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Abstract

Computer systems has become more and more crucial for our society, which means
that these systems has become more valuable than ever before and are therefore
prone to interactions from individuals with malicious intent. There are often many
ways to attack a system, but one type that has gained a lot of popularity over the
last couple of years are malicious scripts, also known as fileless malware. This is
where PowerShell becomes relevant as a type of fileless malware and the use of
malicious PowerShell scripts has increased immensely the last years. Most Win-
dows systems nowadays have PowerShell integrated as it is intended for system
administrators to make their life easier by e.g., automating tasks. The fact that
system administrators use this tool is a statement to how powerful it can be, also
part of its name, and many systems allow scripts to be executed without many
restrictions. Many of these malicious scripts are hard to detect because of the fact
that they abuse a legitimate tool but also because they use actions also performed
in similar ways by e.g, administrators.

In this thesis we propose a method that uses NLP technology in order to parse
and tokenize PowerShell code. The tokens kept for further feature extraction are
the commands and variables. From the commands and variables we extracted
character frequencies, minimum, maximum and average length. The frequency
of a set of commands with the potential for malicious actions were also extrac-
ted. Lastly we extracted the verbs used in the commands in order to explore the
frequencies of valid and invalid verbs compared to Microsoft’s naming conven-
tion. With these features we tested the classification performance of a k-nearest
neighbour(KNN) and a decision tree. All of our performance evaluations used 5-
fold stratified crossvalidation and retrieved the mean scores. The best performing
model was our KNN using all the features, which achieved an AUC score of 0.976
and the time used for training and testing with crossvalidation was 0.53 seconds.
This means that our proposed method shows potential for being used as a filter
for more complex and time consuming classification methods.
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Sammendrag

Datasystemer har blitt mer og mer avgjørende for samfunnet vårt, noe som betyr
at disse systemene har blitt mer verdifulle enn noen gang før, og er derfor ut-
satt for interaksjoner fra personer med ondsinnede hensikter. Det er ofte mange
måter å angripe et system på, men en type som har økt i popularitet er filløse
skadevarer. Det er her PowerShell blir relevant som en type fil-løs skadevare, og
bruken av ondsinnede PowerShell-skript har økt enormt de siste årene. De fleste
Windows systemer har i dag PowerShell integrert, da det er ment for systemad-
ministratorer for å gjøre livet deres enklere ved for eksempel å automatisere op-
pgaver. Det faktum at systemadministratorer bruker dette verktøyet, er erklæring
om hvor kraftig det kan være, også en del av navnet, og mange systemer tillater
at skript kjøres uten mange restriksjoner. Mange av disse ondsinnede skriptene er
vanskelig å oppdage på grunn av det faktum at de misbruker et legitimt verktøy,
men også på grunn av at de bruker handlinger som også utføres på lignende måter
av for eksempel administratorer

I denne oppgaven forslår vi en metode som bruker NLP-teknologi for å ana-
lysere og tokenisere PowerShell-koden. Token som tas med videre for ytterli-
gere trekk analyse og trekk utvinning er kommandoene og variablene. Fra kom-
mandoene og variablene hentet vi ut tegnfrekvenser, minimum, maksimum og
gjennomsnittlig lengde. Frekvensen til et sett med kommandoer med potensial
for ondsinnede handlinger blir også hentet ut. Til slutt hentet vi ut verbene som
ble brukt i kommandoene for å utforske frekvensen til gyldige og ugyldige verb
sammenlignet med Microsofts navnekonvensjon. Med disse trekkene testet vi klas-
sifiseringsevnen til en k-nærmeste naboer (KNN) og et beslutningstre. Alle eval-
ueringer av modellenes evner brukte fem ganger stratifisert kryssvalidering og
hentet ut gjennomsnittsresultatet. Den modellen som ga best resultat var KNN
modellen som brukte alle trekkene, og oppnådde en AUC-verdi på 0.976 og tiden
som ble brukt til trening og testing med kryssvalideringen var 0.53 sekunder. Dette
betyr at den foreslåtte metoden vår viser potensial for å bli brukt som et filter for
mer komplekse og tidkrevende klassifiseringsmetoder.
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Chapter 1

Introduction

This chapter presents the topic of the thesis, relevant keywords and description
of the problems we are faced with. Further on it will present justifications, mo-
tivations and benefits of the thesis before diving into the research questions and
planned contributions for the thesis.

1.1 Topic covered by the project

Computer systems has become more and more crucial for our society, which means
that these systems has become more valuable than ever before and are therefore
prone to interactions from individuals with malicious intent. One of the methods
these individuals can use to exploit these systems are by using malware. Malware
is defined by Microsoft [1] as "malicious applications and code that can cause
damage and disrupt normal use of devices."
There are several types of malware out there, but one type that has gained a lot of
popularity over the last couple of years are malicious scripts, also known as fileless
malware. When looking at the different types of malicious scripts we can see that
the popularity of using malicious PowerShell scripts has risen by an incredible
1,902 % over the past year according to McAfee’s "Covid-19 threats report" [2].
PowerShell is a tool developed by Microsoft to support for example system ad-
ministrators in automating tasks and administrating systems. It was made open-
source and cross-platform in 2016 and as the name suggests it is a very powerful
tool where you might be able to do a lot of changes to a system. Most of the
systems we use are in some way or another in interaction with humans, which
means that they are suspect to human errors. With that in mind we can say that
the wide deployment of PowerShell and the .NET framework makes it an ideal
attack method, and maybe most importantly PowerShell is a trusted application
which means executing scripts often will be allowed to execute with impunity.
This makes it possible for attackers to use the scripting language on its own to
perform malicious actions, but they can also use PowerShell to inject payloads
into running applications.
Today’s antivirus software has problems with detecting these malicious Power-
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2 Lien: Hunting malicious PowerShell

Shell scripts, which means there is a need for new ways of trying to detect them.
There has been a lot of different research done into using machine learning to
classify malware, but according to Tajiri [3] there has been almost no research
done into using Natural Language Processing (NLP) technology to classify Power-
Shell scripts. This paper will aim to fill a small part of this void by focusing on
classifying malicious PowerShell by using NLP technology.
A co-student will cover obfuscated scripts in his thesis, which is why that is not a
focus in this thesis. This thesis will focus on non-obfuscated scripts.

1.2 Keywords

Malware, Machine Learning, Static Analysis, Feature Extraction, Features Selec-
tion, Natural Language Processing (NLP), Information Security, PowerShell.

1.3 Problem description

Today’s antivirus software struggles with detecting malicious PowerShell scripts
since it is a type of fileless malware that takes advantage of the immense possibil-
ities enabled by PowerShell. The amount of malicious PowerShell has increased to
an amount where it is impossible for the analysts to be able to analyse every one
of them. This means that a lot of potentially vital information about the different
scripts might go undetected. The knowledge obtained from collected malware has
proven essential in knowing how they work and which countermeasures needs to
be implemented.
This type of analysis is not fully automated, and might never be, but there is
potential of making the life of the analysts easier where as the backlog of scripts
keeps increasing. If scripts that don’t get analysed could reveal information about
the bigger picture, e.g trends by the attackers, it also makes the other security jobs
harder to do than it potentially could be.
A solution to the problem could be to hire enough analysts to analyse every mal-
ware out there, but that would be very costly as well as very difficult to find that
many people with the required knowledge. Solving the problem without some
form of automation is in other words almost impossible.
Since this paper will try to implement a solution using machine learning to help
solve a tiny piece of this large problem there is also the general problems that
occurs in any machine learning problem. The data needs to be of good quality,
feature extraction needs to be performed in a sound manner and in the end a
well supported classification needs to be done. Feature selection needs to be well
reasoned and performed in a sound manner so that the features used to learn and
classify are the ones of highest importance to the classification problem.
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1.4 Justification, motivation and benefits

When defending our nations we have relied on information about the so called
enemy. Most of us has probably heard the saying of Sun Tzu "Know thy enemy and
know yourself...", and in this case we can improve our knowledge of the enemy
or in other words malware creators. With a reliable way of classifying malicious
PowerShell scripts it might be easier to notice trends and gather information that
could gain other jobs within the field of information security.
In regards to the analysts it might be easier for them to see the bigger picture and
connect dots since previously not analysed scripts can for example be more easily
searched through. Time spent on analysing whether a script is malicious or not
could also be spent on other tasks. If the classification is reliable and fast enough
it might also be used as part of a live detection system.
By improving these aspects of the information security field we might be able to
reduce the risk of attacks crippling companies. An example of a recent attack that
utilized PowerShell in their attack was the ransomware that hit Norsk Hydro in
2019 [4]. This attack was an eyeopener for many people in Norway, and really
shows how damaging and expensive these types of attacks can be.
The primary benefit of this thesis is more knowledge about new ways of classifying
malicious PowerShell using NLP, while the secondary benefit would be methods
that could be implemented to achieve better protection of systems that today is
exploitable by the use of PowerShell.

1.5 Research questions

In an attempt to find a solution to a small part of this larger problem we need to
focus on a set of research questions. These following questions has been made to
clarify what this thesis actually wants to answer:

• How can NLP technology be used to perform static analysis on Malicious
PowerShell scripts?
• What might be the best features for classifying malicious PowerShell when

focusing on commands and variables?
• How well does the implemented solution perform when classifying Mali-

cious PowerShell?
• What are the weaknesses of the implemented solution?

1.6 Planned contributions

As previously mentioned there is little research provided regarding the usage
of NLP technology to classify malicious PowerShell. This thesis aims to help fill
a small part of this void by exploring how NLP can be used to classify mali-
cious PowerShell scripts. An implementation of the suggested solution will be
performed and the performance of the solution will be reviewed.
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1.7 Thesis Outline

This section gives an outline of the thesis, along with a description of what each
chapter contains.

• Chapter 2: Background. This chapter aims to give the reader the required
knowledge to follow the thought process and reasoning in later chapters
• Chapter 3: Related work. This chapter aims to explain what the state of the

art research is when classifying malicious PowerShell. Additional relevant
malware research will also be explored as PowerShell is a relatively new
field.
• Chapter 4: Methodology. Here we aim to describe the methodology used

when trying to answer the research questions as well as trying to explain
our reasoning for the chosen method.
• Chapter 5: Results. In this chapter we aim to present the results achieved

when executing the methodology explained in chapter 4.
• Chapter 6: Discussion. This chapter aims to discuss the results we presented

in chapter 5 and try to draw lines and compare it to related research.
• Chapter 7: Conclusion. The final chapter aims to draw conclusions based on

the discussions performed in chapter 6.



Chapter 2

Background

This chapter aims to give the required information about the topics malware,
code analysis techniques, natural language processing, parsing and machine
learning needed to understand this thesis.

2.1 Malware

Malware, also known as malicious code, is as previously stated "malicious applic-
ations and code that can cause damage and disrupt normal use of devices"[1].
There are many different types of malware out there, but a few examples are
ransomware, key-loggers, Trojan horses and spyware.
A ransomware encrypts the files on a system so that the user can’t get a hold of
the data. You could say that the data is being held captive and to get it back the
user needs to pay a ransom. This is what happened to Norsk Hydro in 2019[4].
One of the difficult aspects with this type of malware is that in recent history we
have seen ransomware be used to attack systems, but there has been no intention
of decrypting the data if a ransom is payed. This resulting in the data pretty much
being deleted, and no way of getting it back.
Key-loggers records the keys used by a user when using i/o equipment, e.g. key-
board and mouse. The idea behind this type of malware is to collect the users
interactions with a system in order to obtain important information, such as login
credentials and banking information. Currently there is research being conducted
into how typing behaviour can be used to protect systems. In theory this type of
malware can be used to avoid such a security measure.
Trojan horse, or Trojan, is a type of malware that hides within a legitimate piece of
software. This means that it is disguised as a normal program, but when installed
it contains code that gives the attacker access to the system giving the possibility
to steal data, monitor activity, install more malware and so on.
Spyware is malicious code obtaining information about the user and the system.
This means that it collect information about browsing activity, logins, banking
information and so on. Key-loggers can be defined as a type of spyware, but there
are so much more information available than only key-strokes. Information about
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the system can lead to the attacker finding vulnerabilities that can be exploited in
other ways, for example how to get a Trojan on the system.
If we were to look at these methods from the attackers point of view there seems
to be three different motivations behind the malware attacks:

• Financial motives
• Information gathering
• Destruction / Terrorism

Knowing the motives behind a attack can be useful when trying to figure out what
parts of the system has been infected, when doing an investigation and maybe
most importantly identifying the employees that are valuable targets for an at-
tacker.
This thesis is focusing on malicious PowerShell, which means that it is import to
know the difference between malicious binary and malicious scripts.

2.1.1 Binaries

Binary files are files that are non-text files, or in other words contains data that
is encoded in any other way than ASCII, UTF-8, UTF-16 and so on. Since it is
encoded in a way that is not clear text we need a program to open it. People often
think of binary files as only executable files, because when developing applications
you most likely write your code in a higher level language before it is compiled
into binaries. Looking at this from an attackers point of view, they would often
like to install some piece of their own software on your system in order to run
their malware. An example of a binary file that is not an executable, but still
often important for malware analysts, are the ".dll" files. These files are libraries
containing code and data for performing activities on a windows system, but are
not executable programs on their own.

2.1.2 Scripts

Scripts are similar to the application developing mentioned under binaries, but the
difference is that the code written in a script is most likely not compiled. There
are a few exceptions where a script is compiled and made into an executable, but
this is not a focus in this thesis. Scripts are in other words clear text run by a script
interpreter on the system. An example of scripts being used in your daily life could
be when you are shopping online and add items to your cart. This has so far often
been JavaScript interpreted by your web browser in order to give you a seam-
less shopping experience. We can say that the script automates actions to make
your life easier. There are many different scripting languages, such as Python,
Perl, PowerShell, Tcl, Microsoft’s Visual Basic (VBA), command lines (Windows,
Mac(Unix) or Linux) etc. The different script languages often have their own pur-
pose and might not be designed to run scripts of an other language, but python
can for example run Perl by using a built in function. This means that scripts can
be run on any system that has an interpreter present that is capable of running
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that specific script. If we again look at this from an attackers perspective, there are
command lines present at both Microsoft, Unix and Linux systems. Many systems
might have interpreters such as Python to perform machine learning and auto-
mate task like calculations, file manipulation etc. Nowadays all windows systems
also comes with PowerShell pre-installed, which means that the system needs to
be old or have PowerShell removed for it not to be there.

PowerShell

Before PowerShell there was no single language for administrators to bridge dif-
ferent Microsoft and non-Microsoft tasks together. They had to be creative and use
combinations of command prompt, scripting languages like Visual Basic Scripting
Edition(VBScript) and software like Windows Script Host (WSH). In comparison
the Unix and Linux administrators had C-shell and bash to rely on. This resulted
in Microsoft developing PowerShell to cover the need for integration and automa-
tion, and the command line tool was released late 2006[5].
PowerShell became a integrated part of most windows systems when PowerShell
2.0 got released in 2009 and it was present on systems like windows 7 and win-
dows server 2008 R2. At this stage features like PowerShell remoting, network
file transfer, background jobs, script debugging, steppable pipeline and Windows
PowerShell ISE got added. Moving on to 2012 version 3.0 got released and even
more features got added, like scheduled jobs, and was integrated on for example
windows 8. We are now on version 5.0 which is intgrated on for example windows
10 systems and the tool has gotten more and more powerful for each released ver-
sion[6].
System administrators can now use the tool for automating tasks such as user
editing, network diagnostics, file manipulation, remotely interacting with other
windows systems and so on. This makes it a very useful tools for windows sys-
tem administrators, but it also means that adversaries can potentially do the
same actions. And how would a system’s defence mechanisms know the differ-
ence between the actions of a system administrator and an adversary when they
both use PowerShell and not other arbitrary code?
To understand this thesis it is also important to know what PowerShell code looks
like, and that is why we now will take a look at small parts of benign and mali-
cious powershell script from the dataset. In Figure 2.1 we can see that the benign
script starts with the line "Import-module servermanager". "Import-module" is the
command and "servermanager" is the parameter used in the command. This is an
example of how Microsoft intended PowerShell commands to be verb-noun pair.
Import is the verb and module is the noun, which then indicates what type of
action is being performed. Microsoft uses a list of approved and recommended
verbs when creating commands, also known as cmdlets, and .NET classes. "Im-
port" is one of these approved verbs and looking at several benign community
created scripts they also try to mostly use this naming convention for commands.
We have also been part of a project where we developed a PowerShell tool for
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network log analysis, and this naming convention was also used in that project. It
is not something script developers have to use in order for the scripts to work, but
from our experience it is considered best practice to use it in order to have easily
understandable code. The remaining parts of the script is a lot of if statements
depending on the variable that was just created. The variable is called "version"
as we can see by the $ sign and it being assigned the value of operating system
version.

Figure 2.1: Clean PowerShell example

Figure 2.2 shows how a malicious scripts creates a function called "de". When
a function like this is called later on in the script it works the same way as the
command mentioned previously, but instead you use "de (params)". The difference
between function and command might be confusing, but when our parser reads
the script it classifies the "de" as a command when executed. This is only one
example of how malicious scripts might not follow the same naming convention
for commands, but there were also examples in the dataset where malicious scripts
used the approved verbs followed by a noun.
Now that we understand commands a bit better we can explore the variables a
bit as well. Previously we saw in Figure 2.1 how variables often are represented i
benign scripts, and we can see that the variables makes sense and describes what
it is. From personal experience and what we have seen so far from other scripts, it
is also normal to use short variables like shown in Figure 2.2 where the variable is
only one letter. We can now compare this to what the variables are in Figure 2.3
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Figure 2.2: Malicious PowerShell command example

which is a small part of another malicious script. Almost all the lines in Figure 2.3
creates or edits a variable of some sort, and we can see that the names does seem
to be a bit more random. Just looking at the first variable we can see that it is
called "wjqd" and it’s value is set to be something which is base64 encoded. Once
again it is important to note that not all malicious scripts use variables like this,
but one of the evasion mechanisms often used to avoid signature detection is code
randomly changing the names of the variables and commands.

Figure 2.3: Malicious PowerShell variable example

2.2 Code analysis techniques

Static analysis is a form of analysis where you collect information from binaries or
source code by decompressing or unpacking instead of running the malware [7].
When dealing with scripts you most often will not have to decompress or unpack
the code since it is most likely not compiled. This means you can for example look
at features like opcodes[8], which previous students at NTNU has done, string
signatures[9], byte sequence[10] and control flow graphs[11]. An example of how
it is possible to do this is using a program such as PeStudio to extract features, e.g.
strings, and use these features and a machine learning method to detect malware.
These static approaches struggle when the malware is obfuscated, but they do
have the advantage of not running the malware which might take longer time
and require more resources and not to mention potentially infecting a system.
Dynamic analysis is a form of analysis where you collect activities from API calls
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or system calls when running the malware. This approach has the benefit of be-
ing able to handle obfuscation in a better way, but on the other hand it requires
the execution of the malware which means potentially infecting a system. If the
infected system is a isolated virtual environment this won’t be a problem, but you
still need to use the resources to run it and since many malware sleeps at the start
to avoid detection you might need to let it run for a good while as well. There
exists a good amount of research covering this approach on malware in general,
e.g Ki et al. [12] who used the sequence of API calls and DNA sequence alignment
algorithms to detect malware based on the sequence pattern.

2.3 Natural language processing

Natural language processing (NLP) is a field within linguistics and computer sci-
ence where the goal is to process and analyze large amounts of natural language
data. A computer is not designed to understand the type of language we use when
we are writing or talking, and this is what nlp technology tries to solve. The NLP
technology has improved drastically over the last decades, highly due to the im-
provements of machine learning(ML). In the early beginning of NLP they used
rules in order to perform their tasks, so when the ML improved these rules also
improved. The last years we have seen new NLP technology taking advantage of
the newest and most complex ML in order to better obtain semantic and syntactic
information from the analysed text. These new and complex NLP models have res-
ulted in text-to-speech applications, chat-bots, topic segmentation, machine trans-
lation, text generation and so on. Since our problem is classifying malicious and
benign PowerShell by analysing commands and variables it falls under nlp tech-
nology because we will be locating commands and variables in a large amount of
text. From the commands we will also try to locate the verbs and nouns in order
to further analyse the commands. When trying to understand language we can di-
vide it into syntactic and semantic understanding. Syntax is the understanding of
structure, e.g., finding verbs and nouns, whereas semantics is the understanding
of meaning. Semantics is seen as the hardest to properly implement, but has seen
improvements over the last years with the use of word-embeddings to create dic-
tionaries and deep learning to try to understand the meaning of words, sentences
and documents.

2.4 Parsing

Parsing is the process of analyzing a string of symbols and understanding under-
standing what it means. When using this technology within computer science and
code analysis it means understanding the syntax and creating tags or tokens that
represent the different parts of the code. As an example we can say that a script
file is a string of symbols, but we want to know what parts of the string are vari-
ables, commands, comments, parameters etc. This is where the parsing technology
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makes it possible to obtain information from the string and create new useful in-
formation. Depending on your problem description and what type of information
you need you could extract the desired parts of the larger original string in order
to gain information focusing only on the most relevant parts for your problem.
This is in other words a type of natural language processing.

2.5 Machine Learning

To understand the implemented solution and the argumentation it is important
to understand what machine learning really is. In some cases it might seem very
complex, but Nils J. Nilson once said that "A learning machine, broadly defined, is
any device whose actions are influenced by past experiences."[13]. This definition
is basically what this thesis is trying to achieve. We want a machine that based
upon previous knowledge about malicious and benign PowerShell, can classify
unknown PowerShell scripts.
In order for a machine to learn anything we need features that is can use to learn.
The first step is in other words to perform a feature extraction. Examples of this
can be length of longest word, amount of signs, size of the file and so on. Next step
is to decide which of these features are relevant by performing a feature selection.
A known saying amongst machine learning experts is "garbage in, garbage out",
and if we feed the machine learning algorithm lots of features that are not relevant
it will only act as noise. When the extraction and selection is completed we are
ready to start feeding the data to a algorithm.
The different machine learning methods can be divided into two main categories,
which is supervised and unsupervised learning. Supervised learning is when you
have a dataset that is labeled, which means that the learning algorithm has the
answer key to use when training and evaluating the performance of the model. In
our case this will be files labeled as malicious or benign. We can divide supervised
learning even further based on the type of supervising variable, but based on our
problem classification methods are of our interest. The most popular classification
methods are decision trees and rules, nearest neighbor classifiers, support vector
machines, Bayesian classifiers, discriminant functions and neural networks. Unsu-
pervised learning on the other hand does not use labeled data. These algorithms
are used to find patterns and connections on its own. If we were to use this in our
problem it would try to classify the PowerShell files totally on its own by trying
to find connections in the provided features. The unsupervised methods can be
further divided into clustering and association rules[13]. There are also methods
that is in between the two main categories, but those are not relevant for this
thesis.
Overfitting is a dangerous aspect of machine learning, and it is important to know
why we want to prevent it. When training a model on a dataset it can be tempting
to use all the data you have in your possession in order to achieve the best pos-
sible result. The problem you then are faced with is the fact that your model might
have learned the noise and inaccuracies in the data, and it might negatively impact
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the performance when handling unseen data. Many machine learning algorithms
require special techniques to prevent overfitting, but in binary classification prob-
lems the stratified cross validation is frequently used[13].
When evaluating how a method works it is useful to know how a confusion matrix
works as well as an Area under ROC (Reciever Operating Characteristic) curve. A
confusion matrix when dealing with a two-class problem like ours could look as
simple as table 2.1:

P N
P TP FN
N FP TN

Table 2.1: Confusion matrix

First we have positive(P) which in our case would mean malicious, and we have
negative(N) which means benign. True positives(TP) shows how how many of the
malicious files were classified as malicious. False positives(FP) shows how many
of the benign files were classified as malicious. False negatives(FN) shows how
many of the malicious files were classified as benign. True negatives(TN) shows
how many of the benign files were classified as benign. From this matrix we can
then utilise the following measures[13]:

• Sensi t ivi t y =
TP

TP + FN

• Accurac y =
TP + TN

TN + FP + FN + TN

• Recal l =
TP

TP + FN

• Precision=
TP

TP + FP

• F1=
2*Recall*Precision
Recall + Precision

Based on your classification problem it is possible to chose the most important
measures and highlight these as long as a sound reasoning is present. The other
measure previously mentioned was the Area under ROC curve, which shows the
relation between the true positive rate (sencitivity) and false positive rate (1-
specificity). ROC curves can also be used for a misclassification cost analysis[13].
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Related Work

This chapter aims to describe what currently is considered as state of the art within
the research field of classifying mallicious PowerShell scripts. When doing a search
for "malicious powershell" in Oria, which is the electronic library used by NTNU,
i get 28 hits. 11 of them are research papers, and the oldest one of them is from
2018. There was nothing older than 2018, exept a book that in 2013 had one sen-
tence warning the reader about how NuGet packages can contain PowerShell code
which then runs under the same privileges as the visual studio application[14].
That sounds similar to how we in recent years have seen malicious PowerShell
being added to PDF files and sent by email in order to attack companies when
users open the PDF. After also searching google scholar it is clear that the research
area of classifying malicious PowerShell is in a early phase.

3.1 Available Tools

Since this are of research is relatively uncharted there are not many openly avail-
able tools specifically designed for PowerShell analysis. The search for such tools
resulted in the discovery of two different tools, "PowerShellRunBox"[15] and "PSOn-
eTools"[16]. The difference between the two is that PSOneTools is a parser and
will not execute the script, while PowerShellRunBox is a sandbox debugging tool
and falls under dynamic analysis.

3.2 Malware detection

In 2018, Hendler et al. [17], proposed a method of using character embedding and
convolutional neural networks (CNNs) to classify PowerShell commands. After
processing their set of scripts they ended up with 66,388 distinct PowerShell com-
mands, where 6,290 were labeled as malicious and 60,098 were labeled as clean.
This is a very imbalanced dataset, and in order to get it more balanced they duplic-
ated the malicious commands 8 times. Achieving a 1:1 ratio between malicious
and benign commands they reduced the risk of over-fitting which is a known risk

13
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when training a neural network on a small number of samples. They also state
that the length of commands might be a good indicator to whether a command
is malicious or not. Very long commands is one of the weaknesses when using a
neural network for this task, since every character of a command will be fed into
this network. This means that the classifier can’t evaluate the entirety of com-
mands that are longer than the network is wide, in this case commands longer
than 1,024. To deal with this problem they truncate the commands that are too
long before sending the allowed amount through the network. This paper also fo-
cuses a lot on obfuscation and states that the casing used in a command can be a
good indicator for whether or not a command is obfuscated as well as malicious or
benign. The result they achieved for for detecting malicious commands achieved
AUC scores in the range 0.985 - 0.990.
In 2019, Hendler et al. [18], proposed a method that seems to be taking the pre-
vious paper a step further by also obtaining information about the semantics in
PowerShell. By using Word2Vec they were able to use euclidean distance to cluster
commands and aliases reducing the dimensionality of the tokens extracted from
the scripts. They do not state exactly which tokens they extract, but from the
looks of it they are focusing on commands and the parameters used in those com-
mands. Rare tokens are removed by setting a frequency threshold at 100 occur-
rences. Once again we have the limitation of only sending through a set amount
of tokens and characters. The difference from the previous paper is that they now
have tokens that are words, which means that only a set amount of words can be
sent through the neural network. Once again they use a CNN before max pooling
the output to reduce the dimensionality of the output. The character embedding
is performed similarly to the previous paper sending the individual characters
of tokens through the network. These two outputs are then concatenated before
sent through a Bidirectional Long short-term memory (LSTM) which is a type of
recurrent neural network (RNN). The limit is on 2000 tokens, and they chose to
take the 2000 first tokens to send through the network. No more specific inform-
ation about the tokens is provided, and a token can be e.g. commands, variables,
comments and if-statements. They evaluated 10 different deep learning detection
models where all achieved a AUC score above 0.987, and 0.995 at its best. The
TPR for the best model was reported to be 0.922. When testing this model on a
test set containing files acquired up to five months later they achieved a TPR of
0.894 at its best. The dataset used was relatively large, above 100,000 scripts, but
the ratio between malicious and benign are very unbalanced. This resulted in not
so many malicious scripts, and as in many other papers read for this thesis they
use k-fold crossvalidation.
Mimura et al.[19] presented in 2021 a method for performing static detection
of malicious PowerShell based on word embeddings. The features they extracted
from the malicious PowerShell were word occurrences and Doc2Vec. Word occur-
ances was a selection of the most frequent words in both malicous and benign files,
while Doc2Vec is a NLP tool that represents a document as a vector. It is a gener-
alization of the Word2Vec tool, which looks at a set amount of words, but since it
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focuses on the document and not each word specifically it is less memory heavy
and doesn’t have the same limitation in regards to max set of words or tokens.
For classification they used SVM, RF, XGB and CNN. Their dataset consisted of
480 malicious and 5324 benign files. They did split their data into known and
unknown data for traning and testing, but as we can see the ratio between ma-
licious and benign is highly imbalanced. When presenting their result they only
present recall and f1 scores, and the best recall was at 0.990 while the best f1 was
at 0.995. Another interesting aspect of this paper is that they present time used
for training and testing their models, and achieved a required time of 0.9 seconds.
Reading all these different papers on how deep learning could be used to achieve
good results is both motivating and frustrating for someone at the entry level
of machine learning. This resulted in a search for a way to soften the transition
into deep learning, which led to a paper where Sunoh Choi[20] explains how k-
nearest-neighbor (KNN) can be used as a fast screening to classify files since it
is a much faster method. KNNs can in other words be faster, but also might be
more unreliable as it is way less complex. Choi was analysing pe-files, but the
research done here is still applicable when analysing PowerShell. As a result Choi
states that the deep learning method increased its detection rate by 25% using
the KNN method before the deep learning. The test data was 6000 files and the
KNN reduced the detection time by 67% because it is faster and less complex than
deep learning.
One of the supervisors for this thesis recommended looking into decision trees in
addition to the KNN, and Patil et al. [21] describes how they extracted 4 different
types of features from URL strings and used it to classify about 52 thousand URL
strings as either malicious or benign. Achieving an AUC score of 0.998 at its best.
The features extracted was both numerical, e.g. lengths of different aspects of
the string, and binary like checks for "known" malicious strings. These 4 types of
features had again a lot of sub features adding up to slightly above 100 different
features. Even though this was performed towards URL strings the same methods
could be applied to commands and variables as strings part of a script.
Fass et al.[22] proposed in 2019 a static pre-filter for malicious JavaScript de-
tection. They used five different ways of abstracting code, which was Tokenizer,
Parser, abstract syntax tree(AST) from parser, control flow graph(CFG) from AST
and program dependence graph from CFG, in order to extract features. When
classifying the JavaScripts they used two different layers in order to use the first
layer to classify as many files as possible, while the second layer tries to classify
the ones the first layer couldn’t. They used a total dataset of 270,000 samples,
and the first layer classified 93% of the dataset with an accuracy of 99,73%. The
second layer classified another 6.5% with an accuracy over 99%. This left under
1% of the samples to be sent to additional analysis. They tested a set of different
classifiers, (SVM, Bernoulli naive bayes, multinominal naive Bayes, and random
forest), in order to select the one achieving the best result. The one with best
result for their classification problem was the random forest. The best result they
achieved was accuracy of 99.44%, FPR of 0.33% and 0.8% false-negatives.
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3.3 What have we learned?

These papers are only a few of those we read for this thesis, but these became
most relevant in the end. The most obvious notion about the PowerShell research
is the focus on using deep learning for classification. These type of classifiers have
the upside of being able to handle complex tasks, but the downside is that they
are more computationally heavy as well as being harder to understand. Both the
KNN and the decision tree are easier to implement as well as to understand and
explain. We learned that one of the initial ideas we had about performing a verb
check against Microsoft’s approved verbs does not seem to have been performed
by anyone. One very important thing we learned was the importance of looking at
the result from different sides. A company might be more worried about legitimate
scripts being classified as benign since this would interrupt the business, while a
researcher like us might prefer to classify all the malicious scripts correctly and
use a "better safe than sorry" mindset. Since the use of KNN and decision tree has
been successfully used within other types of malware classification it might also
be applicable to PowerShell and can help speed up the computation time used by
deep learning methods as well as increasing their classifying performance. When
comparing achieved results with related research it seems to be good practice to
use the AUC score. The paper by Fass et al.[22] contained several steps that we also
had in mind, but as a master thesis it might be too much to implement all the steps
they presented. A good approach could be to approach the classification problem
in a similar way and see how much we are able to do with the time we have. We
also learned that obfuscation is highly relevant and several of the papers seemed
to indicate that obfuscation also could be synonymous with maliciousness. It is
worth mentioning that this thesis is done as part of a larger project and it might
be a good idea for the reader to also read our co-students paper which focuses on
obfuscation.
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Methodology

This chapter aims to describe the methodology used when trying to answer the
research questions previously stated. It will also try to explain our reasoning for
choosing this specific method. This way it is possible for others to repeat the re-
search on the same dataset and achieve the same results, or on a new dataset and
achieve comparable results. The main research question was how nlp-technology
can be used to classify benign and malicious PowerShell scripts. From the related
work chapter we can see how the state of the art methods looks like it takes ad-
vantage of deep learning also known as neural networks. The neural networks
used in the most resent researched seemed to be using LSTMs, but as part of a
previous course at NTNU we researched what the newest within deep learning
was. We found the newest technology to be encoder-decoder models, also known
as transformers, such as BERT[23] which was released by google in 2018. Imple-
menting a deep learning solution is very tempting, but with the limited time of
a master thesis and the fact that deep learning is very hard to understand and
explain we decided to focus on less complex models. During the same research
we saw even highly experienced professionals mention BERT as a black box. Be-
cause of this we have decided to implement a KNN and a decision tree in order to
evaluate how our features perform as basis for classification.

4.1 Overview

Firstly it is important to gain an overview of the entire machine learning process
we plan to perform before diving into the specifics. In Figure 4.1 we can see our
planned process for this thesis.

Figure 4.1: Machine learning process overview

17
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The first step is to acquire a set of scripts, both malicious and benign as well as
hopefully a good ratio between the two. Next step is the feature extraction where
we need to figure out a way to extract the features we have had in mind and
only barely tested at this stage. Further on we need to perform a feature selection
as there might be features that only would create noise for the signal of more
important features. When we then hopefully know witch features to use we need
to implement the desired machine learning method as previously mentioned a
KNN and a decision tree. The final step will be to evaluate the results achieved,
compare it to the results of related research and finally point out weaknesses and
potential improvements.

4.2 Scripts

We have acquired a total of 1,725 PowerShell script files, where 808 of them are
benign and 917 of them are malicious. This means that we have achieved one
of our goals of having a relatively balanced ratio between malicious and benign.
Compared to the related research this amount of files is on the lower end, and
it will be important to use cross-validation in order to get a proper estimate of
the learning quality[13]. Several of the research papers we read[21][18] used
VirusTotal[24] in order to make sure that their files were malicious and benign.
In the course "Computational forensics" we learned that splitting the test data in
80% for training and 20% for testing is good practice which is why we will perform
this split as part of this thesis.
The files we have acquired are a courtesy of Norton LifeLock, who are considered
as one of the leading companies within the field of cybersecurity, as part of a
project agreement and NTNU cooperation. With this in mind we feel that it is
a reasonable assumption that a company of this stature have correctly labeled
the files. To our knowledge these are scripts form the wild and gives us a good
representation of the malicious and benign scripts that are roaming out there. We
do not know if these files are collected over a long period of time, but based on
the date stamps we assume that these are not collected over a long period of time.
The reason this is important is because the model will learn what the malicious
files looks like right now, and new changes might not be detected at the same rate.

4.3 Feature extraction

Our proposed method uses static analysis to extract features from both the benign
and malicious PowerShell files. Since we are handling malicious files it is import-
ant to use a safe environment where there is no risk for spread, and if infected can
be reverted to a safe version. This is why we will use a virtual environment created
with VirtualBox[25]. In Figure 4.2 we can see how we safely are going to extract
the features in the virtual environment. We can also see that the parser used is
PSOneTools[16] which is an open source community created module to Power-



Chapter 4: Methodology 19

Shell. This is an advanced parser turning PowerShell code into detailed tokens.
The intention of the parser is to analyze or error check your own code, but it is
also possible to use it to collect features from malicious files. Since we are per-
forming static analysis we will not execute the malicious code, but accidents can
happen and a virtual environment as shown in Figure 4.2 is still best practice.

Figure 4.2: Feature extraction in virtual environment

One of the struggles with detecting PowerShell is how creative the writers can be
when when writing their code. This means that we as defenders also need to be
creative when extracting features. In order to be creative we need to take a look
at malicious and benign files to get ideas relevant to PowerShell and the extrac-
tion possibilities that are available. Previously we saw that Hendler et al.[17] used
the characters in PowerShell commands in order to classify them into benign or
malicious. They removed the characters that did not frequently occur in the com-
mands, but in this thesis we will gather all the characters used before evaluating
them using during the feature selection phase. Under the background chapter we
explored the commands and variables, and we saw indicators that might suggest
that variables can be used in the same fashion. From our previous PowerShell ex-
perience in addition to the research done for this thesis it seems like the verb-noun
naming convention could be used as features. That is why we intend to extract
features that are numerical values of how many commands either use valid verbs
or not. Since we don’t know all the characters present in the commands and vari-
ables it is impossible to create a table at this point which shows all the features.
Another idea we had is to create a word cloud for the most frequently used com-
mands in the malicious files. We have a suspicion that invoke commands might
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Feature Description
Command characters Count all characters present in the commands
Variable characters Count all characters present in the variables

ValidVerbs count the commands that use valid verbs in the script
InvalidVerbs count the commands that use invalid verbs in the script
TotalVerbs count of commands that used a verb-noun naming

InvalidTotal InvalidVerbs divided by TotalVerbs
ValidTotal ValidVerbs divided by TotalVerbs

Malicious commands Create a word cloud and find the most used commands
MaxCom Max length of commands used in the script
MinCom Min length of commands used in the script
AvgCom Average length of commands used in the script
MaxVar Max length of variables used in the script
MinVar Min length of variables used in the script
AvgVar Average length of variables used in the script

ErrorCount Count of syntax errors detected by parser

Table 4.1: Table of intended features to extract

be a valuable feature, because that is one way of executing PowerShell code in a
remote fashion, but we don’t know before learning more about the data. All the
features planned to be extracted from each file is presented in Table 4.1.

4.4 Feature Selection

One very important aspect of this thesis will be feature selection. The amount
of characters in the ascii table is 128, and from exploring some of the acquired
scripts there is a good chance we will face most of the characters from that table.
In addition to this we will also face non-ascii characters. We are in other words
faced with many features creating a high dimensionality. Kononenko et al.[13]
states that one of the problems with high-dimensional datasets is that, in many
cases, not all the measured variables are important when trying to understand the
underlying phenomena of interest. Dyrkolbotn et al.[26] describes three groups
of feature selection methods:

• Ranking
• Subset
• Construction

As a quick explanation we can describe feature ranking as a way of scoring how
important the features are individually. This means that any relations between
the features are not accounted for. Since it computes one and one feature it is a
computationally efficient method. Subset selection can be used to cover the area
that feature ranking can’t, which is how well a set of features work together in-
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stead of individual performance. Construction methods are linear and non-linear
dimension reduction techniques.
Our goal is to identify those features that individually can be used to classify ma-
licious and benign PowerShell. The reason is that features found to individually
be of importance can then be added to existing methods. Feature ranking is in
other words what we are looking for and as it also is the most computationally ef-
ficient method we maintain our idea of implementing a light weight classification
method.
All of the feature extraction will be performed by using PowerShell and PSOn-
eTools. The feature selection will be performed using python and a tool called
scikit-learn[27]. In the course "Computational forensics" we learned that is is best
practice to implement several feature rankings in order to get a good picture of
which features actually score well. After reading the documentation of scikit-learn
we have decided to implement two feature selection methods and one ensemble
method, where all three are feature ranking methods. The first selection method
is using the SelectKBest method with the f_classif algorithm and the second using
the same method, but with the chi2 algorithm. With the f_classif we will compute
the ANOVA f-value for the provided feature and in the end get a ranking. The chi2
algorithm is used when we have booleans or frequencies data, which we have, and
we will from this algorithm get a ranking based on what feature are most likely to
be irrelevant for the classification[28]. The last method is the extra trees classifier
which is a set of decision trees constructed from the training sample. Each node
in the tree is provided with a random sample of k-features and splits the data
based on the information-gain[29]. When performing these feature rankings it is
important to ensure our selection is not based on a lucky split of the dataset. To
avoid this problem we will use crossvalidation by performing four different splits
of testing and training data. For the two SelectKBest methods we will get the top
20 features and select only the features which are present in top 20 for all four
splits. In regards to the extra trees classifier we will use a set threshold for the
four splits.
When we have the three different rankings we can start comparing them in order
to get the best possible features for when we are implementing a classification
method. We have the two main features being commands and variables. With the
three rankings we can locate the features that scored the best in each of them. The
information we want to find out is how well the different sets of features perform
when trying to classify malicious PowerShell. From the desired features we will
create the following subsets and evaluate their performance in order to test how
our own features perform compared to the ones inspired by related work:
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Feature set Description
All command features command chars, lengths and verb check

Command char and length Command char and lengths features
All variable features variable chars and lengths
Verb check features only the verb check features
Known commands commands from word-cloud and ErrorCount

All features all command and variable features

Table 4.2: Table of intended features sets for classification

4.5 Classification

We now have six different feature sets and need to evaluate how they perform.
To do this we have chosen to implement a KNN and a decision tree. The reason
for choosing these two is as previously mentioned the way they can be used as
a lightweight classification filter to increase the accuracy and computation speed
of a deep learning method. They are also easily understandable, and as part of a
master thesis we found it best to explore white box methods that we would be able
to explain. Since most of the PowerShell research we found was focusing on deep
learning, we found this approach to be a good idea as well as a potential building
block if we in the future were to work further on this project. In the end we will
have twelve different results that we will have to evaluate. The evaluation will be
performed by looking at the confusion matrix and Area under ROC curve(AUC)
score. The two evaluation methods are described under the background chapter.
Once again it is important to use crossvalidation in order to get a sound evaluation
of the models. Stratified crossvalidation is often used when dealing with classific-
ation problems[13], which is why we will use a five-fold stratified crossvalidation
in order to evaluate the results.
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Results

This chapter aims to present the results achieved when executing the previously
explained methodology. By presenting the achieved results we can later on answer
our research questions to the best of our ability and justify our conclusions by
referring to the results. We are in other words going to draw conclusions and
discuss the results in later chapters.

5.1 Virtual environment specifications

We are not performing any computational evaluations in the virtual environment,
but we started the testing trying to gather all the data in one json file and got
faced with memory problems. This forced us to use one json file per PowerShell
file. If someone were to recreate or keep working on this project it could be use-
ful to know the resources our virtual environment got assigned. The cpu on the
computer hosting the virtual machine(VM) is shown in Figure 5.1, and is a 8th
gen i7 with 4 cores(8 logical). This means that parts of this cpu is what the virtual
machine will be using when performing the feature extraction.

Figure 5.1: Computer CPU used for feature extraction

The allocated memory to the virtual machine is shown in Figure 5.2, and as we
can see it is 5098 MB while the host computer has 8GB. The VM is also allocated
50GB virtual storage.
Lastly we can see in Figure 5.3 that the VM has 4 cores allocated out of the 8
logically processors present at the host computer. The VM was running a windows
10 OS since we intended to use PowerShell for feature extraction
When performing the feature selection and implementation of classification mod-
els we used another computer, which had a 4th gen i7 cpu with 4 cores(8 logical)

23
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Figure 5.2: Memory allocated to the VM

Figure 5.3: CPU cores allocated to the VM

as well as 16 GB memory. The software used when doing this thesis, and its ver-
sions, is shown in Table 5.1.

Software Version Source
PowerShell 5.1.19041.610 [30]
PSOneTools 2.4 [16]
VirtualBox 6.1.2.35662 [25]

Python 3.8 [31]
Visual Studio Code 1.56.2 [32]

Pandas 1.0.3 [33]
scikit-learn 0.23.1 [34]

Table 5.1: Table of used software and versions

5.2 Feature extraction & Selection

This section describes the results achieved when performing feature extraction
and selection. The reason for presenting them under the same topic is to make it
easier to follow the process of the thesis. Extraction and selection is also closely
related as we might not want to extract features we find to be less important when
trying to create a efficient extraction process.
The first feature extraction performed in this thesis was the word-cloud approach
towards the malicious commands. It is important to note that this is a count of how
many times these commands were present in total. The result of the most used
commands in the malicious files can be seen in Figure 5.4. From these commands
we were looking for commands that to us might indicate malicious behaviour, and
not a way to better classify only this dataset, which is why we opted to not look
for Add-Member and New-Object. Out-Null is the most used command, and it is
used to hide the output instead of it being displayed on the screen. This could
be a good method for attackers when trying not to be detected as the user won’t
see any actions on the screen. The next command we found to be suspicious was
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the Add-SignedIntAsUnsigned, which is used to add 64-bit memory addresses.
Get-delegateType is also one we wanted to add, since delegates are PowerShell
objects used when invoking methods. Write-Verbose is another way of hiding out-
put from the user of a system. It is meant to be used as a debugging method, and
the messages written will only show up if the user specifically tells the computer to
show verbose messages in a script. Get-ProcAddress retrieves the adress of an ex-
ported function or variable from a specific dynamic-link library(DLL), and Sikorski
et al.[7] explains how malware creators often uses DLLs to load malicious code.
Write-BytesToMemory is used when writing shellcode to a remote process which
calls a DLL, which is a combination of two actions we previously have mentioned
as potential indicators. We could go on finding potentially malicious commands,
but we figured a threshold of 2000 sightings was a good starting point. In addition
to this we found that since out-null and write-verbose was used so much, we ad-
ded a feature for the Write-Host command as it is the straight opposite and prints
messages to the screen. This extraction was performed before the last extension
of the dataset in an attempt to get an idea of malicious behaviour in general and
not this dataset specifically.

Figure 5.4: Count of malicious commands in dataset

The next extraction we performed was the characters present in the variables and
commands. As mentioned in the related work chapter Hendler et al.[18] were
able to use these features for classification, although they used deep learning and
the sequence of the characters would then have a impact. In Figure 5.5 we can see
the some of the characters present in the commands, and as we can see there are
many different characters present. Both ASCII characters, Chinese characters and
other signs seems to be present in the commands, and we can see at the bottom of
the figure that it has seen 181 different characters. We can also see that the rows
are 1,469 which is less that what we claimed to have in the dataset, and the reason
is that this feature selection process was performed before the last expansion of
the dataset.
In Figure 5.6 we can see the characters that were present in the variables, which
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Figure 5.5: Count of command character in every file

was 66 different characters. We can see that it seems to be mostly ASCII characters.
Same as with the commands this was performed when the dataset contained 1,469
files.

Figure 5.6: Count of variable characters in every file

The next step was to perform feature selection to these features, as described in
the methodology chapter. In Code listing 5.1 we can see how we performed each
split. Kononenko et al.[13] states that when dealing with a classification stratified
cross validation is frequently used, which means that the ratio between malicious
and benign in the total dataset is represented in the test data of each split as well.
For the splits to be repeatable we used the random_state with the values of 0, 22,
42 and 100 in order to create 4 different splits. Each of these splits were split into
80% training data and 20% test data.

Code listing 5.1: Testing and training split

X_train, X_test, y_train, y_test = train_test_split(x, yRav, test_size=0.20,
random_state=42, stratify=y)

The SelectKBest top 20 feature ranking were applied to each split, and the result
when using the chi2 algorithm is shown in Figure 5.7 were the order goes from
0 to 100 in ascending order left to right. We can see that it is mostly the same
characters but in different orders, and the features we chose to keep are the ones
that are present in all the splits. One interesting thing to note from the figure is
that it seems to mainly be ASCII letters in addition to brackets, space and the line
sign.
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Figure 5.7: SelectKBest variable features with chi2 algorithm

F_classif was the other algorithm to be used with the SelectKBest feature ranking
method. The result using this algorithm is shown in Figure 5.8. Once again only
those characters present in all the splits will be kept as features. Also here it seems
to be mainly ASCII letters, but we can see that it also has the numbers 1, 2 and 3
present in all four splits:

Figure 5.8: SelectKBest variable features with F_classif algorithm

Finally we have the last feature ranking which is the extra-trees classifier ranking
method which takes advantage of a set number of randomized decision trees in
order to rank the features. Once again we split the data in the same four splits
as previously. We set the threshold to be 0.004. Our model is shown in Code list-
ing 5.2, and we can see that the number of trees being used is 100 and features
selected at each split is 2. Entropy means that we use information gain in order
to perform the splits. Random state is set in order to achieve repeatability:

Code listing 5.2: extra-trees model

extModel = ExtraTreesClassifier(n_estimators=100, criterion=’entropy’,
max_features=2, random_state=42)
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Results achieved from this feature ranking is shown in Figure 5.9, Figure 5.10,
Figure 5.11 and Figure 5.12.
Figure 5.9 shows that all the ASCII letters are above the threshold as well as the
underline sign and the numbers from 1 to 4:

Figure 5.9: Variable Extra-trees classifier with random_state=0

Figure 5.10 gives us the same result as the previous split, but we can see that this
time the number 5 and 6 has also reached above the threshold. Since these were
not present at the previous split we do not note them down:

Figure 5.10: Variable Extra-trees classifier with random_state=22
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Figure 5.11 is very similar to the first split as well, where the changes closest to
the threshold is an increased importance to the number 4 and 6. But as stated
earlier we will not take 6 with us further:

Figure 5.11: Variable Extra-trees classifier with random_state=42

In the last split, Figure 5.12, we can see that it has identically the same features
over the threshold as in the first split:

Figure 5.12: Variable Extra-trees classifier with random_state=100
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Same method as previously is once again used when we note the features that are
over the threshold for all the four splits. To sum up the features we are going to
use from the variables are presented in Table 5.2:

Feature Description
varA - varZ (26 features) count letters from a to z present in variables
var1 - var4 (4 features) count number of 1, 2, 3 and 4 present in variables

varSkra Count number of forward slashes in variables
varLine count number of "-" in variables

varBrack count number of "[" in variables
varUnder count number of "_" in variables

Table 5.2: Table of variable features

Next step is to find the most important features from the command characters.
Same method as used with the variable characters will now be used to find the
most important command characters. When using the chi2 algorithm we got the
result shown in Figure 5.13, and once again we note down the characters present
in all four splits. Just like we saw with the variables we can see for the commands
that it mainly is ASCII letters present in the top 20 as well as the line sign. The
forward slash aswell as the tilde sign being in three of the four splits, but we only
want the ones present in all of them:

Figure 5.13: SelectKBest command features with chi2 algorithm
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Using the F_classif algorithm we got the result shown in Figure 5.14, and we note
down the features once again. There are some differences when we compare this
result to the chi2 algorithm, but we can see that it still is mainly ASCII letters
present. We can see that the question-mark sign as well as the line sign. There are
also the numbers 1, 2 and 3 present in several splits, but only the number 3 is
present in all of them:

Figure 5.14: SelectKBest command features with F_classif algorithm

The same extra-trees model we used for variables feature ranking is the same
we now use for the command variables. Achieved results is shown in Figure 5.15,
Figure 5.16, Figure 5.17 and Figure 5.18. In the first split we can see in Figure 5.15
that all the ASCII letters are above the threshold, but in addition to that we have
the backslash, forwardslash and colon signs creeping above as well. Colon sign is
the one close to the "Z". We also see the numbers 0, 1, 2 and 3 present:

Figure 5.15: Command Extra-trees classifier with random_state=0
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Figure 5.16 shows the second split, and we can see that all the ASCII letters still
are above the threshold, and the only difference worth mentioning is that we can
see the colon sign go below the threshold:

Figure 5.16: Command Extra-trees classifier with random_state=22

The third split, presented in Figure 5.17, shows no differences really worth men-
tioning as it contains the features kept after the previous split and wants to add
new ones that are not present in the previous ones:

Figure 5.17: Command Extra-trees classifier with random_state=42
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In the final split we can see in Figure 5.18 that the ASCII letters are still to be kept,
but the forward slash sign has fallen under the threshold. The number 2 is very
close to the threshold, but is slightly above:

Figure 5.18: Command Extra-trees classifier with random_state=100

After this selection method we have a set of features we want to use from the
commands, and the result is shown in Table 5.3:

Feature Description
cmdA - cmdZ (26 features) count letters from a to z present in commands
cmd0 - cmd3 (4 features) count number of 0, 1, 2 and 3 present in variables

cmdLine Count number of "-" in commands
cmdQuest count number of question-marks in commands
cmdBack count number of backslashes in commands

Table 5.3: Table of command features

With the feature selection done we have reduced the dimensionality of the data
and achieved a set of wanted command features and a set of wanted variable
features.

5.3 Classification

This section presents the results our two classification methods achieved on the
six datasets we described in Table 4.2. When performing these classifications we
will start by performing a stratified split of the dataset into 80% training and 20%
testing data. The training data will be used when training the models in a set of
5 stratified k-folds, and the testing data will be then be used as unseen data to
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evaluate the models performance. Code for executing this split was shown in Code
listing 5.1. In order for the stratified k-folds crossvalidation to be repeatable we
used random state equals to 42, and because our data is nicely ordered we use
shuffle:

Code listing 5.3: Shuffled stratified 5-fold crossvalidation

crossVal = StratifiedKFold(n_splits=5, random_state=42, shuffle=True)

The first feature set we are going to test is the one we called "All command fea-
tures", which contained command character counts, command lengths and verb
checks. To get the optimal model we need to tune the KNN, which we accomplish
by using GridSearchCV from scikit and giving it information about which classi-
fier we want to use and which parameters to test. It is important that the features
sent to the KNN is scaled in order to avoid favouring large values. We have used
the MinMaxScaler from the scikit library. The scoring we selected is the roc_auc
because we want to use this score in the end to compare our result with related
work. Code used is shown in Code listing 5.4:

Code listing 5.4: Gridsearch for tuning the KNN

knnGridsearch = GridSearchCV(estimator=KNeighborsClassifier(weights=’distance’),
param_grid=knn_params, cv=crossVal, verbose=1, scoring=’roc_auc’,
return_train_score=True, n_jobs=4)

In Figure 5.19 we can see how the grid-search gives us the optimal value for
number of neighbours as well as which distance measure we should use. The best
KNN with this feature set is as we can see 13 neighbors and Manhattan as distance
measure. The auc score keeps rising until this point before it slowly seems to score
lower the higher k its being presented with.

Figure 5.19: Tuning KNN for "all command features"
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When implementing this model to the "All command features" set we get the con-
fusion matrix shown in Figure 5.20. From the TP, FP, FN and TN values we can
calculate accuracy, precision, recall and F1 score. The matrix is a mean of the
matrices for each fold which means that the count displayed in Figure 5.20 is
rounded to the closest integer. The count is not going to be used for further com-
parison, which is why we presented it as it would be in a real scenario as 0.x of a
file does not make sense.

Figure 5.20: KNN confusion matrix for "all command features"

From each confusion matrix we can plot the ROC curve and calculate the auc_roc
score (AUC score) and then also get the mean result. The result we got from this
model is shown in Figure 5.21, and we can see the AUC score for each of the
stratified folds as well as the mean AUC score which we are most interested in.
The mean AUC score achieved with this set and model was 0.965.

Figure 5.21: "All command features" AUC score for knn model
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Next step is to do the same method, but for a decision tree as we want to compare
the two models for this classification problem. To achieve repeatability with these
decision trees as well we use the random state equals to 42. How we used the
grid-search to tune the decision trees is shown in Code listing 5.5

Code listing 5.5: Gridsearch for tuning the Decision tree

gsDT = GridSearchCV(estimator=DecisionTreeClassifier(random_state=42),
param_grid=paramsDT, cv=crossVal, verbose=1, scoring=’roc_auc’, n_jobs=4)

With the grid-search we tuned the decision tree in order to figure out the best para-
meters for this feature set. To calculate the quality of a split the best measure, also
called criterion, was "gini", which is the gini impurity measure. The max_depth,
which sets the maximum depth of the tree, was best at 9. Min_samples_leaf, which
sets the minimum number of samples required to be at a leaf node, was best at 11.
The last parameter we tuned was the min_samples_split, which sets the minimum
number of samples required to split an internal node, was best at 2.
Mean confusion matrix achieved with the decision tree on the "all command fea-
tures" set is shown in Figure 5.22:

Figure 5.22: Decision tree confusion matrix for "all command features"
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Figure 5.23 shows the AUC score of each stratified k-fold as well as the mean
AUC. The mean AUC is 0.960, which is 0.05 lower than what we achieved with
the KNN:

Figure 5.23: "All command features" AUC score for decision tree model

Moving on to the next feature set we have "Command char and length", which
was inspired by related work using deep learning[18][17], focusing on command
characters and min, max and avg length of commands. Tuning of the KNN model
is shown in Figure 5.24, and we can see that it reaches a top at 13 neighbors with
Manhattan measure before it flattens out:

Figure 5.24: Tuning KNN for "Command char and length"
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Using the KNN with 13 neighbors and Manhattan as distance measure we can see
in Figure 5.25 the mean confusion matrix:

Figure 5.25: KNN confusion matrix for "Command char and length"

Calculating the AUC score for each fold we achieve a mean AUC of 0.966 for this
feature set, which is slightly better than the first set we tested:

Figure 5.26: "Command char and length" AUC score for knn model
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Tuning the decision tree classifier on the "Command char and length" set we got
the following as the best tree parameters:

• criterion = gini
• max_depth = 8
• min_samples_leaf = 14
• min_samples_split = 2

Confusion matrix achieved with this decision tree on "Command char and length"
is presented in Figure 5.27:

Figure 5.27: Decision tree confusion matrix for "Command char and length"

AUC in each fold is presented in Figure 5.28, and we can see that the mean AUC
is 0.955 with the decision tree which is 0.11 worse than the KNN:

Figure 5.28: "Command char and length" AUC score for Decision tree model
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The third feature set we were to test was the one called "All variable features",
which was the characters in the variables as well as their max, min and average
length. This was inspired by the related work focusing on commands, which led
us to exploring the variables as well. Tuning the KNN towards this feature set we
see a top at 13 neighbours with euclidean distance before a small dip in the score
for higher value of neighbors.

Figure 5.29: Tuning KNN for "All variable features"

Using the KNN with 13 neighbors and Euclidean as distance measure we can see
in Figure 5.30 what the mean confusion matrix looks like:

Figure 5.30: KNN confusion matrix for "All variable features"
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Calculating the AUC score for each fold we achieve a mean AUC of 0.964 with this
model and feature set, which slightly worse than the previous set:

Figure 5.31: "All variable features" AUC score for knn model

Finding the potentially best decision tree for "All variable features" using the grid-
search gave us the following tree parameters:

• criterion = gini
• max_depth = 6
• min_samples_leaf = 1
• min_samples_split = 5

Confusion matrix achieved with this decision tree on "All variable features" is
presented in Figure 5.32:

Figure 5.32: Decision tree confusion matrix for "All variable features"
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AUC in each fold is presented in Figure 5.33, and we can see that the mean AUC
is 0.959 with the decision tree which is 0.06 lower than what we achieved with
the KNN:

Figure 5.33: "All variable features" AUC score for Decision tree model

The fourth set we are testing is the "Verb check features", which is the verb check
we created to see if the verbs used in commands are on Microsoft’s approved list
or not. This is where we are closing in on more advanced NLP tasks as we try
to locate verbs and nouns and target PowerShell at one of the points where it is
natural language like. In Figure 5.34 the top is located at 11 neighbors and using
the Euclidean measure:

Figure 5.34: Tuning KNN for "Verb check features"
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Implementing the KNN with 11 neighbors and Euclidean as distance measure we
can see in Figure 5.35 how it performed:

Figure 5.35: KNN confusion matrix for "Verb check features"

Calculating the AUC score for each fold we see in Figure 5.36 that we achieve a
mean AUC of 0.935 with this model and feature set which is slightly below what
the other sets have achieved so far:

Figure 5.36: "Verb check features" AUC score for knn model
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The decision tree we found to give the highest AUC score for the "Verb check
features" was with the following parameters:

• criterion = gini
• max_depth = 10
• min_samples_leaf = 3
• min_samples_split = 7

Utilising this decision tree model we achieved the following confusion matrix on
"Verb check features":

Figure 5.37: Decision tree confusion matrix for "Verb check features"

We get an AUC mean score of 0.936 with the decision tree, which is the first time
the decision tree has scored better than the KNN so far:

Figure 5.38: "Verb check features" AUC score for Decision tree model
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The fifth set to be tested is the "Known commands" which is our wordcloud ap-
proach, previously explained, inspired by the related research using most frequent
words. From this feature set we get the following result when tuning the KNN:

Figure 5.39: Tuning KNN for "Known commands"

It might be a little hard to spot on the figure, but the highest point is located at k
neighbors equals 3, and we can see that the blue euclidean line is slightly above
the others. Implementing the KNN with 3 neighbors and Euclidean as distance
measure we get the following confusion matrix:

Figure 5.40: KNN confusion matrix for "Known commands"
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Calculating the AUC score for the folds we can see that we get a mean AUC score
of 0.907, and that is the lowest score of all the sets so far:

Figure 5.41: "Known commands" AUC score for knn model

Tuning the decision tree for the best parameters with the set "Known commands"
we get the following parameters to give the best AUC score:

• criterion = gini
• max_depth = 6
• min_samples_leaf = 3
• min_samples_split = 2

We achieved the following confusion matrix when implementing this decision tree
on "Known commands":

Figure 5.42: Decision tree confusion matrix for "Known commands"
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From the folds we calculate the mean AUC score, which is 0.902 and that is 0.05
lower than the KNN:

Figure 5.43: "Known commands" AUC score for Decision tree model

The last feature set we are going to test is all the features we so far have mentioned
and tested separately. We named the set "All features" in Table 4.2, and the tuning
of the KNN model on this set gave us the following parameters to use:

Figure 5.44: Tuning KNN for "All features"

For all the features we can see that Figure 5.44 indicates that a number of 15
neighbors with the Manhattan measure are the parameters to achieve the best
AUC score.
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In Figure 5.45 we can see the confusion matrix we got when testing the KNN
model on all the features:

Figure 5.45: KNN confusion matrix for "All features"

From the different folds we can calculate the mean AUC score, which we can see
in Figure 5.46 were 0.976. That is so far the highest AUC score we have seen from
any of the tested sets.

Figure 5.46: "All features" AUC score for knn model

The last decision tree we tune is on the set we called "All features", and we found
the best parameters to be the following:

• criterion = gini
• max_depth = 6
• min_samples_leaf = 10
• min_samples_split = 2

The decision tree model with those parameters gave us the following confusion
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matrix:

Figure 5.47: Decision tree confusion matrix for "All features"

Figure 5.48 presents how we used the different folds to calculate the mean AUC
score, which was 0.965. That is 0.11 lower score than we achieved with the KNN:

Figure 5.48: "All features" AUC score for Decision tree model

Going through all these figures might seem like a bit too much, but it might make
it easier to follow the process and see where the numbers are coming from. This
could potentially make it easier for other researchers who wants to continue the
work in this thesis or tackle a similar classification problem. Figures might also
make easier to understand for someone starting at the same knowledge level as
we did, e.g., students. From our point of view it also makes it fast and simple
to compare matrices and look for connections between the matrices and the dia-
grams.
So far we have not said much about the confusion matrices, and the reason is
that we wanted to perform a easy to read comparison by creating a table. One
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important aspect of these matrices are that they are also means of k-fold crossval-
idation, which means that even though the counts some times are double values
we have rounded them to the closest integer for the figures. The different scores
are presented as in the related research with three decimals. Creating a table when
comparing the feature sets and model gave us Table 5.4. "DT" in the table means
that the used model is the decision tree. "Acc" stands for accuracy:

Feature and (model) AUC Acc Precision Recall F1
All command features (knn) 0.965 0.911 0.888 0.939 0.913
All command features (DT) 0.960 0.906 0.871 0.949 0.909

Command char and length (Knn) 0.966 0.920 0.897 0.946 0.921
Command char and length (DT) 0.955 0.902 0.873 0.938 0.904

All variable features (knn) 0.964 0.879 0.889 0.861 0.875
All variable features (DT) 0.959 0.904 0.868 0.951 0.907
Verb check features (knn) 0.935 0.871 0.844 0.905 0.873
Verb check features (DT) 0.936 0.875 0.834 0.932 0.880
Known commands (knn) 0.907 0.786 0.825 0.716 0.767
Known commands (DT) 0.902 0.868 0.799 0.980 0.880

All features (knn) 0.976 0.923 0.918 0.927 0.923
All features (DT) 0.965 0.901 0.882 0.924 0.902

Table 5.4: Classification scores

Table 5.5 shows the time used for training and testing the model on the related
feature set with with stratified 5-fold cross-validation. To hopefully avoid the case
of anything being stored in memory, we restart our system before running through
the different models to get a reliable time used.

Feature and (model) Time
All command features (knn) 0.38
All command features (DT) 0.14

Command char and length (Knn) 0.34
Command char and length (DT) 0.13

All variable features (knn) 0.31
All variable features (DT) 0.14
Verb check features (knn) 0.15
Verb check features (DT) 0.12
Known commands (knn) 0.21
Known commands (DT) 0.12

All features (knn) 0.53
All features (DT) 0.17

Table 5.5: Training and testing time



Chapter 6

Discussion

This chapter aims to discuss the results we presented in the previous chapter and
try to draw lines and compare it to the related research. To give it a good struc-
ture we have divided the start of the chapter into sections answering our research
questions before exploring possibilities for future work.

NLP technology for static analysis
Our first research question was how NLP technology could be used to perform
static analysis on malicious PowerShell scripts. This question was highly influ-
enced by Tajiri[3] in 2020 stating almost no research had been done into how NLP
technology could be used to classify malicious PowerShell. From the related work
section we could see that there in the last couple of years has been a small amount
of research done into this area where we saw how e.g., word- and character-
embedding, word frequencies of commands and sentences of a set amount of
tokens combined with deep learning already were tested and yielded good results
for classifying malicious PowerShell. This led us towards identifying the possib-
ility for using faster and more easily understandable models as a potential filter
which had yielded positive results for Choi et al[20] when classifying PE-files and
for Fass et al[22] when classifying JavaScript. We identified PSOneTools as a tool
that could be used to parse and tokenize PowerShell code similarly to the how Fass
et al. parsed and tokenized JavaScript. In the background chapter we described
how we found the variables and commands to often be different when looking at
the benign and malicious PowerShell scripts. But looking through a dozens of files
isn’t enough to safely draw any conclusion. PowerShell is as previously mentioned
intended to use verb-noun names for commands, and by exploring the verbs we
check whether or not the script uses syntactically correct commands according
to Microsoft’s naming convention. With the way we explored most frequent com-
mands we try to some degree to understand the semantics. Letter frequencies and
word lengths have been used for analysing languages for hundreds of years, and
this statistical approach is another approach we tried to explore for the commands
and variables. With these method we have identified a way to use NLP technology
in order to classify malicious PowerShell. This leads to maybe the more important
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question of how efficient this method is as we explore the achieved results to the
performance of related research. We will see that our method performs slightly
worse than the related research, which might indicate that our method is viable
but could still use more work.

Classification performance
Our second research question was how well our implemented solution would per-
form when trying to classify malicious PowerShell. In order to figure out how it
performed we need to compare it to how the related research performed. Using
the AUC score if provided seemed to be how most papers compared itself to other
research, which is why we also will use this score. We tested our five different
approaches by creating a feature set for each of them, and in the end a feature
set with them all combined. Each set was tested towards a trained KNN model or
decision tree. How each of these sets performed will be discussed when answer-
ing the next research question, but our best result was when using the feature
set consisting of all the features combined and classified by the KNN model using
the 15 nearest neighbors and the Manhattan distance. The achieved scores was
as follows:

• AUC = 0.976
• Accuracy = 0.923
• Precision = 0.918
• Recall = 0.927
• F1 = 0.923
• Time = 0.53

How these scores are calculated were explained in the background chapter. The
paper that was the closest related to our research was performed by Hendler et
al.[18], where they achieved a AUC score of 0.995 at its best for powershell scripts
collected within a time period of a few months. When testing the same models
on scripts collected up to five months later they achieved a true positive rate,
also known as sensitivity or recall, of 0.894 at its best. That means our method
performed worse than what they achieved. If we compare it to how their model
performed when testing the scripts collected at a later date we can see that our
recall score of 0.927 is better. All the other related research we mentioned repor-
ted better results than our method has, but that does not mean our method or
features are not useful. As previously mentioned we intended our method to be a
fast classifier potentially to be used as a filter before more advanced deep learn-
ing methods could be applied. Scoring relatively close to the more complex and
time consuming methods means that it could potentially help to implementing
our method as a filter.

Best features
The next research question was what might the best features for classifying mali-
cious PowerShell when focusing on commands and variables. In order to answer
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this we need to take a look at the individual feature sets we created. First we can
start by looking at the set using all the command features, that being characters,
signs, lengths, known commands and verb checks. Here we achieved a AUC score
of 0.965. The second set called "command char and length" and we can see that
the KNN performs a little better(0.966), but the decision tree performs a little
worse. The difference with this set from the previous is that it doesn’t contain the
known commands features and verb check features. So far it might seem like the
known commands and verb checks does not have a good impact. Moving on to the
variable features we achieved a slightly lower AUC score(0.964) than with the set
"Command char and length", and when comparing the two we confusion matrices
we can see that they have the same amount of false negatives but the variables has
way more false positives. For a business this could be important as they would like
to have as few false positives as possible in order to keep the benign actions going.
This might indicate that the commands are better than variables as indicators for
whether the file is malicious or not.
The next set is the one based on our own experience with PowerShell and Mi-
crosoft’s verb-noun naming convention for commands. An AUC score of 0.936
with the decision tree was the best achieved with only these features, which means
that it is possible to use these features to classify the scripts, but it is not as useful
as the character count and length approach previously tested for commands and
variables. Once again will this approach not be able to differentiate scripts with no
commands, but as it performs worse than the other command related sets it indic-
ates that on its own it is a less accurate method. On the other hand we see that it
is able to classify a good amount of the scripts correctly, so it indicates that there
is a difference between malicious and benign scripts in regards to using "valid"
verbs. From the confusion matrix we can see that it has more false negatives than
false positives, which might indicate that a good amount of the malicious scripts
do use the approved verbs.
The last individual feature set we tested was the "known commands" set which
achieved the worst AUC score so far. This method also suffers from not being able
to classify files with only variables, but we also suspect that since we used a very
high threshold for sightings there might be a few files containing many of the same
command while it not being present in others. From the confusion matrix we can
actually see that it is better at classifying malicious scripts rather than benign,
which might be when none of the commands being searched for exists it does not
know how to differentiate the two types. Maybe a relative frequency approach
would have been a better approach instead, in order to handle large scripts using
the same command several times.
Finally we used all of the previous features sets together and achieved the best
result(0.976) as described earlier in this chapter. Wen discussing these features
we got a little worried that maybe it would perform better without the verb check
and known commands features, but using all features yielded a better result. This
indicates that even though the methods on their own had some struggles they
proved to be of use when combined with the others. Comparing this confusion
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matrix with the set "command char and length", which performed the best indi-
vidually, we can see that the false positives has increased while the false negatives
as been reduced. Meaning even though it performs better overall more benign files
might be classified as malicious and might hinder benign activities in a company.
The reason for this might be the fact that also using the variables helps correctly
classify more malicious files, but since it had more false positives it makes it harder
to identify the benign scripts.
We also claimed a desire to implement a fast and lightweight solution. The time
needed for training and testing for our best model was 0.53 seconds. This is ac-
tually the time needed to perform 5-folds stratified crossvalidation, which means
that it trains and tests 5 times before retrieving the mean result. Mimura et al.[19]
needed 0.9 seconds and achieved a recall score of 0.990 and f1 score of 0.995.
Comparing time used should be carefully compared as these implementations
were performed on different systems, but our system used an i7-4770k cpu they
used an i9-7900X. Our system had 16BG memory while theirs had 128. As previ-
ously stated it is risky to draw any conclusions based on time from very uneven
systems like this, but it does indicate that our method is fast and lightweight. If
we look at the decision tree on all the features it achieved slightly worse results,
but was way faster which might actually be preferable. Keep in mind that this is
a small dataset, which indicates that the KNN might struggle to keep up with the
decision tree as the amount of scripts increases.

Weaknesses of our solution
The final research questing of ours was what the weaknesses of the implemen-
ted solution were. This approach is purely static analysis, which means that it is
incredibly hard to ensure that our result is anything but indicators. The code is
not being run, so even though the name of the commands and variables seems to
be the same as in benign scripts they could be just using frequently used names.
Another way to hide for this type of detection is hiding the malicious code within
a larger benign script. This could potentially make the difference too small for the
classifier to correctly identify it as malicious.
When comparing our research to the related work we can see that we find ourselves
with one problem that occurred for many, which is the size of the dataset. We had
the same amount of malicious files as some of them, but they chose to use way
more benign samples. This is aspect we think our research did well in comparison
when achieving almost a 1:1 ratio. But the fact that our dataset is very small in
total compared to much of the related research it should be used as a small warn-
ing that our results might not perform as well on a larger dataset. It could also
perform better, but noting the potential risk of a small dataset is at least important.
Some of the assumptions made in this thesis could be taken as weaknesses as well.
The first assumption we made was that our set of script files is a representation
of how our method would be presented with files in a real life scenario and no
further checks are being performed in order to ensure all files 100% are Power-
Shell files. Another assumption we made was the fact that we get to only have
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non-obfuscated scripts, which means that a process for de-obfuscating scripts is
assumed to be done. No further checks is being performed in this thesis in regards
to obfuscated scripts. Since our assumption was that this is a representation of
how we would be presented files in a real life scenario we did not use e.g, Virus-
Total to double check the files.

future work
The first and maybe most important aspect of future work is the size of the dataset.
It is relatively small and in order to really ensure that our method is reliable we
would need to gather more benign and malicious files. Hendler et al.[18] had a
set of 100,000 scripts in comparison to our 1,725, which is quite a big difference.
Achieving a set of that magnitude should definitely be a priority for future work.
One of the problems with their datset was the fact that it was very imbalanced in
regards to benign:malicious ratio. Future work should in other words also focus
on keeping the ratio between malicious and benign to be about the same ratio
as achieved in this thesis. Mimura et al.[19] collected another test set containing
scripts from up to 5 months later and achieved a worse result than when training
and testing on scripts from the same time interval. This type of test should also be
high priority for future work, and this is also one of the reasons why we split the
features in to the different sets. We have a hypothesis that the known commands
set would be the most affected by time as this specifically targets commands from
one specific time and searches for them.
When we performed the feature selection for character frequency for commands
and variables we used a very manual approach. This was performed before we
learned how to use grid-search in an attempt to find the optimal parameters. The
splits were also manually performed instead of using the k-fold approach, which
shows our learning process during this thesis, but also makes it so that another
future work maybe should revisit the feature ranking of characters. It also had
the weakness of not being able to see all the possible connections because we
implemented ranking based on individual performance. By using search methods
for finding the best feature subsets it could be possible to obtain information not
collected in this thesis. In order to find this subset future work could implement a
subset search as explained by Dyrkolbotn et al.[26]. Our ranking method stated
that the rare signs, e.g., Chinese characters, were of low importance but it would
be interesting to see whether these rare signs occurred in the benign or malicious
files. These characters could then potentially be used as signatures since they at
least in our set very rarely occurred. We did not extract characters obtaining in-
formation about the case-sensitivity, and it would also be interesting to see if that
would make any difference.
Without intentionally trying to we seemed to follow the same steps as Fass et
al.[22] did when they were researching their JavaScript filter method. But in or-
der for our method to really be a filter we need to use probabilities instead of
pure classification. We have shown that our method achieves positive results when
trying to perform a pure classification task, and the next step would be to create
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thresholds for certainty in order to send the files we are uncertain about to further
analysis, e.g., deep learning methods. The KNN is already based on probability as
it takes a look at the k closest neighbours and classifies depending on which class
is represented the most in the neighbours as well as the distance. Our model used
the 15 closest neighbours which means we could need to set a threshold of how
many of them to be of one class in order for us to be certain. As an example we
could say we set the threshold at 12 neighbours of 1 class in order to be certain
which would give us a threshold of 80%. Since the decision tree showed to be
much faster than the KNN we can implement a random forest, just like Fass et
al.[22] did, in order to get a set of decision trees. These decision trees would like
previously give a binary class prediction, but since we now have several predic-
tions we can, much like the KNN, set a threshold for how many trees to predict one
class for us to be "sure". Just as an example we can say that we have 15 random
trees, and we want 13 of them to classify a script with the same class in order to
be certain about the class. The threshold would once again be 80% certainty.
We started on another method using the verbs of the commands in order to try
to identify what type of action was being performed. So far our methods have
not explored the behaviour of the scripts in a through fashion, which is why this
approach to behaviour analysis was started. We have also seen that the previous
verb check indicates that also several of the malicious scripts use this naming
convention. First we identified the verbs and then used Microsoft’s definition for
what type of action the verb might indicate. They have divided the actions into
common, communication, data, diagnostic, lifecycle and security. If the verb was
not in the list we labeled it as "unknown". In Figure 6.1 we can see how the verbs
in a benign file indicates what type of action is being performed. We can see that
it actually contains a command using a verb not in the list:

Figure 6.1: Verb action indicators from clean file

We can take a look at how it looks for a malicious file in Figure 6.2, and we can
see that it also has some verbs indicating the actions aswell as one unknown verb:

Our plan was to use a Markov chain model in order to get the probability for jump-
ing from one state to another. The different states would be the actions indicated
by the verbs. This means that we would get two matrices for the probabilities for
the transitions between the states. One for the malicious files and one for the be-
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Figure 6.2: Verb action indicators from malicious file

nign files. When classifying the unknown files we would then get a matrix of its
probabilities and we can use it to calculate the distance to the other two. The one
that is closest would be the desired classification. For this method to be part of a
potential filter we would need to set a threshold for the distance measure, e.g.,
euclidean distance, in order for us to classify those we are "sure" about and which
ones to send on for further analysis. This extraction was created, but we were not
efficient enough to properly implement a Markov chain model.
We pointed out that the related research of classifying PowerShell was highly fo-
cused on using deep learning, but it didn’t utilize the latest within NLP models
which is the transformers, also known as encoder-decoder technology. Just like
Fass et al.[22] we tried to extract sentences using abstract trees, but we quickly
realised that this task could be a thesis on its own. Using the BERT model[23]
it would be possible to research a so far untested method for this classification
problem. It could also potentially be used on our verb indicators as it, contrary
to the markov chain model, is able to analyse a sequence in both directions. You
could say markov chain reads from left to right, while the BERT model reads both
ways to get even more information about a sequence.





Chapter 7

Conclusion

This chapter aims to draw conclusions based on the discussion from the previous
chapter. Once again we have divided the chapter into sections regarding our re-
search questions before ending with our thoughts about future work.

NLP technology for static analysis
The goal of this thesis was to help gain knowledge about ways to classify malicious
PowerShell, which is a relatively new area of research. Not much research has been
done into using NLP technology for this type of classification, and the ones that
did mainly focused on deep learning models. As a result of that we decided to
research how other classification problems had helped deep learning models per-
form even better, which led us to our implemented solution. The solution follows
the steps of feature extraction, feature selection and classification and evaluation.
We focus on identifying commands and variables before extracting their character
frequencies as well as min, max and average lengths. From the commands we also
locate and extract the verbs and check them against Microsoft’s approved verbs,
and lastly we search for a few commands indicating malicious behaviour. This
method achieved an AUC score of 0.976 and accuracy of 0.923 which is lower
than most of the compared research, but as a potential filter we see a lot of po-
tential. With these results we feel it is a fair conclusion to say that also within the
area of malicious PowerShell classification a KNN or Decision tree could be used
as a filter in order to reduce the amount of samples needed to be analysed by deep
learning methods.

Classification performance
As previously stated we concluded that our method has potential for being used as
a filter based on the classification scores, but if it were to be used as a efficient and
lightweight filter it needs to be fast in addition to good classification performance.
Our result showed how our best performing model was a KNN using 0.53 seconds
when training and testing the model using 5-fold stratified crossvalidation. We
compared the KNN with a decision tree and we found the KNN to increase its
time used much faster than the decision tree when using more and more features.
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We can in other words conclude that our method is fast, but when increasing the
dataset the decision tree will be much faster and the solution could be to imple-
ment a random forest model. This random forest model would also be needed in
order to turn our method into a filter as explained in the discussion.

Best features
Our results show that commands and variables achieve almost the same AUC score
when focusing on character frequencies and lengths but there were enough differ-
ence for us to recommend one over the other. The "Command char and length" set
achieved an AUC score of 0.966 while the "all variable features" achieved 0.964.
This is an indication that commands might be the better indicator for wheter a
file is malicious or not. When using both the variables and commands we achieve
the best result(0.976), which leads us to believe these sets compliment each other
to better classify the malicious files but we also saw an increas in false positives
using all the features. From the feature selection we can conclude that the ASCII
characters as well as the numbers from 0 to 4 had the most individual importance
for our classification problem

Weaknesses of our solution
The most important weakness of this thesis is the size of our dataset. It is on the
same level as other research stating this as a problem and much smaller than
the largest datasets we have seen in related works. This problem affects all the
steps taken in this thesis. Another weakness is the fact that our feature selection
process used manually assigned stratified splits instead of k-fold crossvalidation.
Our method is a static analysis approach, which means that it suffers from the
weakness most static approaches do. The code is not being executed so it could
be fooled by names trying to hide malicious commands and variables as benign,
and our method should therefor be used as indicators. Malware creators could also
hide malicious code within larger benign scripts in an attempt to fool our method.

future work
Future work has immense amount of possibilities, and we highlighted some of
these under the discussion chapter. The most important task for future work would
be to increase the dataset and try to keep the balanced ratio between malicious
and benign scripts. This could potentially have effect at all the steps we performed
which means that even the character selection should be given another go, and
with k-fold crossvalidation this time. Next we have our method for using the verbs
as indicators for the action performed in a command that should be implemented
like described under the discussion chapter. The next step would be to turn our
knn model into a filter by applying a threshold, and a random forest model in
order to turn the decision tree into a filter. More work should also be done into
using the abstract syntax trees in order to create sentences used in deep learning.
The deep learning to be used should be a transformer, e.g., BERT, in order to test
the newest NLP deep learning models. That way we could be able to evaluate the
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newest deep learning as well as a quantitative result of the impact the filter would
have.





Bibliography

[1] Understanding malware & other threats, https://docs.microsoft.com/
en-us/windows/security/threat-protection/intelligence/understanding-
malware, Accessed: 2020-10-17.

[2] Mcafee reports powershell malware attacks increased by 689% in 2020, https:
//www.techzine.eu/news/security/48632/mcafee-reports-powershell-
malware-attacks-increased-by-689-in-2020/, Accessed: 2020-10-17.

[3] Y. Tajiri and M. Mimura, ‘Detection of malicious powershell using word-
level language models,’ in Advances in Information and Computer Security,
K. Aoki and A. Kanaoka, Eds., Cham: Springer International Publishing,
2020, pp. 39–56, ISBN: 978-3-030-58208-1.

[4] C. Osborne, Lockergoga: It’s not all about the ransom, https://www.zdnet.
com/article/industrial-malware-lockergoga-forces-victims-to-
go-back-to-pen-and-paper/, Accessed: 2020-10-17.

[5] A brief history of powershell, https://subscription.packtpub.com/book/
application_development/9781784391492/1/ch01lvl1sec08/a-brief-
history-of-powershell, Accessed: 2021-03-20.

[6] Powershell versions, https://subscription.packtpub.com/book/application_
development/9781784391492/1/ch01lvl1sec10/powershell-versions,
Accessed: 2021-03-20.

[7] M. Sikorski and A. Honig, ‘Practical malware analysis: The hands-on guide
to dissecting malicious software,’ in Practical malware analysis, No Starch
Press, 2012.

[8] S. Bragen, ‘Malware detection through opcode sequence analysis using ma-
chine learning,’ NTNU, 2015.

[9] X. H. K. Griffin S. Schneider and T. Chiueh, ‘Automatic generation of string
signatures for malware detection,’ Springer Berlin Heidelberg, 2009.

[10] R. N. H. Yakura S. Shinozaki and Y. Oyama, ‘Neural malware analysis with
attention mechanism,’ Elsevier Ltd, 2019.

[11] X. N. M. Nguyen D. Nguyen and T. Quan, ‘Auto-detection of sophisticated
malware using lazy-binding control flow graph and deep learning,’ Elsevier
BV, 2018.

63

https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/understanding-malware
https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/understanding-malware
https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/understanding-malware
https://www.techzine.eu/news/security/48632/mcafee-reports-powershell-malware-attacks-increased-by-689-in-2020/
https://www.techzine.eu/news/security/48632/mcafee-reports-powershell-malware-attacks-increased-by-689-in-2020/
https://www.techzine.eu/news/security/48632/mcafee-reports-powershell-malware-attacks-increased-by-689-in-2020/
https://www.zdnet.com/article/industrial-malware-lockergoga-forces-victims-to-go-back-to-pen-and-paper/
https://www.zdnet.com/article/industrial-malware-lockergoga-forces-victims-to-go-back-to-pen-and-paper/
https://www.zdnet.com/article/industrial-malware-lockergoga-forces-victims-to-go-back-to-pen-and-paper/
https://subscription.packtpub.com/book/application_development/9781784391492/1/ch01lvl1sec08/a-brief-history-of-powershell
https://subscription.packtpub.com/book/application_development/9781784391492/1/ch01lvl1sec08/a-brief-history-of-powershell
https://subscription.packtpub.com/book/application_development/9781784391492/1/ch01lvl1sec08/a-brief-history-of-powershell
https://subscription.packtpub.com/book/application_development/9781784391492/1/ch01lvl1sec10/powershell-versions
https://subscription.packtpub.com/book/application_development/9781784391492/1/ch01lvl1sec10/powershell-versions


64 Lien: Hunting malicious PowerShell

[12] E. K. Y. Ki and H. Kim, ‘A novel approach to detect malware based on api
call sequence analysis,’ SAGE Publications, 2015.

[13] I. Kononenko and M. Kukar, ‘Chapter 1 - introduction,’ in Machine Learn-
ing and Data Mining, I. Kononenko and M. Kukar, Eds., Woodhead Pub-
lishing, 2007, pp. 1–36, ISBN: 978-1-904275-21-3. DOI: https://doi.
org / 10 . 1533 / 9780857099440 . 1. [Online]. Available: https : / / www .
sciencedirect.com/science/article/pii/B9781904275213500010.

[14] M. Balliauw and X. Decoster, ‘Consuming and managing packages in a solu-
tion,’ in in Pro NuGet, Berkeley, CA: Apress, 2013, pp. 13–46.

[15] Analyzing powershell threats using powershell debugging, https://darungrim.
com/research/2019-10-01-analyzing-powershell-threats-using-
powershell-debugging.html, Accessed: 2021-03-25.

[16] Tokenizing powershell scripts - powershell.one, https://powershell.one/
powershell-internals/parsing-and-tokenization/simple-tokenizer,
Accessed: 2021-03-25.

[17] D. Hendler, S. Kels and A. Rubin, ‘Detecting malicious powershell com-
mands using deep neural networks,’ in Proceedings of the 2018 on Asia
Conference on Computer and Communications Security, ser. ASIACCS ’18,
Incheon, Republic of Korea: Association for Computing Machinery, 2018,
ISBN: 9781450355766. DOI: 10.1145/3196494.3196511. [Online]. Avail-
able: https://doi.org/10.1145/3196494.3196511.

[18] A. Rubin, S. Kels and D. Hendler, ‘Detecting malicious powershell scripts
using contextual embeddings,’ May 2019.

[19] M. Mimura and Y. Tajiri, ‘Static detection of malicious powershell based on
word embeddings,’ 2021.

[20] S. Choi, ‘Combined knn classification and hierarchical similarity hash for
fast malware detection,’ 2020.

[21] D. R. Patil and J. B. Patil, ‘Malicious urls detection using decision tree clas-
sifiers and majority voting technique,’ 2018.

[22] A. Fass, M. Backes and B. Stock, ‘Jstap: A static pre-filter for malicious javas-
cript detection,’ ser. ACSAC ’19, San Juan, Puerto Rico, USA: Association
for Computing Machinery, 2019, pp. 257–269, ISBN: 9781450376280. DOI:
10.1145/3359789.3359813. [Online]. Available: https://doi.org/10.
1145/3359789.3359813.

[23] M.-W. C. Devlin Jacob and K. Lee, ‘Bert: Pre-training of deep bidirectional
transformers for language understanding,’ 2018.

[24] Virustotal, https://www.virustotal.com, Accessed: 2021-04-05.

[25] Download virtualbox, https://www.virtualbox.org/wiki/Downloads,
Accessed: 2020-05-03.

https://doi.org/https://doi.org/10.1533/9780857099440.1
https://doi.org/https://doi.org/10.1533/9780857099440.1
https://www.sciencedirect.com/science/article/pii/B9781904275213500010
https://www.sciencedirect.com/science/article/pii/B9781904275213500010
https://darungrim.com/research/2019-10-01-analyzing-powershell-threats-using-powershell-debugging.html
https://darungrim.com/research/2019-10-01-analyzing-powershell-threats-using-powershell-debugging.html
https://darungrim.com/research/2019-10-01-analyzing-powershell-threats-using-powershell-debugging.html
https://powershell.one/powershell-internals/parsing-and-tokenization/simple-tokenizer
https://powershell.one/powershell-internals/parsing-and-tokenization/simple-tokenizer
https://doi.org/10.1145/3196494.3196511
https://doi.org/10.1145/3196494.3196511
https://doi.org/10.1145/3359789.3359813
https://doi.org/10.1145/3359789.3359813
https://doi.org/10.1145/3359789.3359813
https://www.virustotal.com
https://www.virtualbox.org/wiki/Downloads


Bibliography 65

[26] G. O. Dyrkolbotn and E. Snekkenes, ‘Electromagnetic side channel: A com-
parison of multi-class feature selection methods,’ 2011.

[27] Scikit-learning, https://scikit- learn.org/stable/index.html, Ac-
cessed: 2020-04-05.

[28] Sklearn.featuresselec t ion.selec tkbest, https://scikit-learn.org/stable/
modules/generated/sklearn.feature_selection.SelectKBest.html,
Accessed: 2020-04-05.

[29] Sklearn.ensemble.extratreesclassifier, https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.ExtraTreesClassifier.html,
Accessed: 2020-04-05.

[30] Download and install windows powershell 5.1, https://docs.microsoft.
com/en-us/skypeforbusiness/set-up-your-computer-for-windows-
powershell/download- and- install- windows- powershell- 5- 1, Ac-
cessed: 2020-05-03.

[31] Download the latest version for windows, https://www.python.org/downloads/,
Accessed: 2020-05-03.

[32] April 2021 (version 1.56), https://code.visualstudio.com/updates/
v1_56, Accessed: 2020-05-03.

[33] Installing pandas, https://pandas.pydata.org/pandas-docs/stable/
getting_started/install.html, Accessed: 2020-05-03.

[34] Installing scikit-learn, https://scikit- learn.org/stable/install.
html, Accessed: 2020-05-03.

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://docs.microsoft.com/en-us/skypeforbusiness/set-up-your-computer-for-windows-powershell/download-and-install-windows-powershell-5-1
https://docs.microsoft.com/en-us/skypeforbusiness/set-up-your-computer-for-windows-powershell/download-and-install-windows-powershell-5-1
https://docs.microsoft.com/en-us/skypeforbusiness/set-up-your-computer-for-windows-powershell/download-and-install-windows-powershell-5-1
https://www.python.org/downloads/
https://code.visualstudio.com/updates/v1_56
https://code.visualstudio.com/updates/v1_56
https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html
https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html
https://scikit-learn.org/stable/install.html
https://scikit-learn.org/stable/install.html


N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t. 
of

 In
fo

rm
at

io
n 

Se
cu

rit
y 

an
d 

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Tormod Haus Lien

Hunting malicious scripts using
machine learning

Master’s thesis in Information Security
Supervisor: Geir Olav Dyrkolbotn
Co-supervisor: Felix Leder

June 2021

M
as

te
r’s

 th
es

is


	Acknowledgements
	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Topic covered by the project
	Keywords
	Problem description
	Justification, motivation and benefits
	Research questions
	Planned contributions
	Thesis Outline

	Background
	Malware
	Binaries
	Scripts

	Code analysis techniques
	Natural language processing
	Parsing
	Machine Learning

	Related Work
	Available Tools
	Malware detection
	What have we learned?

	Methodology
	Overview
	Scripts
	Feature extraction
	Feature Selection
	Classification

	Results
	Virtual environment specifications
	Feature extraction & Selection
	Classification

	Discussion
	Conclusion
	Bibliography

