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A B S T R A C T   

DNA methylation is one of the main epigenetic mechanisms that regulate gene expression in a manner that 
depends on the genomic context and varies considerably across taxa. This DNA modification was first found in 
nuclear genomes of eukaryote several decades ago and it has also been described in mitochondrial DNA. It has 
recently been shown that mitochondrial DNA is extensively methylated in mammals and other vertebrates. Our 
current knowledge of mitochondrial DNA methylation in fish is very limited, especially in non-model teleosts. In 
this study, using whole-genome bisulfite sequencing, we determined methylation patterns within non-CpG (CH) 
and CpG (CG) contexts in the mitochondrial genome of Nile tilapia, a non-model teleost of high economic 
importance. Our results demonstrate the presence of mitochondrial DNA methylation in this species predomi
nantly within a non-CpG context, similarly to mammals. We found a strand-specific distribution of methylation, 
in which highly methylated cytosines were located on the minus strand. The D-loop region had the highest mean 
methylation level among all mitochondrial loci. Our data provide new insights into the potential role of 
epigenetic mechanisms in regulating metabolic flexibility of mitochondria in fish, with implications in various 
biological processes, such as growth and development.   

1. Introduction 

The mitochondrion is a cellular organelle that plays a central role in 
the regulation of respiration and metabolic processes [1], and contains 
its own genome, which is also known as mitochondrial DNA (mtDNA) or 
mitogenome. The mitogenome has conserved characteristics across 
vertebrates: it has light (minus) and heavy (plus) strands that contain 13 
protein-coding genes (subunits of the oxidative phosphorylation sys
tem), 22 transfer RNAs (tRNAs), two ribosomal RNA genes (12S rRNA 
and 16S rRNA), and a non-coding control region comprising the D-loop 
and associated promoters [2]. Mitochondrial epigenetics takes its roots 
at the beginning of the 1970s [3] but the first studies could not find 
evidence of mtDNA methylation in humans and other vertebrates [4]. 

Nevertheless, the identification of DNA methyltransferase 1 in 
mammalian mitochondria and the description of mtDNA methylation 
dynamics in relation to mitochondrial transcription factors have stim
ulated research on the mitoepigenome [5,6]. It has been shown in 
mammals that genetic and epigenetic alterations in mitogenome could 
have a high impact on a variety of physiological and pathophysiological 
processes [7]. The mitochondrion plays an important role in regulating 
the energetic processes in liver as well as in the complex regulation of 
fish growth through the hepatosomatic axis [8]. Nevertheless, mecha
nisms of mitogenome functionality (including mtDNA methylation) are 
still unexplored in teleosts, the most abundant group containing 96% of 
all fishes and accounting for half of all extant vertebrates [9]. 

A more detailed and accurate estimation of various mitochondrial 
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epigenetic modifications gained recognition only recently, with the 
emergence of single-cell resolution methods [10,11]. In mammals, 
methylated cytosines in mtDNA are predominantly localized within a 
non-CpG context in contrast to the nuclear CpG methylation pattern 
[12]. The functional significance of such non-CpG methylation has been 
described in skeletal muscle cells, where methylation of the PGC-1α 
promotor was found to control mitochondrial density [13]. Mitochon
drial DNA has a lower methylation level than the nuclear genome 
[14,15], but it varies with tissue type, developmental stage, age, and 
other factors [16–18]. This variation in mtDNA methylation has led to a 
certain level of controversy on how to best determine mtDNA methyl
ation [19]. Nevertheless, an increasing number of reports demonstrate 
the existence of mtDNA methylation in mammals and its functional 
significance [14,20,21], as well as its dependance on the inviromental 
factors [22,23]. Despite many knowledge gaps in the current under
standing about the functional role of mtDNA methylation, this mitoge
nome modification is being considered as a promising biomarker tool in 
diagnostics of different human and animal diseases [24]. 

Mitochondrial genomes of thousands of teleosts have been 
sequenced to date, demonstrating that they usually have a conserved 
number of mitochondrial genes and the typical gene order, base 
composition, and codon usage which are common among other verte
brates [2,25]. These mitogenome sequences are widely used in various 
phylogenetic studies [26], but the pattern, conservation and function of 
mtDNA methylation in fish have been poorly investigated [27]. To the 
best of our knowledge, there are only two reports in zebrafish (Danio 
rerio), that described methylation of the mitochondrial genome. These 
studies showed the almost entirely hypomethylated status of mtDNA in 
sperm and oocytes of D. rerio [28] as well as different mtDNA methyl
ation levels during zebrafish embryogenesis [29]. 

However, there is hardly any information about the methylation 
patterns of mtDNA in adult fish tissues, in spite of its importance in 
regulating important biological processes, such as metabolism and 
growth [30]. Energy metabolism in hepatic cells integrates metabolism 
of proteins, lipids and carbohydrates, and differences in mitochondrial 
efficiency are also known to influence growth [8]. In the present study, 
we determined the global mtDNA methylation patterns in liver of adult 
Nile tilapia (Oreochromis niloticus), since it is one of the most important 
fish farmed worldwide, with a production of 4.6 million tons in 2018 
[31]. Also, its genome assembly is available and we have recently 
discovered that differences in methylation of the nuclear genome are 
associated with growth performance [30]. We now showed, using 
bisulfite sequencing of mitochondrial DNA, that the highest number of 
methylated cytosines are located within a non-CpG context (82.8%). 
Moreover, the mitochondrial non-coding D-loop region was the most 
methylated part of the mitogenome, similarly to mammals [32]. We also 
showed significant differences in average methylation level between 
light and heavy strands of the Nile tilapia mtDNA. 

2. Materials and methods 

2.1. Sampling 

This study was approved by Nord University’s (Bodø, Norway) ethics 
board and the Norwegian Animal Research Authority (FOTS ID 1042). 
All procedures involving animals were conducted according to the EU 
Directive 2010/63 on the use of animals for scientific purposes. 

Nile tilapia females (specimens: C_S3, SL_B1, SL_B4, SL_S2, and 
SL_S5, see Supplementary Table 1) from the third generation of our in- 
house domestication program were kept in a freshwater recirculating 
aquaculture system at Nord University’s research station (Bodø, Nor
way). The rearing conditions were as follows: pH = 7.5, temperature =
28 ◦C, photoperiod adjusted at 11:13 h dark:light. The fish were fed ad 
libitum with 0.15–0.8 mm Amber Neptun pellets (Skretting, Norway). 
Prior to sampling, five fish were euthanized with clove oil (Sigma 
Aldrich, USA) using a 1:10 mix of 15 mL clove oil in 95% ethanol diluted 

in 10 L of freshwater. Liver samples were collected from the left lobe and 
around the entry point of the portal vein from 5 one-year-old females, 
snap-frozen in liquid nitrogen and stored at − 80◦С until DNA extraction. 

2.2. DNA extraction and library preparation 

Genomic DNA was extracted using the DNeasy Blood & Tissue kit 
(Qiagen, Germany) according to the manufacturer’s recommendations. 
DNA purity was assessed by NanoDrop ND-1000 spectrophotometer 
(Thermofisher Scientific, USA) and its quantity and quality were 
determined with Qubit (Thermofisher Scientific) and Tape Station 
Genomic DNA ScreenTape Assay (Agilent Technologies, USA). 

Nuclear (linear) DNA digestion was performed with Plasmid-Safe 
ATP-Dependent DNase (Lucigen, USA) following the manufacturer’s 
protocol. The incubation time at 37 ◦C was optimized to 16 h. Then, 
DNAse was inactivated at 70 ◦C for 30 min. Mitochondrial DNA was 
further purified from short remaining fragments of nuclear origin using 
the Zymoclean™ Large Fragment DNA Recovery Kit (Zymo Research, 
USA). Linearization of mtDNA was performed by random fragmentation 
with dsDNA Fragmentase (New England Biolabs, USA) for 5 min at 
37 ◦C. Fragmented DNA was cleaned up using the DNA Clean & 
Concentrator-5 kit (Zymo Research, USA). 

One Nile tilapia genomic DNA library (specimen C_S3; Supplemen
tary Table 1) was constructed and sequenced to be used as reference in 
our study, since the publicly available mitochondrial genome sequences 
vary significantly between O. niloticus wild populations and strains, 
possibly due to species identification errors and interspecific hybridi
zation events occurring with closely related Oreochromis species 
[33–36]. The gDNA library was prepared using the Nextera DNA Flex 
Library Prep Kit (Illumina, USA) and quantified using Agilent High 
Sensitivity D1000 ScreenTape on the 2100 Tape Station instrument 
(Agilent Technologies, USA). Illumina Miseq genome analyzer (Illu
mina) was used with paired-end reads (300 base pairs (bp) length) for 
whole-genome sequencing (WGS). 

Bisulfite mitochondrial DNA libraries from the five Nile tilapia 
specimens (Supplementary Table 1) were constructed using the Pico 
Methyl-Seq Library Prep Kit (Zymo Research, USA), following the 
manufacturer’s instructions. In short, normalized DNA samples (2.5 ng, 
20 μL) were converted with Lightning Conversion Reagent for 8 min at 
98 ◦C, then 1 h at 37 ◦C, and then cooled to 4 ◦C. Immediately after that 
step, the bisulfite-converted samples were desulphonated, purified, and 
amplified with PrepAmp Primer. The resulting products were purified 
with the DNA Clean & Concentrator kit (Zymo Research, USA) and 
further amplified with LibraryAmp Primers. Amplified WGBS libraries 
were quantified using Agilent High Sensitivity D1000 ScreenTape on the 
2100 Tape Station instrument (Agilent Technologies, USA). Illumina 
NextSeq 500/550 High Output v2.5 flowcell of Illumina Illumina 
NextSeq 500 genome analyzer (Illumina, USA) with single-end reads of 
75 bp length was used for whole-genome bisulfite sequencing (WGBS). 

2.3. Bioinformatics and statistical analyses 

Raw WGS and WGBS reads were converted to FASTQ format and 
demultiplexed using bcl2fastq version 2.16 (Illumina, USA) and their 
quality was examined with the FastQC tool. Raw sequencing reads were 
filtered by quality (phred30) and library adapters were trimmed using 
cutadapt software (version 2.1) [37]. 

The NOVOPlasty software (version 3.3) [38] was used for de novo 
assembly of the mitochondrial genome of Nile tilapia. For assembly, we 
used the previously published Oreochromis niloticus mitogenome 
(GU238433.1) as a reference and a k-mer size of 39. The resulting 
consensus sequence was annotated using the GeSeq web-interface [39]. 
The overall base composition of the mitogenome was estimated as the 
ratio between the total number of each nucleotide and the whole as
sembly size. The obtained annotation was used to define partitions in the 
subsequent phylogenetic analysis. The phylogenetic relationships 
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between our specimen and other Oreochromis species based on coding 
sequences (Supplementary Table 2) were reconstructed using maximum 
likelihood analysis. Phylogenetic reconstruction was performed using 
RAxML (version 8.1.20) with GTRGAMMA model and default parame
ters [40]. Branch supports were computed out of 100 bootstrapped trees. 
The phylogenetic tree topology was drawn in iTOL (version 4) [41]. The 
blackchin tilapia (Sarotherodon melanotheron) and keppi (S. lohbergeri) 
were used as an outgroup. 

The mitochondrial genome assembled on this step of our study was 
used as a reference in the analysis of Nile tilapia mtDNA methylation 
from WGBS data. To remove possible nuclear DNA fragments of mito
chondrial origin (nuMTs) in the analyzed data set, reads were first 
aligned to the Nile tilapia reference genome (assembly O_niloticu
s_UMD_NMBU), excluding the mitogenome, and using the Bismark 
version 0.19.1 pipeline (parameters: –non_directional -q –score-min 
L,0,-0.2) [42]. The unmapped reads were aligned to the previously de 
novo assembled mitochondrial genome of Nile tilapia (NCBI accession 
number: MW149239). Output reads were mapped to the original and in 
silico-modified genomes using Bismark version 0.19.1 (parameters: 
–non_directional -q –score-min L,0,-0.2). MethylKit was used for 
normalization of the methylation calling data (CpG, CHH, CHG files) 
and for further calculation of the coverage and methylation levels of 
each sample [43]. Analysis of methylation calls was performed on two 
datasets: 1) one to capture possible individual variations among the 5 
samples and 2) the second by pooling the data to identify a common 
pattern in the liver mitochondrial epigenome. These data were 
normalized by the median and used for the comparative analysis. For the 
second part of the analysis, we pooled the sequenced data from five 

individuals and analyzed the output as one average merged sample. We 
applied background methylation parameters as it was performed by Dou 
and colleagues [29], with a > 10% methylation cut-off, i.e., setting 
<10% methylation to 0 as background, while keeping the baseline 
merged data filtering parameters (each analyzed cytosine has coverage 
≥265). The average methylation levels per gene were calculated as the 
ratio between methylated and unmethylated cytosines in each gene. The 
Circos toolkit [44] was used for the visual representation of methylated 
sites across the mitochondrial genome. 

3. Results and discussion 

3.1. The mitochondrial genome of Nile tilapia 

68,175,294 Illumina paired-end reads were generated from the 
O. niloticus gDNA library. These reads were used for Nile tilapia mito
genome de novo assembly (average coverage 426×). The mitochondrial 
genome of Nile tilapia (NCBI accession number: MW149239) consisted 
of 16,626 bp in length and contained a conserved number of mito
chondrial genes and the typical gene order, base composition, and codon 
usage, which are common among other vertebrates (Fig. 1). The overall 
base composition of the genome in descending order was 30.3% C, 
28.1% A, 26.2% T and 15.4% G, without a significant AT bias of 54.3%. 

To estimate the phylogenetic position of our specimen among other 
Oreochromis species we conducted a maximum likelihood phylogenetic 
analysis. The intergenic segments and the control region were discarded 
from the alignments as they contributed to phylogenetic noise and made 
the phylogenetic tree unstable. Phylogenetic reconstruction of the Nile 

Fig. 1. The mitochondrial genome of Nile tilapia. (A) Graphical map of the complete mitochondrial genome of Nile tilapia with its gene features. Green and red peaks 
(oriented in and out, respectively) represent the methylation levels. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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tilapia specimen (MW149239) from Nord University’s research station 
showed that it is very similar to the other Nile tilapia strains previously 
sequenced (Fig. 2). 

3.2. mtDNA methylation in liver of adult Nile tilapia 

The total number of reads generated from five specimens ranged 
from 16,335,889 to 16,960,827 per WGBS-library (NCBI accession 
numbers are presented in Supplementary Table 2). DNA reads were 
mapped to the previously assembled mitochondrial genome (NCBI 
accession number: MW149239) after adapter trimming and quality 
filtration, and 0.6 to 1.1% reads per WGBS library were mapped to the 
reference. Mapping and quality trimming statistics are presented in 
Supplementary Table 3. The sequencing depth of the quality- and 
adapter-trimmed uniquely mapped mitochondrial reads varied from 167 
to 304 times in each of the five libraries (Supplementary Table 3). 

As the methylation levels did not differ significantly between in
dividuals (Supplementary Table 4), we used the merged dataset from 
five WGBS libraries to determine the mitochondrial 5-methylcytosine 
map for Nile tilapia liver and to describe its general pattern in further 
analyses. The methylation pattern of the Nile tilapia mitochondrial 
genome (in five merged liver datasets) covered 21.4% of cytosines 
(Fig. 3A). The distribution of methylated cytosine varied with the 
nucleotide context. Out of 3566 methylated cytosines in the Nile tilapia 
mitochondrial genome, 82.8% were in a non-CpG context and only 
17.3% were found as a part of CpG context (Fig. 2B). Methylated cyto
sines within CpT, CpA, and CpC contexts are defined as a non-CpG 
cluster. The highest number of methylated cytosines was located 
within a CpT context (31.9%), followed by CpC (25.7%) and CpA 
(25.1%), i.e. CpN equal 82.7%. The frequencies for CpN dinucleotides 
and their methylation across the Nile tilapia mitogenome are presented 
in Supplementary Fig. S1. 

A similar proportion of methylated cytosines (CpG to non-CpG 
context) was observed across all five libraries, as expected. In each in
dividual library, up to 8.4% of methylated cytosines were located within 
CHH and CHG (where H is any base except G) methylation contexts. 
Most methylated cytosines were identified in CHH (up to 6.4%) and 
CHG (up to 2.1%) contexts, and only 2.4% of methylated cytosines were 
located in a CpG context (Supplementary Fig. S2; Supplementary 
Table 5). 

3.3. Strand-specific distribution of methylated cytosines in mtDNA 

We observed an uneven distribution of methylated cytosines with 
respect to their location on the two light and heavy mtDNA strands. The 
frequency of methylated cytosines in the cytosine-rich light strand 
(minus strand) was 37.7%, whereas the heavy strand (plus strand) 
showed 62.3% (Fig. 1; Fig. 4A). However, this lower number of meth
ylated cytosines located on the light strand had higher average 
methylation levels than those in the heavy strand (Fig. 1; Fig. 4B). We 

tested this observation for the light strand using merged data for the 
analysis. Interestingly, highly methylated cytosines are predominantly 
located on the light strand of mitochondrial DNA of Nile tilapia (95.4%). 
Moreover, 97.2% out of them are observed in non-CpG context. 

3.4. Methylation of mtDNA genes within CpG and non-CpG contexts 

The highest methylation levels among mitochondrial protein-coding 
genes were observed within NADH-ubiquinone oxidoreductase chain 5 – 
nd5 (12.5%), NADH-ubiquinone oxidoreductase chain 1 – nd1 (11.2%), 
and cytochrome b – cytb (9.9%) genes. At the same time the highest 
methylation level was found in the non-coding D-loop region (18.5%) 
(Fig. 5). Methylated cytosines were predominantly located within a non- 
CpG context; for example, within nd1, average methylation levels were 
8.4% and 2.8% within non-CpG and CpG contexts, respectively. How
ever, a nearly equal proportion of CpG and non-CpG methylated cyto
sines were found within NADH-ubiquinone oxidoreductase chain 3 – nd3 
(4.4% and 5.5%) and NADH-ubiquinone oxidoreductase chain 4 L – nd4l 
(3.2% and 4.4%), respectively (Fig. 5). A similar distribution was found 
within the five individual WGBS datasets analyzed. The highest mean 
methylation levels within CpG context were observed within nd3 
(5.5%), nd4l (4.4%), and the D-loop (3.1%) (Supplementary Fig. S3; 
Supplementary Table 5). Interestingly, the same mitochondrial regions 
and protein-coding genes that have the highest average methylation 
levels, such as the D-loop, and the genes of the membrane arm of res
piratory complex I (type I NADH dehydrogenase) nd1, nd2, and nd5, 
belong to the highly methylated regions/sites. They have the highest 
methylation levels among all mitochondrial genes. Within a CpG 
context, the genes of the respiratory complex I nd3 and nd4l have higher 
average methylation levels than other protein-coding genes. 

The average methylation of tRNA genes reached 6.3% (tRNA-Tyr). 
For several tRNA genes (tRNA-Ile, tRNA-Met, tRNA-His, tRNA-Pro), 
methylation was found only within a CpG context. tRNA-Phe showed a 
complete absence of cytosine methylation (Supplementary Fig. S4). The 
comparative analysis of methylation levels across tRNA and rRNA genes 
indicated a different pattern compared to mitochondrial protein-coding 
genes in distribution of methylated cytosines among CpG and non-CpG 
sites. Here the proportion between CpG and non-CpG methylated nu
cleotides within a gene tends to have an equal distribution. In compar
ison to mtDNA encoded tRNAs and rRNAs genes, protein-coding genes 
are more substantially methylated. 

DNA methylation plays a crucial role in the regulation of different 
processes in eukaryotes [45]. This type of DNA modification is partic
ularly frequent among vertebrates, including teleost fish [46]. In tele
osts, DNA methylation participates in different physiological processes, 
growth and development, adaptation to new environmental conditions, 
sex determination, and many others [30,47–53]. In contrast to the nu
clear genome, methylation in mitochondrial DNA has been given low 
attention for a long time, and its presence has been disputed [12,54]. 

The controversial view on methylation of the mitogenome is related 

Fig. 2. Maximum likelihood phylogenetic tree reconstruction of several tilapia species based on their coding sequences.  
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to its significantly lower level than in the nuclear genome of vertebrates 
[14,15]. Interestingly mitochondrial DNA methylation predominantly 
localized within a non-CpG context compared to the nuclear genome 
[12,15], and mtDNA methylation patterns depend on environmental 
factors, such as tissue type and developmental stage [16,18,22]. The 
majority of studies on mtDNA methylation are related to its impact on 
the origin and development of different human disorders, and only two 
studies that described the hypomethylation status of mtDNA in zebrafish 
gametes and changes in mtDNA methylation patterns in zebrafish during 
embryogenesis have been published [28,29]. 

In the present study, we obtained the first liver methylome profile in 
Nile tilapia adult females using modern methods of mitochondrial DNA 
isolation, whole-genome bisulfite sequencing and advanced bio
informatical tools. In our analysis, we used the high sequencing depth (>
100×) as well as high stringency of the cytosine coverage filtering pa
rameters (≥ 50×) to be confident of the presence of methylation marks 
in the Nile tilapia mitogenome. 

In contrast to the nuclear methylation pattern in teleosts, which 
comprises a clear CpG methylation motif [20] and all other contexts are 
negligible due to their very low methylation levels, Nile tilapia mtDNA 
exhibits the opposite, non-CpG methylation profile. We have shown the 
predominance of non-CpG over the CpG context in relation to the fre
quency of methylated cytosines. This observation is consistent with 
earlier reports in mammals [10,25]. Our results are also consistent with 
the data describing the same parameter (methylation context) in normal 
human liver cells [32]. Moreover, the Nile tilapia mitogenome had 
different methylation levels between heavy and light strands. Our data 
confirmed another interesting feature of mtDNA methylation, where the 
light strand is highly methylated in the D-loop region, as well as nd5, 
cytb, and nd1 genes. However, we revealed that the heavy strand has a 
higher number (62.4%) of methylated cytosines. Strand-specific analysis 
has shown the presence of mtDNA methylation peaks within both non- 
CpG and CpG contexts, on both strands. However, 97.2% out of highly 
methylated cytosines belonged to a non-CpG context and are located on 
the light strand, in accordance with previous reports [14,19,29,54–56]. 
The proportion of methylated cytosines in CpG and non-CpG contexts 
varied between protein- and non-protein-coding genes. The frequency of 
methylation within a non-CpG context was higher in mitochondrial 
protein-coding genes, whereas tRNA and rRNA genes had nearly equal 
distribution of methylated cytosines within both nucleotide contexts. 

4. Conclusions 

The mitochondrion as a cell organelle is thought to have originated 
during the endosymbiotic relationship between prokaryotic and 
eukaryotic cells during long period of early evolution of life, according 

Fig. 3. Mitochondrial DNA methylation in liver of adult Nile tilapia. (A) Presence of methylated cytosines. (B) Nucleotide context of methylated cytosines.  

Fig. 4. Strand-specific distribution of methylated cytosines in the mitochon
drial genome of Nile tilapia. (A) Strand-specific distribution of methylated cy
tosines within CpG (CG) and non-CpG (CH) context on light (minus) and heavy 
(plus) strands of mitochondrial DNA. (B) Strand-specific cytosine methylation 
levels. The Y-axis shows the percentage of methylated cytosines on light 
(marked in blue) and heavy (marked in red) strands. The X-axis presents po
sitions on mitogenome. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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to the widely accepted endosymbiotic theory. Mitochondria lost most of 
their functions, becoming the cellular powerhouse in a million years 
[57]. Mitochondrial genes are involved in essential oxidative phos
phorylation processes in animal cells. The high expression of mito
chondrial genes is apparently related to the low methylation level 
previously described in mammal mitogenomes when compared to nu
clear genomes [14,15]. In addition, the low 5mC methylation level in 
mitogenomes could be related to its specific usage and because it is less 
prevalent than 6mA methylation in prokaryotic genomes [58,59]. 
Nevertheless, methylation in mtDNA is now known to play an important 
role in the regulation of mitochondrial gene expression. Particularly, 
DNA methyltransferase 3B (DNMT3B) knockdown not only leads to a 
global reduction in mtDNA methylation but also increases mitochon
drial gene expression [32]. Apart from some scattered information re
ported in two zebrafish studies, there are no previous reports on mtDNA 
methylation in teleosts [28,29]. 

In this paper, we used whole-genome bisulfite sequencing to deter
mine the first mitochondrial methylome map at single-nucleotide reso
lution in a non-model teleost. In particular, our research provides 
insights into mitochondrial methylome assessment in adult fish and in 
an important organ for growth and metabolism regulation, the liver. 
Hyper- and hypomethylation in nuclear and mitochondrial genomes 
play important roles in hepatocyte function and are involved in several 
metabolic conditions in humans [12,60] as well as in growth [8]. 
Importantly, our data suggest that cytosine methylation is likely ubiq
uitous throughout the mitochondrial genome in fish. In line with pre
vious reports [32], mitochondrial methylation is not limited to CpG sites 
[12,32]. In fact, the dinucleotides CpA, CpC, and CpT are predominantly 
methylated (82.7%), especially in the D-loop region within the Nile 
tilapia mitogenome. 

Taken together with previous studies in mammals, our results indi
cate that mitogenome methylation is likely to play an important role in 
mitochondrial functionality and long-term metabolic memory in the 
cell. Common traits in the mitochondrial methylation pattern can be 
observed throughout the vertebrate evolution from fish to human. This 
suggests that the presence of methylated cytosines non-CpG context in 
mtDNA, as well as significant differences in average methylation level 
between light and heavy mitogenome strands and between different 

protein-coding genes and other loci, is underpinned by natural selection 
during hundreds of millions of years of evolution. Similarly to previous 
studies on higher vertebrates, we found that the light strand is almost 
twice more methylated than the heavy strand in Nile tilapia, despite 
containing less cytosines. This is possibly related to the gene distribution 
in the mitochondrial genome, where most genes are located on the 
heavy strand. 

The potential functional significance of mitochondrial methylation 
patterns and their association with mitochondrial gene expression and 
different physiological conditions warrant further investigation. 
Importantly, this paper sets the foundation for functional studies on the 
etiology of metabolic disorders in Nile tilapia and paves the way for 
similar investigations in other fish species. 
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