
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Karl Henrik Olof Ejdfors

Design of an AR Based Framework
for Acoustic Simulation

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Andrew Perkis

June 2021

M
as

te
r’s

 th
es

is

Karl Henrik Olof Ejdfors

Design of an AR Based Framework for
Acoustic Simulation

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Andrew Perkis
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Abstract

Proper room acoustics is vital for a holistic experience and comfort but can be challenging

to achieve. Classic acoustic simulation software can present properties about a room’s

acoustics but does not let a client “experience” the results. This thesis looks into how

immersive technologies can let clients experience different acoustical designs and what

effects augmented reality (AR) contribute to spatial presence and sound perception for

acoustic simulations.

An Android application is developed as a framework for real-time acoustic room simu-

lations in AR. This framework aims to give the user an arena for experiencing a virtual

room’s acoustics and perceiving how changes to the design affect the sound. The acoustic

replication of the room is based on the image-source model for generating room impulse

responses to be convolved with anechoic sounds. The system is tested by a focus group,

whose profession is acoustics, for evaluating the concept and indicate the immersive effects

AR provides to acoustic simulations.

The results from the experiment with the focus group suggest that real-time acoustic

room simulation in AR provides a client a sense of being present in an acoustical room. It

was also evident that AR technology enhances the perception of small changes in sound.

However, the acoustic representation needs further improvements to give the user a more

realistic feeling.

i

Sammendrag

Romakustikk er viktig for komfort og en helhetlig opplevelse, men kan være vanskelig

å oppn̊a. Vanlige akustikk-simuleringsprogrammer kan f̊a frem romakustiske egenskaper,

men legger ikke til rette for at en klient kan “oppleve” resultatene. Denne rapporten

ser nærmere p̊a hvordan teknologi som bruker immersjon kan f̊a en klient til å oppleve

forskjeller i akustiske design og hvilke effekter utvidet virkelighet (AR) bidrar til romfølelse

og lydoppfatning i akustiske simuleringer.

En Android-applikasjon er utviklet som et rammeverk for romakustiske simuleringer i

sanntid med AR. Dette rammeverket skal gi brukeren en arena for å oppleve akustikken

i et virtuelt rom og oppfatte hvordan endringer i designet p̊avirker lyden. Den akustiske

gjengivelsen av rommet er basert p̊a bildekildemetoden for å generere romimpulsresponser

som kan foldes med anekoiske lyder. Systemet er testet av en fokusgruppe som jobber

innen akustikk for å evaluere konseptet og indikere de immersive effektene AR tilføyer

akustiske simuleringer.

Resultatene fra eksperimentet med fokusgruppen indikerer at akustisk romsimulering i

sanntid med AR gir en klient en følelse av å være til stede i et akustisk rom. Det var ogs̊a

tydelig at AR-teknologi forbedrer oppfatningen av sm̊a lydendringer. Derimot trenger den

akustiske gjengivelsen ytterligere forbedringer for å gi brukeren en mer realistisk følelse.

ii

Preface

This thesis marks the completion of the Master’s degree program in Electronics Systems

Design and Innovation at the Department of Electronic Systems (IES) at the Norwegian

University of Science and Technology (NTNU). The Master’s thesis was performed and

completed during the spring semester of 2021 and is a part of the Signal Processing and

Communication specialization.

The thesis’ topic was proposed in collaboration with Norsonic AS. The layout of the project

was discussed in collaboration with Professor Andrew Perkis at NTNU.

I want to thank Professor Andrew Perkis for his contribution as a supervisor and his

valuable support during the work. A special thanks to Electroacoustic Engineer Erlend

Fasting at Norsonic AS for feedback, guidance, and fruitful conversations. I would also like

to acknowledge the experiment participants at Norsonic AS for evaluating the system. In

addition, I would like to thank the piloting participants for their time and for contributing

to improvements in the application.

As a final note, I would like to thank my family and friends for their encouragement and

support throughout my years of study.

Karl Henrik Olof Ejdfors

iii

Table of Contents

1 Introduction 1

1.1 Related Work . 2

1.2 Structure of the Report . 3

2 Theory 4

2.1 Media Technology . 4

2.1.1 Spatial Aspects of Augmented Reality (AR) 4

2.1.2 Immersion Within the System . 5

2.2 Acoustic Virtual Reality . 6

2.2.1 Room Impulse Response Generation 6

2.2.2 Sound Replication and Considerations 8

3 Method 10

3.1 Research Procedure . 10

3.2 Hypotheses . 11

3.3 System Materials . 11

3.3.1 Hardware . 11

3.3.2 Software . 12

3.4 System Description . 13

3.5 Scene Overview . 13

3.5.1 Scene 1: Simple . 13

3.5.2 Scene 2: Complex . 15

3.5.3 Scene 3: Challenge . 20

iv

TABLE OF CONTENTS

3.6 Usability and User Interface . 22

3.7 Implementation of Algorithms . 23

3.8 Pilot Testing . 25

3.8.1 Demographic . 25

3.8.2 Procedure . 25

3.8.3 Observations, Feedback and Changes 26

3.9 Experiment Setup . 27

4 Results 29

4.1 Scene 1: Simple . 30

4.2 Scene 2: Complex . 31

4.3 Scene 3: Challenge . 33

4.4 Room Acoustic Feeling . 35

5 Discussion 37

5.1 Experiment Session . 37

5.2 System . 38

5.3 Further Work . 38

6 Conclusion 40

Bibliography 41

A Survey Answers A-1

A.1 Demographic and Background Information A-1

A.2 Scene 1 Participant Answers . A-2

A.3 Scene 2 Participant Answers . A-3

A.4 Scene 3 Participant Answers . A-6

A.5 Room Acoustic Feeling . A-7

B Documents B-1

B.1 Research Protocol . B-2

v

TABLE OF CONTENTS

B.2 Information Sheet . B-8

B.3 Manual . B-10

B.4 Consent Form . B-13

B.5 Survey Questionnaire . B-14

C Supplementary Code Files C-1

vi

Acronyms

AR Augmented Reality

AVR Acoustic Virtual Reality

BRIR Binaural Room Impulse Response

FFT Fast Fourier Transform

HMD Head-Mounted Display

HRIR Head-Related Impulse Responses

HRTF Head-Related Transfer Function

IMU Inertial Measurement Unit

LTI Linear Time-Invariant

MR Mixed Reality

NRC Noise Reduction Coefficient

RIR Room Impulse Response

SDK Software Development Kit

SLAM Simultaneous Localization and Mapping

VR Virtual Reality

XR Extended Reality

vii

Chapter 1

Introduction

Acoustics can be a priority when designing facilitates requiring high performance of sound

reproduction. Cathedrals, for instance, are known to be massive and beautiful construc-

tions that have a very generous acoustic inside. Opera houses and theatres go into the same

category, but more common facilities such as offices, educational facilitates, or restaurants

may overlook a proper acoustic design [1, 2].

Improper room acoustics can be an attribute for dissatisfaction in, e.g., restaurants. A

restaurant with a rustic style, where the building materials are bricks or stones, can look

appealing, but the acoustics can be disturbing. This effect is unwanted both for the guests

and the restaurant owner. Sometimes it is sufficient to reduce the reverberation in the

room, and it can be beneficial to engage architects and engineers for consultation. After

a consultation, they can perform and provide a simulation of the room’s acoustics.

Acoustic simulation software have proved its position in the industry over the last 30 years

[1, 3]. The software are highly accurate for resolving a broad range of structural prob-

lems, and new approaches and improvements are applied to implement specific acoustic

phenomena. Such simulations can require expert use as the results often are presented as

bar charts, numbers, tables, or color maps. These presentations can be challenging for

an oblivious client to understand and imagine how they will adapt to reality. A way to

bring down the complexity of such presentations is to auralize the result such that one

can perceive how a sound or soundscape will fit in a room.

Over the last years, a new trend of “experiencing” the results from a room acoustic sim-

ulation has emerged [4–6]. This trend is accomplished by multisensory perception from

both visual and auditory stimuli simultaneously, which can adapt to user placement and

rotation. This approach can be experienced within the extended reality (XR) domain (i.e.,

virtual (VR), augmented (AR), and mixed reality (MR)) [5–9] and have several additional

benefits to classic acoustic simulations.

XR technology provides an extra dimension of immersiveness in a user’s experience [10–

13]. This immersive feeling can give the user a sense of “being present” within the system

and feel like he takes an active part in the scene. In this thesis, we will create a framework

1

CHAPTER 1. INTRODUCTION

for real-time room acoustic simulations and base the user experience on perceived sound

and immersive effects with AR. The framework will be developed as an application for

mobile devices, and the sound will be played from a set of headphones. This design choice

aims at enhancing the flexibility and accessibility of acoustic simulations and can be an

important tool for consultants or advisors to bring on field consultations.

The framework will facilitate for effortlessly experiencing real-time changes in a room’s

acoustics and different acoustical designs. Communicating acoustical properties of mate-

rials for non-acousticians will then be less challenging as it breaks down the complexity of

a simulation in an immersive and intuitive way.

In contrast to classic simulation software, there will, in this case, be limitations to com-

putation time for a real-time approach. These limitations will influence how accurate the

simulation will perform. This thesis will emphasize the user experience and possibilities

of perceiving different acoustical designs and materials in a compelling and immersive

way and look further into the effects AR can provide to acoustic simulations. A focus

group of eight participants working within acoustics at Norsonic AS will test the proto-

type application. This experiment will be the foundation for a qualitative analysis of the

concept.

To gain context for the framework, we first present related work and use cases for acoustic

simulations in the XR domain.

1.1 Related Work

Over the last couple of years, there has been an emerging interest in XR applications

in society. The excitement has led to a broader uptake for science, education, industry,

and entertainment disciplines [7]. The vast application sector within XR facilitates the

users to experience spatial environments and interact with augmented information for an

immersive and compelling experience. Previous research has shown that the sense of being

present in the environment gets improved in combination with spatial audio [5, 14–16].

Advances in computer vision have led to fields within 3D reconstruction for capturing

and mapping real-world scenes from images and video. Schissler et al. [10] proposed

a novel algorithm to generate virtual acoustic effects to such scenes by using machine

learning algorithms and estimation of acoustic material properties. They classified and

optimized the material absorption coefficients to match measured impulse responses to

apply acoustics to the scene. After reconstructing the 3D scene with applied acoustics, it

can be rendered and explored as a multimodal XR environment.

Kim et al. [6] proposed in their work a similar approach to simulate acoustics in recon-

structed scenes and assign those to Google’s spatial audio software development kit (SDK)

Resonance Audio1 for immersive audio representation. In both cases, the results are vir-

tual environments of predefined scenes with close to reality acoustics.

1https://resonance-audio.github.io/resonance-audio/

2

https://resonance-audio.github.io/resonance-audio/

CHAPTER 1. INTRODUCTION

Acoustic virtual reality (AVR) is a technique for exploring auralizations in a VR environ-

ment. Pind et al. [4] showed a use case of this technology in their experiment, where a user

can explore AVR mock-up scenes of classrooms in Carl H. Lindner College of Business.

The purpose of the experiment was to experience the acoustics in two different designs of a

classroom before making permanent design decisions. It proved to be valuable for making

objective room acoustic parameters more accessible and understandable, even though the

acoustic representation was näıve and not very accurate.

Within the video games and entertainment sector, the audio representation closely links

to that of AVR. The objective is often the same, i.e., to have realistic virtual acoustics and

improve immersion [4]. Computer games such as Overwatch and Counter-Strike: Global

Offensive takes advantage of this and use spatial audio to provide information to the

players, whether it be locating incoming gunfire, recognizing footsteps, or warning the

player that their health is low [17]. The emerging use of 3D audio effects in games and

XR have led to several audio plugins for game engines.

Steam Audio2 is a plugin one can use to provide immersive audio solutions for games and

XR. The plugin provides audio that will fit the in-game geometry and combine occlu-

sion, reflection, revert, and head-related transfer function (HRTF) effects and is actively

developed.

A similar plugin is Google’s Resonance Audio, whose aim is “to replicate how real sound

waves interact with human ears and with the environment”[18]. Resonance Audio repli-

cates the real-world sound wave interactions with human ears to determine a sound’s hor-

izontal location and elevation and provides immersive audio to the scene. Another similar

plugin is AudioKinect Wwise3 which provides interactive audio solutions and simulates

audio environments in games and XR.

The provided research of spatial audio in XR environments has many similarities with this

project. The combinations of spatial presence and acoustic simulation of environments

are the main considered topics when developing the simulation framework. The audio

plugins can be used to spatialize audio. However, they cannot be included in our project

because they are restricted to predefined scenes and do not support arbitrary absorption

coefficients.

1.2 Structure of the Report

The report is divided into several chapters, where each presents different aspects of the

system. Chapter 2 presents a theoretical approach to media technology and acoustic

virtual reality. Chapter 3 provides the test procedure and method for implementation of

the system. Chapter 4 provides the test results and observations from the experiment

session. Chapter 5 goes more in depth about the test results, system, and further work,

and finally, a conclusion is given in Chapter 6.

2https://valvesoftware.github.io/steam-audio/
3https://www.audiokinetic.com/products/wwise/

3

https://valvesoftware.github.io/steam-audio/
https://www.audiokinetic.com/products/wwise/

Chapter 2

Theory

The acoustic framework relies on both media technology and acoustic phenomena to be

a persuasive and immersive simulation tool. Different media give the application a base

for the user’s experience in terms of immersion. At the same time, the acoustic aspects

provide the user with a perception of how the sound adapts to changes as he interacts with

the application. The following sections describe the use of this theory in the development

of the tool.

2.1 Media Technology

This section will present the aspects around the multimodal composition of the application

in terms of environment, interactivity, immersion, and audio.

2.1.1 Spatial Aspects of Augmented Reality (AR)

AR technology is the core technology used in our simulation tool for tracking and making

it possible for the device to follow the user’s orientation. Additionally, it superimposes

virtual objects to the real world and creates an augmented environment for the user to

interact with. AR has become a widely used technology many smartphone users utilize

daily during the last couple of years. Examples of use cases are the translation of foreign

language signs by using the mobile’s camera and Google Translate, AR GPS navigation

on streets, or showing the solar path and other relevant information as an overlay to a

camera image.

In our case, we want to enhance the user’s understanding of how a room’s acoustics is

affected by materials and objects in the room. In an AR environment, we can interact

with a virtual room and experience how we can affect the acoustics by walking around

and changing materials or add objects. Svensson [8] defines AR technology as “aims at

enhancing our perception and understanding of the real world by superimposing virtual

information on our view of the real world”. Hence, the additional information from the

4

CHAPTER 2. THEORY

augmented environment will enhance the user’s perception and understanding of how

acoustics can be affected in the real world.

The virtual room in the environment will get its local coordinates and rotation from

how Simultaneous Localization and Mapping (SLAM) scans the environment and how the

device’s Inertial Measurement Unit (IMU) updates. IMU is a combination of the device’s

accelerometer, gyroscope, and magnetometer and is a typical combination of how modern

smart devices handle AR content. With the device’s camera, the IMU makes it possible

for the device to map the environment and know its position and motion. This sensor

technology is referred to as SLAM and enables interactions from the user.

2.1.2 Immersion Within the System

Immersion can be divided into two major perspectives: an individual’s psychological state

and an objective property of a technology or system [11]. To gain an advantage of an

immersive experience, we design the application to unfold around the user. The virtual

objects on top of the real environment will be intuitive and familiar, and interactions with

the application will give the user a real-time response.

Immersion can refer to the capability a system has to occupy our perceptual system and

simulation environments that evoke a feeling of “being there” [12]. To achieve such immer-

sive effects, we include several elements. According to Hameed and Perkis [12], immersion

shall include system immersion, absorption and engagement, strategic and tactical immer-

sion, imaginative immersion, challenge-based immersion, ludic immersion, and narrative

immersion. Hence, a persuasive system is essential for enhancing immersion, which can

be achieved through a well-designed virtual or augmented experience. We emphasize sys-

tem and challenge-based immersion as well as absorption and engagement through the

multimodal structure of the application. This structure contains media, interactions, and

real-time feedback and will be an engaging arena for the user.

Sound is an essential component for our experience in virtual environments and can help

to, e.g., create a realistic sense of the world, take a part of the environment and help get

emotionally engaged [14]. Spatial sound is sound positioned in a 3D space around the

listener and can add a sense of presence. Our system will replicate the acoustics in a 3D

room and use omnidirectional 3D sound where the perceived sound pressure level reduces

with the distance from the source.

Binaural rendering, which requires convolution of source signals with head-related impulse

responses (HRIRs) or binaural room impulse responses (BRIRs), aims to evoke an extra

immersive experience for the listener [15]. These methods utilize the human auditory

system to perceive sound from a particular direction and are of great interest in the fields

of XR and virtual acoustics. However, this often requires extra plugins or specialized

equipment and will be left out of this prototype framework.

5

CHAPTER 2. THEORY

2.2 Acoustic Virtual Reality

Room impulse response (RIR) measurements are widespread for capturing the acoustical

characteristics of a real room [19]. The measurements require a physical setup of sound

sources and receivers in the room of interest, but in our dynamic virtual room, we need to

calculate and generate the RIR. For simulating acoustic phenomena in the room, we need

a set of parameters for characterizing it. The following section will discuss an algorithm

for generating an RIR.

2.2.1 Room Impulse Response Generation

To simulate room acoustics, we want to generate an RIR for a desired virtual room.

There are several approaches for generating RIRs, including wave-based, ray-based and

statistical modeling [20]. The wave-based methods are more computational demanding

than ray-based, which works better for real-time simulations. This statement, however, is

because of simplifications in the ray-based methods. The statistical methods are more used

for high-frequency noise analysis and acoustic designs. The ray-based methods, mainly

“Ray Tracing” and “Image-Source”, are based on sound particles traveling as sound rays

[21]. We will base our generation of RIR on the image-source method.

Allen and Berkley’s image-source method can be used to simulate the reverberation in a

rectangular room for a given source and receiver location [22]. This model is based on the

direct path between the source-receiver pair and the pathways with corresponding delays

between source images and the receiver. The direct path length can be calculated from

the known locations of the source and receiver, whereas the source images are used for

calculating the reflected paths. Figure 2.1 shows an image source located behind a wall

with an equal distance from the wall as the source. Because of symmetry, we can compute

the reflected pathway by the distance between the image source and the receiver. The

time delay of the reflected signal is thus corresponding to the distance given as

τ =
d

c
, (2.1)

where d is the distance and c is the speed of sound. This model can again be made more

complex by introducing more reflections and hence images.

The six reflecting surfaces in a room have their reflection coefficient β, or absorption

coefficient α by the relation

α = 1− β2. (2.2)

These absorption coefficients are found as noise reduction coefficients (NRC). NRC can

be expressed as the average rating of sound absorbed by an acoustic material and ranges

from 0 to 1 [23]. An NRC rating of 0 means that the material absorbs no sound, whereas

an NRC rating of 1 means that all sound is absorbed. We can express the NRC as the

arithmetic average of absorption coefficients of a set of frequencies. The octave band center

6

CHAPTER 2. THEORY

receiver

source image source

wall

Figure 2.1: One reflection path for the image-source
method.

frequencies 125, 250, 500, 1000, 2000, and 4000Hz can determine the NRC as

NRC =
α125 + α250 + α500 + α1000 + α2000 + α4000

6
. (2.3)

Even though the NRC indicates how well the material absorbs sound, it does not reflect the

frequency dependence of the material. For materials with an absorption coefficient that

vary much with frequency, the NRC rating is less accurate for representing the material’s

acoustic properties. A sample of common materials and their NRC rating is shown in

Figure 2.2. Here, we can easily see that some materials absorb sound differently even

though they have similar absorption coefficients. We can see that glass, on the one hand,

reduces its absorptive properties for higher frequencies, whereas concrete, on the other

hand, increases its absorptive properties for higher frequencies. This contrast in frequency

dependence makes the two materials absorb sound very differently, even though they have

a similar NRC rating of 0.06 and 0.05.

125 250 500 1000 2000 4000

Frequency (Hz)

0.01

0.1

1

S
ou

n
d

A
b

so
rp

ti
on

C
o
e/

ci
en

t

Sound Absorbing Materials

NRC=0.50, Carpet
NRC=0.06, Glass
NRC=0.05, Concrete
NRC=0.04, Brick

Figure 2.2: Sound absorption coefficient and NRC rating for a sample of common materials
[24].

7

CHAPTER 2. THEORY

Allen and Berkley proposed in their work a method for generating an RIR in the time

domain with reflection coefficients as

h
(
t,X,X′

)
=
∑
p∈P

∑
m∈M

β|mx−q|
x1

β|mx|
x2

β
|my−j|
y1 β

|my |
y2 β|mz−k|

z1 β|mz |
z2

δ (t− τ)

4πd
, (2.4)

for point source position X = [x, y, z] and receiver position X′ = [x′, y′, z′]. The set P,

which denotes all desired triples of p is given as P = {(q, j, k) : q, j, k ∈ {0, 1}}, M which

denotes all desired triples of m is given as M = {(mx,my,mz) : −n ≤ mx,my,mz ≤ n},
where n is the number of samples, and the reflection coefficients of the six surfaces are

βx1 , βx2 , βy1 , βy2 , βz1 , βz2 [20, 22]. The number of samples can be set by the desired sam-

pling frequency, fs, and the reverberation time, RT60, in the room as

n = RT60 · fs. (2.5)

However, since the triple m range from −n to n, the RIR algorithm gets a complexity of

O(n3), and an upper limit should be considered to prevent long computation times. The

reverberation time is defined as the time it takes for sound to decay by 60dB and can be

empirically estimated with Sabin-Franklin’s formula

RT60 =
24 ln (10)V

c
∑6

i=1 Siαi

, (2.6)

where V is the volume of the room, Si, and αi are the surface area and the absorption

coefficient of the ith surface, respectively.

2.2.2 Sound Replication and Considerations

A generated RIR provides a unique characterization for an acoustic space. We consider

our room to be a linear time-invariant (LTI) system to emulate the reverberation in the

room by convolving a dry anechoic audio signal with the RIR. In this way, a listener will

perceive the sound as it is originating from the virtual room. Since the impulse response

generated by the image-source method is for a source-receiver pair, the sound replication

will be “correct” for one point in the room. However, as a näıve approach, it is possible

to emulate the sound for small changes in the receiver position by decreasing the sound

pressure level with distance from the source. This relation can be accomplished by the

spreading for spherical pressure waves p, with distance r as

pspherical ∝
1

r
. (2.7)

This näıve approach can be helpful in some contexts, e.g., when the accuracy of the sound

replication is less important than the system’s flexibility.

In the case of real-time approaches for replicating changes in a room’s acoustics, one needs

to accept lower accuracy on the output. The tradeoff of accuracy gains flexibility such

that, e.g., moving sources, changing geometry, and surface materials can be handled in

real-time. This flexibility can be advantageous in the early design stages [4] as it indicates

8

CHAPTER 2. THEORY

how different designs will be perceived but will not work properly as a high-quality acoustic

simulation.

Our generation of the RIR is a ray-based method. As the ray-based methods assume that

sound travels along straight lines or rays, we have some wave phenomena that cannot be

modeled, such as diffraction and interference [25]. Diffraction appears when the wave-

length of a sound wave is smaller or equal to the size of an obstacle and tends to bend

around it or spreads out waves beyond small openings. Diffraction is thus most evident

at low frequencies and can increase accuracy tremendously. Boundary conditions are also

challenging to include in the generation of RIRs and are an essential factor that can affect

accuracy [25].

The following chapter will provide the research method and implementation for developing

the application.

9

Chapter 3

Method

This chapter will first provide the research procedure of the system. Furthermore, it will

present the implementation, specifications, and technical requirements of the application.

In the end, it will provide a pilot test with improvements to the system and the setup of

the experiment.

3.1 Research Procedure

We want to understand opinions and experiences from the test group to gain insightful

information about the developed acoustic framework. The participants are a focus group of

eight professional workers within acoustics who have many years of experience developing,

advising, or marketing acoustic equipment. They will take the acting role as a client,

such as a restaurant owner, who wants to experience differences in room acoustics in their

restaurant. Such clients can gain an advantage of experiencing different acoustical designs

to understand the effect reverberation can have on customers and what measures can be

taken. The participants’ profession is vital for evaluating the system because they will be

critical to the sound replication and the simulation tool. However, they can be confused

by the acting role, which can bias the answers, but the results will still indicate how a

bigger group will perceive the system.

The procedure for research and evaluation of the system is formulated as a protocol. This

protocol will ensure a consistent testing scheme and is attached Appendix B, Section B.1.

In terms of research type, we desire to analyze the experiment qualitatively. In this way,

we can look into anomalies and differences in individual implementations and answers

for comparing them with other interesting observations and results. We use surveys,

questionnaires, and open-ended questions for additional comments to collect data about

the experiment. These surveys are attached in Section B.5. Observations and discussions

with the participants are also vital data collecting sources. This data collection facilitates

expressive information, which can capture the participants’ experiences, meanings, and

perspectives and are essential for studying the system.

10

CHAPTER 3. METHOD

The demographic survey and background information about the participants will give

context to the analysis of the results. The questionnaires are inspired by Temple Presence

Inventory (TPI) [26] for evaluating telepresence and are adapted to fit this experiment.

The questions that do not require an open answer are answered by a 7-point Likert scale,

where the scale ranges from 1 (negative response) to 7 (positive response). This scale will

give a measurable response from each participant, which will be compared individually

with the rest of the answers and the other participants’ answers.

The open-ended questions will give the participant more freedom to express their expe-

rience and provide context to their answers. This data is essential when analyzing the

results and will be used together with observations, discussions, and answers to evaluate

the proposed hypotheses.

3.2 Hypotheses

We expect the participants to be immersed in the system and get a feeling of being present

in the AR simulation. The adaptive acoustics is also expected to be more emphasized when

the participant is in an AR environment. Therefore, two hypotheses have been made:

� H1: Real-time acoustic room simulation in AR provides the client a sense of being

present in the acoustic room.

� H2: AR technology enhances the perception of small changes in sound.

The following section will go further into the system materials and implementation of the

application.

3.3 System Materials

There are two sides of the system materials that are used for developing the system. This

section will provide the hardware that are used and the software required to build the

application.

3.3.1 Hardware

Modern Android devices supporting AR functionality through Google’s ARCore SDK can

use the developed application. In the implementation, we use a Samsung Galaxy tablet

with specifications listed in Table 3.1.

Google’s ARCore SDK is a platform for building AR experiences and uses SLAM for real-

time motion tracking. SLAM is used to understand where the device is located relative to

the world around it by extracting feature points from the rear camera [28]. When the user

moves the device around in the real world, the device’s IMU and the visual information

11

CHAPTER 3. METHOD

Table 3.1: Specifications for Samsung tablet [27].

Property Value

Model SM-P610
Sensors Accelerometer, gyroscope, hall-effect, RGB light
Screen size 10.4”
Camera resolution (back/front) 8.0 MP / 5.0 MP
OS Android version 10
RAM 4 GB
Space 64 GB
CPU-type Octa-Core

estimate where the device is relative to the real world over time. These sensor data then

work as input to be analyzed and processed by the various software used.

3.3.2 Software

Unity, a game engine made by Unity Technologies, is used to develop the AR application.

It is a cross-platform engine widely used for creating games and interactive experiences

in 2D, 3D, and XR. Android SDK is linked to Unity and makes it possible to compile to

Android devices.

For controlling application behavior in Unity, we use scripts written in C#. These scripts

are developed and debugged in Visual Studio Community and are found in Appendix C.

To prepare, pre-process, and analyze the data used in the application, we use MATLAB

by MathWorks. MATLAB is a professionally developed, fully documented, and powerful

programming- and numeric computing platform. The listed software with their corre-

sponding versions are given in Table 3.2.

Table 3.2: Software used for development.

Software Version

Unity 2019.4
Android SDK 30
Visual Studio Community 2019 16.9
MATLAB R2020a

The listed hardware and software are required to implement the application. The following

section will provide a system description and implementation of the theoretical concepts

from Chapter 2.

12

CHAPTER 3. METHOD

3.4 System Description

The framework for the acoustic room simulator with AR technology is, among other things,

designed to be an immersive and innovative tool for experiencing changes in perceived room

acoustics. The user will perceive the changes in real-time as the acoustic model updates

on behalf of the user’s inputs.

For human-computer interactions in this framework, we use AR technology. This technol-

ogy facilitates immersiveness and makes it possible for the user to feel more present in the

scene. The user of the framework will experience how he can affect acoustics by super-

imposing and changing virtual objects to the real environment and changing his position.

Walking around will change the auralization of the sound because of the perceived sound

level changes and the position-dependent RIR.

The implemented mathematical model for calculating the image-source RIR includes re-

flections from surfaces, dimensions of the room, player position, and absorption coefficients,

as stated in Section 2.2.1. This model processes the input data from the sound source with

regard to the placement of the source and the user. Then, it calculates the reverberation

time in the room and generates an impulse response. The generation of the impulse re-

sponse is hence dependent on the length of the reverberation time. This relation will again

affect the computation time for the model because long reverberation times require more

samples for the impulse response.

Because a group of participants will test and evaluate the system, we have divided the

application into three different scenes. The following section will provide the scene com-

position and what is included in each scene.

3.5 Scene Overview

When a user is testing the system, he should test all the application features in a guided

and intuitive way. We accomplish this intuitive flow by assigning smaller tasks to each

scene. The scenes are designed to make the user gradually explore more challenging and

complex features and are hence divided into three scenes: Simple, Complex, and Challenge.

Each scene has a corresponding survey which can be found in Section B.5 in Appendix B.

3.5.1 Scene 1: Simple

The first scene will give the user the experience of being in two very different acoustical

rooms and works as a “warm-up” for the other scenes. The first room in the scene has a

very long reverberation time, whereas the second room has a much shorter reverberation

time. The technical data for the designs of the two rooms is listed in Table 3.3.

The tasks in this scene are considered to be very simple and easy to understand for

people with no previous XR experience. The first encounter for the user is an information

13

CHAPTER 3. METHOD

Table 3.3: Technical data for Scene 1.

Attribute Room 1 NRC Room 2 NRC

Dimensions L×W×H (m) 8× 10× 3 8× 10× 3
Wall material Concrete 0.05 Wood panel 0.40
Floor material Marble 0.01 Plywood 0.23
Ceiling material Wood panel 0.40 Plaster 0.05
Reverberation time (s) 1.70 0.42

screen, which informs the user about what he is expected to encounter in the scene. The

information screen states:

In this scene, you will experience changes in room acoustics between a “hard”

and a “soft” room.

After you have successfully completed the scene, you will be asked to answer

a short survey about sound perception.

You will soon enter an AR environment. Keep in mind that you can walk

around and explore the scene.

After reading the information, the user will be placed inside the virtual room, which is

designed to have a long reverberation time. The materials used have hard surfaces that

provide little absorption and gives the user a feeling of being inside, e.g., a tunnel or

bunker. This room is shown in Figure 3.1a.

(a) First room in Scene 1. (b) Second room in Scene 1.

Figure 3.1: The two rooms in Scene 1. Surface materials and the reverberation times are
different in the two rooms.

When the user is inside the room, he will experience the application’s features in a guided

way. Figure 3.2 summarizes the flow with additional details about the processes in the

14

CHAPTER 3. METHOD

application.

Click on "Add audio"
button

Player input

Add audio

Time

Spawn audio
source

Generate RIR

Convolution

Play mixed sound

Explore the scene

10 seconds
countdown

Change room

Click on "Change
room" button

Surface materials
changes

Generate RIR

Convolution

Play mixed sound

Next scene

Click on "Next
scene" button

Current task

Display survey
text

"Change room"
button visible

Figure 3.2: Flow diagram of Scene 1.

The first task is to add audio to the scene. When clicking on the “Add audio” button,

there will be spawned an audio source playing an excerpt from the audiobook “Ut av det

bl̊a”[29]. This excerpt has a woman’s voice who speaks very clear without noise and is

mixed with the room’s impulse response to replicate the acoustics in the room. After the

audio is added, a timer will count down from 10 seconds and encourage the user to explore

the current room. When the countdown is finished, the “Change room” button becomes

visible. When the user changes the room, the “Next scene” button becomes visible and

blinking, and the surface materials of the room change. The application then generates a

new RIR, and the sound updates accordingly. In the second room, the building materials

are softer, as shown in Figure 3.1b, and we expect the user to hear that the echo from

the first room disappears clearly. The user can now change between the two rooms until

he clicks on the “Next scene” button. The scene is then finished, and he will be asked to

answer a survey and proceed to the next scene.

3.5.2 Scene 2: Complex

The second scene is designed to be more complex than the first scene. Here, the user will

experience a virtual restaurant with several noise sources to make a soundscape for a more

authentic feeling. There are two noise sources of excerpts from cocktail party sounds from

ODEON [30], and one noise excerpt of guitar play [31], used to replicate the music from a

live band. In addition, the same woman’s voice from the previous scene is now attached to

a 3D character1, which is placed inside the restaurant. This character is further referred to

13D figure “Meghan” downloaded from Mixamo [32].

15

CHAPTER 3. METHOD

as the “guest”. The technical data for the design of the whole scene is listed in Table 3.4.

Table 3.4: Technical data for Scene 2

Attribute Room 1 NRC Room 2 NRC

Dimensions L×W×H (m) 16× 12× 4 16× 12× 4
Wall material Brick 0.05 Brick 0.40
Floor material Plywood 0.01 Plywood 0.23
Ceiling material Wood panel 0.40 Acoustic roof panel 0.95
Items Tables×5 0.80 Tables×5 0.80

Windows×4 0.02 Windows×4 0.02
Wood door×1 0.08 Wood door×1 0.08
Scene×1 0.80 Scene×1 0.80

Carpets×3 0.50
Acoustic tiles×5 0.95

Reverberation time (s) 2.18 0.67

This scene is divided into two parts: one where the user will explore the restaurant in-

side an AR environment by walking around in the test location. In the other part, the

user will stand still and move a character by interacting with an on-screen joystick and

spectating from a bird-view camera of the restaurant. In this way, the user will interact

with an immersive AR environment and interact with the same environment without AR

functionality enabled. The user will then experience what differences AR does to the per-

ceived acoustics in the room regarding how his senses are engaged and his feeling of being

present in the AR environment. To test how the user perceives the sound in the different

parts, he is asked to place a “marker” inside the restaurant. This marker shall be placed

a distance from the guest where the user feels he can have an undisturbed conversation.

The user will first conduct the AR experiment and be met by an information screen to

prepare him for the tasks. The information states:

In this scene, you will experience an AR restaurant. The environment is noisy,

and your main task is to submit when you feel close enough to your guest in

order to have an undisturbed conversation.

You will perform this task two times: one time without acoustic absorbing

materials and one time with acoustic absorbing materials present.

Afterward, you will be asked to answer a short survey about sound perception

in the environment.

Please remember to use the green button frequently to update sound effects.

After reading the information, he will be placed inside the AR restaurant. The two rooms

in this scene are designed to replicate the acoustics in a rustic restaurant, where the

interior is mostly made out of bricks. The first room, as shown in Figure 3.3a, has a

long reverberation time, and the echo effect is very present. In the second room, there

are acoustic tiles attached to most of the walls’ surface, there are carpets on the floor,

and the ceiling is also covered with acoustic tiles. This is shown in Figure 3.3b. These

16

CHAPTER 3. METHOD

materials bring the reverberation time down to comfortable levels, and the user is expected

to experience a difference between the two rooms.

(a) First room in Scene 2. (b) Second room in Scene 2.

Figure 3.3: The two rooms in Scene 2. The second room has sound absorbing materials
on the walls and carpets on the floor. The ceiling is also made out of a sound absorbing
material.

The flow of the current tasks with additional details in the scene is shown in Figure 3.4. The

first task is to add audio to the restaurant. This task initiates a generation of separate RIRs

for each sound source and plays the corresponding mixed sound from each source. A green

button for updating the sound effect will then become visible, as shown in Figure 3.3. This

feature prevents unintended lags in the application that comes from the heavy computation

power needed to generate new RIRs and convolving them with their corresponding sound

source. However, it is emphasized to the user that he must update the sound effect

frequently.

With the audio present, the user is encouraged to move closer to the guest. When the user

gets closer than 6 meters, the “Place marker” button becomes visible. When clicking the

button, there will be spawned a marker at the current position in the application. The

coordinates relative to the guest are then stored in the application. Simultaneously, the

“Next room” button becomes visible. The user can still update the location of the marker

by clicking the same button.

When clicking the “Next room” button, the surface materials of the room change, and

sound-absorbing materials are added. The application then generates new RIRs and up-

dates the sound accordingly. The button then becomes disabled, and the user is urged to

place a new marker. After the second marker is placed, the “Next room” button becomes

enabled, and by clicking it, the user will be asked to answer a survey.

When the user has finished the survey, he will be met by a new information screen about

17

CHAPTER 3. METHOD

Click on "Add audio"
button

Player input

Add audio

Time

Spawn audio
source

Generate RIR

Convolution

Play mixed
sound

Move closer to
the guest

Distance <= 6
meters

Place marker

Click on "Place marker"
 button

Spawns
marker at

player position

Calculate
position

relative to
guest

Next room

Click on "Next
room" button

Current task

"Place
marker"

button visible

Register
marker

coordinates

Surface
materials
changes

Generate RIR

Convolution

Play mixed
sound

Next room

Click on "Next
room" button

Display
survey text

Disable AR

Figure 3.4: Flow diagram of Scene 2 with AR enabled.

the scene with AR functionality disabled. This information states:

You will now do the same tasks, but this time with AR functionality disabled.

Use the on-screen joystick to move around.

After completing the tasks, you will be asked to answer a short survey about

sound perception and how you experienced the difference between AR func-

tionality enabled and disabled.

The flow of the scene with AR functionality disabled is shown in Figure 3.5. The tasks

are similar to the scene with AR functionality enabled, but this time the user interface is

different, as shown in Figure 3.6.

After completing the scene, the user will be asked to answer a survey and then proceed to

the final scene. The coordinates for the marker positions will also be displayed, and the

user is asked to write them down on the survey.

18

CHAPTER 3. METHOD

Player input

Time

Place marker

Click on "Place
marker" button

Spawns marker at
player position

Calculate position
relative to guest

Next room

Click on "Next
room" button

Current task

Register marker
coordinates

Surface materials
changes

Generate RIR

Convolution

Play mixed sound

Next scene

Click on "Next
scene" button

Display registered
marker coordinates

and survey text

Figure 3.5: Flow diagram of Scene 2 with AR disabled.

Figure 3.6: Second room in Scene 2. The
on-screen joystick will move the white
sphere.

19

CHAPTER 3. METHOD

3.5.3 Scene 3: Challenge

The third scene is an environment where the user can experience the different features of

the framework in a guided way. To make the user try out the different features, they will

complete three small tasks by following a walkthrough:

1. Add sound source to the scene.

2. Change front- and back wall material to brick.

3. Reduce the reverberation time by 1/3 by adding objects to the room.

The technical data for the room is listed in Table 3.5. The extra “initial” attribute in the

table indicates the pre-set values in the room, and all the other options are optional for

the user.

Table 3.5: Technical data for Scene 3

Attribute Value NRC Comment

Dimensions L×W×H (m) 8× 8× 4 Initial
Wall material Wood panel 0.40 Initial

Plaster 0.05
Concrete 0.05
Brick 0.05

Floor material Marble 0.01 Initial
Plywood 0.23
Concrete 0.05
Carpets 0.50
Metal 0.10

Ceiling material Plaster 0.05 Initial
Concrete 0.05
Acoustic roof panel 0.95

Items Guitar play Initial
Cocktail noise
Carpets 0.50
Acoustic tile 0.95

Reverberation time (s) 0.52 Initial

When the user encounters the last scene, he will first be met by an information screen

stating:

In this scene, you will explore more features in the application. You will be

able to change room materials yourself and add sound absorbing objects to the

room.

Afterward, you will answer the last surveys about your sound perception, your

experience with this application, and your impression.

Please remember to scale, rotate, and move the objects as it fits you.

20

CHAPTER 3. METHOD

After reading the information, the user will be placed inside the AR room, and the walk-

through of the small tasks begins. This room is initially empty, and the user is encouraged

to add objects and change building materials. A detailed flow of this scene is illustrated

in the diagram shown in Figure 3.7.

Player input

Time

Click on "Add
audio" button

Add audio

Spawn audio
source

Generate
RIR

Convolution

"Options"
button

blinking

Change
materials for

front- and
back wall to

brick

Click on "Options"
button and change

materials. Then click
"OK" button.

"Options
button" stops

blinking

Front- and
back material

options
enabled

"Options"
button

disabled

Generate
RIR

Convolution

Play mixed
sound

Reduce reverberation time
by 2/3

"Add
objects"
button

blinking

Add objects

Generate
RIR

Convolution

Play mixed
sound

Spawn object

Explore the
scene

Countdown
60 seconds

All features
are enabled

Finished

Display
survey text

Play mixed
sound

Scale object and
click "Update

sound effect" button

Current task

Figure 3.7: Flow diagram of Scene 3.

The user’s first task is to add an audio source to the room. The audio clip playing

is the same guitar excerpt from Scene 2. When clicking the “Add audio” button, it will

disappear, and a “Update audio effect” button, together with an orange blinking “Options”

button, will appear. The user will open an options panel by clicking this button and will be

able to change materials on the surfaces. When the user has changed the front- and back

walls to bricks, the “Options” button will disappear, and the sound updates to the new

design. At the same time, the green “Add objects” button becomes visible and is blinking.

The user is now encouraged to add objects from the menu to reduce the reverberation time

in the room. This menu is illustrated in Figure 3.8a. After adding an object, the user can

move and scale it. By clicking the “Update audio effect” button, there will be generated

a new RIR, and the sound adapts to the changes. The user can still add other objects to

the room until he has reduced the reverberation time by 2/3. After he has reduced the

reverberation time, the “Options” button will be enabled again, and all the options in the

21

CHAPTER 3. METHOD

menu will be enabled. The user now has a minute to explore the scene until a survey text

appears. An illustration of a designed room is shown in Figure 3.8b.

(a) Illustration of the room in Scene 3 with
menu opened.

(b) Illustration of the room in Scene 3 with
acoustic tile on the wall and carpet on the
floor.

Figure 3.8: Screenshots from Scene 3.

We now have more insight into how the scenes in the application are built up. The following

section will provide what measures are taken for great usability and user interface.

3.6 Usability and User Interface

The design of the application will offer a great experience through interactions with the

device. These interactions are made intuitive for the user, such that the available infor-

mation on the screen is concise and useful. In terms of usability and user interface, several

aspects are taken into account.

The integration of virtual objects and their display in the physical world facilitates the flow

between reality and virtuality. The degree of emplacement the user experiences through

this flow will increase the immersiveness of the experience. By placing the user near the

real environment on the reality-virtuality continuum, as illustrated in Figure 3.9, he gets

a low degree of emplacement and gains an advantage from being in the physical world and

interact with superimposed artificial objects and sound.

Augmented
virtuality

Real
environment

Virtual
environment

Augmented
reality

Figure 3.9: The reality-virtuality continuum.

22

CHAPTER 3. METHOD

The application is designed for the user to test and interact with all the available features.

Hence, each scene is developed as a walkthrough of small tasks where the feature they are

testing is highlighted on the screen, and other features are disabled. An example where

the current task is to “change the front- and back wall materials to brick” is illustrated

in Figure 3.10. Here, we can see that the user can only change the front- and back wall

material. When they have completed the task and can explore the application freely, they

will be able to select all the options. A complete list and information about the system’s

features are described in detail in the manual in Appendix B, Section B.3.

Figure 3.10: Example of enabled
and disabled features.

The acoustics in the room is a result of several different factors, such as sample size, re-

verberation time, reflection order, and human ear sound perception. The following section

will go over the implementation of the acoustical algorithms used in this application.

3.7 Implementation of Algorithms

The perceived sound and computation time have been in focus when developing the acous-

tic system of the application. To make the user perceive changes in the acoustics close

to real-time, we need a fast and accurate algorithm for reproducing the acoustics. To

accomplish this, we need to account for several restrictions.

As mentioned in Section 2.2.1, the process of changing, e.g., a wall’s material in the room

until the sound is reproduced for the user, is complex and time-consuming. The first part

of the process is to generate an RIR for each sound source in the room. Trial and error

testing suggests a combination of the variable values for the image-source method as listed

in Table 3.6 for minimal computation time and adequate sound quality.

23

CHAPTER 3. METHOD

Table 3.6: Room impulse response values used in im-
plementation.

Property Value

Sampling frequency, fs (Hz) 16000
Number of samples min

(
RT60 · fs, 214

)
Number of reflections Auto
Microphone type Omnidirectional

To get a detailed sample of the RIR while not restricting the number of samples too

much, we set the sampling frequency to 16kHz. The maximum number of samples of

214 prevents a too long computation time for generating the RIR and computing the

convolution afterward. This restriction will distort the output signal for long reverberation

times (> 1s), but the “echo” effect will still be evident. The algorithm for generating

the RIR sets the number of reflections automatically. With a manually set reflection

order, the representation of the sound was evaluated to be “digital” and “fake”. The

virtual omnidirectional microphone provides contributions from all reflecting angles when

recording the impulse response and is evaluated as the best solution for this setup.

Because each sound source needs a separate RIR, it is desired to compute them in parallel

on the tablet’s available processor cores. Unity’s “Burst Compiler” for parallel jobs makes

it possible to generate the impulse responses and convolve them with the input signals

in parallel. However, “Burst Compiler” has restricted support of data types and does

not support common implementations such as fast Fourier transform (FFT) or convolu-

tion. To perform convolution in the frequency domain, we need to implement and adapt

these algorithms to be supported by the “Burst Compiler”. The implementations of the

algorithms and the application are attached in Appendix C.

Parallel jobs reduce the computation time significantly compared to serial computation

when there is more than one sound source in the scene. In addition to computing in

parallel, we also pre-process the sound signals by down-sampling them by a factor of two

to save computation time. The decimation factor is set by trial and error, where a higher

decimation factor leads to too much distortion in the signal. The down-sampling hence

reduces the computation time of the convolution algorithm, making the application run

faster but at the cost of lower sound quality.

An example of a resulting output signal with the provided configuration is given in Fig-

ure 3.11. The upper tile shows the decimated excerpt of the input signal “Ut av det bl̊a”,

the middle tile shows the generated RIR for the first room in Scene 1 where the rever-

beration time is 1.70s. The number of samples is restricted because of computation time

limits, and the bottom tile shows the convolution of the two signals. We can see from

the waveform that the convolution has added extra echo to the signal as it looks more

stretched out than the input signal.

With the implementation ready, it is important to test the system. The following section

will go through the procedure of the pilot testing.

24

CHAPTER 3. METHOD

Time (s)

A
m

p
li
tu

d
e

0 5 10 15 20 25 30

-0.5

0

0.5

Input signal

x(t)

0 0.2 0.4 0.6 0.8 1 1.2

0

0.02

0.04
Impulse response

h(t)

0 5 10 15 20 25 30

-0.05

0

0.05

Output signal

y(t) = x(t) $ h(t)

Figure 3.11: Example of resulting decimated input signal, generated impulse response,
and output signal.

3.8 Pilot Testing

To fine-tune usability and validate the prototype application before the actual experiment,

we tested the application on six students in the weeks before the experiment. The test

aimed to understand the time necessary for a session and reveal unclear segments of the

application and question formulations in the surveys.

3.8.1 Demographic

The pilot test participants have a gender composition of 50/50 females and males, with

ages ranging from 22 to 24, as shown in Figure 3.12. They have little or no prior experience

with XR systems and acoustic simulations and were selected to validate the usability. They

are students at the Norwegian University of Science and Technology (NTNU) and study

chemistry, electronics, or geology.

3.8.2 Procedure

The pilot test sessions were conducted in the ULTIMATE lab at NTNU Gløshaugen. The

room was empty to replicate the actual test location. The pilot tests were executed over

two weeks, and the application was enhanced after each session. The sessions started with

25

CHAPTER 3. METHOD

Demographics

Gender Age

Female Male 22 23 24

0

1

2

3

4

5

6

N
u
m

b
er

o
f
p
il
o
t
te

st
p
a
rt

ic
ip

a
n
ts

Figure 3.12: Age and gender composition of the pilot
test participants.

the experimenter explaining the experiment, and the participants were then provided with

an information sheet. When they were finished reading the sheet, they signed a consent

form and answered the demographic survey. Afterward, they were provided with the tablet

and headset, then the application and experiment started. The experimenter observed and

took notes about the participants’ execution and was available if they needed assistance.

3.8.3 Observations, Feedback and Changes

The experimenter observed the participants as they conducted the pilot tests and made

changes on behalf of this. In this section, we provide some selected observations and

feedback.

An important observation was that several of the participants rushed through the infor-

mation sheet and was later confused while experimenting. To prevent this in the actual

experiment, the experimenter sent the information sheet to the participants two days be-

fore the experiment and made sure everybody had read and understood the sheet. The

information sheet consists of important information about the execution and a manual for

the system and is attached in Appendix B, Section B.2, and B.3.

The experimenter also observed that several of the participants had difficulties with the

application as it did not recognize the tablet’s movements. This unresponsiveness hap-

pened because the participants got too close to a white wall without textures in the test

location. The application uses the tablet’s rear camera to register movements and requires

differences in textures for SLAM to work. This was further prevented by ensuring that

the participants did not get too close to walls by downscaling the virtual rooms.

It was observed, and feedback was given that some of the participants were confused about

their current task during the experiment. An additional information pane was displayed

on the top of the screen to cope with this, catching the participants’ attention. Blinking

26

CHAPTER 3. METHOD

neon green text was later introduced to make sure that it was eye-catching.

The experimenter had gained valuable information about usability and timing from the

tests. After the piloting tests, there were made changes to the application layout, the

research protocol, and some rephrasing of questions in the surveys. In the following

section, we will describe the experiment setup of the test with the focus group.

3.9 Experiment Setup

The experiment session is set to the focus group’s head office at Norsonic AS in Lier. Each

participant has a 30-minute slot for conducting the experiment and answer the surveys.

A 5-minute slack is set between each session and a 15-minute break halfway. The par-

ticipants will first sign a consent form and be provided with a copy of the information

they had received before the experiment. This setup is photographed as shown in Fig-

ure 3.13. Afterward, they will start the experiment with the tablet and headphones. The

experimenter then waits in the background and takes notes, and is available for assistance.

Figure 3.13: Setup of information sheet, manual, and
consent form.

The test location has a big empty space, such that the participants can walk around

freely without hitting obstacles. The room is photographed as shown in Figure 3.14. In

Figure 3.15 we can see two of the participants conducting the experiment.

Figure 3.14: Experiment location at Norsonic’s office in Lier.

27

CHAPTER 3. METHOD

Figure 3.15: Pictures of two participants using the system.

With the provided method for experimenting, we will provide the results from the exper-

iment in the following chapter.

28

Chapter 4

Results

This section will present relevant observations and results from the questionnaires and

open answers for the participants in the experiment. Eight participants completed the

experiment, with the demographic composition as shown in Figure 4.1. As a group, it

was revealed by the background information survey that they have bachelor’s or master’s

degrees within the technological field, have much experience within acoustics, and have

minimal prior experience with XR systems.

Demographics

Gender Age group

Female Male 25-34 35-49 50-64 65+

0

1

2

3

4

5

6

7

8

N
u

m
b

er
of

p
a
rt

ic
ip

an
ts

Figure 4.1: Age and gender composition of the partic-
ipants.

Selected results for each section of the questionnaires in the survey are presented as bar

charts. A selection of the open answers linked to the current section is presented as text.

Observations and comments about the results are given after presenting the results for

each scene. All the participant’s answers to the questions can be found in Appendix A.

29

CHAPTER 4. RESULTS

4.1 Scene 1: Simple

This scene is considered to be a simple “warm-up” for the session. Since most of the

participants answered similarly in the questionnaire, we present the mean opinion scores

in Figure 4.2 to the questions listed in Table 4.1.

Table 4.1: Questions for Scene 1

No. Question / Statement

Q1 How realistic did the sound feel in the first room?
Q2 How realistic did the sound feel in the second room?
Q3 There was a clear difference in the sound in the two rooms.
Q4 To what extent did you experience a sense of “being there”

inside the environment?

Scene 1

2.88

5.38

6.63

4.88

Q1 Q2 Q3 Q4

0

1

2

3

4

5

6

7

U
se

r
S
co

re
s

Figure 4.2: Mean opinion scores for the first scene’s
questions.

During the experiment, it was observed that the participants found it easy to interact

with the application from the start. They moved around in the test location and moved

closer and further away from the playing virtual sound source. In the first room, where

the reverberation time is 1.70s, many participants felt that the acoustic representation

was less realistic. This is reflected by the low mean opinion score for Q1, which resulted in

2.88. This result may come from the apparent distortion effect of long reverberation times

and the participant’s bias as they have acoustics as their profession. On the other hand,

we can see from the mean opinion score for Q2 of 5.38 that a much shorter reverberation

time of 0.42s gives the participants a more realistic sound feeling.

Participant number two in the experiment evaluated her realistic feeling of the sound in

the two rooms to be opposites, with a score of 1 and 7, respectively. This evaluation clearly

shows that she found it easy to experience two very different acoustic rooms. However,

participant seven found both rooms equally realistic and did not experience a big difference

30

CHAPTER 4. RESULTS

in the two rooms. The majority of the participants found a clear difference which is also

reflected in the mean opinion score for Q3 of 6.63.

The fourth participant in the experiment was observed to have difficulties understanding

and operating the test system. The difficulties can be related to a lack of previous expe-

riences with AR technology, which also reflects the participant’s answer of Q4, being the

only one to answer with a rate of 3.

An additional comment in the open text field was: “Well designed and immersive visual

experience. Acoustic simulation has demonstrated its potential and can indeed be made

more immersive”. It was observed that this participant was very excited by the experience

and is also the youngest participant in the group. This excitement can suggest that he felt

more immersed than the others and was more confident in the execution of the experiment.

4.2 Scene 2: Complex

This scene is more complex than the first scene, and the participants had different ex-

periences with the system. We present answers to the questions listed in Table 4.2 in

Figure 4.3 for three selected participants.

Table 4.2: Questions for Scene 2

No. Question / Statement

Q1/Q6 There was a clear difference in the sound in the two rooms.
Q2/Q7 It was easy to determine when to place the marker in the

first room.
Q3/Q8 It was easy to determine when to place the marker in the

second room.
Q4 To what extent did you experience a sense of “being there”

inside the environment?
Q5 How much did it seem as if you could reach out and touch

the objects you saw?
Q9 It was easier to determine when to place the marker with

AR functionality enabled.

It was observed during the experiment that there were different competence levels in the

group of participants regarding AR experience. Some participants needed guidance from

the experimenter to navigate in the virtual room and complete the tasks. The selected

participants in Figure 4.3 show three different answers regarding how they perceived the

AR environment. The first participant favors the scenario with AR enabled (blue bar) a

bit more than with AR disabled (orange bar). This favoring is also reflected in Q4, Q5,

and Q9 of 6, 5, and 6, respectively.

Figure 4.4 shows the distances of the marker from the guest for the three participants. We

can see that the first participant placed the marker further away from the guest when AR

was enabled compared to when AR was disabled. This difference can interpret that he used

his senses more actively in the AR environment. The distance is especially significant in

31

CHAPTER 4. RESULTS

Scene 2

U
se
r
S
co
re

Participant no. 1

Q
1/
Q
6

Q
2/
Q
6

Q
3/
Q
8
Q
4
Q
5
Q
9

1

3

5

7

AR Enabled
AR Disabled

Participant no. 2

Q
1/
Q
6

Q
2/
Q
6

Q
3/
Q
8
Q
4
Q
5
Q
9

1

3

5

7
Participant no. 7

Q
1/
Q
6

Q
2/
Q
6

Q
3/
Q
8
Q
4
Q
5
Q
9

1

3

5

7

Figure 4.3: Selected answers for the second scene’s questions.

Room 2, where there is a bigger difference. An additional comment from the participant

is “It was easier to remember to push the ‘update’ button in the AR disabled scenario,

probably because I was busy being ‘immersed’ ”, which emphasizes the immersive effect of

AR.

Direct Path Distance From Guest

D
is
ta

n
ce

(m
)

Participant no. 1

Room 1 Room 2

0

2

4

6

8

AR enabled

AR disabled

Participant no. 2

Room 1 Room 2

0

2

4

6

8

Participant no. 7

Room 1 Room 2

0

2

4

6

8

Figure 4.4: Distances to the guest in the four scenarios.

The second participants also favored the scenario with AR enabled. We can see from the

gap between the blue- and orange bars in Figure 4.3 that this participant found it much

more challenging to place the marker when AR was disabled, especially in the first room

32

CHAPTER 4. RESULTS

where the reverberation time is long (2.18s). In the second room, where the reverberation

time is shorter (0.67s), she found it easier to place the marker. On behalf of the answers

from the three first questions, it is expected that the participant’s spatial presence in

the environment would score higher. However, as an additional comment, she stated:

“Unfortunately, I focused more on the sound experience than the ‘sense of being there’ ”.

We can see from Figure 4.4 that she placed the marker further away from the guest in

both rooms when AR was disabled. This is again not expected based on her previous

answers but can be explained by her additional comment.

The seventh participant, on the other hand, favored the scenario with AR disabled. We

can see from Figure 4.3 that he did not hear a clear difference in the sound between the

two rooms when AR was enabled and that he found it equally difficult to place the marker

in both rooms when AR was disabled. This result is also reflected by the low scores in

Q4 and Q5 of 4 and 3, respectively. The score for Q9 of 7 stands out and can come of a

more thoughtful decision than Q2/Q7 and Q3/Q8 because the participant answered this

question last. Figure 4.4 shows that the participant had no significant differences between

the two rooms or when AR was enabled and disabled. This result stands out from the rest

of the participants but reflects his previous answers in the questionnaire of being neutral.

However, the participant commented: “Would have been nice to include several guests in

the room”, implying that he did not feel so immersed in the AR scene because it lacked a

more realistic design.

4.3 Scene 3: Challenge

This scene is the last in the session and is more open-ended than the two previous scenes.

We present the mean opinion scores to the questions listed in Table 4.3 in Figure 4.5.

Table 4.3: Questions for Scene 3

No. Question / Statement

Q1 How much did it seem as if you could reach out and touch
the objects you saw?

Q2 To what extent did you experience a sense of “being there”
inside the environment you saw?

Q3 How confusing or clear was the experience?
Q4 How easy was it to listen to the changes in the room’s

acoustics?

During the experiment, it was observed that the participants had become more confident

with interacting with the system in the last scene compared to the two previous scenes.

This growing confidence was expected as the participants, in general, had little prior

experience with AR technology. This is also reflected in the mean opinion scores for Q1

and Q2 of 4.50 and 5.38, respectively, as shown in Figure 4.5. This score is slightly

better than the similar questions from Scene 1 and Scene 2, and the whole group, except

the fifth participant, evaluated these questions equal or higher in the last scene. The fifth

33

CHAPTER 4. RESULTS

Scene 3

4.50

5.38
5.13

6.00

Q1 Q2 Q3 Q4

0

1

2

3

4

5

6

7

U
se

r
S
co

re
s

Figure 4.5: Average scores for third scene’s questions.

participant evaluated Q1 to 3, while the corresponding result for the previous scene was 5.

This evaluation may suggest that he experienced the restaurant scene to be more realistic

because of the additional details. However, his score for Q2 of 5 indicates that the lack of

realism did not influence his sense of being present in the scene.

The mean opinion score of Q3 of 5.13 indicates that most of the participants found it

easy to follow the instructions in the experiment. This is evident even though some of

the participants needed guidance from the experimenter during the session. Q4 has a

mean opinion score of 6.00, which indicates that most of the participants found it easy to

experience changes in the room’s acoustics. On the other hand, the second participant was

the only participant to rate this question to 4, indicating a neutral feeling in the changing

acoustics. This rate may come because she was more focused on the sound experience and

the realism of the sound rather than the immersive experience, as she stated in Scene 2.

The other participants who felt more immersed also scored higher on Q4, indicating that

the immersiveness may influence the sound perception.

The additional comments in the open text field were:

� “Very convincing, AR works great. The current state of the app would not need loads

of work to be a product.”

� “Scene 1 was more confusing than Scene 3.”

These comments emphasize the participants growing confidence in the system as they used

it.

34

CHAPTER 4. RESULTS

4.4 Room Acoustic Feeling

In the overall evaluation, the answers from three selected participants to the questions

about presence in the environment and impression listed in Table 4.4 are shown in Fig-

ure 4.6.

Table 4.4: Questions about the overall user experience.

No. Question / Statement

Q1 It was easy to experience small differences in the room’s acoustics.
Q2 How often did you want to try to touch something you saw/heard?
Q3 How completely were your senses engaged?
Q4 To what extent did you experience a sensation of reality?
Q5 Overall, how much did the things you saw/heard sound like

they would if you had experienced the directly?
Q6 You perceived this possibility for obtaining information as . . .
Q7 Overall impression of this technology.

Room Acoustic Feeling

U
se

r
S
co

re

Participant no. 1

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

1

3

5

7
Participant no. 3

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

1

3

5

7
Participant no. 8

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

1

3

5

7

Figure 4.6: Selected answers for the participant’s room acoustic feeling.

The selected participants in Figure 4.6 show three different answers regarding how they

perceived the overall AR and acoustic experience. The first participant felt that his senses

were very engaged, which is also reflected by his previous answers about spatial presence

and his comment to why he likes the tool: “(. . .) The immersive experience gives a whole

new way of exploring how a room sounds”. The low score for Q2 of 3 can come from his

low score of realism in sound reproduction, as we can interpret from the score for Q5 of 3 in

addition to his comment about his room acoustic feeling: “Lacks a good share on realism,

but indeed proves the concept (. . .)”. Despite his low degree of realistic perception, he

experienced small differences in acoustics, as we can see from the score for Q1 of 6. In

addition, he felt a sense of presence in the application, which we can interpret from his

comment about spatial presence: “(. . .) The visuals combined with the movement is very

helpful. The acoustic response to distance also contributes significantly”.

35

CHAPTER 4. RESULTS

Participant number three scored higher on questions Q2, Q4, and Q5 than the first par-

ticipant. This difference can interpret that a high degree of spatial presence in the AR

environment can remove the focus away from the degree of unrealism in the acoustic sim-

ulation. In addition, the participant commented: “You can ‘hear’ the material”, which is

one of the main intentions with the simulation tool.

On the other hand, the last participant was more neutral in her response than the third

participant. From her results in the questionnaire, we can see from Figure 4.6 that she

felt immersed to some degree in the experiment but was not very convinced about how

realistic the representation of the acoustics felt. Her profession as an acoustic advisor

can bias this, making it difficult to evaluate how realistic the sound representation is in a

virtual room. This is also reflected in her comment: “The envelope is hard to simulate”

when she was asked about her spatial presence in the application. Despite her perception

of lacking realism in acoustics, she commented that “Simulation of acoustics is always

good. Acoustics is so difficult to explain” when she was asked why she liked the tool.

When we look at the mean opinion score for all the participants, as shown in Figure 4.7, we

can see that most of the participants felt immersed, but they did not get a very realistic

feeling from the acoustic simulation. However, the mean opinion score for Q1 of 5.13

indicates that despite the unrealistic sound representation, they heard a clear difference

in the acoustics when the reverberation in the room changed.

Last Survey

5.13

4.00

5.38

4.88

4.38

5.50 5.63

Q1 Q2 Q3 Q4 Q5 Q6 Q7

0

1

2

3

4

5

6

7

U
se

r
S
co

re
s

Figure 4.7: Mean opinion scores for the participant’s
room acoustic feeling.

The following chapter will further discuss the meaning of the results, system, and further

work.

36

Chapter 5

Discussion

There are several focus areas within the system, and in this chapter, we will discuss the

prototype in terms of the experiment, system, and further work.

5.1 Experiment Session

The focus group is inexperienced with XR systems and might have felt challenged by

or unfamiliar with the technology. Inexperience can be an influencing factor for their

immersive experience, making it more challenging to experience the feeling of presence

[9], and was observed to be very clear at the beginning of the session. However, as

the participants used the system, they became more confident and could interact more

independently. This was intended with the composition of the three different scenes in the

experiment, where they first encountered a simple scene, then a more complex, and lastly,

a more open-ended scene with a challenge.

The analysis and comments about the participants’ answers in Chapter 4 indicate that

the AR experience affected how immersed they felt in the system. There was a consensus

among the participants that they were able to distinguish different acoustical rooms or

designs. The results suggest that a combination of immersion and sound representation

helps the user to take a part of the virtual scene and feel present to some degree. Even

though the system is not fully developed with a high-quality simulation of room acoustics,

it is evident that a concept for AR simulation can help users to understand acoustical

properties in different materials and get a sense of being present in the experience. This

result implies that the proposed hypothesis H1 is accepted.

The mean opinion score for Q1 in Figure 4.7 of 5.13 emphasizes that most of the partici-

pants in the group found it easy to experience small differences in the changing acoustics.

This result may be a combination of multimodal perception from the other senses, which

we saw from the mean opinion score for Q3 of 5.38. This combination indicates that their

senses were actively engaged during the session. Even though some participants found it

more challenging to interact with the system when AR was enabled in Scene 2, compared

37

CHAPTER 5. DISCUSSION

to when it was disabled, we can interpret that the participants who felt higher degrees of

immersiveness also found it easier to experience small acoustical changes. Since the par-

ticipants were unfamiliar with XR technology, they may have focused more on interacting

with the system. However, it is still evident that they experienced differences in the room

acoustics. This result indicates that the proposed hypothesis H2 is accepted.

5.2 System

The system is designed to be a framework for experiencing room acoustics in an immersive

way. Mobile AR applications are very portable and accessible for users and need minimal

setup. One could argue that a VR application would fit better for this application as it

immerses the user even more with a head-mounted display (HMD). This, on the other

hand, requires more equipment and can hence make the system less accessible. As we

want flexibility in our system, the obvious choice of technology landed on AR.

It is emphasized that the application is a prototype rather than a fully developed simulation

product. The concept of virtual sound replication is, for that reason, more in focus than

correct sound replication and design. The image-source method for computing RIRs has

proved to be an easy implementation and provided room acoustic effects for the user.

Even though the sound felt less realistic for longer reverberation times, it is clear that it

distorted the dry sound. For shorter reverberation times, the replication was evaluated

to be better. This evaluation can come from the restriction of maximum samples when

generating the RIRs, which was necessary for limiting computation time.

Unity’s “Burst Compiler” introduced multithreading to the application and reduced com-

putation time significantly when more than one sound source was present. However, we

had to implement our own adapted FFT and convolution algorithms to be supported

by the compiler because of the restricted support of data types. These rewritings may

have introduced suboptimal implementations, leading to longer computation time and less

accurate calculations than other high-end implementations.

5.3 Further Work

The quality of the acoustic representation in this framework is not optimal. The simulation

takes a näıve approach of presenting the user with an output sound for a fixed source and

receiver pair. To have a real-time update of acoustics for all source and receiver pairs, we

need the system to run faster or investigate other methods for implementation. A possible

implementation can be to introduce a grid-based pre-calculated approach. For all points

in the grid, each channel is convolved with an anechoic sound. The user will then always

be followed by an array of virtual speakers, presenting the ambisonics from the nearest

grid point. This idea takes inspiration from the work of Pind et al. [4].

The image-source method for generating an RIR does not take all acoustic phenomena,

38

CHAPTER 5. DISCUSSION

such as frequency dependence, diffraction, or interference, into account. This model works

great to indicate the acoustics in the room but is not a very accurate approach. An

implementation for a more robust RIR generator can be further investigated for increasing

the system’s quality.

Auditory environments and spatial sound are factors for creating an impression for the

listener to be surrounded in a 3D space [13]. Spatial sound has proven to be a great tool

for locating and navigating within AR environments [16]. Binaural and HRTF implemen-

tations can further improve the user’s spatial presence and should be considered in future

implementations.

Introducing machine learning for segmentation and classifying objects in a room detected

by the device’s camera can help create a 3D model of the current room. This model can

later be used to apply different acoustic properties to the objects or change the room’s

design and experience the difference in acoustic. Automatic creation of the current room

will facilitate a seamless and accurate representation of the room in AR and reduce the

required setup of a scene. Kim et al. [6] used SegNet1 in a similar approach for a VR

application used for spatial audio reproduction.

In the following chapter we will conclude the work of this report.

1http://mi.eng.cam.ac.uk/projects/segnet/

39

http://mi.eng.cam.ac.uk/projects/segnet/

Chapter 6

Conclusion

A framework of an acoustic simulation tool for experiencing real-time differences in room

acoustics has been proposed in this project. The application emphasizes the concept of

sound perception for the user and utilizes AR technology to combine multiple modalities

for immersive effects. The system is evaluated and tested by a focus group of eight

participants working within acoustics.

The research had a qualitative approach, and the data foundation contains answers from

questionnaires, open answers, and observations. The focus group had minimal prior expe-

rience with XR technology, but it was evident that they became more confident as they

used the system. The results suggested that the participants who felt higher degrees of

immersiveness also found it easier to experience small changes in the acoustics, and the

following hypotheses were accepted:

� H1: Real-time acoustic room simulation in AR provides the client a sense of being

present in the acoustic room.

� H2: AR technology enhances the perception of small changes in sound.

The system has proved to work as a prototype for acoustic room simulations in AR. The

immersive effect of AR combined with acoustic simulations provides an engaging arena for

experiencing sound in different acoustic designs. However, the acoustic model needs further

improvements to give the user of the framework a more realistic sound representation.

40

Bibliography

[1] Chengde Wu and Mark Clayton. BIM-Based Acoustic Simulation Framework. In

30th CIB W78 International Conference, pages 99–108, 10 2013.

[2] Wai Ming To and Andy W. L. Chung. An innovative approach in data collection for

restaurant soundscape study. Proceedings of Meetings on Acoustics, 36, 05 2019. doi:

10.1121/2.0001019.

[3] Alfonso Rodŕıguez-Molares and Manuel Seoane. Benchmarking for acoustic simulation

software. The Journal of the Acoustical Society of America, 123:3601–3606, 05 2008.

doi: 10.1121/1.2934429.

[4] Finnur Pind, Cheol-Ho Jeong, Hermes Sampedro Llopis, Kacper Kosikowski, and

Jakob Strømann-Andersen. Acoustic Virtual Reality - Methods and challenges. 04

2018.

[5] Pontus Larsson, Aleksander Väljamäe, Daniel Västfjäll, Ana Tajadura-Jiménez, and

Mendel Kleiner. Auditory-Induced Presence in Mixed Reality Environments and Re-

lated Technology, pages 143–163. Springer International Publishing, London, England,

10 2010. doi: 10.1007/978-1-84882-733-2 8.

[6] H. Kim, L. Remaggi, P. J. B. Jackson, and A. Hilton. Immersive Spatial Audio

Reproduction for VR/AR Using Room Acoustic Modelling from 360° Images. In 2019

IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages 120–126,

2019. doi: 10.1109/VR.2019.8798247.

[7] Arzu Çöltekin, Ian Lochhead, Marguerite Madden, Sidonie Christophe, Alexandre

Devaux, Christopher Pettit, Oliver Lock, Shashwat Shukla, Lukáš Herman, Zdeněk

Stachoň, Petr Kub́ıček, Dajana Snopková, Sergio Bernardes, and Nicholas Hedley.

Extended Reality in Spatial Sciences: A Review of Research Challenges and Future

Directions. ISPRS International Journal of Geo-Information, 9(7). doi: 10.3390/

ijgi9070439.

[8] Torbjörn Svensson. Using VR to Simulate Interactable AR Storytelling. In Roge-

lio E. Cardona-Rivera, Anne Sullivan, and R. Michael Young, editors, Interactive

Storytelling, pages 328–332, Cham, Switzerland, 2019. Springer International Pub-

lishing. doi: 10.1007/978-3-030-33894-7 33.

41

BIBLIOGRAPHY

[9] Camille Sagnier, Emilie Loup-Escande, and Gérard Valléry. Effects of Gender and

Prior Experience in Immersive User Experience with Virtual Reality. In Tareq Ahram

and Christianne Falcão, editors, Advances in Usability and User Experience, pages

305–314, Cham, Switzerland, 2020. Springer International Publishing. doi: 10.1007/

978-3-030-19135-1 30.

[10] C. Schissler, C. Loftin, and D. Manocha. Acoustic Classification and Optimization for

Multi-Modal Rendering of Real-World Scenes. IEEE Transactions on Visualization

and Computer Graphics, 24(3):1246–1259, 2018. doi: 10.1109/TVCG.2017.2666150.

[11] Sarvesh Agrawal, Adèle Simon, Søren Bech, Klaus Bærentsen, and Søren Forchham-

mer. Defining Immersion: Literature Review and Implications for Research on Au-

diovisual Experiences. Journal of the Audio Engineering Society. Audio Engineering

Society, 68:404–417, 07 2020. doi: 10.17743/jaes.2020.0039.

[12] Asim Hameed and Andrew Perkis. Spatial Storytelling: Finding Interdisciplinary

Immersion. In Rebecca Rouse, Hartmut Koenitz, and Mads Haahr, editors, Inter-

active Storytelling, pages 323–332, Cham, Switzerland, 2018. Springer International

Publishing. doi: 10.1007/978-3-030-04028-4 35.

[13] Rolf Nordahl and Niels Christian Nilsson. The Sound of Being There: Presence

and Interactive Audio in Immersive Virtual Reality, chapter 13. Oxford Hand-

books. Oxford University Press, United Kingdom, May 2014. doi: 10.1093/oxfordhb/

9780199797226.013.013.

[14] Mirza Beig, Bill Kapralos, Karen Collins, and Pejman Mirza-Babaei. An Introduction

to Spatial Sound Rendering in Virtual Environments and Games. The Computer

Games Journal, 8:199–214, 12 2019. doi: 10.1007/s40869-019-00086-0.

[15] Markus Zaunschirm, Christian Schörkhuber, and Robert Höldrich. Binaural rendering

of Ambisonic signals by head-related impulse response time alignment and a diffuse-

ness constraint. The Journal of the Acoustical Society of America, 143:3616–3627, 6

2018. doi: 10.1121/1.5040489.

[16] Dariusz Rumiński. An experimental study of spatial sound usefulness in searching

and navigating through AR environments. Virtual Reality, 19:223–233, 10 2015. doi:

10.1007/s10055-015-0274-4.

[17] J. Broderick, J. Duggan, and S. Redfern. The Importance of Spatial Audio in Modern

Games and Virtual Environments. In 2018 IEEE Games, Entertainment, Media

Conference (GEM), pages 1–9, 08 2018. doi: 10.1109/GEM.2018.8516445.

[18] Rosonance audio. URL https://resonance-audio.github.io/resonance-audio/.

Accessed: 13.05.2021.

[19] Andres Perez-Lopez and Julien De Muynke. Ambisonics Directional Room Impulse

Response as a new Convention of the Spatially Oriented Format for Acoustics. Zen-

odo, 05 2018. doi: 10.5281/zenodo.1299893.

42

https://resonance-audio.github.io/resonance-audio/

BIBLIOGRAPHY

[20] Emanuël A.P. Habets. Room Impulse Response Generator*. Technical report, Tech-

nische Universiteit Eindhoven, 09 2010.

[21] Adil Alpkocak and Kemal Sis. Computing Impulse Response of Room Acoustics

Using the Ray-Tracing Method in Time Domain. Archives of Acoustics, 35:505–519,

12 2010. doi: 10.2478/v10168-010-0039-8.

[22] Jont B. Allen and David A. Berkley. Image method for efficiently simulating small-

room acoustics. The Journal of the Acoustical Society of America, 65:943–950, 5 1979.

doi: 10.1121/1.382599.

[23] D.G.K. Dissanayake, D.U. Weerasinghe, L.M. Thebuwanage, and U.A.A.N. Bandara.

An environmentally friendly sound insulation material from post-industrial textile

waste and natural rubber. Journal of Building Engineering, 33:101606, 2021. doi:

10.1016/j.jobe.2020.101606.

[24] Maple Integration. Sound Absorption Data for Common Building Materials and

Furnishings, 2012. URL http://mapleintegration.com/sound_ab.php. Accessed:

11.05.2021.

[25] Samuel Siltanen, Tapio Lokki, and Lauri Savioja. Rays or Waves? Understanding the

Strengths and Weaknesses of Computational Room Acoustics Modeling Techniques.

In the International Symposium on Room Acoustics (ISRA2010), 01 2010.

[26] Matthew Lombard, Theresa B. Ditton, and Lisa Weinstein. Measuring presence:

The Temple Presence Inventory (TPI), 9 2013. URL http://matthewlombard.com/

research/p2_ab.html. Accessed: 19.03.2021.

[27] Samsung Norway: Galaxy Tab S6 Lite, 06 2020.

URL https://www.samsung.com/no/tablets/galaxy-tab-s/

galaxy-tab-s6-lite-10-4-inch-gray-64gb-wi-fi-sm-p610nzaanee/. Accessed:

24.04.2021.

[28] Google ARCore: Fundamental concepts, 07 2020. URL https://developers.

google.com/ar/discover/concepts. Accessed: 24.04.2021.

[29] Kristin Valla. Ut av det bl̊a, Jul 2020. URL https://www.storytel.com/no/

nn/books/1476733-Ut-av-det-bl%C3%A5. Kagge Forlag, Audiobook, Accessed:

19.03.2021.

[30] Odeon and Dipartimento di Ingegneria Università di Ferrara. Anechoic recordings.

URL https://odeon.dk/download/Anechoic/Cocktail.zip. Accessed: 19.03.2021.

[31] Benjamin Bernschütz. Anechoic Recordings. Cologne University of Ap-

plied Sciences, Institute of Communication Systems, Cologne, Germany, 01

2013. URL http://audiogroup.web.th-koeln.de/FILES/anechoicRecordings.

pdf. Accessed: 19.03.2021.

[32] Adobe Systems Incorporated: Mixamo. URL https://www.mixamo.com/. Accessed:

19.03.2021.

43

http://mapleintegration.com/sound_ab.php
http://matthewlombard.com/research/p2_ab.html
http://matthewlombard.com/research/p2_ab.html
https://www.samsung.com/no/tablets/galaxy-tab-s/galaxy-tab-s6-lite-10-4-inch-gray-64gb-wi-fi-sm-p610nzaanee/
https://www.samsung.com/no/tablets/galaxy-tab-s/galaxy-tab-s6-lite-10-4-inch-gray-64gb-wi-fi-sm-p610nzaanee/
https://developers.google.com/ar/discover/concepts
https://developers.google.com/ar/discover/concepts
https://www.storytel.com/no/nn/books/1476733-Ut-av-det-bl%C3%A5
https://www.storytel.com/no/nn/books/1476733-Ut-av-det-bl%C3%A5
https://odeon.dk/download/Anechoic/Cocktail.zip
http://audiogroup.web.th-koeln.de/FILES/anechoicRecordings.pdf
http://audiogroup.web.th-koeln.de/FILES/anechoicRecordings.pdf
https://www.mixamo.com/

Appendix A

Survey Answers

A.1 Demographic and Background Information

Table A.1: Participant background information.

Participant
no.

Gender Age
group

Education Primary
working

tasks

Years
within

acoustics

Use AR

1 Male 25-34 Master’s in
electronics

Developer 1-5 Once a
year

2 Female 50-64 Bachelor’s in
data

Developer/
Leader

20+ Once a
year

3 Male 50-64 Data
engineering

Developer 5-10 Never

4 Male 65+ Master’s in
cybernetics

Application/
Sales/ Test

20+ Once a
year

5 Male 50-64 Electronics/
cybernetics
engineering

Marketing 20+ Never

6 Male 50-64 Master’s Developer 5-10 Once a
month

7 Male 35-49 Master’s in
computer

application

Developer 5-10 Never

8 Female 50-64 Master’s Advisor 20+ Once a
year

A-1

APPENDIX A. SURVEY ANSWERS

A.2 Scene 1 Participant Answers

Scene 1
U

se
r
S
co

re

Participant no. 1

Q1 Q2 Q3 Q4

1

3

5

7
Participant no. 2

Q1 Q2 Q3 Q4

1

3

5

7

Participant no. 3

Q1 Q2 Q3 Q4

1

3

5

7
Participant no. 4

Q1 Q2 Q3 Q4

1

3

5

7

Participant no. 5

Q1 Q2 Q3 Q4

1

3

5

7
Participant no. 6

Q1 Q2 Q3 Q4

1

3

5

7

Participant no. 7

Q1 Q2 Q3 Q4

1

3

5

7
Participant no. 8

Q1 Q2 Q3 Q4

1

3

5

7

Figure A.1: Participant answers to Scene 1

Table A.2: Additional comments to Scene 1.

Participant no. Comment

1 Well designed and immersive visual experience. Acoustic simula-
tion has demonstrated its potential and can indeed be made more
immersive.

A-2

APPENDIX A. SURVEY ANSWERS

A.3 Scene 2 Participant Answers

Scene 2
U
se
r
S
co
re

Participant no. 1
Q
1/
Q
6

Q
2/
Q
6

Q
3/
Q
8

Q
4

Q
5

Q
9

1

3

5

7

AR Enabled

AR Disabled

Participant no. 2

Q
1/
Q
6

Q
2/
Q
6

Q
3/
Q
8

Q
4

Q
5

Q
9

1

3

5

7

Participant no. 3

Q
1/
Q
6

Q
2/
Q
6

Q
3/
Q
8

Q
4

Q
5

Q
9

1

3

5

7
Participant no. 4

Q
1/
Q
6

Q
2/
Q
6

Q
3/
Q
8

Q
4

Q
5

Q
9

1

3

5

7

Participant no. 5

Q
1/
Q
6

Q
2/
Q
6

Q
3/
Q
8

Q
4

Q
5

Q
9

1

3

5

7
Participant no. 6

Q
1/
Q
6

Q
2/
Q
6

Q
3/
Q
8

Q
4

Q
5

Q
9
1

3

5

7

Participant no. 7

Q
1/
Q
6

Q
2/
Q
6

Q
3/
Q
8

Q
4

Q
5

Q
9

1

3

5

7
Participant no. 8

Q
1/
Q
6

Q
2/
Q
6

Q
3/
Q
8

Q
4

Q
5

Q
9

1

3

5

7

Figure A.2: Participant answers to Scene 2

A-3

APPENDIX A. SURVEY ANSWERS

Registered Marker Positions

x distance (m)

y
d
is
ta

n
ce

(m
)

-5 0 5

-10

-5

0

Participant no. 1

-5 0 5

-10

-5

0

Participant no. 2

-5 0 5

-10

-5

0

Participant no. 3

-5 0 5

-10

-5

0

Participant no. 4

-5 0 5

-10

-5

0

Participant no. 5

-5 0 5

-10

-5

0

Participant no. 6

-5 0 5

-10

-5

0

Participant no. 7

-5 0 5

-10

-5

0

Participant no. 8

Figure A.3: Registered positions to Scene 2. Blue: Room 1 with AR enabled. Red: Room
1 with AR disabled. Yellow: Room 2 with AR enabled. Purple: Room 2 with AR disabled.
Green: Guest.

Table A.3: Additional comments to Scene 2.

Participant no. Comment

1 It was easier to remember to push the “update” button in the AR
disabled scenario, probably because one is busy being ‘immersed’.

7 Would have been nice to include several guests in the room.

A-4

APPENDIX A. SURVEY ANSWERS

Direct Path Distance From Guest

D
is
ta

n
ce

(m
)

Participant no. 1

Room 1 Room 2
0

2

4

6

8
AR enabled

AR disabled

Participant no. 2

Room 1 Room 2
0

2

4

6

8

Participant no. 3

Room 1 Room 2
0

2

4

6

8

Participant no. 4

Room 1 Room 2
0

2

4

6

8

Participant no. 5

Room 1 Room 2
0

2

4

6

8

Participant no. 6

Room 1 Room 2
0

2

4

6

8

Participant no. 7

Room 1 Room 2
0

2

4

6

8

Participant no. 8

Room 1 Room 2
0

2

4

6

8

Figure A.4: Calculated distances in Scene 2

A-5

APPENDIX A. SURVEY ANSWERS

A.4 Scene 3 Participant Answers

Scene 3
U

se
r
S
co

re

Participant no. 1

Q1 Q2 Q3 Q4

1

3

5

7
Participant no. 2

Q1 Q2 Q3 Q4

1

3

5

7

Participant no. 3

Q1 Q2 Q3 Q4

1

3

5

7
Participant no. 4

Q1 Q2 Q3 Q4

1

3

5

7

Participant no. 5

Q1 Q2 Q3 Q4

1

3

5

7
Participant no. 6

Q1 Q2 Q3 Q4

1

3

5

7

Participant no. 7

Q1 Q2 Q3 Q4

1

3

5

7
Participant no. 8

Q1 Q2 Q3 Q4

1

3

5

7

Figure A.5: Participant answers to Scene 3

Table A.4: Additional comments to Scene 3.

Participant no. Comment

1 Very convincing, AR works great. The current state of the app
would not need loads of work to be a product.

2 Unfortunately I focused more on the sound experience than the
“sense of being there”.

4 Scene 1 more confusing than Scene 3
5 I have probably misinterpreted the task with AR enabled. (Trans-

lated by the author from Norwegian)

A-6

APPENDIX A. SURVEY ANSWERS

A.5 Room Acoustic Feeling

Room Acoustic Feeling
U

se
r
S
co

re

Participant no. 1
Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

1

3

5

7
Participant no. 2

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

1

3

5

7

Participant no. 3

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

1

3

5

7
Participant no. 4

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

1

3

5

7

Participant no. 5

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

1

3

5

7
Participant no. 6

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

1

3

5

7

Participant no. 7

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

1

3

5

7
Participant no. 8

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

1

3

5

7

Figure A.6: Participant answers to questionnaire about their room acoustic feeling

A-7

APPENDIX A. SURVEY ANSWERS

Table A.5: Questions and open text answers about the overall experience.

Q8: How would you describe your room acoustic feeling using the simulation tool?

Participant no. Answer

1 Lacks a good share on realism, but indeed proves the concept.
“Binaural” processing would be a massive upgrade.

2 It was exciting to hear/feel the differences.
3 Engaging.
4 Engaging.
5 OK. I feel to some extent to be in the room.
6 Fun, realistic, engaging.
7 Exciting.
8 Engaging.

Q9: Did you get a feeling of being present in this acoustic simulation? Why/why not.

Participant no. Answer

1 Yes. The visuals combined with movement is very helpful. The
acoustic response to distance also contributes significantly.

2 As mentioned before, I didn’t focus on the sense of being there.
Maybe I should have known that before the test, that this is an
important part of the tool.

3 You could “hear” the material.
4 Yes.
5 Yes, I did feel to be present - not perfect, but OK.
6 Yes, to some extent. Graphics could be better.
7 Yes, felt like sitting in a restaurant with AR.
8 The envelope is hard to simulate.

Q10: Please explain why you like/dislike this tool.

Participant no. Answer

1 I believe this could be a very powerful tool in the hands of acous-
ticians demonstrating upgrades. The immersive experience gives
a whole new way of exploring how a room sounds.

2 I think it is a cool tool, and it may have a potential for being
useful with improved acoustic simulation.

3 Really help to understand.
4 Positive: real feeling.

Negative: hard to understand how to operate.
5 I like it. It is a good tool for simulation/try out different mate-

rials etc. Maybe a good tool for convincing fancy architects that
concrete and glass is not good for restaurants.

6 I liked it. Easy to use, could hear changes I made.
7 Good for simulation.
8 Simulation of acoustics is always good. Acoustics is so difficult

to explain.

A-8

Appendix B

Documents

Description

The accompanying documents are relevant to this project. They are presented in the

following order.

1. Research Protocol

2. Information Sheet

3. Application Manual

4. Consent Form

5. Demographic Questionnaire and Survey

B-1

APPENDIX B. DOCUMENTS

B.1 Research Protocol

Research Protocol

Master’s Thesis Spring 2021

Karl Henrik Ejdfors

Synopsis

Mobile augmented reality (AR) is an evolving technology that can bring new technological

opportunities for real-time simulations. Complex systems can be made intuitive and more

available by combining the real environment with desired augmented information.

This study aims to test whether a prototype AR application can become an immersive

simulation tool for room acoustics. The user will interact with the artificial environment

by walking around in it and changing the object’s absorption coefficients, placing objects

in the environment, and auralize the change. The prototype will emphasize real-time

feedback and interactivity rather than being a correct simulation tool.

The prototype’s ability will be tested on a group of participants. Every participant will

fill out survey forms for feedback. These participants will be professional workers within

acoustics and will take an acting role as a fictitious client.

Introduction / Background

Technological advances have made smart devices common for everyone. Modern devices

can utilize augmented reality (AR) content to enhance the real environment. AR is of-

ten mentioned for entertainment purposes and game settings but can also be utilized to

superimpose relevant information and provide the user with new insight. This technol-

ogy facilitates immersiveness and interactive experiences, which can be highly relevant for

making complex systems more accessible. Such a complex system can be acoustic room

simulations. They often require specialized equipment, setup, post-processing and can be

very time-consuming operations.

This study will investigate how AR can be utilized as a simple real-time simulation tool

for room acoustics. A prototype application will illustrate the concept of how such a sim-

ulation can be accomplished and lays the fundamental ground for further development.

The prototype users will sense how the virtual acoustics in a room are adapted to inter-

active changes in the object’s absorption coefficients. The simulation will give the user an

indication of how and why acoustic materials are essential.

B-2

APPENDIX B. DOCUMENTS

Hypotheses

This study will investigate the hypotheses:

1. “Real-time acoustic room simulation in AR provides the client a sense of being

present in the acoustic room.”

2. “AR technology enhances perception of small changes in sound.”

Methodology and Design

The ULTIMATE lab at NTNU Gløshaugen will be used to prepare the prototype appli-

cation before testing on participants. We will conduct tests on six fellow students to pilot

and evaluate the system before testing on the professional participants.

Eight participants will conduct the tests, and they will answer surveys between each scene.

The scenes are described below. Some of the questions in the surveys are weighted from

1-7 on a Likert scale. Some questions require measurements made in the application, and

some questions require open answers. This composition of questions will provide feedback

with both measurable data and perspective for the answers, which can be desirable for

studies with a small number of participants.

If we only used measurable questions, we would get a low degree of insight because of the

small group. The results would be objective but not representative for a bigger group. On

the other hand, if we only based our study on observations and open answers, it would be

challenging to have measurable data and evaluate our hypotheses. Our research method

will contain sources of error regarding lack of universality as our participants may not be

a representative selection. They will also take the role of a fictitious client, which can be

confusing as they take an acting role. The results will still indicate how a bigger group

will perceive our tool because of the participant’s profession.

The mean opinion score of the Likert scale weighted questions will be one part of what

extent we can accept or reject our hypotheses. Another part will be an analysis of the

open answers. Our second hypothesis will also be evaluated based on the differences in

distance between AR enabled and disabled for Scene 2.

For evaluation of the framework, the application will be individually tested on professional

workers within acoustics. They will take the role of a fictitious client interested in changing

or trying out different acoustic elements and will use our framework for this purpose.

The participants are employees at Norsonic AS, and the test location will be set to a room

in the company’s building in Lier. The participants will be provided with the development

tablet and an over-ear headset. First, they will complete a simple predefined scene, then

they will complete a more complex predefined scene, and lastly, they will complete a

challenge of reducing the reverberation time in a more open scene.

B-3

APPENDIX B. DOCUMENTS

Scene 1: Simple

Aim: Listen to changes in room acoustics by changing building materials.

Initial properties:

Table B.1: Initial properties.

Attribute Material

Walls Concrete
Floor Marble
Ceiling Wood Panel

Room dimensions (L×W×H (m)): 8× 10× 3

Reverberation time: 1.70 seconds

Changed properties:

Table B.2: Changed properties.

Attribute Material

Walls Wood Panel
Floor Plywood
Ceiling Plaster

Room dimensions (L×W×H (m)): 8× 10× 3

Reverberation time: 0.42 seconds

Challenge: The test participant will listen to a recording of a woman talking with applied

room effects from the initial properties. Later, he will change materials in the room and

experience the changes in room acoustics.

Scene 2: Complex

Aim: Experience how close you must be to have an undisturbed conversation at a restau-

rant with and without sound-absorbing materials and evaluate the impact AR has on

small changes in sound perception.

Scenario: You and a guest of yours are at a restaurant. There are two noisy conversations

in the same room as well as a live band playing guitar. The restaurant is old and has a

rustic appearance. The main materials in the room have hard surfaces, which does not

favor short reverberation times. You and your guest are trying to have an undisturbed

conversation.

B-4

APPENDIX B. DOCUMENTS

Initial properties:

Table B.3: Initial properties.

Attribute Material

Walls Brick
Floor Plywood
Ceiling Wood Panel
Lightly furnished, evenly spaced

Room dimensions (L×W×H (m)): 16× 12× 4

Reverberation time: 2.18 seconds

Changed properties:

Table B.4: Changed properties.

Attribute Material

Walls Brick and acoustic elements
Floor Plywood and carpets
Ceiling Acoustic tiles
Lightly furnished, evenly spaced

Room dimensions (L×W×H (m)): 16× 12× 4

Reverberation time: 0.67 seconds

Challenge: With initial properties, the participant will evaluate how close he must be

to have an undisturbed conversation. This is accomplished by getting closer to the guest

and press a button in the application when he evaluates himself as close enough. He will

then experience the same scenario with changed properties. Later, he will do the same

experiments with AR functionality turned off and a simple 2D graphical user interface to

interact with.

Scene 3: Challenge

Aim: Evaluate the interactive framework as a simulation tool for room acoustics.

Description: The participant will interact with the simulation tool to evaluate its poten-

tial and usefulness in real-life settings. In this scene, the participant will be able to apply

different acoustic materials to the room as well as sound sources, obstacles, and objects.

Challenge: The participant will be presented with the initial room as described below.

He will first add an audio source to the room. His next task is to change materials of the

front- and back wall to bricks (reverberation time will be 1.22 seconds). Afterward, he

will add a sound-absorbing object(s) to the room until the room’s reverberation time is

reduces by 2/3 or more (i.e., reverberation time must be below 0.81 seconds).

B-5

APPENDIX B. DOCUMENTS

Initial properties:

Table B.5: Initial properties.

Attribute Material

Walls Wood Panel
Floor Marble
Ceiling Plaster

Room dimensions (L×W×H (m)): 8× 8× 4

Reverberation time: 0.52 seconds

Covid-19 Backup Plan

If Covid-19 regulations require that the above plan can not be successfully accomplished,

one of the plans will be used for evaluating the framework.

1. The parking space outside of Norsonic AS will be used as a test location.

2. The ULTIMATE lab at NTNU Gløshaugen or a room in the experimenter’s home (if

necessary) will be used as a test location. The experimenter will test the prototype

in this room, and the whole session will be audio-recorded and filmed. There will be

composed a video which will be distributed to the contemplated test group together

with the surveys. The participants will answer the survey after they have watched

each scene in the experiment.

Resources

For safe execution of the tests, we will follow local Covid-19 regulations for infection

control.

Table B.6: Initial properties.

Equipment Description

Test device Samsung Galaxy Tab S6 Lite
Over-eat headset Sony WH-1000XM4
Disinfection wipes Any
Test location (L×W (m)) 6× 4 free space
Analyzation tool MATLAB

B-6

APPENDIX B. DOCUMENTS

Results, Analysis and Discussion

The results will be generated by answered surveys from the participants and analyzed

by comparing the answers and evaluating their open answers. Observations made by

the experimenter will also be included. Regarding hypothesis two, we will analyze the

participant’s position relative to their “talking guest” and analyze differences between AR

enabled and disabled.

The hypotheses will be evaluated by the measurable questions in the surveys together

with analysis and comparison of the open answers. Hypothesis one is challenging to

measure with questionnaires alone and requires additional information from open answers.

Hypothesis two will be evaluated based on differences in answers for AR functionality

turned on and off for Scene 2 as well as measurable questions regarding sound perception.

Priority and Timetable

� 15.03: Start gathering piloting participants.

� 17.03: Finished gathering piloting participants.

� 18.03: Start piloting on students.

� 24.03: Start gathering test participants.

� 25.03: Finished piloting on the students.

� 05.04: Finished gathering the test participants.

� 07.04: Start the testing.

� 09.04: Finished with the testing.

� 03.05: Finished analyzing the results.

� 11.06: Deadline for delivering the thesis.

Covid-19 Backup Plan

If Covid-19 regulations require that the above testing plan will not be successfully accom-

plished, we can postpone scheduled testing until 28.05.

B-7

APPENDIX B. DOCUMENTS

B.2 Information Sheet

Experience Acoustic Room Simulation in AR

Dear participant,

Thank you very much for your participation in this experiment. This study will last

approx. 30 minutes. At the end of this document, you will find a short manual for

the application. Please make yourself familiar with the attached manual before

starting the experiment.

During this experiment, you will take the role of a client who wants to ex-

perience differences in room acoustics. Such typical clients can be restaurant

owners, interior architects, or construction clients. Please remember your role

when you perform this experiment.

During this experiment, you will be working in an augmented reality (AR) environment

on an Android tablet. The experimenter will provide you with a set of headphones and

a tablet to perform different tasks in the application and experience changes in a room’s

acoustics. The purpose of this experiment is to evaluate the effect a real-time simulation

tool in AR has on a client’s feeling of being a part of the acoustic room.

The experiment is divided into four main parts:

1. After signing the consent form, you will fill in a demographic questionnaire that

captures statistical data. Afterward, the experimenter will provide you with the

tablet and headphones.

2. During the first scene in the experiment, you will experience changes in room acous-

tics between a “hard” room and a “soft” room. You will follow simple tasks that

are shown at the top pane of the screen. When completed, you will be asked to fill

out a survey.

3. During the second scene of the experiment, you will experience the effect sound-

absorbing materials have in a room. First, you will be placed inside an AR restaurant

with several sound sources. One of the sound sources is a guest of yours. Your

mission is to find out how close you need to be your guest to have an undisturbed

conversation. You will experience this scenario four times in total; two times with

AR functionality enabled and two times by interacting with an on-screen joystick.

The display will provide all the tasks at the top pane of the screen, and you will be

asked to answer surveys.

4. During the third scene of the experiment, you will enter a less restricted environment.

Here, you will be able to change the materials and add objects. Again, all the tasks

will be provided to you at the top pane of the screen. After you have finished the

scene, you will answer the last surveys.

B-8

APPENDIX B. DOCUMENTS

Please note, you are not getting tested, but you are testing the system!

All the data that you provide and we are recording during this experiment will be pseudonymized.

During the experiment, you always have the chance to leave the study without the need

to provide any reason. In case you have questions during the experiment at any point,

please feel free to ask the experimenter.

And now: Have fun during the experiment!

Experimenter: Karl Henrik Ejdfors, +47 917 15 510

B-9

APPENDIX B. DOCUMENTS

B.3 Manual

Manual for Acoustic Room Simulation Application

Please keep in mind that this is a prototype application and is not very responsive to sud-

den movements. The application uses the rear camera to navigate and record movements.

Please do not cover the camera and be delicate with the tablet. Please do not shake it too

much while experimenting.

Current task: your current task will always be shown at the top pane of the screen.

Next room: a button will be displayed if you can proceed to the next room.

Reverberation time: you will always be able to see the total reverberation time in the

current room.

Sound source: every sound source will emit music notes.

Place marker: a button will be displayed if you can place the marker. You can press

this button as many times as you like.

Update sound effect: when clicked, you will update the sound effect at your current

position. The sound effects are dependent on your location in the room; hence you should

use this button frequently to get the best impression of the acoustics. A freeze in the

application of 1-2 seconds is normal.

Current task

Button for changing room

Reverberation time for
current room.

Sound source

Button for updating sound
effects.

Button for placing
a marker

Please use this button frequently. It is
very important to use before registering
distance.

B-10

APPENDIX B. DOCUMENTS

Joystick: the joystick will be displayed when your finger touches the screen. This feature

is only available in Scene 2 when AR functionality is turned off. Use this joystick to move

around.

On-screen joystick

Player

You can touch anywhere on the
screen to display the joystick.

Marker

Settings: open the settings panel by clicking the gear button. Here, you can change

building materials on the walls. When you close the panel, the application will freeze for

1-2 seconds.

Open settings button.

Change materials on the
walls.

Close options and update
audio effect.

B-11

APPENDIX B. DOCUMENTS

Objects: to add objects to the scene, click on the “plus”-icon and select your desired

object. By touching an object in the scene, you will select it and be able to move, scale

and rotate it with finger gestures. Remember to update the audio effect after interacting

with the objects. To deselect the object, you simply touch anywhere else on the screen.

Update audio button
Please use this button after you have
made changes to an object to update the
audio effect.

Select wall dropdown

Object placed on front wall

Open panel to add
objects

Object added to scene
Touch the object to select. You can then
move it, rotate and scale it with finger
gestures.

B-12

APPENDIX B. DOCUMENTS

B.4 Consent Form

Consent Form

I have read the information for the study “Experience Acoustic Room Simulation in AR”. I

will participate in this study. I was informed that the following data will be obtained today

during this study from me: demographic questionnaire, surveys, and feedback provided

to the experimenter. I approve that all recorded data will be saved and will be used

pseudonymized (e.g., identification data will be stored separately from recorded data and

only be accessible to a small circle of authorized personnel) for research analysis. All data

I give will be handled confidentially. All information will be used for research purposes

only. Personal data will not be given to any third party.

I am aware that participating in this study is voluntary, and I can withdraw anytime

without giving any reason. By doing so, I will not suffer from any disadvantage.

Additionally, I am aware that I will handle everything confidentially, I hear and see today,

and I will not give any information to other people.

Name:

Date:

Signature:

Experimenter: Karl Henrik Ejdfors, +47 917 15 510

B-13

APPENDIX B. DOCUMENTS

B.5 Survey Questionnaire

Demographic

Gender:
� �

Female Male

Age group:
� � � � � �

Under 18 18-24 25-34 35-49 50-64 65+

Background Information

Please state your
education:

What are your typical
work tasks within
acoustics?

How many years have
you worked in the
acoustic industry?

� � � � �
1-5 5-10 10-15 15-20 20+

How often do you use
AR?

� � � � �
Never Once a

year
Once a
month

Once a
week

Every
day

B-14

APPENDIX B. DOCUMENTS

Survey: Scene 1

How realistic did the
sound feel in the first
room?

� � � � � � �
Extremely

bad
Fair Ideal

How realistic did the
sound feel in the
second room?

� � � � � � �
Extremely

bad
Fair Ideal

There was a clear
difference in the sound
in the two rooms.

� � � � � � �
Strongly

dis-
agree

Neutral Strongly
agree

To what extent did you
experience a sense of
‘being there’ inside the
environments?

� � � � � � �
Not at

all
Fair Very

much

Additional comments.

B-15

APPENDIX B. DOCUMENTS

Survey: Scene 2

With AR functionality enabled.

There was a clear
difference in the sound
in the two rooms.

� � � � � � �
Strongly

dis-
agree

Neutral Strongly
agree

It was easy to
determine when to
place the marker in the
first room.

� � � � � � �
Strongly

dis-
agree

Neutral Strongly
agree

It was easy to
determine when to
place the marker in the
second room.

� � � � � � �
Strongly

dis-
agree

Neutral Strongly
agree

To what extent did you
experience a sense of
‘being there’ inside the
environments?

� � � � � � �
Not at

all
Fair Very

much

How much did it seem
as if you could reach
out and touch the
objects you saw?

� � � � � � �
Not at

all
Fair Very

much

B-16

APPENDIX B. DOCUMENTS

With AR functionality disabled.

There was a clear
difference in the sound
in the two rooms.

� � � � � � �
Strongly

dis-
agree

Neutral Strongly
agree

It was easy to
determine when to
place the marker in the
first room.

� � � � � � �
Strongly

dis-
agree

Neutral Strongly
agree

It was easy to
determine when to
place the marker in the
second room.

� � � � � � �
Strongly

dis-
agree

Neutral Strongly
agree

It was easier to
determine when to
place the markers with
AR functionality
enabled.

� � � � � � �
Strongly

dis-
agree

Neutral Strongly
agree

Write down the numbers on the screen.

AR enabled
Room

1
x: y:

Room
2

x: y:

AR disabled
Room

1
x: y:

Room
2

x: y:

Additional comments.

B-17

APPENDIX B. DOCUMENTS

Survey: Scene 3

How much did it seem
as if you could reach
out and touch the
objects you saw?

� � � � � � �
Not at

all
Fair Very

much

To what extent did you
experience a sense of
‘being there’ inside the
environment you saw?

� � � � � � �
Not at

all
Fair Very

much

How confusing or clear
was the experience?

� � � � � � �
Very

confus-
ing

Neutral Very
clear

How easy was it to
listen to the changes in
the room’s acoustics?

� � � � � � �
Very

difficult
Neutral Very

easy

Additional comments.

B-18

APPENDIX B. DOCUMENTS

Survey: Room acoustic feeling.

You are now finished with all the scenes in the simulation tool. Please evaluate the

next questions on basis of your total experience.

Please remember your acting role as a client.

Presence in the environment

It was easy to
experience small
differences in the
room’s acoustics.

� � � � � � �
Strongly

dis-
agree

Neutral Strongly
agree

How often did you
want to or try to touch
something you
saw/heard?

� � � � � � �
Never Neutral Always

How completely were
your senses engaged?

� � � � � � �
Not at

all
Fair Very

much

To what extent did you
experience a sensation
of reality?

� � � � � � �
Not at

all
Fair Very

much

Overall, how much did
the things in the
environment you
saw/heard sound like
they would if you had
experienced them
directly?

� � � � � � �
Not at

all
Fair Very

much

Impression

You perceived this
possibility for obtaining
information as ...

� � � � � � �
Not

helpful
at all

Helpful
to some
degree

Very
helpful

Overall impression of
this technology.

� � � � � � �
Extremely

bad
Neutral Ideal

B-19

APPENDIX B. DOCUMENTS

How would you describe your room acoustic feeling using the simulation tool?

(e.g. engaging, static, exciting, authentic to the real world etc.)

Did you get a feeling of being present in this acoustic simulation? Why/why not.

Please explain why you like/dislike this tool.

B-20

Appendix C

Supplementary Code Files

Description

The accompanying files are the controller scripts that are used for developing the applica-

tion.

Attached file

Code.zip

Project URL: https://github.com/khejd/masteroppgave-kode

Filenames

� AcousticElement.cs

� AcousticElementDisplay.cs

� ChallengeScene.cs

� ComplexScene.cs

� ConvolutionJob.cs

� DropdownAcousticElement.cs

� Joystick.cs

� RoomImpulseResponseJob.cs

� SceneChanger

� SimpleChangeRoom.cs

� SimpleScene.cs

� TapToSpawn.cs

C-1

Code/AcousticElement.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

/// <summary>
/// The main <c>AcousticElement</c> class.
/// </summary>
[CreateAssetMenu(fileName = "New Acoustic Element", menuName = "Acoustic Element")]
public class AcousticElement : ScriptableObject
{
 /// <summary>
 /// Name of the acoustic element
 /// </summary>
 public new string name;
 /// <summary>
 /// The NRC value of the acoustic element
 /// </summary>
 public float nrc;
 /// <summary>
 /// Material assigned to the acoustic element
 /// </summary>
 public Material material;
}

Code/AcousticElementDisplay.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

/// <summary>
/// The main <c>AcousticElementDisplay</c> class.
/// Displays the acoustic element on the assigned object.
/// </summary>
public class AcousticElementDisplay : MonoBehaviour
{
 /// <summary>
 /// The acoustic element to be rendered.
 /// </summary>
 public AcousticElement acousticElement;

 /// <summary>
 /// The assigned object's renderer.
 /// </summary>
 private Renderer rend;
 private void Start()
 {
 rend = GetComponent<Renderer>();
 rend.material = acousticElement.material;
 }

 private void Update()
 {
 rend.material = acousticElement.material;
 }
}

Code/ChallengeScene.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using TMPro;

/// <summary>
/// The main <c>ChallengeScene</c> class.
/// </summary>
public class ChallengeScene : MonoBehaviour
{
 // GUI elements in the scene
 public GameObject addButton;
 public GameObject optionsButton;
 public GameObject menuButton;
 public TextMeshProUGUI reverberationTime;
 public AcousticElement challengeMaterial;
 public GameObject surveyPanel;

 public TMP_Dropdown FW, BW, LW, RW, F, C;

 private int challengeNo = 1;
 private float initReverberationTime = -1;

 /// <summary>
 /// Flashing animation for the current task text.
 /// The animation goes from neon green and big text to smaller and white text.
 /// </summary>
 private IEnumerator FlashTextAnimation()
 {
 Color startColor = challengeDescription.color;
 Color32 flashColor = new Color32(11, 232, 129, 255);
 float stopSize = challengeDescription.fontSize;
 float deltaSize = 10;
 float stepSize = 0.5f;
 float startSize = stopSize + deltaSize;
 float flashTime = 0.5f;

 challengeDescription.fontSize = startSize;
 challengeDescription.color = flashColor;

 while (stopSize < startSize)
 {
 challengeDescription.fontSize = startSize;
 yield return new WaitForSeconds(flashTime / deltaSize * stepSize);
 startSize -= stepSize;
 }
 challengeDescription.fontSize = stopSize;
 challengeDescription.color = startColor;
 }

 /// <summary>
 /// Flag for starting/stopping the pulse animation.
 /// </summary>
 private bool keepGoing;
 /// <summary>
 /// Controls the <c>keepGoing</c> flag.
 /// </summary>
 public void SetKeepGoingFalse()
 {
 this.keepGoing = false;
 addButton.transform.localScale = Vector3.one;
 optionsButton.transform.localScale = Vector3.one;
 }
 /// <summary>
 /// Pulsing animation for button.
 /// </summary>
 /// <param name="button">The button to pulse</param>
 private IEnumerator Pulse(GameObject button)
 {
 // Grow parameters
 float approachSpeed = 0.02f;
 float growthBound = 1.2f;
 float shrinkBound = 0.8f;
 float currentRatio = 1;

 while (keepGoing)
 {
 while (currentRatio != growthBound)
 {
 currentRatio = Mathf.MoveTowards(currentRatio, growthBound, approachSpeed);
 button.transform.localScale = Vector3.one * currentRatio;
 yield return new WaitForEndOfFrame();
 }
 while (currentRatio != shrinkBound)
 {
 currentRatio = Mathf.MoveTowards(currentRatio, shrinkBound, approachSpeed);
 button.transform.localScale = Vector3.one * currentRatio;
 yield return new WaitForEndOfFrame();
 }
 }
 }
 /// <summary>
 /// Starts a one minute count down.
 /// </summary>
 private IEnumerator CountDown()
 {
 int start = 60;
 while (start > 0)
 {
 yield return new WaitForSecondsRealtime(1);
 start--;
 }
 NextChallenge();
 }

 /// <summary>
 /// Changes the current task.
 /// </summary>
 public void NextChallenge()
 {
 switch (challengeNo)
 {
 // Add audio source finished
 case 1:
 optionsButton.SetActive(true);
 keepGoing = true;
 StartCoroutine(Pulse(optionsButton));
 helpText = "Change front and back wall material to brick.";
 break;
 // Change room materials finished
 case 2:
 addButton.SetActive(true);
 keepGoing = true;
 StartCoroutine(Pulse(addButton));
 optionsButton.SetActive(false);
 break;
 // Reduce reverberation time finished
 case 3:
 helpText = "You now have one minute to explore...";
 optionsButton.SetActive(true);
 FW.interactable = true;
 BW.interactable = true;
 LW.interactable = true;
 RW.interactable = true;
 F.interactable = true;
 C.interactable = true;
 StartCoroutine(CountDown());
 break;
 case 4:
 helpText = "You have successfully finished the scene.";
 surveyPanel.SetActive(true);
 menuButton.SetActive(true);
 MuteAll();
 break;
 default: break;
 }
 challengeDescription.text = helpText;
 StartCoroutine(FlashTextAnimation());
 challengeNo++;
 }

 /// <summary>
 /// The <c>help text</c> pane on top of the screen.
 /// </summary>
 public TextMeshProUGUI challengeDescription;
 private string helpText = "Add an audio source to the scene.";

 private void Awake()
 {
 challengeDescription.text = helpText;
 StartCoroutine(FlashTextAnimation());
 }
 private void Update()
 {
 if (challengeNo == 1)
 {
 if (GameObject.FindGameObjectWithTag("Audio Source"))
 NextChallenge();
 }
 else if (challengeNo == 2)
 {
 if (GameObject.Find("Front Wall").GetComponent<AcousticElementDisplay>().acousticElement == challengeMaterial && GameObject.Find("Back Wall").GetComponent<AcousticElementDisplay>().acousticElement == challengeMaterial)
 {
 GameObject.Find("Room Impulse Response").GetComponent<RoomImpulseResponseJob>().ToggleCalculateImpulseResponse();
 FW.interactable = false;
 BW.interactable = false;
 NextChallenge();
 }

 }
 else if (challengeNo == 3)
 {
 if (initReverberationTime < 0)
 initReverberationTime = float.Parse(reverberationTime.text.Split(' ')[2]);
 float threshold = 2 * initReverberationTime / 3.0f;
 helpText = "Get the reverberation time below " + threshold.ToString("F2") + " seconds";
 challengeDescription.text = helpText;
 if (float.Parse(reverberationTime.text.Split(' ')[2]) <= threshold)
 {
 NextChallenge();
 }
 }
 }

 /// <summary>
 /// Mutes all audio in the scene.
 /// </summary>
 /// <param name="mute">Mute (<c>true</c>) or unmute (<c>false</c>)</param>
 public void MuteAll(bool mute = true)
 {
 foreach (GameObject a in GameObject.FindGameObjectsWithTag("Audio Source"))
 a.GetComponent<AudioSource>().mute = mute;
 }
}

Code/ComplexScene.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.XR.ARFoundation;
using UnityEngine.UI;
using TMPro;

/// <summary>
/// The main <c>ComplexScene</c> class.
/// </summary>
public class ComplexScene : MonoBehaviour
{
 public GameObject audio1Prefab;
 public GameObject audio2Prefab;
 public GameObject scenePrefab;
 public GameObject partnerPrefab;
 public GameObject marker;

 public AcousticElement initialCeiling;
 public AcousticElement changedCeiling;

 private Vector3 audio1;
 private Vector3 audio2;
 private Vector3 scene;
 private Vector3 partner;

 private int challengeNo = 1;

 private ConvolutionJob c;
 private RoomImpulseResponseJob r;

 public TextMeshProUGUI challengeDescription;
 private string helpText = "Add audio to scene.";
 private void Awake()
 {
 audio1 = GameObject.Find("Audio1").transform.position;
 audio2 = GameObject.Find("Audio2").transform.position;
 scene = GameObject.Find("Scene").transform.position;
 partner = GameObject.Find("Meghan@Sitting").transform.position;

 c = GameObject.Find("Convolution").GetComponent<ConvolutionJob>();
 r = GameObject.Find("Room Impulse Response").GetComponent<RoomImpulseResponseJob>();

 coordinates = new List<Vector3>(4) {new Vector3(), new Vector3(), new Vector3(), new Vector3() };
 challengeDescription.text = helpText;
 StartCoroutine(FlashTextAnimation());
 }
 /// <summary>
 /// Adds audio to the scene.
 /// </summary>
 public void AddAudio()
 {
 Instantiate(audio1Prefab, audio1, audio1Prefab.transform.rotation);
 Instantiate(audio2Prefab, audio2, audio2Prefab.transform.rotation);
 Instantiate(scenePrefab, scene, scenePrefab.transform.rotation);
 GameObject p = Instantiate(partnerPrefab, new Vector3(partner.x, 0.02f, partner.z), partnerPrefab.transform.rotation);
 p.GetComponent<MeshRenderer>().enabled = false;

 ConvolutionJob c = GameObject.Find("Convolution").GetComponent<ConvolutionJob>();
 c.AddAudioSource(audio1Prefab.GetComponent<AudioSource>().clip);
 c.AddAudioSource(audio2Prefab.GetComponent<AudioSource>().clip);
 c.AddAudioSource(scenePrefab.GetComponent<AudioSource>().clip);
 c.AddAudioSource(partnerPrefab.GetComponent<AudioSource>().clip);

 r.ToggleCalculateImpulseResponse();
 }
 /// <summary>
 /// Calculates the position of the player relative to the guest.
 /// </summary>
 /// <param name="guestPosition">Position of the guest</param>
 /// <param name="position">Position of the player</param>
 /// <returns>Position relative to guest</returns>
 private static Vector3 CalculatePositionRelativeToGuest(Vector3 guestPosition, Vector3 position)
 {
 return position - guestPosition;
 }

 private List<Vector3> coordinates;
 /// <summary>
 /// Registers the coordinates of the placed marker relative to the guest.
 /// </summary>
 public void RegisterCoordinates()
 {
 Vector3 player = GameObject.Find("AR Camera").transform.position;
 marker.transform.position = new Vector3(player.x, marker.transform.position.y, player.z);
 Vector3 p = GameObject.Find("Meghan@Sitting").transform.position;
 coordinates[room] = CalculatePositionRelativeToGuest(p, player);
 }

 public GameObject nextScenePanel;
 public TextMeshProUGUI room1AR;
 public TextMeshProUGUI room1NoAR;
 public TextMeshProUGUI room2AR;
 public TextMeshProUGUI room2NoAR;

 public GameObject prefab;

 public GameObject registerDistanceButton;
 public GameObject surveyPanel;
 /// <summary>
 /// Changes the current task.
 /// </summary>
 private void NextChallenge()
 {
 if (challengeNo == 1)
 {
 helpText = "Walk closer to your guest.";
 }
 else if (challengeNo == 2)
 {
 helpText = "Place the marker when you feel close enough.";
 registerDistanceButton.SetActive(true);
 registerDistanceButton.GetComponent<Button>().onClick.AddListener(NextChallenge);
 }
 else if (challengeNo == 3)
 {
 marker.SetActive(true);
 helpText = "Marker placed. Proceed to the next room.";
 registerDistanceButton.GetComponent<Button>().onClick.RemoveListener(NextChallenge);
 }
 else if (challengeNo == 4)
 {
 helpText = "Place the marker when you feel close enough.";
 registerDistanceButton.GetComponent<Button>().onClick.AddListener(NextChallenge);
 }
 else if (challengeNo == 5)
 {
 helpText = "Marker placed. Proceed to the next room.";
 registerDistanceButton.GetComponent<Button>().onClick.RemoveListener(NextChallenge);
 }
 else if (challengeNo == 6)
 {
 marker.SetActive(false);
 helpText = "Place the marker when you feel close enough.";
 registerDistanceButton.GetComponent<Button>().onClick.AddListener(NextChallenge);
 surveyPanel.SetActive(true);
 MuteAll();
 }
 else if (challengeNo == 7)
 {
 marker.SetActive(true);
 helpText = "Marker placed. Proceed to the next room.";
 registerDistanceButton.GetComponent<Button>().onClick.RemoveListener(NextChallenge);
 }
 else if (challengeNo == 8)
 {
 helpText = "Place the marker when you feel close enough.";
 registerDistanceButton.GetComponent<Button>().onClick.AddListener(NextChallenge);
 }
 else if (challengeNo == 9)
 {
 helpText = "Marker placed. Proceed to the next room.";
 registerDistanceButton.GetComponent<Button>().onClick.RemoveListener(NextChallenge);
 }
 challengeDescription.text = helpText;
 StartCoroutine(FlashTextAnimation());
 challengeNo++;
 }
 /// <summary>
 /// Flashing animation for the current task text.
 /// The animation goes from neon green and big text to smaller and white text.
 /// </summary>
 private IEnumerator FlashTextAnimation()
 {
 Color startColor = challengeDescription.color;
 Color32 flashColor = new Color32(11, 232, 129, 255);
 float stopSize = challengeDescription.fontSize;
 float deltaSize = 10;
 float stepSize = 0.5f;
 float startSize = stopSize + deltaSize;
 float flashTime = 0.5f;

 challengeDescription.fontSize = startSize;
 challengeDescription.color = flashColor;

 while (stopSize < startSize)
 {
 challengeDescription.fontSize = startSize;
 yield return new WaitForSeconds(flashTime / deltaSize * stepSize);
 startSize -= stepSize;
 }
 challengeDescription.fontSize = stopSize;

 challengeDescription.color = startColor;

 }

 private int room = 0;
 /// <summary>
 /// Changes the room.
 /// </summary>
 public void ChangeRoom()
 {
 room++;
 if (room == 1)
 GameObject.Find("Ceiling").GetComponent<AcousticElementDisplay>().acousticElement = changedCeiling;
 else if (room == 2)
 {
 GameObject.Find("Ceiling").GetComponent<AcousticElementDisplay>().acousticElement = initialCeiling;
 GameObject cam = GameObject.Find("AR Camera");
 cam.transform.position = new Vector3(0, 0, 0);
 cam.GetComponent<Camera>().enabled = false;
 cam.GetComponent<ARPoseDriver>().enabled = false;
 cam.GetComponent<ARCameraManager>().enabled = false;

 Instantiate(prefab, cam.transform, false);

 GameObject.Find("Top View Camera").GetComponent<Camera>().enabled = true;
 gameObject.GetComponent<Joystick>().enabled = true;
 }
 else if (room == 3)
 {
 GameObject.Find("AR Camera").transform.position = new Vector3(0, 0, 0);
 GameObject.Find("Ceiling").GetComponent<AcousticElementDisplay>().acousticElement = changedCeiling;
 }
 else if (room == 4)
 {
 MuteAll();
 this.nextScenePanel.SetActive(true);
 this.room1AR.text = "Room 1 x: " + coordinates[0].x.ToString("F2") + ", y: " + coordinates[0].z.ToString("F2");
 this.room1NoAR.text = "Room 1 x: " + coordinates[2].x.ToString("F2") + ", y: " + coordinates[2].z.ToString("F2");
 this.room2AR.text = "Room 2 x: " + coordinates[1].x.ToString("F2") + ", y: " + coordinates[1].z.ToString("F2");
 this.room2NoAR.text = "Room 2 x: " + coordinates[3].x.ToString("F2") + ", y: " + coordinates[3].z.ToString("F2");
 return;
 }
 NextChallenge();
 r.ToggleCalculateImpulseResponse();
 }

 /// <summary>
 /// Mutes all audio in the scene.
 /// </summary>
 /// <param name="mute">Mute (<c>true</c>) or unmute (<c>false</c>)</param>
 public void MuteAll(bool mute = true)
 {
 foreach (GameObject a in GameObject.FindGameObjectsWithTag("Audio Source"))
 a.GetComponent<AudioSource>().mute = mute;
 }

 private void Update()
 {
 if (challengeNo == 1)
 {
 if (GameObject.FindGameObjectWithTag("Audio Source"))
 NextChallenge();
 }
 else if (challengeNo == 2)
 {
 Vector3 player = GameObject.Find("AR Camera").transform.position;
 if (Vector3.Distance(player, partner) <= 6)
 NextChallenge();
 }

 }

}

Code/ConvolutionJob.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using NWaves.Operations;
using Unity.Jobs;
using Unity.Burst;
using Unity.Mathematics;
using Unity.Collections;
using System.IO;
using System.Runtime.CompilerServices;

/// <summary>
/// The main <c>ConvolutionJob</c> class.
/// </summary>
public class ConvolutionJob : MonoBehaviour
{
 /// <summary>
 /// Array of all available audio sources in the scene.
 /// </summary>
 private GameObject[] audioSources;
 /// <summary>
 /// List of all the original audio clips.
 /// </summary>
 private List<AudioClip> originalAudioClips;
 /// <summary>
 /// List of all the mixed audio clips
 /// </summary>
 private List<AudioClip> mixedAudioClips;
 /// <summary>
 /// List of all the audio samples
 /// </summary>
 private List<float[]> audioSamples;
 /// <summary>
 /// List of the <c>NativeArrays</c> of samples
 /// </summary>
 private List<NativeArray<float>> signals;
 /// <summary>
 /// The <c>RoomImpulseResponseJob</c> object in the scene
 /// </summary>
 private RoomImpulseResponseJob rirScript;
 /// <summary>
 /// List of the offset samples used for controlling the start index of the mixed sound.
 /// </summary>
 private List<int> offsetSamples;

 private void Start()
 {
 rirScript = GameObject.Find("Room Impulse Response").GetComponent<RoomImpulseResponseJob>();
 originalAudioClips = new List<AudioClip>();
 mixedAudioClips = new List<AudioClip>();
 audioSamples = new List<float[]>();
 signals = new List<NativeArray<float>>();
 offsetSamples = new List<int>();
 }

 /// <summary>
 /// Struct for the convolution job
 /// </summary>
 [BurstCompile(FloatPrecision.Low, FloatMode.Fast)]
 struct ConvOverlapAddJob : IJob
 {
 [ReadOnly] [NoAlias] public NativeArray<float> imp;
 [ReadOnly] [NoAlias] public NativeArray<float> signal;
 [NoAlias] public NativeArray<float> conv;

 /// <summary>
 /// Performs a Bit Reversal Algorithm on a postive integer for given number of bits
 /// </summary>
 /// <param name="n">Number of bits</param>
 /// <param name="bits">The bits to be reversed</param>
 /// <returns>The bit reversed</returns>
 private static int BitReverse(int n, int bits)
 {
 int reversedN = n;
 int count = bits - 1;

 n >>= 1;
 while (n > 0)
 {
 reversedN = (reversedN << 1) | (n & 1);
 count--;
 n >>= 1;
 }

 return ((reversedN << count) & ((1 << bits) - 1));
 }
 /// <summary>
 /// Implementation of fast Fourier transform.
 /// </summary>
 /// <param name="buffer">The signal to be transformed</param>
 /// <param name="length">Length of the signal</param>
 /// <param name="inverse">Compute IFFT if <c>true</c></param>
 private void FFT([NoAlias] ref NativeArray<Complex> buffer, int length, bool inverse = false)
 {
 int bits = (int)math.log2(length);
 int swapPos;
 Complex temp;
 for (int j = 1; j < length; j++)
 {
 swapPos = BitReverse(j, bits);
 if (swapPos <= j)
 continue;
 temp = buffer[j];
 buffer[j] = buffer[swapPos];
 buffer[swapPos] = temp;
 }

 // First the full length is used and 1011 value is swapped with 1101. Second if new swapPos is less than j
 // then it means that swap was happen when j was the swapPos.

 float term1 = 2 * math.PI * (inverse ? 1 : -1);
 float term2, term;
 int N2, i, k;
 int evenIndex, oddIndex;
 Complex exp;

 for (int N = 2; N <= length; N <<= 1)
 {
 term2 = term1 / (float)N;
 N2 = (N / 2);

 for (i = 0; i < length; i += N)
 {
 for (k = 0; k < N / 2; k++)
 {
 evenIndex = i + k;
 oddIndex = i + k + N2;

 term = term2 * k;
 exp = new Complex(math.cos(term), math.sin(term)) * buffer[oddIndex];

 buffer[oddIndex] = buffer[evenIndex] - exp;
 buffer[evenIndex] += exp;
 }
 }
 }
 if (inverse)
 {
 for (i = 0; i < length; i++)
 buffer[i] /= length;
 }
 }

 /*
 * The software implementation is inspired by Julius O. Smith's
 * implementation of the Overlap-Add Convolution algorithm.
 *
 * Smith, J.O. Spectral Audio Signal Processing,
 * http://ccrma.stanford.edu/~jos/sasp/, online book,
 * 2011 edition,
 */

 /// <summary>
 /// Calculates the convolution of the impulse response and the signal.
 /// </summary>
 /// <param name="imp">Impulse response</param>
 /// <param name="signal">Signal</param>
 private void Convolve([NoAlias] ref NativeArray<float> imp, [NoAlias] ref NativeArray<float> signal)
 {
 int L = imp.Length;
 int Nsig = signal.Length;

 /*Nsig = (int)math.ceil((math.ceil(Nsig / L) - Nsig / L) * L);
 NativeArray<Complex> signalzp = new NativeArray<Complex>(Nsig, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
 for (int i = 0; i < Nsig; i++)
 signalzp[i] = i > signal.Length ? new Complex() : new Complex(signal[i]);
 */
 int M = L;
 int Nfft = (int)math.pow(2, math.ceil(math.log2(M+L-1)));
 M = Nfft - L + 1;
 int R = M;
 int Nframes = 1 + (int)math.floor(math.abs((Nsig - M)) / R);

 Complex empty = new Complex();
 int i;

 //Complex* impZeroPadded = stackalloc Complex[Nfft];
 NativeArray<Complex> impZeroPadded = new NativeArray<Complex>(Nfft, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
 for (i = 0; i < Nfft; i++)
 impZeroPadded[i] = i < L ? new Complex(imp[i]) : empty;

 FFT(ref impZeroPadded, Nfft);

 //Complex* signalZeroPadded = stackalloc Complex[Nfft];
 //Complex* convFFT = stackalloc Complex[Nfft];

 NativeArray<Complex> signalZeroPadded = new NativeArray<Complex>(Nfft, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
 NativeArray<Complex> convFFT = new NativeArray<Complex>(Nfft, Allocator.Temp, NativeArrayOptions.UninitializedMemory);

 int startIndex, stopIndex;
 float temp;
 for (int m = 0; m < Nframes; m++)
 {
 startIndex = m * R;
 stopIndex = math.min(m * R + M, Nsig) - 1;
 for (i = 0; i < Nfft; i++)
 signalZeroPadded[i] = startIndex + i < stopIndex ? new Complex(signal[startIndex + i]) : empty;
 FFT(ref signalZeroPadded, Nfft);

 for (i = 0; i < Nfft; i++)
 convFFT[i] = impZeroPadded[i] * signalZeroPadded[i];
 FFT(ref convFFT, Nfft, inverse: true);

 for (i = startIndex; i < m * R + Nfft; i++)
 {
 temp = conv[i] + convFFT[i - startIndex].real;
 conv[i] = temp;
 }
 }
 //impZeroPadded.Dispose();
 //signalZeroPadded.Dispose();
 //convFFT.Dispose();
 }

 public void Execute()
 {
 Convolve(ref imp, ref signal);
 }
 }

 /// <summary>
 /// Adds the audio source clip and initiates a generation of impulse responses.
 /// </summary>
 /// <param name="c">The audio clip</param>
 public void AddAudioSource(AudioClip c)
 {
 audioSources = GameObject.FindGameObjectsWithTag("Audio Source");

 foreach(GameObject a in audioSources)
 {
 float volume = 0.2f;
 if (Equals(a.name, "Guitar Play"))
 volume = 0.5f;
 if (a.transform.childCount == 0)
 {
 GameObject go = new GameObject();
 go.AddComponent<AudioSource>();
 go.GetComponent<AudioSource>();
 go.GetComponent<AudioSource>().clip = c;
 go.GetComponent<AudioSource>().loop = true;
 go.GetComponent<AudioSource>().volume = volume;
 go.GetComponent<AudioSource>().mute = true;
 go.GetComponent<AudioSource>().spatialBlend = 1;
 go.GetComponent<AudioSource>().minDistance = 1;
 go.GetComponent<AudioSource>().maxDistance = 60;
 go.GetComponent<AudioSource>().Play();
 Instantiate(go, a.transform);
 Destroy(go);
 }
 }

 originalAudioClips.Add(c);
 mixedAudioClips.Add(c);
 float[] audioSample = new float[c.samples * c.channels];
 c.GetData(audioSample, 0);
 audioSamples.Add(audioSample);
 signals.Add(new NativeArray<float>(audioSample, Allocator.Persistent));
 offsetSamples.Add(0);

 rirScript.ToggleCalculateImpulseResponse();
 }

 private void Update()
 {
 /// Initiate the process of convolving with the impulse responses.
 if (rirScript.newImpulseResponse)
 {
 rirScript.newImpulseResponse = false;

 int nAudioSources = audioSources.Length;

 List<NativeArray<float>> convs = new List<NativeArray<float>>(nAudioSources);

 NativeList<JobHandle> jobHandles = new NativeList<JobHandle>(nAudioSources, Allocator.Temp);

 /// Used for printing a room impulse response to file.
 /*
 System.Text.StringBuilder s = new System.Text.StringBuilder();

 rirScript.jobHandles[0].Complete();
 float[] imp = rirScript.impulseResponses[0].ToArray();
 foreach (float f in imp)
 {
 string temp = f.ToString().Replace(',', '.');
 s.Append(temp).Append(";");
 }
 File.WriteAllText(Application.dataPath + "/output_plot.txt", s.ToString());
 */

 for (int i = 0; i < nAudioSources; i++)
 {
 int convLength = rirScript.nSamples + audioSamples[i].Length - 1;
 convs.Add(new NativeArray<float>(convLength, Allocator.TempJob));
 }

 for (int i = 0; i < nAudioSources; i++)
 {
 rirScript.jobHandles[i].Complete();

 ConvOverlapAddJob job = new ConvOverlapAddJob()
 {
 imp = rirScript.impulseResponses[i],
 signal = signals[i],
 conv = convs[i],
 };

 JobHandle jobHandle = job.Schedule();
 jobHandles.Add(jobHandle);
 }

 for (int i = 0; i < nAudioSources; i++)
 {
 jobHandles[i].Complete();
 rirScript.impulseResponses[i].Dispose();

 float[] mixedAudio = convs[i].ToArray();
 float multiplicationFactor = Mathf.Max(audioSamples[i]) / Mathf.Max(mixedAudio);
 int numSamples = mixedAudio.Length;

 convs[i].Dispose();

 for (int j = 0; j < numSamples; j++)
 mixedAudio[j] *= multiplicationFactor;

 AudioClip mixedAudioClip = AudioClip.Create("MixedAudioClip", numSamples, originalAudioClips[i].channels, originalAudioClips[i].frequency, false);
 mixedAudioClips[i] = mixedAudioClip;

 offsetSamples[i] += numSamples - audioSources[i].GetComponent<AudioSource>().timeSamples;
 if (offsetSamples[i] >= numSamples)
 offsetSamples[i] = Mathf.Abs(numSamples - offsetSamples[i]);

 mixedAudioClip.SetData(mixedAudio, offsetSamples[i]);

 audioSources[i].GetComponent<AudioSource>().Stop();
 audioSources[i].GetComponent<AudioSource>().clip = mixedAudioClip;
 audioSources[i].GetComponent<AudioSource>().Play();

 }
 rirScript.jobHandles.Dispose();
 jobHandles.Dispose();

 }
 }

 /*
 public bool isAudioEffect = true;
 public void ToggleAudioEffect()
 {
 isAudioEffect = !isAudioEffect;

 foreach (GameObject a in audioSources)
 {
 a.GetComponent<AudioSource>().mute = !isAudioEffect;
 a.transform.GetChild(0).GetComponent<AudioSource>().mute = isAudioEffect;
 }

 }
 */
 private void OnDisable()
 {
 for (int i = 0; i < signals.Count; i++)
 signals[i].Dispose();
 }
 /// <summary>
 /// Struct for handling complex numbers
 /// </summary>
 public struct Complex
 {
 public float real;
 public float imag;

 /// <summary>
 /// Empty constructor
 /// </summary>
 /// <param name="real">Real part</param>
 /// <param name="imag">Imaginary part</param>
 public Complex(float real=0.0f, float imag=0.0f)
 {
 this.real = real;
 this.imag = imag;
 }

 /// <summary>
 /// Converts from polar form to rectangular
 /// </summary>
 /// <param name="r">Radius</param>
 /// <param name="radians">Radians</param>
 /// <returns>Rectangular form</returns>
 public static Complex FromPolar(float r, float radians)
 {
 Complex data = new Complex(r * math.cos(radians), r * math.sin(radians));
 return data;
 }

 /// <summary>
 /// Override addition operator
 /// </summary>
 /// <param name="a">First complex number</param>
 /// <param name="b">Second complex number</param>
 /// <returns>Complex number <c>a</c> + complex number <c>b</c></returns>
 public static Complex operator +(Complex a, Complex b)
 {
 Complex data = new Complex(a.real + b.real, a.imag + b.imag);
 return data;
 }
 /// <summary>
 /// Override subtraction operator
 /// </summary>
 /// <param name="a">First complex number</param>
 /// <param name="b">Second complex number</param>
 /// <returns>Complex number <c>a</c> - complex number <c>b</c></returns>
 public static Complex operator -(Complex a, Complex b)
 {
 Complex data = new Complex(a.real - b.real, a.imag - b.imag);
 return data;
 }
 /// <summary>
 /// Override multiplication operator
 /// </summary>
 /// <param name="a">First complex number</param>
 /// <param name="b">Second complex number</param>
 /// <returns>Complex number <c>a</c> * complex number <c>b</c></returns>
 public static Complex operator *(Complex a, Complex b)
 {
 Complex data = new Complex((a.real * b.real) - (a.imag * b.imag), (a.real * b.imag + (a.imag * b.real)));
 return data;
 }
 /// <summary>
 /// Override multiplication operator
 /// </summary>
 /// <param name="a">Complex number</param>
 /// <param name="b">Float</param>
 /// <returns>Complex number <c>a</c> * float <c>b</c></returns>
 public static Complex operator *(Complex a, float b)
 {
 Complex data = new Complex(a.real * b, a.imag * b);
 return data;
 }
 /// <summary>
 /// Override division operator
 /// </summary>
 /// <param name="a">First complex number</param>
 /// <param name="b">Second complex number</param>
 /// <returns>Complex number <c>a</c> / complex number <c>b</c></returns>
 public static Complex operator /(Complex a, Complex b)
 {
 Complex data = new Complex(((a.real * b.real) + (a.imag * b.imag)) / (math.pow(b.real, 2) + math.pow(b.imag, 2)), (a.imag * b.real - (a.real * b.imag)) / (math.pow(b.real, 2) + math.pow(b.imag, 2)));
 return data;
 }
 /// <summary>
 /// Override division operator
 /// </summary>
 /// <param name="a">Complex number</param>
 /// <param name="b">Float</param>
 /// <returns>Complex number <c>a</c> / float <c>b</c></returns>
 public static Complex operator /(Complex a, int b)
 {
 Complex data = new Complex(a.real / b, a.imag / b);
 return data;
 }
 /// <summary>
 /// Returns magnitude of complex number
 /// </summary>
 public float Magnitude
 {
 get
 {
 return math.sqrt(math.pow(real, 2) + math.pow(imag, 2));
 }
 }
 /// <summary>
 /// Returns the phase of complex number
 /// </summary>
 public float Phase
 {
 get
 {
 return math.atan(imag / real);
 }
 }
 }

}

Code/DropdownAcousticElement.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System.Linq;
using TMPro;

/// <summary>
/// The main <c>DropdownAcousticElement</c> class.
/// Contains all methods for changing acoustic elements on surfaces.
/// </summary>
public class DropdownAcousticElement : MonoBehaviour
{
 /*
 * The optional materials in the dropdown
 */

 public AcousticElement woodPanel;
 public AcousticElement plaster;
 public AcousticElement marble;
 public AcousticElement plywood;
 public AcousticElement concrete;
 public AcousticElement carpet;
 public AcousticElement brick;
 public AcousticElement metal;
 public AcousticElement acousticRoofPanel;

 /*
 * The dropdowns
 */
 private TMP_Dropdown frontWallDropdown;
 private TMP_Dropdown backWallDropdown;
 private TMP_Dropdown leftWallDropdown;
 private TMP_Dropdown rightWallDropdown;
 private TMP_Dropdown floorDropdown;
 private TMP_Dropdown ceilingDropdown;

 /// <summary>
 /// Finds and assigns the dropdowns to event listeners.
 /// </summary>
 private void Awake()
 {
 List<TMP_Dropdown> dropdowns = Resources.FindObjectsOfTypeAll<TMP_Dropdown>().ToList();

 frontWallDropdown = dropdowns.Find(d => Equals(d.name, "Front Wall Dropdown"));
 backWallDropdown = dropdowns.Find(d => Equals(d.name, "Back Wall Dropdown"));
 leftWallDropdown = dropdowns.Find(d => Equals(d.name, "Left Wall Dropdown"));
 rightWallDropdown = dropdowns.Find(d => Equals(d.name, "Right Wall Dropdown"));
 floorDropdown = dropdowns.Find(d => Equals(d.name, "Floor Dropdown"));
 ceilingDropdown = dropdowns.Find(d => Equals(d.name, "Ceiling Dropdown"));

 frontWallDropdown.onValueChanged.AddListener(delegate { ChangeWallElement("Front Wall", frontWallDropdown.value); });
 backWallDropdown.onValueChanged.AddListener(delegate { ChangeWallElement("Back Wall", backWallDropdown.value); });
 leftWallDropdown.onValueChanged.AddListener(delegate { ChangeWallElement("Left Wall", leftWallDropdown.value); });
 rightWallDropdown.onValueChanged.AddListener(delegate { ChangeWallElement("Right Wall", rightWallDropdown.value); });
 floorDropdown.onValueChanged.AddListener(delegate { ChangeFloorElement(); });
 ceilingDropdown.onValueChanged.AddListener(delegate { ChangeCeilingElement(); });

 }

 /// <summary>
 /// Changes the wall element of a wall given by its name.
 /// </summary>
 /// <param name="wallName">Name of the wall</param>
 /// <param name="value">Value of the element in the dropdown</param>
 private void ChangeWallElement(string wallName, int value)
 {
 switch (value)
 {
 case 0:
 GameObject.Find(wallName).GetComponent<AcousticElementDisplay>().acousticElement = woodPanel;
 break;
 case 1:
 GameObject.Find(wallName).GetComponent<AcousticElementDisplay>().acousticElement = plaster;
 break;
 case 2:
 GameObject.Find(wallName).GetComponent<AcousticElementDisplay>().acousticElement = concrete;
 break;
 case 3:
 GameObject.Find(wallName).GetComponent<AcousticElementDisplay>().acousticElement = brick;
 break;
 default:
 break;
 }
 }

 /// <summary>
 /// Changes the floor element.
 /// </summary>
 private void ChangeFloorElement()
 {
 switch (floorDropdown.value)
 {
 case 0:
 GameObject.Find("Floor").GetComponent<AcousticElementDisplay>().acousticElement = marble;
 break;
 case 1:
 GameObject.Find("Floor").GetComponent<AcousticElementDisplay>().acousticElement = plywood;
 break;
 case 2:
 GameObject.Find("Floor").GetComponent<AcousticElementDisplay>().acousticElement = concrete;
 break;
 case 3:
 GameObject.Find("Floor").GetComponent<AcousticElementDisplay>().acousticElement = carpet;
 break;
 case 4:
 GameObject.Find("Floor").GetComponent<AcousticElementDisplay>().acousticElement = metal;
 break;
 default:
 break;
 }
 }

 /// <summary>
 /// Changes the ceiling element.
 /// </summary>
 private void ChangeCeilingElement()
 {
 switch (ceilingDropdown.value)
 {
 case 0:
 GameObject.Find("Ceiling").GetComponent<AcousticElementDisplay>().acousticElement = plaster;
 break;
 case 1:
 GameObject.Find("Ceiling").GetComponent<AcousticElementDisplay>().acousticElement = concrete;
 break;
 case 2:
 GameObject.Find("Ceiling").GetComponent<AcousticElementDisplay>().acousticElement = acousticRoofPanel;
 break;
 default:
 break;
 }
 }

}

Code/Joystick.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

/// <summary>
/// The main <c>Joystick</c> class.
/// </summary>
public class Joystick : MonoBehaviour
{
 public Transform player;
 public float speed = 1.0f;
 private bool touchStart = false;

 /// <summary>
 /// First touch position.
 /// </summary>
 private Vector2 pointA;
 /// <summary>
 /// Second touch position.
 /// </summary>
 private Vector2 pointB;

 private Vector2 initPosition;

 // GUI elements
 public RectTransform circle;
 public RectTransform outerCircle;

 private void Start()
 {
 initPosition = circle.transform.position;
 circle.GetComponent<Image>().enabled = true;
 outerCircle.GetComponent<Image>().enabled = true;
 }

 private void Update()
 {
 if (Input.GetMouseButtonDown(0))
 {
 pointA = new Vector3(Input.mousePosition.x, Input.mousePosition.y, 0);

 circle.transform.position = pointA;
 outerCircle.transform.position = pointA;
 }
 if (Input.GetMouseButton(0))
 {
 touchStart = true;
 pointB = new Vector3(Input.mousePosition.x, Input.mousePosition.y, 0);
 }
 else
 {
 touchStart = false;
 }

 }
 private void FixedUpdate()
 {
 if (touchStart)
 {
 Vector2 offset = pointB - pointA;
 Vector2 direction = Vector2.ClampMagnitude(offset, outerCircle.rect.width * outerCircle.transform.localScale.x / 2);
 MoveCharacter(offset);

 circle.transform.position = new Vector2(pointA.x + direction.x, pointA.y + direction.y);
 }
 else
 {
 circle.transform.position = initPosition;
 outerCircle.transform.position = initPosition;
 }

 }
 /// <summary>
 /// Moves the caracter with the given offset.
 /// </summary>
 /// <param name="offset">Offset to move the character</param>
 private void MoveCharacter(Vector2 offset)
 {
 Vector2 direction = Vector2.ClampMagnitude(offset, 1.0f);
 direction *= speed * Time.deltaTime;
 player.Translate(direction.x, 0, direction.y);
 player.position = new Vector3(player.position.x, 0, player.position.z);

 }
}

Code/RoomImpulseResponseJob.cs

using System.Collections.Generic;
using System.Runtime.InteropServices;
using UnityEngine;
using Unity.Jobs;
using Unity.Collections;
using Unity.Burst;
using Unity.Mathematics;
using TMPro;

/// <summary>
/// The main <c>RoomImpulseResponseJob</c> class.
/// </summary>
public class RoomImpulseResponseJob : MonoBehaviour
{
 /// <summary>
 /// Struct for holding dimensions of the room.
 /// </summary>
 [System.Serializable]
 public struct Dimension
 {
 public float x, y, z;
 /// <summary>
 /// Constructor for <c>Dimension</c> struct.
 /// </summary>
 /// <param name="x">x-value</param>
 /// <param name="y">y-value</param>
 /// <param name="z">z-value</param>
 public Dimension(float x, float y, float z)
 {
 this.x = x;
 this.y = y;
 this.z = z;
 }
 }
 /// <summary>
 /// Struct for holding surface acoustic coefficients.
 /// </summary>
 [System.Serializable]
 [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)]
 public struct Coefficients
 {
 public float frontWall, backWall, leftWall, rightWall, floor, ceiling;
 public bool isReflection;
 /// <summary>
 /// Constructor for <c>Coefficients</c> struct.
 /// </summary>
 /// <param name="frontWall">Front wall coefficient</param>
 /// <param name="backWall">Back wall coefficient</param>
 /// <param name="leftWall">Left wall coefficient</param>
 /// <param name="rightWall">Right wall coefficient</param>
 /// <param name="floor">Floor coefficient</param>
 /// <param name="ceiling">Ceiling coefficient</param>
 /// <param name="isReflection">Are the coefficients for acoustic reflection (<c>true</c>) or for acoustic absorption (<c>false</c>)</param>
 public Coefficients(float frontWall, float backWall, float leftWall, float rightWall, float floor, float ceiling, bool isReflection)
 {
 this.frontWall = frontWall;
 this.backWall = backWall;
 this.leftWall = leftWall;
 this.rightWall = rightWall;
 this.floor = floor;
 this.ceiling = ceiling;
 this.isReflection = isReflection;
 }
 /// <summary>
 /// Converts from absorption coefficients to absorption coefficients.
 /// </summary>
 public void ToReflection()
 {
 this.frontWall = AbsorptionToReflection(this.frontWall);
 this.backWall = AbsorptionToReflection(this.backWall);
 this.leftWall = AbsorptionToReflection(this.leftWall);
 this.rightWall = AbsorptionToReflection(this.rightWall);
 this.floor = AbsorptionToReflection(this.floor);
 this.ceiling = AbsorptionToReflection(this.ceiling);
 this.isReflection = true;
 }
 }

 /// <summary>
 /// Struct for holding the room.
 /// </summary>
 [System.Serializable]
 public struct Room
 {
 /// <summary>
 /// Constructor for the <c>Room</c> struct.
 /// </summary>
 /// <param name="dimension">Dimensions of the room</param>
 /// <param name="coefficients">Coefficients present in the room</param>
 /// <param name="reverberationTime">The room's reverberation time</param>
 public Room(Dimension dimension, Coefficients coefficients, float reverberationTime = -1)
 {
 this.dimension = dimension;
 this.coefficients = coefficients;
 this.reverberationTime = reverberationTime;
 this.useReverberationTime = false;
 }
 public Dimension dimension;
 public Coefficients coefficients;
 public float reverberationTime;
 public bool useReverberationTime;
 }

 /// <summary>
 /// The position of the player in the scene.
 /// </summary>
 public Vector3 receiverPosition = new Vector3();

 /// <summary>
 /// A list of all the playing soures' positions.
 /// </summary>
 public List<Vector3> sourcePositions = new List<Vector3>();

 /// <summary>
 /// The room in the scene.
 /// </summary>
 public Room room = new Room();

 /// <summary>
 /// Toggle variable for initiating a calculation of new impulse responses.
 /// </summary>
 public bool calculateImpulseResponse = false;

 /// <summary>
 /// Flag used for indicating that a new impulse response is generated.
 /// </summary>
 [System.NonSerialized]
 public bool newImpulseResponse = false;

 /// <summary>
 /// Enumeration type for available microphone types.
 /// </summary>
 public enum MicrophoneType
 {
 Bidirectional,
 Hypercardioid,
 Cardioid,
 Subcardioid,
 Omnidirectional
 }

 /// <summary>
 /// The main struct for generating room impulse responses in parallell.
 /// </summary>
 [BurstCompile]
 public struct RirJob : IJob
 {
 [ReadOnly]
 public float3 receiverPos, sourcePos;
 public Room room;
 [NoAlias] public NativeArray<float> impulseResponse;
 /// <summary>
 /// Calculates the sinc of input x.
 /// </summary>
 /// <param name="x">Degrees in radians.</param>
 /// <returns>sin(x)/x</returns>
 private static float Sinc(float x)
 {
 if (x == 0)
 return 1.0f;
 return math.sin(x) / x;
 }

 /*
 * The software implementation is inspired by dr.ir. Emanuel Habets' (e.habets@ieee.org)
 * implementation of the Image-Source method.
 * url: https://github.com/ehabets/RIR-Generator/blob/master/rir_generator.cpp
 * version: 2.2.20201022
 */

 /* MIT Lisence:
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

 /// <summary>
 /// Simulates the microphone type
 /// </summary>
 /// <param name="x"></param>
 /// <param name="y"></param>
 /// <param name="z"></param>
 /// <param name="microphone_angle"></param>
 /// <param name="mtype">Microphone type</param>
 /// <returns></returns>
 private static float SimMicrophone(float x, float y, float z, float2 microphone_angle, MicrophoneType mtype)
 {
 if (mtype == MicrophoneType.Bidirectional || mtype == MicrophoneType.Cardioid || mtype == MicrophoneType.Subcardioid || mtype == MicrophoneType.Hypercardioid)
 {
 float gain, vartheta, varphi, rho;

 /*
 * Polar Pattern rho
 * ---------------------------
 * Bidirectional 0
 * Hypercardioid 0.25
 * Cardioid 0.5
 * Subcardioid 0.75
 * Omnidirectional 1
 */
 switch (mtype)
 {
 case MicrophoneType.Bidirectional:
 rho = 0;
 break;
 case MicrophoneType.Hypercardioid:
 rho = 0.25f;
 break;
 case MicrophoneType.Cardioid:
 rho = 0.5f;
 break;
 case MicrophoneType.Subcardioid:
 rho = 0.75f;
 break;
 default:
 rho = 1;
 break;
 };

 vartheta = math.acos(z / math.sqrt(math.pow(x, 2) + math.pow(y, 2) + math.pow(z, 2)));
 varphi = math.atan2(y, x);

 gain = math.sin(math.PI / 2 - microphone_angle[1]) * math.sin(vartheta) * math.cos(microphone_angle[0] - varphi) + math.cos(math.PI / 2 - microphone_angle[1]) * math.cos(vartheta);
 gain = rho + (1 - rho) * gain;

 return gain;
 }
 else
 return 1;
 }
 /// <summary>
 /// Computes the room impulse response using Image-Source method.
 /// </summary>
 /// <param name="fs">Sampling frequency</param>
 /// <param name="rr">Receiver position</param>
 /// <param name="nMicrophones">Number of microphones</param>
 /// <param name="ss">Source position</param>
 /// <param name="LL">Room dimensions</param>
 /// <param name="nSamples">Number of samples</param>
 /// <param name="beta">Reflection coefficients</param>
 /// <param name="microphone_type">Microphone type</param>
 /// <param name="nOrder">Reflection order</param>
 /// <param name="microphone_angle">Microphone orientation</param>
 private void ComputeRIR(float fs, float3 rr, int nMicrophones, float3 ss, float3 LL, int nSamples, [NoAlias] ref NativeArray<float> beta, MicrophoneType microphone_type, int nOrder, float2 microphone_angle)
 {
 // Temporary variables and constants (high-pass filter)
 float c = 343;
 float W = 2 * math.PI * 100 / fs; // The cut-off frequency equals 100 Hz
 float R1 = math.exp(-W);
 float B1 = 2 * R1 * math.cos(W);
 float B2 = -R1 * R1;
 float A1 = -(1 + R1);
 //float X0;
 //float* Y = stackalloc float[3];
 //float3 Y = new float3();

 // Temporary variables and constants (image-method)
 float Fc = 0.5f; // The normalized cut-off frequency equals (fs/2) / fs = 0.5
 int Tw = (int)(2 * math.round(0.004f * fs)); // The width of the low-pass FIR equals 8 ms
 float cTs = c / fs;

 NativeArray<float> LPI = new NativeArray<float>(Tw, Allocator.Temp);
 float3 r = new float3();
 float3 s = new float3();
 float3 L = new float3();
 float3 Rm = new float3();
 float3 Rp_plus_Rm = new float3();
 float3 refl = new float3();

 //float* LPI = stackalloc float[Tw];

 /*
 float* r = stackalloc float[3];
 float* s = stackalloc float[3];
 float* L = stackalloc float[3];
 float* Rm = stackalloc float[3];
 float* Rp_plus_Rm = stackalloc float[3];
 float* refl = stackalloc float[3];
 */
 float fdist, dist;
 float gain;
 int startPosition;
 int n1, n2, n3;
 int q, j, k;
 int mx, my, mz;
 int n;

 float pow_beta1_mx, pow_beta3_my, pow_beta5_mz;
 float pow_Rp_plus_Rm0, pow_Rp_plus_Rm1;
 float t;

 s[0] = ss[0] / cTs; s[1] = ss[1] / cTs; s[2] = ss[2] / cTs;
 L[0] = LL[0] / cTs; L[1] = LL[1] / cTs; L[2] = LL[2] / cTs;

 for (int idxMicrophone = 0; idxMicrophone < nMicrophones; idxMicrophone++)
 {
 // [x_1 x_2 ... x_N y_1 y_2 ... y_N z_1 z_2 ... z_N]
 r[0] = rr[idxMicrophone + 0 * nMicrophones] / cTs;
 r[1] = rr[idxMicrophone + 1 * nMicrophones] / cTs;
 r[2] = rr[idxMicrophone + 2 * nMicrophones] / cTs;

 n1 = (int)math.ceil(nSamples / (2 * L[0]));
 n2 = (int)math.ceil(nSamples / (2 * L[1]));
 n3 = (int)math.ceil(nSamples / (2 * L[2]));

 // Generate room impulse response
 for (mx = -n1; mx <= n1; mx++)
 {
 Rm[0] = 2 * mx * L[0];
 pow_beta1_mx = math.pow(beta[1], math.abs(mx));

 for (my = -n2; my <= n2; my++)
 {
 Rm[1] = 2 * my * L[1];
 pow_beta3_my = math.pow(beta[3], math.abs(my));

 for (mz = -n3; mz <= n3; mz++)
 {
 Rm[2] = 2 * mz * L[2];
 pow_beta5_mz = math.pow(beta[5], math.abs(mz));

 for (q = 0; q <= 1; q++)
 {
 Rp_plus_Rm[0] = (1 - 2 * q) * s[0] - r[0] + Rm[0];
 refl[0] = math.pow(beta[0], math.abs(mx - q)) * pow_beta1_mx;

 pow_Rp_plus_Rm0 = math.pow(Rp_plus_Rm[0], 2);

 for (j = 0; j <= 1; j++)
 {
 Rp_plus_Rm[1] = (1 - 2 * j) * s[1] - r[1] + Rm[1];
 refl[1] = math.pow(beta[2], math.abs(my - j)) * pow_beta3_my;

 pow_Rp_plus_Rm1 = math.pow(Rp_plus_Rm[1], 2);

 for (k = 0; k <= 1; k++)
 {
 Rp_plus_Rm[2] = (1 - 2 * k) * s[2] - r[2] + Rm[2];
 refl[2] = math.pow(beta[4], math.abs(mz - k)) * pow_beta5_mz;

 dist = math.sqrt(pow_Rp_plus_Rm0 + pow_Rp_plus_Rm1 + math.pow(Rp_plus_Rm[2], 2));

 if (math.abs(2 * mx - q) + math.abs(2 * my - j) + math.abs(2 * mz - k) <= nOrder || nOrder == -1)
 {
 fdist = math.floor(dist);
 if (fdist < nSamples)
 {
 gain = SimMicrophone(Rp_plus_Rm[0], Rp_plus_Rm[1], Rp_plus_Rm[2], microphone_angle, microphone_type)
 * refl[0] * refl[1] * refl[2] / (4 * math.PI * dist * cTs);

 for (n = 0; n < Tw; n++)
 {
 t = (n - 0.5f * Tw + 1) - (dist - fdist);
 LPI[n] = 0.5f * (1.0f + math.cos(2.0f * math.PI * t / Tw)) * 2.0f * Fc * Sinc(math.PI * 2.0f * Fc * t);
 }
 startPosition = (int)fdist - (Tw / 2) + 1;
 for (n = 0; n < Tw; n++)
 if (startPosition + n >= 0 && startPosition + n < nSamples)
 impulseResponse[idxMicrophone + nMicrophones * (startPosition + n)] += gain * LPI[n];
 }
 }
 }
 }
 }
 }
 }
 }
 }
 LPI.Dispose();
 beta.Dispose();
 }
 /// <summary>
 /// Setup for computing the room impulse response.
 /// </summary>
 /// <param name="receiverPos">Receiver position</param>
 /// <param name="sourcePos">Source position</param>
 /// <param name="r">Room</param>
 private void RirGenerator(float3 receiverPos, float3 sourcePos, Room r)
 {
 float fs = 16000;
 int nMic = 1;
 MicrophoneType micType = MicrophoneType.Omnidirectional;
 int reflectionOrder = -1;
 float2 micOrientation = new float2(0, 0);
 float3 room_dimensions = new float3(r.dimension.x, r.dimension.y, r.dimension.z);
 if (!r.coefficients.isReflection)
 r.coefficients.ToReflection();
 NativeArray<float> beta = new NativeArray<float>(6, Allocator.Temp, NativeArrayOptions.UninitializedMemory);
 //float* beta = stackalloc float[6];
 beta[0] = r.coefficients.frontWall;
 beta[1] = r.coefficients.backWall;
 beta[2] = r.coefficients.leftWall;
 beta[3] = r.coefficients.rightWall;
 beta[4] = r.coefficients.floor;
 beta[5] = r.coefficients.ceiling;

 int nSamples = impulseResponse.Length;
 ComputeRIR(fs, receiverPos, nMic, sourcePos, room_dimensions, nSamples, ref beta, micType, reflectionOrder, micOrientation);
 }
 public void Execute()
 {
 RirGenerator(receiverPos, sourcePos, room);
 //rand = new Unity.Mathematics.Random(1);
 //EasyRirGenerator(room.reverberationTime);
 }

 /*
 private void EasyRirGenerator(float t60)
 {
 float A = 0.01f;
 float decay = math.log(1/1000f) / t60;
 int fs = (int)(impulseResponse.Length / t60);
 for (int i = 0; i < impulseResponse.Length; i++)
 impulseResponse[i] = A * RandomGaussian() * math.exp(decay * i / fs);
 }

 private Unity.Mathematics.Random rand;
 private float RandomGaussian()
 {
 float u1 = 1- rand.NextFloat();
 float u2 = 1- rand.NextFloat();
 return (float)(math.sqrt(-2.0f * math.log(u1)) * math.cos(2.0f * math.PI * u2)); //random normal(0,1)
 }
 */
 }

 /// <summary>
 /// Uses Sabine-Franklin's formula to calculate the reverberation time in the room.
 /// </summary>
 /// <returns>Reverberation time in the room</returns>
 private float CalculateReverberationTime()
 {
 float c = 343;
 float V = room.dimension.x * room.dimension.y * room.dimension.z;
 float S_alpha = (room.coefficients.frontWall + room.coefficients.backWall) * room.dimension.x * room.dimension.y +
 (room.coefficients.leftWall + room.coefficients.rightWall) * room.dimension.y * room.dimension.z +
 (room.coefficients.floor + room.coefficients.ceiling) * room.dimension.x * room.dimension.z;

 float reverberationTime = 24 * math.log(10.0f) * V / (c * S_alpha);
 if (reverberationTime < 0.128)
 reverberationTime = 0.128f;
 return reverberationTime;
 }
 /// <summary>
 /// Toggle for the <c>calculateImpulseResponse</c> flag
 /// </summary>
 public void ToggleCalculateImpulseResponse()
 {
 this.calculateImpulseResponse = !this.calculateImpulseResponse;
 }
 /// <summary>
 /// Converts from absorption coefficient to reflection coefficient.
 /// </summary>
 /// <param name="alpha">Absorption coefficient</param>
 /// <returns>Reflection coefficient</returns>
 private static float AbsorptionToReflection(float alpha)
 {
 return math.sqrt(math.abs(1 - alpha));
 }
 /// <summary>
 /// Calculates the position in cartesian coordinates relative to the back left corner in the room.
 /// </summary>
 /// <param name="t">Transform of the room</param>
 /// <param name="position">Position of the object</param>
 /// <returns>Position relative to back left corner of the room.</returns>
 private static Vector3 CalculatePositionRelativeToOrigo(Transform t, Vector3 position)
 {
 Vector3 origo = t.localPosition - (t.right * t.localScale.x / 2) - (t.up * t.localScale.y / 2) - (t.forward * t.localScale.z / 2);
 return position - origo;
 }

 /// <summary>
 /// List of all objects in the room.
 /// </summary>
 private List<List<GameObject>> assignedAcousticElements;
 /// <summary>
 /// Main method for calculating the wall coefficients.
 /// </summary>
 /// <returns>Wall coefficients.</returns>
 private Coefficients CalculateCoefficients()
 {
 assignedAcousticElements = new List<List<GameObject>>();

 for (int i = 0; i < 6; i++)
 assignedAcousticElements.Add(new List<GameObject>());

 GameObject[] acousticElements = GameObject.FindGameObjectsWithTag("Acoustic Element");

 foreach (GameObject acousticElement in acousticElements)
 AssignElementToWall(acousticElement);

 GameObject frontW = GameObject.Find("Front Wall");
 GameObject backtW = GameObject.Find("Back Wall");
 GameObject leftW = GameObject.Find("Left Wall");
 GameObject rightW = GameObject.Find("Right Wall");
 GameObject floor = GameObject.Find("Floor");
 GameObject ceiling = GameObject.Find("Ceiling");

 Coefficients c = new Coefficients();
 c.frontWall = CalculateWallCoefficient(frontW, assignedAcousticElements[0]);
 c.backWall = CalculateWallCoefficient(backtW, assignedAcousticElements[1]);
 c.leftWall = CalculateWallCoefficient(leftW, assignedAcousticElements[2]);
 c.rightWall = CalculateWallCoefficient(rightW, assignedAcousticElements[3]);
 c.floor = CalculateWallCoefficient(floor, assignedAcousticElements[4]);
 c.ceiling = CalculateWallCoefficient(ceiling, assignedAcousticElements[5]);
 c.isReflection = false;

 return c;
 }
 /// <summary>
 /// Assigns an element to the wall by calculating which surface is closest to the object.
 /// </summary>
 /// <param name="acousticElement">The element to be assigned to the wall</param>
 private void AssignElementToWall(GameObject acousticElement)
 {
 Transform frontW = GameObject.Find("Front Wall").transform;
 Transform backtW = GameObject.Find("Back Wall").transform;
 Transform leftW = GameObject.Find("Left Wall").transform;
 Transform rightW = GameObject.Find("Right Wall").transform;
 Transform floor = GameObject.Find("Floor").transform;
 Transform ceiling = GameObject.Find("Ceiling").transform;

 Vector3 p = acousticElement.transform.position;

 Collider closest = null;
 float lastLength = Mathf.Infinity;
 Collider[] colliders = Physics.OverlapSphere(p, lastLength, 1 << 8);
 bool flagSet = false;

 for (int i = 0; i < colliders.Length; i++)
 {
 Vector3 temp = colliders[i].ClosestPointOnBounds(p);
 Vector3 tempLength = temp - p;
 float sqrLength = tempLength.sqrMagnitude;

 if (sqrLength < lastLength * lastLength)
 {
 closest = colliders[i];
 lastLength = tempLength.magnitude;
 flagSet = true;
 }
 }
 if (flagSet)
 {
 string name = closest.gameObject.name;
 switch (name)
 {
 case "Front Wall": assignedAcousticElements[0].Add(acousticElement); break;
 case "Back Wall": assignedAcousticElements[1].Add(acousticElement); break;
 case "Left Wall": assignedAcousticElements[2].Add(acousticElement); break;
 case "Right Wall": assignedAcousticElements[3].Add(acousticElement); break;
 case "Floor": assignedAcousticElements[4].Add(acousticElement); break;
 case "Ceiling": assignedAcousticElements[5].Add(acousticElement); break;
 default: break;
 }
 }
 }

 /// <summary>
 /// Calculates the wall's coefficient by including all the attached acoustic elements.
 /// </summary>
 /// <param name="wall">The wall to calculate the new coefficient</param>
 /// <param name="acousticElements">Assigned acoustic elements to the wall</param>
 /// <returns></returns>
 private static float CalculateWallCoefficient(GameObject wall, List<GameObject> acousticElements)
 {
 float wallNrc = wall.GetComponent<AcousticElementDisplay>().acousticElement.nrc;
 if (acousticElements == null)
 return wallNrc;

 float wallSurface;
 if (wall.name == "Floor" || wall.name == "Ceiling")
 wallSurface = wall.transform.lossyScale.x * wall.transform.lossyScale.z;
 else
 wallSurface = wall.transform.lossyScale.x * wall.transform.lossyScale.y;

 float s = 0;
 float a = 0;
 foreach (GameObject element in acousticElements)
 {
 float acousticElementNrc = element.GetComponent<AcousticElementDisplay>().acousticElement.nrc;
 float acousticElementSurface = 0;
 if (wall.name == "Floor" || wall.name == "Ceiling")
 acousticElementSurface = element.transform.lossyScale.x * element.transform.lossyScale.z;
 else
 acousticElementSurface = element.transform.lossyScale.x * element.transform.lossyScale.y;

 s += acousticElementSurface;
 a += acousticElementNrc * acousticElementSurface;
 }
 return (wallNrc * (wallSurface - s) + a) / wallSurface;
 }

 /// <summary>
 /// List of impulse responses
 /// </summary>
 public List<NativeArray<float>> impulseResponses;
 /// <summary>
 /// List of the job handles
 /// </summary>
 public NativeList<JobHandle> jobHandles;
 /// <summary>
 /// Number of samples used for generating the impulse response
 /// </summary>
 public int nSamples;
 private void Update()
 {
 /// Initiate the process of calculating the room impulse response
 if (this.calculateImpulseResponse)
 {
 this.calculateImpulseResponse = false;

 Transform t = GameObject.FindGameObjectWithTag("Room").transform;
 Transform player = GameObject.FindGameObjectWithTag("MainCamera").transform;

 GameObject[] audioSources = GameObject.FindGameObjectsWithTag("Audio Source");

 this.receiverPosition = CalculatePositionRelativeToOrigo(t, player.position);

 room.dimension = new Dimension(t.localScale.x, t.localScale.z, t.localScale.y);
 room.coefficients = CalculateCoefficients();
 if (!room.useReverberationTime)
 room.reverberationTime = CalculateReverberationTime();

 int fs = 16000;
 int maxSamples = (int)math.pow(2, 14);
 if (room.reverberationTime * fs > maxSamples)
 nSamples = maxSamples;
 else
 nSamples = (int)(room.reverberationTime * fs);

 this.sourcePositions = new List<Vector3>(audioSources.Length);
 this.impulseResponses = new List<NativeArray<float>>(audioSources.Length);

 jobHandles = new NativeList<JobHandle>(audioSources.Length, Allocator.TempJob);
 for (int i = 0; i < audioSources.Length; i++)
 {
 this.sourcePositions.Add(CalculatePositionRelativeToOrigo(t, audioSources[i].transform.position));
 this.impulseResponses.Add(new NativeArray<float>(nSamples, Allocator.TempJob));
 RirJob job = new RirJob()
 {
 impulseResponse = impulseResponses[i],
 receiverPos = this.receiverPosition,
 sourcePos = this.sourcePositions[i],
 room = this.room
 };
 JobHandle jobHandle = job.Schedule();
 jobHandles.Add(jobHandle);
 }

 newImpulseResponse = true;
 GameObject.Find("Reverberation Time Text").GetComponent<TextMeshProUGUI>().text = "Reverberation time: " + room.reverberationTime.ToString("F2") + " seconds.";

 }
 }

}

Code/SceneChanger.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.SceneManagement;

/// <summary>
/// The main <c>SceneChanger</c> class.
/// </summary>
public class SceneChanger : MonoBehaviour
{
 /// <summary>
 /// Changes the scene to <c>Menu</c>.
 /// </summary>
 public void Menu()
 {
 SceneManager.LoadScene("Menu");
 }
 /// <summary>
 /// Changes the scene to <c>Simple</c>
 /// </summary>
 public void Scene1()
 {
 SceneManager.LoadScene("Simple");
 }
 /// <summary>
 /// Changes the scene to <c>Complex</c>
 /// </summary>
 public void Scene2()
 {
 SceneManager.LoadScene("Complex");
 }
 /// <summary>
 /// Changes the scene to <c>Challenge</c>
 /// </summary>
 public void Scene3()
 {
 SceneManager.LoadScene("Challenge");
 }
}

Code/SimpleChangeRoom.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

/// <summary>
/// The main <c>SimpleChangeRoom</c> class.
/// </summary>
public class SimpleChangeRoom : MonoBehaviour
{
 public AcousticElement initialWall;
 public AcousticElement initialFloor;
 public AcousticElement initialCeiling;

 public AcousticElement changedWall;
 public AcousticElement changedFloor;
 public AcousticElement changedCeiling;

 private bool isInitialRoom = true;
 /// <summary>
 /// Changes the design of the room.
 /// </summary>
 public void ChangeRoom()
 {
 GameObject.Find("Front Wall").GetComponent<AcousticElementDisplay>().acousticElement = isInitialRoom ? changedWall : initialWall;
 GameObject.Find("Back Wall").GetComponent<AcousticElementDisplay>().acousticElement = isInitialRoom ? changedWall : initialWall;
 GameObject.Find("Left Wall").GetComponent<AcousticElementDisplay>().acousticElement = isInitialRoom ? changedWall : initialWall;
 GameObject.Find("Right Wall").GetComponent<AcousticElementDisplay>().acousticElement = isInitialRoom ? changedWall : initialWall;
 GameObject.Find("Floor").GetComponent<AcousticElementDisplay>().acousticElement = isInitialRoom ? changedFloor : initialFloor;
 GameObject.Find("Ceiling").GetComponent<AcousticElementDisplay>().acousticElement = isInitialRoom ? changedCeiling : initialCeiling;

 isInitialRoom = !isInitialRoom;

 GameObject.Find("Room Impulse Response").GetComponent<RoomImpulseResponseJob>().ToggleCalculateImpulseResponse();
 }

}

Code/SimpleScene.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using TMPro;
using UnityEngine.UI;

/// <summary>
/// The main <c>SimpleScene</c> class.
/// </summary>
public class SimpleScene : MonoBehaviour
{
 // GUI elements
 public GameObject addAudioSourceButton;
 public GameObject changeRoomButton;
 public GameObject nextSceneButton;
 public TextMeshProUGUI challengeDescription;
 public GameObject surveyPanel;

 private int challengeNo = 1;

 /// <summary>
 /// Flashing animation for the current task text.
 /// The animation goes from neon green and big text to smaller and white text.
 /// </summary>
 private IEnumerator FlashTextAnimation()
 {
 Color startColor = challengeDescription.color;
 Color32 flashColor = new Color32(11, 232, 129, 255);
 float stopSize = challengeDescription.fontSize;
 float deltaSize = 10;
 float stepSize = 0.5f;
 float startSize = stopSize + deltaSize;
 float flashTime = 0.5f;

 challengeDescription.fontSize = startSize;
 challengeDescription.color = flashColor;

 while (stopSize < startSize)
 {
 challengeDescription.fontSize = startSize;
 yield return new WaitForSeconds(flashTime / deltaSize * stepSize);
 startSize -= stepSize;
 }
 challengeDescription.fontSize = stopSize;

 challengeDescription.color = startColor;

 }

 /// <summary>
 /// Waits for 10 seconds before changing the current task.
 /// </summary>
 private IEnumerator WaitTimeNextChallenge()
 {
 for (int i = 10; i > 0; i--)
 {
 helpText = "Explore the room by walking around. " + i.ToString();
 challengeDescription.text = helpText;
 yield return new WaitForSeconds(1);
 }
 changeRoomButton.SetActive(true);
 NextChallenge();
 }

 /// <summary>
 /// Changes the current task.
 /// </summary>
 private void NextChallenge()
 {
 if (challengeNo == 1)
 {
 helpText = "Explore the room by walking around.";
 addAudioSourceButton.SetActive(false);
 StartCoroutine(WaitTimeNextChallenge());
 }
 else if (challengeNo == 2)
 {
 helpText = "Change room to experience the change in acoustics.";
 }
 else if (challengeNo == 3)
 {
 changeRoomButton.GetComponent<Button>().onClick.RemoveListener(NextChallenge);
 nextSceneButton.SetActive(true);
 helpText = "Press 'Next scene' button.";
 }
 else if (challengeNo == 4)
 {
 helpText = "Please fill out survey.";
 MuteAll();
 surveyPanel.SetActive(true);
 }
 challengeDescription.text = helpText;
 StartCoroutine(FlashTextAnimation());
 challengeNo++;
 }

 /// <summary>
 /// Mutes all audio in the scene.
 /// </summary>
 /// <param name="mute">Mute (<c>true</c>) or unmute (<c>false</c>)</param>
 private void MuteAll(bool mute = true)
 {
 foreach (GameObject a in GameObject.FindGameObjectsWithTag("Audio Source"))
 a.GetComponent<AudioSource>().mute = mute;
 }

 private string helpText = "Add audio source to the scene";
 private void Awake()
 {
 challengeDescription.text = helpText;
 StartCoroutine(FlashTextAnimation());
 changeRoomButton.GetComponent<Button>().onClick.AddListener(NextChallenge);
 nextSceneButton.GetComponent<Button>().onClick.AddListener(NextChallenge);
 }
 private void Update()
 {
 if (challengeNo == 1)
 {
 if (GameObject.FindGameObjectWithTag("Audio Source"))
 NextChallenge();
 }
 }
}

Code/TapToSpawn.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;
using TMPro;

/// <summary>
/// The main <c>TapToSpawn</c> class.
/// </summary>
[RequireComponent(typeof(Button))]
public class TapToSpawn : MonoBehaviour
{
 /// <summary>
 /// The prefab object to be spawned.
 /// </summary>
 public GameObject prefab;

 /// <summary>
 /// Dropdown menu for selecting a wall to assign the prefab.
 /// </summary>
 public TMP_Dropdown wallDropdown;

 /// <summary>
 /// Adds event listener on button click to run method <c>Spawn</c> on awake.
 /// </summary>
 private void Awake()
 {
 this.GetComponent<Button>().onClick.AddListener(Spawn);
 }

 /// <summary>
 /// Game object of the last spawned prefab.
 /// </summary>
 private GameObject lastSpawned;

 /// <summary>
 /// Spawns the prefab to the scene.
 /// </summary>
 public void Spawn()
 {
 Transform room = GameObject.FindGameObjectWithTag("Room").transform;
 Transform player = GameObject.FindGameObjectWithTag("MainCamera").transform;
 Vector3 position = player.position + 1.5f * transform.forward * Mathf.Cos((player.localEulerAngles.y + 3) * Mathf.Deg2Rad) + 1.5f * transform.right * Mathf.Sin(player.localEulerAngles.y * Mathf.Deg2Rad) + 0.5f * transform.right;
 if (Equals(prefab.name, "Carpet") || Equals(prefab.name, "Door"))
 {
 Transform floor = GameObject.Find("Floor").transform;
 position = floor.position + 2 * transform.up * floor.localScale.y;
 }

 if (Equals(prefab.tag, "Audio Source"))
 {
 Instantiate(prefab, position, prefab.transform.rotation);
 GameObject.Find("Convolution").GetComponent<ConvolutionJob>().AddAudioSource(prefab.GetComponent<AudioSource>().clip);
 return;
 }

 lastSpawned = Instantiate(prefab, position, prefab.transform.rotation, room);
 Vector3 newScale = new Vector3(lastSpawned.transform.localScale.x / room.localScale.x, lastSpawned.transform.localScale.y / room.localScale.y, lastSpawned.transform.localScale.z / room.localScale.z);
 lastSpawned.transform.localScale = newScale;
 }

 /// <summary>
 /// Attaches the spawned object to a wall.
 /// </summary>
 public void AttachToWall()
 {
 Vector3 pos = new Vector3();
 Quaternion rot1 = new Quaternion();
 Quaternion rot2 = new Quaternion();

 rot1.eulerAngles = new Vector3(0, 0, 0);
 rot2.eulerAngles = new Vector3(0, 90, 0);

 switch (wallDropdown.value)
 {
 case 0: break;
 case 1:
 Transform frontWall = GameObject.Find("Front Wall").transform;
 pos = frontWall.position - transform.forward * frontWall.lossyScale.z;
 lastSpawned.transform.rotation = rot1;
 break;
 case 2:
 Transform backWall = GameObject.Find("Back Wall").transform;
 pos = backWall.position + transform.forward * backWall.lossyScale.z;
 lastSpawned.transform.rotation = rot1;
 break;
 case 3:
 Transform leftWall = GameObject.Find("Left Wall").transform;
 pos = leftWall.position + transform.right * leftWall.lossyScale.z;
 lastSpawned.transform.rotation = rot2;
 break;
 case 4:
 Transform rightWall = GameObject.Find("Right Wall").transform;
 pos = rightWall.position - transform.right * rightWall.lossyScale.z;
 lastSpawned.transform.rotation = rot2;
 break;
 default:
 break;
 }
 lastSpawned.transform.position = pos;
 }
}

Code/ToggleActive.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

/// <summary>
/// The main <c>ToggleActive</c> class.
/// </summary>
public class ToggleActive : MonoBehaviour
{
 /// <summary>
 /// Toggles the object's active state.
 /// </summary>
 public void ToggleObjectActive()
 {
 this.gameObject.SetActive(!this.gameObject.activeSelf);
 }

 /// <summary>
 /// Sets the object's active state to true.
 /// </summary>
 public void SetObjectActive()
 {
 this.gameObject.SetActive(true);
 }
}

https://github.com/khejd/masteroppgave-kode

APPENDIX C. SUPPLEMENTARY CODE FILES

� ToggleActive.cs

Figure C.1, Figure C.2 and Figure C.3 show the component hierarchy in each scene.

C-2

APPENDIX C. SUPPLEMENTARY CODE FILES

Figure C.1: Component hierarchy for Scene 1

C-3

APPENDIX C. SUPPLEMENTARY CODE FILES

Figure C.2: Component hierarchy for Scene 2

C-4

APPENDIX C. SUPPLEMENTARY CODE FILES

Figure C.3: Component hierarchy for Scene 3

C-5

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Karl Henrik Olof Ejdfors

Design of an AR Based Framework
for Acoustic Simulation

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Andrew Perkis

June 2021

M
as

te
r’s

 th
es

is

	Introduction
	Related Work
	Structure of the Report

	Theory
	Media Technology
	Spatial Aspects of Augmented Reality (AR)
	Immersion Within the System

	Acoustic Virtual Reality
	Room Impulse Response Generation
	Sound Replication and Considerations

	Method
	Research Procedure
	Hypotheses
	System Materials
	Hardware
	Software

	System Description
	Scene Overview
	Scene 1: Simple
	Scene 2: Complex
	Scene 3: Challenge

	Usability and User Interface
	Implementation of Algorithms
	Pilot Testing
	Demographic
	Procedure
	Observations, Feedback and Changes

	Experiment Setup

	Results
	Scene 1: Simple
	Scene 2: Complex
	Scene 3: Challenge
	Room Acoustic Feeling

	Discussion
	Experiment Session
	System
	Further Work

	Conclusion
	Bibliography
	Survey Answers
	Demographic and Background Information
	Scene 1 Participant Answers
	Scene 2 Participant Answers
	Scene 3 Participant Answers
	Room Acoustic Feeling

	Documents
	Research Protocol
	Information Sheet
	Manual
	Consent Form
	Survey Questionnaire

	Supplementary Code Files

