.9   | 38.6       | 47.64  |        | 50.50 | 0.095  | 418.147 | 2.189     | 1.115            |
|              | lanikcy30_09 | 30  | 38.1   | 37.5       | 47.84  |        | 50.70 | 0.097  | 394.483 | 2.461     | 1.253            |
|              | lanikcy30_10 | 30  | 38.3   | 37.5       | 47.86  |        | 50.62 | 0.096  | 397.642 | 2.099     | 1.069            |
|              | lanikcy30_11 | 30  | 38.8   | 38.8       | 47.85  |        | 50.26 | 0.095  | 408.710 | 2.315     | 1.179            |
|              | lanikcy30_12 | 30  | 37.3   | 36.6       | 47.99  |        | 50.77 | 0.097  | 383.932 | 2.320     | 1.182            |
|              | lanikcy30_13 | 30  | 38.7   | 38.2       | 48.01  |        | 50.43 | 0.096  | 403.563 | 2.188     | 1.114            |
|              | lanikcy30_14 | 30  | 41.6   | 39.4       | 47.61  |        | 50.77 | 0.096  | 431.609 | 2.651     | 1.350            |
|              | lanikcy30_15 | 30  | 38.2   | 38.0       | 47.70  |        | 50.69 | 0.096  | 396.836 | 2.609     | 1.329            |
|              | lanikcy30_16 | 30  | 39.5   | 38.9       | 47.64  |        | 50.44 | 0.095  | 414.940 | 2.803     | 1.428            |
|              | lanikcy30_17 | 30  | 39.7   | 37.6       | 47.61  |        | 50.31 | 0.095  | 419.463 | 2.562     | 1.305            |
|              | lanikcy30_18 | 30  | 38.3   | 38.2       | 47.61  |        | 50.79 | 0.096  | 397.058 | 2.849     | 1.451            |
|              | lanikcy30_19 | 30  | 38.3   | 38.0       | 47.70  |        | 50.70 | 0.096  | 397.717 | 2.849     | 1.451            |
|              | lanikcy30 20 | 30  | 39.8   | 39.4       | 47.68  |        | 50.72 | 0.096  | 413.141 | 2.655     | 1.352            |
|              | lanikcy30 21 | 30  | 39.4   | 39.0       | 47.59  |        | 50.75 | 0.096  | 409.278 | 2.850     | 1.451            |
|              | lanikcy30 22 | 30  | 38.7   | 38.2       | 47.88  |        | 50.80 | 0.097  | 398.786 | 2.946     | 1.500            |
| Average      | , _          |     | 38.7   | 38.2       | 47.73  |        | 50.56 | 0.096  | 404.043 | 2.618     | 1.333            |
| standard de  | viation      |     |        |            |        |        |       |        | 11.567  | 1         | 0.154            |
| Max. value   |              |     | 41.6   | 39.4       | 48.01  |        | 50.82 | 0.097  |         | 3.185     | 1.622            |
| Min. value   |              |     | 36.6   | 36.6       | 47.59  |        | 50.04 | 0.094  | 378.728 | 2.099     | 1.069            |
| Max. Min. D  | ifference    |     | 5.0    | 2.8        | 0.42   |        | 0.78  | 0.003  | 52.881  | 1.086     | 0.553            |

| navn på filt | er           |     | g      | g          | mm     | mm      | mm      | dm3    | kg/m3   | kN        | MPa             |
|--------------|--------------|-----|--------|------------|--------|---------|---------|--------|---------|-----------|-----------------|
| produsent    | sys navn     | ppi | Weight | weight dry | Height | Lengde  | Width   | volume | density | max force | Crushing streng |
|              | lanikcy60_01 | 60  | 28.7   | 28.3       | 47.37  |         | 41.46   | 0.064  | 448.776 | 0.394     | 0.20            |
|              | lanikcy60_02 | 60  | 30.1   | 29.9       | 47.33  |         | 43.49   | 0.070  | 428.116 | 0.492     | 0.25            |
|              | lanikcy60_03 | 60  | 31.3   | 29.7       | 47.02  |         | 42.44   | 0.067  | 470.567 | 0.562     | 0.28            |
|              | lanikcy60_04 | 60  | 27.0   | 27.0       | 47.02  |         | 40.00   | 0.059  | 456.953 | 0.669     | 0.34            |
| wet          | lanikcy60_05 | 60  | 32.3   | 29.4       | 46.88  |         | 43.66   | 0.070  | 460.212 | 0.671     | 0.34            |
| wet          | lanikcy60_06 | 60  | 29.2   | 27.9       | 47.72  |         | 42.09   | 0.066  | 439.779 | 0.305     | 0.15            |
| wet          | lanikcy60_07 | 60  | 32.2   | 32.1       | 47.65  |         | 43.37   | 0.070  | 457.430 | 0.650     | 0.33            |
| wet          | lanikcy60_08 | 60  | 34.5   | 34.0       | 47.66  |         | 46.64   | 0.081  | 423.700 | 0.492     | 0.25            |
| wet          | lanikcy60_09 | 60  | 31.8   | 31.7       | 47.32  |         | 44.50   | 0.074  | 432.088 | 0.640     | 0.32            |
| wet          | lanikcy60_10 | 60  | 32.7   | 32.4       | 47.14  |         | 45.46   | 0.077  | 427.375 | 0.362     | 0.184           |
|              | lanikcy60_11 | 60  | 27.2   | 27.1       | 47.06  |         | 44.48   | 0.073  | 371.961 | 0.658     | 0.33            |
|              | lanikcy60_12 | 60  | 28.3   | 28.2       | 46.99  |         | 43.34   | 0.069  | 408.238 | 0.634     | 0.32            |
|              | lanikcy60_13 | 60  | 26.5   | 26.2       | 46.83  |         | 41.12   | 0.062  | 426.114 | 0.493     | 0.25            |
|              | lanikcy60_14 | 60  | 26.4   | 26.2       | 46.79  |         | 43.27   | 0.069  | 383.696 | 0.492     | 0.25            |
|              | lanikcy60_15 | 60  | 28.8   | 28.7       | 47.05  |         | 42.67   | 0.067  | 428.053 | 0.665     | 0.33            |
|              | lanikcy60_16 | 60  | 27.0   | 26.9       | 46.82  |         | 43.16   | 0.068  | 394.166 | 0.535     | 0.27            |
|              | lanikcy60_17 | 60  | 26.9   | 26.7       | 46.87  |         | 43.87   | 0.071  | 379.693 | 0.319     | 0.16            |
|              | lanikcy60_18 | 60  | 28.9   | 28.7       | 46.93  |         | 41.33   | 0.063  | 459.015 | 0.492     | 0.25            |
|              | lanikcy60_19 | 60  | 27.8   | 27.6       | 47.26  |         | 44.23   | 0.073  | 382.849 | 0.656     | 0.334           |
|              | lanikcy60_20 | 60  | 28.4   | 28.3       | 47.36  |         | 43.33   | 0.070  | 406.667 | 0.493     | 0.25            |
|              | lanikcy60_21 | 60  | 26.1   | 26.0       | 46.82  |         | 42.37   | 0.066  | 395.369 | 0.389     | 0.19            |
|              | lanikcy60_22 | 60  | 28.9   | 28.7       | 47.11  |         | 42.58   | 0.067  | 430.808 | 0.492     | 0.25            |
| Average      |              |     | 29.1   |            | 47.14  | #DIV/0! | 43.13   | 0.069  | 423.256 | 0.525     | 0.26            |
| standard de  | eviation     |     |        |            |        |         |         |        |         |           | 0.05            |
| Max. value   |              |     | 34.5   |            | 47.72  | 0.0     | 0 46.64 | 0.081  | 470.567 | 0.671     | 0.34            |
| Min. value   |              |     | 26.1   |            | 46.79  | 0.0     | 0 40.00 | 0.059  | 371.961 | 0.305     | 0.15            |
| Max. Min. D  | Difference   |     | 8.4    |            | 0.93   | 0.0     | 0 6.64  | 0.022  | 98.605  | 0.366     | 0.18            |

## Selee:

| navn på filter  |              |     | g      | mm     | mm     | mm    | dm3     | kg/m3   | kN        | MPa               |
|-----------------|--------------|-----|--------|--------|--------|-------|---------|---------|-----------|-------------------|
| produsent       | sys navn     | ppi | Weight | Height | Lengde | Width | volume  | density | max force | Crushing strength |
|                 | seleecy30_01 | 30  | 32.3   | 50.34  |        | 50.2  | 6 0.100 | 323.411 | 1.902     | 0.969             |
|                 | seleecy30_02 | 30  | 34.5   | 50.24  |        | 50.9  | 0.102   | 337.477 | 2.426     | 1.236             |
|                 | seleecy30_03 | 30  | 32.3   | 50.23  |        | 50.8  | 2 0.102 | 317.015 | 2.391     | 1.218             |
|                 | seleecy30_04 | 30  | 31.6   | 50.17  |        | 50.7  | 8 0.102 | 311.005 | 2.284     | 1.163             |
|                 | seleecy30_05 | 30  | 30.6   | 50.07  |        | 50.4  | 7 0.100 | 305.483 | 2.095     | 1.067             |
|                 | seleecy30_06 | 30  | 31.8   | 50.20  |        | 50.7  | 6 0.102 | 313.033 | 2.321     | 1.182             |
|                 | seleecy30_07 | 30  | 33.2   | 50.58  |        | 50.8  | 1 0.103 | 323.721 | 2.095     | 1.067             |
|                 | seleecy30_08 | 30  | 33.7   | 49.82  |        | 50.3  | 7 0.099 | 339.463 | 2.235     | 1.138             |
|                 | seleecy30_09 | 30  | 31.1   | 49.98  |        | 50.6  | 2 0.101 | 309.193 | 2.282     | 1.162             |
|                 | seleecy30_10 | 30  | 32.0   | 50.22  |        | 50.7  | 6 0.102 | 314.876 | 1.774     | 0.903             |
|                 | seleecy30_11 | 30  | 33.7   | 50.15  |        | 50.7  | 9 0.102 | 331.675 | 2.352     | 1.198             |
|                 | seleecy30_12 | 30  | 34.0   | 50.10  |        | 50.9  | 2 0.102 | 333.253 | 2.930     | 1.492             |
|                 | seleecy30_13 | 30  | 34.1   | 50.39  |        | 50.9  | 1 0.103 | 332.441 | 2.388     | 1.216             |
|                 | seleecy30_14 | 30  | 34.7   | 50.48  |        | 50.7  | 9 0.102 | 339.284 | 2.562     | 1.305             |
|                 | seleecy30_15 | 30  | 31.7   | 50.04  |        | 50.8  | 2 0.102 | 312.308 | 2.295     | 1.169             |
|                 | seleecy30_16 | 30  | 33.5   | 50.14  |        | 50.9  | 3 0.102 | 327.962 | 2.471     | 1.258             |
|                 | seleecy30_17 | 30  | 33.7   | 50.34  |        | 50.8  | 3 0.102 | 329.903 | 2.522     | 1.284             |
|                 | seleecy30_18 | 30  | 33.4   | 50.22  |        | 50.9  | 2 0.102 | 326.590 | 2.001     | 1.019             |
|                 | seleecy30_19 | 30  | 34.5   | 49.93  |        | 50.8  | 5 0.101 | 340.240 | 2.948     | 1.501             |
|                 | seleecy30_20 | 30  | 32.5   | 50.26  |        | 50.8  | 5 0.102 | 318.412 | 2.281     | 1.162             |
|                 | seleecy30_21 | 30  | 35.4   | 50.23  |        | 50.8  | 2 0.102 | 347.441 | 2.682     | 1.366             |
|                 | seleecy30_22 | 30  | 33.8   | 50.25  |        | 50.7  | 4 0.102 | 332.652 | 2.378     | 1.211             |
| Average         |              |     | 33.1   | 50.20  |        | 50.7  | 6 0.102 | 325.765 | 2.346     | 1.195             |
| standard devia  | tion         |     |        |        |        |       |         | 11.478  | 0.279     | 0.142             |
| Max. value      |              |     | 35.4   | 50.58  |        | 50.9  | 3 0.103 | 347.441 | 2.948     | 1.501             |
| Min. value      |              |     | 30.6   | 49.82  |        | 50.2  | 6 0.099 | 305.483 | 1.774     | 0.903             |
| Max. Min. Diffe | rence        |     | 4.8    | 0.76   |        | 0.6   | 7 0.003 | 41.958  | 1.174     | 0.598             |

# C Raw data from working temperatures compressive tests

## Sivex:

| navn på filt |                          |     | g     | g          | mm    | mm          | mm    | dm3     | kg/m3   | kN    | MPa               |
|--------------|--------------------------|-----|-------|------------|-------|-------------|-------|---------|---------|-------|-------------------|
| produsent    |                          | ppi | -     | weight dry | _     | Lengde      | Width | volumee | density |       | Crushing strength |
|              | sivex30_30               | 30  |       | 41.4       | 50.36 |             | 50.65 | 0.101   | 408.005 | 3.365 | 1.71              |
|              | sivex30_31               |     |       | 41.9       | 50.33 |             | 50.55 | 0.101   | 414.815 | 3.160 | 1.60              |
|              | sivex30_32               |     |       | 43.7       | 50.36 |             | 50.72 | 0.102   | 429.484 | 3.124 | 1.59              |
|              | sivex30_33               |     | 41.6  | 41.5       | 50.01 |             | 50.76 | 0.101   | 410.070 | 3.365 | 1.71              |
|              | sivex30_34               |     | 41.6  | 41.6       | 49.81 |             | 50.72 | 0.101   | 413.360 | 3.141 | 1.60              |
|              | sivex30_35               |     | 41.8  | 41.5       | 49.94 |             | 50.80 | 0.101   | 409.998 | 2.948 | 1.50              |
|              | sivex30_36               |     | 41.4  | 41.4       | 49.86 |             | 50.73 | 0.101   | 410.798 | 3.131 | 1.59              |
|              | sivex30_37               |     | 41.9  | 41.8       | 49.83 |             | 50.34 | 0.099   | 421.472 | 3.230 | 1.64              |
|              | sivex30_38               |     | 43.8  | 43.7       | 50.09 |             | 50.81 | 0.102   | 430.271 | 3.192 | 1.62              |
|              | sivex30_39               |     | 41.7  | 41.6       | 50.10 | un un ula i | 50.78 | 0.101   | 409.997 | 3.311 | 1.68              |
| Average      |                          |     | 42.0  | 42.0       | 50.07 | #DIV/0!     | 50.69 | 0.101   | 415.827 | 3.197 | 1.62              |
| standard de  | eviation                 |     |       |            |       |             |       |         | 7.885   |       | 0.06              |
| Max. value   |                          |     | 43.8  | 43.7       |       | 0.00        | 50.81 | 0.102   | 430.271 | 3.365 | 1.71              |
| Min. value   |                          |     | 41.4  | 41.4       | 49.81 | 0.00        | 50.34 | 0.099   | 408.005 | 2.948 | 1.50              |
| Max. Min. D  | ofference                |     | 2.4   | 2.3        | 0.55  | 0.00        | 0.47  | 0.003   | 22.266  | 0.417 | 0.21              |
|              | Sivex30_40               | 30  | 39.0  | 39.0       | 50.07 |             | 50.79 | 0.101   | 384.451 | 2.951 | 1.50              |
|              | sivex30_40               | 50  | 37.4  | 37.3       | 50.26 |             | 50.65 | 0.101   | 369.318 | 2.551 | 1.30              |
|              | Sivex30_41<br>Sivex30_42 |     | 37.4  | 37.5       | 49.96 |             | 50.82 | 0.101   | 373.001 | 2.561 | 1.30              |
|              | Sivex30_42<br>Sivex30_43 |     | 37.8  | 37.6       | 49.95 |             | 50.82 | 0.101   | 371.066 | 2.362 | 1.30              |
|              | Sivex30_43               |     | 37.9  | 37.8       | 50.10 |             | 50.57 | 0.102   | 376.639 | 2.584 | 1.25              |
|              | Sivex30_44<br>Sivex30_45 |     | 38.1  | 38.1       | 49.76 |             | 50.91 | 0.101   | 376.139 | 2.304 | 1.51              |
|              | Sivex30_45<br>Sivex30_46 |     | 36.6  | 36.6       | 49.94 |             | 50.91 | 0.101   | 358.899 | 2.375 | 1.21              |
|              | Sivex30_46<br>Sivex30_47 |     | 40.1  | 39.9       | 50.25 |             | 50.83 | 0.102   | 393.259 | 2.938 | 1.21              |
|              | Sivex30_47<br>Sivex30_48 |     | 42.4  | 42.2       | 50.08 |             | 51.03 | 0.102   | 413.962 | 3.129 | 1.49              |
|              | Sivex30_48               |     | 41.7  | 41.6       | 50.08 |             | 50.93 | 0.102   | 407.670 | 2.964 | 1.55              |
| Average      | SIVEXSO_45               |     | 38.9  | 38.8       |       | #DIV/0!     | 50.84 | 0.102   | 382.440 | 2.504 | 1.31              |
| standard de  | winting                  |     | 1.826 | 1.798      |       | #DIV/0!     | 0.136 | 0.001   | 16.642  | 0.263 | 0.13              |
| Max. value   | eviation                 |     | 42.4  | 42.2       | 50.26 | 0.00        | 51.03 | 0.102   | 413.962 | 3.129 | 1.59              |
| Min. value   |                          |     | 36.6  | 36.6       |       | 0.00        | 50.57 | 0.102   | 358.899 | 2.375 | 1.55              |
| Max. Min. D  | ifference                |     | 5.8   | 5.6        | 49.76 | 0.00        | 0.46  | 0.002   | 55.063  | 0.754 | 0.38              |
| wax. with. L | sivex30 50               |     | 41.3  | 41.2       | 50.00 | 0.00        | 51.01 | 0.002   | 404.184 | 2.730 | 1.39              |
|              | sivex30_50               |     | 41.1  | 40.8       | 50.12 |             | 50.98 | 0.102   | 401.736 | 2.750 | 1.35              |
|              | sivex30_51<br>sivex30_52 |     | 40.5  | 40.8       | 50.30 |             | 51.00 | 0.102   | 394.146 | 2.562 | 1.45              |
|              | sivex30_52               |     | 38.2  | 38.1       | 49.95 |             | 50.75 | 0.103   | 378.064 | 2.562 | 1.30              |
|              | sivex30_55               |     | 35.6  | 35.5       | 50.08 |             | 50.65 | 0.101   | 352.807 | 2.232 | 1.13              |
|              | sivex30_54<br>sivex30_55 |     | 39.9  | 39.5       | 50.08 |             | 50.85 | 0.101   | 389.226 | 3.129 | 1.15              |
|              | sivex30_55<br>sivex30_56 |     | 42.9  | 42.4       | 50.13 |             | 50.97 | 0.103   | 419.412 | 3.322 | 1.55              |
|              | sivex30_56<br>sivex30_57 |     | 42.5  | 42.4       | 50.13 |             | 50.93 | 0.102   | 415.412 | 3.162 | 1.65              |
|              | sivex30_57<br>sivex30_58 |     | 43.3  | 43.3       | 50.22 |             | 50.75 | 0.102   | 426.235 | 2.948 | 1.51              |
|              | sivex30_58               |     | 43.7  | 43.5       | 50.16 |             | 50.72 | 0.102   | 431.197 | 2.849 | 1.50              |
| Average      | 2.00,30_33               |     | 40.9  | -5.5       |       | #DIV/0!     | 50.72 | 0.101   | 401.372 | 2.835 | 1.43              |
| standard de  | aviation                 |     | 2.392 | 2.387      |       | #DIV/0!     | 0.130 | 0.001   | 22.756  | 0.311 | 0.15              |
| Max. value   | - acion                  |     | 43.7  | 2.307      | 50.30 | 0.00        | 51.01 | 0.103   | 431.197 | 3.322 | 1.69              |
| Min. value   |                          |     | 35.6  |            | 49.95 | 0.00        | 50.65 | 0.103   | 352.807 | 2.233 | 1.13              |
| and, value   | ifference                |     | 8.1   |            | 0.35  | 0.00        | 0.36  | 0.002   | 78.390  | 1.089 | 0.55              |

## SivexNP:

| navn på filter                             |               | g    | mm         |               | mm        | mm             | dm3    | kg/m3             | kN             | MPa               |
|--------------------------------------------|---------------|------|------------|---------------|-----------|----------------|--------|-------------------|----------------|-------------------|
| produsent                                  | sysinavn ppi  |      | t Heig     | ght           | Lengde    | Width          | volume | density           | max force      | Crushing strength |
| SivexNP30hot_10m_30                        | SivexNP30_30  |      | 8.6        | 50.58         |           | 50.77          | 0.1024 | 376.968           | 3.138          | 1.601             |
| SivexNP30hot_10m_31                        | SivexNP30_31  | 30 3 | 7.8        | 50.55         |           | 50.7           | 0.1021 | 370.395           | 3.129          | 1.596             |
| SivexNP30hot_10m_32                        |               | 30 3 | 9.3        | 50.18         |           | 50.75          | 0.1015 | 387.168           | 2.964          | 1.512             |
| SivexNP30hot_10m_33                        | SivexNP30_33  | 30 3 | 35.1       | 50.45         |           | 50.82          | 0.1023 | 342.994           | 2.608          | 1.331             |
| SivexNP30hot_10m_34                        |               |      | 6.7        | 50.51         |           | 50.79          | 0.1023 | 358.627           | 2.755          | 1.406             |
| SivexNP30hot_10m_35                        | SivexNP30_35  | 30 3 | 7.7        | 50.37         |           | 50.58          | 0.1012 | 372.496           |                | 1.318             |
| SivexNP30hot_10m_36                        |               |      | 7.6        | 50.48         |           | 50.82          | 0.1024 | 367.206           |                | 1.355             |
| SivexNP30hot_10m_37                        |               |      | 6.3        | 50.77         |           | 50.81          | 0.1029 | 352.623           |                | 1.306             |
| SivexNP30hot_10m_38                        |               |      | 36.1       | 50.95         |           | 50.23          | 0.1010 | 357.558           |                | 1.116             |
| SivexNP30hot_10m_39                        | SivexNP30_39  | 30   | 35         | 50.28         |           | 50.7           |        | 344.800           |                | 1.069             |
| Average                                    |               | 37   | .02        | 50.512        | * #DIV/0! | 50.697         | 0.102  | 363.083           | 2.668          | 1.361             |
| standard deviation                         |               |      |            |               |           |                |        | 13.526            |                | 0.170             |
| Max. value                                 |               | 3    | 9.3        | 50.95         | 0         |                | 0.1029 | 387.168           | 3.138          | 1.601             |
| Min. value                                 |               |      | 35         | 50.18         | 0         |                |        | 342.994           | 2.095          | 1.069             |
| Max. Min. Difference                       |               |      | 4.3        | 0.77          | 0         |                | 0.002  | 44.174            | 1.043          | 0.532             |
| SivexNP30hot_1h_40                         |               |      | 9.4        | 50.6          |           | 50.85          | 0.103  | 383.419           | 3.271          | 1.666             |
| SivexNP30hot_1h_41                         |               |      | 9.2        | 50.48         |           | 50.86          | 0.103  | 382.229           | 2.65           | 1.35              |
| SivexNP30hot_1h_42                         |               |      | 9.5        | 50.54         |           | 50.91          | 0.103  | 383.942           |                | 1.162             |
| SivexNP30hot_1h_43                         |               |      | 8.3        | 50.41         |           | 50.83          | 0.102  | 374.414           |                | 1.353             |
| SivexNP30hot_1h_44                         |               |      | 9.6        | 50.75         |           | 50.88          | 0.103  | 383.774           |                | 1.305             |
| SivexNP30hot_1h_45                         |               |      | 11.6       | 50.46         |           | 50.83          | 0.102  | 406.271           |                | 1.451             |
| SivexNP30hot_1h_46                         |               |      | 1.3        | 50.51         |           | 50.90          | 0.103  | 401.835           |                | 1.692             |
| SivexNP30hot_1h_47                         | _             |      | 11.6       | 50.38         |           | 50.80          | 0.102  | 407.397           | 3.405          | 1.734             |
| SivexNP30hot_1h_48                         |               | 30   | 41         | 50.59         |           | 50.83          | 0.103  | 399.383           | 2.755          | 1.403             |
| SivexNP30hot_1h_49                         | SivexNP30_45  |      | 0.5        | 50.74         |           | 50.88          | 0.103  | 392.573           |                | 1.594             |
| Average                                    |               |      | 0.2        | 50.546        | * #DIV/0! | 50.857         | 0.1027 | 391.524           | 2.8881         | 1.471             |
| standard deviation                         |               |      |            | E0.25         |           | E0.01          | 0.400  | 10.959            | 0.405          | 0.181             |
| Max. value                                 |               |      | 11.6       | 50.75         | 0         |                | 0.103  | 407.397           | 3.405          | 1.734             |
| Min. value                                 |               |      | 8.3        | 50.38         | 0         |                | 0.102  | 374.414           |                | 1.162             |
| Max. Min. Difference<br>SivexNP30hot_2h_50 | SivexNP30_50  | 20 4 | 3.3<br>0.0 | 0.37<br>50.57 | U         |                |        | 32.983<br>392.571 | 1.123<br>2.948 | 0.572<br>1.504    |
| SivexNP30hot_2h_50                         |               |      | 0.0<br>9.5 | 50.62         |           | 50.65<br>50.67 | 0.1019 | 386.975           |                | 1.504             |
| SivexNP30hot_2h_51                         |               |      | 0.6        | 50.62         |           | 50.67          | 0.1021 | 396,186           |                | 1.304             |
| SivexNP30hot_2h_52                         |               |      | 9.5        | 50.84         |           | 50.76          | 0.1023 | 336.061           |                | 1.004             |
| SivexNP30hot_2h_53                         |               |      | 0.5        | 50.00         |           | 50.64          | 0.1023 | 395.990           |                | 1.004             |
| SivexNP30hot_2h_55                         |               |      | 9.7        | 50.72         |           | 50.67          | 0.1023 | 389.396           |                | 1.407             |
| SivexNP30hot_2h_55                         |               |      | 0.4        | 50.60         |           | 50.85          |        | 393.614           |                | 1.408             |
| SivexNP30hot_2h_50                         |               |      | 0.4        | 50.62         |           | 50.81          | 0.1028 | 390.562           |                | 1.203             |
| SivexNP30hot_2h_58                         |               |      | 9.9        | 50.83         |           | 50.67          | 0.1024 | 388.973           |                | 1.084             |
| SivexNP30hot_2h_59                         |               |      | 0.2        | 50.67         |           | 50.67          | 0.1028 | 390.818           |                | 1.164             |
| Average                                    | OWERINE DO_00 |      | 0.2        |               | * #DIV/0! | 50.84          |        | 391.115           | 2.202          | 1.104             |
| standard deviation                         |               | 40   | .00        | 30.014        | ADIVIO:   | 50.111         | 0.102  | 3.293             |                | 0.170             |
| Max. value                                 |               | 6    | 0.6        | 50.87         | 0         | 50.84          | 0,103  | 396,186           | 2.948          | 1.504             |
| Min. value                                 |               |      | 9.5        | 50.57         | 0         |                | 0.103  | 386.061           |                | 1.004             |
| Max. Min. Difference                       |               |      | 11         | 0.3           | 0         |                | 0.001  | 10,125            |                | 0.500             |
| Max. Mill. Difference                      |               |      | - L I      | 0.0           | 0         | 0.2            | 0.001  | 10, 125           | 0.000          | 0.500             |

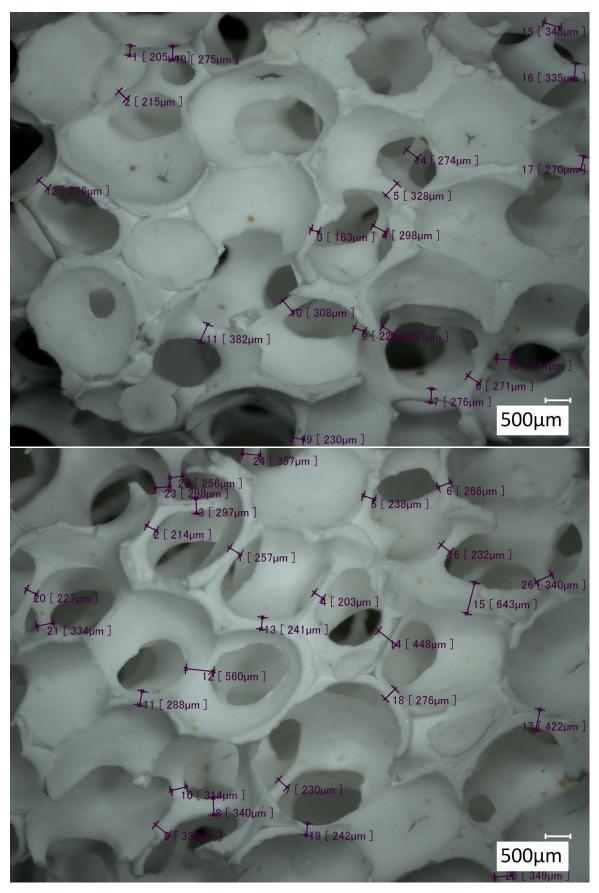
## Drache:

| navn på filter       |              |     | g      | mm     | mm      | mm    | dm3    | kg/m3   | kN    | MPa              |
|----------------------|--------------|-----|--------|--------|---------|-------|--------|---------|-------|------------------|
| produsent            | sys navn     | ppi | Weight | Height | Lengde  | Width | volume | density |       | Crushing strengt |
| Drachehot30_10min_01 |              |     | 41.4   |        |         | 50.72 | 0.098  | 354.398 | 2.849 | 1.451            |
| Drachehot30_10min_02 |              |     |        | 48.85  |         | 50.72 | 0.099  | 357.653 | 2.763 | 1.407            |
| Drachehot30_10min_03 |              |     |        | 48.69  |         | 50.87 | 0.099  | 385.010 | 2.948 | 1.501            |
| Drachehot30_10min_04 |              |     |        | 48.86  |         | 50.55 | 0.098  | 358.969 | 2.374 | 1.209            |
| Drachehot30_10min_05 |              |     | 39.0   |        |         | 50.79 | 0.099  | 388.682 | 2.531 | 1.289            |
| Drachehot30_10min_06 |              |     |        |        |         | 50.59 | 0.098  | 388.821 | 2.752 | 1.402            |
| Drachehot30_10min_07 |              |     | 40.6   |        |         | 50.78 | 0.099  | 392.541 | 2.562 | 1.309            |
| Drachehot30_10min_08 |              |     |        |        |         | 50.44 | 0.098  | 408.884 | 1.725 | 0.879            |
| Drachehot30_10min_09 |              |     |        |        |         | 50.92 | 0.100  | 397.939 | 2.021 | 1.029            |
| Drachehot30_10min_10 | drachecy30_3 | 20  |        |        |         | 50.88 | 0.100  | 402.910 | 2.337 | 1.190            |
| Average              |              |     | 39.8   | 48.8   | #DIV/0! | 50.7  | 0.1    | 383.581 | 2.486 | 1.266            |
| standard deviation   |              |     |        |        |         |       |        | 18.669  | 0.365 | 0.186            |
| Max. value           |              |     | 42.0   | 49.1   | 0.0     | 50.9  | 0.1    | 408.884 | 2.948 | 1.50:            |
| Min. value           |              |     | 35.3   | 48.6   | 0.0     | 50.4  | 0.1    | 354.398 | 1.725 | 0.879            |
| Max. Min. Difference |              |     | 6.7    | 0.46   | 0.00    | 0.48  | 0.002  | 54.485  | 1.223 | 0.62             |
| Drachehot30_1h_30    | drachecy30_4 | 0   | 43.0   | 48.66  |         | 50.84 | 0.099  | 435.307 | 2.188 | 1.114            |
| Drachehot30_1h_31    | drachecy30_4 | 1   | 42.8   | 48.67  |         | 50.83 | 0.099  | 433.363 | 2.547 | 1.297            |
| Drachehot30_1h_32    | drachecy30_4 | 2   | 43.2   | 48.65  |         | 50.64 | 0.098  | 440.883 | 3.065 | 1.56             |
| Drachehot30_1h_33    | drachecy30_4 | 3   | 42.8   | 48.58  |         | 50.70 | 0.098  | 436.396 | 2.754 | 1.40             |
| Drachehot30_1h_34    | drachecy30_4 | 4   | 42.4   | 48.70  |         | 50.88 | 0.099  | 428.206 | 2.562 | 1.30             |
| Drachehot30_1h_35    | drachecy30_4 | 5   | 41.4   | 48.66  |         | 50.62 | 0.098  | 422.760 | 1.903 | 0.969            |
| Drachehot30_1h_36    | drachecy30_4 | 6   | 40.5   | 48.61  |         | 50.86 | 0.099  | 410.097 | 2.307 | 1.17             |
| Drachehot30_1h_37    | drachecy30_4 | 7   | 40.4   | 48.64  |         | 50.83 | 0.099  | 409.315 | 2.362 | 1.203            |
| Drachehot30_1h_38    | drachecy30_4 | 8   | 41.4   | 48.58  |         | 50.83 | 0.099  | 419.965 | 2.687 | 1.368            |
| Drachehot30_1h_39    | drachecy30_4 | 9   | 39.1   |        |         | 50.75 | 0.099  | 396.253 | 2.562 | 1.309            |
| Average              |              |     | 41.7   | 48.7   | #DIV/0! | 50.8  | 0.1    | 423.255 | 2.494 | 1.27             |
| standard deviation   |              |     |        |        |         |       |        | 13.649  | 0.306 | 0.156            |
| Max. value           |              |     | 43.2   | 48.8   | 0.0     | 50.9  | 0.1    | 440.883 | 3.065 | 1.56             |
| Min. value           |              |     | 39.1   | 48.6   | 0.0     | 50.6  | 0.1    | 396.253 | 1.903 | 0.96             |
| Max. Min. Difference |              |     | 4.1    | 0.20   | 0.00    | 0.26  | 0.001  | 44.630  | 1.162 | 0.59             |
| Drachehot30_2h_1     | drachecy30_5 | 1   | 34.9   | 48.97  |         | 50.64 | 0.099  | 419.752 | 1.932 | 0.984            |
| Drachehot30_2h_2     | drachecy30_5 | 2   | 35.3   | 48.97  |         | 50.84 | 0.099  | 409.415 | 2.188 | 1.114            |
| Drachehot30_2h_3     | drachecy30_5 | 3   | 38.1   | 48.80  |         | 50.76 | 0.099  | 418.213 | 2.096 | 1.067            |
| Drachehot30_2h_4     | drachecy30_5 | 4   | 35.2   | 49.06  |         | 50.84 | 0.100  | 415.692 | 1.720 | 0.876            |
| Drachehot30_2h_5     | drachecy30_5 | 5   | 38.5   | 48.63  |         | 50.69 | 0.098  | 397.398 | 1.998 | 1.018            |
| Drachehot30_2h_6     | drachecy30_5 | 6   | 38.0   | 48.67  |         | 50.57 | 0.098  | 429.647 | 2.001 | 1.01             |
| Drachehot30_10m_01   | drachecy30_5 | 7   | 38.7   | 48.77  |         | 50.48 | 0.098  | 415.953 | 2.353 | 1.19             |
| Drachehot30_10m_02   | drachecy30_5 | 8   | 40.1   | 48.68  |         | 50.67 | 0.098  | 359.611 | 2.719 | 1.38             |
| Drachehot30_10m_03   | drachecy30_5 | 9   | 39.7   | 48.73  |         | 50.56 | 0.098  | 381.249 | 2.721 | 1.38             |
| Drachehot30_10m_04   | drachecy30_5 | 10  | 40.1   | 48.61  |         | 50.91 | 0.099  | 393.123 | 2.479 | 1.26             |
| Average              |              |     | 37.9   | 48.8   | #DIV/0! | 50.7  | 0.1    | 404.005 | 2.221 | 1.13             |
| standard deviation   |              |     |        |        |         |       |        | 20.166  | 0.321 | 0.164            |
| Max. value           |              |     | 40.1   | 49.1   | 0.0     | 50.9  | 0.1    | 429.647 | 2.721 | 1.38             |
| Min. value           |              |     | 35.3   | 48.6   | 0.0     | 50.5  | 0.1    | 359.611 | 1.720 | 0.876            |
| Max. Min. Difference |              |     | 4.8    |        | 0.00    | 0.43  | 0.002  | 70.037  | 1.001 | 0.510            |

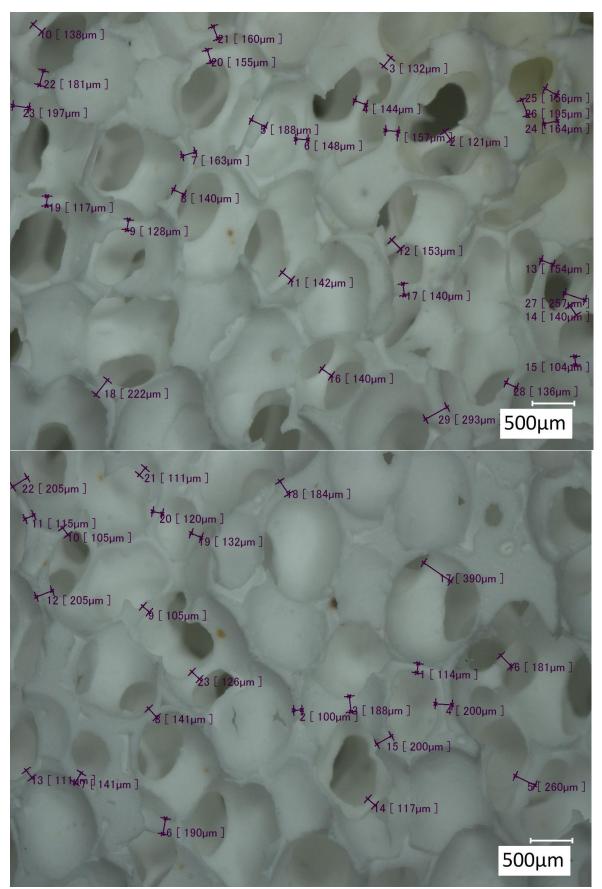
## Lanik:

| navn på filter       |               |    | g      | mm     | mm      | mm    | dm3   |       | kg/m3   | kN        | MPa               |
|----------------------|---------------|----|--------|--------|---------|-------|-------|-------|---------|-----------|-------------------|
| produsent            | sysinavni ppi |    | Weight | Height | Lengde  | Width | volum | e     | density | max force | Crushing strength |
| Lanik30_10m_30       | Seleecy30_1   | 30 | 35.5   | 48.04  |         | 47.   | 14    | 0.084 | 423.405 | 1.053     | 0.536             |
| Lanik30_10m_31       | Seleecy30_1   | 30 | 33.4   | 47.78  |         | 48.   | 81    | 0.089 | 373.588 | 0.967     | 0.492             |
| Lanik30_10m_32       | Seleecy30_1   | 30 | 33.7   | 47.75  |         | 47.   | 26    | 0.084 | 402.327 | 1.071     | 0.545             |
| Lanik30_10m_33       | Seleecy30_1   | 30 | 33.1   | 47.67  |         | 47.   | 26    | 0.084 | 395.827 | 1.434     | 0.730             |
| Lanik30_10m_34       | Seleecy30_1   | 30 | 31.5   | 47.91  |         | 47.   | 02    | 0.083 | 378.642 | 0.708     | 0.361             |
| Lanik30_10m_35       | Seleecy30_1   | 30 | 32.9   | 48.20  |         | 48.   | 47    | 0.089 | 369.924 | 1.147     | 0.584             |
| Lanik30_10m_36       | Seleecy30_1   | 30 | 34.9   | 48.01  |         | 49.   | 93    | 0.094 | 371.262 | 1.237     | 0.630             |
| Lanik30_10m_37       | Seleecy30_1   | 30 | 31.6   | 47.85  |         | 45.   | 99    | 0.079 | 397.547 | 1.073     | 0.546             |
| Lanik30_10m_38       | Seleecy30_1   | 30 | 32.7   | 47.77  |         | 47.   | 15    | 0.083 | 392.048 | 1.053     | 0.536             |
| Lanik30_10m_39       | Seleecy30_1   | 30 | 35.6   | 48.00  |         | 48.   | 09    | 0.087 | 408.328 | 1.280     | 0.652             |
| Average              |               |    | 33.5   | 47.9   | #DIV/0! | 47    | 7.7   | 0.1   | 391.290 | 1.102     | 0.561             |
| standard deviation   |               |    |        |        |         |       |       |       | 16.837  | 0.185     | 0.094             |
| Max. value           |               |    | 35.6   | 48.2   | 0.0     | 49    | .9    | 0.1   | 423.405 | 1.434     | 0.730             |
| Min. value           |               |    | 31.5   | 47.7   | 0.0     | 46    | 0.0   | 0.1   | 369.924 | 0.708     | 0.361             |
| Max. Min. Difference |               |    | 4.1    | 0.53   | 0.00    | 3.    | 94    | 0.015 | 53.481  | 0.726     | 0.370             |
| Lanikhot30_1h_30     | lanikoy30_3(  | 30 | 39.3   | 47.78  |         | 50.   | 81    | 0.097 | 405.656 | 1.902     | 0.969             |
| Lanikhot30_1h_31     | lanikey30_31  | 30 | 37.8   | 47.69  |         | 50.   | 86    | 0.097 | 390.141 | 1.816     | 0.925             |
| Lanikhot30_1h_32     | lanikoy30_32  | 30 | 37.7   | 47.40  |         | 50.   | 72    | 0.096 | 393.654 | 1.621     | 0.826             |
| Lanikhot30_1h_33     | lanikov30_31  | 30 | 38.1   | 47.68  |         | 50.   | 55    | 0.096 | 398.159 | 2.375     | 1.210             |
| Lanikhot30_1h_34     | lanikoy30_34  | 30 | 39.3   | 47.76  |         | 50.   | 20    | 0.095 | 415.749 | 1.975     | 1.006             |
| Lanikhot30_1h_35     | lanikey30_3   | 30 | 38.9   | 47.93  |         | 50.   | 70    | 0.097 | 402.010 | 2.356     | 1.200             |
| Lanikhot30_1h_36     | lanikey30_3t  | 30 | 37.0   | 47.77  |         | 50.   | 79    | 0.097 | 382.296 | 1.983     | 1.010             |
| Lanikhot30_1h_37     | lanikov30_31  | 30 | 37.6   | 47.99  |         | 50.   |       | 0.097 | 389.470 | 2.010     | 1.024             |
| Lanikhot30_1h_38     | lanikov30_38  | 30 | 37.5   | 47.96  |         | 50.   | 71    | 0.097 | 387.146 | 2.148     | 1.094             |
| Lanikhot30_1h_39     | lanikey30_3   | 30 | 38.7   | 47.68  |         | 50.   |       | 0.097 | 398.573 | 2.375     | 1.210             |
| Average              | / -           |    | 38.2   | 47.8   | #DIV/0! | 50    | ).7   | 0.1   | 396.29  | 2.1       | 1.047             |
| standard deviation   |               |    |        |        |         |       |       |       | 9.37    |           | 0.123             |
| Max, value           |               |    | 39.3   | 48.0   | 0.0     | 50    | ).9   | 0.1   |         | 2.4       | 1.210             |
| Min. value           |               |    | 37.0   | 47.4   | 0.0     | 50    |       | 0.1   | 382.3   | 1.6       | 0.826             |
| Max. Min. Difference |               |    | 2.3    | 0.59   | 0.00    | 0.1   |       | 0.003 | 33,452  | 0.754     | 0.384             |
| Lanik30_2h_50        | Seleecv30_5   | 30 | 34.1   | 47.48  |         | 49.   | 65    | 0.092 | 370.950 | 1.053     | 0.536             |
| Lanik30_2h_51        | Seleecy30_5   | 30 | 31.8   | 47.48  |         | 50.   |       | 0.096 | 331.881 | 1.387     | 0.706             |
| Lanik30_2h_52        | Seleecy30_5   | 30 | 33.7   | 47.90  |         | 48.   |       | 0.089 | 380.350 | 1.434     | 0.730             |
| Lanik30_2h_53        | Seleecv30_5   | 30 | 32.2   | 47.91  |         | 50.   |       | 0.097 | 331.207 | 1.182     | 0.602             |
| Lanik30_2h_54        | Seleecy30_5   | 30 | 34.2   | 47.75  |         | 50.   |       | 0.096 | 356.737 | 1.246     | 0.635             |
| Lanik30_2h_55        | Seleecy30_5   | 30 | 37.9   | 47.83  |         | 50.   |       | 0.097 | 389,569 | 2.284     | 1.163             |
| Lanik30_2h_56        | Seleecy30_{   | 30 | 34.0   | 47.72  |         | 50.   |       | 0.096 | 352.917 | 1.053     | 0.536             |
| Lanik30_2h_57        | Seleecy30_{   | 30 | 36.1   | 47.55  |         | 50.   |       | 0.094 | 385.577 | 1.100     | 0.560             |
| Lanik30_2h_58        | Seleecy30_{   | 30 | 34.7   | 47.85  |         | 49.   |       | 0.091 | 382.218 | 1.225     | 0.624             |
| Lanik30_2h_59        | Seleecy30_{   | 30 | 32.8   | 47.82  |         | 43.   |       | 0.070 | 468.392 | 1.147     | 0.584             |
| Average              | 00.000900_1   | 00 | 34.2   | 47.7   | #DIV/0! | 49    |       | 0.010 | 374.980 | 1.311     | 0.668             |
| standard deviation   |               |    | 04.2   | 41.1   |         |       |       | 0.1   | 37.070  | 0.346     | 0.000             |
| Max, value           |               |    | 37.9   | 47.9   | 0.0     | 50    | ).9   | 0.1   |         | 2.284     | 1.163             |
| Min. value           |               |    | 31.8   | 47.5   | 0.0     | 43    |       | 0.1   | 331.207 | 1.053     | 0.536             |
| Max. Min. Difference |               |    | 6.1    | 0.43   | 0.00    |       |       | 0.027 | 137,185 | 1.231     | 0.627             |
| max. Min. Difference |               |    | 0.1    | 0.43   | 0.00    | ſ.    |       | 0.021 | 131,103 | 1.231     | 0.021             |

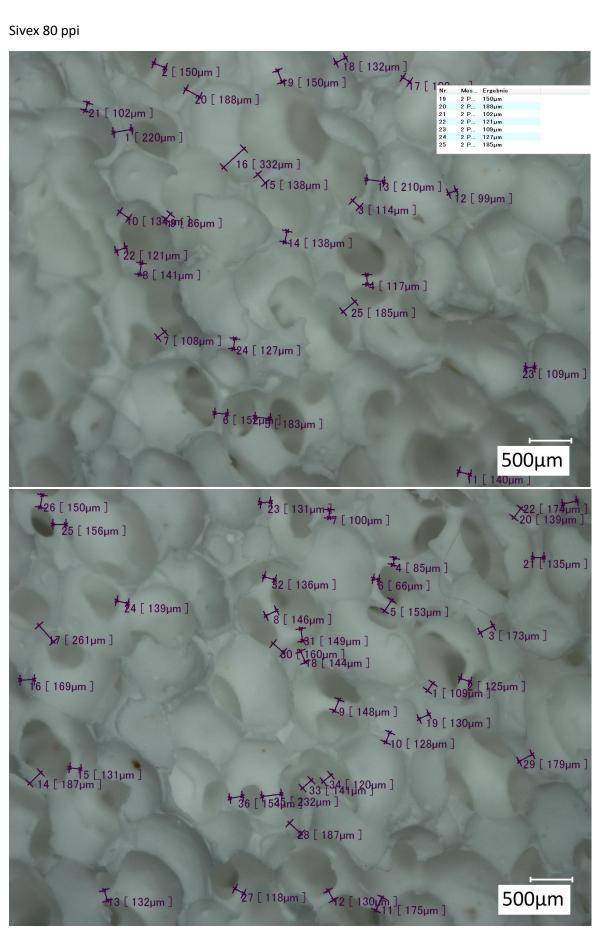
## Selee:


| navn på filter                       |                   |      | g      | mm     | mm       | mm    | dm3    | kg/m3              | kN        | MPa               |
|--------------------------------------|-------------------|------|--------|--------|----------|-------|--------|--------------------|-----------|-------------------|
| produsent                            | sys navn          | ppi  | Weight | Height | Lengde   | Width | volume | density            | max force | Crushing strength |
| Seleehot30_10m_30                    | ) 11              | . 30 | 35.7   | 50.92  |          | 50.75 | 0.103  | 346.591            | 2.280     | 1.161             |
| Seleehot30_10m_31                    | 12                | 30   | 36.0   | 51.05  |          | 50.96 | 0.104  | 345.747            | 2.478     | 1.262             |
| Seleehot30_10m_32                    | 2 13              | 30   | 34.5   | 50.85  |          | 50.61 | 0.102  | 337.261            | 2.139     | 1.089             |
| Seleehot30_10m_33                    | 3 14              | 30   | 35.0   | 50.77  |          | 50.43 | 0.101  | 345.138            | 2.001     | 1.019             |
| Seleehot30_10m_34                    | 15                | 30   | 35.0   | 50.63  |          | 50.74 | 0.102  | 341.877            | 1.983     | 1.010             |
| Seleehot30 10m 35                    | 16                | 30   | 34.0   | 50.83  |          | 50.78 | 0.103  | 330.281            | 2.233     | 1.137             |
| Seleehot30 10m 36                    | 17                | 30   | 35.5   | 50.87  |          | 50.76 | 0.103  | 344.853            | 2.001     | 1.019             |
| Seleehot30 10m 37                    | <mark>/</mark> 18 | 30   | 35.4   | 50.66  |          | 50.62 | 0.102  | 347.219            | 2.002     | 1.020             |
| Seleehot30 10m 38                    | 19                | 30   | 35.4   | 50.71  |          | 50.70 | 0.102  | 345.783            | 2.001     | 1.019             |
| Seleehot30 10m 39                    |                   |      | 36.4   |        |          | 50.74 |        | 355,552            | 2.285     | 1.164             |
| Average                              |                   |      | 35.3   | 50.8   | #DIV/0!  | 50.7  |        | 344.030            | 2.140     | 1.090             |
| standard deviation                   |                   |      |        |        |          |       |        | 6.300              | 0.163     | 0.083             |
| Max. value                           |                   |      | 36.4   | 51.1   | 0.0      | 51.0  | 0.1    |                    | 2.478     | 1.262             |
| Min. value                           |                   |      | 34.0   |        | 0.0      | 50.4  |        |                    | 1.983     | 1.010             |
| Max. Min. Difference                 |                   |      | 2.4    |        | 0.00     | 0.53  |        | 25.271             | 0.495     | 0.252             |
| Seleehot30 1h 30                     | seleecy30 30      | 30   | 31.3   |        |          | 50.78 |        | 310.217            | 1.475     | 0.751             |
| Seleehot30 1h 31                     | seleecy30 31      | 30   | 32.8   | 50.24  |          | 50.84 |        | 321.605            | 1.220     | 0.621             |
| Seleehot30 1h 32                     | seleecy30 32      | 30   | 34.2   | 50.21  |          | 50.84 |        | 335.533            | 2,118     | 1.079             |
| Seleehot30 1h 33                     | seleecy30 33      | 30   | 34.9   | 50.42  |          | 50.82 |        | 341.243            | 1.620     | 0.825             |
| Seleehot30 1h 34                     | seleecy30_34      | 30   | 34.1   | 50.55  |          | 50.90 |        | 331.519            | 2.000     | 1.019             |
| Seleehot30 1h 35                     | seleecy30 35      | 30   | 31.3   | 50.12  |          | 50.76 |        | 308.603            | 1.780     | 0.907             |
| Seleehot30_1h_36                     | seleecy30_36      | 30   | 31.7   | 50.20  |          | 50.87 |        | 310.701            | 1.621     | 0.826             |
| Seleehot30 1h 37                     | seleecy30 37      | 30   | 32.1   | 50.11  |          | 50.78 |        | 316.304            | 1.813     | 0.923             |
| Seleehot30_1h_38                     | seleecy30_38      | 30   | 32.3   | 50.15  |          | 50.73 |        | 318.649            | 1.839     | 0.937             |
| Seleehot30 1h 39                     | seleecy30 39      | 30   | 31.6   | 50.07  |          | 50.93 |        | 309.793            | 1.813     | 0.923             |
| Average                              | Scieccyso_55      | 50   | 32.6   | 50.2   | #DIV/0!  | 50.8  |        | 320.417            | 1.730     | 0.823             |
| standard deviation                   |                   |      | 52.0   | 50.2   | inDivid: | 50.0  | 0.1    | 11.215             | 1.750     | 0.125             |
| Max, value                           |                   |      | 34.9   | 50.6   | 0.0      | 50.9  | 0.1    | 341.243            | 2.118     | 1.079             |
| Min. value                           |                   |      | 31.3   | 49.8   | 0.0      | 50.5  |        | 308.603            | 1.220     | 0.621             |
| Max. Min. Difference                 |                   |      | 3.6    |        | 0.00     | 0.20  |        |                    | 0.898     | 0.457             |
| Seleehot30 2h 50                     | 1                 | 30   | 36.1   |        | 0.00     | 50.78 |        | 350.130            | 2.375     | 1.210             |
| Seleehot30 2h 51                     | 2                 |      | 36.3   |        |          | 50.66 |        | 354.715            | 2.375     | 1.210             |
| Seleehot30 2h 52                     | 3                 |      | 34.9   |        |          | 50.80 |        | 339.625            | 1.902     | 0.969             |
| Seleehot30 2h 53                     | 4                 |      | 33.9   |        |          | 50.80 |        | 330.482            | 2.095     | 1.067             |
| Seleehot30_2h_53                     | 4                 |      | 33.4   |        |          | 50.82 |        | 326.892            | 2.095     | 1.067             |
| Seleehot30_2h_54<br>Seleehot30_2h_55 | 6                 |      |        |        |          |       |        |                    | 2.188     |                   |
| Seleehot30_2h_55                     | 7                 |      | 34.3   |        |          | 50.71 |        | 334.445<br>336.111 | 2.188     | 1.114             |
|                                      | 8                 |      | 34.6   |        |          | 50.87 |        |                    | 2.060     | 1.049             |
| Seleehot30_2h_57                     |                   |      | 36.1   |        |          | 50.78 |        | 350.819            |           | 1.305             |
| Seleehot30_2h_58                     | 9                 |      | 36.4   |        |          | 50.95 |        | 349.452            | 2.356     | 1.200             |
| Seleehot30_2h_59                     | 10                | 30   | 36.0   |        |          | 50.84 |        | 348.816            | 2.375     | 1.210             |
| Average                              |                   |      | 35.2   | 50.8   | #DIV/0!  | 50.8  | 0.1    | 342.149            | 2.248     | 1.145             |
| standard deviation                   |                   |      |        |        |          |       |        | 9.304              | 0.186     | 0.095             |
| Max. value                           |                   |      | 36.4   |        | 0.0      | 51.0  |        |                    | 2.562     | 1.305             |
| Min. value                           |                   |      | 33.4   | 50.6   | 0.0      | 50.7  |        | 326.892            | 1.902     | 0.969             |
| Max. Min. Difference                 |                   |      | 3.0    | 0.52   | 0.00     | 0.29  | 0.002  | 27.823             | 0.660     | 0.336             |

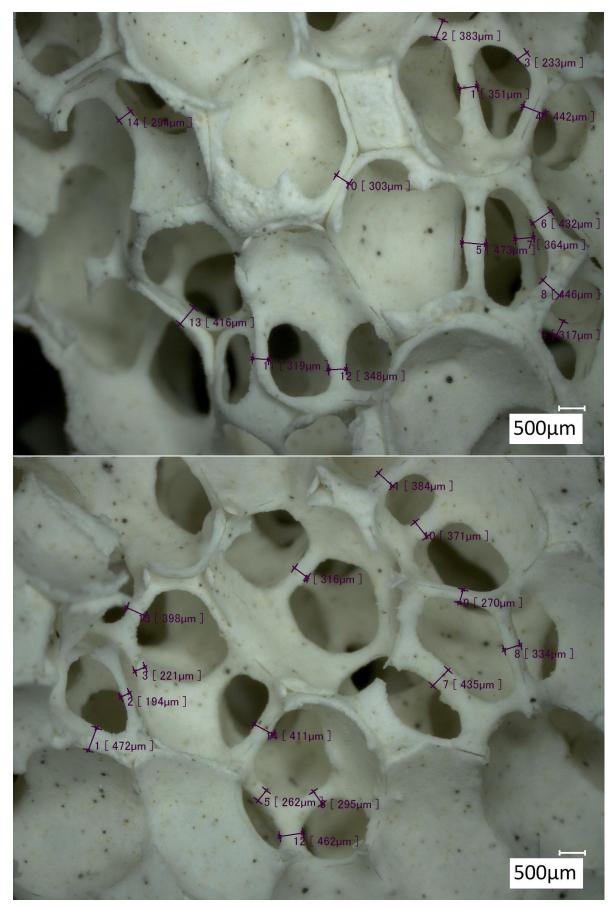
## Selee:


| navn på filter       |              |     | g      | mm     | mm      | mm    | dm3    | kg/m3   | kN        | MPa               |
|----------------------|--------------|-----|--------|--------|---------|-------|--------|---------|-----------|-------------------|
| produsent            | sys navn     | ppi | Weight | Height | Lengde  | Width | volume | density | max force | Crushing strength |
| Seleehot30_10m_30    | 11           | 30  | 35.7   | 50.92  |         | 50.75 | 0.103  | 346.591 | 2.280     | 1.161             |
| Seleehot30_10m_31    | 12           | 30  | 36.0   | 51.05  |         | 50.96 | 0.104  | 345.747 | 2.478     | 1.262             |
| Seleehot30_10m_32    | 13           | 30  | 34.5   | 50.85  |         | 50.61 | 0.102  | 337.261 | 2.139     | 1.089             |
| Seleehot30_10m_33    | 14           | 30  | 35.0   | 50.77  |         | 50.43 | 0.101  | 345.138 | 2.001     | 1.019             |
| Seleehot30_10m_34    | 15           | 30  | 35.0   | 50.63  |         | 50.74 | 0.102  | 341.877 | 1.983     | 1.010             |
| Seleehot30_10m_35    | 16           | 30  | 34.0   | 50.83  |         | 50.78 | 0.103  | 330.281 | 2.233     | 1.137             |
| Seleehot30_10m_36    | 17           | 30  | 35.5   | 50.87  |         | 50.76 | 0.103  | 344.853 | 2.001     | 1.019             |
| Seleehot30_10m_37    | 18           | 30  | 35.4   | 50.66  |         | 50.62 | 0.102  | 347.219 | 2.002     | 1.020             |
| Seleehot30_10m_38    | 19           | 30  | 35.4   | 50.71  |         | 50.70 | 0.102  | 345.783 | 2.001     | 1.019             |
| Seleehot30_10m_39    | 20           | 30  | 36.4   | 50.63  |         | 50.74 | 0.102  | 355.552 | 2.285     | 1.164             |
| Average              |              |     | 35.3   | 50.8   | #DIV/0! | 50.7  | 0.1    | 344.030 | 2.140     | 1.090             |
| standard deviation   |              |     |        |        |         |       |        | 6.300   | 0.163     | 0.083             |
| Max. value           |              |     | 36.4   | 51.1   | 0.0     | 51.0  | 0.1    | 355.552 | 2.478     | 1.262             |
| Min. value           |              |     | 34.0   | 50.6   | 0.0     | 50.4  | 0.1    | 330.281 | 1.983     | 1.010             |
| Max. Min. Difference |              |     | 2.4    | 0.42   | 0.00    | 0.53  | 0.003  | 25.271  | 0.495     | 0.252             |
| Seleehot30_1h_30     | seleecy30_30 | 30  | 31.3   | 49.82  |         | 50.78 | 0.101  | 310.217 | 1.475     | 0.751             |
| Seleehot30_1h_31     | seleecy30_31 | 30  | 32.8   | 50.24  |         | 50.84 | 0.102  | 321.605 | 1.220     | 0.621             |
| Seleehot30_1h_32     | seleecy30_32 | 30  | 34.2   | 50.21  |         | 50.84 | 0.102  | 335.533 | 2.118     | 1.079             |
| Seleehot30_1h_33     | seleecy30_33 | 30  | 34.9   | 50.42  |         | 50.82 | 0.102  | 341.243 | 1.620     | 0.825             |
| Seleehot30_1h_34     | seleecy30_34 | 30  | 34.1   | 50.55  |         | 50.90 | 0.103  | 331.519 | 2.000     | 1.019             |
| Seleehot30_1h_35     | seleecy30_35 | 30  | 31.3   | 50.12  |         | 50.76 | 0.101  | 308.603 | 1.780     | 0.907             |
| Seleehot30_1h_36     | seleecy30_36 | 30  | 31.7   | 50.20  |         | 50.87 | 0.102  | 310.701 | 1.621     | 0.826             |
| Seleehot30_1h_37     | seleecy30_37 | 30  | 32.1   | 50.11  |         | 50.78 | 0.101  | 316.304 | 1.813     | 0.923             |
| Seleehot30_1h_38     | seleecy30_38 | 30  | 32.3   | 50.15  |         | 50.73 | 0.101  | 318.649 | 1.839     | 0.937             |
| Seleehot30_1h_39     | seleecy30_39 | 30  | 31.6   | 50.07  |         | 50.93 | 0.102  | 309.793 | 1.813     |                   |
| Average              |              |     | 32.6   | 50.2   | #DIV/0! | 50.8  | 0.1    | 320.417 | 1.730     | 0.881             |
| standard deviation   |              |     |        |        |         |       |        | 11.215  |           | 0.125             |
| Max. value           |              |     | 34.9   | 50.6   | 0.0     | 50.9  | 0.1    | 341.243 | 2.118     | 1.079             |
| Min. value           |              |     | 31.3   |        | 0.0     | 50.7  |        | 308.603 | 1.220     | 0.621             |
| Max. Min. Difference |              |     | 3.6    | 0.73   | 0.00    | 0.20  | 0.002  | 32.640  | 0.898     | 0.457             |
| Seleehot30_2h_50     | 1            |     |        | 50.91  |         | 50.78 | 0.103  | 350.130 | 2.375     |                   |
| Seleehot30_2h_51     | 2            |     |        | 50.77  |         | 50.66 | 0.102  | 354.715 | 2.376     |                   |
| Seleehot30_2h_52     | 3            |     | 34.9   |        |         | 50.80 | 0.103  | 339.625 | 1.902     | 0.969             |
| Seleehot30_2h_53     | 4            |     | 33.9   |        |         | 50.82 | 0.103  | 330.482 | 2.095     |                   |
| Seleehot30_2h_54     | 5            |     | 33.4   | 50.65  |         | 50.68 | 0.102  | 326.892 | 2.188     |                   |
| Seleehot30_2h_55     | 6            |     | 34.3   |        |         | 50.71 | 0.103  | 334.445 | 2.188     |                   |
| Seleehot30_2h_56     | 7            |     | 34.6   |        |         | 50.87 | 0.103  | 336.111 | 2.060     | 1.049             |
| Seleehot30_2h_57     | 8            |     | 36.1   | 50.81  |         | 50.78 | 0.103  | 350.819 | 2.562     |                   |
| Seleehot30_2h_58     | 9            |     | 36.4   |        |         | 50.95 | 0.104  | 349.452 | 2.356     |                   |
| Seleehot30_2h_59     | 10           | 30  | 36.0   |        |         | 50.84 | 0.103  | 348.816 | 2.375     |                   |
| Average              |              |     | 35.2   | 50.8   | #DIV/0! | 50.8  | 0.1    | 342.149 | 2.248     |                   |
| standard deviation   |              |     |        |        |         |       |        | 9.304   | 0.186     |                   |
| Max. value           |              |     | 36.4   |        | 0.0     | 51.0  |        |         | 2.562     |                   |
| Min. value           |              |     | 33.4   | 50.6   | 0.0     | 50.7  | 0.1    | 326.892 | 1.902     |                   |
|                      |              |     | 3.0    | 0.52   | 0.00    | 0.29  | 0.002  | 27.823  | 0.660     | 0.336             |

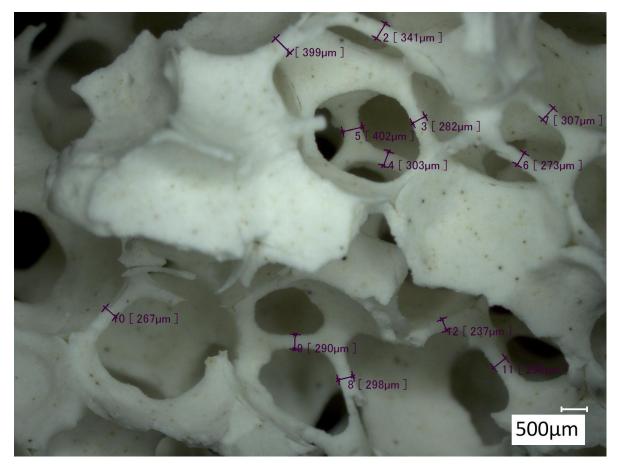
## D Microscopic photos with strut thickness displayed of the filters


### Sivex 30 ppi

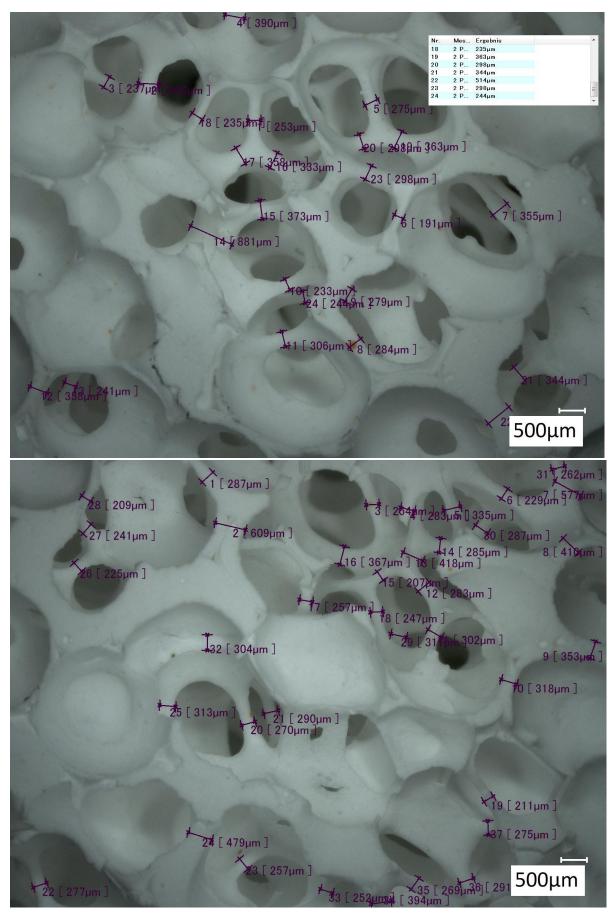



### Sivex 65 ppi

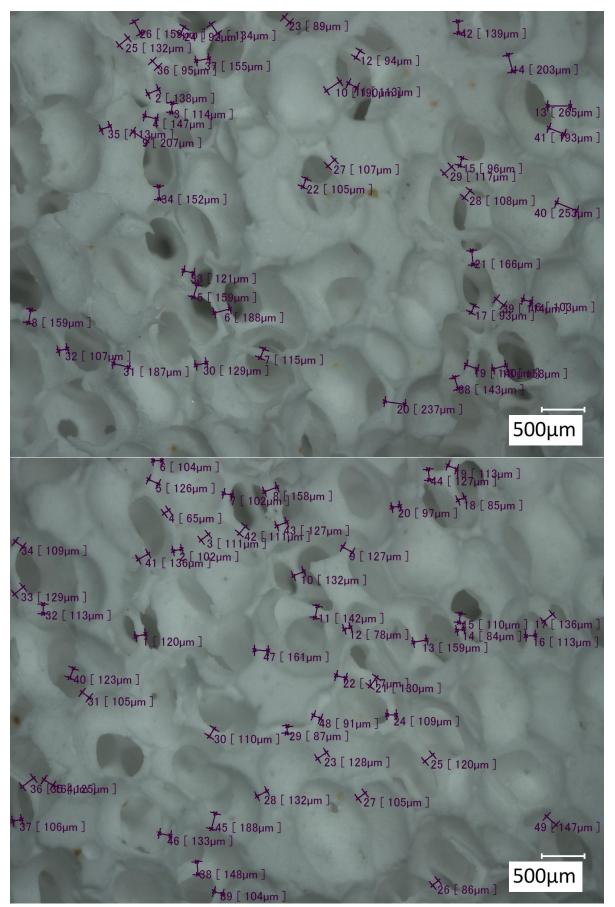



### Sivex 80 ppi

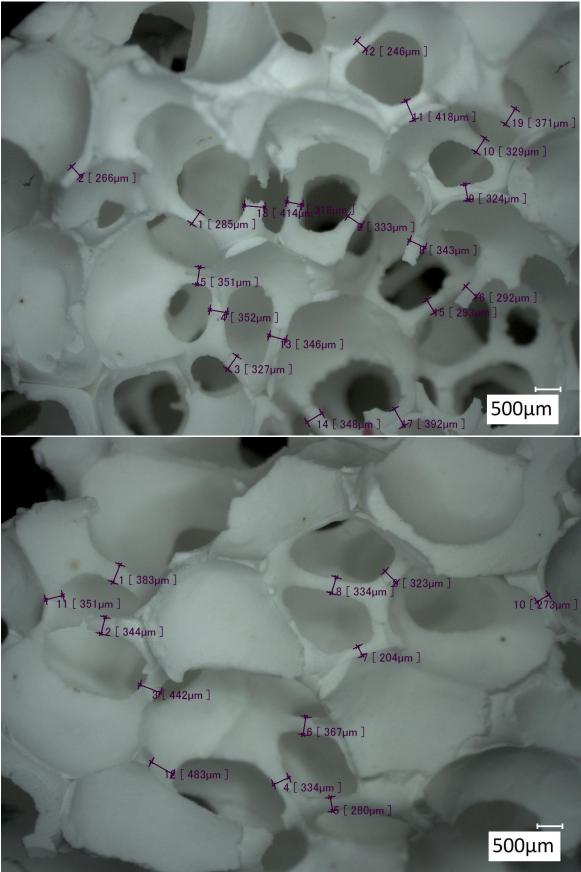



#### Sivex Non Phosphorus 30 ppi

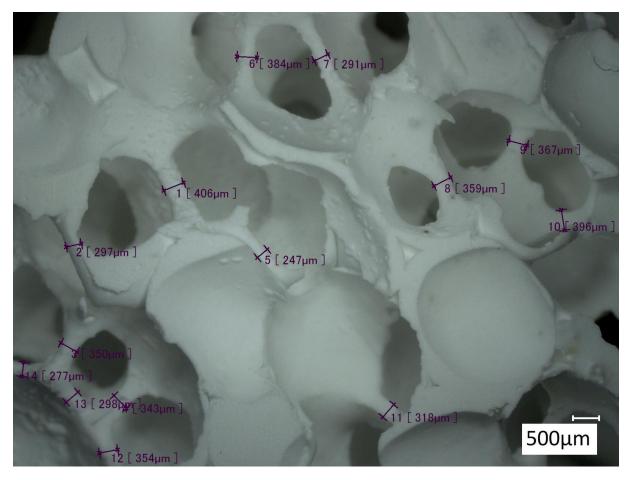



### Sivex Non Phosphorus 30 ppi

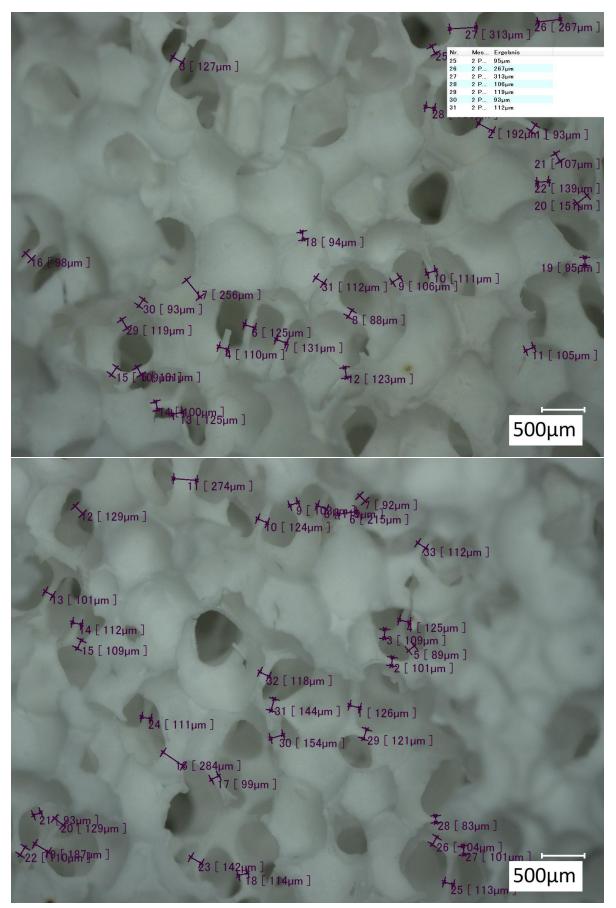



### Drache 30 ppi

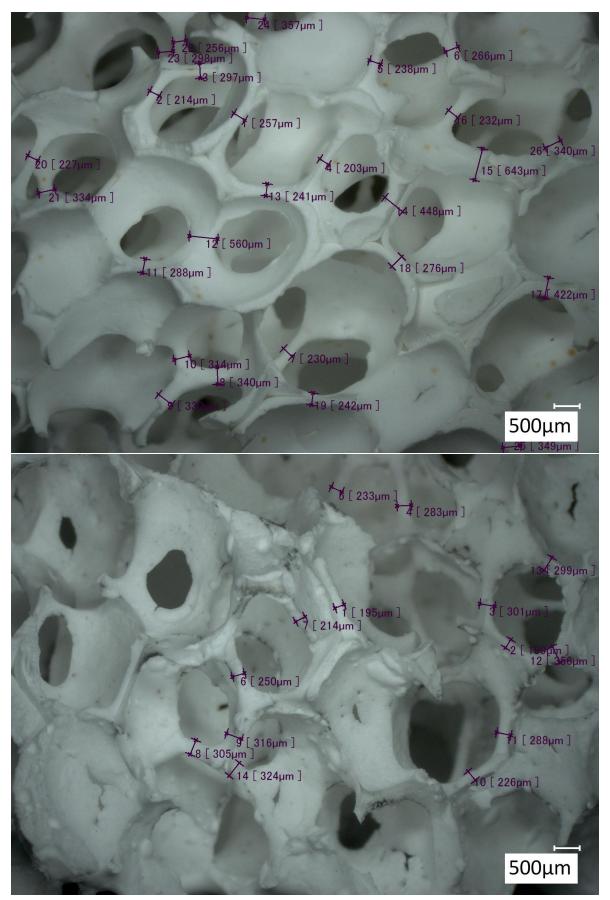



### Drache 60 ppi

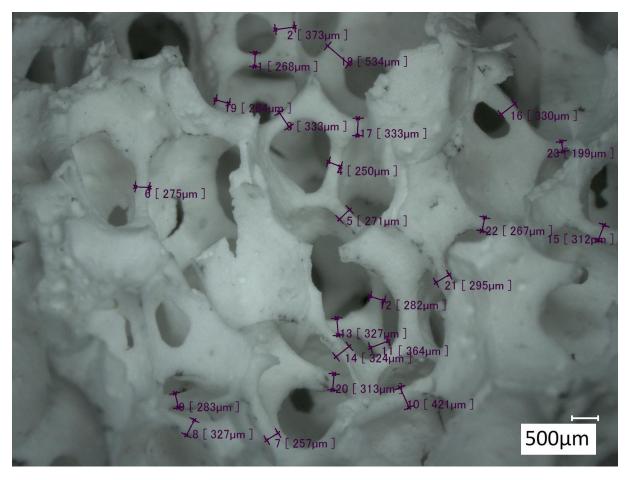



### Lanik 30 ppi




#### Lanik 30 ppi

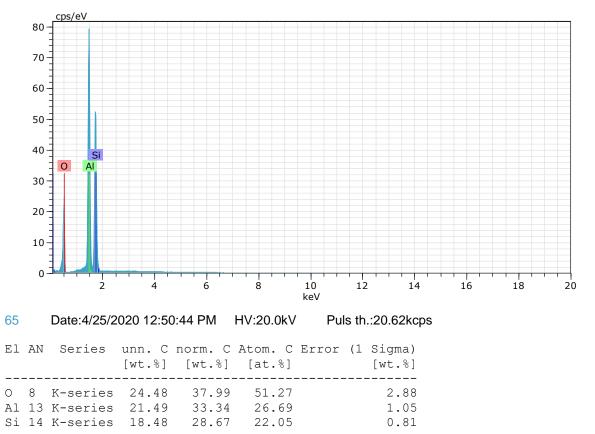



#### Lanik 60 ppi

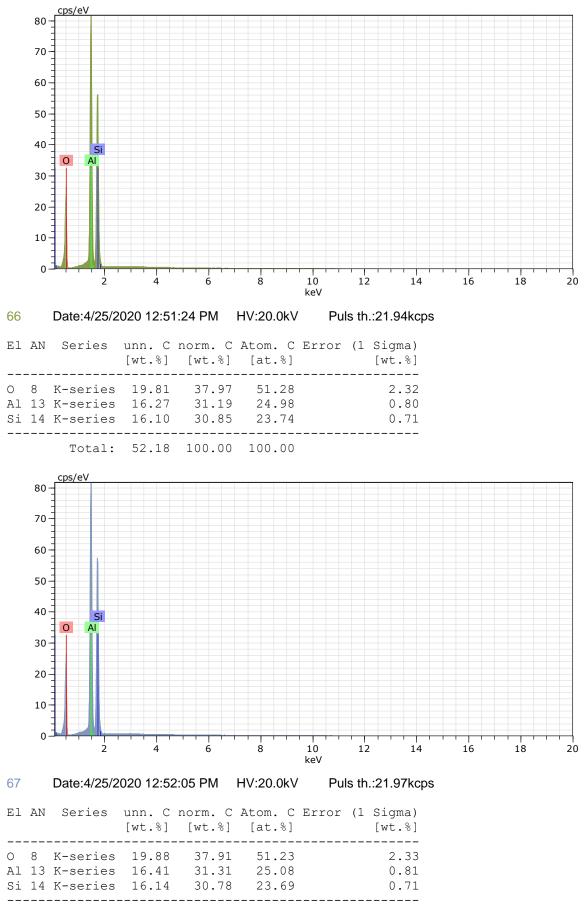


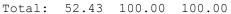
Selee 30 ppi

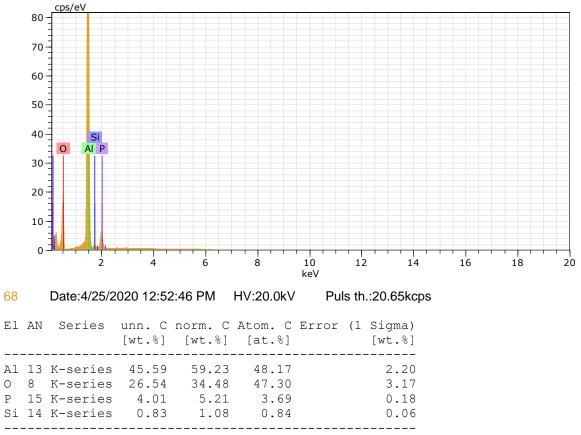



#### Selee 30 ppi

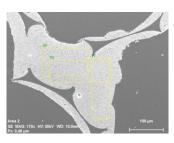



### E EDS RawData Sivex 30

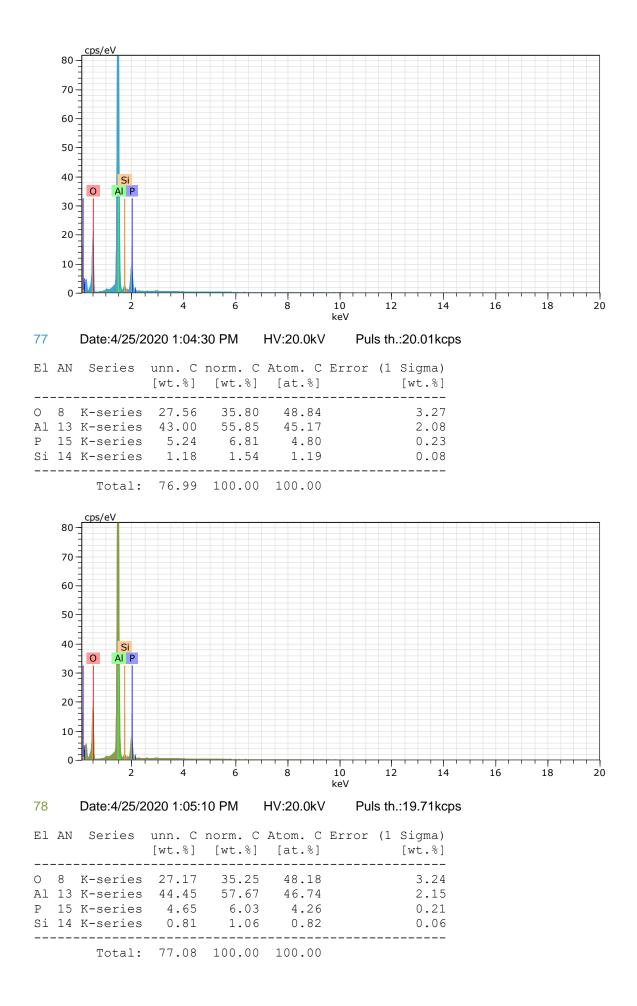


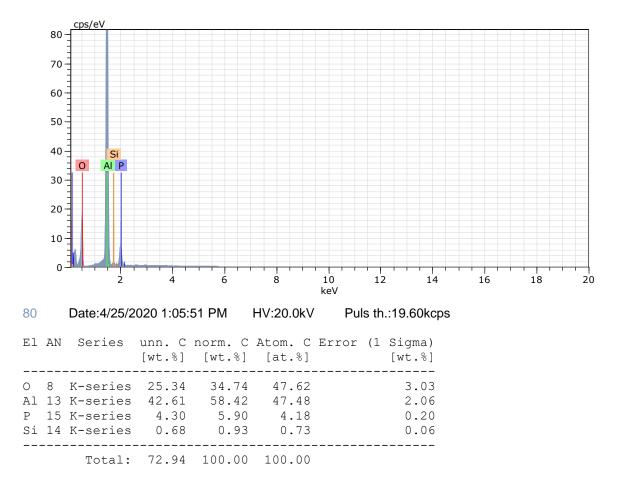


Area1 Date:4/25/2020 12:47:58 PM Image size:1024 x 768 Mag:600x HV:20.0kV

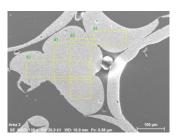



Total: 64.44 100.00 100.00

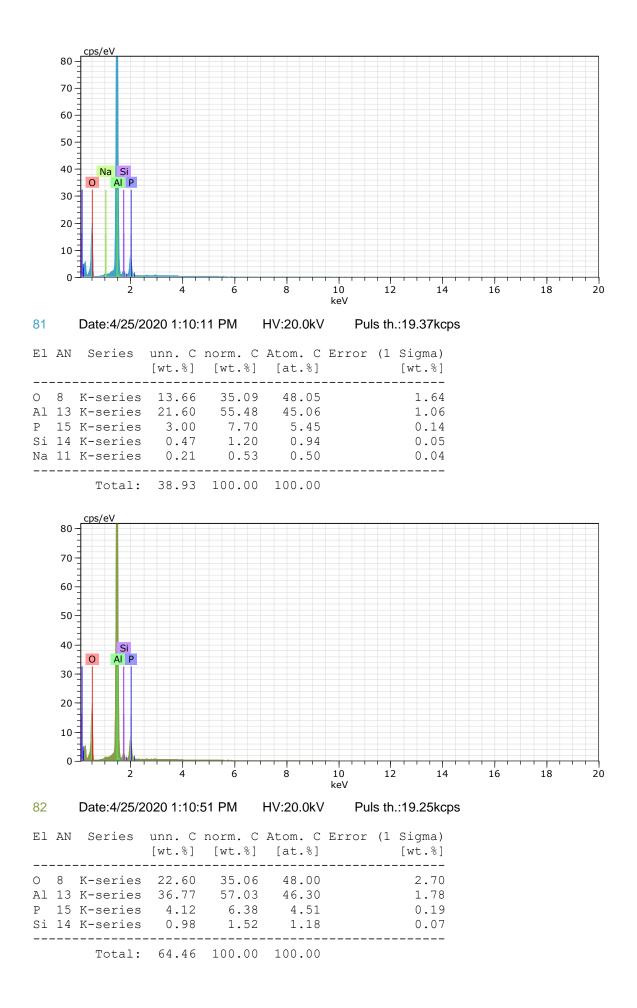


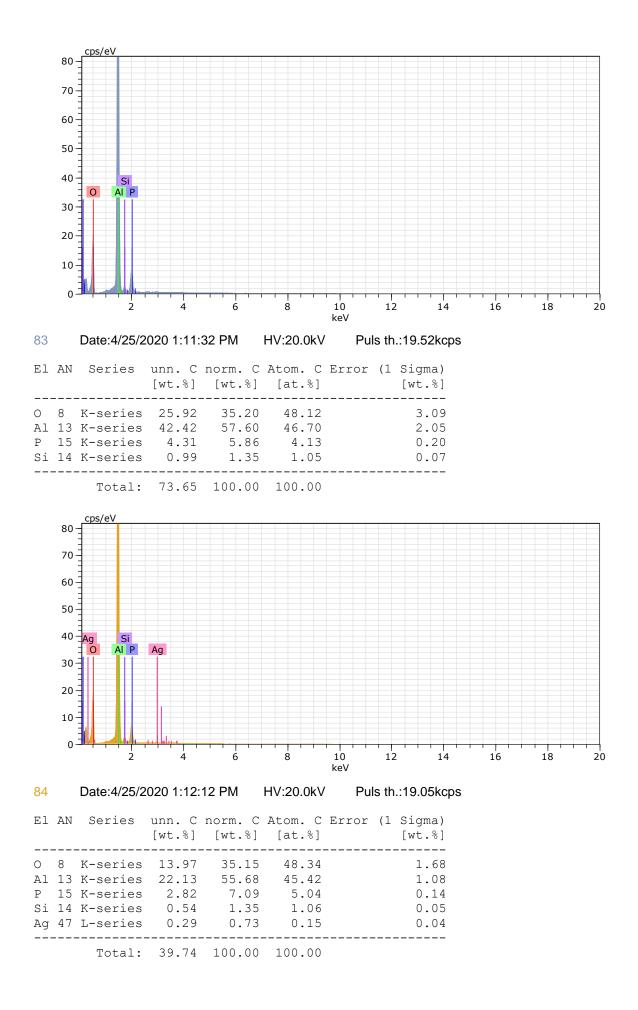


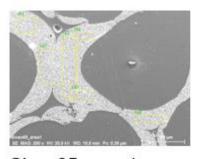


Total: 76.96 100.00 100.00



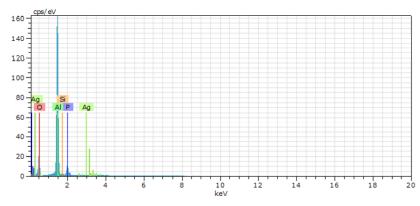

Area 2 Date:4/25/2020 1:01:14 PM Image size:1024 x 768 Mag:169.812x HV:20.0kV





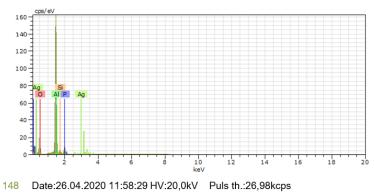

Area 3 Date:4/25/2020 1:08:58 PM Image size:1024 x 768 Mag:135.09164x HV:20.0kV



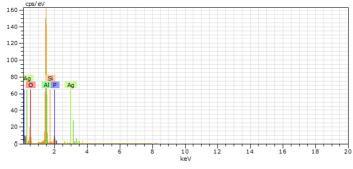



# F EDS RawData Sivex 65



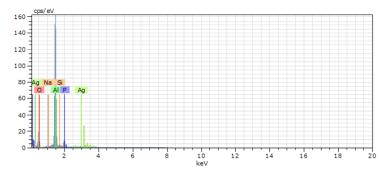

Sivex65\_area1 Date:26.04.2020 11:56:05 Image size:1024 x 768 Mag:200x HV:20,0kV

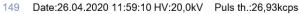



147 Date:26.04.2020 11:57:49 HV:20,0kV Puls th.:26,92kcps

| El AN                       | Series                                                   |                                        | norm. C<br>[wt.%]                      |                                        | Error | (1 Sigma)<br>[wt.%]                  |
|-----------------------------|----------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-------|--------------------------------------|
| 0 8<br><u>P 15</u><br>Si 14 | K-series<br>K-series<br>K-series<br>K-series<br>L-series | 42,75<br>25,32<br>4,12<br>0,76<br>0,43 | 58,26<br>34,50<br>5,61<br>1,04<br>0,58 | 47,57<br>47,51<br>3,99<br>0,81<br>0,12 |       | 2,06<br>2,96<br>0,19<br>0,06<br>0,04 |

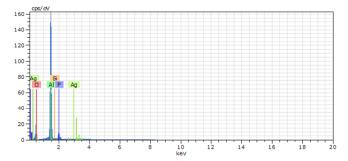
Total: 73,37 100,00 100,00





| El            | AN             | Series                                                   |       | norm. C<br>[wt.%]                      |                                        | Error | (1 Sigma)<br>[wt.%]                  |
|---------------|----------------|----------------------------------------------------------|-------|----------------------------------------|----------------------------------------|-------|--------------------------------------|
| Al<br>P<br>Si | 13<br>15<br>14 | K-series<br>K-series<br>K-series<br>K-series<br>L-series | 39,39 | 34,41<br>57,34<br>4,97<br>2,75<br>0,54 | 47,38<br>46,82<br>3,53<br>2,16<br>0,11 |       | 2,77<br>1,90<br>0,16<br>0,11<br>0,04 |
|               |                | Total:                                                   | 68,69 | 100,00                                 | 100,00                                 |       |                                      |



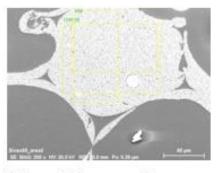
150 Date:26.04.2020 11:59:50 HV:20,0kV Puls th.:26,58kcps


| El            | AN             | Series                                                   |                                        | norm. C<br>[wt.%]                      |                                        | Error | (1 | Sigma)<br>[wt.%]                     |
|---------------|----------------|----------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-------|----|--------------------------------------|
| Al<br>P<br>Si | 13<br>15<br>14 | K-series<br>K-series<br>K-series<br>K-series<br>L-series | 16,19<br>26,42<br>2,89<br>0,34<br>0,44 | 34,97<br>57,08<br>6,25<br>0,74<br>0,96 | 48,16<br>46,61<br>4,44<br>0,58<br>0,20 |       |    | 1,90<br>1,29<br>0,14<br>0,04<br>0,04 |
|               |                | Total:                                                   | 46,28                                  | 100,00                                 | 100,00                                 |       |    |                                      |





| El | AN | Series   |       | norm. C<br>[wt.%] |       | Error | (1 Sigma)<br>[wt.%] |
|----|----|----------|-------|-------------------|-------|-------|---------------------|
| Al | 13 | K-series | 41,24 | 58,14             | 47,50 |       | 1,99                |
| 0  | 8  | K-series | 24,19 | 34,09             | 46,98 |       | 2,83                |
| Ρ  | 15 | K-series | 3,60  | 5,07              | 3,61  |       | 0,17                |
| si | 14 | K-series | 1,17  | 1,65              | 1,30  |       | 0,08                |
| Na | 11 | K-series | 0,37  | 0,53              | 0,51  |       | 0,05                |
| Ag | 47 | L-series | 0,37  | 0,52              | 0,11  |       | 0,04                |
|    |    |          |       |                   |       |       |                     |


| <u>Total: 70</u> , | 94 100, | ,00 : | 100,00 |
|--------------------|---------|-------|--------|
|--------------------|---------|-------|--------|



151 Date:26.04.2020 12:00:31 HV:20,0kV Puls th.:26,52kcps

| El     | AN | Series   |       | norm. C<br>[wt.%] |        | Error | (1 Sigma)<br>[wt.%] |
|--------|----|----------|-------|-------------------|--------|-------|---------------------|
| <br>Al | 13 | K-series | 41,65 | 59,03             | 48,18  |       | 2,01                |
| 0      | 8  | K-series | 24,27 | 34,41             | 47,36  |       | 2,85                |
| Ρ      | 15 | K-series | 3,53  | 5,00              | 3,55   |       | 0,16                |
| si     | 14 | K-series | 0,72  | 1,01              | 0,80   |       | 0,06                |
| Ag     | 47 | L-series | 0,39  | 0,55              | 0,11   |       | 0,04                |
|        |    | Total:   | 70,55 | 100,00            | 100,00 |       |                     |

1



Sivex65\_area2 Date:26.04.2020 12:05:00 Image size:1024 x 768 Mag:200x HV:20,0kV

0 8

K-series

P 15 K-series Si 14 K-series

Ag 47 L-series

\_\_\_\_\_

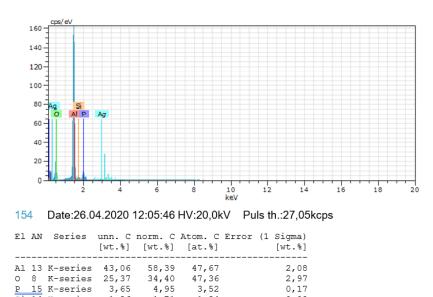
25,37

3,65

1,26

0,41

\_\_\_\_


Total: 73,76 100,00 100,00

4,95

1,71

0,55

\_\_\_\_



1,34

0,11

\_\_\_\_

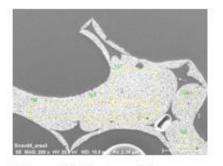
cps/e 160 140 120-100-80 60 40 16 18 10 keV 12 14

155 Date:26.04.2020 12:06:27 HV:20,0kV Puls th.:27,08kcps

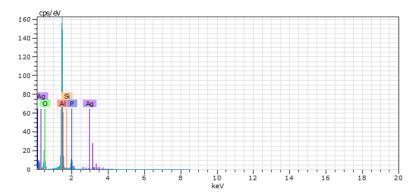
| el an | Series   |       | norm. C<br>[wt.%] |        | Error | (1 Sigma)<br>[wt.%] |
|-------|----------|-------|-------------------|--------|-------|---------------------|
|       |          |       |                   |        |       |                     |
| Al 13 | K-series | 42,66 | 58,85             | 48,02  |       | 2,06                |
| 08    | K-series | 25,01 | 34,51             | 47,48  |       | 2,92                |
| P 15  | K-series | 3,66  | 5,05              | 3,59   |       | 0,17                |
| Si 14 | K-series | 0,73  | 1,01              | 0,79   |       | 0,06                |
| Ag 47 | L-series | 0,42  | 0,58              | 0,12   |       | 0,04                |
|       |          |       |                   |        |       |                     |
|       | Total:   | 72,49 | 100,00            | 100,00 |       |                     |

| 0       | 2            | 4   | 6 | 8 | 10<br>keV | 12 | 14 | 16 | 18 |  |
|---------|--------------|-----|---|---|-----------|----|----|----|----|--|
| 20      |              | -du |   |   |           |    |    |    |    |  |
| 40      |              |     |   |   |           |    |    |    |    |  |
| 60      |              |     |   |   |           |    |    |    |    |  |
| 80 - Ag | Si<br>Al P A | 0   |   |   |           |    |    |    |    |  |
| 100     |              |     |   |   |           |    |    |    |    |  |
| 120     |              |     |   |   |           |    |    |    |    |  |
| 140     |              |     |   |   |           |    |    |    |    |  |
| 160     |              |     |   |   |           |    |    |    |    |  |

0,17

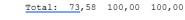

0,08

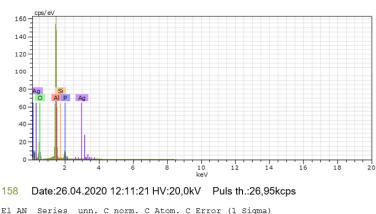
0,04


----

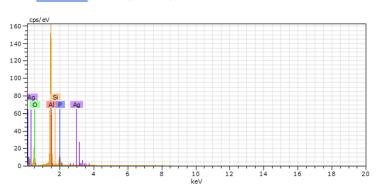
156 Date:26.04.2020 12:07:07 HV:20,0kV Puls th.:27,07kcps

| El           | AN            | Series                                                   |                                        | norm. C<br>[wt.%]                      |                                        | Error | (1 | Sigma)<br>[wt.%]                     |
|--------------|---------------|----------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-------|----|--------------------------------------|
| O<br>P<br>Si | 8<br>15<br>14 | K-series<br>K-series<br>K-series<br>K-series<br>L-series | 40,38<br>23,89<br>3,49<br>0,77<br>0,37 | 58,61<br>34,67<br>5,07<br>1,11<br>0,53 | 47,77<br>47,65<br>3,60<br>0,87<br>0,11 |       |    | 1,95<br>2,79<br>0,16<br>0,06<br>0,04 |
|              |               | Total:                                                   | <u>68</u> ,89                          | 100,00                                 | 100,00                                 |       |    |                                      |



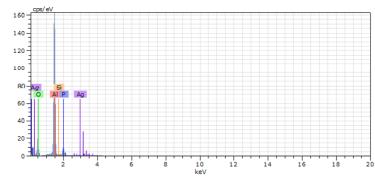


Sivex65\_area3 Date:26.04.2020 12:09:37 Image size:1024 x 768 Mag:200x HV:20,0kV




157 Date:26.04.2020 12:10:41 HV:20,0kV Puls th.:27,29kcps

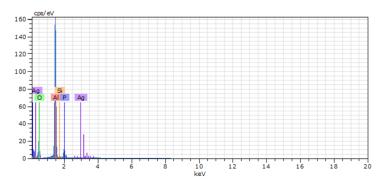
| El | AN | Series   |       | norm. C<br>[wt.%] |       | Error (1 | Sigma)<br>[wt.%] |
|----|----|----------|-------|-------------------|-------|----------|------------------|
| 0  | 8  | K-series | 25,60 | 34,79             | 47,83 |          | 2,98             |
| Al | 13 | K-series | 42,45 | 57,70             | 47,03 |          | 2,05             |
| P  | 15 | K-series | 4,33  | 5,88              | 4,17  |          | 0,19             |
| si | 14 | K-series | 0,80  | 1,09              | 0,85  |          | 0,06             |
| Ag | 47 | L-series | 0,40  | 0,54              | 0,11  |          | 0,04             |
|    |    |          |       |                   |       |          |                  |






El AN [wt.%] [wt.%] [at.%] [wt.%] 24,78 47,68 2,89 8 K-series 34,67 0 Al 13 K-series P 15 K-series Si 14 K-series 41,57 3,99 2,01 0,18 58,15 47,42 5,58 3,96 0,76 1,06 0,83 0,06 0,39 Ag 47 L-series 0,55 0,11 0,04 Total: 71,49 100,00 100,00




160 Date:26.04.2020 12:12:43 HV:20,0kV Puls th.:26,74kcps

| El            | AN             | Series                                                   |               | norm. C<br>[wt.%] |        | Error | (1 | Sigma)<br>[wt.%]                     |
|---------------|----------------|----------------------------------------------------------|---------------|-------------------|--------|-------|----|--------------------------------------|
| Al<br>P<br>Si | 13<br>15<br>14 | K-series<br>K-series<br>K-series<br>K-series<br>L-series | 42,29<br>4,42 | 6,00              |        |       |    | 3,00<br>2,04<br>0,20<br>0,06<br>0,04 |
|               |                | Total:                                                   | 73,54         | 100,00            | 100,00 |       |    |                                      |



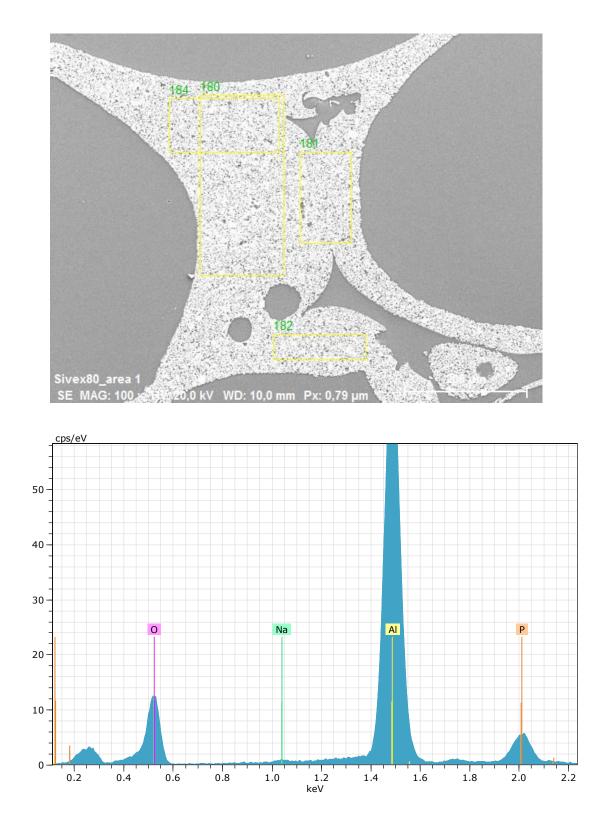
159 Date:26.04.2020 12:12:02 HV:20,0kV Puls th.:26,36kcps

| El A               | AN            | Series   |                                        | norm. C<br>[wt.%]                      |                                        | Error | (1 Sigma)<br>[wt.%]                  |
|--------------------|---------------|----------|----------------------------------------|----------------------------------------|----------------------------------------|-------|--------------------------------------|
| 0 8<br>P 1<br>Si 1 | B<br>15<br>14 | K-series | 42,83<br>25,36<br>3,73<br>0,71<br>0,41 | 58,64<br>34,73<br>5,10<br>0,97<br>0,56 | 47,78<br>47,72<br>3,62<br>0,76<br>0,12 |       | 2,07<br>2,97<br>0,17<br>0,06<br>0,04 |
|                    |               | Total:   | 73,04                                  | 100,00                                 | 100,00                                 |       |                                      |



161 Date:26.04.2020 12:13:23 HV:20,0kV Puls th.:26,99kcps

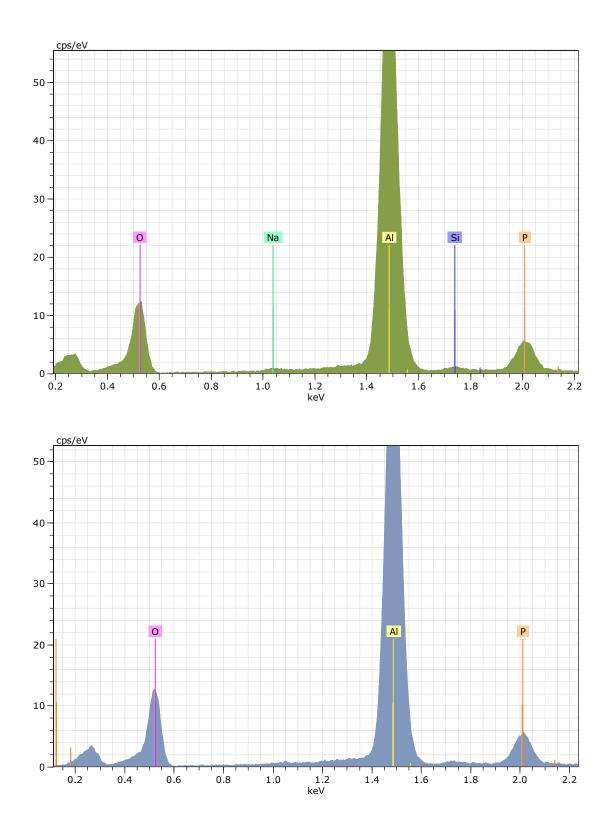
El AN Series unn. C norm. C Atom. C Error (1 Sigma) [wt.%] [wt.%] [at.%] [wt.%] 8 K-series 13,78 34,78 48,05 1,62 0 Al 13 K-series <u>P 15</u> K-series Si 14 K-series 22,12 3,06 55,84 7,72 45,75 5,51 1,08 0,15 0,23 0,58 0,46 0,04 Ag 47 L-series 0,43 1,08 0,22 0,04


Total: 39,62 100,00 100,00

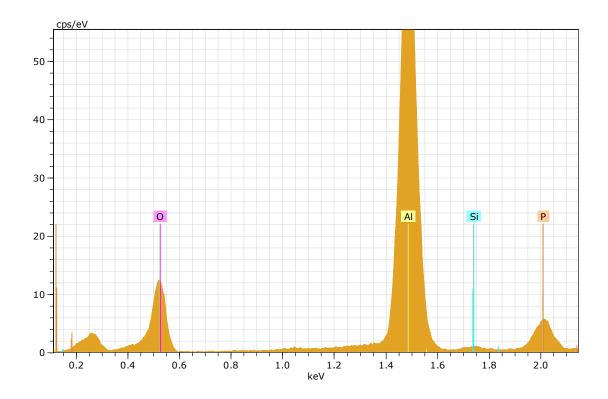
## G EDS RawData Sivex 80






Company / Department

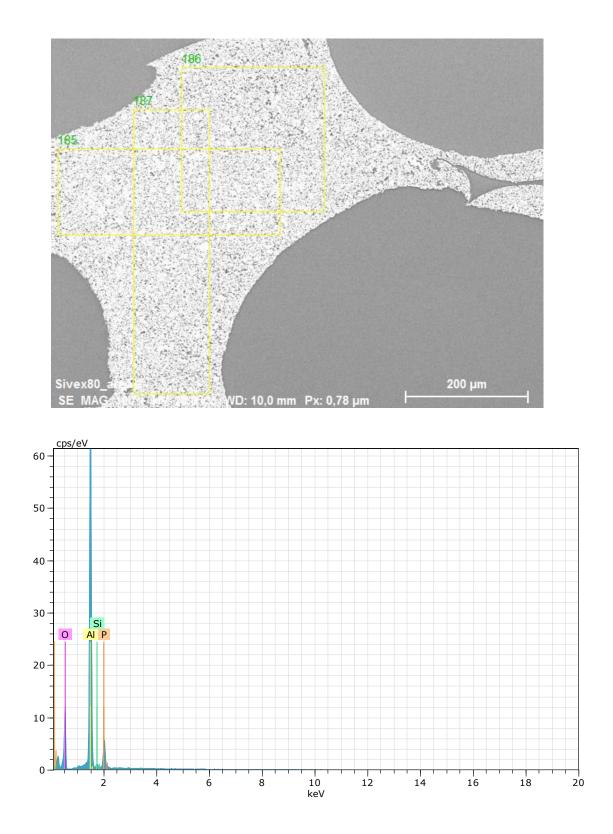



-----

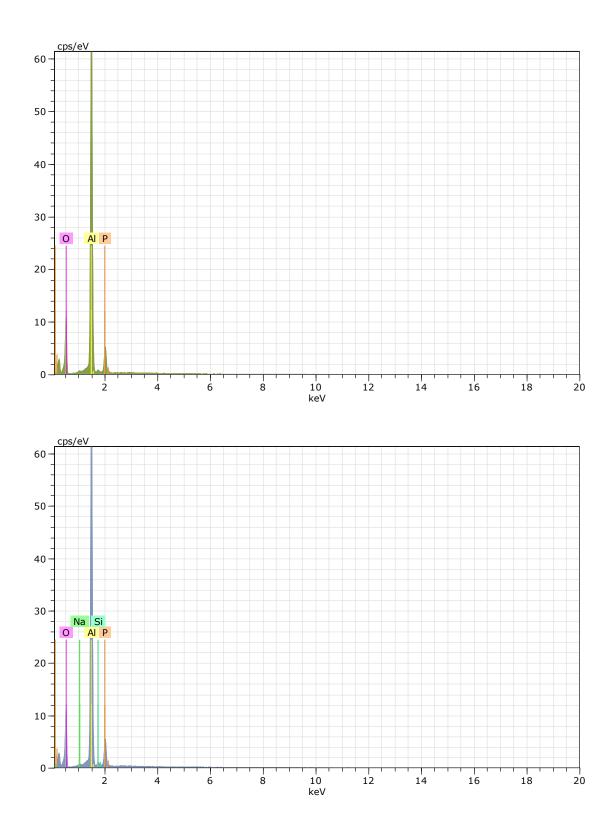
Page 1 /







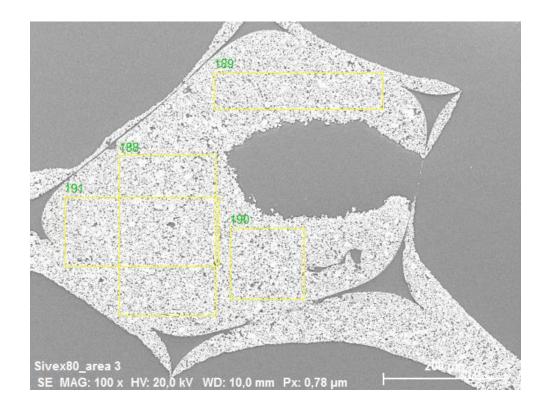




| Spectrun                 | n            | 0          | Na                                  | AI         | Si                        | Ρ           |   |
|--------------------------|--------------|------------|-------------------------------------|------------|---------------------------|-------------|---|
| 180<br>181<br>182<br>184 | 49,7<br>49,5 | 12 0<br>58 | ,52 4;<br>,74 4;<br>- 44,;<br>- 43, | 3,25<br>31 | 0,51<br>- 6, <sup>-</sup> | l 6,3<br>11 | 8 |

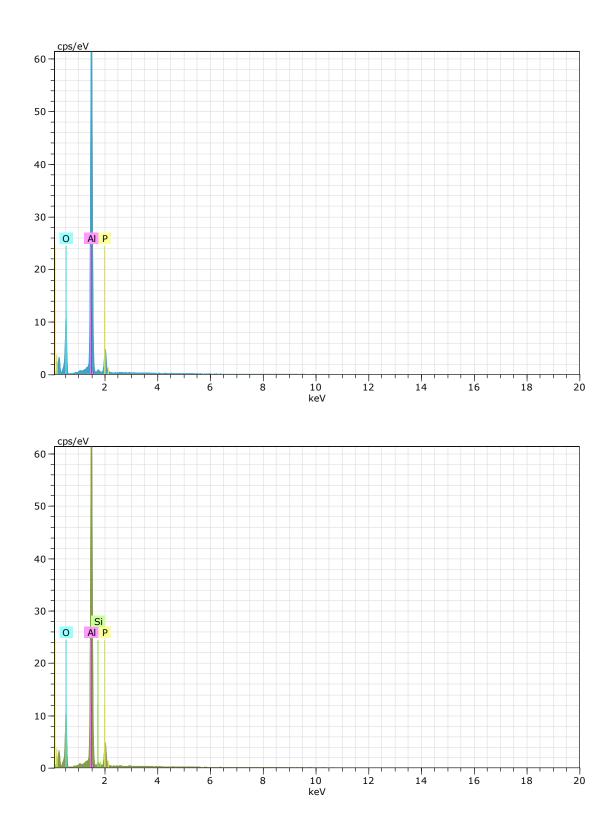
Mean value: 49,46 0,63 43,68 0,47 6,31 Sigma: 0,24 0,15 0,47 0,06 0,13 Sigma mean: 0,12 0,08 0,23 0,03 0,07



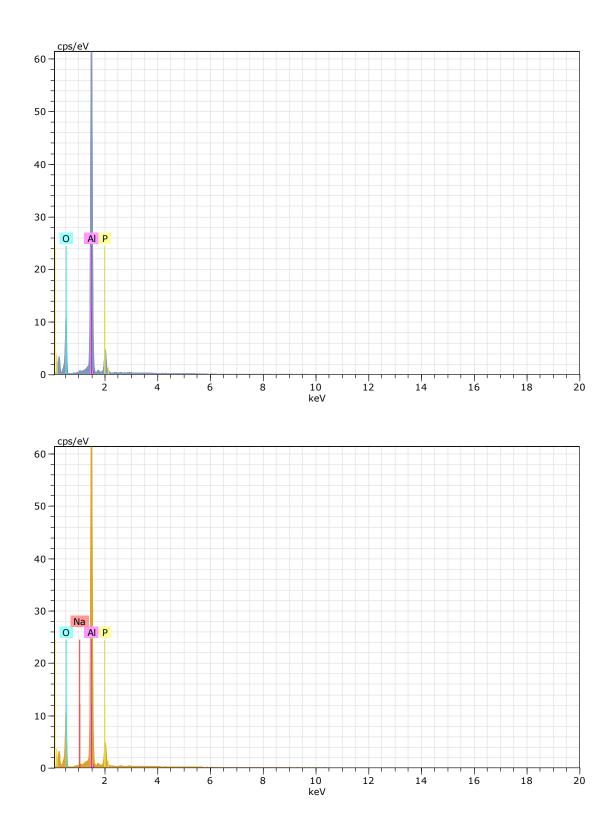







| Spectrur          | n | 0   | Na                        | AI | Si    | Ρ |
|-------------------|---|-----|---------------------------|----|-------|---|
| 185<br>186<br>187 |   | 0 · | - 43,3<br>- 44,2<br>52 42 | 20 | - 6,3 | • |


Mean value: 49,53 0,52 43,51 0,54 6,42 Sigma: 0,06 0,00 0,62 0,06 0,10 Sigma mean: 0,04 0,00 0,36 0,03 0,06



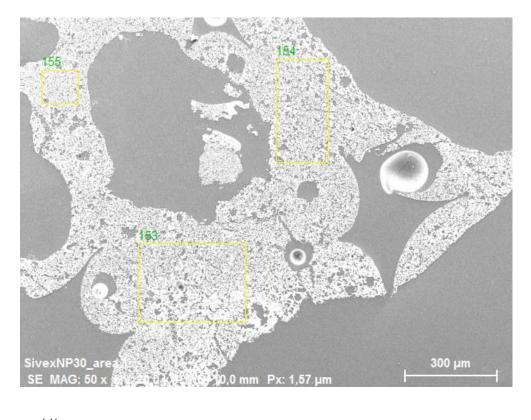


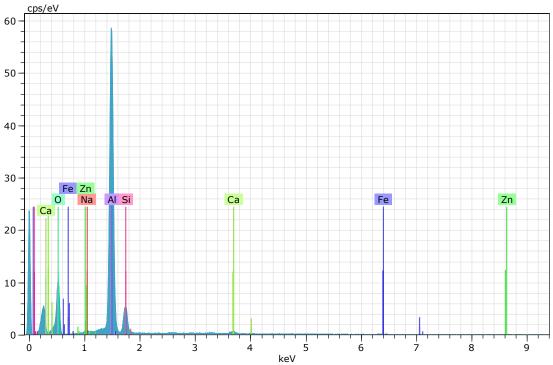








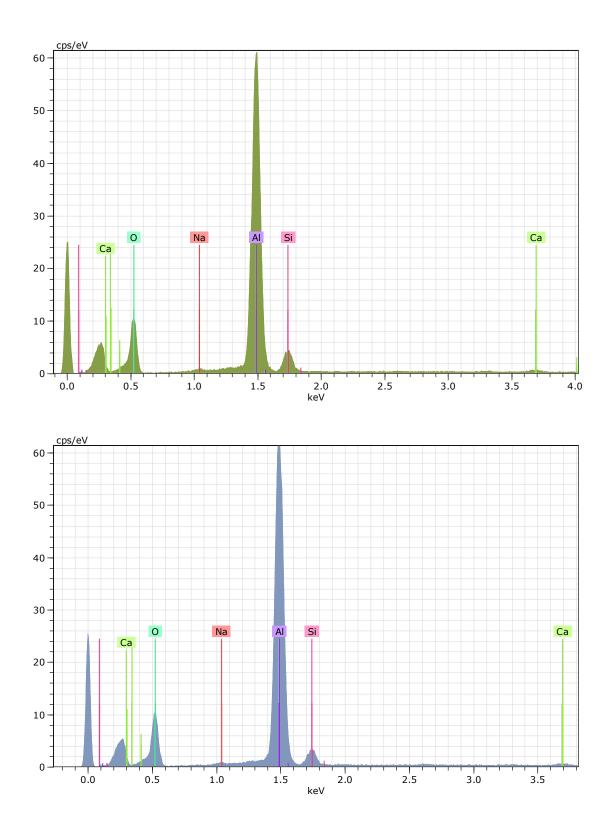

| Spectrur                 | n                                | 0          | Na     | AI         | Si          | Ρ          |
|--------------------------|----------------------------------|------------|--------|------------|-------------|------------|
| 188<br>189<br>190<br>191 | 49,24<br>48,97<br>49,27<br>49,00 | 7 ·<br>7 · | - 44,8 | 57 0<br>37 | ,49<br>- 5, | 5,97<br>85 |


Mean value: 49,12 0,48 44,65 0,49 5,99 Sigma: 0,16 0,00 0,16 0,00 0,12 Sigma mean: 0,08 0,00 0,08 0,00 0,06

### H EDS RawData SivexNP 30









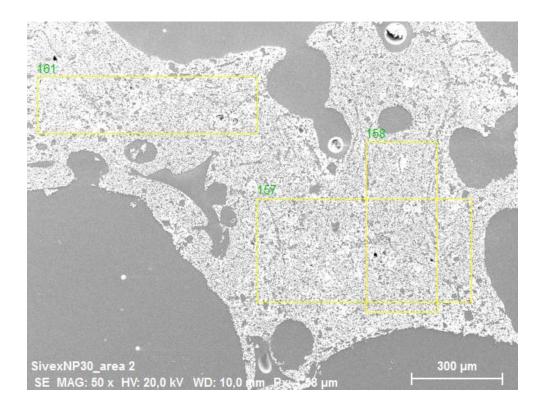

-----

Page 1 /

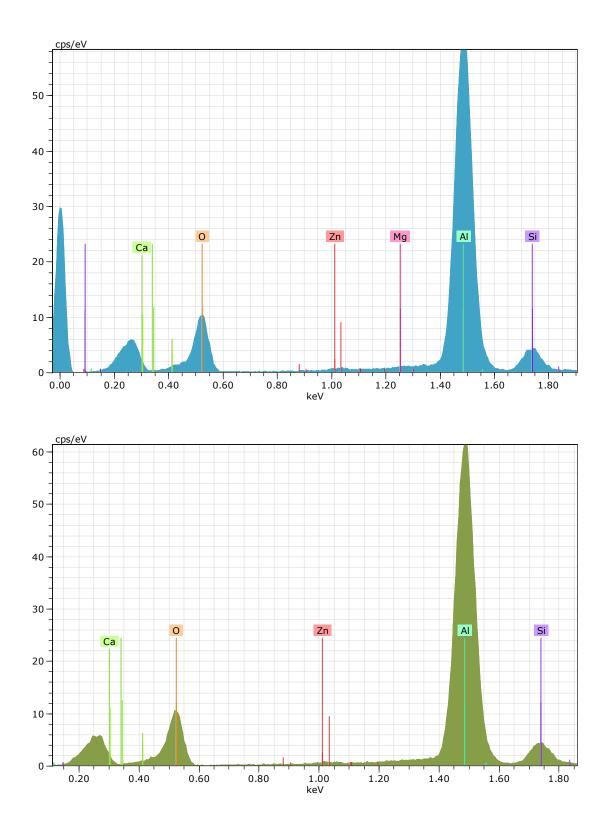




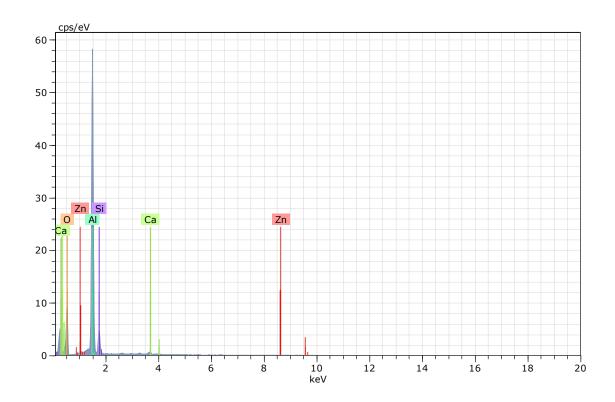



 Spectrum
 O
 Na
 Al
 Si
 Ca
 Fe
 Zn

 153
 49,52
 0,50
 42,09
 6,62
 0,63
 0,31
 0,34


 154
 48,80
 0,76
 45,70
 4,31
 0,42

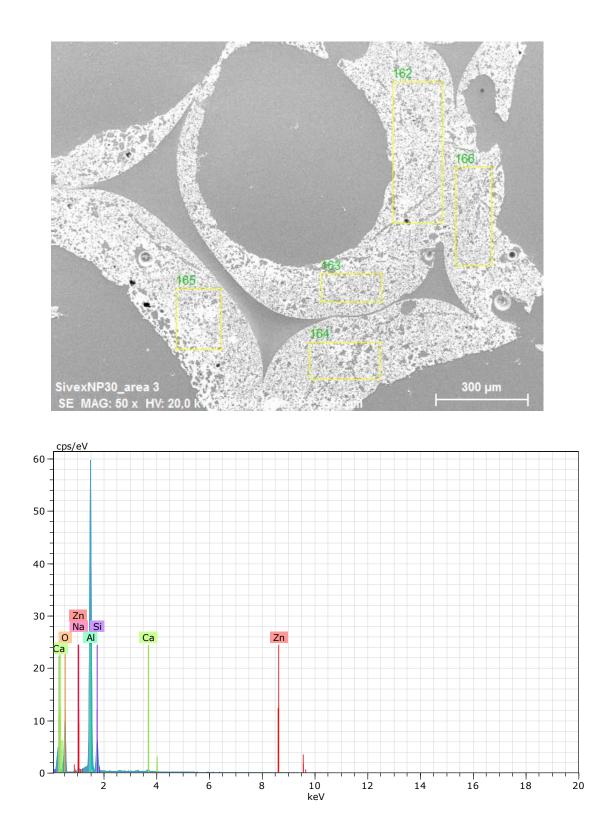
 155
 48,49
 0,65
 46,32
 3,96
 0,59


Mean value: 48,93 0,64 44,70 4,96 0,54 0,31 0,34 Sigma: 0,53 0,13 2,29 1,44 0,11 0,00 0,00 Sigma mean: 0,30 0,07 1,32 0,83 0,06 0,00 0,00

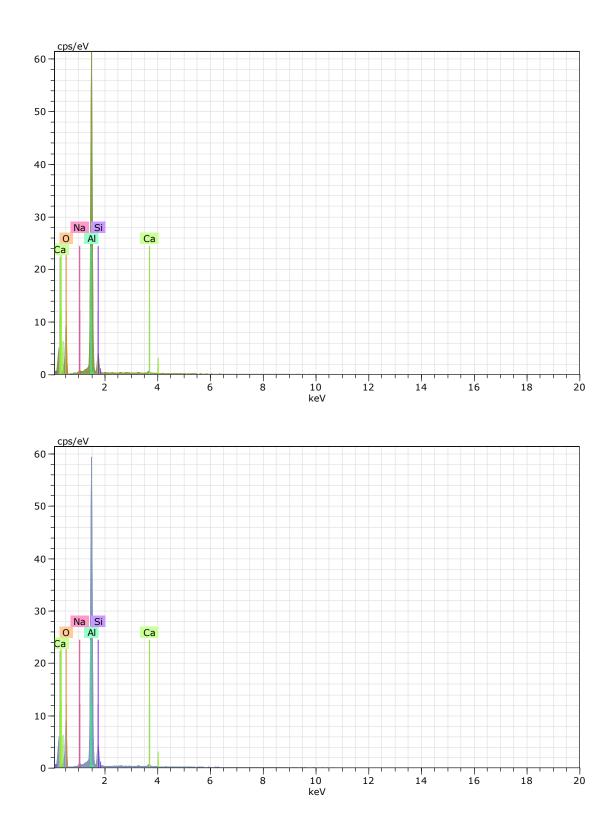




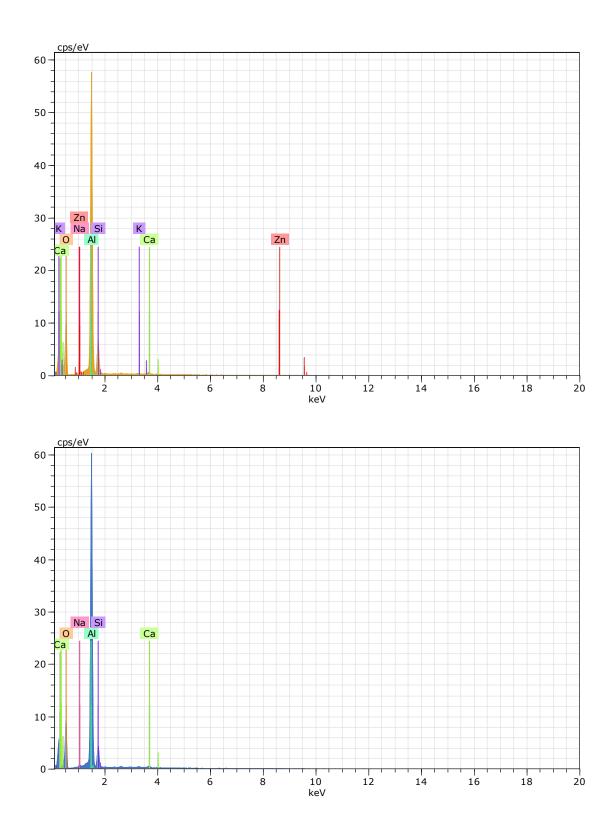








| Spectrum | 0  | Mg                        | AI    | Si   | Ca     | Zn |
|----------|----|---------------------------|-------|------|--------|----|
| 158 49,0 | )4 | 65 46<br>- 44,5<br>- 44,7 | 54 5, | 32 ( | ),68 ( | ,  |

Mean value: 48,73 0,65 45,22 4,93 0,57 0,34 Sigma: 0,72 0,00 1,01 0,52 0,12 0,07 Sigma mean: 0,41 0,00 0,58 0,30 0,07 0,04

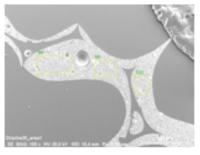




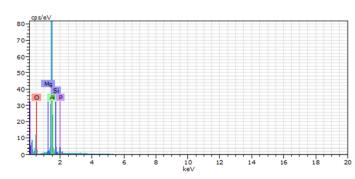










| Spectrum                        | ۱                 | (              | C              | Na             | а              | AI                | Si                                   | K             | Са                                   | Z            | n      |   |
|---------------------------------|-------------------|----------------|----------------|----------------|----------------|-------------------|--------------------------------------|---------------|--------------------------------------|--------------|--------|---|
| 162<br>163<br>164<br>165<br>166 | 49,<br>49,<br>50, | 28<br>15<br>55 | 0,<br>0,<br>0, | 67<br>80<br>63 | 44<br>43<br>39 | ,33<br>,64<br>,91 | 6,96<br>4,91<br>5,61<br>7,49<br>5,61 | -<br>-<br>0,3 | 0,70<br>0,82<br>0,79<br>10,7<br>0,63 | 2<br>)<br>78 | -<br>- | 3 |
|                                 |                   |                |                |                |                |                   |                                      |               |                                      |              |        |   |

Mean value: 49,53 0,73 42,69 6,12 0,31 0,74 0,34 Sigma: 0,68 0,09 1,92 1,07 0,00 0,08 0,01 Sigma mean: 0,30 0,04 0,86 0,48 0,00 0,03 0,00

# I EDS RawData Drache 30



Drache30\_area1 Date:25.04.2020 14:47:21 Image size:1024 x 768 Mag:100x HV:20,0kV



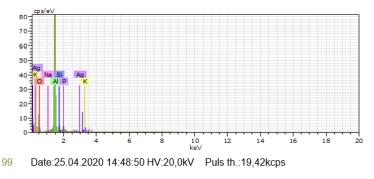
98 Date:25.04.2020 14:48:09 HV:20,0kV Puls th.:18,76kcps

| El <u>AN Series</u>   |                 | norm. C<br>[wt.%] |       | Error | (1 Sigma)<br>[ <u>wt</u> .%] |
|-----------------------|-----------------|-------------------|-------|-------|------------------------------|
| 0 0 17                | - 22 64         | 05 74             | 40 50 |       | 2.02                         |
| 0 8 K-serie           |                 | 35,71             | 48,58 |       | 2,83                         |
| Al 13 K- <u>serie</u> | <u>s 36</u> ,89 | 55,72             | 44,95 |       | 1,79                         |
| Si 14 K-serie         | s 2,93          | 4,42              | 3,43  |       | 0,15                         |
| P 15 K-serie          | s 2,31          | 3,49              | 2,45  |       | 0,12                         |
| Mg 12 K-serie         | s 0,44          | 0,66              | 0,59  |       | 0,05                         |

Total: 66,21 100,00 100,00

80-

70-


60-

50-

40-30-

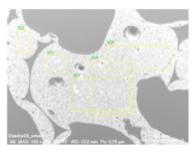
20

10

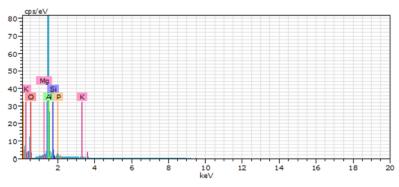


| E | 1  | AN | Series   | unn. C          | norm. C | Atom. C | Error | (1 Sigma) |
|---|----|----|----------|-----------------|---------|---------|-------|-----------|
|   |    |    |          | [wt. <u>%</u> ] | [wt.%]  | [at.%]  |       | [wt.%]    |
| - |    |    |          |                 |         |         |       |           |
| 0 | )  | 8  | K-series | 14,46           | 36,08   | 49,35   |       | 1,73      |
| 7 | 1  | 13 | K-series | 21,03           | 52,44   | 42,54   |       | 1,03      |
| 3 | 5i | 14 | K-series | 1,88            | 4,69    | 3,65    |       | 0,11      |
| E | 2  | 15 | K-series | 1,66            | 4,14    | 2,92    |       | 0,09      |
| N | Ia | 11 | K-series | 0,31            | 0,78    | 0,74    |       | 0,05      |
| F | ζ  | 19 | K-series | 0,45            | 1,13    | 0,63    |       | 0,04      |
| 7 | ١g | 47 | L-series | 0,30            | 0,74    | 0,15    |       | 0,04      |
| - |    |    |          |                 |         |         |       |           |
|   |    |    |          |                 |         |         |       |           |

<u>Total: 40</u>,09 100,00 100,00


100 Date:25.04.2020 14:49:30 HV:20,0kV Puls th.:19,64kcps

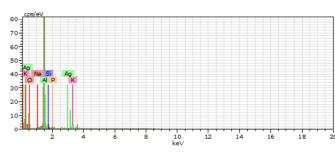
10 keV 12


14

16

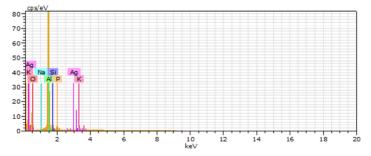
| El <u>AN Series</u>  |       | norm. C<br>[wt.%] | Atom. C<br>[at.%] | Error | (1 | Sigma)<br>[wt.%] |
|----------------------|-------|-------------------|-------------------|-------|----|------------------|
| 0 8 K-series         | 26,34 | 35,69             | 48,62             |       |    | 3,13             |
|                      | 39,59 | 53,66             | 43,34             |       |    | 1,92             |
| Si 14 K-series       | 3,89  | 5,27              | 4,09              |       |    | 0,19             |
| <u>P 15</u> K-series | 2,54  | 3,44              | 2,42              |       |    | 0,13             |
| Na 11 K-series       | 0,46  | 0,62              | 0,59              |       |    | 0,06             |
| Mg 12 K-series       | 0,46  | 0,62              | 0,55              |       |    | 0,05             |
| K 19 K-series        | 0,52  | 0,71              | 0,39              |       |    | 0,04             |
| Total:               | 73,79 | 100,00            | 100,00            |       |    |                  |




Drache30\_area2 Date:25.04.2020 14:53:31 Image size:1024 x 768 Mag:99,92645x HV:20,0kV



101 Date:25.04.2020 14:54:33 HV:20,0kV Puls th.:20,29kcps


| El <u>AN Series</u>                      |                       | norm. C<br>[wt.%] |               | Error ( | (1 Sigma)<br>[wt.%] |
|------------------------------------------|-----------------------|-------------------|---------------|---------|---------------------|
| 0 8 K-series                             | 24,68                 | 35,34             | 48,19         |         | 2,94                |
| Al 13 K- <u>series</u><br>Si 14 K-series | <u>39</u> ,54<br>3,28 | 56,60<br>4,70     | 45,77<br>3,65 |         | 1,91<br>0,17        |
| P 15 K-series<br>Mg 12 K-series          | 1,45<br>0,44          | 2,08<br>0,62      | 1,46<br>0,56  |         | 0,08                |
| K 19 K-series                            | 0,46                  | 0,66              | 0,37          |         | 0,04                |





102 Date:25.04.2020 14:55:13 HV:20,0kV Puls th.:19,19kcps

| El AN | Series               |                | norm. C<br>[wt.%] |                | Error | (1 | Sigma)<br>[wt.%] |
|-------|----------------------|----------------|-------------------|----------------|-------|----|------------------|
|       | K-series<br>K-series | 13,43<br>20,55 | 36,17<br>55,34    | 49,37<br>44,80 |       |    | 1,62             |
| Si 14 | K-series<br>K-series | 1,50           | 4,03              | 3,14           |       |    | 0,09             |
| K 19  | K-series<br>K-series | 0,45           | 1,22              | 0,68           |       |    | 0,04             |
|       | L-series             | 0,25<br>0,32   | 0,68<br>0,87      | 0,65<br>0,18   |       |    | 0,04             |
|       | Total:               | 37,13          | 100,00            | 100,00         |       |    |                  |

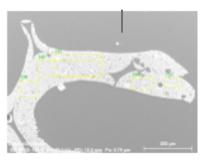


104 Date:25.04.2020 14:56:34 HV:20,0kV Puls th.:20,28kcps

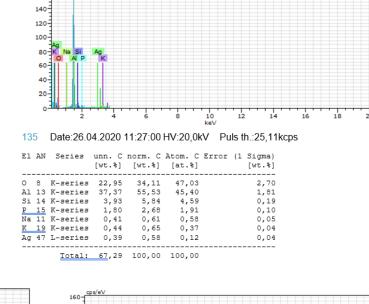
| El <u>AN Series</u>  |       | norm. C<br>[wt.%] |        | Error | (1 Sigma)<br>[ <u>wt</u> .%] |
|----------------------|-------|-------------------|--------|-------|------------------------------|
| 0 8 K-series         | 13,91 | 36,00             | 49,20  |       | 1,67                         |
| Al 13 K-series       | 21,07 | 54,54             | 44,21  |       | 1,03                         |
| Si 14 K-series       | 1,69  | 4,37              | 3,40   |       | 0,10                         |
| <u>P 15</u> K-series | 1,03  | 2,65              | 1,87   |       | 0,07                         |
| K 19 K-series        | 0,43  | 1,11              | 0,62   |       | 0,04                         |
| Na 11 K-series       | 0,22  | 0,57              | 0,54   |       | 0,04                         |
| Ag 47 L-series       | 0,29  | 0,75              | 0,15   |       | 0,04                         |
| Total:               | 38,63 | 100,00            | 100,00 |       |                              |

103 Date:25.04.2020 14:55:54 HV:20,0kV Puls th.:19,90kcps

| El <u>AN Series</u>             |                | norm. C<br>[wt.%] |                | Error | (1 Sigma)<br>[wt.%] |
|---------------------------------|----------------|-------------------|----------------|-------|---------------------|
| O 8 K-series<br>Al 13 K-series  | 25,44<br>39,06 | 36,16<br>55,53    | 49,11<br>44,72 |       | 3,03<br>1,89        |
| Si 14 K-series<br>P 15 K-series | 3,03           | 4,31 2,86         | 3,33           |       | 0,16                |
| Mg 12 K-series<br>K 19 K-series | 0,41           | 0,58              | 0,52           |       | 0,05                |
|                                 |                | 100,00            |                |       |                     |




10


105 Date:25.04.2020 14:57:15 HV:20,0kV Puls th.:19,81kcps

| El <u>AN Series</u> |       | norm. C<br>[wt.%] |        | Error (1 Sigma)<br>[wt.%] |
|---------------------|-------|-------------------|--------|---------------------------|
| O 8 K-series        | 13,72 | 35,74             | 5,08   | 1,65                      |
| Al 13 K-series      | 20,08 | 52,31             |        | 0,98                      |
| Si 14 K-series      | 2,50  | 6,50              |        | 0,13                      |
| P 15 K-series       | 0,89  | 2,32              | 1,65   | 0,06                      |
| K 19 K-series       | 0,58  | 1,50              | 0,84   | 0,05                      |
| Na 11 K-series      | 0,29  | 0,74              | 0,71   | 0,05                      |
| Ag 47 L-series      | 0,34  | 0,88              | 0,18   | 0,04                      |
|                     | 38,38 | 100,00            | 100,00 |                           |

2



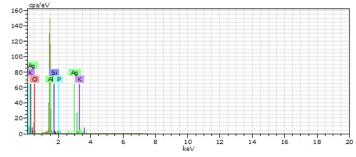
Drache30\_area3 Date:26.04.2020 11:25:17 Image size:1024 x 768 Mag:99,92645x HV:20,0kV



160 \_\_\_\_\_

140

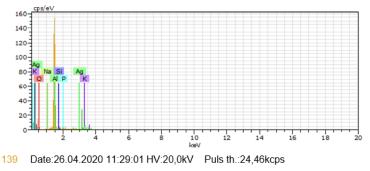
120


100

80

60

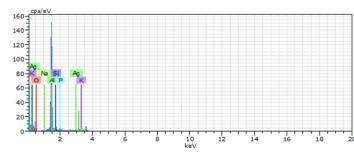
40-


20



136 Date:26.04.2020 11:27:40 HV:20,0kV Puls th.:23,91kcps

| El | AN | Series   |       | norm. C<br>[wt.%] |       | Error | (1 Sigma)<br>[wt.%] |
|----|----|----------|-------|-------------------|-------|-------|---------------------|
| 0  | 8  | K-series | 13,26 | 35,11             | 48,29 |       | 1,58                |
|    |    | K-series | 21,42 | 56,70             | 46,25 |       | 1,05                |
| Si | 14 | K-series | 1,20  | 3,19              | 2,50  |       | 0,08                |
| Ρ  | 15 | K-series | 1,21  | 3,21              | 2,28  |       | 0,07                |
| K  | 19 | K-series | 0,33  | 0,88              | 0,49  |       | 0,04                |
| Ag | 47 | L-series | 0,35  | 0,92              | 0,19  |       | 0,04                |
|    |    |          |       |                   |       |       |                     |



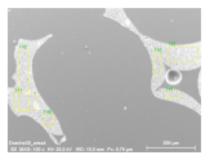



| El AN Seri        |                   | norm. C<br>[wt.%] |        | Error (1 | Sigma)<br>[wt.%] |
|-------------------|-------------------|-------------------|--------|----------|------------------|
| Al 13 K-ser       | ies 39,34         | 58,42             | 47,59  |          | 1,90             |
| O 8 K-ser         | ies 23,20         | 34,45             | 47,33  |          | 2,74             |
| Si 14 K-ser       | ies 2,43          | 3,61              | 2,82   |          | 0,13             |
| <u>P 15</u> K-ser | ies 1,29          | 1,91              | 1,36   |          | 0,08             |
| Na 11 K-ser       | ies 0,34          | 0,51              | 0,48   |          | 0,05             |
| <u>K 19</u> K-ser | ies 0,37          | 0,55              | 0,31   |          | 0,04             |
| Ag 47 L-ser       | ies 0,38          | 0,56              | 0,11   |          | 0,04             |
| Tot               | <u>al: 67</u> ,33 | 100,00            | 100,00 |          |                  |

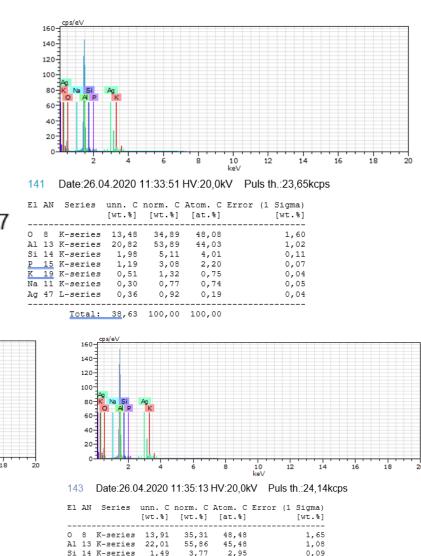
137 Date:26.04.2020 11:28:21 HV:20,0kV Puls th.:23,86kcps

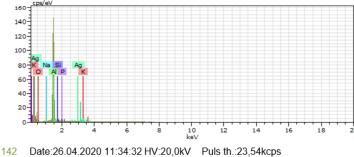
| El | AN | Series   |       | norm. C<br>[wt.%] |        | Error | (1 Sigma)<br>[wt.%] |
|----|----|----------|-------|-------------------|--------|-------|---------------------|
|    |    | K-series | 12,56 | 35,61             | 48,41  |       | 1,49                |
|    |    | K-series | 20,46 | 58,03             | 46,78  |       | 1,00                |
|    |    | K-series | 1,15  | 3,27              | 2,53   |       | 0,08                |
|    |    | K-series | 0,57  | 1,60              | 1,13   |       | 0,05                |
|    |    | K-series | 0,28  | 0,81              | 0,76   |       | 0,05                |
| K  | 19 | K-series | 0,24  | 0,69              | 0,38   |       | 0,03                |
|    |    | Total:   | 35,26 | 100,00            | 100,00 |       |                     |



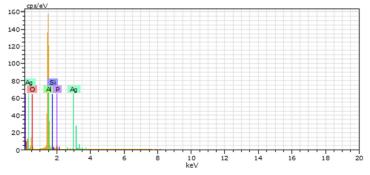

10 keV 12

140 Date:26.04.2020 11:29:42 HV:20,0kV Puls th.:24,75kcps


| El AN       | Series   |       | norm. C<br>[wt.%] |        | Error | (1 Sigma)<br>[wt.%] |
|-------------|----------|-------|-------------------|--------|-------|---------------------|
| 0 8         | K-series | 24,08 | 33,85             | 46,70  |       | 2,84                |
| Al 13       | K-series | 40,16 | 56,46             | 46,18  |       | 1,94                |
| Si 14       | K-series | 3,80  | 5,34              | 4,19   |       | 0,19                |
| <u>P 15</u> | K-series | 1,90  | 2,67              | 1,90   |       | 0,10                |
| Na 11       | K-series | 0,44  | 0,62              | 0,59   |       | 0,06                |
| <u>K 19</u> | K-series | 0,40  | 0,56              | 0,32   |       | 0,04                |
| Ag 47       | L-series | 0,36  | 0,50              | 0,10   |       | 0,04                |
|             | Total:   | 71,14 | 100,00            | 100,00 |       |                     |


18

16

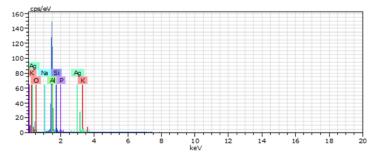



Drache30\_area4 Date:26.04.2020 11:32:57 Image size:1024 x 768 Mag:99,92645x HV:20,0kV



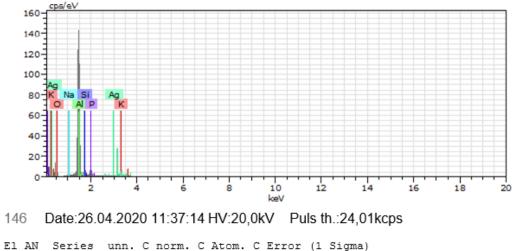


| El | AN | Series   | unn. C        | norm. C | Atom. C | Error | (1 | Sigma) |
|----|----|----------|---------------|---------|---------|-------|----|--------|
|    |    |          | [wt.%]        | [wt.%]  | [at.%]  |       |    | [wt.%] |
|    |    |          |               |         |         |       |    |        |
| 0  | 8  | K-series | 12,87         | 34,76   | 47,86   |       |    | 1,54   |
| Al | 13 | K-series | 20,41         | 55,13   | 45,01   |       |    | 1,00   |
| Si | 14 | K-series | 1,66          | 4,48    | 3,51    |       |    | 0,10   |
| Ρ  | 15 | K-series | 1,22          | 3,29    | 2,34    |       |    | 0,07   |
| K  | 19 | K-series | 0,37          | 1,01    | 0,57    |       |    | 0,04   |
| Na | 11 | K-series | 0,21          | 0,58    | 0,55    |       |    | 0,04   |
| Ag | 47 | L-series | 0,28          | 0,75    | 0,15    |       |    | 0,04   |
|    |    |          |               |         |         |       |    |        |
|    |    | Total:   | <u>37</u> ,03 | 100,00  | 100,00  |       |    |        |




144 Date:26.04.2020 11:35:53 HV:20,0kV Puls th.:24,49kcps

| El AN | Series   |       | norm. C<br>[wt.%] |       | Error | (1 Sigma)<br>[wt.%] |
|-------|----------|-------|-------------------|-------|-------|---------------------|
|       |          |       |                   |       |       |                     |
| Al 13 | K-series | 42,36 | 59,43             | 48,40 |       | 2,05                |
| 08    | K-series | 24,67 | 34,61             | 47,53 |       | 2,91                |
| Si 14 | K-series | 1,92  | 2,70              | 2,11  |       | 0,11                |
| P 15  | K-series | 1,82  | 2,55              | 1,81  |       | 0,10                |
| Ag 47 | L-series | 0,51  | 0,71              | 0,14  |       | 0,04                |
|       |          |       |                   |       |       |                     |


Total: 71,28 100,00 100,00

| El | AN | Series   |               | norm. C<br>[wt.%] |        | Error | (1 Sigma)<br>[wt.%] |
|----|----|----------|---------------|-------------------|--------|-------|---------------------|
| 0  | 8  | K-series | 13,91         | 35,31             | 48,48  |       | 1,65                |
| Al | 13 | K-series | 22,01         | 55,86             | 45,48  |       | 1,08                |
| Si | 14 | K-series | 1,49          | 3,77              | 2,95   |       | 0,09                |
| Ρ  | 15 | K-series | 1,01          | 2,55              | 1,81   |       | 0,07                |
| K  | 19 | K-series | 0,38          | 0,96              | 0,54   |       | 0,04                |
| Na | 11 | K-series | 0,22          | 0,56              | 0,53   |       | 0,04                |
| Ag | 47 | L-series | 0,39          | 0,99              | 0,20   |       | 0,04                |
|    |    | Total:   | <u>39</u> ,40 | 100,00            | 100,00 |       |                     |

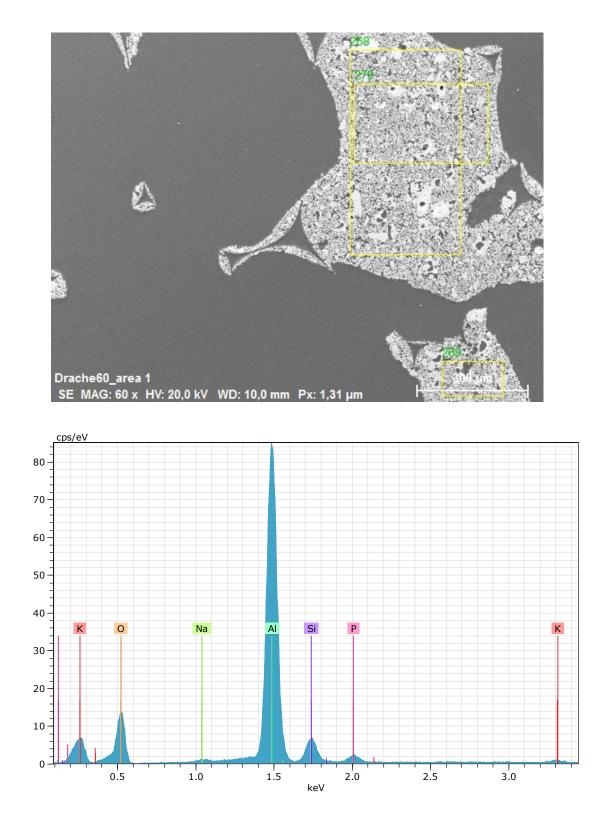


145 Date:26.04.2020 11:36:34 HV:20,0kV Puls th.:24,29kcps

| El AN       | Series   |       | norm. C<br>[wt.%] |        | Error | (1 Sigma)<br>[wt.%] |
|-------------|----------|-------|-------------------|--------|-------|---------------------|
| 0 8         | K-series | 23,60 | 34,20             | 47,10  |       | 2,79                |
| Al 13       | K-series | 39,13 | 56,72             | 46,32  |       | 1,89                |
| Si 14       | K-series | 3,34  | 4,84              | 3,80   |       | 0,17                |
| P 15        | K-series | 1,74  | 2,52              | 1,79   |       | 0,09                |
| Na 11       | K-series | 0,39  | 0,57              | 0,55   |       | 0,05                |
| <u>K 19</u> | K-series | 0,40  | 0,59              | 0,33   |       | 0,04                |
| Ag 47       | L-series | 0,39  | 0,57              | 0,12   |       | 0,04                |
|             | Total:   | 68,99 | 100,00            | 100,00 |       |                     |



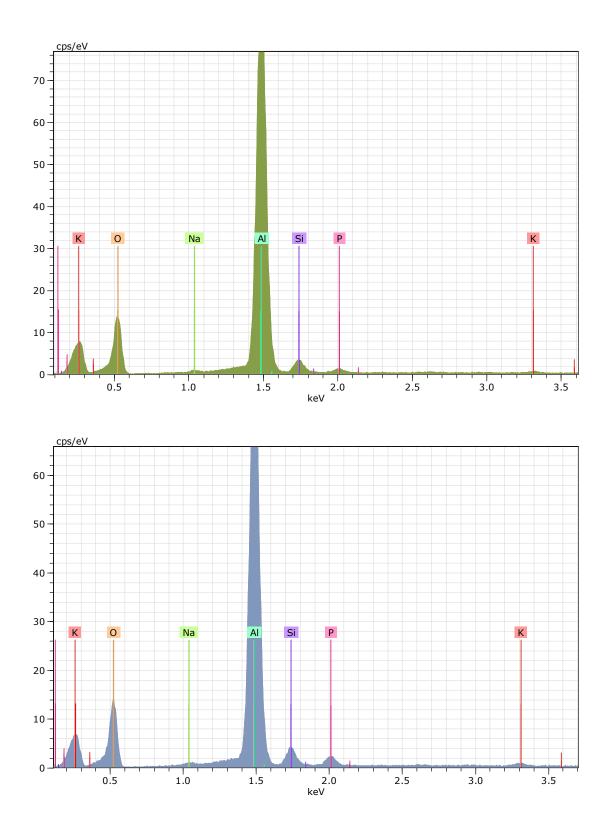
| <br>       |       | [wt.%] |        | [wt.%] |
|------------|-------|--------|--------|--------|
| K-series   | 22,56 | 34,43  | 47,43  | 2,67   |
| 3 K-series | 35,96 | 54,86  | 44,82  | 1,74   |
| 4 K-series | 3,10  | 4,72   | 3,71   | 0,16   |
| 5 K-series | 2,82  | 4,30   | 3,06   | 0,14   |
| 1 K-series | 0,35  | 0,53   | 0,51   | 0,05   |
| 9 K-series | 0,42  | 0,65   | 0,36   | 0,04   |
| 7 L-series | 0,34  | 0,52   | 0,11   | 0,04   |
| <br>Total. |       | 100.00 | 100 00 |        |


Total: 65,55 100,00 100,00

# J EDS RawData Drache 60

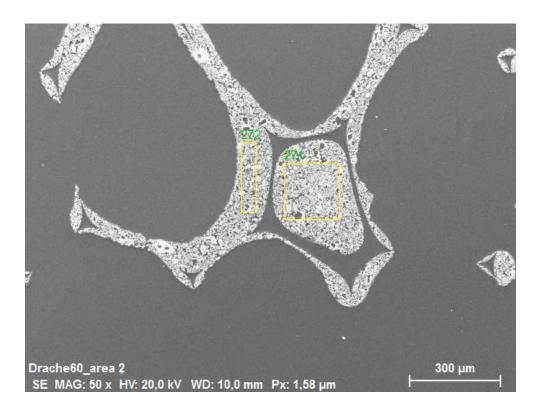




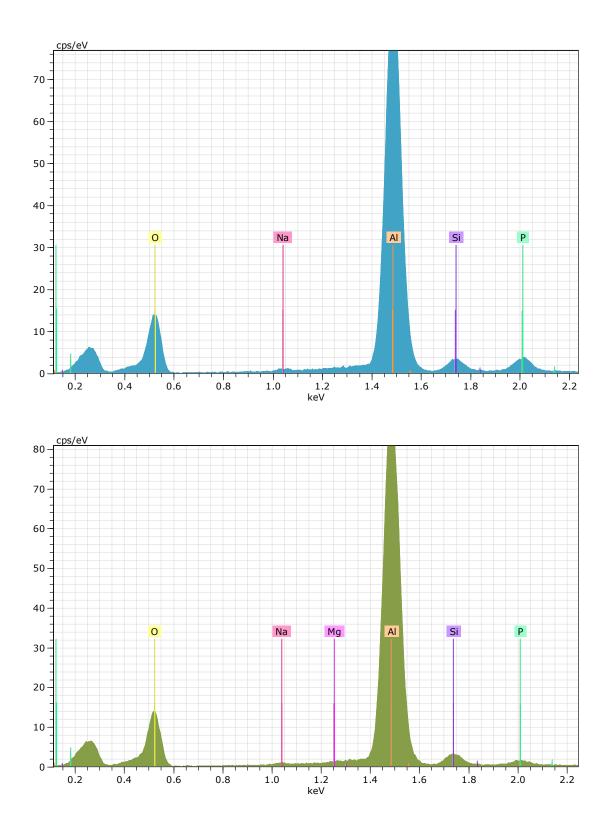

Company / Department



- / / / 0000

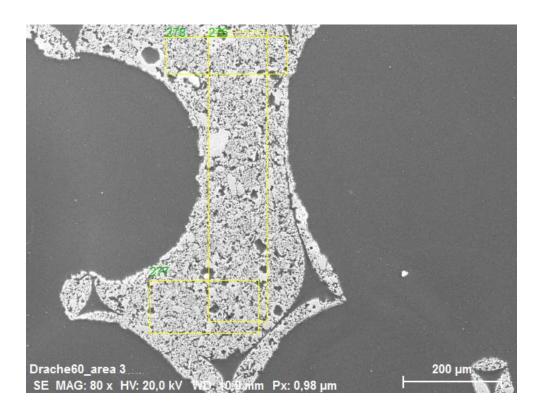

Page 1 /



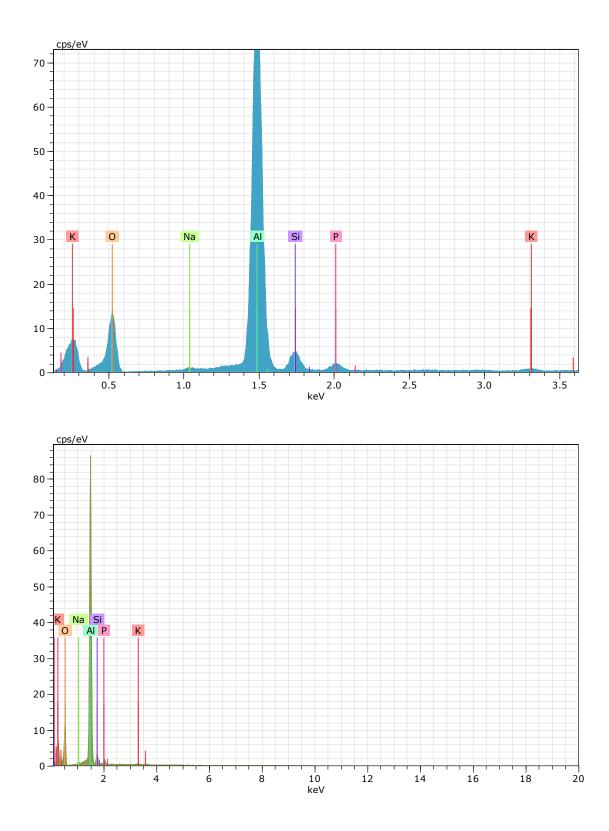




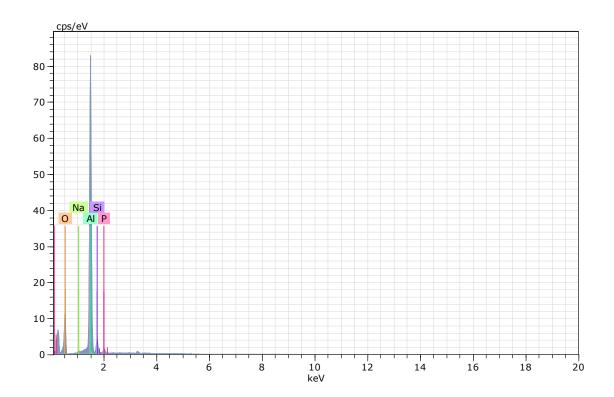

| Spectrum                             | 0     | Na   | Al                      | Si   | P    | K    |
|--------------------------------------|-------|------|-------------------------|------|------|------|
| 268<br>269<br>270                    | 47,71 | 0,70 | 43,67<br>47,80<br>45,74 | 2,56 | 0,82 | 0,41 |
| Mean value:<br>Sigma:<br>Sigma mean: | 0,12  | 0,04 | •                       | 1,47 |      | 0,12 |









| Spectrum    | 0     | Na   | Mg   | Al    | Si   | P    |
|-------------|-------|------|------|-------|------|------|
|             |       |      |      |       |      |      |
| 271         | 47,26 | 0,56 | -    | 47,36 | 2,34 | 2,48 |
| 272         | 46,66 | 0,57 | 0,65 | 48,82 | 2,34 | 0,96 |
|             |       |      |      |       |      |      |
| Mean value: | 46,96 | 0,57 | 0,65 | 48,09 | 2,34 | 1,72 |
| Sigma:      | 0,42  | 0,01 | 0,00 | 1,03  | 0,00 | 1,08 |
| Sigma mean: | 0,30  | 0,01 | 0,00 | 0,73  | 0,00 | 0,76 |



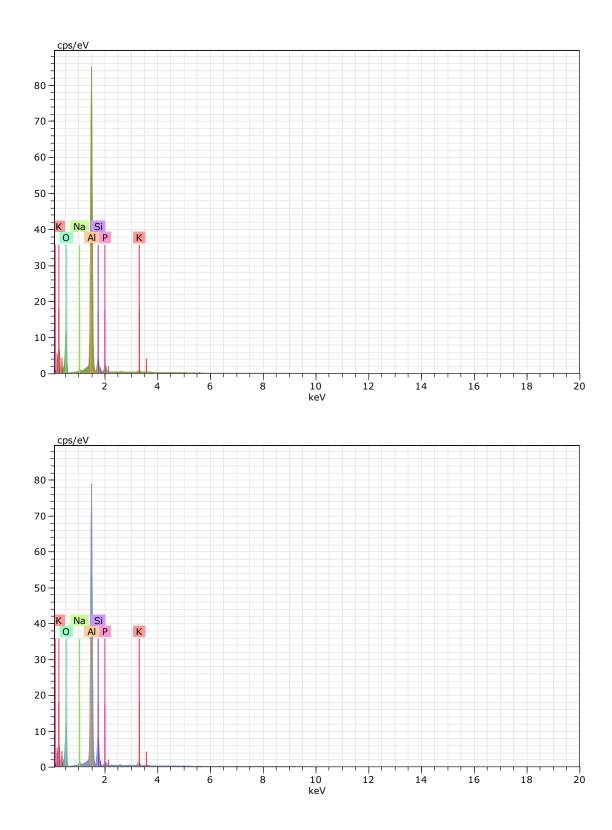








| Atomic percent (%) | Atomic | percent | (응) |
|--------------------|--------|---------|-----|
|--------------------|--------|---------|-----|

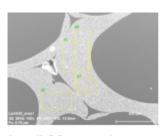

| Spectrum                             | 0     | Na   | Al                      | Si   | P    | К    |
|--------------------------------------|-------|------|-------------------------|------|------|------|
| 276<br>277<br>278                    | 47,19 | 0,52 | 45,71<br>47,71<br>48,41 | 2,54 | 1,53 |      |
| Mean value:<br>Sigma:<br>Sigma mean: | 0,53  | 0,08 | 1,40                    | 0,61 | 0,32 | 0,08 |



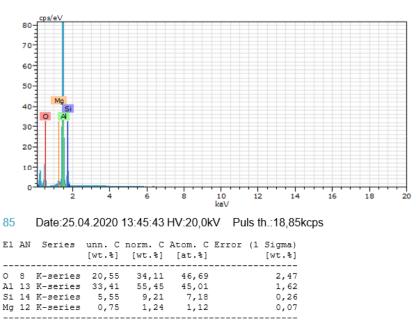


Page 8 /

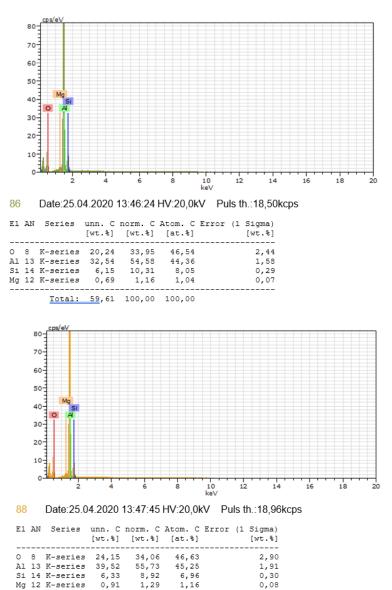





Page 9 /




| Spectrum                             | 0     | Na   | Al                      | Si   | Р    | K    |
|--------------------------------------|-------|------|-------------------------|------|------|------|
| 279<br>280<br>281                    | 47,57 | 0,59 | 48,08<br>46,82<br>41,68 | 3,10 | 1,55 | 0,37 |
| Mean value:<br>Sigma:<br>Sigma mean: | 0,35  | 0,36 | 3,39                    | 2,47 | 0,33 | 0,49 |


# K EDS RawData Lanik 30

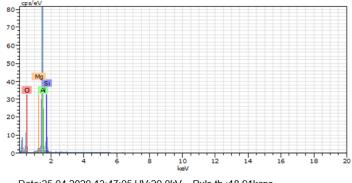


Lanik30 area1 Date:25.04.2020 13:44:25 Image size:1024 x 768 Mag:99,92645x HV:20,0kV



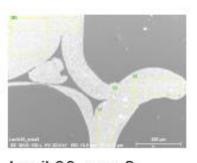
Total: 60,26 100,00 100,00



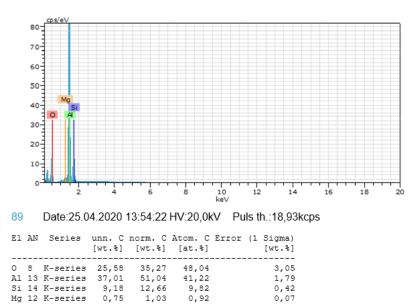

0,91

Total: 70,91 100,00 100,00

1,29

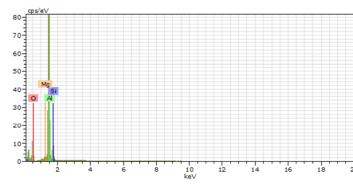

1,16

0,08 ----



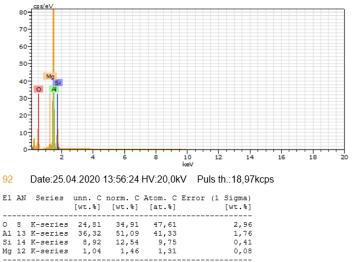

87 Date:25.04.2020 13:47:05 HV:20,0kV Puls th.:18,91kcps

| El AN          | Series                                       |                                | norm. C<br>[wt.%]              |                                | Error | (1 Sigma)<br>[wt.%]          |
|----------------|----------------------------------------------|--------------------------------|--------------------------------|--------------------------------|-------|------------------------------|
| Al 13<br>Si 14 | K-series<br>K-series<br>K-series<br>K-series | 22,89<br>37,19<br>6,21<br>0,81 | 34,11<br>55,43<br>9,25<br>1,20 | 46,70<br>45,00<br>7,22<br>1,09 |       | 2,75<br>1,80<br>0,29<br>0,07 |
|                | Total:                                       | 67,09                          | 100,00                         | 100,00                         |       |                              |




Lanik30\_area2 Date:25.04.2020 13:53:29 Image size:1024 x 768 Mag:99,92645x HV:20,0kV



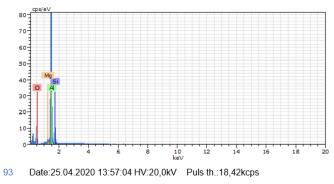

---

Total: 72,51 100,00 100,00



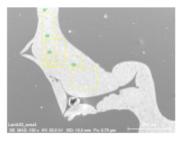

90 Date:25.04.2020 13:55:02 HV:20,0kV Puls th.:18,15kcps

| El AN                                  | Series             |                                | norm. C<br>[wt.%]              |                                | Error ( | 1 Sigma)<br>[wt.%]           |
|----------------------------------------|--------------------|--------------------------------|--------------------------------|--------------------------------|---------|------------------------------|
| 0 8 K<br>Al 13 K<br>Si 14 K<br>Mg 12 K | -series<br>-series | 23,73<br>37,19<br>6,78<br>0,90 | 34,59<br>54,21<br>9,89<br>1,31 | 47,24<br>43,89<br>7,69<br>1,18 |         | 2,85<br>1,80<br>0,32<br>0,08 |
|                                        | Total:             | 68,60                          | 100,00                         | 100,00                         |         |                              |

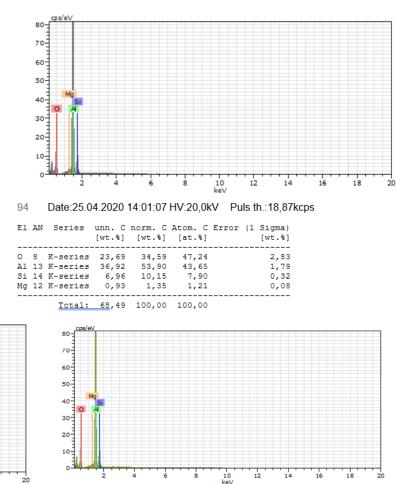



<u>Total: 71</u>,09 100,00 100,00

cps/e 80 70-60-50-40-30-20-10 0 16 18 5 10 keV 12 14

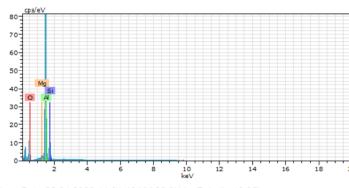



| El | AN | Series   |       | norm. C<br>[wt.%] |        | Error | (1 Sigma)<br>[wt.%] |
|----|----|----------|-------|-------------------|--------|-------|---------------------|
|    |    |          |       |                   |        |       |                     |
| 0  | 8  | K-series | 24,76 | 34,28             | 46,87  |       | 2,96                |
| Al | 13 | K-series | 38,20 | 52,88             | 42,88  |       | 1,85                |
| Si | 14 | K-series | 7,98  | 11,04             | 8,60   |       | 0,37                |
| Mg | 12 | K-series | 0,88  | 1,22              | 1,10   |       | 0,08                |
| Na | 11 | K-series | 0,42  | 0,58              | 0,55   |       | 0,06                |
|    |    |          |       |                   |        |       |                     |
|    |    | Total:   | 72,25 | 100,00            | 100,00 |       |                     |



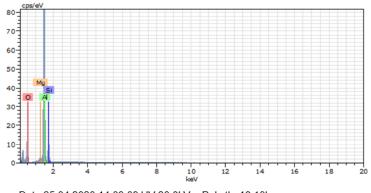

| El | AN | Series   |       | norm. C<br>[wt.%] |       | Error (1 | Sigma)<br>[wt.%] |
|----|----|----------|-------|-------------------|-------|----------|------------------|
| -  |    |          |       |                   |       |          |                  |
| 0  | 8  | K-series | 23,47 | 34,32             | 46,95 |          | 2,82             |
| Al | 13 | K-series | 36,35 | 53,14             | 43,11 |          | 1,76             |
| Si | 14 | K-series | 7,66  | 11,19             | 8,72  |          | 0,35             |
| Mg | 12 | K-series | 0,92  | 1,34              | 1,21  |          | 0,08             |
|    |    |          |       |                   |       |          |                  |
|    |    |          |       |                   |       |          |                  |

Total: 68,39 100,00 100,00



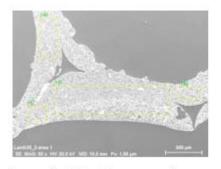

Lanik30\_area3 Date:25.04.2020 14:00:29 Image size:1024 x 768 Mag:99,92645x HV:20,0kV



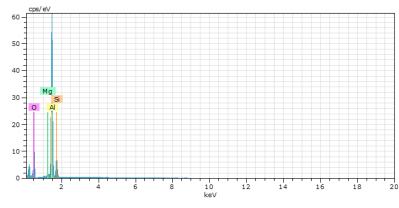

96 Date:25.04.2020 14:02:28 HV:20,0kV Puls th.:18,27kcps

| El Z         | AN           | Series                                       |                                | norm. C<br>[wt.%]               |                                | Error (1 | Sigma)<br>[wt.%]             |
|--------------|--------------|----------------------------------------------|--------------------------------|---------------------------------|--------------------------------|----------|------------------------------|
| Al 1<br>Si 1 | 13 1<br>14 1 | K-series<br>K-series<br>K-series<br>K-series | 23,25<br>36,33<br>7,32<br>0,72 | 34,38<br>53,73<br>10,83<br>1,06 | 47,03<br>43,58<br>8,44<br>0,96 |          | 2,79<br>1,76<br>0,34<br>0,07 |
|              |              | Total:                                       | 67,62                          | 100,00                          | 100,00                         |          |                              |



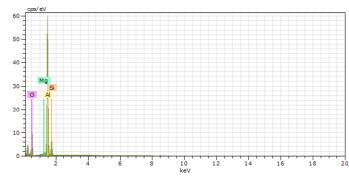

95 Date:25.04.2020 14:01:48 HV:20,0kV Puls th.:18,35kcps

| El | AN | Series   |       | norm. C<br>[wt.%] |        | Error | (1 Sigma)<br>[wt.%] |
|----|----|----------|-------|-------------------|--------|-------|---------------------|
|    |    |          |       |                   |        |       |                     |
| 0  | 8  | K-series | 23,60 | 34,21             | 46,83  |       | 2,84                |
| Al | 13 | K-series | 37,05 | 53,70             | 43,60  |       | 1,79                |
| Si | 14 | K-series | 7,52  | 10,91             | 8,50   |       | 0,35                |
| Mg | 12 | K-series | 0,82  | 1,18              | 1,07   |       | 0,07                |
|    |    |          |       |                   |        |       |                     |
|    |    | Total:   | 68,99 | 100,00            | 100,00 |       |                     |



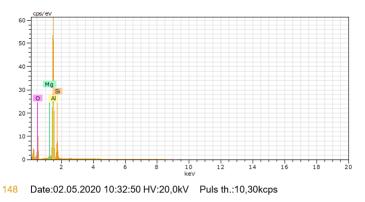

97 Date:25.04.2020 14:03:09 HV:20,0kV Puls th.:18,10kcps

| El       | AN       | Series                                       |                                |                                 | Atom. C<br>[at.%]              | (1 Sigma)<br>[wt.%]          |
|----------|----------|----------------------------------------------|--------------------------------|---------------------------------|--------------------------------|------------------------------|
| Al<br>Si | 13<br>14 | K-series<br>K-series<br>K-series<br>K-series | 23,45<br>36,42<br>7,36<br>0,80 | 34,47<br>53,54<br>10,82<br>1,17 | 47,12<br>43,40<br>8,43<br>1,06 | 2,82<br>1,76<br>0,34<br>0,07 |
|          |          | Total:                                       | 68,02                          | 100,00                          | 100,00                         | <br>                         |




Lanik30\_2-area 1 Date:02.05.2020 10:30:15 Image size:1024 x 768 Mag:50,16336x HV:20,0kV

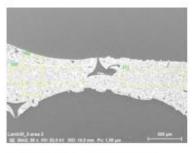



145 Date:02.05.2020 10:31:49 HV:20,0kV Puls th.:10,29kcps

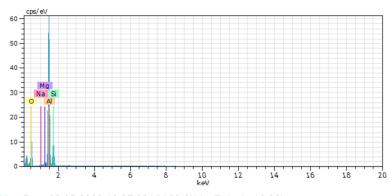
| El | AN | Series   |               | norm. C<br>[wt.%] |        | Error | (1 Sigma)<br>[wt.%] |
|----|----|----------|---------------|-------------------|--------|-------|---------------------|
|    |    |          |               |                   |        |       |                     |
| 0  | 8  | K-series | 25,40         | 35,47             | 48,19  |       | 3,45                |
| Al | 13 | K-series | 38,88         | 54,29             | 43,73  |       | 1,89                |
| si | 14 | K-series | 6,43          | 8,97              | 6,94   |       | 0,31                |
| Mg | 12 | K-series | 0,91          | 1,27              | 1,13   |       | 0,08                |
|    |    |          |               |                   |        |       |                     |
|    |    | Total:   | <u>71</u> ,61 | 100,00            | 100,00 |       |                     |



146 Date:02.05.2020 10:32:10 HV:20,0kV Puls th.:10,05kcps


| El AN Seri                                             |                       | norm. C<br>[wt.%]              |                                | Error | (1 Sigma)<br>[wt.%]          |
|--------------------------------------------------------|-----------------------|--------------------------------|--------------------------------|-------|------------------------------|
| O 8 K-ser<br>Al 13 K-ser<br>Si 14 K-ser<br>Mg 12 K-ser | ies 36,49<br>ies 6,04 | 35,56<br>54,08<br>8,95<br>1,40 | 48,28<br>43,54<br>6,93<br>1,25 |       | 3,27<br>1,77<br>0,29<br>0,09 |
| Tot                                                    | al: <u>67</u> ,47     | 100,00                         | 100,00                         |       |                              |

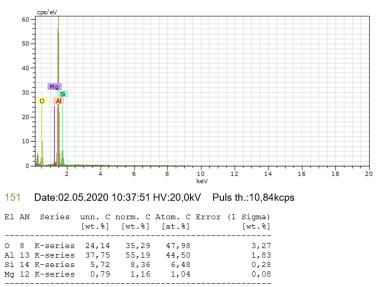



| El AN | Series   |               | norm. C<br>[wt.%] |        | Error | (1 Sigma)<br>[wt.%] |
|-------|----------|---------------|-------------------|--------|-------|---------------------|
|       |          |               |                   |        |       |                     |
| O 8   | K-series | 22,00         | 36,16             | 48,97  |       | 2,97                |
|       | K-series | 32,07         | 52,71             | 42,33  |       | 1,56                |
| Si 14 | K-series | 6,18          | 10,15             | 7,83   |       | 0,30                |
| Mg 12 | K-series | 0,60          | 0,98              | 0,88   |       | 0,06                |
|       |          |               |                   |        |       |                     |
|       | Total:   | <u>60</u> ,84 | 100,00            | 100,00 |       |                     |

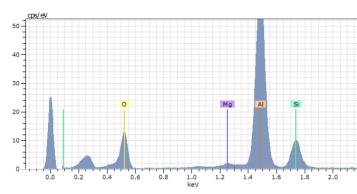
147 Date:02.05.2020 10:32:30 HV:20,0kV Puls th.:10,26kcps

| El       | AN       | Series |       | norm. C<br>[wt.%]              |                                | Error ( | l Sigma)<br>[wt.%]           |
|----------|----------|--------|-------|--------------------------------|--------------------------------|---------|------------------------------|
| Al<br>Si | 13<br>14 |        |       | 35,79<br>54,84<br>8,36<br>1,01 | 48,54<br>44,10<br>6,46<br>0,90 |         | 3,04<br>1,67<br>0,26<br>0,07 |
|          |          | Total: | 62,53 | 100,00                         | 100,00                         |         |                              |




Lanik30\_2-area 2 Date:02.05.2020 10:36:52 Image size:1024 x 768 Mag:49,79679x HV:20,0kV




150 Date:02.05.2020 10:37:30 HV:20,0kV Puls th.:10,86kcps

| El AN                   | Series                                                   |                                        | norm. C<br>[wt.%]                       |                                        | Error | (1 Sigma)<br>[wt.%]                  |
|-------------------------|----------------------------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------|-------|--------------------------------------|
| Al 13<br>Si 14<br>Mg 12 | K-series<br>K-series<br>K-series<br>K-series<br>K-series | 25,20<br>36,99<br>7,90<br>0,91<br>0,38 | 35,30<br>51,82<br>11,07<br>1,28<br>0,53 | 48,00<br>41,78<br>8,57<br>1,15<br>0,50 |       | 3,40<br>1,80<br>0,37<br>0,08<br>0,06 |

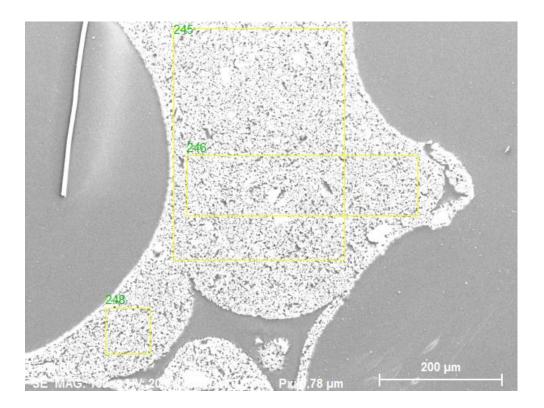


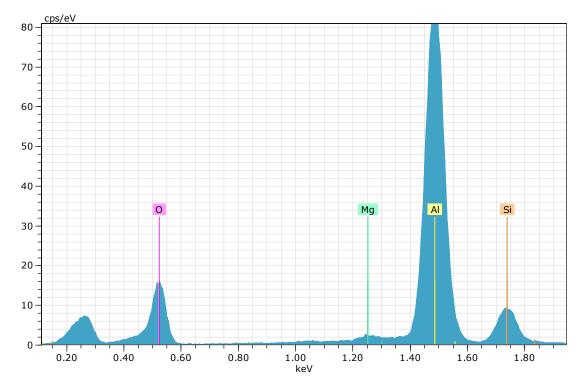


Total: 68,40 100,00 100,00



152 Date:02.05.2020 10:38:12 HV:20,0kV Puls th.:10,90kcps

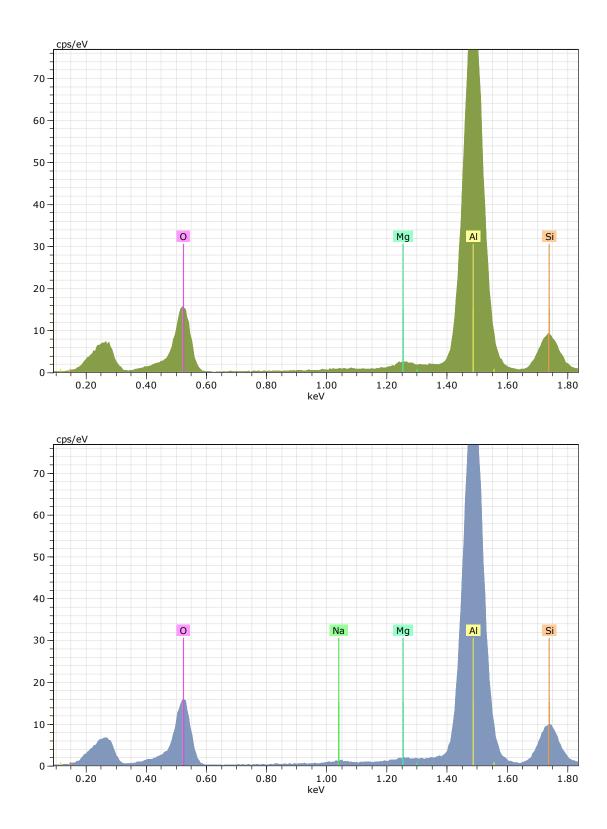

| El AN          | Series                                       |               | norm. C<br>[wt.%]               |                                | Error (1 | Sigma)<br>[wt.%]             |
|----------------|----------------------------------------------|---------------|---------------------------------|--------------------------------|----------|------------------------------|
| Al 13<br>Si 14 | K-series<br>K-series<br>K-series<br>K-series |               | 36,12<br>51,34<br>11,37<br>1,17 | 48,94<br>41,24<br>8,77<br>1,05 |          | 3,30<br>1,70<br>0,37<br>0,08 |
|                | Total:                                       | <u>68</u> ,03 | 100,00                          | 100,00                         |          |                              |


# L EDS RawData Lanik 60



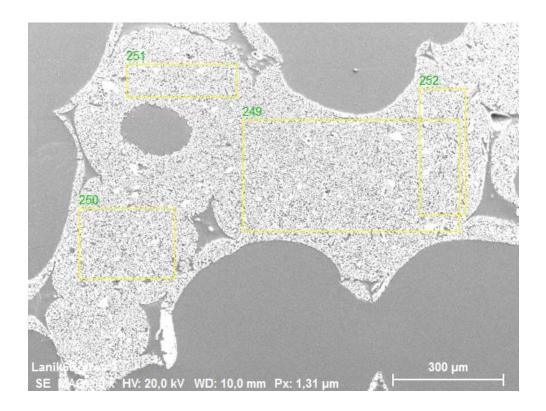


Company / Department

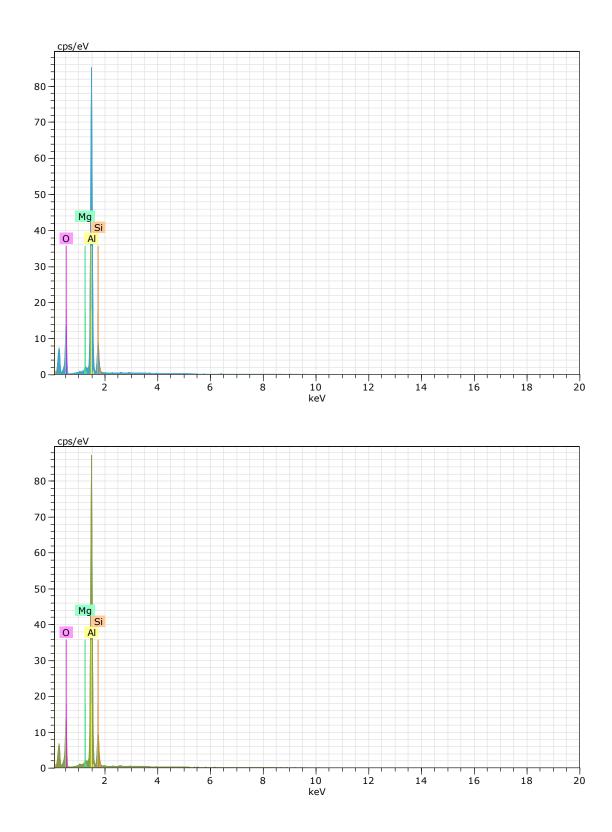




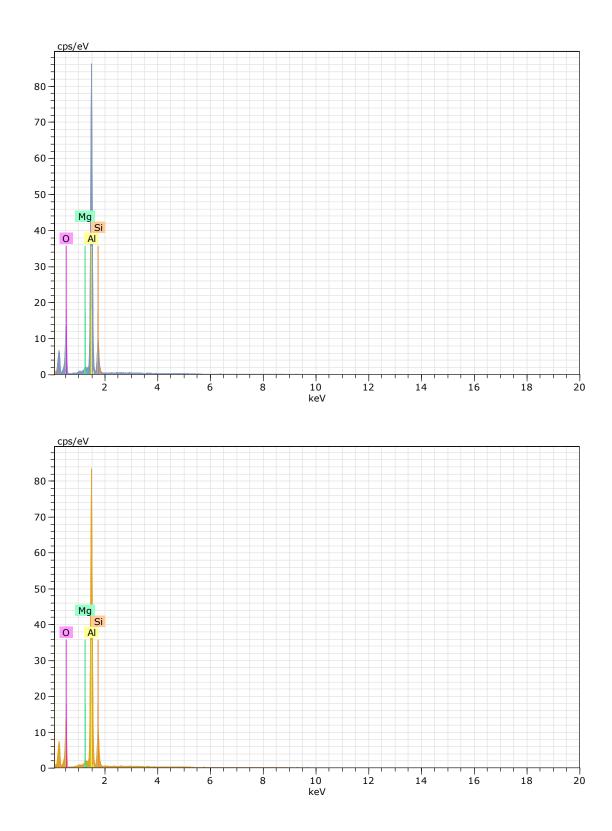

-----


Page 1 /



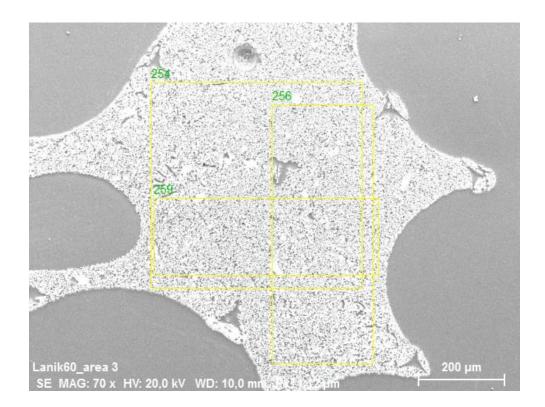




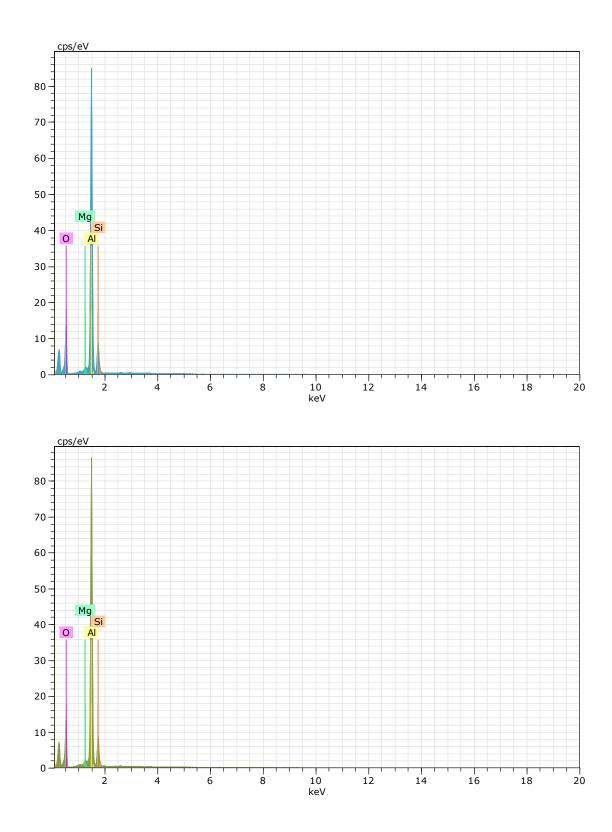


| Spectrum                             | 0                       | Na   | Mg   | Al                      | Si   |
|--------------------------------------|-------------------------|------|------|-------------------------|------|
| 245<br>246<br>248                    | 47,98<br>47,84<br>47,44 | -    | 1,25 | 44,51<br>44,72<br>44,63 | 6,19 |
| Mean value:<br>Sigma:<br>Sigma mean: | 0,28                    | 0,00 | 0,23 | 0,11                    | 0,20 |



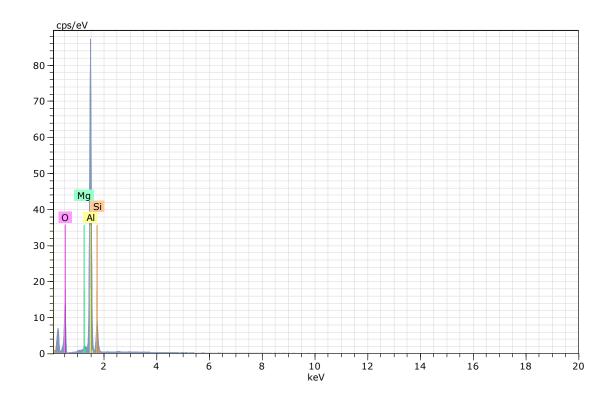










| Spectrum                             | 0     | Mg       | Al                    | Si   |
|--------------------------------------|-------|----------|-----------------------|------|
|                                      | 40.00 | 1 1 0    |                       |      |
| 249<br>250                           |       |          | 44,25<br>44,33        |      |
| 251                                  |       | '        | 44,26                 | '    |
| 252                                  | 48,23 | 1,09<br> | 43,25                 | 7,42 |
| Mean value:<br>Sigma:<br>Sigma mean: | 0,24  | 0,06     | 44,03<br>0,52<br>0,26 | 0,36 |



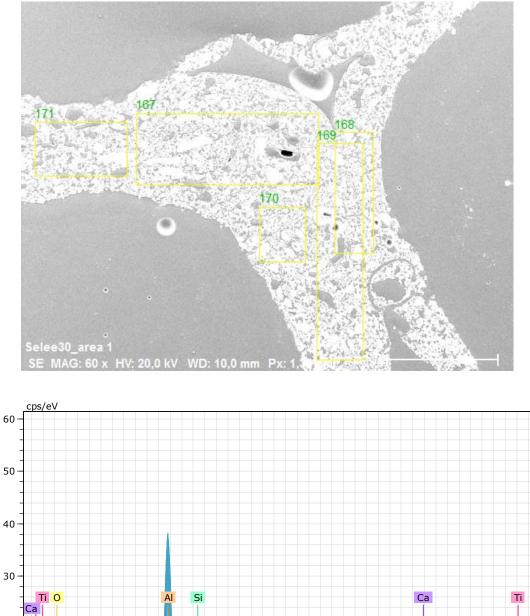


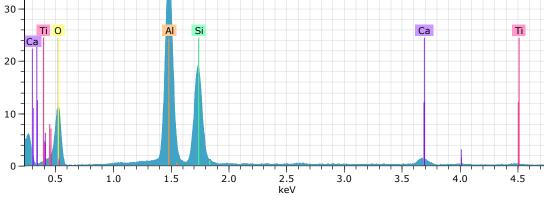






| Atomic percent | percent (% | ) |
|----------------|------------|---|
|----------------|------------|---|

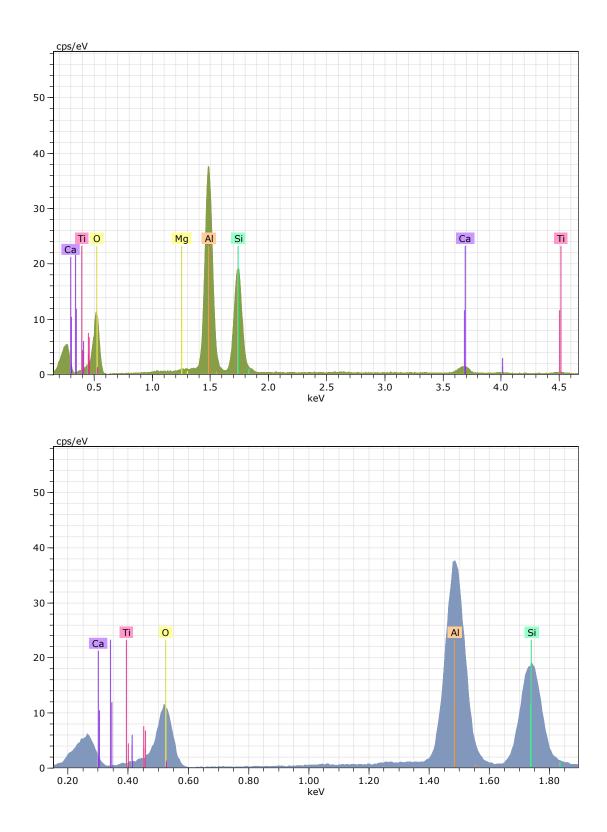

| Spectrum                             | 0     | Mg   | Al                      | Si            |
|--------------------------------------|-------|------|-------------------------|---------------|
| 254<br>256<br>259                    | 47,64 | 1,12 | 44,20<br>44,70<br>44,93 | 6 <b>,</b> 54 |
| Mean value:<br>Sigma:<br>Sigma mean: | 0,24  | 0,06 | 0,38                    | 0,13          |


## M EDS RawData Selee 30

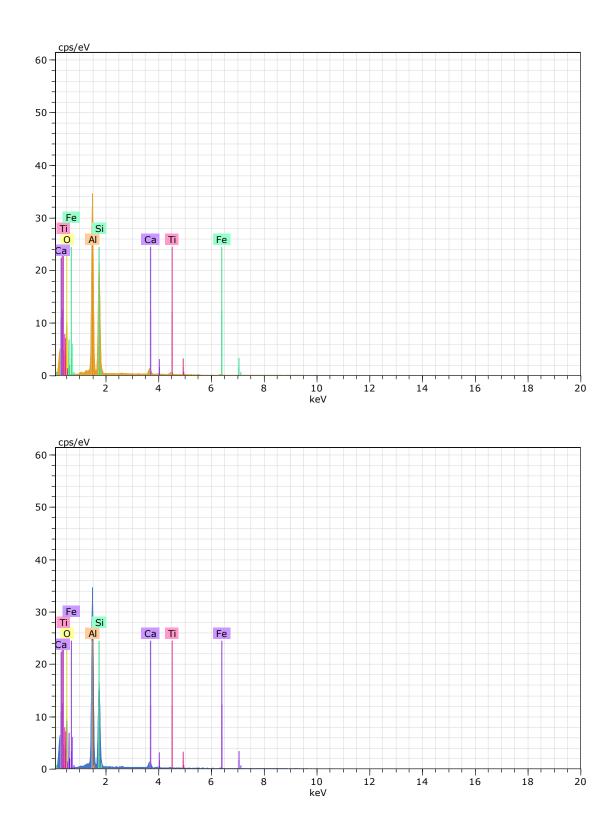




Company / Department





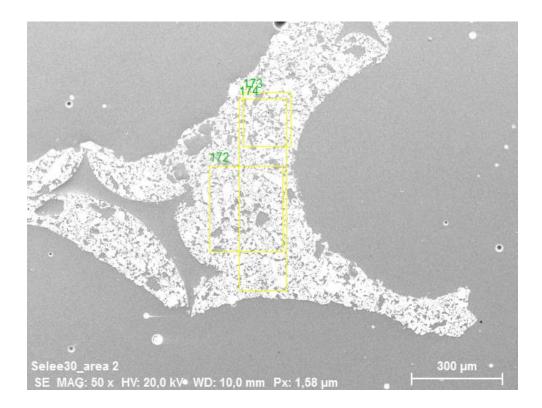


-----

Page 1 /

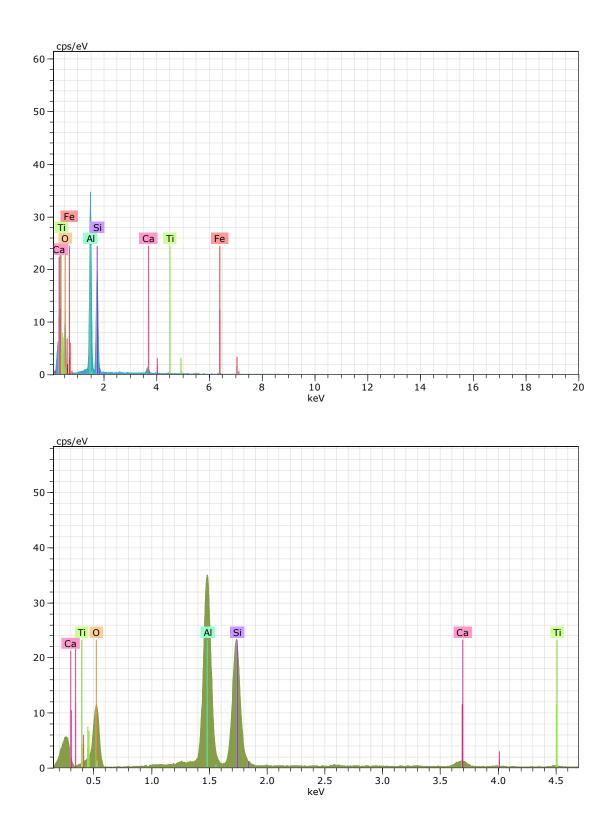




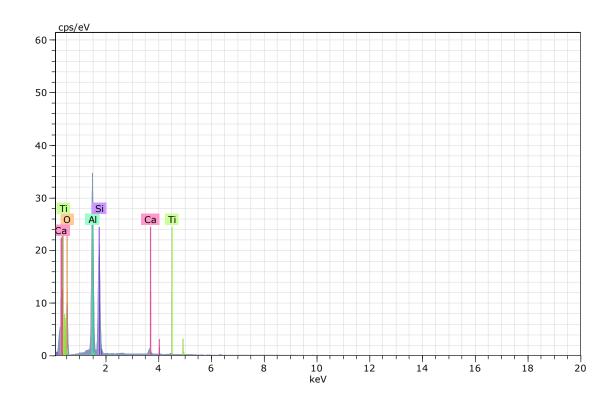








Atomic percent (%)

| 167       53,51       - 26,89       17,59       1,63       0,38       -         168       52,66       0,51       28,42       16,66       1,40       0,36       -         169       53,11       - 27,78       17,20       1,60       0,30       -         170       53,06       - 25,95       18,86       1,25       0,63       0,25         171       53,87       - 26,19       17,33       2,07       0,32       0,23 | Spectrum        | 0                      | Mg                         | AI                                  | Si                 | Ca                                 | Ti                   | Fe                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|----------------------------|-------------------------------------|--------------------|------------------------------------|----------------------|-----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                        | 168521695317053 | 2,66 0<br>3,11<br>3,06 | ,51 28<br>- 27,7<br>- 25,9 | 8,42 <sup>-</sup><br>78 17<br>95 18 | 16,6<br>,20<br>,86 | 6 <sup>°</sup> 1,4<br>1,60<br>1,25 | 0 0,<br>0,30<br>0,63 | 36 -<br>) -<br>3 0,25 |

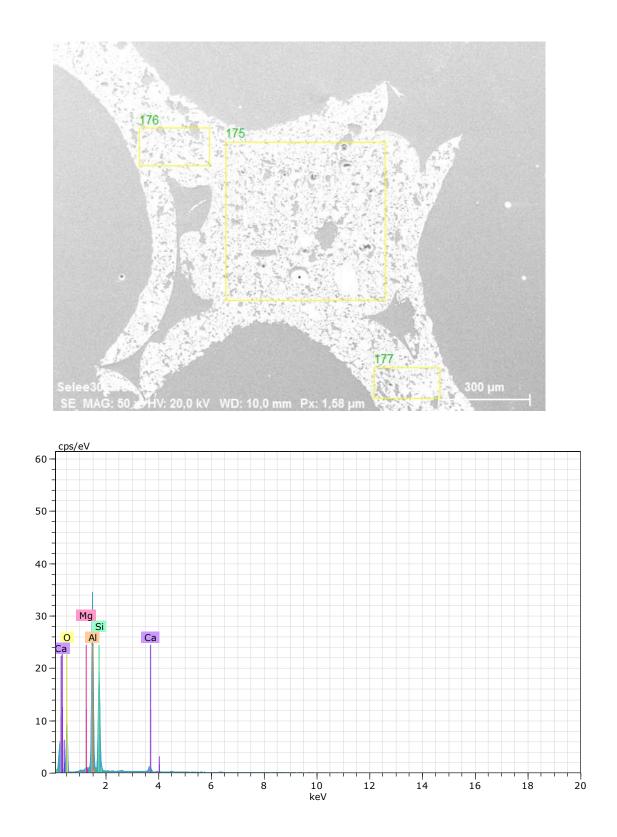

Mean value: 53,24 0,51 27,05 17,53 1,59 0,40 0,24 Sigma: 0,46 0,00 1,05 0,82 0,31 0,13 0,02 Sigma mean: 0,21 0,00 0,47 0,37 0,14 0,06 0,01



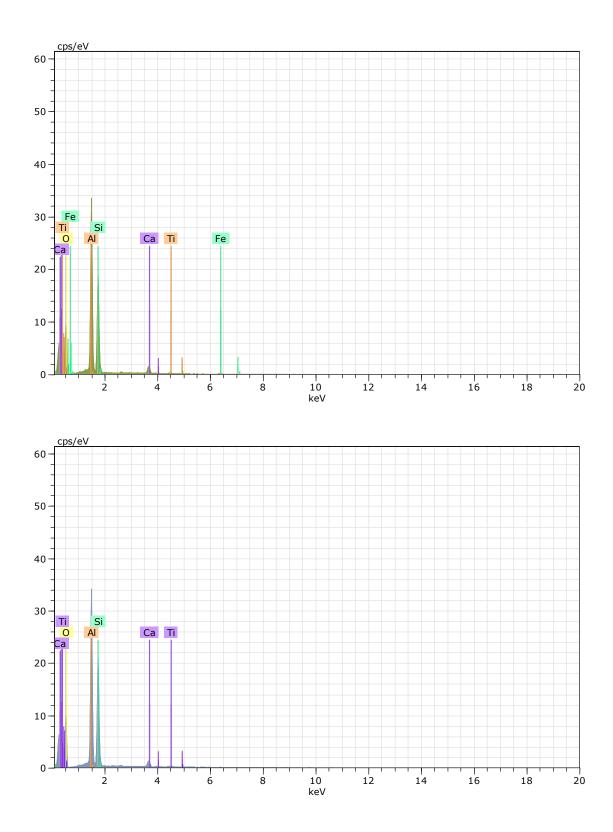









Atomic percent (%)


| Spectrum | ı 0                           | AI    | Si    | Ca   | Ti | Fe |              |
|----------|-------------------------------|-------|-------|------|----|----|--------------|
| 173      | 53,40 2<br>53,34 2<br>52,99 2 | 25,52 | 19,45 | 1,40 | 0, | 29 | 27<br>-<br>- |

Mean value: 53,24 25,84 19,00 1,49 0,34 0,27 Sigma: 0,22 0,56 0,40 0,27 0,05 0,00 Sigma mean: 0,13 0,33 0,23 0,16 0,03 0,00











Atomic percent (%)

 Spectrum
 O
 Mg
 Al
 Si
 Ca
 Ti
 Fe

 175
 52,65
 0,68
 27,86
 17,49
 1,32

 176
 53,43
 26,62
 17,50
 1,84
 0,32
 0,29

 177
 53,58
 24,36
 20,04
 1,63
 0,40

Mean value: 53,22 0,68 26,28 18,35 1,60 0,36 0,29 Sigma: 0,50 0,00 1,78 1,47 0,26 0,06 0,00 Sigma mean: 0,29 0,00 1,03 0,85 0,15 0,03 0,00

## **N** Risk Assessment Cold Testing

| NTNU |
|------|
|      |
| HSE  |

| repared by  | Number    | Date       |                   |
|-------------|-----------|------------|-------------------|
| ISE section | HMSRV2601 | 22.03.2011 | $\langle \rangle$ |
| Approved by | Page      | Replaces   |                   |
| he Rector   |           | 01.12.2006 | $\Delta \Pi$      |

C1

C1

| HSE              |                     |                                                                                                                                         |                            |                      |                           |                                      |                 |                    | The Rector                | 01.                                     | 12.2006                              |                    |
|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------|---------------------------|--------------------------------------|-----------------|--------------------|---------------------------|-----------------------------------------|--------------------------------------|--------------------|
| Unit:            | (Instit             | tute)                                                                                                                                   |                            |                      | IMA                       |                                      |                 | Date:              | 06.02.2020                |                                         |                                      |                    |
| Line n           | •                   | ,                                                                                                                                       |                            |                      | Tor Grande                |                                      |                 |                    |                           |                                         |                                      |                    |
|                  | -                   | ts in the identification proc                                                                                                           | ess (incl. f               | unction):            | Kristoffer S              | Smedal Olsen, Sa                     | ara Linnea La   | rsson Grays        | ston, Are Be              | rgin, Robert I                          | Fritzsch                             |                    |
|                  |                     | student, co-supervisor, others)                                                                                                         | /main nroc                 | 2000                 | Experiment                | tal assessment o                     | of the thermal  | stability of n     | new and inno              | ovative ceran                           | nic foam filter                      |                    |
|                  |                     | ect work purely theoretical                                                                                                             | •                          |                      | <u>materials fo</u><br>NO | or aluminium mel                     | It filtration   |                    |                           |                                         |                                      |                    |
|                  |                     | " implies that supervisor is assu                                                                                                       | •                          |                      |                           |                                      | volved in the w | ork. If YES,       | skip rest of              | the form.                               |                                      |                    |
| -                |                     | ceive industry samples?                                                                                                                 | (YES/NO)                   |                      | YES                       |                                      | _               |                    |                           |                                         |                                      |                    |
|                  |                     | that a separate risk assessment<br>ect work safe to perform o                                                                           | -                          | -                    |                           |                                      |                 |                    |                           |                                         |                                      |                    |
|                  | proje               | Responsible                                                                                                                             |                            |                      |                           | ): (120/10)                          |                 | Student            |                           | nedal Olsen,                            | Sara Linnea                          |                    |
|                  | _                   |                                                                                                                                         |                            |                      |                           |                                      |                 |                    | Larsson Gra               | ayston                                  |                                      |                    |
| ID nr            | ·. A                | ctivity/process                                                                                                                         | Respons-<br>ible<br>person | Existing<br>document | tation                    | Existing safe<br>measures            | -               | Laws, regu<br>etc. | lations                   | Comment                                 |                                      |                    |
|                  |                     |                                                                                                                                         | Kristoffer                 |                      |                           |                                      |                 |                    |                           |                                         |                                      |                    |
|                  | Sh                  | naping samples                                                                                                                          | Olsen, Sara<br>Grayston    |                      |                           |                                      |                 |                    |                           |                                         |                                      |                    |
| 1                | A                   | Using a drill to shape sylindrical<br>samples from a whole filter                                                                       |                            |                      |                           | Protective equipm gloves and hearing |                 |                    |                           |                                         |                                      |                    |
|                  | в                   | Drilling samples with phosphate<br>binding after they have been<br>immersed in molten aluminium will<br>produce phosphine               |                            |                      |                           | Gas-mask                             |                 |                    |                           | An additional me<br>rentilation to disp |                                      |                    |
|                  |                     | •                                                                                                                                       | Kristoffer<br>Olsen, Sara  |                      |                           |                                      |                 |                    |                           |                                         |                                      |                    |
|                  | Co                  | ompression testing at room temperatu                                                                                                    |                            |                      |                           | Ventilation                          |                 |                    |                           |                                         |                                      |                    |
| 2                | A                   | Placing the sample in the machine                                                                                                       |                            |                      |                           |                                      |                 |                    |                           |                                         |                                      |                    |
| 2                |                     |                                                                                                                                         |                            |                      |                           |                                      |                 |                    |                           |                                         | ep fingers clear<br>anism, especiall |                    |
|                  | В                   | Removing the sample                                                                                                                     |                            |                      |                           |                                      |                 |                    |                           | placing and r                           | emoving the sar                      | ıple.              |
|                  | с                   | Cleaning the machine from debris                                                                                                        |                            |                      |                           |                                      |                 |                    |                           |                                         |                                      |                    |
| TNU              |                     | elearning the machine wein desite                                                                                                       |                            | 1                    |                           |                                      |                 |                    | Prepared by               | Nummer                                  | Date                                 |                    |
|                  |                     |                                                                                                                                         | Ris                        | k asses              | ssment                    |                                      |                 |                    | HSE section               | HMSRV2603                               | 04.02.2011                           | $\left\{ \right\}$ |
| S /KS            |                     |                                                                                                                                         |                            |                      |                           |                                      |                 |                    | Approved by<br>The Rector | Page                                    | Replaces<br>09.02.2010               | $\langle \rangle$  |
|                  |                     |                                                                                                                                         |                            |                      |                           |                                      |                 |                    |                           |                                         |                                      |                    |
| t: (Ins<br>e man |                     |                                                                                                                                         |                            |                      | IMA<br>Tor Gran           | de                                   |                 | Date:              | 06.02.20                  | 20                                      |                                      |                    |
| ticipa           | nts i               | n the identification proce                                                                                                              | ss (incl. fu               | inction):            |                           | medal Olsen, S                       | ara Linnea L    | –<br>arsson Gra    | vston. Are l              | Bergin, Robe                            | ert Fritzsch                         |                    |
|                  |                     | lent, co-supervisor, others)                                                                                                            |                            |                      |                           | tal assessment                       |                 |                    |                           | 0                                       |                                      | ilter              |
| k asse           | essm                | nent of:                                                                                                                                |                            |                      | materials for             | or aluminium me                      |                 |                    |                           | Smedal Olse                             |                                      |                    |
| nature           | es:                 | Responsible su                                                                                                                          | pervisor:                  | Are Bergir           | า                         |                                      |                 | Student:           | Larsson (                 |                                         | en, Sara Lini                        | lea                |
|                  |                     |                                                                                                                                         | Detential                  |                      | Likeli-                   |                                      | Consequ         | ence:              |                           | Risk                                    |                                      |                    |
| ) nr             |                     | vity from the identification ess form                                                                                                   | Potential<br>undesirabl    | e                    | hood:                     | Human                                | Enviromen       | Economy            | /                         | value<br>(human)                        | Comments<br>Suggested                |                    |
|                  | proc                | 633 10111                                                                                                                               | incident/st                | rain                 | (1-5)                     | (A-E)                                | (A-E)           | material<br>(A-E)  |                           | (numan)                                 | measures                             |                    |
|                  |                     |                                                                                                                                         |                            |                      |                           |                                      |                 |                    |                           |                                         |                                      |                    |
|                  | Shapir              | ng samples                                                                                                                              |                            |                      |                           |                                      |                 |                    |                           |                                         |                                      |                    |
|                  |                     |                                                                                                                                         |                            |                      |                           |                                      |                 |                    |                           |                                         |                                      |                    |
| 1                |                     | Jsing a drill to shape sylindrical                                                                                                      | a ta                       |                      | 2                         | А                                    |                 |                    |                           | A2                                      |                                      |                    |
| 1                |                     | samples from a whole filter                                                                                                             | cuts                       |                      |                           |                                      |                 |                    |                           |                                         |                                      |                    |
|                  | A s                 |                                                                                                                                         | cuis                       |                      |                           |                                      |                 |                    |                           |                                         |                                      |                    |
|                  | A s                 | samples from a whole filter                                                                                                             | Phosphine poi              | soning               | 1                         | С                                    |                 |                    |                           | C1                                      |                                      |                    |
|                  | A s<br>E<br>B b     | samples from a whole filter Drilling samples with phosphate binding will produce phosphine                                              |                            | soning               | 1                         | с                                    |                 |                    |                           | C1                                      |                                      |                    |
|                  | A s<br>E<br>B b     | samples from a whole filter<br>Drilling samples with phosphate                                                                          |                            | soning               | 1                         | С                                    |                 |                    |                           | C1                                      |                                      |                    |
|                  | A s<br>B t<br>Compi | samples from a whole filter<br>Drilling samples with phosphate<br>binding will produce phosphine<br>ression testing at room temperature |                            |                      | 1                         | С                                    |                 |                    |                           | C1<br>C1                                |                                      |                    |

С

С

1

1

Crushing injuries

Crushing injuries

Removing the sample

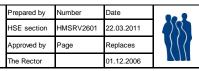
Cleaning the machine from debris

в

|       | Likelihood                          | Consequence   |                  |                                                                    |                                              |                               |  |  |
|-------|-------------------------------------|---------------|------------------|--------------------------------------------------------------------|----------------------------------------------|-------------------------------|--|--|
| Value | Criteria                            | Grading Human |                  |                                                                    | Environment                                  | Economy/material              |  |  |
| 1     | Minimal: Once every 50 year or less | E             | Very<br>critical | May produce fatality/ies                                           | Very prolonged, non-<br>reversible damage    | Shutdown of work >1<br>year.  |  |  |
| 2     | Low: Once every 10 years or less    | D             | Critical         | Permanent injury, may<br>produce serious health<br>damage/sickness | Prolonged damage.<br>Long recovery time.     | Shutdown of work 0.5-1 year.  |  |  |
| 3     | Medium: Once a year or less         | С             | Dangerous        | Serious personal injury                                            | Minor damage. Long<br>recovery time          | Shutdown of work < 1<br>month |  |  |
| 4     | High: Once a month or less          | в             | Relatively safe  | Injury that requires medical treatment                             | Minor damage. Short<br>recovery time         | Shutdown of work <<br>1week   |  |  |
| 5     | Very high: Once a week              | Α             | Safe             | Injury that requires first aid                                     | Insignificant damage.<br>Short recovery time | Shutdown of work <<br>1day    |  |  |

Risk value = Likelihood (1, 2 ...) x consequence (A, B ...). Risk value A1 means very low risk. Risk value E5 means very large and serious risk

## MATRIX FOR RISK ASSESSMENT


|             |                         | LIKELIHOOD |     |            |      |           |  |  |
|-------------|-------------------------|------------|-----|------------|------|-----------|--|--|
|             |                         | Minimal    | Low | Medium     | High | Very high |  |  |
|             | Saf<br>e                | A1         | A2  | A3         | A4   | A5        |  |  |
| CON         | Rel<br>ativ<br>elv      | B1         | B2  | <b>B</b> 3 | B4   | B5        |  |  |
| CONSEQUENCE | Da<br>nge<br>rou<br>Rel | C1         | C2  | СЗ         | C4   | C5        |  |  |
| ENCE        | Crit<br>ical            |            | D2  | D3         | D4   | D5        |  |  |
|             | Ver<br>y<br>criti       | E1         | E2  | E3         | E4   | E5        |  |  |

Explanation of the colors used in the risk matrix.

| Color  | Description                                             |
|--------|---------------------------------------------------------|
| Red    | Unacceptable risk. Safety measures must be implemented. |
| Yellow | Measures to reduce risk shall be considered.            |
| Green  | Acceptabel risk.                                        |

## **O** Risk Assessment Hot Testing

| NTNU |
|------|
|      |
| HSE  |



| Unit: (In | stitute                               | )                                                                                                           |                                       |                     | IMA                                                                                        |                                                                                                   | Date:                    |                            |                                                                                                                                                                                                                                                                                          |  |  |  |
|-----------|---------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Line ma   | nage                                  | r:                                                                                                          |                                       |                     | Tor Grande                                                                                 | )                                                                                                 |                          |                            |                                                                                                                                                                                                                                                                                          |  |  |  |
| •         |                                       | in the identification process<br>dent, co-supervisor, others)                                               | s (incl. fur                          | ction):             | Kristoffer Smedal Olsen, Sara Linnea Larsson Grayston, Are Bergin, Robert Fritzsch         |                                                                                                   |                          |                            |                                                                                                                                                                                                                                                                                          |  |  |  |
| Short de  | scri                                  | otion of the main activity/ma                                                                               | ain proces                            | ss:                 | Experimental assessment of the thermal stability of new and innovative ceramic foam filter |                                                                                                   |                          |                            |                                                                                                                                                                                                                                                                                          |  |  |  |
| Is the pr | oject                                 | t work purely theoretical? (                                                                                | (ES/NO)                               |                     | materials for aluminium melt filtration NO                                                 |                                                                                                   |                          |                            |                                                                                                                                                                                                                                                                                          |  |  |  |
| Answer "Y | 'ES" iı                               | mplies that supervisor is assured                                                                           | that no acti                          | vities requir       | ing risk asses                                                                             | sment are involved in the w                                                                       | ork. If YES,             | skip rest of               | the form.                                                                                                                                                                                                                                                                                |  |  |  |
| Will you  | rece                                  | ive industry samples?                                                                                       | (YES/NO)                              |                     | YES                                                                                        |                                                                                                   |                          |                            |                                                                                                                                                                                                                                                                                          |  |  |  |
| "YES" mea | ans th                                | at a separate risk assessment of t                                                                          | he samples                            | is required         |                                                                                            |                                                                                                   |                          |                            |                                                                                                                                                                                                                                                                                          |  |  |  |
| Is the pr | oject                                 | work safe to perform outs                                                                                   | ide norma                             | l work ho           | urs (8-17)?                                                                                | (YES/NO) NO                                                                                       |                          |                            |                                                                                                                                                                                                                                                                                          |  |  |  |
|           |                                       | Responsible s                                                                                               | upervisor:                            | Are Bergi           | n                                                                                          |                                                                                                   |                          | Kristoffer S<br>Larsson Gi | smedal Olsen, Sara Linnea<br>rayston                                                                                                                                                                                                                                                     |  |  |  |
| ID nr.    | Acti                                  | vity/process                                                                                                | Respons-<br>ible<br>person            | Existing<br>documen | tation                                                                                     | Existing safety<br>measures                                                                       | Laws, regu<br>etc.       | ulations                   | Comment                                                                                                                                                                                                                                                                                  |  |  |  |
|           |                                       | pression testing at high<br>eratures                                                                        | Kristoffer<br>Olsen, Sara<br>Grayston |                     |                                                                                            |                                                                                                   |                          |                            |                                                                                                                                                                                                                                                                                          |  |  |  |
|           | A                                     | When transferring the sample from<br>high temperature(up to 900C) oven to<br>crushing strength test machine |                                       |                     |                                                                                            |                                                                                                   |                          |                            | Keep fingers clear of the crushing mechanism at all times, always wear                                                                                                                                                                                                                   |  |  |  |
| 1         | В                                     | Placing the sample in the test machine                                                                      |                                       |                     |                                                                                            | Ventilation and protective<br>equipment for high<br>temperatures: heat suit, gloves<br>and visor. | forskrift om t<br>arbeid |                            | protective equipment. Avoid dropping the<br>samples or other equipment as this may<br>damage the surroundings. Other people<br>using the lab should be notified and a<br>sign on the door warning of high<br>temperatures. A heat proof bucket is<br>required for disposal of hot waste. |  |  |  |
| 2         | · · · · · · · · · · · · · · · · · · · |                                                                                                             | Kristoffer<br>Olsen, Sara<br>Grayston |                     |                                                                                            |                                                                                                   |                          |                            |                                                                                                                                                                                                                                                                                          |  |  |  |
|           | A                                     | Transferring molten metal into priming apparatus                                                            |                                       |                     |                                                                                            |                                                                                                   |                          |                            | Avoid contact with electromagnetic                                                                                                                                                                                                                                                       |  |  |  |
|           | в                                     | Actual priming of filter                                                                                    |                                       |                     |                                                                                            | Protective equipment for high<br>temperatures: heat suit, gloves<br>and visor                     | forskrift om u<br>arbeid |                            | components which have a high current.<br>A heat proof bucket is required for<br>disposal of hot waste.                                                                                                                                                                                   |  |  |  |
|           | с                                     | Cooling                                                                                                     |                                       |                     |                                                                                            |                                                                                                   |                          |                            |                                                                                                                                                                                                                                                                                          |  |  |  |



## **Risk assessment**

| Prepared by | Nummer    | Date       |                   |
|-------------|-----------|------------|-------------------|
| HSE section | HMSRV2603 | 04.02.2011 | $\langle \rangle$ |
| Approved by | Page      | Replaces   |                   |
| The Rector  |           | 09.02.2010 | $\Delta 1$        |

### Unit: (Institute) Line manager:

IMA Tor Grande

Participants in the identification process (incl. function):

Kristoffer Smedal Olsen, Sara Linnea Larsson Grayston, Are Bergin, Robert Fritzsch

Date:

Risk assessment of:

(supervisor, student, co-supervisor, others)

Experimental assessment of the thermal stability of new and innovative ceramic foam filter materials for aluminium melt filtration

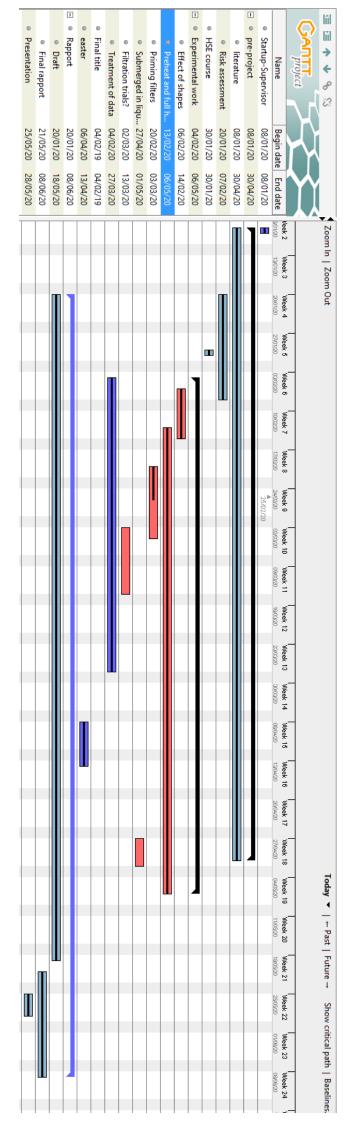
Signatures:

Responsible supervisor: Are Bergin

Kristoffer Smedal Olsen, Sara Linnea Student: Larsson Grayston

| ID nr. |               |                                                                                                             | Potential                      | Likeli-<br>hood: | Consequence:   |                     |                               |  | Risk           | Comments/status       |  |
|--------|---------------|-------------------------------------------------------------------------------------------------------------|--------------------------------|------------------|----------------|---------------------|-------------------------------|--|----------------|-----------------------|--|
|        | Infocase form |                                                                                                             | undesirable<br>incident/strain | (1-5)            | Human<br>(A-E) | Enviroment<br>(A-E) | Economy/<br>material<br>(A-E) |  | alue<br>numan) | Suggested<br>measures |  |
|        |               | pression testing at high<br>peratures                                                                       |                                |                  |                |                     |                               |  |                |                       |  |
|        | A             | When transferring the sample from<br>high temperature(up to 900C) oven to<br>crushing strength test machine | Burn-injuries                  | 2                | A              |                     |                               |  | A2             |                       |  |
| 1      | A             |                                                                                                             | Crushing injuries              | 1                | с              |                     |                               |  | C1             |                       |  |
|        | в             | Placing the sample in the test machine                                                                      | Burn-injuries                  | 2                | А              |                     |                               |  | A2             |                       |  |
|        | в             |                                                                                                             | Crushing injuries              | 1                | с              |                     |                               |  | C1             |                       |  |
|        | с             | Removing sample from test machine                                                                           | Burn-injuries                  | 2                | A              |                     |                               |  | A2             |                       |  |
|        | с             |                                                                                                             | Crushing injuries              | 1                | с              |                     |                               |  | C1             |                       |  |
|        | Prim          | ing the filters                                                                                             |                                |                  |                |                     |                               |  |                |                       |  |
|        | A             | Transferring molten metal into priming apparatus                                                            | Burn-injuries                  | 2                | A              |                     |                               |  | A2             |                       |  |
| 2      | в             | Priming of filter                                                                                           | Burn-injuries                  | 2                | A              |                     |                               |  | A2             |                       |  |
|        | в             |                                                                                                             | Electric shock                 | 1                | с              |                     |                               |  | C1             |                       |  |
|        | с             | Cooling                                                                                                     |                                |                  |                |                     |                               |  |                |                       |  |
| 0      | с             | 1                                                                                                           |                                |                  |                |                     |                               |  |                |                       |  |

| Risk value | isk value = Likelihood (1, 2) x consequence (A, B). Risk value A1 means very low risk. Risk value E5 means very large and serious risk |             |                  |                                                                    |  |                                  |                                 |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|--------------------------------------------------------------------|--|----------------------------------|---------------------------------|--|--|
|            | Likelihood                                                                                                                             | Consequence |                  |                                                                    |  |                                  |                                 |  |  |
| Value      | ue Criteria                                                                                                                            |             | ding             | Human Environment                                                  |  | invironment                      | Economy/material                |  |  |
| 1          | Minimal: Once every 50 year or less                                                                                                    |             | Very<br>critical | May produce fatality/ies                                           |  | prolonged, non-<br>sible damage  | Shutdown of work >1<br>year.    |  |  |
| 2          | Low: Once every 10 years or less                                                                                                       | D           | Critical         | Permanent injury, may<br>produce serious health<br>damage/sickness |  | nged damage.<br>recovery time.   | Shutdown of work 0.5-1<br>year. |  |  |
| 3          | Medium: Once a year or less                                                                                                            | с           | Dangerous        | Serious personal injury                                            |  | damage. Long<br>ery time         | Shutdown of work < 1<br>month   |  |  |
| 4          | High: Once a month or less                                                                                                             |             |                  | Injury that requires medical<br>treatment                          |  | damage. Short<br>ery time        | Shutdown of work <<br>1week     |  |  |
| 5          | Very high: Once a week                                                                                                                 | А           | Safe             | Injury that requires first aid                                     |  | ificant damage.<br>recovery time | Shutdown of work <<br>1day      |  |  |


## MATRIX FOR RISK ASSESSMENT

|             | Ver<br>y<br>criti       | E1      | E2  | E3     | E4   | E5        |
|-------------|-------------------------|---------|-----|--------|------|-----------|
| INCE        | Crit<br>ical            |         | D2  | D3     | D4   | D5        |
| CONSEQUENCE | Da<br>nge<br>rou<br>Rel |         | C2  | СЗ     | C4   | C5        |
| CON         | Rel<br>ativ<br>elv      |         | B2  | B3     | B4   | B5        |
|             | Saf<br>e                | A1      | A2  | A3     | A4   | A5        |
|             |                         | Minimal | Low | Medium | High | Very high |
|             | LIKELIHOOD              |         |     |        |      |           |

#### Explanation of the colors used in the risk matrix.

| Color  | Description                                             |
|--------|---------------------------------------------------------|
| Red    | Unacceptable risk. Safety measures must be implemented. |
| Yellow | Measures to reduce risk shall be considered.            |
| Green  | Acceptabel risk.                                        |

# P Project Plan



# **Q** Popular Science Article

## Ceramic Foam Filters - for Aluminium Melt Filtration

Kristoffer Smedal Olsen and Sara Linnea Larsson Grayston Norwegian University of Science and Technology (Dated: May 29, 2020)

When producing and recycling aluminium, ceramic foam filters play an essential part. They filter out unwanted particles resulting in a cleaner, higher grade aluminium alloy with higher mechanical properties.

## I. INTRODUCTION

Recycling metal is a sustainable way to make new products, where the need for a more environmental way of getting metal for new products. The molten metal contains non-metallic inclusions which affect adversely the properties of the aluminium, For example, the tensile strength, the elongation at rupture and the surface quality is reduced. These inclusions needs to be removed before the castin step, and one way of doing this is by the use of Ceramic foam filters (CFF) as seen in Figure 1. CFFs is an in-line filtration method which is used as the last step in refining molten metal, and there are different aspects of a CFF that affects the filter, and how effectively it filters the molten metal [1]. Some of these aspects are the composition, density and mechanical properties.



FIG. 1: Illustration of a ceramic foam filter [2].

## **II. PRODUCTION**

A way of making a ceramic foam filter is by using a replication process. This process works by producing a polymer foam with specific pore sizes. When the polymer foam is dry, it is coated with a ceramic slurry composed by a ceramic and different binders. These compositions are more explained in Chapter IV. Then the slurry coating is dried, and the polymer decomposes. Lastly, the ceramic slurry is heated, and the sintering of the ceramic starts.

## **III. FUNCTIONALITY OFF A CFF**

The last step in the refining is the molten metal filtration by using CFFs, due to their ability to withstand temperatures over 1000 degrees. The filter is fitted in the filter bowl, illustrated in Figure 2, and heated to approximately the working temperature, at 750 °C. Priming is a process where molten metal is pushed through the filter and is done in advance of filtration. This is done to break the surface tensions between the molten aluminium and the filter, allowing the metal to pass through the filter [3]. When the filter is properly primed, the filtration of aluminium starts; with the molten metal coming from the inlet, through the filter and out the outlet to the casting.

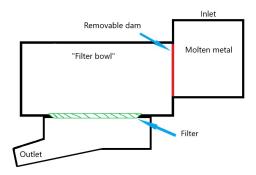



FIG. 2: Illustration of inside the filtration seat in the foundry.

The pores in the filters accumulates the impurities in the molten metal, as illustrated in Figure 3. Here, the molten metal enters the filter from the top and exits through the bottom. The canals through the filters gives it a longer distance rather than straight through, thus making more of the impurities being collected in the filter pores [4].



FIG. 3: Structure of a CFF.

## IV. COMPOSITIONS

Most CFFs for aluminium filtration consist mainly of alumina, and use binders like phosphate and silica to lower sintering temperature for cheaper use. Phosphate filters are used due to a high bending and compression strength [5], but can be unstable at high temperatures and release phosphine after reacting with aluminium and in contact with water [6]. Alternative filters often use silica, and negate the health risk of phosphine.

### V. DENSITY AND STRUCTURES

The different CFF comes with different densities and pores per inch (ppi). For each manufacturer these may differ. Ceramic foams are often categorized into two groups depending on their structure: open- and closedcell. While closed-cell foams are used for isolation or structural components, open-celled foams are well suited for filtration. Foams in general are made up of pores, which contain two parts; struts and cell-walls. Struts are the arms that bind the pores together, while cellwalls are thinner walls that can arise when the foam is dense enough. An example of a CFF is shown in 4.

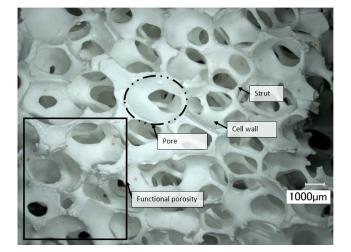



FIG. 4: Illustrative microscope image of a CFF

### VI. MECHANICAL PROPERTIES

When categorizing the mechanical properties of ceramic foams, the most used parameter is compressive

- D. Chesonis, A holistic approach to molten metal cleanliness, Light Metals 2017, 1411 (2017).
- [2] Foundrymaterial.com, Foundrymaterial.com (2020), retrieved: 28.05.2020.
- [3] R. Fritzsch, M. W. Kennedy, J. A. Bakken, and R. E. Aune, Electromagnetic priming of ceramic foam filters (cff) for liquid aluminum filtration, Sadler B.A. (eds) Light Metals 2013. The Minerals, Metals & Materials Series. Springer, Cham, 973 (2016).
- [4] F. Breton, P. Waite, and P. Robichaud, Advanced compact filtration (acf): an efficient and flexible filtration process, Sadler B.A. (eds) Light Metals 2013. The

strength. The best model for compressive strength, and for the structure of ceramic foams in general, is from Gibson and Ashby [7]. This model details a unit cell as seen in Figure 5 where the struts break from bending, ultimately making the compressive strength of CFFs dependent on the strength of the struts ( $\sigma_{fs}$ ) and the ratio between the density of the foam and the density of the material (( $\rho^*/\rho_s$ )), as seen in Equation 1.

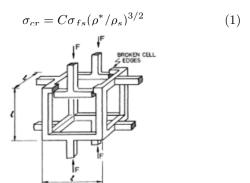



FIG. 5: The unit cell from Gibson and Ashby[7].

The compressive strength of CFFs has been studied well at room temperature, but when increasing the temperature there has been done little research. Our bachelor thesis seeks to establish methods to test the compressive strength at high temperatures. Further focus is on how longer time at the working temperatures of around 730 °C affects the strength of the filters. This could give a picture of how much the filters can handle in the cast house before they break.

### ACKNOWLEDGMENTS

The authors would like to express our sincerest thanks to our supervisors Prof. Ragnhild E. Aune, PhD candidate Are Bergin, Dr. Robert Fritzsch and Dr.-ing. Claudia Voigt for guidance and assistance through both the theoretical and experimental work.

Minerals, Metals & Materials Series. Springer, Cham , 967 (2016).

- [5] J. A. Fernando and D. D. L. Chung, Improving an alumina fiber filter membrane for hot gas filtration using an acid phosphate binder, Journal of materials science 36, 5079 (2001).
- [6] L. S. Aubrey, R. Olson, and D. D. Smith, Development of a phosphate-free reticulated foam filter material for aluminium cast houses, Materials science forum 630, 137 (2009).
- [7] L. J. Gibson and M. F. Ashby, *Cellular Solids: Structure and Properties*, 2nd ed. (Cambridge University Press, 1997).



