
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Efficient representation of data in intrusion detection system
s

Magnus Lien Lilja

Efficient representation of data in
intrusion detection systems

Master’s thesis in Information Security
Supervisor: Slobodan Petrovic

June 2021

M
as

te
r’s

 th
es

is

Magnus Lien Lilja

Efficient representation of data in
intrusion detection systems

Master’s thesis in Information Security
Supervisor: Slobodan Petrovic
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Abstract

Businesses are very dependent on their information technology (IT) systems,
which can be large and complex to secure. Network intrusion detection systems
(NIDS) are often used to monitor central network locations and alert administrat-
ors when a possible attack is detected. Signature based NIDS search for patterns
of known attacks in network traffic, where the amount of signatures are growing
as new attacks emerge. Speed is critical in such systems in order to detect the
possible threat as fast as possible. Thus, memory is key in order to provide good
performance, which is often limited. Efficient representation of data in NIDS
can reduce the amount of required memory in existing implementations or pos-
sibly extend the usage to devices with limited memory, whilst not impacting the
performance. The work in this project looks at a measure of implementation effi-
ciency, how efficient existing implementations are in two of the most used open
source intrusion detection systems (IDS) and suggests improvements. Two central
elements in an IDS are investigated, namely the fast pattern matcher and repres-
entation of signatures using a quantitative method. A technical analysis with a
code review presents up to date models of relevant data structures. The models
are then compared and analysed on a theoretical level in order to see if there is
room for improvement. The suggested improvements are based around applying
and customising elements of compact data structures from previous research in
order to fit characteristics and the purpose of the existing representation. Fur-
thermore, two algorithms to perform operations on the resulting improvements
are developed. In addition to the suggested improvements, a proof of concept
compares the existing implementation to the alternative ones, using a developed
metric for efficiency and a variation of widely used signature collections. The
findings throughout the thesis are data structures which are more efficient than
the existing implementations.

i

Contents

Abstract . i
Contents . iii
Figures . vii
Tables . ix
Acronyms . xi
Glossary . xiii
1 Introduction . 1

1.1 Topic covered by the project . 1
1.2 Keywords . 1
1.3 Problem description . 2
1.4 Justification, motivation and benefits 2
1.5 Research questions . 3
1.6 Contributions . 4
1.7 Outline . 4

2 Theoretical background . 7
2.1 Intrusion detection systems . 7
2.2 Measurement . 8

2.2.1 O-notation . 8
2.2.2 Entropy . 9

2.3 Compact data structures . 10
2.3.1 Bitvectors . 10

3 Related Work . 13
3.1 Internals . 13

3.1.1 Signature representation . 13
3.1.2 Pattern matching . 14

3.2 Compact representation of data . 17
3.2.1 Arrays and sequences . 17
3.2.2 Linked List . 18
3.2.3 Trees . 18
3.2.4 Graphs . 19

3.3 Existing comparisons . 21
3.3.1 IDS . 21
3.3.2 LiDAR . 21
3.3.3 GIS . 22

iii

iv MLL: Efficient data structures in IDS

3.3.4 Graph databases . 22
3.4 Summary . 23

4 Methodology . 25
4.1 Research method . 25
4.2 Related work . 25
4.3 Efficiency metric . 26
4.4 Improvement . 26
4.5 Analysis . 26

4.5.1 Technical . 26
4.5.2 Theoretical . 27
4.5.3 Versions and formalities . 28

4.6 Experimental result . 28
4.6.1 Dataset . 29

5 Efficiency Metric . 31
5.1 Practical evaluation . 31

6 Signature representation . 35
6.1 Technical analysis . 35

6.1.1 Snort . 35
6.1.2 Suricata . 37

6.2 Theoretical analysis . 39
6.2.1 Abstraction . 39
6.2.2 Analysis . 40
6.2.3 Characteristics . 41

6.3 Suggested improvement . 41
6.3.1 Alternative one . 41
6.3.2 Alternative two . 45
6.3.3 Evaluation . 46

7 Fast pattern matcher . 49
7.1 Technical analysis . 49

7.1.1 Snort . 49
7.1.2 Suricata . 50

7.2 Theoretical analysis . 51
7.2.1 Abstraction . 51
7.2.2 Analysis . 52
7.2.3 Characteristics . 52

7.3 Suggested improvement . 53
7.3.1 Alternative one . 53
7.3.2 Alternative two . 55
7.3.3 Evaluation . 58

8 Experimental Result . 59
8.1 Environment . 59

8.1.1 Physical setup . 59
8.1.2 Logical setup . 59

8.2 Description . 60

Contents v

8.2.1 Signature representation . 60
8.2.2 Fast pattern matcher . 60

8.3 Results . 62
8.3.1 Evaluation . 69

9 Discussion . 71
9.1 Experimental results . 71

9.1.1 Signature representation . 71
9.1.2 Fast pattern matcher . 72

9.2 General . 73
10 Conclusion . 75

10.1 Summary . 75
10.2 Future work . 77

Bibliography . 79
A Code listings . 87

Figures

2.1 Illustration of asymptotic complexity 9

3.1 Example of a Nondeterministic Finite Automaton (NFA) 15
3.2 Example of a Deterministic Finite Automaton (DFA) 15

5.1 Illustration of space and time compromise 33

6.1 Internal signature representation in Snort 36
6.2 Internal signature representation in Suricata 38
6.3 Signature representation improvement - alternative one 42
6.4 Signature representation improvement - alternative two 46

7.1 Snort fast pattern matcher representation 50
7.2 Suricata fast pattern matcher representation 51
7.3 Byte frequency in all the datasets . 53
7.4 Fast pattern matcher improvement - alternative one 54
7.5 Fast pattern matcher improvement - alternative two 56

8.1 Fast pattern matcher - search text byte frequency 64

vii

Tables

4.1 Overview of datasets . 30

8.1 Proof of concept result - signature representation 67
8.2 Proof of concept result - fast pattern matcher 68

ix

Acronyms

BP balanced parentheses. 19

DFA deterministic finite state automaton. 15, 28, 49, 51, 53, 55, 72

DFUDS depth-first unary degree sequence. 19

FPGA field-programmable gate array. 3

HIDS host-based intrusion detection system. 7, 72

HTML hypertext markup language. 27

IDS intrusion detection system. 1, 2, 3, 7, 8, 16, 20

IMRaD introduction, methods, results and discussion. 4

LOUDS level-order unary degree sequence. 19

NFA non-deterministic finite state automaton. 15, 16, 28

NIDS network intrusion detection system. 1, 2, 7, 72

PoC proof of concept. 4, 5, 24, 26, 28, 29, 31, 35, 47, 49, 58, 60, 62, 65, 72, 73,
75, 77

TCP transmission control protocol. 8, 36, 38, 42, 60, 73

UDP user datagram protocol. 8, 36, 38, 42, 60, 73

UML unified modelling language. 28

xi

Glossary

ASCII American Standard Code for Information Interchange is a set of 256 dif-
ferent characters covering eighth bits. 49, 50, 72

children When talking about the abstract data-structure “tree”, inheritance
between vertices is described with family relations. Children in this case are
vertices inheriting from a specific vertex. 18, 19, 20

computer word A fixed size unit of data. The word size, determines the amount
of bits in the word. 11, 40

dense graph A graph where the amount of edges is close to maximum. Each node
has a high amount of connections. Opposite of a sparse graph. 20

exact search In exact search all the entries in the search pattern have to match.
8

operation An operation on a compact data structure is a query on the abstract
representation with the purpose of manipulating an element from the un-
compressed set. For example, a read operation on an sequence. 3, 10, 17,
43

ordinal tree A tree where the vertices can have arbitrary amount of children,
contrary to a cardinal tree, where the vertices have a set amount. 39

planar graph A undirected graph which can be drawn such that no edges cross
each-other. 20

regular expression An encoded search pattern describing a set of strings. 15

signature A description and identification of an anomaly. Realised in plain-text
format and contains a header and options. 1, 2, 7

xiii

Chapter 1

Introduction

This chapter presents the problem area and motivation behind the research. Next,
research questions are presented together with the planned contributions and the
outline of the thesis.

1.1 Topic covered by the project

Misuse or signature based intrusion detection system (IDS) is essentially to search
for patterns in a search text. Particularly, a network intrusion detection system
(NIDS) tries to find known indicators of suspicious activity in network traffic.
Such an indicator can be a sequence of characters which is unique to a specific
attack. The search pattern indicates suspicious activity and is contained within a
signature. As the amount of attacks grow, more search patterns are required in
order to detect new attacks. For a NIDS situated in a large cooperate network, the
amount of signatures can be tremendous. This requires fast storage (memory),
which is often available in limited amounts. Although memory is relatively cheap
and can be extended in large systems, some systems are constrained by the amount
of build in memory, such as for example Internet of things (IoT) or certain types
of firewall devices. By reducing the amount of required memory by NIDS, their
application can be extended to such devices with limited memory. Compact data
structures aims to do this, whilst maintaining a high performance. This project
explores central data structures in two of the most used open source NIDS today,
with focus on efficiency.

1.2 Keywords

Relevant keywords for this thesis are chosen according to the 2021 IEEE Tax-
onomy [1]. The keywords are: Data structures, Intrusion detection, Algorithms,
Encoding, Codes, Data compression

1

2 MLL: Efficient data structures in IDS

1.3 Problem description

The two most popular open source NIDS, Snort and Suricata are somewhat old
systems. Snort had its first release in 1998, while Suricata was released approx-
imately a decade later, in 2010 [2, 3]. In fact, they have become so popular and
widely used that they are considered the de-facto standard for anomaly based
intrusion detection [4].

A main component in both of the systems are signatures. Several signatures
are grouped together in what is called a ruleset, which can become quite large.
It then requires more fast storage, or memory in order to store all the signatures
in the ruleset. There are no official hardware requirements for either Snort or
Suricata, but it is recommended to add main memory (RAM) in order to increase
the system performance [5]. For example, Snort and Suricata stores incoming
network traffic in memory as a temporary storage (buffering). Running out of
memory can then lead to network traffic not being analysed (dropped). Memory
is therefore important for the proper functionality and performance of an IDS [6].
Performance is also increased by reducing the amount of memory instructions
that are loaded from disk (swapping). Accessing instructions in main memory is
about 105 times faster than from disk, and naturally has a great impact on the
functionality of the application [7]. Thus, if the reduced memory space impacts
the access times, it has an overall negative impact on the performance as well.

The book “Snort IDS and IPS toolkit”, which features members of the devel-
opment team behind Snort - Sourcefire, suggest using two to four gigabytes of
memory for best performance, with one gigabyte as minimum [5]. Some systems,
such as embedded devices and certain firewalls, have limited built-in memory.
Meaning that in some cases, an IDS can be too memory consuming in order to
perform ideally in a system where performance is critical. When adding memory
is not a possibility, an option is to reduce the amount of required memory by the
application whilst keeping fast access times, using compact data structures.

Being open source, Suricata and Snort have been improved upon by differ-
ent people with varying theoretical backgrounds. It is possible that some of the
original code from the first release is still present in the current version. Because
developments in compact data structures have been made in the last 10-20 years,
it can be the case that the data structures implemented in Snort or Suricata are
not optimal with respect to efficiency. This project aims to investigate this issue
closer.

1.4 Justification, motivation and benefits

As mentioned, limiting the amount of memory required by an IDS can extend the
systems usage to function on systems without possibilities to add memory. One
benefit with this research can be a smaller memory footprint, which can reduce
the required memory in existing implementations and thus save money. Improve-
ments to these specific systems can also be applied to other systems with similar

Chapter 1: Introduction 3

characteristics.
An example illustrates the problem area further. Zhao et al. [8] researched

a way to achieve 100Gbps throughput in an IDS, with the help of a field-
programmable gate array (FPGA) which has limited embedded memory. In the
process, they tested the space consumption of a multi pattern search algorithm
(Aho-Corasick NFA), which is used in Snort. They measured that it consumed
23MB of memory (Block RAM) on Snort version 3, using the snort registered rule-
set. This made the current version of the algorithm consume too much memory
for the FPGA, and a different algorithm was developed as a result of that.

Another aspect is sustainability. ATEA calculated that if each Norwegian de-
leted four to five emails (2000-2500KB) each day for a year, it could power one
thousand average Norwegian households for a year [9, 10]. Thus there is also a
sustainability aspect to limiting the memory consumption of devices, because it
requires power to run the hardware. This can be transferred to IDS as well. By
reducing the amount of space required per implementation, it can save a lot of
memory when applied in multiple instances and consequently the required power
to run those devices.

However, it is not enough to only reduce the amount of memory or space
consumption of the IDS, if it is limits the performance as a result. Compact data
structures aims to reduce the space required to represent an abstract object, whilst
maintaining fast operations on the data.

1.5 Research questions

In order to suggest improvements, it is of interest to have a closer look at the
existing representations first. Hence, the logical approach to the problem is to get
an overview of the data structures and how they are applied in the code, before
they are analysed and improved. The research questions reflect this approach. To
scope the project down, certain central data structures have been chosen in this
project, compared to explore every bit of data structures. As mentioned previously,
the signatures are space consuming and have to be kept in memory in order for
the search to be efficient. Thus, it is of interest to have a closer look at. Another
important part of an IDS is the fast pattern matching algorithm, which is looked
into as well. The three research questions are as follows:

1. What are the efficiency criteria for signature representation and the imple-
mentation of the fast pattern matching algorithm?

2. How efficient is the representation of signatures and the implementation
of the fast pattern matching algorithm regarding the criteria from question
one?

3. How can these data structures be improved in order to meet optimal values
of the criteria defined in question one?

First, a definition of efficiency is determined, which is used as a foundation for
comparison later. The second research question is about creating a model from the

4 MLL: Efficient data structures in IDS

data structures in the code, with enough abstractions to only represent elements
of importance. This makes it easier to compare the representations to optimal
values of the efficiency criteria. They will also be investigated to see if compact
representations of data are utilised and to what degree they are efficient. Sug-
gesting improvements to these data structures is the third research question, as
well as creating a proof of concept (PoC) for a practical comparison. The first re-
search question is answered in Chapter 5, while the two others are answered in
Chapters 6 to 8.

1.6 Contributions

The main contributions are suggested improvements to the representation of data
and a metric to measure the efficiency. Firstly, a measure of implementation ef-
ficiency is defined together with a developed efficiency metric. Then, a technical
analysis with a code review of recent versions of Snort and Suricata provides un-
derstanding and knowledge about central data structures in the two systems. This
is further analysed in theoretical means, in order to investigate if any measures are
undertaken to improve the efficiency of the data structures and to see if there are
room for improvement. On that basis, improvements are presented and compared
with the existing implementations on a theoretical level. Fundamental data struc-
tures from existing research are customised and combined in order to improve
the representations, based on their characteristics, purpose and abstract models
from the theoretical analysis. Two new algorithms are also developed, to perform
relevant operations on the developed data structures. Lastly, the efficiency metric
is used in a PoC, in order to see how the improvements compare to the existing
implementations.

1.7 Outline

The thesis follows the introduction, methods, results and discussion (IMRaD)
structure and is divided into the following chapters: Chapter 2 presents some ini-
tial theoretical background about compact data structures and intrusion detection
systems, which is required knowledge for the rest of the thesis. Chapter 3 looks
at the state of the art research regarding the three research questions. The literat-
ure presented here is a basis for the results in this thesis. Chapter 4 presents the
research method used to answer the research questions. Chapters 5, 6, 7 and 8
constitute the main part of the thesis, where the research contributions and res-
ults are presented. Firstly the efficiency criteria are presented in Chapter 5 in order
to determine what an efficient data structure is. In Chapter 6 and Chapter 7 the
signature representation and fast pattern matcher are analysed in technical and
theoretical measures before alternative representations are suggested. Technical
analysis includes a code review which is used for the theoretical analysis of the
data structures. Then alternative improvements for the signature representation

Chapter 1: Introduction 5

and fast pattern matcher are suggested based on the abstraction. A PoC imple-
mentation of selected alternatives is described in Chapter 8, where the results are
presented and compared. Chapter 9 discusses the obtained results and alternative
improvements. Lastly, Chapter 10 concludes the thesis and suggests some future
work.

Chapter 2

Theoretical background

This section presents the theoretical background for intrusion detection system
(IDS), compact data structures and mathematics, which is required for further
reading.

2.1 Intrusion detection systems

Background knowledge of central elements in an IDS, specifically the signatures
and detection engine is presented here.

An IDS is essentially a pattern matching system. Its functionality is to search
for patterns of misuse (signatures) in a search text and create an alert if a match is
found. It is based on the fact that there is a difference between normal and mali-
cious activity and that indicators of such activity can be recognised. An IDS can be
categorised based on the data-units it searches in. A host-based intrusion detection
system (HIDS) searches for anomalies in logs or files, while a network intrusion
detection system (NIDS) searches for anomalies in network packets. Snort and
Suricata are both NIDS [11].

A signature or rule in an IDS is used to identify malicious activity. Following is
an example signature in Snort, where the highlighted part represents the signature
header and the options following the header in parenthesis. It should be noted that
only a select set of options are presented here and that several others exist.

alert tcp $SRC_NET any -> $DST_NET 80 (content: "Some ma-
licious pattern"; msg:"Pattern detected"; sid:1000000; rev:1;
classtype:misc-activity;)

The header classifies the signature based on the following fields.

• Rule type
• Protocol
• Source address
• Source port
• Direction

7

8 MLL: Efficient data structures in IDS

• Destination address
• Destination port

The most important field amongst the options is the content, which contains the
pattern to be searched for in the data packets described by the header. The msg is
the message to be shown to an operator when a match is found. Other important
options are the sid, which is a unique signature identifier.

A large database of signatures means that a central part of the detection en-
gine in an IDS is a fast search algorithm. The IDS considered in this thesis, Snort
and Suricata both use exact search, where internal variations of an attack requires
a new signature. Processing and searching in linear time of the amount of rules in
the database would take too long and depend on the amount of rules. A better ap-
proach is searching in linear time for the search string (network packet), which is
called multi-pattern search. The fast pattern matcher will then find all the match-
ing signatures in a single pass over the search text, which is much quicker than
searching through all the signatures one by one for a possible match, assuming a
large database [11].

In addition to the fast pattern matcher improving the performance of the IDS,
the signatures are represented in a grouped form, using the information in the
header. This limits the amount of signatures which needs to be searched through.
For example, transmission control protocol (TCP) signatures are irrelevant for user
datagram protocol (UDP) traffic.

2.2 Measurement

It is of interest to compare different representations and select the best fitting,
using a common unit of measurement. This section presents some basic concepts,
which are required to understand the rest of this thesis. The binary logarithm, or
the logarithm to the base 2 is used during this thesis and expressed as log unless
stated otherwise.

2.2.1 O-notation

One widely used concept to describe the cost of an algorithm as a function of the
input size is asymptotic growth, described by O-notation. O(g(n)) can be formal-
ised as the following [12].

O(g(n)) = { f (n) : a, b ∈ N | 0≤ f (n)≤ ag(n), ∀n≥ b.} (2.1)

f (n) cannot be greater than ag(n), considering a large n [13]. It is an upper bound
or worst-case performance of an algorithm for a large input size. For example,
we can say that f (n) = an2 + bn − c is O(n2), but not O(n), because f (n) will
eventually grow larger than O(n), independent of the coefficients [7]. There is
always a constant u which will make un2 > f (n), thus f is O(g) meaning that
f does not grow faster than g [12]. When talking about algorithms in general,

Chapter 2: Theoretical background 9

large growth is unwanted and thus noted as the worst-case performance. The
same concept can be converted to describe the best case of an algorithm, or slow
growth noted as Ω(g(n)). We can also say that f (n) = o(n3), describing that a
quadratic function is always slower than a cubic, because their ratio goes to zero
for large values of n, explained by Rawlins [12]:

lim
n→∞

f (n)
g(n)

=
an2 + bn+ c

n3
=

a+ b+ c
n

= 0 ,∀a, b, c (2.2)

Figure 2.1 shows an illustrative example of asymptotic growth for small values
of n and using the binary logarithm.

0

5

10

15

20

0 5 10 15 20

log(n)

nlog(n)

n²

n

Figure 2.1: Illustration of asymptotic complexity

2.2.2 Entropy

Entropy is commonly referred to as a measurement of randomness or uncer-
tainty [14]. The notion of entropy is used in this thesis to understand how
much space is required to encode different symbols [7]. Entropy says something
about how many bits it minimally takes to represent the information without any
loss [12]. With more knowledge about variables in a set, fewer bits are needed to
carry the information in it. For example, English text contains a lot of redundancy,

10 MLL: Efficient data structures in IDS

which can be taken advantage of to represent the information in a smaller space.
This results in a lower entropy. Thus, entropy also has a relation with the amount
of surprise or uncertainty. In compressed or random data, the entropy will be high
because there are fewer patterns to take advantage of. Only knowing the number
of elements in a set, leads to the worst-case entropy [7].

Hwc(X) = log(|X |) (2.3)

Having a probability model of the elements in the set can lower the entropy. How-
ever, it cannot get any worse than the worst-case entropy. This is done by as-
signing elements with a higher probability a shorter code, which is done in for
example, morse code [14]. Shannon entropy estimates the number of bits in each
element [7].

H (X) =
∑

x i∈X

Pr(x i)log
1

Pr(x i)
(2.4)

When talking about the worst-case entropy of a set, it is interpreted as the min-
imum amount of bits required to distinguish an element [7].

2.3 Compact data structures

Gonzalo Navarro [7] introduced the term compact data structures in his book
“Compact Data Structures: A Practical Approach” as the following.

“Compact data structures help represent data in a reduced space,
while allowing querying, navigating and operating it in compressed
form” [7, pg.i].

It is different from compression, because in data compression the data is repres-
ented in less space but has to be decompressed each time it is operated on. On the
contrary, compact data structures aim to be able to represent the data in a com-
pact format while it can be operated on, saving both space and time. This section
covers briefly some central elements in compact data structures.

2.3.1 Bitvectors

Bitvectors are a fundamental component of compact data structures, because it
is used in almost all compact representations. The name is descriptive, because
a bitvector is a sequence of bits represented as an array B[1, n] and structured
to support some operations. Especially two operations are of interest to get as
efficient as possible. Rank1(B, i) provides the number of unities in B to position
i and selec t1(B, i) returns the position of the i’th unity in B. Each of the queries
can be performed in constant time. Jacobson [15] proposed a constant time rank
query. A constant time solution for the select query was obtained by Clark [16] a
few years later. Clever use of combinations of rank and select allows for constant
time queries on complex data structures. However, it is by default static after

Chapter 2: Theoretical background 11

initialisation and does not support write operations. As a bit sequence contains
0s and 1s, Shannon entropy can be used to calculate the empirical entropy of a
specific bit sequence B with length n, containing m unities [7, 17].

H0(B) =
n
m

log
m
n
+

n−m
n

log
n

n−m
(2.5)

The worst-case entropy of B is n if the bit sequence is balanced [7]. However,
this calculation only includes the sparsity of the bitvector. Other factors which can
be taken advantage of to compress a sequence, such as runs is not included [7].
A lower entropy is a result of m being closer to either zero or n than n/2, which
is a sparse bitvector [17].

Constant time for the rank operation can be solved by using a few additional
precomputed data structures, which is described briefly here. One fundamental
insight is that rank1(B, i) = sum(B, i) [7]. This is simplified by the popcount op-
eration which counts the number of ones in a computer word. Population count
(popcount) is an operation that is implemented directly into modern architectures
or can be performed very efficiently. B is divided into k blocks of w bits, where for
each multiple of i

kw a partial sum of the positions up to that point is stored in an
array R[0, n

kw]. However, constant times cannot be achieved with o(n) overhead.
For that, another precomputed array is needed. R′[0, n

w], stores a partial sum of
ones relative to R, where all the values are between 0 and (kw)−w. Thus, they are
smaller than those in R and can be stored in fewer bits [7]. The operation is con-
ducted by summing the intermediate values from R and R′ together a popcount
of the rest of the bits up to i. A space consumption of nH0(B) + o(n) is achieved
when k = w.

The select operation can be solved in O(log n) time with no additional space
on top of what is needed for rank. A variant is using binary search on R, in order
to find the location which is just before exceeding i. The same process is done for
R′ where at last, the next word is processed bit by bit to find the location of the
i’th unity in B. For a constant time select with o(n) overhead, a more advanced
representation is required [7]. However, it is not described in detail here.

If the bitvector is sparse (m< n/2), the overhead can be O(m) bits, supporting
constant time select and access/rank in time O(log n

m) [7, pg. 83, 98]. This visu-
alise the compromise between space and time, where a reduction in space leads
to a higher time consumption.

Chapter 3

Related Work

This chapter looks at what existing literature can provide of knowledge related to
the research questions. First, it looks at what information exists for data structures
in Snort and Suricata. Next, it looks at existing comparisons between the two
systems, as well as other related comparisons. Lastly, a brief overview of some
relevant compact data structures based on existing literature is presented.

3.1 Internals

This section investigates what existing literature has to say about signature rep-
resentation and implementation of the fast pattern matcher in Snort and Suricata.
Relevant details and concepts are explained as well.

3.1.1 Signature representation

Snort

Snort is possibly the most used IDS, due to its age and increasing popularity [11].
Because of this, there exists some literature of the detailed functionality and in-
ternals of Snort. One book which explores the details of Snort, and is contributed
to by the members of the Snort team, is “Snort IDS and IPS Toolkit” from 2006 [5].
Because Snort is a piece of software, which of course changes over time, updated
literature is preferred to cover the details. However, the basic functionality and
structures do not change that much on a general level, which means that the
book can still be used to learn about the fundamentals. Chapter five covers details
about packet processing and the detection engine, where the structure of the sig-
nature grouping is especially interesting. The signatures are grouped together in
a two-dimensional linked list. As the signatures are parsed at initialisation, they
are put in this structure, where the signature options to signatures with match-
ing headers are grouped under the respective headers. The nodes representing the
headers are called rule tree nodes (RTN) and the nodes representing the signature
options are called option tree nodes (OTN). Several RTNs are then represented

13

14 MLL: Efficient data structures in IDS

in a linked list, with an arbitrary number of OTNs in a linked list referenced from
the respective RTNs.

Another book which clarifies the inner workings of Snort is the book “Nessus,
Snort, & Ethereal Power Tools - Chapter 7” by Archibald et al [18]. This book men-
tions the RTNs and OTNs in the same way as “Snort IDS and IPS Toolkit” where
signatures that share a header are grouped together using RTN and OTN objects.
It also explains some of the program flow between the classes, which is helpful
when reading the code and modelling the data structures and providing a better
understanding of the system. The book is from 2005, so most likely some of the
source code and data structures have changed since then.

Suricata

While quite a bit of literature is written about Snort, way less exists for Suricata.
To the author’s knowledge, there is no literature which explains the inner work-
ings of Suricata, like it does with Snort. The main resource for internal details
about Suricata, except the source code, is the manual [19]. However, it does not
cover logical data structures and overall functionality as it does in some literature
for Snort. Based on the amount of available information from the manual and
website etc, it seems that Snort and Suricata are two somewhat similar systems.
For example, they can both accept the same Signature format, which can indicate
that the internals are also like to a certain degree.

3.1.2 Pattern matching

The pattern matching algorithm is the main part of a signature-based intrusion
detection system (as explained in Section 2.1). Some recommend, from discussing
with system administrators, that an IDS needs to support at least 10000 rules [8].
This means that the requirements for the pattern matching algorithm in a high
speed network is quite strict. It is of interest to spend as little time on processing
each network packet as possible in order to make the system perform well. The
pattern matching algorithm achieves this by filtering out the rules which can be a
possible match [5, 20]. In Sort version > 2.0, the fast pattern matching algorithm
is a part of the detection engine, and compiled by grouping the rules together by
their destination port, as they already are in the rule tree (RTN). Then the longest
content string of each rule is added to the set of keywords, which is compiled
in the algorithm. The pattern matching algorithm is then able to find a set of
possible matching signatures in linear time of the data unit O(n) [5]. One widely
used multi pattern searching algorithm is Aho-Corasick [21].

Aho-Corasick

Both Snort and Suricata support Aho-Corasick, which is a software realised finite
state machine approach to fast pattern matching [19, 22].

Chapter 3: Related Work 15

A finite state machine consists of, as the name implies, finite amount of states.
A state machine is firstly built to an initial state and then input events transition
from one current state to another [23]. Unless parallelism is used, one state is
active all the time and transitions to another state based on some input. Figures 3.1
and 3.2 illustrates finite state machines to detect the regular expression “A[B]+C”,
with one A followed by one or more B’s and ending with one C. The unlabelled
edges illustrates an epsilon transition or transition without input symbol. They
consists of an initial state S0 which is initially active. In order to move to S1 and
A is required. When the final state is active, the pattern is accepted.

Several different versions of Aho-Corasick have been developed since its ori-
ginal release in 1975, where there is generally a trade-off between memory con-
sumption and performance [23–26]. However, they are mostly based on two fun-
damental concepts. The deterministic finite state automaton (DFA) implementa-
tion uses more memory than the non-deterministic finite state automaton (NFA),
but on the contrary have a performance gain due to fewer state transitions re-
quired [25].

Figure 3.1: Example of a Nondeterministic Finite Automaton (NFA)

Essentially, the NFA version can require more than one state transition for an
element in the search string. When an input event is not found in the current state,
the failure pointer must be consolidated in order to look for another possible next
state. This results in multiple possible states. Using the example from Figure 3.1
can illustrate this. If S2 is active and the input is B, both S3 and S5 must be checked
for the next active state.

Figure 3.2: Example of a Deterministic Finite Automaton (DFA)

The DFA on the other hand, only has one state transition per element, which
makes it faster [25]. This is done by traversing the states, resolving the failure
pointers (epsilon transition) and adding them to the machine. The example in

16 MLL: Efficient data structures in IDS

Figure 3.2 illustrates this. This automaton is a conversion from the NFA in Fig-
ure 3.1. When S2 is active and a B arrives as input, the next active state is de-
termined immediately. However, this results in more non-empty transitions and
consuming more space.

A finite state machine can be represented in several ways, but the most trivial
one is a matrix, showing the relation between states and transition. More trans-
itions make the transition table not as sparse, and thus more memory consuming.
In the original Aho-Corasick paper, it is suggested that the DFA implementation
can reduce the amount of state transitions by up to 50% [21]. However, real-
istically the performance gain is not that great in the intrusion detection system
(IDS) environment. Because most of the traffic is normal, the search algorithm
will spend most of its time in the “zero state”, waiting for an initial match [21].
Hence, the NFA implementation is viable because it will reduce the memory con-
sumption, whilst only being slightly slower in practice.

Realisations

Several types of representations can be used to store the state transitions in Aho-
Corasick, such as a table or matrix, linked list or graph [27]. In general, the
state transitions can be thought of as a matrix where the rows are states and
the columns are elements in the alphabet (possible input events). The main factor
contributing to the size of the representation is the amount of states, because the
alphabet size (σ) is finite and often set to 28 bits (1 Byte) [25].

A plain representation of the state transition table is very space consuming,
due to the O(n2) space complexity. Several strategies have been taken to reduce
the space consumption of the data structure. Tuck et al. [23] proposed the use of
a bitmap to reduce the space of the transition table in the non-optimised (NFA)
version of Aho-Corasick. Instead of having σ pointers for each state, where some
of them are invalid, a bitvector is utilised. If a bit is set, the transition is valid.

Kumar et al. [28] suggested to reduce the amount of transitions in the op-
timised version, by grouping similar transitions into an algorithm called D2FA. If
the state transition table is modelled as a graph where the states are vertices and
directed edges are transitions, the algorithm aims to reduce the number of edges
by taking advantage of similar transitions [29]. Results showed that the number
of transitions was reduced by 95%, which again can reduce the number of bits re-
quired to represent the DFA. However, the increased cost in time this comes with
when searching, is not described in detail.

Another variation, called “Split-AC” was developed by Dimopoulos et al [30].
It aims to reduce the space of the transition table by splitting the table into smaller
ones, where the most frequent transitions are kept in faster memory, closer to
the CPU for faster access. Results from a practical experiment showed that the
suggestion was decreased the space usage from 28-75% compared to the existing
best known approach. The paper does not go into details regarding the time usage,
but concludes that it is not the fastest alternative.

Chapter 3: Related Work 17

Dharmapurikar et al. [31] suggested using substrings in combination with a
Bloom filter to optimise the multi pattern search. A Bloom filter is an efficient data
structure to find out if an input string is contained in a set. The algorithm they
name “JACK-NFA”, takes advantage of the fact that there is more normal traffic
than malicious. Short patterns below 16 Bytes can then be stored directly in the
Bloom filter for fast query, which is most of the patterns in the tested ruleset.

None of the existing literature discusses the compromise between space and
time usage, and it seems that from the result in the papers that the space con-
sumption is in focus. Few details are provided in literature about the internal
representation of the state transitions in either Snort or Suricata. Although, some
details are provided in the manual for the two systems. According to the Snort
manual, the default implementation is Aho-Corasick Binary NFA (ac-bnfa-nq),
which supposedly uses a compression of the transition table [22]. The default
implementation in Suricata is the DFA version of Aho-Corasick (ac) [19].

3.2 Compact representation of data

This section presents research regarding some commonly used abstract methods
to represent data, such as trees, arrays and graphs.

3.2.1 Arrays and sequences

Both an array and a sequence can be used to store elements of variable or fixed
size, such as integers. The differences between them are the supported operations
on the data structures, which makes them better suited in various scenarios.

An array A[1,n] supports the basic operations read or access and write for any
position 1 ≥ i ≤ n. If a computer word of the size of 32 bits is used to represent
the number 10 (0b1010), it leaves 32−4= 28 bits unused, which is wasteful. An
array, when talking about compact data structures, aims to reduce this amount of
wasted space and store the elements in a compact manner, whilst allowing for fast
read and write operations. This type of representation is better suited where only
simple operations are required and will provide a representation which is closer
to the optimal space usage than a sequence. Compact data structures aim to use
as close to the amount of bits needed to represent the elements in the array, whilst
allow for fast read and write operations. Examples of arrays are sampled pointers,
Elias-Fano Codes and Direct Access Codes [7].

Elias-Fano codes is a good alternative to represent an increasing sequence of
numbers in an efficient manner. If u is the highest number in an array of length
n, Elias-Fano codes uses 2n + n log (u

n) bits at most [32]. This is close to the
information theoretical bounds, or a “quasi-succinct representation” [33]. In Elias-
Fano codes, there are two bitvectors in use. One storing a concatenation of the
lower log (u

n) bits for each element, while the other stores a concatenation of the
encoded carnality of the upper bits [32, 33]. Depending on the implementation
of select, Elias-Fano codes can support constant time access queries [34].

18 MLL: Efficient data structures in IDS

A sequence on the other hand supports more advanced operations such as
rank, select and read on the elements. This type of data structure is used when
these operations are required in the implementation. Wavelet trees are a typical
example of a sequence, and often used to represent strings, grids and more. The
tree is of depth log σ, and has a logical bitvector for each node. The bitvector on
the root level has the length n, and is either 0 or 1 if the character is in the first
or last half of the alphabet. This is continued recursively down each level of the
tree [35]. Select operation on an array would require a linear (O(n)) search, but
a wavelet tree supports O(log σ) rank and select, with a plain implementation
of bitvectors. In the same implementation, the wavelet tree requires n log σ +
o(n log σ) bits [35].

3.2.2 Linked List

A Linked list is an abstract data structure which is commonly used to represent a
list of objects. In a singly linked list, each object has a relation to the next object
in the list, while in a doubly linked list, each object has a relation to the next and
previous objects [36]. The traditional implementation uses pointers to show the
relations, which is not ideal when it comes to space consumption (O(n log n)). Re-
search has been conducted on a compact representation of linked lists. Sinha [37]
suggested to base the relation of a linked list on the differences between the point-
ers. The improved representation reduced the space consumption by 33%. Whilst
no accurate measurement was given on the traversal time it is presumed to be
quite similar.

3.2.3 Trees

A tree is a mathematical abstraction which is often used to represent concepts in
everyday life, such as family tree or organisation of a cooperation. More form-
ally, it is a set of edges and vertices, where it is only one edge connecting two
vertices [36]. The edges can be labelled or unlabelled.

A typical representation of a tree contains vertices or nodes v, which has an
edge e or pointer to some children c. Using pointers to a node child, the repres-
entation requires O(n log n) bits, which is quite wasteful considering that only
2n − θ (log n) bits is enough to distinguish any tree of n nodes [38]. This is an
information theoretical lower bound space usage for unlabelled trees, and the
gap between a pointer-based representation and the worst-case entropy has been
a foundation for research in the area of compact data structures [15]. For la-
belled trees with labels from an alphabet σ it adds n log σ to the worst-case
entropy [39].

The required operations on the tree determine the size and efficiency of the
representation. Often the application determines which operations are of interest.
For example, in the GIS and LiDAR applications (Sections 3.3.2 and 3.3.3) a range
query is of main interest, while calculating route length between two nodes is ir-
relevant. Thus, a simpler representation can be used instead which only supports

Chapter 3: Related Work 19

the required operations. The following paragraphs present some of these struc-
tures, which offer a compromise between space/time and amount of supported
operations.

A level-order unary degree sequence (LOUDS) representation is simple in the
sense that it does not support many operations, but on the other hand it is com-
pact while offering fast access times [7]. It uses a bitvector B[1,2n+1], where n is
the amount of nodes. This reduces the space from n pointers to 2n bits [7]. In or-
der to construct B, the nodes v are traversed in level-order, starting from the root
and 1c0 are appended to B, where c is the amount of children nodes. The repres-
entation is almost balanced, which makes it difficult to compress it further [38].
Depending on the implementation of rank and select operations on the bitvector,
the operations can be performed in constant time. However, the data structure is
limited in the sense that queries such as finding the depth of a node cannot be
solved in constant time.

A data structure, which supports more queries is balanced parentheses (BP).
The tree is still represented with a bitvector and the operations are limited to rank
and select. However, the difference from LOUDS is the structure of the bitvector,
where each bit represents a closed (0) or open (1) parentheses. When representing
a tree in the balanced parenthesis structure, it is traversed depth first and a 1 is
written to the bitvector when arriving at a node, and a 0 when it is left [38]. This
allows for some extended queries, such as finding the depth of a node because
the sub-tree of a node is mapped onto the bitvector. However, it does not offer
constant time within the same space usage as LOUDS [7].

Lastly, the depth-first unary degree sequence (DFUDS) representation com-
bines the LOUDS and BP [7]. The main reduction in space comes from represent-
ing trees as bitvectors instead of pointers which typically use wn bits in total.

3.2.4 Graphs

Unlike a tree, which is a special case of a graph, a general graph is a set of vertices
and connecting edges, without any further restrictions. The edges can be direc-
tional, undirectional, weighted or labelled [36]. In order to see how space efficient
the compact representations are, a lower bound has must be defined. Farzan and
Munro [40] presented a theorem which describes the worst-case entropy of binary
relations from an information theoretical point of view, seen in Theorem 1.

Theorem 1 Any representation of n2 0–1 matrices containing e ones requires at
least log

�n2

e

�

bits for some matrices.

Because there are
�n2

e

�

different ways of selecting e pairs of edges from n2

vertices, the counting argument is also the worst-case entropy for directed graphs,
presented and simplified by Navarro [7] in Equation (3.1).

Hwc(n, e) = log
�

n2

e

�

= e log
n2

e
+O(e) (3.1)

20 MLL: Efficient data structures in IDS

For directed graphs, one of the most compact representations is an adjacency
list storing the neighbours to a node [7]. This can for example be done by concat-
enating all the nodes neighbours N(v) into a list N[1, e] = N(1) . . . N(n), as such
a two-dimensional array is not required [7]. Although, a helper array is needed in
order to separate the nodes. This type of representation requires n log e+ e log n
bits and is not far from optimal [7]. Another commonly used representation is the
adjacency matrix M[1, n][1, n], where M[i][j] = 1 if node i is adjacent to node
j. Due to the n2 space requirement, it is best used for dense graphs [7].

Although such a representation is quite compact, it supports only a limited
set of operations in constant time: number of neighbours to a node and list of
neighbours [7]. In order to find the best representation, it can be beneficial to
know which types of operations that are needed. For example, in a planar graph
it can be of interest to find the shortest path from one point to another. However,
this is not something which is relevant in an IDS, and will cause unnecessary
complexity.

A label on the edges adds e log σ to the worst-case entropy, if the labels are
taken from an alphabet with sizeσ. For labelled graphs, adjacency lists or matrices
cannot be used. Compact representations of binary relations with labels were first
studied by Barbay et al. [41] in 2007. It was later improved upon, adding more
operations on the data structure [35, 42]. Navarro [7] presented an alternative
improvement of a compact representation of a labelled directed graph, based on
these improvements. In this case, a limited set of operations from the suggestions
by Barbay [35] was implemented. Navarro [7] uses two sequences and bitvectors
to represent a labelled graph. The first sequence L contains the edge labels in the
order as a concatenation of the adjacency list. A bitvector B separates the nodes
edges B[1, e+n] = 10e1 . . . 10en . Another sequence N contains the node identifiers
stored in a different order than the adjacency lists, where instead they are grouped
by labels. A corresponding bitvector BL , similar to B, separates the area of each
label belonging to a label or a node.

If the adjacency matrix (M) is sparse or clustered, then a compact alternative
can be a k2-tree [7]. A clustered graph is where some vertices have higher edge
connectivity than the rest. The root of the k2-tree is the full adjacency matrix,
where the child nodes are sub-matrices. This leads to a cardinal tree where the
adjacency matrix is divided into k2 equal sub-matrices, often using a value of
k = 2. If a sub-matrix only has 0’s it is represented as a node without children
(shallow node), thus consuming little space for each such area [43]. Each node in
the tree has k bits and is realised in a bitvector T ordered in a level-order traversal
of the tree. The process is repeated recursively for each sub-matrix containing
ones, until the final depth of logk n which represents single cells of M . Another
bitvector L contains the nodes in the final depth [43]. Space usage in the worst-
case is k2e(logk2

n2

e +O(1)), while the worst-case time usage for neighbour queries
(list all adjacent nodes) are linear O(n) [43].

Chapter 3: Related Work 21

3.3 Existing comparisons

This section looks at some comparisons between Snort and Suricata, as well as
analysis of compact data structures in other systems. The intention is to describe
some of the existing work, its benefits and limitations.

3.3.1 IDS

Comparisons of the memory consumption in Snort and Suricata, have been ad-
dressed several times in literature. Many of the studies keep the configuration of
the two systems to default [4, 6]. This means that the fast pattern matching al-
gorithm (Aho-Corasick) mode of operation is different (see Section 3.1.2). Thus,
the two systems are incomparable in the sense of memory consumption. However,
in 2013, an analysis between Snort and Suricata was done by White et al. [44],
which changed the default configuration of Snort by applying a DFA version of
Aho-Corasick. This change kept the algorithms equal on both systems, and thus
makes them comparable. The research concluded with Suricata consuming less
memory than Snort on average. However, the comparison was done with an in-
creasing amount of cores for Suricata and Snort in “multi instance mode”. From
the graph presented in the paper, the memory consumption is rather similar up
to eight cores or instances, which can indicate a flaw in Snort’s software due to
the sudden jump in memory usage. Even still, Suricata has a slight advantage in
memory consumption up to that point. It would be interesting for the purpose of
this project to see further details, regarding which data structures consumed the
most memory or why the memory usage was high. A comparison without Snort
in multi instance mode would be interesting as well.

In general, the current approaches to comparison between Snort and Suricata
have a technical and practical perspective, instead of a theoretical and detailed
one. An analysis of compact data structures specifically, is to the author know-
ledge, not researched for Snort or Suricata, but addressed for other systems. The
following sections look at analysis with the intent of improving the size and effi-
ciency of data structures in other systems, which can be related to data structures
in an IDS.

3.3.2 LiDAR

Ladra et al. [45] investigated the compact storage of LiDAR point clouds. Due to
the amount of space required by the number of three-dimensional data points and
some additional metadata, a compact representation is required. Firstly, an ana-
lysis of the existing methods to store data is done, where drawbacks are identified.
They suggest using k3-trees to improve upon the existing LAS and LAZ format,
which was currently in use. K3-trees are in this case used to store coordinates in
a grid, in which case a sparse matrix can be represented in a compact manner.
A static value of k = 2 is used, but can be adapted in order to impact the space
consumption and query times of the data structure. The three dimensional space

22 MLL: Efficient data structures in IDS

(x,y,z) is divided into 23 cells, where the empty cells use few bits. Two bitvectors
are then used instead, to represent the tree structure, as an “output” of the k3-tree.

Although the types of information in LiDAR and IDS environments are differ-
ent, the tree structure is on a general level useful for representing several types
of data in a compact manner. It is difficult to tell whether the research is directly
applicable to improve data structures in Snort or Suricata, before doing more re-
search on the two systems, but it can be a possible candidate. The benefits with
this research are that the lower level data structures, which are used to represent
the conceptual trees are described, as well as an experimental evaluation with
several datasets are presented.

3.3.3 GIS

Brisaboa et al. [46] researched a compact representation of spatial indexes in
Geographic Information Systems (GIS). Spatial indexes are often used in GIS,
due to the capability of efficient search in overlapping geographical objects, such
as different layers on a map etc. A spatial index is a maximal and minimal x , y
coordinate of the objects minimum bounding rectangle (MBR), instead of all the
coordinates the object itself [46]. Brisaboa et al. [46] suggest a wavelet tree to
store the spatial indexes in a compact manner, whilst allowing for queries in com-
pact form. By extending the x , y grid to contain one coordinate per column, the x
coordinates (row) can be projected onto the y coordinates (columns) in a grid. By
sorting the coordinates from the x-axis, the ranks of the coordinates (rank space)
are worked on, instead of the coordinate space. The wavelet tree is used to store
this data structure by utilising the projection of the nodes order in the x-axis to
the y-axis. Two bitmaps are used in each node of the tree, to keep track of the
spatial indexes lower and upper bound (Bx

l , Bx
u). A range query is performed on

the wavelet tree to select objects with coordinates in a MBR.
The research is an example of a creative way to customise and apply fun-

damental data structures to this type of data, and develop queries to suite the
purpose of the system. It also shows a thorough methodology in testing and com-
paring the suggested improvements space and time. It is difficult to say how ap-
plicable it is before understanding how the data is represented in Snort and Sur-
icata.

3.3.4 Graph databases

Álvarez-García et al. [47] proposed a compact representation for labelled attrib-
uted graphs, which is used in for example modelling data in social networks or
web graphs. Special in this case is that the nodes and edges contain additional
information, which the existing compact proposals do not include. They suggest
using a modified k2-tree to represent such a graph, which they name AttK2-tree.
It is not a single tree as the naming might suggest, but the graph is divided into
several connected representations. This is done partially for it to be a modular
system, where parts can be changed without affecting the whole. The first part

Chapter 3: Related Work 23

is the Schema, which contains basic information about the nodes and edges of
the graph and serves as a foundation for indexing more data. Data is the second
part, which contains values for edges and nodes of the graph. Attribute values are
represented differently depending whether they are sparse or dense. Dense at-
tributes are defined as values which are shared amongst nodes or edges, and are
stored in k2-trees. The spare attributes on the other hand are stored in a list, be-
cause they are unique to a certain edge or node. The third part is the relationship,
which generally is information about which nodes are connected to each-other via
which edges. A k2-tree with support for multiple edges between nodes is used to
store this representation. A dynamic version of the data structure is also presen-
ted, which has an ability to add states after the initial construction. The paper
concludes with improved space and query-times compared with other graph en-
gines. Attributed graphs seem initially somewhat like the rule-tree in Snort. The
“layered approach” with custom optimisations is also an interesting idea.

3.4 Summary

As far as we know, a systematic research on the data structures in intrusion detec-
tion systems have not been done in previous literature. However, there has been
research looking into compressing the signature set, by searching for similar rules
and making sure that the amount of unnecessary matching is reduced [48]. The
signatures are created by human experts, which can lead to errors such as one
rule being covered by another, identical or very similar signatures etc. However,
this is not the same as minimising the signatures complexity when represented in
memory.

Research in compact data structures for other systems does exist. However, it
is difficult to directly transfer implementations in one system to another, because
the types of data and operations on them determine which representation is best
suited. Existing literature does not provide relevant details about the representa-
tion of signatures and the representation of the fast pattern matching algorithm,
especially in Suricata. There is some information about Snort, but it is not detailed
enough to get an overview of the current representation of data. Thus, some more
research is required in order to understand the current data structures in Snort
and Suricata, as well as to suggest relevant improvements. From the existing lit-
erature, we have not been able to identify research in compact data structures in
intrusion detection systems. Another observation is that improved data structures
for other systems, customises and applies fundamental compact data structures
from previous research. For example, a k3-tree is used to suggest an improved
data structure for LiDAR data, because the nature of the data and purpose of the
queries on the data is suitable.

Aho-Corasick on the other hand have been optimised several times, but there
is lack of a defined metric to compare the results efficiency. From the results it
seems like the space consumption is the focus, instead of seeing time and space
as a whole. In some of the literature, the suggested improvement is compared to

24 MLL: Efficient data structures in IDS

the existing using a proof of concept (PoC). Others compare the proposed repres-
entation to existing improvements. Asymptotic growth and entropy are not used
consistently either.

Compact data structures for general graphs, trees, arrays and sequences have
been optimised to approach their worst case entropy, whilst also achieving fast
access times. Thus, it is challenging to optimise these any further.

Chapter 4

Methodology

In order to answer the research questions in the best way possible, a structured
and defined approach to the problem area must be discussed prior to starting
the research. This research presents the general research method and the select
approach to answer the research questions.

4.1 Research method

Because of the specificity of the research questions, the research type can be cat-
egorised as applied research. Furthermore, a quantitative method is conducted
with a theoretical comparison and proof of concept.

4.2 Related work

Several sources of literature were used to get an overview of the state of the art re-
search. Microsoft Academic proved to have a good collection of publications with
options to filter topics and publication year and various ranking possibilities which
was valuable [49]. A publication’s references can also be sorted and filtered. Dif-
ferent sources for literature were used during the process in order to gather the
most up to date research regarding the research questions. Other sources for liter-
ature is the NTNU university library - Oria [50]. A combination of relevant phrases
using the boolean operators “AND”/“OR” was used in the collection process. Some
of the phrases used were the following:

• data structure, data structure, data-structure
• snort
• suricata
• compact
• succinct
• pattern matcher, aho-corasick, aho corasick
• ruleset, rule-set, rule-structure, rule tree

25

26 MLL: Efficient data structures in IDS

4.3 Efficiency metric

Recall, the first research question is about defining some efficiency criteria to eval-
uate the existing data structures and propose improved representations. Criteria
helps to make a conscious choice, when finding the most efficient data structure.
This section presents a couple of methods which can help find relevant criteria for
efficiency in this context. One method is to see what recognises a good solution
of the problem, or what factors make an implementation good, bad or successful
on a general level. Another method is to use criteria which are standardised or
widely used by others. Both approaches are used when defining criteria.

4.4 Improvement

A general strategy when suggesting improvements is to understand the problem
and the existing solutions, in order to see how it was solved previously and draw-
backs or limitations to that approach. Background theory and related work give a
basis to understand the problem area and an overview of the existing solutions. A
technical analysis provides more up-to-date information of the systems and further
understanding and detailing the problem formulation. Then, a theoretical analysis
formulates and describes the problem in order to find out what and where to im-
prove. This information makes it easier to see characteristics, possible areas that
can be changed and where existing research can be applied or modified, in order
to achieve a better solution. Such a method and way of thinking is used to suggest
improvements in both the fast pattern matcher and the signature representation.

4.5 Analysis

The analysis method follows the improvement methodology, where firstly a tech-
nical and theoretical analysis are required to suggest improvements. After the
improvements are suggested, a proof of concept (PoC) is presented with two of
the most promising alternatives. Binary logarithm, or the logarithm to the base
2 is used during this thesis and expressed as “log” unless stated otherwise. This
section presents the technical and theoretical analysis approach.

4.5.1 Technical

Prior to modelling the data structures in the two systems, information about them
must be collected. One method of extracting relevant information about the data
structures are through analysing the code in the two systems. In order to im-
prove the efficiency in analysing the code, prior information such as manuals and
changelogs, can give valuable indications on where to look for the specific func-
tionalities in the code. Unless very up-to-date information exists regarding internal
details of the two systems, a code analysis provides the most recent information.
Another benefit is that the details can be abstracted away as desired.

Chapter 4: Methodology 27

Code analysis or code review in this case, is about getting context to the vari-
ables in order to see how they are represented and related on an abstract level.
One method of doing this, which is also done in this thesis, is using Doxygen [51].
It is a static code analysis tool which can generate documentation in hypertext
markup language (HTML) format which shows relation between variables, classes
and functions. The benefit is that it can create call-graphs that makes it easier to
navigate and understand the code.

Another method to collect information about the data structures is through
existing literature. This can greatly improve the efficiency, in which the code does
not have to be analysed over again. But it can have drawbacks such as not being
detailed enough information or simply outdated with respect to the current ver-
sion of the code base. Existing literature can also be used next to analysing the
code, where some of the main ideas behind the data structures are kept in mind
when analysing the code for details. This of course assumes that the main struc-
ture of the code has not changed during that time, which is very often the case on
a general level.

Bacchelli and Bird [52] explored, amongst other things, code review chal-
lenges. When they asked how developers start code reviews, the developers an-
swer was to start with familiar points in the code. This made it easier to see what
was going on. One way of doing this starting to look for what is described in ex-
isting literature in the code. Furthermore, 91% responded that it takes longer to
review unfamiliar files.

Höst and Johansson [53] tested out two code review methods, where one was
a detailed approach and the other a more general one. The research concluded
with no significant differences between the tested methods. However, it does not
mean that the approach has nothing to say when analysing code, but can indicate
that the results do not depend on the approach.

Based on this, a combination of methods has been selected and applied in this
thesis. Existing literature is used together with a general approach code review,
where Doxygen is used as well as a assisting tool. Another benefit with a code
review is that the level of detail can be selected as required.

4.5.2 Theoretical

Rawlins [12] describes five steps to analysing an algorithm in “Compared to what?
: an introduction to the analysis of algorithms”. After recognising the problem, an
abstract model must be made to describe the problem. Next, an algorithm is de-
signed according to the model, which is then analysed. Lastly, the result of the
analysis is reviewed. This approach can be translated to analysing data structures.
Rawlins [12] defines a model as a combination of the allowed operations (en-
vironment) and a set of operations to reduce (goal). In other words, the model
can be thought of as constraints, inputs and wanted outcome to the problem. An
algorithm is then a solution to that problem, which in this case is the efficient
data structure itself. The modelling step will in this definition also include the

28 MLL: Efficient data structures in IDS

algorithm, which is already designed in the two systems, Snort and Suricata.
The data structures found in the technical analysis are modelled on an abstract

level to capture central elements which describes the problem. This model is then
analysed in order to determine the efficiency and room for improvement.

4.5.3 Versions and formalities

This section presents some technical considerations and choices which where
made during the analysis.

Several versions exist of Suricata and Snort, but the latest stable release is
considered in this thesis. For Snort that is version 2.9.17, while version 6.0.1 is
the latest stable release for Suricata as of 8th December 2020

Although the mentioned versions of Snort and Suricata are written in C and do
not use objects but rather structs, the term object is used synonymous throughout
this text. Furthermore, the unified modelling language (UML) is used to create a
model of the data structure from the code and show the inheritance between the
objects.

When comparing the implementation of the fast pattern matching algorithm,
it is important to model and analyse comparable versions in Snort and Suricata. If
not, the deterministic finite state automaton (DFA) representation will consume
more memory by intention, in order to achieve somewhat better performance in
theory. In this thesis, the DFA variant of the Aho-Corasick algorithm is used over
the non-deterministic finite state automaton (NFA) version. It is chosen because
Suricata does not support the NFA variant, as of Apr 4, 2016 1

4.6 Experimental result

For a PoC implementation, it is beneficial to use existing mature code libraries
if possible. Using a library which is well tested, takes advantage of low-level op-
timisations such as for example cache efficiency, ensures that we do not invest
additional effort in development of these parts. It can also remove error in the
result, stemming from low-level operating systems specific implementations and
optimisations, which is easy to ignore.

Quite a few open source implementations exist, where a few have been re-
commended in previous literature [54–57]. Most of the libraries are written in
C++, and include for example bitvectors with support for constant rank and select
operations, which is widely used in more complex representations of graphs and
trees. And a basis for most compact representation of data. This also means that
the PoC is implemented in C++. Other reasons for choosing C++ as a program-
ming language is that Snort and Suricata are written in C, which makes it easy
to reuse certain components. This makes the implementation of the existing rep-
resentations more accurate. C++ is also a fast programming language, thus the

1https://github.com/OISF/suricata/commit/4f8e1f59a6c3d76f49863ddaafb97e04bfecc092

https://github.com/OISF/suricata/commit/4f8e1f59a6c3d76f49863ddaafb97e04bfecc092

Chapter 4: Methodology 29

overhead in the code language itself are low. In addition, some of the libraries
also include functions to measure the space usage, which is valuable and provides
more accurate results.

The two libraries used are the “Succinct Data Structure Library 2.0” by Gog et
al. [55] and “succinct” by Ottaviano et al. [56]. These libraries are chosen because
of recommendations from existing literature and that they both included testing.
They also have decent documentation and together provide a wide set of functions
and classes. The following versions of the libraries are used.

• SDSL Lite - version 2.1.0 [55]
• succinct - commit id: 69eebbdcaa0562028a22cb7c877e512e4f1210b [56]

The output of the PoC captures differences in efficiency between the existing
and the suggested implementation. More about this is given in Chapter 5. Further
details regarding the implementation environment, considerations and descrip-
tions of the implementations are given in Chapter 8. In order to provide verifiab-
ility to the result, the code is uploaded to an open repository on GitHub [58].

4.6.1 Dataset

Experiments in the PoC are conducted using different datasets or rulesets, to see
the performance in various scenarios. The rulesets contain signatures in a plain-
text format, where a signature usually takes one line. However, this is not a re-
quirement. Table 4.1 contains the used datasets. The emerging threats datasets
are taken from the Proofpoint Emerging Threats Rules [59]. While the Snort open
and registered rulesets are taken from the Snort website [60]. The “-all” datasets
contain a collection of signatures for various detection objectives, while the other
ones are aimed towards detecting suspicious traffic in specific network traffic. The
“date” column indicates when the dataset was downloaded. These datasets are se-
lected because they are used within the industry and cover a lot of different types
of traffic. This will provide realistic results to what is expected in a production
scenario. Some targeted datasets are also included in order to see the perform-
ance on smaller datasets. Smaller and targeted datasets contain signatures for
certain environments and types of traffic, which means that they have different
properties than a diverse signature set. Results of this can be only a few ports, and
possibly create different results.

30 MLL: Efficient data structures in IDS

Dataset Lines Source Date Description

emerging-threats-all-snort.rules 59968 [59] 11.Mar.21 All rules from Emerging threats Snort 2.9
emerging-threats-all-suricata.rules 61736 [59] 11.Mar.21 All rules from Emerging threats Suricata 5.0

emerging-threats-policy.rules 2312 [59] 11.Mar.21
Emerging threat rules specific for applications
that can be disallowed in a company based on the
policy (Steam, Torrenting)

emerging-threats-scan.rules 724 [59] 11.Mar.21
Emerging threat rules specific to recognize scanning /
probing (Nessus, Nmap)

emerging-threats-web_server.rules 1470 [59] 11.Mar.21
Emerging threat rules specific to recognize malicious
activity on webservers

snort-community-all.rules 3975 [60] 04.Feb.21
All rules from Snort 2.9 community rules. All commented
lines have been uncommented.

snort-registred-all-3.0.rules 50555 [60] 25.Mar.21 All rules from Snort 3.0 registered ruleset
snort-registred-all-2.9.rules 56611 [60] 25.Mar.21 All rules from Snort 2.9 registered ruleset
all.rules 237351 - - A concatenation of all the rulesets above

Table 4.1: Overview of datasets

Chapter 5

Efficiency Metric

This section describes the term efficiency used in the context of measuring the
performance of data structures, and presents a developed metric to measure effi-
ciency.

From the definition of compact data structures in Section 2.3 and related work
about compact data structures in Section 3.2, it is apparent that space and time
are two central metrics to compare data structures.

One method to find criteria is to see what identifies a good solution to the
problem, as mentioned in the methodology, (see Chapter 4). By looking at a good
solution for the improved representation, the following factors are of interest.

• Low space consumption
• Fast indexing or querying for data
• Straightforward and easy to implement
• Amount of gained space is greater than loss of time

Both space and time, again come up as relevant metrics. When talking about the
term efficiency in the context of compact data structures, both space and time are
key concepts to its performance. Another aspect is the compromise between space
and time, which can make a good solution.

Chapter 3 presented the worst-case entropy of graphs and trees, which is the
optimal space usage. The worst-case entropy is limited by the number of elements
in a set, which is an information theoretical lower bound. Time is measured us-
ing asymptotic growth, which cannot be faster than constant O(1). A challenge
in compact data structures is to improve both space and time to be closest to
its optimal values. Usually, space must be compromised on behalf of time or the
opposite.

5.1 Practical evaluation

The proof of concept (PoC) implementation in Chapter 8 aims to capture the dif-
ferences in efficiency between the suggested improvement and the existing im-
plementation. Because of this, a measure of the compromise between space and

31

32 MLL: Efficient data structures in IDS

time have to be constructed. The metric is presented here.
Figure 5.1 illustrates the compromise between space and time. A reduced

space consumption is of course desired. An optimal result would be a reduced time
usage as well, which is an optimal solution. On the contrary, both increased space
and time consumption is a bad result. On the contrary, a system with high memory
usage can be valuable in certain situations and environments where memory re-
strictions are not considered important, if it is fast. Therefore, a measurement
which captures the compromise between space and time is needed. More spe-
cifically, a measurement which captures the time lost versus the space gained can
determine if it is worth using. Such a metric was developed in this thesis and is
formalised as the following:

We call the space and time usage for the suggested improvement wi and x i
respectively, while the space and time usage for the existing implementation is
we and xe, respectively. The formula described in Equation (5.1) can be used to
determine if the space difference is greater than the time loss.

z = (
we

wi
)/(

x i

xe
) =

we xe

wi x i
(5.1)

The first part of the equation shows the space difference, while the second part
is the time difference. If the time difference is greater than the space difference, it
will result in z < 1, which is undesired. In the opposite case z > 1.0, it means that
the space saved outweighs the time lost, which is an efficient solution, according
to this definition. A higher value is better, or a solution with higher efficiency.

As a summary, space and time determines an efficient implementation and the
difference between them can decide if the solution is worth implementing.

Chapter 5: Efficiency Metric 33

Figure 5.1: Illustration of space and time compromise

Chapter 6

Signature representation

This chapter presents the technical and theoretical analysis of the signature rep-
resentation in Snort and Suricata. The improvements are developed from char-
acteristics of the theoretical models. Customisation and combination of the best
suited compact data structures from existing research, results in two suggested
alternative improvements. An algorithm to perform operations on the data struc-
ture is also developed and presented. Lastly, an evaluation selects the best suited
alternative representation for a proof of concept (PoC) comparison.

6.1 Technical analysis

This section presents a technical description of the signature representation in
Snort and Suricata. It works as a basis for further analysis and modelling. The
signature representation in Snort and Suricata are described in technical terms,
as it is in the code. The description is simplified to only contain the rough layout of
the signature representation and not details in the code during initialisation and
similar. A technical description of the growth rate is also investigated. Analysing
what happens in technical terms when input is added to the data structure will
make it easier to create an abstract model later.

6.1.1 Snort

This section describes technical details about the signature structure in Snort. Fig-
ure 6.1 is the result from the code analysis and describes the internal signature
representation in Snort. An explanation and description follows next. Names from
this figure are taken from the code, will be used throughout this section. Know-
ledge from existing literature are considered when analysing the source code. As
mentioned in the related work (Section 3.1.1), it described a linked list of unique
signature headers containing another linked list with the corresponding signature
options. When analysing the source code, it came apparent that this representa-
tion is deprecated. It can still be seen traces of it, where a _OptTreeNode (OTN)

35

36 MLL: Efficient data structures in IDS

Figure 6.1: Internal signature representation in Snort

references the according _RuleTreeNode (RTN), representing the signature op-
tions and header. The old representation would create many groups where each
new change in a single signature header field (source/destination IP/port etc.)
would make a new RTN node. Traversal of this data structure is linear in time,
which is not optimal.

The current implementation of the signature representation in Snort is based
on the fact that the source and destination ports can limit the relevant signatures
when searching for patterns in network traffic. Not using every field in the sig-
nature header, like before. Signatures are also put into a tree structure for faster
traversal of the data structure.

Firstly, the object _SnortConfig ties all the information in the whole system to-
gether and functions as the root in the tree. The content of the signature is put into
the OTN or other objects referred to from the OTN. Based on the protocol (trans-
mission control protocol (TCP), user datagram protocol (UDP), IP and ICMP) a
corresponding PORT_RULE_MAP is selected. It then limits the number of possible
matching rules further by using the source and destination ports. prmDstPort,
prmSrcPort and prmGeneric are arrays of pointers to a PORT_GROUP, where each
object is indexed on a port. Each array is the size of MAX_PORTS (65536). Se-

Chapter 6: Signature representation 37

lection of the correct PORT_GROUPs is based on the port specification in the rule
header:

1. prmDstPort:
Specified source and destination port
Any source port and specified destination port

2. prmSrcPort
Specified source and destination port
Specified source port and any destination port

3. prmGeneric
Any source and destination port

The PORT_GROUP contains several attributes, where some of them are pointers
to linked lists of _rule_nodes. The correct pointer is selected depending on the
content-type in the rule (uri content, no content or regular content).

Comparing the possible options in the rule header to what’s used by Snort,
the protocol, source and destination port are used together with the content type
to group the relevant rules. The flow direction is also indirectly considered by the
source and destination port.

If we look at the growth rate for the signature representation in technical
terms, the input is a signature or rule. For any signature, a _RuleTreeNode (RTN)
and _OptTreeNode (OTN) object have to be created, which is referenced from
at least one instance of a RULE_NODE object. The representation can be sim-
plified to imagine a RULE_NODE containing the signature header and options
(OTN and RTN). A signature can have two specified ports, which will create two
PORT_GROUP objects with each its own RULE_NODE referencing the same OTN.
A best-case scenario is that all signatures have the same protocol and any source
and destination port in the signature header, which is unlikely. This would put all
the signatures in one port group, which would minimise the amount of structural
overhead. The worst-case scenario will be signatures with different protocols and
specified source and destination ports, which creates multiple references to the
same signature. The initial size of the data structure without any signatures ad-
ded, is quite high because each prm{DstPort,SrcPort,Generic} array is initialised
to 65536 ports (including 0).

6.1.2 Suricata

This section describes technical details about the signature structure in Suricata.
Several details have been omitted, such as temporary data structures used during
the initialisation, in order to focus on the main representation.

Suricata represents the signatures a bit different from what Snort does. How-
ever, the basic structure is similar. Figure 6.2 is the result from the code analysis
and describes the internal signature representation in Suricata. An explanation
and description follows next. Names from this figure are taken from the code and
will be used in the description and as an example throughout the section.

38 MLL: Efficient data structures in IDS

Figure 6.2: Internal signature representation in Suricata

Internally, Suricata creates a tree structure. The object DetectEngineCtx_ is
the main detection engine context, and the root in the tree representation. It sep-
arates the signatures by the flow direction. Flow_gh is an array of flow directions,
which is either to-server or to-client and references a DetectEngineLookupFlow_
object. For TCP and UDP signatures, the protocol and destination port groups
the signatures. Other protocols are not separated by destination port. The signa-
tures are then separated by the protocol and port. The pointers “tcp” and “udp”
in the DetectEngineLookupFlow_ object, are references to a DetectPort_ object
(port object), which describes a port or port-range (port:port2). Port objects are
contained in a doubly linked list, where the protocol points to the head of the
list. For other protocols, the “sgh” array is used instead, which points directly to
a SigGroupHead_ avoiding the port object. Each linked list of Signature_ objects
is referenced to by a SigGroupHead_ object, acting as a pointer to the head of the
list. Lastly, the Signature_ object contains, or references the data in a signature.
The representation is built by traversing the data structure, adding the signatures
to the correct branch depending on the flow direction, protocol and port.

In order to conserve memory, Suricata has a feature to limit the amount of port
groups, which makes the representation more adjustable than Snort. Fewer port
groups will lead to lower performance, but lower memory usage and contrary,

Chapter 6: Signature representation 39

more port groups will lead to higher performance but higher memory usage. With
less port groups, more signatures will be grouped together causing irrelevant sig-
natures to be merged with relevant ones for the current traffic. On the contrary,
a high number of port groups can cause only relevant signatures to be in a port
group, but results in more memory usage to represent all the extra objects and
pointers this causes. It works by firstly sorting the signatures based on some cri-
teria, for example number of signatures in a port group etc. Each port object in the
list is then iterated and added until a specified limit is reached. When the limit is
reached, the rest of the port objects are merged into one group in the linked list.
This means that, for example, port objects with few signatures will be merged,
and not have their own port object in order to conserve memory. Comparing the
possible options in the header that classifies a rule, Suricata uses the destination
port, flow direction and protocol.

Even though there are differences between the signature representation in
Snort and Suricata, they are quite similar on a general level. A simplified model
of the signature representation in Suricata is quite like Snort, in the sense that it
separates the relevant signatures using a tree and linked lists. Each leaf on the
tree contains a SigGroupHead_ with a linked list of Signature_ objects, which is
a merged version of the RTN and OTN nodes in Snort. For each added signature
with a unique port, a SigGroupHead_ is created and referenced to by a port object
in the case of an UDP or TCP rule. The doubly linked list of port objects utilises
more memory per node than a singly linked list, but also allows for traversal in
both directions and more efficient insertions and deletions. Compared to Snort,
this data structure does not allow for multiple references to a single signature,
because the combination of a destination port range and flow direction are unique.
If a rule has the any keyword as a port, the port range will simply be 0 to 65535.

6.2 Theoretical analysis

This section builds on the findings from the technical analysis (Section 6.1), and
analyses the data structures on an abstract and theoretical level in order to find
fundamental elements which can be changed in order to improve the representa-
tions efficiency.

6.2.1 Abstraction

A decision tree is a type of data structure which is used in machine learning to
model a decision [61]. It consists of vertices representing a decision and edges
representing mutually exclusive alternatives. For example, a protocol can either
be TCP or UDP, but not both at the same time (not considering encapsulation).

If we look at the technical analysis and consider the objects as vertices and
their inheritance as edges, the signature representation in Snort and Suricata fits
the description of a tree (see Section 3.2.3). More specifically, an ordinal tree
where one node is considered root (rooted) [36]. Following the definition of a

40 MLL: Efficient data structures in IDS

decision tree, an abstraction of the signature representation resembles a decision
tree, where the edges are labelled according to some criteria, for example port,
flow direction etc. depending on the depth. A node’s depth is set to the time when
the decision happens related to the other decisions. Leaf-nodes represent con-
sequences for that decision path or branch in the tree. We call the vertices repres-
enting the signatures data, while the vertices representing the path to the “data
nodes” the skeleton.

6.2.2 Analysis

A tree can be realised in different ways, but most used are pointers to show the
relation between vertices. Although the signature representations in Suricata and
Snort are different on a technical level (see Section 6.1), a similarity is that they
both use pointers.

Space

In order to measure the space requirements of a pointer-based tree, it is of interest
to know how many bits are required to represent a number of vertices. A pointer
based tree with m vertices and n pointers, use a minimum of n log m bits. This
is because each pointer has to differentiate between m unique vertices [7]. In
practice however, one computer word (w) is used per pointer which makes it
consume wm bits instead. Depending on the type of system, the size can either
be 64 or 32 bits, but a 64-bit word size is most common. Difference in space
consumption between Snort and Suricata is reduced to the number of vertices
and pointers in the representations.

Time

Recall, the purpose with the signature representation in Snort and Suricata, is to
select a group of relevant signatures based on the current network traffic (see Sec-
tion 3.1). This can be seen as traversing a decision tree based on some criteria. It is
of interest to perform this traversal as efficient as possible. Different operations on
a tree exist and are of varying degree of relevance, depending on the purpose and
goal of the representation. Navarro [7, pg.213] lists operations on ordinal trees
in “Compact data structures”, where relevant queries on a tree when traversing it
are the following:

• root(): find the root node
• children(): number of children to a node
• child(t): t ’th child of a node
• nsibling(): next sibling of a node
• childlabelled(l, t): t ’th child of a node with the label l

Supported operations in O(1) on a classical representation of a tree based on
pointers are limited to the first child, next sibling and t ’th child [38]. The same

Chapter 6: Signature representation 41

can be considered for the root operation. Arroyuelo et al. [38] implemented a
pointer based tree and realised that the child(t) operation required one memory
access and took around 18-31 nanoseconds (ns). Another realisation is that such
an implementation can be viable in systems which have enough available memory,
because it offers fast access to certain operations. Limiting the required operations
of a representation can help to find a data structure, which offers better efficiency.

6.2.3 Characteristics

The characteristics of the tree can help to select an improved representation. Max-
imum amount of children to a node is 216, when considering one vertex for each
port like in Snort. Secondly, the vertices contain attributes, especially in the leaf
nodes, which represent the signature content. After the tree is built, it is static un-
til more signatures are added. The main structure of the decision tree (skeleton)
is built during the initialisation and kept static during the runtime. As mentioned
during the technical analysis, the signatures are grouped into different levels (see
Section 6.1). In Suricata, the number of nodes in the skeleton depends on the
number of unique ports in the signature headers. The number of bits compared
to the amount of edges are quite high and wasteful, considering the wm space
consumption. Thus, the relation between the vertices consumes space. Another
characteristic is that the leaf nodes have attributes which needs to be considered
in the suggested improvement.

6.3 Suggested improvement

This section presents two alternative improvements for the representation of sig-
natures in Suricata and Snort. The characteristics from the abstract version of
the representation (see Section 6.2) and the abstractions information theoret-
ical lower bound space usage and time consumption determine the new improve-
ments.

By reducing the number of bits required to represent the edges in the tree,
a more compact representation can be used. In this case, moving away from a
pointer based representation to a bitvector based one, can reduce the space con-
sumption of the tree closer to optimal. However, the traversal time depends on
the required operations on the data structure. Using techniques from compact
data structures, the time it takes to navigate the representation can still be low.
Thus, ensuring an efficient representation.

6.3.1 Alternative one

This section presents the first alternative representation of the signature repres-
entation. Section 6.2 modelled the signature representation in both Snort and
Suricata as a decision tree, where each leaf node is a set of signatures. This sec-
tion splits the alternative suggestion into two parts, where one is the skeleton and

42 MLL: Efficient data structures in IDS

the other connects the signatures to the skeleton. The first part presents a data
structure which is closer to the information theoretical minimum for a labelled
tree, using the best fitting compact data structures from previous research. The
second part connects a set of signatures to a certain branch in the tree, using a
developed algorithm and according data structures.

Figure 6.3 shows an illustration of the suggested improvement, and is used
during the section as an example and reference. The edges are labelled according
to fields in the signature header. In this example, the nodes in the second level are
divided by the flow direction. The label c means flow direction “to client” while s
represents “to server”. Then, the nodes are further divided by the protocol, where
T means TCP, while U means UDP. Below that, the ports used by the signatures
(Pi) decides where the signature decides in the tree. The alternative representa-
tion consists of two bitvectors (B, Bv), one sequence (S) and one array (Sv), which
is further explained in the following sections.

Figure 6.3: Signature representation improvement - alternative one

Chapter 6: Signature representation 43

Structure

In order to suggest a compact representation for the labelled tree (first part), it
is valuable to know which operations are needed in the abstract data structure.
Recall, from the theoretical analysis of the abstract signature representation, im-
portant operations on the data structures is to find a child node with a specific
label. For a labelled tree, Navarro [7, pg.220, 244] suggests the LABELLEDCHILD
algorithm seen in Algorithm 1, to find a node with a certain label in a LOUDS
representation. The operations shown here are of interest to perform in as little
time as possible in order to achieve an efficient improvement.

Algorithm 1: Operations on a labelled tree using the LOUDS represent-
ation of a compact tree [7, pg.220, 244]

Input : labelled tree T (seen as the sequence S and bitvector B) label l,
current state v and index j

Output: The destination vertice
1 Procedure NODEMAP(i):
2 return rank0(B, i)

3 Procedure NODESELECT(v):
4 return selec t0(B, v) + 1

5 Procedure CHILD(i, j):
6 return NODEMAP (selec t0(B, rank1(B, i + j)) + 1)

7 Procedure LABELLEDCHILD(l, v, j):
8 i←− NODESELECT (v)
9 s←− rank1(B, i)− 1

10 return CHILD (i, selec t l(S, rankl(s) + j)− s)

Two different indexes are used, which can cause confusion and must be ex-
plained. One is the node identifier (ID) v, which is the node ID shown in Figure 6.3
as numbers inside the circles. The other one is the nodes index in B, which is called
i. Nodeselect converts the node ID to an index in B, and opposite for nodemap. The
procedure on Line 7 takes a node ID and a label as arguments and returns the j’th
child with that label.

From these operations, it is apparent that rank and select operations on the
bitvector B have an impact on the time usage. Another observation is that only
simple queries on the tree B are required, such as child, which can be solved using
rank and select. The LOUDS structure has the option to support constant time rank
and select in 2n bits, which is optimal for simple queries. However, the represent-
ation is limited by its operations, as mentioned in Section 3.2.3. DFUDS supports
more operations, but cannot perform them in constant time with the same space
as LOUDS. Because advanced operations are not required, it is more efficient and
simpler to use LOUDS. Such a representation has asymptotically optimal space
usage, with possibilities for constant time queries, as explained in Section 3.2.3.

44 MLL: Efficient data structures in IDS

Thus, using the fundamentals of data structures from previous research are best
suited for this part of the representation.

A LOUDS structure represented as a bitvector, cannot support labels in a la-
belled tree. Thus, a sequence S is needed as well containing the labels. A poten-
tial time bottleneck in Algorithm 1 is select and rank operations on the sequence
S. Using a plain array would require a linear search, which is too slow. Wavelet
trees, however, can perform these operations in logarithmic time O(log σ), and
are chosen instead.

Because one signature can be referenced by multiple ports, references to sig-
natures from a path in the tree will be space consuming. This is the background
for the development of the array Sv , representing the connection between the de-
cision tree and signatures (second part). When this array is constructed, it is of
interest to read the elements within it, which means an array would offer bet-
ter compression rates and access times compared to a sequence. The bitvector
Bv separates the elements between the port groups, instead of using a sequence
per group, which would require a reference (pointer) to each one. For example,
the first portgroup contains three signature references, which means that the bits
1000 is inserted into Bv . Because the number of vertices in the skeleton is static, it
can be used to get an index into Sv with the algorithm seen in Algorithm 2, which
was developed.

Algorithm 2: Find signatures in a portgroup, based on the node identifier
Input : The sequence Sv and bitvector Bv with a node identifier v
Output: Relevant signatures for a node ID (port group)

1 Procedure GETSIGNATURES(v):
2 i←− rank0(Bv, selec t1(Bv, v + 1))
3 j←− rank0(Bv, selec t1(Bv, v + 2))
4 for i to j by 1 do

/* Do action on Sv[i] */

For example, if we use Figure 6.3 and portgroup 1 (v = 1) which contains the
signature reference 1, the following operations would take place. selec t1(Bv, v +
1)) would return 5, because the second 1 in Bv is located at position five. i would
then be 3 because there are three zeroes before position five in Bv. The same
process happens with j, where the position is incremented by one in order to get
the start of the next index, which is the end of the current.

Construction

The LOUDS tree is created by a level order insertion of nodes. For each node, the
bits 1c0 are inserted into B, where c is the number of children to a node. If a node
is a leafnode (no children), 0 is inserted into the bitvector. In addition, labels are
inserted into the sequence S when adding a nodes child. The tree itself, meaning

Chapter 6: Signature representation 45

the LOUDS structure B and S can be built prior to adding the signatures. When the
signatures are added, the tree is traversed according to the header information
in the signature. A reference (pointer) to a signature is added to the sequence
Sv, representing the connection between the decision tree and signature for a
particular branch. 10n is inserted into Bv for the n signatures tied to a particular
branch. Drawbacks here is that the port groups must be predefined before the
signatures are added in order to preserve the leafrank index into Sv.

Time and space

If we compare this alternative representation’s time and space usage to the exist-
ing implementation, it is slower but offers a more compact representation. Tra-
versal of the LOUDS representation of a labelled tree is limited to the O(log n)
operation times on the wavelet tree containing the labels (S). However, it is com-
pact with O(n)+n log σ+o(n log σ) bits. If we use Elias-Fano codes to represent
the array Sv we can achieve a low space usage, as well as fast access times (See,
Section 3.2.1).

6.3.2 Alternative two

This alternative is based on the same thought as the alternative one, where the
representation is divided into two parts. It uses a LOUDS labelled tree for the first
part (skeleton), like in the alternative one. The difference is in the second part,
which is using the leaf nodes index to connect a signature to a port. Figure 6.4
shows an illustration of the suggested improvement. The figure use the same labels
as explained in the first alternative.

Structure

In this alternative, the whole tree is represented using the LOUDS structure. When
adding a signature to the structure, the tree is traversed according to the flow
direction, protocol and port. A new child node without a labelled edge, marked
as x , is then added to the vertex pointed to by the port edge. The node ID of the
leaf nodes, index the relevant signatures directly instead of a helper array like
alternative one. This would lead to a space consumption of 2n bits which is less
than the bits used with Elias-Fano codes in Sv plus the size of Bv in alternative
one (see Section 6.3.1). A drawback is that the index of the other nodes is shifted
when inserting a signature. Because the bitvector Bv must be built by a level-order
traversal of the nodes, adding nodes different from this traversal would make the
operations incorrect. This means that some temporary storage is required to get
the order of the nodes correctly, before inserting them in the bitvector.

LOUDS representation supports a nextchild operation in constant (O(1)) time,
which is helpful when iterating the relevant leaf nodes [7]. Another drawback
with this representation is that the original references to the signatures in sig_list
would must be kept in its original form, with pointers. This would require at least

46 MLL: Efficient data structures in IDS

Figure 6.4: Signature representation improvement - alternative two

n log n bits, which is in practice wn, to store the n signatures and pointers, which
is a waste of space. In the alternative one (see Section 6.3.1), the sig_list array is
not needed because the references is stored directly in the Sv array, which requires
fewer bits. Because of this, the space consumption would be higher than with the
alternative one, with a quadratic space complexity in practice, which is like the
existing implementation.

6.3.3 Evaluation

From the technical analysis of the signature representation in Snort and Suricata,
we see that the existing implementations can be seen as a labelled tree. Based
on the worst-case entropy of a labelled tree, we see that there is a gap between
the existing implementation and the theoretical optimal space usage. From the
characteristics of the signature representation, we see that moving away from a
pointer-based representation to the one based on bitvectors can bring us closer to
this lower bound space usage. Two alternatives were presented, where a LOUDS
version of a labelled tree was used because the required operations on the tree
were quite simple. Using a compressed array for the signature references, as in
alternative one, allows for using pointers directly to the signatures and therefore

Chapter 6: Signature representation 47

avoiding the dominating n log n term, as in the alternative two.
Because of this, alternative one are chosen as the best alternative represent-

ation and is implemented in a PoC practical experiment (see Chapter 8). It is
compared to the existing representation using the efficiency metric from Equa-
tion (5.1).

Chapter 7

Fast pattern matcher

This chapter presents the technical and theoretical analysis of the fast pattern
matcher - Aho-Corasick deterministic finite state automaton (DFA) in Snort and
Suricata. The improvements are developed from characteristics of the theoretical
models. Customisation and combination of the best suited compact data structures
from existing research, results in two alternative improvements. An algorithm
to perform operations on the data structure is also developed and presented.
Lastly, an evaluation selects the best suited alternative representation for a proof
of concept (PoC) comparison.

7.1 Technical analysis

This section presents a technical description of the fast pattern matcher in Snort
and Suricata. It works as a basis for further analysis and modelling.

7.1.1 Snort

Figure 7.1 shows the internal representation of the Aho-Corasick DFA implement-
ation (Version 1). Names used in this figure are taken from the code in Snort, and
will be used during this description.

Several implementations of Aho-Corasick exist in Snort, but this version is con-
sidered because of comparability with Suricata. Existing literature have done the
same when conducting a quantitative comparison of the two intrusion detection
systems [44].

It is quite a straightforward implementation of the original Aho-Corasick
algorithm. A two-dimensional array is used to store the state transition table
(the goto function). The ACSM_STRUCT object is the main reference to the
data used by the Aho-Corasick algorithm. It contains an array of pointers to
ACSM_STATETABLE objects, one for each state. This represents one dimension of
the state table. The NextState array represents the other dimension, covering the
alphabet length which is 256 (ASCII). It contains the next state in the automaton.

49

50 MLL: Efficient data structures in IDS

Figure 7.1: Snort fast pattern matcher representation

Each state also has a MatchList, which is a singly linked list of patterns termin-
ated at this state. During the construction of the data structure, the NFA is built
first using the FailState as a temporary pointer representing fail state transitions
for each valid state. However, from the code, it does not seem like this pointer
is freed when converting the NFA to DFA, which leads to unnecessary use of
memory. Next, the DFA is built by resolving the fail state transitions and inserting
their destination into the state transition table.

7.1.2 Suricata

Figure 7.2 shows the internal representation of the Aho-Corasick DFA implement-
ation (Version 1) in Suricata. Names used in this figure are taken from the code,
and will be used during this description.

The internal representation of the fast pattern matching algorithm, Aho-
Corasick is a bit more advanced and optimised than with Snort. However, on a gen-
eral level they are still quite similar. A two-dimensional array (t_state_table_u{16,32})
is also used in Suricata to represent the transition state table. One dimension is
the current state, while the other is the alphabet size (ASCII). Suricata optimises
the amount of memory used depending on the number of states. If there are
more than 216 states, 32-bit are used in the transition table instead of 16-bit, in
order to limit the unused bits (overhead). This feature makes Suricata consume
less memory than Snort in certain scenarios. Some additional data structures are
used during construction of the state table, such as a goto- and failure-table and a
linked list of patterns. However, these are all freed after construction of the DFA,
and consequently not considered as a part of the final data structure. The object
SCACOutputTable_ contains a list of pattern identifiers terminating in a given
state. A pattern ID refers to a SCACPatternList_ object, containing a signature id

Chapter 7: Fast pattern matcher 51

Figure 7.2: Suricata fast pattern matcher representation

(sid) as well as character pointer to the case sensitive pattern (cs).
Suricata’s and Snort’s internal representation of the Aho-Corasick algorithm

are quite similar. Suricata has the advantage that it limits the pointer size, to fit
better when there are fewer states. The representation is very space consuming
because each state has initialised as many pointers as the amount of symbols in
the alphabet. The main difference is how they reference the output function, to
find possible matching signatures. However, it is not relevant in this case where
the focus is on the efficiency of the DFA state transition table.

7.2 Theoretical analysis

This section is an extension of the technical description of data structures in Sur-
icata and Snort. It aims to analyse the existing implementation of the fast pattern
matcher in the two systems.

7.2.1 Abstraction

The implementations of Aho Corasick DFA in Snort and Suricata is quite similar.
A two-dimensional table is used to store the state transition table (the goto func-
tion), which is the main data structure in the algorithm. This results in a matrix,
M[1, n][1,σ] where n is the amount of states and σ number of characters in the
alphabet. An entry in the table is a reference to the next state from a particular
state and character. The state transition matrix can be modelled as a labelled graph
where an edge from a source to a destination vertex, plus a label on the edge from
the set of states indicates the next vertex (state). A transition is uniquely identified
by a tuple (si , s j ,σk), where σk is a label and si and s j is a source and destination
vertex.

52 MLL: Efficient data structures in IDS

7.2.2 Analysis

The matrix used to represent the state transition table in Snort and Suricata is
based on pointers. This section aims to analyse this implementation with regards
to space and time.

Space

A two-dimensional matrix, especially based on pointers, is quite space consuming.
It is not practical unless the graph is very dense or in other words, the nodes have
a high degree. An adjacency matrix M[1, n][1,σ] requires nσ bits [7]. However,
that indicates that each entry in the matrix uses one bit, and typically means that
M[i][j] = 1 if node i is adjacent to node j. This is not the case with the state
transition table in Snort and Suricata, because two nodes can be adjacent only
with certain labels. The labels are chosen from the number of states n, which
means that the amount of bits needed to represent the matrix is at leastσn log σn,
because σn pointers have to separate between σn different vertices or entries
in the matrix. When comparing with the lower bound space usage of a directed
labelled graph (see Section 3.2.4), there is a huge gap between the current space
usage and the worst-case entropy. In other words, there is room for improvement.
A challenge is that the number of edges in the graph e is not a part of the equation,
because it is assumed that e = nσ in the two-dimensional matrix.

Time

By modelling the state transition table as a labelled graph, the goal is to traverse
the graph. Based on input from the search text, a new vertex is chosen. In the
two-dimensional state transition matrix based on pointers, the access times are
constant, because it requires one memory access for an input state and charac-
ter to get the next state. It has presumably similar access times as the signature
representation, in nanoseconds.

7.2.3 Characteristics

A characteristic when modelling the Aho-Corasick DFA state transition matrix as
a labelled directed graph is that each state has an equal amount of edges. Each
state also has no duplicate labels, meaning that each edge has only unique labels
for a certain state. The matrix is also supposed to be quite sparse, with more
labelled edges to state zero than any others. These characteristics allow us to
further simplify the representation, in order to save both space and time, making
it more efficient.

Chapter 7: Fast pattern matcher 53

7.3 Suggested improvement

This section presents suggested improvements for the fast pattern matcher. Char-
acteristics from the abstract version of the representation (see Section 7.2) and
the abstractions information theoretical lower bound space usage and time com-
promise determine the new improvements.

7.3.1 Alternative one

This section presents the first alternative representation for the fast pattern
matcher or Aho-Corasick DFA state transition table. It is based on clustering
in the state transition table, when only a few characters in the alphabet are used
more than others.

Structure

Recall, the DFA state transition table can be modelled as a labelled graph, which
has a worst-case entropy described in Section 3.2.4. This alternative is based on a
hypothesis that only a few of the labels in the alphabet are used in practice. If only
a few labels or bytes are used by the rules in practice, this can result in a clustered
graph which can be taken advantage of to create a compact representation.

In order to test out this hypothesis, a program was used to parse the content
field in all the datasets used in this thesis, (see Code listing A.10) to see if some
characters are used more than others. The result can be seen in Figure 7.3, and
shows that this is indeed the case.

Figure 7.3: Byte frequency in all the datasets

Only 21 bytes out of 28 have a frequency greater than 0.01. From the figure
we can see that they cluster around the upper and lowercase letters of the English
alphabet.

54 MLL: Efficient data structures in IDS

The first alternative representation builds on this idea and is based on the
edge triple (si , s j ,σk), which identifies a transition in the state transition table
(see Section 7.2). It can then be represented as a point in the three-dimensional
plane. This introduced an idea of using a k3-tree to represent the triple, or a k2-
tree with weighted points, A benefit with a kn-tree is that it is well suited for
clustered graph, because an area without nodes consumes few bits in the data
structure (see Section 3.2.4).

Recall, a binary relation between two states can be modelled as an adjacency
matrix. The idea is then to add a third dimension to the adjacency matrix, which
contains the labels for each state. Large areas without a relation can be repres-
ented using a few bits, using a k3-tree. Figure 7.4 shows an illustrative example,
using the state transition table from Figure 7.5.

	0

	1

	2

	3

	4

	5

	6

	7

	0
	1

	2 	3
	4

	5 	6
	7

	0

	1

	2

	3

	4

	5

(si,	sj,	σk)

sn

sn

σn

Figure 7.4: Fast pattern matcher improvement - alternative one

The three-dimensional space is divided into 23 areas. In this example, there is

Chapter 7: Fast pattern matcher 55

a tendency for the points to cluster together and three areas contain none or very
few points.

From the existing literature, a k3-tree was used in compact representation of
LiDAR points (see Section 3.3.2) [45]. Relevant operations on LiDAR point clouds
are to get objects within a region, which is not relevant or transferable to this
scenario. Existing literature about representing a labelled directed graph as a k3-
tree and relevant operations were not to be found. However, Navarro [7, p.293]
states that the procedure adjacent, which tells if there is an edge from one node to
another, can be completed in O(logk n) time on a k2 tree. It is not certain whether
this is transferable to a k3 representation.

Other literature points out that the kn-tree generalisation of a k2-tree is not
suitable for n > 2 [43]. This is because it is hard to find sparsity and clustering
in three-dimensional or higher datasets. Instead they suggest using a layered ap-
proach where each Z-dimension is partitioned into a separate k2-tree, which is
named Interleaved K2-tree (IK2-tree). The root has then k children with |Z | bits
each instead of k bits for each node. A similar structure to the k2-tree allows
for similar time guarantees and space usage. Experimental results were obtained
by testing the IK2-tree on Resource Description Framework (RDF) dataset which
contains the tuple (subject, predicate, object). By considering the predicate as the
label in the state transition table, we get the query (s,p,?). This corresponds to the
“neighbour” query, which finds the next state based on a label and a state. From
the experimental results in the paper for that query, the IK2-tree was slower than
the existing representations. However, it is quite compact.

7.3.2 Alternative two

While the first alternative was based around clustering in the state transition mat-
rix, this alternative suggests an improvement based on its abstraction and char-
acteristics. Recall, Section 7.2 modelled the state transition matrix as a labelled
directed graph. An issue with the current implementation, is the quadratic size
of the matrix which makes it space consuming. Characterises from the matrix are
used to find a more efficient improvement. An example of a DFA state transition
matrix and the suggested alternative representation is shown in Figure 7.5, using
the patterns “snort”, “on” and “snow”. This figure is used throughout the section,
as a reference and example.

Structure

First, we give some background theory of a labelled graph other than what was
explained in Section 3.2.4. Navarro [7, p.290] presents an algorithm to find the
neighbour of a node with a certain label, which is shown here in Algorithm 3. It
utilises two sequences and two bitvectors to represent a labelled graph. The se-
quence N contains a concatenation of unique node identifiers, where the bitvector
BL separates the identifiers by their labels. L contains the edge labels in the order
of the adjacency list, where a similar bitvector B groups the labels by the source

56 MLL: Efficient data structures in IDS

Figure 7.5: Fast pattern matcher improvement - alternative two

node, as explained in Section 3.2.4. Thus, p and r are calculated using the node
identifier v and label l. The two bitvectors are required, because a node can have
an arbitrary amount of edges to other nodes. Next, the offset q is calculated by
counting how many occurrences of the label l happens up to the index p in L.
Since N is grouped by labels, the correct label group r and offset into that group
q is summed up to find the next state.

Algorithm 3: Operations on a labelled directed graph, where a node can
have arbitrary amount of edges with any label [7, p.290]

Input : labelled directed graph G (seen as the sequences N and L,
bitvectors BL and B), label l, current state v and index j

Output: The next state
1 Procedure NEIGH(G, l, n, v):
2 p←− select(B, v)− v
3 r←− select(BL , l)− l
4 q←− rankl(L, p)
5 return N[r + q+ j]

Due to the characteristics of the state transition table in Aho-Corasick DFA
modelled as a labelled graph, the Algorithm 3 can be improved in order to fit this
model. Based on these observations, the following improvements are suggested.

Because all states have the same amount of edges, there is no need for a

Chapter 7: Fast pattern matcher 57

bitvector to separate the labels. Thus, p can be calculated using the state v and
alphabet size σ.

p←− (vσ) (7.1)

Because each state has the same amount of edges in the same order, L can be
omitted as well. The calculation of q can then be simplified.

q←− p/σ

q←− v
(7.2)

Thus, there is no need to calculate p either. Since, BL serves the same func-
tionality as B, it can be removed and replaced as well using the label (character
in the search text - l) and number of states (n).

r ←− ln (7.3)

This results in a simpler calculation of the index in N , compared to the original
one. However, it assumes that array N is of quadratic size, which is space consum-
ing. Because most of the indexes in the state transition matrix are presumed to
be zero, the array can be made shorter using the help of a bitvector Bs[1, nσ].
Here Bs[i] = 1 if the entry in the matrix is not zero. N can be used to only store
the non-empty entries in the state transition matrix, called S. This is shown in
Figure 7.5. Algorithm 4 was then developed to select the next state based on the
labelled edge from a current state. The suggested improved representation is a
compact representation of a concatenated and ordered adjacency list. It utilises
one array S and bitvector Bs in order to represent the data.

Algorithm 4: Operations on a labelled directed graph, where each node
has the same amount of unique edges

Input : labelled directed graph G (seen as the array S and bitvector Bs),
label l, number of states/nodes n, current state v

Output: The next state
1 Procedure NEIGH(G, l, n, v):
2 p←− (ln) + v
3 if Bs[p] then
4 return S[rank(Bs, p)]

5 else
6 return 0

Space and time

In order to achieve a compact representation, the array S can be compressed using
Elias-Fano codes. It is chosen because of a close to optimal space usage, and fast

58 MLL: Efficient data structures in IDS

access times (See Section 3.2.1). The space consumption of S and Bs depends on
several input variables. Alphabet size (σ) and number of states (n) makes the size
of the table, which equals the number of bits in Bs[1, nσ]. The size of S on the
other hand, depends on the non-zero states in the table. In the worst-case, there
are no zero-states in the state transition matrix which makes S[1, nσ] as well. By
looking at the byte frequency in all the tested datasets (see Figure 7.3) this is not
the situation.

7.3.3 Evaluation

The first alternative improvement for the fast pattern matcher is about using a
k3-tree to represent the three-dimensional state transition matrix of a directed
labelled graph. By using the IK2-tree variant, it is possible that a compact repres-
entation can be used. However, the worst-case time guarantees and results from
experiments described and performed by existing literature can make the altern-
ative quite slow. It is not certain whether the three-dimensional state transition
table is equally sparse and clustered for all datasets.

Because of this, alternative two was selected amongst the suggested improve-
ments to the fast pattern matcher, and will be implemented in a PoC comparison.

Chapter 8

Experimental Result

This chapter implements the selected alternatives from Section 6.3 in C++, as men-
tioned in Chapter 4 and compares their efficiency using the developed metric from
Equation (5.1). Two programs are made to compare the alternatives to the ori-
ginal implementations, one comparing the fast pattern matcher and the other, the
signature representation. The results are presented after describing the setup and
programs used to get the results. For reproducibility and transparency reasons,
the programs have been uploaded to GitHub [58].

8.1 Environment

This section describes the testing environment which is used to get the results.

8.1.1 Physical setup

The experiment is conducted on a Lenovo ThinkPad T460P with the following
specifications and environment:

• OS: Manjaro Linux 20.2.1 Nibia
• Kernel: x86_64 Linux 5.10.18-1-MANJARO
• Disk: 500G
• CPU: Intel Core i5-6300HQ @ 4x 3.2GHz
• GPU: Mesa Intel(R) HD Graphics 530 (SKL GT2)
• RAM: 15876MiB

8.1.2 Logical setup

The compiler g++ version 10.2.0, with the flags “-std=c++17 -O3 -ffast-math”
is used to compile the programs for this experiment. Libraries mentioned in Sec-
tion 4.6 are used with the following requirements and versions:

• Boost - version: 1.75.0
• CMake - version: 3.20.2

59

60 MLL: Efficient data structures in IDS

8.2 Description

This section describes the programs used to compare the alternatives and their
existing representations.

8.2.1 Signature representation

To test the original signature representation as it is in Snort and Suricata against
the improvement, it is of interest to measure space consumption and time usage.
Space consumption is measured when the data structures are built. Time usage on
the other hand requires a bit more explaining. Recall, the objective with the sig-
nature representation is to select a relevant group of signatures for the incoming
network traffic. For example, transmission control protocol (TCP) signatures are
not relevant for network traffic using the user datagram protocol (UDP) protocol.
Therefore, the time usage is measured by the time it takes to traverse one path
of the signature tree. To capture the essence of the original implementation, as it
is in Snort and Suricata, a pointer-based tree representation are created by using
flow direction, port and protocol to separate the signatures into groups.

The space consumed by the signatures themselves is not included, because it
does not differ between the original and the improved representation. The com-
plete program used in the proof of concept (PoC) can be found in Code listing A.1,
but a rough explanation of the program flow follows and is shown in Algorithm 5.
Firstly, a replica of the original implementation is made using parts of the code
from Snort to make it similar to the existing representation. The signatures are
parsed and added to a linked list at the correct branch in the tree. Next, the al-
ternative representation is made by first building the skeleton according to certain
fields in the header. Depending on the header information in the signature, the
skeleton is traversed. A pointer to the signature is then added to a temporary array
as an unsigned integer, which is later used to create the array Sv and bitvector Bv
grouping the array by ports.

The last signature in the branch containing most signatures is chosen as a
search object. Data from this object (flow direction, protocol and destination port)
is used to search for a matching group of signatures and record the time in both
implementations. The correctness of the alternative implementation is ensured by
counting the number of signatures in the branch of the search object and compar-
ing them to the original. For example, if 15 signatures have been categorised as
flow direction to server, protocol TCP and port 80 in both the original implement-
ation and the alternative one, we can assume that the rest have been categorised
correctly as well.

8.2.2 Fast pattern matcher

The fast pattern matcher PoC is based around comparing the space and time for
the original implementation against the suggested improvement. Space consump-
tion is also measured when the data structures are built. References to a match

Chapter 8: Experimental Result 61

Algorithm 5: Signature representation - proof of concept overview

1 Parse the signature file
2 for number of runs do

/* Build the original representation */
3 Initialise objects in the static part of the tree (skeleton)
4 for signature in signatures do
5 Traverse the tree based on the signature protocol and flow

direction
6 for port in signature.ports do
7 Add a pointer to the signature in a linked list to the correct

branch, based on the port

/* Build the improved representation */
8 Find all the ports in use by the signatures O(n)
9 Allocate a labelled tree and add the static nodes (skeleton)

10 for signature in signatures do
11 Traverse the tree based on the signature
12 for port in signature.ports do
13 Add a signature pointer to a temporary two-dimensional array,

indexed on the port

14 Build the signature reference array Sv and bitvector Bv from the
temporary array

15 Record space usage from both of the structures
/* Searching */

16 Find a reference to a signature of which to search after
17 Traverse both the original and the improved representation using

Algorithm 2, and record the time it takes to find the signature
18 Assert that the suggested improvement finds as many signatures as

the original
19 Save time and space information
20 Delete and free the allocated objects which are not overwritten

21 Calculate the efficiency using the collected info and Equation (5.1)
22 Write collected information to I/O

62 MLL: Efficient data structures in IDS

(MatchList) is not accounted for, because they are the same in both the improved
and existing representation. Temporary data structures used during initialisation
are not considered as a part of the space consumption either. To compare the time
usage of the fast pattern matcher, it is of interest to compare the time spent search-
ing through a search text. Various search texts have been tested. In order not to
introduce any biases to the algorithm, it is important to have close to a uniform
distribution of bytes in the search text. The PoC is meant to serve as a general test
of the performance, and thus every possible case of bytes in the search text has to
be accounted for. If the algorithm are run with only numbers and letters in upper-
and lowercase, it could be performing differently with different input characters.
Various search texts with the size of 10KB are generated with the following UNIX
commands:

$ head -c 10K </dev/urandom > mixed.txt
$ head -c 10K </dev/urandom | base64 | head -c 10K > common.txt
$ head -c 10M </dev/urandom | grep -P -a -o "[^\x00-\x7F]" | tr -d "\n" | head -c

10K > less-common.txt

Figure 8.1 presents the byte frequency for the generated search texts used in
the tests. It shows that the entropy of the search text in Figure 8.1a, containing
a mix of all the 28 bytes, is quite high. The two other search texts, Figures 8.1b
and 8.1c represent common and less common letters in the rulesets, according to
the test in Figure 7.3.

The complete program can be found in Code listing A.2, but a rough program
flow is as follows and is shown in Algorithm 6. Firstly, an input file of signatures
is parsed and the longest content string of each signature added to the fast pat-
tern matcher. An almost direct port of the Aho-corasick DFA algorithm from snort
(from the file “acsmx.cpp”) is used to represent the original implementation, and
build the DFA state transition table. The modifications made do not impact the
space usage or time consumption of the algorithm, because they do not affect the
algorithm’s general functionality. Time it takes for the original representation to
search through the search text is registered. Next, the alternative representation is
made by iterating the state transition matrix and adding the states which are not
zero to the array S, as explained in Section 7.3.2. A “0” is added to the bitvector
Bs for each zero state and a “1” for the rest.

8.3 Results

After the PoCs are implemented and tested, results for various data-sets are col-
lected and analysed. Table 8.1 shows the results for the signature representation,
while Table 8.2 shows results from the fast pattern matcher.

100 runs are conducted in order to capture the variation in runtime, which
depends on other tasks the CPU has as well as other miscellaneous outside factors.
All input/output (I/O) operations and printing statements are disabled during the
experiments to prevent unexpected waiting for I/O time to impact the results. In

Chapter 8: Experimental Result 63

Algorithm 6: Fast pattern matcher representation - proof of concept
overview
1 Parse the signature file
2 Read the input search text as bytes
/* Build the original representation */

3 for signature in signatures do
4 Add signature.content to the Aho-corasick NFA

5 Build the DFA state transition table from the NFA
6 for number of runs do

/* Searching */
7 Search in the original representation using the DFA state transition

table, and record the time
/* Build the suggested improvement based on the DFA state

transition table */
8 Bs ←− bitvector[1,ALPHABET_SIZE ∗ MaxStates] = 0
9 c←− 0

10 for i in ALPHABET_SIZE do
11 for j in MaxStates do
12 state←− DFA.stateTable[i][j]
13 if state then
14 add state to sequence S
15 Bs[c]←− 1

16 c ++

17 Search with suggested improvement using Algorithm 4
18 Assert that the suggested improvement finds as many matches as the

original
19 Save time and space information
20 Delete and free the allocated objects which are not overwritten

21 Calculate the efficiency using the collected info and Equation (5.1)
22 Write collected information to I/O

64 MLL: Efficient data structures in IDS

	0.002

	0.0025

	0.003

	0.0035

	0.004

	0.0045

	0.005

	0.0055

	0.006

	0 	50 	100 	150 	200 	250

By
te
	fr
eq

ue
nc
y

Byte

(a) Mixed

	0

	0.002

	0.004

	0.006

	0.008

	0.01

	0.012

	0.014

	0.016

	0.018

	0 	50 	100 	150 	200 	250
By

te
	fr
eq

ue
nc
y

Byte

(b) Less common

	0

	0.002

	0.004

	0.006

	0.008

	0.01

	0.012

	0.014

	0.016

	0.018

	0.02

	0 	50 	100 	150 	200 	250

By
te
	fr
eq

ue
nc
y

Byte

(c) Common

Figure 8.1: Fast pattern matcher - search text byte frequency

order to prevent caching between the runs from intervening, the used objects and
variables are freed and re-declared between each run, if they are not overwritten.

The efficiency metric formula from Equation (5.1), explained in Chapter 5, is
used to determine the efficiency, shown as the rightmost column. In these tables,
the space is measured in Bytes (B), while the time is measured in nanoseconds
(ns). Recall, the existing representations space and time is labelled We and X e,
while the improvements space and time is Wi and X i , respectively. A measurement
of central tendency of the runtime is used in the efficiency metric formula. Because
of the possibility for extreme values to impact the mean, such as CPU scheduling,
median are used to capture the difference in runtime instead of the population

Chapter 8: Experimental Result 65

mean. The space and time difference columns represent the first and the last part
of the efficiency metric, where the space usage of the original implementation is
divided by the improvements in space usage. For the time-ratio it is similar, where
the median time usage of the improvement is divided by the median time usage
of the original implementation.

As this is meant to serve as a PoC and not a direct integration, some limitations
are made in order to simplify the process. The port field in the signature header
can be written in many different ways. To simplify the implementation only a
select few ways are implemented in the program. Below is an example of some
of the port fields in the Snort community rules [60]. The variants highlighted are
accepted in the current implementation.

• $HTTP_PORTS
• !21:23
• [547,8080,133,117,189,159]
• [$HTTP_PORTS,139,445]
• 6666:6669
• 80
• !80
• any

In other words, single ports, any keyword, list of ports or port variables are ac-
cepted. For the others, the whole signature is rejected. The values of port variables,
such as $HTTP_PORTS, are taken from the variable’s values in Snort and Suricata. A
limited set of variables are considered, which can be seen in Code listing A.5. The
selection is done on a basis of the most used port fields in the rulesets. A simple
bash command can find the most used port fields amongst all the signatures used
in the testing. The output can be seen in code listing 8.3 below.

$ grep ^alert all.rules |awk ’{print $4 "\n" $7}’ | sort | uniq -c | sort -nr| head
128632 any
36089 $HTTP_PORTS
12604 $FILE_DATA_PORTS
12453 25
5974 53
3233 445
2946 139
1565 443
670 $ORACLE_PORTS
658 [139,445]

Some signatures are of course rejected because of this. However it is not as-
sumed to impact the overall results. The flow direction is taken from the signature
header. Bidirectional signatures (<>) are not considered, which again is easy to see
that is not most of the rules with a bash command that can be seen in code list-
ing 8.3 below. Limitations made in this PoC can cause an unbalanced tree, because
of the flow direction. It can advantageously be changed to something which sep-
arates the signatures better in a production implementation.

$ grep ^alert all.rules | awk ’{print $5}’ | sort | uniq -c | sort -nr| head

66 MLL: Efficient data structures in IDS

108000 ->
131 <>
10 Microsoft
3 OpenOffice
1 WordPerfect
1 Winamp
1 PDF
1 Oracle
1 F5
1 CUPS

In the PoC, only signatures using the TCP and UDP protocol are considered,
even if the rulesets contain others, such as for example ICMP. Code listing 8.3
below count the different protocols in all the datasets.

$ grep ^alert all.rules | awk ’{print $2}’ | sort | uniq -c | sort -nr| head
81722 tcp
13729 http
8438 udp
2438 dns
1172 tls
73 icmp
163 ip
90 smtp
58 ftp
39 smb

Chapter
8:

Experim
entalResult

67

Dataset No. signatures
No. unique
ports

No. Signatures in
search branch

We (B) Wi (B) X e (ns) X i (ns)
Space difference
(We/Wi)

Time difference
(X i/X e)

Result

emerging-threats-all snort 2.9 2310 109 1183 4280768 491310 89537 42774 8.71297 0.47772 18.23849
emerging-threats-all suricata 2.9 6701 105 6233 3263872 54242 34669 190211 60.17241 5.48649 10.96739
emerging-threats-policy 121 69 76 3218352 33558 5467 13158 95.90417 2.40680 39.84710
emerging-threats-scan 61 64 42 3185712 19432 2970 11961 163.94154 4.02727 40.70783
emerging-threats-web_server 261 60 180 3316976 75720 9134 15146 43.80581 1.65820 26.41768
snort-community-all 1460 129 1023 4116656 421302 80867 43387 9.77127 0.53652 18.21221
snort-registered-all-3 8779 347 3585 6589072 1490104 273764 107603 4.42189 0.39305 11.25019
snort-registered-all-2.9 1590 103 937 4040848 388054 69977 37269 10.41311 0.53259 19.55185

Table 8.1: Proof of concept result - signature representation

68
M

LL:Efficient
data

structures
in

ID
S

Dataset No. Patterns No. states
Percent
zero states

We (B) Wi (B) Search text X e (ns) X i (ns)
Space difference
(We/Wi)

Time difference
(X i/X e)

Result

emerging-threats-all snort 2.9 2310 34038 66.40 47027272 7505771
mixed 110550 573627 6.26548 5.18885 1.20749
less common 39753 22430 6.26548 0.56423 11.10440
common 184426 1494329 6.26548 8.10259 0.77327

emerging-threats-all suricata 5.0 6701 80579 66.41 125574312 18460688
mixed 116451 642549 6.80226 5.51776 1.23279
less common 39862 23439 6.80226 0.58800 11.56839
common 272538 1812072 6.80226 6.64888 1.02307

emerging-threats-policy 121 1495 85.62 1828872 138381
mixed 44882 123873 13.21621 2.75997 4.78853
less common 39260 20136 13.21621 0.51289 25.76819
common 44109 373979 13.21621 8.47852 1.55879

emerging-threats-scan 61 1141 89.48 1336952 86347
mixed 43924 96632 15.48348 2.19998 7.03800
less common 39249 20120 15.48348 0.51262 30.20433
common 42905 279438 15.48348 6.51295 2.37734

emerging-threats-web_server 261 3736 77.40 4830312 546781
mixed 59563 213248 8.83409 3.58021 2.46748
less common 39470 20530 8.83409 0.52014 16.98400
common 63305 582689 8.83409 9.20447 0.95976

snort-community-all 1460 13502 71.57 20144312 2481255
mixed 90449 345265 8.11860 3.81723 2.12683
less common 44784 23517 8.11860 0.52512 15.46045
common 121317 1072987 8.11860 8.84449 0.91793

snort-registered-all-3 8779 237078 72.36 332523904 53706548
mixed 129683 688278 6.19150 5.30739 1.16658
less common 38276 22817 6.19150 0.59612 10.38637
common 266468 1825281 6.19150 6.84991 0.90388

snort-registered-all-2.9 1590 18605 18605 30514152 3570683
mixed 89339 388858 8.54575 4.35261 1.96336
less common 38267 20244 8.54575 0.52902 16.15393
common 118816 1053319 8.54575 8.86513 0.96397

Table 8.2: Proof of concept result - fast pattern matcher

Chapter 8: Experimental Result 69

8.3.1 Evaluation

The results from Tables 8.1 and 8.2, show that the space gained outweighs the
time lost in all the tested datasets for both the signature representation and the
fast pattern matcher considering the “mixed” search text. Looking at the results,
the improved representations are more efficient than the original one, using the
metric from Equation (5.1).

Signature representation

Comparing the space consumption of the original implementation to the alternat-
ive one, the decrease in bytes are between 77.39 and 99.39%. Smallest amount of
space savings can be found in the “snort-registred-all-3” dataset, while a 99.39%
decrease is seen in the “emerging-threats-scan” dataset. Number of used signa-
tures of the datasets are between 61 and 8779, due to the limitations previously
described. The ports used by the signatures is between 60 and 347. In four of the
datasets, the median traversal time is higher for the improved representation (X i)
than the existing one (X e). However, the four others have a faster traversal time
as well as using less space, which is the best scenario.

Fast pattern matcher

When looking at the space consumption for the suggested improvement compared
to original, the decrease in bytes are between 83.85 and 93.54%. The dataset with
the highest and lowest space saving ratio in the fast pattern matcher improvement
is the same as with the signature representation. The amount of zero states is
66.4% at minimum and goes as high as 89.48%, which matches the presumptions
of the state transition table being sparse. By looking at the zero states compared
to the efficiency, the dataset with the highest amount of zero states also has the
highest value from the efficiency metric. Datasets which have a zero state per-
centage between 66 and 72, have somewhat similar efficiency. As presumed, the
search text containing bytes which is less common in the signature pattern (less
common), have larger time difference and thus higher efficiency. On the contrary,
the search text containing bytes with higher frequency in the search pattern takes
longer time and thus the efficiency is lower. The efficiency for the fast pattern
matcher is in general lower than with the signature representation.

Chapter 9

Discussion

9.1 Experimental results

This section discusses the results obtained in the proof of concept implementation
of the selected alternatives (see Section 8.3).

9.1.1 Signature representation

One benefit with the alternative signature representation is that it has a low “base
memory usage”. The original implementation allocates 216 ∗ 4 pointers to linked
lists of signature objects from a specific protocol and flow direction. This results in
a quite high space consumption, even if no signatures are added to the structure
- “base memory”. On the other hand, this allows for fast access and can be viable
to use if the number of signatures is high. The selected alternative representation
only allocates memory for the ports in use by the signatures. This difference can
impact the results, but also be a feature. It is wasteful to allocate space for a port
which is not used, and the alternative implementation allows for easier imple-
mentation of this option. However, this leads to a higher initialisation time, which
is discussed in more detail later.

Based on the results, it seems like the datasets with the lowest amount of ports
were more efficient in the improved representation, than the ones with more ports.
Fewer ports will lead to faster rank and select operations on the sequence contain-
ing the labels for the edges in the tree. However, it is difficult to be certain about
this because other factors can also impact the efficiency. For example, if a signa-
ture includes many ports, it is referenced several times in the array connecting
ports to a signature. Thus, it consumes more memory.

An interesting observation is that in four of the datasets, the improved repres-
entation was faster than the original. This could be down to programming error,
leading to fewer signature references tied to a port in the improved representa-
tion than in the existing one. However, this was thought of as a possibility during
development and ensured by asserting that the amount of signatures tied to a port
is the same when traversing both representations (see Code listing A.1).

71

72 MLL: Efficient data structures in IDS

Comparing the results from the proof of concept (PoC) to the ones obtained
in the theoretical analysis (see Section 6.3.1), it matches fairly good. Based on
the theoretical analysis, the alternative one was slower but required less space,
which is what can be observed in general from the results in Table 8.1. However,
the metric captures the compromise between space and time in various situations,
which is difficult to see from the theoretical analysis.

9.1.2 Fast pattern matcher

The efficiency from the PoC implementation of the improved fast pattern matcher
is not as good as with the signature representation. Space difference can be one of
the reasons. As mentioned in the related work (Chapter 3), the worst-case entropy
of a labelled tree is 2n−θ (log n)+ n log σ, where there are n nodes with labels
drawn from an alphabet of size σ. For a labelled directed graph on the other
hand, the worst-case entropy is e log n2

e +O(e) + e log σ. Which means that the
worst-case entropy is higher for a labelled directed graph than for a labelled tree.
Amount of zero states can also have an impact, due to the design of the improved
alternative representation.

Different search texts impacts the efficiency. In a host-based intrusion detec-
tion system (HIDS), the search text will contain mostly characters from the Eng-
lish alphabet and symbols, while a network intrusion detection system (NIDS)
can contain all kinds of bytes. Thus, the number of “zero state hits” in the state
transition matrix can be very different from a NIDS and impact the time usage.
As mentioned previously, a search text with a uniform distribution amongst the
ASCII characters is used (mixed), as well as two others containing less common
and common bytes in the signature pattern. Looking at the results, the efficiency
is in consistently lower for the common search text, because the time usage is
higher for the improved representation, and opposite for the less common search
text. This indicates that the alternative representation is working as intended by
consuming less time for entries in the state transition matrix with the value 0.
Four of the data sets have an efficiency result of less than one using the common
search text, meaning that the improved representation is in general not worth it
over the existing one. Thus, using the suggested improvement in a HIDS might
not be a good option, but more testing is required to determine it fully.

Existing literature, proved that research has already been done on Aho-
Corasick deterministic finite state automaton (DFA) version. An interesting ques-
tion in that sense, is how the suggested implemented alternative improvement
compare to previous improvements? Kumar et al. [28] achieved a compression ra-
tio of more than 95% in an algorithm called D2FA. This is better than the 83.85%
minimum space savings, suggested in this thesis. However, Kumar mentions very
little about time differences and thus it is hard to compare the efficiency. Dimo-
poulos et al. [30] compressed the state transition table, and achieved between
28.8 to 75.5% space savings per character compared to previous compression,
and not the plain representation. Another concern is that it is not certain whether

Chapter 9: Discussion 73

the DFA or NFA version of the state transition table was used in the research.
This makes it hard to compare the effectiveness of the improvement in this thesis
against the suggestion by Dimopoulos et al [30].

9.2 General

Only transmission control protocol (TCP) and user datagram protocol (UDP) sig-
natures have been selected as a part of the PoC. This limitation was set in order to
make a simple and comparable implementation without considering all scenarios.
Thus, two of the most used protocols in the rulesets were chosen. Also, both Sur-
icata and Snort handle other protocols than TCP and UDP differently, by grouping
them together. Adding more protocols to the signature representation would of
course increase the base memory usage of the existing representation, but also
the improvements in space consumption would increase. It is presumed that the
signature representation would not be affected by adding more protocols.

Implementation of the fast pattern matcher, on the other hand, could be af-
fected by the limited protocol selection. In this implementation, only the content
of TCP and UDP rules have been considered. If the content of rules which are not
considered in this implementation have very different characters, the byte fre-
quency will be different and maybe the amount of zero states or efficiency. Recall,
the byte frequency from Figure 7.3, contains the byte frequency for all the content
fields in all the signatures in all the rulesets. A set limitation in the PoC can impact
the byte frequency. This is something which is hard to estimate or say for certain,
but it is a possibility.

Another point of failure is the documentation and understanding of the used
libraries in the PoC, described in Chapter 4. Misunderstanding the functionality in
the libraries to for example measure the space consumption of the data structure,
can lead to wrong results.

One topic which has been briefly touched so far is the initialisation time. A
fast initialisation time is desirable because, theoretically it enables the operator
of the IDS to detect anomalies faster. However, in practice, it does not have that
much to say whether the IDS take 5 or 15 minutes to initialise. Thus, it has been
intentionally left out of the comparison between the existing and alternative rep-
resentations.

Chapter 10

Conclusion

This chapter presents a short summary of the thesis and answers the research
questions. Practical considerations are also presented together with future work.

10.1 Summary

During the thesis, three research questions were answered.

Research question 1: What are the efficiency criteria for signature rep-
resentation and the implementation of the fast pattern matching al-
gorithm?

The term efficiency, in the context of compact data structures was defined in order
to measure and compare the performance of the existing and improved represent-
ation. Firstly, by looking at existing literature that suggested improvements to data
structures in other systems and what defines a good solution to an improvement,
it came apparent that both space and time are important. Time is measured using
asymptotic growth, while space consumption is measured in bits. In that context,
the optimal values for the signature representation and fast pattern matcher were
also defined by using theoretic lower bounds.

Equally important is also the compromise between space and time. A data
structure, which allows for fast access times and higher space consumption can
be used in systems with strict time requirements. On the other hand, a compact
data structure with low space consumption and slow traversal time or time usage,
is generally not viable as a compact data structure. However, it can be usable if the
space gained outweighs the time loss. Because of that, a metric in Equation (5.1)
was developed to capture the compromise between the loss in time versus the
increase in space, in order to measure in a proof of concept (PoC) if the data
structure is efficient.

Research question 2: How efficient is the representation of signatures
and the implementation of the fast pattern matching algorithm re-
garding the criteria from question one?

75

76 MLL: Efficient data structures in IDS

When the efficiency criteria are decided, the signature representation and the fast
pattern matcher can be analysed to determine if there is room for improvement.
Firstly, a code analysis of Snort and Suricata determined that the data structures
are similar on an abstract level, but there are technical differences in both the sig-
nature representation and the fast pattern matcher. Another discovery was that
existing literature was outdated when it comes to the signature representation
and that the systems have been improved. Regarding the fast pattern matcher, the
Aho-Corasick algorithm was used in both systems and implemented in a straight-
forward way as in the literature.

Next, a theoretical analysis was done based on the technical results, in order to
see if there is room for improvement. Both the implementation of the fast pattern
matcher and the signature representation were based on pointers, which are gen-
erally fast, with one memory access per operation, but there is room for improve-
ment when it comes to space consumption. The fast pattern matcher was modelled
as a labelled directed graph, while the signature representation was modelled as
a labelled tree. A gap was found between the current space consumption and the
models worst-case entropy.

Another discovery was that the signature representation in Snort and Suricata
was either not modelled or changed from previous literature. The updated models
of the signature representation in Snort and Suricata is a foundation for further
research and optimisation.

Research question 3: How can these data structures be improved in
order to meet optimal values of the criteria defined in question one?

Characteristics from the theoretical analysis together with the abstract models was
the foundation for two suggested improved alternative representations.

For the signature representation, two alternatives were suggested. The pur-
pose of the data structure is to traverse the tree and select a relevant group of
signature. Because of this, the suggested improvements were divided into two
parts. One, which contains the decision tree to select a group of signatures based
on the protocol, port and flow direction. Because the traversal of the tree requires
simple operations on the abstract model, a LOUDS representation of a labelled,
presented in existing literature, showed the best time/space trade off and was
chosen to represent the first part. The other part contains the references between
a branch in the decision tree and a set of signatures. An algorithm which selects
a set of signatures based on a leaf-node identifier from the tree was developed in
order to connect the two parts together with low space overhead.

With the fast pattern matcher, characteristics such as byte frequency and
sparsity were used as a foundation for the suggested improvements. One altern-
ative took advantage of clustering in a three-dimensional state transition matrix,
which can possibly happen if only a few states are used. The other suggested
alternative improved an algorithm from existing literature to select a node in a
labelled graph. Recall, all nodes in a state transition table, modelled as a graph,
have the same number of vertices. In this thesis, that was the basis for simplifying

Chapter 10: Conclusion 77

the algorithm in order to save time. A new algorithm was then developed which
takes advantage of a sparse transition table in order to save space and time, thus
be more efficient.

Lastly, two selected alternatives were compared against the existing imple-
mentation in a PoC using C++. The results suggested that alternatives are more
efficient than the existing implementations, as seen theoretically. Concerning the
fast pattern matcher, the alternative representations efficiency depends on the
search text, regarding the search text containing a uniform distribution of the al-
phabet it is more efficient. However, they are somewhat less compact than what
is suggested by the existing literature.

10.2 Future work

An element which is not considered in this thesis is the content of the signatures
themselves. In the signature representation, they are considered as nodes without
going further into the attributes. The fast pattern matcher does use the content of
each signature, but nothing further than that. Future work can be to investigate
compact storage of the contents within the signatures. For example, the msg op-
tion in the signature consists of printable ASCII characters and can be stored in a
compact manner.

A limitation with the nature of the signature representation is that there are
multiple references to the same signature from a branch in the skeleton. For ex-
ample, when a signature has the port variable $HTTP_PORTS a signature refer-
ence is added to all ports in the port variable. It is possible that taking advantage
of this can increase the efficiency further. Future work can be to investigate this
closer.

It was also some uncertainty regarding the k3-tree representation of a labelled
graph. Future work can be to investigate if there are clustering in the datasets
and research if an algorithm can be developed to traverse the graph in reasonable
time.

Bibliography

[1] 2021 IEEE Taxonomy, 2021. [Online]. Available: https://www.ieee.org/
content/dam/ieee-org/ieee/web/org/pubs/ieee-taxonomy.pdf (vis-
ited on 29/03/2021).

[2] Open Information Security Foundation, Suricata IDS - downloads, 2010.
[Online]. Available: https://www.openinfosecfoundation.org/downloads/
?C=M;O=A (visited on 08/05/2021).

[3] L. Greenemeier, Sourcefire Has Big Plans For Open-Source Snort, en, Apr.
2006. [Online]. Available: https://www.informationweek.com/sourcefire-
has-big-plans-for-open-source/186700788 (visited on 08/05/2021).

[4] E. Albin and N. C. Rowe, ‘A Realistic Experimental Comparison of the
Suricata and Snort Intrusion-Detection Systems,’ in 2012 26th Interna-
tional Conference on Advanced Information Networking and Applications
Workshops, Mar. 2012, pp. 122–127. DOI: 10.1109/WAINA.2012.29.

[5] ‘Chapter 5 - Inner Workings,’ in Snort Intrusion Detection and Preven-
tion Toolkit, A. R. Baker and J. Esler, Eds., Rockland: Syngress, 2007,
pp. 175–223, ISBN: 978-1-59749-099-3. DOI: 10.1016/B978-159749099-
3 / 50010 - 0. [Online]. Available: http : / / www . sciencedirect . com /
science/article/pii/B9781597490993500100.

[6] A. Gupta and L. S. Sharma, ‘Performance Evaluation of Snort and Suricata
Intrusion Detection Systems on Ubuntu Server,’ en, in Proceedings of ICRIC
2019, P. K. Singh, A. K. Kar, Y. Singh, M. H. Kolekar and S. Tanwar, Eds.,
ser. Lecture Notes in Electrical Engineering, Cham: Springer International
Publishing, 2020, pp. 811–821, ISBN: 978-3-030-29407-6. DOI: 10.1007/
978-3-030-29407-6_58.

[7] G. Navarro, Compact Data Structures: A Practical Approach, 1st. USA: Cam-
bridge University Press, 2016, ISBN: 1-107-15238-0.

[8] Z. Zhao, H. Sadok, N. Atre, J. C. Hoe, V. Sekar and J. Sherry, ‘Achiev-
ing 100Gbps Intrusion Prevention on a Single Server,’ in 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20),
USENIX Association, Nov. 2020, pp. 1083–1100, ISBN: 978-1-939133-19-
9. [Online]. Available: https://www.usenix.org/conference/osdi20/
presentation/zhao-zhipeng.

79

https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/ieee-taxonomy.pdf
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/ieee-taxonomy.pdf
https://www.openinfosecfoundation.org/downloads/?C=M;O=A
https://www.openinfosecfoundation.org/downloads/?C=M;O=A
https://www.informationweek.com/sourcefire-has-big-plans-for-open-source/186700788
https://www.informationweek.com/sourcefire-has-big-plans-for-open-source/186700788
https://doi.org/10.1109/WAINA.2012.29
https://doi.org/10.1016/B978-159749099-3/50010-0
https://doi.org/10.1016/B978-159749099-3/50010-0
http://www.sciencedirect.com/science/article/pii/B9781597490993500100
http://www.sciencedirect.com/science/article/pii/B9781597490993500100
https://doi.org/10.1007/978-3-030-29407-6_58
https://doi.org/10.1007/978-3-030-29407-6_58
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng

80 MLL: Efficient data structures in IDS

[9] S. Sørenes, Ber folk rydde i innboksen:
Bra for miljøet å slette e-post, nn-NO, Apr. 2021. [Online]. Available: https:
//www.nrk.no/vestland/ber-folk-rydde-i-innboksen_-_-bra-for-
miljoet-a-slette-e-post-1.15449462 (visited on 27/04/2021).

[10] ATEA, Lurer du på hvordan vi har gjort beregningene? - Bærekraft i ATEA,
no, 2021. [Online]. Available: https://www.atea.no/baerekraft- i-
atea/vare-beregninger/ (visited on 27/04/2021).

[11] M. Roesch et al., ‘Snort: Lightweight intrusion detection for networks.,’ in
Lisa, Issue: 1, vol. 99, 1999, pp. 229–238.

[12] Rawlins, Compared to what? : an introduction to the analysis of algorithms,
eng, ser. Principles of computer science series. New York: Computer Science
Press, 1992, ISBN: 0-7167-8243-X.

[13] S. S. Skiena, The Algorithm Design Manual, eng, 3rd ed. 2020, ser. Texts
in Computer Science. Cham: Springer International Publishing AG, 2020,
ISSN: 1868-0941, Publication Title: The Algorithm Design Manual, ISBN:
978-3-030-54255-9.

[14] T. M. Cover and J. A. Thomas, Elements of Information Theory, eng.
Hoboken: John Wiley & Sons, Incorporated, 2006, Publication Title: Ele-
ments of Information Theory, ISBN: 978-0-471-24195-9.

[15] G. Jacobson, ‘Space-efficient static trees and graphs,’ in 30th annual sym-
posium on foundations of computer science, IEEE Computer Society, 1989,
pp. 549–554.

[16] D. R. Clark, ‘Compact Pat Trees,’ PhD Thesis, UWSpace, CAN, 1997. [On-
line]. Available: http://hdl.handle.net/10012/64.

[17] J. Cordova and G. Navarro, ‘Practical Dynamic Entropy-Compressed Bitvectors
with Applications,’ in Proceedings of the 15th International Symposium on
Experimental Algorithms - Volume 9685, ser. SEA 2016, Berlin, Heidel-
berg: Springer-Verlag, Jun. 2016, pp. 105–117, ISBN: 978-3-319-38850-2.
DOI: 10 . 1007 / 978 - 3 - 319 - 38851 - 9 _ 8. [Online]. Available: https :
//doi.org/10.1007/978-3-319-38851-9_8 (visited on 25/05/2021).

[18] N. Archibald, G. Ramirez, N. Rathaus, J. Burke, B. Caswell and R. Deraison,
‘Chapter 7 - The Inner Workings of Snort,’ en, in Nessus, Snort, & Ether-
eal Power Tools, N. Archibald, G. Ramirez, N. Rathaus, J. Burke, B. Caswell
and R. Deraison, Eds., Burlington: Syngress, Jan. 2005, pp. 151–179, ISBN:
978-1-59749-020-7. DOI: 10.1016/B978- 159749020- 7/50012- 4. [On-
line]. Available: http://www.sciencedirect.com/science/article/
pii/B9781597490207500124 (visited on 12/11/2020).

[19] Suricata User Guide — Suricata 6.0.0 documentation. [Online]. Available:
https://suricata.readthedocs.io/en/suricata-6.0.0/ (visited on
13/10/2020).

https://www.nrk.no/vestland/ber-folk-rydde-i-innboksen_-_-bra-for-miljoet-a-slette-e-post-1.15449462
https://www.nrk.no/vestland/ber-folk-rydde-i-innboksen_-_-bra-for-miljoet-a-slette-e-post-1.15449462
https://www.nrk.no/vestland/ber-folk-rydde-i-innboksen_-_-bra-for-miljoet-a-slette-e-post-1.15449462
https://www.atea.no/baerekraft-i-atea/vare-beregninger/
https://www.atea.no/baerekraft-i-atea/vare-beregninger/
http://hdl.handle.net/10012/64
https://doi.org/10.1007/978-3-319-38851-9_8
https://doi.org/10.1007/978-3-319-38851-9_8
https://doi.org/10.1007/978-3-319-38851-9_8
https://doi.org/10.1016/B978-159749020-7/50012-4
http://www.sciencedirect.com/science/article/pii/B9781597490207500124
http://www.sciencedirect.com/science/article/pii/B9781597490207500124
https://suricata.readthedocs.io/en/suricata-6.0.0/

Bibliography 81

[20] F. Zhang, J. Zhai, X. Shen, O. Mutlu and X. Du, ‘Enabling Efficient Ran-
dom Access to Hierarchically-Compressed Data,’ in 2020 IEEE 36th Interna-
tional Conference on Data Engineering (ICDE), ISSN: 2375-026X, Apr. 2020,
pp. 1069–1080. DOI: 10.1109/ICDE48307.2020.00097.

[21] A. V. Aho and M. J. Corasick, ‘Efficient string matching: An aid to bibli-
ographic search,’ Communications of the ACM, vol. 18, no. 6, pp. 333–
340, Jun. 1975, ISSN: 0001-0782. DOI: 10.1145/360825.360855. [On-
line]. Available: https://doi.org/10.1145/360825.360855 (visited on
03/11/2020).

[22] SNORT Users Manual 2.9.16 - The Snort Project, Apr. 2020. [Online]. Avail-
able: https : / / snort - org - site . s3 . amazonaws . com / production /
document_files/files/000/000/249/original/snort_manual.pdf
(visited on 13/10/2020).

[23] N. Tuck, T. Sherwood, B. Calder and G. Varghese, ‘Deterministic memory-
efficient string matching algorithms for intrusion detection,’ in IEEE IN-
FOCOM 2004, ISSN: 0743-166X, vol. 4, Mar. 2004, 2628–2639 vol.4. DOI:
10.1109/INFCOM.2004.1354682.

[24] D. Pao, W. Lin and B. Liu, ‘A memory-efficient pipelined implementation of
the aho-corasick string-matching algorithm,’ en, ACM Transactions on Ar-
chitecture and Code Optimization, vol. 7, no. 2, pp. 1–27, Sep. 2010, ISSN:
1544-3566, 1544-3973. DOI: 10.1145/1839667.1839672. [Online]. Avail-
able: https://dl.acm.org/doi/10.1145/1839667.1839672 (visited on
03/11/2020).

[25] M. Norton, ‘Optimizing pattern matching for intrusion detection,’ en,
Sourcefire, Inc., Columbia, MD, p. 11, 2004, publiser:Citeseer.

[26] T.-H. Lee and N.-L. Huang, ‘An Efficient and Scalable Pattern Matching
Scheme for Network Security Applications,’ in 2008 Proceedings of 17th In-
ternational Conference on Computer Communications and Networks, ISSN:
1095-2055, Aug. 2008, pp. 1–7. DOI: 10.1109/ICCCN.2008.ECP.176.

[27] J. Holub, ‘Simulation of nondeterministic finite automata in pattern match-
ing.,’ en, Publisher: Praha (Czech Republic) : Ceske vysoke uceni technicke
v Praze, U - Thesis ; (Thesis (Dr.)) 2000. [Online]. Available: http://hdl.
handle.net/10068/336087.

[28] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley and J. Turner, ‘Algorithms to
accelerate multiple regular expressions matching for deep packet inspec-
tion,’ ACM SIGCOMM Computer Communication Review, vol. 36, no. 4,
pp. 339–350, Aug. 2006, ISSN: 0146-4833. DOI: 10 . 1145 / 1151659 .
1159952. [Online]. Available: https : / / doi . org / 10 . 1145 / 1151659 .
1159952 (visited on 27/11/2020).

[29] M. Becchi, ‘Data Structures, Algorithms and Architectures for Efficient Reg-
ular Expression Evaluation,’ ISBN: 9781109254013, PhD Thesis, Washing-
ton University, USA, 2009.

https://doi.org/10.1109/ICDE48307.2020.00097
https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
https://snort-org-site.s3.amazonaws.com/production/document_files/files/000/000/249/original/snort_manual.pdf
https://snort-org-site.s3.amazonaws.com/production/document_files/files/000/000/249/original/snort_manual.pdf
https://doi.org/10.1109/INFCOM.2004.1354682
https://doi.org/10.1145/1839667.1839672
https://dl.acm.org/doi/10.1145/1839667.1839672
https://doi.org/10.1109/ICCCN.2008.ECP.176
http://hdl.handle.net/10068/336087
http://hdl.handle.net/10068/336087
https://doi.org/10.1145/1151659.1159952
https://doi.org/10.1145/1151659.1159952
https://doi.org/10.1145/1151659.1159952
https://doi.org/10.1145/1151659.1159952

82 MLL: Efficient data structures in IDS

[30] V. Dimopoulos, I. Papaefstathiou and D. Pnevmatikatos, ‘A Memory-Efficient
Reconfigurable Aho-Corasick FSM Implementation for Intrusion Detection
Systems,’ in Modeling and Simulation 2007 International Conference on
Embedded Computer Systems: Architectures, Jul. 2007, pp. 186–193. DOI:
10.1109/ICSAMOS.2007.4285750.

[31] S. Dharmapurikar and J. W. Lockwood, ‘Fast and Scalable Pattern Matching
for Network Intrusion Detection Systems,’ IEEE Journal on Selected Areas
in Communications, vol. 24, no. 10, pp. 1781–1792, Oct. 2006, Conference
Name: IEEE Journal on Selected Areas in Communications, ISSN: 1558-
0008. DOI: 10.1109/JSAC.2006.877131.

[32] G. Ottaviano and R. Venturini, ‘Partitioned Elias-Fano indexes,’ in Proceed-
ings of the 37th international ACM SIGIR conference on Research & devel-
opment in information retrieval, ser. SIGIR ’14, New York, NY, USA: Associ-
ation for Computing Machinery, Jul. 2014, pp. 273–282, ISBN: 978-1-4503-
2257-7. DOI: 10.1145/2600428.2609615. [Online]. Available: https://
doi.org/10.1145/2600428.2609615 (visited on 20/05/2021).

[33] S. Vigna, ‘Quasi-succinct indices,’ in Proceedings of the sixth ACM inter-
national conference on Web search and data mining, ser. WSDM ’13, New
York, NY, USA: Association for Computing Machinery, Feb. 2013, pp. 83–
92, ISBN: 978-1-4503-1869-3. DOI: 10.1145/2433396.2433409. [Online].
Available: https : / / doi . org / 10 . 1145 / 2433396 . 2433409 (visited on
20/05/2021).

[34] S. Vigna, ‘Broadword implementation of rank/select queries,’ in Proceedings
of the 7th international conference on Experimental algorithms, ser. WEA’08,
Berlin, Heidelberg: Springer-Verlag, May 2008, pp. 154–168, ISBN: 978-3-
540-68548-7. (visited on 20/05/2021).

[35] J. Barbay, F. Claude and G. Navarro, ‘Compact binary relation represent-
ations with rich functionality,’ en, Information and Computation, vol. 232,
pp. 19–37, Nov. 2013, ISSN: 0890-5401. DOI: 10.1016/j.ic.2013.10.
003. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0890540113001144 (visited on 17/03/2021).

[36] R. Sedgewick, Algorithms in C++, Parts 1-4: Fundamentals, Data Struc-
ture, Sorting, Searching, Third Edition, Third. Addison-Wesley Professional,
1998, ISBN: 978-0-7686-8533-6.

[37] P. Sinha, ‘A memory-efficient doubly linked list,’ Linux Journal, vol. 2005,
no. 129, p. 10, Jan. 2005, ISSN: 1075-3583. [Online]. Available: https:
//www.linuxjournal.com/article/6828 (visited on 12/04/2021).

[38] D. Arroyuelo, R. Cánovas, G. Navarro and K. Sadakane, ‘Succinct trees in
practice,’ in Proceedings of the Meeting on Algorithm Engineering & Exper-
miments, ser. ALENEX ’10, USA: Society for Industrial and Applied Math-
ematics, Jan. 2010, pp. 84–97. (visited on 12/04/2021).

https://doi.org/10.1109/ICSAMOS.2007.4285750
https://doi.org/10.1109/JSAC.2006.877131
https://doi.org/10.1145/2600428.2609615
https://doi.org/10.1145/2600428.2609615
https://doi.org/10.1145/2600428.2609615
https://doi.org/10.1145/2433396.2433409
https://doi.org/10.1145/2433396.2433409
https://doi.org/10.1016/j.ic.2013.10.003
https://doi.org/10.1016/j.ic.2013.10.003
https://www.sciencedirect.com/science/article/pii/S0890540113001144
https://www.sciencedirect.com/science/article/pii/S0890540113001144
https://www.linuxjournal.com/article/6828
https://www.linuxjournal.com/article/6828

Bibliography 83

[39] P. Ferragina, F. Luccio, G. Manzini and S. Muthukrishnan, ‘Structuring
labeled trees for optimal succinctness, and beyond,’ in 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’05), ISSN: 0272-
5428, Oct. 2005, pp. 184–193. DOI: 10.1109/SFCS.2005.69.

[40] A. Farzan and J. I. Munro, ‘Succinct encoding of arbitrary graphs,’ en, Theor-
etical Computer Science, vol. 513, pp. 38–52, Nov. 2013, ISSN: 0304-3975.
DOI: 10.1016/j.tcs.2013.09.031. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0304397513007238 (visited
on 18/04/2021).

[41] J. Barbay, A. Golynski, J. Ian Munro and S. Srinivasa Rao, ‘Adaptive
searching in succinctly encoded binary relations and tree-structured doc-
uments,’ en, Theoretical Computer Science, The Burrows-Wheeler Trans-
form, vol. 387, no. 3, pp. 284–297, Nov. 2007, ISSN: 0304-3975. DOI:
10 . 1016 / j . tcs . 2007 . 07 . 015. [Online]. Available: https : / / www .
sciencedirect.com/science/article/pii/S0304397507005270 (visited
on 17/03/2021).

[42] J. Barbay, M. He, J. I. Munro and S. R. Satti, ‘Succinct Indexes for Strings,
Binary Relations and Multilabeled Trees,’ ACM Trans. Algorithms, vol. 7,
no. 4, Sep. 2011, Place: New York, NY, USA Publisher: Association for Com-
puting Machinery, ISSN: 1549-6325. DOI: 10.1145/2000807.2000820. [On-
line]. Available: https://doi.org/10.1145/2000807.2000820.

[43] S. Alvarez-Garcia, G. de Bernardo, N. R. Brisaboa and G. Navarro, ‘A
succinct data structure for self-indexing ternary relations,’ en, Journal
of Discrete Algorithms, vol. 43, pp. 38–53, Mar. 2017, ISSN: 1570-8667.
DOI: 10.1016/j.jda.2016.10.002. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1570866716300351 (visited
on 22/04/2021).

[44] J. S. White, T. Fitzsimmons and J. N. Matthews, ‘Quantitative analysis of
intrusion detection systems: Snort and Suricata,’ in Cyber Sensing 2013,
vol. 8757, International Society for Optics and Photonics, May 2013,
p. 875 704. DOI: 10 . 1117 / 12 . 2015616. [Online]. Available: https :
//www.spiedigitallibrary.org/conference-proceedings-of-spie/
8757 / 875704 / Quantitative - analysis - of - intrusion - detection -
systems-Snort-and-Suricata/10.1117/12.2015616.short (visited on
13/10/2020).

[45] S. Ladra, M. R. Luaces, J. R. Paramá and F. Silva-Coira, ‘Space- and
Time-Efficient Storage of LiDAR Point Clouds,’ arXiv:1912.11859 [cs],
vol. 11811, pp. 513–527, 2019, arXiv: 1912.11859. DOI: 10.1007/978-
3-030-32686-9_36. [Online]. Available: http://arxiv.org/abs/1912.
11859 (visited on 09/10/2020).

https://doi.org/10.1109/SFCS.2005.69
https://doi.org/10.1016/j.tcs.2013.09.031
https://www.sciencedirect.com/science/article/pii/S0304397513007238
https://www.sciencedirect.com/science/article/pii/S0304397513007238
https://doi.org/10.1016/j.tcs.2007.07.015
https://www.sciencedirect.com/science/article/pii/S0304397507005270
https://www.sciencedirect.com/science/article/pii/S0304397507005270
https://doi.org/10.1145/2000807.2000820
https://doi.org/10.1145/2000807.2000820
https://doi.org/10.1016/j.jda.2016.10.002
https://www.sciencedirect.com/science/article/pii/S1570866716300351
https://www.sciencedirect.com/science/article/pii/S1570866716300351
https://doi.org/10.1117/12.2015616
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8757/875704/Quantitative-analysis-of-intrusion-detection-systems-Snort-and-Suricata/10.1117/12.2015616.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8757/875704/Quantitative-analysis-of-intrusion-detection-systems-Snort-and-Suricata/10.1117/12.2015616.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8757/875704/Quantitative-analysis-of-intrusion-detection-systems-Snort-and-Suricata/10.1117/12.2015616.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8757/875704/Quantitative-analysis-of-intrusion-detection-systems-Snort-and-Suricata/10.1117/12.2015616.short
https://doi.org/10.1007/978-3-030-32686-9_36
https://doi.org/10.1007/978-3-030-32686-9_36
http://arxiv.org/abs/1912.11859
http://arxiv.org/abs/1912.11859

84 MLL: Efficient data structures in IDS

[46] N. R. Brisaboa, M. R. Luaces, G. Navarro and D. Seco, ‘A Fun Application
of Compact Data Structures to Indexing Geographic Data,’ en, in Fun with
Algorithms, P. Boldi and L. Gargano, Eds., ser. Lecture Notes in Computer
Science, Berlin, Heidelberg: Springer, 2010, pp. 77–88, ISBN: 978-3-642-
13122-6. DOI: 10.1007/978-3-642-13122-6_10.

[47] S. Álvarez-García, B. Freire, S. Ladra and Ó. Pedreira, ‘Compact and ef-
ficient representation of general graph databases,’ en, Knowledge and In-
formation Systems, vol. 60, no. 3, pp. 1479–1510, Sep. 2019, ISSN: 0219-
3116. DOI: 10.1007/s10115- 018- 1275- x. [Online]. Available: https:
//doi.org/10.1007/s10115-018-1275-x (visited on 04/10/2020).

[48] I. Lee, P. Do, L. Do and S.-R. Kim, ‘A System for Finding the Compact Set of
Intrusion Detection Rules on the MapReduce Environment,’ English, Inter-
national Information Institute (Tokyo). Information; Koganei, vol. 18, no. 9,
pp. 3971–3978, Sep. 2015, Num Pages: 8 Place: Koganei, Japan, Koganei
Publisher: International Information Institute, ISSN: 13434500. [Online].
Available: https : / / search . proquest . com / docview / 1736913218 /
abstract/9ED005AF00084238PQ/1 (visited on 01/10/2020).

[49] Home | Microsoft Academic. [Online]. Available: https : / / academic .
microsoft.com/home (visited on 07/04/2021).

[50] Primo by Ex Libris, en. [Online]. Available: https://bibsys-almaprimo.
hosted.exlibrisgroup.com (visited on 07/04/2021).

[51] Doxygen: Doxygen. [Online]. Available: https://www.doxygen.nl/index.
html (visited on 24/04/2021).

[52] A. Bacchelli and C. Bird, ‘Expectations, outcomes, and challenges of mod-
ern code review,’ in 2013 35th International Conference on Software Engin-
eering (ICSE), ISSN: 1558-1225, May 2013, pp. 712–721. DOI: 10.1109/
ICSE.2013.6606617.

[53] M. Höst and C. Johansson, ‘Evaluation of code review methods through in-
terviews and experimentation,’ en, Journal of Systems and Software, vol. 52,
no. 2, pp. 113–120, Jun. 2000, ISSN: 0164-1212. DOI: 10.1016/S0164-
1212(99)00137- 5. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0164121299001375 (visited on 30/04/2021).

[54] F. Claude, LIBCDS 2 - A Compressed Data Structure Library, original-date:
2011-05-13T01:57:53Z, Jul. 2020. [Online]. Available: https://github.
com/fclaude/libcds2 (visited on 07/11/2020).

[55] S. Gog, T. Beller, A. Moffat and M. Petri, ‘From Theory to Practice: Plug and
Play with Succinct Data Structures,’ in 13th International Symposium on
Experimental Algorithms, (SEA 2014), 2014, pp. 326–337. [Online]. Avail-
able: https://github.com/simongog/sdsl-lite.

https://doi.org/10.1007/978-3-642-13122-6_10
https://doi.org/10.1007/s10115-018-1275-x
https://doi.org/10.1007/s10115-018-1275-x
https://doi.org/10.1007/s10115-018-1275-x
https://search.proquest.com/docview/1736913218/abstract/9ED005AF00084238PQ/1
https://search.proquest.com/docview/1736913218/abstract/9ED005AF00084238PQ/1
https://academic.microsoft.com/home
https://academic.microsoft.com/home
https://bibsys-almaprimo.hosted.exlibrisgroup.com
https://bibsys-almaprimo.hosted.exlibrisgroup.com
https://www.doxygen.nl/index.html
https://www.doxygen.nl/index.html
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1016/S0164-1212(99)00137-5
https://doi.org/10.1016/S0164-1212(99)00137-5
https://www.sciencedirect.com/science/article/pii/S0164121299001375
https://www.sciencedirect.com/science/article/pii/S0164121299001375
https://github.com/fclaude/libcds2
https://github.com/fclaude/libcds2
https://github.com/simongog/sdsl-lite

Chapter 10: Conclusion 85

[56] G. Ottaviano, Succinct, original-date: 2011-10-16T14:59:19Z, Nov. 2020.
[Online]. Available: https : / / github . com / ot / succinct (visited on
07/11/2020).

[57] DYNAMIC: A succinct and compressed fully-dynamic data structures lib-
rary, original-date: 2015-10-30T16:20:39Z, Jul. 2020. [Online]. Available:
https://github.com/xxsds/DYNAMIC (visited on 07/11/2020).

[58] Magnus, StoneSwine/msc.thesis.code, original-date: 2021-04-08T10:00:35Z,
Apr. 2021. [Online]. Available: https://github.com/StoneSwine/msc.
thesis.code (visited on 08/04/2021).

[59] Proofpoint Emerging Threats Rules. [Online]. Available: https://rules.
emergingthreats.net//open/ (visited on 30/03/2021).

[60] Snort, Snort Rules and IDS Software Download, 2020. [Online]. Available:
https://www.snort.org/downloads#rules (visited on 12/11/2020).

[61] R. T. Clemen, Making hard decisions : an introduction to decision analysis,
eng, ser. The Duxbury series in statistics and decision sciences. South-
Western College Publ, 1997, ISBN: 0-534-26034-9.

https://github.com/ot/succinct
https://github.com/xxsds/DYNAMIC
https://github.com/StoneSwine/msc.thesis.code
https://github.com/StoneSwine/msc.thesis.code
https://rules.emergingthreats.net//open/
https://rules.emergingthreats.net//open/
https://www.snort.org/downloads#rules

Appendix A

Code listings

Code listing A.1: sigrep.cpp

1 /*
2 * Author: Magnus Lien Lilja
3 * Proof of concept (PoC) comparison of the signature representation, as it is in

Snort and Suricata, and a suggested
4 * improvement. The program takes a signature file as argument, parses the

signatures and builds both of the
5 * representations, before they are traversed and the time taken registered.

Finally a developed metric for efficiency
6 * is used in order to see which of them is the better one.
7 */
8

9 #include <cstdio>
10

11 #include <elias_fano_compressed_list.hpp>
12 #include <mapper.hpp>
13

14 #include "parser.h"
15 #include "ptree.h"
16 #include "ltree.h"
17 #include "signature.h"
18 #include <ostream>
19 #include "defs.h"
20

21 using namespace sdsl;
22 using namespace std;
23 using namespace std::chrono;
24 using timer = std::chrono::high_resolution_clock;
25

26 int main(int argc, char *argv[]) {
27 int no_samples = 2;
28 vector<uint> l_total;
29 vector<uint> l_select_unique;
30 vector<uint> p_total;
31 char *infile;
32

33 int unique_ports = 0;
34 int signo_sb_orig = 0;
35 int signo_sb_alt = 0;
36 int alt_b_siz = 0;
37 int alt_s_siz = 0;

87

88 MLL: Efficient data structures in IDS

38

39

40 if (argc < 3) {
41 fprintf(stderr, "Usage: ./program -i infile -s sampleno\n");
42 exit(0);
43 }
44 for (int i = 1; i < argc; i++) {
45 if (strcmp(argv[i], "-i") == 0) {
46 infile = argv[i + 1];
47 } else if (strcmp(argv[i], "-s") == 0) {
48 no_samples = atoi(argv[i + 1]);
49 }
50 }
51

52 uint64_t p_node_size_b, sig_size_b, l_vlcp_size_b, l_vlcc_size_b, p_ct_ms,
l_ct_ms;

53

54 std::vector<Signature *> sig_list;
55 ParseSigFile(sig_list, infile);
56 // size of the pointers + the size of the objects in

the list
57 sig_size_b += sizeof(Signature *) * sig_list.size() + (sizeof(Signature) *

sig_list.size());
58 sig_size_b += sizeof(sig_list);
59

60 if (sig_list.size() <= 50) {
61 exit(0);
62 }
63

64 for (size_t x = 0; x < no_samples; x++) {
65 // Size variables in bytes (b)
66 p_node_size_b = l_vlcp_size_b = l_vlcc_size_b = p_ct_ms = l_ct_ms = 0;
67

68 // Initialise the original representation, which is based on pointers
69 Rootnode *root = new Rootnode();
70 p_node_size_b += sizeof(Rootnode *);
71 p_node_size_b += sizeof(Rootnode);
72 Flownode **cn_f;
73 Portnode **cn_p, *cn_p_tmp;
74

75 for (size_t i = 0; i < MAXFLOW; i++) {
76 root->flow_gh[i] = new Flownode();
77 p_node_size_b += sizeof(Flownode);
78 for (size_t j = 0; j < MAX_PORTS; j++) {
79 root->flow_gh[i]->tcp[j] = nullptr;
80 root->flow_gh[i]->udp[j] = nullptr;
81 }
82 }
83

84 // Parse all the signatures, traverse the tree and add them to a linked-list at
the appropriate branch in the

85 // original representation.
86 for (Signature *sig : sig_list) {
87 if (sig->flowdir == FLOWDIR_TOCLIENT) {
88 cn_f = &root->flow_gh[FLOWDIR_TOCLIENT];
89 } else // TOSERVER
90 {
91 cn_f = &root->flow_gh[FLOWDIR_TOSERVER];
92 }
93

Chapter A: Code listings 89

94 for (auto sp : sig->dstport) {
95 if (sig->protocol == IPPROTO_TCP) {
96 cn_p = &(*cn_f)->tcp[sp];
97 } else {
98 cn_p = &(*cn_f)->udp[sp];
99 }

100

101 Portnode *temp_pn = new Portnode();
102 temp_pn->sn = sig;
103

104 // list is empty
105 if (!(*cn_p)) {
106 (*cn_p) = temp_pn;
107 p_node_size_b += sizeof(Portnode);
108 } else { // traverse list until last node is reached and insert
109

110 Portnode *last = (*cn_p);
111

112 while (last->next) {
113 last = last->next;
114 }
115

116 last->next = temp_pn;
117 p_node_size_b += sizeof(Portnode);
118 }
119 }
120 }
121

122 // Build the alternative representation
123 std::set<uint32_t> up;
124 for (auto sig : sig_list) {
125 for (auto sp : sig->dstport) {
126 up.insert(sp);
127 }
128 }
129 std::vector<uint32_t> up_it(up.begin(), up.end());
130

131 if (up_it.size() <= 1) {
132 exit(0);
133 }
134

135 ltree<bit_vector, select_support_mcl<1>, select_support_mcl<0>, rank_support_v5
<1>, rank_support_v<0>> l;

136 // Build the "static" part of the tree level order
137 l.append(2, {FLOWDIR_TOSERVER, FLOWDIR_TOCLIENT});
138 for (size_t i = 0; i < MAXFLOW; i++) {
139 l.append(2, {IPPROTO_TCP, IPPROTO_UDP});
140 }
141 for (size_t i = 0; i < MAXFLOW * IPPROTO_MAX; i++) {
142 l.append(up_it.size(), up_it);
143 }
144 for (size_t i = 0; i < MAXFLOW + IPPROTO_MAX; i++) {
145 for (auto p : up) {
146 l.append(0);
147 }
148 }
149 l.finalize();
150

151 // Insert the signature ids
152 // number of nodes in the static part of the tree. Hardcoded for now

90 MLL: Efficient data structures in IDS

153 int sc = 8;
154

155 const int no_protport = (MAXFLOW + IPPROTO_MAX) * up_it.size();
156 std::vector<uintptr_t> tmp_vlc[no_protport];
157

158 // Traverse all the signatures, and add them to the correct branch in the
alternative representation.

159 for (auto sig : sig_list) {
160 int nodeid = 1;
161 if (sig->flowdir == FLOWDIR_TOCLIENT) {
162 nodeid = l.labeledchild(nodeid, FLOWDIR_TOCLIENT);
163 } else {
164 nodeid = l.labeledchild(nodeid, FLOWDIR_TOSERVER);
165 }
166

167 // Depth 2
168 if (sig->protocol == IPPROTO_TCP) {
169 nodeid = l.labeledchild(nodeid, IPPROTO_TCP);
170 } else {
171 nodeid = l.labeledchild(nodeid, IPPROTO_UDP);
172 }
173

174 // Depth 3
175 int pnid = nodeid;
176 for (auto sp : sig->dstport) {
177 nodeid = l.labeledchild(pnid, sp) - sc;
178 if (nodeid >= 0) {
179 tmp_vlc[nodeid].push_back(reinterpret_cast<std::uintptr_t>(sig));
180 }
181 }
182 }
183

184 // Build the array containing references between a branch and the signatures.
Also clear the temporary vector from

185 // previously. The last signature from the branch with the most amount of
signatures are also kept, as an object to

186 // search for later on.
187 std::vector<uintptr_t> tmp;
188 bit_vector vlc_bv(0, 0);
189

190 int maxpos_count = 0;
191 int sigid = 0;
192

193 for (size_t i = 0; i < no_protport; i++) {
194 int noc = tmp_vlc[i].size();
195 if (noc > maxpos_count) {
196 maxpos_count = noc;
197 sigid = ((Signature *) tmp_vlc[i].back())->id;
198 }
199 bit_vector tmp_bv = vlc_bv;
200 tmp_bv.resize(vlc_bv.size() + noc + 1);
201 int pos = vlc_bv.size();
202 tmp_bv[pos++] = 1;
203

204 for (size_t j = 0; j < noc; j++) {
205 tmp_bv[pos++] = 0;
206 tmp.push_back(tmp_vlc[i][j]);
207 }
208

209 tmp_bv.resize(pos);

Chapter A: Code listings 91

210 vlc_bv = bit_vector(std::move(tmp_bv));
211

212 tmp_vlc[i].clear();
213 tmp_vlc[i].shrink_to_fit();
214 }
215

216 succinct::elias_fano_compressed_list vlcarray(tmp);
217

218 tmp.clear();
219 tmp.shrink_to_fit();
220

221 select_support_mcl<1> vlc_bv_s1(&vlc_bv);
222 rank_support_v<0> vlc_bv_r0(&vlc_bv);
223

224 l_vlcc_size_b += (float) succinct::mapper::size_tree_of(vlcarray)->size;
225 l_vlcp_size_b += size_in_bytes(vlc_bv);
226

227 // Search for the signature ID (sigid) in the alternative representation
228 Signature *findme = sig_list[sigid];
229 auto start = timer::now();
230 int nodeid = 1;
231 if (findme->flowdir == FLOWDIR_TOCLIENT) {
232 nodeid = l.labeledchild(nodeid, FLOWDIR_TOCLIENT);
233 } else {
234 nodeid = l.labeledchild(nodeid, FLOWDIR_TOSERVER);
235 }
236

237 // Depth 2
238 if (findme->protocol == IPPROTO_TCP) {
239 nodeid = l.labeledchild(nodeid, IPPROTO_TCP);
240 } else {
241 nodeid = l.labeledchild(nodeid, IPPROTO_UDP);
242 }
243

244 // Depth 3
245 int pnid = nodeid;
246 int lfound, pfound;
247 lfound = 0;
248 pfound = 1;
249 nodeid = l.labeledchild(pnid, findme->dstport[0]) - sc;
250 if (nodeid >= 0) {
251

252 int i = vlc_bv_r0(vlc_bv_s1(nodeid + 1));
253 int stop = vlc_bv_r0(vlc_bv_s1(nodeid + 2));
254

255 for (i; i < stop; i++) {
256 lfound++;
257 if (((Signature *) vlcarray[i]) == findme) {
258 printf("[LOUDS]:FOUND THE SIGNATURE!\n");
259 }
260 }
261 }
262

263 // Search for signature in the original representation
264 auto stop = timer::now();
265 l_ct_ms = duration_cast<TIMEUNIT>(stop - start).count();
266

267 start = timer::now();
268 if (findme->flowdir == FLOWDIR_TOCLIENT) {
269 cn_f = &root->flow_gh[FLOWDIR_TOCLIENT];

92 MLL: Efficient data structures in IDS

270 } else // TOSERVER
271 {
272 cn_f = &root->flow_gh[FLOWDIR_TOSERVER];
273 }
274

275 if (findme->protocol == IPPROTO_TCP) {
276 cn_p = &(*cn_f)->tcp[findme->dstport[0]];
277 } else {
278 cn_p = &(*cn_f)->udp[findme->dstport[0]];
279 }
280

281 while ((*cn_p)->next != nullptr) {
282 pfound++;
283 *cn_p = (*cn_p)->next;
284 if ((*cn_p)->sn == findme) {
285 printf("[POINTER]:FOUND THE SIGNATURE!\n");
286 }
287 }
288

289 // make sure that the branch where the signature is located, contains an equal
amount of signatures.

290 assert(pfound == lfound);
291 stop = timer::now();
292 p_ct_ms = duration_cast<TIMEUNIT>(stop - start).count();
293

294 // Register time and space
295 unique_ports = up_it.size();
296 signo_sb_alt = lfound;
297 signo_sb_orig = pfound;
298 alt_b_siz = size_in_bytes(l.bv);
299 alt_s_siz = size_in_bytes(l.s);
300

301 p_total.push_back(p_ct_ms);
302 l_total.push_back(l_ct_ms);
303 l_select_unique.push_back(l.su_t);
304

305

306 // Delete and deconstruct
307 for (size_t i = 1; i < MAXFLOW; i++) {
308 cn_f = &root->flow_gh[i - 1];
309 for (size_t p = 1; p < MAXFLOW; p++) {
310 for (size_t j = 1; j < MAX_PORTS; j++) {
311 if (p - 1) {
312 cn_p = &(*cn_f)->tcp[j - 1];
313 } else {
314 cn_p = &(*cn_f)->udp[j - 1];
315 }
316

317 if ((*cn_p) != nullptr) {
318 if ((*cn_p)->next == nullptr) {
319 delete ((*cn_p));
320 } else {
321 while ((*cn_p)->next != nullptr) {
322 cn_p_tmp = *cn_p;
323 *cn_p = (*cn_p)->next;
324 delete (cn_p_tmp);
325 }
326 delete (*cn_p);
327 }
328 }

Chapter A: Code listings 93

329 }
330 }
331 delete (*cn_f);
332 }
333 delete (root);
334 }
335

336 // Find median: https://en.cppreference.com/w/cpp/algorithm/nth_element
337 const auto Xi_m = (l_total.begin() + l_total.size() / 2);
338 const auto Xe_m = (p_total.begin() + p_total.size() / 2);
339

340 std::nth_element(l_total.begin(), Xi_m, l_total.end());
341 std::nth_element(p_total.begin(), Xe_m, p_total.end());
342

343 // Original space and time
344 auto We = (float) p_node_size_b;
345 auto Xe = (float) *Xe_m;
346 // Alternative space and time
347 auto Wi = (float) alt_b_siz + alt_s_siz + l_vlcp_size_b + l_vlcc_size_b;
348 auto Xi = (float) *Xi_m;
349

350 printf("+--[Summary]---\n");
351 printf("| Samples/runs : %d\n", no_samples);
352 printf("| No. Signatures in search branch : %d-%d\n", signo_sb_alt,

signo_sb_orig);
353 printf("| Filename : %s\n", infile);
354 printf("| Total No. Signatures : %lu \n", sig_list.size());
355 printf("| Signature list size : %lu\tB\n", sig_size_b);
356 printf("| No of unique ports : %d\n", unique_ports);
357 printf("+--[ORIGINAL representation]----------------------------\n");
358 printf("| Size (We) : %.5f KB\n", (float) (We /

1024.0f));
359 printf("| Size (We) : %.1f B\n", We);
360 printf("| Median search time in ns (Xe) : %.1f\n", Xe);
361 printf("+--[ALTERNATIVE representation]------------------------------------\n");
362 printf("| Node relations (B) : %d\tB\n", alt_b_siz);
363 printf("| Labels (S) : %d\tB\n", alt_s_siz);
364 printf("| Sig.ref. - VLC vector (bitvector) : %lu\tB\n", l_vlcp_size_b);
365 printf("| Sig.ref. - VLC vector (content) : %lu\tB\n", l_vlcc_size_b);
366 printf("| Total (Wi) : %.5f KB\n", (float) (Wi) /

1024.0f);
367 printf("| Total (Wi) : %.1f\n", (Wi));
368 printf("| Median search time in ns (Xi) : %.1f\n", Xi);
369 printf("+-[EFFICIENCY]---\n");
370 printf("| Space difference (We / Wi) : %.5f\n", (We / Wi));
371 printf("| Time difference (Xi / Xe) : %.5f\n", (Xi / Xe));
372 printf("| Result (We * Xe) / (Wi * Xi) : %.5f\n", (We * Xe) / (Wi * Xi))

;
373 printf("+--\n");
374

375

376 for (auto sig : sig_list) {
377 free(sig->content);
378 free(sig->msg);
379

380 delete (sig); // use delete, because of "new"
381 }
382 return 0;
383 }

94 MLL: Efficient data structures in IDS

Code listing A.2: fpm.cpp

1 /*
2 * Author: Magnus Lien Lilja
3 * Proof of concept (PoC) comparison of the Aho-Corasick deterministic finite

automaton (DFA) algorithm, which is in
4 * Snort and Suricata, and the suggested improvement.
5 * The program takes a signature file as input, together with a search text and

outputs the efficiency, according to a
6 * criteria defined in my master thesis.
7 */
8

9 #include <iostream>
10 #include <sdsl/bit_vectors.hpp>
11 #include <sdsl/wavelet_trees.hpp>
12 #include <string>
13 #include <mapper.hpp>
14 #include <cstdlib>
15 #include <elias_fano_compressed_list.hpp>
16 #include "snort-funcs/acsmx.h"
17 #include "parser.h"
18 #include "signature.h"
19

20 using namespace sdsl;
21 using namespace std::chrono;
22 using timer = std::chrono::high_resolution_clock;
23

24 ACSM_STRUCT *acsm = acsmNew();
25

26 int main(int argc, char *argv[]) {
27

28 char *infile, *searchtext;
29 searchtext = nullptr;
30 int no_samples = 1;
31

32 float c_states = 0.0f;
33 int alt_n_siz = 0;
34 int alt_b_siz = 0;
35

36 // Parse arguments
37 if (argc < 5) {
38 fprintf(stderr, "Usage: ./program -i infile -s sampleno -st searchtext\n");
39 exit(0);
40 }
41

42 for (int i = 1; i < argc; i++) {
43 if (strcmp(argv[i], "-i") == 0) {
44 infile = argv[i + 1];
45 } else if (strcmp(argv[i], "-s") == 0) {
46 no_samples = atoi(argv[i + 1]);
47 } else if (strcmp(argv[i], "-st") == 0) {
48 searchtext = argv[i + 1];
49 }
50 }
51

52 // Parse signatures from the input file
53 std::vector<Signature *> sig_list;
54 ParseSigFile(sig_list, infile);
55

56 // Read search text as bytes

Chapter A: Code listings 95

57 std::ifstream input(searchtext, std::ios::in | std::ios::binary);
58 std::vector<uint8_t> bytes((std::istreambuf_iterator<char>(input)), (std::

istreambuf_iterator<char>()));
59 input.close();
60

61 // Use the existing functionality from Snort to add patterns and compile the DFA
62 for (size_t i = 0; i < sig_list.size(); i++) {
63 acsmAddPattern(acsm, sig_list[i]->content, sig_list[i]->clen, 0, i);
64 }
65 acsmCompile(acsm);
66

67 uint r;
68 std::vector<uint> lg_l_total, ac_l_total;
69 std::vector<uint> tmp_n; // temporary
70 float lgtm;
71 int ac_nfound;
72 float notzerosates;
73

74 // Exit if few patterns or states
75 if (acsm->acsmMaxStates <= 1 || acsm->numPatterns <= 50) {
76 exit(0);
77 }
78

79

80 for (size_t i = 0; i < no_samples; i++) {
81 notzerosates = 0.0f;
82 // Aho-corasick search and time it
83 auto start = timer::now();
84 ac_nfound = acsmSearch(acsm, reinterpret_cast<unsigned char *>(bytes.data()),

bytes.size(), (void *) 0, 0);
85 auto stop = timer::now();
86 int ac_st = duration_cast<TIMEUNIT>(stop - start).count();
87

88 // Build the alternative representation
89 int next;
90 uint c = 0;
91 uint state = 0;
92 bit_vector nb(ALPHABET_SIZE * acsm->acsmMaxStates + 1);
93

94 for (int k = 0; k < ALPHABET_SIZE; k++) {
95 for (int i = 0; i < acsm->acsmMaxStates; i++) {
96 next = acsm->acsmStateTable[i].NextState[k];
97 if (next > 0) {
98 notzerosates++;
99 tmp_n.push_back(next);

100 nb[c] = 1;
101 }
102 if (next >= 0) {
103 c++;
104 }
105

106 }
107 }
108

109 nb.resize(c);
110 succinct::elias_fano_compressed_list N(tmp_n);
111

112 tmp_n.clear();
113 tmp_n.shrink_to_fit();
114 int lg_nfound = 0;

96 MLL: Efficient data structures in IDS

115

116 uint s = (acsm->acsmNumStates + 1);
117 rank_support_v<1> nb_r1(&nb);
118

119 // Use the developed algorithm to search for matches in the improved
representation.

120 // The existing matchList from Aho-Corasick in Snort is used here, but not
accounted for memory-wise in either of

121 // the two algorithms
122 start = timer::now();
123 for (auto i : bytes) {
124 r = i * s;
125 if (nb[r + state]) {
126 state = N[nb_r1(r + state)];
127 if (acsm->acsmStateTable[state].MatchList != NULL) {
128 printf("[LG]:Match for %s\n", acsm->acsmStateTable[state].MatchList->

casepatrn);
129 lg_nfound++;
130 }
131 } else {
132 state = 0;
133 }
134 }
135

136 stop = timer::now();
137

138 // Assert that the two versions match equally as many patterns.
139 assert(lg_nfound == ac_nfound);
140

141 // Register time and space
142 int lg_st = duration_cast<TIMEUNIT>(stop - start).count();
143 lgtm = (float) succinct::mapper::size_tree_of(N)->size + (float) size_in_bytes(

nb);
144

145 alt_b_siz = size_in_bytes(nb);
146 alt_n_siz = succinct::mapper::size_tree_of(N)->size;
147

148 ac_l_total.push_back(ac_st);
149 lg_l_total.push_back(lg_st);
150 c_states = c;
151 }
152

153 // Calculate median: https://en.cppreference.com/w/cpp/algorithm/nth_element
154 const auto Xi_m = (lg_l_total.begin() + lg_l_total.size() / 2);
155 const auto Xe_m = (ac_l_total.begin() + ac_l_total.size() / 2);
156

157 std::nth_element(lg_l_total.begin(), Xi_m, lg_l_total.end());
158 std::nth_element(ac_l_total.begin(), Xe_m, ac_l_total.end());
159

160 // Original space and time
161 auto We = (float) getMem(acsm);
162 auto Xe = (float) *Xe_m;
163 // Alternative space and time
164 auto Wi = (float) lgtm;
165 auto Xi = (float) *Xi_m;
166

167 printf("\n+--[Summary]---\n");
168 printf("| Samples: : %d\n", no_samples);
169 printf("| Filename : %s\n", infile);
170 printf("| Percent zero states : %.2f%%\n", ((c_states -

Chapter A: Code listings 97

notzerosates) / c_states) * 100.0f);
171 printf("| No. Signatures : %lu \n", sig_list.size());
172 printf("| Number of Matches : %d\n", ac_nfound);
173 printf("+--[ORIGINAL representation]----------------------\n");
174 acsmPrintSummaryInfo(acsm);
175 printf("| Size (We) : %.1f B\n", We);
176 printf("| Median search time in ns (Xe) : %.1f\n", Xe);
177 printf("+--[ALTERNATIVE representation]----------------------\n");
178 printf("| N : %d B\n", alt_n_siz);
179 printf("| B : %d B\n", alt_b_siz);
180 if (lgtm < 1024 * 1024)
181 printf("| Size (Wi) : %.5f KB\n", Wi / 1024.0f);
182 else
183 printf("| Size (Wi) : %.5f MB\n", Wi / (1024.0f *

1024.0f));
184 printf("| Size (Wi) : %.1f B\n", Wi);
185 printf("| Median search time in ns (Xi) : %.1f\n", Xi);
186 printf("+-[EFFICIENCY]---\n");
187 printf("| Space difference (We / Wi) : %.5f\n", (We / Wi));
188 printf("| Time difference (Xi / Xe) : %.5f\n", (Xi / Xe));
189 printf("| Result (We * Xe) / (Wi * Xi) : %.5f\n", (We * Xe) / (Wi * Xi))

;
190 printf("+--\n");
191

192

193 acsmFree(acsm);
194

195 for (auto sig : sig_list) {
196 free(sig->content);
197 free(sig->msg);
198

199 delete (sig); // use delete, because of "new"
200 }
201

202 return 0;
203 }

Code listing A.3: lgraph.h

1 #ifndef LGRAPH_H
2 #define LGRAPH_H
3

4 #include <sdsl/bit_vectors.hpp>
5 #include "defs.h"
6 #include <sdsl/wavelet_trees.hpp>
7

8 //! Namespace for the succinct data structure library.
9 using namespace sdsl;

10 using namespace std::chrono;
11 using timer = std::chrono::high_resolution_clock;
12

13 template<class bit_vec_t = bit_vector>
14 class lgraph {
15 public:
16 typedef bit_vec_t bit_vector_type;
17

18 private:
19 bit_vector::rank_1_type b_rank1;
20

21 bit_vector_type b;

98 MLL: Efficient data structures in IDS

22 bit_vector_type bl;
23

24 std::vector <uint> tmp_l; // temporary label storage
25 vlc_vector <VLC_CODER> L; // final label storage
26 std::vector <uint> tmp_n; // temporary label storage
27 vlc_vector <VLC_CODER> N; // final label storage
28

29 public:
30 const vlc_vector <VLC_CODER> &l;
31 const bit_vector_type &bv; // const reference to the LOUDS sequence
32

33 lgraph() : b(), bl(), bv(b), l(L) {
34 b = bit_vector_type();
35 bl = bit_vector_type();
36 }
37

38 void appendLabel(std::vector <uint> labels = {}) {
39 bit_vec_t tmp_bv = b;
40 tmp_bv.resize(b.size() + labels.size() + 1);
41 tmp_bv[(b.size()) + 1] = 1;
42 b = bit_vector_type(std::move(tmp_bv));
43 for (auto i : labels) {
44 tmp_l.push_back(i);
45 }
46 }
47

48 void appendDistNodeN(std::vector <uint> nodes = {}) {
49 bit_vector_type tmp_bv = bl;
50 tmp_bv.resize(bl.size() + nodes.size() + 1);
51 tmp_bv[(bl.size()) + 1] = 1;
52 bl = bit_vector_type(std::move(tmp_bv));
53 for (auto i : nodes) {
54 tmp_n.push_back(i);
55 }
56 }
57

58 // Initialise support data structure with rank and select support on bitvectors
...

59 void finalize() {
60 std::cout << "finializing" << std::endl;
61

62 b_rank1(&b);
63

64 std::cout << tmp_l.size() << " " << tmp_n.size() << " " << b.size() << " " <<
bl.size() << std::endl;

65

66 L = vlc_vector<VLC_CODER>(std::move(tmp_l));
67 N = vlc_vector<VLC_CODER>(std::move(tmp_n));
68

69 tmp_l.clear();
70 tmp_l.shrink_to_fit();
71 tmp_n.clear();
72 tmp_n.shrink_to_fit();
73 }
74 };
75

76 #endif

Code listing A.4: ptree.h

Chapter A: Code listings 99

1 #ifndef NTREE_H
2 #define NTREE_H
3

4 #include "signature.h"
5 #include "defs.h"
6

7

8 typedef struct Portnode_ {
9 Portnode_ *next = nullptr;

10 Signature *sn;
11 } Portnode;
12

13 typedef struct Flownode_ {
14 Portnode *tcp[MAX_PORTS];
15 Portnode *udp[MAX_PORTS];
16 } Flownode;
17

18 typedef struct Rootnode_ {
19 Flownode *flow_gh[MAXFLOW];
20 } Rootnode;
21

22 #endif

Code listing A.5: parser.h

1 #ifndef PARSER_H
2 #define PARSER_H
3

4 #include "defs.h"
5 #include "signature.h"
6 #include <vector>
7 #include <map>
8

9 // Some predefined port variables..
10 inline std::map<std::string, std::vector<uint32_t>> port_vartable = {
11 {"$HTTP_PORTS", {80, 81, 311, 383, 591, 593, 901, 1220, 1414, 1741, 1830,

2301, 2381, 2809, 3037, 3128, 3702, 4343, 4848, 5250, 6988, 7000, 7001,
7144, 7145, 7510, 7777, 7779, 8000, 8008, 8014, 8028, 8080, 8085, 8088,
8090, 8118, 8123, 8180, 8181, 8243, 8280, 8300, 8800, 8888, 8899, 9000,
9060, 9080, 9090, 9091, 9443, 9999, 11371, 34443, 34444, 41080, 50002,
55555}},

12 {"$FILE_DATA_PORTS", {110, 143}},
13 {"$FTP_PORTS", {{21, 2100, 3535}}}};
14

15 int ParseRuleMessage(Signature *sid, char *args);
16

17 int ParseRuleContent(Signature *sid, char *args);
18

19 int ParseRuleSid(Signature *sid, char *args);
20

21 int ParseOptions(Signature *sig, char *rule_opts);
22

23 int ParseHeader(Signature *sig, char **toks);
24

25 int ParseSigFile(std::vector<Signature *> &sig_list, const char *sig_file);
26

27 int ParseRuleFlow(Signature *sig, char *args);
28

29 int AppendSignature(Signature *sig, char *line, int signum);

100 MLL: Efficient data structures in IDS

30

31 int GetRuleProtocol(char *proto_str);
32

33 int ParsePorts(Signature *sig, char *port_str);
34

35 #endif

Code listing A.6: parser.cpp

1 #include "parser.h"
2 #include "signature.h"
3 #include "defs.h"
4 #include <iostream>
5 #include "snort-funcs/misc.h"
6 #include <cstring>
7 #include <vector>
8 #include <map>
9 #include "suricata-funcs.h"

10

11 typedef int (*ParseRuleFunc)(Signature *sid, char *);
12

13 typedef struct _RuleFunc {
14 char *name;
15 ParseRuleFunc parse_func;
16

17 } RuleFunc;
18

19 static const RuleFunc rule_options[] =
20 {
21 {RULE_OPT_MSG, ParseRuleMessage},
22 {RULE_OPT_CONTENT, ParseRuleContent},
23 {RULE_OPT_SID, ParseRuleSid},
24 {NULL, NULL} /* Marks end of array */
25 };
26

27 int ParseRuleFlow(Signature *sig, char *args) {
28 if (strcasecmp(args, "<-") == 0) {
29 sig->flowdir = FLOWDIR_TOCLIENT;
30 return 0;
31 } else if (strcasecmp(args, "->") == 0) {
32 sig->flowdir = FLOWDIR_TOSERVER;
33

34 return 0;
35 }
36 return -1;
37 }
38

39 int ParseRuleMessage(Signature *sig, char *args) {
40 // printf("[PARSEMESSAGE][INFO]: message %s\n", args);
41 int ovlen = strlen(args);
42 if (ovlen > 1) {
43 /* strip leading " */
44 args++;
45 ovlen--;
46 args[ovlen - 1] = ’\0’;
47 ovlen--;
48 }
49

50 sig->msg = strdup(args);
51 return 0;

Chapter A: Code listings 101

52 }
53

54 int ParseRuleContent(Signature *sig, char *args) {
55 int ovlen = strlen(args);
56 /* skip leading whitespace */
57 while (ovlen > 0) {
58 if (!isblank(*args))
59 break;
60 args++;
61 ovlen--;
62 }
63

64 /* see if value is negated */
65 if (*args == ’!’) {
66 args++;
67 ovlen--;
68 }
69 /* skip more whitespace */
70 while (ovlen > 0) {
71 if (!isblank(*args))
72 break;
73 args++;
74 ovlen--;
75 }
76

77 if (ovlen > 1) {
78 /* strip leading " */
79 args++;
80 ovlen--;
81 args[ovlen - 1] = ’\0’;
82 ovlen--;
83 }
84 if (DetectContentDataParse(args, sig) != 0) {
85 return -1;
86 } else {
87 return 0;
88 }
89 }
90

91 int ParseRuleSid(Signature *sig, char *args) {
92 sig->sid = atoi(args);
93 return 0;
94 }
95

96 int ParseOptions(Signature *sig, char *rule_opts) {
97 if (rule_opts == NULL) {
98 printf("No rule options.\n");
99 } else {

100 char **toks;
101 int num_toks;
102 int i;
103

104 if ((rule_opts[0] != ’(’) || (rule_opts[strlen(rule_opts) - 1] != ’)’)) {
105 printf("Rule options must be enclosed in ’(’ and ’)’.");
106 }
107

108 /* Move past ’(’ and zero out ’)’ */
109 rule_opts++;
110 rule_opts[strlen(rule_opts) - 1] = ’\0’;
111 toks = mSplit(rule_opts, ";", 0, &num_toks, ’\\’);

102 MLL: Efficient data structures in IDS

112

113 for (i = 0; i < num_toks; i++) {
114 char **opts;
115 int num_opts;
116 char *option_args = NULL;
117 int j;
118

119 //printf("option: %s\n", toks[i]);
120

121 /* break out the option name from its data */
122 opts = mSplit(toks[i], ":", 2, &num_opts, ’\\’);
123

124 //printf(" option name: %s\n", opts[0]);
125

126 if (num_opts == 2) {
127 option_args = opts[1];
128 // printf(" option args: %s\n", option_args);
129 }
130

131 for (j = 0; rule_options[j].name != NULL; j++) {
132 if (strcasecmp(opts[0], rule_options[j].name) == 0) {
133 if (rule_options[j].parse_func(sig, option_args) != 0) {
134 mSplitFree(&opts, num_opts);
135 mSplitFree(&toks, num_toks);
136 return -1;
137 }
138 }
139 }
140 mSplitFree(&opts, num_opts);
141 }
142 mSplitFree(&toks, num_toks);
143 }
144 return 0;
145 }
146

147 int ParseHeader(Signature *sig, char **toks) {
148 /* Set the rule protocol - fatal errors if protocol not found */
149 uint8_t protocol = GetRuleProtocol(toks[1]);
150 switch (protocol) {
151 case IPPROTO_TCP:
152 sig->protocol = IPPROTO_TCP;
153 break;
154 case IPPROTO_UDP:
155 sig->protocol = IPPROTO_UDP;
156 break;
157 case ERROR_RETURN:
158 return -1;
159 }
160

161 if (ParseRuleFlow(sig, toks[4]) != 0) {
162 return -1;
163 }
164

165 if (sig->flowdir == FLOWDIR_TOCLIENT) {
166 if (ParsePorts(sig, toks[3] /* =src port */) != 0) {
167 return -1;
168 }
169 } else {
170 if (ParsePorts(sig, toks[6] /* =dst port */) != 0) {
171 return -1;

Chapter A: Code listings 103

172 }
173 }
174

175 return 0;
176 }
177

178 int ParseSigFile(std::vector<Signature *> &sig_list, const char *sig_file) {
179 int signum = 0;
180 char line[8192];
181 long offset = 0;
182 int lineno = 0;
183 int multiline = 0;
184

185 FILE *fp = fopen(sig_file, "r");
186 if (fp == nullptr) {
187 printf("[PARSE][ERROR]: opening rule file %s", sig_file);
188 return -1;
189 }
190

191 while (fgets(line + offset, (int) sizeof(line) - offset, fp) != nullptr) {
192 lineno++;
193 int len = strlen(line);
194

195 /* ignore comments and empty lines */
196 if (line[0] == ’\n’ || line[0] == ’\r’ || line[0] == ’ ’ || line[0] == ’#’ ||

line[0] == ’\t’)
197 continue;
198

199 /* Check for multiline rules. */
200 while (len > 0 && isspace((unsigned char) line[--len]));
201 if (line[len] == ’\\’) {
202 multiline++;
203 offset = len;
204 if (offset < sizeof(line) - 1) {
205 /* We have room for more. */
206 continue;
207 }
208 /* No more room in line buffer, continue, rule will fail
209 * to parse. */
210 }
211

212 /* Check if we have a trailing newline, and remove it */
213 len = strlen(line);
214 if (len > 0 && (line[len - 1] == ’\n’ || line[len - 1] == ’\r’)) {
215 line[len - 1] = ’\0’;
216 }
217

218 /* Reset offset. */
219 offset = 0;
220

221 /* Parse the signature */
222 Signature *sig = new Signature();
223 if (AppendSignature(sig, line, signum) == 0 && (sig->content && sig->dstport.

size() && sig->flowdir)) {
224 sig_list.push_back(sig);
225 signum++;
226 } else {
227 if (sig->content)
228 free(sig->content);
229 if (sig->msg)

104 MLL: Efficient data structures in IDS

230 free(sig->msg);
231 delete (sig); // use delete, because of "new"
232 }
233

234 multiline = 0;
235 }
236 fclose(fp);
237 return signum;
238 }
239

240 int AppendSignature(Signature *sig, char *line, int signum) {
241 char **toks = NULL;
242 int num_toks = 0;
243 // Signature *sig = new Signature();
244 sig->id = signum;
245

246 toks = mSplit(line, " \t", 8, &num_toks, ’\\’);
247 char *roptions = toks[7];
248 if (ParseOptions(sig, roptions) != 0) {
249 mSplitFree(&toks, num_toks);
250 return -1;
251 }
252 if (ParseHeader(sig, toks) != 0) {
253 mSplitFree(&toks, num_toks);
254 return -1;
255 }
256 mSplitFree(&toks, num_toks);
257 return 0;
258 }
259

260 int GetRuleProtocol(char *proto_str) {
261 if (strcasecmp(proto_str, RULE_PROTO_OPT_TCP) == 0) {
262 return IPPROTO_TCP;
263 } else if (strcasecmp(proto_str, RULE_PROTO_OPT_UDP) == 0) {
264 return IPPROTO_UDP;
265 } else {
266 return -1;
267 }
268 }
269

270 int ParsePorts(Signature *sig, char *port_str) {
271

272 /* 1st - check if we have an any port */
273 if (strcasecmp(port_str, "any") == 0) {
274 sig->dstport = {ANYPORT};
275 return 0;
276 }
277

278 /* 2nd - check if we have a PortVar */
279 else if (port_str[0] == ’$’) {
280 auto ports = port_vartable.find(port_str);
281 if (ports != port_vartable.end()) { // found key
282 sig->dstport = ports->second;
283 return 0;
284 }
285 return -1;
286

287 } /* 3rd - and finally process a raw port list */
288 else {
289 if (port_str[0] == ’[’) {

Chapter A: Code listings 105

290 int ovlen = strlen(port_str);
291

292 if (ovlen > 1) {
293 /* strip leading " */
294 port_str++;
295 ovlen--;
296 port_str[ovlen - 1] = ’\0’;
297 ovlen--;
298 }
299 }
300 std::vector<uint32_t> tmpar;
301 int num_toks;
302 char **toks = mSplit(port_str, ",", 0, &num_toks, ’\\’);
303

304 for (size_t i = 0; i < num_toks; i++) {
305 int tmp_ret = atoi(toks[i]);
306 if (tmp_ret == 0) {
307 mSplitFree(&toks, num_toks);
308 return -1;
309 }
310 tmpar.push_back(tmp_ret);
311 }
312 if (tmpar.size()) {
313 sig->dstport = tmpar;
314 }
315 mSplitFree(&toks, num_toks);
316 return 0;
317 }
318 }

Code listing A.7: ltree.h

1 /*
2 Inspired by and modified from:
3 https://github.com/simongog/sdsl-lite/blob/master/examples/louds-tree.cpp
4 by Simon Gog
5 */
6 #ifndef LTREE_H
7 #define LTREE_H
8

9 #include <sdsl/bit_vectors.hpp>
10 #include "defs.h"
11 #include <sdsl/wavelet_trees.hpp>
12

13 //! Namespace for the succinct data structure library.
14 using namespace sdsl;
15 using namespace std::chrono;
16 using timer = std::chrono::high_resolution_clock;
17

18 //! A tree class based on the level order unary degree sequence (LOUDS)
representation.

19 template<class bit_vec_t = bit_vector,
20 class select_1_t = typename bit_vec_t::select_1_type,
21 class select_0_t = typename bit_vec_t::select_0_type,
22 class rank_1_t = typename bit_vec_t::rank_1_type,
23 class rank_0_t = typename bit_vec_t::rank_0_type>
24 class ltree {
25 public:
26 typedef bit_vector::size_type size_type;
27 typedef bit_vec_t bit_vector_type;

106 MLL: Efficient data structures in IDS

28 typedef select_1_t select_1_type;
29 typedef select_0_t select_0_type;
30 typedef rank_1_t rank_1_type;
31 typedef rank_0_t rank_0_type;
32

33 private:
34 bit_vector_type m_bv; // bit vector for the LOUDS sequence
35 select_1_type m_bv_select1; // select support for 1-bits on m_bv
36 select_0_type m_bv_select0; // select support for 0-bits on m_bv
37 rank_1_type m_bv_rank1; // rank support for 1-bits on m_bv
38 rank_0_type m_bv_rank0; // rank support for 0-bits on m_bv
39 std::vector<uint32_t> tmp_s; // temporary label storage
40 wt_int<bit_vector> S; // final label storage
41 uint select_unique_time = 0;
42

43 public:
44 const wt_int<bit_vector> &s;
45 const bit_vector_type &bv; // const reference to the LOUDS sequence
46 const uint &su_t;
47

48 ltree()
49 : m_bv(), m_bv_select1(), m_bv_select0(), m_bv_rank1(), m_bv_rank0(), bv(m_bv

), s(S), su_t(select_unique_time) {
50 bit_vector tmp_bv(2, 0);
51 tmp_bv[0] = 1; // 10 in first two spots...
52 m_bv = bit_vector_type(std::move(tmp_bv));
53 }
54

55 void append(int noc, std::vector<uint32_t> s = {}) {
56 if (s.size() != noc) {
57 printf("[LTREE][ERROR]: No. child does not match labels");
58 return;
59 } else {
60 bit_vector tmp_bv = m_bv;
61 tmp_bv.resize(m_bv.size() + noc + 1);
62 size_type pos = m_bv.size();
63 if (noc) {
64 for (int i = 0; i < noc; i++) {
65 tmp_bv[pos++] = 1;
66 tmp_s.push_back(s[i]);
67 }
68 }
69

70 tmp_bv[pos++] = 0;
71 tmp_bv.resize(pos);
72 m_bv = bit_vector_type(std::move(tmp_bv));
73 }
74 }
75

76 // Initialise support data structure with rank and select support on bitvectors
...

77 void finalize() {
78 util::init_support(m_bv_select1, &m_bv);
79 util::init_support(m_bv_select0, &m_bv);
80 util::init_support(m_bv_rank1, &m_bv);
81 util::init_support(m_bv_rank0, &m_bv);
82

83 construct_im(S, tmp_s, 4);
84 tmp_s.clear();
85 tmp_s.shrink_to_fit();

Chapter A: Code listings 107

86 }
87

88 //! Returns the t’th child of v
89 int child(int v, int t) {
90 return nodemap(m_bv_select0(m_bv_rank1(v + t)) + 1);
91 }
92

93 //! Returns unique identifier in [1,n] for v
94 int nodemap(int i) {
95 return m_bv_rank0(i);
96 }
97

98 //! Converts unique identifier to index in bitvector
99 int nodeselect(int v) {

100 return m_bv_select0(v) + 1;
101 }
102

103 //#define DEBUG
104 //! Returns the node identifer for the i’th child labeled l for the node id v
105 int labeledchild(int v, uint32_t l) {
106 int i = nodeselect(v);
107 int s = m_bv_rank1(i) - 1;
108

109 int tmp_s = S.select(S.rank(s, l) + 1, l) - s;
110 return child(i, tmp_s);
111 }
112 };
113

114 #endif

Code listing A.8: signature.h

1 #ifndef SIGNATURE_H
2 #define SIGNATURE_H
3

4 #include "defs.h"
5 #include <iostream>
6 #include <vector>
7

8 typedef struct Signature_ {
9 uint8_t protocol;

10 std::vector<uint32_t> dstport;
11

12 int id;
13 char *msg;
14 uint16_t clen = 0;
15 uint8_t *content;
16 int sid;
17 int flowdir;
18 } Signature;
19

20 #endif

Code listing A.9: defs.h

1 #ifndef DEFS_H
2 #define DEFS_H
3

4 #define RULE_OPT_MSG "msg"

108 MLL: Efficient data structures in IDS

5 #define RULE_OPT_CONTENT "content"
6 #define RULE_OPT_SID "sid"
7 #define RULE_OPT_FLOW "flow"
8 #define RULE_PROTO_OPT_TCP "tcp"
9 #define RULE_PROTO_OPT_UDP "udp"

10 #define TOKS_BUF_SIZE 100
11 #define FLOWDIR_TOCLIENT 2
12 #define FLOWDIR_TOSERVER 1
13 #define MAXFLOW 3
14 #define MAX_PORTS 65536
15 #define ERROR_RETURN -1
16

17 #define ANYPORT 0
18

19 /* Standard well-defined IP protocols. */
20 #define IPPROTO_TCP 1
21 #define IPPROTO_UDP 2
22 #define IPPROTO_MAX 3
23

24 #define VLC_CODER coder::fibonacci
25 #define TIMEUNIT nanoseconds
26

27 #endif

Code listing A.10: byte-frequency.py

1 # -*- coding: utf-8 -*-
2 """
3

4 This program aims to find the ASCII values not in used by the content of a given
ruleset

5

6 """
7

8 import matplotlib.pyplot as plt
9 import sys

10

11 # Customize matplotlib
12

13 vals = {}
14

15 v_sum = 0
16

17 with open(sys.argv[1]) as f:
18 for v in [line for line in f]:
19 if len(v.strip()):
20 if v.strip()[0] != "#":
21 for l in v.strip().split(";"):
22 if l.split(":")[0].strip() == "content":
23 cnt = str(l.split(":")[1]).strip()
24 end = len(cnt)
25 j = 0
26 if cnt[j] == "!":
27 j += 1
28 cnt.strip()
29 if cnt[j] == "\"":
30 j += 1
31 cnt.strip()
32 if cnt[-1] == "\"":
33 end -= 1

Chapter A: Code listings 109

34 while j < end:
35 c = cnt[j]
36 if c == "|":
37 j_p = cnt.find("|", j + 1)
38 if j_p > 0:
39 try:
40 for c in bytearray.fromhex(cnt[j + 1:j_p].replace("|", "")).

decode(’latin1’):
41 if ord(c) not in vals:
42 vals.update({ord(c): 1})
43 v_sum += 1
44 else:
45 vals[ord(c)] += 1
46 v_sum += 1
47 j = j_p + 1
48 except Exception:
49 break
50 else:
51 if ord(c) not in vals:
52 vals.update({ord(c): 1})
53 v_sum += 1
54 else:
55 vals[ord(c)] += 1
56 v_sum += 1
57 j += 1
58

59 for x, y in vals.items():
60 vals[x] = float(y / v_sum)
61

62 vals = dict(sorted(vals.items(), key=lambda item: item[0]))
63

64 plt.bar(list(vals.keys()), vals.values(), color=’darkorchid’)
65 plt.title(sys.argv[1])
66 plt.xlabel("Byte")
67 plt.ylabel("Byte frequency")
68 plt.savefig("byte-frequency.svg")

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Efficient representation of data in intrusion detection system
s

Magnus Lien Lilja

Efficient representation of data in
intrusion detection systems

Master’s thesis in Information Security
Supervisor: Slobodan Petrovic

June 2021

M
as

te
r’s

 th
es

is

	Abstract
	Contents
	Figures
	Tables
	Acronyms
	Glossary
	Introduction
	Topic covered by the project
	Keywords
	Problem description
	Justification, motivation and benefits
	Research questions
	Contributions
	Outline

	Theoretical background
	Intrusion detection systems
	Measurement
	O-notation
	Entropy

	Compact data structures
	Bitvectors

	Related Work
	Internals
	Signature representation
	Pattern matching

	Compact representation of data
	Arrays and sequences
	Linked List
	Trees
	Graphs

	Existing comparisons
	IDS
	LiDAR
	GIS
	Graph databases

	Summary

	Methodology
	Research method
	Related work
	Efficiency metric
	Improvement
	Analysis
	Technical
	Theoretical
	Versions and formalities

	Experimental result
	Dataset

	Efficiency Metric
	Practical evaluation

	Signature representation
	Technical analysis
	Snort
	Suricata

	Theoretical analysis
	Abstraction
	Analysis
	Characteristics

	Suggested improvement
	Alternative one
	Alternative two
	Evaluation

	Fast pattern matcher
	Technical analysis
	Snort
	Suricata

	Theoretical analysis
	Abstraction
	Analysis
	Characteristics

	Suggested improvement
	Alternative one
	Alternative two
	Evaluation

	Experimental Result
	Environment
	Physical setup
	Logical setup

	Description
	Signature representation
	Fast pattern matcher

	Results
	Evaluation

	Discussion
	Experimental results
	Signature representation
	Fast pattern matcher

	General

	Conclusion
	Summary
	Future work

	Bibliography
	Code listings

