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Hazy images suffer from low quality due to blurring, veiling effects, and low contrast. To improve their visibility, 
dehazing methods attempt to restore them to their corresponding clear scenes, often by focusing more on 
obtaining an accurate estimate based on a known ground truth. The perceptual quality of dehazed images, 
which can be described by means of objective and subjective quality assessments, is often not considered. This 
paper provides a quality assessment of dehazed images, focusing on aspects, e.g., color, image structure, and 
naturalness. Four image dehazing methods are considered, i.e., Contrast Limited Adapted Histogram Equalization 
(CLAHE), Dark Channel Prior and Refinement (DCP-R), Perception Inspired Deep Dehazing Network with 
Refinement (PDR-Net) and Conditional Generative Adversarial Network (CGAN) Pix2pix. The dehazing results 
are then put through objective and subjective assessments, for a comprehensive evaluation on image quality. 
Overall, Pix2pix shows the best results objectively, excelling in the recovery of color and image structure. 
Although it is outperformed by DCP-R in terms of naturalness, our subjective assessment shows that Pix2pix 
is also most preferred by human observers.
1. Introduction

In a digital image acquisition, an image sensor captures light rays 
reflected by objects. In clear conditions, these light rays are able to 
travel unhindered in the environment. However, in conditions such as 
fog and haze, micro-particles in the surrounding media interfere with 
the propagating light by changing its direction and intensity. This type 
of media is often called scattering or participating media because it plays 
an active role in image capture. An image captured in scattering media, 
e.g., hazy images, will appear with blurring effects, low contrast, and 
low visibility. The appearance of hazy images makes it very difficult 
for observers to obtain useful information of a scene and the objects 
in it, making in challenging for image understanding by both human 
and computer vision. Thus, it is often necessary to dehaze a hazy image 
to its corresponding clear scene [1] prior to any further processing or 
analysis.

Image dehazing methods seek to restore a hazy image to its esti-

mated clear counterpart, which can be achieved by, e.g., contrast or 
visibility enhancement techniques [2, 3]. Other approaches study the 
physical process of scattering model and then invert it with the help of 
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additional constraints, e.g., statistical or spatial priors [4, 5]. Deep net-

works have also been used to model the translation between hazy and 
clear image domains [6, 7].

This paper is built on a preliminary study of the quality dehazed 
images by Azizah, et al. [8]. In this paper, we evaluate the image 
quality of dehazed images using four different dehazing methods. Con-

trast Limited Adaptive Histogram Equalization (CLAHE) [9] is an image 
enhancement technique, as opposed to a restoration technique, to im-

prove quality and visibility. The dark channel prior (DCP) [5] uses the 
physical scattering model and attempts to reverse it to obtain the orig-

inal clear image. Then, two deep learning based dehazing methods are 
also considered. Perception-inspired Single Image Dehazing Network 
with Refinement (PDR-Net) [10] is the state-of-the-art generative model 
that uses a perception-based approach to translate hazy images to their 
clear counterparts. Pix2pix [11] is a Conditional Generative Adversar-

ial Network (CGAN) that has been used extensively for image to image 
translation. In our case, we will use it to translate hazy images to their 
clear counterparts.

Dehazing results are often evaluated by how close they are to their 
known ground truth. However, hazy images captured in natural and real 
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Fig. 1. Image formation model in scattering media.
settings often do not come with ground truth clear images, resulting in 
the lack of standardized and universal datasets. Additionally, the major-

ity of existing works evaluate dehazed images by variations of objective 
quality metrics, making benchmarking of the quality of dehazed images 
very difficult to do [12]. In our work, we address the challenge by fram-

ing the evaluation of dehazing methods from a different standpoint. In 
addition to measuring accuracy with various objective quality metrics, 
we also carry out a subjective image quality assessment (IQA) based on 
visual pleasingness. We then study the correlation of both objective and 
subjective assessments, providing not only a more comprehensive IQA 
of dehazed images, but also analyses of their perceptual attributes. Re-

garding the dataset, aiming to encompass different types of hazy scenes, 
we use a compilation of various dehazing datasets and also generate a 
simulated dataset. We hope this paper will spark discussion and further 
research on the concept of quality in image restoration tasks such as 
dehazing.

2. On image dehazing

To dehaze hazy images to their clear form, it is necessary to study 
the physical process that captures a hazy image from a clear scene. 
This section provide the image formation model in scattering media, 
the state-of-the-art image dehazing methods, and the IQA approaches 
for dehazed images.

2.1. Hazy images

Digital images are formed when light rays are captured on a digital 
sensor grid of a camera. These light rays usually come from a primary 
light source, and are reflected by a scene into the lens of a camera. The 
light rays that are captured at different pixel locations build up an im-

age representation of the scene. This process is quite straightforward in 
clear media, which allows the light rays to pass through unhindered. 
However, this process is not possible in scattering media environments 
as micro-particles contained in it may alter the direction of the travel-

ing rays and scatter them in many directions. This will also result in a 
reduced light intensity because the media will absorb or divert the orig-

inal light. The media actively interferes with image formation resulting 
in a below standard representation of the real scene. The altered in-

tensities will thus compromise the visual features necessary for image 
understanding [13].

The image formation model used in this paper is based on the gen-

eral atmospheric scattering model [14], see illustration in Fig. 1. This 
model assumes that the micro-particles in the media are very small, so 
the scattering can be considered homogeneous and has relatively low 
density. These assumptions hold in most natural hazy conditions. In 
these natural conditions, the appearance of objects in the image will 
differ based on their distance from the camera. The micro-particles in 
the media coupled with the amount of distance traveled, directly af-

fect the amount of light that is able to penetrate the media [15]. The 
fraction of light that is able to penetrate the scattering media decay ex-

ponentially proportional to the distance from the camera 𝑑, and can be 
defined as:

𝑡 = 𝑒−𝛽⋅𝑑 (1)
2

where 𝛽 is the scattering coefficient of the media, and d is the distance 
to the camera. In a homogeneous scattering media, the captured hazy 
image 𝐼 of an original clear scene 𝐽 can be defined using the transmis-

sion 𝑡 as follows, where 𝐴 is the airlight:

𝐼 = 𝐽 ⋅ 𝑡+𝐴(1 − 𝑡) (2)

The term airlight 𝐴 refers to the color of ambient light in the 
scene [4]. This consists of the accumulation of scattering effects and 
carries no information about the original scene itself. Airlight is scat-

tered in the scene, creating a veiling effect that subtly obscures the 
entire image [16]. The exact appearance and hue of the veiling effect 
will depend highly on the scattering media in the environment. For im-

ages captured in environments such as fog or haze, the airlight often 
presents a pale whitish color. As a final result, the images captured in 
these environments will not be able to portray the scene perfectly, due 
to obscured details, loss of intensity and low contrast. In this paper, 
these images will be referred to as hazy images.

2.2. Image dehazing

Image dehazing is an image restoration task, mapping hazy images 
to their clear counterparts with the highest possible accuracy. However, 
there are many cases in which a precise ground truth is not avail-

able. Thus, we restate the image dehazing process to work towards the 
achievable goal of obtaining a visually pleasing image with better qual-

ity. The end result should be just good enough so that observers are able 
to understand the scene through its visual features. A visually pleas-

ing image does not necessarily need to be an exact match to a known 
standard, thus it can be achievable using image enhancement methods. 
These methods have the advantage of not requiring a known clear tar-

get, as their aim is to solely reduce the hazy effects such as described 
in Section 2.1. These methods attempt to improve the visibility of the 
image through methods such as color correction [3, 17], contrast cor-

rection [2, 18], contrast balancing [9, 19], and others.

It is also possible to model the physical transformation between 
hazy and clear images. The model can then be used to restore hazy 
images to their clear form using single image dehazing techniques. Sin-

gle image dehazing considers the physical scattering model described 
in Section 2.1 as the process in which a scene becomes hazy. Then, 
single image dehazing follows the image formation model of hazy im-

ages in Eq. (2) and uses its inverse to extract the original scene 𝐽
from the haze image 𝐼 following Eq. (3). This equation involves many 
unknowns. Thus, single image dehazing methods must estimate the un-

known variables in phases, i.e., estimating the ambient light or airlight 
�̂�, predicting transmission map 𝑡, then recovering the original scene 𝐽
(Fig. 2).

𝐽 = 𝐼 −𝐴
𝑡

+𝐴 (3)

Unfortunately, the transmission 𝑡 or the distance 𝑑 are rarely known. 
Furthermore, the scattering coefficient of the media 𝛽 can be different 
for every scene, hindering a one-fits-all estimate for all images. To solve 
this issue, it is necessary to employ additional constraints to the model. 
One possible approach is to use statistical priors, i.e., the Dark Channel 
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Fig. 2. General step-by-step process of single image dehazing.

Fig. 3. An example of a clear scene (a) and its depth map (b) from the NYU Depth Dataset [21], and the (c) synthesized hazy image generated based on Eq. (2).
Prior (DCP) [5] or Adaptive Dark and Bright Channel Prior [20]. These 
prior observations of natural hazy images form pre-determined infor-

mation to help estimating variables involved in an image formation.

The problem of image dehazing can be modeled as an image to im-

age translation problem, e.g., from the set of hazy images to their clear 
counterparts. There have been various deep networks that proposed 
this purpose, using various structures of convolutions [6, 22], attention 
cues [23] or even human perception cues [10]. In recent years, these 
deep network based approaches have been popular for other image to 
image translation problems as well. Image translation can be useful for 
various applications, e.g., semantic segmentation [24], domain adapta-

tion [25], or image to depth estimation [26].

2.3. Image quality assessment

Image quality assessment (IQA) tries to measure the quality of dig-

ital images in depicting the original scene, and in turn, in relaying 
information. It can be divided into subjective and objective approaches. 
Objective IQA involves image quality metrics to compute and depict 
image quality quantitatively. These metrics can be divided into full-, re-

duced, or no-reference metrics. Full-reference (FR) metrics need a ground 
truth image, such that the difference or error from the target image can 
be computed [27]. Reduced-reference (RR) metrics can be used when 
only incomplete references are available, and no-reference (NR) metrics

when there are none at all. NR metrics are also referred to as blind image 
quality metrics [28]. Subjective IQA gives the task to human observers, 
to evaluate the quality of a set of images based on a certain criteria by, 
typically, indicating their preferences. The human visual system is con-

sidered the most reliable biological image capture device able to judge 
visual image quality in a consistent manner [29].

The main issue for the IQA of dehazed images is the lack of stan-

dardized evaluation protocol. First of all, hazy images themselves are 
difficult to come by, and there is a lack of datasets that can be used 
for quality benchmarking. Furthermore, it is very difficult to obtain a 
reference set of hazy images and their exact clear counterpart. Natural 
haze occurs in outdoor environments where many factors are involved 
in image capture. Most of these factors are uncontrollable for experi-

mental data capture and the scene is never reliable enough to capture 
3

in both hazy and clear conditions. The next best option is capturing 
images using synthetic haze, but it is still difficult to obtain the ex-

act same condition to capture the scene in both conditions. This work 
would also highlight the need to consider IQA for dehazed images. Nat-

ural atmospheric scattering [14] occurs outdoors even in the clearest 
of conditions, thus human observers expect some haze in any natural 
image. Meanwhile, objective metrics would see any remaining haze as 
an indication of low quality. Thus, it is unrealistic to rely on accuracy 
alone, since it is important to consider various factors of image quality 
depending on the context or aim of the task.

3. Materials and methods

This section will describe the image dehazing experiments con-

ducted for a test set of 50 images, followed by a thorough explanation 
of the used IQA methods.

3.1. Dataset

In our experiments, a combined dataset of hazy images with ground 
truth clear images from 3 different sources were used. The entire dataset 
is comprised of 600 hazy-clear image pairs, which then divided into a 
training set of 550 images to train the PDR-Net (Section 3.2.3), and a 
test set of 50 images. Only the test set was used to perform IQA on the 
dehazing results.

3.1.1. Synthetic hazy images

The New York University (NYU) depth dataset is comprised of 1449 
pairs of RGB-Depth (RGBD) data, i.e., indoor scenes and their corre-

sponding depth maps [21], see an example in Fig. 3a and 3b. They are 
captured in various commercial and residential buildings, with depth 
maps obtained using the Microsoft Kinect.

For our experiment, we generated synthetic hazy images from 210 
randomly selected RGBD pairs from the NYU dataset following Eq. (2), 
see example in Fig. 3c. First, the pixel-wise depth map 𝑑 were used to 
create a dense transmission map 𝑡 using several scattering coefficient 
values 𝛽 ∈ {0.1, 0.2, 0.3, 0.4}. Then, 𝑡 was used to synthesize hazy images 
𝐼 using different airlight values 𝐴 ∈ [0.7, 1] [26, 30].
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3.1.2. Hazy series dataset

Four datasets are available from The New Trends In Image Restora-

tion And Enhancement Workshop And Challenges (NTIRE) chal-

lenge [31]. The Indoor Haze (I-Haze) dataset [32] consists of hazy-clear 
image pairs captured in indoor conditions, while the Outdoor Haze (O-

Haze) dataset [33] was captured in outdoor conditions. In both datasets, 
haze was generated using two professional fog machines (LSM1500 PRI) 
which was dispersed using fans to ensure homogeneity. The Dense-

Haze [34] and Non-Homogeneous Haze (NH-Haze) [35] datasets are 
both extensions of the O-Haze dataset. The haze from the fog machines 
was released for a longer duration to create a denser haze effect for 
the Dense-Haze dataset. For NH-Haze, the generated haze was not dis-

persed evenly through the scene ensuring a non-homogeneous haze 
condition. A total set of 180 hazy images and their clear counterparts 
was collected from all four of these datasets.

3.1.3. REalistic single-image DEhazing dataset

Li, et al. [12] created the REalistic Single-Image DEhazing (RESIDE) 
dataset with the intention to provide a standardized large-scale dataset 
of hazy-clear image pairs to facilitate the benchmarking of dehazing 
methods. RESIDE consists of realistically simulated hazy images and is 
organized into 3 subsets, i.e., the Indoor Training Set (ITS), Synthetic 
Outdoor Training Set (SOTS), and the Hybrid Subjective Testing Set 
(HSTS). Among all three subsets, SOTS is the most suitable for our needs 
as it has many images of urban outdoor hazy scenes. For our experi-

ment, 210 outdoor image pairs from the SOTS subset were randomly 
selected.

3.2. Dehazing methods

Four methods are used in our experiments. They are an image en-

hancement approach, i.e., CLAHE [9], a single image dehazing model 
using dark channel prior (DCP) [5], and two deep learning based de-

hazing models. The deep learning based models selected encompass a 
generative model PDR-Net [10] and an adversarial model Pix2pix [11].

3.2.1. Contrast limited adaptive histogram equalization (CLAHE)

One of the effects that occur in hazy images is low contrast and loss 
of detail. This is why hazy images are so difficult to perceive, because 
contrast carries significant information about image structure [36]. 
Thus, to improve visibility, we can attempt to improve or correct the 
contrast. Contrast correction can be done by balancing the distribution 
of intensity values in an image. The histogram of a low contrast image 
will be concentrated in a narrow range of values, making differentiating 
intensity values difficult.

We can improve image contrast by mapping the intensity values to 
a wider range through histogram equalization. The increase of differ-

ence between individual intensities will amplify edges and image struc-

tures, hereby improving visibility. There have been various proposals 
towards histogram equalization, and in this paper, we select the well-

known and easily implemented CLAHE [9]. CLAHE separates an image 
into different contextual regions, and performs an adaptive histogram 
equalization on each region separately. Additionally, it also clips the 
intensity distribution at a certain limit to prevent over-saturation in ho-

mogeneous areas. Our experiments involve color images, so we first 
transformed the RGB color image to the CIELAB color space [37] and 
CLAHE was performed on the brightness channel 𝐿∗ [9].

3.2.2. Dark channel prior and refinement (DCP-R)

The image formation model in Eq. (2) shows the transformation 
from a clear image 𝐽 to a hazy image 𝐼 , which we would like to reverse. 
However, this equation involves many unknown variables, making it 
difficult to solve. Additional constraints are needed to allow reversing 
the equation to estimate 𝐼 from 𝐽 . In this paper, we select the Dark 
Channel Prior (DCP) [5] which is widely acknowledged and used as a 
basis of many dehazing works.
4

DCP is a statistical prior based on the observation of natural outdoor 
images. It stipulates that for local patches of non-sky areas in natural 
images, there is always one color channel that has a very low value or 
min(𝐼𝑠) ≈ 0, 𝐼𝑠 ∈ [𝑅, 𝐺, 𝐵]. These dark pixels occur due to natural dark 
objects, lighting, and distinctly colored objects. In such cases, there is 
often one channel with low intensity, while other channels contain the 
color information, thus creating the aforementioned dark channel.

Dark channel typically occurs in natural clear images. In hazy im-

ages, a dark channel becomes saturated with the effect of haze, which 
can be denoted as a proportion of airlight intensity 𝐴 from the image 
formation model in Eq. (2). Based on the concept of transmission in 
Eq. (1), it is known that airlight will aggregate in the dark channel, 
with higher quantity indicating further distance [5, 38]. Consequently, 
the distance value will also grow proportionally with the value of DCP, 
allowing it to be used as an indicator of relative depth. He, et al. [5] 
proposed a method to estimate transmission based on DCP as described 
in Eq. (4). Assuming an RGB hazy image 𝐼 in the RGB color space 
(𝑠 ∈ [𝑅, 𝐺, 𝐵]), the transmission 𝑡 can be estimated for every pixel 𝑥
in the hazy image 𝐼 considering every pixel 𝑦 in the local area Ω(𝑥)
surrounding 𝑥.

𝑡𝐷𝐶𝑃 (𝑥) = 1 − min
𝑠∈{𝑅,𝐺,𝐵}

(
min
𝑦∈Ω(𝑥)

( 𝐼𝑠(𝑦)
𝐴𝑠

))
(4)

Note that the value of airlight 𝐴 in the RGB color space (𝑠 ∈
[𝑅, 𝐺, 𝐵]) or its estimation is needed to compute 𝑡. There are various 
approaches that can be used to estimate 𝐴, the simplest of which is by 
using the DCP value itself. He, et al. [5] set the value of airlight with 
the pixel value at the location of the maximum DCP. Airlight, or ambi-

ent light, is often equated with the color of the sky, which can be found 
at a maximum distance 𝑑 ≈∞. Since a larger DCP value would indicate 
a further distance, the maximum value of DCP should indicate the fur-

thest point as well, at which point can be used as an estimate of �̂�. With 
the estimated transmission 𝑡 based on Eq. (4), the original scene 𝐽 can 
be recovered for every pixel 𝑥 based on the principles of DCP according 
to Eq. (5). To avoid a division by zero, it is necessary to limit the values 
of 𝑡 by a minimum value of 𝑡0.

𝐽𝑠(𝑥) = 𝐼𝑠(𝑥) −𝐴𝑠

max
(
𝑡(𝑥), 𝑡0

) +𝐴𝑠 (5)

In our experiments, image dehazing using DCP was performed by a 
two-step approach. The first step results in an approximated clear im-

age of the scene. However, since DCP assumes constant transmission 
in local areas, these images suffer from the loss of details or appearing 
to be patchy. Thus, a refinement step was added using the guided fil-

ter [39], aiming to further improve and smooth the dehazed images. 
With an edge-preserving smoothing property, the guided filter uses a 
reference image to guide the refinement process, resulting in a linear 
transform of the guidance image. Finally, the complete single image de-

hazing approach in this paper is a combination of DCP and refinement 
using guided filter, further referred to as DCP-R, and it was used to de-

haze the 50 hazy images from the test set.

3.2.3. Perception-inspired dehazing network with refinement (PDR-Net)

Li, et al. [10] proposed PDR-Net, a perception-based deep learning 
architecture to model end-to-end image to image translation between 
hazy images and their clear counterparts. Similar to DCP-R, it treats 
the process of dehazing as two steps, i.e., haze removal and refinement, 
each implemented as two separate sub-networks. PDR-Net employs a 
perceptual loss in the haze removal sub-network, to describe higher-

level perceptual cues. Meanwhile, the refinement sub-network employs 
a multi-term loss to recover color distortion and enhance the visual 
quality of the dehazed image. Through the sub-networks, PDR-Net de-

hazes images in two steps, resulting in not only an accurately dehazed 
image, but also a visually pleasing one.

In our experiments, PDR-Net was trained using the training set of 
550 hazy-clear image pairs. Since deep architectures often benefit from 
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more samples, the training set was augmented by flipping each image 
horizontally, creating a total of 1100 training images. Following the 
procedure detailed in [10], each sub-network was trained separately, 
with 700 training images to train the haze removal sub-network, and 
400 for the refinement sub-network. Each sub-network was trained for 
200 epochs. As with our DCP-R, PDR-Net was also used to dehaze 50 
hazy images of the test set.

3.2.4. Pix2pix

Common generative networks may experience difficulty in train-

ing image to image translations due to the large number of variables 
and probabilistic computations to estimate. Thus, the Generative Ad-

versarial Networks (GAN) [40] framework may be used to assist with 
training these generative networks. A GAN subjects a generative model 
to a discriminative model, trained to work as opponents. The genera-

tor is trained to generate realistic renderings of the intended outputs, 
while the discriminator aims to detect these reconstructions from the 
ground truth output [40]. A Conditional Generative Adversarial Net-

work (cGAN) extends the conventional GAN framework, i.e. the gener-

ator and discriminator are conditioned with extra information to guide 
the generative process [41].

Pix2pix is a cGAN model proposed for general non-specific image to 
image translation task [11]. Pix2pix uses a modified U-Net [24] as its 
generative model, guided by a PatchGAN discriminator [42]. Pix2pix 
was thoroughly examined using various image to image translation 
tasks, such as grayscale to color images or day to night images. The 
results show its ability to reproduce a visually similar output to the tar-

get for seemingly arbitrary image pairs. Considering a dehazing task, 
we are optimistic that the discriminator component can improve the vi-

sual pleasingness of the resulting image. Since the discriminator judges 
the generated output based on overall similarity, not only on a mini-

mized error, we believe this may mimic the observation or judgement 
of a human observer. In our experiments, we also used Pix2pix to train 
image to image translation from hazy images to their clear counter-

parts. Following the training and testing setup of PDR-Net, Pix2pix was 
also trained for 200 epochs using the same augmented hazy-clear im-

age pairs, with 1100 training images. The final trained model was then 
used to dehaze 50 hazy images of the test set.

3.3. IQA of dehazed images

The dehazing results were then assessed by means of objective and 
subjective IQAs. The image quality metrics and the design of the psy-

chovisual experiment for the subjective IQA are detailed in this section.

3.3.1. Objective metrics

In this study, four IQA metrics were selected to evaluate various 
quality aspects of an image. Three metrics are full-reference metrics 
that assign a quantitative value to the accuracy of dehazing compared 
to the ground truth, based on the quality cues focused on in this paper, 
namely color, image structure, and pixel intensity.

First, we evaluate color using Δ𝐸∗
𝑎𝑏

, a color difference function 
defined for the CIELAB color space [37], where perceptual non-

uniformities are accounted for. A hazy image 𝐼 and its dehazed version 
𝐽 will be converted to the CIELAB color space before the computation 
of their color difference as in Eq. (6). Images in the CIELAB color space 
have three components or channels, i.e., 𝐿∗ (lightness), 𝑎∗ (green-red 
chromaticity), and 𝑏∗ (blue-yellow chromaticity). The range of color 
difference values from Δ𝐸∗

𝑎𝑏
is [0, 100], which we rescale to [0, 1], with 

a lower value indicating better quality.

Δ𝐸∗
𝑎𝑏
(𝐼, 𝐽 ) =

√
(𝐿∗

𝐽
−𝐿∗

𝐼
)2 + (𝑎∗

𝐽
− 𝑎∗

𝐼
)2 + (𝑏∗

𝐽
− 𝑏∗

𝐼
)2 (6)

To evaluate the accuracy of pixelwise image intensities, we use the 
root mean square error (RMSE), shown in Eq. (7). RMSE computes the 
differences in image intensity or brightness levels [43]. Assuming pixel 
5

values in the range of [0, 1], the RMSE of the entire image is averaged 
over the total number of pixels in the image (𝑛). Thus, the RMSE will 
also range between 0 and 1, with lower value indicating a better esti-

mation of the clear image.

RMSE(𝐼, 𝐽 ) =

√√√√ 1
𝑛

𝑛∑
𝑖=1

(𝐼𝑖 − 𝐽𝑖)2 (7)

The accuracy of the pixel intensities themselves, does not ensure a 
clear distinct structure in an image. Thus, we also used the structural 
similarity index measure (SSIM) [44] to evaluate the image structure 
recovered. SSIM is used to define the perceptual difference of two im-

ages by means of their luminance (𝑙), contrast (𝑐), and structural (𝑠) 
components. The formula of SSIM is provided in Eq. (8), with 𝜇, 𝜎2

𝐼
, 

and 𝜎𝐼𝐽 as the measure of average, variance, and covariance between 
𝐼 and 𝐽 , respectively. Other parameters in the formula are 𝑐1 = (𝑘1𝐿)2, 
𝑐2 = (𝑘2𝐿)2, 𝑐3 = 𝑐2∕2, 𝐿 = 2𝑏 − 1, 𝑘1 = 0.01, 𝑘2 = 0.03, (𝛼, 𝛽, 𝛾) as adapt-

able weights, and 𝑏 as the number of bits per pixel in an image which 
will typically be 8.

SSIM(𝐼, 𝐽 ) = [𝑙(𝐼, 𝐽 )𝛼 ⋅ 𝑐(𝐼, 𝐽 )𝛽 ⋅ 𝑠(𝐼, 𝐽 )𝛾 ], where

𝑙(𝐼, 𝐽 ) =
2𝜇𝐼𝜇𝐽 + 𝑐1
𝜇2
𝐼
+ 𝜇2

𝐽
+ 𝑐1

, 𝑐(𝐼, 𝐽 ) =
2𝜎𝐼𝜎𝐽 + 𝑐2
𝜎2
𝐼
+ 𝜎2

𝐽
+ 𝑐2

, 𝑠(𝐼, 𝐽 ) =
𝜎𝐼𝐽 + 𝑐3
𝜎𝑖𝜎𝐽 + 𝑐3

.
(8)

The range of values that the SSIM can take on is [−1, 1], with a 
larger value indicating better quality. Meanwhile, with all of the other 
metrics used in this study, better quality is indicated with a lower value. 
Furthermore, SSIM is also the only metric that can be represented with 
a negative number. Thus, the SSIM is converted into an inverted SSIM 
which will be denoted 𝑆𝑆𝐼𝑀−1 with a modified range of [0, 1], with a 
lower value indicating better quality based on Eq. (9).

SSIM−1(𝐼, 𝐽 ) = 1 −
(SSIM(𝐼, 𝐽 ) + 1

2

)
(9)

Belonging to the category of FR metrics, Δ𝐸∗
𝑎𝑏

, RMSE, and SSIM−1

all require two images as input, i.e., ground truth or reference image 
and the target of evaluation. Note that the image dimension of both 
images have to be exactly the same. These three metrics measure the 
accuracy of the dehazed image compared to the known ground truth.

We have already suggested that often, accurate images do not nec-

essarily have better visual quality. Frequently, human perception will 
consider abstract concepts such as naturalness. Thus, we also used a 
metric that was proposed to measure naturalness, The Naturalness Im-

age Quality Evaluator (NIQE) [45]. NIQE is an NR metric that computes 
the score of an image against a model of natural scene images. This 
model is represented as multidimensional Gaussian distributions. The 
range of values that NIQE can take on is [0, ∞), with a lower value in-

dicating better image quality.

3.3.2. Psychovisual experiment

Based on the objective evaluation result in Section 3.3.1, we could 
naively infer that a dehazed image with a good objective result indicates 
that it is visually pleasing to the human eye. The same principle should 
intuitively apply to the opposite case. However, subjective and objective 
measures do not always align [44]. Thus, subjective IQA by means of 
a psychovisual experiment was also carried out for the test set of 50 
images.

Dehazing results of the four dehazing methods were sent out in a 
survey in which observers were asked to identify their preferred result. 
The display of the psychovisual experiment can be seen in Fig. 4. Each 
image is shown on an individual slide, with a neutral gray background 
and the slide number written at the top-left of each slide indicating 
which image is currently displayed. On each slide, five images are dis-

played, i.e. the original hazy image in the first row and four dehazed 
images on the second row, each obtained using CLAHE, DCP-R, Pix2pix, 
and PDR-Net, respectively. Observers were then asked to rank the four 
dehazed images from the image that is most visually pleasing to the 
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Fig. 4. Image arrangement for the psychovisual experiment.
least. Considering observer fatigue, each observer was only shown 25 
randomly selected images from the entire test set of 50 images. Ob-

servers were free to use any criteria they deem important to determine 
their preference.

Responses from observers were then populated using the Mean 
Opinion Score (MOS) [46]. The MOS of image 𝐼 is determined by the 
scores 𝑆 assigned to it by 𝑁 observers, which can be computed based 
on Eq. (10).

MOS(𝐼) = 1
𝑁

𝑁∑
𝑛=1

𝑆𝑛 (10)

In our experiment, the scores were given based on the rank order given 
by human observers. For each response, a score of 1 would be assigned 
to the most preferred result, 2 to the next, 3 to the third, and 4 to the 
least preferred result for that particular image 𝐼𝑖. Thus, a lower score 
will indicate better perceived quality, which is consistent with the ob-

jective metrics in Section 3.3.1. The score for each image was then 
averaged over the number of its observers 𝑁 . The average score was 
then further converted to a modified range of [0, 1]. This was computed 
for all 50 test set images 𝐼𝑖, for 𝑖 ∈ [1, 50]. At the end of the experiment, 
observers were also asked to give open-ended comments to elaborate 
further about their observations about the dehazed images. These com-

ments may give an indication about the factors that influenced their 
preference in terms of color, structure, clarity, or naturalness.

4. Results and discussion

This section will display, evaluate, and analyze the results using the 
four dehazing methods in our experiments on the test set of 50 images 
described in Section 3.2. A randomly selected subset of the results are 
shown in Fig. 5. From the results, it is visible that all methods performed 
well in light and simulated haze such as in the O-Haze, Synthetic, and 
RESIDE images. However, it is more challenging to handle images from 
the Dense-Haze and NH-Haze datasets.

In the case of test images with dense haze, none of the four dehaz-

ing methods were able to recover the scene correctly, as shown in the 
Dense-Haze column in Fig. 5. Fig. 6 shows more details of the recovered 
Denze-Haze images, which are still shrouded in a veiling haze. CLAHE 
was the least successful, due to the over-saturated haze that dominates 
the image and hence its histogram. DCP-R was more successful in recov-

ering details of the scene and the results shows more saturated colors. 
However, these colors are far from colors in the ground truth image. 
PDR-Net produces a darker image with less saturated colors. It also ap-

pears to have a lot of texture similar to that of the tree object in the 
ground truth image. However, not much information was successfully 
restored aside from the white structures at top right corner of the im-

age. The dehazed image using Pix2pix was able to reconstruct the area 
6

Table 1. Average objective and subjective IQA metric results 
on the test set using 4 dehazing methods. All metrics have been 
converted and scaled so that the lower value will indicate better 
quality.

Objective IQA

Metric Range↓ CLAHE DCP-R PDR-Net Pix2pix

RMSE [0,1] 0.4221 0.3361 0.3729 0.2367
𝑆𝑆𝐼𝑀−1 [0,1] 0.2206 0.2425 0.2292 0.1919
Δ𝐸∗

𝑎𝑏
[0,1] 0.2391 0.2291 0.2194 0.1514

NIQE [0,∞) 3.1521 2.8290 4.7216 2.8626
Subjective IQA

Metric Range↓ CLAHE DCP-R PDR-Net Pix2pix

MOS [0,1] 0.4461 0.4877 0.8447 0.2220

of the leaves, but also produced color artefacts in the haze areas of the 
image.

Section 2.1 shows that the basic hazy image formation model itself 
is built on the assumption that scattering occurs homogeneously. Thus, 
images with non-homogeneous haze pose a challenge to common de-

hazing methods. See NH-Haze column in Fig. 5, where CLAHE, DCP-R, 
and Pix2pix were all unable to fully remove the haze, and the dehazed 
images still contain haze in areas where the haze is thicker. Meanwhile, 
the result of PDR-Net was successfully void of haze effects, albeit with 
low color saturation. Detailed observations of the results on NH-Haze 
can be seen in Fig. 7.

Objective evaluation of the dehazing results for the four dehazing 
methods is presented in Table 1. Note that all objective metrics have 
been converted and scaled so that a lower value indicates a better re-

construction. Overall, Pix2pix is able to obtain the best score in RMSE, 
𝑆𝑆𝐼𝑀−1, and Δ𝐸∗

𝑎𝑏
. The best NIQE score is achieved by DCP-R, show-

ing its superiority in terms of naturalness. Furthermore, all other meth-

ods come in second in different aspects, where CLAHE has the second 
best 𝑆𝑆𝐼𝑀−1 score, DCP-R in RMSE, and PDR-Net in Δ𝐸∗

𝑎𝑏
. CLAHE is 

a method that modifies the image very minimally, explaining the good 
𝑆𝑆𝐼𝑀−1 score. DCP-R has a good RMSE, indicating a superior pixel 
intensity recovery. However, DCP-R does suffer from color distortion, 
explaining a lower Δ𝐸∗

𝑎𝑏
score compared to PDR-Net.

The psychovisual experiment of the 50 test images was conducted 
with a total of 40 human observers. The average MOS for each method 
is shown in the bottom row of Table 1, indicating a preference for 
dehazing by Pix2pix reflected in its lower average MOS. CLAHE and 
DCP-R come in second and third, with PDR-Net as the least preferred 
dehazing method. The psychovisual experiment also provided an oppor-

tunity for observers to add open-ended comments, which may further 
provide insights on the possible perceptual attributes for the perception 
of dehazed images. They will be valuable for a deeper analysis of visual 
cues affecting the perceived image quality and potential improvements 
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Fig. 5. Examples of dehazing results of test images from various datasets, i.e., Dense-Haze, NH-Haze, O-Haze, Synthetic, and RESIDE datasets. The original hazy 
image is shown in the first row, followed by the ground truth clear image in the second. The dehazed images obtained using CLAHE, DCP-R, PDR-Net, and Pix2pix 
are shown in row 3-6.

Fig. 6. Detailed comparison of a result of (a) CLAHE, (b) DCP-R, (c) PDR-Net, and (d) Pix2pix for an image with dense haze. See the corresponding original and 
ground truth images in Dense-Haze column in Fig. 5.
7
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Fig. 7. Detailed comparison of a result of (a) CLAHE, (b) DCP-R, (c) PDR-Net, and (d) Pix2pix for an image with non-homogeneous haze.
Table 2. Insights from the open-ended comments provided by observers in the 
psychovisual experiment.

No. Comment

1 Images dehazed with CLAHE still contain a very visible haze, indicating a 
less successful dehazing process.

2 Images dehazed with CLAHE are still more visually pleasing regardless of 
the haze, because they do not contain noise or artifacts.

3 The leftover haze in CLAHE images actually contributes to the naturalness 
of the image.

4 Images dehazed with DCP-R are generally bright, smooth and sharp. DCP-R 
seems to perform very well when the haze in the original image is light.

5 Images dehazed with DCP-R often have color distortions making it less 
visually pleasing. This is especially visible in outdoor scenes with have 
unnatural sky color.

6 Images dehazed with DCP-R sometimes appear dull and dark with some 
scenes.

7 Several images dehazed with PDR-Net have spots, artifacts, or noise. 
Although some produce colors that are similar to real objects in the scene 
but the artifacts makes PDR-Net the least visually pleasing.

8 PDR-Net results seem to have lost the sense of depth of the scene, due to a 
very high contrast.

9 PDR-Net and Pix2pix both are able to eliminate more haze, but are visibly 
unnatural, making observers uncomfortable.

10 Images dehazed with Pix2pix tend to have softer colors which make it more 
visually pleasing.

11 Images dehazed with Pix2pix are most often more visually pleasing 
compared to the other methods, aside from some unnatural colors.

12 Clear objects and minimal artifacts/distortion are a large factor in 
evaluating visually pleasing images. That is why CLAHE and Pix2pix images 
were frequently placed at the top rank.

for dehazing methods. Some interesting points about the observations 
that can be concluded from these comments are shown in Table 2.

As described before, the concept of image quality is very complex. 
The quantitative metrics that are commonly used to describe accuracy 
of dehazed images, are not always adequate to denote its quality. This 
is apparent in the objective and subjective results presented in this sec-

tion. Fig. 8 shows the scatterplot of MOS against all 4 objective metrics, 
i.e. RMSE, 𝑆𝑆𝐼𝑀−1, Δ𝐸∗

𝑎𝑏
, and NIQE. For visualization purposes, each 

objective metric is scaled to the range of [0, 1]. We then attempt to 
infer the correlation between MOS and each objective metric, using 
curve fitting with a polynomial regression of order 1. The plot shows 
weak correlation of MOS with Δ𝐸∗

𝑎𝑏
and 𝑆𝑆𝐼𝑀−1, whose line plots are 

almost horizontal, indicating no relation. Meanwhile, the MOS scores 
8

Fig. 8. Scatterplot between the subjective MOS and RMSE in red, 𝑆𝑆𝐼𝑀−1 in 
blue, Δ𝐸∗

𝑎𝑏
in yellow, and NIQE in green. The correlation line for each metric is 

obtained through curve fitting with polynomial regression order 1.

with RMSE and NIQE show a stronger correlation through lines that 
incline visibly.

To measure the correlation quantitatively, we also computed the 
Pearson 𝑟 correlation coefficient between MOS and each objective met-

ric [47]. The Pearson 𝑟 correlation coefficient is commonly used to 
quantitatively represent the relationship between variables [47]. The 
Pearson 𝑟 coefficient of MOS with RMSE, 𝑆𝑆𝐼𝑀−1, Δ𝐸∗

𝑎𝑏
, and NIQE are 

shown in Table 3. From the results, we are able to confirm the insights 
we obtained from Fig. 8. All 4 objective metrics are positively corre-

lated with MOS, to different degrees of strength. Among them, NIQE is 
the objective metric that has the strongest correlation with subjective 
MOS with a Pearson 𝑟 coefficient of 0.4486.

4.1. Color analysis

The color quality of the dehazed images can be objectively measured 
using the color difference metric Δ𝐸∗ . From Table 1, Pix2pix is clearly 
𝑎𝑏
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Fig. 9. Detailed areas of the dehazed images using (a) CLAHE, (b) DCP-R, (c) PDR-Net, and (d) Pix2pix in terms of color and color recovery, contrast, and smoothness.
Table 3. Pearson 𝑟 correlation coefficient between 
MOS and 4 objective metrics.

Metric paired with MOS

RMSE 𝑆𝑆𝐼𝑀−1 Δ𝐸∗
𝑎𝑏

NIQE

Pearson 𝑟 0.2284 0.0914 0.1856 0.4486

ahead with an average Δ𝐸∗
𝑎𝑏

of 0.1514 followed by PDR-Net, DCP-R, and 
CLAHE, in that order. This can also be confirmed by visually observing 
the dehazing results shown in Fig. 9. The two deep learning methods are 
in the lead in this criterion, as they both learn complex mappings for 
pixel-based regressions from input to output images with little external 
factors.
9

CLAHE enhances the image by re-distributing the intensities with-

out correcting the color which is apparent Fig. 9a and Fig. 10a. In 
the two first images of Fig. 9d, where Macbeth ColorCheckers are 
present, Pix2pix shows its capability to recover the colors on the color 
checkers. DCP-R and PDR-Net also do well restoring the vividness of 
the color in the color checkers in the first two images. For the se-

lected areas in images in columns 3-5 of Fig. 9b, DCP-R shows that 
its recovery of colors results in higher saturation while maintaining 
smoothness. However, DCP-R is highly reliant on the airlight of the 
scene, which is frequently inaccurately estimated. This error manifests 
in the unnatural sky colors, which we highlight in the first two images 
of Fig. 10b For the simulated dataset involving indoor images in col-

umn 3, these color distortions result in color artifacts such as in the 
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Fig. 10. Detailed areas of the dehazed images using (a) CLAHE, (b) DCP-R, (c) PDR-Net, and (d) Pix2pix, specifically the artifacts and color distortion.
rightmost image of Fig. 10b. While this color distortion does not oc-

cur in the result of PDR-Net, artifacts are introduced, such as shown in 
Fig. 10c.

Finally, the psychovisual experiment results also show the observers’ 
general preference towards the dehazed images obtained by Pix2pix. 
Based on the MOS in Table 1, the order of preference after Pix2pix 
is CLAHE, then DCP-R, and lastly PDR-Net. Most observers take note 
of the color recovery as an major factor to determine visual pleas-

ingness. DCP-R especially was singled out frequently about its colors, 
due to the color distortions that occur. Many observers commented 
particularly on the sky areas, that the colors were “uncomfortable”, 
10
“unnerving”, and “unnatural”. Based on MOS, we can see that CLAHE 
is thus more preferred, although it clearly does not recover color cor-

rectly.

4.2. Contrast and clarity

The contrast and clarity of dehazed images can be inferred from 
RMSE or 𝑆𝑆𝐼𝑀−1 in Table 1. Based on those two metrics, once again 
Pix2pix is superior to the other metrics. In terms of image structure, 
CLAHE is able to keep it intact since it only modifies image intensities 
without changing the structure at all. This is shown by the CLAHE’s 
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𝑆𝑆𝐼𝑀−1 score that is second best to Pix2pix. Lastly, we have PDR-Net 
followed by DCP-R. The recovery of structure and detail in an image is 
difficult, particularly if pixel intensities are saturated with haze.

However, in dense haze images, such as in the first column of Fig. 9, 
the results of DCP-R show ability to recover contrast and detail, par-

tially due to the help of the guided filter in the refinement step, which 
guarantees a smooth image. In these conditions, CLAHE is only able 
to enhance the edges that were already there, but is incapable of han-

dling over-saturated haze areas. Meanwhile, dehazing by PDR-Net and 
Pix2pix is deep learning based, ensuring a highly accurate reconstruc-

tion as projected by a lower RMSE. Despite being the best-performing 
method in terms of RMSE or 𝑆𝑆𝐼𝑀−1, Pix2pix also struggles to recover 
images in dense haze. Additionally, since deep learning methods use a 
global accuracy over the entire image, local artifacts are still present, 
e.g., the first and third images of Fig. 10.

The results of the subjective evaluation show that observers also 
gravitate towards Pix2pix dehazing. Many observers take note of edges, 
visibility, and distinction of objects when evaluating the dehazed im-

ages. CLAHE is often noted for being unable to handle various hazy 
images, especially in dense haze. Observers have taken notice about 
the ability of DCP-R and Pix2pix to recover objects clearly with distinct 
edges. Next, images dehazed with CLAHE often still contain haze ob-

scuring the objects and edges of the scene. Although edges and contrast 
is important in a scene, some observers mentioned that the contrast 
and edges in images dehazed by PDR-Net were extreme. PDR-Net cre-

ated unnecessary edges and artifacts taht were pointed out explicitly as 
reasons to reject the dehazing results of PDR-Net.

4.3. Naturalness

Naturalness is a difficult concept to quantify because it is a largely 
subjective concept. This involves many immeasurable factors such as 
preference, perception, and familiarity. This paper attempts to measure 
naturalness quantitatively using NIQE. Based on the results in Table 1, 
DCP-R obtained the best NIQE of 2.8290, followed by Pix2pix, CLAHE, 
and lastly PDR-Net. Among the top two, DCP-R and Pix2pix, the sub-

jective evaluation shows a preference towards Pix2pix dehazed images. 
CLAHE, on the other hand, may obtain natural results but is unable to 
complete the task of dehazing. Finally, PDR-Net performs the worst in 
reconstructing a natural dehazed image. A visual observation of some 
of the results can be done through Fig. 10.

PDR-Net dehazed images are generated by a deep-learning network 
through convolutions, allowing a high-level abstraction that does not 
necessarily match with how the human visual system or perception 
works. This process is computed based on accuracy and error, both of 
which are objective measures that do not reflect or account for cues 
that are important for human perception. PDR-Net was designed to use 
a modified error that considers both accuracy and visual perception, but 
the results here show that it still has this limitation. Meanwhile, while 
Pix2pix is also a deep generative network, it is trained using an adver-

sarial discriminator, not just by a simple error or loss computation. The 
discriminator component of Pix2pix acts as if it is perceiving the image, 
trying to identify the generated image from the ground truth. Thus, the 
generator tries to generate an output that can trick the discriminator, 
resulting in a visually pleasing and perhaps more natural image.

Images dehazed with Pix2pix are most preferred by observers based 
on the MOS in Table 1. However, although the comments in Table 2

are generally positive towards the Pix2pix results, they still point out 
Pix2pix images to be unnatural. In terms of naturalness, we infer that 
the color distortions created by DCP-R skewed the subjective scores in 
favor of Pix2pix, even though DCP-R has sharper edges and smoother 
regions. Some comments also favored CLAHE in terms of naturalness, al-

though observers acknowledge the haze was not successfully removed. 
In fact, many commented that the presence of haze actually adds to the 
naturalness of the image, as it is common to see such scenes in the real 
world. Many observers agree that the dehazed images by PDR-Net are 
11
the least visually pleasing, consistent with the NIQE scores. Many cite 
the rough edges, artifacts, noise, and loss of depth as the reason for this 
judgement.

5. Conclusion

In our experiments, we conducted image dehazing on a uniform set 
images using four methods, i.e., CLAHE, DCP-R, PDR-Net and Pix2pix. 
The two deep learning approaches, PDR-Net and Pix2pix were both 
trained using the same set of training images. In this work, we evaluate 
dehazing results not only by how similar they are to the ground truth, 
but also by image quality using objective and subjective IQA. The objec-

tive metrics were selected to measure color difference (Δ𝐸∗
𝑎𝑏

), contrast 
and image structure (RMSE, SSIM), and naturalness (NIQE). The sub-

jective result is measured with the mean opinion scores (MOS). Among 
all four methods, Pix2pix is superior in terms of color difference, con-

trast and image structure. The MOS also shows that Pix2pix is the most 
preferred by human observers. Although Pix2pix is surpassed by DCP-R 
in terms of objective naturalness, DCP-R dehazing obtained the second 
to worst MOS due to the color distortion that sometimes occurs. CLAHE 
is unable to remove haze at all as reflected in its bad objective scores. 
Interestingly, CLAHE obtains the second best MOS after Pix2pix, indi-

cating that the presence of haze is not a problem for human observers. 
Finally, PDR-Net dehazing does not excel at any of the objective crite-

ria, although it is second place for color recovery. PDR-Net dehazing 
also falls in last place for naturalness and MOS.

The context of the dehazing becomes very relevant to the discussion. 
In cases where the images are intended to be viewed by humans, CLAHE 
is simple and easy to implement. However, although CLAHE is able to 
enhance the visibility of a hazy image, it would be misleading to claim 
CLAHE as a dehazing method since the results are often still hazy. For 
a fully automated machine based approach, PDR-Net is straightforward 
and succeeds to obtain good reconstruction with minimal human inter-

vention. Alternatively, DCP-R is able to dehaze an image most naturally, 
but in order to avoid the color distortions, it is necessary to improve 
airlight estimation. It is necessary to look into the relevant quality cues 
of each dehazing method, and determine which ones are more impor-

tant in the context of a certain task. This is particularly relevant for 
larger computer vision applications, in which higher-level image un-

derstanding is necessary. Often, these applications assume clear images 
as inputs, so any hazy inputs must be dehazed prior to processing. In 
this paper, we provided a general evaluation of image quality, focusing 
on comprehensive analysis and discussion on the color, image structure, 
and naturalness of the dehazed images.

In closing, the absence of a standardized hazy dataset is a common 
obstacle in hazy images. As such, our experiment was conducted on a 
fairly limited dataset of hazy images. Thus, there is much to be desired 
in regards to the generalization ability of dehazing methods. For future 
work, a general approach would be instrumental for dehazing and its 
subsequent applications. In line with this target, the establishment of a 
large standardized dataset with hazy, clear, and depth information will 
be very beneficial to scattering media image understanding in general, 
e.g., for underwater environments.
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