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ABSTRACT When operating autonomous surface vessels in uncertain environments with dynamic obstacles,
planning safe trajectories and evaluating collision risk is key to navigating safely. In order to perform these
tasks, it is important to have a computationally efficient and adaptable obstacle representation to allow for
quick and robust predictions of the obstacle trajectory. This paper presents a novel space-time obstacle
representation, which is able to predict the reachable set for a dynamic obstacle under uncertainty. This is
done by projecting the area occupied by the obstacle forward in time, using a set of velocities representing the
possible maneuvers that the obstacle may take. Under some mild assumptions, we show how the space-time
obstacle can be implemented in a computationally efficient way, using both convex polytopes and ellipsoids.
Additionally, we show how the space-time obstacle representation can be used for risk assessment, collision
avoidance and trajectory planning for autonomous surface vessels.

INDEX TERMS Autonomous surface vehicles, collision avoidance, marine vehicles, motion planning,
optimal control, trajectory optimization, risk assessment.

I. INTRODUCTION
With increasing interest in autonomy solutions in the mar-
itime industry, it becomes increasingly important to develop
robust and efficient methods for risk assessment and collision
avoidance (COLAV). This is especially true for dynamic
obstacles, for which accurate trajectory predictions is com-
plicated by numerous uncertainties. A major component of
developing robust and efficient methods, is the underlying
obstacle representation. While the literature is for the most
part concerned with COLAV and risk assessment methods,
where the obstacle representation is chosen to fit the algo-
rithm. The goal of this article is to create awareness around
the representation, and showing some of the befits of building
a COLAV and risk assessment method around an obstacle
representation, instead of the obstacle representation being
built around the method. In order for the obstacle represen-
tation to be practical, it needs to be able to capture the shape
andmovement of the obstacle in away that is computationally
efficient, allowing for real-time risk assessment, planning and
decision making. Additionally the obstacle representation
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must be robust, allowing for both measurement uncertainties,
as well as uncertainties in the obstacle behavior.

One of the first obstacle representations to be used for
assessing collision risk is the closest point of approach
(CPA) [1], which computes the distance and point in time
when two vessels are at their closest, given that the vessels
have a known constant velocity. CPA was initially developed
to give human readable feedback to navigators on the risk
associated with the speed and course of the vessel, but has
more recently been incorporated into automated COLAV
systems [2], [3]. Based on the same idea as CPA, the velocity
obstacle (VO) representation [4], [5], computes the set of
velocities which lead to a collision, i.e. giving a distance
at the closest point of approach (dCPA) of zero, and a
time of closest point of approach (tCPA) greater then zero.
The VO approach has seen widespread use, as it allows
for easily assessing if a given velocity vector is collision
free. Additional extension to the VO representation allow
for kinematic constraints, obstacle behaviour and uncertainty
[6]–[8], with similar methods such as dynamic window (DW)
methods, allowing for dynamic constraints [9]. While these
obstacle representations are fairly computationally efficient,
they come with some major drawbacks, mainly that they con-
sidering only a singlemaneuver, such as a constant velocity or
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turning rate. This makes the methods suitable for short term
collision avoidance, but is only of limited use for long term
planning and risk assessment of multiple complex maneu-
vers. In order to allow for longer term planning, a common
approach is to use set based obstacle representation, where
the set of points making up the obstacles is computed and
projected forward in time. For surface vessels this is typically
done using either circles and ellipsoids [10]–[14], or poly-
topes [15], [16]. While these methods allow for longer term
planning, they usually assume that the obstacle velocity is
exactly known over some prediction horizon, meaning that
these methods are limited in terms of the robustness under
both measurement and behaviour uncertainty of the obstacle.
In order to account for obstacle uncertainty, the most accurate
methods incorporate the obstacle uncertainty, this can be done
by computing the reachable sets for the obstacle [17], [18],
or using probabilistic methods [6], [19]–[22] for predicting
the behaviour of the obstacles. These methods allow for accu-
rate obstacle predictions, but are often less flexible and more
computationally expensive than what is ideal for a general
purpose obstacle representation.

In order to address some of the drawbacks of existingmeth-
ods, we propose a novel space-time obstacle representation,
which is able to predict the set of states which a dynamic
obstacle may occupy, given uncertainty in both measure-
ments, as well as the future behaviour of the obstacle. The
proposed space-time representation is a set based representa-
tion, as the area occupied by the vessel is projected forward
in time. Contrary to other set based approaches however,
the proposed space-time representation uses a set of veloc-
ities representing the possible maneuvers that the obstacle
may take. This ensures robustness to both measurement and
behavioural uncertainty similarly to probabilistic methods.
In addition to developing a theoretical framework for the
proposed space-time representation, we also show how a
space-time obstacle can be efficiently implemented both as
convex polytopes and ellipsoids, in addition to showing how
the space-time obstacle may be used for both risk assessment
and trajectory planning. The main contributions of this paper
are as follows:

• The development of a novel space-time obstacle repre-
sentation for predicting the possible future trajectories
of an obstacle under uncertainty.

• Implementation of the space-time obstacle using both a
convex polytope representation, and an ellipsoid repre-
sentation.

• We provide examples of how the space-time representa-
tion can be used both for risk assessment and trajectory
planning for surface vessels.

The rest of the paper is structured as follows: Section II
introduces the space-time obstacle, and shows how it can be
implemented using both polytopes and ellipsoids. Section III
shows how the space-time obstacle can be used for both
trajectory planning and risk assessment, and Section IV con-
cludes the paper.

II. SPACE-TIME OBSTACLE REPRESENTATION
When performing obstacle avoidance, we need a way of
representing the obstacle. This can be done by representing
the obstacle as the set O of all space-time coordinates (x, t)
that the obstacle can occupy. For static obstacles, the obstacle
representation remains the same at for all time, however this is
no longer the case when faced with dynamic obstacles. When
planning safe trajectories, it is important to be able to account
for the movement of the obstacle in order to safely avoid it.
Given an obstacle O0 at time t = 0, with a velocity vector v
we can predict what the obstacle will look like in the future as:

Ot = O0 + (v · t) (1)

This will work in the case where the obstacle is determin-
istic, and we know its initial area O0 and future velocity v.
However in most real world applications, this is not the case,
as we may only have noisy estimates of position and velocity,
and the obstacle may speed up or slow down. In order to
account for this, we propose using a set of feasible veloci-
ties V , which represents the uncertainty about the measure-
ment and behaviour of the obstacle. This gives the following
obstacle prediction:

Ot = O0 ⊕ (V · t) (2)

where ⊕ denotes the Minkowski sum, i.e. the point-wise
sum between two sets. This can be further generalized into
space-time coordinates (x, t), as a robust space-time obstacle
representation:

O = {(x, t) | x ∈ Ot } (3)

Using this robust space-time obstacle representation,
where the true obstacle lies within the initial obstacle setO0,
and the obstacle velocity lies within the velocity set V , then
space-time coordinates that do not fall within the set O are
guaranteed to be collision free.

A. POLYTOPE SPACE-TIME OBSTACLE REPRESENTATION
One way of efficiently computing the robust space-time
obstacle representation, is to use convex polytopes. Given a
set of points S = {s1, s2, · · · sn} we can compute a convex
polygon containing all the points as the convex hull of the
points.

Conv(S) (4)

Using this we can define the obstacle and velocity set in
terms of the convex hull of a finite set of points.

O0 = Conv({o1, · · · on}), V = Conv({v1, · · · vn}) (5)

A useful property of the convex hull is that the convex hull
andMinkowski sum are commutative operations. This means
that for the two sets Oo and V , the following equality holds:

Ot = O0 ⊕ (V · t)
= Conv({o1, · · · on})⊕ Conv({v1 · t, · · · vn · t})

= Conv({o1, · · · on} ⊕ {v1 · t, · · · vn · t}), (6)
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FIGURE 1. Given the obstacle and velocity sets in (a), we can compute the resulting space-time obstacle representation in (b).
Where the blue lines represent the initial obstacle, green lines represent the obstacle at different times, and the red dashed line
represents the spatial projection of the space-time obstacle.

hence the resulting obstacle prediction remains convex [23].
In the case of a three dimensional space time, we can formu-
late the robust space-time obstacle representation in terms of
the corresponding half-space representation:

O =
{
(x, t)

∣∣∣∣ Ao [xt
]
≤ bo

}
. (7)

Given the extreme points (vertexes) of Ot , in a counter
clockwise order at arbitrarily chosen times t1 and t2 where
0 ≤ t1 < t2, as:

Vertex(Ot1 ) = {ot1,1, ot1,2 . . . ot1,n}

Vertex(Ot2 ) = {ot2,1, ot2,2 . . . ot2,n}, (8)

the half space representation is given by the following:

Ao,i =
[
ot2,i +1 − ot2,i

0

]
×

[
ot1,i − ot2,i
t1 − t2

]
bo,i = Ao,i

[
ot2,1
t2

]
, (9)

whereAo,i and bo,i are the i-th rows ofAo and bo respectively.
We should also note that the × operator denotes the cross
product of two vectors, and ot1,n+1 = ot1,1. Using the above
space-time obstacle representation, it is straightforward to
check if a given space-time coordinate (x, t) will result in
a collision with the obstacle. This is done simply by alge-
braically evaluating the matrix inequality given in (7), which
has a computational complexity which grows linearly with
the number of vertices in the initial obstacle set O0 and the
velocity set V .

Using the proposed polytope space-time obstacle represen-
tation, with the obstacle and velocity set given as follows:

O0 = Conv
([
−10
−5

]
,

[
−10
5

]
,

[
10
5

]
,

[
10
−5

])
(10)

V = Conv
([

0.8
0.00

]
,

[
1.0
−0.25

]
,

[
1.2
0.00

]
,

[
1.0
0.25

])
, (11)

we get the space-time obstacle representation given in
Figure 1. From the figure we see that the obstacle represen-
tation continues to grow with time. This is caused by the
uncertainty in the velocity being compounded over time.

B. ELLIPSOID SPACE-TIME OBSTACLE REPRESENTATION
The robust space-time obstacle representation may also be
efficiently computed using an ellipsoidal set representation.
We use the basic definition of an ellipsoid:

E(p,Q) = {x ∈ Rn
|(x− p)>Q−1(x− p) ≤ 1}, (12)

where p ∈ Rn is the ellipse center, and Q ∈ Rn×n is
a positive definite shape matrix. In order to compute the
robust space-time obstacle representation we must be able to
compute the Minkowski sum E(p1,Q1)⊕E(p2,Q2) between
two arbitrary ellipsoids. Unfortunately, the Minkowski sum
of two ellipsoid is in general not an ellipsoid. However it is
possible to formulate an ellipsoidal outer approximation:

E(p1,Q1)⊕ E(p2,Q2)

⊂ E(p1 + p2, (1+ c
−1)Q1 + (1+ c)Q2) ∀c > 0 (13)

Moreover, the minimizer of the trace and hence the sum
of the eigenvalues of the resulting symmetric shape matrix is
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FIGURE 2. Given the obstacle and velocity sets in (a), we can compute the resulting space-time obstacle
representation in (b). Where the blue lines represent the initial obstacle, green lines represent the obstacle at
different times, and the red dashed line represents the spatial projection of the space-time obstacle.

analytically given as:

c =

√
Tr(Q1)
Tr(Q2)

(14)

Given an initial obstacle and velocity estimate as the ellip-
soidal sets:

O0 = E(po,Qo), V = E(pv,Qv), (15)

where the scaled velocity ellipsoid V · t is given as:

V · t = E
(
pv · t,Qv · t

2
)
, (16)

we can use (13) to formulate an outer approximation of the
robust obstacle representation (2) as follows:

Ot ⊂ E(pt ,Qt ) (17)

where

pt = po + pv · t

Qt =
(
1+

t
d

)
Qo +

(
t2 + d · t

)
Qv

d =

√
Tr(Qo)
Tr(Qv)

(18)

Using this ellipsoidal outer approximation, we define
the ellipsoidal robust space-time obstacle representation as
follows:

O = {(x, t) | (x− pt )>Q−1t (x− pt ) ≤ 1}. (19)

We can note that using the above space-time obstacle repre-
sentation, it is straightforward to check if a given space-time
coordinate (x, t) will result in a collision with the obstacle,
as it simply involves algebraically evaluating the inequality
in (19), which has a constant computation time.

Using the proposed ellipsoid space-time obstacle represen-
tation, with the obstacle and velocity set given as follows:

O0 = E
([

0
0

]
,

[
102 0
0 52

])
(20)

V = E
([

1
0

]
,

[
0.22 0
0 0.252

])
, (21)

we get the space-time obstacle representation given in
Figure 2. Similarly to the polytope representation, we see that
the obstacle representation continues to grow with time in
order to account for the increasing uncertainty.

C. SPACE-TIME OBSTACLE RISK ASSESSMENT
The robust space-time obstacle representations presented in
the previous sections, show howwe can compute a space-time
volumewhich the obstacle may occupy, given an initial obsta-
cle area and a set of obstacle velocities. For some applica-
tions, this may be overly restrictive, as the true obstacle will
take only one velocity within the set of possible velocities.
In this case it may be more useful to reason about the risk
associated with the space-time obstacle. One way of reason-
ing about the risk is to consider the size of the velocity set V .
Writing the velocity uncertainty as:

V = v+ α · V0 (22)

where v is the geometric center of the velocity set V , V0 is the
velocity uncertainty with geometric center at the origin, and
α ∈ [0, 1] is the velocity uncertainty scaling. Using this we
can define the scaled obstacle prediction as:

Ot,α = O0 ⊕ (v+ α · V0) · t, (23)

and the scaled space-time obstacle as:

Oα = {(x, t) | x ∈ Ot,α}. (24)
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FIGURE 3. Risk for the polytope and ellipsoid space-time obstacle at 0, 40 and 100 seconds.

Using the above formulation, we can represent the risk as
1 − α where α is chosen as the minimum scaling for which
a space-time coordinate (x, t) is within the space-time obsta-
cleOα . This can be formulated as the following optimization
problem:

min
α
α

s.t. (x, t) ∈ Oα

α ∈ [0, 1] (25)

Solving the above optimization problem is in general quite
computationally expensive, however utilizing the properties
of the polytope and ellipsoid representation, the constrained
optimization problem above, has a closed form solution
in the case of the polytope, and can be transformed to a
unconstrained optimization problem for the ellipsoid. For
the examples given in Figure 1 and 2, we get the risk seen
in Figure 3. It should be noted that this measure of risk
is not a measure of probability, but rather represents the
degree of uncertainty in the set of velocities that the obstacle
can take.

III. APPLICATION
In this section we will show how the proposed space-time
obstacle representation can be used for risk assessment,
collision avoidance (COLAV) and trajectory planning for
autonomous surface vessels (ASVs).

A. VO AND CPA CONVERSION
Some of the most common COLAV methods used today
rely on evaluating multiple candidate velocities using either
closest point of approach (CPA), or velocity obstacles (VO).
Given a candidate velocity v and an initial position x0, making
up the straight line trajectory xv(t) = x0 + v · t , we can
evaluate the CPA and VO by finding the time that mini-
mizes the distance between the xv(t) and a point (x, t) in the
space-time obstacle. This can be formulated as the following

optimization problem:

min
x,t
||xv(t)− x||2

s.t. (x, t) ∈ O,
t ≥ 0. (26)

Given the solution (x, t) of the optimization problem, t is
the tCPA, xv(t) is the closest point of approach, and ||xv(t)−
x|| is the dCPA. If the distance ||xv(t) − x|| at the CPA is
zero, then the candidate velocity lies within the VO, and is
considered unsafe.We can note that the optimization problem
in (26) is a quadratic programming problem for the polytope
representation, and a nonlinear programming problem for the
elliptical obstacle representation.

For the space-time obstacles in Figure 1 and 2, and an
initial position x0 = [50, 50]>, we get the CPA and VO seen
in Figure 4. Using this, automatic COLAV can be performed
by choosing a velocity outside of the VO. Additionally, col-
lisions can be avoided with a specified margin, by choosing
a velocity with a large enough dCPA.

B. SIMPLE PATH-TIME PLANNER
In some circumstances, a preplanned path may be given, and
the goal during transit, is to follow the path as closely as
possible. When dynamic obstacles are introduced, the tra-
jectory planning problem is reduced to safely regulating
the velocity along the preplanned path in order to perform
COLAV. This problem is particularly interesting in confined
waters, where we often find predetermined shipping lanes
for larger vessels, and set routes for regularly scheduled
traffic such as ferries. One such path-time decomposition
approach to COLAV, called path-velocity decomposition, was
first introduced in [24], where a path-time obstacle represen-
tation was used together with graph search methods in order
to plan collision free trajectories following predetermined
paths. Since then the method has been used in a number of
applications, including COLAV for small urban passenger
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FIGURE 4. Distance to obstacle at closest point of approach (dCPA) shaded, and velocity obstacle (VO) in white.

ferries in confined waters [25]. In this section we will show
how our proposed space-time obstacle representation, is a
generalisation of path-time coordinates used in [24], and how
the space-time obstacle representation can be used to easily
introduce uncertainty and risk into the path-time decomposi-
tion approach.

1) SPACE-TIME TO PATH-TIME PROJECTION
Given a space-time obstacle, the corresponding path-time
obstacle is given as the projection of the space-time obstacle
along the desired path. In the case of a polytopic space time
obstacle on the form:

O =
{
(x, t)

∣∣∣∣ Ao [xt
]
≤ bo

}
, (27)

and a straight line path on the form:

x(s) = x0 + n · s, (28)

where x0 is the initial position, n, where ||n|| = 1, is the path
direction, and s is the distance along the path.We can compute
the path-time obstacle Op as the projection of the space-time
obstacle O as follows:

Op =

{
(s, t)

∣∣∣∣ Ao [n 0
0 1

] [
s
t

]
≤ bo − Ao

[
x0
t0

]}
. (29)

Given the space-time obstacle and path in Figure 5a,
the path projection gives th path-time diagram in Figure 5b.

2) EXAMPLE
Given a desired path, which is collision free with respect to
static obstacles such as a land, we can combine the proposed
space-time obstacle representation, and the path-time plan-
ning approach from [24], in order to plan an optimal velocity
profile along the predetermined desired path, which ensures
COLAV with respect to dynamic space-time obstacles. The
resulting planning algorithm can be described as follows:

1) From obstacle tracks, compute the space-time repre-
sentation of the vessel, predicting the obstacle move-
ment and uncertainty into the future (Figure 6a).

2) Project the space-time obstacles onto the predeter-
mined desired path, giving a path-time obstacle dia-
gram as seen in Figure 6b.

3) Using a graph search algorithm such as
Dijkstra et al. [26] or A? [27] with a given cost func-
tion, plan a sequence of constant velocities (straight
lines on the path-time diagram in Figure 6b), between
vertices of the path-time obstacles, which do not
intersect with the path-time obstacles. The planned
sequence of velocities then give an optimal collision
free trajectory.

In Figure 6, we show a simple scenario from the Trondheim
harbour, where three dynamic obstacles moving with dif-
ferent velocity uncertainties. Using time as the optimization
objective with three different maximum velocities, we get the
time optimal trajectories seen in Figure 6b. This planning
method can be further generalized to allow for switching
between multiple paths, similar to [25], and can be modified
to allow for trajectories with none-zero risk, in order to allow
for planning more optimal trajectories at the cost of higher
risk.

C. SIMPLE SPACE-TIME PLANNER
For the path-time planning approach in the previous section,
the trajectory is restricted to lie on a predetermined path.
In many situations, this may be overly restrictive, and allow-
ing for free movement is the better option. This includes
following the International Regulations for Preventing Col-
lisions at Sea (COLREGs), were clear maneuvers conveying
the vessel intentions is required, and situations where evasive
action is needed to avoid collision.

1) DUBINS TRAJECTORY PLANNER
Based on the path-time planner in the previous section, it is
possible to generalize the approach into a space-time planner,
where the goal is to plan a collision free trajectory that
avoid intersecting the space-time obstacle. This can be easily
done by using sampling based methods such as probabilistic
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FIGURE 5. Example of how a polytopic space-time obstacle can be projected along a desired path (a), and the resulting path-time
diagram (b). Note that straight lines in the path-time diagram correspond to constant velocities along the path.

FIGURE 6. Example of how the path-time obstacles can be used for planning safe trajectories under obstacle uncertainty. Given the
desired path and obstacles predicted motion in (a), we get the path-time diagram and planned velocity profiles in (b).

roadmaps (PRM) [28] and rapidly-exploring random tree
(RRT) [29]. For our implementation however, we utilize the
geometry of the space-time obstacle itself, and plan a colli-
sion free trajectory by connecting trajectory segments along
the edges of the space-time obstacle representation. In order
to ensure that the path is feasible with respect to the max-
imum turning rate of the vessel, we use Dubins paths [30],
which consist of straight line segments and circular arcs of a
maximum curvature. Using a graph search algorithm such as
Dijkstra or A? with a given cost function, an optimal path can
be found by connecting the edges of the space-time obstacles
with Dubins paths.

2) EXAMPLE
Given a desired trajectory in an environment with dynamic
obstacles, we can use the space-time obstacle representation

in order to plan an optimal trajectory, which is collision free,
and dynamically feasible. The resulting planning algorithm
can be described as follows:

1) From obstacle tracks, compute the space-time repre-
sentation of the vessel, predicting the obstacle move-
ment and uncertainty into the future.

2) Using a graph search algorithm such as Dijkstra or
A? with a given cost function, plan a sequence of
connected Dubins paths (constant curvature circle
segments and straight lines, see Figure 7), between
edges of the space-time obstacles, which do not inter-
sect with the space-time obstacles. The planned con-
nected Dubins path then gives an optimal collision free
trajectory.

In order to implement the planner, we chose to use the objec-
tive of finding the path that minimizes the squared space-time
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FIGURE 7. Possible collision free trajectories found during planning step.

error between a desired trajectory and the planned trajectory,
defined as:∫ 1

0
(x − xd )2 + (y− yd )2 + q · (t − td )2ds, (30)

where the trajectory and desired trajectory are functions of
the path variable s ∈ [0, 1], and q is a weight factor for
weighting the time versus position error. Using this cost
function is useful, as it encourages the planned trajectory
to follow the desired trajectory, making evasive maneuvers
that keep the vessel as close to the desired trajectory as
possible. In order to discretize the search space and make
the planner computationally feasible, a finite number of ves-
sel velocities were considered, and the space-time obstacle
intersections, were computed based on the finite velocities.
For the implementation, we designed the initial obstacle
with a large forbidden region in front and to the right of
the obstacle vessel, making COLREGs compliant trajecto-
ries optimal in terms of the planning objective given by
the space-time error (30). Running the planner for over-
taking, head on, stand on and give way scenarios, we got
the results seen in Figure 8. From the results, we see that
the planned trajectory initially follows the desired trajectory,
before taking an evasive maneuver, ensuring COLAV, while
adhering to the COLREGs. We can note that in the stand
on scenario, the planned trajectory keeps the desired course
and speed initially, as is expected in a stand on situation,
however due to the uncertainty in the future obstacle posi-
tion, maintaining the course and speed can in the worst case
scenario lead to a collision, and the vessel must deviate from
the desired path in order to ensure collision avoidance. For
a physical implementation, the planner can be run itera-
tively, in order to replan the trajectory, as new information
about the space-time obstacle becomes available, decreasing
the obstacle uncertainty and hence improving the planned
trajectories.

D. OPTIMIZATION BASED PLANNER
A common approach for planning optimal trajectories, is to
formulate the problem as an model based optimization
problem, and solving it using numerical optimization. For

FIGURE 8. Planned trajectories for different scenarios when using the
Dublins trajectory planner. Note the obstacle asymmetry which ensures
COLREGs compliance.

these methods, ellipsoids are commonly used for represent-
ing obstacles [11]–[13], as they the ellipsoid representation
is computationally cheap, and simple to implement into a
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FIGURE 9. Optimal trajectory, given dynamic obstacles with uncertainty.
The four timestamps show the vessel at the initial position, as well as the
closest point of approach to each of the three obstacles.

numerical optimization problem. In this section we will show
how the ellipsoid space-time obstacle can be used together
with numerical optimization in order to plan optimal collision
free trajectories.

1) OPTIMAL CONTROL PROBLEM
Given a cost function J (x,u) and a continuous time model of
the vessel on the form:

ẋ = f (x,u), (31)

where x are the vessel states, including position heading and
velocity, and u are the control surface. We can formulate
an optimal control problem, which is to find the trajectory
x(t) and controls u(t) which minimize the cost J (·) and are
dynamically feasible with respect to the continuous time
model over a time interval [0,T ]. In order to account for
the ellipsoidal obstacle, we can directly use the obstacle
constraint from (19), giving the following optimal control
problem:

min
x(t),u(t)

∫ T

0
J (x(t),u(t))dt

s.t. ẋ(t) = f (x(t),u(t)),

(x(t)− pt )
>Q−1t (x(t)− pt ) ≥ 1

x(0) = x0. (32)

2) EXAMPLE
In order to test the optimization based planner, we used the
Cybership II model (see section IV) together with a quadratic
cost function, and three dynamic obstacles. Using a colloca-
tion based transcription method to convert the optimization
problem into an nonlinear programming problem, we got the
optimal trajectory seen in Figure 9. From the results, we see
that using the space-time obstacles, the planned trajectory is
able to keep clear of the different obstacles in a way that
accounts for the uncertainty obstacle uncertainty over time.
This is a conservative strategy, but guarantees COLAV under
obstacle uncertainty.

For more complex scenarios, it is possible to use other opti-
mization objectives, such as time, energy, and distance [31].
It is also possible to include risk in the objective or con-
straints, allowing for a certain amount of risk to be taken
when planning the optimal trajectory. This type of planner
is also possible to implement as nonlinear model predictive
control scheme by re-planning the trajectory at each time
step, allowing for the planner to incorporate less conservative
obstacle estimates as they become available over time.

IV. CONCLUSION
We have presented a novel space-time obstacle represen-
tation, which can be used to predict the reachable set of
dynamic obstacles under uncertainty. Additionally, we have
shown how the proposed space-time representation can be
efficiently computed using a convex polygon half-space rep-
resentation, as well as an ellipsoid representation. Finally,
we demonstrated how the space-time obstacle representation
can be used for risk assessment, collision avoidance and
planning for surface vessels in various environments with
uncertain dynamic obstacles.

Based on the example applications we have demonstrated
how the proposed space-time obstacle representation offers
a flexible framework for representing and predicting obsta-
cle trajectories in way that is computationally efficient. For
future work it would be interesting to look at the possibility
of extending the method to allow for time varying velocity
uncertainties. Using the space-time obstacle representation
together with other trajectory planning and collision avoid-
ance methods would also be interesting, as well as further
studying how to best represent the initial obstacle shapes in
order to promote COLREGs compliance.

APPENDIX
CYBERSHIP II MODEL
Cybership II is a 1 : 70 scale model supply ship. The length of
the ship is 1.3 m and the weight about 24 kg. The maximum
actuated surge force is 2N, the maximum sway force is 1.5N
and the maximum yaw moment is 1.5Nm. Given the pose
η = [x, y, ψ]> in terms of the position (x, y) and heading ψ ,
velocity ν = [u, v, r]> in surge, sway and yaw, the Cybership
II can be modeled as follows:[

η̇

ν̇

]
︸︷︷︸
ẋ

=

[
J(η)ν

−M−1 (D(ν)ν + C(ν)ν − τ )

]
︸ ︷︷ ︸

f (x,u)

,

where the inertia matrix, Coriolis matrix, damping matrix,
and transformation matrix are given as:

M =

25.8 0 0
0 33.8 1.0115
0 1.0115 2.76


C(ν) =

 0 0 − 33.8v− 1.0115r
0 0 25.8u

33.8v+ 1.0115r − 25.8u 0


111160 VOLUME 9, 2021
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D(ν) =

0.72+ 1.33|u| 0 0
0 0.86+ 36.28|v| −0.11
0 −0.11− 5.04|v| 0.5


J(η) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 .
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