
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ric

 P
ow

er
 E

ng
in

ee
rin

g

D
aniel Aunan Bolstad

Interpretation of Electrical Load Forecasts using Explainable Artificial Intelligence

Daniel Aunan Bolstad

Interpretation of Electrical Load
Forecasts using Explainable Artificial
Intelligence

A day-ahead load forecasting case study of the
NO1 price region

Master’s thesis in Energy and the Environment
Supervisor: Ümit Cali

June 2021

M
as

te
r’s

 th
es

is

Daniel Aunan Bolstad

Interpretation of Electrical Load
Forecasts using Explainable Artificial
Intelligence

A day-ahead load forecasting case study of the NO1
price region

Master’s thesis in Energy and the Environment
Supervisor: Ümit Cali
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electric Power Engineering

Preface
The following master thesis is the second part for the degree of master of science in electric

power engineering. The work is the continuation of the project thesis carried out during the

previous semester. The following thesis assumes that the reader is somewhat familiar with

the basic concepts of machine learning, which were introduced in the project thesis (Bolstad,

2020).

Thanks to my supervisor, Ümit Cali for being available whenever I needed guidance, even

outside business hours.

Daniel Aunan Bolstad, Trondheim 2021

i

Abstract
Electrical load forecasts are used by a wide number of power system participants in multiple

time horizons, ranging from minutes ahead to several years ahead. Forecasts by machine

learning models offer very high accuracy, but are so-called black boxes and do not give any

reasoning for their decisions. Explainable artificial intelligence methods provide a means for

peeking inside the black box to understand the model better.

The goal of the thesis was to investigate how explainable artificial intelligence can be used

to interpret and improve electrical load forecasts made by a machine learning model. A

convolutional neural network for day-ahead load forecasting was developed for the Norwegian

price zone, NO1. The framework of Shapley additive explanations was used during model

development for feature selection and debugging purposes. This framework was also used

for explanations of selected forecasts made in testing of the final model. Local explanations

were made by, essentially, comparing the forecast in question to other similar days through

background data selection. During model development it was found that the explanations

led to increased model performance and understanding. Moreover, the explanations made

for the forecasts during testing proved to be intuitive and gave insight of the underlying

causes of the forecasts.

The findings of the thesis therefore suggest that explainable artificial intelligence methods

are well suited for electrical load forecasting models. However, the intuitiveness of the

explanations rely on using similar forecasts for comparison. More research is needed on the

implications of the choice of background data to make any conclusive statements.

ii

Sammendrag
Forbruksprognoser i elektriske kraftsystemer er viktige for flere aktører over mange forskjel-

lige tidshorisonter. Prognoser laget med anvendelse av maskinlære eller dyp lære, har ved

flere anledninger vist seg å være mer nøyaktige enn konvensjonelle metoder, men er basert

på “black box”-modeller som ikke er praktisk mulig å forstå. Forklarbar kunstig intelligens

har som hensikt å gi innsyn i den underliggende modellen. Dette gir mulighet for videre

utvikling av modellen og økt tiltro til den produserte prognosen.

Oppgaven utforsker bruken av forklarbar kunstig intelligens for å forstå og forbedre kortsik-

tige forbruksprognoser laget med nevrale nettverk. En prognosemodell baser på et nevralt

nettverk ble laget for prisområdet, NO1. Shapley additive explanations ble brukt under

utvikling av modellen for utvalg av predikatorer og for å debugge modellen. Metoden ble

også brukt for å forstå enkelte prognoser som ble produsert under testing av den siste mod-

ellversjonen. Enkeltforklaringer av prognosene ble laget med metoden ved å bruke tidligere,

sammenlignbare prognoser som bakgrunnsdata. Under utvikling av modellene, førte fork-

laringene til økt nøyaktighet og bedre forståelse av modellene. Forklaringene som ble laget

under testing av den siste modellen var intuitive og ga ett inblikk i hva hva som førte til

prognosen.

Resultatene fra oppgaven antyder at forklarbar intelligens kan brukes til å forstå og forbedre

forbruksprognoser. Forklaringene er derimot avhengig av valg av bakgrunnsdata for å lage

intuitive forklaringer. Det kreves derfor mer forskning om implikasjonene rundt valg av

bakgrunnsdata før metoden kan bli tatt i bruk.

iii

iv

Contents

1 Introduction 1

2 Background theory 5

2.1 Time series and statistics . 5

2.1.1 Autocorrelation . 6

2.1.2 Mutual information . 8

2.1.3 Normalization . 8

2.1.4 Time series forecasting methods . 9

2.2 Artificial intelligence . 11

2.2.1 Supervised learning . 11

2.2.2 Multiple linear regression . 14

2.3 Artificial neural networks . 15

2.3.1 Multilayer perceptron . 15

2.3.2 Backpropagation . 18

2.3.3 Activation functions . 19

2.3.4 Convolutional neural networks . 22

2.3.5 Neural network optimization . 25

v

CONTENTS

2.3.6 Regularization and dropout . 28

2.4 Explainable artificial intelligence . 29

2.4.1 Deep learning important features . 29

2.4.2 Shapley values . 31

2.4.3 Shapley additive explanations . 32

3 Data collection and analysis 35

3.1 Norwegian electricity consumption data . 35

3.1.1 Data extraction and description . 37

3.1.2 Seasonality and statistics . 37

3.1.3 Holiday effect . 42

3.1.4 Daylight saving time . 46

3.2 Numerical weather prediction . 47

3.2.1 Data extraction and description . 47

3.2.2 Dependency between the variables . 50

4 Methodology 53

4.1 Experimental setup . 53

4.2 Forecasting problem and description . 53

4.3 Data preparation and pre-processing . 55

4.3.1 Time series variables . 55

4.3.2 Categorical variables . 57

4.3.3 Daylight saving time . 58

4.4 Evaluation of forecasting accuracy . 58

vi

CONTENTS

4.5 Development of the candidate models . 59

4.5.1 Baseline models . 60

4.5.2 Neural network models . 62

4.6 Deployment and testing of the selected model 67

4.6.1 Expanding window . 67

4.7 Interpretation of forecasts . 68

4.7.1 Choosing background data . 69

4.7.2 Global explanations for feature selection 70

4.7.3 Local explanations for interpretation 71

5 Results and discussion 73

5.1 Model development . 73

5.1.1 First generation models . 73

5.1.2 Second generation models . 77

5.1.3 Third generation models . 81

5.2 Model evaluation . 86

5.2.1 Expanding window test . 86

5.2.2 Interpretation of selected forecasts . 87

5.3 Discussion of the results . 92

6 Conclusion 97

A Derivation of backpropagation 107

B Neural network architectures 111

vii

CONTENTS

B.1 Hyper-parameter optimization . 111

B.2 Model architectures and hyper-parameters 114

C Model results 123

viii

List of Figures

2.1 Example of a time series . 6

2.2 Illustration of a multilayer perceptron with two hidden layers 17

2.3 The shape of some classically used activation functions 21

2.4 Variations of the rectified linear unit . 22

2.5 Illustration of a one-dimensional convolution operation 24

3.1 The Norwegian price areas . 36

3.2 Visualization of the electrical load data . 39

3.3 Load profiles of the week . 41

3.4 Average daily load profiles by season . 42

3.5 Partial autocorrelation plot of the historical load data 43

3.6 Power load and holidays in March-April 2016 and 2018 44

3.7 Power load and holidays in May 2016 and 2018 45

3.8 Power load and holidays in December-January 2016 and 2018 46

3.9 The domain covered by the MetCoOp Ensemble Prediction System 48

3.10 Imputation of the numerical weather prediction data 51

3.11 The temperature curves of three different locations 52

ix

LIST OF FIGURES

4.1 Timeline of the forecast strategy . 54

5.1 The first generation forecasting results for the first week of 2019 75

5.2 Heatmap of the multiple linear regression coefficients 76

5.3 Global feature importance for CNN-1 . 77

5.4 Global feature importance for CNN-2-2 . 79

5.5 The second generation forecasting results for the first week of 2019 81

5.6 The third generation forecasting results for the first week of 2019 82

5.7 The third generation first model forecasts for April 2019 83

5.8 Local explanation of April 14th 2019 . 84

5.9 Local explanation of April 21st 2019 . 85

5.10 The third generation second model forecasts for April 2019 85

5.11 Expanding window MAPEs by output hour 87

5.12 Local explanation of January 8th 2020 . 89

5.13 Temperature forecasts in Oslo for January 8th and January 6th 90

5.14 Local explanation of December 26th 2020 . 91

5.15 Local explanation of May 12th 2020 . 92

5.16 Temperature forecast in Oslo for May 12th and the expected temperature

forecast . 93

B.1 First generation multilayer perceptron architecture 116

B.2 First generation convolutional neural network architecture 117

B.3 Second generation first model architecture 118

B.4 Second generation second model architecture 119

x

LIST OF FIGURES

B.5 Second generation third model architecture 121

B.6 Third generation first and second model architecture 122

C.1 First generation forecasting results for April and July 2019 123

C.2 Second generation forecasting results for April and October 2019 124

C.2 The entire year of forecasts in 2020 . 127

xi

LIST OF FIGURES

xii

List of Tables

3.1 The data structure of historical Norwegian consumption data 37

3.2 Descriptive statistics of the NO1 consumption data 38

3.3 Public holidays and observed holidays in Norway 43

3.4 Daylight saving time in the electrical load data set 47

3.5 The selected numerical weather prediction locations 49

3.6 Description of the selected numerical weather prediction variables 49

3.7 Sample of the data structure of the numerical weather prediction data 50

3.8 Mutual information between the continuous variables 51

4.1 The continuous and categorical variables . 58

4.2 Expanding window test strategy . 68

5.1 Metrics for the first generation models by season 74

5.2 Metrics by day of the week for the first generation models 75

5.3 The seasonal metrics for the second generation models 80

5.4 Metrics by day of the week for the second generation models 80

5.5 The seasonal metrics including Easter for the third generation models 81

xiii

LIST OF TABLES

5.6 Metrics by day of the week for the third generation models 82

5.7 The seasonal metrics of the expanding window test 87

B.1 Search parameters for the random searches 111

B.2 Initial hyper-parameter search-space of the first multilayer perceptron 112

B.3 First generation multilayer perceptron hyper-parameters 115

B.4 First generation convolutional neural network hyper-parameters 115

B.5 Second generation first model hyper-parameters 116

B.6 Second generation second model hyper-parameters 120

B.7 Second generation third model hyper-parameters 120

B.8 Third generation model hyper-parameters 120

xiv

List of Acronyms

ACF AutoCorrelation Function

Adam Adaptive moment estimation

AdaGrad Adaptive subGradient descent

AI Artificial Intelligence

AROME Application of Research to Operations at Mesoscale

Bagging Bootstrap aggregating

CNN Convolutional Neural Network

DeepLIFT Deep Learning Important FeaTures

DSM Demand Side Management

DSO Distribution System Operator

DST Daylight Saving Time

ELU Exponential Linear Unit

ENTSO-E European Network of Transmission System Operators for Electricity

kNN k-Nearest-Neighbour

xv

LIST OF ACRONYMS

LIME Local Interpretable Model-agnostic Explanations

MAPE Mean Absolute Percentage Error

MET Norwegian Meteorological Institute

MEPS MetCoOp Ensemble Prediction System

MI Mutual Information

MIMO Multi-Input Multi-Output

ML Machine Learning

MLR Multiple Linear Regression

MLP MultiLayer Perceptron

MSE Mean Squared Error

Nadam Nesterov-accelerated adaptive moment estimation

NSGD Nesterov Stochastic Gradient Descent

NVE Norges Vassdrags- og Energidirektorat

NWP Numerical Weather Prediction

PACF Partial AutoCorrelation Function

PV PhotoVoltaic

ReLU Rectified Linear Unit

RES Renewable Energy Source

RMSProp Root Mean Square Propagation

RMSE Root Mean Squared Error

xvi

LIST OF ACRONYMS

SeLU Scaled exponential Linear Unit

SHAP SHapley Additive exPlanations

TDS THREDDS Data Server

TSO Transmission System Operator

XAI Explainable Artificial Intelligence

XGBoost eXtreme Gradient Boosting

xvii

Chapter 1

Introduction

To ensure a stable power frequency in any interconnected AC power system, there has to be

an instantaneous balance between power consumption, also called power demand or electrical

load, and power production (supply). As a result of the Energy Act of 1990 in Norway, and

similar deregulation of the power sector in other parts of Europe, the sale and purchase

of power primarily takes place in power exchanges, so that supply and demand adhere to

the principles of a free market. Electricity however, has a unique property as a commodity

of needing to be consumed the very same instant it is produced. Meanwhile, trading of

electrical energy occurs ahead of time (>1 hour), so that the precise consumption during the

operating hour is unknown ahead of time. There is therefore a need for accurate electrical

load forecasts for multiple market participants with various forecast horizons. The TSO

ensures that the balance is kept through the use of balancing reserves, but has to procure

these reserves days to weeks ahead of time (Statnett, 2021b); power producers optimize

their generation schedules and unit commitment based on forecasts up until the operating

hour (Gandhi et al., 2016); DSO and the TSO plan ahead for future expansions of the

power system based on load forecasts months to years ahead; and power retailers need both

short-term and long-term forecasts for providing their customers with electrical energy, and

selling/buying for profit. Electrical load forecasting is therefore, and has been for a long

time, an important forecasting problem in the energy domain (Hong, 2010).

1

CHAPTER 1. INTRODUCTION

The dynamics of the power system and consumer landscapes are changing. Penetration of

RES in the power system is increasing (NVE, 2020), which puts strain on balancing due to

their intermittent nature and lack of inertia contribution (Ørum et al., 2015). Consumers

are participating more actively in the power market in a two-fold manner. Firstly, by par-

ticipating in self-production of electrical energy as so-called “prosumers”; and secondly, via

including smaller consumers in DSM schemes, where consumers are given incentive to adjust

their load up or down depending on the need of the DSO (Petrican et al., 2018). Large-scale

electrification (EVs, transport sector, petroleum industry) of the society has the potential of

not only increasing consumption (Spilde et al., 2019), but also changing load consumption

patterns. All of these are disrupting the conventional methods of maintaining power system

stability which motivates development and integration of new technology. For instance, with

EVs expected to make up large parts of Norwegian automotives within 2030, DSM of EVs

has the potential of alleviating the power grid at high-load hours by shifting the load to

low-load hours (Horne et al., 2020).

Another emerging technology which has seen increased use in electrical load forecasting the

past years, is the field of AI, and more specifically ML (Debnath and Mourshed, 2018).

These models, especially deep neural networks and ensemble models, are able to capture

the patterns of electrical load with great accuracy (Baliyan et al., 2015; Tian et al., 2018;

He, 2017). However, with increased model sophistication there are also greater difficulties in

understanding the decisions and forecasts made by the forecasting model. Many AI models

are so-called “black boxes”, meaning that the underlying mathematical relations leading

to the forecast are not readily comprehensible. While simpler models, like a MLR model,

might be able to tell you that: “x caused y to increase by z”, other models are not readily

interpretable is this manner. Note that most models are in essence comprehensible, but their

sheer size and complexity hinder the ability to understand what is going on. For high stake

situations involving long-term forecasts, shareholders might require full transparency of the

forecasting model (Hong, 2014). Trusting such a model put in deployment is difficult since

there is no way to understand what might have lead to the forecast. Moreover, when this

kind of model fails, there is no feedback as to what might have gone wrong, hence, trust in

the model may be lost.

2

The response to this issue in other fields which use ML in its prediction models is the field

of XAI. The aim of XAI is to provide explanations for the model’s predictions and to “look

inside” the black box. So far, the use and importance of XAI has been explored in several

sectors where critical decision-making based on ML models has to be justified (e.g., medicine

(Lundberg et al., 2020), legal sector (Doshi-Velez et al., 2017) and national defense-systems

(Turek, 2018)). However, based on extensive literature searches, including multiple searches

on Google Scholar, ResearchGate, IEEE Xplore, ScienceDirect and arXiv using different com-

binations of keywords like "explainable", "XAI", "energy forecasting", "forecasting", "load",

"solar", "wind" etc., there has been little research concerning the use of XAI in the energy

and load forecasting fields.

Among the few studies found, Grimaldo and Novak (2020) used visual analytics in the shape

of dashboards to visualize the results of forecasted local energy demand and supply, where the

forecast was based on a kNN model, and the dashboard showed demand and supply of similar

days to explain the predictions. They found that the end-users were able to understand

individual predictions made by the kNN algorithm, without any background knowledge of

the model. Arjunan et al. (2020) used SHAP to determine factors with the largest effect on

building energy performance benchmarks and found that SHAP was useful for visualizing

the predictions even for non-technical users. Kuzlu et al. (2020) investigated three different

XAI frameworks for PV power forecasting to uncover the most influencing features of an

XGBoost model. They found that all three XAI frameworks were useful for feature selection,

and omitted the least important features without much loss in performance. Lee et al. (2020)

used XAI techniques to find the most influencing features in a load forecasting model using

XGBoost. Using this information in the feature engineering process, they were able to

improve the performance of the model’s future iterations. Lastly, Ilic et al. (2020) used

an explainable boosted linear regression model for load forecasting and extracted feature

importances in order to extract the most influencing features.

Norwegian case studies of electrical load forecasting using ML are also limited. In his master

thesis on short-term load forecasting (20 to 43 hours ahead) from NTNU, Tyvold (2018)

developed multiple different regional ML forecasting models for the DSO in Nord-Trøndelag,

3

CHAPTER 1. INTRODUCTION

NTE. He found that his models outperformed NTE’s proprietary model while also being

more efficient. Statnett’s data science department published a brief case study on their blog

page of using ML for online day-ahead load forecasting of all the Norwegian price regions

(Presthus, 2018). They found that the new models outperformed their proprietary solutions

in every price region except NO1. They also noted the potential use of XAI to make forecasts

more accessible to their balancing operators and to provide insight of the model.

The above case studies used black box AI models to outperform existing models, and pointed

out the impressive accuracy of such models. However, investigation of how XAI can be used

to explain Norwegian load forecasts were not part of their scopes. In fact, no works in the

literature for this type of problem in the Norwegian power system were found. The following

thesis therefore aims to fill this gap, by serving as a first exploratory work in the use of XAI

for Norwegian load forecasts. In other words, how can XAI tools be leveraged to interpret

and improve load forecasting models?

To answer this question, a case study was made for day-ahead electrical load forecasting of

the NO1 price region in Norway. The particular contributions of the thesis are three-fold:

(1) Development of a day-ahead electrical load forecasting model for the NO1 price region

(2) Showcasing how an XAI framework can be used during model development to improve

and understand the forecasting model

(3) Interpreting electrical load forecasts made by a model in deployment using XAI visu-

alizations

The thesis structure is as follows: chapter 2 covers the theoretical background; chapter 3

investigates the data sets of the case study; chapter 4 describes experimental setup, models

and tests in detail; chapter 5 contains the results and a discussion of them; and lastly, in

chapter 6 some concluding remarks, standing issues and ways forward are given.

4

Chapter 2

Background theory

The following chapter covers the theoretical foundations needed to understand and develop

the models presented in chapter 4. There are four fundamental areas which will be investi-

gated: time series and selected statistics; AI and supervised learning; neural networks and

optimization; and XAI.

2.1 Time series and statistics
A time series captures the development of a target variable over a discrete set of time points.

It is represented by chronological data, where each data point is the target’s value at a

particular time. The points are typically spaced apart with constant intervals, which is

referred to as the resolution of the time series. E.g., there may be an observed value for

every five minutes, 30 minutes or every hour. As an example, figure 2.1 shows a time series

with an hourly resolution. In the following sections, the observed value of the target at some

time t will be denoted as y(t), and the value of one time-step ahead as y(t+1). Depending

on the time-span and the target involved, characteristics of the target variable like trend

or seasonality may be evident. Trend is the general direction (up or down) of the time

series observed over a long period of time, usually years, and may be identified through a

moving-average of the time series. A time series with seasonal components on the other

hand, may be observed sub-daily, daily, weekly or any other fixed time period. Seasonality

5

CHAPTER 2. BACKGROUND THEORY

20 40 60 80 100 120 140 160

1.6

1.8

2
·104

t

y
(t
)

Figure 2.1: Example of a time series.

appears as peaks and troughs that are consistently spaced apart and repeat themselves in

a periodic fashion throughout the time series. This can be seen in figure 2.1, which has a

daily seasonality (i.e., peaks and troughs are spaced apart by about twenty-four points of

one hour each). If a time series contains seasonality, trend or if the variance is changing with

time, the time series is considered non-stationary, i.e., time-dependent. If the time series is

seasonal, the changing variance can be observed as an increase in the seasonal peaks over

time.

While conventional time series modelling approaches require the time series to be stationary

(Hyndman and Athanasopoulos, 2018), there is debate whether adjustment and/or transfor-

mation of the time series is necessary for modelling approaches that use approaches deemed

as AI (Claveria et al., 2017). Nevertheless, it may be worthwhile to investigate different com-

binations of pre-processing of the time series and the performance impact on the problem

at hand (Bianchi et al., 2017; Makridakis et al., 2018). In the following sections, frequently

applied methods for statistical analysis of a time series, and commonly applied transforma-

tions will be investigated. Lastly, some strategies of forecasting future values of a time series

will be covered.

2.1.1 Autocorrelation

Autocorrelation gives a measure of the correlation between the target variable and lagged

versions of its self. That is, a time series that is a copy of the target, shifted in time so

that it lags the target. This is useful in order to determine which lags to include in a

6

2.1. TIME SERIES AND STATISTICS

forecasting model. It is also a way of identifying seasonal and trend aspects of a time series.

The autocorrelation coefficient is the Pearsons’s correlation coefficient between the target

variable and its lagged values. The coefficient therefore measures how much of the variable’s

current value is accounted for by its past ones (Hyndman and Athanasopoulos, 2018). For

a lag of k time steps, the coefficient is given by

rk = Cor(y(t+k), y(t)) =

N−k∑
t=1

(y(t) − ȳ)(y(t+k) − ȳ)

N∑
t=1

(y(t) − ȳ)2
, (2.1)

where Cor(·) denotes the Pearson’s correlation function and ȳ is the average of the target

variable across the time series. Similarly to correlation between two different variables, the

autocorrelation coefficient takes on the range of values rk ∈ [−1, 1], where the limits denote

perfect negative and positive correlation respectively. I.e. situations where the past value of

the target completely predicts the current value.

The autocorrelation coefficient may be plot as a function of the lag, which is often referred

to as the autocorrelation function (ACF). For seasonal time series, spikes in the ACF plot

will be apparent at multiples of the seasonal period (e.g., at lags 0, 24, 48, . . . for hourly data

with daily seasonal patterns). Additionally, if the time series has a trend component, the

autocorrelation will decay with increasing lag (Hyndman and Athanasopoulos, 2018). It is

common to also include a confidence interval (usually the 95%) when plotting autocorrelation

as a function of lag. This is done in order to determine the significance of the autocorrelation

coefficient at each lag, and to rule out potential noise.

If y(t) and y(t+1) are correlated, then it follows that y(t+2) will be correlated to y(t+1), hence

also correlated to y(t). In other words, the correlation between y(t) and y(t+k) may be at-

tributed to intermediary lags. In order to consider the effect of the kth lag alone, the

partial autocorrelation function (PACF) may be used instead (Hyndman and Athanasopou-

los, 2018). The PACF is similar to the ACF, except that the effects of intermediary lags

have been removed for the coefficient of a particular lag.

7

CHAPTER 2. BACKGROUND THEORY

2.1.2 Mutual information

Mutual information (MI) gives a measure of the mutual dependence between two random

variables x and y. It may be formulated as

I(y;x) = H(y)−H(y|x), (2.2)

where H is the entropy (uncertainty). Hence, the MI may be interpreted as the average

reduction of uncertainty in y from knowing x (MacKay, 2003, p. 139). MI has a bound of

I ∈ [0,∞ , where zero means that the two variables are independent and I ̸= 0 implies that

some information can be extracted from each other. Moreove, MI has a symmetry property

in which I(y;x) = I(x; y).

2.1.3 Normalization

Normalization, or rescaling of a variable involves transforming the variable to some preferred

distribution or range. In the context of several inherently different variables, normalization

is a way of transforming the variables to comparable scales. The two most commonly used

normalization methods are min-max normalization and Z-score normalization (also called

standardization). Min-max normalization refers to rescaling the variable to some range [a, b]

(usually [0, 1] or [−1, 1]). Rescaling some variable x ∈ [xmin, xmax] to x′ ∈ [0, 1] is given by

x′ =
x− xmin

xmax − xmin

. (2.3)

Standardization involves transformation of the variable to a normal distribution with zero

mean and unit variance. This transformation may be given by

x′ =
x− µ

σ
, (2.4)

where µ and σ are the mean and standard deviation of the variable, respectively.

8

2.1. TIME SERIES AND STATISTICS

2.1.4 Time series forecasting methods

A time series forecasting scheme may be described by the forecasting horizon, interval and

its resolution (Montgomery et al., 2008, p. 5). In other words, how far ahead in time to

forecast, how often to produce these forecasts and how much time there is between each

output. The forecasting interval is often also referred to as the cycle of the forecasting

scheme. In particular, let t denote the time of forecast (termin or reference time), and using

the K previously observed values of the target and predicting the H next. Later at a time

t+I, where I is the forecasting interval, a new forecast is made. The first forecast value may

be at t + 1, but it can also be after some delay, also known as lead time, from the termin

time t′ = t+D (e.g., day-ahead forecasting where D = 24).

The multitude of forecasting methods may be separated into those belonging to single step-

ahead (H = 1) or multiple steps-ahead (H > 1) methods (Brownlee, 2018). A single time

step, as the name suggests, fits a function f to predict the target value ŷ(t+1) one step ahead,

and may be modelled as

ŷ(t+1) = f(y(t), y(t−1), . . . , y(t−K+1)). (2.5)

Multiple steps-ahead forecasting strategies can be divided into five distinct methodologies

(Ben Taieb et al., 2012). These are:

(1) Recursive models

(2) Direct models

(3) Multi-input multi-output models (MIMO)

(4) Combination of direct and recursive models

(5) Combination of direct and MIMO models

Recursive models utilize single-step-ahead forecasts in an iterative fashion, where the pre-

dicted value is fed back to function as historical data for the forecast. These models may

9

CHAPTER 2. BACKGROUND THEORY

however be prone to large errors with long forecasting horizons or poor single-step perfor-

mance, due to propagation of the error further down the chain of predictions.

Direct models fit an independent function for each respective time step, so that H different

forecasts are made. This can be described similarly to equation 2.5, where

ŷ(t+h) = fh(y
(t), y(t−1), . . . , y(t−K+1)), (2.6)

and fh denotes the function fit to h time steps ahead. The drawback of these models is that

they assume independence between the time steps, which neglects any interaction effects

that may exist. They are also more computationally expensive than their counterparts.

MIMO models fit a vector-spaced function that generates multiple outputs at once, thereby

avoiding the assumption of independence. These models are also relatively efficient, since

only one model is required, but are also less flexible as a result. The MIMO forecasting

strategy may be formulated asñ
ŷ(t+H) ŷ(t+H−1) . . . ŷ(t+1)

ôT
= f(y(t), y(t−1), . . . , y(t−K+1)), (2.7)

where f : RK → RH .

Combinations of the aforementioned forecasting strategies, combine aspects of the methods

in order to alleviate the weaknesses inherent in a standalone method. E.g., Ben Taieb et al.

(2012) proposed a method using a combination of direct and MIMO. The proposed strategy

outperformed the other methods, except the MIMO model which provided similar forecasting

accuracy.

All of the above are endogenous forecasting strategies. That is, they only use the information

provided by the previous values of the target variable itself. Exogenous variables may be

included to any of the above methods to further improve the accuracy of the forecast. These

are variables that may help describe the behaviour of the target variable. This means

historical or future values of other time series variables, and categorical variables such as

day of the week, holidays and month of the year. For instance, in the case of electrical

10

2.2. ARTIFICIAL INTELLIGENCE

load forecasts, the influence of weather variables on consumption patterns is well established

(Hong, 2010). Acquiring numerical weather predictions (NWP) and extracting suitable time

series of temperature, wind, humidity, etc., may therefore provide important additional

information to the forecasting model (Hong et al., 2015).

2.2 Artificial intelligence
Artificial intelligence is a broad term that usually refers to the more tangible fields of machine

learning (ML) and deep learning. These two fields involve the use of large amounts of data

to learn some process through mathematical modelling and optimization. Within the field of

ML, it is common to distinguish between the methods belonging to supervised, unsupervised

or reinforcement learning. A supervised learning problem may be described either as a

regression or classification problem, based on whether the targets have continuous or discrete

values, respectively (James et al., 2013, p. 28). In the context of power load, it can in theory

be any real number P ∈ R. Additionally, modelling the forecasting problem explicitly as seen

in section 2.1.4, means a supervised learning algorithm is the most suitable. The following

sections therefore put particular emphasis on regression based supervised learning.

2.2.1 Supervised learning

In a supervised learning problem an attempt is made to accurately predict explicitly given

targets in a data set, based on the corresponding features (also called inputs, predictors,

independent variables or similar). In particular given a pair of feature and target matrices

X =

x(0)

x(1)

...

x(N−1)

and Y =

y(0)

y(1)

...

y(N−1)

, (2.8)

11

CHAPTER 2. BACKGROUND THEORY

a function is fit to map features to targets given by

ŷ = f(x), (2.9)

where f : Rn → Rm, N are the number of data points, n are the number of features and

m are the number of targets; x(i) =

ñ
x
(i)
1 x

(i)
2 · · · x

(i)
n

ô
and y(i) =

ñ
y
(i)
1 y

(i)
2 · · · y

(i)
m

ô
make up one instance, or sample, of feature and target vectors; and ŷ(i) is the corresponding

vector of predicted values for the instance (Bishop, 2008, p. 3).

For parametric supervised learning methods, the shape of the underlying function is assumed

to be known and is determined through a set of parameters, denoted as θ. A parametric

supervised learning problem may then be formulated as an optimization problem, where we

want to minimize the cumulative losses of the model with respect to the choice of parame-

ters. A commonly chosen loss function, also often named cost function or error function, in

regression problems is the mean squared error (MSE). MSE is a metric of the mean squared

deviations from the actual target values (James et al., 2013, p. 21). Drawing a training set,

denoted as D from the pair of feature and target matrices, the MSE for the training loss

may be given as

L(θ) =
1

ND

∑
(x,y)∈D

||ŷ(x;θ)− y||2, (2.10)

where ND are the number of samples in the training set, hence the training set may be

described as D = {(x(0),y(0)), (x(1),y(1)), . . . , (x(ND−1),y(ND−1))}; || · || denotes the L2 norm;

and the semicolon notation x;θ refers to the parameters of the supervised learning model,

and that these are fixed during the calculation of the loss (Bishop, 2008, p. 233).

The analytical solution of minimizing the error function can be given in closed form for sim-

ple models, e.g., linear regression (see section 2.2.2). For other models, numerical methods

may need to be applied to reach a solution through iterative algorithms such as a gradient

descent. In the case of non-convex optimization problems, numerical methods are not guar-

anteed to move towards the global minimum, but instead a local minimum. However, in the

context of ML problems these usually have losses that are small enough to be considered

satisfactory (Goodfellow et al., 2016, p. 282-285). In a gradient descent algorithm, the idea

12

2.2. ARTIFICIAL INTELLIGENCE

is to keep descending down the loss surface by updating the parameters in steps opposite

to the direction of the gradient of the loss function. An update of the parameters from one

iteration of gradient descent to the next is given by

θτ+1 = θτ − η∇θL(θτ), (2.11)

where η is the learning rate and τ is the current iteration of the algorithm (Bishop, 2008,

p. 144). The gradient gives the steepest direction of the error surface given an infinitesi-

mally small change in parameters, hence the learning rate determines the actual step-size

of each update. It is therefore a crucial hyper-parameter to tune, both in terms of reaching

convergence and having an acceptable total runtime of the optimization.

A drawback of the standard gradient descent algorithm is that for every iteration, the gra-

dient of the error function has to be calculated across the entire set of predicted and target

values (as seen in equation 2.10). For models that are trained on very large data sets while

also having millions of parameters, the standard gradient descent algorithm is infeasible due

to computational complexity (Goodfellow et al., 2016, p. 149). A variation of the gradient

descent, known as the stochastic gradient descent (SGD), estimates the gradient by using a

randomly picked instance of the training set instead. I.e., pick a random instance from the

training set D, so that the next update to the parameters is given by

θτ+1 = θτ − η∇θℓ(θ
τ ;x,y), (2.12)

where (x, y) ∈ D; and ℓ refers to the loss of that single instance (Gu et al., 2018, p. 15).

Another more widely used variation, named mini-batch SGD, splits the training set into

batches of randomly picked instances from the training set. The actual gradient is then

estimated using the average of the gradients in a batch. The number of random samples in

each mini-batch is referred to as the batch size of the algorithm. When all mini-batches have

been used to update the parameters, i.e., all instances in the training set have been used,

this is know as the end of one epoch. E.g., given a batch size of Nb, ND
Nb

iterations will make

up one epoch.

13

CHAPTER 2. BACKGROUND THEORY

It is important to note that although the training loss minimum may eventually be reached,

this is generally not the goal. In order to perform well on unseen data, i.e., instances

outside of the training set, the model also needs to have a sufficiently low generalization loss

(Goodfellow et al., 2016, p. 290). By solely minimizing the training loss, the parameters will

be prone to over-fit to the training data, and in turn perform poorly on unseen data. In

practice, equation 2.10 is therefore used as a surrogate loss function. Particularly, gradient

descent with the surrogate loss function keeps running as long as the loss on a validation set

also keeps decreasing (Goodfellow et al., 2016, p. 274). The idea is that the validation data

is representative of the underlying distribution. Hence, if the training data also represents

the underlying distribution, both the validation loss and training loss should decrease in

unison. When the validation loss stops improving, but the training loss keeps decreasing,

the model is beginning to bias the training set and the optimization algorithm should stop.

This is known as early stopping because instead of stopping based on the maximum number

of epochs or when ∇θL = 0, the algorithm stops when the validation loss stops improving

(i.e., has not improved by more than ϵ in n epochs) (Goodfellow et al., 2016, p. 240).

2.2.2 Multiple linear regression

Following the convention from equation 2.9, perhaps the simplest relationships between

features and targets which can be assumed, is a linear one. This relationship is given by a

multiple linear regression (MLR) model, where a prediction ŷk is given by

ŷk = βk1x1 + βk2x2 + · · ·+ βknxn. (2.13)

In equation 2.13, βkj is the regression coefficient of the model pertaining to the kth target

and jth feature. Given the feature matrix X from equation 2.8, the predictions of the MLR

model are given by

ŷk = Xβk (2.14)

where βk =

ñ
βk1 βk2 · · · βkn

ôT
and ŷk =

ñ
ŷ
(1)
k ŷ

(2)
k · · · ŷ

(N)
k

ôT
. Equation 2.14 has no

unique solution, hence the solution space has to be given in the form of an optimization

14

2.3. ARTIFICIAL NEURAL NETWORKS

problem. One choice is to solve the system through ordinary least squares. Then the

optimization problem may be formulated as

argmin
βk

L(βk) = argmin
βk

N∑
i=1

|y(i)k − ŷ
(i)
k |2 = ||yk −XβT

k ||2 (2.15)

It can be shown (see Hastie et al. (2008, p. 12)) that the unique solution to this system is

given by

βk = (XTX)−1Xyk. (2.16)

2.3 Artificial neural networks
Artificial neural networks, or just neural networks, have risen in popularity since the early

2000s with increased availability of processing power and large amounts of data (Goodfellow

et al., 2016, p. 222). They have been proven to be universal non-linear function approxima-

tors under the right circumstances, i.e., they can approximate any given function (Nielsen,

2015), and are therefore suitable for prediction of complex processes. With many fully im-

plemented frameworks available open source, practitioners can easily get started with neural

networks having little background knowledge. However, when fine-tuning the network ar-

chitecture to the problem at hand, it is useful to be aware of the underlying mechanisms to

gain an intuitive understanding of their behaviour.

2.3.1 Multilayer perceptron

Perhaps the most widely used type of neural network is the multilayer perceptron (MLP),

often called a feed-forward neural network due to its structure (Bishop, 2008, p. 226). The

MLP is made up of a number of layers, consisting of the input and output layers and a

number of hidden layers between the two. Each hidden layer is made up of an arbitrary

number of hidden units, determining the number of outputs from that hidden layer. Each

hidden unit performs a weighted linear combinations of its inputs, where the result is fed

through an activation function before being sent to the next layer. These functions enable

the network to form non-linear representations and are important to the overall network

15

CHAPTER 2. BACKGROUND THEORY

architecture.

Consider for instance an MLP with inputs, outputs and two hidden layers. The linear

combination for one hidden unit in the first hidden layer is given by

z
[1]
i = b

[1]
i +

n∑
j=1

w
[1]
ij xj, (2.17)

where z
[1]
i is the weighted input of the ith hidden unit in the first hidden layer; b[1]i is the

bias; xj is the jth input; and w
[1]
ij is the weight between the ith unit and jth input. Usually,

only one distinct activation function is used for each layer. The output of the hidden unit is

then given by feeding the weighted input through the activation function of the layer. This

may be given by

a
[1]
i = ϕ[1](z

[1]
i), (2.18)

where a
[1]
i is the activation of the ith unit in the first hidden layer, and ϕ[1] is the activation

function of the first hidden layer.

This procedure is then continued in the next layer, where the activations of the previous

layer (a[1]) are the inputs of each hidden unit. After feeding the activations from the first

hidden layer through the second, the activations from the second hidden layer are linearly

combined to form the output layer weighted inputs, given by

z
[3]
k = b

[3]
k +

n[2]∑
j=1

w
[3]
kja

[2]
j , (2.19)

where z
[3]
k denotes the weighted input of the kth output unit (Bishop, 2008, p. 228). Finally

these are fed through the output activation function to give the model outputs, which may

be formulated as

yk = ϕ[3](z
[3]
k). (2.20)

The above MLP is illustrated in figure 2.2. It has n inputs; m outputs; and n[1] and n[2]

hidden units in the first and second hidden layers, respectively. Since each unit is connected

to all of its preceding and succeeding units in every layer, this type of MLP is usually referred

16

2.3. ARTIFICIAL NEURAL NETWORKS

x1

xn−1

xn

ym−1

Inputs Hidden layers Outputs

ym

y1

w
[1]

n[1]n
w

[2]

n[2]n[1]
w

[3]

mn[2]

a
[1]

n[1] a
[2]

n[2]z
[1]

n[1] z
[2]

n[2]

a
[1]
1z

[1]
1 a

[2]
1z

[2]
1

w
[1]
11 w

[2]
11 w

[3]
11

...
...

...
...

z
[3]
m

z
[3]
1

ϕ[1]

ϕ[1]

ϕ[1]

ϕ[2]

ϕ[2]

ϕ[2]

ϕ[3]

ϕ[3]

ϕ[3]

Figure 2.2: Illustration of a multilayer perceptron with two hidden layers. Adapted from
Bishop (2008, p. 228).

to as a fully connected neural network (Grosse, 2018). The description of any MLP may

be given in vectorized notation by denoting the biases of the lth layer as b[l]; the matrix

containing the weights for the lth layer as W [l], where the notation w
[l]
ij corresponds to the

ith row and jth column of the matrix; and the vector of activations as a[l] (Nielsen, 2015).

The equations describing any fully connected MLP are then given by

a[1] = ϕ[1](W [1]x+ b[l]) (2.21)

a[l] = ϕ[l](W [l]a[l−1] + b[l]) (2.22)

y = ϕ[L](W [L]a[L−1] + b[L−1]), (2.23)

where L is the number of hidden layers plus the output layer in the network; W [L] denotes

the weights of the output layer; and ϕ is the element-wise activation function (Grosse, 2018).

The dimensionality of the activations in a hidden layer is a[l] ∈ Rn[l] . Hence, in the case

of a fully connected network, the weights of that layer will be W [l] ∈ Rn[l]×n[l−1] , where n[l]

denotes the number of hidden units in layer l. Notice how the outputs of each layer are

functions of the outputs of preceding layers. This is known as forward propagation, and will

be a part of the discussion of the backpropagation algorithm in the next chapter.

17

CHAPTER 2. BACKGROUND THEORY

2.3.2 Backpropagation

Recall that a supervised learning model may be trained through using the SGD algorithm

or its extensions (equation 2.12). These algorithms however, do not include how to find the

gradient for a particular iteration. For models that are simple functions of the parameters,

e.g., linear regression, determining the gradient of the loss function does not pose a great

amount of difficulty. However, for neural network which are composed of several non-linear

layers and many hidden units, calculating the gradient is computationally expensive and

was for a long time a barrier for the wide-spread use of neural networks in many problem

domains (Nielsen, 2015; Goodfellow et al., 2016, p. 200).

The solution to this problem was the development of backpropagation (Linnainmaa, 1970).

The backpropagation algorithm provides an efficient means for calculating the gradient based

on propagating the loss backwards in the network. This is done in order to evaluate the

partial derivatives of the loss with respect to all the weights and biases from the lowest

layers (the ones the furthest back from the output layer) to the top layers. The advantage

of backpropagation, is that it does this quite efficiently for networks with many parameters

by use of the chain rule (Nielsen, 2015; Goodfellow et al., 2016, p. 206).

Full derivation of the backpropagation equations is shown in appendix A. The vectorized

equations are given by

δ[L] = ∇ŷℓ⊙ ϕ′(z[L]) (2.24)

δ[l] = (W [l+1])Tδl+1 ⊙ ϕ′[l](z[l]) (2.25)

∇W [l]ℓ = δ[l](a[l−1])T (2.26)

∇b[l]ℓ = δ[l], (2.27)

where ℓ = ℓ(θτ ;x,y) is the individual loss of some mini-batch; δ[l] = ∇z[L]ℓ is the error

vector of the layer l; ∇W [l]ℓ is the gradient of ℓ with respect to the weights in layer l; and

∇b[l]ℓ is the gradient of ℓ with respect to the biases in layer l.

By use of equations 2.24-2.27 the gradients of the losses with respect to every layer can be

18

2.3. ARTIFICIAL NEURAL NETWORKS

found. Particularly, by starting at the output layer (equation 2.24) and moving backwards

in the network (equation 2.25), the gradients of all the parameters (equation 2.26 and 2.27)

can be calculated in each layer by the use of programming libraries with fast vectorized

calculations (Nielsen, 2015).

One update to the model parameters is then made in the following manner: (1) for each

instance in a mini-batch, a forward pass (equations 2.21-2.23) is made in order to determine

all the current values of the network; (2) the gradients for all layers are found through the

use of the backpropagation equations (3) the average of the gradients over the mini-batch is

then calculated and the weights and biases are updated. The average of the gradient of the

total loss L may be given by an average over the individual gradients

∇θL =
1

Nb

∑
x,y∈B

∇θℓ(θ
τ ;x,y) (2.28)

where Nb is the batch size and B is the mini-batch of the current iteration. Equation 2.28 may

then be used in conjunction with equation 2.12 as before. Note that Nb = 1 is the special

case of using standard SGD optimization, i.e., there is only one instance to be evaluated

per parameter update. The backpropagation equations can also be modified to calculate

the average gradient of a batch directly by implementing the algorithm with matrix based

equations (Nielsen, 2015).

2.3.3 Activation functions

The activation functions in a neural network are essential, since they allow the network to

learn non-linear representations of its inputs (Goodfellow et al., 2016, p. 136). The choice

of the output layer activation function is usually based on the choice of cost function. In

particular, notice from equations 2.21-2.23 that if ϕ is a linear transformation, then the

MLP would essentially be a linear model. In regression problems that use MSE as the cost

function, this is usually the choice of the output activation function. Particularly, the output

activation function is set to an identity function (Goodfellow et al., 2016, p. 177). Using a

different cost function (such as cross-entropy) may warrant the use of other output activation

functions, but will not be covered since MSE is usually selected for regression problems.

19

CHAPTER 2. BACKGROUND THEORY

For the hidden layers in the network, there are no rules for choosing activation functions.

Rather, the choice is a part of the hyper-parameter optimization procedure and is chosen

through trial and error by observing the validation set error (Goodfellow et al., 2016, p. 178).

There are however some commonly chosen activation functions for the hidden units, and some

default recommendations. A rectified linear unit (ReLU) defines the activation function as

ϕ(z) = max(0, z), (2.29)

i.e., it is a piece-wise linear function propagating only positive linear combinations. The

ReLU is usually recommended as the default hidden unit for MLPs, due to easy optimiza-

tion with gradient-based algorithms and their ability to generalize (Goodfellow et al., 2016,

p. 170). In particular, the ReLU may alleviate the problem of vanishing gradients, which

is the phenomenon where earlier layers of a network learn much slower than the topmost

layers.

The logistic sigmoid activation function may be described by

ϕ(z) = σ(z) =
1

1 + e−z
. (2.30)

As seen from figure 2.3, the sigmoidal function saturates when its input is small or large,

which may pose a problem for gradient-based optimization. I.e., notice that σ′(z) = 0

for small and large input values, which in turn stops learning due to small gradients (e.g.,

see equation A.6). For this reason, the use of sigmoidal hidden units in MLPs is usually

discouraged (Goodfellow et al., 2016, p. 191). Instead, the hyperbolic tangent function

which is given by

ϕ(z) = tanh(z), (2.31)

is recommended in place of the sigmoid. This is partly due to the fact that the hyperbolic

tangent acts like an identity function for values close to zero. I.e., that tanh(z) = z for small

values (Goodfellow et al., 2016, p. 192). By standardizing (see section 2.1.3) so that features

are centered around zero, this can often be the case. The shapes of equations 2.29, 2.31 and

2.30 are shown in figure 2.3.

20

2.3. ARTIFICIAL NEURAL NETWORKS

−5 0 5

0

2

4

6

8

z

m
a
x
(0
,z
)

(a) Rectified linear

−5 0 5

0

0.5

1

z

σ
(z
)

(b) Logistic sigmoid

−5 0 5

−1

−0.5

0

0.5

1

z

ta
n
h
(z
)

(c) Hyperbolic tangent

Figure 2.3: The shape of some classically used activation functions. (a), (b) and (c) show
the rectified linear, logistic sigmoid and hyperbolic tangent activation functions respectively.

Other choices of activation functions for hidden units include softmax, radial basis function,

softplus and variations of the ReLU. Some of these are difficult to optimize due to saturation

or have shown to be inferior to the three above in most cases (Goodfellow et al., 2016, p. 193).

Variations of the ReLU, however, may perform well compared to the standard ReLU, sigmoid

and hyperbolic tangent in certain situations. For instance, the leaky ReLU, parametrized

ReLU, exponential linear units (ELU) and scaled exponential linear units (SELU), all have

negative activations in contrast to the ReLU (Clevert et al., 2016). Particularly, a leaky

ReLU defines the activation function as

ϕ(z) = max(ζz, z), (2.32)

where ζ is a hyper-parameter which adjusts the slope for z < 0; ELU is given by

ϕ(z) = elu(z) =

α(ez − 1) x < 0

z x ≥ 0

, (2.33)

where α is a hyper-parameter usually set to 1; while SELU is given by

ϕ(z) = selu(z) = λ

α(ez − 1) x < 0

z x ≥ 0

, (2.34)

21

CHAPTER 2. BACKGROUND THEORY

−5 0 5
−2
0
2
4
6
8

z

m
a
x
(0
.1
z,
z)

(a) Leaky ReLU

−5 0 5
−2
0
2
4
6
8

z

el
u
(z
)

(b) Exponential linear

−5 0 5
−2
0
2
4
6
8

z

se
lu
(z
)

(c) Scaled exponential linear

Figure 2.4: Variations of the ReLU. (a), (b) and (c) show the leaky ReLU, ELU and SELU
activation functions respectively.

where α = 1.67326324 and λ = 1.05070098 (Chollet et al., 2015). Equations 2.32, 2.33 and

2.34 are shown for z ∈ [−8, 8] in figure 2.4.

The negative values of leaky ReLU, ELU and SELU mean that the derivatives of these

activation functions are non-zero for negative values, which may help during optimization.

Particularly to alleviate the vanishing gradient issue (Chollet et al., 2015). However, note

that there is no universally agreed upon "best" activation function. The recommendations

are mostly based on empirical evidence, where ReLUs, its variations and hyperbolic tangent

units usually perform well.

2.3.4 Convolutional neural networks

Another type of widely used neural network is the convolutional neural network (CNN).

Although CNNs have been popularly used for two-dimensional applications (such as images

(Goodfellow et al., 2016, p. 366)), the convolutions that are made on the input data may

be generalized to arrays of arbitrary dimensions (Dumoulin and Visin, 2016). These multi-

dimensional arrays are known as tensors, and are an extension of vectors and matrices to

D-dimensional space. These are useful, because for a D-dimensional problem there is one

dimension for the different channels of the input data and another for the number of samples.

Hence, a D-dimensional problem needs a rank D + 2 tensor to store data.

For image data, there are typically three channels; these are the channels corresponding to

the red, green and blue values of each pixel, hence the image has to be represented by a rank

22

2.3. ARTIFICIAL NEURAL NETWORKS

three tensor. The data, however, has to be stored in a rank four tensor to account for all the

different samples. I.e., a shape of samples× i×j×3, where i×j is the image size. Similarly,

for time series problems, each channel may represent a different variable with a shared time

axis. Hence, time series data may be stored in a rank three tensor, X ∈ Rsamples×L×Nc , where

samples × L × Nc is the shape; L is the length of each sample; and Nc are the number of

channels.

A common characteristic of input data where convolutions are appropriate, is that it has some

sort of temporal and/or spatial structure. Adjacent input elements, such as the surrounding

pixels in an image, or the previous and next time steps in a time series are usually highly

correlated. Hence, using fully-connected layers with exponentially many parameters may

be wasted on these types of inputs. This is the obvious advantage of the CNN, where the

original input space is reduced to feature maps using many times less parameters.

The cornerstone of the CNN is the convolution operation. A convolution in the ML context

involves an element-wise multiplication of input data and a kernel, which are the weights of

the convolutional layer. A different kernel is applied to each channel, and the collection of

these kernels and the bias is considered to make up one filter. The resulting matrix from the

convolution is called an output feature map, which similarly to the MLP, is then fed through

an activation function before being passed on to the next layer. Moreover, if there are Nf

different filters, there are also Nf output feature maps.

A one-dimensional convolution between an L × Nc input sample and one Nk × Nc filter,

where Nk is the kernel size, is illustrated in figure 2.5. The two axes may represent the

time and channel axes, moving horizontally and into the screen. The 1D convolution can be

visualized as the filter moving along the time axis step by step, and calculating the sum of

the element-wise multiplication of the shadowed elements and the corresponding elements of

the overlapping filter. The tth element of the jth output feature map can be given by

z
(t)
j = bj +

Nc∑
i=1

x
(t:t+Nk−1)
i wT

i,j, (2.35)

where wi,j ∈ RNk are the parameters of the ith channel and jth filter; bj is the bias of the

23

CHAPTER 2. BACKGROUND THEORY

L×Nc (L−Nk + 1)× 1

One filter One feature mapInput series

. . .
. . .
. . .

. . .
. . .
. . .

. . .
. . .
. . .

...

Nk ×Nc

...

. . .

. . .

. . .

x
(0)
1

x
(0)
2

x
(0)
3

x
(1)
1

x
(1)
2

x
(1)
3

x
(L−Nk)
1

x
(L−Nk)
2

x
(L−Nk)
3

z
(0)
j

z
(1)
j

z
(L−Nk)
j

w1,j

w2,j

w3,j

w1,j

w2,j

w3,j

w1,j

w2,j

w3,j

...

Figure 2.5: Illustration of a one-dimensional convolution operation for an input series and
one of the filters. L is the sample length; Nc is the number of channels; and Nk is the kernel
size, hence Nk ×Nc is the filter size.

jth filter; and x
(t:t+Nk−1)
i is known as the receptive field of the tth element. The receptive

field is the slice of values for the ith channel starting at element t, and has the same length

as the kernel. The receptive field of each respective feature map element can be seen from

figure 2.5 as the shadowed input elements. Notice also how the kernel weights remain the

same across all the time steps. This is known as weight sharing and reduces the number of

parameters compared to using a fully-connected layer considerably (Gu et al., 2018, p. 2-3).

Note that the convolution shown is with a stride, s = 1 and padding, ρ : “valid”. These

hyper-parameters determine how the filter moves along the time axis, where stride decides

the step length of the filter along the time axis for each iteration, while the type of padding

determines how zeroed elements are added to each side of the input sample. Valid padding

has no zeroed elements, while “same” padding adds zeroed elements to the start and end of

the sample. Same padding may be used to ensure that all elements of the input are used.

I.e., if s > 1 then the last step of the convolution may jump over the extent of the input,

meaning that the last elements are never considered (Chollet et al., 2015). Padding may also

be used to preserve the spatial dimensions of the input.

The output feature maps of a convolutional layer are usually very large. Pooling layers re-

duce the size of the input feature maps, determined by the pool size Np, by applying some

statistical function to windows of the feature maps. The pooling procedure can be visualized

24

2.3. ARTIFICIAL NEURAL NETWORKS

in a similar manner as for the convolutional operation shown in figure 2.5. However, instead

of using element-wise multiplication, a pooling function is applied to the shadowed elements.

Commonly used pooling functions include max pooling and average pooling, where the out-

put is the maximum and average value of the window, respectively. Finally, the addition of a

pooling layer to the network is usually followed by another pair of convolutional and pooling

layers, or by flattening the final feature maps and feeding the vector to a fully-connected

layer (Bishop, 2008, p 269).

2.3.5 Neural network optimization

Neural network optimization can be nuanced due to the size and complexity of modern neural

networks. The choice of optimizer algorithm (SGD, mini-batch SGD and variants) and

the initialization of parameters is crucial in achieving a stable and converging optimization

procedure.

Variants of stochastic gradient descent

Many extensions or variations to SGD have been proposed to improve the stability and

learning speed of neural networks (Goodfellow et al., 2016, p. 292). Classical momentum

introduces a velocity vector v to the parameter updates (see equation 2.12). There are then

two update rules to the algorithm, given by

vτ+1 = βvτ − η∇θℓ(θ
τ ;x,y) (2.36)

θτ+1 = θτ + vτ+1,

where β is a hyper-parameter that determines the rate of exponential decay of previous gra-

dients. With momentum, the parameter updates will keep moving somewhat (determined

by β) in the direction of previous gradients. This is advantageous when descending error sur-

faces where the gradient is frequently varying in some directions, while remaining consistent

in others. Without momentum, the learning is slowed down by these oscillating gradients

and little progress is made (Ruder, 2016, p. 4). With momentum on the other hand, the

updates gather momentum in the direction of the most consistent gradients, avoiding the

25

CHAPTER 2. BACKGROUND THEORY

oscillations.

Nesterov accelerated gradient, or just Nesterov momentum, is an alternative to classical

momentum with a slight difference in update rules. They are given by

vτ+1 = βvτ − η∇θℓ(θ
τ + βvτ ;x,y) (2.37)

θτ+1 = θτ + vτ+1,

where the only difference between Nesterov and classical momentum, is that the gradient is

calculated after adding the velocity of the current iteration (Goodfellow et al., 2016, p. 295).

Recall that the learning rate η determines the step size of each iteration. Instead of keeping

this hyper-parameter fixed through the entire optimization, it is common to gradually de-

crease the learning rate as the training progresses. A learning rate schedule, which describes

the manner it decreases, is a simple way of changing the learning rate. It is usually chosen

to be an exponential or linear decay (Goodfellow et al., 2016, p. 290). A more elaborate

approach however, is to use an adaptive learning rate, where the learning rate is adapted

to each parameter. I.e., given that the gradient of the cost function may be more sensitive

to some parameters than others, it makes sense to decrease the learning rate differently for

each parameter (Goodfellow et al., 2016, p. 303). There exist multiple approaches to this

method and some frequently used optimization algorithms for neural networks will be briefly

described. Similarly to the discussion on activation functions (section 2.3.3), it is important

to note that there is no optimizer which is guaranteed to provide the best results for any

given problem. There are, however, default recommendations and some optimizers which

have been shown to empirically outperform its peers (Goodfellow et al., 2016, p. 306).

Adaptive subgradient descent (AdaGrad) is an algorithm which implements an adaptive

learning rate. AdaGrad also uses a global learning rate, but scales it for each parameter

based on an accumulation of previous gradients. It is scaled by the inverse square root of

accumulated squared gradients, which has the effect of quickly decreasing the learning rate

of the parameters with the largest influence on the cost (Goodfellow et al., 2016, p. 303).

The downside to the accumulation of squared gradients, is that learning rates may decline to

26

2.3. ARTIFICIAL NEURAL NETWORKS

levels too small to continue learning as training progresses (Ruder, 2016, p. 6). The AdaGrad

update rules may be given by

gτ = ∇θℓ(θ
τ ;x,y) (2.38)

rτ = rτ−1 + gτ ⊙ gτ

θτ+1 = θτ − η√
rτ + ϵ

⊙ gτ ,

where gτ is the gradient of the current iteration; r is the accumulated gradients up to the

current iteration; and ϵ is a small constant to avoid division by zero.

To alleviate the shrinking learning rate of AdaGrad, both the AdaDelta and root mean

square propagation (RMSProp) algorithms implement a decaying moving average of the

squared gradients instead. RMSProp defines the update rule of the accumulated gradient as

rτ = ρrτ−1 + (1− ρ)gτ ⊙ gτ , (2.39)

where ρ determines the decay rate (Ruder, 2016, p. 7).

Adaptive moment estimation (Adam) combines some aspects of RMSProp and classical

momentum to incorporate both an exponentially decaying average of past gradients (first

moment), and of past squared gradients (second moment). Additionally, to avoid the mo-

ments tending towards zero when initialized as 0, a bias correction is made in the update

rules. The rules are given by

sτ = β1s
τ−1 + (1− β1)g

τ

rτ = β2r
τ−1 + (1− β2)g

τ ⊙ gτ

ŝτ =
s

1− βτ
1

(2.40)

r̂τ =
r

1− βτ
2

θτ+1 = θτ − η√
r̂τ + ϵ

⊙ ŝτ ,

where s and r are the first and second moments; β1 and β2 are the decay rates for the first

27

CHAPTER 2. BACKGROUND THEORY

and second moments, respectively; and ŝ and r̂ are the bias corrections.

Finally, in practice, Nesterov momentum has been shown to be a better alternative than

classical momentum in some cases, which motivated the Nesterov-accelerated adaptive mo-

ment estimation (Nadam) algorithm (Ruder, 2016, p. 8). This algorithm is in practice Adam

with Nesterov momentum instead of classical momentum.

Parameter initialization

The parameters for the 0th iteration of the optimization have to be specified. The type

of parameter initialization may be crucial in order to reach a satisfactory solution. The

weights of neural networks (weights in the MLP and the kernel weights in CNNs), are

typically chosen randomly from a uniform distribution, while the biases are set to 0 or some

other heuristically chosen constant (Goodfellow et al., 2016, p. 298). Glorot and Bengio

(2010) introduced a popularly used initialization distribution known as the Glorot, or Xavier,

uniform distribution. With Glorot uniform initialization, the weights in a layer l are drawn

so that

w
[l]
ij ∼ U

ñ
−
»

6
n[l−1]+n[l] ,

»
6

n[l−1]+n[l]

ô
, (2.41)

where U is a uniform distribution. Note that if l = L then n[l] = m from figure 2.2, and

likewise if l = 1 then n[l−1] = n.

2.3.6 Regularization and dropout

Recall from section 2.2.1 that early-stopping is used to prevent over-fitting to the training

data. This is one of many methods for implementing model regularization in the pursuit of

reducing over-fitting. Perhaps the most commonly known form of regularization is one that

penalizes the norm of the parameters (L1 and L2 regularization). This type of regularization

adds another term to the cost function (equation 2.10), where large parameter values increase

the cost and in turn keep the parameters small (Goodfellow et al., 2016, p. 226).

Another powerful regularization method for neural networks is dropout. For every parameter

updating cycle during optimization, units in a layer with dropout have a chance (determined

by the dropout rate pd) to be ignored during that cycle. This means that their activations,

28

2.4. EXPLAINABLE ARTIFICIAL INTELLIGENCE

as well as all the connections to other units, are dropped for that particular iteration. As a

consequence, by the end of optimization the model may have been trained on many different

combinations of units, which prevents the model from relying on a small number of units.

This also means that dropout, in essence, is a form of bagging (Goodfellow et al., 2016,

p. 255). I.e., it is a type of ensembling where essentially multiple different neural networks

are trained and evaluated on the same data in order to reduce bias.

2.4 Explainable artificial intelligence
Explainable artificial intelligence (XAI) has seen an increase in interest the past years (Ar-

rieta et al., 2020). There are differing definitions in the field, as it is still a relatively new

area of research. However, a general definition made by (Arrieta et al., 2020, p 6) in a com-

prehensive taxonomy of the new field is that “given an audience, an explainable Artificial

Intelligence is one that produces details or reasons to make its functioning clear or easy

to understand”. They also categorized the number of different XAI methods into distinct

categories based on the type of explanation. These included (1) visualization; (2) model

simplification; (3) local explanations; (4) feature relevance; (5) text explanations; and (6)

explanations by example. Out of these six, the authors noted that model simplification

and feature relevance techniques in particular have received a lot of attention recently, with

methods like Shapley Additive explanations (SHAP) and Local Interpretable Model-agnostic

Explanations (LIME). These XAI methods also offer open-source Python implementations

and onboard visualization which make them accessible to practitioners.

The following sections will investigate post-hoc techniques (meaning XAI methods that are

used after the prediction model is made), and will particularly focus on feature relevance

and model simplification methods that current XAI frameworks offer.

2.4.1 Deep learning important features

Deep Learning Important Features (DeepLIFT), presented by Shrikumar et al. (2019), is a

feature relevance method specifically made for neural networks. DeepLIFT assigns contri-

bution scores to the hidden units of any layer (e.g., the input layer) in a neural network by

29

CHAPTER 2. BACKGROUND THEORY

backpropagating (see chapter 2.3.2) activation differences of its hidden units with respect to

some reference. This reference has to be chosen for each particular problem and is important

in order to get intuitive explanations. An advantage of DeepLIFT is that it does not use

gradients to calculate the contributions of inputs. Notably, in the case of a saturated unit

and a zero-gradient, attribution of contributions using the gradient may imply that the input

in question had no impact on the output. The difference in reference of some target output

unit ∆yt = yt − y0t is given by the summation-to-delta property of DeepLIFT:

∆yt =
n∑

i=1

C∆xi∆yt , (2.42)

where C is the contribution to ∆yt attributed to ∆xi. Note that equation 2.42 has been

slightly modified compared to the original paper to adhere to the notation laid out earlier

(refer to section 2.3.1 for MLP notation).

The quotient of the contribution C∆xi∆yt and the difference from reference in some input

unit ∆xi is defined as the multiplier given by

m∆xi∆yt =
C∆xi∆yt

∆xi

. (2.43)

Analogous to the derivation of the backpropagation rules laid out in appendix A, the chain

rule for multipliers in DeepLIFT is given by

m∆xi∆yt =
n[1]∑
j=1

m
∆xi∆a

[1]
j
·m

∆a
[1]
j ∆yt

. (2.44)

The authors of DeepLIFT proved that equation 2.44 maintains the summation-to-delta prop-

erty (equation 2.42) given the definition of multipliers (equation 2.43). The multipliers are

given by the definition of rules laid out in the original paper. The multipliers of neighbouring

layers (e.g., the input and first hidden layer) are given by the Linear and Rescale rules for

30

2.4. EXPLAINABLE ARTIFICIAL INTELLIGENCE

linear and non-linear units, respectively. Multipliers for linear units are given by

m
∆xi∆a

[1]
j

=

0.5w
[1]
ji ∆xi = 0

w
[1]
ji ∆xi ̸= 0

, (2.45)

while multipliers for non-linear units are given by

m
∆xi∆a

[1]
j

=

∂a

[1]
j

∂xi
∆xi → 0

∆a
[1]
j

∆xi
otherwise

. (2.46)

The authors also introduced the RevealCancel rule to attribute positive and negative contri-

butions differently. However, the Deep SHAP estimation method (covered in section 2.4.3)

does not apply this rule. The rules are explained in detail in the original paper (Shrikumar

et al., 2019).

With the definition of the linear and non-linear multiplier rules, the contribution of any

unit to the change in output can be found by the use of backpropagation and the multiplier

chain rule (equation 2.44). The method is as follows: (1) calculate reference activations for

all units by a forward pass (equations 2.21-2.23); (2) calculate actual activations and the

differences from reference; (3) start with the multipliers of the last hidden layer with respect

to the output layer and backpropagate with the use of equation 2.44 to find the multipliers

of all units; and (4) find contributions of inputs by applying equation 2.43. This is analogous

to the backpropagation rules derived in appendix A.

2.4.2 Shapley values

Shapley values are a concept from cooperative game theory where players (features) work

together to form some pay-out (prediction). The Shapley value of the jth feature in the

context of a model f and an instance x gives the weighted average of all possible contributions

the feature may have to the model output. For all possible coalitions, the prediction of the

model is found with and without the presence of the feature in question. The exact Shapley

31

CHAPTER 2. BACKGROUND THEORY

value is defined by

ϕj =
∑

S⊆F\{j}

|S|!(|F | − |S| − 1)!

|F |!
[fSj

(xSj
)− fS(xS)], (2.47)

where S is a subset of the set of features, F without j; Sj = S ∪ {j} is the subset with j

added; fSj
is the model built with the jth feature as an input, and fS is the model built

without it.

Equation 2.47 implies that the model has to be retrained twice for every subset; for the

subset containing j and once without its presence. This is computationally expensive since

there will be 2|F | different coalitions to evaluate. Some methods have been proposed to

reduce the computations required to calculate the exact Shapley value.

2.4.3 Shapley additive explanations

Shapley additive explanations (SHAP) introduced by Lundberg and Lee (2017) are based on

so-called SHAP values which are the Shapley values of a conditional expectation function of

the original model. SHAP values satisfy three important properties of feature importance

that other methods do not:

(1) Local accuracy: the SHAP explanation should match the original prediction

(2) Missingness: missing features in the original input space should have no impact

(3) Consistency: importance attributed to a feature should stay consistent with its con-

tribution to the model

Instead of re-training the model for every subset, SHAP values approximate the model’s

output for a subset of inputs with the expected value of the original model conditioned on

that subset. I.e., define that

fx(S) = f(hx(z
′)) = E[f(x)|xS], (2.48)

where hx is the input mapping function and z′ ∈ {0, 1}n is a binary vector representing

32

2.4. EXPLAINABLE ARTIFICIAL INTELLIGENCE

whether a feature is missing or present (0 or 1); and S is the set of features which are “ON”

in z′, so that xS has missing values for the features not in S. With this definition, the model

does not have to be re-constructed for every subset. Particularly, the output of the model

with the absence of some features (fS(xS) in equation 2.47), is given by the conditional

expectation E[f(x|xS)] instead.

SHAP defines a missing feature in xS by extracting a random value from a background

set (note the similarity to DeepLIFT’s reference values). The background set is meant to

represent the expected distribution of the feature so that the missing feature is given some

uninformative value. As a consequence, the SHAP value of some feature is interpreted as

the contribution to the difference between the actual prediction and the expected prediction

acquired from the background set (may also be referred to as the baseline prediction). By

property 1 a single prediction made from an instance x may be given as a sum of SHAP

values:

f(x) = ϕ0 +
n∑

i=1

ϕi, (2.49)

where ϕ0 is the baseline prediction ϕ0 = E[f(x′)], interpreted as all the features missing from

the input space (x′ = hx(0)); and ϕi is the SHAP value of the ith feature. By explaining the

prediction as a sum of SHAP values, each SHAP value gives an idea of the feature’s impact

on the particular instance.

The conditional expectation function (equation 2.48) is still computationally intensive to

calculate exactly. Hence, the authors of the original paper also laid out several different

ways to estimate the SHAP values. The methods may be distinguished by whether they are

model-specific or agnostic. Of special interest is the Deep SHAP estimation method, specific

to neural networks, which unifies DeepLIFT’s feature attribution with SHAP values. In

particular, let x0
i = E[xi] and y0t = E[yt]; i.e., that the references are given by the expected

values provided by the background data. Furthermore, interpret the DeepLIFT contribution

as the SHAP value of the ith input on the tth output unit, then C∆xi∆yt = ϕi,t. Lastly,

assuming feature independence and model linearity in equation 2.48 gives E[f(x)|xS] ≈

f(xS, E[xS̄]). With these definitions, a slightly modified multiplier from equation 2.43 was

given by Lundberg and Lee (2017) in terms of the SHAP value and difference from the

33

CHAPTER 2. BACKGROUND THEORY

expected value of the background data:

mxiyt =
ϕi,t

xi − E[xi]
. (2.50)

The Deep SHAP values may then be calculated similar to the calculation of DeepLIFT

contributions described in section 2.4.1 through backpropagation of multipliers, and the

linear and non-linear rules. Since Deep SHAP assumes feature independence and lienarity,

Deep SHAP is a model simplification and feature attribution method. As a consequence of

the feature independence assumption, the feature attribution of correlated features have to

be scrutinized.

While the original SHAP paper demonstrated (by linearizing the Max function) how an-

alytical solutions of linearization rules for each activation function can be produced, the

open-source implementation of Deep SHAP (Lundberg and Lee, 2017) appears to be using

the DeepLIFT Linear and Rescale rules for linear and non-linear activation functions. In

practice, the main difference between DeepLIFT and Deep SHAP therefore seems to be

the choice of background data. Particularly, the fact that the original DeepLIFT method

only uses one reference sample, while Deep SHAP relies on the background data providing

a distribution of “typical” data in which SHAP values can be estimated from. DeepLIFT

attributes feature importance based only on the one reference, while Deep SHAP computes

SHAP values by averaging attributions over all the background samples. Hence, Deep SHAP

is essentially DeepLIFT when only one background sample is provided as background data.

34

Chapter 3

Data collection and analysis

It is often said that the results of a prediction model is only as good as the quality of the

provided data. Hence, time spent extracting, analyzing and cleaning relevant data is not

time wasted. In this chapter the data sets used in the thesis are described and analyzed.

Particularly, the methods for acquiring the data will be described; the ways in which missing

or invalid data was replaced is shown; and the data itself is visualized and analyzed in detail.

3.1 Norwegian electricity consumption data
Norway is split into five different price areas (NO1, NO2, NO3, NO4 and NO5), and the

chosen price region for the case study in the thesis was NO1. This is shown in figure

3.1. According to the Norwegian TSO, Statnett (2021a), the hourly aggregated electricity

consumption of one price area is calculated as the sum of production and energy flow (in

or out) of a particular price region and hour (by energy balance this has to match the

consumption). Then, theoretically, the aggregated consumption of one price region may be

given by

E(t) =

∫ t+3600

t

P (t)dt =

∫ t+3600

t

(G(t) +
∑

Iij(t))dt, (3.1)

where E(t) denotes the discrete aggregated consumption of some hour t in watt-seconds;

P (t) denotes the instantaneous active power load of some price region as a function of time;

G(t) the instantaneous active power generation; and
∑

Iij(t) is the sum of instantaneous

35

CHAPTER 3. DATA COLLECTION AND ANALYSIS

NO1

NO2

NO4

NO3

NO5

Chosen price region
Other Norwegian price regions

Figure 3.1: The Norwegian price areas and the selected price area. Figure adapted from
original work by Ugur Halden.

power flows in and out of the price region. Note that the power flows are not limited to the

Norwegian price areas, but includes power flow from HVDC interconnectors and power flow

to Swedish price regions.

Let the hourly average of the instantaneous active power load of some hour t be denoted by

P̄ (t), or P (t) for convenience, then

P (t) =
1

t+ 3600− t

∫ t+3600

t

P (t)dt =
1

3600
E(t). (3.2)

If E(t) is given in watt-hours, then equation 3.2 reduces to P (t) = E(t). I.e., the hourly

average active power load, or just power load, of some price region is given by the hourly

aggregated consumption.

36

3.1. NORWEGIAN ELECTRICITY CONSUMPTION DATA

Table 3.1: The structure of historical consumption data in megawatt-hours (MWh).

Hours NO1 NO2 NO2 NO3 NO4 NO5 NO

01/01/2014 00 - 01 3917 3843 2424 2158 2032 14374 14374

01/01/2014 01 - 02 3862 3817 2342 2151 2009 14181 14181

01/01/2014 02 - 03 3767 3756 2284 2149 1981 13936 13936

3.1.1 Data extraction and description

Hourly aggregated consumption data for the Norwegian price areas from as far back as

2013 is publicly available from Nord Pool (2021). A few samples of the data structure from

2014 is shown in table 3.1. Each row in the data set represents the aggregated electricity

consumption of the coming hour in local time. Since the consumption data is given in

megawatt-hours, the numerical value is also a measure of the hourly average power load for

that hour given in megawatts, as shown in equation 3.2. This quantity will henceforth be

referred to as the electrical load, power load or just load for the sake of simplicity. However,

it is important to remember that it actually refers to the hourly average active power load.

It does not give any information regarding instantaneous values such as the maximum (peak)

or minimum power load of the hour.

3.1.2 Seasonality and statistics

Data from 2014-2020 in NO1 was extracted as the power load data. Descriptive statistics

of this data set is shown in table 3.2. As seen from the total count, there are no missing

data for this data set. The mean has seen an increase after 2015, but fell back to previous

levels in 2020. The standard deviation also varies from year to year, but does not appear

to be increasing significantly. Moreover, the percentiles (25%, 50% and 75%), minimum and

maximum statistics also show no obvious changes. These observations may indicate that the

load has not seen any increase or decrease over the years.

This is substantiated from the yearly time series in figure 3.2. I.e., that there is no obvious

increasing or decreasing trend for the power load of NO1. Apart from 2020, which appears

to have unusually low winter load and also slightly lower load in general, all other years have

37

CHAPTER 3. DATA COLLECTION AND ANALYSIS

Table 3.2: Descriptive statistics of the NO1 consumption data.

Year Count Mean [MW] Std [MW] Min [MW] Max [MW] 25% [MW] 50% [MW] 75% [MW]

2014 8760 3932 1269 1678 7478 2891 3756 4889

2015 8760 3997 1181 1870 7414 3064 3837 4858

2016 8784 4156 1403 1755 8133 3001 3981 5182

2017 8760 4165 1319 1802 7615 3072 3996 5193

2018 8760 4177 1472 1699 7712 2916 3934 5450

2019 8760 4117 1298 1693 7624 3035 3988 5142

2020 8784 3952 1100 1812 6846 3052 3852 4832

All 61368 4071 1301 1678 8133 3009 3893 5067

similar peaks and troughs. This may seem counter-intuitive since electricity consumption

in Norway is expected to continue growing (Spilde et al., 2019). DSOs in the NO1 region

however, note that the local growth appears to be stagnating due to increased penetration of

district heating, greater energy efficiency and better thermal insulation in dwellings (Elvia

AS, 2020, p. 15). Hence, the consumption patterns of NO1 do not seem to have changed

much from 2014 to 2020.

Power load does however contain several distinct seasonalities (see section 2.1). These are

the yearly, weekly and daily cycles, and can be seen from figure 3.2. The power load time

series of 2016 in figure 3.2 has been split into the four seasons observed in Norway. There are

no official definitions of when one season ends and another begins. They may also vary from

one year to another and have no clear beginnings or ends as indicated by using dashed lines.

Hong (2010) discussed the use of more than the four traditional seasons by also including

transitional periods between each season. The four seasons in figure 3.2 were defined as

(1) Winter: December, January and February

(2) Spring: March, April and May

(3) Summer: June, July and August

(4) Autumn: September, October and November

38

3.1. NORWEGIAN ELECTRICITY CONSUMPTION DATA

2014 2015 2016 2017 2018 2019 2020

2

4

6

8
·103

Year

Lo
ad

[M
W

]

Winter Spring Summer Autumn

2

4

6

8
·103

Season

Lo
ad

[M
W

]

26 27 28 29 30

2

3

·103

Week

Lo
ad

[M
W

]

Mo Tu We Th Fr Sa Su

2

3
·103

Day

Lo
ad

[M
W

]

Figure 3.2: Visualization of the electrical load data at different time scopes. The different
time scopes show that electrical load is similar from year to year; electrical load has a yearly
cycle, a weekly cycle and a daily cycle.

39

CHAPTER 3. DATA COLLECTION AND ANALYSIS

This definition was based on observations of the yearly power load cycle and the meteoro-

logical seasons.

During winter in Norway, sunlight is minimal and temperatures are low, which causes higher

demand from the use of electrical heating appliances. An unusually mild winter (as was

observed in 2020) is therefore also observed as lower power load than previous years. The

transition from winter to spring is marked by increasing temperatures and longer days,

hence power load gradually decreases until summer. During summer, temperatures are at

their highest, hence power load is not as sensitive to temperature fluctuation. This is in

contrast to some power systems closer to the equator where heavy use of air conditioning

during summer causes the power load to be at its highest (Hong, 2010, p. 44). The load

is usually at its lowest in July, particularly during the general staff holidays (fellesferie in

Norwegian) when large parts of the population go out of country, to their cabins, etc. When

summer turns to autumn the days grow shorter and temperatures gradually diminish until

winter has arrived. This is yet again observed as increasing electrical load until winter time.

It is well known that electrical power load has a distinct weekly seasonality (Hong, 2010).

Each day of the week have slightly different profiles, but the most obvious differences are

seen when comparing workdays to the weekend. The weekly cycle can be observed from July

2016 in figure 3.2. Mondays usually have the highest peak power loads and are followed by

the rest of the weekdays. When the weekend arrives, the power load drops substantially

and remains this way until the next Monday. During the weekend, the power load curve

has lower peaks and slightly lags the weekday curves. I.e., the peaks arrive later in the day

and the power load remains high for a longer time in the evening. The daily cycle of power

load may be seen from week 30 in figure 3.2. During the night, power load is at its lowest

around 3am and rapidly increases as people wake up and the work day begins. The load

reaches a peak around 8am, gradually decreases throughout the day, but remains relatively

high. Late in the afternoon there is another peak as people arrive home. Finally, during the

evening, the power load has a sharp drop as the day ends and people go to sleep. Figure 3.3

shows three samples of load curves for each day of the week, extracted from three consecutive

weeks in July 2016. Notice how the curves are very similar from week to week. Without

40

3.1. NORWEGIAN ELECTRICITY CONSUMPTION DATA

0 10 20

2

2.5

3
·103

Monday

Lo
ad

[M
W

]

0 10 20

2

2.5

3
·103

Tuesday
0 10 20

2

2.5

3
·103

Wednesday
0 10 20

2

2.5

3
·103

Thursday

0 10 20

2

2.5

3
·103

Friday
0 10 20

2

2.5
·103

Saturday
0 10 20

2

2.5
·103

Sunday

Wk 30
Wk 29
Wk 28

Figure 3.3: The load profiles of the seven days of the week. The individual load profiles are
taken from three consecutive weeks in the summer of 2016.

much contribution from the sensitivity to weather variables (since it is summer time), the

power load remains almost the same from week to week. This is not the case in every season

however, as the load profiles also vary with the time of the year.

The different seasonal load profiles for each day of the week can be seen more clearly from

figure 3.4. It shows the average load profiles of the days of the week for the four seasons

in 2016. During winter there are two distinct peaks in the power load; one in the morning

and another in the afternoon. Conversely, spring tends to have only one peak, with the

load profile flattening towards the afternoon. During summer the average load profile has

a smoother transition from morning to evening than winter and spring. Lastly, in autumn

there appears to be a transition towards two daily peaks again. Interestingly, Sundays do

not appear to follow this pattern and has a more consistent load profile across the year.

Three important general observations can be made from this: (1) when averaged across each

season, the weekdays have almost identical load profiles; (2) weekend load profiles lag the

weekday curves by some hours and have lower peaks; and (3) Saturday and Sunday have

similar, but slightly different load profiles

As described in section 2.1.1, a PACF plot of a time dependent variable shows the correlation

41

CHAPTER 3. DATA COLLECTION AND ANALYSIS

0 6 12 18

5

5.5

6

6.5

·103

Winter

Lo
ad

[M
W

] Sunday
Sunday
Sunday
Sunday
Sunday
Sunday
Sunday 0 6 12 18

3.5

4

4.5

5
·103

Spring
0 6 12 18

2

2.5

3

·103

Summer

Sunday
Sunday
Sunday
Sunday
Sunday
Sunday
Sunday

0 6 12 18

3.5

4

4.5

5
·103

Autumn
0 6 12 18

3.5

4

4.5

·103

Whole year

Mo
Tu
We
Th
Fr
Sa
Su

Figure 3.4: Average load profiles of the seven days of the week by season in 2016.

to lagged versions of itself in isolation (i.e., after removing the effects of correlation to other

lags). The PACF plot of the power load data set is shown in figure 3.5 up to two weeks back

(k ∈ [0, 337]). Recall that he forecasting horizon is day-ahead, hence the first 24 lags of the

target will never be available at termin time (the boundary is shown by the dashed line).

This is unfortunate since lags close to the target hour show almost perfect values of rk (1

and −1). Notice however, that the largest correlations are found at and around multiples of

24. Particularly, six (k = 144) and seven (k = 168) days back. Notice also, that although

the correlations around two weeks lag (k = 336) are significant, most of the correlated lags

appear in the range of k ∈ [0, 220]. These findings are consistent with the observations made

from visual inspection of the power load curves. I.e., the fact that electrical load follows the

daily, and weekly cycles.

3.1.3 Holiday effect

The load profiles discussed above may change entirely in the light of public holidays or other

events which change consumption patterns. Table 3.3 shows the most important holidays in

42

3.1. NORWEGIAN ELECTRICITY CONSUMPTION DATA

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336
-1

0

1

k

Pa
rt

ia
lA

ut
oc

or
re

la
tio

n

Figure 3.5: Partial autocorrelation plot of the historical load data. Due to the forecasting
horizon, only the lags to the right of the dashed line will be available at termin time.

Norway. They may be distinguished by whether or not they are official (public) or observed

holidays. Observed holidays are not law-given days off, but are celebrated nonetheless and

may possibly have an impact on the elecrical load (e.g., New Year’s Eve and some days

during Easter). As seen from the table, the months of March, April, May and December in

particular have quite a few public holidays in Norway.

Table 3.3: Public holidays and observed holidays in Norway

Holiday Date(s) Comment(s)

New Year’s Day January 1st None

Easter Holidays Late March-early April

Holidays: Maundy Thursday, Good Friday,

Easter Sunday, Easter Monday

Observed: Palm Sunday, Easter Eve

Labour Day May 1st None

Ascension Day 39 days after Easter None

Constitution Day May 17th National day of Norway.

Pentecost Sunday 49 days after Easter
None

Whit Monday 50 days after Easter

Christmas Eve December 24th Restrictions after 3pm.

Christmas Day December 25th None

Boxing Day December 26th None

New Year’s Eve December 31st Restrictions after 6pm.

43

CHAPTER 3. DATA COLLECTION AND ANALYSIS

4

5

6 ·103
20

16

18 20 22 24 26 28 30 01 03 05
4

5

6

Mar Apr

20
18

Figure 3.6: Power load in March-April and holidays 2016 and 2018. These months show the
influence of Easter on power load.

In order to understand how the different holidays affect electrical load, they have been

outlined in figures 3.6-3.8. The three figures show the observed power load for March-

April, May, December-January 2016 and 2018 respectively. Holidays are marked in red,

while regular days are in blue. Additionally, weekends are highlighted with a gray-shaded

background. Although the impact of each holiday may differ from year to year, some general

observations about the changes in load profiles can be made from these two years.

Easter took place late March in 2016 and early April in 2018. These two months are

shown in figure 3.6. Palm Sunday (20th/25th), Maundy Thursday (24th/29th), Good Friday

(25th/30th), Easter Sunday (27th/1st) and Easter Monday (28th/2nd) have been outlined.

Initially, it appears that the entire weekend before Easter has very low load in both years.

Moreover, Easter in general appears to have lower load and some changes in power load pro-

files from Palm Sunday through Easter Monday. In particular the peaks are less pronounced

and the Easter load profiles observed in 2018 look like none of the load profiles pictured in

figure 3.4. Although the official holidays do not include Palm Sunday and Easter Eve, the

power load appears to be affected these days as well.

May 2016 and 2018 are shown in figure 3.7. The outlined holidays are Labour Day (1st),

Ascension Day (5th/8th), Pentecost (15-16th/20th-21st) and the Constitution Day (17th).

In 2016 Ascension Day, Whit Monday and Constitution Day were on a Thursday, Monday

44

3.1. NORWEGIAN ELECTRICITY CONSUMPTION DATA

3

4

·103
20

16

01 03 05 07 09 11 13 15 17 19 21
2

3

4

May

20
18

Figure 3.7: Power load and holidays in May 2016 and 2018. May is a month with many
holidays in Norway.

and Tuesday, hence it can be seen that these days had reduced power load compared to a

normal weekday. Moreover, Friday 6th appears to have been affected by the preceding day

being a holiday. In fact, this was what is known as a “squeezed” day in Norway, where

many may have chosen to take the day off work for an extra long weekend. This effect is

not as easily seen in 2018 however, which may mean the observation made for 2016 is due to

something else. May 18th 2018 was also a squeezed day, and may have been affected by this

as well. Meanwhile, Labour Day and Pentecost Sunday were both on Sundays in 2016, and

therefore did not seem to affect the power load profile much. It is also seen that Labour Day

in 2018, even when on a Tuesday, did not affect power load by much. Finally, Constitution

Day stands out from the other holidays with sharp peaks at the start of the day and quick

drops in the afternoon in both years.

Christmas holidays from 2016 and 2018 are outlined in figure 3.8. Christmas Eve and New

Year’s Eve are not public holidays, but are included regardless. In 2016 they both fell on

Saturdays, and for both days it appears that the evening power load was increased and had

sharper peaks than usual. The same can be observed in 2018. From knowledge of what

people are doing on these days, this makes sense. Moreover, the curves for New Year’s Eve

and New Year’s Day appear to be slightly lagged compared to the usual pattern. This might

be attributed to the fact that people stay up late for New Year’s Eve, and get up much later

the day after. Another observation which can be made about the Christmas holidays, is

45

CHAPTER 3. DATA COLLECTION AND ANALYSIS

5
6
7

·103
20

16

15 17 19 21 23 25 27 29 31 02

5
6
7

Dec Jan

20
18

Figure 3.8: Power load and holidays in December-January 2016 and 2018.

that the load on the days in between Boxing Day and New Year’s Eve appear to be slightly

affected by the holiday season, but not by much. This is given by the fact that most people

are back at work these days, but not everyone.

In general, some observations about the impact of holidays on the power load in 2016 and

2018 can be made:

(1) if a holiday falls on a weekday, the power load is generally lower

(2) if a holiday is in the weekend, the load profile does not necessarily change

(3) some holiday load profiles that fall on weekdays resemble the weekend load profiles

(4) other holidays have unique load profiles that only appear on one day.

3.1.4 Daylight saving time

In Norway, the practice of daylight saving time (DST) is carried out on the last Sunday

in March and the last Sunday in October. The practice involves turning the clock for-

ward by one hour in March (UTC+1→UTC+2) and backwards by one hour in October

(UTC+2→UTC+1), thereby effectively shortening the day in March and extending it in

October. Since the power load data follows local time, for every year there is one day in

March with 23 recorded values and one day in October with 25 recorded values. The effect

of DST on the electrical load data set is shown in table 3.4.

46

3.2. NUMERICAL WEATHER PREDICTION

Table 3.4: Daylight saving time in the electrical load data set.

Hours NO1 NO2 NO3 NO4 NO5 NO

30.03.2014 01 - 02 3460 3584 2324 2067 1831 13266

30.03.2014 02 - 03

30.03.2014 03 - 04 3420 3541 2320 2014 1766 13060
...

...
...

...
...

...
...

...

26.10.2014 01 - 02 2986 3221 2218 1918 1801 12144

26.10.2014 02 - 03 2875 3216 2118 1708 1730 11647

26.10.2014 02 - 03 2831 3183 2063 1695 1737 11508

26.10.2014 03 - 04 2849 3147 2225 1913 1788 11922

3.2 Numerical weather prediction
The following sections cover how the numerical weather predictions were extracted, which

variables were selected and a description of them, and the area they cover. A preliminary

discussion and analysis of the dependence between the NWP variables and the electrical load

is also presented.

3.2.1 Data extraction and description

Historical NWP data from 2012-d.d. is publicly available from the Norwegian Meteorological

Institute’s (MET Norway) THREDDS data server1 (TDS). Data is stored in NetCDF format

and may be extracted using the OPeNDAP protocol. The current (2016-d.d.) weather

forecasting model for the Nordic area (figure 3.9) is the MetCoOp Ensemble Prediction

System (MEPS). Forecasts are made up to 60 hours from the termin time depending on the

ensemble member with an hourly time resolution. It has a horizontal spatial resolution of 2.5

kilometers, 65 vertical levels and offers a wide range of meteorological variables. Forecasts

are ran each day at 00:00, 06:00, 12:00 and 18:00 UTC and have a runtime of about 2 hours

and 30 minutes (Frogner et al., 2019). Prior to 2016, MET Norway’s forecasting model was

the AROME MetCoOp (2014-2016).

1https://thredds.met.no/thredds/metno

47

https://thredds.met.no/thredds/metno.html

CHAPTER 3. DATA COLLECTION AND ANALYSIS

Figure 3.9: The domain covered by the MetCoOp Ensemble Prediction System. Figure from
Frogner et al. (2019).

Hourly historical NWP data from the TDS was collected for ten different locations in the NO1

price area from 2014-2020. The locations, and their respective subscripts and coordinates

are listed in table 3.5. The locations were mainly chosen based on the dwelling and holiday

houses density from Statistics Norway2 (SSB). However, given the fact that this would have

ruled out any cities in Innlandet, some cities representative of the northern parts of NO1

were also selected. Since it is well known that power load responds to the temperature, the

hypothesis was that the weather in the most densely populated areas would influence the load

the most. Industrial loads, in contrast to residential loads, are considered to be uninfluenced

by temperature (Hong et al., 2015), hence they were not considered when choosing locations.

Apart from the impact of temperature, works in the literature have noted the influence of

several other weather variables and combinations of them (Apadula et al., 2012). Therefore,

some other meteorological variables were also extracted from each location. The selected

NWP variables and a description of them is given in table 3.6. Note that while each variable

is the average of some hour, it was unclear whether it is the average of the past or coming

2https://kart.ssb.no/

48

https://kart.ssb.no/

3.2. NUMERICAL WEATHER PREDICTION

Table 3.5: The selected numerical weather prediction locations.

Location Subscript Coordinates (lat, lon)

Drammen D (59.747, 10.182)

Fagernes F (60.989, 9.267)

Halden Hl (59.132, 10.385)

Hamar Hm (60.824, 11.082)

Hønefoss Hø (60.170,10.259)

Kongsberg Kb (59.663, 9.641)

Kongsvinger Kv (60.283, 11.987)

Lillehammer L (61.115, 10.467)

Moss M (59.442, 10.634)

Oslo O (59.923, 10.865)

Table 3.6: A description of the selected numerical weather prediction variables.

Name Symbol Unit Description

Air temperature T K Average air temperature 2m above ground level

Relative humidity H % Average relative humidity 2m above ground level

Air pressure p Pa Average surface air pressure

Wind speed v m/s Magnitude of average wind vector (|[vx, vy]|)

Cloud Cover c % Total cloud cover for all heights

hour. However, given that there is some sort of time delay between changes in the weather,

and seeing the effect this has on the power load, this was not deemed to be a problem.

I.e., with changes in weather variables, particularly temperature, it may take some time

(e.g., due to thermal inertia) that changes in power load are observed. Note that the wind

speed predictions used in the thesis refer to the magnitude of the wind speed vector v =

|v| = |[vx, vy]|. Other notable weather variables, like solar irradiation and precipitation, were

unfortunately unavailable in some of the chosen NWPs and were therefore not included.

The NWPs were extracted in a manner akin to how they would have been in deployment.

I.e., at the termin time of the power load forecast (00:00 Norwegian local time), the latest

49

CHAPTER 3. DATA COLLECTION AND ANALYSIS

Table 3.7: Sample of the data structure of the numerical weather prediction data. The
samples are taken from the Kongsberg data.

Time Temp Hum vy vx Press Cloud

03/01/2016 00:00 266.4594 0.882161 0.285661 -3.46811 99758.75 1

03/01/2016 01:00 266.4266 0.927784 -1.30226 -3.44592 99700.69 1

03/01/2016 02:00 266.3753 0.912602 -0.94434 -3.9501 99636.13 1

available forecast from the TDS is the one made at 18:00 UTC. Hence, these historical NWPs

were extracted for all dates ranging back to 2014. This choice meant that the NWP data

were essentially forecasts with an horizon of 30 to 54 hours. If the 18:00 forecast was not

available, the previous forecast (12:00) was chosen instead. The raw data structure for the

extracted Kongsberg NWPs is shown in table 3.7. The other locations have the same data

structure.

Across all years there were a total of 248 + 72 + 30 + 48 + 0 + 72 + 0 = 470 missing or

invalid (e.g., T = 9.97 · 1036) timestamps for all the variables. The year of 2014 had the

largest amount of missing data, which was attributed to the last four hours of every day in

January missing. It is unknown why this occurred, but it may have been due to a change

in forecast horizon of the MET forecast system. These add up to less than 1% of all the

data and were therefore imputed using the interpolate method from the pandas Python

library (McKinney, 2010). Figure 3.10 shows the forecast temperature in Oslo for January

2014 with actual forecast values and imputed values. For short missing segments with steep

slopes, the imputed values fit fairy well. The missing horizontal segments however look more

conspicuous. Regardless, these were left as they are due to the relatively small amount of

missing data. Note that all the other meteorological variables had the same missing data

and were imputed in the same fashion.

3.2.2 Dependency between the variables

To get an idea of the amount of information held by the selected meteorological variables,

dependency between the variables was measured by calculating MI (see section 2.1.2). Table

3.8 shows the resulting MI-matrix by using the non-parametric estimation (the entropy

50

3.2. NUMERICAL WEATHER PREDICTION

03 06 09 12 15 18 21 24 27 30

265

270

275

280

Jan 2014

Te
m

pe
ra

tu
re

[K
] Real

Imputed

Figure 3.10: Imputation of the numerical weather prediction data

Table 3.8: Mutual information between all of the continuous variables in Oslo.

P 8.46

TO 0.70 9.58

HO 0.13 0.27 9.59

y vO 0.02 0.03 0.05 9.60

pO 0.11 0.14 0.06 0.05 9.48

cO 0.02 0.04 0.16 0.02 0.04 5.24

P TO HO vO pO cO

x

from equation 2.2 has to be estimated) method mutual_info_regression from scikit-

learn (Pedregosa et al., 2011). MI coefficients separated by each city were similar for every

variable, hence the meteorological time series in the table are the ones from a single city

(Oslo). Obviously, the MI coefficients contained in the variables themselves (e.g., I(P ;P))

are relatively high, and may serve as a reference for the other coefficients. As expected,

I(P ;T) has the highest coefficient of the meteorological variables. The values of I(P ;H)

and I(P ; p) also suggest that humidity and pressure may contain information about the

power load. Note however that the values of I(H;T) and I(p;T) indicate some relationship

to temperature. I.e., the temperature by itself may contain some of the same information

that humidity and pressure do. This is intuitive given the close relationship between the

three variables. The other variables, wind speed and cloud cover, sadly do not seem very

promising in terms of MI coefficients.

51

CHAPTER 3. DATA COLLECTION AND ANALYSIS

03 04 05 06

270

275

Jan 2019

Te
m

pe
ra

tu
re

[K
] Moss

Lillehammer
Oslo

Figure 3.11: The temperature curves of three different locations

Since some of the locations are very close to each other there is a lot of mutual information

between them. Figure 3.11 shows the simultaneous temperature predictions in three different

locations. As can be seen, the temperature predictions for Oslo (TO) and Moss (TM) are very

alike, which is likely due to their close proximity. Meanwhile, the predictions for Lillehammer,

which is situated further north, are similar, but differ by a few degrees most days. Likewise,

the other weather variables see such differences for each location due to the particular local

climate and altitude. The main takeaway however, is that each location share a lot of the

same information, hence careful consideration has to be made during the feature engineering

part of the load forecasting model so as to avoid superfluous features.

52

Chapter 4

Methodology

This chapter describes the experimental setup; the forecasting problem and strategy; all the

developed models; testing of the final model; and how XAI was used on forecasts made by

the models.

4.1 Experimental setup
For large parts of the semester, code development and the various experiments were carried

out on an ASUS UX303UB laptop from 2016. The CPU was an Intel Core i7-6500U with

a core speed of 2.5 GHz. As the amount of processor intensive activities (larger models,

more data, hyper-parameter searches, test methods, etc.) grew, there was a need for more

processing power to speed up this part of the work. Eventually access was granted to

NTNU’s Tesla farm, which consists of four Tesla V100-SXM2-32GB GPUs in parallel. In

particular these were used to speed up the neural network training through distributed

training offered by TensorFlow (Abadi et al., 2015). A MirroredStrategy was used for

synchronized distributed training of the neural network models.

4.2 Forecasting problem and description
The forecasting problem was to produce a day-ahead forecast with a horizon of 24 hours

and an hourly resolution. This is a multi-step ahead forecasting problem where the horizon

53

CHAPTER 4. METHODOLOGY

t′t′ − 2 t′ + 23t′ + 1 t t+ 1t′ −K + 1t′ −K t+ 23t+ 22

Load inputs Forecast horizon

t′ − 1

Day-ahead

Figure 4.1: Timeline of the forecast strategy and power load. t′ is the termin time of the
forecast and t is the first forecast hour of power load.

is H = 24 and the lead time is D = 24 (see section 2.1.4). In essence, historical load data

is being “forecast”. Hence, it is crucial not to lose track of the limitations which would be

present in a real forecasting scenario. I.e., the forecast needs to have been possible in a real

world scenario. For starters, let the termin time of each forecast be at midnight each day

(i.e., the forecast is run every day at 00:00). This also implies a forecasting interval of 24

hours (I = 24), and that the first forecast value is the one denoting the average electrical

load of the hour 00-01 (see section 3.1).

The MIMO forecasting strategy (see equation 2.7) was applied for all the models apart from

the MLR model. The reasoning behind this approach is threefold: (1) there are good results

reported in the literature for this method (Ben Taieb et al., 2012); (2) the alternative was

to use a direct or a recursive approach, where the former was deemed too computationally

expensive and the latter may be inferior to MIMO; (3) only one model had to be evaluated

for feature importance using XAI.

Let t′ denote the termin time and t = t′ +D = t′ +24 the first forecast hour (see figure 4.1).

P̂ (t) then denotes the average electrical load of the first forecast hour one day ahead of the

termin time. Generally, all the MIMO models may then be described by

P̂ = f(P ,x), (4.1)

where f : Rn → R24; P̂ =

ñ
P̂ (t) P̂ (t+1) · · · P̂ (t+23)

ô
is the output vector of forecast

values; x is the concatenated vector of other exogenous time series and variables; and P =ñ
P (t′−K) P (t′−K+1) . . . P (t′−1)

ô
is the vector of historical load values. For the sake of

clarity, and in the context of the midnight termin time, let d denote the forecast day and

let t = 0, then the time lags of P may be referred to by their day number and hour of day

54

4.3. DATA PREPARATION AND PRE-PROCESSING

with respect to the forecast day. E.g., Pd−2 =

ñ
P

(0)
d−2 P

(1)
d−2 . . . P

(23)
d−2

ô
would in this case

refer to the vector of historical power load two days prior to the forecast day. Similarly,

P̂ = P̂d =

ñ
P̂

(0)
d P̂

(1)
d . . . P̂

(23)
d

ô
refers to the forecast power load.

4.3 Data preparation and pre-processing
This section covers the general pre-processing and data preparation which was done prior to

adapting the data to each particular model.

4.3.1 Time series variables

The time series (continuous) variables which were included in the development phase of the

thesis were:

(1) Historical electrical load, P

(2) Numerical weather predictions from ten locations

(a) Temperature, T̂

(b) Humidity, Ĥ

(c) Pressure, p̂

(d) Wind speed, v̂

(e) Cloud cover, ĉ

The electrical load data and NWPs are described in detail in chapter 3. Apart from the

preliminary data imputation of the data sets, the raw data of the continuous variables was

generally prepared in the following manner: (1) split into training and test data sets; (2)

normalized to the training data; and (3) reshaped to the expected input dimensions of the

model. The split of training/test depended on the particular experiment and will be covered

in later sections.

Normalization (see section 2.1.3) of ML models generally increases the model performance

and stability, especially in the case of neural networks (Goodfellow et al., 2016). Both

55

CHAPTER 4. METHODOLOGY

standardization (equation 2.4) and min-max (equation 2.3) scaling was tested during devel-

opment. Both of these were implemented using the Python libary sklearn’s StandardScaler

and MinMaxScaler (Pedregosa et al., 2011). Standardization outperformed min-max scal-

ing most of the time during testing in development, so it was decided to keep using standard-

ization. Sklearn’s scalers supports online scaling, which was used to continuously update the

scaler parameters as the forecasting models were trained on more samples over time.

Since time series forecasting is a time-dependent problem, not all historical data may be

equally relevant. I.e., the underlying distribution of the variable may change over the years

so that some older data is out-of-distribution. It was therefore attempted to use different

sample weightings when fitting the scaler to the training data. For instance, it was attempted

to only use the latest 1-3 years for scaling, but this did not seem to improve performance. A

weighting based on exponential decay was also tested, where the weight α for tth sample was

given by α(t) = 1−e
− t

ND . This too did not improve the results. Regardless of the hypothetical

soundness of scaling based on recency, none of these weighting strategies appeared to improve

the results noticeably.

After scaling all the continuous data, the variables had to be reshaped into the number of

features and shapes expected by the particular model. As described in section 2.2.1, data

has to be reshaped into features and targets for a supervised learning problem. Since the

raw data of the continuous variables are time series (i.e., only one feature), these have to

be split into the appropriate shape expected by the particular model (i.e., to a shape of

samples × n_features). For instance, the weather variables of each location (see section

3.2) were always reshaped to 24 features, one for each output hour of the forecast day, such

that one sample (one day) of the predictions of a weather variable T at a particular location

c may be given by T̂c =

ñ
T̂c

(t)
T̂c

(t+1)
. . . T̂c

(t+24)

ô
. The reader may want to refer to

Brownlee (2018) for detailed illustrations regarding the transformations when going from

time series data to supervised learning data.

56

4.3. DATA PREPARATION AND PRE-PROCESSING

4.3.2 Categorical variables

The categorical calendar variables of the forecasting models were implemented using one-hot

encoding. I.e., given an ordinal categorical variable which takes on n distinct values (e.g., d ∈

{0, 1, 2, 3, 4, 5, 6} representing Monday-Sunday), n one-hot encoded variables (d0, d1, . . . , d6 ∈

{0, 1}) were made. 0 and 1 represents the absence or presence of the respective encoded

variable, e.g., d0 = 1 indicating that Monday is “ON”. Moreover, only one variable can be

present at a time. The reasoning behind this approach instead of an ordinal approach is

two-fold. Firstly, encoding each state of the original variable ensures that there is no bias

involved with some states being represented by a larger numerical value than others, and

hence having a larger impact on activations in a neural network; and secondly, by indicating

absence or presence with 0 and 1, this allows for more intuitive feature attributions.

The calendar variables which were made for the power load forecasts were:

(1) Day of the week, d0, d1, . . . , d6

(2) Season of the year, s0, s1, s2, s3

(3) Month of the year, m0,m1, . . . ,m11

(4) Holiday, h

(5) Easter, e

where the extents of s0: winter, s1: spring, s2: summer and s3: autumn were defined in the

same manner as in section 3.1.2.

As discussed in section 3.1.3, the load profiles of some public holidays may only appear on

that single day. They may also vary from year to year and are, to some extent, random.

This makes public holidays difficult to model since there is limited amounts of data for each

individual holiday. The holiday and Easter variables were therefore implemented so that h

indicated the presence of a public holiday (see section 3.1.3) and e also indicated whether it

was during Easter week or not. Easter week was defined as all days between Palm Sunday

and Easter Monday. The reasoning for including both holidays and Easter variables, was

57

CHAPTER 4. METHODOLOGY

Table 4.1: The continuous and categorical variables

Category Variable Features

Continuous

(time series)

Historical load P (t′−K), P (t′−K+1), . . . , P (t′−1)

Temperature T̂D, T̂F , T̂Hl, T̂Hm, T̂Ho, T̂Kb, T̂Kv, T̂L, T̂M , T̂O

Humidity ĤD, ĤF , ĤHl, ĤHm, ĤHo, ĤKb, ĤKv, ĤL, ĤM , ĤO

Pressure p̂D, p̂F , p̂Hl, p̂Hm, p̂Ho, p̂Kb, p̂Kv, p̂L, p̂M , p̂O

Wind speed v̂D, v̂F , v̂Hl, v̂Hm, v̂Ho, v̂Kb, v̂Kv, v̂L, v̂M , v̂O

Cloud cover ĉD, ĉF , ĉHl, ĉHm, ĉHo, ĉKb, ĉKv, ĉL, ĉM , ĉO

Categorical

(calendar)

Day of the week d0, d1, . . . , d6

Season s0, s1, s2, s3

Month of the year m0,m1, . . . ,m11

Holiday h

Easter e

that Easter (see figure 3.6) appeared to lower load over the entire week of Easter, and not

just on the official holidays.

Table 4.1 shows all the continuous and categorical variables which were considered for the

forecasting models. Their structure are also shown.

4.3.3 Daylight saving time

Recall from section 3.1.4 that the electrical load follows local time and hence also experiences

DST. If this is not dealt with during data pre-processing, the model forecasts will lag the

actual load by an hour from the last Sunday in March until the last Sunday in October. To

remove this effect, one hour was removed at 2am on the last Sunday in March, and one hour

was duplicated at 2am on the last Sunday in October across the data set.

4.4 Evaluation of forecasting accuracy
In order to evaluate the forecasting accuracy of a model, some sort of metric has to be chosen.

Every metric has its own set of limitations where a model may perform well based on the

58

4.5. DEVELOPMENT OF THE CANDIDATE MODELS

results from one metric, but poor according to another. For instance, consider a model which

is very accurate most of the time, but in rare occasions gives completely wrong forecasts.

A metric which measures the general forecasting performance of the model would give this

model a good score, while a metric which penalizes large deviations would give the model a

worse score, depending on how much deviations are penalized.

Two such popularly used metrics are the mean absolute percentage error (MAPE) and root

mean squared error (RMSE). The MAPE of some set of predictions is given by

MAPE =
1

N

N−1∑
i=0

|P (i) − P̂ (i)|
P (i)

· 100%, (4.2)

while the RMSE of the same set of predictions is given by

RMSE =

 ∑N−1
i=0 (P (i) − P̂ (i))2

N
, (4.3)

where N are the number of predictions to be evaluated for the particular set.

Note that MAPE and RMSE does not give any direct indication as to how well the model

was able to capture the load profiles of power load (see section 3.1.2). In order to evaluate

this, visual investigation has to be performed. This was done for some of the models during

development to validate that the models were in-fact learning the correct shapes of power

load variation. Visual confirmation is also a way of judging if the models are over-fitting

or under-fitting the data. I.e., if the model in question is trained sufficiently long, but

the forecasts only resemble a simplistic power load shape, then this may be a sign that the

model’s representational capacity is too low. Conversely, if the forecast shapes appear jittery

and noisy, this may be a sign that the model is over-fitting.

4.5 Development of the candidate models
The first part of the thesis involved the development of a suitable load forecasting model.

During development, the available data was constrained to 2014-2019, leaving out the final

year for later evaluation. 2019 was used as the test year for all models during development,

59

CHAPTER 4. METHODOLOGY

while the years of 2014-2018 were used for training data. In a real world forecasting scenario,

newly observed samples are continually made available as time progresses. To keep the

models up to date, they have to be re-trained or updated with these new samples. It was

chosen to use an updating cycle of one week for the models during development testing. I.e.,

the models were tested by simulating one forecast each “day” at 00:00, and re-training all the

models with the seven samples of the test set which had been “observed”. This meant that

52 different versions of every model were trained for every development evaluation of the test

set. The parameters of all the model versions were saved so that they could be used later

without having to re-do the evaluation. This was also convenient because when explaining

a forecast with SHAP later on, the appropriate model and forecast could be loaded from

memory. Different updating cycles were attempted, but the difference between an updating

cycle of, say, one day versus seven days was negligible. The difference in performance between

updating the model as time progressed versus just training one model at the start of 2019

was noticeable, but to the author’s surprise it was not very big. This may be due to the

fact that the power load of NO1 has been seemingly stable for the observed time period (see

section 3.1).

4.5.1 Baseline models

The baseline models were selected as references for the performance of the neural network

models. Baseline models are usually more crude than the proposed models, hence it is

expected that they will be outperformed by the other models. If they are not, it may

suggest that there is something wrong with the proposed models. It may also mean that

there is little point in using a more complex model for a problem that is sufficiently modelled

by a simpler and more interpretable model.

A Naive model, also commonly called a persistence model, is often used as a baseline for time

series with strong seasonality (like power load). The Naive forecast assumes the day-ahead

values to be exactly the same as some prior day. Usually, the observed power load values of

the day before Pd−1 are used, since these are the closest to the forecast time. However, since

the forecast horizon is day-ahead, the latest available values at termin time are the Pd−2

60

4.5. DEVELOPMENT OF THE CANDIDATE MODELS

observed values. Another option is to use the power load of the same day of the previous

week, Pd−7. Given the weekly seasonality of power load (see section 3.1.2) this may not be a

bad assumption. Using only Pd−2, the Naive forecast model takes on the shape of equation

4.1, and may be formulated as

P̂ = Pd−2, (4.4)

which served as the first baseline model. The latest Pd−2 were chosen over Pd−7 because

despite seemingly good results during stable periods (summer in particular), the power load

was not as consistent during other periods (see spring and autumn).

The second chosen baseline model was a direct MLR (see section 2.2.2) model using lags of

the historical power load as inputs. By using the PACF plot in figure 3.5 and experimenting

with different lags, it was found that historical load a week back from the termin time was

sufficient. This type of direct forecasting model (see equation 2.6) may be given by

P̂ (t+h) = fh(Pd−2,Pd−3,Pd−4,Pd−5,Pd−6,Pd−7,Pd−8) = Pβh, (4.5)

where h ∈ [0, 23] is the target output hour and βh ∈ R168; fh represents the MLR model

pertaining to the hth output hour. I.e., there were twenty-four different MLR models with

twenty-four different regression coefficient vectors. These models were implemented using

sklearn’s MultiOutputRegressor and LinearRegression classes (Pedregosa et al., 2011).

The collective forecast made by these models is referred to as MLR-1.

The MLR model was chosen as one of the baselines to compare the relatively complex neural

network models to a simple one. However, in the end not much time was spent on developing

the MLR model. Hence, it may have suffered from lack of feature-engineering, such as

not hand-picking power load lags; not including trend or seasonality components; and not

investigating interaction effects between lags, weather variables and time components. For

a more comprehensive development process of a MLR model for electrical load forecasting,

the reader is referred to Hong (2010).

61

CHAPTER 4. METHODOLOGY

4.5.2 Neural network models

All the MLPs and CNNs were built using the Keras (Chollet et al., 2015) open-source li-

brary in Python. Keras offers high-level implementations for the neural network architecture

and optimization. This means that most layers, activation functions, optimizers and cost

functions are readily available and easy to implement with the use of Keras. Particularly,

one-dimensional convolutions (see section 2.3.4) and fully-connected layers (see section 2.3.1)

were implemented with the Keras Conv1D and Dense layers. MSE (see equation 2.10) was

used as the cost function for all the neural network models. For regularization (see section

2.3.6), Dropout layers from Keras were added after every Dense layer. To reduce feaure

map dimensions MaxPooling1D layers were added after each Conv1D layer.

It is common-practice to use about 20% of the training data as validation data. However

it was found that about 15% of randomly-picked training samples were sufficient for early-

stopping validation data. All models were trained with a batch size of 32 and 200 as the

maximum number of epochs, but were generally stopped by early-stopping before reaching

150 epochs.

Network architecture and hyper-parameter optimization

The network architecture and its hyper-parameters (hidden layers, hidden units, activation

functions, filters, etc.) determines the model’s prediction capacity and has to be found

on a case-by-case basis since every forecasting problem is different. It is desirable that the

network is able to represent the underlying mapping of features to targets as well as possible,

without biasing too heavily towards the training data (over-fitting). A theoretically optimal

architecture for one set of features is not guaranteed to perform well given a different set of

features. Likewise, a good architecture for power load forecasting may change over the years

and depends on the data given to the model.

Hyper-parameter optimization is the procedure of optimizing the architecture and all the

hyper-parameters of the model to the problem in question. Three frequently used methods

include manual searches, grid searches and random searches (Bergstra and Bengio, 2012).

While grid searches guarantee to find the best combination within the search space (by iterat-

62

4.5. DEVELOPMENT OF THE CANDIDATE MODELS

ing through every single possible combination), the number of different combinations grows

exponentially with increasing number of hyper-parameters. Hence, Bergstra and Bengio

(2012) argue that random searches are superior to grid searches both in terms of efficiency

and performance. Hyper-parameter optimization for all the neural network models was

therefore done with a combination of heuristics and random searches of the hyper-parameter

space. I.e., the search space was initially determined and modified by trial-and-error and

common recommendations found in the literature. Random searches were then used to search

this hyper-parameter space and find a satisfactory combination for the particular model on a

validation set. It is important to note that the hyper-parameter optimization procedure was

a continued work-in-progress. Hence, later models might have benefit from the experience

gained from trial-and-error of earlier models.

Implementation of the random search was done using the RandomSearch class from Keras

Tuner (O’Malley et al., 2019). The search space was defined through a custom class which

inherits from Keras Tuner’s HyperModel class. During model development, as more fea-

tures were added and the models changed, new architectures and hyper-parameters had to

be established. A more detailed description of the hyper-parameter search methodology;

all the model architectures; and details on optimizers and hyper-parameters are given in

appendix B.

First generation: historical power load

The first neural network models in development were endogenous models. I.e., they were

models using only the observed power load as inputs. The same number of power load lags

as MLR-1 were used. The forecasts of these models may then be given by

P̂ = f(Pd−2,Pd−3,Pd−4,Pd−5,Pd−6,Pd−7,Pd−8), (4.6)

where f : R168 → R24 is a vector-valued function representing the particular model.

The first generation of neural network models were made up of a CNN and an MLP, which

are referred to as CNN-1 and MLP-1. The architectures of these two models are shown in

figures B.2 and B.1; their hyper-parameters are listed in tables B.4 and B.3. This particular

63

CHAPTER 4. METHODOLOGY

generation of models were compared to the baseline models and the best performing model

was chosen for the next generation. Ideally, all the different models would have been further

developed for all generations, but due to time constraints this was not done.

Second generation: meteorological variables

The best candidate from the first generation models was CNN-1. It was also decided to

continue working with this type of neural network due to its special ability to handle long

sequences of correlated, multi-dimensional data (see section 2.3.4). In particular, recall that

each meteorological variable described in section 3.2 is represented by ten different locations

to choose from. Deciding how to attribute importance to each location is a difficult problem

given the large territory covered by the NO1 price region. However, a similar problem found

in the literature, is the weather station selection problem for historical weather data (Hong

et al., 2015). A commonly used selection method for this problem is to use a weighted

linear combination of the different locations and then find the weights through optimization.

Instead of using linear combinations, using convolutional layers to find the optimal weight

combination is essentially the same idea, except it also allows for non-linear combinations.

Spatial feature extraction of NWPs using convolutional layers has been done for wind and

solar energy forecasting (Higashiyama et al., 2018; Chen et al., 2017), but to the author’s

knowledge there are no examples of this in the load forecasting literature.

Hence, the method for determining the weights of each location was to let the neural net-

work find the weights through multi-channel convolutional layers, where the channel axis

represented the different locations. To illustrate this concept, consider the first element of

the jth temperature feature map produced by the jth filter with unit stride, valid padding

64

4.5. DEVELOPMENT OF THE CANDIDATE MODELS

and a kernel size Nk > 2. From equation 4.7, this is given by

z
(0)
j =

∑
c∈C

T̂ (0:0+Nk−1)
c wT

c,j = w
(0)
D,jT̂D

(0)
+ w

(1)
D,jT̂D

(1)
+ . . .+ w

(Nk−1)
D,j T̂D

(Nk−1)
+

w
(0)
F,jT̂F

(0)
+ w

(1)
F,jT̂F

(1)
+ . . .+ w

(Nk−1)
F,j T̂F

(Nk−1)
+

...

w
(0)
O,jT̂O

(0)
+ w

(1)
O,jT̂O

(1)
+ . . .+ w

(Nk−1)
O,j T̂O

(Nk−1)
, (4.7)

where C is the set of locations; T̂
(0:0+Nk+1)
c is the slice of the temperature predictions in

location c with size Nk; and wc,j is the kernel pertaining to the particular city and filter.

It can be seen that the result of the convolution are weighted sums of the NWP locations

and the time steps of the receptive field elements. The kernel size decides how many time

steps are linearly combined for each element of the output feature map. The same sort of

weighted sum of adjacent time steps can be shown for the historical power load.

The idea behind this sort of approach is that the model can find the optimal combinations

through optimization. Since adjacent time steps are highly correlated, using a convolutional

layer over a fully-connected layer is preferred in order to prevent over-fitting and to reduce the

number of parameters. Additionally, it can be shown that aggregate features, like average,

maximum and minimum of a window, can be produced by particular filter arrangements

(Bailey, 2013). Note that by using a multi-channel approach, Conv1D expects each input

to be a rank three tensor T̂c ∈ RN×L×Nc , where N × L × Nc = N × 24 × 10; N are the

number of samples; L = 24 is the sample length; and Nc = 10 are the number of locations

(see section 2.3.4).

Temperature predictions are the most important for power load forecasting. Hence the first

second generation model (CNN-2-1) was only given temperature as an input. This was done

by adding another convolutional branch to the model and concatenating the power load and

the temperature feature maps (see appendix B). This model may be described by

P̂ = f(P ,T), (4.8)

65

CHAPTER 4. METHODOLOGY

where f : R408 → R24 and T is a tensor of temperature predictions for all ten locations,

where the shape of one input is 1× 24× 10. The architecture of CNN-2-1 is shown in figure

B.3 and its hyper-parameters are listed in table B.5

The second model of the second generation (CNN-2-2) was given all the weather variables

from table 4.1 as inputs to see if this would improve performance. Each weather variable was

given its own convolutional branch, and all the resulting feature maps were concatenated

after pooling layers in each branch. This model may be described as

P̂ = f(P ,T ,H, p, v , c), (4.9)

where f : R1368 → R24; and T H, p, v and c denote temperature, humidity, pressure, wind

and cloud cover tensors, respectively. The architectures of CNN-2-2 is shown in figure B.4

and its hyper-parameters are listed in table B.6

The third model developed during the second generation (CNN-2-3) was a model with tem-

perature, humidity and pressure inputs. Hence

P̂ = f(P ,T ,H, p), (4.10)

where f : R888 → R24. The architecture of CNN-2-3 is shown in figure B.5 and its hyper-

parameters are listed in table B.7

Third generation: calendar variables

The third generation models were given the calendar variables from table 4.1. The first

model (CNN-3-1) may be described by

P̂ = f(P ,T ,H, p,d, s,m, h, e), (4.11)

where f : R913 → R24; d =

ñ
d0 d1 . . . d6

ô
is the vector of day of the week features; s =ñ

s0 s1 s2 s3

ô
is the vector of season features; and m =

ñ
m0 m1 . . . m11

ô
is the vector

of month of the year features. The second model (CNN-3-2) may be described similarly, but

66

4.6. DEPLOYMENT AND TESTING OF THE SELECTED MODEL

with changes to the implementation of the holiday and Easter features (described in chapter

5). The architecture and hyper-parameters of CNN-3-1 and CNN-3-2 are shown in figure

B.6 and table B.8.

4.6 Deployment and testing of the selected model
In this part of the thesis, the final model’s (CNN-3-2) capabilities were tested on previously

unseen data. In other words, the year of 2020, which was left out during development, was

made available for testing the final model. Additionally, tests like the expanding window and

rolling window tests were performed to get an idea of the model’s generalization performance

(see section 2.2.1). Keep in mind however, that since data from 2014-2019 was used during

model development, the forecast performances outside of the hold-out year of 2020 have to

be considered with scrutiny as they may have been subject to look-ahead bias.

The same updating cycle as in the development phase (see section 4.5) was used for all the

tests. I.e., during the test year, the model was re-trained every week, resulting in 52 different

models for each test. Note that the same hyper-parameters which were found for CNN-3-2

were used in all the tests. Randomly-picked 15% of the training data was again also used as

early-stopping validation data.

4.6.1 Expanding window

To test a model’s generalization capabilities test strategies like a K-fold cross-validation is

common (Hyndman and Athanasopoulos, 2018). However, this type of test cannot be used

for time series data since it would be prone to look-ahead bias. There are various other

ways, particular to time series problems, which test the capability of a forecasting model.

An expanding window test uses all available information prior to the particular test year,

where the number of test years depend on the specified minimum amount of training years.

The minimum number of training years was set to three years. In this case, the first test

used 2014-2016 as training data and 2017 as the test year; the second test used 2014-2017

as training data and 2017 as the test year; and so on. The expanding window test and the

four test folds are illustrated in table 4.2.

67

CHAPTER 4. METHODOLOGY

Table 4.2: Expanding window test strategy

2014 2015 2016 2017 2018 2019 2020

Test 1 Train Test

Test 2 Train Test

Test 3 Train Test

Test 4 Train Test

4.7 Interpretation of forecasts
The Deep SHAP estimation method for SHAP values (see section 2.4.3) was implemented

using the SHAP open-source Python library and its DeepExplainer class (Lundberg and

Lee, 2017). The explainer works for both Keras and PyTorch neural networks. The class

takes the model instance and a background set in order to calculate SHAP values for a

specified set of samples. SHAP was chosen over other XAI methods for three reasons: (1)

explanations have been shown to be closely aligned with human intuition (Lundberg and Lee,

2017); (2) computations of SHAP values with Deep SHAP are very fast; (3) the framework of

SHAP is based on Shapley values and its axioms, which inspires confidence in its theoretical

soundness.

Because of the very large number of time series features in the models (see table ??), the

SHAP values of the continuous variables were aggregated into one SHAP value for every

twenty-four time steps of every variable. I.e., the twenty-four values of every weather variable

and every location were aggregated so that

ϕx̂c =
24∑
i=1

ϕ
x̂
(t+i)
c

, (4.12)

where x is the particular weather variable and c is the location. And similarly for the SHAP

values of power load:

ϕPd−k
=

24∑
i=1

ϕ
P

(i)
d−k

, (4.13)

where k ∈ [2, 8] denotes the particular day of power load lags.

68

4.7. INTERPRETATION OF FORECASTS

Since ϕ ∈ R, SHAP values can take on both negative and positive values. Hence, importance

of a variable may potentially be lost by terms cancelling each other out. To prevent this

from happening, absolute SHAP values may be aggregated instead. Then equation 4.12 and

4.13 are slightly modified so that

|ϕx̂c | =
24∑
i=1

|ϕ
x̂
(t+i)
c

|, (4.14)

and

|ϕPd−k
| =

24∑
i=1

|ϕ
P

(i)
d−k

|. (4.15)

Note that by using absolute SHAP values, property (1) of SHAP is violated. I.e., the SHAP

values will no longer add up to the difference in prediction from the baseline. Furthermore,

keep in mind that each SHAP value is particular to each output of the model.

4.7.1 Choosing background data

Choosing the right background data to represent missing features is an important part of

the XAI model and the subject of an ongoing debate. As Sturmfels et al. (2020) note in

their comprehensive discussion on the choice of background data, the difficulty in evaluating

different background choices remains that although an explanation may seem reasonable,

there is no “ground truth” explanation of how the model works.

Initially, the default recommendation to randomly sample the background set from the train-

ing data was used for all explanations. However, as Shrikumar et al. (2019) and Sturmfels

et al. (2020) note, the choice of baseline is crucial to the intuitiveness of the explanation

and has to be well thought out. Particularly, domain knowledge can be leveraged to choose

intuitive baselines. In the case of load forecasting, instead of randomly sampling from the

training set, choosing baselines based on the periodic nature of power load might give more

insightful results. E.g., consider a conspicuous load forecast for a Tuesday in the middle of

summer, when it is known that summers are usually very stable (see section 3.1.2). Intu-

itively it makes more sense to compare the model’s forecast to a previously forecast Tuesday

during summer, or several Tuesdays. The obvious advantage of this choice of baseline is that

69

CHAPTER 4. METHODOLOGY

it is more in line with the form of reasoning a human might use. One potential disadvantage

is that the amount of samples may be too few to estimate SHAP values. Moreover, if the

model uses calendar features, the impact of these features may be ignored due to there being

no difference to the baseline.

The above reasoning holds for local explanations (i.e., for an hour or a day of forecasts), when

debugging or trying to understand a few selected forecasts. When using SHAP for feature

selection and an over-all understanding of the model however, global explanations (using all

forecasts) of the model’s inner workings are needed to see which features are important most

of the time. Hence, two fundamentally different types of explanations were experimented

with during development and deployment: (1) global explanations using the training data as

background data and all forecasts as samples; and (2) local explanations using hand-picked

background samples.

4.7.2 Global explanations for feature selection

During the development of the neural network models, global explanations of feature im-

portance using Deep SHAP were made. Global SHAP feature importance was produced by

considering the average effect a feature had over the test set, and averaging this effect over

the output hours of the model. I.e., let the average SHAP value of some variable x be given

by

ϕ̄x =
1

24NT

23∑
h=0

NT −1∑
i=0

|ϕx(h, i)|, (4.16)

where NT are the number of samples in the test set; and |ϕx(h, i)| is the absolute SHAP

value (equation 4.14 and 4.15) of the variable x for the hth hour and ith sample. Note that

the absolute SHAP value for each variable is used for calculation of global importance. This

was done in order to prevent terms from cancelling each other out, which could have lead to

a variable being attributed less importance than it should.

To calculate average SHAP values of each feature, the background data may be sampled

from the training data. As a consequence, the SHAP value of a feature for a particular

hour and instance may be interpreted as the average contribution the sample had over the

70

4.7. INTERPRETATION OF FORECASTS

training data.

4.7.3 Local explanations for interpretation

In contrast to global explanations, the local explanations were generated based on the idea

that recent, similar forecasts may provide more intuitive references in a time series problem

than sampling from the training set. It is important to note that this is speculation, and that

the mathematical rigorousness of this assumption is not known. I.e., if this choice violates

any of the SHAP properties by not sampling from the distribution of expected values.

From equation 2.49 it can be seen that the sum of features of an instance contribute by f(x)−

E[f(x)] =
∑

ϕ. Hence, local explanations may be interpreted as “Feature i contributed ϕi

to the difference from the expected prediction f(x)−E[f(x)]”. I.e., due to some difference

in input ∆xi = xi −E[xi], xi contributed ϕi to push the prediction away from the expected

prediction.

71

CHAPTER 4. METHODOLOGY

72

Chapter 5

Results and discussion

In this chapter the most important results from the models described in chapter 4 are

presented, along with an analysis of the electrical load forecasts. First, the results of the

models which were developed are presented and analysed; then the last model is put in

deployment and the results are shown and analysed; lastly, the implications of the results in

reference to the thesis goals are discussed.

Note that the full results of the held out year (2020) have been left out for the sake of brevity

and can be found in its entirety in appendix C.

5.1 Model development
The first results of the thesis are those generated during model development. The results

generated in this phase can be split into two: (1) the forecast improvements, both numerically

and visually, with each model generation (see section 4.5.2); and (2) the interpretations made

using Deep SHAP (see section 4.7) and its implications.

5.1.1 First generation models

As described in section 4.5.2, the first models only had past power load one week back as

inputs. The results of the development year (2019) for these models are shown in tables 5.1

and 5.2. Table 5.1 shows the MAPE and RMSE (see section 4.4) of the models for each

73

CHAPTER 5. RESULTS AND DISCUSSION

Table 5.1: Metrics for the endogenous models and the Naïve forecast given by MAPE/RMSE.

Model Winter Spring Summer Autumn Full year

MLP-1 5.56 386 6.61 326 5.05 181 4.61 249 5.46 293

CNN-1 5.70 402 6.59 317 4.39 159 4.72 252 5.35 295

MLR-1 5.85 418 7.41 359 5.95 213 4.85 265 6.02 321

Naive 8.68 612 10.3 503 9.85 369 9.16 500 9.53 500

season and the full test year. Table 5.2 shows the MAPE and RMSE calculated by day of

the week. The best model for each season and metric is outlined in bold.

As expected, the Naive model performs quite poor compared to the other three models.

Usually, when the Naive forecast is based on the d− 1 observed power load, the results are

much better. However, since the Naive model was based on the only available observations

at termin time (Pd−2 observations of the load), the results are not very good. Out of the

three ML models, CNN-1 appears to perform the best on the test year, but is outperformed

by MLP-1 in Winter and Autumn. MLR-1 is surprisingly competitive with the other models,

which may be attributed to the limited amount of information contained in the historical

load input. I.e., that there is only so much accuracy possible to achieve with an endogenous

model. In general, it appears that spring is the hardest season to forecast, which is intuitive

since the weather may change rapidly during this season and the models have no way of

knowing. Winter also appears to be more challenging than Summer and Autumn, likely due

to the same reasons as for Spring.

From table 5.2 it can be seen that the MLP-1 and CNN-1 models outperform MLR-1 on all

days of the week. Interestingly however, Friday and Wednesday have the worst performance

across all models. Since the models have no calendar inputs (e.g., day of the week or month),

it was expected that they would perform worse for the weekend due to the dissimilarity to

weekdays. As investigated in chapter 3.1.2, weekdays are generally very similar in load

profile, while the weekend has slightly different characteristics. However, Friday is also the

weekday which deviates the most from the load profiles of the other weekdays. This may

explain why the models are having the most trouble with Fridays.

74

5.1. MODEL DEVELOPMENT

Table 5.2: Metrics by day of the week for the first generation models in MAPE/RMSE.

Model Monday Tuesday Wednesday Thursday Friday Saturday Sunday

MLP-1 4.54 247 5.45 322 6.32 353 5.07 285 6.47 341 5.35 262 4.99 215

CNN-1 4.93 274 5.42 323 6.11 343 4.98 273 6.03 323 5.48 284 4.51 231

MLR-1 5.14 278 6.21 353 6.73 390 5.65 332 6.64 355 6.25 284 5.51 224

01 02 03 04 05 06 07 08
4

5

6

·103

Jan 2019

El
ec

tr
ic

al
lo

ad
[M

W
]

CNN
MLP
MLR
Actual
Naive

Figure 5.1: The first generation forecasting results for the first week of 2019.

Figure 5.1 shows the visual results for the first week of forecasts. As in chapter 3.1.2, the

weekend has been highlighted with gray. Likewise, the background of New Year’s Day has

been highlighted with red. The above remarks regarding weekday performance may also

be observed from the figure; i.e., all models have trouble with the Wednesday and Friday.

There is also a large error on New Year’s Day, since the first generation of models have no

way of knowing whether the day-ahead forecast is on a holiday or not. However, the models

do appear to have learned the weekly cycle of power load. The forecasts of the two months

with worst and best performance can be found in appendix B.

Due to the large number of lags, it may be hard to judge the importance of each individual

lag in the three ML models. Recall from section 4.5.1 that every output hour prediction from

MLR-1 is a linear combination of the power load lags. This means that the coefficient of a

lag j with respect to the particular output hour h, directly tells how much it contributed to

the prediction. I.e., if the lag P (t′−j) changes by some amount ∆P (t′−j) then the forecast for

that hour changes by ∆P̂ (t+h) = βhj∆P (t′−j). Note the distinction of the termin time t′ and

the first forecast hour t (refer to section 4.2 for details). Figure 5.2 shows a heatmap of the

75

CHAPTER 5. RESULTS AND DISCUSSION

0 24 48 72 96 120 144 168
0

3

6

9

12

15

18

21

24

j

h
MLR coefficients, βhj

−1

−0.5

0

0.5

1

Figure 5.2: Heatmap of the MLR coefficients for each model output hour.

MLR-1 coefficients with respect to the output hour h and lag j. Note that the coefficients

pertain to the final model of the test. I.e., the 52nd, since each ML model was re-trained

every week.

Some observations from the heatmap can be made regarding lag importance. Firstly, the

coefficients of MLR-1 are very similar for every output hour, as seen by the vertical stripes;

secondly, the first and third lags have large coefficients for some of the hours, which implies

that the newest observations are the most important; and thirdly, the most vibrant stripes

can be seen around multiples of 24, which is consistent with the results from the PACF plot

from section 3.1.2. Many of the lags between multiples of 24 are given little importance,

since they are very dim for every output hour.

Interpreting the importance of each power load lag for CNN-1 and MLP-1 is more difficult

for two reasons: (1) both these models consist of multiple layers of many non-linearized

combinations of the inputs, hence there is no direct way, as above, to measure the contribution

of each input; and (2) XAI methods, like Deep SHAP, only satisfy its axioms when used

on one forecast at a time. Hence, information may be lost when SHAP values are averaged

over many instances. This is in contrast to MLR-1 where the coefficients remain relatively

76

5.1. MODEL DEVELOPMENT

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Pd−2

Pd−3

Pd−7

Pd−6

Pd−5

Pd−4

Pd−8

+1.77

+0.75

+0.74

+0.7

+0.53

+0.5

+0.32

mean(|SHAP value|)

Figure 5.3: Global feature importance for CNN-1. Each SHAP value is the average across
output hours and instances.

constant across all forecasts. Regardless, a global explanation for CNN-1 was produced

and is shown in figure 5.3. As explained in section 4.7.1, sampling from the training set for

background data is appropriate for a global explanation and was selected for the explanation.

Moreover, each SHAP value was produced by: (1) using equations 4.14 and 4.15 to find the

absolute contribution of each power load day of lags, and then (2) using equation 4.16 to

average the absolute SHAP values over instances and output hours. Note therefore that each

value is the average absolute contribution of each day of power load lags compared to typical

values of the background data. As with the MLR heatmap, the final model of CNN-1 was

used to produce the global explanation.

As can be seen from figure 5.3, Deep SHAP attributed the most importance to the power

load lags two days prior to the forecast day, while lags three and seven days were attributed

about the same and second-largest importance. This is also consistent with the seasonality

of power load and the PACF plot results (figure 3.5). The lags eight days prior do not seem

to be attributed much, hence could be left out of the model without considerable loss in

performance. Moreover, since ϕP d−2
is so much larger than all the other attributions, a

model with only one day of lag would likely also not lose much performance.

5.1.2 Second generation models

The second generation of models, described in chapter 4.5.2, were given NWP input variables

in addition to the historical power load. Three different second generation models were

77

CHAPTER 5. RESULTS AND DISCUSSION

tested: (1) A model with temperature input; (2) a model with all the meteorological variables;

and (3) a model where the meteorological variables were selected based on the importance

attributed by Deep SHAP for the second model (CNN-2-2). These attributions are shown in

figure 5.4. The figure was produced in the same manner as for figure 5.3. Hence, remember

that the figure is a measure of the average absolute importance of each variable.

The feature attributions made by Deep SHAP suggested that the most important variables

for the 2019 forecasts were historical load, temperature, humidity and pressure. While

the least important variables were wind speed and cloud cover. Interestingly, the model

seemed to put a large emphasis on the pressure predictions in Fagernes (pF). Judging by

the importance of the other pressure variables, it was deemed unlikely that the pressure

of one location had a much greater predictive ability than the other locations. Moreover,

by observing the seasonal performance of CNN-2-2 shown in table 5.3, there seemed to be

something inherently wrong with the model. Based on these results, it was decided to omit

cloud cover and wind speed from the third model of the second generation. Note that CNN-

2-2 may not have had the appropriate architecture and hyper-parameters to facilitate better

performance with cloud cover and wind speed. CNN-2-2 performed the best out of the three

models during winter, which may indicate that these variables are more important in this

time period. Intuitively, this makes sense since wind speed and temperature are connected

to how cold the weather may “feel” during winter.

The improvement compared to the first generation (table 5.1) by adding temperature (CNN-

2-1) can clearly be seen from table 5.3. However, as discussed above, simply adding more

meteorological variables (CNN-2-2) actually worsened the performance for every season ex-

cept winter. This was the motivation of omitting the least important variables (CNN-2-3),

and resulted in the best performance of the three models. Likewise as the first generation

results, the best model for each season and metric is in bold. It can be seen that there is

improvement across the board compared to the first generation metrics. Particularly there

is markedly better performance for winter, spring and autumn. The performance in summer

however, did not seem to improve much with the addition of meteorological variables. This

is in line with the characteristics of Norwegian consumption patterns discussed in chapter

78

5.1. MODEL DEVELOPMENT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pd−2

Pd−7

p̂F

T̂O

T̂Ho

Pd−3

T̂Hm

Pd−8

T̂Kb

Pd−6

T̂L

Pd−5

T̂Hl

T̂F

T̂Kv

Pd−4

T̂M

ĤD

ĤF

ĤO

ĤM

ĤKb

ĤKv

ĤHm

ĤL

ĤHl

ĤHo

p̂D

p̂Hl

p̂L

p̂Kv

p̂O

p̂M

p̂Hm

ĉHo

ĉF

p̂Kb

ĉM

ĉO

p̂Ho

ĉD

ĉKb

ĉL

ĉKv

ĉHm

ĉHl

v̂M

v̂Hl

v̂Ho

v̂Hm

v̂D

v̂O

v̂F

v̂Kv

v̂L

v̂Kb

+0.91
+0.72

+0.62
+0.57

+0.52
+0.48

+0.47
+0.46

+0.45
+0.45

+0.44
+0.42

+0.4
+0.39

+0.39
+0.36
+0.36

+0.3
+0.27

+0.27
+0.26

+0.25
+0.25
+0.25

+0.23
+0.23

+0.18
+0.13
+0.13

+0.12
+0.12

+0.12
+0.11
+0.11
+0.11
+0.11
+0.1
+0.1
+0.1
+0.1
+0.1
+0.09

+0.09
+0.08
+0.08

+0.07
+0.05
+0.04

+0.03
+0.03
+0.03
+0.02
+0.02
+0.02
+0.02

+0.02

mean(|SHAP value|)

Figure 5.4: Global feature importance for CNN-2-2. Each SHAP value is the average of the
average across output hours and instances.

79

CHAPTER 5. RESULTS AND DISCUSSION

Table 5.3: The seasonal metrics for the second generation models in MAPE/RMSE.

Model Winter Spring Summer Autumn Full year

CNN-2-1 3.43 244 4.50 222 4.23 155 3.13 171 3.82 201

CNN-2-2 3.06 225 4.99 244 5.11 179 3.11 168 4.06 206

CNN-2-3 3.13 224 4.37 218 4.30 161 2.95 158 3.69 193

Table 5.4: Metrics by day of the week for the second generation models in MAPE/RMSE.

Model Monday Tuesday Wednesday Thursday Friday Saturday Sunday

CNN-2-1 3.73 196 3.27 192 4.46 237 3.82 203 3.95 220 3.87 185 3.77 176

CNN-2-2 4.21 215 3.45 193 4.39 236 4.21 220 4.14 217 3.97 174 4.18 185

CNN-2-3 3.97 205 2.89 180 4.05 216 3.75 205 3.52 190 3.83 182 3.89 174

3.1.2. I.e., summer power load is not as sensitive to weather variables compared to the other

seasons, hence the models did not see much improvement during this period. The perfor-

mance of each models by day of the week can be seen from table 5.4. Compared to the first

generation performances (table 5.2) all days saw an increase in performance across all mod-

els. Monday and Wednesday appear to have the worst performances, but the performances

of all the days are more or less the same. That is, except for Tuesday which may have been

the easiest to forecast.

Lastly, to evaluate the shape of the load forecasts, the first week of forecasts for 2019 is

shown in figure 5.5. The forecasts shown are only the ones made by CNN-2-1, since the

other two were comparable in shape and accuracy. Compared to the first generation results

for the first week (figure 5.1), there seems to be better accuracy both in terms of absolute

deviation, but also in the shape of the forecast load. The forecasts resemble the actual load

profiles of each day much more closely than the first generation forecasts. Moreover, CNN-2-

1 appeared to be able to somewhat predict the right level of load on New Year’s Day which

was not expected. Two additional months of the second generation forecasts were produced,

but were left out for the sake of brevity. These can be found in appendix B.

80

5.1. MODEL DEVELOPMENT

01 02 03 04 05 06 07 08

5

6

·103

Jan 2019

El
ec

tr
ic

al
lo

ad
[M

W
]

CNN-2-1
Actual

Figure 5.5: CNN-2-1 forecasting results for the first week of 2019.

Table 5.5: The seasonal metrics including Easter for the third generation models in
MAPE/RMSE.

Model Winter Spring Summer Autumn Easter Full year

CNN-3-1 3.07 218 3.62 218 3.39 118 2.92 156 6.54 233 3.25 170

CNN-3-2 2.96 213 3.64 174 3.46 123 2.87 159 4.52 175 3.23 171

5.1.3 Third generation models

The third generation models (see section 4.5.2 for details) were an extension of the best

performing second generation model (CNN-2-3). They were given calendar features which

indicate the season, month, day of the week and whether the forecast is on a public holiday

or not. Refer to section 3.1.3 for an overview of the Norwegian public holidays and their

effect on the power load.

Table 5.5 shows the seasonal performances of the two third generation models. The first

model (CNN-3-1) had an increase in performance across all seasons and the entire year

compared to the second generation (table 5.3). The forecasting result of CNN-3-1 for the

first week of 2019 is shown in figure 5.6. Although the forecast of January 7th appears to

have overshot slightly, the forecasts of the rest of the week are both smoother and more

accurate than the second generation first week (figure 5.5).

Table 5.6 shows the performances of the third generation models by each day of the week.

Compared to the second generation performances (table 5.4), all days saw an improvement.

Mondays, Thursdays and Sundays saw the greatest increases. Surprisingly however, Wednes-

81

CHAPTER 5. RESULTS AND DISCUSSION

01 02 03 04 05 06 07 08

5

6

·103

Jan 2019

El
ec

tr
ic

al
lo

ad
[M

W
]

CNN-3-1
Actual

Figure 5.6: CNN-3-1 forecasting results for the first week of 2019.

Table 5.6: Metrics by day of the week for the third generation models in MAPE/RMSE.

Model Monday Tuesday Wednesday Thursday Friday Saturday Sunday

CNN-3-1 2.94 151 2.70 167 3.83 203 3.26 168 3.15 169 3.44 160 3.41 161

CNN-3-2 2.88 146 2.73 150 3.73 202 3.14 166 3.64 194 3.64 166 3.18 145

day, Saturdays and Sundays did not improve much by including the calendar features. The

second generation and first generation appeared to have learned the weekly cycle without

the use of calendar variables (see figures 5.1 and 5.5), but adding the calendar variables may

have made the harder days easier to predict.

Regardless of the immediate improvements, unintended artifacts were observed on some

days. This is shown in figure 5.7 with the artifacts in frame. Particularly, for the eight hour

(07am) on Palm Sunday and Easter Sunday, the forecast power load suddenly collapses

before recovering again. This type of pattern, at the time of day when power load usually

sees a peak (see section 3.1.2), was thought to be a bug and would have been questioned if

the model was in deployment. Note from figure 5.7, the relatively consistent electrical load

in the two weeks prior to the first artifact. Why were the forecasts for Palm Sunday and

Easter Sunday any different from the Sunday prior to Palm Sunday? In other words, which

changes in the model’s inputs made such a large change in the model’s output compared to

the previous Sunday’s forecast? Questions like these may be answered with an explanation as

described in section 4.7.3, where a single forecast is explained with hand-picked reference(s)

in mind. Hence, to get an idea of what was going on at these two hours, local explanations

82

5.1. MODEL DEVELOPMENT

01 04 07 10 13 16 19 22 25 28 01

3

4

5

·103

Apr 2019 May

El
ec

tr
ic

al
lo

ad
[M

W
]

CNN-3-1
Actual

Figure 5.7: CNN-3-1 forecasts for April 2019. The boxed hours are unexpected behaviours
of the model.

with Deep SHAP were made. The Sunday prior to Palm Sunday was chosen as the single

reference sample. Keep in mind, that as a consequence of the choice of reference, model

inputs of Palm Sunday and Easter Sunday which see no difference compared to the reference

will be given little importance. Notably, calendar values like day of the week, season and

month will and should by property 2 of SHAP give ϕi = 0, since d0 = d, s0 = s and

m0 = m.

The local explanation of the first artifact is shown in figure 5.8. The input values for

the sample (x) and the reference (E[x]) of the top four features are also shown next to

the explanation. SHAP attributions for all the continuous features were aggregated by

use of equation 4.12 and 4.13. By not taking the absolute value of each SHAP value,

the sum of the aggregated SHAP values and the calendar SHAP values should add up to

the difference from the expected prediction (the reference) by property 1 of SHAP. I.e.,∑
ϕ = P̂ (7) − E[P̂ (7)] = P̂ (7) − P̂

(7)
d−7. This can be seen from figure 5.8, where each feature

contributes to push the prediction up or down from the reference. Note again that the

feature contributions of h and e are SHAP values of one feature; while the contributions of

bold variables, such as the pressure in Moss, p̂M , are aggregated contributions of twenty-four

features (see section 4.7). Hence, the aggregated SHAP values may have terms which cancel

each other out, even if they are very large. An explanation like this may therefore not be

very well suited for feature importance.

From the explanation of the first artifact it appears that h being "ON" contributed to pushing

83

list:1

CHAPTER 5. RESULTS AND DISCUSSION

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1

∑
rest

p̂O

p̂M

e

h

∑
rest

p̂O

p̂M

e

h

+0.11

+0.19

-0.39

-0.14

-0.13

P̂
(7)
d−7

P̂ (7)

x E[x]

h 1 0

e 1 0

p̄M 1.96 0.86

p̄O 1.62 0.56

Figure 5.8: Local explanation of the forecast for April 14th 7am (Palm Sunday).

the load by −0.39, while e contributed with −0.14. Public holidays are known to reduce load

compared to normal (see section 3.1.3), but the negative contribution of h for Palm Sunday

was more than intended when implementing calendar features. Meanwhile, the opposite

contributions of p̂M and p̂O appear to cancel each other out, even though the daily average

pressure, p̄, was greater than the reference pressure in both cities on Palm Sunday. The

reason for this is unclear, but as discussed above, the features of other important continuous

variables may have cancelled each other out.

The explanation for the second artifact is shown in figure 5.9. Likewise as the first artifact,

the Sunday prior to Palm Sunday was used as reference to estimate the SHAP values. For

the Easter Sunday 7am forecast, h is also the most contributing feature for explaining the

difference to reference. Once again, this feature pushed the load down by −0.39, which was

more than intended. The second-most important feature for the Easter Sunday forecast was

Pd−2. As can be seen from the average values of the sample versus reference, the negative

contribution makes sense. This can also be seen graphically from figure 5.7 since the load is

trending downwards prior to Easter Sunday. It can also be seen that the sum of all the other

feature contributions add up to −0.27, i.e., they push the forecast of Easter Sunday down

compared to the reference. These contributions are due to differences in weather of different

locations and differences in observed power load lags. The contribution of T̂Hl and its two

average values hint that it may be due to an increase in temperature. Note again, however,

84

5.1. MODEL DEVELOPMENT

–1.6 -1.4 -1.2 -1.0 -0.8 –0.6 -0.4

∑
rest

T̂Hl

e

Pd−2

h

∑
rest

T̂Hl

e

Pd−2

h -0.39

-0.31

-0.14

-0.07

-0.27

P̂
(7)
d−14

P̂ (7)

x E[x]

h 1 0

P̄d−2 -0.67 0.23

e 1 0

T̄Hl 0.25 -0.06

Figure 5.9: Local explanation of the forecast for April 21st 7am (Easter Sunday).

01 04 07 10 13 16 19 22 25 28 01

3

4

5

·103

Apr 2019 May

El
ec

tr
ic

al
lo

ad
[M

W
]

CNN-3-2
Actual

Figure 5.10: CNN-3-2 forecasts for April 2019.

that they are not due to any other calendar features because of the choice of reference.

Based on the explanations of the two artifacts it was decided that the implementation of

the holiday feature had to change. Moreover, since the Easter feature covered the holiday

effect for Easter forecasts sufficiently, all the Easter holidays were set to h = 0. Additionally,

later evidence indicated that the abnormal behaviour of the holiday feature also appeared

on forecasts where d6 = 1 and h = 1 coincided. This may have been due to the fact that the

load profiles of some holidays resemble those seen during weekends; hence, the presence of

both d6 and h may cause the model to reduce the load twice.

The second model of the third generation (CNN-3-2) was therefore implemented with h = 1

on all public holidays, except during Easter and when d6 = 1. From table 5.5 it can be seen

85

CHAPTER 5. RESULTS AND DISCUSSION

that the change in implementation for CNN-3-2 increased performance during 2019 Easter

by 30.9%. These improvements can also be seen visually from figure 5.10, which shows the

CNN-3-2 forecasts of April 2019. The artifacts are almost gone, but not entirely, which

means that the presence of the holiday feature may not have been the only problem. Also,

acute performance improvements to the development year do not necessarily carry over to

unseen data, hence it is important to not “unconsciously” bias towards 2019.

5.2 Model evaluation
The second part of results from the thesis were the ones made during the deployment of the

last model (CNN-3-2). The methodology is described in detail in section 4.6. These results

can be separated as: (1) Results of the expanding window test and the held out year (2020);

and (2) selected local explanations from 2020 using Deep SHAP.

5.2.1 Expanding window test

The seasonal results from the expanding window test (see section 4.6.1 for details) are shown

in table 5.7. The results suggest that the development of an electrical load model for NO1 was

successful. The model appears to be able to generalize across multiple years and, surprisingly,

performed the best during the hold-out year. Also, based on the forecasting accuracy for

2017 it appears that the model is able to sufficiently learn the electrical load patterns from

only three years of training data. This can be seen from the fact that the 2017 full year

accuracy is the second-best of all years. This may mean that there is an opportunity to

further increase model complexity without over-fitting. Moreover, the full forecast results

(see appendix C) appear very accurate most of the year. There are some situations which

demand further development if the model was to be put in official deployment, but for the

purposes of the thesis, the results are satisfactory.

Forecasting accuracy by model output hours in MAPE is given in figure 5.11. Note that

by definition of the midnight termin time (see section 4.2) and the day-ahead horizon, the

output of the model by zero-index corresponds to the actual clock hour of the forecast day.

I.e., the 0th model output corresponds to 12pm, the 1st output to 1am, and so on. As can

86

5.2. MODEL EVALUATION

Table 5.7: The seasonal metrics of the expanding window test in MAPE/RMSE.

Test year Winter Spring Summer Autumn Full year

2017 2.52 186 3.71 193 2.96 99 2.73 152 2.99 161

2018 3.07 246 3.27 172 2.89 93 2.78 150 3.01 170

2019 2.96 213 3.64 174 3.46 123 2.87 159 3.23 171

2020 2.92 157 3.26 165 2.66 94 2.70 151 2.88 157

Average 2.87 201 3.47 176 2.99 102 2.77 153 3.03 165

00 03 06 09 12 15 18 21

2.75

3

3.25

3.5

3.75

Output hour

M
A

PE

2020 2017 2018 2019

Figure 5.11: Expanding window MAPEs by model output hour.

be seen, 7am appears to be the hardest hour to forecast across all years. Moreover, the

curves of the forecasting accuracy seem to resemble that of the daily power load curve (see

section 3.1.2). This suggests that the hours with the largest power load are also the hardest

to forecast. 2019 was the worst year and, in contrast to the other years, the model seemed

to have struggled with the hours closer to midnight. The rest of the years look comparable

with respect to performance, which further substantiates the observation made above; the

fact that the model is able to learn with as little as three years of training data.

5.2.2 Interpretation of selected forecasts

From the forecasts of power load in 2020 (appendix C), a few select days were analysed with

local explanations using Deep SHAP (see section 4.7.3). Conspicuous or very wrong forecasts

were selected in order to find the underlying cause. Moreover, every selected sample presented

an opportunity to experiment with different background data assumptions. As described in

section 4.7.1, the choice of appropriate background data is essential to derive meaningful

87

CHAPTER 5. RESULTS AND DISCUSSION

results from Deep SHAP, but is as of yet an open-ended question (Sturmfels et al., 2020).

The first selected sample was the forecast made for Wednesday, January 8th 2020. This day

was chosen because both the actual and forecast power load saw a significant drop across

the day compared to the rest of the week. As known from the similarity of the weekday

load profiles (see section 3.1.2), the level of electrical load usually remains about the same

for all weekdays; hence, it was expected that the forecast load for Wednesday would remain

at about the same level as the Tuesday and Monday. The fact that the model was able

to correctly predict the drop in load, motivates the need for an explanation of how it was

able to do so. In other words, what made the forecast for Wednesday any different from the

forecast of, say, Monday?

In order to answer this question, a local explanation was made for January 8th using the

data from Monday as a reference. Note that by only using one background sample, the

explanations made by Deep SHAP are essentially DeepLIFT explanations (this is explained

in detail in section 2.4.3). Moreover, SHAP explanations are particular to each output hour,

hence one sample will produce 24 explanations. Local explanations for one output hour

were illustrated and explained for figures 5.8 and 5.9. By stacking 24 of these explanations

together, one for every output hour, it is possible to get an explanation of the entire day

as a function of the hour h. This is shown in figure 5.12 for the forecast of January 8th as

a heatmap of the SHAP values for each particular hour and feature. The forecast values

of January 8th (P̂ (h)) and the reference (P̂ (h)
d−2) are also shown for each hour. The top four

features were sorted by absolute average contribution across all hours.

From the explanation of January 8th it can be seen that d0 and d2 ranked as the most

contributing features. However, the two calendar features also perfectly cancel each other

out. The fact that the sample is not a Monday (d0 = 0), but a Wednesday (d2 = 1), and that

the reference is the opposite appears to even out the contributions. Based on the weekly

load profiles (figure 3.4), this is intuitive since weekdays are expected to be about the same.

Interestingly, Deep SHAP attributes these calendar features the most importance during the

morning peak, but no importance during the night. This may be due to there being less

variation in load during the night and more variation during the day from subtle differences

88

5.2. MODEL EVALUATION

0 5 10 15 20

h

P̂
(h)
d−2

P̂ (h)

d0

d2

Pd−2

p̂D

∑
rest

0.563

0.563

ϕ

x E[x]

d0 0 1

d2 1 0

P̄d−2 0.95 0.82

p̄D 0.24 0.76

Figure 5.12: Local explanation of the forecast for January 8th 2020 as a function of the
output hour. As background data, a single reference sample from January 6th 2020 was
used.

in human consumption patterns.

The calendar features do not explain the drop in load, however. The fact that the average

of the observed d − 2 load lags was slightly lower than the reference (P̄d−2 = 0.95 versus

E[P̄d−2] = 0.82) contributed to pushing the forecast down. This contradicts the effect one

would expect from an increase in observed load, i.e., that increase leads to increased forecast.

It may be that there are unknown feature interactions due to the feature independence

assumption (see section 2.4.3). In fact, it appears that the sum of all the other features

(
∑

rest) add up to why the forecast was lower than expected.

To further investigate the other features, an explanation with all the features was made,

and it appeared that the temperature differences in the different locations all contributed to

push the load down slightly. Hence, it seems that the main contributor of the forecast was

the fact that the temperature predictions were larger for January 8th than for the reference

in all ten locations. The Oslo temperature predictions in degrees Celsius as a function of

the hour of the day is shown in figure 5.13. The two curves are the predictions for January

89

CHAPTER 5. RESULTS AND DISCUSSION

0 3 6 9 12 15 18 21

1
3
5
7
9

h

Te
m

pe
ra

tu
re

[◦ C
]

T̂
(h)
O E[T̂

(h)
O]

Figure 5.13: Temperature forecasts in Oslo for January 8th (T̂ (h)
O) and January 6th (E[T̂

(h)
O]).

8th (T̂ (h)
O) and the reference (E[T̂

(h)
O]). It can be seen that the temperature is higher (which

will drive load down) for the selected sample, but decreases throughout the day. Similar

observations can be made for the other locations, but are left out for brevity’s sake.

The second selected sample was the forecast for Saturday, December 26th 2020. This day

was chosen because another artifact, like the ones from section 5.1.3, was observed. A Deep

SHAP explanation for this forecast is shown in figure 5.14. The heatmap was produced in

the same way as figure 5.12, but instead of using a single reference, the three Saturdays

prior to the sample were chosen as background data. Hence, E[P̂ (h)] is an average over these

forecasts. The reasoning for this choice was that these forecasts looked representative of

what one would expect if the sample took place on a regular Saturday.

As seen from the explanation, the holiday feature was the problem once again. Particularly,

the presence of h appears to push down the load for most of the day, but considerably during

the morning hours. This effect was unintended and would have to be dealt with in a similar

way as was done for the third generation models. It seems that indicating the presence of a

holiday during the weekend may be unnecessary, and that it may be better to model public

holidays as Saturdays or Sundays. This can be seen from the fact that if h = 0, then the

forecast would have been slightly higher than expected forecast and would in fact have been

more accurate (as seen from the actual observed electrical load in appendix C).

The third chosen sample was the forecast made for Tuesday, May 12th 2020. This forecast

was chosen because the model suddenly changes load profile after three/four weeks of con-

90

5.2. MODEL EVALUATION

2

0 5 10 15 20

h

E[P̂ (h)]

P̂ (h)

h

T̂O

T̂Hm

Pd−2

∑
rest

0.566

0.566

ϕ

x E[x]

h 1 0

T̄O -0.77 -0.39

T̄Hm -1.09 -0.50

P̄d−2 1.01 1.22

Figure 5.14: Local explanation of the forecast for December 26th 2020 as a function of the
output hour. The background data were the three prior Saturdays.

sistent weekday load profiles. I.e., instead of having a sharp peak in the morning, before

decreasing towards the evening, the forecast is more steady across the day. And although

the forecast overshoots the actual observed values, the model managed to predict the change

in load profile. The explanation for this forecast is shown in figure 5.15. The background

data for this explanation were the three previous weeks of weekdays prior to May 12th.

As seen from the figure, the largest contribution seems to be attributed to d1 = 1 which

increased the load across the day compared to the background samples. However, notice

that the morning hours contribution of
∑

rest cancels out d1 during these hours. Upon

further inspection it appears that this, again, are the sum of contributions from the other

day of the week variables. I.e., it seems that the model puts little difference in prediction

due to it being a Tuesday. This is also consistent with the observations made in regards to

weekday similarity in section 3.1.2.

While the contributions of p̂O and p̂D are larger than T̂O, inspection of the rest of the features

suggested that the difference in predictions may have been due to differences in temperature

91

CHAPTER 5. RESULTS AND DISCUSSION

0 5 10 15 20

h

E[P̂ (h)]
P̂ (h)

d1

p̂O

p̂D

T̂O

∑
rest

0.3815

0.3815

ϕ

x E[x]

d1 1 0.2

p̄O 0.09 0.63

p̄D 0.39 0.92

T̄O -0.37 0.28

Figure 5.15: Local explanation of the forecast for May 12th 2020 as a function of the output
hour. The background data were the three past weeks of weekday forecasts.

predictions. Particularly, it was found that out of the top ten features, four of them were

temperature variables (T̂O, T̂Hl, T̂L and T̂Kv). All of these had large positive SHAP values

across all hours, and the temperature forecasts for these locations were much lower for May

12th than the averages over the background samples. This is illustrated for Oslo in particular

in figure 5.16. Notice how the greatest differences in temperature predictions are observed in

the range of about h ∈ [11, 18]. This also coincides well with where the
∑

rest contributions

are the largest (most vibrant red). As known, electrical load is particularly sensitive to

temperature changes (see e.g., the MI matrix from table 3.8). Hence, the differences in

temperature predictions seem to have been the main drivers to push the forecast load above

the expected load profile during the day. Note however, that although the model got the

shape of the forecast right, it missed on the level of load.

5.3 Discussion of the results
Based on the performance on unseen data (2020), the expanding window results (see table

5.7) and visual confirmation of the 2020 forecasts (see appendix C), the development of a

92

5.3. DISCUSSION OF THE RESULTS

0 3 6 9 12 15 18 21

1
3
5
7
9

11
13

h

Te
m

pe
ra

tu
re

[◦ C
]

T̂
(h)
O E[T̂

(h)
O]

Figure 5.16: Temperature forecast in Oslo for May 12th and the expected temperature
forecast.

load forecasting model for NO1 was a success. Moreover, the use of convolutional layers

to extract weather features from a spatial grid (see equation 4.7) appears a promising area

for future research. Particularly, instead of limiting the number of locations to ten, one

could drastically increase the number of grid points for densely populated areas (such as

Oslo and surrounding areas), and slightly increase the number of grid points for locations

not represented in the thesis model. This may lead to over-fitting issues due to the number

of parameters (one kernel for each location), but with the use of convolutional layers it may

take a very large number of grid points before this occurs.

No forecasting model is without flaws however, and neither is the one developed in this

thesis. As seen from the selected samples during model deployment, the model made some

unacceptable mistakes which would have to be alleviated if it was to be put into production.

When a black-box model makes a poor forecast, trust in the model’s capabilities may be

lost. If the model messed up once, how can you be sure it will not happen again? With the

use of XAI, however, it is possible peek into the black box; find out what might be at fault;

and make adjustments to the model. Alternatively, if the underlying causes of the model

error are identified, then similar scenarios in the future are scrutinized. For instance, as seen

from the explanation of the second selected sample (figure 5.14), the model appears to act

out when forecasts are on a Saturday public holiday. Likewise, during model development,

it was found that the presence of a holiday on a Sunday caused the same error (see figure 5.8

and 5.9). There are then two choices: to change the implementation of the holiday variable;

93

CHAPTER 5. RESULTS AND DISCUSSION

or to take every future forecast made for a Saturday holiday with a grain of salt.

Another insight from the Deep SHAP results was that the pressure predictions may have

been given too much importance (see figure 5.4, 5.8 and 5.15) because of neural network

architecture design choices (see appendix B). Particularly, the number of extracted pressure

features for the last model in development (CNN-3-2) was 240, while the number of load and

temperature features were 96 and 168, respectively. It was therefore suspected that Deep

SHAP may have given pressure more importance due to the larger number of activation dif-

ferences caused by differences in pressure predictions. On the other hand, the model may in

fact be emphasizing pressure, and Deep SHAP may then, in turn, have given accurate attri-

butions for pressure. It is difficult to know which one of the above, model or Deep SHAP, is

at fault because there is no ground truth explanation for a black box model (Sturmfels et al.,

2020). However, the acquired insights from using Deep SHAP suggest that improvements to

the model can be made. If, in turn, an increase in performance or model robustness would

be achieved from these findings, then Deep SHAP will have served its purpose in shedding

some light on the forecasting model. Hence, it may not matter what is the ground truth

explanation, as long as the given explanation leads to some form of increased understanding

of the model.

Model developers and domain experts are the most frequent audience for XAI in deployment

(Bhatt et al., 2020), but may not be the most important. Hong (2014) noted in his doctoral

thesis that shareholders require full transparency of production models in high-stake situa-

tions, but Bhatt et al. (2020) found that in practice, stakeholders and decision makers are

not kept in-the-loop when it comes to XAI. Therefore, in order to facilitate increased use

of XAI for a non-expert audience, the use of intuitive background data selection is crucial.

This is especially true for time series forecasting problems, where it is natural to look in

retrospect when faced with something unexpected. For instance, when explaining a forecast

made for tomorrow by some black-box model, it is in the line of human reasoning to ask

the question: “what is different from yesterday’s forecast?”. In the specific case of load

forecasting (as discussed in detail in section 4.7.1) and its weekly periodicity, another form

of human-centric question is to ask: “if electrical load repeats itself, why is the forecast any

94

5.3. DISCUSSION OF THE RESULTS

different from the previous period?”. These sort of questions were investigated for a model

in deployment using Deep SHAP (see figures 5.12, 5.14 and 5.15), and the resulting expla-

nations also gave accessible answers. For example, the explanation for the increased load

on May 12th appeared to have mainly been due to differences in temperature predictions

from the background data. Roughly speaking, put into words one could say something like:

“The forecast was higher than the previous three weeks mostly due to decreased temperature

forecasts over multiple locations”. This is the sort of explanation anyone could understand,

and can be used in conjunction to the SHAP visualizations.

While the choice of similar background samples is intuitive, it has some drawbacks. For

starters, such explanations do not provide the full picture of what lead to the forecast. Par-

ticularly, calendar variables and other variables with similar input values to the background

samples will be ignored due to zero difference from reference. Hence, if a forecast on a

Saturday in March is compared to previous Saturdays in March, then the day of the week,

season, and month of the year variables will be attributed zero importance. This may lead

someone to wrongly think that these are not important. However, when using a difference

from reference philosophy (see section 2.4.1), it is important to keep in mind that these may

still have been important to lead up to the baseline; they were just not what made up the

difference to what was expected from the background samples. Another drawback is that

the mathematical rigorousness of these assumptions with respect to the SHAP properties is

unknown. I.e., since SHAP relies on estimating SHAP values by sampling over a, preferably,

large number of background samples, it is unclear how choosing a small number of samples

affects the estimation accuracy. However, choosing a small number (or just one) of samples

is more in line with the original DeepLIFT (see section 2.4.1) method, and is not necessarily

wrong. As stated previously, as long as an explanation leads to increased understanding or

model performance in some way, then the explanation has served its purpose.

95

CHAPTER 5. RESULTS AND DISCUSSION

96

Chapter 6

Conclusion

The three specific contributions of the thesis was to (1) develop an electrical load forecasting

model for the Norwegian price region, NO1; (2) use XAI, in this case Deep SHAP, during

development to improve the model performance; and (3) interpret forecasts in deployment

by use of an XAI tool. All of these three were carried out and the results were presented

in chapter 5. However, the more important contribution of the thesis was to serve as as a

first work in the use of XAI for Norwegian load forecasts and to provide directions for future

research. The thesis has demonstrated how XAI, particularly Deep SHAP, can be used to

improve and interpret a black-box ML load forecasting model. Moreover, domain knowledge

of electrical load was leveraged in choice of SHAP background data to produce more intuitive

explanations which are accessible to both practitioners and non-experts. Particularly, it was

found that while global explanations may be well served sampling from the entire expected

distribution of the load; local explanations may be better off by choosing background samples

based on the periodic nature of electrical load.

Regardless of the intuitive soundness of these local background choices, more research is

needed with respect to choosing background data for SHAP value estimation. Particularly,

such choices should derive from close cooperation with the intended audience. I.e., if the tar-

geted audience are, say, balancing operators or domain experts then the explanations should

be tailored to their needs. Conversely, if the explanation is targeted towards shareholders

97

CHAPTER 6. CONCLUSION

or decision-makers, they may require different background assumptions. Moreover, little is

known in how the background assumptions affect the mathematical rigorousness of SHAP,

which may prove to violate the properties of the method. However, it is as of now unclear

whether this is an issue or not since such explanations still give increased understanding of

the model.

New and smarter technology is part of the solution towards total decarbonization of the

power system. Complex black-box AI models offer lower power system losses through more

accurate load forecasts, which in turn lower emissions. With the dynamics of the power

system and consumer landscapes changing, and more complex black-box models, like deep

neural networks or large ensemble models, are put into deployment, XAI methods are needed

in order to facilitate transparency, trust and increased use of these forecasting models going

forward. However, to trust the explanations, first one has to trust the framework behind

the explanations. Hence, with more research in the mentioned areas, XAI methods have the

potential of serving as crucial, trustworthy interlinks between the targeted audience of load

forecasts and the models behind the forecasts.

98

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,

Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,

M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,

R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,

Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden,

P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale

machine learning on heterogeneous systems. Available at: tensorflow.org.

Apadula, F., Bassini, A., Elli, A., and Scapin, S. (2012). Relationships between meteorolog-

ical variables and monthly electricity demand. Applied Energy, 98:346356.

Arjunan, P., Poolla, K., and Miller, C. (2020). Energystar++: Towards more accurate and

explanatory building energy benchmarking. Applied Energy, 276:115413.

Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García,

S., Gil-López, S., Molina, D., Benjamins, R., et al. (2020). Explainable artificial intelli-

gence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai.

Information Fusion, 58:82–115.

Bailey, G. (2013). CS1114: Convolution. Department of Computer Science at Cornell

University.

Baliyan, A., Gaurav, K., and Mishra, S. K. (2015). A review of short term load forecasting

using artificial neural network models. Procedia Computer Science, 48:121–125. Interna-

tional Conference on Computer, Communication and Convergence (ICCC 2015).

99

https://www.tensorflow.org

BIBLIOGRAPHY

Ben Taieb, S., Bontempi, G., Atiya, A. F., and Sorjamaa, A. (2012). A review and comparison

of strategies for multi-step ahead time series forecasting based on the nn5 forecasting

competition. Expert Systems with Applications, 39(8):7067 – 7083.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. The

Journal of Machine Learning Research, 13:281–305.

Bhatt, U., Xiang, A., Sharma, S., Weller, A., Taly, A., Jia, Y., Ghosh, J., Puri, R., Moura,

J. M., and Eckersley, P. (2020). Explainable machine learning in deployment. In Pro-

ceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pages

648–657.

Bianchi, F. M., Maiorino, E., Kampffmeyer, M. C., Rizzi, A., and Jenssen, R. (2017). Recur-

rent neural networks for short-term load forecasting. SpringerBriefs in Computer Science.

Bishop, C. M. (2008). Pattern Recognition and Machine Learning. Springer.

Bolstad, D. A. (2020). Interpretation of electrical load forecasts using explainable artificial

intelligence. Project thesis.

Brownlee, J. (2018). Deep Learning for Time Series Forecasting: Predict the Future with

MLPs, CNNs and LSTMs in Python.

Chen, K., He, Z., Chen, K., Hu, J., and He, J. (2017). Solar energy forecasting with numerical

weather predictions on a grid and convolutional networks. In 2017 IEEE Conference on

Energy Internet and Energy System Integration (EI2), pages 1–5.

Chollet, F. et al. (2015). Keras. Available at: https://keras.io.

Claveria, O., Monte, E., and Torra, S. (2017). Data pre-processing for neural network-based

forecasting: does it really matter? Technological and Economic Development of Economy,

23(5):709–725.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2016). Fast and accurate deep network

learning by exponential linear units (elus).

100

https://keras.io

BIBLIOGRAPHY

Debnath, K. B. and Mourshed, M. (2018). Forecasting methods in energy planning models.

Renewable and Sustainable Energy Reviews, 88:297–325.

Doshi-Velez, F., Kortz, M., Budish, R., Bavitz, C., Gershman, S., O’Brien, D., Scott, K.,

Schieber, S., Waldo, J., Weinberger, D., et al. (2017). Accountability of ai under the law:

The role of explanation. arXiv preprint arXiv:1711.01134.

Dumoulin, V. and Visin, F. (2016). A guide to convolution arithmetic for deep learning.

Elvia AS (2020). Kraftsystemutredning 2020-2040: Hovedrapport Oslo, Akershus og Østfold.

Frogner, I.-L., Singleton, A., Køltzow, M., and Andrae, U. (2019). Convection-permitting

ensembles: Challenges related to their design and use. Quarterly Journal of the Royal

Meteorological Society, 145.

Gandhi, O., Rodríguez-Gallegos, C. D., and Srinivasan, D. (2016). Review of optimization

of power dispatch in renewable energy system. In 2016 IEEE Innovative Smart Grid

Technologies - Asia (ISGT-Asia), pages 250–257.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedfor-

ward neural networks. In Teh, Y. W. and Titterington, M., editors, Proceedings of the

Thirteenth International Conference on Artificial Intelligence and Statistics, volume 9 of

Proceedings of Machine Learning Research, pages 249–256, Chia Laguna Resort, Sardinia,

Italy. PMLR.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. Available

at: http://www.deeplearningbook.org.

Grimaldo, A. I. and Novak, J. (2020). Combining machine learning with visual analytics

for explainable forecasting of energy demand in prosumer scenarios. Procedia Computer

Science, 175:525–532.

Grosse, R. (2018). CSC 321 Lecture 5: Multilayer perceptrons. Department of Computer

Science of the University of Toronto.

101

http://www.deeplearningbook.org

BIBLIOGRAPHY

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G.,

Cai, J., and Chen, T. (2018). Recent advances in convolutional neural networks. Pattern

Recognition, 77:354 – 377.

Hastie, T., Tibshirani, R., and Friedman, J. (2008). The Elements of Statistical Learning.

Springer.

He, W. (2017). Load forecasting via deep neural networks. Procedia Computer Science,

122:308–314. 5th International Conference on Information Technology and Quantitative

Management, ITQM 2017.

Higashiyama, K., Fujimoto, Y., and Hayashi, Y. (2018). Feature extraction of nwp data for

wind power forecasting using 3d-convolutional neural networks. Energy Procedia, 155:350–

358. 12th International Renewable Energy Storage Conference, IRES 2018, 13-15 March

2018, Düsseldorf, Germany.

Hong, T. (2010). Short term electric load forecasting.

Hong, T. (2014). Energy forecasting: past, present and future. Foresight: The International

Journal of Applied Forecasting, 32:43–48.

Hong, T., Wang, P., and White, L. (2015). Weather station selection for electric load

forecasting. International Journal of Forecasting, 31(2):286 – 295.

Horne, H., Roos, A., Magnussen, I. H., Buvik, M., and Langseth, B. (2020). Norge har et

betydelig potensial for forbrukerfleksibilitet i sektorene bygg, transport og industri. NVE,

Nr. 7.

Hyndman, R. and Athanasopoulos, G. (2018). Forecasting: principles and practice, 2nd

edition. Accessed: 20/11/2020.

Ilic, I., Görgülü, B., Cevik, M., Gök, M., and Baydogan, M, G. (2020). Explainable boosted

linear regression for time series forecasting.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical

Learning. Springer.

102

BIBLIOGRAPHY

Kuzlu, M., Cali, U., Sharma, V., and Güler, Ö. (2020). Gaining insight into solar photovoltaic

power generation forecasting utilizing explainable artificial intelligence tools. IEEE Access,

8:187814–187823.

Lee, Y, G., Oh, J, Y., and Kim, G. (2020). Interpretation of load forecasting using explain-

able artificial intelligence techniques. Transactions of the Korean Institute of Electrical

Engineers, 69(3):480–485.

Linnainmaa, S. (1970). The representation of the cumulative rounding error of an algorithm

as a taylor expansion of the local rounding errors. Masters thesis.

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R.,

Himmelfarb, J., Bansal, N., and Lee, S.-I. (2020). From local explanations to global

understanding with explainable ai for trees. Nature Machine Intelligence, 2(1):2522–5839.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions.

In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,

and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 30,

pages 4765–4774. Curran Associates, Inc.

MacKay, D. J. C. (2003). Information Theory, Inference and Learning Algorithms. Cam-

bridge University Press.

Makridakis, S., Spiliotis, E., and Assimakopoulos, V. (2018). Statistical and machine learning

forecasting methods: Concerns and ways forward. PLOS ONE, 13(3):1–26.

McKinney, W. (2010). Data Structures for Statistical Computing in Python. In Proceedings

of the 9th Python in Science Conference, pages 56 – 61.

Montgomery, D. C., Jennings, C. L., and Kulahci, M. (2008). Introduction to Time Series

Analysis and Forecasting. John Wiley & Sons. Inc.

Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press.

Nord Pool (2021). Historical market data. Available at: https://nordpoolgroup.com.

103

https://nordpoolgroup.com

BIBLIOGRAPHY

NVE (2020). Kraftproduksjon. Available at: https://nve.no.

O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., et al. (2019). Keras

Tuner. https://github.com/keras-team/keras-tuner.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,

D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research, 12:2825–2830.

Petrican, T., Vesa, A., Antal, M., Antal, C., Cioara, T., Anghel, I., and Salomie, I. (2018).

Evaluating forecasting techniques for integrating household energy prosumers into smart

grids. 2018 IEEE 14th International Conference on Intelligent Computer Communication

and Processing, pages 79–85.

Presthus, G. S. (2018). Developing and deploying machine learning models for online load

forecasts. Available at: https://datascience.statnett.no.

Ruder, S. (2016). An overview of gradient descent optimization algorithms.

Shrikumar, A., Greenside, P., and Kundaje, A. (2019). Learning important features through

propagating activation differences.

Spilde, D., Hodge, L. E., Magnussen, I. H., Hole, J., Buvik, M., and Horne, H. (2019).

Strømforbruk mot 2040. NVE.

Statnett (2021a). Power system data. Available at: https://www.statnett.no.

Statnett (2021b). Reserve markets. Available at: https://www.statnett.no.

Sturmfels, P., Lundberg, S., and Lee, S.-I. (2020). Visualizing the impact of feature attribu-

tion baselines. Distill. https://distill.pub/2020/attribution-baselines.

Tian, C., Ma, J., Zhang, C., and Zhan, P. (2018). A deep neural network model for short-

term load forecast based on long short-term memory network and convolutional neural

network. Energies, 11.

104

https://nve.no/energiforsyning/kraftproduksjon
https://github.com/keras-team/keras-tuner
https://datascience.statnett.no/2018/12/20/developing-and-deploying-machine-learning-models-for-online-load-forecasts/
https://www.statnett.no
https://www.statnett.no/en/for-stakeholders-in-the-power-industry/system-operation/the-power-market/reserve-markets/

BIBLIOGRAPHY

Turek, M. (2018). Explainable artificial intelligence. Accessed: 16/11/2020.

Tyvold, T. S. (2018). Short-Term Electric Load Forecasting Using Artificial Neural Networks.

NTNU.

Ørum, E., Kuivaniemi, M., Laasonen, M., Bruseth, A. I., Jansson, E. A., Danell, A., Elk-

ington, K., and Modig, N. (2015). Future system inertia. ENTSO-E.

105

BIBLIOGRAPHY

106

Appendix A

Derivation of backpropagation

The goal of backpropagation is to retrieve the gradient of the loss function with respect to

any weight or bias in the network. To do this however, we make an assumption that the loss

function may be written as an average sum of all the individual losses in a batch, ℓ. This is

valid in the case of using MSE as the cost function (Nielsen, 2015). We will begin by working

our way backwards in the network, starting with the partial derivatives at the output layer.

The partial derivative of a loss with respect to the kth output layer activation by use of the

chain rule (CR) given by

∂ℓ

∂z
[L]
k

CR
=

∂ℓ

∂ŷk

∂ŷk

∂z
[L]
k

=
∂ℓ

∂ŷk
ϕ′[L](z

[L]
k), (A.1)

where ϕ′ denotes the derivative of the output activation function. By introducing the

element-wise (Hadamard) product of two vectors, equation A.1 may be written in vectorized

format. I.e.,

∇z[L]ℓ = ∇ŷℓ⊙ ϕ′(z[L]). (A.2)

This quantity is often denoted short-hand as the output error vector δ[L] (Nielsen, 2015). To

derive the error vector δ[l] for any layer, we consider that for the ith hidden unit in the lth

layer we have that

δ
[l]
i =

∂ℓ

∂a
[l]
i

∂a
[l]
i

∂z
[l]
i

2.18
=

∂ℓ

∂a
[l]
i

ϕ′(z
[l]
i). (A.3)

107

APPENDIX A. DERIVATION OF BACKPROPAGATION

We can write the above as a sum of applied chain rules, by considering that the output value

of the ith unit in one layer causes some change in the activation of the kth unit in the next

layer. This change is given by the weight connecting those two units, thus

∂ℓ

∂a
[l]
i

CR
=

n[l+1]∑
k=1

∂ℓ

∂z
[l+1]
k

∂z
[l+1]
k

∂a
[l]
i

2.17
=

n[l+1]∑
k=1

w
[l+1]
ki δ

[l+1]
k = (W

[l+1]
:,i)Tδ[l+1], (A.4)

where W:,i denotes a vector slice of the weight matrix at the ith column. Combining equa-

tions A.3 and A.4 yields

δ
[l]
i = (W

[l+1]
:,i)Tδl+1ϕ′[l](z

[l]
i). (A.5)

Extending the above to a vectorized version is simply including all slices of the weight matrix,

which gives

δ[l] = (W [l+1])Tδl+1 ⊙ ϕ′[l](z[l]). (A.6)

Notice that equations A.2 and A.6 give the possibility to recursively find the gradients as far

back in the network as we would like, by starting at the output layer and working our way

down. These two are the first two equations needed for backpropagation.

We now have all we need to efficiently calculate all the partial derivatives of the loss with

respect to any weight or bias. For a weight w
[l]
ki we have

∂ℓ

∂w
[l]
ki

CR
=

∂ℓ

∂z
[l]
k

∂z
[l]
k

∂w
[l]
ki

A.3
= δ

[l]
k a

[l−1]
i , (A.7)

and similarly for a bias b
[l]
j we have

∂ℓ

∂b
[l]
j

=
∂ℓ

∂z
[l]
j

∂z
[l]
j

∂b
[l]
j

= δ
[l]
j . (A.8)

Writing equation A.7 and A.8 in vectorized notation leaves us with the last two equations

that the backpropagation algorithm uses. Combined with equations A.2 and A.6 the back-

propagation algorithm can find all the gradients of the network by starting at the top layer

108

APPENDIX A. DERIVATION OF BACKPROPAGATION

and working backwards. The four central equations are given by

δ[L] = ∇ŷℓ⊙ ϕ′(z[L]) (A.9)

δ[l] = (W [l+1])Tδl+1 ⊙ ϕ′[l](z[l]) (A.10)

∇W [l]ℓ = δ[l](a[l−1])T (A.11)

∇b[l]ℓ = δ[l], (A.12)

109

APPENDIX A. DERIVATION OF BACKPROPAGATION

110

Appendix B

Neural network architectures

The following appendix contains a more thorough description of the hyper-parameter opti-

mization strategy. All the architectures and hyper-parameters of the neural network models

in the thesis are also given.

B.1 Hyper-parameter optimization
In this section a more detailed description of the hyper-parameter optimization is given. The

RandomSearch class from Keras Tuner (O’Malley et al., 2019) was used for all random

searches. The early-stopping (see section 2.2.1 for details) was implemented with Keras’

EarlyStopping on the last 15% of the training data. The search parameters are shown in

table B.1.

Random searches were run for all the neural network models in development (see section

4.5.2). The initial search-spaces were established based on intuition and best practice from

Table B.1: Search parameters for the random searches

Max trials Max epochs
Executions

per trial
Seed Early-stopping

1000 150 4 13
patience: 30

min_delta: 10−4

111

APPENDIX B. NEURAL NETWORK ARCHITECTURES

Table B.2: Initial hyper-parameter search-space of MLP-1

Hyper-parameter Search-space Comments

Units: n[1], n[2] [72, 480], steps of 24 Top results generally > 120.

Activations: ϕ[1], ϕ[2] {ReLU, eLU, SeLU, tanh} SeLU dropped.

Learning rate: η {0.00001, 0.0001, 0.001, 0.01, 0.1} 0.00001 too small, 0.1 too big.

Dropout rates: p[1], p[2] {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} None.

Optimizer
{NSGD, Nadam, Adam, Adadelta,

Adagrad, RMSprop}
Adadelta and Adagrad dropped.

the literature. The top 10 (by lowest validation loss) hyper-parameter configurations after a

random search were then investigated. If the results hinted towards a poorly selected initial

search-space (e.g., only minimum or maximums of the search-space), then the search-space

was altered in the indicated direction and the random search was ran again. When the results

seemed randomly distributed and did not indicate that the optimal hyper-parameters were

outside of the search space, the top three combinations were tested on the development set

(2019). The configuration with the most stable learning curve (validation loss versus training

loss over epochs) was selected for the particular model.

The initial search space of MLP-1 is shown in table B.2. As can be seen from the search-

space, the number of trials required for a complete grid search would be

18 · 18︸ ︷︷ ︸
Uni

· 5 · 5︸︷︷︸
Act

· 5︸︷︷︸
Learn

· 6 · 6︸︷︷︸
Drop

· 6︸︷︷︸
Opt

= 8, 748, 000, (B.1)

hence running a complete grid search for each model would be infeasible due to time con-

straints. Using random searches instead guarantees that each sub-space is explored even

though not every single combination is tested. I.e., imagine that the number of optimal

units is in the upper limit of the unit search-space; a grid search would not find this until

the very end, while a random search could be able to suggest this with far fewer trials.

It was generally found that some hyper-parameter choices rarely appeared in the top results

of the searches. In particular, the number of units tended to be in the top end of the search-

space. Furthermore, configurations with sigmoid activation functions (see section 2.3.3) did

112

B.1. HYPER-PARAMETER OPTIMIZATION

not seem to perform very well, hence the sigmoid function was eventually removed from all

the search spaces. The same applies to SeLU, which was removed eventually as well. Since

the continuous data is standardized (see section 4.3 for details), it makes intuitive sense that

the sigmoid function does not work well with this type of scale (since it saturates at zero).

Learning rates of 0.00001 and 0.1 seemed to be too small and too big, respectively. They

were therefore removed from the search-space.

There were also clear favourites among the optimizers included in the searches. Generally,

the top scores belonged to the class of optimizers with adaptive learning rates and some form

of momentum (see section 2.3.5). Particularly, the best networks typically had RMSProp,

Adam or Nadam. But surprisingly, the random searches of the third generation models

resulted in a lot of top results with Nesterov SGD (NSGD). Models with NSGD required a

slightly larger learning rate than the optimizers with adaptive learning rates. AdaDelta and

AdaGrad rarely appeared in the top results and were eventually removed from the search

spaces.

While the search-spaces of units, filters, kernel sizes, and the number of Dense and Conv1D

layers varied for each model, activation functions, dropout rates, optimizer algorithms and

learning rates stayed pretty much the same throughout the model development process. I.e.,

the search-spaces from table B.2 with the mentioned adjustments were also applicable to

most of the later models.

The search results of the first generation models, hence the ones with the fewest number of

inputs, were generally the most equally-performing. I.e., the top ten results of the random

search showed no great difference in performance. As more hyper-parameters were added to

the random searches by continuously increasing model complexity, performance differences

were greater between the top results. It also became increasingly difficult to choose suitable

search-spaces for the second and third generation models because the search results never

suggested some sub-spaces being better than other sub-spaces. Note that the search param-

eters (table B.1) remained the same for all model generations, hence a maximum of 1000

trials were run for each model. It is therefore suspected, that the number of trials may not

have been sufficiently large to get a representative result from the last generation of models.

113

APPENDIX B. NEURAL NETWORK ARCHITECTURES

Regardless of the difficulties of optimizing the last generation models, the hyper-parameter

combinations which resulted from random searches of the still resulted in satisfactory forecast

results. Hence, the hyper-parameters of the last model in development (CNN-3-2) were also

used for all the expanding window test models.

B.2 Model architectures and hyper-parameters
Since the number of layers were not included in the random searches, i.e., combinations of

Conv1D, Dense, Dropout and MaxPooling1D, these were determined by heuristics for

each model. For instance, in the case of the CNNs with weather variables, it was hypothesized

that each variable should be given its own branch to extract features from the weather input

series. After feature extraction, it makes sense to combine the extracted load and weather

features in a conventional manner by using a number of fully-connected (FC) layers. This

is also common procedure in CNNs found in the literature (He, 2017; Tian et al., 2018).

However, keep in mind that there is no way of knowing in advance if an architecture is going

to perform well.

The default parameter initialization scheme in Keras for Dense and Conv1D layers, Glo-

rot uniform (see equation 2.41), was used for all the models. The same was done for the

initialization of biases, which are set to all zeros by default. There does not seem to be a

agreed consensus on which initialization scheme is preferred for optimization. Glorot uni-

form distribution, however, is a popular choice. Using this initialization, the author did not

experience any ill-behaved trials. Refer to Glorot and Bengio (2010) for details regarding

Glorot uniform initialization.

From the hyper-parameter searches, the (global) learning rate was tuned through trial-and-

error and by observing the learning curve for each particular model. This is the recommended

strategy from Goodfellow et al. (2016, p. 291). Too high of a learning rate may cause

instability observed as oscillation; while setting the learning rate to low causes the model

to learn very slowly. For most models, it was found that learning rates with a order of

magnitude of 0.00025 (no GPU) and 0.001 (GPU) were stable and performed well. The

difference in learning rate with/without GPUs is because distributed training distributed

114

B.2. MODEL ARCHITECTURES AND HYPER-PARAMETERS

Table B.3: MLP-1 hyper-parameters

Fully-connected 1 Fully-connected 2 Optimizer: Nadam

Hyper-

parameters

n[1] : 168, p[1] : 0.1,

ϕ[1] : elu

n[2] : 256, p[2] : 0.2,

ϕ[2] : tanh

η : 0.00016, β1 : 0.9,

β2 : 0.999, ϵ : 10−7

Table B.4: CNN-1 hyper-parameters

Conv 1

(Load)

Conv 2

(Temperature)
FC

Optimizer

(Nadam)

Hyper-

parameters

N
[1]
f : 32,

N
[1]
k : 15,

ϕ[1] : relu,

N
[1]
p : 2,

s[1] : 1, ρ[1] : ’valid’

N
[2]
f : 16,

N
[2]
k : 12,

ϕ[2] : relu,

N
[2]
p : 2,

s[2] : 1, ρ[2] : ’valid’

n[3] : 168,

p[1] : 0.2,

ϕ[3] : tanh

η : 0.00026,

β1 : 0.9,

β2 : 0.999,

ϵ : 10−7

batches equal to the batch size to each GPU for every parameter update. Hence, if the

batch size is set to 32, then each GPU gets 32 samples each, so that the global batch size

is 128 (with four GPus). This in turn allowed for a larger learning rate with distributed

training.

Apart from the learning rate, the optimizer hyper-parameters (see section 2.3.5) were left

to the Keras defaults. This was done because the Keras default optimizer hyper-parameters

are usually the same as the recommended ones in the original papers. I.e., the optimizer

hyper-parameters were set to β = 0.99; ρ = 0.95; ϵ = 10−7; β1 = 0.9; and β2 = 0.999.

Changing these may offer greater stability or faster optimization, but most optimization

problems were usually resolved by just adjusting the learning rate. Moreover, none of the

models took long enough to run to warrant adjustment of the parameters above.

The following figures and tables provide an overview of all the neural network architectures

and hyper-parameters.

115

APPENDIX B. NEURAL NETWORK ARCHITECTURES

Load: InputLayer
input:

output:

[(?, 168)]

[(?, 168)]

FC1_dense: Dense
input:

output:

(?, 168)

(?, 168)

FC1_dropout: Dropout
input:

output:

(?, 168)

(?, 168)

FC2_dense: Dense
input:

output:

(?, 168)

(?, 256)

FC2_dropout: Dropout
input:

output:

(?, 256)

(?, 256)

Output: Dense
input:

output:

(?, 256)

(?, 24)

Figure B.1: MLP-1 architecture

Table B.5: CNN-2-1 hyper-parameters

Conv 1

(Load)

Conv 2

(Temperature)
FC

Optimizer

(Nadam)

Hyper-

parameters

N
[11]
f : 27,

N
[11]
k : 6,

ϕ[11] : tanh,

N
[11]
p : 2,

s[11] : 3,

ρ[11]: ’same’

N
[12]
f : 45,

N
[12]
k : 12,

ϕ[12] : tanh,

N
[12]
p : 1,

s[12] : 1,

ρ[12]: ’valid’

N
[21]
f : 21,

N
[21]
k : 3,

ϕ[21] : tanh,

N
[21]
p : 1,

s[21] : 3,

ρ[21] : ’valid’

n[3] : 360,

p[3] : 0.3,

ϕ[3] : elu

η : 0.0013,

β1 : 0.9,

β2 : 0.999,

ϵ : 10−7

116

B.2. MODEL ARCHITECTURES AND HYPER-PARAMETERS

Load: InputLayer
input:

output:

[(?, 168, 1)]

[(?, 168, 1)]

Conv1: Conv1D
input:

output:

(?, 168, 1)

(?, 154, 32)

Pool1: MaxPooling1D
input:

output:

(?, 154, 32)

(?, 77, 32)

Conv2: Conv1D
input:

output:

(?, 77, 32)

(?, 66, 16)

Pool2: MaxPooling1D
input:

output:

(?, 66, 16)

(?, 33, 16)

flatten_1: Flatten
input:

output:

(?, 33, 16)

(?, 528)

FC_dense: Dense
input:

output:

(?, 528)

(?, 168)

FC_dropout: Dropout
input:

output:

(?, 168)

(?, 168)

Output: Dense
input:

output:

(?, 168)

(?, 24)

Figure B.2: CNN-1 architecture

117

APPENDIX B. NEURAL NETWORK ARCHITECTURES

Load: InputLayer
input:

output:

[(?, 168, 1)]

[(?, 168, 1)]

Conv11: Conv1D
input:

output:

(?, 168, 1)

(?, 56, 27)

Pool11: MaxPooling1D
input:

output:

(?, 56, 27)

(?, 28, 27)

Conv12: Conv1D
input:

output:

(?, 28, 27)

(?, 17, 45)

Temperature: InputLayer
input:

output:

[(?, 24, 10)]

[(?, 24, 10)]

Conv21: Conv1D
input:

output:

(?, 24, 10)

(?, 8, 21)

Pool12: MaxPooling1D
input:

output:

(?, 17, 45)

(?, 8, 45)
Pool21: MaxPooling1D

input:

output:

(?, 8, 21)

(?, 8, 21)

flatten: Flatten
input:

output:

(?, 8, 45)

(?, 360)
flatten_1: Flatten

input:

output:

(?, 8, 21)

(?, 168)

concatenate: Concatenate
input:

output:

[(?, 360), (?, 168)]

(?, 528)

FC_dense: Dense
input:

output:

(?, 528)

(?, 192)

FC_dropout: Dropout
input:

output:

(?, 192)

(?, 192)

Output: Dense
input:

output:

(?, 192)

(?, 24)

Figure B.3: CNN-2-1 architecture

118

B
.2.

M
O

D
EL

A
R

C
H

IT
EC

T
U

R
ES

A
N

D
H

Y
PER

-PA
R

A
M

ET
ER

S

Load: InputLayer
input:

output:

[(?, 168, 1)]

[(?, 168, 1)]

Conv11: Conv1D
input:

output:

(?, 168, 1)

(?, 56, 36)

Pool11: MaxPooling1D
input:

output:

(?, 56, 36)

(?, 56, 36)

Conv12: Conv1D
input:

output:

(?, 56, 36)

(?, 23, 24)

Temperature: InputLayer
input:

output:

[(?, 24, 10)]

[(?, 24, 10)]

Conv21: Conv1D
input:

output:

(?, 24, 10)

(?, 8, 21)

Humidity: InputLayer
input:

output:

[(?, 24, 10)]

[(?, 24, 10)]

Conv31: Conv1D
input:

output:

(?, 24, 10)

(?, 18, 12)

Wind: InputLayer
input:

output:

[(?, 24, 10)]

[(?, 24, 10)]

Conv41: Conv1D
input:

output:

(?, 24, 10)

(?, 24, 3)

Pressure: InputLayer
input:

output:

[(?, 24, 10)]

[(?, 24, 10)]

Conv51: Conv1D
input:

output:

(?, 24, 10)

(?, 20, 12)

Cloud: InputLayer
input:

output:

[(?, 24, 10)]

[(?, 24, 10)]

Conv61: Conv1D
input:

output:

(?, 24, 10)

(?, 18, 3)

Pool12: MaxPooling1D
input:

output:

(?, 23, 24)

(?, 11, 24)
Pool21: MaxPooling1D

input:

output:

(?, 8, 21)

(?, 8, 21)
Pool31: MaxPooling1D

input:

output:

(?, 18, 12)

(?, 9, 12)
Pool41: MaxPooling1D

input:

output:

(?, 24, 3)

(?, 12, 3)
Pool51: MaxPooling1D

input:

output:

(?, 20, 12)

(?, 10, 12)
Pool61: MaxPooling1D

input:

output:

(?, 18, 3)

(?, 9, 3)

flatten_6: Flatten
input:

output:

(?, 11, 24)

(?, 264)
flatten_7: Flatten

input:

output:

(?, 8, 21)

(?, 168)
flatten_8: Flatten

input:

output:

(?, 9, 12)

(?, 108)
flatten_9: Flatten

input:

output:

(?, 12, 3)

(?, 36)
flatten_10: Flatten

input:

output:

(?, 10, 12)

(?, 120)
flatten_11: Flatten

input:

output:

(?, 9, 3)

(?, 27)

concatenate_1: Concatenate
input:

output:

[(?, 264), (?, 168), (?, 108), (?, 36), (?, 120), (?, 27)]

(?, 723)

FC_dense: Dense
input:

output:

(?, 723)

(?, 840)

FC_dropout: Dropout
input:

output:

(?, 840)

(?, 840)

Output: Dense
input:

output:

(?, 840)

(?, 24)

Figure B.4: CNN-2-2 architecture

119

A
PPEN

D
IX

B
.

N
EU

R
A

L
N

ET
W

O
R

K
A

R
C

H
IT

EC
T

U
R

ES

Table B.6: CNN-2-2 hyper-parameters

Conv 1

(Load)

Conv 2

(Temperature)

Conv 3

(Humidity)

Conv 4

(Pressure)

Conv 5

(Wind)

Conv 6

(Cloud)
FC

Optimizer

(NSGD)

Hyper-

parameters

N
[11]
f : 36,

N
[11]
k : 9,

ϕ[11] : relu,

N
[11]
p : 1,

s[11] : 3,

ρ[11]: ’same’,

N
[12]
f : 24,

N
[12]
k : 12,

ϕ[12] : elu,

N
[12]
p : 2,

s[12] : 2,

ρ[12]: ’valid’

N
[21]
f : 21,

N
[21]
k : 3,

ϕ[21] : tanh,

N
[21]
p : 1

s[21] : 3,

ρ[21] : ’valid’

N
[31]
f : 12,

N
[31]
k : 7,

ϕ[31] : tanh,

N
[31]
p : 2

s[31] : 1,

ρ[31] : ’valid’

N
[41]
f : 12,

N
[41]
k : 5,

ϕ[41] : tanh,

N
[41]
p : 2

s[41] : 1,

ρ[41] : ’valid’

N
[51]
f : 12,

N
[51]
k : 5,

ϕ[51] : tanh,

N
[51]
p : 2

s[51] : 1,

ρ[51] : ’valid’

N
[61]
f : 3,

N
[61]
k : 7,

ϕ[61] : tanh,

N
[21]
p : 2

s[61] : 1,

ρ[21] : ’valid’

n[7] : 840,

p[7] : 0.3

ϕ[7] : tanh

η : 0.00237,

β : 0.99

Table B.7: CNN-2-3 hyper-parameters

Conv 1

(Load)

Conv 2

(Temperature)

Conv 3

(Humidity)

Conv 4

(Pressure)
FC

Optimizer

(NSGD)

Hyper-

parameters

N
[11]
f : 27,

N
[11]
k : 6,

ϕ[11] : tanh,

N
[11]
p : 2,

s[11] : 3,

ρ[11]: ’same’,

N
[12]
f : 45,

N
[12]
k : 12,

ϕ[12] : tanh,

N
[12]
p : 2,

s[12] : 1,

ρ[12]: ’valid’

N
[21]
f : 21,

N
[21]
k : 3,

ϕ[21] : tanh,

N
[21]
p : 1

s[21] : 3,

ρ[21] : ’valid’

N
[31]
f : 3,

N
[31]
k : 1,

ϕ[31] : tanh,

N
[31]
p : 2

s[31] : 1,

ρ[31] : ’valid’

N
[41]
f : 12,

N
[41]
k : 3,

ϕ[41] : relu,

N
[41]
p : 2

s[41] : 1,

ρ[41] : ’valid’

n[5] : 720,

p[5] : 0.4

ϕ[5] : tanh

η : 0.00217,

β : 0.99

Table B.8: CNN-3-1 and CNN-3-2 hyper-parameters

Conv 1

(Load)

Conv 2

(Temperature)

Conv 3

(Humidity)

Conv 4

(Pressure)
FC

Optimizer

(NSGD)

Hyper-

parameters

N
[11]
f : 36,

N
[11]
k : 15,

ϕ[11] : relu,

N
[11]
p : 2,

s[11] : 2,

ρ[11]: ’same’,

N
[12]
f : 12,

N
[12]
k : 12,

ϕ[12] : tanh,

N
[12]
p : 2,

s[12] : 2,

ρ[12]: ’valid’

N
[21]
f : 21,

N
[21]
k : 3,

ϕ[21] : tanh,

N
[21]
p : 1

s[21] : 3,

ρ[21] : ’valid’

N
[31]
f : 3,

N
[31]
k : 3,

ϕ[31] : tanh,

N
[31]
p : 2

s[31] : 1,

ρ[31] : ’valid’

N
[41]
f : 12,

N
[41]
k : 5,

ϕ[41] : tanh,

N
[41]
p : 1

s[41] : 1,

ρ[41] : ’valid’

n[5] : 840,

p[5] : 0.5

ϕ[5] : tanh

η : 0.0027,

β : 0.99

120

B
.2.

M
O

D
EL

A
R

C
H

IT
EC

T
U

R
ES

A
N

D
H

Y
PER

-PA
R

A
M

ET
ER

S

Load: InputLayer
input:

output:

[(?, 168, 1)]

[(?, 168, 1)]

Conv11: Conv1D
input:

output:

(?, 168, 1)

(?, 56, 27)

Pool11: MaxPooling1D
input:

output:

(?, 56, 27)

(?, 28, 27)

Conv12: Conv1D
input:

output:

(?, 28, 27)

(?, 17, 45)

Temperature: InputLayer
input:

output:

[(?, 24, 10)]

[(?, 24, 10)]

Conv21: Conv1D
input:

output:

(?, 24, 10)

(?, 8, 21)

Humidity: InputLayer
input:

output:

[(?, 24, 10)]

[(?, 24, 10)]

Conv31: Conv1D
input:

output:

(?, 24, 10)

(?, 24, 3)

Pressure: InputLayer
input:

output:

[(?, 24, 10)]

[(?, 24, 10)]

Conv41: Conv1D
input:

output:

(?, 24, 10)

(?, 22, 12)

Pool12: MaxPooling1D
input:

output:

(?, 17, 45)

(?, 8, 45)
Pool21: MaxPooling1D

input:

output:

(?, 8, 21)

(?, 8, 21)
Pool31: MaxPooling1D

input:

output:

(?, 24, 3)

(?, 12, 3)
Pool41: MaxPooling1D

input:

output:

(?, 22, 12)

(?, 11, 12)

flatten: Flatten
input:

output:

(?, 8, 45)

(?, 360)
flatten_1: Flatten

input:

output:

(?, 8, 21)

(?, 168)
flatten_2: Flatten

input:

output:

(?, 12, 3)

(?, 36)
flatten_3: Flatten

input:

output:

(?, 11, 12)

(?, 132)

concatenate: Concatenate
input:

output:

[(?, 360), (?, 168), (?, 36), (?, 132)]

(?, 696)

dense: Dense
input:

output:

(?, 696)

(?, 720)

dropout: Dropout
input:

output:

(?, 720)

(?, 720)

Output: Dense
input:

output:

(?, 720)

(?, 24)

Figure B.5: CNN-2-3 architecture

121

A
PPEN

D
IX

B
.

N
EU

R
A

L
N

ET
W

O
R

K
A

R
C

H
IT

EC
T

U
R

ES

Load: InputLayer
input:

output:

[(?, 168, 1)]

[(?, 168, 1)]

Conv11: Conv1D
input:

output:

(?, 168, 1)

(?, 84, 36)

Pool11: MaxPooling1D
input:

output:

(?, 84, 36)

(?, 42, 36)

Conv12: Conv1D
input:

output:

(?, 42, 36)

(?, 16, 12)

Temperature: InputLayer
input:

output:

[(?, 24, 10)]

[(?, 24, 10)]

Conv21: Conv1D
input:

output:

(?, 24, 10)

(?, 8, 21)

Humidity: InputLayer
input:

output:

[(?, 24, 10)]

[(?, 24, 10)]

Conv31: Conv1D
input:

output:

(?, 24, 10)

(?, 22, 3)

Pressure: InputLayer
input:

output:

[(?, 24, 10)]

[(?, 24, 10)]

Conv41: Conv1D
input:

output:

(?, 24, 10)

(?, 20, 12)

Pool12: MaxPooling1D
input:

output:

(?, 16, 12)

(?, 8, 12)
Pool21: MaxPooling1D

input:

output:

(?, 8, 21)

(?, 8, 21)
Pool31: MaxPooling1D

input:

output:

(?, 22, 3)

(?, 11, 3)
Pool41: MaxPooling1D

input:

output:

(?, 20, 12)

(?, 20, 12)

flatten: Flatten
input:

output:

(?, 8, 12)

(?, 96)

Calendar: InputLayer
input:

output:

[(?, 24)]

[(?, 24)]

flatten_1: Flatten
input:

output:

(?, 24)

(?, 24)
flatten_2: Flatten

input:

output:

(?, 8, 21)

(?, 168)
flatten_3: Flatten

input:

output:

(?, 11, 3)

(?, 33)
flatten_4: Flatten

input:

output:

(?, 20, 12)

(?, 240)

concatenate: Concatenate
input:

output:

[(?, 96), (?, 24), (?, 168), (?, 33), (?, 240)]

(?, 561)

FC_dense: Dense
input:

output:

(?, 561)

(?, 840)

FC_dropout: Dropout
input:

output:

(?, 840)

(?, 840)

Output: Dense
input:

output:

(?, 840)

(?, 24)

Figure B.6: CNN-3-1 and CNN-3-2 architecture

122

Appendix C

Model results

The following appendix contains some of the results left out from chapter 5. The best and

worst seasons of the first generation and second generation models are shown in figure C.1

and C.2, respectively. The forecasts for the entirety of 2020 are given in figure C.2.

01 04 07 10 13 16 19 22 25 28 31
2

3

4

5
·103

May 2019

El
ec

tr
ic

al
lo

ad
[M

W
]

CNN-1 MLP-1 Actual

(a) Spring

01 04 07 10 13 16 19 22 25 28 31

2

2.5

3

3.5
·103

Jul 2019

El
ec

tr
ic

al
lo

ad
[M

W
]

CNN-1 MLP-1 Actual

(b) Summer

Figure C.1: First generation forecasting results during the worst and best season in 2019.

123

APPENDIX C. MODEL RESULTS

01 04 07 10 13 16 19 22 25 28 01

3

4

5

·103

Apr 2019 May

El
ec

tr
ic

al
lo

ad
[M

W
]

CNN-2-1
Actual

(a) Spring

01 04 07 10 13 16 19 22 25 28 31
3

4

5

6
·103

Oct 2019

El
ec

tr
ic

al
lo

ad
[M

W
]

CNN-2-1
Actual

(b) Autumn

Figure C.2: Second generation forecasting results during the worst and best season in 2019.

124

APPENDIX C. MODEL RESULTS

01 04 07 10 13 16 19 22 25 28 31
2

4

6

·103

Jan 2020

El
ec

tr
ic

al
lo

ad
[M

W
]

Forecast
Actual

01 04 07 10 13 16 19 22 25 28
2

4

6

Feb

01 04 07 10 13 16 19 22 25 28 31
2

4

6

Mar

01 04 07 10 13 16 19 22 25 28
2

4

6

Apr

01 04 07 10 13 16 19 22 25 28 31
2

4

6

May

125

APPENDIX C. MODEL RESULTS

01 04 07 10 13 16 19 22 25 28
2

4

6

Jun

01 04 07 10 13 16 19 22 25 28 31
2

4

6

Jul

01 04 07 10 13 16 19 22 25 28 31
2

4

6

Aug

01 04 07 10 13 16 19 22 25 28
2

4

6

Sep

01 04 07 10 13 16 19 22 25 28 31
2

4

6

Oct

126

APPENDIX C. MODEL RESULTS

01 04 07 10 13 16 19 22 25 28
2

4

6

Nov

01 04 07 10 13 16 19 22 25 28 01
2

4

6

Dec Jan 2021

Figure C.2: The entire year of forecasts in 2020.

127

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ric

 P
ow

er
 E

ng
in

ee
rin

g

D
aniel Aunan Bolstad

Interpretation of Electrical Load Forecasts using Explainable Artificial Intelligence

Daniel Aunan Bolstad

Interpretation of Electrical Load
Forecasts using Explainable Artificial
Intelligence

A day-ahead load forecasting case study of the
NO1 price region

Master’s thesis in Energy and the Environment
Supervisor: Ümit Cali

June 2021

M
as

te
r’s

 th
es

is

	Introduction
	Background theory
	Time series and statistics
	Autocorrelation
	Mutual information
	Normalization
	Time series forecasting methods

	Artificial intelligence
	Supervised learning
	Multiple linear regression

	Artificial neural networks
	Multilayer perceptron
	Backpropagation
	Activation functions
	Convolutional neural networks
	Neural network optimization
	Regularization and dropout

	Explainable artificial intelligence
	Deep learning important features
	Shapley values
	Shapley additive explanations

	Data collection and analysis
	Norwegian electricity consumption data
	Data extraction and description
	Seasonality and statistics
	Holiday effect
	Daylight saving time

	Numerical weather prediction
	Data extraction and description
	Dependency between the variables

	Methodology
	Experimental setup
	Forecasting problem and description
	Data preparation and pre-processing
	Time series variables
	Categorical variables
	Daylight saving time

	Evaluation of forecasting accuracy
	Development of the candidate models
	Baseline models
	Neural network models

	Deployment and testing of the selected model
	Expanding window

	Interpretation of forecasts
	Choosing background data
	Global explanations for feature selection
	Local explanations for interpretation

	Results and discussion
	Model development
	First generation models
	Second generation models
	Third generation models

	Model evaluation
	Expanding window test
	Interpretation of selected forecasts

	Discussion of the results

	Conclusion
	Derivation of backpropagation
	Neural network architectures
	Hyper-parameter optimization
	Model architectures and hyper-parameters

	Model results

