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Summary
In this thesis we evaluate the performance of the novel Model Selection criteria
proposed in Bulso et al. 2019, for inference of network topologies. To this purpose,
we consider networks of binary nodes whose probability of activation is modelled
by Ising models and generate data by simulating the network dynamics. After
which, we infer the network topology by implementing the proposed criterion in a
Bayesian model selection framework and compare the inferred topology with the
ground truth model. The performance of the proposed method in recovering the
network structure is contrasted with that of other popular model selection criteria
in varied configurations of Ising parameters, network topologies, and sample size.

We begin by introducing the Equilibrium Ising model and proceed by describing
the approximate solutions for making inferences in Ising models. The novel criteria
is one of a class of selection methods adapting concepts from information theory,
namely the Minimum Description Length; We will also discuss the nonscientific
applications and parallels suitable to our approach.

Our results reinforce those found in Bulso et al. 2019. The novel criteria performs
similarly to other selection criteria in the experiment regimes tested, with certain
exceptions that will be addressed. Unique behaviors identified in the larger
regimes may propose further avenues of investigation in networks of larger size and
diversity.
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1 Introduction

As above, so below.

1.1 Complex Dynamical Systems

Everything exists in a system, taking part in a greater gestalt; members of the system, interacting
with the others in tightly interwoven connections. In disorder, or isolation, these pieces of the whole
are limited, aimless, chaotic, but when part of an ordered network, they can give rise to complex
behaviors. This phenomenon is reflected across all scales. A lone cell may only perform single
tasks. Arranged properly, 1016 [14] more cells integrate to become as a whole, which in return may
organize itself as part of collective, a colony, a society. In all aspects of the natural order, simple
unit interactions merge giving rise to complex properties [120]. This occurs in biology (Figure 1),
politics [35], markets [20] [71] [15], and sociology [46]; any abstracted network of interactions
may be described in this manner. Lately, this abstraction of interactions is witnessed in machine
learning and artificial neural networks. What are the mechanics underlying these systems, how are
they defined?

Figure 1
A flock of starlings whose collective flocking behavior was analyzed with a maximum entropy
model of interactions between individual starlings and their “nearest neighbors”: other birds
whose behavior is closely paired with the individual. The stereographic photo allows 3D tracking
of the birds’ movement. The red squares highlight five matched pairs of birds. Adapted from
Ballerini et al 2007, Figure 1 [9].

1.2 Statistical Mechanics and Systems Modeling

Statistical mechanics is the methods used to model the dynamics of complex systems such as the
behaviors of gases, liquids, and other large particle bodies. These methods eventually expanded
into describing the interactions in other complex dynamical systems.

Statistical mechanics reduces high dimensional problems to the behavior of a volume, or field, of
particles; first by describing the particle-to-particle interactions, then scaling those descriptions
to a statistical summary of the interactions underlying the whole. This system of relationship
between particles is interpreted by a map of the system and its states as a network of nodes.

1



Figure 2
Nodes are visualized as having some connection to each other by the edges in the graph. (A) A
directed graph where a connection is one-way between units. (B) An undirected graph where the
connection between two nodes is unidirectional. (C) A directed weighted graph where some level
of connection strength is set but is still unidirectional JAB = JBA. Adapted from Koller 2009 [28].

The Markov network [77], an undirected graphical model, maps these relationships between elements
as a set of parameters in a graph (Figures 2 and 3). These parameters can represent the state
of an node and its interactivity with other elements. The collective interactions between nodes
creates an ongoing stochastic change in the states of the nodes (e.g. the on or off firing of a neuron)
continuing over time. The states of an element at one moment in time, directly causing the change
in states at the next moment in time. A Markov process.

Similarly, neurons do not activate independently but rely on a highly interconnected set of rela-
tionships between neuronal units, firing in correlated, redundant patterns [3]. The Hopfield model
[54] is a Markov network designed to replicate the spiking dynamics found in the neural ensemble,
which is believed to be the basis for encoding information and particular brain states [115], using
the terms of the Ising spin model.

If one were to take a “snapshot” of the Markov process of the network, they would observe the
system state distribution: the state on all individual elements at a discrete step in time. In a system
of binary spin states this would be represented by a string of binary values, e.g. [0, 1, 0, 1, 1, 0] each
binary variable representing the state on an individual element. In a neuro-anatomy sense, this
would be analogous to the firing state of all neurons in an observed assembly during a discrete
time-bin: firing = 1, and not firing = 0.

This string of binary variables is akin to a “code-word”, which may encode information such as
a stimulus, a memory, or resting state. Subsequently, this configuration may also be titled a
spike-word as it describes the spiking state of a neuronal network.

The time-series of states produced by the Markov process is the Markov chain, i.e. the output
of the system process and its distribution of states over some amount of time, analogous to the
electrophysiological spike trains observed in biological systems [86] [50].

We arrive at the core problem: often we are able to observe the change of states in some system
without meaningful access to the underlying causal structure in the system. How then can a
representation of the system be reconstructed from its observed output states?

If the observed outputs are dictated by statistical rules governing the interactions of the system,
then underlying statistical dependencies in the system should be inferable if given sufficient obser-
vation of the system’s process. The methods used in statistical mechanics to describe the functions
in a markov process is the forward process. For a system like a Markov network that is governed
by such functions, inversions of the functions can be developed to create an inverse solution.

2



Figure 3
Further illustration of graph models and their representation in a graph array. Sporns notes the
biophysical data types analogous to these network models where the connection where each row
and column represent the nodes and the individual cells of the matrix represent their mutual
connectivity. Here the term binarize refers to reducing continuous weight values into two discrete
terms; symmetrize refers to converting directional connections to a unidirectional model (shown
here as done by a logical OR decider, where only the bidirectional connections are kept), and
finally, thresholding where weighted terms below a certain connection strengths are omitted.
Adapted from Sporns et al. 2010, Figure 1 [109].

A staple technique of graphical model inference is the Bayesian inference methods. These use
Bayes formulas [68] as a framework for finding the likelihood of a possible state on an element;
in this context inferring the system parameters which are most probable in the production of an
observed distribution of output states. A method referred to as “fitting” a model of a system to
the observed information (Figure 4).

The maximum entropy model or pairwise equilibrium Ising model provides a viable model in the
study of networks and has become popular in problems of inference [80], due to its large and well
studied inverse methods. The inverse Ising methods are shown to be highly effective in network
reconstruction, particularly when paired with Bayesian model selection methods [87] [66] [42]. The
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Figure 4
Illustration of the general process of recording biophysiological spike data (from neurons in this
example), and fitting this data to a statistical model of network connectivity. This figure also
refers to unknown variables unobserved neurons or elements in the system whose effects can be
indirectly inferred. Adapted from Roudi et al. 2015, Figure 1 [99].

Ising model provides a parametric framework to describe a network model, while a Bayesian criteria
adds additional constraints to an inverse solution.

The primary goal of any model reconstruction technique is to accurately reconstruct a large di-
versity of network models without: a. over-fitting to one type or types of networks, and b. retaining
the highest level of detail as possible in reconstructing of the original model. Model selection cri-
teria can also be described as penalization modules, reducing the model parameters to only the
most essential elements in a process called Occam fitting [28] [69]. This follows the principle of
Occam’s Razor: the model which best describes the observed data, will be the simplest model.

The inverse problem is a computationally expensive one. Inferring an exact solution for the struc-
tural connectivity of a Hopfield network becomes infeasible for networks with more than some tens
of neurons. The maximum entropy model is a preferable statistical representation of the neural
network, modeling the functional connectivity of a network (see functional connectivity inset and
Figure 5). In this model the network is represented by the pairwise interactions between nodes,
mapping the weighted values between each set of two nodes. This approach has been shown to be
effective in correlating neural data [24] [116].

Types of network inference schemes are generally split into two classes: parametric and non-
parametric models, here we focus on a parametric approach, i.e using the parameters of the Ising
model. An exhaustive review of current inference techniques can be found in Abril et al. 2018 [70]
and Gardella et al. 2018 [40]. Both provide excellent overviews of the mathematical models being
applied in connectivity inference, and the challenges associated to each, in the context of neural
recording data.
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Figure 5
Definitions in interpretation of connectivity. (A) The structural connectivity, the physical
structure of neurons. (B) The functional connectivity, where we can see the mutual activity
between nodes within an observed spike train . (C) The effective connectivity, where the
influence one neuron has on another is observed by stimulation of one and the respondent
activity of an affected cell. Adapted from Poli et al. 2015, figure 3 [89].

Functional Connectivity

The human connectome is a comprehensive structural description of the network of elements
and connections forming the human brain. Cortical areas are neither completely connected
with each other nor randomly linked, instead their structure shows a specific and intricate
organization [109]. Friston 1994 distinguished two types of interconnections as maps
offunctional and effective connectivity [39], a third interpretation later considered alongside
these is Structural connectivity [110].

Structural or Anatomical connectivity is the physical makeup of the neural connectome.
The physical interactions via electrical or chemical synapses which determine the mapping of
a neuronal communication network. This ranges over multiple spatial scales as the
connections can be located both in local neuronal circuits and in long-range communications
linking other sub-networks [89] [18].

Effective connectivity describes the causal effects of one neuronal unit on the other by
direct means, once any indirect means have been discounted [70]. In a highly interconnected
system, the dominant source of correlations between two neurons will always be through the
multitude of indirect paths involving other neurons [115] [44]. The “effectiveness” being any
observable interactions between two neurons, which alters their activity. This can be inferred
by inducing perturbations in the network or observing the temporal order of neuronal
activities [41].

Functional connectivity is the statistical representation of a network where dependence
and independence between neuronal units obtained by measurements of neuronal activity
[70]. By measuring the correlation between spikes coming from different neurons over some
time series, predictions can be made about the activity of one of the two neurons based on
the activity of the other neuron [89]. Functional connections is considered a subset of the
structural connectivity as the properties of a single neuron are dependent on their anatomical
connections [111]. Functional connectivity is evaluated among all the elements of a system,
regardless whether these elements are connected by direct structural links [41]. Functional
connectivity is shown to be effective at reproducing a network structure and is particularly
useful for understanding models with hidden nodes [20] [32] [99] [11].
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Figure 6
A maximum entropy model used to form an undirected graph of interaction in gene expression
behavior from a pool of 582 genes. Pictured are the 110 strongest interactions after thresholding
weakly correlated interactions in a full network of 169,071 interactions. Nodes are identified by
gene names and color-coded to indicate the cell process in which they participate. Positive in
interactions correspond to the solid blue edges, while negative interactions correspond to dashed
red edges. Adapted from Lezon et al. 2006 [65].

1.3 Statistical Physics in Biology

Modeling biological processes with Markov models has been found to be an effective tool, with
statistical solutions having been utilized effectively in sub-cellular problems such as the interactions
of multi-molecular chains in protein folding structures [57] [25] [71] and gene expression patterns
[65] [7] (Figure 6), all the way to the macroscale, modeling animal collective behavior [22] (Figure 1).

It has been suggested that biological systems consist of integrated elements poised at a point
of self-organized criticality [76], an equilibrium between constraints of entropy and energy [79]
[11]. Systems of nonlinear dynamics studied in statistical physics exhibit similar properties, where
self-organized systems regularly balance between complexity and chaos.

In the Hopfield model the dynamics of the neural network can be imagined as motion on the energy
surface, an abstract 2D plane where a multi-dimensional problem is reduced to a flat surface, and
levels of energy pock its landscape with hills of high energy and basins of low energy. On this
surface, local minima of energy where the system can “settle” result from the competition between
positive and negative interactions directed by the Ising parameters, these stable attractor states
can represent stored memories or brain states [55] [56]. As will be demonstrated in Section 2,
probability distributions of system states are localized to an attractor basin of minimal energy in
the region of phase-state space defined by a configuration of Ising parameters.

6



1.3.1 Statistical Mechanics in Neuroscience

Advances in morphogenetic neuro-engineering have created novel methods of direct imaging and
neural ensemble recording. In vitro neural cell cultivation, the growth of neural cells on specially
designed substrates, makes it possible to study the activity of neural circuits at finer resolutions.
Another well established approach, involves growing monolayer neural ensembles from dissociated
neural tissue or stem cells. These express fundamental traits of brain networks, such as self-
organization, spontaneous network formation and interactivity, are reproduced in these models
[118]. Neuronal activity produced by these ensembles are then recorded by microelectrode arrays
(MEAs) or Optical and Optogenetic imaging. Current commercially available MEAs can provide
60–120 electrodes with 100–500µm inter-electrode spacing or up to thousands of microelectrodes
(4000–10,000) and high-density MEAs with a spatial resolution in the tens of micrometers (Fig-
ure 7) [89] [38] [6].

Figure 7
Multi Electrode Arrays (MEAs). (A & B) Example MEAs, (A) has 60 individual recording
sites and (B) with 4096 recording sites. The continuous time series spike data from these
presents a mix of bursting and spike activity which must be discretized into binary data; as done
here in a serial point process [6]. Adapted from Poli et al. 2015 [89].

Alternatively, in vivo spike train data may be obtained by use of neuropixel probes (Figure 8),
which can be placed in target lobes of an animal and provide recording data from thousands of
individual node sites along a single probe shank [112]. These also provide opportunity to record
across multiple lobes and layers of live neuronal tissue, allowing for monitoring of communication
comparisons between brain sections while an animal responds to stimuli [60].

Both these options present an opportunity to use spike data in creating novel models of brain
activity and structure, but this also comes with the challenge of processing and interpreting datasets
of such large dimensions [16] [17]. These techniques will only increase in resolution and data
dimension as methods further develop and refine.

Another exciting possibility is the statistical analysis of electrophysiological data generated by
neuronal cells cultivated with specific neuroanatomical conditions or pathologies [67]. Statistical
inference of neural activity in these ensembles could allow for insight into the functional connectome
structure of these networks and comparison with the maps of functional connectivity in healthy
neuronal networks. Because functional connectivity is the effective statistical connections between
nodes, treatments could be developed with the intent of restoring a functional connectome map in
a damaged neural connectome with a quantitative metric.

7



Any number of unique neural ensembles could be classified and compared with others based on
neural activity. Two papers from Valderhaug and coauthors [119] [117], use this approach to
investigate both structural and functional changes of in vitro human tissue derived neural networks
monitored by MEAs. These studies captured the network activity of healthy neural networks and
made comparisons with neural networks that had introduced pathological conditions consistent
with Parkinson’s disease. Functional connectivity was done by analysis of electrophysiological
recordings, while structural connectivity was obtained by optical analysis.

Figure 8
Overview of the growth in electrode technology.
(A) Density growth of electrodes per shank over
the years.
(B-D) Schematic of the Neuropixel probe.
(B) The tip with electrodes arranged in a dense
checkerboard pattern.
(C) The printed CMOS element, including the
shank as well as circuitry implementing
amplification, multiplexing, and digitization.
(D) The packaged device with flex cable and
headstage for interfacing and further
multiplexing.
(E) Picture of neuropixel probes on a CMOS
wafer.
Adapted from Steinmetz et al. 2018 [112].
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Figure 9
Schematic of a reservoir computer
where the middle “blob” is the
reservoir: some self-organizing system
with desired properties. In our
example an MEA. This is perturbed
by stimulation from an input layer
which the reservoir will self-organize in
response to, effectively processing the
input data. This is then attached to
an output layer, typically some sort of
directed artificial neural network which
can be trained to the desired task and
even back-propagate to the reservoir.
Adapted from Schrauwen et al. 2007
[106].

In vitro neural networks grown on MEAs have also been studied for potential application in biolo-
gical reservoir computing (Figure 9) [62] [49] [90]. Reservoir computers are computational modules
which rely on some self-adjusting, dynamic system which can self-organize in order to simplify com-
plex, nonlinear data. Much like biological systems, they are found to be most useful when poised
at criticality, an “edge of chaos” between order and disorder [91]. The computational capacity of
in vitro neural networks has been studied for use in simple computational tasks [49] [90]. Aaser
et al. 2017 [1] uses a biological neural network paired with an artificial neural net interpretation
layer in simulated guidance tasks. These methods interpreted the output activity of the in vitro
network by means an artificial neural network interpretive layer. A means of inferring the func-
tional connectivity of a neural culture could give extra depth to the capabilities of in vitro neural
reservoir computing.

1.4 Proposal and Building on Bulso 2019

Bulso et al. 2019 [19] introduces a novel Bayesian selection criteria based on the concept of Minimum
Description Length (MDL), an information theory implementation on Occam’s razor. The MDL
principle is the ansatz: “Choose the model that gives the shortest description of data [96].” Other
model selection techniques based on this principle [8] [96] [97] [78] precede the Bulso et al. 2019 novel
MDL criterion. However, the novel criterion proposed uniquely implements frequency distribution
of unique spike-words in localizing the family of possible models and may show an advantage
over the classical methods in regimes of high informational entropy. This is paired with logistic
regression technique analogous to an inverse Ising technique known as the pseudo-log-likelihood.
In this thesis we test the ability of the Bulso et al. 2019 novel MDL criterion to reconstruct the
structure of an Ising network model in a variety of network topologies, conditions, and observation
sample sets.

1.5 Paper Structure

This paper will construct the basis of Ising network models and build the methods employed both
their construction as well as the inference problem. This will span across the disciplines of graph
theory, statistical thermodynamics, information theory, and Bayesian model selection. Throughout
we’ll ground these methods to their mathematical motivations and material parallels with focus
on the neuroscientific regime. Furthermore, we will build upon these mechanics underlying the
model selection method used. Once motivations, background, theory, and methodology has been
exhausted, we will demonstrate their implementation in the experiment and analyze the results.
We will finish by addressing the experimental results and discussing the findings, ending with
projections of future directions in which to continue.

9



2 The Ising model

2.1 The Ising Model

The Ising model is a parametric model adopted from statistical mechanics. It was originally used
as a model of dynamics in a ferromagnetic lattice, whereby the spin of each polar moment is
influenced by the field of magnetic energy exerted on it by neighboring magnetic moments. The
Ising model has since made the transition as a model for Markov network state statistics. Its
well-studied properties provide sufficient statistics for problems of inverse system dynamics [40]
[80] and its binary properties allow application of information theory concepts to the inference
problem [48] [69].

The Ising model is a network as a system of interacting nodes which produce a distribution of
binary variables {−1,+1}. The individual binary state on each node is the spin σ, with the spin
state of each node i influenced by the spin of its neighboring node j (Figure 10). The connection
strength Jij determines the level of interaction between two nodes, when the node j express their
spin on i or vice-versa as Jij = Jji. Each node is also influenced by its own bias hi, which influences
its own spin activity. This is referred to as the external field, or simply, the bias. The field of effect
exerted on a node by its neighbors is measured as the surrounding energy E(σ) as expressed by
the energy function, the Ising Hamiltonian,

E(σi) = −
∑
i<j

Jijσiσj −
∑
i

hiσi, (1)

where σ is the spin σi ∈ {−1,+1}, exhibited by the nodes.

Figure 10
(Left) A lattice of polar spin moments in an two-dimensional Ising model. The up arrows
represent a positive spin σ = +1, and down arrows represent a negative spin σ = −1. (Right)
Illustration of nearest neighbor interactions, where the node in the middle, i is being acted upon
by its nearest neighbors j with connection strengths Jij .
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This field of effect is calculated for all nodes in the system at each moment in time, with the level
of energy exerted on the nodes dictating their spin state. Simulating this dynamic process over a
network of spins is the Glauber Dynamics of the Ising system (Figure 12) [45]. Each discrete time
step in the Glauber process is given as t = [1, ..., T ] where T is the total number of time steps
observed. The spin state over the network updates at each new time step in the process t+ 1. The
spin configuration of the network is represented as the spike-word vector ~s = {σ1, σ2..., σN} for N
total nodes in the system. The total process output of time-discrete network spin-states observed
over the time T is the spike-train array Ŝ (Figure 11) denoted,

Ŝ = {~s 1, ~s 2, ..., ~s t, ..., ~s T }. (2)

Figure 11
Biophysical spike data converted into its Ising Glauber interpretation. The array Ŝ is analogous
to the spike-train observed in biophysical contexts. Likewise, the discrete spin state of the
network ~s is a spike-word where each spike-word or combined pattern of spike-words can encode
some information.

The process of generating the Glauber dynamics as the forward Ising, contrasting with its inversion,
the inverse Ising problem. The inverse method begins with observing the spike-train, a distribu-
tion of spin-states output by the function of a system. The Ising network capable of producing a
particular distribution ~s, is defined by a similarly unique configuration of the parameters (Jij , hi).
Because the Glauber dynamics produces a stochastic output, if we are provided sufficient observa-
tion samples, we may infer the parameter configuration with the highest probability of producing
the samples [100] [5].

Figure 12
Interactive model of Ising Glauber dynamics for
a 2D lattice, generated from a simple Gibbs
sampling implementation [61]. Here the positive
spins are represented as in white and the
negative spins represented in black. The Gibbs
sampling is initiated with some randomness with
a set pairwise interaction strength and external
bias for all nodes. The equilibrium state of the
Glauber dynamics can be seen in the Turing
pattern visualization. This pattern of
self-sustaining equilibrium dynamics can be
better seen in the animation available in the
online version.
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The probability of a spin on a node P (σi = ±1) is given by the Gibbs-Boltzmann Distribution,

P (σ) =
eE(σ)

Z
, (3)

where the partition function Z =
∑
S e

E(~S), is the normalization factor. In the minimal example
of a system containing a single node, there are two possible states of the network, (+1,−1), every
additional node added to this system grows the complexity of this probability exponentially 2N

where N is the total number of nodes.

The probability of the spin state ~s for a system of nodes i and their interacting nodes j is,

P (~s) =
1

Z
exp

∑
i<j

Jijσiσj +
∑
i

hiσi

 . (4)

Assuming the system states observed at all time steps are independent and identically distributed
(i.e. probability is independent of the previous time state as opposed to how it would be in a
Generalized Linear Model, see inset: Ising Model in Biodata), the probability of a spike-train
configuration is,

P (Ŝ) =

T∏
t

eE(~s)

Z
=

1

Zt
exp

∑
t

∑
i<j

Jijσiσj +
∑
i

hiσi

 . (5)

The exact inference of the parameters Jij and hi quickly becomes a computationally intractable
problem.

The pairwise equilibrium Ising model assumes the system of interactions has settled in a Gibbs-
equilibrium steady state, essentially gravitated into a basin of low-energy on the hyper-plane of
phase-state space. In this attractor state, the output distribution, the activity of the neuronal pop-
ulation, abides by a stochastic behavior, with a particular pattern of output states. In this model
the connection strengths between nodes is a symmetric weighted edge Jij = Jji as thus what is be-
ing inferred is the pairwise activity between the nodes. The Ising expectation values (mi,mj , cij),
are the minimal sufficient statistics required to infer the network interaction parameters, where
the magnetization mi is the average spin on a node over all observations, mi,

〈σi〉 ≡
1

T

∑
t

σti , (6)

and the pair correlation cij , is the mean correlated spin over the observations, cij ,

〈σiσj〉 ≡
1

T

∑
t

σtiσ
t
j , (7)

The pair covariance (or pairwise connected correlation) χij ,

χij = 〈σiσj〉 − 〈σi〉 〈σi〉 , (8)

is also an important metric as we will show shortly. Maximizing the Ising probability function
with respect to the minimal sufficient statistics (i.e. the expectation values) reduces the computa-
tional complexity of the problem, while still returning the parameter reigon of highest likelihood
(Figure 14).
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Ising Model in Biodata

The Hopfield model [53] [3] adapted the concept of a neural network to an Ising model and it
has since gained traction as a parametric model for contextualizing neural activity [104]
(Figure 13) and biological data where connected systems may not be directly observable [81]
[99]. However, as biological data is typically continuous in nature, it must first be discretized
if used with an Ising model. So, neural electrophysiological recordings require some method
of binning the continuous spike data into the time bins t, and thresholding neuron spiking
activity into binary representations σti = ±1.

Knowing the mechanics of neuronal communication one might use a direct inference method,
the full inversion of the Glauber dynamics, taking the probability of a spin state as dependent
on the previous spin state P (~s t|~s t−1). This is the Generalized Linear Model (GLM) [99],
which also considers the direction of effect between nodes, but is computationally difficult.

The equilibrium Ising or maximum entropy model, models a network at a Boltzmann
equilibrium (somewhat analogous to the critical state of a neural ensemble) and constructs
the functional connectivity, a statistical summary of the network’s structure [89] [24]. The
maximum entropy model is shown to give a closer reconstruction of a network when
compared to models which treat the neuron firing rate as disconnected from other neurons in
the network (Figure 15) [100] [104].

Figure 13
Here the expectation values and corresponding
Ising terms have been computed from real
neural datasets [93] [105]. The left column of
figures shows the correlation data taken from
the data and the right column represents the
effective Ising values inferred from the maximum
entropy model. Note the distribution of the
Ising connection strength Jij is a Gaussian
distribution with a mean set about 0. The
neurons are ordered by descending mean spike
rate.
(a) The pair covariance χij = 〈σiσj〉 − 〈σi〉 〈σi〉
for the neurons. (b) The inferred pairwise
connection strength between neurons Jij ; note
that the interactions are spread more uniformly
throughout the network than the pairwise
connected correlations. (c) The mean
magnetization mi of the individual neurons. (d)
The bias hi of individual neurons. The intrinsic
tendency of the neuron towards spiking or
silence. (e) The histogram of correlations. (f)
The inferred connection distributions for
sub-networks of varying sizes. Adapted from
Tkacik et al. 2009, figure 1 [115].
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Figure 14
Maximizing the Ising probability function (Equation 4) for the expectation values by saddle point
optimization will return the parameters of highest likelihood [78]. An example of the connectome
model space for the minimal cluster (N = 2) as dimensionalized by the expectation values is
exhaustively in Bulso et al 2016 [20]. (a) Ten models for a system of the minimal cluster where
the network size is N = 2. Here the presence of a non-zero connection J is represented by a solid
line and the presence of a nodal bias h is represented by a dot. Note a difference is made between
models M4 & M5 as well as M9 & M10 as in the case where h1 = h2 the nodes are conditioned
by the same bias, effectively reducing the inference problem to a different model space. (b) The
model space for the first five models which have no interaction with each other. This space is
indexed by the expectation values {mi,mj , cij} and the regions of highest likelihood for the
respective models are represented by color. Adapted from Bulso et al. 2016, figures 1 & 2 [20].

2.2 Maximum Entropy

The Maximum Entropy principle [59] (maxent) states that among all distributions compatible
with a set of measured observables, one should choose the distribution with maximum entropy
[59]. In this context this is the informational entropy which is used as a measure of ignorance
when selecting a distribution (see inset: Entropy). By this principle, it is preferable to select a
distribution which does not add any additional biases or extra constraints to the set of possible
distributions.

A Gibbs-equilibrium distribution is at maximum entropy when its expectation values match the
observed data. Thus, for the distribution of a spin P (σ) indexed by some parameters θ = (Jij , hi),
the expectation values of the distribution will approach the same mean values of the observed spike
train [45] [81], ∑

σ

pθ(σ)σi = 〈σi〉observed , (9)

∑
σ

pθ(σ)σiσj = 〈σiσj〉observed , (10)

the parameters θ are then maximized within this constraint. Here we use the word indexed to
describe the configuration of Ising parameters capable of producing a particular distribution of
output spin states when introduced to the probability function (Equation 4).
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Entropy

Entropy is the measure of possible state configurations for a system or how much information
can be encoded into a system. In the case where we are attempting to find a specific
configuration state of the system while otherwise uninformed about it, we can think of the
entropy as a measure of uncertainty. The higher the entropy, the more possible system
configurations, the more difficult it will be to find a specific configuration. We measure the
entropy of a probability distribution P as,

S[P ] = −
∑

P (s) lnP (s). (11)

Entropy in this sense is the expected value of the possible system states s. To measure the
difference between two distributions, we use the Kullback-Leibler (KL) divergence to find this
distance between the two. However, it is not a very informative measure as it reaches zero
when the distributions are equal, and for all other values can only tell us that they are
dissimilar [100]. So if we have our original distribution Ptrue and the probability distribution
which we have inferred Precon the KL divergence between the two is measured as,

KL (Ptrue | Precon) =
∑
s

Ptrue(s) ln
Ptrue(s)

Precon(s)

=
∑
s

Ptrue(s) lnPrecon(s) +
∑
s

Ptrue(s) lnPtrue(s)

= −L(J, h) +
∑
s

P (s) lnP (s).

(12)

L(J, h) is the likelihood function which we will optimize to find our most probable model
parameters [80].

Figure 15
Schematic comparison plot of the entropy for an independent model of disconnected spins Sind
(black line), entropy of a pairwise model S̃pair (cyan line), and Strue with respect to size of the

network N . The maximum entropy pairwise model is closer to the true distribution as S̃pair
approaches Strue. This is shown by the normalized distance measure ∆N = Smaxent−Strue

Sind−Strue
Adapted

from Roudi et al. 2009 fig 3 [100].
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2.3 Maximum Log-Likelihood

The log-likelihood function LŜ(θ) is the probability P (Ŝ | θ) of the set of observed outputs Ŝ as a
function of the parameters θ = (Jij , hi),

LŜ(θ) =
1

T
lnP (Ŝ | θ)

=
∑
i<j

Jij
1

T

∑
t

σtiσ
t
j +

∑
i

hi
1

T

∑
i

σti − lnZ(θ)

=
∑
i<j

Jij 〈σiσj〉Ŝ +
∑
i

hi 〈σi〉Ŝ − lnZ(θ).

(13)

The log-likelihood only needs the first and second moments of interaction (magnetizations and
pair correlations) as these are considered sufficient statistics to determine the model parameters.
It becomes inconvenient to extend calculations beyond pairwise correlations as computational
complexity increases, but it can still be done efficiently in some cases [98].

In order to maximize the likelihood, we calculate its derivatives with respect to,

∂LŜ
∂hi

(J, h) = 〈σi〉Ŝ − 〈σi〉max ,

∂LŜ
∂Jij

(J, h) = 〈σiσj〉Ŝ − 〈σiσj〉max .
(14)

This can now be set into a convex optimization algorithm to find the region in parameter space with
maximum likelihood for the expectation values. An exact maximization approach is a Boltzmann
learning gradient-descent algorithm,

hn+1
i = hni + η

∂LD
∂hi

(Jn, hn) ,

Jn+1
ij = Jnij + η

∂LD
∂Jij

(Jn, hn) ,

(15)

where for some number of update steps n and the learning parameter η determines the step size of
each iteration of the algorithm. This quickly runs into the problem of computational costs for the
exact maximization. While expectation value calculations average over all spin configurations, the
partition function must sum over the terms at each step, making exact maximization infeasible for
networks larger than a few tens of nodes [101].

Approximate methods are used to sidestep these limitations. Sampling methods such as Monte
Carlo methods are excellent options as they can provide an exact answer if given a sufficient
amount of time. However, a “sufficiently long time” grows exponentially with the size of the
network [98]. Alternative approximate approaches available are the mean-field equations and the
Pseudo-Log-Likelihood.

2.4 Approximate Approaches

2.4.1 Naive Mean Field

The mean-field approach considers a simple approximation of an system by averaging over its
general field of effect, reducing many the degrees of freedom in the system to a smaller set averaged
variables. There are no interactions between the constituents of the system, just the combined
average effect they exert. This absence of interactions is called the mean-field assumption [84].
The field which effects on a single spin arises from the local field hi as well as the mean field from
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all spins coupled to the node being affected. An average over these fields gives a “mean effective
field” [80].

The simplest approximation is the näıve mean field (nMF) [113],

h̃i = tanh−1(mi)−
∑
j

JMF
ij mj . (16)

This is the derivative of the mean-field free energy with respect to the magnetization mi = 〈σi〉.
Likewise the second order derivative gives us the inverse susceptibility (i.e. inverse correlation)
matrix, (

χ−1
)
ij

= −JMF
ij , (17)

for i 6= j and χij = 〈σi〉 〈σi〉 − 〈σiσj〉. If the magnetizations and pair correlations are known, then
the coupling matrix JMF

ij can be approximated and subsequently the bias hi.

Roudi et al. 2009 [101] derives a nMF approximation for a system of independent spins which is
shown to perform well in small model sizes. This technique is expanded on in the methods section,
where it is used to test the forward Ising sampling implementation.

2.4.2 Thouless-Anderson-Palmer (TAP) Equations

The TAP equations [114] are an extension of the nMF [113], overcoming the limits of the nMF
in approximation for large populations with high firing rates by adding the Onsager term which
can be derived from the Plefka expansion among other approaches [88]. Essentially these take into
account the second-hand effect a node has on itself through the energy it exerted on its neighbors.
These are given as,

tanh−1mi = hi +
∑
j 6=i

Jijmj −
∑
j 6=i

J2
ijmi

(
1−m2

j

)
. (18)

Differentiation with respect to mj (i 6= j) then gives,

(
χ−1

)
ij

= −Jij − 2mimjJ
2
ij . (19)

Solving this quadratic equation gives the TAP reconstruction,

JTAPij =
−2
(
χ−1

)
ij

1 +
√

1− 8 (χ−1)ijmimj

, (20)

in the solution for the mean-field reconstruction when the magnetizations are zero. The magnetic
fields can again be found by differentiating the Gibbs free energy.

hi = artanh (mi)−
∑
j 6=i

JTAPij mj +mi

∑
j 6=i

(
JTAPij

)2 (
1−m2

j

)
. (21)

The TAP equations are shown to effectively reconstruct parameters as network volume increases.
When applied to spike trains from populations of up to 200 neurons, the inversion of TAP equations
was shown to give remarkably accurate results [98].

2.4.3 Pseudo Log-Likelihood

The Pseudo Log-Likelihood [13], which we will contract simply to Pseudo-Likelihood (PLH), is
an alternative to the log-likelihood. The regular likelihood function becomes computationally
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expensive as the partition function Z scales exponentially with the sum of 2N terms and requires
re-evaluation many times during the maximization of the likelihood. The pseudo-likelihood replaces
the log-likelihood with a series of logistic regressions on the node variables [20], scaling polynomially
with the size of the network N and number of samples T . This is still magnitudes more efficient
and approaches an exact inference of the model parameters in the limit of infinite sample size [100].

The key feature of the PLH is it reduces dependency on model parameters by splitting the Hamilto-
nian energy function into two parts, with the first part dependent only on the immediate node and
includes all couplings to spin σi, while the second part sums the energy over all other nodes, and
excludes couplings with σi. The Hamiltonian becomes,

Epl(σi) = Ei(σi) + E\i
(
σ\σi

)
. (22)

Given sufficient sampling size T , the average expectation values will match those of the standard
LLH. The separation of these variables is possible because the statistical effect of σi on the other
nodes ~s\i is given by the parameters (hi, Jij). We modify the partition function,

Z(J, h) =
∑
σ\σi

2 cosh

hi +
∑
j 6=i

Jijσj

 e−Eji(σ\σi), (23)

it now only sums over spin i reducing our computational complexity. Differentiating with respect
to the parameters to yield our expectation values,

〈σi〉 =

〈
tanh

hPLi +
∑
k 6=i

JPLik σk

〉 ,
〈σiσj〉 =

〈
σj tanh

hPLi +
∑
k 6=i

JPLik σk

〉 ,
(24)

These are the Callen identities [21]. While the expectation values on the right-hand-sides are an
average over the spins except for σi, they approach exact values with sufficient sampling. Most
importantly, the average over all 2N−1 states is replaced with an average over all configurations of
the samples [80].

Substituting the average over all states for an average over data corresponds to a probability
distribution which is a series of logistic regression models. Writing this new distribution function
as a logistic regression where the probability of spin σi is conditional on all the other spins {σj}j 6=i
is given as,

P (σi|σj 6=i , (Ji∗, hi)) =
eσi(

∑
j 6=i Jijσj + hi)

2cosh(
∑
j 6=i Jijσj + hi)

. (25)

We obtain the normalized pseudo-likelihood of a node in our system by taking the mean of the spin
distributions over the space of observations t,

LiPL (Ji∗, hi) =
1

T

∑
t

lnP
(
σti | σtj 6=i

)
. (26)

In the limit of infinite samples, maximizing this function returns the parameter vector θ = (Jij , hi)
of highest likelihood in relation to the node ni. Extending this to every other node in our system
nj returns an asymmetric coupling matrix Jij 6= Jji due to statistical variance when taking the
likelihood of Jji. This is compensated for by taking the average of the two values, 1

2 (Jij + Jji),
returning the inferred coupling matrix to an equilibrium state.

The PLH is shown to be further effective when paired with some regularization method in order
to reduce bias. The most common regularization term being the `1 regularization which will be
expanded on in the Section 3 [37].

18



Nguyen et al. 2017 [80], creates a PLH variant of the mean field and TAP equations by replacing
expression in the Callen identities with their PLH counterparts, essentially replacing the local spin
fields with their mean values. Their resulting equation for the PLH-Mean Field J ,

JPLH−MF
ik =

[
1−m2

i

]∑
j 6=i

χij ×
[(
χ\i

)−1]
jk

, (27)

where χ\i is the submatrix of the correlation matrix with row and column i removed. This can
be expanded to the second order to obtain a TAP variant as well. In the methods section this
is expanded on further and compared in effectiveness to other approximate methods for various
network configurations.
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3 Bayesian Model Selection

3.1 A Discrete Definition

In this section we must refine the definition of model to mean the network model Mi i.e. the
graph of the network connectome. These models are indexed by the Ising parameter configuration
θ which corresponds to a probability distribution P (Ŝ|Mi). Inferring this model from a point in
the space of outputs Ŝ for the distribution function, is a search in the space of probable models,
or a model neighborhood. Like the energy phase-state space, this neighborhood is a visualization
of a hyper-dimensional space, a manifold, to which some models or model families are local. This
may be thought of as a continuous volume made of ”points” in the space, each point a particular
configuration of the model Mi indexed by the Ising parameters (Jij , hi) much in the same way
a point or volume in three dimensional space is ”indexed” by the coordinates (x, y, z). Figure 14
illustrates a model neighborhood of a network of two nodes.

The task of the inference problem, is model selection, the ranking and fitting the models within
this space which best support the observed spike-train Ŝ for the probability distribution P (Ŝ|Mi).

3.2 Bayesian Techniques

There are two layers to Bayesian model selection. The first is to assume a model is true and can
be fit to the data, i.e. a direct inference of the parameters which best explain the given data Ŝ
exists. The second is weighing the potential models by some method and ranking them by their
ability to target the data distribution. There is no perfect model selection method. While more
complex methods can better fit a certain set or sets of data, they are prone to over-fitting data to
specific model families. Alternatively, a coarse-grain model selection approach may be able to fit
more models, but often fail in recovering network detail. Regarding the probability of recovering
the model Mi by the Bayes formula, the central question of this process is framed as such:

P (Mi|Ŝ), “What is the probability of finding the model of the networkMi given the observations
Ŝ?”

Expressed by Bayes formula,

P (Mi|Ŝ) =
P (Ŝ|Mi)P (Mi)

Z(Ŝ)
. (28)

We define the terms,

• P (Ŝ|Mi) is the likelihood and the point of focus to the likelihood functions built in section
two on Ising inference. This is a data-dependent term, from which evidence is built for our
manifold of probable models.

• P (Mi) is the prior probability of the model, or the probability of the model in the absence
of the observation data.

• Z(Ŝ) is the evidence , or our normalization: Z(Ŝ) =
∑
J P (Ŝ|M)P (M) . The probability

on the space of all possible models given the observation. The evidence can be momentarily
ignored while we build the space of probable models.

The posterior probability of each prospective model is:

P (Mi|Ŝ) ∝ P (Ŝ|Mi)P (Mi), (29)

where the prior is assumed uniform over the model space and so attention is focused on the
likelihood term P (Ŝ|Mi).
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When beginning with no information other than the observed data, the prior of a prospective
modelMi is defined by the parameters θ as conditioned by the observed spins Ŝ. To evaluate the
likelihood, the likelihood function must be integrated over all parameter configurations which fit
to the the constraints of the graph [87],

P (Ŝ|Mi) ∝ P (Ŝ|θ,Mi)P (θ|Mi). (30)

The term P (Ŝ|θ,Mi) is again the likelihood term (in this paper it is the pseudo-likelihood function
L∗(θ) ), and the prior P (θ|Mi) become our evidence:

P (Ŝ|Mi) ∝
∫
dθ eTL

∗(θ) P (θ|Mi). (31)

Given no prior information about the prospective model, an uninformative prior must be used.
The simple solution is to treat all models indexed by the parameters as equally likely. That is, an
unbiased probability distribution which assumes all prior parameters are just as equally as likely
across the model manifold. This causes a significant problem as a uniform prior can assign wildly
different probability masses to the same subset of parameters since two different parameter values
can index very similar distributions [78].

3.3 Model Selection Criteria

We pair the prior with an Occam factor P (θ|Mi)αθ|Ŝ . This Occam factor is a measure of uncer-
tainty on the data given, the ratio of the information accessible about the target model’s parameter
space, and the factor by which the model space is constrained once data is observed. An Occam
factor will more strongly penalize a complex model with a high number of parameters and a high
degree of possible models, opting instead for a simpler model, seeking a balance in model complexity
while minimizing misfit [69].

The implementation of complexity penalization on the graphical model is model selection criteria,
a complexity term which penalizes the likelihood based on the parameters which define the size of
the space, which is not only the Ising parameters, but by network size, sample rate, or informational
content [28]. We illustrate popular criteria solutions in the inset: Selection Criteria. Most of the
criteria used here do not penalize the model based on the Ising parameters and instead use the
uniform prior. However, in the MDL complexity terms we introduce below, an uninformed prior
called the Jeffery’s prior (the very last term under the integral in Equation 35) constricts the
model space, based on the parameters found by the likelihood function.
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Selection Criteria

`1 - Regularization: The simplest of the criteria and one which can be easily paired with
the others, is the attachment of a regularization parameter λ which is typically set small [51],
and allows elimination of the smallest, and presumably least significant, connections in the
network [80].

`1 = −L[θ] + λ
∑
ij

|Jij | . (32)

This has been shown to pair well with the PLH [75] [85] and optimization of the criteria in
high-dimensional regimes (large network and large sample size) can return an exact recovery
of initial network topology [94]. A standard way of optimizing the regularization parameter λ
is by cross-validating against a part of the observation data originally withheld to determine
the effectiveness of the criteria [69].

Two standard selection criteria are the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC). Both act as complexity penalizations but with differing
advantages. The AIC-BIC dilemma [30] refers to the problem where the trade off between
these terms is one between predictive quality and consistency.

Akaike Information Criteria (AIC): The AIC is a criterion proposed by Akaike (1974)
[2], and it approaches from an information theory perspective, it attempts to approximate the
out-sample prediction loss by the sum of the in-sample prediction loss and a correction term
[31]. Given a finite number of models the AIC tends to select the optimal one for prediction.
However, it loses consistency within regimes of larger N and T [48].

AICm = −2L(θ) + 2N. (33)

Bayesian Information Criterion (BIC): Relatively similar to the AIC however its
strength lies in its consistency, penalizing models with a large amount of parameters (N � 1)
[107]. The BIC selects the smallest model containing the target distribution [48]. The key
difference from the AIC being that it scales the penalization factor logarithmically with the
size of the sample data [31] [19].

BICm = −2L(θ) +N log(T ). (34)

3.4 Minimum Description Length

The Minimum Description Length (MDL) principle acts as is an informational implementation of
Occam’s razor. The idea stems from algorithmic coding theory, and proposes the best model to
describe some data is the one that encodes the data with the greatest compression of the data
description. That is, if the probability distribution function takes some set of input parameters
which encode a description of the output distribution, then the smallest set of input parameters
which can encode that description is the most viable model [47]. While the AIC and BIC penaliz-
ation factor scales with the network size and/or sample rate size, an MDL based approach prunes
parameters unnecessary to the generation of the observed output space.

One model selection criterion conceived of this concept was a proposed MDL modification of
Rissanen’s stochastic complexity criterion titled the Predictive MDL (PDML) [97], which integrates
into the rearranged Bayesian formula as:

logP (σ̄i | σ̄j , θ) = T` (θ∗)− n∗

2
log

T

2π
− log

∫
dθ
√

detF (θ). (35)

The two new terms which make up this criterion are referred to as the geometric complexity [78],

CGeometric = −n
∗

2
log

T

2π
− log

∫
dθ
√

detF (θ). (36)

The first term, coincidental to the BIC, increases logarithmically with the sample size T while
the latter term is independent of T . Meaning, the effects of the latter term diminish as sample

22



size grows because the Fischer Information matrix F (θ), which acts as metric of distance in the
distribution space of the Riemann manifold [78], will gradually decrease in impact respectively to
the number of non-zero parameters n∗. This effectively reduces the whole criterion to a measure
equivalent to the BIC.

The Fischer Information matrix is the matrix of expectation values for the Hessian matrix of the
likelihood Hi,j(θ) = −∂2θi,θjL

∗(θ) with respect to our model distribution P (σ̄i | σ̄j , θ), such that:

Fi,j(θ) = −E [ Hi,j ] , (37)

Fi,j(θ) = −
∑
θ

P (σ̄i | σ̄j , θ)
(
∂2θi,θjL

∗(θ)
)
. (38)

However the Hessian is not dependent on the probability of σi, so the Fischer information matrix
is the same as the Hessian.

The penalty terms in the PMDL is the intrinsic complexity of our target family of models. Rissanen
showed that as the network size increases, the PMDL is the length in bits of the shortest possible
code describing the output generated by a target model family. This suggests the model parameter
configuration which best minimizes the PMDL (and thus maximizes the probability) gives the
parameters which generalize best.

3.4.1 The Bulso et al. 2019 MDL Criterion

Using the PMDL as a basis, Bulso et al. (2019) [19] focused on the latter term of the Geometric
Complexity :

CGC = log

∫
dθ
√

detF (θ). (39)

In logistic regression models, such as the PLH, the elements of the Fisher Information matrix can
be expressed,

Fi,j(θ) =
∑
µ

ν (~s µ) cosh−2 (θ · ~s µ)~s µi ~s
µ
j , (40)

where ν (~s µ) is the frequency of observing a unique spike-word configuration ~s µ in the data,
with the size of the spike-word “dictionary” being µ = 1, . . . , 2n . Deriving the lower and upper
theoretical boundaries on the latter term of the geometric complexity, Bulso et al. 2019 proposed
the novel MDL-entropy (MDLent) based criterion,

CBulso = −n
∗

2
− n∗

2
log

(
TSn∗

n∗SN

)
+ log n∗. (41)

Here n∗ is the number of non-zero parameters of the parameter vector θ for the model, while
N stays the total number of nodes. The term S is the Shannon bitwise entropy of our of our
spike-word frequency distribution (for all spike-words, ~s ∀ )

Sn∗(~s ∀) = −
∑
µ

ν(~s µ) log2 ν(~s µ). (42)

Likewise, SN is the entropy of the full nodal set. The criterion scales with the entropy distribution
to localize on the model distributions capable of producing the observed spike-word frequencies.
In practicality, this term trends towards an AIC-like penalty term in fully-connected graphs with
low observed samples n ≈ T ≈ N and a BIC-like term in sparse networks : C → n∗

2 log (T ) as
Sn∗ → n∗.

In comparison to other criteria, the novel MDLent criterion showed a general BIC-like trend,
however was also able to match the AIC reconstruction rate in sparse networks, where the BIC
method tends to show weakness (Figure 16). This was observed across two large sized networks,
N = 50, 100.
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(a) N = 50

(b) N = 100

Figure 16
Subplots of the mean misclassification error of the different criteria including the novel MDLent
term, versus levels of network sparsity for a network of size N = 50; error bars represent the
mean standard deviation. The misclassification error was averaged from 100 sample trials. The
superplot columns represent the spin-glass model beta values β used to adjust network couplings
strengths; the rows are variations of sample rate sizes T taken with respect to the network size.
The performance of the selection terms AIC (red), BIC (blue), `1 regularization (violet, and only
for the first two values of T ), and the novel MDLent criterion (yellow). All inferences were done
using a logistic regression based likelihood method (akin to the PLH). Adapted from Bulso et
al. 2019 [19].
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4 Methods

4.1 Network Regimes and Glauber Dynamics

Figure 17
Illustration of different measures of network topology. Here we mainly refer to the degree of
connectivity or coordination number : the average number of connections each node in the
network has. We will also refer to the concepts of hub nodes: nodes which lie at the intersection
of multiple paths of shortest lengths both of which are used describe the integration and
segregation of a network connectome. Adapted from Rubinov et al. 2010 [103].

4.1.1 Model Topologies

To generate a ground truth for our inference methods, we needed to first create a forward Ising
implementation, allowing control over the experimental conditions. This required us first making
a selection of the topologies for the intended connectome structures.

We start with a symmetric N×N adjacency matrix where the entries of 0 and 1 define the presence
of an edges K between the nodes n. Depending on the graph structure we want, we define the
probability distribution of edges for the nodes. For example, the Random Graph or Erdős–Rényi
[36] assigns the edges randomly to each node with a weighted probability. In our implementation,
the probability of an edge between two nodes P (K) = C

N−1 where our coordination number C is
the average number of edges per node (or degree, Figure 17) in the graph (pre-selected as a density
measure) and N−1 the total number of other nodes that can be connected to (no self-connections)
which keeps the network at some level of sparsity (and not fully-connected) as long as C 6= (N − 1)
[36] [63].

Tested Connectome Topologies The following connectome topologies were used: Cayley tree
(CT), Erdős–Rényi (ER), & small world (SW). Topology descriptions can be found in the inset:
Topologies. These were chosen for their scaling levels of network structure and trade-offs between
rigidness and randomness. The Cayley Tree with its fixed structure and consistent node degree
provides a baseline metric for the inference method, as it consistently proves to be the easiest
topology to infer among the methods tried here. Opposite to this is the random graph with an
entirely probabilistic structure and node degree distribution which tests the generalizability, or an
inference method’s tendency to overfit to a single structure type. The Watts-Strogatz SW topology
overlaps features between both, with the model keeping a fixed node degree while also maintaining
an aspect of variability and change within the network structure.
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Topologies

The last section covered connectivity types we wish to infer. Here we apply graph theory to
describe the underlying network topologies. Multiple graphical model types exist, and in the
neuro-anatomical context graphs are used to describe the connectome of neuronal structures.
The Ising pairwise model is a weighted undirected network, the connectome model M is an
undirected network. For testing we will use several established graph topologies. The most
straight forward example we’ve just described, is the Erdős–Rényi or random graph, as it has
no particular structure to its topology. However, real world networks and self-organized
assemblies are not randomly arranged but instead have ordered and hierarchical structures.

Cayley Tree: A Cayley tree [23] is a simple undirected graph with a “tree like” structure
and a consistent number of branches C at every node with no closed loops, or cycles [12]. It is
recursively constructed by designating a “seed node” as the zeroth generation hub of the
lattice that “branches out” (creates unique edges) to C number of new nodes. This “first
generation” of hub nodes in turn branches out to another C − 1 nodes for any specified
number of generations (Figure 18). These are useful in inference problems as they have exact
solutions in the Ising model via the Bethe-Peierls approximation [82] [34]. Tree structures
provide an important baseline for testing model reconstructing as they avoid many of the
problems associated with complex structures (loops, density) while also providing insight into
dependencies of the parameter distribution at reduced computational cost [28].

Small World Networks: Small world networks are networks that are more clustered than
random networks, yet the average path length (number of hops between any two nodes) is
similar to those in random networks. The seminal example being real-life social networks [74]
[4] where indirect relationships between people often follows paths which cluster around “hub
nodes” (Figure 19). Plenty of other examples and variations exist [52]. These network
topologies combine features found in segregated network modules of specialized functionality,
into a larger, sparser, cross-connected network of such modules. The idealized version
features high amounts of both segregation and integration [103].

Many naturally occurring self-organized networks are of this variety. In neuroscience we find
many examples of highly self-connected neuronal modules which make local and long distance
communications in the greater neural network [67] [122].

Our tests use a simple Watts-Strogatz small world graph model [121], which organizes itself
first as a ring model where each node connects to C of its nearest neighbors. Each edge in the
graph then rewires to a random node with the probability P (K), excluding duplicate edges or
self-connections. The graph begins as a ring lattice, so when P (K) = 0 there are no rewires
and the graph stays a ring lattice, when P (K) = 1, every edge rewires and the topology is a
random graph. As with the random graph, we set the probability to scale with the size of the
network and the selected coordination number P (K) = C

N−1 .

Figure 18
Recursive Bethe lattice for coordination number
of C = 4. The Bethe lattice is an infinite graph
where each node has the same number of edges
and there is only a single path between any two
nodes. The Cayley tree is a finite portion of the
Bethe lattice. Adapted from Eckstein et al.
2005 [33].
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Figure 19
Nodal plot of a Watts-Strogatz small world network. On the left is a sparse small world network
(N = 50, C = 4) with low probability of edge reconnection, making for a network with few hub
nodes. On the right is a larger, denser, small world network (N = 100, C = 12) with a slightly
higher chance of reconnections, increasing the number of hubs in the network.

4.1.2 Connection Strength Distributions

The value distribution on the parameter connection strengths J and bias h, is the next key con-
cern while building a synthetic network. Similarly to the Sherrington-Kirkpatrick (SK) spin-glass
model, we adopt the inverse temperature β [83] which adjusts the localization of the phase space
distribution over the manifold, by controlling the average strength of pairwise connections [19] [75].
Changing this parameters diversifies the distributions of data in the observation samples.

We normalize β to scale with our network density such that β√
C where C is the coordination number

as defined above and β is the initial inverse temperature setting. In this way we are able to reliably
compare results from networks of the same β but different densities.

The distributions can also be set differently between the two Ising parameters. For instance, in
Nguyen et al. 2017, their Ising inference tests used a fully connected model and took connection
strengths Jij from a Gaussian distribution centered at 0 with a standard deviation of β√

N
[80] (the

coordination number in a fully connected SK-model is the size of the network N); while the bias
strength hi was drawn uniformly from the interval [−0.3β, +0.3β].

While the distribution of our experimental values for h initially followed the same distribution used
for our coupling strength distribution in a weakly connected model, we use a disconnected external
field h = 0 in interest of simplicity.

Tested Ising Distributions For the purposes of building and testing the experiment we used a
simple Double Delta distribution, with a split mean at µo = ±1, making the connection strengths
Jij = ± β√

C where 1√
C acts as a normalization factor for the density of the network. We chose to

normalize by the coordination number C instead of the network size N as our networks are gener-
ally not fully connected. The biological analog to the positive and negative connection strengths
would be excitatory and inhibitory neurons (more specifically excitatory and inhibitory connec-
tions between neurons) respectively. Future variation in these experiments may adjust the total
number of negative or positive connections to emulate excitatory/inhibitory networks.

In our final iteration of the experiment we opted for a split-mean normal distribution (Figure 20)
where the connection strength has a split mean with a Gaussian distribution around both means
and a standard deviation σ set to scale with network by the normalization factor σo = 1√

C . Thus,
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allowing for a more even and varying distribution of the connection strengths scaling along with
networks sizes and regimes.

Jij
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Figure 20
Histogram of connection
strength distributions Jij for
a large, sparse, small world
network with mid-range beta
(N = 100, C = 28, β = 1 ).

4.1.3 Network Regimes

We define the regime here as the initial network and experiment conditions. We split this into two
general regimes, the small network (small N) and large network (large N), over which the other
conditions are varied. The small N regime consists of some few tens of neurons (Table 1). In this
regime we choose to use only small sets of observations sizes (T = 10N, 15N, 20N) or the low-rate
regime. The large N regime (Table 2) has larger networks N ≥ 50 along with high-rate sample
sets (T = 100N, 200N). The network density is also tracked by the coordination number in the
network structure (C = 2, 4, 8, 12, 28) and use it as our point of reference for network density or
sparsity.

Small Network Regime Parameters
Coordination Number: C = 2, 4, 8
Network Size: N = 10, 15, 20
Distribution Localization: β = 0.3, 0.7, 1, 1.3, 1.6
Observation Samples: T = 10N, 15N, 20N
Trials: 100

Table 1: Small Network Regime Table

Large Network Regime Parameters
Coordination Number: C = 8, 12, 28, 50, 70, 90
Network Size: N = 50, 80, 100
Distribution Localization: β = 0.3, 0.7, 1, 1.3, 1.6
Observation Samples: T = 10N, 30N, 50N, 100N, 200N
Trials: 100

Table 2: Large Network Regime Table
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4.1.4 Metropolis Hastings Algorithm

For each set of experiment conditions a Gibbs sampling implementation was used simulate the
Ising Glauber dynamics and produce a a binary Markov chain. i.e. a synthetic spike-train. The
exact Gibbs sampling process which directly replicates the Ising Glauber dynamics as described in
Section two. Each update in the system state is calculated from the probability P (σt+1

i |σti) and
the probability of the spin state on a node σi = ±1 is taken at each new time step t+ 1.

This exact method is computationally very expensive and slow. A more effective implementation is
probabilistic sampling, i.e. Markov Chain Monte Carlo (MCMC) methods. These are guaranteed
to produce samples for a target probability distribution, but they must first “burn-in”, a period
where the Markov process runs long enough to converge at the equilibrium point of the target
distribution [69]. This time required to reach the burn-in state becomes a major drawback.

We can append a learning rule to a probabilistic variant of the MCMC algorithm known as a
Metropolis Hastings MC (MHMC). The algorithm probabilistically samples the Markov process
and forces the Markov chain to converge to an equilibrium point of minimal energy. This begins
by calculating the total energy of a system in its state by evaluating the energy function:

E = −1

2

∑
i<j

Jijσiσj +
∑
i

hiσi, (43)

where a factor of half has been applied to account for the spins being double counted. The MHMC
algorithm then minimizes this value by an adaptive rejection sampling process [43].

At each time-step in the chain, the algorithm proposes a new system state, selecting a random
node in the initial system and flipping its spin to the opposite value. The algorithm then compares
the difference in magnitude of the initial energy state versus the energy of the proposed system.
If the proposed system state has an energy lower than the previous ∆E ≤ 0, it is automatically
accepted as the next state in the Markov chain. However, if the magnitude is greater than that of
the initial state ∆E the proposed system state is auto-rejected and the previous spin state remains
the current one. There is included, however, a probability the new state will be accepted regardless
P = 1

e−∆E [72] [73] (Figure 21).

This process is allowed to run for a large number of steps (in our simulations we use T ×N × 10
steps) at which point the MHMC algorithm will converge at the desired equilibrium [92] [69]. This
process is then continued for another T ×N × 10 steps, where every tenth system state is sampled
as part of the simulated spike-train Ŝ.

MH Algorithm

• 1: Compute Et for current system state s̄t

• 2: Select random node i in our system and change the spin (i.e. : -1→ +1 , +1→ -1).
This is our proposal state t+ 1

• 3: Take difference of both state energies: ∆E = Et − Et+1

If : ∆E < 0
Or if : u < exp[−∆E] > Where u is a uniform random value between (0, 1)
Then, update the proposal state to be the current state: s̄t+1 → s̄t

• 4: Else If: ∆E ≥ 0 Then keep current state s̄t
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Figure 21
Flowchart of the Metropolis-Hasting algorithm. Adapted from Kotze 2008 [58].
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4.2 Inverse Ising with Approximate methods

4.2.1 Sanity Checks

We ensure the forward Ising implementation converges to the target distribution by comparing the
expectation values of the output Markov chain against those generated by mean field approximate
methods described in section two. Certain derivations of the mean field equations can be incredibly
accurate even in the low-rate regimes [102]. Approximating the expectation values from the initial
Ising parameters with well established solutions provides us a basis of comparison. We use the
mean field approximations for the Independent-Pair and Field of Disconnected Spins, (Figure 22).

Roudi et al. 2009 [102] makes an approximation for a network of independent-pairs. In this topology

every node i is connected to a single other node j. The coupling strength Jpair
ij for all spin

configurations of the two neuron system is approximated,

Jpair
ij =

1

4
ln

[
(1 +mi +mj + χ̃ij) (1−mi −mj + χ̃ij)

(1−mi +mj − χ̃ij) (1 +mi −mj − χ̃ij)

]
, (44)

where χ̃ij = χij +mimj .

We first produce a spike-train using the forward implementation for a network of independent
pairs Jpair

ij . We then calculate the expectation values from our generated outputs. If our Glauber
dynamics are correctly simulated, then we should expect these generated expectation values to
correlate with the expectation values calculated from our approximate solutions.

Inserting the coupling strengths Jpair
ij into equation Equation 44 and lettingmi = 0 (where external

field hi = 0 removes dependencies on the magnetization mi ≡ tanh(hi)) then solving to produce
our estimated pair covariance χij = tanh(Jij) [95].

We likewise produce a spike-train for the configuration of disconnected spins, where nodes are
disconnected Jijpair = 0 and set the external field to some level of influence e.g. hi = β. Here
we can simply use the TAP equations (Equation 21) with any dependencies on Jij being removed.
The estimated magnetizations become mi ≡ tanh(hi).

Expectation values:
Magnetization : mi ≡ 〈σi〉
Pair Correlation : cij ≡ 〈σiσj〉
Pair Covariance : χij ≡ cij −mimj
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Figure 22
Comparing expectation values: (Left) Comparison of the magnetization values of a disconnected
coupling matrix with a Gaussian distribution on the bias field hi. Estimated by the Mean Field
mi ≡ tanh(hi) on the x-axis and the values generated by the adaptive rejection Sampling
technique along the y-axis. (Right) Comparison of the pair covariance values for a system of
independent spins (Gaussian distribution and no bias). Estimated values given by the TAP
approximation χij = tanh(Jij) along the x-axis, and simulated data along the y-axis. Both
distributions are taken for a system of N = 500 & β = 1 where T = 100N.

4.2.2 Inverse Ising of a Gaussian Distribution

After having verified the implementation of the Metropolis-Hasting algorithm matches the estim-
ated results in the simple cases (as described above), we tested the approximate inverse Ising
methods. Using a similar method to Nguyen et al. 2017 [80], we compared the approximate Ising
methods across differing coupling strength parameters, network sizes, and spike train sample sizes
(Figure 23 and accompanying inset).

We see the nMF perform most favorably in networks where β ∼ 0.5− 0.9 and with large network
and sample sizes. The TAP equations largely followed the same trends as the nMF, particularly in
smaller networks, but diverges slightly from the nMF with marginally better reconstruction scores
at β = 0.9.

The PL-MF has the most unique reconstruction performance of of the methods tested. Its strength
appears to lie in consistency at lower sample sizes even in smaller networks, perhaps performing
best at small network size and sample sizes. However, it shows weakness in networks of higher
connectivity strength. Figure 23 shows it dropping off in accuracy at a lower beta value in compar-
ison to the other methods, reaching a point of diminishing returns around β ≈ 0.4 and increasing
in error afterwards. However, its climb in inaccuracy trends differently, plateauing in error as the
beta increases, whereas the others rise exponentially in error after reaching their optimal β. The
PLH will also tend to overestimate a connection strength when in error, whereas the other methods
tend to underestimate.

As expected the strongest inference method was the PLH under Boltzmann learning, showing better
reconstruction error across all parameters but particularly improving its error rate as T increases.
While its trend initially follows the same one as the nMF and TAP, it noticeably performs better
in all network configurations and sample sizes for β ≥ 0.6 but below β ≤ 1.8.
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Figure 23
Replication of figure 5 from Nguyen et al. 2017 [80]. Here we have compared the Inverse Ising
methods which we have tested across multiple values of β and have plotted the mean Relative
Reconstruction Error γJ from 100 realizations of the network. Our version has added the PL-MF
variant and the PLH with a Boltzmann learning algorithm (PLH-BL in legend). Our results
followed trends similar to the ones found in Nguyen et al 2017. See companion inset for more
information.

Companion to Figure 23:
The inverse Ising methods: nMF, TAP, PL-MF, and the exact PLH inference, are used to
infer the parameters for an Ising model in a fully-connected graph of no bias hi = 0 and
coupling strengths Jij drawn from a Gaussian distribution with a mean centered at zero

µ0 = 0 and standard deviation σ0 = β√
N

for the parameters:

β T N
0.01, ... ,1.8 100,000 150

Full tests (not shown) also included regimes of T = [1, 000, 10, 000] & N = [50, 100]. We score
the quality of the reconstructions using the relative reconstruction error (RRE):

γJ =

√√√√∑i<j

(
J∗ij − J0

ij

)2∑
i<j

(
J0
ij

)2 , (45)

where J∗ij is the reconstructed coupling matrix and J0
ij is the original matrix.
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4.3 Model Selection Tests

4.3.1 Replicating Bulso et al. 2019

Our intent is to replicate the model selection tests done in Bulso et al. 2019 [19] comparing the
MDLent novel model selection criteria against other criteria. Additionally we would like to expand
the ground truth network model and Ising parameter distributions to a wider array of network
topologies and conditions to be inferred. Bulso et al. 2019 utilized a random graph with a double
delta distribution of Ising model parameters where Jij = β

N and hi = 0.1 for all parameters
(and a zero diagonal Jii = 0 ) and normalized by 1√

C for networks of size N = 50, 100 at T =

5N, 50N, 200N at various levels of sparsity and β. We expand our tests to the regimes shown above,
with the key difference of adding the two additional topologies and the split mean distribution.

We focus on the performance of the BIC and novel MDLent criteria in our results, as their recon-
struction error rates were less distinct from each other in the 2019 paper and we are interested to
observe any divergences in performance across any of the additional experimental conditions.

Our implementation of model selection criteria uses the PLH to calculate the likelihood and con-
nection strengths Jij as inferred from the simulated Glauber dynamics of our Metropolis-Hastings
algorithm implementation. The fully connected model of each node’s connections is then recur-
rently decimated (see inset: Optimal Brain Damage) to a fully disconnected model; the criteria
then make selections from the decimated set of models. The reconstructed matrix is then compared
to the ground truth adjacency matrix and scored.

Optimal Brain Damage
For larger network sizes it becomes increasingly difficult to appraise and rank all possible
model configurations. A common solution to the “search and evaluate” problem is to apply a
decimation technique [64]. This technique creates a configuration of the nodal connections by
starting with a fully-connected topology and “pruning” connections, thus we can “walk” the
model space by selecting a model configuration, evaluating it, then selecting the next model
to be assessed. This can be done by a “random walk”, via random connection decimation, or
even in reverse, starting with a disconnected graph and step-wise adding connections instead.
We use the method from Decelle et al. 2014 [29] where connections with the lowest Ising
connection strengths are recurrently decimated until the matrix is reduced to a disconnected
graph. This implementation of the random walk decimates a single connection per step in the
walk, but the decimation can be done by any fraction of the total connections, which may be
a more preferable method in larger networks. After recursively decimating N − 1 models,
with our last model of n∗ = 1, we may then choose the best model from the models indexed
based on criteria score.

Another possible method, and one that may be relevant to the question of symmetric
connections, is a model walk process used in Pensar et al. 2017 [87] which applied an inclusive
OR-gate postprocess to their first model reconstruction, considering any of these recovered
connections as part of the candidate set of possible edges before reapplying the selection walk
to the model subspace.

4.3.2 Symmetrizing the Reconstructed Graph

Because the form of our model is one of pairwise interaction, the initial undirected graph is sym-
metrical Jij = Jji, however the reconstructed graph returned by the selection methods is largely
asymmetrical. We want to consider the selection methods’ performance in respect to reconstructing
a graph of pairwise connections and so we applied a layer of postprocessing which would symmet-
ricize the reconstructed graph. There are two options to this step: applying a “generous” inclusive
OR-gated function repairing any asymmetries Kij = Kji = 1, or a “conservative” AND-gated func-
tion pruning asymmetrical connections so that Kij = Kji = 0. This showed interesting properties
in early experiments, sometimes providing additional accuracy to reconstruction error in certain
Ising distributions and showing a certain consistency across conditions (Figure 24). Unfortunately
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it could not be fully implemented due to time constraints. See appendix C for more figures.

Figure 24
Sample analysis of the symmetry gating feature for the novel MDLent criteria. Here we can see
the misclassification error (hamming distance) of the novel MDLent criteria and the symmetry
gated variations of its reconstructed adjacency matrix. This was done for the small world,
low-rate dataset. The individual subplots show the mean misclassification error taken from over
100 realizations of the network, over the beta values, error bars show mean standard deviation of
the error rate. The greater plot compares observation sample rate and the density by the
coordination number. We can see a jump in error with the symmetry gated methods, with a
slight advantage going to the exclusive-AND gated method, especially in lower observation
sample sets, though this may be due to the overwhelming sparsity of the original connectome.
Other than that, they largely follow a similar trend to the original criteria.

4.3.3 Reconstruction Scoring

We tracked performance of the model criteria by three metrics derived from the false positives
(FP), false negatives (FN), true positives (TP), and true negatives (TN). All metrics were taken
by averaging the scores returned from 100 realizations of the network. The standard deviation of
the trials was used to measure mean accuracy.

The misclassification error rate (or Hamming distance) is the sum difference between the original
adjacency graph of the network and the reconstructed connectivity graph, i.e. the percent of
connections which were incorrectly inferred, by dividing the net sum of the erroneously inferred
connections by the size of the adjacency matrix (minus the diagonal of non-interacting elements):

Misclassification Error Rate =
FP + FN

N2 −N
. (46)
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The Receiver Operating Characteristic (ROC) plots the True Positive Rate (TPR):

TPR =
TP

TP + FN
, (47)

i.e. the ratio of correctly inferred connections out of the set of ground truth connections. And the
False Positive Rate (FPR):

FPR =
FP

FP + TN
, (48)

i.e. the number of incorrectly inferred connections out of the set of sparse connections.

Lastly, we consider the false-positive and false-negative occurrence scores. These are the fraction
of false-positive and false-negative errors returned by the model selection criteria results.

4.4 Implementing our methods

Our simulation and inference methods were coded and executed in a MATLAB2020a/b environ-
ment. A sample of the top-level script can be found in the appendices and a github repository
containing the full code is available in the online version of this paper. Evaluation of low-rate
regimes were performed on a standard four core Intel CPU personal computer with Ubuntu OS.
Evaluations of large regimes were performed on the NTNU IDUN High Performance Computing
cluster [108]. Each evaluation of an experiment regime was split into individual jobs and assigned
to one of the cluster’s more than 70 nodes. Each node contains two Intel Xeon cores and each job
utilized up to 27 gigabytes of the total 128 gigabytes of main memory. IDUN’s storage is provided
by two storage arrays and a Lustre parallel distributed file system. Due to limitation in the MAT-
LAB Parallel Computing Toolbox, our evaluations were limited to a single core per node. Future
improvements may consider porting our code implementation to a more parallelizable solution to
better utilize the highly parallel traits of the PLH.
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5 Results

5.1 Model Selection Results

We have reconstructed the connectome for the Cayley tree, random graph, and small world to-
pologies from the Glauber dynamics of an Ising network, using a model selection process which
implements the BIC and novel MDLent criteria. This model selection process was repeated for a
diverse set of network conditions and sample rates, which we have binned into two large categories
based on network size: the small and large network regimes. We compare the reconstruction per-
formance of the BIC and MDLent criteria in the three topologies with respect to these categories.

5.2 Cayley Tree Topology

Reconstruction of the Cayley tree topology establishes a baseline of criteria performance as recon-
struction of a tree topology is a simpler task and reveals many of the same trends in the criteria
performance which will be seen in other topologies, such as distribution of the error rates with
respect to the inverse temperature parameter β. Figure 25 illustrates how criteria performances
stays within the same error, with mean values overlapping, but the BIC and MDLent mean re-
construction rates diverge as network density increases. As expected, the global error decreases
in regimes of larger sample rates and network size. The reconstruction rates for the Cayley tree
show consistent low global reconstruction error, which decreases with network size as can be seen
in the large network (N = 100) at low-rate (Figure 26), by comparing with the smaller network
regimes (Figure 25). There is also a cleaner divergence in criteria performance in the large network
regimes, with the BIC maintaining a consistently lower mean error than the MDLent.

Figure 25
Misclassification error (Equation 46) for Cayley tree in small and large network size regimes. Left
N = 10. Right N = 20. Subplot y-axes measured in log-scale. BIC is represented by red circular
marker. MDLent is represented by yellow triangular marker. Error bars represent standard deviations.
Plots are grouped into columns by sample rates T and rows by network density.
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Figure 26
Misclassification error (Equation 46) for Cayley Tree topology, N = 100 regime. Subplot y-axes measured
in log-scale. BIC is represented by red circular marker. MDLent is represented by yellow triangular
marker. Error bars represent standard deviations.

Figure 27 shows the cause of increased MDLent reconstruction error: an increase in false positives.
The MDLent FP score diverges from the BIC’s scoring higher as density and sample rate increases.
There is no divergence between criteria FN scores in the small network regime, but the MDLent
begins to score lower than the BIC in the large network as β > 0.3, and only in the denser network.
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Figure 27
False positives and false negatives in the Cayley tree small network regimes. Top: N = 15.
Bottom:N = 100. Subplots show total occurrence of FP or FN per network regime. Subplots are
divided into 6 columns, split into three groups of sample rates T . Subplot y-axes measured in log-scale.
BIC is represented by red circular marker. MDLent is represented by yellow triangular marker. Error
bars represent standard deviations.
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5.3 Random Graph and Small World Topologies

Reconstruction metrics in the random graph regime parallel those in the small world regimes
(Figure 28). Distribution of BIC and MDLent performance metrics are the same in the respective
regimes of the small world and random graph topologies. This equivalence appears to hold in all
metrics, as can be seen in the FP-FN scores (Figure 29, Figure 30) and ROC (Figure 31). We can
safely say results from the small world regimes directly reflect results in the random graph regimes.

5.3.1 Small Network Regimes: Misclassification, FP-FN, ROC

In the small network regime for the random graph and small world topologies, overlap in criteria
performance continues. While there is larger variance in global misclassification scores between
changes in β (Figure 28a and b) than was seen in the Cayley tree reconstruction, there is still
little divergence between criteria reconstruction rates in all densities and sample rates. Criteria
reconstruction rates don’t begin to widely diverge until the large network regime (Figure 28c and
d). The largest difference in performances in the small network regime occurs in the lowest sample
rate T = 10N , where the MDLent FPR increases relative to the BIC as β > 0.3 (Figure 31a and
b). Figure 29 shows the cause to be an increase in MDLent FPs as β increases.
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Figure 28
Misclassification comparison for random graph and small world topologies in small N = 20 and large
network N = 100 regimes. Subplot y-axes measured in log-scale. BIC is represented by red circular
marker. MDLent is represented by yellow triangular marker. Error bars represent standard deviations.
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Figure 29
False positives and false negatives for the random graph (Top) and small world (Bottom) topologies in
the small network N = 20 regime. Subplot y-axes measured in log-scale. BIC is represented by red
circular marker. MDLent is represented by yellow triangular marker. Error bars represent standard
deviations.
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Figure 30
False positives and false negatives for the random graph (Top) and small world (Bottom) topologies in
the large network N = 100 regime. Subplot y-axes measured in log-scale. BIC is represented by red
circular marker. MDLent is represented by yellow triangular marker. Error bars represent standard
deviations.
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Figure 31
ROC (Equation 47) comparison for random graph and small world topologies in small N = 20 and large
networks N = 100 regimes. BIC is represented by red circular marker. MDLent is represented by yellow
triangular marker. Error bars are removed for clarity.
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5.3.2 Large Network Regimes - Misclassification Error

In the large network regime (N > 50), major differences in criteria performance appear. In
the low-rate regimes (Figure 32), global misclassification rates suddenly increases with network
density increases. Likewise, the MDLent reconstruction error shows better performance relative
to the BIC as the network density increases. This only appears in the low-rate T < 50N , as
global reconstruction errors rapidly decrease and re-converge as sample rate increases. Comparing
the performance in a smaller network N = 50 and a larger network at similar levels of network
density, shows a similar performance between criteria in the high-rate and convergence of criteria
reconstruction error as sample rate increase (Figure 33). Comparing reconstruction error at low
and high densities in the largest network (Figure 34) also shows the MDLent performing better
relative to the BIC in a low-rate regime, especially in higher densities where global reconstruction
error rapidly increases. A figure of misclassification scores for all densities in a large network
(N = 100) is available in the appendix, Figure A2.
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Figure 32
Misclassification error (Equation 46) for small world topology, N = 50 at low and high sample rates.
Select beta for the high-rate. Subplot y-axes measured in log-scale. BIC is represented by red circular
marker. MDLent is represented by yellow triangular marker. Error bars represent standard deviations.
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Figure 33
Misclassification for N = [50, 100] for high sample rates with similar densities. (Top)
N = 50, density = [0.8, 0.24, 0.57]. (Bottom) N = 100, density = [0.12, 0.28, 0.5]. Subplot y-axes
measured in log-scale. BIC is represented by red circular marker. MDLent is represented by yellow
triangular marker. Error bars represent standard deviations.

47



Figure 34
Misclassification error (Equation 46) for N = 100 regime at C = [4, 50, 90]. Misclassification for all
densities, available in appendix fig:multidens. Subplot y-axes measured in log-scale. BIC is represented
by red circular marker. MDLent is represented by yellow triangular marker. Error bars represent
standard deviations. Figure of misclassification scores for all densities in a large network (N = 100) is
available in the appendix, Figure A2.

5.3.3 Large Network Regimes - False Positive - False Negative Rates

In the small world FP-FN figures (N = 100, Figure 30 and N = 50, Figure 35) the MDLent
scores a higher total of false positives relative to the BIC. However, the global FP score decreases
as network density increases and the performance difference between criteria is slight. The area
of worst performance for both criteria occurs in dense networks where global FN rate increases,
this is mediated as sample rate increases. However, the FN score for both criteria ranges between
≈ 0.2 − 0.45 in the weakest regime β = 0.3. The MDLent actually performs better relative the
BIC in FN score, its relative performance increasing with the network density β > 0.3, but the
gap in performance closes as sample rate increases (Figure 35).
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Figure 35
False positives and false negatives for small world topology N = 50 at low-rate (Top) and high-rate
(Bottom) regimes. Subplot y-axes measured in log-scale. BIC is represented by red circular marker.
MDLent is represented by yellow triangular marker. Error bars represent standard deviations.
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5.3.4 Large Network Regimes - ROC: TPR v. FPR

Figure 36 gives the clearest depiction of the the global performance with respect to the sample
rate, with both criteria increasing in performance approaching a TPR ≈ 1 and FPR < 0.01 in
the largest sample size,T = 200N . The MDLent TPR score matches or outperforms the BIC in all
regimes, especially ones of higher density. There is a global increase in TPR as β increases and the
MDLent TPR score increases relative to the BIC in smaller sample rates. The MDLent FPR score
also increases relative to the BIC as the network density increases the largest margin of which is
< 0.08.

Figure 37 compares ROC scores in regimes of similar density in different network sizes, there are
no changes in global TPR in respect to network size, but a decrease in BIC FPR. A figure of ROC
for all densities in a large network (N = 100) is available in the appendix, Figure A3.

Figure 36
ROC (Equation 47) Small World Topography for N = 50 for all sample rates. BIC is represented by red
circular marker. MDLent is represented by yellow triangular marker. Error bars removed for clarity.
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Figure 37
ROC (Equation 47) for N = [50, 100] for high sample rates with similar densities.
(Left) N = 50 density = [0.8, 0.24, 0.57].
(Right) N = 100 density = [0.12, 0.28, 0.5]. BIC is represented by red circular marker. MDLent is
represented by yellow triangular marker. Error bars removed for clarity.
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6 Discussion and Future Directions

6.1 Discussion

In this project we have studied the equilibrium Ising network model and its inverse solutions in order
to implement them into a greater framework of Bayesian model selection, and test the performance
of the novel MDL selection criteria introduced in Bulso et al. 2019 [19] in the inference of Ising model
networks with a pseudo-log-likelihood implementation. We compare this performance against
another well established model selection criteria, the BIC. In addition to the random graph topology
used in the 2019 paper we also test the selection criteria in two additional topologies; the Cayley
tree for its reliability in inference problems and the Watts-Strogatz small world network as a test
of performance in naturally occurring topologies. We also use a different distribution of Ising
parameters, opting for a normalized split mean Gaussian distribution with no external bias.

Recovery of the Cayley tree network topology regimes returned very low error across all conditions
tested and the results displayed trends similar to those found in the other topological regimes,
however less pronounced and more homogeneous between regimes. The BIC and MDLent criteria
error rates hardly diverged except in the low density and low-rate regimes of the large network where
the MDLent returned a higher error rate than the BIC. The ”flattened” and unique distributions of
reconstruction scores in the Cayley tree regimes contrasts with the high variability in performance
between inverse temperatures β in the random and small world graphs. In the small world and
random graph regimes the MDLent performance was similar to the BIC in sparse networks and in
high-rate regimes, but showed a performance advantage in regimes of limited observation samples
and higher density. The MDLent criteria tended towards overestimating connections in larger and
denser regimes, scoring a consistently higher false positive rate. However, it also showed increased
accuracy in inferring sparse connections with a reduced false negative rate. This led to an even or
increased TPR in the MDLent with respect to the BIC in all tests.

The MDLent followed the same reconstruction performance as the BIC (with a slight increase in its
margin of error) except in the dense and low-rate regimes, where its reconstruction performance
was better and closer to that of the AIC. This reflects the results in Bulso et al. 2019 for the
random graph model with samples generated from a flat distribution of Ising inputs. This was
not entirely reflected in the Cayley tree results, in which the MDLent never performed better
than the BIC even in low rate or dense connections, but general trends could still be observed.
Surprisingly, the criteria reconstruction metrics in the small world model regimes were near exact
to the reconstruction results returned from the random graph regimes. We were able to confirm
this wasn’t caused by an error in the methods, and the results showed a minute enough difference
to prove separate topological adjacency graphs were used in the forward process. This similarity
between results was confirmed to be consistent across all regimes tested for the two topologies
and in the false positive and false negative rates. This would suggest the small world and random
graph models may have been too similar in shared topological properties, such as node degree
or clustering coefficient. The Watts-Strogatz small world model may have had too much overlap
with the random graph, as it resolves to a random graph as network density increases. Future
experiments will need to better track topological properties and perhaps a more distinct topological
model could be tested in the future such as a scale-free or power-law network topology.

The overall performance of the MDLent across the network conditions and sample-rates tested,
proves it is the best choice of the model selection methods in the diverse set of experimental
conditions tried, meaning it would be a preferable choice of selection method in situations where
underlying ground truths of the model are unknown or poorly informed such as biological systems.
As we show here, its use with a maximum entropy model could prove further benefits in inferring
models containing ”hidden variables” [11] [99], however more experimentation will be required
to know if the MDLent can be reasonably applied in these settings. As we discovered and as is
mentioned in Bulso et al. 2019, the increase in incorrectly inferred connections by the MDLent
would require additional processing steps; the authors of the 2019 paper even suggest using the
MDLent criteria as a first step in an implementation followed by a more complex algorithm [19].
This would be a required measure in recovering the graph of functional connectivity. Our quick
examination of the pairwise reconstruction (symmetrization) of the recovered graph (Section 4.3.2
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and Appendix C) showed a much higher misclassification rate that may not be suitable in actual
applications. This could be rectified by an additional post-processing step on the subspace of
models from the recovered graph, e.g. by cross-validation (as suggested by the Bulso et al. 2019)
or by a model walk of the subspace in the recovered model [87].

The concept of applying minimum description length methods to model selection is one that is
still being explored [26] [48] and could be quite useful in biological networks where evolutionary
constraints have maximized systems for high informational transfer at minimal energy expenditure.
The novel MDLent method of penalizing the model space based on the encoded informational
content should continue to be expanded on. Because the MDLent model space localization depends
on the observed distribution frequency of code-words, it may be useful to apply pre-processing
filters to identify input samples of minimal informational value, such as applying a multiscale
relevance [27] implementation, or a simple cutoff ranking in the Zipf’s law order [71] of the unique
code-words. These minimally informative samples could then either be thrown out, or have an
error correction method applied to reinterpret them as a maximally informative sample of nearest
hamming distance.

If not for time we would have preferred to test other Ising parameter distributions and reproduce an
Ising model more closely based on maximum entropy models of neural recordings which appear to
show a single mean Gaussian distribution in their connection strengths with some bias (Figure 13)
[115] [10], or networks of unevenly distributed inhibitory/excitatory connections. The intention
being to eventually apply these methods to in-vitro and in-vivo neural recording data. This will
be a topic covered in any follow up research.

The Bulso et al. 2019 novel MDL criterion, is a highly useful method of Bayesian model selection
which seemingly bridges the AIC-BIC dilemma, proving highly accurate while recovering a larger
diversity of models in comparison to other model selection criteria we’ve tested here. Future explor-
ation of the MDLent should test its use over other network conditions with additional processing
methods attached, especially if used in the recovery of network functional connectivity.
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A Additional Figures

Figure A1 compares the ROC (Equation 47) for multiple topologies in the small network regime and gives an overall
picture of the criteria performance across the regimes. We see how the MDLent and BIC performance in the CT remains
largely static except in the lowest beta and sample rate. There is also a similar pattern but clear difference between
performances in the CT topology and the other two topologies which show very similar scores.

Figure A1
Receiver Operating Characteristic
(ROC (Equation 47)) for multiple
topologies at same coordination
number (C = 8 and size (N = 15) in
the low-rate regime. Plot of the True
Positive Rate over the False Positive
Rate at multiple sample rates
(T = 10N, 30N, 50N). Plots are
grouped in columns by
β = [0.3, 0.7, 1.6].
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Figure A2
Misclassification Error for N = 100 at all densities (by rows descending C = 4, 12, 28, 50, 70, 90) and multiple inputs of the inverse
temperature (β = 0.3, 1, 1.6)
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Figure A3
ROC (Equation 47) figure for large network N = 100 at all densities (by rows descending C = 4, 12, 28, 50, 70, 90) and multiple
inputs of the inverse temperature (β = 0.3, 1, 1.6)
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Figure A4
ROC (Equation 47) N = 50 regime at C = 4, 12, 28
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Figure A5
ROC (Equation 47) for N = 100 regime at C = 28, 70, 90 The ROC scores overall appear the same to those in the smaller network
N = 50 (fig. 36 or (fig ??) for version with exact same T values), both criteria return similar TPR at similar density and sample
rates and the MDLent FPR appears to slightly increase in the larger network size. We do get to see in this large regime the
performance at various levels of density. Figure for other levels of density (C = 4, 12, 28, 50, 70, 90 by rows descending) can be
found in the appendix, A3 .
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B Sample Code

Full code base can be found in my github repository: https://github.com/MichaTarlton/Inv.Is.Models.git

B.1 MATLAB main script

%%fi150121.m

%% Model Selection of Ising Model

%% Nicola Bulso is largely to thank for this code

%% Inputs:

% Jobname: Name of current batch job submitted to IDUN

% Intbeta: Realization of the experimental regime, passed in by the SLURM array

↪→ number

%% Outs

% Multiallstruct: contains the results of this realization of the regimes

% Parameters

% Statvecs

%clear all;

function fi1501(jobname,intbeta)

totaltime = tic;

disp(['Beta number: ',num2str(intbeta)])

%%% File Structure and Storage

%cd(cd)

%addpath(genpath('E:\GitHub\Inv.Is.Models\Mike_Code_4'));
%savepath

addpath(genpath('/lustre1/home/michaeta/Mike_Code_4'));
cd('/lustre1/home/michaeta');

%%% Storage

time = datestr(now,'HHMM-ddmmmyy');
disp(time)

%% for rng

hpct=clock();

seed=hpct(6) * 1000; % Seed with the second part of the clock array.

rng(seed);

%rng('shuffle','philox')
%rndy1 = num2str(randi([1 99],1))

%rng('shuffle','philox')
%rndy2 = num2str(randi([1 99],1))

%rng('shuffle','philox')
%rndy3 = num2str(randi([1 99],1))
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%rng('shuffle','philox')
%rndy4 = num2str(randi([1 999],1))

rndy = num2str(randi([100 999],1))

%dirname = [time,'-',rndy]
dirname = [time,'-',num2str(jobname),'_',num2str(intbeta)]

mkdir(cd,dirname);

cd(dirname);

disp(cd)

topdir = cd;

%%%% Parameters

%% Trials

jn = 100; %| number of Trials

h_on = 0 % h field genereation

Tvec = [10,30,50,100,200]

Nvec = [100,200,300,400,500];

betavecint = [0.3,0.5,0.7,1,1.3,1.6]

%% Sparsity measure, used in old "sk" distribution method

sprsvec = [0];

sprs = 0; % only here as temp measure

%% Coordination number

%coordvec = [1,2,4,8,12,16];

% select topology

topovec = {1,3,4,5,6};

%%% for distribtions, see TCS.m for details

%couplings = 4; % "SK" or Mike's Gaussian

%couplings = 5; % double mean gauss

%couplings = 1; %---Gaussian

%couplings = 2; %---Delta Function

couplings = 3; %---Double Delta Function

J0 = 1; %---"The Mean"

%% For displaying and monitoring the number of trials that are being run

jta = 1; % Our measure of how many trials are run so far

jtatot = length(coordvec)*length(betavec)*length(Tvec)*length(Nvec)*length(

↪→ topovec)*jn

runs = 1; % for indexing the trials ran for sprs, beta, T , N

% keep out of the trials loop

OverStruct = struct;
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OverStruct.Nvec = Nvec ;

OverStruct.Tvec = Tvec ;

OverStruct.betavec = betavec ;

OverStruct.topologies = topovec;

OverStruct.jn = jn ;

OverStruct.sprsvec = sprsvec;

OverStruct.h_on = h_on ;

OverStruct.topdir = topdir ;

OverStruct.time = time ;

save([overdir,'/',num2str(jobname),'_',num2str(intbeta),'-OverStruct.mat'],'
↪→ OverStruct','-v7.3');

%create a local cluster object

%distcomp.feature( 'LocalUseMpiexec', false ) % highly experimental here

pc = parcluster('local')
%pc = parcluster('threads')
% explicitly set the Job Storage Location to the temp directory that was created

↪→ in your sbatch script

mkdir(cd,'scratch')
parscratch = [topdir,'/scratch']
pc.JobStorageLocation = parscratch

parpool(pc,20)

for Ti = 1:length(Tvec)

tic

for Ni = 1:length(Nvec)

N = Nvec(Ni);

T = Tvec(Ti).*N;

%for Si = 1:length(sprsvec)

for Ci = 1:length(coordvec)

%sprs = sprsvec(Si);

c = coordvec(Ci);

for Bi = 1:length(betavec)

beta = betavec(Bi);

cd(topdir)

name = ['T',num2str(Ti),'N',num2str(N),'St',num2str(Ci),'Bt',
↪→ num2str(Bi)];

OverStruct.list(runs).name = name;

OverStruct.list(runs).T = T;

OverStruct.list(runs).N = N;

OverStruct.list(runs).beta = beta;

OverStruct.list(runs).sprsvec = sprsvec;

OverStruct.list(runs).coordvec = coordvec;
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OverStruct.list(runs).topology = topovec;

OverStruct.list(runs).topology = topovec;

OverStruct.list(runs).couplings = couplings;

OverStruct.list(runs).c = c;

for tp = 1:length(topovec)

topo = topovec{tp};

%%%Forward Ising Topologies and Distributions

JHnorm = struct;

parfor trn = 1:jn

% call rng for reproducibility

rng(trn);

[Adj,J,hfield] = TCS2(tp,N,c,couplings,beta,J0,sprs,h_on);

JHnorm(trn).Adjset= Adj;

JHnorm(trn).Jtopo = J;

JHnorm(trn).Htopo = hfield;

end

OverStruct.list(runs).Jcontru(tp).topo = {JHnorm.Adjset};

OverStruct.list(runs).Jtru(tp).topo = {JHnorm.Jtopo};

OverStruct.list(runs).htru(tp).topo = {JHnorm.Htopo};

%%% Part 2, generate samples (or spike train) S_hat

SStruct = Met_Hast_norm(T,N,jn,JHnorm,sprs,time,beta);

%%% Part 3, inference and model select

%% Bulso Likelihood Estimator

[LLH,statvecs,stats,jta] = PBLLH4(T,N,tp,beta,c,h_on,SStruct,

↪→ JHnorm,jta,jtatot);

%OverStruct.list(runs).BLLH(tp).topo = LLH;

OverStruct.list(runs).BLLH(tp).statvecs = statvecs;

OverStruct.list(runs).BLLH(tp).stats = stats;

%seed=hpct(6) * 1000; % Seed with the second part of the clock

↪→ array.

%rng(seed);

%rndy2 = num2str(randi([100 999],1))

overdir = [time(1:12),'-OverStructs_',num2str(intbeta)];
mkdir(cd,overdir);

disp(overdir)

end
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runs = runs + 1; %stays out of trial loop, for measuring the runs

↪→ per other parameters

end

end

end

toc

end

delete(gcp('nocreate'))
save([overdir,'/',time(1:12),'-OverStruct_final.mat'],'OverStruct','-v7.3');
endtime = toc(totaltime);

disp(['Total Time: ', num2str(endtime./3600)])

end

% comp will set what tpe of figures we want

% comp = 1; % 1. Perconerr v beta

%

% figstor = multiallgraph3(OverStruct,comp,topdir,time);

% save([overdir,'\',time(1:12),'-figstor.mat'],'figstor','-v7.3');

B.2 SLURM batch job

#!/bin/bash

#SBATCH -J SWWC2212 # Sensible name for the job

#SBATCH -N 1

#SBATCH --account=mh-kin

#SBATCH -t 01-10:00:00 # Upper time limit for the job (DD-HH:MM:SS)

#SBATCH -p CPUQ

#SBATCH --mem=27G # Set to 110g to secure a dedicated node, does affect

↪→ priority queuing. Normally only need 27G

#SBATCH -c 20 # cores

SBATCH --array=1-135 # 135 different regimes

echo $SLURM_ARRAY_JOB_ID
echo $SLURM_ARRAY_TASK_ID
echo $PWD
SCRATCH_DIRECTORY=/home/michaeta/$SLURM_ARRAY_JOB_ID
mkdir -p $SCRATCH_DIRECTORY
echo $SCRATCH_DIRECTORY

module load MATLAB/2020b

matlab -nodisplay -nodesktop -nosplash -r "fi2212_SWWC1($SLURM_ARRAY_JOB_ID,
↪→ $SLURM_ARRAY_TASK_ID)" ## Can't use -r if passing input into matlab
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C Results on Symmetrized Graphs

Figures for the misclassification results returned by the pairwise form (symmetrized) of the MDLent reconstructed graphs
for the small network, low-rate regimes. While the original reconstructed graph is asymmetrical, here we have applied
a post-processing step to ensure the symmetry of the graph. This comes in two fashions of symmetrizing, applying
a “generous” inclusive OR-gated function repairing any asymmetries Kij = Kji = 1, or a “conservative” AND-gated
function pruning asymmetrical connections so that Kij = Kji = 0. Unfortunately this could not be fully-featured due to
time constraints. Future experiments may want to reapply a model selection walk from the subspace of the symmetrized
graph, as done in Pensar et al. 2017 [87]. Similar results were found in the large network regimes.
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Figure C1
MDLent misclassification error of symmetric graphs for Cayley tree topology in small network regime at low sample rates. (Top)
N = 10. (Bottom) N = 20. Rows are arranged by network density and columns by sample rate. Original misclassification error
for MDLent reconstructed graph represented by the red line. AND-gated misclassification error represented by the yellow line.
OR-gated graph misclassification error represented by the red line. Error bars represent standard deviations.
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Figure C2
MDLent misclassification error of symmetric graphs for random graph topology in small network regime at low sample rates.
(Top) N = 10. (Bottom) N = 20. Rows are arranged by network density and columns by sample rate. Original misclassification
error for MDLent reconstructed graph represented by the red line. AND-gated misclassification error represented by the yellow
line. OR-gated graph misclassification error represented by the red line. Error bars represent standard deviations.
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Figure C3
MDLent misclassification error of symmetric graphs for small world topology in small network regime at low sample rates. (Top)
N = 10. (Bottom) N = 20. Rows are arranged by network density and columns by sample rate. Original misclassification error
for MDLent reconstructed graph represented by the red line. AND-gated misclassification error represented by the yellow line.
OR-gated graph misclassification error represented by the red line. Error bars represent standard deviations.
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