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Theory and simulation of shock waves: Entropy production and energy conversion
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We have considered a shock wave as a surface of discontinuity and computed the entropy production using
nonequilibrium thermodynamics for surfaces. The results from this method, which we call the “Gibbs excess
method” (GEM), were compared with results from three alternative methods, all based on the entropy balance
in the shock-front region, but with different assumptions about local equilibrium. Nonequilibrium molecular
dynamics (NEMD) simulations were used to simulate a thermal blast in a one-component gas consisting of
particles interacting with the Lennard-Jones/spline potential. This provided data for the theoretical analysis.
Two cases were studied, a weak shock with Mach number M ≈ 2 and a strong shock with M ≈ 6 and with a
Prandtl number of the gas Pr ≈ 1.4 in both cases. The four theoretical methods gave consistent results for the
time-dependent surface excess entropy production for both Mach numbers. The internal energy was found to
deviate only slightly from equilibrium values in the shock front. The pressure profile was found to be consistent
with the Navier-Stokes equations. The entropy production in the weak and strong shocks were approximately
proportional to the square of the Mach number and decayed with time at approximately the same relative rate.
In both cases, some 97% of the total entropy production in the gas occurred in the shock wave. The GEM
showed that most of the shock’s kinetic energy was converted reversibly into enthalpy and entropy, and a small
amount was dissipated as produced entropy. The shock waves traveled at almost constant speed, and we found
that the overpressure determined from NEMD simulations agreed well with the Rankine-Hugoniot conditions
for steady-state shocks.
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I. INTRODUCTION

The amount of energy carried by a shock wave is consid-
erable, and the wave travels at supersonic speed. Shock waves
produced from explosions, rapid phase transitions, sudden re-
lease of pressurized gas, or other blasts are highly irreversible
phenomena. Shock waves are therefore both interesting and
challenging phenomena to understand and quantify. Several
laboratory and large-scale field experiments have been car-
ried out to determine the impact of blast waves as function
of explosion type and strength, distance from the blast, and
topology of the surroundings [1].

The basic equations describing the conditions for shock
waves in one dimension were developed in the late 19th cen-
tury by Rankine and Hugoniot [2,3]. In these early studies, the
shock wave was considered as a surface of discontinuity with
conservation of mass, momentum, and energy. The shock’s
properties were described in terms of the differences between
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the upstream and downstream properties of the bulk fluids
(see, e.g., Hirschfelder et al. [4], Hoover and Hoover [5],
and Uribe [6]). The Rankine-Hugoniot relations give a macro-
scopic description of the state variables in front of, and behind,
the wave front, but not the details of, e.g., energy dissipation
at the front. Application of hydrodynamic theories in the early
20th century gave more details of the shock-wave front, such
as its thickness [7,8]. The developments of kinetic theories at
about the same time supported and examined the limitations
of the Navier-Stokes equations as applied to shock waves [8].
It was found that the thickness of the shock-wave front
given by the Navier-Stokes equations was too small compared
with experiments and improved theories [9]. Questions were
also raised about the consistency between the entropy profile
showing a peak at the front position and the second law of
thermodynamics [10]. The interest in blast-wave theory and
experiments was high during and after the Second World War,
which led to significant progress in the understanding of shock
waves [11–13]. The more recent progress in hydrodynamic
theory [14], kinetic theory [15,16], and extended thermody-
namics [17,18] has given substantial new insight into many
properties of shock waves (see e.g. Sec. 9 in García-Colín
et al. [19] for a good review).

The development of Direct Simulation Monte Carlo
(DSMC) and molecular dynamics (MD) simulations provided
the necessary link between experiments and theories [9].
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Klimenko and Dremin [20], Hoover [21], Holian [22], Sa-
lomons [23], and their coworkers were pioneers with the
aims to clarify some of the puzzles in shock-wave theory
and demonstrate the applicability of computer simulations.
For instance, the exact thickness of a shock wave had been
estimated [15] but was not exactly known until simulations
produced accurate results [21,23]. With the increase in com-
pute power, very detailed analyses can now be made [23–26].
The status is that several theories work for shocks with Mach
numbers up to approximately 2 (which may be defined as
“weak shocks”), whereas theories for “strong shocks” (with
higher Mach numbers) are still being developed.

Despite the fact that shock-wave propagation is an irre-
versible process, few papers have been concerned with the
energy dissipation and entropy production in shock waves.
Brinkley and Kirkwood presented a theory of nonsteady shock
waves in 1947, which included the concept of energy dissi-
pation and wave speed retardation [27]. At about the same
time, Tolman and Fine published a comprehensive paper
on entropy production in irreversible processes, including
shock waves [28]. It has been shown that kinetic energy is
not equipartitioned in the shock-wave front [29], which is

a good reason to question the local-equilibrium assumption
made in nonequilibrium thermodynamics (NET). Neverthe-
less, this assumption was adopted by Velasco and Uribe, who
used the Gibbs equation in the normal way for bulk fluids
to obtain the entropy production in the shock front [30].
By introducing empirical temperature dependencies of the
viscosity in combination with the Navier-Stokes-Fourier re-
lations, they got good agreements with results from DSMC
for Mach numbers between 1.55 and 9. There are, however,
remaining questions, such as exactly how the kinetic and
compression energy carried by a shock wave is dissipated
or converted to other forms, in particular when the wave
hits an obstacle or a body. Such questions are important for
studying impact of detonations [31], in material science [32],
formation and collapse of bubbles [33], and traumatic brain
injuries from improvised explosive devices [1], to mention
a few.

All approaches to shock-wave analyses use conservation
of mass, momentum, and energy (see, e.g., Landau and Lif-
shitz [34]), shown here for a plane shock wave moving
with constant velocity in the x-direction in a one-component,
single-phase fluid:

ρ(v − vs) = c1 (mass), (1)

Pxx + ρ(v − vs)2 = c2 (momentum), (2)

ρ(v − vs)
[
u + 1

2 (v − vs )2
] + Pxx(v − vs) + J ′

q,x = c3 (energy), (3)

where ρ is the mass density, v and vs are the streaming
velocity and the shock-wave velocity, respectively, in the x-
direction in the stationary frame of reference, Pxx the pressure
tensor component normal to the shock-wave front, u the in-
ternal energy per unit mass, and J ′

q,x is the measurable heat
flux in the x-direction. For simplicity, we have not included
gravity in these equations. Under these conditions, the ci are
constants. In the classical treatment of shock waves in New-
tonian fluids, Navier-Stokes and Fourier constitutive relations
are introduced into the conservation laws (in addition to an
equation of state) [23], viz.,

Pxx =p −
(

4

3
ηS + ηB

)
∂v

∂x
, (4)

Pyy = Pzz =p +
(

2

3
ηS − ηB

)
∂v

∂x
, (5)

J ′
q = − λ

dT

dx
, (6)

where Pyy = Pzz is the pressure parallel with the shock front,
p is the equilibrium pressure as given by the equation of state
at the local conditions, ηS and ηB are the shear and bulk
viscosities, respectively, λ the thermal conductivity, and T
is the temperature. All the quantities in Eqs. (4)–(6) are in
general functions of position x and time t . In the framework
of Navier-Stokes, it follows from Eqs. (4) and (5) that if
the viscous terms are small, the diagonal components of the
pressure tensor are approximately equal to the equilibrium
pressure.

A shock wave may be characterized by a sharp front with
significant changes in density and pressure over such a short
distance that, at a macroscopic scale, it can be considered
to be a discontinuity in the system’s characteristic proper-
ties [4]. This is not unlike the case of a regular surface, e.g.,
a liquid-vapor surface. NET for surfaces has been developed
by Kjelstrup and Bedeaux [35], and we recently reported
that NET can successfully be applied to a weak shock wave
(Mach number 2.1) [36]. In the present work, we develop the
method further, analyze its basis in more detail, and use the
results to describe the excess entropy production and energy
conversions on the surface. Furthermore, we find a flux-force
relation for mass transfer across the shock front in the sur-
face description. The work presented here is an alternative
approach to assess the properties of shock waves. This work
includes data for a significantly stronger shock wave than the
one we considered in our previous analysis [36].

We have used four different methods to determine the
surface excess entropy production. The methods are based
on different assumptions and the consistency between the
methods are used as a criterion for the validity of their un-
derlying assumptions. The concept of local equilibrium must
be defined in different ways depending on the context of
the methods we apply. All four methods are based on the
balance equation for entropy across the shock-wave front.
In the “bulk balance method” (BBM) and the linear irre-
versible thermodynamics (LIT) method we integrate the local
entropy production over the shock wave thickness. The BBM
uses the entropy balance directly whereas the LIT involves
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the Gibbs equation as well. The “surface balance method”
(SBM) models the wave front as a surface of discontinuity and
considers the entropy balance on the surface. In the “Gibbs
excess method” (GEM), we use the Gibbs equation for surface
variables [35,37] and derive a more detailed expression for
entropy production and a tool to analyze the energy conver-
sions in a shock wave. The basic assumption in GEM is that
the Gibbs equation for surface excess variables remains valid
also when the system at large is out of equilibrium, as sug-
gested by Bedeaux, Albano, and Mazur in their construction
of NET for heterogeneous systems [38,39]. Energy dissipation
and conversion can be determined from this analysis, which
leads to information about energy conversion at the shock
front. We show that a particularly simple constitutive relation
can be used for shocks at, or close to, steady state. This
relation has not been used in earlier work. At present, we
restrict the discussion to one-component fluids. Shock waves
in fluid mixtures give rise to additional phenomena, such as
mass separation caused by the temperature gradient in the
shock front (transient Ludwig-Soret effects) as explored by
Hafskjold [40].

The analysis starts with the balance equation for entropy
in Sec. II. The BBM and LIT are based on this balance. In
Sec. III we establish the framework for the surface description
of shock waves. This includes the definition of the Gibbs
equimolar surface and reformulation of the balance equations
and conservation laws in the surface description. The SBM is
based on this surface description. The relations based on NET
are derived in Sec. IV where we in addition use the Gibbs
equation for surface excess variables. The key result in this
section is an expression for the surface excess entropy produc-
tion. In order to quantify the theoretical results, we have done
nonequilibrium molecular dynamics (NEMD) simulations of
two shock waves, one weak and one strong (Mach number
M ≈ 2 and M ≈ 6, respectively). Section V includes a de-
scription of the model system used in the NEMD simulations
and how the simulations were carried out. We show in Sec. VI
that NEMD is well suited to analyze the theories and provide
unbiased data. The combination of NET theory and NEMD
data lead to an insight into the various contributions to the
entropy production in a shock wave. Section VI also includes
descriptions of how the NEMD data were used to examine the
consequences of the conditions and assumptions (Secs. VI B
and VI A). Finally, we summarize the conclusions from this
work in Sec. VII.

II. BASIC ENTROPY BALANCE AND THE MEANINGS
OF “LOCAL”

In addition to the conservation laws for mass, momentum,
and energy, Eqs. (1)–(3), we consider the entropy over an
infinitesimal control volume in one dimension:

∂

∂t
ρs(x, t ) + ∂

∂x
Js(x, t ) = σs(x, t ), (7)

where ρs, Js, and σ s are the density, flux, and production
of entropy, respectively. Profiles of the entropy density and
entropy production, centered around a shock wave front, are
sketched in Fig. 1. The entropy flux is a combination of heat

FIG. 1. Illustration of the entropy density, ρs, (solid line) and the
entropy production, σs, (dashed line) around a shockwave moving
from left to right with velocity vs. The dash-dot line is a macroscopic
illustration of the shockwave with discontinuous fluid properties.

conduction and entropy transported with the fluid flow,

Js(x, t ) = J ′
q(x, t )

T (x, t )
+ ρs(x, t )v(x, t ), (8)

where v is the local fluid velocity. Whereas the heat conduc-
tion is independent of the frame of reference, the transported
entropy is not, and is here given in the stationary frame of
reference.

In Eqs. (7) and (8) we have used the term “local” in the
meaning “infinitesimally small domains in space and time.” In
the following, we shall use “local” in two different meanings,
depending on whether we consider the microscopic picture
and the wave front as a spatial domain with continuously
varying properties, or the macroscopic picture and the wave
front as a surface. “Local” in the former context means a small
control volume, which in the numerical work is determined
by the thickness of each layer in the NEMD simulations,
typically about 30 molecular diameters or slightly more than
the mean-free path in the equilibrium gas ahead of the shock.
“Local” in the latter sense means “on the surface,” i.e., as
given by the surface excess properties. The surface has no
extension in the x-direction. In both contexts, “local” in time
means a time interval determined by the sampling time in the
numerical simulations.

We shall now consider the four routes to the surface excess
entropy production in the shock wave based on Eq. (7). The
basic route is a direct integration of Eq. (7), which we call
the “bulk balance method” (BBM). The results from BBM
are discussed in Sec. VI C. In two other routes we consider
the shock wave front as a surface and apply NET for sur-
faces where we make use of the equilibrium bulk properties
at both sides of the wave. The fourth method is the classic
linear irreversible thermodynamics (LIT) method based on the
assumption of local equilibrium and the Gibbs equation for
bulk systems [37]. When applied to each local control volume
in the system, this leads in the present context to

σs(x) = J ′
q

∂

∂x

(
1

T

)
− 1

T
�xx

∂v

∂x
, (9)

where �xx is the x-component of the viscous pressure tensor.
The LIT method was recently used by Velasco and Uribe in
an analysis of shock waves [30].
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III. THE SHOCKWAVE AS A SURFACE

A typical surface has a thickness that is small com-
pared to the thickness of the adjacent homogeneous phases,
and the surface appears to be two-dimensional. In reality,
a shock wave is several molecular diameters thick, depend-
ing on the system’s thermodynamic state and speed of the
wave [15], in this study about 100 molecular diameters. At
the macroscopic scale, transport of heat and matter across
a surface will give rise to discontinuities in intensive vari-
ables like temperature and chemical potential. The fluxes
and forces may also become discontinuous. Our derivation
of NET for shock waves builds on Gibbs’ definition of a
surface [41], and the assumption first made by Bedeaux,
Albano, and Mazur [38,39], viz., that thermodynamic rela-
tions between surface variables remain valid locally, also
when the system overall is out of equilibrium. This as-
sumption means that we define the interface as a separate
and autonomous thermodynamic system [36]. The surface
is assumed to possess a temperature, chemical potential,

and other thermodynamic variables of its own. The assump-
tion may seem drastic because the shock-wave front is in
a nonequilibrium state without a corresponding equilibrium
state (in contrast to the case for, e.g., a liquid-vapor sur-
face). We shall therefore examine this assumption in detail
in Sec. VI C 3.

Thermodynamic properties of surfaces are well defined
using Gibbs’ surface excess densities of mass, entropy, and
energy [41]. Following the systematic procedure given by
Albano et al. [39], we first derive the entropy production on
the surface.

A. The Gibbs surface

Gibbs defined the equimolar surface as “a geometrical
plane, going through points in the interfacial region, similarly
situated with respect to conditions of adjacent matter” [41].
Many different positions can be chosen for a plane of this type.
If the density of a quantity “a”, ρa, varies in the x-direction
according to ρa(x, y, z), the excess density ρs

a is

ρs
a (y, z) =

∫ x2

x1

[
ρa(x, y, z) − ρd

a (x, y, z)�(	 − x) − ρu
a (x, y, z)�(x − 	)

]
dx. (10)

Here x1 and x2 are positions in the bulk phases and 	 is the
position of the equimolar surface. The superscripts “d” and
“u” indicate a function used to extrapolate ρa(x, y, z) from
the bulk values on the left (downstream) and right (upstream)
side, respectively, of the wave as illustrated by the dash-dot
line in Fig. 1. The figure also illustrates the integration limits
x1 and x2. The Heaviside step function, �, is by definition
unity when the argument is positive and zero when the argu-
ment is negative. Note that whereas the bulk density is per unit
volume, the excess density is per unit area.

The excess density is in general a function of the position
(y, z) along the surface. We shall, however, consider only
the case of constant properties in the y, z plane, and these
coordinates will be omitted from here on. Moreover, the cross-
sectional area perpendicular to the x-direction is independent
of x. Examples of ρa considered below are the mass, momen-
tum, energy, and entropy densities.

All surface excess properties can be given by integrals like
Eq. (10). We shall first consider the mass density ρ. Requiring
the excess molar density to be zero defines the equimolar
surface, which we shall use to define the position 	 of the
surface. In the present one-component case the molar density
and mass density are equivalent in reduced units. The surface
location 	 is chosen such that the surplus of matter on one side
of the surface is equal to the deficiency on the other side. The
shockwave position is a function of time t , 	(t ). The velocity
of the surface is given by

vs(t ) = d	(t )

dt
(11)

in the stationary frame of reference. If vs(t ) is independent of
t , the surface moves at steady state.

Like the mass density, other excess variables are given per
unit area of the surface. They describe the surface and how it

differs from the adjacent homogeneous phases. In particular,
the surface excess mass density ρs of the equimolar surface
is zero. With the surface location so defined, other surface
excess variables will in general be nonzero. Within reasonable
limits, one may shift the positions x1 and x2 without changing
the extrapolated values of interest. In this sense, the precise
locations of x1 and x2 are not important for the value of the
excess property as long as they are in the bulk phases near the
surface as illustrated in Fig. 2.

FIG. 2. Gibbs’ equal-area construction for determination of
shock-front position, 	, by requiring that the surface excess mass
density ρs = 0 (the two shaded areas in the insert are equal). The
black circles are results from the NEMD simulations for the strong
shock as described in Sec. V. The vertical dashed line shows the
position of the equimolar surface, and the dashed-dot lines are least-
squares fit to the bulk data. The uncertainties in the NEMD data,
determined as three standard errors, are shown as vertical bars.
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B. Balance equations in the surface frame of reference

The density, flux, and production of a surface property “a”,
ρa, Ja, and σa, respectively, obey dynamic balance equations.
At the macroscopic scale, we may write ρa in the form [35]

ρ ′
a(x, t ) = ρd

a (x, t )�(	(t ) − x) + ρs
a (t )δ(x − 	(t ))

+ ρu
a (x, t )�(x − 	(t )). (12)

The limit of the Gaussian-type distribution function shown as
the dashed line in Fig. 1 is the Dirac delta function in the
surface description. Fluxes Ja and source terms σa are given
by similar expressions.

By substituting Eq. (12) into Eq. (7) and using Eq. (11) we
obtain [38]

[
∂

∂t
ρd

a (x, t ) + ∂

∂x
Jd

a (x, t ) − σ d
a (x, t )

]
�(	(t ) − x) +

[
∂

∂t
ρu

a (x, t ) + ∂

∂x
Ju

a (x, t ) − σ u
a (x, t )

]
�(x − 	(t ))

+
[

d

dt
ρs

a (t )+Ju
a (	, t )−vs(t )ρu

a (	, t ) − Jd
a (	, t )+vs(t )ρd

a (	, t ) − σ s
a (t )

]
× δ(x − 	(t )) + [

Js
a (t ) − vs(t )d s

a (t )
] ∂

∂x
δ(x − 	(t ))

= 0, (13)

where it is understood that Ju
a (	, t ), Jd

a (	, t ), ρu
a (	, t ), and

ρd
a (	, t ) in the third bracket are the extrapolated values (to

the surface position) of the respective quantities. In order for
Eq. (13) to be correct, the sum of all terms inside each of
the square brackets has to be zero. The first two brackets give
equations for the bulk phases in the macroscopic description.
For the surface we obtain from the third bracket

d

dt
ρs

a (t ) + [Ja(t ) − vs(t )ρa(t )]− = σ s
a (t ), (14)

where we have used the notation

[Ja(t ) − vs(t )ρa(t )]− ≡ Ju
a (t ) − vs(t )ρu

a (t )

− Jd
a (t ) + vs(t )ρd

a (t ) (15)

for the difference across the surface. Equation (14) shows
that the accumulation of the property “a” on the surface is
due to the difference in the flux in and out of the surface (in
the surface frame of reference) plus the excess production. In
particular, if we consider the mass density ρ, we find

d

dt
ρs(t ) + [ j]− = 0, (16)

where

j = ρ(v − vs) (17)

is the mass flux in the surface frame of reference. By construc-
tion, ρs(t ) = 0. This gives the mass conservation, Eq. (1), in
the surface description:

[ j]− = 0. (18)

The balance equation for the surface excess entropy pro-
duction follows from Eq. (14):

dρs
s

dt
+ [Js − vsρs]− = σ s

s . (19)

Here ρs
s is the surface excess entropy density (per unit surface

area). Equation (19) is given in terms of entropy fluxes into
and out of the surface (in the surface frame of reference), and
the surface excess entropy production, σ s

s . Although Eq. (7)
allows us to determine the entropy production in the en-
tire system, we focus here on the surface for which x and

t are related through the temporal position of the surface.
Equation (19) is basis for the SBM, one of the two surface
methods we will use to determine σ s

s quantitatively in Sec. VI.
The fourth term in Eq. (13) gives

Js
a (t ) − vs(t )ρs

a (t ) = 0, (20)

which implies that the excess flux of the quantity “a” in the
direction of the shock-wave propagation is equal to zero in
the frame of reference that moves with the shock.

C. Conservation laws

We can now apply the general considerations in Sec. III B
to the conservation of mass, momentum, and energy. From the
conservation of mass it follows that

∂ρ

∂t
+ ∂ (ρv)

∂x
= 0 (21)

in the bulk phases. Equation (18) describes conservation of
mass for the surface. From conservation of momentum, it
follows that

∂ (ρv)

∂t
+ ∂

∂x
(Pxx + ρvv) = 0 (22)

in the bulk phases and

d (ρv)s

dt
+ [Pxx + jv]− = 0 (23)

for the surface. In Eqs. (22) and (23), Pxx = p + �xx where p
is the thermodynamic pressure and �xx is the xx-component
of the viscous pressure tensor. Making the Navier-Stokes as-
sumption, �xx = −( 4

3ηS + ηB) ∂v
∂x .

From conservation of energy it follows that

∂ρe

∂t
+ ∂

∂x
(ρev + Pxxv + Jq ) = 0, (24)

where the energy density ρe is the sum of internal and kinetic
energy density: ρe = ρu + ρk, where ρk = ρv2/2, and Jq is
the total heat flux in the barycentric frame of reference, all
in the bulk phases. In the one-component system that we
consider, Jq = J ′

q where J ′
q is the measurable heat flux, which
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is independent of the frame of reference. Furthermore,

dρs
e

dt
+ [ρe(v − vs) + Pxxv + J ′

q]− = 0 (25)

for the surface. By analogy to the bulk energy density, ρs
e =

ρs
u + ρs

k where ρs
k = (ρv2)s/2 for the surface. The sum of

properties in the bracket, ρe(v − vs) + Pxxv + J ′
q, extrapo-

lated to the surface, is the energy flux in the surface frame
of reference. At stationary state, this means that the difference
between the upstream and downstream sums in the bracket is
zero.

For the excess internal energy density it follows from
Eqs. (23) and (25) that

dρs
u

dt
+

{
j

[
h + �xx

ρ
+ 1

2
(v − vs)2

]
+ J ′

q

}
−

= 0, (26)

where the specific enthalpy is h = u + p [42].

IV. THE GIBBS EXCESS METHOD (GEM)

A. The entropy production

So far, we have three routes to the surface excess entropy
production, the BBM and the LIT [the integrals of Eq. (7)
and Eq. (9), respectively, over the surface thickness], and the
SBM, Eq. (19). We now proceed to find a fourth route using
the Gibbs equation for the surface. We shall see that this leads
to a simple and good approximation for σ s

s , viz., the product
of the mass flux and the entropy difference across the surface.
Furthermore, the GEM provides detailed information about
the energy conversions in the shock wave.

The integrated form of the Gibbs equation for a surface
is [35],

ρs
u = T sρs

s + γ + ρsμs, (27)

where T s is the surface temperature [43], γ is defined by γ =
(∂U s/∂�){Ss,N s} where U s, Ss and N s are the surface excess
internal energy, entropy, and number of particles, respectively,
and μs is the specific Gibbs energy of the surface. Note
that the upper-case symbols mean extensive properties of the
surface. When Eq. (27) is combined with the Gibbs-Duhem
equation,

ρs
s dT s + dγ + ρsdμs = 0, (28)

we find

dρs
u = T sdρs

s + μsdρs = T sdρs
s . (29)

The second equality is due to the fact that the surface ex-
cess density ρs is zero by construction. Equation (29) is the
statement of local equilibrium in the surface description. The
statement implies that the surface excess properties are related
in a way that can be used to assess the entropy production.

The time derivative of the excess entropy density is

dρs
s

dt
= 1

T s

dρs
u

dt
, (30)

where ρs
s and ρs

u are determined from Eq. (10) using 	 from
the equimolar surface. Equation (30) then gives the surface
temperature T s.

By introducing Eq. (26) into Eq. (30), and comparing the
result with the entropy balance, Eq. (19), we obtain the fol-
lowing expression for the excess entropy production, using the
same bracket notation as in Eq. (15):

σ s
s = [σq]− + [σ j]−, (31)

where

σq = J ′
q

(
1

T
− 1

T s

)
(32)

and

σ j = j

{
s − 1

T s

[
h + �xx

ρ
+ 1

2
(v − vs)2

]}
, (33)

where s is the specific entropy. Equations (32) and (33) con-
tain quantities that are available from the equation of state plus
the thermal conductivity and the viscosity. The results from
this method will be compared with results from the other three
methods in Sec. VI.

The excess entropy production is independent of the frame
of reference, but as a property of the surface, it will in general
depend on how the surface is defined. It is in other words
invariant under a coordinate transformation. We may therefore
convert all fluxes and conjugate forces from any frame of
reference, to the surface frame of reference and back, without
changing the entropy production in the different phases, σ d

s ,
σ s

s , and σ u
s .

B. Stationary shock front

If the shock front moves with a constant velocity, all shock-
front variables, except for the position of the shock front, are
independent of time. The conservation equations (23) and (26)
then reduce to the Rankine-Hugoniot conditions, which in our
notation are given by

[Pxx + jv]− = 0, (34)
{

j

[
h + �xx

ρ
+ 1

2
(v − vs)2

]
+ J ′

q

}
−

= 0. (35)

Equation (35) can be used to eliminate T s in Eq. (33). Since
the upstream system is at equilibrium, the upstream heat flux
equals zero. The downstream heat flux is close to zero because
the temperature gradient just behind the wave front is small
(cf. Fig. 6). Under these conditions we can therefore neglect
the contribution to the entropy production from the heat flux
[Eq. (32)] and approximate

σ s
s ≈ j[s]−. (36)

Equation (36) also follows from Eq. (19) with dρs
s

dt = 0. In a
transient state, like we have studied in this paper, both j and sd

vary with time, so Eq. (36) will approximate a time-dependent
σ s

s even though it is based on a steady-state approximation.

C. Constitutive equations

Equation (36) gives a particularly simple flux-force relation
in the surface description with just one flux ( j), one force
([s]−), and one transport coefficient (L):

j = L[s]−. (37)
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FIG. 3. MD cell layout. The bright orange regions at the ends
show where the energy was added during the heat pulse. The aspect
ratio was different from that shown in the illustration.

For the sake of completeness, we also include here the cor-
responding equations from the entropy production, Eq. (9).
Note that the two terms on the right-hand side of Eq. (9) are
of different tensorial order and therefore do not couple, so that
the constitutive equations are in this description:

J ′
q =Lqq

∂

∂x

(
1

T

)
= −λ

∂T

∂x
, (38)

�xx =L��

1

T

∂v

∂x
= −

(
4

3
ηS + ηB

)
∂v

∂x
, (39)

where the last terms on the right-hand side of both equations
are the Fourier-Navier-Stokes constitutive equations. Equa-
tions (38) and (39) are valid for both steady and transient
states.

V. NONEQUILIBRIUM MOLECULAR DYNAMICS
SIMULATIONS OF A BLAST WAVE

NEMD simulations were carried out with a Lennard-
Jones/spline (LJ/s) model using an in-house Fortran code.
This code has been validated against LAMMPS and an inde-
pendent GEMC code for the LJ/s phase diagram [44] and for
different methods for pressure calculations [45]. The DSMC
method could have been a good alternative to NEMD for the
low-density fluid studied in this work [46,47], but as we later
want to study shock waves in liquids as well, NEMD was
considered to be the best choice.

The model is defined by the pair potential

u(r) =

⎧⎪⎨
⎪⎩

4ε
[(

σ
r

)12 − (
σ
r

)6]
if r < rs

a(r − rc)2 + b(r − rc)3 if rs < r < rc

0 if r > rc

, (40)

where σ and ε are the usual Lennard-Jones potential pa-
rameters and a and b are coefficients in the spline function
that truncates the potential smoothly between the potential’s
inflection point at rs and zero value at rc. The parameters a, b,
and rc are determined such that the potential and its derivative
are continuous at rs and rc. The LJ/s model has essentially
the same features as the LJ model, but since the potential is
of shorter range, the thermodynamic properties are different.
The shorter range of the LJ/s also leads to significantly shorter
simulation times. Further details on the spline model and its
thermodynamic properties can be found in Refs. [48,44].

The system layout is shown in Fig. 3. The simulations
were made with a single component with N = 524 288 par-
ticles in an elongated MD cell. Periodic boundary conditions

were used in all three directions. The aspect ratio was set to
Lx/Ly = Lx/Lz = 512 in order to give the shock wave enough
distance in the x-direction to separate the wave front from
the heat diffusion from the blast. The number of layers was
chosen so as to satisfy three criteria: (1) each layer should
contain of the order 1000 particles to ensure good signal-to-
noise ratio for the properties computed in each layer, (2) the
layer thickness, �x, should be at least of the order one molec-
ular mean-free path, and (3) the resolution in the x-direction
should be good enough to see details of the density-, pressure-,
and temperature profiles in the shock front, i.e., �x should
be at least three to four times smaller than the thickness of
the shock front. The overall number density was set to n∗ =
Nσ 3/V = 0.01, where V is the volume of the MD cell. All
numerical values throughout this paper are in dimensionless
Lennard-Jones units and the corresponding symbol marked
with an asterisk unless stated otherwise. This low density al-
lows us to use the virial expansion [44] as an accurate equation
of state in the analysis of the shock-wave data. Conditions
(2) and (3) are counteractive in the sense that (2) favors a
large �x whereas (3) favors a small �x. The thickness of
the shock wave depends on its speed (the Mach number). An
estimate is 5–10 times the molecular mean-free path for Mach
numbers ≈2 and smaller for higher Mach numbers [15]. An
estimate of the mean-free path based on elementary kinetic
theory is λ ≈ V√

2Nπσ 2 , which at the actual density amounts
to approximately 20 in Lennard-Jones units. The system was
accordingly divided into 512 layers of equal thickness normal
to the x-direction, so that each layer contained on average
1024 particles. The layers were used as control volume for
computing local properties of the system. With the density
used in the simulations, this gives �x∗ = 29.5, i.e., approx-
imately 50% larger than the mean-free path in the equilibrium
gas ahead of the wave.

The blast was generated by thermostating one layer at each
end of the MD cell to a temperature TH by simple velocity
rescaling [49]. The other 510 layers were not thermostated.

The simulations included 20 parallel runs. Each run was
started from a configuration that was randomized with a
Monte Carlo sequence of m steps, m = [1, 2, . . . , 19, 20] ×
105 followed by equilibrium simulations at T ∗ = kBT/ε =
1.0. This temperature is slightly above the critical temperature
for this model (T ∗

c = 0.885 [44]) and the gas has a Prandtl
number ≈1.4. The number density and the mass density are
numerically identical in reduced LJ units. (Definitions of re-
duced variables are given in Table I, Appendix A.) Each time
step was δt∗ = 0.002, with t∗ = t

σ
( ε

m )1/2. The density and
temperature used in this work correspond to argon at approx-
imately 120 K and 4 bar (assuming the usual Lennard-Jones
parameters for ε and σ , i.e. ε/kB = 124 K and σ = 3.418 Å).

Starting from the equilibrium state for each of the 20 equi-
librated systems, energy was added as a pulse by setting the
thermostats in the regions marked “H” in Fig. 3 for 2000 time
steps. Two cases were studied with T ∗

H = 130 and 2080. This
thermal blast and sudden increase in the local temperature
and pressure at the ends of the MD cell generated pressure
waves traveling in the x-direction from the ends of the MD
cell towards its center. After the initial 2000 time steps, the
simulation was continued as a NVE simulation with the same
time step δt∗. Since the 20 equilibrium configurations were
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FIG. 4. Shock-front position as determined with the Gibbs’
equal-area construction as function of time. The dotted lines are
third-order polynomial fits.

slightly different from each other, the energy inputs were
also different, leading to slightly different propagations of the
individual waves. This was particularly visible for the strong
shock. The symmetry of the system was used to pool data
from the two halves of the cell. The outcome of the 20 runs in
each series was used for postprocessing of average properties
and uncertainties.

A typical density profile for the left half-cell is shown in
Fig. 2 in reduced LJ units. The location of of the shock-wave
front at a given time was determined from Eq. (10) using the
excess mass density ρs as illustrated in the insert in Fig. 2. A
linear function was fitted to the density profile ρ(x) for x < 	.
For x > 	, the equilibrium density ρ∗ = 0.01 was used in
the extrapolation. The condition ρs(	) = 0, which determines
the location 	 of the shock front, was solved by the “solve”
function in Microsoft Excel and Simpsonintegration of the
NEMD data.

The position of the shock front was recorded as function
of time and the wave speed was computed from Eq. (11).
Figure 4 shows the position as function of time for the strong
shock generated in this work in comparison with the weak
shock discussed in Ref. [36]. Figure 5 shows that the speed
decays with time, slowly for the weak shock and faster for the

FIG. 5. Wave speed shown as Mach number as function of time
for the two cases shown in Fig. 4.

strong shock. This indicates that energy is dissipated faster in
the strong shock than in the weak shock.

The speed of sound in the gas ahead of the wave was
determined from

v2
sound = Cp

Cv

(
∂ p

∂ρ

)
T

(41)

by independent MD simulations of Cp, CV , and (∂ p/∂ρ)T and
found to be 1.298, which is essentially the ideal-gas value,
1.291, at T ∗ = 1.0.

The NET analysis of the entropy production requires in-
formation about the enthalpy, entropy, density, and kinetic
energy in front of, and behind, the shock wave. In addition,
we also need the transport properties mass flux, measurable
heat flux, and the x-component of the viscous pressure tensor,
which includes the shear and bulk viscosities of the gas. These
properties were computed as time and spacial averages of
NEMD and equilibrium MD results using the expressions
shown below. The entropy was computed from the equation
of state as explained in Appendix B.

We have used the kinetic temperature as a measure of the
temperature in our analysis,

T = 1

3(NCV − 1)kB

∑
i∈CV

m(vi − v)2, (42)

where kB is Boltzmann’s constant, vi is the three-dimensional
velocity of particle i (all the particles have the same mass, m,
in this one-component case), and v is the streaming velocity
(the velocity of the local center of mass). The summation is
done over all the NCV particles in the local control volume
(CV), i.e., each layer in the MD cell. The local streaming
velocity was determined as

v = 1

MCV

∑
i∈CV

mvi = 1

NCV

∑
i∈CV

vi, (43)

where MCV = mNCV is the total mass in CV. Because the
transport is in the x-direction only, the y- and z-components
of v are zero on average and the x-component is the local
streaming velocity v; cf. Eqs. (1)–(3).

The kinetic temperature in a shock wave front has different
values in the x-, y-, and z-directions, and is therefore a tenso-
rial quantity [23]. The temperature was first computed in the
MD frame of reference, TMD = {TMD

xx , TMD
yy , TMD

zz } where

TMD
qq = 1

(NCV − 1)kB

∑
i∈CV

mv2
i,q, q = x, y, z. (44)

The conversion to the kinetic temperature was done in the
postprocessing using

Txx = TMD
xx − MCV

NCVkB
v2 = TMD

xx − m

kB
v2, (45)

Tyy = TMD
yy , (46)

Tzz = TMD
zz . (47)

All these quantities are local in the CV. The reported data for
these quantities are space and time averages.

The shock wave creates a sharp density gradient in
the fluid. The pressure was therefore calculated using the

014131-8



THEORY AND SIMULATION OF SHOCK WAVES: ENTROPY … PHYSICAL REVIEW E 104, 014131 (2021)

coarse-grained version of the virial equation [45,50] with the
Irving-Kirkwood contour Ci j , the straight line between i and
j [51]. We summarize the method here for a plane surface
normal to the x-direction. Consider a pair of particles i j.
One of them or both may be either inside or outside CV.
The configurational contribution to the qq-component of the
pressure in CV from that pair is

Pconf,qq = 1

2

N∑
i=1

N∑
j = 1
j �= i

Pi j,qq, (48)

where

Pi j,qq = − 1

V

∫
CV

[∫
Ci j

fi j,qδ(R − l) dlq

]
dR, (49)

where R is some point in space and l is a point on the contour
Ci j . In the present context, Eq. (49) reduces to

Pi j,qq = − fi j,qri j,q

V ri j,x
H (xi, x j ), (50)

where H (xi, x j ) is a book-keeping function that defines how
much of the contour Ci j that is inside the control volume.
Further details of the algorithm were described by Ikeshoji
et al. [45]. The kinetic contribution to the pressure was com-
puted as

Pkin,qq = NkBTqq

V
. (51)

In general, the fluxes depend on how we choose the frame
of reference. In this context, there are three obvious choices,
the MD cell coordinate system, the barycentric coordinate sys-
tem, and the shockwave comoving coordinate system. In MD
simulations, fluxes are most conveniently computed in the MD
cell (stationary) frame of reference. The mass flux j defined
by Eq. (17) refers to the comoving coordinate system and the
total heat flux in Eq. (24) refers to the barycentric frame of
reference. Conversion between different frames of reference
was done in postprocessing as described in the following.

The local streaming velocity is given by Eq. (43). The
total heat flux in the x-direction in the barycentric frame of
reference was given by Evans and Morriss [52]:

Jq,x = 1

VCV

∑
i∈CV

⎧⎪⎨
⎪⎩

[
1

2
m(vi − v)2 + φi

]
(vi,x − v) − 1

2

N∑
j=1
j �=i

[(vi − v) · fi j]xi j

⎫⎪⎬
⎪⎭, (52)

where φi is the potential energy of particle i in the field of all the other particles within range (including those outside the CV),
fi j is the force acting on i due to j, and xi j = x j − xi is the distance from i to j in the x-direction. The total heat flux in the
barycentric frame of reference is equal to the measurable heat flux in the one-component system considered here.

The corresponding energy flux in the MD cell frame of reference is found by setting v = 0 and v = {0, 0, 0} in Eq. (52):

JMD
q,x = 1

VCV

∑
i∈CV

⎡
⎢⎣

(
1

2
mv2

i + φi

)
vi,x − 1

2

N∑
j=1
j �=i

(vi · fi j )xi j

⎤
⎥⎦. (53)

Equation (53) introduced into Eq. (52) allows a separation of the heat flux into JMD
q,x and the rest:

Jq,x = JMD
q,x − Jflow

q,x , (54)

where

Jflow
q,x = v

VCV

⎡
⎢⎣∑

i∈CV

(
1

2
mv2

i + φi

)
+

∑
i∈CV

miv
2
i,x − 1

2

∑
i∈CV

N∑
j=1
j �=i

fi j,xxi j

⎤
⎥⎦ − v3

VCV

∑
i∈CV

mi = v(ρu + Pxx − ρv2). (55)

VI. RESULTS AND DISCUSSION

In this section, we first discuss our findings for the kinetic
properties, viz., the kinetic temperature and the velocity dis-
tributions. We show that the temperature is nonisotropic, in
agreement with previous results [29]. In Sec. VI B we include
the potential energy and the configurational contribution to the
pressure and show that the nonequilibrium properties deviate
from the equilibrium values in the microscopic description
of the shock front. Section VI C is devoted to the entropy
production computed by BBM and SBM. The GEM is a major
contribution in this work and will be discussed in detail in
Sec. VI C 3, including an analysis of the energy conversions
in the shock front. Finally, the four methods are compared in

Sec. VI D, where we discuss the validity of our calculation of
the entropy production.

A. Temperature and velocity profiles

Shock waves are nonequilibrium and nonisotropic struc-
tures. For instance, the kinetic temperature in the shock
front is nonisotropic as shown in previous simulations
[5,24,29,48,53,54]. The insert of Fig. 6 agrees with these ear-
lier simulations; the kinetic temperature is highly nonisotropic
in the front of the strong shock, which indicates lack of local
equilibrium in the system [55]. A peak in Txx is known to
occur for strong shocks [24,29]. In this work, we have used
T = 1

3 Tr(T) throughout.

014131-9



BJØRN HAFSKJOLD et al. PHYSICAL REVIEW E 104, 014131 (2021)

FIG. 6. Profile of T = 1
3 (Txx + Tyy + Tzz ) for the strong shock

at time t∗ = 600. The insert shows that the normal and tangential
components of the temperature tensor are different in the shock front,
but equal immediately behind the shock. The uncertainties are three
standard errors. The vertical dashed line shows the position of the
equimolar surface.

We showed in a recent paper that the speed distribution
in a weak shock front (Mach number 2.1) was a perfect
Maxwell-Boltzmann distribution and concluded that this was
consistent with a state of local equilibrium [36]. A comparison
of the distribution functions for the weak and strong shocks
is illustrated in Fig. 7, based on the speed of NCV ∼ 30 000
particles (total from 20 runs) that were in a control volume of
thickness �x∗, centered at positions x∗ = 3434 and 6204 for
the weak and strong shock, respectively, and at the end of each
simulation run. The local streaming velocity was subtracted
from vx in this analysis. The mean-free path is λ∗ ≈ 2�x∗/3
ahead of the wave and λ∗ ≈ �x∗/3 behind the wave. The
fitted Maxwell-Boltzmann distribution gave a temperature
T ∗ = 1.92 ± 0.01 for the weak shock, in fair agreement with

FIG. 7. Particle speed distributions for the weak and strong
shocks. The data for the weak shock were recorded at x∗ = 3434
and t∗ = 1000, and for the strong shock at x∗ = 6204 and t∗ = 600.
The weak shock shows a perfect Maxwell-Boltzmann distribution,
whereas the strong shock does not. The uncertainties are three stan-
dard errors.

FIG. 8. Specific internal energy as function of x in the front re-
gion of the strong shock at t∗ = 600. The dots show the total internal
energy determined by NEMD, u(total), and the squares show the
configurational (potential) part of it, up. The black and white squares
show data from the nonequilibrium and equilibrium simulations,
respectively. Note that the configurational contributions (referring to
the right axis) are so small that they do not visibly separate the kinetic
contributions to the internal energy from the total in u. The error
bars are three standard errors, the errors for the equilibrium results
are smaller than the symbol size. The vertical dashed line shows the
position of the Gibbs equimolar surface.

the local kinetic temperature T ∗ = 1.79 ± 0.01. The corre-
sponding numbers for the strong shock are T ∗ = 3.4 ± 0.2
from the fitted distribution, in poor agreement with the local
kinetic temperature T ∗ = 5.1 ± 0.7 (uncertainties given as
three standard errors of the mean).

To compute the surface excess entropy production with the
GEM boils down to using Eqs. (31)–(33). It is worth noting
that apart from the variable T s in these equations, the values
of all the other properties are extrapolated values from the re-
gions ahead of, and behind the shock front. The system ahead
of the shock is in local (and global) equilibrium. The system
immediately behind the shock is also in local equilibrium as
shown by the temperature profiles. For the purpose of this
work, we conclude that, despite the fact that the system in each
control volume in the shock front is not in local equilibrium
for the strong shock, the thermodynamic properties used in the
GEM (adjacent to the shock front) are in local equilibrium.

B. Energy and pressure profiles

In this section, we consider the configurational contribu-
tions to local properties, in particular the internal energy and
pressure. The system in question in this work is a moder-
ately dense gas, so the configurational contributions are likely
to be small. We will nevertheless assess to what extent the
nonequilibrium configurational properties deviate from the
equilibrium values with focus on the mechanical properties
internal energy and pressure, which are easily obtained in
NEMD. Irrespective of the main theme of this work, viz.,
the entropy production, this assessment provides interesting
insight in the shock wave by itself.

The specific internal energy, u, for the strong shock is
shown in Fig. 8. The internal energy is completely domi-
nated by the kinetic part, the potential (configurational) energy
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FIG. 9. Contributions to the pressure for 5900 � x∗ � 6400 at t∗ = 600 for the strong shock. The vertical dashed line shows the position
of the Gibbs equimolar surface at x∗ = 6154. (a) The black dots and triangles represent the total nonequilibrium pressure, 1

3 Tr(P), and its
kinetic contributions, pig, respectively. The squares show the configurational nonequilibrium and equilibrium contributions. Note that these
contributions refer to the axis on the right. (b) The x-component of the pressure tensor (Pxx) and the viscous pressure computed from the
NEMD data (�MD

xx ) and Navier-Stokes (�NS
xx ).

accounts for at most ≈0.3% of the total internal energy.
This is a consequence of the low density, the potential en-
ergy contribution will clearly be larger at higher densities,
such as in a liquid. The potential energy is less negative at
the downstream side of the surface because the particles are
on average closer together there. The potential energy does
show a difference between the nonequilibrium energy and the
energy determined by equilibrium simulations in the range
6, 200 � x∗ � 6, 300. The equilibrium data were generated at
the local nonequilibrium density and temperature T = 1

3 Tr(T)
with the temperature components given by Eqs. (45)–(47).
It is interesting to note that this difference occurs at the up-
stream, low-density side of the equimolar surface. Based on
these results, we conclude that the internal energy density is
very accurately given by the equilibrium values.

Figure 9(a) shows the total pressure 1
3 Tr(P) as function of

x in the shock front region for the strong shock at t∗ = 600.
The nonequilibrium pressure is, assuming the Navier-Stokes
relations, 1

3 Tr(P) + ηB
∂vx
∂x ≈ 1

3 Tr(P). The bulk viscosity ηB

is small for a monatomic dilute gas. We have estimated,
based on data from Hoheisel et al. for the Lennard-Jones
fluid [56], that η∗

B < 10−3 for our Lennard-Jones spline sys-
tem in the actual states, which makes the contribution from
the bulk viscosity to the pressure at least four orders of mag-
nitude smaller than 1

3 Tr(P). We have therefore assumed that
ηB = 0 in this work. The total pressure may be split into a
kinetic (ideal-gas) contribution, 1

3 Tr(Pkin) and a configura-
tional term, 1

3 Tr(Pconf). For the kinetic term, we have used
(in Lennard-Jones units) 1

3 Tr(P∗
kin) = ρ∗ 1

3 Tr(T∗) = ρ∗T ∗ =
p∗

ig. The configurational term was computed according to
Eqs. (48)–(50). The pressure is almost zero ahead of the
shock and increases monotonically through the front. The
ideal-gas pressure accounts for 98% and 96% of the total
pressure immediately upstream and downstream, respectively,
of the shock. Figure 9(a) also shows a comparison between
the nonequilibrium and equilibrium configurational pressures.
The configurational pressure is slightly negative ahead of the
shock wave and positive behind the wave where the gas is
more compressed. Unlike the configurational energy, there is
virtually no difference between the equilibrium and nonequi-

librium pressures. This is consistent with the Navier-Stokes
relations, Eqs. (4) and (5), which imply that 1

3 Tr(P) = p −
ηB

∂vx
∂x ≈ p.
Equations (4) and (5) may be combined to �MD

xx ≈ Pxx − p
for the viscous pressure, where superscript “MD” means “as
determined from the NEMD simulations.” The viscous pres-
sure may also be determined as �NS

xx = −( 4
3ηS + ηB) ∂vx

∂x ≈
− 4

3ηS
∂vx
∂x where we have used superscript “NS” to distinguish

it from the NEMD results. The shear viscosity ηS was deter-
mined by independent nonequilibrium MD simulations with
LAMMPS [57] and ∂vx

∂x was taken from the velocity profile in
the shockwave. Figure 9(b) shows a comparison between �MD

xx
and �NS

xx . The main observation is that �xx contributes only in
the shock front where ∂vx

∂x is significant. Here �xx accounts
for up to 40% of Pxx. The dominant viscous contribution is on
the low-density side of the equimolar surface. The agreement
between �MD

xx and �NS
xx is within the uncertainties, and again

consistent with the Navier-Stokes equations. This indicates
that the Navier-Stokes equations give a correct description of
the pressure profiles.

C. The entropy production

Based on the analyses in Secs. VI A and VI B, we found
that the assumption of local equilibrium is good as measured
by the internal energy and pressure. Lacking values for the
nonequilibrium entropy, we shall in the following assume that
also the entropy can be estimated by the equilibrium values.
We shall now use these results to determine the surface excess
entropy production with the four methods; the BBM based on
Eq. (7), the LIT based on Eq. (9), the SBM based on Eq. (19),
and the GEM based on Eqs. (31)–(33).

1. The bulk balance method (BBM) and linear irreversible
thermodynamics (LIT)

Integrating Eq. (7) over the thickness of the wave, we get
the total entropy production in the wave, which is also the
surface excess entropy production:

σ s
s (t ) =

∫ x2

x1

σs(x, t ) dx. (56)
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FIG. 10. Data used in the BBM for the strong shock at t∗ = 600. Uncertainties have not been determined, but are probably similar to the
scatter on the left of the wave. (a) The functions ∂

∂t ρs(x, t ) and ∂

∂x Js(x, t ) and their sum σs(x, t ). The vertical dashed line is the position of the
Gibbs equimolar surface. (b) The integrand σs(x, t ) and the fitted Gaussian. We also show results from the LIT method used by Velasco and
Uribe [30], i.e., the Gibbs equation used locally for each control volume in the simulation (see text).

In this method, we consider the properties of the wave as
continuously changing over the wave front like in the bulk.
The terms ∂

∂t ρs(x, t ) and ∂
∂x Js(x, t ) in Eq. (7) were determined

by five-point numerical differentiation with the results shown
in Fig. 10(a). The two contributions are opposite in sign with a
relatively small sum. The integrand σs(x, t ) and the integration
limits x1 and x2 are shown in Fig. 10(b). A Gaussian function
was fitted to σs(x, t ) to smooth the NEMD data and the fit
was integrated analytically. The graph shows that the values of
the integration limits were not critical, the entropy production
occurs only in the shock front. The negative dip in σs(x, t )
at the left side of the peak in Fig. 10(b) is due to a slight
mismatch in the peaks of ∂

∂t ρs(x, t ) and ∂
∂x Js(x, t ). We believe

this is not significant and an artifact of the five-point numerical
differentiation methods we have used. The results from the
BBM show that the entropy production is negligible a few
mean-free paths away from the shock front. The surface rep-
resents the dominant entropy production. This procedure was
repeated for a series of times between t∗ = 200 and t∗ = 600.
The surface excess entropy production is shown as function of
time in Fig. 13 and compared with data from the other three
methods used.

We showed in Secs. VI A and VI B that although the system
is not in local equilibrium in the shock front region, it is close
to being so. This is the basis for using the Gibbs equation in
the normal way for bulk fluids [37], like Velasco and Uribe
did [30]. The key result for the entropy production in this
method is Eq. (9), which integrated over the shock thickness
[Eq. (56)] gives σ s

s . The σs(x) determined in this way is shown
in Fig. 10(b) marked “LIT.” The agreement with the BBM is
very good, indicating that the local equilibrium assumption
is good even for the strong shock. Whereas σs(x) determined
from Eq. (7) is a small difference between large numbers [cf.
Fig. 10(a)], when determined from Eq. (9), it is a sum of small
numbers and therefore less noisy, especially downstream of
the shock front. All the quantities on the right-hand side of
Eq. (9) were determined directly from the NEMD results with-
out any assumptions for the transport coefficients. Integrating
Eq. (9) over the entire system showed that some 97% of the
total entropy production occurred in the shock front.

2. The surface balance method (SBM)

In the derivation of Eq. (19), we considered the wave front
as a surface, but without employing the Gibbs equation. The
term ρs

s (t ) was determined from Eq. (10) with the result shown
as function of time in Fig. 11(a). As input to Eq. (10), we used
the entropy density given by the equation of state with the
local density and temperature as input. The equation of state
we used was based on the virial expansion and is given in
Appendix B.

The time derivative was determined from a linear fit to
ρs

s (t ). The surface excess entropy density varies little with
time and contributes less than 2% to σ s

s .
The term [Js]− depends on the extrapolated values from

properties outside the shock front, which we have shown in
Secs. VI A and VI B to be well represented by equilibrium
values. Because of this, we consider Eq. (19) to give a reliable
estimate for the surface excess entropy production. Results are
compared with the other three methods in Fig. 13.

3. The Gibbs excess method (GEM)

In the GEM, the surface excess entropy production is
determined from Eqs. (31)–(33). All quantities in these equa-
tions, except the surface temperature T s, are determined by
extrapolating properties from the bulk phases adjacent to the
wave front. We established in Secs. VI A and VI B that these
properties are given by their equilibrium values in the present
case. The surface temperature is, however, given by Eq. (30).
This equation involves the excess properties ρs

u and ρs
s deter-

mined from the entire profiles, including the nonequilibrium
properties in the wave front, with the use of Eq. (10). We will
return to the question of how σ s

s is affected by the uncertainty
in T s in the following subsection and for the moment use T s

as determined from the available data. Figure 11(b) shows
a plot of ρs

u versus ρs
s . The relationship is linear with slope

T s∗ = 3.9, which is between the upstream and downstream
temperatures.

A plot of the local values of σq and σ j [Eqs. (32) and (33)]
is shown in Fig. 12(a) as a function of x∗ for t∗ = 600. The
surface excess entropy production is the difference across
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FIG. 11. (a) Surface excess entropy density and internal energy density as function of time for the strong shock. (b) Surface excess internal
energy density vs surface excess entropy density. The slope was determined to T s∗ = 3.9.

the shock front as indicated by the arrow in the figure. The
σq is very small except in the shock front, where ∂T/∂x is
large. Ahead of the shock, σq is zero because the system is
at equilibrium there with J ′

q = 0. Behind the shock, J ′
q ≈ 0,

because ∂T/∂x is small there; cf. Fig. 6. The difference [σq]−
of the extrapolated values is therefore practically zero. The
blip in the front region is due to the fact that T d < T s < T u,
but this is of no importance to the value of [σq]−.

By comparison, σ j is everywhere large and [σ j]− is sig-
nificant. Unlike J ′

q, the mass flux depends on the frame of
reference, and j in Eq. (33) is given with the surface as
reference. So is also the kinetic energy term in the parentheses
in Eq. (33). The local values of σ j must therefore not be
confused with the local entropy production; it is the difference
across the wave, indicated as the double arrow in Fig. 12(a),
which is relevant for σs. The individual terms in the bracket
in Eq. (33) are shown in Fig. 12(b) for the strong shock. The
viscous pressure term varies little over the shock front, and the
difference between the extrapolated values is practically zero.
The kinetic energy term includes the center-of-mass velocity
relative to the shock wave velocity. This relative velocity is
larger upstream than downstream, so the difference defined
by the bracket is positive. Both h and s increase when the
shock wave passes. The mass flux is constant across the shock

front because mass is conserved, and therefore equal to the
upstream value, j = −ρvs. In total, the term [σ j]− is positive.
Hence, for the propagating shock examined in this work, the
overall picture is that kinetic energy is converted to enthalpy.
A minor amount of the wave’s energy produces entropy across
the shock front, leading to a slow retardation of the wave.

4. How sensitive are the results to uncertainties in the estimated
surface temperature?

In the GEM, the surface excess entropy production is de-
termined according to Eqs. (31)–(33). All quantities in these
equations, except the surface temperature T s, are determined
by extrapolating properties from the bulk phases adjacent to
the wave front. We established in Secs. VI A and VI B that
these properties are given by their equilibrium values in the
present case. The surface temperature is, however, given by
Eq. (30). This equation involves the excess properties ρs

u and
ρs

s determined from the entire profiles, including the nonequi-
librium properties in the wave front, with the use of Eq. (10).
We will therefore now estimate how much the uncertainty
introduced by using the equilibrium entropy instead of the
nonequilibrium entropy in Eq. (10) affects the value of the
surface excess entropy production.

FIG. 12. (a) Plots of σq and σ j for the strong shock as determined from Eqs. (32) and (33), respectively, at t∗ = 600. The vertical dashed
line shows the position of the Gibbs equimolar surface. (b) The different terms in the parentheses of Eq. (33) as function of x at t∗ = 600. The
line is the sum of the four terms.
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FIG. 13. Surface excess entropy production as function of time for the strong (a) and weak (b) shocks, with Mach numbers ≈6 and ≈2,
respectively. The lines show data from the four methods used and the line with the circles are exponential functions fitted to all the four data
sets.

For shock waves near steady state and J ′d
q ≈ 0, Eq. (36)

holds. In this case, σ s
s is independent of T s. Alternatively, we

may consider the dominant contribution to σ s
s , [σ j]−, and take

the derivative with respect to T s:

d[σ j]−
dT s

= j

(T s)2

[
h + �xx

ρ
+ 1

2
(v − vs)2

]
−
. (57)

The results in Sec. VI C 3 show that the bracket on the right-
hand side of Eq. (57) is small, which means that [σ j]− is rather
insensitive to errors in T s. As an example, inserting numerical
values for t∗ = 600 shows that [σ j]− changes by ±0.1% for a
±10% change in T s. Our conclusion is that the surface excess
entropy production is very insensitive to the value of T s and
that the Gibbs excess method is an accurate method in the
present case.

D. Entropy production and blast wave decay

A comparison between the surface excess entropy produc-
tion computed from the four methods employed in this work
is shown in Fig. 13. The four methods are consistent for both
Mach numbers, which adds confidence to the assumptions
made. The entropy production decreases with time as ex-
pected as the wave moves away from the blast, looses energy
and slows down; cf. Fig. 5.

The four methods differ in the ways the sources are com-
puted, but they give the same entropy production. The time
derivative of the entropy density and the space derivative of
the entropy flux used in the BBM are both large in the front
region and of opposite sign [cf. Fig. 10(a)], and the local en-
tropy production is a small difference between relatively large
numbers. The BBM is therefore sensitive to errors in these
quantities. The SBM and the GEM depend on the time deriva-
tive of the excess surface entropy density, which varies little
with time. The main contributions in these methods are jumps
in extrapolated quantities determined from bulk properties ad-
jacent to the surface, which are robustly determined from the
equilibrium equation of state. The excess entropy production
depends strongly on the Mach number, with approximately a
factor of 10 increase in the produced entropy when the Mach

number increases from 2 to 6, or approximately the square of
the ratio between the Mach numbers, (Mstrong/Mweak)2. This
difference is also reflected in the retardation of the shock
wave, the strong shock slows down much faster than the weak
shock.

A fitted exponential function, σ s
s = σ0 exp(−αt ), to the

values for σ s
s gave the parameters σ0 = 0.034 and α = 0.0018

for the weak shock and σ0 = 0.38 and α = 0.0015 for the
strong shock. This means that the relative decay is approxi-
mately the same for the two Mach numbers, but the intensities
differ by a factor of approximately 10.

We have also included results from the assumption used
by Velasco and Uribe, viz., that the Gibbs equation is locally
valid in each control volume (marked “LIT” in Fig. 13) [30].
These results are systematically lower the other three, albeit
not by very much. The difference may be an indication that
although the local equilibrium assumption is good, it may lead
to systematic errors in the computed entropy production.

A key property in analyses of shock waves is the peak
overpressure, i.e., the maximum pressure in the shock wave
minus the ambient pressure in front of the shock [11]. The
peak overpressure, �P, is given by Jones [58]

�P = p0(M2 − 1)
2Cp/Cv

1 + Cp/Cv

, (58)

where p0 is the ambient pressure ahead of the shock, Cp and
Cv are the heat capacities at constant pressure and volume,
respectively, and M is the Mach number. The results from
Eq. (58) are compared with NEMD results in Fig. 14. For this
comparison, the ambient pressure and the Mach number were
taken from the NEMD simulations and the heat capacities
were determined by separate MD simulations. The agreement
is good for both the weak and the strong shock. Jones also
gave a relation between the overpressure and the blast energy,
which for a plane wave reads in our notation:

�P = p0

(
R0

	

)m 8Cp/Cv

9(1 + Cp/Cv )
, (59)

where R0 is a characteristic distance related to the blast en-
ergy [58]. The exponent m is equal to 1 in the limit of M → ∞
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FIG. 14. Peak overpressure as function of time for the strong
and weak shocks. The dashed lines represent the RH condi-
tions [Eq. (58)], and the solid lines are results from the NEMD
simulations.

and 1/2 for M → 1 for a plane wave. We found m = 0.87
for the strong wave and m = 0.69 for the weak wave. Us-
ing our results together with the limiting values, we found
the empirical relation m ≈ 1 − 0.82(1/M ) + 0.32(1/M )2. Fi-
nally, we note that the distance R0 is proportional to the
blast energy [58]. Using R0 as an adjustable parameter when
fitting Eq. (59) to our NEMD data, we found the ratio
(R0)strong/(R0)weak = 21.9, in excellent agreement with the
ratio between the blast energies in the two cases, which was
22.0.

VII. CONCLUSIONS

In this work, we have applied nonequilibrium thermody-
namics for surfaces [35] and analyzed the entropy production
in two shock waves using four different methods. We have
developed the “Gibbs excess method” (GEM) and compared
it with three other methods. In the “bulk balance method”
(BBM), the entropy balance was integrated over the thick-
ness of the shock wave. The LIT method is based on the
assumption of local equilibrium in the shock wave front, the
local version of the Gibbs equation, and integration of
the local entropy production over the shock thickness [30]. In
the “surface balance method” (SBM), we used the concept of
Gibbs equimolar surface combined with the entropy balance
equation across the surface. In the GEM, we took the SBM
one step further by using the Gibbs equation for surfaces and
derived expressions for the surface excess entropy production,
performed a detailed analysis of the energy conversions in
the shock wave front, and found a very simple approximate
expression for the entropy production. The most significant
difference between the four methods is that BBM and LIT
assume local equilibrium everywhere in the fluid, including
the shock front, whereas the SBM and the GEM use surface
properties in equilibrium. The SBM and GEM are therefore
more robust and may be easier to apply.

Two plane blast waves were simulated with nonequilib-
rium molecular dynamics (NEMD) in a Lennard-Jones/spline
system with 524 288 particles. Prior to the blast, the system
was equilibrated at T ∗ = 1.0 and ρ∗ = 0.01. The two shocks

propagated at almost steady state with Mach numbers approx-
imately 2 and 6. We found the typical difference in the x-
and y-components of the kinetic temperature, but based on
analyses of the particle speeds, potential energy, and pressure,
we concluded that the conditions for using nonequilibrium
thermodynamics were well satisfied.

The four methods were based on different approximations
and used the NEMD data in different ways, but the surface
excess entropy productions were in excellent agreement. We
found a small deviation from local equilibrium in the front
region of the strong shock, but this is of no importance in
the GEM, which uses extrapolated equilibrium data from the
adjacent bulk regions. From this observation and verifications
of some of the assumptions, we conclude that the results are
reliable. For the GEM, we found that the differences across
the surface in the measurable heat flux and the viscous pres-
sure gave negligible contributions to the entropy production.
This is in contrast to the LIT method, in which these are the
only two sources to the entropy production. The GEM pro-
vides detailed information about energy conversions in shock
waves. In short, most of the wave’s kinetic energy is converted
reversibly to enthalpy. A smaller fraction of the waves total
energy was dissipated, which led to a weak retardation of the
wave.

In principle, the BBM makes no assumption of local equi-
librium, but lacking data for the nonequilibrium entropy in
the front region, we had to use equilibrium data here. The
SBM may be more robust that the BBM because the surface
excess entropy density is almost constant with time and its
time derivative is almost zero. The LIT gives results with
little statistical noise, but may suffer from the lack of local
equilibrium in the front region.

As the waves were almost at steady states, the Rankine-
Hugoniot (RH) conditions were found to describe the waves
well. The peak overpressure determined from the RH condi-
tions agreed very well with the NEMD data. The shock-wave
thickness was found to agree with theoretical estimates and
experimental data [9] and simulations [29].

The combination of different theories and NEMD data
presented here gives tools to study shock waves. In particular,
the GEM is a robust method that relies on equilibrium data
adjacent to the shock wave front. For waves close to steady
state, a good approximate value for the surface excess entropy
production can be found in a very simple way as given by
Eq. (36), viz., as the mass flux in the surface frame of reference
times the difference in specific entropy across the surface.
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APPENDIX A: DEFINITIONS OF REDUCED VARIABLES

Table I. Definitions of reduced variables.

Symbol Definition Meaning

j∗ j σ 3

(mε)1/2 Mass flux

J∗
q Jq

σ 3

ε
( m

ε
)1/2 Heat flux

J∗
s Js

σ 3

kB
( m

ε
)1/2 Entropy flux

	∗ 	/σ Shock-wave position
M vs/vsound Mach number, wave speed

divided by speed of sound
Pr Cpμ

λ
Prandtl number

p∗, P∗
, �∗ pσ 3

ε
, Pσ 3

ε
, �σ 3

ε
Pressure, pressure tensor,
viscous pressure

s∗ s m
kB

Specific entropy

t∗ t 1
σ

( ε

m )1/2 Time

T ∗ kBT
ε

Temperature

u∗, h∗ u m
ε
, h m

ε
Specific internal energy,
specific enthalpy

v∗ v( m
ε

)1/2 Velocity

x∗ x/σ x-coordinate

η∗ η σ 2

(mε)1/2 Viscosity

λ∗ λσ 2

kB
( m

ε
)1/2 Thermal conductivity

λ∗ λ/σ Molecular mean-free path

ρ∗ ρσ 3 Number density, mass density
ρs∗ ρsσ 2 Surface excess number density,

surface excess mass density
ρ∗

s ρs
σ 3

kB
Entropy density

ρs∗
s ρs

s
σ 2

kB
Surface excess entropy density

σ ∗ σ σ 3

kB
( m

ε
)1/2 Entropy production

APPENDIX B: EQUATION OF STATE
FOR THE LENNARD-JONES/SPLINE GAS

We consider here a one-component Lennard-Jones/spline
(LJ/s) fluid at low density with the purpose to find an expres-
sion for its entropy and internal energy. The entropy, S, can be
derived from the Helmholtz energy, A, as

S = −
(

∂A

∂T

)
V

, (B1)

where T is temperature and V is volume. The Helmholtz
energy can be found by integrating the P,V equation of state
at some constant temperature T

A = −
∫

P(V, T ) dV. (B2)

Likewise, the internal energy can be found from

U =
(

∂A/T

∂1/T

)
V

. (B3)

At low density, the virial expansion is a good representation
of the equation of state, and we have used the expansion

TABLE II. Fitted coefficients ak,n of the inverse temperature
relation, Eq. (B5), for the virial coefficients B2, B3, and B4. The
uncertainties represent 95% confidence intervals.

l k = 2 k = 3 k = 4

0 1.345 ± 0.007 3.76 ± 0.02 −1.376 ± 0.007
1 −1.336 ± 0.007 −20.9 ± 0.1 40.5 ± 0.2
2 −3.85 ± 0.02 64.0 ± 0.3 −260 ± 1
3 1.295 ± 0.006 −90.2 ± 0.5 936 ± 5
4 −0.416 ± 0.002 66.8 ± 0.3 −2069 ± 10
5 − −20.1 ± 0.1 2789 ± 14
6 − − −2240 ± 11
7 − − 1010 ± 5
8 − − −200 ± 1

presented by Hafskjold et al. [44],
P

nkBT
= 1 +

m∑
k=2

Bk (T )nk−1, (B4)

where n = N/V is the number density of particles and kB

is Boltzmann’s constant. Using the polynomial fit in inverse
temperature given in Ref. [44], the first three virial coefficients
are

Bk (T ) =
m∑

l=0

ak,l T
−l (B5)

with the coefficients given in Table II.
The corresponding expression for the Helmholtz free en-

ergy per particle, a, is

βa = ln(n�3) − 1 +
∞∑

k=2

nk−1

k − 1
Bk (β ), (B6)

where β = 1/kBT and � is the thermal de Broglie wave
length. This gives for the entropy per particle, s,

s = −
(

∂a

∂T

)
n

= sig + sex, (B7)

where
sig = const + kB

(
3
2 ln T − ln n

)
(B8)

is the Sackur-Tetrode expression for the ideal-gas entropy, and

sex = kB

∞∑
k=2

m∑
l=0

l − 1

k − 1
ak,l n

k−1T −l (B9)

is the virial expansion for the nonideal contribution. In
Eq. (B8) “const” includes the terms in sig that do not depend
on either n or T .

Similarly, we get for the internal energy per particle, u,

u =
(

∂ (βa)

∂β

)
n

= uig + uex, (B10)

where
uig = 3

2 kBT (B11)

and

uex =
∞∑

k=2

m∑
l=1

l

k − 1
ak,l n

k−1T −l . (B12)

Note that the corresponding densities are obtained as ρs =
ns and ρu = nu.
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