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Abstract 

Background:  A wide range of bioactive compounds is produced by enzymes and 
enzymatic complexes encoded in biosynthetic gene clusters (BGCs). These BGCs can 
be identified and functionally annotated based on their DNA sequence. Candidates for 
further research and development may be prioritized based on properties such as their 
functional annotation, (dis)similarity to known BGCs, and bioactivity assays. Production 
of the target compound in the native strain is often not achievable, rendering heterolo-
gous expression in an optimized host strain as a promising alternative. Genome-scale 
metabolic models are frequently used to guide strain development, but large-scale 
incorporation and testing of heterologous production of complex natural products 
in this framework is hampered by the amount of manual work required to translate 
annotated BGCs to metabolic pathways. To this end, we have developed a pipeline for 
an automated reconstruction of BGC associated metabolic pathways responsible for 
the synthesis of non-ribosomal peptides and polyketides, two of the dominant classes 
of bioactive compounds.

Results:  The developed pipeline correctly predicts 72.8% of the metabolic reactions 
in a detailed evaluation of 8 different BGCs comprising 228 functional domains. By 
introducing the reconstructed pathways into a genome-scale metabolic model we 
demonstrate that this level of accuracy is sufficient to make reliable in silico predictions 
with respect to production rate and gene knockout targets. Furthermore, we apply the 
pipeline to a large BGC database and reconstruct 943 metabolic pathways. We iden-
tify 17 enzymatic reactions using high-throughput assessment of potential knockout 
targets for increasing the production of any of the associated compounds. However, 
the targets only provide a relative increase of up to 6% compared to wild-type produc-
tion rates.

Conclusion:  With this pipeline we pave the way for an extended use of genome-scale 
metabolic models in strain design of heterologous expression hosts. In this context, 
we identified generic knockout targets for the increased production of heterologous 
compounds. However, as the predicted increase is minor for any of the single-reaction 
knockout targets, these results indicate that more sophisticated strain-engineering 
strategies are necessary for the development of efficient BGC expression hosts.
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Background
Natural products provide an immense source of bioactive small molecules of medical 
and agricultural importance [1–3]. The biosynthesis of these small-molecule bioactive 
compounds is usually governed by genes that are clustered in physical close proximity 
on the genome in fungal [4] or bacterial species [5], commonly known as biosynthetic 
gene clusters (BGCs). The revolution in sequencing technology has enabled access to 
complete genome sequences for an increasing number of bacteria and fungi. Min-
ing of these genomes has revealed a vast abundance of BGCs, many more than the 
number of bioactive compounds observed in vitro [6, 7], suggesting that many BGCs 
are not expressed or that their respective compounds are not produced at detectable 
amounts in laboratory conditions. The activation of these silent BGCs may lead to the 
discovery of many novel bio-pharmaceuticals [8].

One promising avenue towards exploration of the bioactive potential of these silent 
BGCs is heterologous expression in host strains that are engineered to achieve maxi-
mal production of the encoded natural products [9, 10]. With current software [11] 
it is possible to quickly mine a genome for BGCs and retrieve information about the 
class, location, and functional domains of every gene in each cluster [12]. One may 
further prioritize BGC candidates for heterologous expression based on this informa-
tion, (dis)similarity to known BGCs, bioactivity assays and mass spectrometry profiles 
of produced compounds, and subsequently transfer the selected BGCs to a chosen 
host strain using available genetic tools [13, 14]. However, the cloning and transfer 
of BGCs can be time-consuming and difficult depending on the genetic tools avail-
able for the native and the heterologous host strains, as well as the size of the BGC in 
question [15]. Additionally, it is not clear which host strain or which genetic modifi-
cations will maximize the yield of the secondary metabolite synthesized through the 
metabolic pathway catalyzed by the enzymes, or enzyme complexes, encoded by the 
heterologously expressed BGC [16, 17].

Genome-scale metabolic models (GEMs) can predict the consequence of genetic mod-
ifications [18] and are routinely used to guide strain design for a wide range of purposes 
[19]. However, this approach has still not gained traction in guiding strain-engineering 
efforts to increase the heterologous production of complex natural compounds, despite 
a number of available GEMs for Actinobacteria [20], a phylum known for an extremely 
diverse secondary metabolism responsible for about two-thirds of all known antibiot-
ics in use today [21]. Previous efforts are limited to maximization of native secondary 
metabolites [22–24] or precursor pools [25]. One reason for the lack of computational 
efforts leveraging GEMs to assess heterologous production from BGCs is the significant 
amount of work required to map out the associated metabolic pathway, although most 
of the required information is contained in the output from software used to identify 
and annotate BGCs, such as antiSMASH [12]. In this work, we address this hurdle by 
developing a pipeline that parses the output obtained from antiSMASH and constructs 
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the corresponding metabolic-synthesis pathway, thereby making BGCs available for 
constraint-based analysis and strain engineering guided by GEMs.

We have chosen to focus on non-ribosomal peptide synthetases (NRPSs) and two 
types of polyketide synthases (PKSs), namely type 1 PKSs and trans-AT PKSs. These 
BGC classes are of particular interest because of their vast abundance [26, 27] and great 
prospect to become novel biopharmaceuticals [28, 29]. For an exhaustive description 
of NRPS and PKS biosynthesis, we refer the reader to a range of excellent reviews [27, 
30–33], but we provide the brief summary required as a context for the later description 
of the pipeline and results. Both NRPS, and type 1 and trans-AT PKS biosynthesis are 
performed by multidomain enzyme complexes that create a polymer from amino acid 
or acyl-CoA building blocks, respectively. The chain elongation is performed by well-
defined modules that makes it tractable to predict the biosynthetic pathways producing 
the associated compounds from the annotated sequence data, but the presence of itera-
tive modules can complicate predictions [34–36]. An active chain elongating module in 
an NRPS cluster requires at least three functional domains: a condensation (C) domain, 
an adenylation (A) domain and a peptidyl carrier (PCP) domain. The A domain acti-
vates a specific amino acid (or in some cases a carboxylic acid) and facilitates the attach-
ment of the amino acid to the PCP domain, while the C domain catalyzes the formation 
of peptide bonds required to elongate the peptide. In addition to these three domains, 
NRPS modules can replace the C domain by a Cy domain performing condensation and 
heterocyclisation or additionally contain a methyltransferase (MT) and/or an epimerase 
(E) domain. The load module initiating biosynthesis usually lacks the C domain, while 
the terminating module contains either a thioesterase (TE) or a thioester reductase (TR) 
domain.

Similar to NRPSs, chain elongating modules of PKSs rely on three functional domains: 
an acyltransferase (AT) domain that recognizes a specific extender unit and attaches it to 
the acyl carrier (ACP) domain. The third domain, ketosynthase (KS) catalyzes the Clais-
sen condensation required to extend the polyketide chain. A standard PKS load mod-
ule contains only the AT and ACP domain, and a TE or TR domain is required for the 
release of the polyketide chain by the final PKS module. PKS modules can also feature 
the reducing domains ketoreductase (KR), dehydratase (DH) and enoylreductase (ER), 
and different combinations of functional domains yield a large variety of molecular 
transformations, in particular for the trans-AT PKSs [32]. These trans-AT PKSs not only 
differ from normal (cis) modular PKSs by having a larger module diversity and devia-
tions from canonical rules, but they are also recognized by freestanding AT domains 
that perform the chain elongation [32]. The diversity of PKS and NRPS natural prod-
ucts is further extended by hybrid variants containing both NRPS and PKS domains and 
modules.

We acknowledge that experimental analyses of the final and intermediate products, as 
well as enzyme activity assays, are required to fully unravel the details of the metabolic 
pathways associated with a BGC. However, for the chosen classes of BGCs (NRPS, type 
1 PKS, and trans-AT PKS), we hypothesize that the information acquired from genome 
mining is sufficient to make in silico predictions that are biologically relevant. After 
assembling and evaluating the accuracy of the new pipeline presented in this work, we 
demonstrate its value towards high-throughput assessment of BGCs by reconstructing 
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the metabolic pathways for 943 of the BGCs currently in MIBiG [37]. Furthermore, we 
predict the optimal single reaction inactivation (by gene knockout) strain-engineer-
ing strategy for natural product synthesis based on each BGC when introduced into a 
genome-scale metabolic model of Streptomyces coelicolor, a model organism among the 
Actinobacteria and a popular heterologous BGC expression host [15, 38].

Results
We have developed the Biosynthetic Gene cluster Metabolic pathway Construction 
(BiGMeC) pipeline that leverages antiSMASH results to create the metabolic pathway 
corresponding to a PKS or NRPS biosynthetic gene cluster (Fig. 1a). The pipeline details 
each enzymatic reaction of the metabolic pathway, including redox cofactors and energy 
demand. The results are stored in a format that is easily introduced into a GEM using 
popular tools for constraint-based reconstruction and analysis, such as cobrapy [39] or 
COBRA Toolbox [40].

The hallmarks of PKS- and NRPS-genes are adjacent functional domains that in total 
make up one or several modules that initiate, extend or cleave off the polyketide or pep-
tide product, respectively [30, 32, 33]. The output from antiSMASH comprises informa-
tion about these modules and their functional domains, and occasionally also the specific 
extender unit or chemical transformation associated with each functional domain [12]. 
The BiGMeC pipeline not only parses this information, but uses well-reasoned heuristics 
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Fig. 1  Overview of the BiGMeC pipeline. a Schematic description of how the BGC annotation file produced 
by antiSMASH is parsed and used to construct the associated metabolic pathway. b BiGMeC extends the 
rule-based identification of modules from antiSMASH with bridging modules and analysis of module activity, 
as exemplified here with this toy BGC: The last module in gene A and the first module in gene B (marked by 
green edges) constitute an active bridging module that is not identified by antiSMASH [12]. The last module 
on gene C (red edge color) are most often found to be inactive, a feature currently incorporated into BiGMeC
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to handle deviations from canonical rules and cases where information is missing (see 
Materials and Methods). Improvements in determining module function includes iden-
tification of bridging modules in trans-AT PKSs and non-extending modules due to the 
presence of oMT domains [32] (Fig. 1b).

We first assessed the accuracy of the BiGMeC pipeline by comparing its predictions 
with experimentally characterized and manually curated metabolic pathways. To this 
end, we compared the substrates, cofactors, and reaction products of each step of the 
metabolic pathway associated with eight well-characterized BGCs (Fig.  2a, Additional 
file 2). These BGCs cover a range of BGC classes, including type 1 PKS, trans-AT PKS, 
NRPS and hybrids, and we believe they provide a test set that is sufficiently diverse 
to probe the pipeline for its strengths and weaknesses. Overall, BiGMeC appends the 

both eitherPredicted in 

a
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Fig. 2  Analysis of BiGMeC prediction accuracy for eight selected BGCs. a Barplot showing the number of 
correct domains when comparing BiGMeC-constructed pathways with pathways as they are detailed in the 
literature (Additional file 2). The filled part of each bar, as well as the ratio printed above, shows the number 
of correct domains for each BGC. Extending domains comprise the domains that append an extender unit to 
the polyketide or peptide backbone, while the non-extending domains cover all other domains. b Predicted 
maximum production rate when introduced into a S. coelicolor GEM. The x- and y-axis represent the maximal 
production rate using the metabolic pathway created based on literature or reconstructed with BiGMeC, 
respectively. c This panel shows a comparison of the predicted reaction-knockout targets (x-axis) when using 
a metabolic pathway created based on literature or with BiGMeC. Similar predictions are shown as green 
tiles, while incorrect predictions (predicted in either but not both of the two cases) are shown as red tiles. The 
names of the model reaction IDs are: TKT1: transketolase; ASPT: aspartate ammonia-lyase; FERO: ferroxidase; 
GLYCL: glycine cleavage system; MCOALY: malyl-CoA lyase; AGT: alanine-glyoxylate aminotransferase; FUM: 
fumarase; ASPTA: aspartate transaminase; CITMS: (R)-citramalate synthase; ERTHMMOR: 3-isopropylmalate 
dehydrogenase; CITCIa2: (R)-2-Methylmalate hydro-lyase; CITCIb: 2-methylmaleate hydratase; GHMT2r: glycine 
hydroxymethyltransferase; PSERT: phosphoserine transaminase; PGCD: phosphoglycerate dehydrogenase; 
PSP_L: phosphoserine phosphatase; FDH: formate dehydrogenase
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correct metabolic reaction for 72.8% (166/228) of the functional domains in all eight 
BGCs. Of these functional domains, BiGMeC chooses the correct extender unit for 
81.3% (74/91) of the domains extending the peptide or polyketide. For all other domains, 
including chain initiation, reductive domains, methyltransferases and final tailoring 
reactions, the accuracy is 67.2% (92/137).

A large number of the incorrect predictions derive from wrong assignments of inac-
tive KR domains by antiSMASH [12]. Across the eight closely inspected BGCs, KR 
domains are almost always active, but on several occasions antiSMASH predicts that 
these domains are inactive. The incorrect predictions of KR domain activity are to a 
large extent associated with adjacent MT domains. Furthermore, this leads to incorrect 
assignment of the activity of succeeding DH and ER domains because they act on the 
functional moiety produced by the preceding domain. For the prediction of extender 
units, most incorrect assignments derive from missing recognition of non-elongating 
modules caused by inactive KS domains devoid of a conserved histidine residue required 
for carboxylative condensation [32]. More specifically, only 10 of 16 KS domains are 
active in the oocydin BGC [32, 41]. Another significant source of incorrect domains is 
the anabaenopeptin cluster that has two consecutive genes, each having two modules 
that initiate biosynthesis and perform first chain elongation, respectively, yielding two 
slightly different variants of the final compound. The BiGMeC pipeline treats these two 
genes as consecutive steps of the same pathway, and therefore, predicts too many chain 
elongations in the biosynthesis.

To investigate how much the errors in the constructed metabolic pathways affect 
model predictions, we introduced both the literature-based and the BiGMeC pathway 
reconstructions into the consensus GEM of S. coelicolor (Sco-GEM) [16] and compared 
the maximal production rate of the final compound (Fig.  2b). In general, we observe 
quite similar rates for the eight BGCs (Pearson ρ = 0.75 , P = 0.03 ), suggesting that the 
incorrect domains only have a minor impact on the predicted production rates. The off-
set in the production of leupyrrin likely comes from an incorrect starter unit while the 
offset in oocydin production is caused by a fairly large error in the predicted number of 
malonyl-CoA extender units (10 vs. 16).

The anticipated use of the developed pipeline towards strain engineering of expression 
hosts underscores the need to elucidate if model-based strain designs using BiGMeC-
constructed pathways deviate from results using pathways reconstructed according 
to literature. To this end, we predicted optimal single-reaction knockout mutants that 
should increase the production rate of the associated product (Fig.  2c). Note that, a 
reaction knockout is the practical implication of disrupting one or more of the genes 
encoding the enzyme catalyzing the corresponding reaction. For 6 out of 8 BGCs there 
is a good overlap between pairwise pathway reconstructions. This includes the cases of 
tolaasin and geldanamycin, where no knockout target is identified with either of the two 
pathway reconstructions.

To demonstrate the power of BiGMeC in high-throughput assessment of BGCs, we 
employed the pipeline on 1883 of the 1923 BGCs in the MIBiG database (version 2.0) 
[37]. For 40 of the 1923 BGCs, we could not obtain the antiSMASH output file because 
the link from MIBiG was broken. The 943 ( 50.1% ) metabolic pathways that were suc-
cessfully reconstructed with BiGMeC cover both fungi and a range of different bacteria 
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(Fig. 3a). Most clusters are either type 1 PKS, NRPS, or hybrids of these two, and only 77 
of the BGCs share similarity with trans-AT PKS (Fig. 3b). The 940 remaining BGCs were 
not analyzed either because the BGC class was not covered by BiGMeC (such as RiPPs, 
terpenes, Type 2 and Type 3 PKSs) or because functional modules and domains were 
lacking in the results from antiSMASH.

We introduced each of the 943 reconstructed pathways into Sco-GEM [16], and pre-
dicted single-reaction knockout strategies improving the production of the final pathway 
product. Surprisingly, only 17 different reactions were suggested as a knockout target 
in one or more of the 943 in silico heterologous expression experiments (Fig. 3c, d). Of 
these 17 reactions, aspartate transaminase is predicted to provide on average the larg-
est increase in production (Fig. 3c) and is also the most frequently suggested candidate 
(Fig. 3d). However, the predicted production increase is minor for all of the 17 suggested 
reactions, including aspartate transaminase, with a maximum increase of 6% relative to 
the wild-type production rate.

Discussion
To make novel natural product pathways encoded by BGCs accessible to the constraint-
based reconstruction and analysis framework, we have developed a pipeline that cre-
ates a draft reconstruction of the metabolic pathway encoded by a BGC. This pipeline 

a

dc

b

Fig. 3  Automatic reconstruction and analysis of 943 BGCs from MIBiG. These BGCs cover a a range of 
different organisms and b a wide variety of hybrid BGCs. c Box plot showing the increase in production for 
the 17 different reaction knockouts that increase the production of one or more of the analysed BGCs. d Bar 
chart showing the number of BGCs where the knockout of each reaction is predicted to increase production 
of the target secondary metabolite. The names of the model reactions used in panel C and D: ASPT: aspartate 
ammonia-lyase; ASPTA: aspartate transaminase; GLYCL: glycine cleavage system; FUM: fumarase; MCOALY: 
malyl-CoA lyase; AGT: alanine-glyoxylate aminotransferase; GHMT2r: glycine hydroxymethyltransferase; PGCD: 
phosphoglycerate dehydrogenase; PSERT: phosphoserine transaminase; PSP_L: phosphoserine phosphatase; 
TKT1: transketolase; ERTHMMOR: 3-isopropylmalate dehydrogenase; CITMS: (R)-citramalate synthase; CITCIb: 
2-methylmaleate hydratase; CITCIa2: (R)-2-Methylmalate hydro-lyase; ENO: enolase: PGM: phosphoglycerate 
mutase
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outlines the correct metabolic reaction for 72.8% of the functional domains in our test 
set comprised of 8 experimentally characterized BGC-encoded biosynthetic pathways. 
One may question whether this accuracy extends to uncharacterized BGCs. In prin-
ciple, as the pathway reconstruction is solely based on genome mining results from 
antiSMASH, there should not be a significant difference in accuracy between well-
characterized and uncharacterized BGCs. However, as antiSMASH relies on annotation 
rules learnt from well-characterized BGCs [42, 43], one may anticipate that uncharac-
terized BGCs that deviate from known canonical rules are less accurately annotated by 
antiSMASH, and therefore less accurately reconstructed by BiGMeC.

By applying the BiGMeC pipeline to 943 BGCs covering NRPSs, PKSs and NRPS-
PKSs hybrids from a wide range of organisms we have demonstrated how the pipeline 
enables high-throughput assessment of potential candidates for heterologous expres-
sion. In an assessment of 943 BGCs, we explored general single-gene knockout strate-
gies for increased heterologous production, and although we identify a set of 17 general 
targets, none provides a drastic increase in production. This result suggests that multiple 
knockouts, over-expression of genes, or strategies that perturb regulatory mechanisms 
are necessary to reroute a large amount of precursors from growth towards secondary 
metabolism, at least in the organism S. coelicolor.

Although the accuracy of the BiGMeC pipeline is sufficient to make biologically rel-
evant pathway reconstructions, this work has also revealed aspects where there is room 
for further improvement. Incorrect assignment of KS and KR domains as active or 
inactive is a large source of error in PKS metabolic pathways, and incorporation of the 
recently developed transATor algorithm would provide an improvement in this context 
[44]. Synthesis of rare precursors and tailoring of the polyketide or peptide succeeding 
the release from the multidomain enzyme complex are two other features with opportu-
nity for improvement. Although the genes encoding enzymes responsible for the synthe-
sis of rare precursors or for the post-release tailoring steps usually are contained in the 
BGC, neither their exact function nor their functional order can be accurately predicted. 
Therefore, the current pipeline relies in certain aspects on assumptions and heuristics 
that apply in general, but with several exceptions. However, with a continuous improve-
ment in algorithms for annotation and identification of BGCs [12, 44, 45] and increased 
experimental characterization [37], current generalisations can develop into more accu-
rate pathway reconstructions that encompass a larger range of deviations from canoni-
cal rules. Furthermore, as the knowledgebase and algorithms for annotation of iterative 
PKSs and ribosomally synthesised and post-translationally modified peptides improves 
[46, 47], these types of BGCs represent obvious targets for further development. Other 
possible targets include terpenes, alkaloids and glycosides, frequently encoded in plant 
and fungal genomes [48–50], or polysaccharides which are of large value in dairy indus-
try [51] and medical applications [52], and the most abundant class of prokaryotic 
BGCs [5]. Nevertheless, accurate pathway reconstruction for these classes of BGCs will 
require accurate descriptions of the biosynthetic rules encoded in the gene clusters. In 
this context, tailoring reactions and post-translational modifications represent particular 
challenges. Further improvement should also aim to accept the output from other anno-
tation software, such as PRISM [53].
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Conclusion
The BiGMeC pipeline is, to our knowledge, the first tool for automatic metabolic path-
way reconstruction specifically targeting PKS and NRPS BGCs. Although the recon-
structed pathways are not able to capture the entire diversity seen in the biosynthesis of 
NRPSs and PKSs [30, 32], the predicted production rates and reaction knockout targets 
are comparable to predictions provided using manually reconstructed pathways. Fur-
thermore, the pipeline can aid model reconstruction efforts, both as a decent starting 
point for further manual curation and as a complement to standard model-reconstruc-
tion pipelines [54]. This is in particular relevant for organisms with a rich secondary 
metabolism, such as the Actinobacteria which are of utmost interest in drug discovery. 
We anticipate that the pipeline presented here can increase the use of GEMs in this con-
text, e.g. to screen different combinations of BGCs and expression hosts or, as shown in 
this work, to explore strain-engineering opportunities. The pipeline is developed in an 
open source environment on GitHub and we encourage interested readers to engage in 
future development through pull request or by raising issues. We also encourage devel-
opers of genome mining tools and databases to converge towards standardized and 
consistent file formats, such as the Minimum Information about a Biosynthetic Gene 
Cluster (MIBiG) initiative [37]. This will ease the development and maintenance of 
downstream pipelines such as BiGMeC, and promote integration of data from different 
genome mining tools. This is intended as a reminder rather than a criticism of existing 
software.

Materials and methods
Software implementation

We developed BiGMeC to translate information about PKS and NRPS BGCs to detailed 
outlines of the metabolic reactions governing the production of the associated second-
ary metabolites. The BiGMeC software and all other associated scripts are implemented 
in Python 3 and publicly available at https://​github.​com/​Almaa​sLab/​BiGMeC. BiGMeC 
runs from a command-line interface and takes an annotated NRPS or PKS BGC in the 
format of a region-specific GenBank file as produced by antiSMASH 5.1 [12]. It leverages 
the included gene, domain, and module information to make a description of the enzy-
matic reactions encoded by the BGC, including substrate and co-factor usage (Fig. 1a). 
BiGMeC uses a reference model as a library of metabolites and reactions, and in the cur-
rent work, we have used Sco-GEM version 1.2.1, the consensus S. coelicolor GEM [16]. 
This model was obtained from https://​github.​com/​SysBi​oChal​mers/​Sco-​GEM.

The BiGMeC pipeline first parses information about the location and annotation of 
the genes and modules as annotated by antiSMASH from the GenBank file (Fig. 1). If 
available, the gene information includes strand, secondary metabolism Clusters of 
Orthologous Groups (smCOG) annotation [55], type of gene, extender unit, annotated 
functional domains and if the gene is a core gene or not. The core genes synthesize the 
core structure of the PKS or NRPS molecule. The module information contains details 
about the type of module and its functional domains. Then, the pipeline assesses the 
presence and order of domains not included in a module, e.g. special load or bridging 
modules (in trans-AT PKS, Fig. 1b) [32], and combines these domains into functional 
modules when possible. The peptide or polyketide backbone is subsequently constructed 

https://github.com/AlmaasLab/BiGMeC
https://github.com/SysBioChalmers/Sco-GEM
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based on the order of the identified domains and the function of each domain within 
each module. Although NRPS and type 1 PKS modules can be iterative, we here assume 
that the selected BGCs are modular such that each module only performs one chain 
elongation. The reactions associated with the functional domains are listed in Table 1. 
Domains in the BGC that are not contained in a module are assumed to not affect 
the backbone structure. If a terminating domain (thioesterase or thioester reductase) 
domain is encountered, no further chain elongations are carried out. The activity of 
reducing domains (DH, ER, KR) are based on the annotation of the KR domain from 
antiSMASH. Tailoring reactions post PKS synthesis are predicted from the smCOG 
annotations of each gene. The currently implemented tailoring reactions relate to the 

Table 1  List of domains and associated reactions as implemented in BiGMeC

The peptide or polyketide backbone is referred to as Xn, and in reactions that extend the backbone we refer to the 
elongated backbone as Xn+1

AA, generic amino acid; 1,3-bpg, 1,3 biphosphoglycerate; CoA, Coenzyme A; Pii, diphosphate; SAH, S-Adenosyl-L-
homocysteine; SAM, S-Adenosyl methionine; Y, generic starter unit

Abbrv. Name Note Reaction

A Adenylation Activates and attaches AA to PCP ATP + AA + PCP→AA-PCP + 
AMP + Pii

ACP Acyl carrier protein Facilitates transport in PKSs

AT Acyltransferase Loads extender unit onto ACP Acyl-CoA + ACP → Acyl-ACP 
+ CoA

C Condensation Elongates the peptide by con-
densation

AA-PCP + Xn → Xn+1 + H2O + 
ACP

CAL Coenzyme A ligase Catalyzes the incorporation of 
different starter units, e.g. fatty 
acids, AHBA, and shikimic acid 
[32, 56, 57]

Y + PCP → Y-PCP + H2O

cMT Carbon methyltransferase Methylates peptide/polyketide SAM + Xn → Xn + SAH

Cy Heterocylization Elongates the peptide by con-
densation and cyclization

AA-PCP + Xn → Xn+1 + H2O + 
ACP

DH Dehydratase Forms double bound by removal 
of H2O

Xn → Xn + H2O

E Epimerase Stereochemical inversion Xn → Xn

ECH Enoyl-CoA hydratase/isomerase Not able to discriminate, so 
BiGMeC assumes isomerase

Xn → Xn

ER Enoyl reductase Reduces double bound formed 
by the DH domain to a methyl-
ene group

NADPH + H+ + Xn → Xn + 
NADP+

FkbH FkbH-like domain Domain in an alternative loading 
module. Dephosphorylates 
1,3-bpg [58]

1,3-bpg + ACP → D-lactate-ACP 
+ 2 Pi

GNAT GCN5-related N-acetyl trans-
ferase

Alt. load module that decarboxy-
lates malonyl-CoA and adds 
acetyl group to ACP [59]

Malonyl-CoA + ACP → Acetyl-
ACP + CoA + CO2

KR Keto reductase Reduces carbonyl group to 
hydroxyl group

NADPH + H+ + Xn → Xn + 
NADP+

KS Keto synthase Appends extender unit to 
polyketide

Acyl-ACP + Xn → Xn+1 + CO2 
+ ACP

nMT Nitrogen methyltransferase Methylates peptide/polyketide SAM + Xn → Xn + SAH

oMT Oxygen methyltransferase Methylates peptide/polyketide SAM + Xn → Xn + SAH

PCP Peptidyl carrier domain Facilitates transport in NRPSs

TD Thioester reductase Releases product from ACP/PCP NADPH + H+ + Xn → detached 
product + NADP+

TE Thioesterase Releases product from ACP/PCP H2O + Xn → detached product
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smCOGs 1256, 1084, 1002, 1109 and 1062 and includes glycosylation, glycosyltrans-
ferase and incorporation of 2-Amino-3-hydroxycyclopent-2-enone (Additional file 1).

Rare extender units appear in both PKS and NRPS biosynthesis. The synthesis of rare 
extender units is usually carried out by genes in the BGC [60], and we therefore include 
the synthesis of the most common rare extender units (not in the reference library) when 
necessary. This includes hydroxyphenylglycine, beta-hydroxytyrosine, 2-aminobutyric acid, 
pipecolic acid, dihydroxyphenylglycine and 3-amino-5-hydroxybenzoate [56]. Synthesis of 
the rare extender unit methoxymalonyl-ACP [60] is based on the presence of genes with 
specific smCOG annotations (Additional file 1). For the remaining rare extender units, or in 
the case of missing information or nonspecific antiSMASH annotation, we use a conserva-
tive approach where a generic amino acid is used as the extender unit in NRPS modules 
and malonyl-CoA is used in PKS modules. In the case of using a generic amino acid as the 
extender unit, we add a set of pseudo-reactions that can convert every proteogenic amino 
acid into this generic molecule to ensure that the biosynthetic pathway is functional.

The pipeline also handles a number of deviations from the canonical rules, for example 
the deactivation of the KS domain often seen in modules containing O-methyltransferases 
[32]. Furthermore, it is found that the presence of a C domain in the initiating NRPS mod-
ule acylates the initial amino acid [31, 61]. Both in tolaasin [62] and surfactin, currently the 
best studied example of this type of NRPS initiation, the acylating agent is a CoA-activated 
β-hydroxy fatty acid [61, 63]. It is likely that the C-domain has a strong selectivity for a 
specific acylating agent, but since this specificity is not identified by antiSMASH we use 
a generic fatty acid molecule. A third example of exceptions that are handled by BiGMeC 
is bridging modules in trans-AT PKSs where the KS domain is encoded in the first gene 
and the DH and ACP domains follow immediately on the second gene. These modules are 
called dehydratase docking domains (DHD) and are usually not active [32].

Evaluation of the BiGMeC pipeline

To evaluate how well biosynthetic pathways can be constructed solely based on ant-
iSMASH data we compared BiGMeC-constructed pathways with literature-based 
reconstructions for 8 different BGCs, covering different species and classes of BGCs 
(Additional file  2). The 8 BGCs were (MIBiG ID in parenthesis): bafilomycin from 
Streptomyces lohi [64–66] (BGC0000028), geldanamycin from Streptomyces hygro-
scopicus [67–69] (BGC0000066), difficidin from Bacillus velezensis FZB42 [70, 71] 
(BGC0000176), oocydin from Serratia plymuthica [32, 41] (BGC0001032), oxazolomy-
cin from Streptomyces albus [71, 72] (BGC0001106), leupyrrin from Sorangium cellulo-
sum [73] (BGC0000380), anabaenopeptin from Anabaena sp. 90 [74] (BGC0000302) and 
tolaasin from Pseudomonas costantinii [62] (BGC0000447). For each domain in each of 
the 8 different BGCs we compared the BiGMeC-constructed reaction with the real reac-
tion, i.e. the associated reaction as described in the literature. When clearly defined in 
the literature, tailoring reactions were included, but we focused on the synthesis of the 
core peptide/polyketide. The very complex tailoring of leupyrrin [73] was not included.

An initial evaluation was performed by counting the number of correct domains 
(Fig. 2a). The total number of domains include all domains either predicted by BiG-
MeC or described in the literature, and the correct predictions include both true 
positives and true negatives. Next, we incorporated the BiGMeC and literature-based 



Page 12 of 15Sulheim et al. BMC Bioinformatics           (2021) 22:81 

pathway reconstructions into Sco-GEM and predicted the maximum production rate 
of the secondary metabolite produced by each pathway (Fig.  2b). To do so, we per-
formed Flux Balance Analysis (FBA) [75, 76] in cobrapy [39] with the final reaction of 
the BGC encoded pathway as objective and with growth limited to minimum 90% of 
the maximum value. The growth and production were simulated in a growth medium 
with glucose and ammonium as the sole carbon and nitrogen sources, respectively, 
and with a maximum glucose uptake rate of 0.8 mmol gDW−1 h−1 . We did not con-
strain the uptake of ammonium, sulphate, phosphate, oxygen and metal ions. Finally, 
using both the BiGMeC and literature-based pathway reconstructions, we predicted 
reaction inactivation targets (by gene knockout) that would increase the production 
of the associated compound, with a maximum growth rate reduction of 50% (Fig. 2c). 
We limited the set of possible reaction targets to non-essential gene-annotated reac-
tions. The search for optimal knockouts was carried out in a brute-force manner: we 
conducted an iterative knockout of each reaction (within the predefined set of pos-
sible reactions) and, first used FBA to predict the maximum growth of the mutant 
phenotype, and secondly predict the maximum production rate at 99.9% of the 
knockout-mutant’s maximum growth rate. All knockouts that resulted in more than 
0.1% increase in production rate compared to the wild-type were considered knock-
out candidates.

Large‑scale reconstruction of BGC pathways

To demonstrate the value and efficiency enabled by BiGMeC we applied this pipeline 
to all relevant BGCs from the MIBiG database [37]. To get the antiSMASH-generated 
output for all BGCs in MIBiG we automatically downloaded all GenBank-files with a 
url on the form: https://​mibig.​secon​darym​etabo​lites.​org/​repos​itory/​BGC00​00001/​gener​
ated/​BGC00​00001.1.​regio​n001.​gbk, with the MIBiG ID ranging from BGC0000001 to 
BGC0002057. The MIBiG database currently reports on a total of 1923 BGCs but due 
to different reasons (e.g. missing entries) we could only obtain the antiSMASH result 
for 1883 of the entries. For all BGCs at least annotated to either type 1 PKS, trans-AT 
PKS or NRPS we used the BiGMeC pipeline to reconstruct the corresponding metabolic 
pathway. We predicted optimal knockout strategies for each of successfully constructed 
pathway using the same procedure as described for the 8 BGCs used to evaluate the 
BiGMeC pipeline.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​03985-0.

Additional file 1. Details on tailoring reactions and synthesis of the rare extender unit methoxymalonyl-ACP, as well 
as a description of the analysis used to develop the heuristics that indicate the presence of these reactions from 
smCOG annotations.

Additional file 2. Detailed comparison of 8 BGCs for evaluation the accuracy of the BiGMeC pipeline.

Acknowledgements
Not applicable.

https://mibig.secondarymetabolites.org/repository/BGC0000001/generated/BGC0000001.1.region001.gbk
https://mibig.secondarymetabolites.org/repository/BGC0000001/generated/BGC0000001.1.region001.gbk
https://doi.org/10.1186/s12859-021-03985-0


Page 13 of 15Sulheim et al. BMC Bioinformatics           (2021) 22:81 	

Authors’ contributions
Conceptualization, SS, EA; Methodology and Software, SS, FF; Validation and Formal Analysis, SS, FF; Data curation SS, FF; 
Writing: Original Draft, SS, FF; Reviewing and editing, SS, EA, FF, AW; Visualization SS; Supervision SS, EA; Project Adminis-
tration, AW, EA; Funding Acquisition, AW, EA. All authors read and approved the final manuscript.

Funding
This research was conducted within the project INBioPharm of the Center for Digital Life Norway (Research Council of 
Norway grant #248885), with additional support of SINTEF internal funding.

Availability of data and materials
The BiGMeC pipeline and the data analysed/generated during the current study is available at https://​github.​com/​Almaa​
sLab/​BiGMeC. We have also deposited the latest version of the repository to Zenodo (https://​doi.​org/​10.​5281/​zenodo.​
44346​67) to ensure persistent access.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem 
Sælands vei 8, 7034 Trondheim, Norway. 2 Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard 
Birkelands vei 3, 7034 Trondheim, Norway. 3 K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University 
of Science and Technology, Håkon Jarls gate 11, 7030 Trondheim, Norway. 

Received: 26 November 2020   Accepted: 18 January 2021

References
	1.	 Clardy J, Fischbach MA, Walsh CT. New antibiotics from bacterial natural products. Nat Biotechnol. 

2006;24(12):1541–50.
	2.	 Demain AL, Sanchez S. Microbial drug discovery: 80 years of progress. J Antibiot. 2009;62(1):5–16.
	3.	 Cantrell CL, Dayan FE, Duke SO. Natural products as sources for new pesticides. J Nat Prod. 2012;75(6):1231–42.
	4.	 Rokas A, Mead ME, Steenwyk JL, Raja HA, Oberlies NH. Biosynthetic gene clusters and the evolution of fungal 

chemodiversity. Nat Prod Rep. 2020;37:868–78.
	5.	 Cimermancic P, Medema MH, Claesen J, Kurita K, Brown LCW, Mavrommatis K, Pati A, Godfrey PA, Koehrsen M, Clardy 

J, et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell. 
2014;158(2):412–21.

	6.	 Bentley SD, Chater KF, Cerdeño-Tárraga A-M, Challis GL, Thomson N, James KD, Harris DE, Quail MA, Kieser H, 
Harper D, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor a3 (2). Nature. 
2002;417(6885):141–7.

	7.	 Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Ōmura S. Complete genome 
sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol. 
2003;21(5):526–31.

	8.	 Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. 
Nat Rev Drug Discov. 2015;14(2):111–29.

	9.	 Xu M, Wright GD. Heterologous expression-facilitated natural products’ discovery in actinomycetes. J Ind Microbiol 
Biotechnol. 2019;46(3–4):415–31.

	10.	 Myronovskyi M, Luzhetskyy A. Heterologous production of small molecules in the optimized Streptomyces hosts. 
Nat Prod Rep. 2019;36(9):1281–94.

	11.	 Kim HU, Blin K, Lee SY, Weber T. Recent development of computational resources for new antibiotics discovery. Curr 
Opin Microbiol. 2017;39:113–20.

	12.	 Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T. Antismash 5.0: updates to the second-
ary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47(W1):81–7.

	13.	 Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic 
pathways. Nat Prod Rep. 2019;36(10):1412–36.

	14.	 Sekurova ON, Schneider O, Zotchev SB. Novel bioactive natural products from bacteria via bioprospecting, genome 
mining and metabolic engineering. Microb biotechnol. 2019;12(5):828–44.

	15.	 Nah H-J, Pyeon H-R, Kang S-H, Choi S-S, Kim E-S. Cloning and heterologous expression of a large-sized natural 
product biosynthetic gene cluster in Streptomyces species. Front Microbiol. 2017;8:394.

	16.	 Sulheim S, Kumelj T, van Dissel D, Salehzadeh-Yazdi A, Du C, van Wezel GP, Nieselt K, Almaas E, Wentzel A, Kerkhoven 
EJ. Enzyme-constrained models and omics analysis of Streptomyces coelicolor reveal metabolic changes that 
enhance heterologous production. iScience. 2020;23(9):101525.

	17.	 Ke J, Yoshikuni Y. Multi-chassis engineering for heterologous production of microbial natural products. Curr Opin 
Biotechnol. 2020;62:88–97.

https://github.com/AlmaasLab/BiGMeC
https://github.com/AlmaasLab/BiGMeC
https://doi.org/10.5281/zenodo.4434667
https://doi.org/10.5281/zenodo.4434667


Page 14 of 15Sulheim et al. BMC Bioinformatics           (2021) 22:81 

	18.	 Famili I, Förster J, Nielsen J, Palsson BO. Saccharomyces cerevisiae phenotypes can be predicted by using constraint-
based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci. 2003;100(23):13134–9.

	19.	 Gu C, Kim GB, Kim WJ, Kim HU, Lee SY. Current status and applications of genome-scale metabolic models. Genome 
Biol. 2019;20(1):121.

	20.	 Mohite OS, Weber T, Kim HU, Lee SY. Genome-scale metabolic reconstruction of actinomycetes for antibiotics 
production. Biotechnol J. 2019;14(1):1800377.

	21.	 Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, Clément C, Ouhdouch Y, van Wezel GP. Tax-
onomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev. 2016;80(1):1–43.

	22.	 Wang H, Marcišauskas S, Sánchez BJ, Domenzain I, Hermansson D, Agren R, Nielsen J, Kerkhoven EJ. Raven 2.0: a 
versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Comput 
Biol. 2018;14(10):1006541.

	23.	 Borodina I, Siebring J, Zhang J, Smith CP, van Keulen G, Dijkhuizen L, Nielsen J. Antibiotic overproduction in Strepto-
myces coelicolor a3 (2) mediated by phosphofructokinase deletion. J Biol Chem. 2008;283(37):25186–99.

	24.	 Huang D, Li S, Xia M, Wen J, Jia X. Genome-scale metabolic network guided engineering of Streptomyces tsukubae-
nsis for fk506 production improvement. Microb Cell Factories. 2013;12(1):1–18.

	25.	 Kumelj T, Sulheim S, Wentzel A, Almaas E. Predicting strain engineering strategies using iks1317: a genome-scale 
metabolic model of Streptomyces coelicolor. Biotechnol J. 2019;14(4):1800180.

	26.	 Doroghazi JR, Metcalf WW. Comparative genomics of actinomycetes with a focus on natural product biosynthetic 
genes. BMC Genom. 2013;14(1):611.

	27.	 Masschelein J, Jenner M, Challis GL. Antibiotics from gram-negative bacteria: a comprehensive overview and 
selected biosynthetic highlights. Nat Prod Rep. 2017;34(7):712–83.

	28.	 Bozhüyük KA, Micklefield J, Wilkinson B. Engineering enzymatic assembly lines to produce new antibiotics. Curr 
Opin Microbiol. 2019;51:88–96.

	29.	 Cane DE, Walsh CT, Khosla C. Harnessing the biosynthetic code: combinations, permutations, and mutations. Sci-
ence. 1998;282(5386):63–8.

	30.	 Challis GL, Naismith JH. Structural aspects of non-ribosomal peptide biosynthesis. Curr Opin Struct Biol. 
2004;14(6):748–56.

	31.	 Fischbach MA, Walsh CT. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, 
machinery, and mechanisms. Chem Rev. 2006;106(8):3468–96.

	32.	 Helfrich EJ, Piel J. Biosynthesis of polyketides by trans-at polyketide synthases. Nat Prod Rep. 2016;33(2):231–316.
	33.	 Keatinge-Clay AT. The structures of type i polyketide synthases. Nat Prod Rep. 2012;29(10):1050–73.
	34.	 Mootz HD, Schwarzer D, Marahiel MA. Ways of assembling complex natural products on modular nonribosomal 

peptide synthetases. ChemBioChem. 2002;3(6):490–504.
	35.	 Fisch KM. Biosynthesis of natural products by microbial iterative hybrid pks-nrps. RSC Adv. 2013;3(40):18228–47.
	36.	 Herbst DA, Townsend CA, Maier T. The architectures of iterative type i pks and fas. Nat Prod Rep. 

2018;35(10):1046–69.
	37.	 Kautsar SA, Blin K, Shaw S, Navarro-Muñoz JC, Terlouw BR, van der Hooft JJ, Van Santen JA, Tracanna V, Suarez Duran 

HG, Pascal Andreu V, et al. Mibig 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids 
Res. 2020;48(D1):454–8.

	38.	 Zhang JJ, Tang X, Moore BS. Genetic platforms for heterologous expression of microbial natural products. Nat Prod 
Rep. 2019;36(9):1313–32 (Publisher: The Royal Society of Chemistry).

	39.	 Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. Cobrapy: constraints-based reconstruction and analysis for python. 
BMC Syst Biol. 2013;7(1):74.

	40.	 Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, Haraldsdóttir HS, Wachowiak J, Keating SM, Vlasov 
V, et al. Creation and analysis of biochemical constraint-based models using the cobra toolbox v. 3.0. Nat Protoc. 
2019;14(3):639–702.

	41.	 Matilla MA, Stöckmann H, Leeper FJ, Salmond GP. Bacterial biosynthetic gene clusters encoding the anti-cancer 
haterumalide class of molecules biogenesis of the broad spectrum antifungal and anti-oomycete compound, 
oocydin A. J Biol Chem. 2012;287(46):39125–38.

	42.	 Blin K, Kim HU, Medema MH, Weber T. Recent development of antismash and other computational approaches to 
mine secondary metabolite biosynthetic gene clusters. Brief Bioinform. 2019;20(4):1103–13.

	43.	 Medema MH, Fischbach MA. Computational approaches to natural product discovery. Nat Chem Biol. 
2015;11(9):639.

	44.	 Helfrich EJ, Ueoka R, Dolev A, Rust M, Meoded RA, Bhushan A, Califano G, Costa R, Gugger M, Steinbeck C, 
et al. Automated structure prediction of trans-acyltransferase polyketide synthase products. Nat Chem Biol. 
2019;15(8):813–21.

	45.	 Kjærbølling I, Mortensen UH, Vesth T, Andersen MR. Strategies to establish the link between biosynthetic gene 
clusters and secondary metabolites. Fungal Genet Biol. 2019;130:107–21.

	46.	 Wang B, Guo F, Huang C, Zhao H. Unraveling the iterative type i polyketide synthases hidden in streptomyces. Proc 
Natl Acad Sci. 2020;117(15):8449–54.

	47.	 Kloosterman AM, Cimermancic P, Elsayed SS, Du C, Hadjithomas M, Donia MS, Fischbach MA, van Wezel GP, Medema 
MH. Expansion of RIPP biosynthetic space through integration of pan-genomics and machine learning uncovers a 
novel class of lantibiotics. PLoS Biol. 2020;18(12):3001026.

	48.	 Kautsar SA, Suarez Duran HG, Blin K, Osbourn A, Medema MH. Plantismash: automated identification, annotation 
and expression analysis of plant biosynthetic gene clusters. Nucleic Acids Res. 2017;45(W1):55–63.

	49.	 Li YF, Tsai KJ, Harvey CJ, Li JJ, Ary BE, Berlew EE, Boehman BL, Findley DM, Friant AG, Gardner CA, et al. Comprehen-
sive curation and analysis of fungal biosynthetic gene clusters of published natural products. Fungal Genet Biol. 
2016;89:18–28.

	50.	 Nützmann H-W, Huang A, Osbourn A. Plant metabolic clusters-from genetics to genomics. New Phytologist. 
2016;211(3):771–89.

	51.	 Duboc P, Mollet B. Applications of exopolysaccharides in the dairy industry. Int Dairy J. 2001;11(9):759–68.



Page 15 of 15Sulheim et al. BMC Bioinformatics           (2021) 22:81 	

	52.	 Moscovici M. Present and future medical applications of microbial exopolysaccharides. Front Microbiol. 2015;6:1012.
	53.	 Skinnider MA, Merwin NJ, Johnston CW, Magarvey NA. Prism 3: expanded prediction of natural product chemical 

structures from microbial genomes. Nucleic Acids Res. 2017;45(W1):49–54.
	54.	 Mendoza SN, Olivier BG, Molenaar D, Teusink B. A systematic assessment of current genome-scale metabolic recon-

struction tools. Genome Biol. 2019;20(1):1–20.
	55.	 Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R. Ant-

ismash: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial 
and fungal genome sequences. Nucleic Acids Res. 2011;39(suppl–2):339–46.

	56.	 Floss HG, Yu T-W, Arakawa K. The biosynthesis of 3-amino-5-hydroxybenzoic acid (ahba), the precursor of mc 7 n 
units in ansamycin and mitomycin antibiotics: a review. J Antibiot. 2011;64(1):35–44.

	57.	 Fritzler JM, Zhu G. Functional characterization of the acyl-[acyl carrier protein] ligase in the cryptosporidium parvum 
giant polyketide synthase. Int J Parasitol. 2007;37(3–4):307–16.

	58.	 Zhang F, He H-Y, Tang M-C, Tang Y-M, Zhou Q, Tang G-L. Cloning and elucidation of the fr901464 gene cluster 
revealing a complex acyltransferase-less polyketide synthase using glycerate as starter units. J Am Chem Soc. 
2011;133(8):2452–62.

	59.	 Gu L, Geders TW, Wang B, Gerwick WH, Håkansson K, Smith JL, Sherman DH. Gnat-like strategy for polyketide chain 
initiation. Science. 2007;318(5852):970–4.

	60.	 Chan YA, Podevels AM, Kevany BM, Thomas MG. Biosynthesis of polyketide synthase extender units. Nat Prod Rep. 
2009;26(1):90–114.

	61.	 Kraas FI, Helmetag V, Wittmann M, Strieker M, Marahiel MA. Functional dissection of surfactin synthetase initiation 
module reveals insights into the mechanism of lipoinitiation. Chem Biol. 2010;17(8):872–80.

	62.	 Scherlach K, Lackner G, Graupner K, Pidot S, Bretschneider T, Hertweck C. Biosynthesis and mass spectrometric 
imaging of tolaasin, the virulence factor of brown blotch mushroom disease. ChemBioChem. 2013;14(18):2439–43.

	63.	 Steller S, Sokoll A, Wilde C, Bernhard F, Franke P, Vater J. Initiation of surfactin biosynthesis and the role of the srfd-
thioesterase protein. Biochemistry. 2004;43(35):11331–43.

	64.	 Zhang W, Fortman JL, Carlson JC, Yan J, Liu Y, Bai F, Guan W, Jia J, Matainaho T, Sherman DH, et al. Characterization of 
the bafilomycin biosynthetic gene cluster from streptomyces lohii. Chembiochem Eur J Chem Biol. 2013;14(3):301.

	65.	 Nara A, Hashimoto T, Komatsu M, Nishiyama M, Kuzuyama T, Ikeda H. Characterization of bafilomycin biosynthesis 
in kitasatospora setae km-6054 and comparative analysis of gene clusters in actinomycetales microorganisms. J 
Antibiot. 2017;70(5):616–24.

	66.	 Li Z, Du L, Zhang W, Zhang X, Jiang Y, Liu K, Men P, Xu H, Fortman JL, Sherman DH, et al. Complete elucidation of the 
late steps of bafilomycin biosynthesis in streptomyces lohii. J Biol Chem. 2017;292(17):7095–104.

	67.	 Patel K, Piagentini M, Rascher A, Tian Z-Q, Buchanan GO, Regentin R, Hu Z, Hutchinson C, McDaniel R. Engineered 
biosynthesis of geldanamycin analogs for hsp90 inhibition. Chem Biol. 2004;11(12):1625–33.

	68.	 Rascher A, Hu Z, Viswanathan N, Schirmer A, Reid R, Nierman WC, Lewis M, Hutchinson CR. Cloning and characteri-
zation of a gene cluster for geldanamycin production in streptomyces hygroscopicus nrrl 3602. FEMS Microbiol Lett. 
2003;218(2):223–30.

	69.	 Rascher A, Hu Z, Buchanan GO, Reid R, Hutchinson CR. Insights into the biosynthesis of the benzoquinone 
ansamycins geldanamycin and herbimycin, obtained by gene sequencing and disruption. Appl Environ Microbiol. 
2005;71(8):4862–71.

	70.	 Chen X-H, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter AW, et al. 
Structural and functional characterization of three polyketide synthase gene clusters in bacillus amyloliquefaciens 
fzb 42. J Bacteriol. 2006;188(11):4024–36.

	71.	 Piel J. Biosynthesis of polyketides by trans-at polyketide synthases. Nat Prod Rep. 2010;27(7):996–1047.
	72.	 Zhao C, Ju J, Christenson SD, Smith WC, Song D, Zhou X, Shen B, Deng Z. Utilization of the methoxymalonyl-acyl 

carrier protein biosynthesis locus for cloning the oxazolomycin biosynthetic gene cluster from streptomyces albus 
ja3453. J Bacteriol. 2006;188(11):4142–7.

	73.	 Kopp M, Irschik H, Gemperlein K, Buntin K, Meiser P, Weissman KJ, Bode HB, Müller R. Insights into the complex 
biosynthesis of the leupyrrins in sorangium cellulosum so ce690. Mol BioSyst. 2011;7(5):1549–63.

	74.	 Rouhiainen L, Jokela J, Fewer DP, Urmann M, Sivonen K. Two alternative starter modules for the non-ribosomal 
biosynthesis of specific anabaenopeptin variants in anabaena (cyanobacteria). Chem Biol. 2010;17(3):265–73.

	75.	 Fell DA, Small JR. Fat synthesis in adipose tissue. an examination of stoichiometric constraints. Biochem J. 
1986;238(3):781–6.

	76.	 Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol. 2010;28(3):245–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Automatic reconstruction of metabolic pathways from identified biosynthetic gene clusters
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Results
	Discussion
	Conclusion
	Materials and methods
	Software implementation
	Evaluation of the BiGMeC pipeline
	Large-scale reconstruction of BGC pathways

	Acknowledgements
	References


