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ABSTRACT
Vortex interactions behind step cylinders with diameter ratio 2 ≤ D/d ≤ 3 at Reynolds number (ReD) 150 were investigated by directly solving
the three-dimensional Navier–Stokes equations. In accordance with the previous paper [C. Tian et al., “Vortex dislocation mechanisms in the
near wake of a step cylinder,” J. Fluid Mech. 891, A24 (2020)], some interesting characteristics of vortex dislocations, e.g., two phase difference
accumulation mechanisms, the trigger and threshold values of vortex dislocations, antisymmetric vortex interactions, and long N-cell cycles,
were observed. By performing a detailed investigation of diameter ratio effects, more features of vortex dynamics were discovered. In addition
to the known antisymmetric vortex interactions, a symmetric vortex interaction between neighboring N-cell cycles was observed. The long-
time observations revealed an interruption of these two types of vortex interactions. By using a well-validated phase tracking method, we
monitored the time trace of the phase difference accumulation process in different D/d cases from which decreasing (known) and increasing
(new) phase difference tendencies were identified. Both caused the interruption of continuous symmetric or antisymmetric phenomena but
through two distinct mechanisms. Meanwhile, the diameter ratio effects on the trigger and threshold values were discussed. Additionally,
the likelihood of antisymmetric or symmetric vortex interactions and increasing or decreasing phase difference tendencies was analyzed.
Moreover, diameter ratio effects on shedding frequencies and the extensions of three main vortex cells, i.e., S-, N-, and L-cell vortices, were
described.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0015378., s

I. INTRODUCTION

In recent years, fluid flow around a step cylinder configuration,
as shown in Fig. 1, has been the focus of many studies. Flow past
structures with a similar shape occurs in many engineering appli-
cations, for example, the outer wall of TV-towers, the underwater
hull of a SPAR-buoy, and the supporting structures for fixed and
floating offshore wind turbines. For a sufficiently long single step
cylinder, there are mainly two important parameters, i.e., the diam-
eter ratio (D/d) and the Reynolds number (ReD). D/d is the diameter
ratio between the large- and small-part of the step cylinder, while
ReD = UD/ν (where ν is the kinematic viscosity of the fluid and U
represents the uniform inflow velocity).

Based on experimental investigations in the wake of a step
cylinder with D/d ≈ 2 at 63 < ReD < 1100, Dunn and Tavoularis1

identified three types of spanwise vortices: (1) S-cell vortex shed

from the small cylinder with the highest shedding frequency f S,
(2) L-cell vortex shed from the large cylinder with shedding fre-
quency f L, and (3) N-cell vortex located between the S- and L-cell
vortices with the lowest shedding frequency f N . Lewis and Gharib2

found that the N-cell vortex (the modulation zone) only exists when
D/d > 1.55, where there is no direct connection between the S- and
L-cell vortices. They called it the indirect mode. Meanwhile, a direct
mode was identified when D/d < 1.25, where the N-cell vortex disap-
pears and the corresponding S- and L-cell vortices directly connect
to each other.

The N-cell vortex has the lowest shedding frequency among
the three dominating vortex cells, i.e., the S-, N-, and L-cell vor-
tices. Similar low-frequency cells were also observed in the wake
behind several other configurations, e.g., the wake behind a free-end
cylinder,3 the wake behind a circular cylinder with flat end-plates,4

and the wake behind a concave curved cylinder.5 The previous
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FIG. 1. A sketch of the step cylinder geometry. The diameters of the small and large
cylinders are d and D, respectively. l is the length of the small cylinder, and L is the
length of the large cylinder. The origin locates at the center of the interface between
the small and large cylinders. The uniform incoming flow U is in the positive
x-direction. The three directions are named streamwise (x-direction), crossflow
(y-direction), and spanwise (z-direction).

studies1,4,6,7 attributed the appearances of such low-frequency cells
(N-cell-like vortex) to 3D effects, which include mainly two mech-
anisms: downwash and increased base pressure. Bearman8 and
Williamson4 found that the increased base pressure has the effect of
increasing the vortex formation region and causes the vortex shed-
ding frequency to decrease. Zdravkovich et al.6 and Williamson4

found that the spanwise velocity (downwash) could not merely
displace the vortex formation region further downstream but also
widen the separated shear layers before they roll up into vortices.
These effects would also decrease the vortex shedding frequency.
For the wake behind the step cylinder, by doing experiments and
numerical simulations, Dunn and Tavoularis1 and Morton et al.7

also concluded that the 3D effect is a plausible explanation of the for-
mation of the N-cell vortex. However, there is no further discussion
about the relative importance of these two 3D effects, i.e., the down-
wash and the increased base pressure. In Sec. III B 1, their relative
importance will be discussed.

Whenever there are several spanwise-oriented vortex cells with
different frequencies, these vortices are either in phase or out of
phase with each other. As they move out of phase, a contorted “tan-
gle” of vortices appears at the boundary between them, which looks
like dislocations that appear in solid materials. Williamson4 defined
this kind of flow phenomenon as vortex dislocation. By doing exper-
iments of flow past a circular cylinder with end-plates at ReD < 200,
Williamson found that the vortex dislocation occurs at the boundary
between the central vortex cell of frequency f u and the single vortex
cell of frequency f l at a beat frequency f u − f l. Between two neigh-
boring vortex dislocations, he proposed to estimate the number of
vortex shedding cycles of the central vortex cell (nu) and the single
vortex cell (nl)4 as

nu = fu/( fu − fl), (1)

nl = nu − 1. (2)

In the wake of a step cylinder, the vortex dislocations between
S-, N-, and L-cell vortices were also the topic of many investi-
gations.1,2,7,9–12 All these studies concluded that the interactions
between the S- and N-cell vortices occur in a narrow S–N cell bound-
ary (the region between the S- and N-cell vortices), which is stable
and deflects spanwise into the large cylinder region. During the dis-
location process, the N-cell vortex splits into at least two filaments.
One of these filaments connects to the subsequent N-cell vortex of
the opposite sign to form a hairpin-like vortex structure. The other
filament connects to the S-cell vortex.1,11–13 Except for the S-cell vor-
tices that connect to the N-cell vortices, the rest of them form S–S
half loops,11 which appear at a beat frequency (f S − f N).

Unlike the S–N cell boundary, the N–L cell boundary (the
region between the N- and L-cell vortices) is relatively wide and
varies with time. Lewis and Gharib2 first observed an inclined inter-
face region (the N–L cell boundary) appearing behind the large
cylinder at beat frequency (f L − f N). Morton and Yarusevych11

explained this phenomenon: as the phase difference between the N-
and L-cell vortices accumulates, accompanying with the appearance
of vortex dislocations between N- and L-cell vortices, the shapes and
lengths of the N-cell vortices and the position of the N–L cell bound-
ary periodically change at the beat frequency (f L − f N). They defined
these cyclic variations as the N-cell cycle.11 More detailed vortex
interactions in the N-cell cycles were investigated by Tian et al.14–17

They observed that in the wake behind a single step cylinder
(D/d = 2) at ReD = 150, there are two NL-loops (NL-loop 1 and NL-
loop 2), one NN-loop and at least one LL-half-loop structure in one
N-cell cycle. The phrase antisymmetric vortex interaction was intro-
duced to describe the phenomenon that the NL-loop structures form
at different sides of the step cylinder in the neighboring N-cell cycles.
Moreover, Tian et al.17 reported that the total phase difference, Φ, is
accumulated by the joint influence of different shedding frequencies
and different convective velocities. This mechanism was described
as

Φ = Φf + Φc, (3)

where Φf and Φc represent the Φ caused by different shedding fre-
quencies and different convective velocities, respectively. By track-
ing the phase information on N- and L-cell vortices, they measured
Φf of every N–L vortex pair,

Φf = φN − φL. (4)

Here, φN and φL represent the phase information on the correspond-
ing N- and L-cell vortices, respectively. By plotting the long-time
trace of the accumulation of Φf , a decreasing tendency of Φf was
observed by Tian et al.,17 which makes the formation position of the
corresponding NL-loop structure move downstream in subsequent
N-cell cycles and finally causes an interruption of the continuous
antisymmetric vortex interactions. An uninterrupted series of anti-
symmetric N-cell cycles was identified as the long N-cell cycle. The
gradual decrease in Φf can be evaluated as

S = α 1
2fL
− β 1

2fN
, (5)

where S (with dimension D/U) is a measure of the phase shift of the
N–L vortex pair in one N-cell cycle, as compared to the correspond-
ing N–L vortex pair in the previous N-cell cycle. In this expression,
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α and β are the number of L- and N-cell vortices in one N-cell
cycle, respectively. Tian et al.17 found that only when Φf becomes
larger than a certain value (referred to as the threshold value), taking
Φc into account, Φ can be sufficiently large (referred to as the trig-
ger value) to induce the vortex dislocation and the formation of the
NL-loops.

In previous papers,1,11,13,18 vortex interactions between S- and
N-cell vortices were described in detail. The primary goal of the
present numerical study is to investigate the effects of the diame-
ter ratio (D/d) on the vortex interactions, especially the vortex dis-
locations between N- and L-cell vortices in the wake behind the
step cylinder. As shown by Morton and Yarusevych,11 when ReD
increases to 300, many small streamwise vortices appear. To prevent
these vortices from disturbing the observations of vortex interac-
tions, we choose to stay at ReD = 150 to demonstrate the detailed
vortex connections more clearly. To achieve this, we analyze the
space and time signals of several flow quantities (velocity, vorticity,
and λ2

19) obtained from a direct numerical simulation (DNS) of flow
past 10 different step cylinders with diameter ratios D/d = 2.0, 2.1,
2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, and 3.0. All these cases share the same
coordinate system, grid resolution, and computational method. By
using a well validated phase difference tracking method,17 the phase
difference accumulation process is further investigated.

All discussions in Secs. II–IV are based on the D/d = 2.0, 2.2,
2.4, 2.6, 2.8, and 3.0 cases. In Sec. II, the flow problem and the
numerical settings are introduced. Then, the wake and the diame-
ter ratio effects on the three main vortex cells, i.e., the S-, N-, and
L-cell vortices, are described in Sec. III. In Sec. IV, the diameter
ratio effects on the vortex dislocations between N- and L-cell vortices
are discussed in detail, and additional characteristics of the vortex
dislocations are revealed. In Sec. V, we analyze the likelihood of dif-
ferent characteristics of vortex dislocations. The D/d = 2.1, 2.3, 2.5,
and 2.7 cases are investigated to further support our discussions and
strengthen our conclusions.

II. FLOW CONFIGURATION AND COMPUTATIONAL
ASPECTS
A. Flow configuration and coordinate system

The step cylinder investigated in the present paper is illustrated
in Fig. 1. The uniform incoming flow U is in the positive x-direction.
In Fig. 2, a side view and a top-down view of the flow domain are
shown. The height of the domain is 45D of which the small and
large cylinders occupy 15D (l) and 30D (L), respectively. The inlet
boundary locates at 10D upstream from the origin, and the outlet
boundary locates at 20D downstream. The width of the domain is
20D. This domain size is comparable to, or exceeds, that used in pre-
vious similar studies.11,15,17 Most of the results in the present paper
are from the six cases D/d = 2.0, 2.2, 2.4, 2.6, 2.8, and 3.0. In order
to keep the Reynolds number of the large cylinder (ReD) at 150 in all
cases, we keep D constant and change d. Boundary conditions used
in the present study are as follows:

● The inlet boundary: uniform velocity profile u = U, v = 0,
and w = 0.

● The outlet boundary: Neumann boundary condition for
velocity components (∂u/∂x = ∂v/∂x = ∂w/∂x = 0) and
constant zero pressure condition.

FIG. 2. Computational domain, origin, and coordinate system are illustrated from
(a) side view and (b) top-down view. The diameter of the large cylinder, D, is the
length unit. The origin is located in the center of the step at the interface between
the small and large cylinders.

● The other four sides of the computational domain: free-slip
boundary conditions for the two vertical sides (v = 0 and
∂u/∂y = ∂w/∂y = 0) and for the two horizontal sides (w = 0
and ∂u/∂z = ∂v/∂z = 0).

● The step cylinder surfaces: no-slip and impermeable wall.

B. Computational method
The three-dimensional time-dependent incompressible Navier–

Stokes equations are directly solved by a well-verified finite-volume
based numerical code MGLET.20 The surface integral of flow vari-
ables over the faces of the discrete volumes is approximated by using
the midpoint rule, which leads to second-order accuracy in space.
The discretized equations are integrated in time with a third-order
explicit low-storage Runge–Kutta scheme.21 A constant time step
Δt is used to ensure a CFL number smaller than 0.65. The pressure
corrections are handled by solving a Poisson equation with Stone’s
implicit procedure (SIP).22 The same code has recently been used to
investigate other flows around three-dimensional bluff bodies, such
as the step cylinder wake,17 the spheroid wake,23 and the curved
cylinder wake.5

In all simulations, an immersed boundary method (IBM) is
used to handle the cylindrical geometry inside the Cartesian grid.
The details of this IBM and its validation can be found in Ref. 24.
The overall properties of the grids for all cases are shown in Table I.
A schematic illustration of the mesh design can be found in Fig. 3 of
Ref. 17. First, the computational domain is divided into equal-sized
cubic Cartesian grid boxes, named the level-1 grid. Each grid box is
further equally divided intoN ×N ×N cubic grid cells. In the regions
where complex flow phenomena take place, e.g., the regions close
to the step cylinder geometry and the regions where vortex disloca-
tions happen, the grid boxes (the level-1 box) are equally split into
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TABLE I. Detailed mesh information. The Reynolds number is ReD = UD/ν = 150.
Mesh A is used in all cases. Mesh B is only used in the D/d = 2.8 case for the grid
convergence test.

Minimum Time Number Number of Total number
grid cell step, of grid grid cells in of grid cells

Mesh size, Δ/D ΔtU/D levels one grid box (million)

A 0.015 0.005 6 24 × 24 × 24 124.1
B 0.012 0.004 6 30 × 30 × 30 243.3

eight smaller cubic grid boxes (the level-2 grid box). There are also
N × N × N cubic grid cells in every level-2 grid box. Therefore, the
grid resolution in the level-2 grid box is two times finer than that in
the level-1 grid box. This refinement-process continuously goes on
until a sufficient grid resolution is reached. More detailed informa-
tion on this local grid refinement method can be found in Ref. 20.

C. Grid convergence
A detailed grid convergence study can be found in our previous

paper,17 which proves that in the D/d = 2.0 case, the minimum grid
cell size Δ/D = 0.015 is fine enough to resolve all physical phenom-
ena of interest to us. We note that Δ is normalized by D, therefore,
close to the small cylinder surface, the grid resolution may be chal-
lenged. As we cover different D/d cases in the present study, the grid
resolution for a small cylinder needs to be addressed. When D/d =
3, the Reynolds number for the small cylinder (Red) is 50, which is
very close to the Re range of the closed wake regime (4–5 ≤ Re ≤ 30–
48). In this Re range, there is no periodic vortex shedding behind the
cylinder. Considering that both the vortex shedding and the abrupt
change in diameter complicate the flow, the major challenge to the
local grid resolution around the small cylinder should appear when
D/d = 2.8 (Red = 53). The grid size in the D/d = 2.8 case is further
refined from Δ/D = 0.015 (mesh A) to 0.012 (mesh B) to check the
grid convergence, as shown in Table I. In Fig. 3(a), the distributions
of time-averaged streamwise velocity along the vertical line AB [as
indicated in Fig. 3(b)] for these two D/d = 2.8 cases are plotted to

FIG. 3. (a) Distributions of time-averaged streamwise velocity u/U along a sam-
pling line AB in the x–z plane at y/D = 0 in the D/d = 2.8 case. Inset: (b) a sketch
of the position of the sampling line AB of length 0.8D at x/D = −0.25 and (c) a
zoomed-in view of the upper part of the curves (black rectangle) in panel (a).

FIG. 4. Time traces of the crossflow velocity v at point (x/D, y/D, z/D) = (1, 0, −6)
in the D/d = 2.8 case by using mesh A and mesh B. T is the period of one N-cell
cycle.

illustrate the flow variation on the “step” in front of the small cylin-
der. As shown in Figs. 3(a) and 3(c), only tiny differences appear
when the grid size is refined. Moreover, Fig. 4 shows the time traces
of the crossflow velocity (v) in the interaction region between the
N- and L-cell vortices where the velocity varies dramatically with
time due to the vortex dislocations. The fluctuations and the mean
values of v from mesh A and mesh B almost coincide. However,
the computational cost of mesh B is significantly higher than that of
mesh A due to the large number of grid cells and smaller time step.
All discussions are therefore based on grid resolution Δ/D = 0.015.
To ensure that the flow is properly developed, all cases were simu-
lated first for at least 300 time units (D/U) and then continued for at
least 2000D/U to collect the statistical data.

III. DIAMETER RATIO EFFECTS ON THE SHEDDING
FREQUENCIES AND THE EXTENSIONS OF VORTEX
CELLS
A. Diameter ratio effects on the S-cell vortex

The diameter ratio D/d dramatically changes the wake and
influences each vortex cell. This is indicated in Fig. 5, where the
approximate extensions of the S-, N-, and L-cell vortices are marked.
From Figs. 5(a)–5(c), one obvious change is the absence of the S-
cell vortices in Fig. 5(c), i.e., the D/d = 3.0 case. As mentioned in
Sec. II, when D/d increases from 2 to 3, the Reynolds number of the
small cylinder (Red) decreases from 75 to 50, which is at the border
between the steady separation regime (4–5 < Re < 30–48) and the
periodic laminar regime27 (30–48 < Re < 180–200). Considering the
disturbance caused by the vortex shedding behind the large cylinder,
we expected vortex shedding to be triggered also behind the small
cylinder. However, no vortex shedding can be observed there. As
shown in the second column in Table II, StS gradually increases as
D/d increases. As a result, there is one more S-cell vortex behind the
small cylinder (D/d = 2.4) in Fig. 5(b) than in the D/d = 2.0 case
in Fig. 5(a). Comparing with the empirical St′S in the sixth column
of Table II, the maximum difference between StS and St′S is only
3.2%. The variation in StS is simply caused by changes in Red, i.e.,
clearly D/d dependent. In Fig. 6, the extensions of the three vor-
tex cells (the S-, N-, and L-cell vortices) are shown. To find it, the
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FIG. 5. Instantaneous isosurface of λ2
= −0.05 at ReD = 150: (a) the D/d = 2.0
case, (b) the D/d = 2.4 case, and (c) the
D/d = 3.0 case. The approximate exten-
sions of the three vortex cells (S-, N-,
and L-cell vortices) and the oblique shed-
ding angle θL of the L-cell vortices are
indicated. The S-cell vortices in (a) and
(b) are labeled by serial numbers. Note:
the S-cell vortices disappear in (c) due
to Red = 50 in the D/d = 3.0 case. λ2
= −0.05 is selected to be consistent with
the value of λ2 used in Refs. 15 and 17.
The choice of the λ2 value affects only
the size of the vortex tubes but not their
number.

TABLE II. Detailed information on the S-, N-, and L-cell vortices in six cases. In the second, third, and fourth columns, Strouhal
numbers of these three dominating vortex cells (StS = f SD/U, StN = f ND/U, and StL = f LD/U) are shown. They are obtained
by means of a discrete Fourier transform (DFT) of continuous velocity data along a vertical sampling line with density 0.2D
parallel to the z-axis at position (x/D, y/D) = (1.6, 0.4), over at least 2000 time units (D/U). In the fifth column, ΔNL is calculated
by (StL − StN )/StL. θL is the oblique shedding angle of the L-cell vortices, as shown in Fig. 5. In the sixth column, the empirical
Strouhal number of the small cylinder (St′S) is calculated as St′S = (0.2663 − 1.019/Red0.5

) × 2 from Ref. 25. By means of
the Williamson and Brown26 correlation, StLθ = (0.2731− 1.1129/Re0.5

D + 0.4821/ReD)× cos(θL), the empirical Strouhal
number of the large cylinder (StLθ) is calculated and shown in the eighth column. Note: the frequency resolution in this table
is between 0.0004U/D and 0.0005U/D. A higher frequency resolution may lead to some minor differences in the characteristic
frequency in this table. These differences are however small and do not affect our discussions and conclusions.

D/d StS StN StL ΔNL (%) St′S θL (deg) StLθ

2.0 0.2895 0.1545 0.1780 13.2 0.2972 16 0.1776
2.2 0.3084 0.1516 0.1775 14.6 0.3142 17 0.1773
2.4 0.3221 0.1501 0.1771 15.2 0.3297 17 0.1773
2.6 0.3350 0.1491 0.1768 15.7 0.3435 18 0.1764
2.8 0.3444 0.1480 0.1765 16.1 0.3558 18 0.1764
3.0 No-shedding 0.1464 0.1761 16.9 . . . 18 0.1764

FIG. 6. Distributions of dimensionless vortex shedding frequency across the span of the step cylinders at ReD = 150, D/d = 2.0, 2.2, 2.4, 2.6, 2.8, and 3.0 cases are plotted
in (a)–(f), respectively. By connecting the lower end of the S- and N-cell regions, and the upper end of L-cells, the trend of extensions of these three vortex cells is illustrated
by a black, a blue and a red dashed line, respectively.
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streamwise velocity spectra for all six cases are calculated along a
vertical sampling line parallel to the z-axis at position (x/D, y/D)
= (1.6, 0.4). More detailed information about streamwise velocity
spectra is shown in Figs. 16–21 in Appendix A. For a given span-
wise position, only the spectral peaks with the energy accounting for
at least 4% of the total energy in the spectra at this spanwise posi-
tion are taken into consideration. In Fig. 7 of Ref. 11, the authors
used a similar method to identify different vortex cell regions. In
Figs. 6(a)–6(e), by connecting the lower end of the S-cell extension,
a black dashed curve is plotted to illustrate the variation of the S-cell
regions. Except for a very small decrease in Fig. 6(a), i.e., the D/d
= 2 case, no obvious change can be observed when D/d increases
from 2 [Fig. 6(a)] to 2.8 [Fig. 6(e)]. Generally, in the present low-
Reynolds-number step cylinder wakes, the flow behind the small
cylinder is seldomly influenced by the abruptly changed diameter
at the step position when 2 < D/d < 3. This agrees well with previous
studies.1,9,17,28

B. Diameter ratio effects on the N- and L-cell vortices
1. Formation of the N-cell vortex

For the N- and L-cell vortices, the D/d effects are more com-
plicated. Table II and Fig. 5 show that both their shedding frequen-
cies and extensions are influenced. Before taking further steps, we
would like to revisit a basic question, i.e., what causes the N-cell vor-
tex. As mentioned in Sec. I, the previous studies1,11 attributed the
appearance of the N-cell vortex to a combination of two 3D effects:
downwash and increased base pressure. Both these two 3D effects
can increase the vortex formation region and cause the vortex shed-
ding frequency to decrease.4,6,8 Instead of following the previous
studies to further discuss the N-cell vortex formation mechanism,
the relative importance of these two 3D effects is discussed in the
following.

In Figs. 7(a) and 7(b), the distributions of time-averaged span-
wise velocity −w/U and the time-averaged base pressure coefficient
Cpb are plotted, respectively. By checking the lower end of N-cell
extensions in Fig. 6 (blue dashed line), black circles are added to
Fig. 7 to illustrate the end position of the N-cell vortex region. Gen-
erally, the results agree well with previous investigations.1,4,6,7 Clear
spanwise velocity (downwash) −w/U and increased base pressure
Cpb can be observed in the N-cell region (the part of the curves at the
right side of the black circles). As D/d increases, this becomes even
more obvious. If −w/U is assumed to be the key factor that causes
the formation of the N-cell vortex, some paradoxical observations
arise. For example, by looking at the distribution of −w/U in the
D/d = 2.0 case, i.e., the solid blue line in Fig. 7(a), one can see that
−w/U in the L-cell region (z/D < −10) is even larger than that in a
part of the N-cell vortex area (−6.4 < z/D < −6). In other words, if
we assume that it is the strong −w/U that induces the formation of
the N-cell vortex, the N-cell vortex should extend to the area z/D <
−10, instead of ending at z/D = −6.4 in the D/d = 2.0 case. A simi-
lar paradox also appears in the D/d = 2.2, 2.4, and 2.6 cases. On the
other hand, as shown in Fig. 7(b), Cpb in the N-cell region is larger
than that outside of the N-cell region for all six cases. In the region
z/D < −10, Cpb of the six cases approximately converges to a value
around −0.8. In the N-cell region, Cpb is obviously larger than this.
In our opinion, the appearance of the N-cell vortex can be the joint

FIG. 7. (a) Time-averaged spanwise velocity −w/U along a spanwise sampling
line at (x/D, y/D) = (1, 0) in the large cylinder region and (b) time-averaged base
pressure coefficient Cpb measured by Cpb = (Pb − P0)/(0.5ρU2

), where P0

is the pressure at the inlet boundary and Pb is the time-averaged pressure along
a sampling line at (x/D, y/D) = (0.53, 0) in the large cylinder region. [Note: Due
to the way a curved surface is interpreted in the IBM, completely smooth surface
pressure distributions are hardly obtained. Pb is obtained at (x/D, y/D) = (0.53, 0),
instead of at (x/D, y/D) = (0.5, 0). The distance h = 0.03D is selected because it is
slightly larger than the smallest cell’s diagonal (

√

3Δ < h = 0.03D < 1.5
√

3Δ,
where Δ = 0.015D) such that we safely avoid wiggles possibly caused by cells
directly cut by the cylinder surface and still stay as close as possible to the surface.]
The values of −w/U and Cpb in the L-cell region (z/D = −16) are shown in the
ninth and tenth columns in Table IV.

influence of both the spanwise velocity −w/U and the increased base
pressure Cpb (the 3D effects). The increased Cpb, however, plays a
major role.

2. Spanwise extensions and shedding frequencies
of the N- and L-cell vortices

In Figs. 6(a)–6(e), one can clearly observe two transition
regions along the span of the step cylinder: (i) the S–N transition
region where both the S- and N-cell vortices may coexist and (ii)
the N–L transition region where both the N- and L-cell vortices
may coexist. The spanwise ranges of these two transition regions are
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TABLE III. Spanwise range of the S–N and N–L transition regions.

D/d S–N transition region N–L transition region

2.0 −0.8 ≤ z/D ≤ 0.2 −6.4 ≤ z/D ≤−3.0
2.2 −1.0 ≤ z/D ≤ 0 −7.0 ≤ z/D ≤−3.4
2.4 −1.0 ≤ z/D ≤ 0 −7.6 ≤ z/D ≤−3.8
2.6 −1.0 ≤ z/D ≤ 0 −8.0 ≤ z/D ≤−4.0
2.8 −1.0 ≤ z/D ≤ 0.2 −8.6 ≤ z/D ≤−4.6
3.0 . . . −9.2 ≤ z/D ≤−5.4

shown in Table III. In agreement with previous observations,1,2,11 the
spanwise length of the S–N transition region is significantly smaller
than that of the N–L transition region. In Fig. 7 of Ref. 11, Mor-
ton and Yarusevych showed that both the S–N and N–L transition
regions keep constant, when ReD increases from 150 to 300 in the
D/d = 2.0 case. In the present paper, we define the center posi-
tion of the transition region as its location. Table III shows that at
ReD = 150, the changed diameter ratios (2 ≤ D/d ≤ 3) have a limited
effect on the S–N transition region. The position of the S–N transi-
tion region shifts 0.2D to the small cylinder side in the D/d = 2.0 case,
and the spanwise length of the S–N transition region decreases from
1D to 0.8D in the D/d = 2.8 case. Considering that the frequency
analysis is based on data obtained from a sampling line with den-
sity (0.2D) in the spanwise (z) direction, these fluctuations in the
S–N transition region can be neglected. On the other hand, the vari-
ation in the N–L transition region is obvious. When D/d increases
from 2 to 3 [Figs. 6(a)–6(f)], except for a tiny decrease in the
D/d = 3 case, the spanwise length of the N–L transition region grad-
ually increases from 3.4D to 4D. Meanwhile, the position of the N–L
transition region continuously moves to the large cylinder side from
z/D =−4.6D to−7.3D. As a result, at the large cylinder side, the span-
wise extension of the N-cell vortex increases, whereas the spanwise
extension of the L-cell vortex decreases. According to discussions
in Sec. III B 1, this can be caused by the increased strength and the
increased impact area of the 3D effects (i.e., downwash and increased
base pressure), as shown in Fig. 7. As the N-cell region continuously
expands to the large cylinder side, shrinking of the L-cell region
subsequently appears.

The shedding frequencies of both N- and L-cell vortices are
affected by the joint influences of the spanwise velocity and the

increased Cpb. As mentioned in Sec. I, both the increased Cpb and
−w/U can reduce the shedding frequency of the affected vortex.
By combining information from Table II and Fig. 7, it is clear that
as the base pressure and the strength of the spanwise velocity in
the N-cell region increase from the D/d = 2.0 to the D/d = 3.0
case, the corresponding StN continues to decrease from 0.1545 to
0.1464, a drop of 5.2%. Meanwhile, StL only drops 1.1%, i.e., from StL
= 0.1780 in the D/d = 2.0 case to StL = 0.1761 in the D/d = 3.0 case.
This is because the N-cell region is closer to the step position than
the L-cell region is, which makes Cpb and −w/U in the N-cell region
more sensitive to the varying D/d. In Fig. 7 and Table IV, when
D/d increases from 2 to 3, Cpb increases around 10% in the N-cell
region but only 2% in the L-cell region. Similarly, −w/U in the N-
cell region doubles from the D/d = 2.0 to D/d = 3.0 case. In the L-cell
region, however, the increment is only 15%. The different decline
rates of StN and StL make their difference (ΔNL) increase from 13.2%
to 16.8%, as seen in the fifth column in Table II. We may speculate
that ΔNL will continue to increase if D/d is further increased. For
fixed D and ReD, the maximum ΔNL can be obtained when D/d tends
to infinite, i.e., the free end circular cylinder case. In support of this
speculation, Ayoub and Karamcheti3 reported a 23% frequency drop
from the main cell to the end cell of a circular cylinder with one free
end, which is substantially larger than that in the present study.

IV. INTERACTIONS BETWEEN THE N- AND L-CELL
VORTICES
A. Variation in phase difference between N- and L-cell
vortices

The gradual decrease in phase difference S [Eq. (5)] is an impor-
tant quantity to characterize vortex dislocations, as discussed in
Sec. I. A positive S value and a subsequent decreasing tendency in
the time trace of the phase difference were observed in the D/d
= 2.0 and 2.4 cases.16,17 We hypothesized that an increasing tendency
may also exist. This is confirmed through more detailed parameter
studies in the present paper.

By using the same phase-tracking method introduced by Tian
et al.,17 the time traces of Φf between the corresponding N- and L-
cell vortices in all six D/d cases are illustrated in Fig. 8. We use green
and red circles to indicate Φf of the N–L vortex pairs whose dis-
locations eventually cause NL-loop 1 and NL-loop 2, respectively.
The trends of these two kinds of circles are illustrated by two solid

TABLE IV. Detailed information on vortex dislocations in the six present D/d cases. The number of N- and L-cell vortices in
one N-cell cycle is β and α, respectively. The variation rate of phase difference (S) is calculated by Eq. (4). In the last two
columns, −w/U and Cpb are obtained from Fig. 7 at z/D = −16.

Symmetry or Threshold Trigger
D/d β α antisymmetry SU/D Tendency of Φf value value −w/U Cpb

2.0 13 15 Antisymmetry 0.064 Decrease 4.3 5.5 0.1422 −0.8018
2.2 12 14 Symmetry −0.153 Increase 4.2 5.5 0.1477 −0.7992
2.4 11 13 Antisymmetry 0.094 Decrease 4.1 5.4 0.1511 −0.7974
2.6 11 13 Antisymmetry −0.104 Increase 3.6 5.5 0.1531 −0.7958
2.8 10 12 Symmetry 0.229 Decrease 3.2 5.5 0.1563 −0.7932
3.0 10 12 Symmetry −0.059 Increase 3.0 5.5 0.1611 −0.7888
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lines with the corresponding colors. Distinct decreasing and increas-
ing tendencies of Φf can be seen in the left and right parts of
Fig. 8, respectively. Moreover, the relation between S and the cor-
responding tendency of Φf is shown in Table IV, which makes it
convincing to conclude that the variation tendency of Φf is directly

associated with the sign of S. This relationship can be explained by
some mathematical derivations. Let us assume that the number of
N- and L-cell vortices is β and α in one N-cell cycle. The phase
shift (ΔΦf ) between the N–L vortex pairs with the same serial num-
ber (e.g., k) in two randomly given neighboring N-cell cycles can be

FIG. 8. Time trace of Φf between the corresponding N-cell and L-cell vortices in several long N-cell cycles. Results at (a) D/d = 2.0, (b) D/d = 2.2, (c) D/d = 2.4, (d) D/d = 2.6,
(e) D/d = 2.8, and (f) D/d = 3.0. In (a), the time t is set to t = t∗ − 2378.1D/U, where t∗ is the actual time in the simulation. In (b)–(f), t = t∗ − 300D/U. The long N-cell cycles
are marked by “LNC” with a serial number. The circles represent the Φf between a N-cell vortex and its counterpart L-cell vortex. The green, red, purple, and pink circles
indicate the Φf , which eventually causes the formation of NL-loop 1, NL-loop 2, NL-loop 3, and NL-loop 4, respectively. Detailed discussions about different NL-loops are
given in Sec. IV C. In (b), the red and green circles in the LNC1 and LNC2 are marked by “R” and “G” with its serial number. (All the detailed data about the Φf are included
in the supplementary material.) By considering all the highest red points and all the lowest green points, the trigger value and the threshold value are marked by the blue and
yellow horizontal lines, respectively. The same method is also used in Fig. 13 of Ref. 17.
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measured,

ΔΦf = Φf(i+1,k) −Φf(i,k) , (6)

where Φf(i+1,k) and Φf(i,k) represent the phase difference of the kth
N–L vortex pair in the (i + 1)th and ith N-cell cycles, respectively.
According to Eq. (4), we can obtain

Φf(i,k) = φNk+(i−1)β − φLk+(i−1)α (7)

and reformulate Eq. (6) as

ΔΦf = (φNk+iβ − φLk+iα) − (φNk+(i−1)β − φLk+(i−1)α)
= (φNk+iβ − φNk+(i−1)β) − (φLk+iα − φLk+(i−1)α). (8)

Because the N- and L-cell vortices are spanwise vortices with domi-
nating shedding frequencies, we can obtain

φNk+iβ − φNk+(i−1)β = β
1

2fN
, (9)

φLk+iα − φLk+(i−1)α = α
1

2fL
. (10)

Based on Eqs. (5) and (8)–(10), the phase shift between the kth N–L
vortex pair in neighboring N-cell cycles can be measured as

ΔΦf = β 1
2fN
− α 1

2fL
= −S. (11)

One can easily see that positive S causes a decreasing Φf tendency
and negative S causes an increasing Φf tendency. This is the first
time such a relationship is revealed.

By using the same method as described in Sec. 4 of Ref. 17, Fig. 9
illustrates the relations between Φf and formation positions of the
corresponding NL-loop 1 structures during a long N-cell cycle in all
six cases. No matter the tendency of Φf is increasing or decreasing,
in a specific D/d case, the smaller the Φf is, the more downstream
the formation position of NL-loop 1 moves. This observation fur-
ther supplements and validates the relation between Φf and the
formation position of NL-loop 1,17 as mentioned in Sec. I.

FIG. 9. Relation between Φf and the formation position (x/D) of the corresponding
NL-loop 1 structures in a long N-cell cycle. Details of the formation position of NL-
loop 1 in the D/d = 2.2 and 2.4 cases are shown in Figs. 13 and 14, respectively.
Other cases are shown in Figs. 22-25 in Appendix B. Information on Φf is included
in the supplementary material.

B. D/d influences on the trigger and threshold values
of vortex dislocations

The trigger value and the threshold value, as first defined by
Tian et al.,17 are important quantities in a vortex dislocation process.
They determine when a vortex dislocation eventually takes place.
When Φ is larger than the trigger value, i.e., the corresponding Φf
is larger than the threshold value, vortex dislocations will appear. In
the present paper, based on the investigations of the six D/d cases,
additional features of the trigger value and the threshold value are
discovered.

In Figs. 8(a)–8(f), the trigger value and the threshold value
are obtained and shown by the horizontal blue and yellow lines,
respectively. Their specific values are listed in Table IV. One can
see that although D/d varies, all the six cases approximately share
the same trigger value 5.5D/U. This observation is consistent with
McClure et al.13 in which the authors found that the vortex disloca-
tion happens as vortex filaments approach 2π phase misalignment.
The authors assumed that when two neighboring vortex cells simul-
taneously shed from the shear layer, they have zero phase differ-
ence. However, when the slower shedding vortex sheds one shedding
period behind the faster shedding vortex cell, the phase difference
between them is 2π. In the present paper, a 2π phase difference is
equal to 1/(StL) ≈ 5.5. In our opinion, this is because the correspond-
ing N- and L-cell vortices are adjacent spanwise vortices on the same
side of the step cylinder. When Φf of a N–L vortex pair exceeds one
shedding period of the L-cell vortex, the shear layer of the next L-cell
vortex on the other side of the step cylinder will cut down this L-cell
vortex and induce a vortex dislocation. Furthermore, the number of
the N-cell vortices (β) in one N-cell cycle can be measured as

β = nint(2
1
StL
/( 1

StN
− 1
StL
) = nint( 2StN

(StL − StN)), (12)

where 1/StL is the trigger value (the upper limit of Φf ), 1/StN −
1/StL is the accumulating speed of the Φf , and nint means rounding
to the closest integer. Essentially, the only difference between
Eqs. (12) and Eq. (1) from Williamson’s work4 is the factor of “2,”
which is included here to emphasize the importance of counting vor-
tices from the −Y and +Y side independently. Otherwise, it is easy
to overlook the antisymmetric vortex interactions. For the same rea-
son, instead of Eq. (2), we propose that the number of the L-cell (α)
vortex can be measured as

α = β + 2. (13)

Detailed information will be discussed in Sec. IV D.
Different from the constant trigger value, the threshold value

continues to decrease as D/d increases from 2.0 to 3.0. Equation (3)
shows that for a fixed trigger value, the smaller Φf is, the higher Φc
is needed. To reach the same trigger value, the decreasing tendency
of the threshold value should be caused by the increasing capacity of
Φc. In other words, as D/d increases, if the maximum amount of Φc
also increases, the vortex dislocation can be triggered with a smaller
Φf . Further investigations prove this assumption. Due to the spatial
inhomogeneity of the convective velocity and the complex vortex
interactions, accurate evaluation of Φc is difficult. However, by com-
paring the distributions of the time-averaged streamwise velocity in
different vortex cells regions, the capacity of Φc in different cases can
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FIG. 10. Distributions of the time-averaged streamwise velocity (u/U) along three
vertical sampling lines parallel to the z-axis in the center plane (y/D = 0) at three
positions x/D = 2, 3, and 5 in the six D/d cases.

be compared. In Fig. 10, the distributions of time-averaged stream-
wise velocity (u/U) in all six cases are plotted. First, in agreement
with the conclusion of Tian et al.,17 in the near wake (x/D = 2), clear
differences between u in the N-cell region (−5 < z/D < 0) and u in
the L-cell region (z/D < −10) can be observed for all six cases. These

differences are substantially reduced when the sampling line moves
downstream from x/D = 2 to 5. Furthermore, the larger the D/d is,
the larger difference in u between the N- and L-cell regions can be
seen. For example, at x/D = 2, the maximum difference between u in
the N- and L-cell regions is 0.33U in the D/d = 2.0 case, but reaches
0.54U in the D/d = 3 case. This observation clearly indicates that
comparing to the smaller D/d case, a larger amount of Φc can be
accumulated in the larger D/d case.

C. The number of NL-loop structures
According to Tian et al.,15,17 two NL-loop structures, i.e., NL-

loop 1 and NL-loop 2, one NN-loop and one LL-loop were cap-
tured in one N-cell cycle in the D/d = 2.0 and 2.4 cases. In the
present paper, more features of the number of NL-loop structures
are investigated.

In Figs. 11(a)–11(e), detailed visualizations of vortex connec-
tions and dislocations in the 1st N-cell cycle in the D/d = 2.6 case
are shown. A corresponding topology sketch is plotted in Fig. 11(f).
The short and long vertical straight lines in this figure represent
the N- and L-cell vortices, respectively. Between them, the curved
solid lines connect the N-cell vortex and its counterpart L-cell vor-
tex. The dashed curves indicate broken connections that were not
able to persist due to vortex dislocations. The three NL-loops, i.e.,
NL-loop 1 N4–L′5, NL-loop 2 N′5–L6, and NL-loop 3 N6–L′7, are
marked in green, red, and purple, respectively, in Figs. 11(b)–11(d).

FIG. 11. (a)–(e) Isosurface of λ2 = −0.05 showing develop-
ments of vortex structures on the −Y side in the D/d = 2.6
case. Solid and dashed curves indicate the loop structures
on the −Y and +Y sides, respectively. (f) Schematic topol-
ogy illustrating the first N-cell cycle in the D/d = 2.6 case.
The time t is t = t∗ − 300D/U, where t∗ is the actual time in
the simulation.
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Compared to the D/d = 2.0 case,17 as shown in Fig. 6 of Ref. 17, a
new NL-loop structure [the purple curve in Fig. 11(d)] forms after
NL-loop 2 (the red curve) in the D/d = 2.6 case in Fig. 11. Based on
the order of occurrences, the new NL-loop is identified as NL-loop
3, which is believed to be caused by the decreasing threshold value.
If we hypothesize that the threshold value in the D/d = 2.6 case was
the same as that in the D/d = 2.0 case, the yellow line will move to
the black dashed line in Fig. 8(d). This will cause all green circles to
become lower than the threshold value. In other words, based on this
hypothetical condition, the number of NL-loops will return to 2 in
the D/d = 2.6 case, i.e., there will be no vortex dislocation between
N′5 and L′5

When D/d continues to increase from 2.6 to 3.0, the threshold
value decreases from 3.9 to 3.6. Meanwhile, four NL-loops appear
in one N-cell cycle in the D/d = 2.8 and 3.0 cases, as illustrated in
Fig. 12. In general, due to the decreasing trend in the threshold value,
the number of NL-loops in one N-cell cycle is expected to continu-
ously increase in the higher D/d cases. For a fixed ReD, the maximum
number of NL-loops should appear in the free end cylinder case, i.e.,
when D/d becomes infinite.

D. Symmetric and antisymmetric vortex interactions
Antisymmetric vortex interactions were reported and discussed

in the wake behind the single step cylinders with D/d = 2.0 and 2.4
by Tian et al.15,17 In the present manuscript, by investigating four

extra cases D/d = 2.2, 2.6, 2.8, and 3, an additional symmetric vor-
tex interaction is observed. As examples, the NL-loop 1 structures
in the neighboring N-cell cycles are plotted in the D/d = 2.2 and
2.4 cases in Figs. 13 and 14, respectively. The NL-loop 1 structures
continuously appear at the−Y side of the step cylinder in Figs. 13(a)–
13(d). We call this symmetric vortex interaction in contrast to the
antisymmetric vortex interaction shown in Fig. 14. From the infor-
mation in Table IV, we learn that in a certain D/d case, whether
vortex dislocations are symmetric or antisymmetric is determined
by the parity of the number of N- and L-cell vortices, i.e., β and α, in
one N-cell cycle. When β and α are even numbers, symmetric vortex
interactions will appear. Oppositely, when β and α are odd numbers,
antisymmetric vortex interactions will happen. This is because both
the N- and L-cell vortices are shed alternatingly from the +Y and −Y
side of the step cylinder. When there are an even number of N- and
L-cell vortices between the corresponding NL-loop 1 structures in
the neighboring N-cell cycles, these NL-loop 1 structures appear at
the same side of the step cylinder, i.e., symmetric vortex interactions.
Otherwise, conventional antisymmetric vortex interactions appear.

Long time observations reveal that not only the decreasing ten-
dency of Φf but also the increasing tendency of Φf can occasionally
interrupt the continuous symmetric and antisymmetric vortex inter-
actions. As described in Sec. I, when the corresponding Φf continues
to decrease in subsequent N-cell cycles, one additional N–L vortex
pair will be needed in a certain N-cell cycle to make Φf sufficiently
large to induce the formation of the NL-loop structure. It is this

FIG. 12. (a)–(e) Isosurface of λ2 = −0.05
showing developments of vortex struc-
tures on the −Y side in the D/d = 3.0
case. Solid and dashed curves indicate
the loop structures on the −Y and +Y
sides, respectively. (f) Schematic topol-
ogy illustrating the first N-cell cycle in the
D/d = 3.0 case. The time t is t = t∗ −
300D/U, where t∗ is the actual time in the
simulation.
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FIG. 13. [(a)–(e)] The just-formed NL-loop 1 structures in the first to sixth N-cell cycles are plotted from both the −Y and +Y side in the D/d = 2.2 case. The red line marks the
formation position of NL-loop 1. The time t is set to t = t∗ − 300D/U.

FIG. 14. [(a)–(g)] The just-formed NL-loop 1 structures in the second to eighth N-cell cycles are plotted from both the −Y and +Y sides in the D/d = 2.4 case. The red line
marks the formation position of NL-loop 1. The time t is set to t = t∗ − 300D/U.

one additional N–L vortex pair that changes the parity of the num-
ber of N- and L-cell vortices and further causes the interruption of
the repetitive symmetric or antisymmetric vortex interactions. For
the present cases with the discovered increasing tendency of Φf , the
interruption works in a different way.

In Figs. 8(b), 8(d), and 8(f), the black dotted lines illustrate the
increasing tendency ofΦf of the N–L vortex pair, which is just before
the N–L vortex pair whose dislocation finally causes the formation of
NL-loop 1. In the D/d = 2 case, along the black dotted line in Fig. 8,
Φf increases from B1 to B5 and eventually exceeds the threshold
value in the fifth N-cell cycle (B5). Under this circumstance, by
including the contribution ofΦc,Φ is large enough to induce the for-
mation of NL-loop 1 (N′55–L64) in Fig. 13(e). Between neighboring
NL-loop 1 structures in Figs. 13(a)–13(d), there are 12 N- and 14 L-
cell vortices. However, between Figs. 13(d) and 13(e), there are only
11 N- and 13 L-cell vortices in the fifth N-cell cycle, i.e., one N–L
vortex pair less than in previous N-cell cycles. It is this one less N–L
vortex pair that causes the NL-loop 1 structure (N′55–L64) to form
at the +Y side of the step cylinder and interrupts the continuous
symmetric vortex interactions. Similar situations are also observed

in the D/d = 2.6 and 3.0 cases, which are included in Figs. 26–29
in Appendix C. In general, when Φf in advance becomes smaller or
larger than the threshold value, one more or one less N–L vortex
pair will change the parity of the number of N- or L-cell vortices in
one N-cell cycle and further interrupt the continuously symmetric or
antisymmetric vortex interactions. This new relationship could help
to understand the vortex dynamics in a vortex dislocation process
more clearly.

V. LIKELIHOOD ANALYSIS
It is striking to see from Table IV that among the six cases we

investigated here, three cases have the increasing tendency of Φf ,
and the other three have the decreasing tendency. Moreover, three
cases show symmetric vortex interactions, while the other three
show antisymmetric vortex interactions. It is hard to believe that
these equal occurrences are all by coincidence. Therefore, we present
a likelihood analysis here. Based on StN and StL, we can obtain

EN = 2StN/(StL − StN), (14)
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EL = 2StL/(StL − StN), (15)

where EN and EL are the exact values compared to the rounding
value α in Eq. (12). The differences (δ, δN , and δL) between the
exact values (EN and EL) and the rounding values (β and α) can be
expressed as follows:

δN = EN − β, (16)

δL = EL − α. (17)

According to Eqs. (12) and (13), one can easily obtain

δ = δN = δL. (18)

Based on Eqs. (16)–(18), the original equation (5) can be rewritten
as

SU
D
= α 1

2StL
− β 1

2StN
= (EL − δL) 1

2StL
− (EN − δN) 1

2StN

= δ( 1
2StN

− 1
2StL
). (19)

Due to the fact that the N-cell vortices shed slower than the L-cell
vortices, i.e., StN is always smaller than StL, and the value of both U
and D are positive, the sign of the S value in Eq. (19) is determined by
the sign of δ. In other words, when EN and EL are rounded to smaller
β and α, respectively, e.g., in the D/d = 2.0, 2.4, and 2.8 cases, the cor-
responding δ value and the S value become positive. Consequently, a
decreasing tendency of Φf appears, e.g., as shown in Figs. 8(a), 8(c),
and 8(e). Otherwise, negative δ and S lead to an increasing tendency
of Φf . Meanwhile, based on the parity of β and α, the characteristic
of vortex interactions (symmetry or antisymmetry) can be deduced.
Relations between EN and features of vortex dislocations are shown
in Table V.

In Fig. 15(a), EN in the six cases are shown as six black cir-
cles. By applying a fifth order interpolation polynomial in curve
fitting to these six circles, the black curve in Fig. 15(a) is obtained
to describe the relation between EN and D/d. The justification
of this curve is checked by simulating four more cases, i.e., the
D/d = 2.1, 2.3, 2.5, and 2.7 cases. After following the same simula-
tion and analysis processes as described in Sec. IV, information on
these four cases is shown in Table VI. More detailed information
is included in Figs. 26–29 in Appendix C. By using Eq. (14), four
red circles are plotted in Fig. 15(a), which fit the black curve very
well. This indicates a reasonable curve fitting. Based on this curve
and Table V, Fig. 15(b) can be sketched to show the different char-
acteristics for all cases between D/d = 2 and 3. One can easily see
that the total area of the red bar is larger than that of the green
bar. On the other hand, the total areas of the black and white bars

TABLE V. Relation between EN and characteristics of vortex dislocations. In the first
column, n represents natural numbers (n = 1, 2, 3, . . .).

Symmetry or
EN Tendency of Φf antisymmetry

2n − 1 < EN < 2n − 0.5 Decrease Antisymmetry
2n − 0.5 < EN < 2n Increase Symmetry
2n < EN < 2n + 0.5 Decrease Symmetry
2n + 0.5 < EN < 2n + 1 Increase Antisymmetry

FIG. 15. (a) EN in the D/d = 2.0, 2.2, 2.4, 2.6, 2.8, and 3.0 cases are marked
by black circles. By applying a fifth order interpolation polynomial in curve fit-
ting on these six circles, the black curve [EN = −5.706(D/d)5 + 77.805(D/d)4

− 426.295(D/d)3 + 1171.735(D/d)2
− 1615.737(D/d) + 905.749] is obtained to

describe the relation between EN and D/d. Moreover, EN in the D/d = 2.1, 2.3,
2.5, and 2.7 cases are plotted as red circles to justify the curve fitting func-
tion. (b) Following the relation between EN and characteristics of vortex disloca-
tions in Table V, the black, white, red, and green bars are plotted to show the
cases with decreasing Φf tendency, the cases with increasing Φf tendency, the
cases with antisymmetric vortex interactions, and the cases with symmetric vortex
interactions, respectively.

are almost the same. Therefore, we can anticipate that when D/d
is randomly chosen between 2 and 3, the likelihood of increasing
Φf and decreasing Φf tendencies is almost the same, whereas the
likelihood of antisymmetric vortex interactions is larger than that
of symmetric vortex interactions. This anticipation agrees well with
our observations shown in Table VI. In these four additional cases,
the increasing Φf tendency appears in two cases, i.e., the D/d = 2.5
and 2.7 cases. The other two cases show decreasing Φf tendency.
However, only the D/d = 2.1 case shows the symmetric vortex inter-
actions. Antisymmetric vortex interactions are observed in the other
three cases. The present result indicates that the characteristics of
the vortex dislocations are determined by the shedding frequencies

TABLE VI. Detailed information on vortex dislocations in other four D/d cases, i.e.,
D/d = 2.1, 2.3, 2.5, and 2.7.

Symmetry or Tendency
D/d StN StL β α antisymmetry SU/D of Φf

2.1 0.1529 0.1779 12 14 Symmetry 0.107 Decrease
2.3 0.1509 0.1775 11 13 Antisymmetry 0.172 Decrease
2.5 0.1496 0.1777 11 13 Antisymmetry −0.042 Increase
2.7 0.1485 0.1767 11 13 Antisymmetry −0.252 Increase
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of the N- and L-cell vortices. Meanwhile, as described in Sec. III B,
by affecting the 3D effects (downwash and increased base pressure),
the changed diameter ratio influences the shedding frequencies of
the N- and L-cell vortices and the corresponding EN , which, in turn,
affects the characteristics of vortex dislocations. The likelihood of
antisymmetric or symmetric vortex interactions and increasing or
decreasing Φf tendencies is determined by the relation between EN
and D/d.

VI. CONCLUSION
In the present paper, we use DNS to investigate vortex dynam-

ics in the near wake behind single step cylinders with 2 ≤ D/d ≤ 3 at
ReD = 150. Our results are consistent with previous studies,1,11,15,17

with respect to the mainly three dominating spanwise vortices (i.e.,
S-, N-, and L-cell vortices) and some interesting characteristics of
vortex dislocations [i.e., two phase-difference accumulation mech-
anisms (Φ = Φf + Φc), the NL-loop structures appearing in the
dislocation process, the trigger and threshold values of vortex dislo-
cations, antisymmetric vortex interactions between neighboring N-
cell cycles, and its interruptions]. In addition, the numerical results
provide deeper and more complete information on step cylinder
wakes.

First, by a fast Fourier transform (FFT) of time series of the
streamwise velocity u, shedding frequencies and extensions of three
spanwise vortex cells are investigated. As D/d increases from 2 to
3, the extension of the S-cell vortex remains almost constant. The
shedding frequency of the S-cell vortex (StS) is simply dependent
on Red. Meanwhile, an expansion of the N-cell region and a shrink-
ing of the L-cell region are observed. For the first time, we report
that as D/d increases, the N–L transition region continues to move
toward the large cylinder part, and its length gradually increases.
Since the N-cell region being closer to the step position than the L-
cell region, when D/d increases, the shedding frequency of the N-cell
vortex (StN) decreases faster than the shedding frequency of the L-
cell vortex (StL). The oblique shedding angle (θL) of the L-cell vortex
remains almost unaffected. In the large cylinder part, the strength of
the induced downwash flow (−w/U) and the base pressure become
larger, when D/d increases. By carefully checking the distributions
of −w/U and base pressure coefficient (Cpb), we conclude that the
formation of N-cell vortices is caused by the joint influence of both
increased −w/U and increased Cpb, but the latter one plays a major
role.

Moreover, based on long-time observations on iso-surfaces of
λ2, we found that in the D/d = 2.2, 2.8, and 3.0 cases, the NL-loop
1 structure continues to appear at either the +Y or −Y side of the
step cylinder. In comparison with the already known antisymmet-
ric phenomenon,15,17 we call this symmetric vortex interactions. By
analyzing the number of N- and L-cell vortices, i.e., β and α, in one
N-cell cycle in different D/d cases, we found that it is the parity of β
and α that determines whether symmetric or antisymmetric vortex
interactions appears in a certain D/d case.

By using a reliable phase tracking method, we monitored the
time trace of Φf in the D/d = 2.0, 2.2, 2.4, 2.6, 2.8, and 3.0 cases. An
increasing tendency of Φf is first captured in D/d = 2.2, 2.6, and 3.0
cases. In these cases, the formation position of NL-loop 1 structures
is observed to continuously move upstream as Φf increases. Similar
to the decreasing tendency of Φf reported in Ref. 17, the discovered

increasing Φf tendency can also cause the interruption of continu-
ous antisymmetric or symmetric vortex interaction phenomena, but
in a different way. According to the time trace of Φf , the trigger
value of vortex dislocations is found to remain constant when D/d
varies. The threshold value of vortex dislocations decreases as D/d
increases, which further causes the number of NL-loop structures in
one N-cell cycle to increase from 2 in the D/d = 2.0 case to 4 in the
D/d = 3.0 case. Based on the application of a constant trigger value,
we propose Eqs. (12) and (13) to measure β and α. Comparing with
the conventional Eqs. (1) and (2), a new factor of “2” is introduced to
emphasize the importance of counting vortices from the −Y and +Y
sides independently. Otherwise, the antisymmetric phenomenon is
easily overlooked. Furthermore, a universal rule of anticipating the
qualitative features of vortex dislocations is summarized in Table V.

Finally, we analyze the likelihood of appearance of antisymmet-
ric or symmetric vortex interactions and the likelihood of increasing
or decreasing phase differences. Based on the investigations of D/d
= 2.0, 2.2, 2.4, 2.6, 2.8, and 3.0 cases, we predicted that when 2 ≤ D/d
≤ 3, the likelihood of increasing Φf and decreasing Φf is almost the
same, but the antisymmetric phenomenon is more likely to appear
than the symmetric phenomenon. Further observations in D/d = 2.1,
2.3, 2.5, and 2.7 cases prove our anticipation.

In summary, by simulating altogether 10 different D/d cases,
the present paper provides a more in-depth and complete under-
standing of the vortex dislocation phenomenon. Some new obser-
vations, e.g., an increasing tendency of Φf , the symmetric features,
and the increased number of NL-loop structures in the vortex dis-
location process, help to outline a better picture and lead to the
identification of several important relationships. These include the
relationship between α (β) and (anti-)symmetry and the relationship
between tendency of Φf and S. Moreover, the method and formulas
we used to analyze the likelihood of appearance of different features
of vortex dislocations may also be applicable in other wake flows.

SUPPLEMENTARY MATERIAL

By using the phase tracking method described in Ref. 17, the
phase information on N- and L-cell vortices and their phase differ-
ences in the D/d = 2.0, 2.2, 2.4, 2.6, 2.8, and 3.0 cases are shown
in the supplementary material. The N–L vortex pair whose phase
difference induces vortex dislocations is highlighted in gray.
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APPENDIX A: STREAMWISE VELOCITY SPECTRA
IN THE D /d = 2.0, 2.2, 2.4, 2.6, 2.8, AND 3.0 CASES

This appendix includes six figures, i.e., Figs. 16–21. All velocity
spectra are calculated by a fast Fourier transform (FFT) of at least
2000D/U continuous streamwise velocity (u) data along a vertical
sampling line parallel to the z-axis with density 0.2D positioned at
(x/D, y/D) = (1.6, 0.4).
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FIG. 16. In the D/d = 2.0 case, (a) a 3D version of velocity spectra along a spanwise line behind the step cylinder at (x/D, y/D) = (1.6, 0.4), where the shedding frequencies
of the three main vortex cells (S-cell: StS = f SD/U, N-cell: StN = f ND/U, and L-cell: StL = f LD/U) are marked. (b) Projection of the 3D plot in (a) into the horizontal plane. Only
points with Euu/(total Euu) ≥ 4 are shown.

FIG. 17. (a) and (b) are the same as Figs. 16(a) and 16(b), but in a different case D/d = 2.2.

FIG. 18. (a) and (b) are the same as Figs. 16(a) and 16(b), but in a different case D/d = 2.4.
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FIG. 19. (a) and (b) are the same as Figs. 16(a) and 16(b), but in a different case D/d = 2.6.

FIG. 20. (a) and (b) are the same as Figs. 16(a) and 16(b), but in a different case D/d = 2.8.

FIG. 21. (a) and (b) are the same as Figs. 16(a) and 16(b), but in a different case D/d = 3.0.
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FIG. 22. [(a)–(g)] Isosurfaces of λ2 = −0.05 showing the formation position and the side of the NL-loop 1 structure in the first long N-cell cycle in the D/d = 2.0 case. The
antisymmetric phenomenon appears. The red circle in panel (f) highlights an irregular absence of the NL-loop 1 structure, which was discussed in Ref. 17. The time t is set
to t = t∗ − 2378.1D/U.

APPENDIX B: DETAILED INFORMATION ON VORTEX
DISLOCATIONS IN THE D /d = 2.0, 2.6, 2.8, AND 3.0
CASES

In this appendix, the just-formed NL-loop 1 structures in the
first long N-cell cycle are plotted in the D/d = 2.0, 2.6, 2.8, and
3.0 cases from both the −Y and +Y sides (in Figs. 22, 23, 24, and
25, respectively). The red line marks the formation position of NL-
loop 1. As discussed in Sec. IV D, when the NL-loop 1 structure
appears alternately at the +Y and −Y sides between subsequent N-
cell cycles, the antisymmetric vortex interactions appear. On the
other hand, when the NL-loop 1 structure continuously appears at
the +Y or −Y side in the neighboring N-cell cycles, the symmetric
vortex interactions appear.

FIG. 23. [(a)–(c)] Isosurfaces of λ2 = −0.05 showing the formation position and the
side of the NL-loop 1 structure in the first long N-cell cycle in the D/d = 2.6 case.
The antisymmetric phenomenon appears. The time t is set to t = t∗ − 300D/U.

APPENDIX C: DETAILED INFORMATION IN D /d = 2.1,
2.3, 2.5, AND 2.7 CASES

This appendix includes four figures, i.e., Figs. 26–29. All veloc-
ity spectra are calculated by a fast Fourier transform (FFT) of at
least 2000D/U continuous streamwise velocity (u) data along a ver-
tical sampling line parallel to the z-axis with density 0.2D positioned
at (x/D, y/D) = (1.6, 0.4). The just-formed NL-loop 1 structures in
the first long N-cell cycle are plotted in the D/d = 2.1, 2.3, 2.5, and
2.7 cases from both the −Y and +Y sides. The red line marks the
formation position of NL-loop 1. As discussed in Sec. IV D, when
the NL-loop 1 structure appears alternately at the +Y and −Y sides
between subsequent N-cell cycles, the antisymmetric vortex inter-
actions appear. On the other hand, when the NL-loop 1 structure

FIG. 24. [(a)–(c)] Isosurface of λ2 = −0.05 showing the formation position and the
side of the NL-loop 1 structure in the first long N-cell cycle in the D/d = 2.8 case.
The symmetric phenomenon appears. The time t is set to t = t∗ − 300D/U.
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FIG. 25. [(a)–(j)] Isosurface of λ2 = −0.05 showing the formation position and the side of the NL-loop 1 structure in the first long N-cell cycle in the D/d = 3.0 case. The
symmetric phenomenon appears. The time t is set to t = t∗ − 300D/U.

FIG. 26. In the D/d = 2.1 case: (a) 3D
velocity spectra along a spanwise line
behind the step cylinder at (x/D, y/D)
= (1.6, 0.4), where the shedding frequen-
cies of the three main vortex cells (S-cell:
StS = f SD/U, N-cell: StN = f ND/U, and L-
cell: StL = f LD/U) are marked. [(b)–(f)]
Isosurface of λ2 = −0.05 showing the
formation position and the side of the NL-
loop 1 structure in the first long N-cell
cycle in the D/d = 2.1 case. The sym-
metric phenomenon and decreasing ten-
dency of Φf appear. The time t is set to
t = t∗ − 300D/U.
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FIG. 27. (a) is the same as Fig. 26(a), but in a different case D/d = 2.3. [(b)–(e)] Isosurface of λ2 = −0.05 showing the formation position and the side of the NL-loop 1
structure in the first long N-cell cycle in the D/d = 2.3 case. The antisymmetric phenomenon and decreasing tendency of Φf appear. The time t is set to t = t∗ − 300D/U.

FIG. 28. (a) is the same as Fig. 26(a), but in a different case D/d = 2.5. [(b)–(i)] Isosurface of λ2 = −0.05 showing the formation position and the side of the NL-loop 1 structure
in the first long N-cell cycle in the D/d = 2.5 case. The antisymmetric phenomenon and increasing tendency of Φf appear. The time t is set to t = t∗ − 300D/U.
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FIG. 29. (a) is the same as Fig. 26(a), but in a different case D/d = 2.7. [(b)–(d)] Isosurface of λ2 = −0.05 showing the formation position and the side of the NL-loop 1
structure in the first long N-cell cycle in the D/d = 2.7 case. The antisymmetric phenomenon and increasing tendency of Φf appear. The time t is set to t = t∗ − 300D/U.

continuously appears at the +Y or −Y side in the neighboring N-cell
cycles, the symmetric vortex interactions appear. Based on Sec. IV
A, by observing the tendency of the formation position of NL-loop 1
structures, the variation in Φf can be obtained. When the formation
position of NL-loop 1 structures continuously moves downstream
or upstream in a long N-cell cycles, the corresponding decreasing or
increasing tendency of Φf appears, respectively.
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