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"[L]ife is like an extremely difficult, horribly unbalanced videogame. When
you’re born, you’re given a randomly generated character, with a randomly
determined name, race, face, and social class. Sometimes the game might
seem easy. Even fun. Other times it might be so difficult you want to give
up and quit. But unfortunately, in this game you only get one life. Some
people play the game for a hundred years without ever figuring out that it’s
a game, or that there is a way to win it. To win the videogame of life you just
have to try to make the experience of being forced to play it as pleasant as
possible, for yourself, and for all of the other players you encounter in your
travels."

- Ernest Cline, Ready Player Two [5]
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A B S T R A C T

Speech is of immense importance to human society and is the nat-
ural enabler for cooperation between humans. Unfortunately, there
are situations where vocalized speech is not an option. Interest in
the possibility of silent speech devices has continued to increase with
the technological revolution of the last couple of decades. One possi-
ble modality for a silent speech interface is facial electromyography
(EMG): electrical signals generated from muscle activation when mov-
ing the articulators without any vocalization. The aim of this project is
to contribute to this field of research by showing that a standardized
headset originally meant for recording brain waves can be used for
EMG-based silent speech recognition. The Emotiv Epoc+ EEG head-
set was used to collect five corpora. Two of the corpora included time-
synced audio recordings. Five different neural network architectures,
as well as a Hidden Markov Model (HMM) classifier, were used for
single word classification. An average recognition rate of 93.3% over
four speakers was achieved on a vocabulary of three words using
a recurrent neural network (RNN). The remaining corpora were col-
lected by one speaker with session-independent word recognition of
85.4% accuracy on a vocabulary of 10 words. A convolutional neu-
ral network (CNN) was used for this, and the same architecture re-
sulted in 63.2% word accuracy on the joint vocabulary of the NATO
phonetic alphabet and digits. Two functional silent speech interfaces
were furthermore created. One was based on EMG-to-text spelling
out sentences. This system correctly classified an average of 82.7% of
the characters in six test sentences. The other system utilized EMG-
to-speech and was able to synthesize digits with the voice of the au-
thor. 20 synthesized digits were correctly classified 73.5% of the time
by human listeners. This thesis shows that the Emotiv Epoc+ sensor
can indeed be used for an EMG-based silent speech interface, and
this sensor is proposed as a standardized platform for future silent
speech research.
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S A M M E N D R A G

Språk er uvurderlig for mennesket som art, og tale som kommu-
nikasjonsmiddel muliggjør samarbeid mellom mennesker hver dag.
Allikevel finnes det ulike situasjoner der vokalisert tale ikke er et al-
ternativ. Interessen for et fungerende system som muliggjør lydløs
tale har økt de siste årene, i takt med teknologiske nyvinninger innen
elektronikk og programmering. En mulig modalitet for slik lydløs tale
kan være signaler fra muskelbevegelser i ansiktet, såkalt elektromyo-
grafi (EMG). Disse muskelbevegelsene er tett tilknyttet produksjonen
av tale og kan dermed oversettes til lydbølger eller tekst ved hjelp
av maskinlæring. Målet med denne masteroppgaven er å vise at et
standardisert apparat for måling av hjernebølger, en Emotiv Epoc+
EEG-sensor, kan brukes til EMG-basert lydløs tale. Emotiv-sensoren
ble brukt til å samle 5 datasett som i et par tilfeller også inkluderte
mikrofonopptak. Fem ulike former for nevrale nettverk ble brukt, i
tillegg til en Skjult Markov Modell (HMM), til å klassifiser enkeltord.
En gjennomsnittlig nøyaktighet på 93.3% over 4 ulike talere på et 3-
ords vokabulær ble oppnådd ved å bruke et nevralt nettverk med
tilbakekoblinger (RNN). De resterende datasettene ble samlet inn av
forfatteren selv, og 85.4% nøyaktighet i ord-gjenkjenning ble oppnådd
på 10 ulike ord ved hjelp av et konvolusjonalt nevralt nettverk (CNN).
Tilsvarende resultat var 63.2% på 39 ulike ord. Videre ble to ulike sys-
temer for lydløs tale utviklet. Den ene baserte seg på å stave hvert
tegn, noe som førte til 82.7% korrekt plassering av tegnene i seks
testsetninger. Det andre systemet ble utviklet ved hjelp av EMG-til-
tale og genererte lyd tilsvarende tallene 0 til 9 med forfatteren sin
egen stemme. Fra 20 slike genererte lyder ble 73.5% av dem korrekt
gjenkjent av personer som lyttet til lydklippene. Disse resultatene
viser for aller første gang at en Emotiv Epoc+ sensor kan bli brukt til
lydløs EMG-basert talegjenkjenning, og denne sensoren blir foreslått
som en standardisert løsning for framtidig forskning på EMG-basert
lydløs tale.
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1
I N T R O D U C T I O N

As far as we know, humans are the only species to have developed
communication at such an advanced level. Speech enables not only
the sharing of thoughts and intentions but also a way of sharing
knowledge. As a result of immense efforts by researchers in the area
of automatic speech recognition (ASR), speech is also increasingly be-
ing used as a mode of interaction with consumer technologies. How-
ever, there are some scenarios where communication by speech is
unpractical. Loud background noise or reluctance to disturb nearby
listeners are examples where other means of communication could
be more effective. Additionally, communication by speech is often
impossible for those with significant speech impediments. This moti-
vates the need for a functional silent speech interface (SSI), a device
that can record a speakers silent intention and translate it either to
text or a speech waveform.

When producing silent speech, one still uses the spoken language
rather than having to learn a new form of communication. Different
kinds of SSIs have been imagined in both science fiction and research
projects of various forms in the last 60 years. The way the artificial in-
telligence (AI) HAL9000 in 2001 - A Space Odyssey [43] uses lip-reading
of a camera feed to understand that the two astronauts on board
are conspiring against it is one example. Another is the DARPA Ad-
vanced Speech Encoding program from the early 2000s that aimed to
enable silent and noise-prone communication for the American mili-
tary forces.

There are different expressions that convey more or less the same
meaning as silent speech. These include covert, subvocal, sub-auditory,
non-acoustic, sub-acoustic, imagined, and inner speech, as well as the
term subvocalization. Note that some sources use these expressions
as the process of thinking out loud inside your head, while others include
everything from thinking to mouthing words without vocalizing. In
this thesis, the term silent speech is used as the process of moving one’s
mouth as if speaking but without making any noticeable sound.
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1.1 background

Scientific research on silent speech can be traced all the way back to
the 1950s, but it was not until the 1960s that electromyography (EMG)
electrodes were used to record activation of facial muscles[20]. At
that time, it was done mostly to research the role of unconscious fa-
cial micro-movements in memory and problem-solving. Some scien-
tists regarded this kind og silent speech as the principal mechanism
of thought [63], others described it as essential for establishing and
maintaining speech code representations in short-term memory. EMG

was during those years limited as a research tool by the electronic
equipment and computational power available, exemplified by this
excerpt of the data analysis part of the 1977 Garrity [20] paper Elec-
tromyography: A review of the current status of subvocal speech research:

"Two principal techniques have been used in studies of
subvocal speech to date to analyze EMG data: measure-
ment of the amplitude of the single highest (or several
highest) polygraph pen deflection(s) per trial segment (e.g.
stimulus presentation or delay periods), and analog com-
puter routines for squaring and integrating voltage values
over trial segments."

With only polygraph pen EMG recordings and analog data processing
available, the notion of detecting and classifying silent speech proba-
bly seemed unattainable at the time. However, by 1985 two Japanese
scientists had made the first EMG-based silent speech system using
three sensors and recognizing 5 vowels with 71% accuracy [61]. In
2003, researchers from the NASA Ames Research Center published
results showing they were able to classify silent speech. Their vocabu-
lary consisted of 6 words related to controlling a Mars rover using one
pair of EMG sensors, and they achieved 92% accuracy using hidden
Markov models (HMMs) and simple neural networks (NNs) [34]. The
current state-of-the-art in EMG-based silent speech recognition is the
solution by a group of researchers from Massachusetts, USA, where
Meltzner et al. [50] achieved a 91.1% recognition rate on a 2200-word
data set. Unfortunately, there is currently no EMG equipment avail-
able that is precise, mobile, and available at a low cost. This project
adopts an electroencephalography (EEG) headset originally designed
for reading brainwaves, the Emotiv Epoc+ [13], to work as a facial
EMG sensor.
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1.2 objectives

The aim of this master thesis is to show that an existing EEG hardware
solution more readily available than medical-grade EMG sensors can
be used to detect facial muscle signals and that those signals can be
used for silent speech communication. There are multiple potential
use cases for an SSI, but none are yet available outside the scope of a
few research groups. This thesis gives insight into the opportunities of
an EMG-based silent speech solution and the current achieved results,
with the following main objectives:

(1) Analyze whether the chosen sensor can be used to recognize
silently spoken single words from a small vocabulary.

(2) Enable a method for efficient collection of both EMG and audio
datasets while using the Emotiv Epoc+.

(3) Discover types of classification and feature extraction methods
that work well with the available data.

(4) Work on understanding the challenges connected to session in-
dependence and the potential for a direct EMG-to-speech solu-
tion.

1.3 literature study

The literature study for this thesis was based primarily on three text
books (Freitas et al. [16], Huang et al. [27], and Yu and Deng [69]) de-
scribing spoken language processing, automatic speech recognition,
and silent speech interfaces, respectively. Additionally, articles and
theses from two scientific milieus were of the utmost importance. One
in Massachusetts, USA (Kapur [37], Kapur, Kapur, and Maes [38], Ka-
pur et al. [39], Meltzner et al. [50, 51], and Wadkins [64]) and the other
in Germany (Denby et al. [9], Denby et al. [10], Diener and Schultz
[11], Janke and Diener [32], Maier-Hein et al. [48], and Wand [65]).

The aforementioned resources provide a sound basis for a review of
the current state of EMG-based silent speech. Additionally, they are
essential for the discussions regarding the validity and significance
of this project.

1.4 thesis structure

The structure of this thesis mostly follows the standard IMRaD (Intro-
duction, Methods, Results, and Discussion) format, with the addition
of Theory and Conclusion chapters. In the Theory chapter, the reader
is presented with the most critical topics of this work. Note that a de-
cision was made to go wide rather than deep as many different topics
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are included. The Methods chapter primarily describes the topics that
are common for all the work conducted, as well as a concise rundown
of each of the five corpora. All results are sorted based on the corre-
sponding corpus as well as the two functional SSIs, for the most part
following the same timeline as each experiment was conducted. Then
the Discussion chapter summarizes and compares the results based
on speaker- and session-dependence with previous studies. It further
goes into more in-depth analyses of sensor placement, electrode sub-
sets, and signal artifacts. Finally, the Conclusion chapter rounds off
the report and looks ahead with points on how this work can be con-
tinued in the future.

1.5 a note on reproducibility

Be aware that implicit bias may unintentionally be present in the used
methods, collected training data, or how the results are interpreted.
Four out of the five corpora were collected on only one speaker, the
author of this thesis. This avoided the challenges of speaker depen-
dence and was the most practical solution given the objective of social
distancing as a result of the Covid19-pandemic. However, note that
Corpus 1 was collected with four different speakers as a preliminary
effort to create a venture based on the concept of EMG-based silent
speech. All of these speakers were male of approximately the same
age and with similar backgrounds. As inherent bias in training data is
an important topic, a much more diverse group of subjects should be
included if more experiments on speaker dependence are conducted.
The sensor used for this work was bought by a startup founded by the
four subjects used in this study, with money awarded from Trønderen-
ergibidraget, a fund for early startup ideas at Norwegian University of
Science and Technology (NTNU). This thesis will refer to source code
multiple times, used both to collect data from the Emotiv sensor and
for processing, visualizing, and training algorithms using this data.
This code and the five corpora collected are not available online but
can be requested from the author at mathias.backsaether@gmail.com.
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2
T H E O R E T I C A L B A C K G R O U N D

This chapter covers the theory relevant to describing the experiments
that have been conducted and how to interpret the results. Speech
production is first explained briefly, then speech recognition, both by
classical probabilistic approaches and modern machine learning. A
deep dive is done into different ways silent speech might become
obtainable follows before the topic of electromyography is explained.

Figure 1.: A visualization of the most essential parts of the speech produc-
tion pipeline.

2.1 speech production

Speech production is a very complex process. It starts in the brain,
specifically with language understanding in Wernicke’s area. Signals
travel from Wernicke’s area to Broca’s area, which is essential to
speech formulation and articulation. Broca’s area is located close to
the motor cortex, the part of the brain that controls movement. Ac-
tion potentials activated in the motor cortex travel through the cra-
nial nerves to the peripheral nervous system, where efferent nerve
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cells activate specific muscle fibers in a highly coordinated manner
to produce the movements needed for speech [36, 65]. This process
is visualized in Figure 1, which will be the guideline for the coming
chapter.

Sound is longitudinal pressure waves moving through air. The differ-
ent human speech sounds are therefore a result of the amplitude and
frequency of these pressure waves. To be able to control these, human
speech production includes both phonation and articulation. Phona-
tion is the production of sound by moving air from the lungs through
the larynx in a periodic manner, while articulation is the fine-tuned
movement of the articulators to move the air pressure from the lungs
through the vocal tract. The articulators include the tongue, lips, jaw,
and soft and hard palate. For every word one utters, all of the needed
muscles have to be coordinated and precisely controlled [27].

2.2 speech recognition

For a machine to detect and recognize speech, an interface will have
to record and classify signals somewhere along the path from thought
to vocalized speech. For ASR systems based on sound, this requires a
microphone that records the pressure waves in the air. The sampling
rate for speech is often set to 16 kHz, slightly higher than double that
of the highest relevant frequencies. The analog input is then trans-
formed into a digital signal that can be analyzed by looking at the
frequencies of the pressure waves. One way to analyze this digital,
and therefore discrete, signal is to run it through a Discrete Fourier
Transform (DFT). The resulting spectrum will give information about
the number of frequencies present in the signal, up to half that of the
sampling rate. If we are looking at an audio-recording one second
long, sampled at 16 kHz, a DFT will only give information about fre-
quencies present up to 8 kHz, and for the one-second recording as
a whole. Because some of the most important aspects of speech are
based on the order of speech sounds present for only short windows
in time, a DFT on the whole recording rarely gives the needed informa-
tion for speech recognition. Short-Time Fourier Transforms (STFTs) are
therefore used to make spectra of smaller windows in time, usually
25 milliseconds long. Using information from these spectra directly or
looking at the complete information from a series of windows com-
posing a spectrogram, it is possible to extract very useful features
from the speech signal [27].
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2.2.1 Feature extraction of speech signals

The naïve approach to use a speech signal would be to input the
raw signal into one’s classification model of choice. Historically, this
would not lead anywhere, as the meaning of speech depends heavily
on the frequencies in airwaves. Three values are especially interesting
from a spectrum, the fundamental frequency f0, and the two formant
frequencies F1 and F2. f0 corresponds to the pitch of a voice, i.e. the
rate of vocal-fold cycling, while F1 and F2 indicate which vowel is
spoken. All three are marked in the example spectrum of the vowel
/iy/ in Figure 2. Note that the amplitude of the different frequencies
in the spectrum is not linear but logarithmic, shifting it to decibels
(dB), the unit used for the loudness of sounds. The spectral envelope,
drawn in red in Figure 2, corresponds to how the shape of the vocal
tract filters the glottal pulse during speech. Values for the fundamen-
tal and formant frequencies, as well as the spectrum itself, constitute
some of the most important features used for ASR [27].

Figure 2.: A spectrum of the vowel /iy/ with linear predictive coding (LPC)
coefficients of order 16 used for the spectral envelope. The value
for f0 is found by looking at the distance between tops, while the
formants are seen as tops in the spectral envelope. The textbook
values for F1 and F2 (300 and 2300 Hz) [27, Table 2.5] were added
as stippled black lines.

Mel-Frequency Cepstral Coefficients

Probably the most popular features for speech applications are the
Mel-frequency cepstral coefficients (MFCCs) [1], invented in 1980 by
Davis and Mermelstein [8]. They are based on two crucial insights.
One is the fact that taking the inverse Fourier transform of a log-
arithmic spectrum returns valuable information about the periodic
structures in frequency spectra [27]. This changes the data to the que-
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frency-domain, and a spectrum is renamed cepstrum. In this cepstrum,
information about the low-frequency formats and the fundamental
frequency, as seen in the log power spectrum of Figure 2, will be
discernible. The second insight is that the human auditory system is
based on a non-linear frequency scale. For us humans, the perceptual
difference between frequencies is much more significant with lower
frequencies, easily recognizable by comparing the perceived differ-
ence between 100 and 200 Hz, and 1000 and 1100 Hz. Both the Mel-
and Bark-scales are empirically developed scales where the same dis-
tance on each of the scales corresponds to the same change in pitch
perception. The following formula is the basis for calculating the mel
value from a frequency,

Mel(f) = 2595 ∗ log10
(
1+

f

700

)
.

Using this Mel-scale and overlapping triangular windows to create
mel-filterbanks, then applying a discrete cosine transform1, the result
is the MFCC features. Correspondingly, features named perceptual lin-
ear prediction (PLP) can be derived using the Bark-scale [27]. Later
developments have led to another feature extraction algorithm called
power-normalized cepstral coefficients, which suppresses background
noises and improves recognition accuracy compared to MFCCs and
PLPs [40]. However, there are examples of research groups that use
the raw audio signal for speech recognition and synthesis by using
modern deep learning methods [56, 70]. Note that for many applica-
tions, independently of the selected feature extraction method, first
and second time-derivatives of the features are used as additional in-
puts to the learning model.

Even though the principle of MFCCs is based on the human cochlea,
the easy availability of MFCC libraries and their usefulness in speech
recognition has led to MFCCs being used for EMG-based silent speech
as well [38, 50]. The typical frequencies of the Mel-scale are not suited
for the frequency range of an EMG signal but can be re-scaled using
the frequency range of the input signal and the same building princi-
ples as the original MFCCs.

2.2.2 Degrees of recognition

Speech recognition can be sorted into four different degrees of recog-
nition: isolated words, a few connected words, continuous speech,
and spontaneous speech. The recognition rate of isolated words is
easily calculated by looking at how many of the words were correctly

1 The discrete cosine transform is used as it is a simpler version of the inverse Fourier
transform that returns only real values, and at the same time, decorrelates energy in
the overlapping mel-filterbanks.
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classified. However, it is not as easy to evaluate the performance
of a speech recognition system for spontaneous speech with multi-
ple sentences. When comparing the output-sequence of words from
the recognition system with the original reference transcription, er-
rors will continually lead to the need for re-alignment of the two
sequences. There are typically three types of such word recognition
errors in speech recognition; substitution (subs), deletion (dels), and
insertion (ins). The word error rate (WER) was therefore defined in the
following way [27, Equation 9.3]:

Word Error Rate = 100%× subs + dels + ins
No. of words in the correct sentence

.

The WER is frequently used throughout this report to describe the
performance of a speech recognition system. Performance of single
word classification is usually kept to the recognition rate for simplic-
ity, which is the same as 100% minus WER for single word classifica-
tion.

2.3 a probabilistic approach to speech recognition

In the very beginning of ASR, only isolated words were recognized.
By the late 1990s, real-time language dictation systems with large
enough vocabularies for more widespread use became available [28].
One of the reasons for these advancements was the representation
of speech as a hidden Markov process, which builds on the concept
of a Markov chain; A stochastic model of random processes based
on the probabilities of an initial state-distribution and state transi-
tions [69]. In an ordinary Markov chain, each state corresponds to
a deterministically observable event. However, when introducing a
non-deterministic process that includes hidden states and another
set of observable states depending on the hidden Markov process,
we have the hidden Markov model (HMM) [27]. As a layer between
the observations and the hidden Markov process, the probabilistic
Gaussian mixture model (GMM) is often used to fit the real-world data,
such as the relevant speech features, into probability distributions.
Figure 3 shows an overview of how the GMMs and hidden Markov
processes are combined. This GMM-HMM method resulted in very ef-
fective speech recognition systems from the 1980s onward [28]. HMMs

are still widely used for ASR today. Typically in combination with the
MFCC features mentioned previously.

Phonemes are the building blocks of spoken language, making up the
words we speak. In a typical ASR system using HMMs, a model is built
hierarchically from ground states, via phonemes and words, to sen-
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Figure 3.: A simplified overview of the GMM-HMM process where the raw
audio is split into windows, relevant features extracted, then fitted
by the GMMs and finally connected with the hidden states of the
HMM.

tences. This is done by maximizing the probability for a sequence of
words based on a combination of the acoustic, lexical, and language
models. Despite how well GMM-HMMs work for speech recognition,
GMMs cannot optimally fit the non-linear properties of speech [28].
Since the introduction of GMM-HMMs, more advanced methods have
been used to minimize the WER further and generalize speech recog-
nition systems to become more speaker-independent.

2.4 machine learning used for speech recognition

To solve the issue of fitting non-linear data, feed-forward deep neu-
ral networks (DNNs) were introduced to ASR during the late 1980s
[25]. DNNs work by iteratively training the parameters of each node.
A set error between the proposed solution by the network and the
correct answer is backpropagated through the network, and each pa-
rameter is updated according to the learning rate. Combinations of
DNNs and HMMs resulted in a significant reduction of the WER for the
best-performing ASR systems at the time. The performance of these
new machine learning methods increased proportionally with more
training data, going hand-in-hand with the growing availability of
processing power through the 2000s [28]. As the DNN does not hold
any temporal information, it was a very good match with the HMM.
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By itself, a well-working NN method was not possible until the ad-
vancement of recurrent neural networks (RNNs) that keep a memory
structure expressed as internal states between the different nodes. It
does not only feed information forward but also loops it back recur-
rently. One issue with this is the vanishing/exploding gradient, the
fact that information from long before in a time series will have a dis-
proportionate impact on the result as the gradient of the early infor-
mation will be repeated for every timestep during training. The long
short-term memory (LSTM) and gated recurrent unit (GRU), two more
advanced versions of the RNN, were developed by researchers to solve
this problem. Figure 4 shows a simplified version of the difference be-
tween the DNN and RNN, while Figure 5 visualizes the differences
between the simpleRNN, LSTM, and GRU units [69].

Figure 4.: Visualizations of the network architectures of deep neural net-
works (DNNs) and recurrent neural networks (RNNs). Note that
the connections that loop back in the recurrent layers have a time-
delay compared to the rest of the connections.
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Figure 5.: The inner workings of the simpleRNN, LSTM and GRU versions
of an RNN node. tanh and sigmoid are two different activation
functions transforming a signal to either between −1 and 1 or 0

and 1, respectively.

The convolutional neural network

Another appealing NN architecture is the convolutional neural net-
work (CNN). It is structured in a way that makes it possible to extract
certain shapes for each convolution layer by a filter that moves around
the input data. These shapes can later be combined to the represen-
tation of more complex structures. Figure 6 shows a simplification of
this process, including two fully connected hidden layers in the end
as that is often used. CNNs are most famous for revolutionizing im-
age classification but have also been used on audio data where the
convolution layers look for features along the time-axis of the input
data. CNNs have to a limited degree been used for vocalized speech
recognition, but more so for EMG-based silent speech [38, 69].

Performance optimization

To get neural networks (NNs) to perform well, hyperparameter opti-
mization is of great importance. This involves tuning all of the pa-
rameters that the designer of a NN can decide. The most obvious
choices include what type of NN is best fitted for the problem at hand,
how large the NN should be, i.e. the number of layers and hidden
nodes, what an appropriate size of the input is, and how to extract
features from the original data. Then, there are numerous decisions
to be made within the NN structure itself, such as dropout layers that
randomly remove a certain percentage of nodes for each round of
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Figure 6.: Visualization of a typical network architecture of a convolutional
neural network (CNN). Note that the hidden layers are often
called dense layers as well.

backpropagation training or pooling layers that blurs the signal by
taking the average or max value from a certain number of nodes and
feeding that forward to the next layer in the NN. There also exist dif-
ferent activation functions that can be chosen for each layer of the NN.
These determine how the input into the node is processed before be-
ing sent to the next layer of nodes. Moreover, different loss functions
describe precisely how to calculate the loss during the training of the
NN. Lastly, the learning rate and the number of epochs decide how
much the weights of each node will change for each training step
and how many rounds of training will be performed, respectively.
Both can have a significant impact on performance.

2.5 silent speech

2.5.1 Modalities to detect silent speech

To enable silent speech it is necessary to read signals earlier in the
speech production process than audible vocalization. These signals
can be anything between neuron activity in the brain and inaudible
whispers. Revisit Figure 1 for a recap of this process and how it con-
nects.
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Silent speech based on the central nervous system

Because all the information necessary for speech is present in the
brain, it should theoretically be possible to achieve silent speech based
on signals recorded from the brain. As even our most complex thoughts
and emotions form in the brain, future brain interfaces might even
surpass silent speech and enable communication on a much more ab-
stract level. An important distinction when it comes to silent speech
based on brain signal is whether or not the interface is invasive, i.e. if
an operation is needed to install the device. For speech-impaired pa-
tients with disorders that target the brain or the connection between
the brain and muscles, only direct brain recordings will be able to
restore speech [22]. Facebook announced during their F8 conference
in 2017 that they aimed to "creat[e] a silent speech system capable of
typing 100 words per minute straight from your brain" [14]. One of
their collaborating research groups published a paper in Nature in
2020 reporting a WER of only 3% on a vocabulary of 250 words using
electrocorticography (ECoG), electrodes placed on top of the brain,
beneath the skull [49]. Another American research group showed in
2020 that a patient with two brain implants was able to type with his
mind at a rate of 90 characters a minute on an unlimited vocabulary.
The initial WER of 25.1% was decreased to 1.5% using an offline bidi-
rectional decoder and a language model [68]. These results show that
functional SSIs are closer than ever, but so far only with invasive brain
surgery.

Non-invasive solutions based on the brain include the inherent chal-
lenge that signals from the brain are distorted by the skull. They are
therefore limited to recording either brain waves or activation of brain
areas, not singular or a small group of neurons. EEG is likely the non-
invasive brain interface that has been proposed most seriously as a
modality for silent speech as it can be used on freely behaving hu-
mans. One result using EEG for silent speech shows high rates of
classification accuracy only when distinguishing two different vow-
els [30]. Another report a WERs of around 75% on a vocabulary of 29
words [42]. Contrarily, one study from 2016, using the same Emotiv
Epoc+ sensor used for this project (as an EEG headset the way it was
intended), achieved an average recognition rate of 67.03% on 30 dif-
ferent classes envisioned by the subjects [44]. This shows that EEG as
an SSI is indeed possible.

Detection of movement

Subsequent to the brain activity related to silent speech, signals are
detectable in the peripheral nervous system between the brain stem
and muscles. Kapur, Kapur, and Maes [38] place weight on the fact
that their system, although based on EMG-sensors, can detect acti-
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vation of the peripheral efferent neurons without any noticeable fa-
cial movement. Most EMG-based systems, however, also use signals
from muscle activation interlinked with movement. To date, it seems
an EMG-based SSI is the most promising non-invasive method for en-
abling functional silent communication with both the speed and ac-
curacy of vocalized speech. The most striking evidence of this is the
results from Meltzner et al. [50], describing an EMG-based SSI that
only has an 8.9% WER on a 2200 vocabulary.

Another option is to use magnets to detect the movement of the
tongue and lips, which has achieved good recognition of smaller vo-
cabularies. However, this option introduces the obvious disadvantage
that the magnets have to be operated into the user’s mouth for long-
term use to be achieved [15, 26]. A third option is to capture the move-
ment of the lips by using cameras in the same way as lip-reading is
an attainable skill for humans. This method is limited by the need
for a camera in front of the user’s mouth but may still be useful as
this is already present when using modern-day personal computers
or smartphones. Taking advantage of the fact that there is an almost
unlimited amount of video with corresponding text available online,
Google DeepMind has made a system trained on almost 3600 hours of
training data that was able to read lips much more precisely than hu-
man professional lipreaders (WER of 40.9% compared to 86.4− 92.9%)
[59].

Almost-silent glottal activity

The final category of possible SSIs is dependant on some form of glot-
tal activity, but it can be so low that it is still not discernible. First out
of these systems was the non-audible murmur (NAM) microphone,
proposed in 2003 by Nakajima et al. [54]. It is based on a stetho-
scopic microphone placed behind the ear that captures vibrations
from the vocal tract through the skin. These vibrations are present
with a lower-than-whisper murmur of words. Even though there are
some challenges with noise from clothing, hair, and respiration, the
NAM microphone is currently used to a small extent in Japan.

Other methods using the vibration of bone or skin are in use today,
but primarily as ways to reduce background noise in settings of vocal-
ized speech. One instance is loud military combat environments, with
the solutions of the Danish company Invisio [6] already existing. An-
other alternative is the use of ingressive speech, where a special micro-
phone is placed less than 2 mm from the mouth, and non-detectable
speech commands can be recognized. Fukumoto [18] reported a WER

of 1.8% on a speaker-dependent system with a vocabulary of 85 com-
mand sentences.
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Multimodal silent speech interfaces

Various SSI modalities concerning the different stages of speech pro-
duction have been covered in this section so far. Additionally, it is
possible to combine multiple modalities as well. Multimodal inter-
faces introduce the possibility of richer input data that can give silent
speech recognition with lower WERs. Nevertheless, they also intro-
duce challenges, like how to synchronize data from the different sen-
sors optimally. One example is how Freitas et al. [17] used a com-
bination of EMG and real-time magnetic resonance imaging (MRI) to
detect nasal vowels inherent to the Portuguese language during silent
speech. A complete summary of multimodal SSIs can be found in Fre-
itas et al. [16, Chapter 4].

2.6 electromyography

2.6.1 Recording muscle activation

Muscular activation is always preceded by an electrochemical cur-
rent through the nervous system and into muscle fibers. The corre-
sponding voltage potential propagates through tissue from the acti-
vation site and will eventually reach the surface of the skin. As the
signal gets attenuated along the way, the most precise measurement
of this signal is invasive electromyography (EMG) using conductive
needles, which is the preferred method for some medical diagnostic
tests of muscle response and to detect neuromuscular abnormalities.
A more practical application of EMG detection outside of the hospital
is surface electromyography,2 where electrodes are placed on the skin.
Therefore, the recorded signal from such sensors is an attenuated sig-
nal from the surrounding muscles with a stronger signal from muscle
fibers closer to the sensor [52]. Most uses of surface EMG are with a
bipolar configuration where two electrodes are placed along the mus-
cle of interest with approximately 2 cm in between. A third reference
electrode is placed on a place with little to no muscle activity so that
the resulting signal is the difference between the skin potential of the
two electrodes relative to the reference. The most important property
of a surface electrode is to minimize the electrode-skin impedance to
reduce noise. Different kinds of dry and wet electrodes exist for dif-
ferent purposes. The widely accepted standard for EMG electrodes is
of the type silver (Ag)/silver chloride (AgCl) with an added conduc-
tive gel between the electrode and skin [4, 65].

There are additionally other ways of obtaining EMG measurements
from multiple sensors. For instance, with an electrode array that has

2 Surface electromyography is usually abbreviated sEMG, but will after this section be
denoted as EMG.
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one common reference and the possibility of looking at the difference
between all the electrodes in the array. Breakthroughs in material sci-
ence have also made it possible to produce flexible and super-thin
EMG arrays for facial recordings of surface EMG. Exemplified here
with the Nature article: A Wearable High-Resolution Facial Electromyog-
raphy for Long Term Recordings in Freely Behaving Humans [29].

2.6.2 Data processing of EMG-signals

The interesting frequency range for EMG signals is heavily dependent
on the sensors and what the signals are used for. A wide range can
be put at 0.5 to 2000 Hz, while 20− 2000 Hz is often used for medi-
cal purposes [52]. However, if one were to include the full bandwidth,
unnecessary noise would be included due to both biological and tech-
nical artifacts. These artifacts include amplification noise, the possibly
high impedance between the sensors and the skin, powerline interfer-
ence at either 50 or 60 Hz, motion noise typically at 1− 10 Hz, heart
activity, and cross-talk between muscles [4, 65]. The EMG signal is
therefore often filtered extensively, rectified to avoid a mean of zero,3

and smoothed. Different features are then extracted based on the spe-
cific application. Frequency ranges chosen for previous EMG-based
SSIs vary extensively from as low as 0.5− 8 Hz [64] to even broader
than the textbook range, 0− 2.5 kHz [50].

Comparing EEG and EMG

Electroencephalography (EEG) is a non-invasive measurement tech-
nique to read brain waves, with electrodes placed on top of the head.
The electrodes used for most measures of biopotentials (usually de-
noted ExG, including EEG and EMG) are usually more or less similar.
Placement and size range, as well as the frequency bandwidths and
recorded amplitudes (in mV), on the other hand, are somewhat dif-
ferent for each application. EEG usually operates with smaller voltage
amplitudes and a lower frequency range than EMG, but there is still
an overlap in the lower end of the frequency range. Chapter 2.1 of
Neural Engineering gives a complete rundown of the different types of
biopotential measurements and electrodes [2].

2.7 emg-to-text

As seen in the Introduction, there has been research on the topic of fa-
cial EMG measurements related to silent speech since the 1960s. Since
then, research on EMG-based SSIs has mainly focused on EMG-to-text,
and usually session- and speaker-dependent single word classifica-

3 Rectification of the EMG signal is conducted to identify the overall strength of the
neural signal, and thus the total muscle activation in an area.
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tion in English. Some papers have looked at session and speaker-
independent models, but that makes classification much more diffi-
cult. Table 1 shows an overview of most previous studies on single-
word classification using facial EMG sensors. The columns show the
original publication for the results, the publication year, vocabulary
size for the main corpus in the study, the recognition rate for that
corpus using the optimal method in each paper, and lastly, whether
or not that method was session-independent. A couple of papers are
listed twice as they present both session-dependent and -independent
results. All results used for the literature review for this thesis were
speaker-dependent.

Table 1.: Single word classification results from previously published work
in EMG-to-text.

Source Year Vocabulary Accuracy [%] Session-independent

[61] 1985 5 64 No

[53] 1991 10 60 No

[3] 2001 10 93 No

[33] 2005 10 73 No

[48] 2005 10 97.4 No

[48] 2005 10 76.2 Yes

[35] 2006 108 68 No

[65] 2014 108 85 No

[65] 2014 108 73 Yes

[60] 2017 5 64.7 No

[38] 2018 10 92 No

[50] 2018 65 90.4 No

[47] 2019 10 72 No

[71] 2020 10 79.5 No

[72] 2020 10 93 No

Based on the accuracies presented in Table 1, it is evident that EMG-
to-text is far from a solved scientific problem. Even though some pa-
pers presented classification accuracies above 90% on 10 words before
2005, several more recent studies still achieve accuracies between 70

and 80 percent. These differences are usually a result of the focus
of the study, different amounts of available training data, how much
effort is put into optimizing the classification methods, and whether
the publication came from a research group with much previous ex-
perience in the field of EMG based silent speech or not. In the last few
years, more focus has furthermore been put into EMG-based silent
speech in different languages, e.g. Soon et al. [60] using Malay and
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Ma et al. [47] using Chinese.

The truly state-of-the-art in EMG-to-text has been mentioned a couple
of times already in this thesis but is not listed in the table above. This
is because it is a model based on mapping EMG data to phonemes,
not words. Meltzner et al. [50] collected multiple corpora, and their
smallest corpus had a 65-word vocabulary that they used for word
classification with an average accuracy of 90.4%, as presented in Ta-
ble 1. The largest of their corpora, however, included a vocabulary of
2200 words. Instead of having a 2200-class classification model, the
authors used MFCC features and GMM-HMMs to map 50ms windows
of EMG data to a tri-phone model. This final speaker-dependent tri-
phone model was then evaluated on 1200 continuous phrases from
the 2200-word vocabulary of their final corpus with an average WER

of 8.9%. The main disadvantage of the results from Meltzner et al.
[50] is the fact that they used limited, highly expensive medical-grade
EMG sensors that are difficult to acquire. This might be solved with a
custom EMG headset made for silent speech sometime in the future,
as something like this does not exist yet. This thesis therefore pro-
poses that the Emotiv Epoc+ sensor might be a good option in the
meantime.

2.8 emg-to-speech

The EMG-based SSIs discussed so far have all focused on translating
facial muscle activation to text, either directly through single-word
classification or by mapping EMG data to phonemes. This transla-
tion from EMG to text has also been the main focus area of this Mas-
ter’s thesis. However, a subcategory of research on EMG-based silent
speech focuses on generating speech waveforms from EMG signals.
This approach results in potentially no restrictions on vocabulary in
the corpus or even language, as certain muscle movements link to cer-
tain sounds made by the speaker. Additionally, a functional EMG-to-
speech solution could preserve the voice of the speaker and possibly
facets such as pronunciation, dialect, tone, and tempo as well [31].

2.8.1 Speech synthesis

With a high-level view of EMG-to-speech, there are two main approaches.
One is to map the input EMG data directly to the waveform of a speech
signal that can be played on a speaker. The other is to make use of
existing research on speech synthesis and build the EMG-to-speech
system out of two blocks; The first block takes EMG data as input and
outputs some intermediate values that can then be combined with
an already fine-tuned framework for synthesizing a waveform in the
second block. With enough training data and a sufficiently advanced
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learning model, a direct EMG-to-speech approach should be possible
but is yet to be implemented. Therefore, a short introduction to the
field of speech synthesis is in order.

Traditionally, speech synthesis was divided into two approaches, con-
catenative and parametric. With a concatenative speech synthesizer,
previously recorded segments of speech, phones or words, are played
back in a new order. This approach often results in high naturalness
of the voice but is dependant on large datasets of prerecorded record-
ings and is limited to the voice of the person in the recordings. A
parametric approach, on the other hand, will synthesize speech from
parameters such as formants and fundamental frequency. Therefore,
a parametric approach gives a broader range of possible voices and is
not limited by previous recordings but has struggled with lower natu-
ralness [24]. Even so, most early operating systems for personal com-
puters came with a form of text-to-speech (TTS) based on formant or
articulatory synthesis with high intelligibility, although with a robot-
sounding voice.

Furthermore, a general challenge with TTS systems is that the under-
lying text needs to be translated into the basis of the speech syn-
thesizer, either phonemes, formants, or the articulatory parameters.
In 2016, DeepMind published a paper presenting WaveNet, a mod-
ern approach to speech synthesis using a form of CNNs named di-
lated causal convolutions to generate raw audio waveforms [55]. It
achieved much higher scores of naturalness than the current best con-
catenative and parametric approaches used by Google at the time.
Since then, a multitude of different deep learning methods has been
used to achieve very human-like TTS systems. For instance, the com-
bination of Tacotron2 [58] and WaveGlow [56] where Tacotron2 trans-
forms text to mel-spectrograms, while WaveGlow generates wave-
forms from those mel-spectrograms realtime.4 In the space of TTS,
complete end-to-end methods without any vocoder are also starting
to become available, e.g. the newly published Wave-Tacotron that re-
moves the intermediate step of mel-spectrograms or MFCCs [67].

2.8.2 Previous work in EMG-to-speech

The first published article on the topic of EMG-to-speech was from
Lam, Leong, and Mak [45] in 2006. There, the authors used two
electrodes and a simple NN with two layers to map EMG data to 7

different sounds. From 2009 onward, researchers from the German
silent speech community have published at least four papers on the

4 A simple-to-use example of how to use pre-trained versions of the Tacotron2

and WaveGlow models is available online: https://pytorch.org/hub/nvidia_

deeplearningexamples_waveglow/.
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topic [11, 12, 32, 62]. In 2009, they presented a GMM-based synthesis
technique with a limited vocabulary where 84.3% out of 108 words
were recognized correctly by humans listening to the synthesized
audio. However, only 20.2% of the words were correctly recognized
when the input used for audio synthesis was from EMG data recorded
silently. This inconsistency highlights a general challenge with EMG-
to-speech: that the EMG data recorded for training usually is from
vocalized speech (because that is what is recorded during training to
have matching audio data), while the EMG data for a practical SSI is
from silent speech. The research group’s later papers include improve-
ments in selected features, the usage of different NN-based methods
[32], the introduction of an unlimited vocabulary [11], and more re-
alistic speech synthesis by improving the mapping from EMG to the
fundamental frequency [12].

The current state-of-the-art in EMG-based speech synthesis is nonethe-
less from a group in Berkeley, US, with their 2020 paper Digital Voic-
ing of Silent Speech [19]. Gaddy and Klein [19] achieved an impressive
3.6% WER using human evaluators on the digital voicing of silent
speech from sentences built with a limited vocabulary of 67 words.
Using their unlimited vocabulary, the WER from listening tests was
68%, but with a very natural-sounding voice5 and on EMG data from
silent speech, not vocalized speech. To achieve this, they recorded all
sentences twice. Once by vocalized speech recording audio and EMG,
then a separate time recording only EMG data during silent speech.
The silent speech EMG could then be matched with the audio output
targets by using a target-transfer approach. They further used a large
LSTM-network with three bidirectional layers of 1024 units to transfer
silent speech EMG data to MFCCs, which were finally used as inputs
for a version of the DeepMind WaveNet vocoder [55] trained with
their own data connecting MFCCs and speech waveforms.

5 The dataset and samples of synthesized speech from the Gaddy and Klein [19] study
are available online: https://doi.org/10.5281/zenodo.4064408.
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3
M AT E R I A L S A N D M E T H O D S

For this project, five different corpora were collected; see Table 2 for
an overview. Corpus 1 included three words in Norwegian: stein, saks,
and papir, corresponding to rock, paper, scissors - the hand game usu-
ally played between two players. Four subjects, all male and aged
25± 1 years with Norwegian as their mother tongue voluntarily par-
ticipated in collecting data for this corpus. For the remainding cor-
pora, there was only one speaker, the author of this report. Corpus
2 included ten words, the digits 0 to 9 in English, and was collected
using silent speech. For corpora 3, 4, and 5, a custom software pro-
gram written for this project in Python was used to streamline data
collection and enable recording of both EMG and audio data. Corpus
3 also had a vocabulary of the digits 0 to 9 and was recorded during
vocalized speech simultaneously recording from the Emotiv sensor
and a Blue Yeti microphone. Corpus 4 further increased the number
of words in a single vocabulary to 29. Its vocabulary was the Nor-
wegian extension of the NATO phonetic alphabet, where each word
corresponds to a letter.1 Corpus 5 was collected to include the pos-
sibility of a EMG-to-speech approach unlimited by vocabulary. It con-
sists of EMG- and audio-recordings in an audiobook format that totals
7 hours of recordings from reading the novel Neuromancer [21].

Figure 7.: The 8 chosen channels of the Emotiv Epoc+ and where they are
located on the face when the sensor is used ’upside-down’ as in
this project. Adapted figure from Emotiv [13] with permission.

1 Alpha, Bravo, Charlie, Delta, etc.
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Table 2.: An overview of the 5 collected corpora.

Corpus Vocabulary Sessions Speakers Samples

1 3 words 1 4 600

2 10 digits 7 1 4120

3 10 digits 15 1 6430

4 29 word NATO alphabet 12 1 5481

5 Unlimited2 9 1 7.0 h3

3.1 emotiv epoc+ sensor

For all the experiments covered in this report, an Emotiv Epoc+ 14

channel EEG headset was used to collect data [13]. The electrodes are
of the type Ag/AgCl with an additional felt pad soaked in a saline
solution to achieve good skin contact. Out of the 14 electrodes, 8 were
deemed relevant as they covered the face when the Emotiv sensor was
turned upside down. Table 3 lists the relevant sensors and the mus-
cles they cover, while Figure 7 shows their placement on a face. Note
that since the Emotiv sensor is symmetrical, each sensor is placed as
pairs, covering the same muscles on each side of the face. As a re-
sult, the sensor gives potentially redundant measurements. Still, the
data from all sensors was used due to the possibility of inconsistent
sensor placement from session to session. Furthermore, there is the
possibility of users using muscles slightly asymmetric during silent
speech, something that might influence the session and speaker inde-
pendence. Other sensors such as a magnetometer and accelerometer
are included in the Emotiv Epoc+ sensor but were not used for any
experiments. A buildup of particles from the saline solution might
occur from prolonged use, which can degrade the sensor signal and
worsen session dependence in the subsequent data processing. To
mitigate this effect, all the felt pads and electrodes were thoroughly
cleaned semi-regularly, in accordance with the Emotiv Epoc+ guide-
line documents [13].

2 The vocabulary in Neuromancer is not unlimited, it is probably somewhere between
1000 and 10000 words. However, as Corpus 5 was used for speech synthesis, which
include the possibility of synthesising words that were not in the original vocabulary,
it’s vocabulary is described as unlimited.

3 For Corpus 5, the value in the Samples column is the total number of hours recorded.
When comparing this with the other corpora, 6430 samples in Corpus 3 corresponds
to about 1.8 hours of training data given the fact that each sample is 1 second long.
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Table 3.: Numbers, names and corresponding facial muscles for the 8 rel-
evant sensors out of the 14 sensors on the Emotiv Epoc+ sensor.
Note that the sensor names originally describe different brain re-
gions used for EEG measurements.

Sensor # Sensor name Corresponding muscles

1 F3 Right sternohyoid & sternothyroid

2 F4 Left sternohyoid & sternothyroid

3 FC5 Right risorius

4 FC6 Left risorius

5 AF3 Orbicularis oris (lower lip - right side)

6 AF4 Orbicularis oris (lower lip - left side)

7 F7 Right zygomatic major

8 F8 Left zygomatic major

3.2 signal processing

As seen in Section 2.6.2, processing of the raw EMG signal is crucial for
good detection. Most of this is done internally on the Emotiv sensor,
which samples sequentially through a single analog-to-digital con-
verter (ADC) at a rate of 2048 samples per second (SPS), later downsam-
pled to 256 SPS. Digital notch filters at 50 Hz and 60 Hz are present to
remove interference from the electrical power supply, independently
of location. A built-in digital fifth-order Sinc filter then gives the re-
sulting bandwidth of 0.16–43 Hz. Examples of normalized data from
the Emotiv sensor are seen in Figure 8, where selected instances of
the three different words in Corpus 1 are visualized.

Data from the Emotiv sensor was collected using WebSocket through
the internal Emotiv Cortex service, where one and one data pack-
age had to be requested through their application programming in-
terface (API). Initially, during work for the project report, this was
done by using single Python scripts, running linearly. When using
these scripts, the actual samples per second (SPS) of the Emotiv sensor
turned out to be 280, not the expected 256 SPS. However, it slowed
down to 125 SPS when simultaneously recording from the built-in
computer microphone as a result of running everything linearly. A
choice was then made to only use data from the Emotiv headset for
corpora 1 and 2.
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Figure 8.: Normalized data from Corpus 1, visualizing the difference be-
tween the tree words in the corpus. Legend and x-axis are com-
mon for all three plots. a) Shows the 8 different sensor values for
a selected instance of ’stein’ silently spoken. Likewise for b) with
’saks’ and c) with ’papir’.
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3.2.1 Custom Python GUI

It was decided to spend part of the master thesis to build a custom
Python graphical user interface (GUI) software program from scratch
to solve the issues with the data collection pipeline used for the
project report. The two main reasons for this decision were to enable
simultaneous recording of EMG and audio signals, and to make the
process of recording large quantities of data much more efficient. The
resulting software enabled long-duration recording sessions, the pos-
sibility of playing back earlier recordings of EMG data with the clas-
sification of words using previously trained models, and a mode for
live visualization and speech recognition of silent speech. To solve the
issue of simultaneously recording EMG and audio, parallel processing
using threads was implemented. With this new program, about four
times the amount of previously collected data was collected for cor-
pora 3, 4, and 5. A screenshot of the program can be viewed in Figure
9, and screen recordings from using the program are available on-
line.4 Note that with this setup, the SPS for the Emotiv sensor was
stable at 256 Hz for all recordings, while all audio recordings were
conducted at a rate of 16 kHz.

Figure 9.: A screenshot of the subVocal program made by the author. The
program was running in the recording mode, where live data can
be viewed while words are prompted, when this screenshot was
taken.

4 https://drive.google.com/drive/folders/159X_Owdh6JoadVWggexwSA-oGckDrmNe?

usp=sharing
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3.3 experimental setup

Subjects for Corpus 1 participated in recording sessions in which they
were asked to silently move their mouth as if speaking, reciting words
displayed on a computer screen. They could simultaneously observe
the live data from the Emotiv sensor to minimize the amount of noise
resulting from movement between each word. In the recording ses-
sion for Corpus 1B, where three of the subjects participated, two dif-
ferent setups were used. One setup where each subject recited the
words displayed silently, and another where each word was spoken
with vocalization.

Data from the different recordings were processed and correctly la-
beled before it was used for single-word classification. All code used
for the recording sessions, processing of data, visualization and recog-
nition was written in Python version 3.7 by the author. Both Jupyter
[41] and Google Colab [23] notebooks, in addition to pure Python
scripts, were used for these purposes.

3.3.1 Each of the five corpora

Corpus 1

Corpus 1 was intended as an initial data set to test whether the silent
speech recognition principle worked with the Emotiv sensor. It in-
cluded three words collected by four subjects, with a total of 600

samples (50 per subject per word), comparable to the first studies
on EMG-based silent speech classification [34, 61]. In Corpus 1B, three
of the speakers from Corpus 1 collected 20 instances of each word in
Corpus 1 silently, as well as 20 vocalized, totaling 120 samples per
speaker. The additional Corpus 1B was collected to perform initial
testing on session independence and the difference in EMG recogni-
tion between silent and vocalized speech. It should be noted that the
recording session for Corpus 1B was conducted several months after
the main body of Corpus 1. Different kinds of feature extraction and
classification methods were effectively tested on Corpus 1 before they
were used with Corpus 2.

Corpus 2

The aim for Corpus 2 was to study the effects of more words in the
selected vocabulary, more training data, and the effect of multiple
recording sessions.5 Seven recording sessions were conducted, result-
ing in 4120 samples equally distributed between the ten digits. Con-
sidering that the resulting data for each word corresponds to 1 second

5 Note that a session is defined as all recordings conducted within a time frame without
removing the Emotiv sensor between recordings.
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of the recording, this gives about 1.1 hours of training data. Table 4

shows the relevant information on the different recording sessions.

Table 4.: Information on the 7 recording sessions included in Corpus 2.

Session Date of recording Samples recorded

2− 1 10.11.2020 580

2− 2 12.11.2020 740

2− 3 13.11.2020 360

2− 4 16.11.2020 160

2− 5 16.11.2020 560

2− 6 17.11.2020 860

2− 7 20.11.2020 860

Corpus 3

Corpus 3 was collected by the author vocalizing the digits 0 to 9 in
a series of recording sessions. Corpus 3 enabled the possibility of
comparing single word recognition when using EMG and audio data.
Because corpora 2 and 3 had the same vocabulary, it was initially
planned to compare models trained on silent and vocalized speech
between the two corpora. However, because Corpus 3 was collected
after the completion of the custom Python GUI, it was recorded at a
rate of 256 SPS. As Corpus 2 had an SPS of 280 Hz, models were not
compatible between the two corpora. Corpus 3 included 15 sessions
with a total of 643 recordings, each consisting of the ten words in the
vocabulary in a randomized order, see Table 5. This gives a total of
6430 samples, 50% more than in Corpus 2.

Corpus 4

To see the effect of more words in the vocabulary, Corpus 4 was col-
lected. The Corpus 4 vocabulary consisted of 29 words, the NATO
phonetic alphabet, designed such that each word is as distinct from
the others as possible when spoken out loud. When combining the
vocabularies for Corpus 3 and Corpus 4, it is possible to perform com-
plete spoken communication independently of language by spelling
each word. A total of 12 sessions were recorded for Corpus 4, with
189 recordings of 29 utterances, totaling 5481 samples. This gives 3.4
times fewer utterances per word when compared with Corpus 3. Ta-
ble 6 lists all the different sessions of Corpus 4.
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Table 5.: Information on the 15 recording sessions included in Corpus 3.

Session Date of recording Samples recorded

3− 1 7.03.2021 480

3− 2 9.03.2021 600

3− 3 9.03.2021 220

3− 4 11.03.2021 550

3− 5 18.03.2021 300

3− 6 18.03.2021 200

3− 7 19.03.2021 300

3− 8 22.03.2021 400

3− 9 23.03.2021 520

3− 10 24.03.2021 570

3− 11 25.03.2021 700

3− 12 26.03.2021 200

3− 13 26.03.2021 400

3− 14 29.03.2021 490

3− 15 29.03.2021 500

Table 6.: Information on the 12 recording sessions included in Corpus 4.

Session Date of recording Samples recorded

4− 1 8.03.2021 464

4− 2 10.03.2021 667

4− 3 11.03.2021 145

4− 4 11.03.2021 435

4− 5 17.03.2021 580

4− 6 18.03.2021 290

4− 7 18.03.2021 580

4− 8 18.03.2021 580

4− 9 19.03.2021 435

4− 10 23.03.2021 725

4− 11 29.03.2021 290

4− 12 29.03.2021 290
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Corpus 5

Corpus 5 was collected as a testbed for direct EMG-to-speech applica-
tions. By having a dataset that included time-synced facial EMG data
and recorded audio, it would be possible to train models that take
EMG as the input and returns an audio waveform. As described in
Section 2.8.1, generating a raw speech signal is anything but trivial.
However, if successful, it would enable a functional SSI unlimited by
vocabulary. With this goal in mind, it was decided to collect synchro-
nized EMG and audio data by reading a science fiction novel loud
while wearing the Emotiv sensor and using a the Blue Yeti micro-
phone, similar to how audiobooks are recorded. The science fiction
novel Neuromancer [21] was chosen as it includes a rich vocabulary,
and 7 hours were recorded across nine recording sessions.

3.4 feature extraction

Before inputting the collected data into classification or regression
models, it is usually sensible to process the data in one of several
possible ways. Some methods are general, e.g. normalizing the data
between 0 and 1, while others are domain-specific. When extracting
features from the audio signal, either MFCCs or mel-spectra were cho-
sen as those have been the preferred features for speech for a long
time. Feature extraction for facial surface-EMG, on the other hand,
was a more challenging choice. As the research area of EMG-based
SSIs is relatively young and based on only a few scientific milieus, no
superior feature extraction method for the EMG signal has been found.
This choice of features also heavily depends on what type of EMG sen-
sor is used and how the signal is pre-processed. To study the effect of
different possible feature extraction methods, seven methods were se-
lected and tested on Corpus 3 to see what gave the best results. These
methods were:

1. The raw signal of each of the eight electrodes with standard
values of 2000 to 8000.

2. Data normalized on the basis of each electrode within a record-
ing. Calculated from dividing each channel by its mean value.
All electrodes centered around 1, removing any effects of inter-
electrode shifting. Values typically between 0.5 and 2.

3. Using the minmax_scale function from the sklearn.preprocessing
library, data for each word was scaled between 0 and 1 for each
of the electrodes separately.

4. Like the one before, but adding the first order time-deltas (deriva-
tives/the difference between consecutive values) as 8 additional
features.
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5. Mel-frequency cepstral coefficients (MFCCs) calculated using
the python_speech_features library on the raw data for each of
the words in the dataset. They were altered to fit the frequency
range of the EMG signal and a list of the parameters used is
presented in Table 7.

6. The same MFCC features as above, but with added time-deltas.

7. An activation signal combining the absolute values of all elec-
trodes after centering the normalized values around 0.

Visualizations of all the different feature extraction methods are pre-
sented in Figure 10 and the parameters chosen for the MFCC features
for EMG data is listed in Table 7. About 200 different combinations of
the MFCC features were tested before the final parameters were found.

Table 7.: A list of the parameters that were used in the Mel-frequency cep-
stral coefficients (MFCCs) function from the python_speech_features
library to genereate features for EMG-based silent speech. Note that
the cepstral coefficients for each electrode were appended to the
same axis, then the axes of the returned output features were reor-
ganized to better match the input layer of the NNs.

Parameter Value

No. of cepstrum for each window 5

Length of analysis window in seconds 0.12s

Step between successive windows 0.01s

No. of filters in filterbank 26

Size of the FFT 512

Append energy-sum to 0th cepstral False

A common challenge when classifying single words is the different
lengths of each utterance. This challenge was solved by setting a fixed
length of 250 samples per utterance, ~1 second of recording. The eight
different channels were handled as different features when inputting
the data to neural networks, making the training data of shape N×
T ×D when experiments of single word classification were conducted.
Here, N = the number of training samples in a session, T = 250, and
D = the number of features. When using the raw, normalized, or
minmax-scaled signal from each of the channels D = 8, and when
including their first derivatives D = 16. For MFCCs, T is dependant
on the lengths of the windows and steps while D = the number of
cepstrum times the number of electrodes.
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Figure 10.: Data from all 7 different feature extraction methods on one single
utterance from session 4− 12. a) The plotted raw data for all 8
electrodes as it is received from the sensor. b) Data normalized
for each electrode. c) Scaled data using the minmax_scale function
from from the sklearn.preprocessing library. d) The deltas for c). e)
Calculated MFCCs for electrode 1. Note that MFCCs are calculated
and used for the other seven electrodes as well. f) Deltas for e).
g) The total muscle activation signal from all 8 electrodes.
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When using a fixed-length method that is shift-dependent, it is essen-
tial to synchronize the data from the Emotiv sensor correctly with the
sample indices for when each word was silently spoken. The words
prompted to the subject during a recording came from a randomized
list of words containing an even distribution of each word in the cor-
pus vocabulary. Words from this list were prompted to the test subject
at specific intervals, and the timestamp for each word was used as
initial indexing. Then the find_peaks function in the scipy.signal library
[7] was used to find the maximum muscle activation related to each
timestamp to set the final index for each utterance. The data used
for the find_peaks function was the sum of the absolute values of the
eight normalized sensor values (the activation signal), see Figure 11.
Using these final indices, half of the word length of 250 samples was
selected in each direction, such that the peak always appeared as the
time-midway point in any given sample. The same method was used
for single word classification of the audiofiles in Corpus 3, where the
word length in samples was set to 16000, one second of recording.

Figure 11.: To select the EMG data for each silently spoken word correctly,
the peaks of the total muscle activation as the sum of the absolute
values for the 8 different sensors were detected.

3.5 classification algorithms

Because EMG-to-text is a classification task relevant classification meth-
ods were evaluated. This section is divided into two parts focusing on
NNs and the GMM-HMM method respectively.

3.5.1 Neural networks

Classification was first conducted on Corpus 1 as a testbed to find al-
gorithms that worked on the Emotiv EMG data. Based on results from
similar studies (e.g. [38, 64]), both RNNs and CNNs were considered
suitable options for classification.
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Corpora 1 and 2

Because the initial objective of this project was to show a working
principle of EMG-based silent speech rather than to optimize the classi-
fication perfectly, little effort went into hyperparameter optimization
for corpus 1 or 2. By using data from Corpus 1 and inspiration from
an Udemy course on TensorFlow 2 [57], parameters for semi-optimal
versions of a CNN model and three different versions of the RNN: a
simple RNN, a GRU, and an LSTM, were selected. These four different
NN-based classification algorithms were then used for continued test-
ing with corpora 1 through 4.

Architecture 1: Layers of the CNN that was used for classification.

1 x_train, x_test, y_train, y_test = train_test_split(X, Y, stratify=Y,

test_size=0.2)

2

3 # Build the CNN model

4 K = 10 # number of categories for classification

5

6 i = Input(shape=x_train[0].shape)

7 x = Conv1D(32, 3, strides=1, activation=’relu’)(i)

8 x = MaxPooling1D(2)(x)

9 x = Dropout(0.5)(x)

10 x = Conv1D(64, 3, strides=1, activation=’relu’)(x)

11 x = MaxPooling1D(2)(x)

12 x = Dropout(0.5)(x)

13 x = Conv1D(128, 3, strides=1, activation=’relu’)(x)

14 x = MaxPooling1D(2)(x)

15 x = Dropout(0.5)(x)

16 x = Dense(512, activation=’relu’)(x)

17 x = Flatten()(x)

18 x = Dropout(0.5)(x)

19 x = Dense(K, activation=’softmax’)(x)

20

21 model = Model(i, x)

22 model.compile(optimizer=Adam(lr=0.001), loss=’

sparse_categorical_crossentropy’)

The initial CNN architecture as written in Python using TensorFlow
2 can be seen in Architecture 1, and the same for the simple RNN in
Architecture 2.6 Some different activation functions, optimizers, and
loss functions were tested, and the best-performing setup for Corpus
2 is presented below. It was decided to keep the same train/test
split at 20% for all tests and to have the same distribution of the
different classes in the test set as the train set, an equal distribution
between all classes for both corpora. Initial results showed that the
CNN drastically outperformed all three RNN models. However, after
the introduction of an iterative decreasing learning rate and using
only every eight value of the T-direction as an effort to solve the
issue of the vanishing gradient, all three RNNs performed on par

6 The architectures for the LSTM and GRU RNN-types can be found in Appendix A.1.
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with the CNN on Corpus 1. The CNN network was trained for 100

epochs with a learning rate of 0.001, while the RNNs were trained for
1000 epochs. Their learning rate decreased from 0.005, via 0.001 and
0.0005, to 0.00025, each for 250 epochs. Neither a dynamic learning
rate nor increasing the number of epochs made the CNN perform
any differently. The sparse categorical crossentropy was used as the loss
function for all four NN architectures.

Architecture 2: Layers of the simple RNN that was used for classification.

1 # Remove most of the data (leave every 8th timestep)

2 X = X[:,0:250:8,:]

3

4 x_train, x_test, y_train, y_test = train_test_split(X, Y, stratify=Y,

test_size=0.2)

5

6 # Build the simple RNN model

7 K = 10 # number of categories for classification

8 M = 100 # number of RNN nodes

9

10 i = Input(shape=x_train[0].shape)

11 x = SimpleRNN(M, activation=’relu’)(i)

12 x = Dense(K, activation=’softmax’)(x)

13

14 model = Model(i, x)

After Corpus 2 was collected, it was decided to continue the use of all
four NNs to get a broad range of results for the silent speech classifica-
tion of 10 digits. The main experiments were the multiple train/test
split classification tests conducted on each of the seven recording ses-
sions. Additionally, tests were conducted where one of the sessions
was set as the test set, while an increasing number of the remaining
sessions were used as the training data. Only the CNN method was
used for these final tests, and no more than one test/train split was
used. Both to decrease the needed time for neural network model
training. This experiment was conducted to investigate whether six
sessions were enough to classify a completely unseen set of data, as
well as to see the effects of session independence as more and more
sessions were used as training data.

Corpora 3 and 4

When continuing work with single word classification on corpora 3

and 4, all the available feature extraction methods and classification
architectures were cross-tested to find the match with the most
potential. Then, more effort was put into further increasing the
accuracy of the selected feature-architecture match by systematically
optimizing the model hyperparameters. Several thousand neural
networks were trained with varying features as input and network
parameters to find the optimal combination. A list of the parameters
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that were tested and the resulting optimal combination is presented
in Table 8. Multiple rounds of hyperparameter optimization were
carried out, starting very wide and with only five training epochs for
each model. After each round, the most promising value ranges were
chosen, and new hyperparameters were tested in a more narrow
search with an increased number of training epochs. After more than
2500 different configurations of the CNN were trained on corpus 3, a
new and more optimal version was selected. This new CNN model
architecture named CNN2 is presented in Architecture 3 and was
used for most of the remaining experiments.

Table 8.: A list of the parameters that were optimized for the CNN model.
Note that any change that increased complexity/training time with-
out increasing performance was seen as less optimal. The resulting
optimal model structure and parameters as seen in the rightmost
column were named CNN2.

Parameter Search window Optimal combination

No. of conv. layers [1, 4] 4

Size of 1st conv. layer [8, 120] 110

Conv. size multiplier [1.0, 2.0] 2.0

Conv. kernel [1, 4] 4

Conv. stride [1, 3] 3

Dropout [0.0, 0.5] 0.0

No. of dense layers [1, 3] 1

Size of dense layer(s) [25, 500] 250

Learning rate [0.005, 0.0001] 0.00075

Epochs [1, 100] 50

Using Corpus 3, efforts were then made to study whether it would
be possible to cluster the 15 recorded sessions by training the final
CNN model on one session and subsequently testing it on another
session. When presenting the resulting classification accuracies in a
matrix, the diagonal would represent training and testing on the data
from the same session, but with a 50− 50 split between the training
and testing datasets. Next, the effects of selecting different subsets
of electrodes were tested. First, subsets of single electrodes were
selected, and the CNN2 model was trained and tested. Then all of the
possible combinations of 2 electrodes were tested, and finally, the
two different sides of the face were compared. For these experiments,
the CNN2 model was trained for 50 epochs and using one train/test
split to save time.
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Subsequently, the audio recordings from Corpus 3 were processed
and classification conducted on the 10 digits using MFCC features and
both the CNN2 and a series of HMM trained on each of the digits.
Finally, classification was tested on Corpus 4 by itself and the joint
vocabulary of corpora 3 and 4.

Architecture 3: The hyperparameter optimized version of a CNN for single
word classification, named CNN2.

1 x_train, x_test, y_train, y_test = train_test_split(X, Y, stratify=Y,

test_size=0.2)

2

3 # Build the CNN2 model

4 K = 10 # number of categories for classification

5

6 i = Input(shape=x_train[0].shape)

7 x = Conv1D(110, 4, strides=3, activation=’relu’)(i)

8 x = MaxPooling1D(2, strides=1)(x)

9 x = Conv1D(220, 4, strides=3, activation=’relu’)(x)

10 x = MaxPooling1D(2, strides=1)(x)

11 x = Conv1D(440, 4, strides=3, activation=’relu’)(x)

12 x = MaxPooling1D(2, strides=1)(x)

13 x = Conv1D(880, 4, strides=3, activation=’relu’)(x)

14 x = MaxPooling1D(2, strides=1)(x)

15 x = Dense(250, activation=’relu’)(x)

16 x = Flatten()(x)

17 x = Dense(K, activation=’softmax’)(x)

18

19 model = Model(i, x)

20 model.compile(optimizer=Adam(lr=0.00075), loss=’

sparse_categorical_crossentropy’)

3.5.2 Hidden Markov Models

Based on the results from the state-of-the-art EMG-to-text, GMM-HMMs

were seen as a potential classification method in addition to the NNs

[50]. Using the hmmlearn package for Python, several versions of
HMMs were implemented. For the audio waveforms of Corpus 3, one
GMM-HMM was trained for each of the 10 digits in the vocabulary.
Then the log probability was computed for each of the GMM-HMMs

iterating through each sample in the test set. Each sample was clas-
sified into the category with the corresponding max log probability,
and the model accuracy was calculated. This process was then con-
ducted for 10 different train-test splits. Standard parameters were
used unless for the number of states in the GMM, which was set to
5. The same method was used on the EMG part of Corpus 3 for the
cross-testing of features and classification methods.
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3.6 functional silent speech interface

The optimal result from this work would be a functional SSI based on
the Emotiv Epoc+ sensor that could be used in realtime. Two options
were viewed as within reach of the scope of this thesis:

1. Silent speech spelling by achieving session-independent word
detection combining the vocabularies of corpora 3 and 4.

2. Translating EMG signals to speech waveforms independent of
vocabulary by using Corpus 5, either directly or with some in-
termediate feature-space.

To test the functionality of these two methods, six sentences were cre-
ated so that they included at least one occurrence of every letter of
the English alphabet as well as the digits 0 to 9. The six sentences
are presented in Table 9, and the character distribution is presented
in Figure 12. Each of the sentences was recorded four times. Both vo-
calized and silent speech was used, and the sentences were recorded
spoken directly and with each letter spelled out.

Table 9.: The six sentences used for testing the viability of a functional silent
speech interface (SSI) system.

No. Sentence

1 78 knights rode up the steep hill.

2 The answer to life and the universe is 42.

3 On May 5th 2021 SpaceX successfully landed SN15.

4 Pi equals approximately 3.1415.

5 Trondheim has its own jazz festival.

6 Roughly 20, 600 lines of code were written for this thesis.

3.6.1 EMG-to-text by spelling

By using a CNN2 model trained on the joint data of corpora 3 and 4, it
should be possible with a complete session-independent SSI with an
unlimited vocabulary, as long as every word is spelled out. Because
Corpus 3 was recorded using vocalized speech, while silent speech
was used for Corpus 4, it was expected to see the CNN2 recognize
words from the two vocabularies differently between the silent and
vocalized versions of the spelled out sentences. As no words for space,
comma, or the dot/period were part of the vocabularies, words for the
three Norwegian-specific letters ærlig, østen and åse were used for this
purpose. 10 different versions of the CNN2 architecture were trained
on both corpora 3 and 4 using different train/test splits. They were
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Figure 12.: The character distribution for the sum of all 6 test sentences is
presented as a bar plot. Note that the leftmost character is the
space between words.

then used to predict the sequence of characters, letters of the alphabet
and numbers, for the six test sentences. The per-character accuracy
was calculated for each of the models, then a system drawing the
most often selected character over all 10 models, as well as the final
results after using a standard grammar correction tool.

3.6.2 EMG-to-speech

To investigate whether an EMG-to-speech approach would be
possible with data from the Emotiv sensor and the available feature
extraction methods and machine learning models, pairs of speech
waveforms and EMG data from Corpus 3 were studied. Numerous
different model architectures, intermediate features, and speech syn-
thesis methods were tested. Until the very last weeks of this project,
all combinations only resulted in unintelligible sounds. Then, by us-
ing a version of the Nvidia WaveGlow model [56], mel-spectrograms
as intermediate features, and a custom neural network architecture
combining CNN- and LSTM-layers, intelligibly was achieved. The final
architecture was named EMG-Net and is presented in Architecture
4, which takes the minmax and delta features from the EMG data
as inputs and returns the corresponding mel-spectra for a 1-second
window. Waveforms were synthesized from 20 EMG samples from
Corpus 3 that the EMG-Net model had not been trained on. Ten
human listeners were then asked to classify each of the digits based
on the synthesized audio. Each of the listeners was sent the link to a
Google Form with audio embedded and a questionnaire where they
selected which number they thought each of the samples sounded
like. A separate choice was available for the cases where the listeners
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were uncertain or thought the sample did not sound like a digit.7

Architecture 4: EMG-Net, the model created for this thesis to transform the
EMG minmax and delta features to mel-spectrograms calcu-
lated from the corresponding audio samples.

1 # Build the EMG-Net model

2

3 i = Input(shape=x_train[0].shape)

4 x = Conv1D(110, 4, strides=1, activation=’relu’, padding=’causal’,

dilation_rate=1)(i)

5 x = MaxPooling1D(2, strides=2)(x)

6 x = LSTM(32, return_sequences=True, dropout=0.5)(x)

7 x = Conv1D(220, 4, strides=1, activation=’relu’, padding=’causal’,

dilation_rate=2)(x)

8 x = MaxPooling1D(2, strides=2)(x)

9 x = LSTM(64, return_sequences=True, dropout=0.5, )(x)

10 x = Conv1D(440, 4, strides=1, activation=’relu’, padding=’causal’,

dilation_rate=4)(x)

11 x = LSTM(128, return_sequences=True, dropout=0.5)(x)

12 x = Conv1D(880, 4, strides=1, activation=’relu’, padding=’causal’,

dilation_rate=8)(x)

13 x = LSTM(254, return_sequences=True, dropout=0.5)(x)

14 x = MaxPooling1D(2, strides=2)(x)

15 x = Flatten()(x)

16 x = Dense(K, activation=’linear’)(x)

17

18 model = Model(i, x)

19 model.compile(optimizer=Adam(lr=0.00075), loss=’mse’)

As a result of the master thesis deadline approaching quickly, there
was only minimal time available for experiments regarding Corpus 5

and the possibility of a functional SSI taking EMG to speech with an
unlimited vocabulary. Two EMG-Net versions were separately trained
on 1-second and 130-millisecond windows of Corpus 5 before they
were used to generate speech from the EMG data recorded from the
six test sentences. The plan was to use human listeners once again
to judge the performance of the model and compare their input with
the actual test sentences to calculate the resulting WER per listener.
However, the resulting synthesized audio clips for both window sizes
were unintelligible, sounding only like background noise.

7 The Google Form can be found here: https://forms.gle/98v4mWtv2bAgwRzT8
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4
R E S U LT S

This chapter presents the achieved results on all corpora and the two
SSIs. Results from every corpus are presented in order. The session-
and speaker-dependent results are presented first within each cor-
pus, before results regarding the session or speaker independence.
For most experiments, 10 different trials using a different random
split between training and testing data were conducted. As a result
of recording both EMG- and audio-data for corpora 3 and 5, it was
possible to compare the results using the Emotiv sensor with similar
methods conducted on the audio signal. Results regarding the two
functional SSIs are placed at the very end of this chapter.

4.1 corpus 1

4.1.1 Recognition rate

Classifying the three different words of Corpus 1 turned out to be a
relatively simple task for the four selected NNs. In practice, each algo-
rithm only had 120 training examples to learn from as each speaker
was tested independently, and 20% of the total samples were used for
testing the accuracy. Table 10 shows the average accuracy after 10 dif-
ferent train/test splits for each classification method on each speaker
and the total average for each method. Notice the consistently high
accuracy overall, the higher recognition rate on Speaker 3, and the
fact that the simple RNN method was the one with the highest classifi-
cation, even though both LSTM and GRU are more advanced versions
of the same NN. To get a sense of the variance in the recognition data,
the corresponding boxplots for the 10 train/test splits of both the CNN

and simple RNN methods are presented in Figure 13. Similar boxplots
for the LSTM and GRU results are found in Appendix A.2.1.

4.1.2 Speaker independence

The CNN was also used to test speaker independence by training on
data from 3 speakers and testing on the 4th. This gave results no bet-
ter than random chance at a 33% recognition rate and shows obvious
overfitting. Table 11 lists the results after one trial per speaker, which
indicates as expected that much more training data and on many
more speakers is necessary to overcome the challenge of speaker in-
dependence.

43



Table 10.: Speaker dependent recognition rate [in %, average (± standard
deviation)] for the different speakers in Corpus 1 using the four
different classification methods.

Speaker CNN simpleRNN LSTM GRU

1 81.1 (±9.6) 85.0 (±6.0) 84.3 (±9.2) 83.7 (±7.4)

2 93.2 (±6.1) 94.3 (±7.5) 88.3 (±10.6) 88.7 (±7.8)

3 97.1 (±3.6) 96.7 (±3.3) 97.0 (±3.5) 95.3 (±6.0)

4 90.5 (±8.1) 97.3 (±3.3) 89.7 (±7.2) 89.3 (±8.0)

Average 90.5 (±6.8) 93.3 (±5.7) 89.8 (±5.2) 89.3 (±4.8)

Table 11.: Train and test accuracy [in %] of the CNN architecture trained on 3

speakers and tested on the 4th. As the results were no better than
chance after one trial, only that trial was conducted. Values are
therefore presented without any standard deviation.

Test data speaker Train accuracy Test accuracy

1 95.3 36.9

2 99.3 28.7

3 100 35.1

4 100 29.3

4.1.3 Session independence & effect of vocalization

Using Corpus 1B, session independence and the effect of vocalization
were researched to a limited degree. Data from Corpus 1 on each of
the respective speakers was used as training data for the CNN, while
data from Corpus 1B was used as the testing data. Silent and vocal-
ized data were tested separately. As the results show in Table 12, some
recognition is present. The vocalized samples gave notably higher
recognition than the silent ones. 10 train/test splits were conducted,
and both the average values and standard deviation are presented.

Table 12.: Recognition rate [in %, average (± standard deviation)] of silently
spoken and vocalized data from Corpus 1B, where the CNN was
trained using data from Corpus 1, is presented for three of the
original four speakers.

Speaker Silent speech recognition Vocalized recognition

1 58.0 (±9.7) 74.0 (±8.7)

3 44.3 (±13.5) 62.0 (±6.7)

4 38.3 (±7.1) 41.0 (±8.9)
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Figure 13.: Boxplots of the recognition rate for Corpus 1 using the a) CNN

and b) simpleRNN architectures. 10 different train/test splits
were performed with the median for each speaker as the solid
orange line in each box. The box extends to lower and upper
quartile, while the whiskers extend from the box to show the
range of the data. Circles are regarded as outliers, but still calcu-
lated into the total average.
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4.2 corpus 2

4.2.1 Recognition rate

More data is generally needed with a 10-word classification task com-
pared with a 3-word classification to achieve the same recognition.
In this case, between 128 and 688 training samples were available
for each session. All 4 of the classification algorithms were tested for
Corpus 2, and average recognition rates per NN varied from 42.3%
to 64.6%. The single-highest recognition rate, 84.7%, was achieved
using the CNN. All of the average values per session and NN is pre-
sented in Table 13, while Figure 14 shows the boxplots for each of the
train/test splits on the different sessions using the CNN and simple
RNN methods. Similar boxplots for the LSTM and GRU NNs are found
in Appendix A.2.2. The recognition rate is much lower than for Cor-
pus 1, with some sessions being easier to recognize than others. Inde-
pendently of the classification method, sessions 2-2, 2-3, 2-6, and 2-7
gave better results. The CNN resulted in a higher classification than
the other NNs and achieved recognition rates between 70 and 80% for
sessions 2-2, 2-6, and 2-7.

Table 13.: Recognition rate [in %] for the different sessions in Corpus 2 using
the four different classification methods.

Session CNN simpleRNN LSTM GRU

2− 1 53.3 (±3.3) 36.6 (±2.6) 40.6 (±3.0) 32.2 (±1.5)

2− 2 74.1 (±2.3) 56.0 (±7.0) 58.1 (±3.5) 45.8 (±3.2)

2− 3 68.6 (±4.6) 64.0 (±4.7) 56.8 (±5.2) 47.6 (±5.6)

2− 4 56.2 (±3.9) 40.3 (±8.0) 36.6 (±7.7) 33.8 (±4.6)

2− 5 47.6 (±3.6) 39.8 (±2.5) 44.6 (±3.5) 37.6 (±3.3)

2− 6 78.8 (±3.8) 60.1 (±5.7) 62.0 (±4.2) 51.5 (±4.3)

2− 7 73.5 (±3.9) 62.6 (±6.4) 52.1 (±6.6) 46.9 (±3.8)

Average 64.6 (±11.2) 51.4 (±11.1) 50.1 (±8.9) 42.3 (±6.8)

The confusion matrix for one of the train/test splits using the CNN on
session 2-7 is presented in Figure 15. Notice that digits with similar
phonemes at the beginning of the word, and thus muscle movement
when pronounced, are more often misclassified as each other − zero,
six, and seven, as well as four and five, are examples of this.
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Figure 14.: Boxplots of the classification results for Corpus 2 using the a)
CNN and b) simpleRNN architectures. Total average accuracies of
64.6% for the CNN and 51.4% for the simpleRNN are marked with
the orange stippled lines.
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Figure 15.: Confusion matrix of session 2− 7 using the CNN. A perfect classi-
fier would have all values on the diagonal, as true and predicted
labels are on the y- and x-axis respectively. Note that the test set
was made with an equal distribution between the 10 digits and
such each of the rows sum to 20.

4.2.2 Session independence and generalization

One final experiment was conducted on the topic of session indepen-
dence for Corpus 2. As seven sessions were collected as a part of Cor-
pus 2, it was hypothesized that training on an increasing number of
sessions could give higher recognition rates on an unseen session. For
every session, one to six of the other sessions were used as the train-
ing data, and the classification accuracy for each instance of the CNN

was used as an indicator of how well it was able to generalize learn-
ing from multiple sessions to data from an unseen session. Because
the number of samples in each session is different, and some sessions
are easier to recognize than others, the following results should be
used as an indication only. Only one train/test split was conducted
due to time constraints, and all results for this experiment are shown
in Figure 16. Even though only one of the plots shows a steady in-
crease in recognition rate for each added session to the training data
(session 3), the average clearly shows an increasing trend. Further-
more, six out of the seven had a higher recognition after training on
six different sessions, compared with training on only one.
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Figure 16.: Plots of session independence for the 7 different sessions in Cor-
pus 2 and their average (the lowest graph to the right). Observe
that there are significant drops after adding some of the sessions,
marked with black ellipses. This is also visible in the average,
seen with the red ellipse. For a discussion on this phenomena,
look to Section 5.2.
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4.3 corpus 3

Corpus 3 included both EMG and audio data on a vocabulary of 10

words where each of the digits 0 to 9 were spoken with vocaliza-
tion over 15 different recording sessions. This corpus could therefore
be used for EMG and audio based recognition separately as well as
EMG-to-speech. Because Corpus 3 contained the most samples, ex-
periments related to cross-session results and the effect of selecting
subsets of electrodes were conducted using this corpus.

4.3.1 EMG-based recognition

With more than double the amount of sessions in Corpus 3 as com-
pared with Corpus 2, higher accuracy on a session independent
model is expected. However, as the number of samples in each ses-
sion lies in the same area for both corpora, session-dependent accu-
racy would be expected to be more or less equal between the two
corpora when only accounting for the number of samples.

Session dependent results

All six different classification methods were used on a per session
basis on prepared datasets using the minmax + deltas features. Every
experiment was run with 10 trials, and the results are presented in
boxplots as with corpora 1 and 2. Word classification accuracies for
the CNN and CNN2 architectures are presented in Figure 17, while
Figure 18 presents the corresponding results for the simpleRNN

and GMM-HMM. Results for the LSTM and GRU NNs can be found in
Appendix A.2.3.

Observe that even using the same CNN architecture, the average accu-
racy for Corpus 3 is more than 13 percentage points higher than for
Corpus 2. The average for CNN2 is even 6 percentage points higher
and scored as high as 93.4% accuracy averaging the results for Ses-
sion 3-2. The highest single trial was 97.1% showing the potential for
classification accuracies closing in on 100%.
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Figure 17.: Boxplots of the classification results for Corpus 3 using the a)
CNN and b) CNN2 architectures. Total average accuracies of 77.8%
for the CNN and 83.9% for the CNN2 are marked with the orange
stippled lines.
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Figure 18.: Boxplots of the classification results for Corpus 3 using the a)
simpleRNN and b) GMM-HMM architectures. Total average accura-
cies of 62.6% for the simpleRNN and 66.4% for the GMM-HMM are
marked with the orange stippled lines.
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Session independent results

For a functional SSI, session independence is essential. Therefore, it is
important to find the optimal combination of EMG features and clas-
sification method on all the sessions in a corpus combined. Corpus 3

was selected for this, and all pairs of features and classification meth-
ods were tested.1 The results are presented in Table 14. For the CNNs

and GMM-HMM, 10 train/test splits were performed and the mean ac-
curacy over all trials are presented. Because the training time for the
different RNNs was an order of magnitude higher than the other clas-
sification methods, only 2 train/test splits were performed for them.

Table 14.: Mean recognition rate [in %] comparing the different feature ex-
traction techniques and classification methods. Train and test data
was randomly selected from the whole dataset of Corpus 3 and
10 train/test splits were performed or the CNNs and HMM, while
only 2 train/test splits were used for the RNNs.

Features CNN sRNN LSTM GRU HMM CNN2

Raw data 15.3 10.0 10.0 10.0 52.9 74.4

Normalized 40.7 43.0 50.8 40.1 48.9 78.8

Minmax 67.6 52.1 55.5 40.9 56.9 81.3

Minmax + deltas 70.0 52.2 53.9 43.9 60.6 85.4

MFCCs 27.3 35.9 20.5 14.0 55.3 68.7

MFCCs + deltas 48.3 19.1 28.3 29.5 54.7 65.9

Activation 34.0 24.4 38.2 24.4 33.3 52.5

From these results, it was evident that some combinations of features
and classification algorithms fare better than others. Because the top
score was initially found to be the combination of minmax + deltas
and the first CNN, this combination was chosen for hyperparameter
optimization, giving the total highest score of 85.4% using the same
features and the new CNN2 architecture. It is important to note that
out of all the training, the GMM-HMM method was much faster than
the other methods. Calculating the accuracy over 10 trials for all the
different feature classes took about 45 minutes using the GMM-HMMs,
compared to 5 hours calculating only two trials for each of the RNNs

on the same features.

Furthermore, there are several additional interesting observations to
be found in Table 14. For instance, notice that the GMM-HMM and
CNN2 solutions both scored well on all feature extraction methods,
even on the raw data. When it comes to adding additional features

1 A table including the standard deviation for all values can be found in Appendix
A.3, as those were omitted in this section because of limited space.
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in the form of time-deltas, this increases the recognition rate in most
cases, but notably not in all. The simpleRNN, for example, achieved
a much lower score when adding the MFCC deltas. The minmax +
deltas features gave the best results overall, while the raw data and
activation signal performed the worst, but these results show that this
effect can be mitigated by the choice of classification method.

Cross-session results

A cross-session accuracy matrix was calculated to investigate the dif-
ference between different sessions further. Every session was used
both as training and test data for the CNN2 architecture, and the result-
ing accuracies are presented in Figure 19. As expected, the diagonal
representing the inter-session results shows the highest accuracies,
but there are also some signs of clusters between certain sessions.
If two sessions result in high accuracies, it is visible in the form of
stronger blue colors as a mirror image on both sides of the diagonal,
possibly indicating that the sensor placement was close to similar be-
tween those sessions. This is most visible for sessions 3-2 and 3-4, as
well as 3-12 and 3-13. As both of these examples are close in time,
other factors than sensor placement might very well be important as
well.

Selecting a subset of electrodes

The results from experiments on subsets of electrodes are presented
in three sections. First, Figure 20 shows the accuracy of one and one
electrode when used on the Corpus 3 dataset with 10 trials each. Sec-
ondly, a diagonal heatmap is shown in Figure 21, with pairs of two
and two electrodes used. Notice that the diagonal shows the average
accuracy for all combinations for each electrode. Information above
the diagonal would be the same as below, as using electrode 1 and 3

is the same as using 3 and 1, and is therefore not shown. Lastly, the
accuracy of classification based on the left vs. right side of the face is
presented for each of the 15 sessions if Corpus 3 in Figure 22.
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Figure 19.: The calculated classification accuracy [in %] for the 15 different
sessions of Corpus 3. Each row represents the session the CNN2

model was trained on, while the columns corresponds to which
session was used as the test set.

Figure 20.: Boxplot of the classification results for Corpus 3 using CNN2

model and only data from one and one electrode.
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Figure 21.: The calculated classification accuracy using the CNN2 model us-
ing pairs of electrodes. The diagonal (in hues of orange) shows
the average values for every pair that includes that electrode.

Figure 22.: The calculated classification accuracy using the CNN2 model on
either the left (electrodes 2, 4, 6 and 8) or right (electrodes 1, 3, 5
and 7) side of the face. Calculated for each of the 15 sessions in
Corpus 3. Average values for each of the left (72.5%) and right
(75.7%) is included as stippled lines.
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Observe that out of the single electrodes, AF3 and AF4 are the two
with the highest word accuracy and thus the most important for EMG-
based speech recognition out of the electrodes available using the
Emotiv Epoc+. These two sensors are the ones placed on the lower
lip, which makes sense as a lot of speech movement is present in
this area. F3 and F4, which are placed on the throat, are the two that
contributes the least to a reliable word classification. These results are
backed by the pairwise electrode subsets, where the overall highest
score is with the combination of AF3 and AF4, while the lowest score
comes from combining F3 and F4. Electrode FC5, located on the lower
right jaw, looks to be of great importance as well, with a high single
electrode word accuracy and high accuracies overall when combined
with other electrodes as viewed in Figure 21. No definitive difference
between the left and right side is observed as this is highly dependent
on each of the single sessions, see Figure 22. Nevertheless, based on
Figure 20 it seems electrodes FC5, FC6, F7, and F8 show signs of some
asymmetry in facial muscle activation during speech for the author.

4.3.2 Audio-based recognition

As a comparative measure, the audio signals collected as part of Cor-
pus 3 were classified in the same way as the EMG data. By using MFCC

features for each of the uttered digits, both the original CNN and the
GMM-HMM methods were tested with 10 train/test splits. The CNN

model achieved a 99.4(±0.2)% accuracy on session independent sin-
gle word recognition of the 10 digits, while the corresponding num-
ber was 98.9(±0.2)% for the GMM-HMM. These results show that by
using features designed for speech recognition, outstanding accuracy
can be achieved on session independent single word recognition of
vocalized speech with 6430 samples.

4.4 corpus 4

4.4.1 Recognition rate

Corpus 4 has more words in its vocabulary and fewer samples per
word than the other corpora. Thus the resulting accuracies are ex-
pected to be lower. As with Corpus 3, all six different classification
methods were used on a per session basis on prepared datasets using
the minmax + deltas features. Every experiment was run with 10 trials,
and the results are presented in boxplots. Word classification accura-
cies for the CNN and CNN2 architectures are presented in Figure 23,
while Figure 24 presents the corresponding results for the simpleRNN

and GMM-HMM. Results for the LSTM and GRU NNs can be found in
Appendix A.2.4.
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Figure 23.: Boxplots of the classification results for Corpus 4 using the a)
CNN and b) CNN2 architectures. Total average accuracies of 54.5%
for the CNN and 59.9% for the CNN2 are marked with the orange
stippled lines.
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Figure 24.: Boxplots of the classification results for Corpus 4 using the a)
simpleRNN and b) GMM-HMM architectures. Total average accura-
cies of 34.2% for the simpleRNN and 28.8% for the GMM-HMM are
marked with the orange stippled lines.
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4.5 functional silent speech interfaces

As described in Section 3.6 in the Materials and Methods chapter,
two different angles were approached to communicate six test sen-
tences using the Emotiv sensor. One using the combined vocabulary
of corpora 3 and 4, totaling 39 words to spell each character of the
six sentences out. The other by utilizing a pre-trained speech syn-
thesizer and training the EMG-Net model to transform EMG data to
mel-spectra.

4.5.1 EMG-to-text by spelling

Combining the vocabularies of corpora 3 and 4 gives 39 different
classes for classification. It was therefore relatively likely that a model
trained on both corpora would have somewhat lower accuracy than
one trained on Corpus 4 alone, which had an average accuracy of
59.9% over all 12 sessions. Ten different CNN2 models were trained
on different train/test splits of the combined data of corpora 3 and 4.
All resulted in accuracies between 58.7 and 64.8%, with the average
being 63.2%, higher than expected. A confusion matrix of the first of
those models is presented in Figure 25.

The ten models already trained on corpora 3 and 4 were then
used to predict the sequence of characters in the six test sentences
listed in Table 9. 120 sentences were thus generated (6 sentences
spoken both with vocalization and silently, times 10 models). Even
though the average accuracy over all 120 sentences was 53.8%, the
resulting sentences were close to impossible to interpret. Notably,
the accuracy was higher for the silently spoken sentences compared
to the vocalized ones (58.4 to 49.1%). The three sentences with the
highest accuracy are presented in Table 15, and with accuracies
above 70%, it is barely possible to understand the sentences if the six
original sentences are known beforehand. This showed that much
higher accuracies or further treatment of the model predictions were
needed for a functional EMG-based spelling-SSI.

Table 15.: The three predicted sentences with the highest word classification
accuracy out of the 120 sentences generated.

Accuracy Predicted sentence

73.5% f8 kn8ghtk ro8e8up the87tcep h,ll.

73.5% 98 ynyoht7 3ode up the sttep jdll.

72.3% on hay 5th 2621 5paced 9ue3e982ully 3anded an158
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Figure 25.: Confusion matrix of the joint vocabularies of corpora 3 and 4.
The CNN2 model was trained on data from both corpora and
then tested on 10 words for each class of previously unseen data.
This confusion matrix corresponds to an accuracy of 63.3%.
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To increase the character-based accuracy, a simple selector was con-
structed that for each character in the six test sentences chose the
character predicted by most of the ten models. This resulted in an av-
erage accuracy of 80.5%. With the addition of a simple spell checker
from the Python spellchecker library [46], a couple of spelling mistakes
were corrected, and the average accuracy rose to 82.7% over all six
sentences, ranging from 75 to 100%. Table 16 presents the final pre-
dictions of the six test sentences and the per-character accuracy for
each of them.

Table 16.: Predictions for each of the six test sentences and the accuracy of
correctly classified characters.

No. Accuracy Predicted sentence

1 85.3% 78 knights rode8up tjtesteep jill.

2 100% the answer to life and the universe is 42.

3 76.6% on hay 5th 2621 spacex 9uc3e98full81landed 9n15.

4 75.0% pa equals alpcoeim2tel8 321415t.

5 83.3% 0rond1eim has its own j2zzofest9val8

6 75.9% roughly 2so2t.ol9nesoof code were written foroth.5 fjedis.

4.5.2 EMG-to-speech

Both corpora 3 and 5 were used in the effort to develop a functional
EMG-to-speech SSI, as those were the two datasets with matching EMG

and audio data.

Digits

Audio files for two recordings of 10 digits each were synthesized
using the EMG-Net and WaveGlow architectures.2 The resulting
recognition rate after 10 volunteers had listened to the audio files
were an average of 73.5% (±2.4%). Observe that the 10 last digits
were much more intelligible than the 10 first, indicating that one
of the EMG recordings was easier for the model to recognize based
on the available training data. As both recordings were selected at
random and not used for training, this might result from which
recording session they were a part of. Notice further that a few of the
samples were recognized as digits by the listeners but not the digits
that they were supposed to sound like. These digits were also more
likely to be recognized differently between listeners. For instance
was sample 5 (the 5th sound in the linked audio file) recognized as

2 The 20 synthesized digits are available as a single audio file online: https://drive.
google.com/file/d/1MxNySKPeRXpOIJx2d4PcHRVWhgNRw34l/view?usp=sharing
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1, 5, 7, 9, and ’other’ by different listeners, while the actual digit was
supposed to be 6. This shows that the model sometimes generates
sounds between different digits, making it difficult to correctly
classify what was said.

To represent the synthesized audio visually, mel-spectra for each of
the 10 digits in the second recording are compared with the corre-
sponding mel-spectra from the actual audio recording in Figure 26.
From these mel-spectra it is clear that the general shape and pattern
of the mel-spectra are well represented in the synthesized digits, but
they lack some of the resolution. However, this was close enough be-
cause all 10 digits shown in Figure 26 were correctly classified by
every one of the listeners except for one who classified 9 of them
correctly.

Figure 26.: A comparison of a) mel-spectra from audible speech waveforms
and b) mel-spectra generated from EMG data using EMG-Net. The
spectra are sorted based on what digit they represent and the
generated mel-spectra are from the last 10 digits from listen-
ing test. 80 mel filterbanks were used (y-axis) and the 1 second
recording resulted in 79 time windows along the x-axis.

Unlimited vocabulary - test sentences

As mentioned in Section 3.6.2, there was unfortunately not enough
time before the deadline to synthesize any intelligible speech from
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the six test sentences using Corpus 5 as the training data. The model
predicted almost the same mel-spectra for both window lengths in-
dependently of the input EMG data, resulting in more or less static
background noise.
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5
D I S C U S S I O N

Many different results have been presented in this thesis. To keep
track of the most important results, this chapter starts with a short
summary.

Single-word silent speech recognition has been proven with vocab-
ularies of 3, 10, 29, and 39 words. The classification accuracy was
naturally highest for the smallest vocabulary of 3 words, with 93.3%
accuracy averaging all four speakers. The average accuracy on the
vocabulary of 10 words was 85.4% with a session-independent model
and 63.2% for the session-independent model with a vocabulary of 39
words. These results were only achieved after significant efforts were
put into selecting the best features and models for an EMG-to-text SSIs.
This effort resulted in a functional SSI that, with an average precision
of 82.7%, translated facial muscle activation during the spelling of
six test sentences into text. One of the sentences was even perfectly
predicted, showing real potential for such a system.

Functional EMG-to-speech should also be possible, as shown by
Gaddy and Klein [19]. For this thesis, a unique model architecture
has been created named EMG-Net that can synthesize digits with high
intelligibility when combined with a pre-trained WaveGlow model.
EMG-Net was further trained on data from Corpus 5, but no intelli-
gibility was achieved on the test sentences showing that there is still
a long way to go for a practical SSI based on this EMG-to-speech sys-
tem. This chapter compares the achieved results with previous stud-
ies on EMG-based silent speech, comments interesting observations
from throughout the project, and takes a turn into the topic of possi-
ble signal artifacts.

5.1 session dependent results

Using Corpus 1, the four initial classification algorithms gave recog-
nition rates above 80% for all speakers, with a recognition rate as
high as 97.3% on Speaker 4. The difference between speakers might
result from naturally more precise articulation leading to more rec-
ognizable silent speech, less shifting of sensors during recording, or
other, unknown factors. Overfitting was observed for most training
sessions as the training accuracy almost always reached 95 − 100%.
Additional variance between each train/test split was observed,
and changing from a static learning rate to one that decreased four
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times during training for all three RNNs definitively helped in this
regard. The plotted train and test loss before and after introducing
a dynamic learning rate is seen in Figure 27, which shows a dras-
tic change in the smoothness of the loss. The same change from
a static to dynamic learning rate did not significantly impact the CNN.

Figure 27.: Plots of the loss and accuracy of both the train and test sets for
the static learning rate that was initially used (left) and the dy-
namic learning rate (left). The data is from the LSTM algorithm
on Corpus 1.

However, with vocabularies larger than three words, the CNN

architectures and the GMM-HMM model gave overall better results
than the RNN models. The reason for this is unknown, but one
possibility might be that more time was spent optimizing the initial
CNN method, and extensive hyperparameter optimization was only
conducted for the CNN2 architecture. Another possibility could be
the large window sizes of 1 second used for recognition. Most other
speech recognition systems, be it for audible or silent speech, use
shorter windows of time and then combine data from multiple
windows to predict the correct phonemes or words. Because RNNs

are notorious for the exploding/vanishing gradient problem, using
only every eight samples in time is probably not the best solution.
Interestingly, both the LSTM and GRU models performed worse than
the simple RNN for corpora 2 through 4, even though these models
were constructed to fare better than the simple RNN against the
exploding/vanishing gradient problem. The reason for this is likely
the fact that many more nodes were used for the simple RNN. One
might then ask why not more nodes were added to the LSTM and
GRU models. This decision was made because these two models were
much slower to train than the simple RNN when using the same
number of nodes.
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Interestingly, the relative accuracies between different recording
sessions were quite consistent independently of the classification
method, despite the differences in overall performance. For Corpus
2, four of the sessions achieved 20 percentage points higher recog-
nition rates when averaging over all classification methods than
the remaining three. The same tendency is present for corpora 3

and 4, where some sessions consistently result in higher accuracy.
This phenomenon was observed when calculating the cross-session
accuracy presented in Figure 19 in the Results chapter. There, some
sessions gave much higher accuracies, and signs of clusters between
individual sessions were seen. Figure 28 visualizes this session
inconsistency by showing the average accuracy over 10 trials for each
of the 15 sessions in Corpus 3 using all the developed classification
methods. The same trend is visible independently of the classification
method, showing that some sessions are doubtlessly more suited for
single-word classification than others.

Figure 28.: Average accuracies for the six different classification methods on
each of the 15 recording sessions of Corpus 3. A clear trend be-
tween accuracy and session is seen independently of the method
used.

This inconsistency between sessions brings the question of why this
has happened and whether it is possible to make all future recording
sessions better by changing the method slightly. The length of each
recording session was decided by pragmatism rather than a set
sample goal. This decision resulted in a different number of samples
available for each session, an apparent possible explanation, as more
training data is known to give better recognition. However, as seen in
Figure 29, the trend between the number of samples and the average
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accuracy for each session is not very obvious. The data used is from
the average accuracies from the initial CNN model on sessions from
corpora 2 through 4. Regression lines were added for each corpus,
with R-values of 0.58, 0.17, and −0.02, indicating a slightly positive
correlations for Corpus 2 but not for the others.1

Other factors must therefore be considered as well. Possible explana-
tions include irregular cleaning of the sensor, sensor movement dur-
ing a session, and how well the original sensor placement of each ses-
sion matches muscle activation features easily recognized. Another
possibility is the prospect that the subject might be getting more
used to performing silent speech over time, as has been previously
reported by Wand [65] and Meltzner et al. [50].

Figure 29.: Scatter plot of the number of samples and average word accuracy
for the all sessions of corpora 2 through 4. Regression lines are
added for each corpus.

5.2 session and speaker independent results

Challenges with session- and speaker independence are regarded
as two of the most critical barriers for functional EMG-based silent
speech interfaces [16, Chapter 1.5]. The most in-depth analysis of
session independence found during the literature review for this

1 A straight line will not be accurate for this data when extended further to the sides
but might indicate a trend nonetheless. Zero samples would always lead to no recog-
nition, and one would never get above a recognition rate of 100%.
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thesis was Wand [65, Chapter 8.1], where the use of 7 and 15

sessions as training data were compared. There, the author found
that the average accuracy on single word classification using a
vocabulary of 108 words increased from 65.9% using 7 sessions to
73.0% using 15 sessions. This was compared to 85.0% accuracy using
a session-dependent classification system.

Initial results using Corpus 1 regarding speaker independence
showed no recognition above random chance (Table 11). Using
Corpus 1B, at least some recognition independently of sessions
were found (Table 12), notably with very little available data. Using
Corpus 2, more results were collected on session independence
using 7 sessions and training on an iteratively increasing number of
sessions. Those results showed an average of 25.9% accuracy using
1 session, 33.1% using 6, and 64.6% on a session-dependent system,
indicating the same tendency as in Wand [65, Chapter 8.1]. However,
there were obvious drops in accuracy after adding certain sessions
to the pool of training data, seen in Figure 16. It is believed that
this might be the result of the session inconsistency effect discussed
in Section 5.1, where data from some sessions are better suited for
EMG-to-text classification, and training with data from the "bad"
sessions therefore throws the learning algorithm off. This conclusion
is nonetheless speculative, and the accuracy highly depends on
what data are used for testing. The best approach is likely to use as
many sessions for training data as possible to generalize the recog-
nition to future sessions, as needed for a session independent system.

After the implementation of a completely new, more streamlined
data collection program, it was possible to collect more data for the
remaining datasets. Therefore, it was believed that corpora 3 and 4,
with 15 and 12 sessions respectively, would result in higher degrees
of session independence. This was indeed the effect as the average
accuracy using the CNN2 architecture was, remarkably, higher when
training on all the sessions of Corpus 3 with 85.4% than when
averaging the accuracies over single sessions, which was 83.9%. It
should be noted that the highest average accuracy when looking only
at the best-performing single session within Corpus 3 was as high
as 93.4%, as seen for Session 3-2 in Figure 28. This high accuracy on
unseen sessions enabled the functional EMG-to-text spelling SSI to
be completely session-independent, working well on data recorded
independently of the main corpora.

With that being said, it is important to acknowledge the fact that
from Corpus 2 to 3, the accuracy increased significantly even with
the same vocabulary and sessions of approximately the same number
of samples, clearly seen in Figure 29. One possible reason for this
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might be the fact that Corpus 2 consisted of silently spoken digits
while Corpus 3 was vocalized. This effect is previously seen in other
studies such as Maier-Hein et al. [48], where the authors argue it
might be linked to a stronger muscle activation for vocalized than
silent speech. This difference between muscle activation during silent
and vocalized speech is also highly problematized by Gaddy and
Klein [19], who used dynamic time warping to align EMG data from
silent and vocalized speech. However, other factors must play a role,
for Corpus 4 is silently spoken and still achieves higher accuracies
than Corpus 2, even with almost triple the number of words in its
vocabulary. A combination of the consistent sampling rate of 256 Hz,
the author becoming more used to silent speech, and the fact that the
NATO phonetic alphabet is to distinguish the different words easily,
is believed to be the reason.

Results from this project on speaker and session independence are
clearly in line with previous research where session independence on
one speaker seems to be an easier challenge to solve than speaker
independence. Both Maier-Hein et al. [48] and Wand [65] have re-
ported some session independence by having more data or using
specific methods to increase the recognition between sessions, while
no work has been found that claims to have solved the challenge of
speaker dependence. As described in 2009 by Denby et al. [9], the
situation of speaker independence using EMG might be pretty dif-
ferent from audio-based speech recognition, as the features depend
directly on the speaker’s anatomy and the exact synaptic coding in-
herent of her/his articulatory muscles. It might, however, be solvable
with more data as today’s audio-based speech recognition systems
are based on many orders of magnitude more training data than even
the most extensive EMG-based system. In Meltzner et al. [50], the au-
thors write that they believe:

"... training effective subject-independent models will re-
quire an additional data-set of subvocal speech recorded
from a large and diverse population representative of typ-
ical end-users. Once obtained, these data could be com-
bined with recent Deep Learning algorithms that have ad-
vanced the state of acoustic ASR to human recognition
levels (and is the basis for recognition capabilities of the
commercial virtual assistants such as Siri, Alexa, and Cor-
tana). Using a deep-learning approach for each desired
user, a subject-specific model could be created by using a
small amount of that subjects’ data to adapt the network
weights of the much larger average deep neural network
baseline model."

To be able to collect such a large and diverse data set as they describe,
it is first necessary to find a common practice between research com-
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munities on how to collect and process EMG data for silent speech.
The Emotiv Epoc+, or preferably a sensor actually made for facial
EMG measurements, might be a potential candidate for such a com-
mon platform.

5.3 direct comparison with other studies

5.3.1 Single word classification

Section 2.7 in the Theory chapter includes a table listing the single-
word classification results from previously published work in EMG-
to-text. Table 17 shows the same table, including the results from this
thesis. This place results in this work on par with many of the previ-
ous results, even from more recent studies. The accuracy achieved for
this thesis is lower than others have achieved on larger vocabularies
but include session-independency, an important factor for practical
SSIs.

Table 17.: Comparison of single word classification results from this project
with similar previous work.

Source Year Vocabulary Accuracy [%] Session independent

[61] 1985 5 64 No

[53] 1991 10 60 No

[3] 2001 10 93 No

[33] 2005 10 73 No

[48] 2005 10 97.4 No

[48] 2005 10 76.2 Yes

[35] 2006 108 68 No

[65] 2014 108 85 No

[65] 2014 108 73 Yes

[60] 2017 5 64.7 No

[38] 2018 10 92 No

[50] 2018 65 90.4 No

[47] 2019 10 72 No

[71] 2020 10 79.5 No

[72] 2020 10 93 No

This project 2020 3 93.3 No

This project 2021 10 85.4 Yes

This project 2021 39 63.2 Yes
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5.3.2 Electrode subsets and optimal placement

This thesis is not the only study in electrode subsets and optimal
sensor placement. Most notably, a group from the Shenzhen Insti-
tutes of Advanced Technology ran experiments using 120 different
electrodes resulting in two papers describing the effects of electrode
placement [72] and the number of electrodes used [66]. They found
that when divided into three groups, the electrodes on the whole
neck resulted in the highest accuracy compared with electrodes on
each side of the face or only in the center of the neck. Unfortunately,
they did not place any electrodes below the lower lip’s sides, which
was the most important electrode placement in this thesis. A more
easily comparable electrode setup was that of Wadkins [64], who
reported that out of their 8 electrodes, the one directly below the chin
was the most important. The most closely matched electrodes on the
Emotiv Epoc sensor to that are F3 and F4 (electrodes 1 and 2), which
were deemed least important in the experiments related to subsets of
electrodes, as seen in Section 4.3.1. These inconsistencies show that
there is no current best practice on electrode placement and that it
might be dependent on the speaker and the types of electrodes used.

Wang et al. [66] found, as expected, that more sensors are on average
always better, but that the return of higher accuracy with more elec-
trodes diminishes quickly. By using 8 selected electrodes, they were
able to achieve above 90% accuracy on a vocabulary of 10 words (as
well as a class for ’silence’), while 15 electrodes were needed for 95%
accuracy. Meltzner et al. [50] tested 12 different pairs of electrodes and
found that no more accuracy was gained above 8. It seems therefore
that the 8 electrodes of the Emotiv Epoc sensor should be enough for
good results, but doubling the number would probably lead to better
performance. Almost all other studies use either only electrodes on
one half of the face or a non-symmetrical setup of electrodes, so an
optimal EMG-headset for silent speech would likely follow that pat-
tern.

5.4 the effect of signal artifacts

Most biological electrical sensors are prone to artifacts. The used Emo-
tiv EEG-headset possibly even more so as it is originally made for
EEG brain measurements where all of the sensors are fixed relative to
each other. As the same reference point is used, moving an electrode
relative to the others can affect both the signal for that electrode as
well as for the other electrodes, as seen in Figure 30. Early on in this
project, two simple experiments were performed to uncover whether
the sensor was capable of measuring muscle activity, not only rela-
tive movement of the electrodes. The first was by moving the tongue
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inside the mouth while the face, and thus the sensor electrodes, were
stationary. The second was by clenching the jaw so that facial mus-
cles were active without any movement. Plots from both these tests
are presented in Figures 31 and 32.

Figure 30.: A graph showing the effect on the Emotiv sensor signal when
lifting and then releasing one of the electrodes.

Figure 31.: The effect of clenching while wearing the Emotiv sensor. Note
the high-frequent signal while clenching without any movement.
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Figure 32.: The effect of moving the tongue while wearing the Emotiv sensor
and keeping the face still. Note the more low-frequent signal of
the movement, even though none of the sensor electrodes moved
relative to each other. The two electrodes with the most visible
activation (F3 and F4) are the ones placed on the throat.

There are additional artifacts present when using the sensor. The
most apparent is the effect of facial movements during recordings
that are not related to speech, such as swallowing and facial expres-
sions. These artifacts are not exclusive to the Emotiv sensor and com-
bine to a general challenge with EMG as the modality for silent speech.
Nonetheless, the fact that the sensor picks up on all facial movements
might in the future become a useful feature as it can supplement a
silent speech interface (SSI) with information about the user’s mood
and focus.
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6
C O N C L U S I O N A N D F U T U R E D I R E C T I O N S

In this study, an Emotiv Epoc+ EEG headset has been used in a
completely novel way as the interface for two different possible EMG

silent speech interfaces (SSIs). Because this sensor is more readily
available than medical-grade EMG sensors and results are comparable
to other work using more expensive equipment, it has been proposed
as a common platform for future EMG silent speech research. Both
proposed SSIs were shown to work conceptually and can, with
more time and effort, potentially be very useful in a wide range of
situations. The highest single trial accuracy on Corpus 3 was 97.1%
on a 10-word vocabulary, higher than most of the reported values of
recent studies on the same topic, showing great potential towards
EMG-to-text silent speech recognition. By synthesizing speech with
intelligibility resulting in listeners correctly classifying 73.5% of the
digits in the same 10-word vocabulary, functional EMG-to-speech is
also shown to be possible with the Emotiv headset.

The objectives for this project were to:

(1) Analyze whether the chosen sensor can be used to recognize
silently spoken single words from a small vocabulary.

(2) Enable a method for efficient collection of both EMG and audio
datasets while using the Emotiv Epoc+.

(3) Discover types of classification and feature extraction methods
that work well with the available data.

(4) Work on understanding the challenges connected to session in-
dependence and the potential for a direct EMG-to-speech solu-
tion.

and throughout this thesis, all four have been fulfilled. Much work re-
mains to achieve higher recognition rates on larger vocabularies and
with more speakers. Still, the results so far are well in line with previ-
ous research and create a solid foundation for future improvements.
This thesis has thus contributed to a future where the immense pow-
ers of spoken language might soon be available for more people and
in more situations through functional silent speech interfaces (SSIs).
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6.1 future directions

A sound basis for two different SSIs has been created. For a more func-
tional EMG-to-text SSI, a phoneme-based solution is probably needed,
enabling a much larger vocabulary that can be used in real-time.
Spelling out each character in a sentence works but is unsuitable for
most applications. Better deep learning architectures, more training
data, and smarter processing of the data on both sides of the model
in a system pipeline would presumably increase performance further.

Because of limitations in time, the possibilities of an EMG-to-speech
interface based on Corpus 5 were not explored as deeply as hoped for.
Designing more suitable sequence-to-sequence models for transform-
ing EMG data either to mel-spectra or directly to speech waveforms
will most likely result in models that perform much better and can
be used on an unlimited vocabulary. Looking more into smaller win-
dows in time and better synchronization between EMG and audio data
for the EMG-to-speech solution will also likely be necessary.
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A
A P P E N D I X

a.1 lstm and gru network structures

Architecture 5: Layers of the LTSM-RNN that was used for classification.

1

2 from tensorflow.keras.layers import Input, LSTM, Dense, GlobalMaxPool1D

3 from tensorflow.keras.models import Model

4 from tensorflow.keras.optimizers import Adam

5

6 # Remove most of the data (leave every 8th timestep)

7 X = X[:,0:250:8,:]

8

9 x_train, x_test, y_train, y_test = train_test_split(X, Y, stratify=Y,

test_size=0.2)

10

11 # Build the LSTM-RNN model

12 K = 10 # number of outputs (categories for classification)

13 M = 5 # number of hidden nodes

14

15 i = Input(shape=x_train[0].shape)

16 x = LSTM(M, return_sequences=True)(i)

17 x = GlobalMaxPool1D()(x)

18 x = Dense(K, activation=’softmax’)(x)

19

20 model = Model(i, x)

Architecture 6: Layers of the GRU-RNN that was used for classification.

1 from tensorflow.keras.layers import Input, GRU, Dense

2 from tensorflow.keras.models import Model

3 from tensorflow.keras.optimizers import Adam

4

5 # Remove most of the data (leave every 8th timestep)

6 X = X[:,0:250:8,:]

7

8 x_train, x_test, y_train, y_test = train_test_split(X, Y, stratify=Y,

test_size=0.2)

9

10 # Build the GRU-RNN model

11 K = 10 # number of outputs (categories for classification)

12 M = 3 # number of hidden nodes

13

14 i = Input(shape=x_train[0].shape)

15 x = GRU(M)(i)

16 x = Dense(K, activation=’softmax’)(x)

17

18 model = Model(i, x)
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a.2 lstm and gru classification accuracy

a.2.1 Corpus 1

Figure 33.: Boxplots of the classification results for Corpus 1 using the fi-
nal a) LSTM and b) GRU architectures 10 different train/test splits
were performed with the median for each speaker as the solid or-
ange line in each box. The box extends to lower and upper quar-
tile, while the whiskers extend from the box to show the range
of the data. Circles are regarded as outliers, but still calculated
into the total average.

78



a.2.2 Corpus 2

Figure 34.: Boxplots of the classification results for Corpus 2 using the a)
LSTM and b) GRU architectures. Total average accuracies of 50.1%
for the LSTM and 42.3% for the GRU are marked with the orange
stippled lines.
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a.2.3 Corpus 3

Figure 35.: Boxplots of the classification results for Corpus 3 using the a)
LSTM and b) GRU architectures. Total average accuracies of 48.4%
for the LSTM and 40.1% for the GRU are marked with the orange
stippled lines.
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a.2.4 Corpus 4

Figure 36.: Boxplots of the classification results for Corpus 4 using the a)
LSTM and b) GRU architectures. Total average accuracies of 16.3%
for the LSTM and 13.4% for the GRU are marked with the orange
stippled lines.
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