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Abstract
Cooking beef to perfection is an art. It can take many years of specialized
training to achieve intuition for when the steak is perfectly done. Techniques
such as fingertip methods or visual inspection are often deployed to assert if
the steak is rare, medium or well-done. Research and comparison study shows
that a combination of high initial temperature and prolong cooking time at a
lower temperature are ideal for enhancing tenderness, juiciness, good colour
and flavour. These studies also suggest that most households had a flawed
estimation when the correct cooking temperature for meat occurred.

This thesis aims to investigate if the use of control theory may enhance the
temperature profile in roasted meat. Such that optimal doneness might be
attained. It is hypothesized that it can be hard to know when a steak is
roasted to idealized doneness, even with a thermometer. The latent heat can
make the steak overshoot or undershoot the desired doneness, which may be
mitigated with a proper controller. We will assume one thermometer is used
at the core of the roast, and the model can facilitate the rest of the unknown
measurement of the temperature states.

In this thesis, a model predictive controller strategy was constructed with an
analytical mathematical model. Based on the partial differential heat equa-
tion. This equation was first modelled in one dimension with two different
approaches. The first model was based on a finite-difference approximation,
and the second on a spectral method. Both the models were validated and
simulated, and the spectral method was found most robust to be used with
the model predictive controller.

The spectral method was extended into two-dimensional cylindrical coordi-
nates and validated against an experiment. The experiment consisted of a
round steak and tenderloin roasted in a domestic oven. They were equipped
with thermal sensors, and the telemetry data was compared against a simula-
tion of the two-dimensional spectral model. After tuning the thermophysical
properties, the model and the telemetry data showed similar characteristic.
Where the tenderloin sample performed best, it was concluded that the two-
dimensional spectral model could facilitate the rest of the unknown measure-
ment of the roast. Simulation of the model predictive controller resulted in an
even temperature profile throughout the meat, with high heat applied at the
start of the cooking process and gradually decreasing the input to steady-state
temperature. The outcome of the simulations leads to the conclusion that
using control theory can theoretically give idealized doneness.
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Sammendrag
Å tilberede biff til perfeksjon er en kunst. Det kan ta mange år med spesialisert
trening for å oppnå intuisjon for når biffen er perfekt stekt. Teknikker som å
klemme på biff med finger eller visuell inspeksjon blir ofte brukt for å hevde
om biffen er rå, medium eller godt stekt. Forskning- og sammenligningsstudier
viser at en kombinasjon av høy starttemperatur og forlenget steketid ved lavere
temperatur er ideell for å få en biff med perfekt mørhet, saftighet, farge og
smak. Disse studiene viser også at de fleste husholdninger hadde en feilaktig
estimering på når riktig steketemperatur for kjøtt er nådd.

Denne oppgaven tar sikte på å undersøke om bruken av kontrollteori kan
forbedre temperaturprofilen i stekt kjøtt, slik at optimalt stekeresultat kan
oppnås. Det antas at det kan være vanskelig å vite når en biff er ferdigstekt
til ønsket temperatur, selv med et termometer. Den latente varmen kan gjøre
at biffen får høyere eller lavere enn den ønskede temperaturen, noe som kan
korrigeres med en kontroller. Oppgaven bygger på at ett termometer brukes i
kjernen av steken, og modellen kan kalkulere resten av de ukjente målingene
av temperaturtilstandene.

I denne oppgaven ble en modellprediktiv kontrollerstrategi utviklet ved hjelp av
en analytisk matematisk modell, basert på en partiell differensiell varmelign-
ing. Denne ligningen ble først modellert i en dimensjon med to forskjellige
metoder. Den første modellen var basert på en endelig forskjellsmetode og
den andre på en spektralmetode. Begge modellene ble validert og simulert,
og spektralmetoden ble funnet mest robust for å brukes med modellprediktiv
regulering.

Den spektrale metoden ble utvidet til todimensjonale sylindriske koordinater
og validert mot et eksperiment. Eksperimentet besto av en rundstek og in-
drefilet, stekt i en husholdningsovn. Biffene ble utstyrt med termiske sen-
sorer, og telemetridataene ble sammenlignet med en simulering av den todi-
mensjonale spektrale modellen. Etter eksperimentell tilpasning av de termo-
fysiske egenskapene viste modellen og dataene lignende karakteristikk. Der
indrefileten ga den mest optimale resultat, og det ble konkludert med at den
todimensjonale spektralmodellen kunne finne rett temperatur i de øvrige om-
rådene i biffen. Simulering av en modellprediktiv kontroller resulterte i en
jevn temperaturprofil i hele kjøttet, med høy varme påført i begynnelsen av
tilberedningsprosessen og gradvis redusert pådrag av tempeartur, til en stabil
temperatur. Resultatet av simuleringene viser at kotrollteori kan anvendes til
å gi et teoretisk og ideelt stekeresultat i en biff.
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Nomenclature

SLP Sturm-Liouville Problem
SLE Sturm-Liouville Equation
PID Proportional Integral Derivative Controller
MPC Model Predictive Control
PDE Partial Differential Equation
ODE Ordinary Differential Equation
BC Boundary Condition
IC Initial Condition
IBVP Initial Boundary Value Problem
MIMO Multiple-Input and Multiple-Output
MV Manipulated Variables
OV Output Variables
LTI Linear Time Invariant
CVD Chronic Vascular Diseases
IARC International Agency for Research on Cancer
AAFC Agriculture and Agri-Food Canada
WHO World Health Organization
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1 | Introduction

1.1 Background and Previous Work
There is a considerable amount of research and mainstream ways of cooking
meat related to this work. This thesis will give a broad perspective on some of
the research concerning temperature distribution while cooking meat. There
are several perspectives in these adjacent research topics, the most notable
being the relationship between temperature and cooking tender meat. Harold
McGee, a leading author in the science of cooking, suggested that "Cooking
tender meat to perfection—so that its internal temperature is just what we
want—is a real challenge[1]". and the way to solve this is to use two-stage
cooking with high heat applied first, followed by a prolonged lower cooking
temperature.

Many culinary experts like to show how easy it is to cook a perfect steak
with the right core temperature. However, research has demonstrated that
this is not the case for most amateur cooks. Most amateurs’ uses methods to
determine cooked beef based on assumptions or pseudo information in media.
Research shows that few uses thermometers and the thermometers used are
less than reliable. Others use colour on the surface or skin as the only indicator.
Only a tiny portion of the population uses several indicators to determine the
right temperature, e.g. colour, internal temperature, the colour of meat juice,
and the muscle’s firmness. Known as the fingertip methods, which is not 100%

reliable and can be an unsafe method, we must be aware that 1/3 of all food-
based illnesses is related to undercooked meat. Undercooked meat may have
an unsafe level of Salmonella and Campylobacter microbes.

This thesis aims to describe a methodology to cook a perfect steak, using
cybernetics as a tool. Although considerable research has been devoted to
modelling heat transfer and how it affect meat, less attention has been paid to
using control theory to get an even temperature profile in meat. We propose
that a model-based partial differential heat equation coupled with a model
predictive controller could allow for perfectly roasted meat. The model predic-
tive controller has been well-established in industrial application and has had
a steady increase in different application over several decades [2]. It is used
in various thermal applications; thermal power plants, the heat source in a
household, heat exchanger [3, 4, 5] to mention few processes. The use of MPC
in a household cooking process is sparsely investigated, and little information
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Chapter 1. Introduction

on this topic was found in a literature search. Although MPC is commonly
used in the food industry. E.g. optimizing food extruder, pasteurization and
agriculture processes [6, 7, 8, 9].

1.2 Objective
This thesis aims to use the benefits of an MPC to reduce the possibility of
overshooting/undershooting the temperature distribution in a roast. In order
to implement this method, the effect of thermal energy, convective heat source
and thermophysical properties needs to be integrated into the model. We can
summarize the main objective as the following.

• Develop an analytical model based on the partial differential heat equa-
tions subjected to an initial boundary value problem and validate the
model against empirical data.

• Implementing a Model Predictive Control strategy to achieve idealized
doneness of a roast, considering the eating quality and thermal effect
energy has on a steak.

• Discuss and describe the result and suggest future improvements to the
model-based roasting controller.

1.3 Limitation
Limitation for this thesis:

• The MPC routine is not tested in a practical situation.

• Noise or disturbance are not accounted for in the MPC routine.

• Applicable for circular types of meat.

• Mass transport of fluids are not accounted for.

• Thermophysical properties are assumed not to vary in time.

• Heat flux is modelled with convective and radiative forcing. However,
only convective is accounted for.

2



1.4. Structure of the Thesis

1.4 Structure of the Thesis
• Chapter 2 - Presents theory into what a steak is composed of, how

heat affects it, different types of cooking methods and how health and
temperature in meat relates.

• Chapter 3 - Will show how the one-dimensional heat equation can be
derived and which types of thermophysical properties affect the model.

• Chapter 4 - Gives a case study of modelling and solving the finite-
difference approximations for the 1-D heat equation.

• Chapter 5 - Presents an improved method to solve the 1-D heat equation
with a spectral method.

• Chapter 6 - Outline how an MPC can regulate the temperature in a
roast and simulate the 1-D heat equation spectral method.

• Chapter 7 - Derive the 2-D heat equation for a spectral method into
cylindrical coordinates.

• Chapter 8 - Covers the details of how the experiment is set up.

• Chapter 9 - Shows the results and discuss the findings from the exper-
iment and simulation of the MPC.

• Chapter 10 - Presents the conclusion of this thesis.

3
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2 | Culinary Literature Research

2.1 Beef nutrition and composition
Meat contains approximately 75 % water, 19 % protein and 5 % fat. According
to Food and Agriculture Organization, meat is defined as all parts of an animal
intended for or is safe for human consumption [10].

One of the most important factors in a steak is marbling, which is the amount
of fat streaking in a cut. Chefs want fat streaking in a steak. The most
commonly referred top of the line example is the Kobe beef, which has fat
spread evenly throughout the cut. The amount of fat streaking in beef and the
age of the cattle is usually the common determinator to describe quality, e.g. a
prime cut. However, as people also seek more healthy food with reduced risk of
cancer and cardiovascular diseases, lean meat with little marbling is sought as
preferred steaks [11]. The various parts of a cattle are usually divided into ribs,
flank, shank, round steak and the top of the line parts sirloin and tenderloin. In
the US, there is another part which seldom found in Norwegian cuts, a brisket.
Briskets are usually barbequed over a long period because they are part of
the front leg muscle, right above the shank [12]. Also, in Norway, farmers get
a bonus for marbling and breeds like Charolais, Angus and Limousine [13].
Figure 2.1 and Figure 2.2 shows two different types of marbling.

Figure 2.1: Rib-eye steak: A steak
with high marbling content

Figure 2.2: Striploin: A steak with
lower marbling content

The beef sold is skeletal muscles, muscles that produce body movements. Some
part of the meat is used to twitch the skin to keep flies away from the cattle;
they are situated directly under the skin. The dominant structure of these
muscles is fibres or bundles of fibres. These muscle fibres are long and thin.
When a steak is cut, the cut seldom follows the whole length of the muscle fibre.
When cattle are slaughtered, they are typically shackled and hung from their
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back legs in a conveyer belt. The muscles in the rump region are stretched
in this process, and the muscles in the front part of the cattle are usually
free of constraints, and the muscles contracts as the cattle reach rigour. The
stretched muscles show that the circular muscle fibres are far apart, but in the
contracted muscles, they are close together. Meat with more circular muscle
fibres, or transverse striations, tends to be tough. Therefore, the way the cattle
hangs are related to the best part of the meat is in the rump regions, e.g. the
loin cuts [14].

Meat is one of the most significant nutrients and energy-rich food product in
most western households. It is considered necessary to maintain a healthy
and balanced diet according to most nutrition recommendations. However,
there are important health considerations since there is a relationship between
cancer, metabolic disorders, cardiovascular diseases, and red meat. The nutri-
tional composition in beef are grouped in [15]:

Water: Meat is a perishable food product, e.g. a food product with more than
60 % moisture. A larger amount of moisture means a reduction in shelf life,
and that time changes the colour, odour, texture and flavour and composition
of the meat. The amount of water is related to the type of nutrients the cattle
get (for example, grass-fed cattle compared to corn fed cattle) and the animal’s
age. Younger animals are leaner and have a higher water content than older
animals. Water content is usually 70 % in a steak, but younger animals have
72 % water content. Most of this water is bound in the muscle fibres, but some
water is free and released while processing the meat. The holding abilities of
the meat are changed when the muscle fibres get disrupt, for example, cut
against the fibres, not along it or when grind, salt, or curing the meat.

Carbohydrates: The carbohydrates are stored in the liver and as glycogen
in the muscle. Glycogen has an impact on the colour, texture, tenderness and
water holding capacity of the steak. Glycogen is transformed into glucose and
lactic acid when the cattle moves, ages or are in a stressful situation. When
lactic acids increase, for example, during ageing, the pH lowers. The pH has
a strong influence on muscle texture, tenderness, colour and water holding
capacity. When the animal is stressed, i.e. just before slaughter, the pH rises,
and as a result, the muscles gets dark, firm and dry due to depletion of glycogen
reserves.

Proteins and amino acids: Meat is a protein-rich food source. In beef
steaks, protein is 20-21 % depending on the cut. The highest protein source
is chicken breast (34,5 %) and the lowest duck meat (12.3 %). The protein is
also more digestible than most other protein-rich food sources, 92 % digestible
amino acids compared to 57-71 % in beans and peas. Essential amino acids
for a human body are the amino acids, e.g. the body’s amino acids cannot
produce themselves. Beef has a high content of 11 essential amino acids and
seven non-essential amino acids (amino acids the body can produce).

Fat: Meat contains fatty tissues and is the energy deposits and protective
padding in the skin and around organs as the heart and kidney. Fat is also
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insulation, important for cattle that grace outdoors. Cooking has a significant
effect on the fat, and during broiling and pan-frying, there is a significant
loss in fat. Concerning health, the amount of cholesterol in the fat is of most
importance: Beef has 62 mg/100 gram of meat than mutton 81 mg and pork
71 mg. Of the polyunsaturated fatty acids, Omega 3 is the most important
from a health perspective. Seafood is the most important source of Omega 3,
but meat can contribute to up to 20 % of the total intake of Omega 3.

Minerals: Macrominerals are minerals the body needs in larger amounts, and
micro minerals are needed in small amounts. Beef is a primary mineral source
for K, Cu, Fe, Zn and Mg and a minor source for Na and Ca.

Vitamins: Meat is a major source for the B complex vitamins riboflavin,
thiamin, B6 and B12 [16].

2.2 Eating Quality
The quality of the steak is most commonly on the eating quality. Other factors
customers bases their decision on the amount of visual fat and fat distribution
in the steak, the colour of the meat, price, brand and cut of the steak [17].

2.2.1 Tenderness

Tenderness is a measurement of how easy we chew the steak. Juiciness is a
measurement of the amount of meat juice released in the mouth while chew-
ing. The beef flavour is measured on the cooked beef. The scale is 0-10 and
measured by trained sensory panels [18].

Tenderness in beef is related to the type of cut, ageing treatment, and how the
carcass is handled after butchering. The amount of collagen and the length of
sarcomere fibres are the most important factors [19]. The sarcomere fibres are
longer if they are stretched after butchering [20]. Stretching of the muscle to
increase sarcomere length increases tenderness as much as 21 days of ageing
[21]. Heat treatment to beef makes collagen tissue soluble; this results in
tenderization of the beef [22].

A comparison of customer satisfaction of different cuts of meat from young
bulls, heifers (young cow before birth) and steer (mature bulls) shows that
the end temperature of the cooked beef is the most critical factors from a
sensory perspective. Steak cooked at 55◦C produced a tender and juicy steak
compared to 74◦C. Tenderness correlates to juiciness, and beef flavour and
tenderness increase when cooking the beef at a lower temperature over time.
So, what is the best steak: Steers and heifers from Aberdeen Angus, Limousin
and Charolais cooked to perfection at 55◦C with an average tenderness of 5,1
(steers) – 5,2 (heifers) and juiciness 5,7 – 5,9 and beef flavour at 4,3 – 4,1
[18].
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2.2.2 Cooking loss

Cooking loss is a reduction in water and soluble matters lost in the cooking
process compared to raw meat. Cooking loss increases to temperature up to
70◦C. Cooking loss varies with different types of meat, for example, 31 %
cooking loss in beef in an oven cooking at 200◦C to 19 % cooking loss in beef
in sous vide at 60◦C. Pan-frying of pork chops shows a marked increase in
cooking loss over time: At 175◦C for 75 seconds, the cooking loss is 11 %, but
when doubling the frying time cooking loss increases to 25 % [23].

2.2.3 Maillard effect

The Maillard reaction is a chemical processed reached when frying meat. It
is a chemical reaction between amino acids and reducing sugars that gives
browned food its distinctive flavour. The effect happens at a temperature
between 140◦C and 160◦C, and at a higher temperature, caramelization is
reached. Until the Maillard reaction occurs, the meat will have less flavour
[23].

2.2.4 Resting time

Many chefs recommend resting time after the meat is cooked. The reason for
this being that meat juices need to settle after cooking. In 2002 the Danish
Meat Research Institute performed two tests: meat without resting time and
steak eaten after 20 minutes resting time per the recommendation from the
most popular cookbooks. The positive effects of resting was a more homoge-
nous and well-done appearance in the steak. Overall, 20 minutes of resting
time gave an average score ten % higher than the meat that had not rested.
Concerning meat juices, the result showed little to no effect of the 20 minutes
rest period than eating without a resting period. Resistance, meat flavour
and tenderness were equal, whereas juiciness decreased for the steak that had
rested 20 minutes compared to the steak eaten directly after cooking [24].

2.3 Effect of Thermal Energy on a Steak
Cooking meat is essential to achieve a safe and product that is palatable and
easy to digest. The meat protein represents about 20 % of the weight of the
beef, it represents the main part of the structure, and the protein undergoes
substantial changes on heating and the quality of the beef. These changes are
called denaturation, and the changes are directly related to tenderizing of the
beef: slow cooking below 60◦C activates the sarcoplasmic proteins (i.e. the
proteins soluble in water) and fast heating up to 70 – 80◦C deactivates these
tenderizing proteins. One of these soluble proteins is myoglobin; the protein
dissolved and gives a pink or red colour. During heating, myoglobin changes
from pink to light tan colours. The activation process of sarcoplasmic proteins
forms a gel of aggregated proteins glueing the meat fibres and fibre bundles
together, creating an elastic and tender meat product. If the meat cuts are
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from the front part of the beef, they need longer time to tenderize the beef
than the stretched muscles on the hind part of the cattle.

The second major effect is the changes in connective tissues in the beef. The
connective tissues are the tendons that connect the muscles to the bones. There
are two primary connective tissues: The tough indigestible tendon fibres that
wrap themselves around the muscles named silver skins and the collagen fibres.
The silver skin toughens during heating, while the collagen dissolves between
65 - 67◦C into gelatin. This gel has good water holding capacity, while the
collagen fibres dry out and become stiff. However, the meat seems tender due
to the gelatin [25].

The third major effect is reduced water in the beef; studies show a reduction of
25-30 % water reduction. The water reduction accelerates between 60 – 80◦C

due to shrinkage of tissues and muscle fibres in the steak, this forces water out
of the steak. With increased temperature, more water is expelled. Tenderness
in the steak increases substantially between 50 – 65◦C , and decreases from 65

– 80◦C. The optimal correlation between increased tenderness and decreased
juiciness is the optimal suggested cooking temperature for medium beef, 55 –
60◦C and 65 – 68◦C for pork [25].

The 4th effect is the change in fat. Fat content is related to the fat content
in the beef subcutaneous (under the skin), intramuscular, and fast food used
in the cooking process. Fat melts from 54 - 60◦C and is part of the fat loss
in beef. However, we need to consider the effects of fat added to the cooking
process: Compared to raw meat, traditional frying with 100 gram beef with a
large amount of fat (75 gram of margarine) increased fat % in beef with 6 %.
There were only be a slight difference in the frying time or resting time in the
pan. The beef with the highest fat % lost fat during frying, while beef with
low-fat % gained fat. The research concluded that the essential factor is fat %
in raw meat, not the amount of fat used in frying. In total, the beef gained 0.5
% of fat during frying, but the beef with the most intramuscular fat reduced
fat by 2.7 % [26].

2.3.1 Oven cooking

Cooking Methods has a great impact on the quality of meat, nutritional value
as well as health. The heat in the household oven can rise to 250◦C, and fluc-
tuate the temperature. A rapid rise in oven temperature reduces total cooking
loss in the meat [27]. The reduction in cooking loss is significant because high
water capacity in the cooked meat is directly related to the tenderization of
the meat [23]. Ovens with steam jet injection in the oven chamber reduces
vapour from the meat and ensures a tender steak [28].

2.3.2 Frying

Frying is a process where meat, oil and heat creates water loss, intake of oil,
spices etc., formation of crust, gelatinization of starch, aromatization, protein
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denaturation and colour change via Maillard reactions, hydrolysis or oxidation,
and oil polymerization [29].

2.3.3 Sous vide cooking

Sous vide cooking, or boil-in-bag, is a method of heating meat in a water bath
at a precise temperature using a PID controller. The temperature in the water
container is usually between 50 and 85 ◦C. The effect of sous vide is a longer
cooking time than oven and frying, reduced damage to the proteins in the
meat, which are temperature sensitive. Sous vide reduces cooking loss and
preserves the water in the meat. Low temperature has a positive effect on the
juiciness and tenderness of the beef [30].

2.4 Health and Temperature in Meat
Compared to the 1990s, cancer incidents in the population has increased with
an average above 1% per year. Cancer is the most common reason for early
death in Norway, with an incident of more than double compared to heart
disease [31]. Nutrition explains between 30-70% of cancer, and a common de-
nominator is heterocyclic amines in cooked beef. The amines occur when beef
is cooked at a temperature above 150◦C. Analysis shows a high concentration
in fried, for example, barbequed meat, and 2-amino-1- methyl-6-phenylimidazo
[4,5-b] pyridin (PhIP) is the heterocyclic amines most commonly found in beef.
This amine creates colon, prostate cancer and breast cancer. Epidemiological
studies show a clear correlation between increased consumption of red meat
and increased prostate and colon cancer [32].

Other studies have revealed a clear correlation between intake of red meat and
processed meat and chronic vascular diseases (CVD): Two and more meals
every week with red meat or chicken increases CVD by 3-7 % [33]. A second
factor is that processed meat, e.g. hamburgers, sausages etc., represents a
higher risk of cancer than unprocessed meat. This is due to several factors,
most notably the increased intake of salt, nitrate and nitrite and various other
additives. These products end up in the digestive system as nitrosamine,
and IARC (WHO’s cancer research institute) has determined that this causes
cancer [34].

A third factor is that undercooked meat, most notably undercooked chicken
meat, explains 1

3
of all foodborne illness outbreaks. In a study of European

household’s way of cooking chicken, researchers found out that the way most
households determined correct cooking temperature was flawed. For example,
the youngest group of participants considered skin colour as the best determi-
nates of cooked chicken. However, lab tests showed undercooked meat and a
high risk of catching Salmonella or Campylobacter microbes. Only a minority
of the households used food thermometers. The study concluded that current
practices in households do not reduce the pathogens to a safe level [35].
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3 | Derivation of the One Dimen-
sional Heat Equation

The problem to be understood in this thesis is to control a heat source such
that a steak can get an optimized temperature profile. A temperature distri-
bution problem can be model with a well-known Partial Differential Equation
(PDE) known as the heat/diffusion equation. The PDE will propagate the
temperature throughout the meat, with heated air/steam and radiative forc-
ing on the protein boundary. For a given initial temperature. Therefore, must
the temperature distribution adhere to both the temperature at the boundary
and the initial temperature.

The physical derivation of the heat equation will be more apparent to under-
stand if we start by looking at the one-dimensional heat equation with some
underlying assumption. The slab of meat will be seen as uniform, with length
L and exposed to a thermal energy source. By adhering to the second law
of thermodynamics, the thermal energy will be transferred from a section of
higher heat to a section of less heat. The heat flow from one point to another
in the solid. Will be governed by the physical principles of the law of heat con-
duction (a.k.a Fourier’s law of heat transfer) and energy conservation.

3.1 Object
First, we will need to define the object: Let the internal heat of a region be
enclosed in D ∈ Rn with uniformed properties be exposed to a heat source.
We denote a vector x = [x1, . . . , xn]T in Rn to be the spatial temperature at a
given point xn at time t. The temperature distribution at point xn and time
t can be denoted by the function τ(x, t).

There will be assumed non-internal heat generation inside the region of the
object nor dissipation of heat inside the region. Consequently, the heat source
will only act on the boundary ∂D. This can physically be described by as-
suming that the object is a rod, and surrounding the outside radial surface
is an insulator. An insulator will ensure that no heat is transferred radially;
only lateral heat transfer will occur along the rod. This means that only the
endpoint of the rod will be exposed to the environment, i.e. the heat source.
A rendition of this interpretation can be seen in Figure 3.1.
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Since the thermal energy flows from a heat source into the region’s boundary,
the problem can be classified as a non-steady-state problem.

Figure 3.1: A visualization of the 1-D rod.

3.2 Derivation
We can relate the total amount of thermal energy inside the region of interest,
D. With the temperature, by integrating the heat over D.

Q(t) =

∫
D
ρcpτ(x, t)dx (3.1)

Where the specific heat capacity, cp and the density, ρ of the material are set
to a constant. We can describe the rate at which heat decreases in D, and
drop the dependency to make the notation more compact, viz.

"Time rate of heat decrees in D" = q = −
∫
D
ρcp

∂τ

∂x
dx (3.2)

An empirical relationship known as Fourier’s law of heat transfer states that:
Heat tends to flow in the direction of decreasing temperature, and the rate of
heat flow is proportional to the gradient of the temperature. Intuitively, we can
observe that the velocity of heat flows faster if we have a larger temperature
gradient and vice versa for lower temperature.

q = −k∂τ
∂x

(3.3)

Here, k is denoted as the thermal conductivity, and q is a heat flow vector
field that will cross the surface S of the object. Or, in this case, since we
are studying a one-dimensional case, the surface S are associated with the
region’s boundary ∂D. An outward pointing normal vector, n is attached to
the surface, and dS will be the surface measure over the boundary.

The quantity of q and n tells how much the heat flux is aligned with ∂D. Lets
define the following, |q ·n∆A|. Where ∆A is the cross-sectional area over ∂D.
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3.2. Derivation

If q ·n > 0 thermal energy that are leaving ∂D and if q ·n < 0, thermal energy
is entering the system.

Therefor we can express the total heat flow across the region, with a flux
integral.

− k
∫
∂D

∂τ

∂x
· n dS =

∫
D

q · n dx (3.4)

By recalling the Divergence Theorem for a vector filed F.

∫
∂D
F · n dS =

∫
D
∇ · F dx (3.5)

We can insert Equation 3.4 in the Divergence Theorem and rewrite it as the
following. Recognizing that ∇2 is the Laplacian of τ , and a visualization can
be seen Figure 3.2.

"Total heat flow across ∂D " = −k
∫
∂D

∂τ

∂x
· n dS = −k

∫
D
∇2τ dx (3.6)

Figure 3.2: Heat flux F that acts upon an arbitrary object.

Since we assumed that no heat is being generated nor lost inside the region.
The only way in which heat can be dissipated or generated is if heat flows over
the ∂D. Hence the rate at which heat is decreeing/increase (Equation 3.2)
and the total flow heat across the boundary (Equation 3.6) has to be equal
viz.

∫
D
ρcp

∂τ

∂x
dx = k

∫
D

∂2τ

∂x2
dx

⇔
∫
D

(
ρcp

∂τ

∂x
− k∂

2τ

∂x2
τ

)
dx = 0

(3.7)
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In order for the Equation 3.7 to hold for an arbitrary D, the integrand has to
be zero. Thus, we can write out the one-dimensional partial differential heat
equation as seen in Equation 3.8. Which states that the partial derivative of
temperature to time is proportional to the second partial derivative to space.
Intuitively, this entails that when the temperature distribution at a given point
curve. The temperature tends to change in the curvatures’ direction. How
fast the temperature changes is dependent on the magnitude and sign of the
curvatures.

∂τ

∂t
(x, t) =

k

ρcp

∂2τ

∂x2
(x, t), for 0 ≤ x ≤ L, t ≥ 0 (3.8)

Here the k is the thermal conductivity, ρ density and cp heat capacity. These
units can be group into a constant, denoted the thermal diffusivity.

α ,
k

ρcp
(3.9)

3.3 Boundary Conditions and Initial Con-
dition

The Heat Equation requires two additional pieces of information to give a
unique solution, the Initial Condition (IC) and the Boundary Conditions (BC).
The IC will describe the temperature distribution for the object at τ(x, 0), and
the BC will impose the specific values for the solution on ∂D. For the one-
dimensional case the thermal energy will act on τ(0, t) and τ(L, t).

Since the boundary interacts with the environment, we need to see how heat
flux acts upon the endpoint of the object. One way of doing this is to study
Newton’s law of cooling, which specifies that heat transfer is proportional to
the difference between the surrounding environment and the material. For the
one-dimensional case, we can write it as the following.

q0 = hA (u(t)− τ0)

qL = hA (u(t)− τL)
(3.10)

Here, u(t) is the heat source (environmental temperature) acting upon the
object, A is the area (obviously for the 1-D case A = 1), and h is the heat
transfer coefficient.

Fourier’s law for two boundaries may be written as.

q0 = −k
(
∂τ

∂x

)
0

qL = −k
(
∂τ

∂x

)
L

(3.11)
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By combining Equation 3.10 with Equation 3.11, the interface from Newton’s
law of cooling can relate the heat flux from Fourier’s law at the boundary of
the object. We have then derived an expression for the boundary conditions
for the heat equation, known as the Robin boundary condition viz.

q{0,L} = h
(
u(t)− τ{0,L}

)
= −k

(
∂τ

∂x

)
{0,L}

(3.12)

We can look at three special cases, known as the Dirichlet boundary condition,
Neumann boundary condition and Robin boundary condition.

Dirichlet boundary condition:

Suppose k � h→ k
h
∼ 0, the BC then becomes.

u(t)− τ{0,L} = −k
h

(
∂τ

∂x

)
{0,L}

= 0

⇒ u(t) = τ{0,L}

(3.13)

Which can be seen as a fixed temperature boundary condition.

Neumann boundary condition:

If we look at the other case of h� k → h
k
∼ 0, the BC then becomes.

−
(
∂τ

∂x

)
{0,L}

=
h

k

(
u(t)− τ{0,L}

)
= 0

⇒
(
∂τ

∂x

)
{0,L}

= 0

(3.14)

This then become a zero flux boundary condition and is a fully insulated
system, where no heat flux is exchanged at the boundary.

Robin boundary condition:

The general case can be seen as a mixed case of both the previous BC. Whereas
both h and k comes into play. It can be noted that this is a linear expression
of the Dirichlet and Neumann boundary conditions and are homogeneous if
u(t) = 0.

−k
(
∂τ

∂x

)
0

= h (u(t)− τ0)

k

(
∂τ

∂x

)
L

= h (u(t)− τL)

(3.15)

Summarized, the Initial Boundary Value Problem (IBVP) for the homogeneous
PDE on an arbitrary interval x ∈ I → R becomes.
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PDE: τt(x, t) = α∇2τ(x, t) x ∈ I, t > 0

IC: τ(x, 0) = f(x) x ∈ I
Dirichlet BC: τ(0, t) = τ(L, t) = u(t)

Neumann BC: τx(0, t) = τx(L, t) = 0

Robin BC: a0τx(0, t)− a1τ(0, t) = 0

a3τx(L, t) + a4τ(L, t) = 0

(3.16)

3.4 Maximum Principle
We asserted that the heat can only enter or dissipate through the boundary
point. Logically this entails that the maximum or minimum heat for the system
is found at the boundaries or if the temperature distribution at τ(x, 0) ≥
τ(x, t). This can be asserted through the maximum principle.

Theorem 3.4.1 Maximum principle: Suppose τ(x, t) solves the heat equa-
tion in a finite space time rectangle, R, in the domain 0 ≤ x ≤ L, 0 ≤ t ≤ T .
Then the maximum values for τ(x, t) is assumed to either be at the initial value
of τ(x, 0) or on the boundary’s, i.e. τ(0, t) or τ(L, t). Let a set be denoted by
Ω = {(x, t) ∈ R | t = 0 ∨ x = 0 ∨ x = L}. Then the maximum principle is on
the form

max
(x,t)∈R

{τ(x, t)} ≤ max
(x,t)∈Ω

{τ(x, t)} (3.17)

Remark: A maximum also suggests that a minimum can be found, viz min{τ(x, t)} =

−max{τ(x, t)}.

Proof: Suppose τ is a solution that satisfies the heat equation τt−α∇2τ = 0.
Let an arbitrary interior point be defined by (x0, t0) and τ be perturbed by a
small positive value such that v = τ + εx2, viz.

vt − α∇2v = τt − α∇2τ − 2αε

⇒vt − α∇2v = −2αε < 0
(3.18)

By contradiction we can see that, if the maximum value occur inside the inte-
rior (x0, t0) ∈ R 6∈ Ω. The laplacian has to be −α∇2v ≥ 0, and the inequality
will not be satisfied.

0 ≤ −α∇2v = −2αε < 0 (3.19)

Then the maximum values for v must therefore occur at the boundary, Ω.

v(x, t) ≤ max
(x,t)∈Ω

{v(x, t)} (3.20)

Similarly, for the solution τ , we can show.
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τ(x, t) + εx2 ≤ max
(x,t)∈Ω

{τ(x, t) + εL2}

⇒ τ ≤ max
(x,t)∈Ω

{τ(x, t) + ε(L2 − x2)}
(3.21)

Then taking the limit of ε→ 0+

τ(x, t) ≤ max
(x,t)∈Ω

{τ(x, t)} (3.22)

Thus, the maximum value must be in the closed set of Ω. �

3.5 Thermophysical Properties
The thermophysical properties of the meat govern the thermal dynamics of
the heat equations. These properties are needed to estimate the time it takes
to heat or chill the object. Since the thermal properties are dependent on
which direction the muscle grains is to the heat flux, chemical composition
and temperature. Can the properties be calculated with mass fractions of
water, protein, fat and carbohydrate contents [36] or with the heat equation.
Alternatively, the thermal properties can be found by direct empirical studies.
Agriculture and Agri-Food Canada(AAFC) is an example of an organization
that conduct theses type of studies [37].

3.5.1 Internal Thermophysical Properties

The thermal diffusivity is defined by the heat capacity, density and thermal
conductivity of an object. All of these constants have transient and temporal
properties for different types of cuts. The thermal diffusivity is an important
constant for modelling the heat equation; it is a measure of how the thermal
dynamics/concavity is shaped. This implies that a large value would give a
steep gradient, and a low value would soften the gradient. In other words, it
can be seen as the thermal inertia of an object. Although, lookup tables for
isotropic materials such as steel, copper, and other commonly study isotropic
materials are readily available. Are the thermal diffusivity constant of meat
scarcely investigated [38].

The thermal diffusivity and thermal conductivity will be considered for a round
beef, tenderloin and ham. The three types of meat have similar composition
of water, fat and protein and are therefore chosen. They will be estimated
with a linearized function, and composition data from the book ASHRAE
Handbook: Refrigeration American Society of Heating, Refrigerating and Air-
Conditioning Engineers. The thermophysical properties are given in a domain
of τ ∈ [−40, 140]. Since the temperature for food is often considered for
storage, such as freezing and preventing foodborne illnesses. The ASHRAE
handbook book notes that " In general, thermophysical properties of a food or
beverage are well behaved when its temperature is above its initial freezing point
"[38].
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Figure 3.3: Estimation of thermophysical properties for τ ∈ [0, 80].

An empirical study conducted by the AAFC. Found that thermal conductiv-
ities of four types of meat increased nearly linearly, for particles based foods
in the temperature range 20− 60◦C and started to stabilized after 60− 80◦C.
The thermal diffusivity in the study was calculated based on density, thermal
conductivity, and specific heat observed under the experiment [37], and can be
seen in Figure 3.4.

(a) α: Thermal diffusivity. (b) k: Thermal conductivity.

Figure 3.4: An empirical study of different thermophysical properties [37].

3.5.2 External Thermophysical Properties

The heat transfer coefficient:

Is the proportional constant used in Newton’s law of cooling and is an interface
between a heat source and the material. It describes how the convective of a
heated/cooled fluid flows over the material based on the body’s geometry. Note
that convection only appears for fluids, not inside a solid.

Q = h · A · (T (t)− Tenv) (3.23)

An easy way to interpret how the coefficient affects an object is to think about
what occurs if that object is exposed to water and air. Water has a larger
value of heat transfer capacity compared to stationary air. As h increase, the
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rate of heat transfer is faster out of the object. Analogous to being on land
and plunging into the water.

Two types of convection can take place; natural convection and forced convec-
tion. Natural convection occurs from density difference in fluid, perturbed by
a thermal energy source, which induces a motion to the fluids. Forced convec-
tion is fluid in motion from a fan or similar devices, which forces heat/chilled
fluid over the object. The heat transfer coefficient will be affected by which
type of convection is taking place.

J. Cernela et al. investigated the heat transfer for a domestic oven and noted
that studies are often aimed towards industrial application and sparsely inves-
tigated in a domestic apparatus. The study found that the domestic oven gave
a heat transfer coefficient of 6 W/m2C to 16 [W/m2C] under free and forced
convection [39]. The article study only one type of domestic oven, and the
result may vary for different types of oven. From the paper of A, Kondjoyan
et al., an aluminium sample was subject to different fluids to assert the heat
transfer coefficient in a domestic oven. Figure 3.5 shows the findings.

Figure 3.5: A table of different heat transfer coefficient [40].

Biot number:

It can be helpful to work with a dimensionless quantity when studying a heat
transfer problem. The Biot number relates the internal conductive resistance
in the body with external convention resistance at the body’s surface and can
accordingly be defined.

Bi ,
h

k
Lc Where, Lc =

Vbody
Asurface

(3.24)

From section 3.3 we establish that the Robin condition was a linear expression
of Dirichlet and Neumann conditions. We can observe that for a high value of
the Biot number, i.e. h � k. The internal conductive resistances within the
object is high, and the boundary condition reduces to the Dirichlet boundary
conditions. For the case of a low Biot number, i.e. h � k. The external
conductive resistances at the object’s surface are high and reduces to the Neu-
mann boundary conditions. Values for the Biot numbers are often categorised
by.
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Bi > 40 External resistance is negligible
Bi < 0.1 Internal resistance is negligible

0.1 ≤ Bi ≤ 40 Mix-case of external and internal resistance
(3.25)
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4 | Finite-Difference Approxima-
tions for the 1-D Heat Equa-
tion

The main goal for this chapter is to observe the temperature evolution over
time with a numerical solution to the 1-D heat equation. This implies that the
heat equation needs to be solved, given the initial temperature distribution and
boundary conditions that satisfy the PDE. We start by looking at a numerical
approach for the solution.

4.1 Modeling
The one-dimensional heat equation will be considered for τ : [0, L]×[0,∞)→ R
for a given temperature point x at time t. It can be noted that we are working
with a numerical solution to the heat equation and can only find a solution for
a finite time tmax.

∂τ

∂t
= α

∂2τ

∂x2
(4.1)

The solution of the heat equation has to adhere to the boundary condition
and the initial conditions. Let the end and start point, plus a small distance
ε, be set equal to the temperature from the heat source, u(t). Such that the
Dirichlet conditions govern the boundary condition. Let the initial tempera-
ture distribution be assumed constant.

IC: τ(x, 0) = T0

BC: τ(0, t) = T ni=0−ε = u

τ(L, t) = T ni=L+ε = u

(4.2)

4.2 Numerical Solution
In order to find a numerical solution to the 1-D Heat Equation, a grid is
constructed with n × i points. Temperature is approximated at a given grid
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point, with a spatial step size in the x-direction and a time-step in the t-
direction. An illustration of this can be seen in Figure 4.1.

Figure 4.1: A Mesh used for the solution to the one-dimensional heat equation.

The right side of the continuous derivatives from Equation 4.1 can be ap-
proximate with the second-order central difference approximation. Let the
grid point of T (xi+1) and T (xi−1) be a approximated by the Taylor series,
viz.

Ti+1 = Ti + ∆x
∂T

∂x

∣∣∣∣
xi

+
∆x2

2

∂2T

∂x2

∣∣∣∣
xi

+
(∆x)3

3!

∂3T

∂x3

∣∣∣∣
xi

+ · · · (4.3)

Ti−1 = Ti − ∆x
∂T

∂x

∣∣∣∣
xi

+
∆x2

2

∂2T

∂x2

∣∣∣∣
xi

− (∆x)3

3!

∂3T

∂x3

∣∣∣∣
xi

+ · · · (4.4)

A second order central difference of point T (xi) can be found by the summation
of the neighbors grid point, i.e. grid point of T (xi+1) and T (xi−1).

Ti+1 + Ti−1 = 2Ti + (∆x)2∂
2T

∂x2

∣∣∣∣
xi

+
2(∆x)4

4!

∂4T

∂x4

∣∣∣∣
xi

+ · · · (4.5)

Solving for the second partial derivative, and group the higher-order polyno-
mial into the big O-notation yields.

∂2T

∂x2

∣∣∣∣
xi

=
Ti+1 − 2Ti + Ti+1

∆x2
+O

(
∆x2

)
(4.6)

Thus, one can combine Equation 4.1 with Equation 4.6, dropping the big O-
notation to Equation 4.7. Denoting a new constant b, that holds the thermal
diffusivity constant divided by the step length squared.

∂T ni
∂t

= b
(
T ni+1 − 2T ni + T ni−1

)
, b ,

α

∆x2 (4.7)
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4.3. Discretization of the 1-D Heat
Equation

A state-space representation is formulated on the form of Equation 4.8.

ẋ(x, t) = Ax(x, t) + Bu(t)

y(x, t) = Cx(x, t) + Du(t)
(4.8)

Thus, it is possible to represent Equation 4.7 as seen in Equation 4.9. Where
the Ti is on the diagonal of the A matrix, and the Ti+1, Ti−1 is on the sub
and super diagonal respectively 1. In addition, it should be noted that the
boundary condition from Equation 4.2 will make up the controller input, B,
for the state space model. I.e. ui,1 = T ni=0−ε and ui,2 = T ni=L+ε, where ε is a
small distance outside the region of interest.

ẋ(x, t) =


−2b b 0 . . . 0

b −2b b
...

0 b −2b 0
... . . . b

0 . . . 0 b −2b





T n0
T n1
...
T ni
...
T nL


+


b 0

0 0
...

...
0 0

0 b


[
ui,1
ui,2

]
(4.9)

The temperature of the object can be measured at a given grid point i with
the C matrix. Measurements taken between two grid points can also be done
via interpolation. In addition, we assume that there is no direct feedthrough,
D = 0.

4.3 Discretization of the 1-D Heat
Equation

By recognizing Equation 4.10 as an analytical solution for a continuous state-
space model. An exact discretization of the state-space representation is
formulated in Equation 4.11. Under the condition that the controller input
stays constant for each time-step and are piecewise smooth T : t = kT . I.e.
u[k] ' u(t), kT ≤ t < (k + 1)T .

x(t) = eAtx(0) +

∫ t

0

eA(t−ν)Bu(ν)dν (4.10)

x[k + 1] = eATx[k] +

(∫ (k+1)T

kT

eA[(k+1)T−ν]dν

)
Bu[k]

= eATx[k] +

(∫ T

0

eAvdv

)
Bu[k]

= eATx[k] + A−1
(
eAT − I

)
Bu[k]

(4.11)

1Also know as the Toeplitz matrix
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Chapter 4. Finite-Difference Approximations for the 1-D Heat Equation

Where,
v(ν) , (k + 1)T − ν, dν = −dv (4.12)

This yields an exact discretization for the state-space model of the one-dimensional
heat equation.

x[k + 1] =

Ad︷︸︸︷
eAT x[k] +

Bd︷ ︸︸ ︷(
A−1

(
eAT − I

))
B u[k]

y[k] = C︸︷︷︸
Cd

x[k]
(4.13)

4.4 Preliminary simulation validation for
an edge case

The preliminary simulation for the numerical solution of the 1-D heat equa-
tion are simulated in Matlab, and the simulation parameters consist of the
following:

Symbol Variable Value Unit
L Length 5 [cm]

α Thermal diffusivity 1.3e− 7 [m2/s]

T0 Initial/-Room Temperature 20 [◦C]
Tcutoff Internal core temperature 65 [◦C]

Table 4.1: Parameter values for the preliminary simulation of the finite differ-
ence approximation of the heat equation.

The step function for the simulated heat source.

u(t) =

{
200 if τ(L/2, t) ≤ Tcutoff
20 if τ(L/2, t) > Tcutoff

(4.14)

Before introducing a controller for regulating the heat source, we will simulate
what occurs if a rod of simulated meat is exposed to a constant heat source.
The simulated meat is removed from the heat source when the core temperature
reaches Tcutoff , and the room will act as a heat sink. Furthermore, the heat
source/sink will have a sizeable impact on the boundary of the solution. We
can test if the finite-difference approximation can handle a stiff problem for
some of the solution’s stencil components.

Figure 4.2b shows how the temperature propagates through the meat over 50
minutes. We can observe that the temperature changes quite aggressively at
the boundary, which make the solution stiff. This seems logical; since heat
flux can only enter through the object’s boundary, and convection has not
been considered. Therefore, it can be seen as a fixed temperature boundary
condition.
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4.4. Preliminary simulation validation for an edge case
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(a) A 2-d plot of three cross-sections. (b) A 3-d Plot of the simulation.

Figure 4.2: A simulation of a rod of meat, done with the finite-difference
approximation

Since the heat equation describes how temperature is distributed, at a given
point, xi. It will curve proportionally to the nearest neighbour’s stencil. We
can observe that the temperature changes with the magnitude and sign of
the direction of the curvature. The heat source, u(t), alters the temperature
of the object’s interior—both in a positive and negative gradient. This can
particularly be seen in Figure 4.2b where the boundary has high curvature
relative to its nearest neighbours, i.e. the heat source. Further inside the
region of the object, the curvature is less predominated due to a less intensive
gradient of the neighbours. By this logic, we can see that the material has a
more prolonged time to gain and dissipate thermal energy the closer we get to
the object’s core.

From Figure 4.2a we can observe that the object reach an internal temperature
of T = 65◦C at t ≈ 18 [min], and are then exposed to the room temperature.
Even though the temperature at the boundary rapidly decreases, the residual
heat from the region surrounding the core. Will still heat up the core of the
object. This can be mitigated by taking the meat out at a lower temperature
than the idealized core temperature and let the residual heat diffuse through to
the right internal temperature. However, this will fast be subject to guessing
at which time it should be taken out. As we further develop the model, we
will introduce an optimized controller, MPC. Which gives optimal controller
sequences to optimize the temperature distribution of the meat. This will
remove the notion of when and how long the meat has to be exposed to the
heat source and when it can be removed from the heat source.
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4.4.1 Validation Error

(a) The probe is at half the length of the
meat.

(b) The probe is at the boundary of the
meat.

Figure 4.3: A plot to showcase different resolution of the grid size

The second-order finite-difference method is a local method of approximating
the spatial temperature using the two nearest neighbours. It has a truncation
error of O (∆x2), i.e. the error decreases quadratically for a larger grid size.
This yields a good approximation for a non-stiff problem since the curvature
can be seen as a polynomial approximation of the stencil. This can be seen
in Figure 4.3a. Whereas increasing the number of grid size, the curvature of
the plot is almost identical. However, when we introduce a high heat source
at the boundary, the PDE becomes stiff and can increase/decrease exponen-
tially. Figure 4.3b shows that for a non locally polynomial approximation the
truncation error of O (∆x2) is not sufficient enough (for N < 500). Yielding
a poorer estimate of the stiff part of the solution and alters the dynamics of
the model. We can keep increasing the grid size in order to satisfy an accept-
able approximation of the stiff part. However, this comes at the cost of being
computationally expensive and the exact discretization may be unmanageable.
From the heavy matrix exponential and the inverse operation of the system
matrix, A. Especially if we were to rephrase the Toeplitz matrix to a higher-
dimensional case or use other schems, i.e. Crank–Nicolson method.
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4.4. Preliminary simulation validation for an edge case

Figure 4.4: A step responses for N = 10 and N = 2000 at the boundaries.

An examination of the step response can often be helpful to see if the different
measurement has asymptotic convergence. Figure 4.4 show a step response
for a grid size of N = 10 and N = 2000, at the boundaries. They are both
asymptotically stable however, we can see that the thermal characteristics vary
significantly for the same time span. This may lead to an interpretation that
a small grid size is asymptotically stable.

We want to ensure a robust method of solving the heat equation, and therefore
conclude that this approach had too many uncertainties. In the next chapter,
we expand the model to try to account for the solution’s stiff part, using a
spectral method.

.
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5 | Spectral method for the 1-D
Heat Equation

We want to employ a more stable approach to solve the heat equation. Whereas
the finite difference method seeks to approximate the spatial derivatives of its
nearest neighbour’s, a spectral method will consider the entire global domain.
For a small domain, the finite difference method can approximate the solution
with relative few grid points. However, it can easily be deduced that expanding
the grid size can be computationally expensive for increasing domains and
dimensions. In addition, the spectral method converge exponentially [41], thus
making it more accurate than the finite difference method. A global method
is often preferred for a rapidly varying solution, both in time and space, and
can have a high spatial resolution for a long integration time.

The spectral methods require that the solution is sufficiently smooth and piece-
wise continuous. Therefore, we will recast the general solution into a weak
form, and we can expand the solution to a truncated series as a sum of the ba-
sis function and an inner product. Witch are orthogonal and forms a complete
set.

τ(x, t) =
∞∑
j=1

τ̂j(t)φj(x) (5.1)

5.1 Modeling
Let the 1-D heat equation be consider in the region D = [0, L] where x ∈
D , t ∈ [0,∞) → R be the temperature for a given point x for a time t. We
can state the heat equation as.

∂τ

∂t
= α

∂2τ

∂x2
(5.2)

Let the initial condition for the PDE be assumed as a constant temperature
distribution for the temperature of the environment.

τ(x, 0) = Tenv (5.3)
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Chapter 5. Spectral method for the 1-D Heat Equation

Heated air/steam and radiative forcing will affect either side of the meat.
Therefore, it is assumed that the heat flux at the boundaries satisfies the
convective/radiative source at the boundary, which gives the Robin boundary
conditions.

−k
(
∂τ

∂x

)
0

= h (u− τ0) + v

k

(
∂τ

∂x

)
L

= h (u− τL) + v

(5.4)

Here, h is the heat transfer coefficient, u is the heated/cooled air temperature
that acts on the boundary and v the radiative forcing. The introduction of the
Biot number will make the BC dimensionless. The boundary conditions can
be recast with the dimensionless Biot number as.

−L
(
∂τ

∂x

)
0

= Bi (u− τ0) +
L

k
v

L

(
∂τ

∂x

)
L

= Bi (u− τL) +
L

k
v

(5.5)

5.2 General solution
We now look for an analytical solution for the homogeneous 1-D heat equation
subject to the initial condition and the Robin boundary conditions.

∂τ

∂t
− α∂

2τ

∂x2
= 0

−L
(
∂τ

∂x

)
0

+ Biτ0 = 0

L

(
∂τ

∂x

)
L

+ BiτL = 0

(5.6)

The separation of variables principle is used, and we assume that there exists
a solution on the form.

τ(t, x) = T (t)X(x) (5.7)

The partial derivatives can be written in a more compact notation, where the
primes denote a differentiation for a single function.

∂τ

∂t
= X(x)T ′(t)

∂2τ

∂x2
= X ′′(x)T (t), (5.8)

Inserting this relation into the heat equation, and dividing the equation by
T (t)X(x) yields the following factorization.
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5.2. General solution

1

α

T ′(t)

T (t)
=
X ′′(x)

X(x)
= −λ (5.9)

The PDE is now separated into two ODE’s, with a common factor λ. The
temporal part will only depend on t, and the spatial part will only be dependent
on x. If we have a variation of t and x is fixed, the right-hand side of the
equation becomes constant and vice versa. Thus, the common factor λ can
not be dependent on x or t. We can then separate the temporal and spatial
equation and rearrange the equation for T (t) and X(x) to solve two different
ODE’s.

T ′(t) + αλT (t) = 0 (5.10)

X ′′(x) + λX(x) = 0 (5.11)

5.2.1 Solving for T (t)

Solving for T (t) will produce an exponential function of time, dependent on
the initial temperature distribution. We only permit stable solutions, which
implies that λ > 0, and the solution is then a decaying exponential function.
The choices of the wavenumber ω ,

√
λ will notationally ensure a stable

solution.

T (t) = e−ω
2λtT (0) (5.12)

5.2.2 Solving for X(x)

A general solution for the second-order linear homogeneous ODE can be found
in a weak form through the Sturm-Liouville theory. Which requires that the
ODE is formulated as the Sturm–Liouville Equations (SLE).

d

dx

[
p(x)

dy

dx

]
+ (q(x) + λw(x))y = 0 (5.13)

By recognizing p(x) = 1, q(x) = 0, y = X(x) and w(x) = 1. The spatial
equation can be recovered, and classify as an SLE.

However, we will first show that the general analytical solution can be found
via inspection and written as a harmonic equation, viz.

X(x) = K cos(ωx+ ψ) (5.14)

By consolidating the spatial solution with the Robin boundary condition and
dividing by cosine. Yields the following relationship.
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Lω tan(ψ) + Bi = 0

−Lω tan(Lω + ψ) + Bi = 0
(5.15)

The phase can be found by solving

tan(Lω + ψ) + tan(ψ) = 0 =⇒ ψ = −Lω
2

(5.16)

A relationship for the eigenvalues can be found by inserting the phase back
into the boundary conditions. We will show how the eigenvalues may be found
in section A.1.

Lω tan

(
Lω

2

)
= Bi (5.17)

To attain a weak form of the general solution, we would need the SLE to adhere
to the homogeneous Robin boundary condition in the closed interval of [0, L],
with L2 + Bi2 > 0. The combination of these BC and the SLE is called the
Sturm-Liouville problem (SLP).

We can list up three relevant properties to solve this SLP.

• An orthonormal set of the eigenfunctions {ϕi(x)}, can collectively be
normalized via the Gram–Schmidt Orthogonalization. Iff. the inner
products of the eigenfunctions is orthogonal to each other.

φi(x) =
1

‖ϕi‖
ϕi(x) (5.18)

• An SLP can form a complete set on the interval x ∈ [0, L] if the eigen-
function is orthogonal to each other.

• There will be a sequence of real and positive eigenvalues, 0 ≤ ω1 <

ω2 < · · · < ωi that would retain a stable solution to the Sturm-Liouville
problem. Which will have an eigenfunctions φi(x) associate with each of
the eigenvalues.

〈φi, φj〉 =

∫ L

0

φi(x)φj(x)w(x)dx = δij (5.19)

The right choice of a Gram–Schmidt Orthogonalization will ensure that a nor-
malised eigenfunction is formed on an orthonormal basis. Let K denote a scal-
ing constant and be chosen such that the integral is unit in the L2([0, L],R)

norm of the Hilbert space.

√∫ L

0

cos(ωx+ ψ)2dx =

√∫ L

0

cos

((
x− L

2

)
ω

)2

dx =

√
Lω + sin(Lω)

2ω
(5.20)
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5.2. General solution

Denote K as the inverse of the result from the integral.

K ,

√
2ω

Lω + sin(Lω)
(5.21)

Verify that the choice of K is normalised.

√∫ L

0

K cos(ωx+ ψ)2dx = 1 (5.22)

Thus, the Gram–Schmidt orthogonalization for an eigenfunction at the i’th
mode can be written as a cosine centred in the bar, viz.

φi(x) =

√
2ωi

Lωi + sin (Lωi)
cos

((
x− L

2

)
ωi

)
(5.23)

5.2.3 Orthogonality

We stated that the SLP had to be an orthogonal set of the eigenfunctions,
and for the sake of completeness. Let Xi(x) and Xj(x) satisfy the SLP such
that.

∫ L

0

XiXjdx = 0 for i 6= j (5.24)

X ′′i (x) + λiXi(x) = 0 (5.25)

X ′′j (x) + λjXj(x) = 0 (5.26)

With the Robin boundary condition.

−LX ′i(0) + BiXi(0) = 0

LX ′i(L) + BiXi(L) = 0
(5.27)

−LX ′j(0) + BiXj(0) = 0

LX ′j(L) + BiXj(L) = 0
(5.28)

Multiplying Equation 5.25 with Equation 5.26 and subtract them from each
other, yields.

XjX
′′
i −XiX

′′
j + (λi − λj)XiXj = 0 (5.29)

Integrating Equation 5.29 from [0, L] becomes.
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∫ L

0

(
XjX

′′
i −XiX

′′
j

)
dx+ (λi − λj)

∫ L

0

XiXjdx = 0 (5.30)

We will consider the first part of the integral and use integration by parts with
the BC. Verify that.

∫ L

0

XjX
′′
i dx = [XjX

′
i]
L

0 −
∫ L

0

X ′jX
′
idx

⇒
∫ L

0

XjX
′′
i dx = [Xj(L)Xi(L)−Xj(0)Xi(0)]−

∫ L

0

X ′jX
′
idx

(5.31)

Note how the constant will cancel out. Likewise, for the second part of the
integral.

∫ L

0

XiX
′′
j dx =

[
XiX

′
j

]L
0
−
∫ L

0

X ′iX
′
jdx

⇒
∫ L

0

XiX
′′
j dx = [Xi(L)Xj(L)−Xi(0)Xj(0)]−

∫ L

0

X ′iX
′
jdx

(5.32)

Inserting the equations back into Equation 5.30. We can observe how the first
integral cancel out viz.

(λi − λj)
∫ L

0

XiXjdx = 0⇒
∫ L

0

XiXjdx = 0 if n 6= m (5.33)

We have numerically determined the eigenvalues for this SLP. In section B.1
one can see the listing for the code with a numerical calculation that verifies
that this problem is orthogonal.

5.2.4 Full solution

Since the eigenfunctions are orthogonal, and the SLP can form a complete set
over the interval [0, L], i.e. they can approximate the function over the global
domain. They can be used in much the same way as Fourier series for sin and
cos. Let the expansion coefficients of τ be defined by.

τj =

∫ L

0

φjτdx (5.34)

A linear PDE can be superimposed with an arbitrary accuracy with a truncated
sum.

τ =
n∑
i=1

φiτi =
n∑
i=1

φi(x)e−αω
2
i t (5.35)

Thus, the general solution for the homogeneous PDE can be written as.
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5.3. Weak formulation

τ(x, t) =
∞∑
i=1

∫ L

0

φi(x)φj (x′) e−αω
2
i tτ (x′, 0) dx′ (5.36)

5.3 Weak formulation
The SLP will be formulated from a strong form to a generalized solution (a
weak form). The strong form is governed by the PDE, and the associated BC.
Recall from the derivation of the heat equation. We asserted that Newton’s
law of cooling described a relationship between the heat flux at the boundary
and the object’s interior, which requires the function to be smooth. This
property may cause some issue: If the function at the boundary is not sufficient
smooth enough over the boundary, e.g. from a high/low-temperature spike.
The PDE can become too strict, and a physical solution can not be obtained.
Consequently, the spatial derivative may not be evaluated numerically at the
boundary.

By formulating the PDE to a weak form, we can mitigate the aforementioned
problem. A weak formulation will essentially recast the PDE to an integral
form and the second derivative to a less strict form. Which will make the PDE
more subjective to extensive changes on the boundary. Hence, we are ensured
that a numerical solution can be found at the boundary with a high/low-
temperature spike.

Let the weak form of the heat equation be integrated over the region x ∈
[0, L]→ R. With a test function be denoted by the eigenfunction φi subject to
the same region. Then, we can integrate the product of φi · τ over the global
domain. If τ is a solution, each mode to the eigenfunctions will fix the solution
to zero; then it must hold that.

0 =

∫ L

0

φi

(
∂τ

∂t
− α∂

2τ

∂x2

)
dx (5.37)

By using the product rule, the spatial derivation may be recast as follows.

φi
∂2τ

∂x2
=

∂

∂x

(
φi
∂τ

∂x

)
− ∂τ

∂x

∂φi
∂x

=
∂

∂x

(
φi
∂τ

∂x
− τ ∂φi

∂x

)
+ τ

∂2φi
∂x2

(5.38)

Integration by parts will produce an alternative form of the weak equation.

∫ L

0

φi
∂τ

∂t
− α∂

2φi
∂x2

τdx = α

[
φi
∂τ

∂x
− τ ∂φi

∂x

]L
0

dt (5.39)

It can be noted how the weak form will naturally produce the Robin boundary
condition. The weak formulation can be simplified by using the properties of
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the eigenfunction1, Verify that Right-hand side of the integral becomes.

∫ L

0

φi
∂τ

∂t
− α∂

2φi
∂x2

τdx =

∫ L

0

φi

(
∂τ

∂t
+ αω2

i τ

)
dx (5.40)

The weak formulation will ensure that the eigenfunctions will satisfy the tem-
perature distribution at the boundary as well as homogeneous ones; thus, we
can deduced that.

[
φi
∂τ

∂x
− τ ∂φi

∂x

]L
0

=

(
(φi)L

(
∂τ

∂x

)
L

− τL
(
∂φi
∂x

)
L

)
−
(

(φi)0

(
∂τ

∂x

)
0

− τ0

(
∂φi
∂x

)
0

)
= (φi)L

1

L

(
L

(
∂τ

∂x

)
L

+ BiτL

)
− (φi)0

1

L

(
L

(
∂τ

∂x

)
0

− Biτ0

)
= (φi)L

1

L

(
Biu+

L

k
v

)
+ (φi)0

1

L

(
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=
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(5.41)

The weak formulation for the homogeneous SLP will reduce to.

∫ L

0

φi

(
∂τ

∂t
+ αω2τ

)
dx = ((φi)L + (φi)0)

α

L

(
Biu+

L

k
v

)
(5.42)

We will denote bi as the i’th mode of the eigenfunction for later use.

bi , (φi)L + (φi)0 = 2 cos (Lωi/2)

√
2ωi

Lωi + sin (Lωi)
(5.43)

5.4 Discretization
We want to discretize the weak formulation of the Sturm-Liouville problem in
order to simulate the solution. Let the model expansion of τ be inserted back
into the weak formulation. Recognizing that the eigenfunctions are orthonor-
mal. A decoupled system of ODE’s can be written as.

∂τj
∂t

+ αω2
j τj =

bi
L

(
Biu(t) +

L

k
v

)
(5.44)

Denoting the state vector as.

1 d
dxf(x) = λf(x), if the eigenfunctions are differentiated twice, it can be the product of

the eigenvalues squared multiplied by the eigenfunctions

36



5.5. Preliminary simulation validation for an edge case

τ ,


τ1

τ2
...
τi

 (5.45)

Let Λ be diagonal matrix containing Λii = −αω2
i on each of the diagonal

position. In addition, let b denote a vector that contains the controller input bi.
Then a state-space formulation can be represented by the linear model.

τ̇ (t) = Λτ (t) + bα

(
Bi

L
u(t) +

1

k
v(t)

)
(5.46)

The outputs for the model can be found by utilizing the eigenfunctions, and
measurement at x = xm is found by.

y(t) =
n∑
i=1

φi (xm) τi(t) = cτ (t), ci = φi(x) (5.47)

5.5 Preliminary simulation validation for
an edge case

The preliminary result for the spectral method is simulated in MATLAB and
can be seen Figure 5.1. The simulation parameters can be found in Ta-
ble 5.1.

Symbol Variable Value Unit
L Length 5 [cm]

α Thermal diffusivity 1.3e− 7 [m2/s]

Bi Biot number 140 [−]

τ(x, 0) Initial/-Room Temperature 20 [◦C]
τcutoff Internal core temperature 65 [◦C]

Table 5.1: Parameter values for the preliminary simulation of the spectral
method of the the 1-D heat equation.

The step function for the simulated heat source is given below.

u(t) =

{
200 if τ(L/2, t) ≤ τcutoff
20 if τ(L/2, t) > τcutoff

(5.48)

The spectral method model is tested against the same conditions as the Finite-
difference model from section 4.4 and showcase much of the same characteris-
tics as the first model. Which can be seen in Figure 5.1b. The input source
heats up the object’s boundaries, and the temperature starts to propagate
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(a) A 2-d plot of three cross-sections. (b) A 3-d Plot of the simulation.

Figure 5.1: Preliminary simulation validation for an edge case for the spectral
method.

throughout the simulated meat. The interior of the simulated meat has a
slower convergence rate compared to the sides, and at t ≈ 20[min] the core
of the meat reaches τcutoff as seen in Figure 5.1a. Since Bi � 1 The Robin
boundary condition reduces almost to Dirichlet boundary condition, and the
conductive heat source is the dominating factor. It can be observed that the
curvature of the boundary is not as steep as the Finite-difference model, most
likely since we have a small effect from the Neumann condition.

Examining Figure 5.2a we can observe how the solution is approximately the
same with relative few modes. For N < 20 the dynamics is slightly off, however
when t ≈ 20[min] (same as τcutoff ). Will the spectral method seek a global
solution, and the system converges together. We can further observe from
Figure 5.2b that we would need a large number of modes (N ≥ 500) to achieve
an acceptable approximation tolerance at the boundaries. One key difference
with this model is that the model’s dynamic is not affected by low numbers of
modes, only the amplitude. This was an issue with the Finite-difference model;
it would have different dynamics for different magnitudes of the stencils.

(a) A cross-section at the center. (b) A cross-section at the boundary.

Figure 5.2: Two plots that showcase different resolution with different modes.
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5.5. Preliminary simulation validation for an edge case

When solving for τ(x, t), we end up with an analytical solution containing a
cosines function and an exponential function in time. The spectral method
works in much the same way as a Fourier series, where we use a series of cosine
function to estimate the heat equation. When we use this global method to
approximate the heat equation, we know that any error in the model has to be
a function of the non included modes (same as a Fourier series). Suppose we
choose the modes to be 10. We would know the residual error is a linear combi-
nation of the non-included modes 11, 12, 13, . . . N . Increasing the set of modes
will improve the resolution because we account for a tighter set of amplitudes
and frequencies changes 2. The choice of modes can then be determined by
inspecting the step response of the PDE. Knowing that if the amplitude con-
verges asymptotically to 1 for each mode, the number of modes is well chosen.
Figure 5.3 shows that the characteristic is identical at the boundaries. Only
the amplitude differs for a low and high number of modes.

Figure 5.3: Step responses to show that the amplitudes changes for N = 10

and N = 2000, for high a Bi value.

Figure 5.4 shows the heat equation subject to different values of the dimension-
less Biot coefficient. This is done to verify that the Robin boundary condition
works properly. It can be observed that a low value, Bi = 0.1. The system can
be seen as insulated, and the Robin boundary condition reduces to the Neu-
mann condition. Which slows temperature propagation from the heat source

2In the spatial axis, a sinusoidal curve was the solution to the heat equation. Which
propagates amplitudes in the temporal direction.
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Chapter 5. Spectral method for the 1-D Heat Equation

at the boundaries. When Bi becomes higher, Bi = 4 and Bi = 40, the Robin
boundary condition is a mixed case. The system can be seen as less insulated
from the contribution of the Neumann condition. It makes sense that heat
would propagate at a slower rate at the boundary for a low value of Bi. As
we increase the value of Bi = 140, the system’s boundary is more receptive to
heat flux. This entails that the Dirichlet condition becomes dominating.
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Figure 5.4: A 2-d plot of four cross-sections. Showcasing different Biot values.

We will conclude that the spectral model is more robust compared to the finite
differences model—expensive inverse operation from the system matrix, A are
not needed. A global solution will ensure exponential convergence and high
spatial resolution for a long integration time. Residual error in the modes can
be found by examining the step response.

We have only operated in one dimension to this point, which will not be
a practical approximation to a physical heat distribution problem. We will
expand the spectral method into cylindrical coordinates, examine a uniform
disk, and conceptualize the one-dimensional cases as proof of concept. In
addition, we have not included a controller for the problem to reach an idealized
temperature profile for the meat. The next chapter will introduce the method
to predict the controller input via a model predictive control.
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6 | Model Predictive Control

We want to establish a method to control a convective/radiative heat source.
Such that the temperature distribution in the meat does not exceed the ideal-
ized temperature profile. This thesis proposes that a Model Predictive Control
(MPC) may find an optimal control sequence. Contrary to stander cooking
techniques of measuring the temperature at the centre of a roast. Will this the-
sis assume a measurement is at the centre of a roast and let the spectral model
facilitate a set of output measurements. Which are then constrain to idealized
doneness. This may ensure that an idealized temperature profile throughout
the roast can be achieved.

6.1 MPC with Reference Tracking
The MPC feedback controller utilizes the dynamics from the model to forecast
the dynamical behaviour of the model. It solves an optimized sequence of
control action, based on the recent and predictive action of the model [42,
43, 44]. This makes the MPC dependent on an accurate model. However, it
can allow small degree of model plant mismatch [45]. The predictive action
is dependent on the inputs from the model and the measured outputs over a
discrete-time span t ∈ [0 . . . p]. Here p is commonly referred to as the prediction
horizon. To obtain the control sequence, we minimizing a cost function subject
to a set of constraints inside a feasible set. The MPC algorithm will calculate
the control sequence over a prediction horizon, using the first move as the
next input, and rejects the remaining control sequence. The re-optimization
is done repeatedly for 0 ≤ ∆t ≤ tend. Shifting the prediction horizon for each
time-step ∆t and reinitialize the optimization scheme.

The MPC optimizing strategy has some beneficial properties that may produce
an idealized temperature profile for a slab of meat.

• MPC may interact with a multi-input multi-output (MIMO) system.
Since we are considering a convective/radiative heat source, we only
have one input variable, making the plant a single-input multiple-output
(SIMO) system.

• The possibility of implementing constraints on the Manipulated Variable
(MV) and the Output Variables(OV).

• Minimizing the error reference tracking for a feasible set of measured
outputs in the meat.
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Chapter 6. Model Predictive Control

6.1.1 Cost Function

This thesis uses Matlab to simulate the optimal controller sequence of the pro-
posed spectral model. The MPC will be designed with the "Model predictive
control toolbox™" from Matlab [46]. The MPC toolbox needs an LTI plant
in the form of a state-space representation. Given the plant model, a linear
discrete state-space formulation can be on the form.

xk+1 = Axk +Buk

yk = Cxk +Duk

(6.1)

Here, xk ∈ Rn, yk ∈ Rq and uk ∈ Rm is respectively the state vector, output
vector and the control input for a current control interval k. The state matrix
A ∈ Rn×n and the input matrix B ∈ Rn×m, are assumed to be constant, and
the output vector is a linear combination of the state vectors and the con-
troller inputs, C ∈ Rq×n. We will assume that there is no direct feedthrough,
i.e. D = 0.Thus, we can write the regulation error for the plant as a linear
combination of a reference tracking vector, the output variable and manipu-
lated variable.

ey(i+ k) = [r(k + i+ 1 | k)− y(k + i+ 1 | k)]

∆u(k + i) = [u(k + i | k)− u(k + i− 1 | k)]
(6.2)

Let, p be defined as the prediction horizon, for i = [0, . . . , p − 1]. With, r
as the outputted reference values for the i’th prediction horizon at an input
instance k. Then, for a finite prediction horizon, we need the cost function to
minimize the regulation error. Let the cost function be defined as.

J (zk) =

p−1∑
i=0

[
eTy (k + i)Qey(k + i)

]
+
[
∆uT (k + i)R∆u∆u(k + i)

]
+ Sε2

Where
zk

T =
[
u(k | k)Tu(k + 1 | k)T · · ·u(k + p− 1 | k)T εk

]
(6.3)

Q ∈ Rq×q and R∆u ∈ Rm×m are diagonal penalty weights matrices. That
will acts as the cost parameters for the states and the controller input respec-
tively. The weight matrices are chosen such that they are positive-definite,
Q � 0, R∆u � 0. In addition, we soften the objective function by introducing
a slack variable ε with a diagonal constraint violation penalty weight matrices,
which are positive-definite S � 0.

6.1.2 Constraints

The constraints will ensure that we do not violate any infeasible actions and
produce an idealized temperature profile for a slab of meat. Realizing this
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6.2. Case Study of the 1-D Heat Equation with an MPC Strategy

problem will require to imposes some constriction on the system. These are as
follows.

• A state-space reparation of the temperature dynamics.

• The initial temperature profile of the states and the last move from the
convective/radiative source.

• The maximum and minimum allowed output measurement for the tem-
perature at the i’th mode.

• The maximum and minimum temperature a convective/radiative source
can emit.

• The temperature rate of change from the convective/radiative source.

• A slack variable that ensures the hard constraints can sometimes be
violated and a solution is feasible.

• A vector of reference tracking to reach an idealized temperature profile.

Which can be described by the following equations.

xk+1 = Axk +Buk

x0, uk−1 = given

ylow
k − ε ≤ yk ≤ y

high
k + ε

ulow
k − ε ≤ uk ≤ uhigh

k + ε

−∆ulow
k − ε ≤ ∆uk ≤ ∆uhigh

k + ε

(6.4)

It can be noted that the heat equation is governed by the maximum principle,
which assures temperature is inside the region of interest and will propagate to
the maximum/minimum temperature outside, when t→∞. Thus, the feasible
solution must be found in the domain of the active set of the MV.

6.2 Case Study of the 1-D Heat Equa-
tion with an MPC Strategy

The case study uses the MPC optimization strategy to control the 1-D heat
equation with the spectral method to constrain the temperature distribution at
four different measurements. The aim is to try out two different Biot numbers
and inspect the optimized controller sequence. The controller sequence will
be initiated at room temperature to observe how the sequence would evolve
in time and temperature. From this, we can deduce which temperature a
convective/radiative heat source may be set to.

For this case study, we will assume the following in Table 6.1. Note that
the assumption of the manipulated variables, constraints the inequality in-
side the outputted variables domain, i.e. arg min{uk} ≤ arg min max{yk} ≤
arg max{uk}.
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Chapter 6. Model Predictive Control

In addition, we assume that there is integrated white noise in the output
variables and no blockage moves from u. The input rates were chosen to
generate heat faster and dissipate at a slower rate, which can be seen as a
likely scenario for a oven.

Symbol Variable Value Unit
L Length 5 [cm]

α Thermal diffusivity 1.3e− 7 [m2/s]

τmed Medium doneness 55 [◦C]

τmax Max allowed temperature 75 [◦C]

p Prediction horizon 200 [−]

x0 Initial temp. distribution 20 [◦C]

uk−1 Last move of the input 20 [◦C]

ylow
k , yhigh

k Min & max temp. to OV [20, 75] [◦C]

ulow
k , uhigh

k Min & max temp. to MV [20, 250] [◦C]

∆ulow
k ,∆uhigh

k Min & max temp. rate to MV [−0.25, 0.5]
[ ◦C
s

]
Table 6.1: Parameter values for the case study the one-dimensional heat equa-
tion with an MPC strategy.

The heat equation’s physic dictates how heat enters the boundary and goes
towards equilibrium for t → ∞. Since heat enters at the boundary we allow
for higher reference error closer to the edges and accept tenderness decrease
for xk < L0.15 and xk > L0.85, i.e. 15% and 85% of the length. Subsequently,
the reference vector rk can be model with the function below.

rk =


τmed if L0.15 ≤ xk ≤ L0.85

τmax − a · τmed if xk < L0.15

τmed + b · τmax if xk > L0.85

(6.5)

Where a and b are scaling coefficients for t ∈ [0, i/3]. The function for rk can
be seen in Figure 6.1.

Figure 6.1: The 3-D reference variable rk visualised, with two 2-D plots.
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6.2. Case Study of the 1-D Heat Equation with an MPC Strategy

6.2.1 Simulation

Three validation test was performed numerically in Matlab. First, the penalty
weights were tested if they are a positive-definite Hessian. Which will ensure
a unique solution is feasible. Both plants had positive-definite Hessian for the
OV’s and MV’s. Secondly, the systems were tested for closed-loop internal
stability. The eigenvalues for both plants was found tightly spaced and less
than zero. Making the plants internally stable for each of the controller modes
and can be seen as pure integrators. Thirdly, hard & soft constraints are
visually inspected and found in the MV’s active set. In real-time usage, the
heat source may be perturbed or start to fluctuate. To compensate for this
behaviour, an added slack are imposed on the MV’s and OV’s. This will ensure
that the problem does not become infeasible.

The following values was used for the penalty matrices Q = diag([2 2 1 1])β

and R∆u = 0.1/β. For the measured output vector yk = [0, 0.75, 1.25, 2.5]T .
Where, β is an overall adjustment factor applied to the weights. The first
simulation was done with a Biot value of Bi = 1.
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(a) A 2-d plot of four cross-sections with
the constraints for the MPC and the cor-
responding input sequence.

(b) A 3-d plot of the simulated run. For
a rod with length 0 ≤ x ≤ 5

Figure 6.2: The MPC strategy with the 1-d heat equation with a Bi = 1.

Figure 6.2 shows that the MPC strategy seeks to find the optimum. It pushes
the system to build up the maximum allowed temperature at the fastest per-
mitted rate. Such that maximum thermal energy can diffuse into the system
at the start of the simulation. The MPC holds the maximum allowed temper-
ature for 15 minutes before letting the heat dissipate. First fast, then slowly
to a steady-state temperature of τmed at t ≈ 110 [min].

We can observe that the boundaries have a slight overshoot at L = 0 with a
peak of 67◦C. Due to how we choose the reference vector, rk, we did not exceed
τmax and we did not need to penalize the system at L = 0 too high. Potential
making the plant give a more sluggish controller response. However the rest of
the measurement, L = 0.45, L = 1.25 and L = 2.5 tract the reference vector
consistently. Which gives medium doneness for at least 70% of the meat.
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(a) A 2-d plot of four cross-sections with
the constraints for the MPC and the cor-
responding input sequence.

(b) A 3-d plot of the simulated run. For
a rod with length 0 ≤ x ≤ 5

Figure 6.3: The MPC strategy with the 1-d heat equation with a Bi = 40.

For the second simulation, Bi = 40. The weight matrix was changed to
Q = diag([80 40 1 1])β. We can observe that we had to substantially
increase the penalty to track the reference at L = 0 and L = 0.45. As seen in
Figure 6.3. The increased penalty comes from the internal conductive resis-
tances in the object is relatively high. It will be more susceptible to thermal
energy, and heat will flow in large quantity at the boundaries. Which makes
the temperature spike up to τmax at t ≈ 3 [min]. However, the system tracks all
the measurement consistently at a potential cost of giving a sluggish controller
response and τmed is reach for 70% of the length.

Furthermore, we can observe that the optimized input give a peak temperature
of 90◦C, which is less than the previous simulation. The input sequence gives
the same thermal characteristic as a low Biot number, and a steady-state
temperature is achieved after t ≈ 90[min].

We optimize for temporal properties and not the transit behaviour and this
case study will conclude that: Starting at the maximum allowed temperature
is a sound strategy for a low Biot number. This will reduce the time it takes
to reach the idealized temperature profile. For higher Biot numbers, it would
be prudent to start at a lower temperature setting for a convective/radiative
heat source.
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7 | The Spectral Method for the
2-D Heat Equation

The one-dimensional heat equation was a valuable way of showing how the
physic works and validate the different approaches. By extending into a two-
dimensional system, we may get a more realistic system contrary to the one-
dimensional case. We will use the same approach from chapter 5 to seek a
solution for a symmetric disk. Assuming the convective/radiative heat source
is more prominent over the radial surface to the vertical surface. Figure 7.1
depicts a geometrical differential control volume we want to model. The control
volume is characterized by the dimensions dz in the vertical direction, dr in
the radial direction and rdϕ in the angular direction.

Figure 7.1: Differential control volume from the book Fundamentals of heat
and mass transfer [47].

7.1 Modeling
The one-dimensional heat equation will be extended into cylindrical coordi-
nates such that a disk with angular symmetry can be considered. Let the
domain for the radius be denoted as 0 ≤ r ≤ a. For a given temperature
profile, let τ : [0, a]× [0,∞) 7→ R2 at location r and time t.
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Chapter 7. The Spectral Method for the 2-D Heat Equation

The heat equation for a cylindrical system may be derived by studying the en-
ergy balance around a differential element, with the assumption of no internal
heat generation.

Ėstored = Ėin − Ėout (7.1)

The stored energy is proportional to the mass, the heat capacity cp and the
temperature rate, where we can relate the mass with the density ρ times the
volume.

Ėstored = ρcp
∂τ

∂t
· drdzrdϕ (7.2)

The energy that enters and leaves the differential element can be related
by.

Ėin − Ėout = (qr + qϕ + qz)− (qr+dr + qϕ+dϕ + qz+dz) (7.3)

By using the Taylor expansion, we can recast the energy leaving the control
volume.

Radial: qr+dr = qr +
∂qr
∂r

dr

Angular: qϕ+dϕ = qϕ +
∂qϕ
∂ϕ

dϕ

Axial: qz+dz = qz +
∂qz
∂r

dz

(7.4)

By combining Equation 7.2 and the recast form of Equation 7.3 we can assert
the following relationship. Where, the left side is the energy storage term,
and the right side represents the net rate at which energy enters the control
volume.

ρc
∂τ

∂t
drdzrdϕ = −∂qr

∂r
dr − ∂qϕ

∂ϕ
dϕ− ∂qz

∂z
dz (7.5)

The flow of energy through the control volume can be related to Fourier’s
law. Such that heat flux acting on an element is proportional to temperature
gradient times the cross-sectional area.

Radial: qr = −k∂τ
∂r
rdϕdz

Angular: qϕ = −k ∂τ
r∂ϕ

drdz

Axial: qz = −k∂τ
∂z
rdϕdr

(7.6)
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7.2. General Solution

Combining the preceding equation yields the complete heat equation in cylin-
drical coordinates.

ρcp
∂τ

∂t
=

1

r

∂

∂r

(
kr
∂τ

∂r

)
+

1

r2

∂

∂ϕ

(
k
∂τ

∂ϕ

)
+

∂

∂z

(
k
∂τ

∂z

)
(7.7)

By imposing angular symmetry and inspecting a cross-section with width dz.
We can simplify the heat equation.

∂τ

∂t
= α

1

r

∂

∂r

(
r
∂τ

∂r

)
, α ,

k

ρcp
(7.8)

The exterior of the cylinder will be exposed to a convective heat source or
radiative forcing. By utilizing the second law of thermodynamics, we can
assume that the flux on the boundary is proportional to the difference between
the environment and the object, viz.

qa = hA (u− τa) + v (7.9)

Where u denotes the air temperature, A cross-sectional area, v the radiative
forcing and h the heat transfer coefficient. The boundary conditions can be
related to the radial heat flux from Equation 7.6 and the interface from Equa-
tion 7.9 yielding a Robin condition for the problem 1.

− k
(
∂τ

∂r

)
a

= h (u− τa) + v (7.10)

By combining Equation 7.10 with the dimensionless Biot number, we get the
following relationships for the boundary condition.

Lc

(
∂τ

∂x

)
a

= Bi (u− τa) +
L

k
v (7.11)

7.2 General Solution
We recover the heat equation and recasting it to an easier form to work
with.

∂τ

∂t
= α

1

r

∂

∂r

(
r
∂τ

∂r

)
⇔ ∂τ

∂t
− α

(
∂2τ

∂r2
+

1

r

∂τ

∂r

)
= 0

(7.12)

Subjected to the homogeneous, linear Robin boundary conditions.
1Note: The cross-sectional area A gets cancelled out.
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Lc

(
∂τ

∂r

)
a

+ Bi τa = 0 (7.13)

In order to solve the PDE into a set of ODE’s, separation of variables is used.
We assume the solution is on the form.

τ(t, r) = T (t)R(r) (7.14)

Inserting the factorization into the heat equation and dividing with T (t)R(r)

on both sides of the equation, the separated equation becomes.

1

α

∂T

∂t
R = T

∂2R

∂r2
+ T

1

r

∂R

∂r

⇔ 1

α

1

T

∂T

∂t
=

1

R

(
∂2R

∂r2
+

1

r

∂R

∂r

) (7.15)

A separation constant can be found, which are not dependent on r and t such
that both sides will be equal. Let it be defined as −λ2. This yields a temporal
ODE on the form.

∂T

∂t
+ αλ2T = 0 (7.16)

The temporal part has an well-know analytical solution, viz.

T (t) = e−αλ
2tT (0) (7.17)

7.2.1 Bessel Function

By inspection, we can find the spatial part of the solution. Which is an alter-
native form of the Sturm Liouville problem from subsection 5.2.2

∂2R

∂r2
+

1

r

∂R

∂r
+ λ2R = 0 (7.18)

By adding r2 to Equation 7.18 we can rewrite the equation and show that the
Bessel function gives the general solution to the spatial problem.

R(r) = c1J0(λr) + c2Y0(λr) (7.19)

The equation has two linearly independent solutions. Which are called the
Bessel function of the first kind with zero order, J0(z), and Bessel function of
the second kind with zero order, Y0(z). J0(z) solution is finite at z = 0 and
Y0(z) → ∞ as z → 0. To ensure that R(r) is bounded, |R(0)| < ∞. We will
let c2 = 0 and c1 6= 0 only when z = λr is root of J0(z). Such that a non-zero
solution can be found. The spatial solution will then reduces to.
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7.2. General Solution

R(r) = c1J0(λr) (7.20)

The roots will have an infinite sequence of positive eigenvalues λi > 0 that
would satisfy a stable solution to Equation 7.20. A numerical approximation
of computing the eigenvalues are shown in section A.2. For notationally as-
surance, let the ith zero of J0(z) be defined as Γi. Hence, the corresponding
λi will be on the form of λi = Γi/a. Then, combining the solution with the
Robin boundary condition yields the following relationship.

LcλJ1(λa) + Bi J0(λa) = 0

⇒ Bi J0(Γi)− ΓiJ1(Γi) = 0
(7.21)

The Bessel function of the n’th kind is defined by a power series in the same
way as the known trigonometric functions sin(x) and cos(x). The power series
will converge for all z ≥ 0 and uniformly for a closed interval z ∈ [0, a]. With
convergence greater compared to the known exponential and trigonometric
functions [48].

Jn(z) =
∑
k=0

(−1)kz2k+m

k!(k +m)!22k+m
(7.22)

Although the trigonometric functions have exactly periodic properties, the
Bessel functions are not uniformly periodic. However, it starts to show a
periodic tendency for large values of z. This may be more apparent to see
with the approximation of the power series.

Jn(z) ≈
√

2

πz
cos(z − [n/2 + 1/4]π) (7.23)

The first 20 roots of the Robin boundary condition are plotted in Figure 7.2.
It can be seen as scaled trigonometric functions, similar to the approximation
of the Bessel function. The eigenvalues start to show a periodic tendency, and
the amplitude increases.
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Figure 7.2: A plot of the Robin boundary with 20 corresponding eigenvalues.

We established in section 5.2: that an SLP can form a complete set on a closed
domain 0 ≤ r ≤ a, and the Gram-Schmidt orthogonalization can normal-
ize an orthonormal set of eigenfunctions. Let the scaling coefficient K form
an orthonormal basis for the eigenfunction and be unit in the L2([0, L],R)

norm.

√∫ a

0

(J0(λr))2 r dr =

√∫ a

0

rJ0(Γ
r

a
)2dr =

√
a2J0(Γ)2 + J1(Γ)2

2
(7.24)

Let the scaling coefficientK be the inverse of the solution of Equation 7.24.

K ,

√
2

a2 (J0(Γ)2 + J1(Γ)2)
(7.25)

Verify the choice of K is normalized.

√∫ a

0

KJ0(Γ
r

a
)2 rdr = 1 (7.26)

We will show in section B.2 that the SLP is an orthogonal set of the eigen-
function, and a numerical evaluation can be seen in section B.3. We can then
write the eigenfunction for the i’th mode as.

φi(r) =

√
2

a2 (J0(Γi)2 + J1(Γi)2)
J0(λir) (7.27)
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7.2.2 Full Solution

Since the eigenfunctions are orthogonal, the SLP can form a complete set,
in the same way as we previously established in subsection 5.2.4. Let the
expansion coefficient be denoted as.

τj =

∫ a

0

φjτ rdr (7.28)

The PDE can be represented by an arbitrary accurate truncated sum.

τ =
n∑
i=1

φiτi =
n∑
i=1

KiJ0 (λir) e
−αλ2i t (7.29)

All told, the general solution for the linear homogeneous heat equation will
be.

τ(r, t) =
∞∑
i=1

∫ a

0

φi(r)φj (r′) e−αλ
2
i tτ (r′, 0) r dr′ (7.30)

7.3 Weak Formulation
Let the eigenfunction be mapped to the global domain φi : [0, a] → R such
that a weak form of the PDE can be established. If τ is a solution to the
SLP, then the i’th modes for the eigenfunctions will fix the solution to zero,
viz.

∫ a

0

φi

(
∂τ

∂t
− α1

r

∂

∂r

(
r
∂τ

∂r

))
r dr = 0 (7.31)

Integrating by parts is utilized on the spatial part of the equation, yielding a
reformulation of the weak form.

∫ a

0

φi
∂

∂r

(
r
∂τ

∂r

)
dr = α

[
φir

∂τ

∂r

]a
0

− α
∫ a

0

∂φi
∂r

r
∂τ

∂r
dr

= α

[
r

(
φi
∂τ

∂r
− τ ∂φi

∂r

)]a
0

+ α

∫ a

0

τ
1

r

∂

∂r

(
r
∂φi
∂r

)
r dr

= α

[
r

(
φi
∂τ

∂r
− τ ∂φi

∂r

)]a
0

+ α

∫ a

0

τ

(
1

r

∂φi
∂r

+
∂2φi
∂r2

)
r dr

= α

[
r

(
φi
∂τ

∂r
− τ ∂φi

∂r

)]a
0

− α
∫ a

0

τ
(
λ2
iφi
)
r dr

(7.32)

In the same way as section 5.3, the reformulated spatial part of the integral
naturally produces the Robin boundary condition. We use the eigenfunction
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properties to simplify the weak form and insert the reformulation into the
generalized solution, yielding.

∫ a

0

φi

(
∂τ

∂t
+ αλ2

i τ

)
r dr = α

[
r

(
τ
∂φi
∂r
− φi

∂τ

∂r

)]a
0

(7.33)

The eigenfunctions ensure that the homogeneous boundary conditions are up-
held at the surface. Thus, we can deduce that temperature at the boundary
can be written as.

[
r

(
φi
∂τ

∂r
− τ ∂φi

∂r

)]a
0

=

(
a (φi)a

(
∂τ

∂r

)
a

− aτa
(
∂φi
∂r

)
a

)
− 0

= − (φi)a

(
a

(
∂τ

∂r

)
a

+ Bi τa

)
= (φi)a

(
Biu+

a

k
v
) (7.34)

Inserting the solution from Equation 7.34 into Equation 7.33 will yield a re-
duced weak form of the SLP.

∫ a

0

φi

(
∂τ

∂t
+ αλ2τ

)
r dr = (φi)a

α

L

(
Biu+

a

k
v
)

(7.35)

Denoting bi, for later use.

bi , (φi)a =

√
2

a2 (J0(λia)2 + J1(λia)2)
J0(λia) (7.36)

7.4 Discretization
The model expansion for τ is inserted into the weak form, and a decoupled
system of ODE’s can be solved. Note that the eigenfunctions are orthonormal
to each other.

∂τj
∂t

+ αλ2
jτj = biα

(
Biu+

a

k
v
)

(7.37)

With a state vector for the i’th mode denoted as.

τ ,


τ1

τ2
...
τi

 (7.38)

Let Λii = −αλ2
i be a diagonal matrix for each mode. Also, define b as an

vector, which holds the bi values for the i’th mode.
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τ̇ (t) = Λτ (t) + bα
(

Biu(t) +
a

k
v(t)

)
(7.39)

Using the eigenfunctions, an output for the model can be found at r =

rm.

y(t) =
n∑
i=1

φi (rm) τi(t) = cτ (t), ci = φi(x) (7.40)
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8 | Experimental Setup

Two experiments were conducted to validate the two-dimensional spectral
model. The result from the experiment was used to ascertain the thermal
properties constants and compared against the model.

8.1 Overview of the setup
The test consisted of two different beef types, a round steak and a tenderloin
acquired at the local butcher. The two types of cuts were chosen with a length
greater than the diameter of the cut. As a consequence of the assumption in the
model: The convective/radiative heat source is larger over the radial surface
to the vertical surface. The samples have a naturally cylindrical form and,
prior to cooking, were bound up with butchers twine or pre-assembled with a
netting. Making the sample almost uniform, and the assumption of angular
symmetry can be imposed. Both cuts have a moderate amount of marbling
throughout the fibres, and any superficial connective tissue was removed. It
can be noted that the round steak has more connective tissue throughout the
fibres, which make it tougher/chewier. Compared to the tenderloin.

The experiment was carried out with the following step:

• The circumference, length and weight of the meat were measured, and
the radius and density were calculated. Seen in Table 8.1

• The meat was equipped with two thermal sensors at r = 0 and r = R/2,
and one control sensor at r = R/2. As seen in Figure 8.3 and Figure 8.4.

• The oven was preheated with the free convection setting, and when the
oven showed a steady-state temperature of 250◦C. The samples were
laid in the central region of the oven on an oven rack. Assuming an even
temperature distribution around the cut is produced. The round steak
sample was exposed to only free convection, and the tenderloin was first
exposed to free and then switched to forced convection.

• Temperature telemetry was logged every two minutes inside and outside
of the meat, And the logging can be seen in Appendix C. The cooking
process was assumed finished when the thermal sensors at τ(R/2, t) read
52◦C and removed from the oven.

• The thermophysical properties were estimated via two methods. The
first was done with manually parameter estimation. Secondly, using the
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mean values from telemetry readings and using the linearized function
and composition data from section 3.5.

Description Value Unit
Initial temperature 8 ◦C

Initial weight 1.131 [kg]

Final weight 0.933 [kg]

Circumference 295 [mm]

Length 160 [mm]

Calculated radius 47 [mm]

Calculated density 967 [ kg
m3 ]

(a) Round steak

Description Value Unit
Initial temperature 17 ◦C

Initial weight 0.819 [kg]

Final weight 0.644 [kg]

Circumference 250 [mm]

Length 170 [mm]

Calculated radius 39.8 [mm]

Calculated density 1.027 [ kg
m3 ]

(b) Tenderloin

Table 8.1: Parameter values from the experiment

8.1.1 Thermal Sensor

The thermal sensor used for the experiment where a commercially available
sensor named Meater® [49]. The Meater sensor was selected because it has
two built-in sensors, see Figure 8.1. The first sensor measures the temperature
internally and is located 2cm from the tip. The second sensor is external,
measuring the ambient temperature, approximately 2-4 cm outside the surface
of the meat. The thermal sensor sends the temperature data via Bluetooth
4.0 to an external device.

Figure 8.1: A sketch of the placement of the different sensors [50].

There is no available technical specification document on which type of sensor
used in the Meater product. Only a limited specification for the characteristics
is given on Meater’s official website [51]. The relevant specification for this
experiment is listed below.

• Maximum internal temperature: 212◦F ≈ 100◦C

• Maximum ambient temperature: 527◦F ≈ 275◦C

• Variance internal sensor: ±0.5◦C

The control sensor was a built-in sensor in the domestic oven and was used to
validate the result from the Meater sensor. The domestic oven was of the bran
Bosch Serie-8 Oven. The documentation for the oven does not state which type
of sensor used or the variance of the sensor. The relevant data found for this
experiment was; the thermometer worked in the range of τ(x, t) ∈ [30, 99]◦C
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[52]. The reading was discarded due to the limitation of the probe and are not
include henceforth.

8.1.2 Time Delay in the Ambient Sensor

The telemetry from the ambient sensor showed a significant time delay when
exposed to a high heat source. As a consequence, the time delay for the
ambient sensor is needed. If we assume the ambient temperature reading is
correct and have the characteristic of a low-pass filter. The ambient telemetry
can be stated on the form.

ζ ˙̃T (t) + T̃ (t) = T0 (8.1)

Here, ζ is denoted as the time constant, T̃ (t) is a measurement at time t, and
T0 is the constant temperature in the oven. Note that we neglect the thermal
cycling from the oven. The equation can readily be solved with.

T̃ (t) = T0 + (T̃ (0)− T0)e−t/ζ (8.2)

The time constant ζ can be found by solving the low-pass filter, viz.

ζ = − t

ln
(
T0−T̃ (t)

T0−T̃ (0)

) (8.3)

Two different Meater sensors were used, and the telemetry from the sensor
produced a time constant of ζ1 = 98.3 and ζ2 = 103.8 seconds. Assuming
T0 = 5 · ζ gives steady-state temperature readings. Telemetry readings after
approximately 9 min can be used as the steady-state temperature for t = 0.
A simplification can be done by setting the mean value of the sensor to be the
controller input u(t).

Figure 8.2: A low pass filter estimating the time constant.
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Figure 8.3: The round steak sample. With three thermal sensors insert.

Figure 8.4: The tenderloin sample. With two thermal sensors insert.
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9 | Result and Discussion

9.1 Experiment

The experiment was done without a simulation first. To facilitate how two
amateur home cooks used intuition and their knowledge of thermodynamics
to assert when the meat was finished. We came to a conclusion that if the
thermometer at τ(R/2, t) = 52◦C. The residual heat would propagate from
the boundaries, and an idealized steady-state temperature of τ(r, t) ≈ 55◦C

could be accomplished.

9.1.1 The Round Steak Sample

Figure 9.1: Telemetry data for the round steak compared to the spectral model.
Done with manually parameter estimation.
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Figure 9.2: Telemetry data for the round steak compared to the spectral model.
Done with composition data.

Figure 9.1 and Figure 9.2 shows the sequential logged values from the ex-
periment, which are plotted against the two-dimensional cylindrical spectral
model. Where the round steak sample was exposed to the free convection
setting, with a temperature input set to uoven = 250◦C. Both the Meater
sensor was located on the same side of the roast. Even if they were closely
spaced. The ambient temperature telemetry varied in range of [2, 13]◦C and
gave a negative temperature difference of [35, 47]◦C compared to uoven. Seen
in the top part of Figure 9.1 and Figure 9.2. We will, therefore, consider a
mean value of the ambient telemetry as the input for the spectral heat equa-
tion. With the assumption that a time delay of 9 minutes gives steady-state
temperature. The calculated mean value is therefore set to umean = 207◦C

for τ(r, t) ∈ [0, 32). The roast was removed from the oven and exposed to the
ambient room temperature of uamb = 25◦C. Which will produce the following
step response for the model.

u(t) =

{
umean t ≤ 32

uamb t > 32
(9.1)

Thermophysical properties via manually parameter estimation produced a Biot
number of Bi = 0.8 and thermal diffusivity of α = 2.28e − 7. Secondly, the
estimated thermophysical properties with composition data, found a thermal
diffusivity of α = 1.33e− 7 and thermal conductivity of k = 0.5. Assuming a
heat transfer coefficient of h = 20 produced a Biot number of Bi = 1.9.

Figure 9.1 are fitted with parameter estimation, and we can observe that the
model tracks the core temperature within a small tolerance. The sensor placed
at τ(R/2, t) deviates from the steepest gradients compared to the spectral
model. However, after t = 50 [min], the model and the telemetry data starts
to consolidate. Figure 9.2 uses the estimated thermophysical properties and

62



9.1. Experiment

shows a similar thermal characteristics. By using the estimated quantities, a
larger deviance from the model to the actual data-set occurred for both τ(0, t)

and τ(R/2, t).

Both Figure 9.1 and Figure 9.2 shows that thermal energy builds up faster
at τ(R/2, t) compared to τ(0, t). This is consistent with what we have seen
in previous simulation of the heat equation. Latent heat propagates into the
meat after the sample is taken out of the oven. Where it takes longer time
to dissipate the residual heat for the centre compared to τ(R/2, t). With the
temperature reaching a steady-state at t = 60 [min] and τ(0) = 48◦C and
τ(R/2) = 47◦C. Which means that accounting for a variance of ±0.5◦C in the
internal temperature sensor, the temperature should not be any higher in the
core due to the maximum principle. This entails that the meat will not exceed
a temperature of 48◦C and τ(r, t) = 55◦C are not obtained.

9.1.2 The Tenderloin Sample

The tenderloin sample was first subjected to free convection and switch to
the forced convection setting, with uoven = 250◦C. The switch occurred at
t = 14 [min] and removed at t = 24 [min]. Additionally, the Meater sensor
was inserted on the opposite side to each other. These alterations were done
to understand if the thermophysical properties were affected by the placement
of the sensor and sudden changes in convection.

from Figure 9.3 and Figure 9.4. We can observe that while the forced con-
vection setting was applied, the temperature spiked about 20◦C. This is no
surprise since the fan will push the heated air over the boundaries of the meat
and the ambient sensor. However, with the sensor on the opposite side of
each other, we get an ambient temperature difference between the sensor of
[21, 23]◦C under free convection and [13, 15]◦C for forced convection. Which is
larger compared to the previous experiment. The same procedure as the round
steak was used and produced a mean value for the input to umean,free = 208◦C

and umean,forced = 234◦C.

u(t) =


umean,free t ≤ 14

umean,forced 14 < t ≤ 24

uamb t > 24

(9.2)

Figure 9.3 are manually parameter estimated and the following values was
found: α = 2.04e − 7 and Bi = 0.8. Whereas, Figure 9.4 are estimated with
composition data, producing a: α = 1.31e − 7 and Bi = 1.8. We can observe
that the Biot number and the thermal diffusivity constant is relative the same
for the tenderloin and the round steak with both methods.

From Figure 9.4 and Figure 9.4, we can observe the concavity for τ(0, t) and
τ(R/2, t). Are almost identical to the telemetry data, even with different
thermophysical values. The parameter estimated quantities showed the best
result with the spectral model. We can additionally see temperature prop-
agation after the meat was taken out of the oven, at t = 24 [min]. Resid-
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ual heat propagates to the core, and at half the radius of the meat. With
steady-sate temperature occurring at t = 46 [min] and τ(0, t) = 55◦C and
τ(R/2, t) = 55◦C.

Figure 9.3: Telemetry data for the tenderloin compared to the spectral model.
Done with parameter estimation

Figure 9.4: Telemetry data for the tenderloin compared to the spectral model.
Done with composition data.

9.1.3 General Discussion

The two-dimensional spectral method provides a surprisingly good results for
the tenderloin sample. This cut had the least cylindrical shape. Prior to the
analysis, the round steak was expected to give the best result due to the cylin-
drical homogeneity of the sample. This is an interesting finding, and it could
be hypothesized that a larger ratio of circumference to length could be a reason
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9.1. Experiment

for these findings. One of the model’s fundamental assumptions is that heats
enter through the radial surface. When spontaneous heat transfer via convec-
tion occurs at the boundaries. Thermal energy is diffused via conductivity into
the meat. Since beef consists of approximately 70 - 75 % water, evaporation
at the boundaries will occur. Considering that mass transfer of meat juices oc-
curs at the boundary, the beef starts to shrink when heat is applied. However,
the relative ratio is approximately alike. The cylindrical homogeneity of the
round steak could be somewhat deceiving. In hindsight, it would make sense
that the model is better to approximate the tenderloin sample. The convective
heat source pushes more thermal energy into the vertical surface of the round
steak compared to the tenderloin. We can see that the assumption of angu-
lar symmetry is justified and does not affect the modelling error significantly.
Further investigation to improve on these new developments is suggested by
accounting for the vertical surface.

Furthermore, the evaporation of meat juices on the boundary can have an
additional effect on the model. It can create an insulating layer around the
steaks, such that less heat flux enters the system. This makes the Neumann
condition the significant contributory factor in the Robin boundary condition.
It was observed a difference of up to 47◦C from the ambient sensor and the
oven setting. An important factor in the model is that the input matrix is
model as the thermal energy at the boundary. If the reading from the oven
does not correlate with the temperature at the boundary. A significant model
mismatch could occur. This shows the importance of a temperature sensor
close to the meat for this model.

With various assumption in the model, some deviation was expected. The
thermophysical properties found in literature research, and parameter esti-
mated were close to each other but not conclusive. With the spectral model
showing the best approximation for the tenderloin sample. Both with conven-
tional and estimated values. In section 3.5 the thermophysical properties were
estimated with a mass fraction and general composition data. Gathering a
sufficient amount of data can be a complex process, and the amount of water,
fat and protein was not measured for both samples. This most likely causes
the round steak to give a poorer estimate with the composition data. Given
the circumstances can thus be considered reasonably successful for the round
steak. However, curve fitting produces better quality in the results. We can
observe that the dimensionless Biot number was the same for both samples,
even if they were exposed to free or forced convection. This makes the use of
a dimensionless Biot number a vital asset for the model. This implies that a
generalized Biot number can be found and should be considered in future ex-
periments. The thermal conductivity coefficient is not as easy to generalize. It
describes the thermal inertia of an object. However, we can see that both sam-
ples had a similar thermal characteristic for both instances. It may be helpful
to study particular aspects of thermal properties regarding the proposed model
in future work.
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Since the experiment participants did not want any food waste, the meat had
to be consumed when the target temperature was reached, and the experi-
ment was concluded. The assumption of τ(R/2, t) = 52◦C produced an even
temperature for about 75-80 % of the circumference of the tenderloin. It was
pink in the centre, and approximately 1 cm of the outer edges showed tanning.
Which entails that the tenderizing point at the edge of the steak had become
deactivated. However, it was juicy and tender. The round steak did not reach
the right core temperature and was placed in a sous vide and stored for later
consumption.

9.2 Model-Based Roasting Control

The results suggest that the model is promising and can be used with an MPC,
especially if we used the parameter estimated values for the tenderloin. In a
real-life application, a reasonable assumption is that only one sensor would be
used. This could be inserted at the core, and the spectral model can facilitate
the rest of the unknown measurements. Constraints can be added to the
MPC, and an idealized temperature profile can be found. We will consider
two scenario, the first is an even temperature distribution τ(r, t) = 55◦C.
The second will allow tenderness to decrease by 15% inside the circumference.
Similarly to what we showed in section 6.2. The second simulations are done
to see if we can shorten the time to cook the meat and restrict the meat
denaturation. Such that unwanted irreversible changes do not occur.

9.2.1 Scenario 1: Even Temperature Distribution

We will aim to get the temperature distribution of a simulated tenderloin to
be medium doneness, i.e. τmed , 55◦C. As mention in section 2.3 water
reduction occurs at τ(r, t) > 60◦C and medium doneness is in the domain of
τ(r, t) ∈ [55, 60]◦C. The tenderness of a beef decreases for τ(r, t) > 65◦C and
above τ(r, t) ∈ [70, 80]◦C the tenderizing point deactivates. However we do
not allow the tenderizing point to become deactivate and assume that occurs
at τmax , 70◦C.

The single input multi-output system will be consider for the measurement
yk = [R0 R0.5 R0.9 R]T . I.e. at the centre, 50 % from the centre, 90
% from the centre and the circumference. With the penalty matrices, Q =

diag([4 4 4 80])β and R∆u = 0.1/β. Where the overall adjustment factor
β = 1.7. The model can be fitted with more constraints to the measurement.
However, there is only a single input to multiple outputs, and excess degrees of
freedom are not available. It was detected that four constraints were sufficient
to produce a good result when tuning the controller. The following constraints
and quantities are listed up in Table 9.1.

66



9.2. Model-Based Roasting Control

Symbol Variable Value Unit
R Radius 4 [cm]

α Thermal diffusivity 2.04e− 7 [m2/s]

Bi Biot number 0.8 [−]

rk Reference variable 55 [◦C]

x0 Initial temp. distribution 20 [◦C]

uk−1 Last move of the input 225 [◦C]

ylow
k , yhigh

k Min & max temp. to OV [20, 55] [◦C]

ulow
k , uhigh

k Min & max temp. to MV [20, 225] [◦C]

∆ulow
k ,∆uhigh

k Min & max temp. rate to MV [−0.25, 0.5]
[ ◦C
s

]
Table 9.1: Parameter values for a simulated tenderloin steak.
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Figure 9.5: A cross-section of the four different measurements, with the con-
troller input. For a tenderloin steak being simulated to ideally medium done-
ness.

From Figure 9.5 one can see that the input holds yhigh
k for approximately 4

minutes. The input starts to smooth out after the initial jolt of high tempera-
ture to an equilibrium of 55◦C at t ≈ 100 [min]. Since we start the simulated
temperature at the edge of the active set, we introduce a slack variable to the
measurements and the constraints. This will ensure that any unexpected tem-
perature differences are not outside the feasible set. We can further observe
that the measurement is inside the constraints, with a relatively high cost to
the reference at the circumference. The steady-state temperatures, τmed, oc-
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curs at t ≈ 110 [min], and it can be noted that this method does not exceed
τ(r, t) ∈ [55, 60]◦C. Theoretically, no tenderness decrease occurs for the entire
simulated steak.

Figure 9.6: A 3d visualization where 0 is the centre of the disk and 4 is at
the circumference. For a tenderloin steak being simulated to ideally medium
doneness.

9.2.2 MPC Scenario 2: Irregular Temperature Distribu-
tion

We will consider the same parameters values from Table 9.1 and measurements.
With an altercation to the reference variable, the constraint yhigh

k = 70◦C and
the penalty matrices Q = diag([4 4 16 8])β and R∆u = 0.1/β. With
β = 1.7.

rk+i =

{
τmed if R0 ≤ xk ≤ R0.85

τmed + b · τmax if xk > R0.85
(9.3)

Where b are a scaling coefficients for t ∈ [0, i/2].
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Figure 9.7: A cross-section of the four different measurements, with the con-
troller input. For a tenderloin steak being simulated to nearly ideally medium
doneness.

One noticeable difference from the previous scenario. Is that we have a larger
overshoot to the circumference of the simulated tenderloin, as seen in Fig-
ure 9.7. The temperature at the peak is approximately 68.5◦C at the circum-
ference, which makes the tenderness decrease. However, the tenderness does
not become deactivated since we chose the reference tracking vector to vary in
time. The MPC corrects the overshoot area steadily down to τmed. Another
notable difference is that the penalty matrices are more tune in favour of the
third measurement, i.e. R0.9. Which gave a slight overshoot with a tempera-
ture peak of 60◦C, and are bordering on the medium doneness domain. This
manifest as the spike in Figure 9.8. We can also observe that the maximum
allowed temperature input is held for a longer time than the previous sim-
ulation. However, we produce the same temperatures characteristic for the
input, except for some minor correction. With these minor adjustment to the
reference tracking vector and allow some decrease in juiciness, a steady-state
temperature of τmed, can be reached at t ≈ 70 [min] for 80% of the meat.
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Figure 9.8: A 3d visualization where 0 is the centre of the disk and 4 is at
the circumference. For a tenderloin steak being simulated to nearly ideally
medium doneness.

9.2.3 General Discussion

The findings from the results show a quite interesting controller input profile.
Recall from section 1.1:Perfectly roasted meat are often exposed to high heat
first, then roasted at a lower heat setting. The MPC strategy produced the
same result in a natural way. This comes from how the MPC interact with the
heat equation and are bounded by the thermophysical properties. The results
suggest that an MPC was able to forecast the thermodynamics properties of
the tenderloin, and it may be possible to control a steak to the desired tem-
perature profile. However, this is an idealized scenario. The main focus of this
thesis was to see if it was possible to use an MPC with an analytical thermo-
dynamic model, and we would recommend in future studies that disturbance
and measurement noise are accounted for with a state estimator or empirical
studies.

The application of this system may show an increased result in temperature
evenness when roasting a steak. We observe that both simulated scenarios
gave no tenderness deactivation to the simulated tenderloin. The first scenario
produced an even temperature distribution over the entire domain. Since we
optimize for temporal properties and not the transit behaviour, the cost is a
lengthy time to reach medium doneness. The second scenario sacrificed ten-
derness for 10% of the radius and took 40 minutes shorter to reach an even
temperature profile of medium doneness. However, beef with more connective
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tissues would need the sarcoplasmic proteins to be activated via slow cooking
below 60◦C. Cuts with long sarcomere fibres due to the hanging process post
mortem have a total roasting time proportionally to the cut of the meat. For
example, a temperature model for cuts of meat with short sarcomere fibres
needs to take into account the time needed to tenderize the meat, i.e. long
roasting periods at low temperatures. This is not accounted for in the MPC
algorithm. However, the first model showed that we never breached the con-
straints and τ(r, t) < 60◦C and the meat could be further roasted after the
steady-state temperature was found.

Furthermore, we can observe that the strategy we found in section 6.2 of start-
ing at high temperature is feasible due to the low Biot number. However,
the model is not limited to be used in ovens. The model-based roasting con-
troller may be applied in sous vide, barbeques and steam jet injection oven,
to mention a few application. We tested the model vigorously with relative
high Biot’s numbers in section 5.5, and from the table in subsection 3.5.2.
Water and steam have a higher convection coefficient, which implies that the
Biot number would increase and we might have to initiate the MPC at a lower
temperature.

When adding constraints to the MPC, several factors had to be considered.
There is no definite answer if the meat should be rare, medium or well done,
which will be up to the individual consumer’s. The constraints are based
on the eating quality research found in section 2.2 and the effect of thermal
energy on a steak in section 2.3: Tenderness, juiciness, reduced-fat and water
loss, colouring and beef flavour. The beef flavour is taken into account with
the initial high temperature in the model (above 140 − 160◦C) which may
create the Maillard effect. The gradual reduction in temperature and the
slow roasting methods are based on research showing that the cooking quality
increases with a more extended roasting period. Furthermore, the model may
reduce the risk for undercooked meat, with increased risk for pathogens in the
meat, and charred steak with a higher concentration of heterocyclic amines,
thus higher risk for cancer. As discussed in section 2.4.

The model-based roasting controller can adjust the constraints to satisfy the
preferred doneness of an individual consumer. If the model-based roasting con-
troller were to be deployed. The consumer could select the preferred doneness,
and the constraints could be updated based on different doneness-simulation
and types of meat. The system could be run in an open-loop or closed-loop
configuration, where the open-loop system could be used in conjunction with
a household thermometer. Inserted in the core of the meat, and the model can
calculate the auxiliary measurement. This can be paired with an application
program interface (API) interfaced with a remote server. The MPC algorithm
can be calculated on the server and send the control sequence and re-optimised
for a discrete-time step. The consumer can then adjust the temperature setting
manually, e.g. 1-5 minutes.

However, the MPC can be susceptible to model mismatch in the plant. We
observed that a relative professional domestic oven did not reach the set tem-
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perature setting around the steak. This means that using the input reading
from the heat source could give false controller input. Additionally, the quan-
tities for the manipulated variable will be needed for the specific oven. In the
simulation, we assumed that heat dissipated at half the rate it gains heat; this
will vary from oven to oven. This again shows the importance of temperature
measurements near the steak. A thermometer with an internal and ambient
sensor, like the Meater probe, could be used. It could run preliminary tests
in an oven, find the rate of changes, and update the parameters back to the
server. That way, we are more likely to achieve a better result. If the sys-
tem were in a closed-loop configuration, it would be reasonable to assume the
model-based roasting controller would perform in a better capacity. A domes-
tic oven can be integrated with a thermal sensor and the proposed method. A
remote server or an internal computer can calculate the optimized controller
input and regulate the heat source. Further investigation is necessary to see if
using the model-based controller in a live application is possible.
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This thesis aimed to explore if a mathematical model of the heat equation could
use the benefits from an MPC to achieve an idealized temperature profile for a
steak. This was first approached by modelling the heat equation in one dimen-
sion and exploring two different models. The finite-difference approximation
of the laplacian showed promising results in modelling the thermodynamics of
a roast. However, the finite difference method only approximated its nearest
neighbour’s stencil. This meant that expanding the grid size for an increasing
time domain and spatial dimension became computationally expensive. The
spectral method has a high spatial resolution for a long integration time since
it seeks a global solution to the heat equation. Although, it is intricate to
solve. We achieved a more robust method, and mathematical analysis ensured
a stable solution for the heat equation. The outcome of various simulation for
both methods lead to the conclusion that the spectral method had the highest
overall robustness and performance.

The spectral method was extended into cylindrical coordinates and validated
against two different types of steaks. The result from the experiment showed
that the two-dimensional spectral model approximates the roasts’ thermal dy-
namics well, where the tenderloin sample had the best thermal characteristic.
This led to the conclusion that one thermal sensor could be inserted in the
meat’s core, and the spectral model could facilitate the rest of the unknown
measurement. Several simulations of the heat equation with an MPC showed a
promising result of achieving an even temperature profile throughout the meat.
With an interesting input profile, of starting at a high initial temperature and
a steadily lowering the temperature to a steady-sate doneness. This means
that it can be possible to control the unknown states to achieve the perfect
cooking result.

The main conclusion of this work is that it is possible to use control theory
and mathematical modelling to get idealized roasted meat. The results sug-
gest that the model-based roasting control is a promising alternative to use
intuition, fingertip methods, guessing and speculation to get even temperature
distribution for a roast. Future study of this approach is recommended.
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A | Numerical Computation of the
Eigenvalues

A.1 The Spectral method for the 1-d Heat
Equation

Let z = Lω, so that the roots of the eigenvalues may be found for a non-
polynomial equation, viz.

f(z) = z tan
(z

2

)
− Bi = 0 (A.1)

It can be problematic with a unbounded tangent trigonometric at regular in-
tervals. Multiplying both sides of the equation with cos(z/2) yields a relation
with better behavior.

g(z) = z sin
(z

2

)
− Bi cos

(z
2

)
= 0 (A.2)

Newton’s method are used for the numerics. We can Observe that

g′(z) =

(
1 +

Bi

2

)
sin
(z

2

)
+
z

2
cos
(z

2

)
(A.3)

Let z0 denote an initial guess for z. For an initial guesses of tan(z/2), i.e.

2πn, n ∈ N (A.4)

successive guesses are obtained via the iteration

zk+1 = zk −
f (zk)

f ′ (zk+1)
= zk −

zk sin
(
zk
2

)
− Bi cos

(
zk
2
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1 + Bi

2

)
sin
(
zk
2
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+ zk

2
cos
(
zk
2

) (A.5)
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Appendix A. Numerical Computation of the Eigenvalues

A.2 The Spectral method for the 2-d Heat
Equation

We recover the Robin boundary condition and the eigenvalues of g(λ) can be
found via Newtons methods.

g(λ) = LcλJ1(λa) + Bi J0(λa) = 0 (A.6)

The derivative of g(λ) becomes.

g(λ)′ = LcaλJ0(λa)− Bi aJ1(λa) (A.7)

The eigenvalues can be found via iteration, with an initial guess of λ0 =√
2
π

cos(π/4)

λk+1 = λk −
f (λk)

f ′ (λk)
= λk −

LcλJ1(λa) + Bi J0(λa)

LcaλJ0(λa)− Bi aJ1(λa)
(A.8)
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B | Check of Orthogonality

B.1 The Spectral method for the 1-d Heat
Equation

1 c l c ; c l e a r a l l ; c l o s e a l l ;
2
3 Bi = 20 ; % Constant
4 n = 20 ; % Modes
5 L = 1 ; % Length
6
7 %% Find roo t s
8 i t = 2∗ pi ∗ ( 0 : n )+2; % I t e r t a t i o n domian
9
10 lam = ze ro s (1 , n−1) ; % Pre A l l o ca t e
11
12 f o r i = 1 : l ength ( i t )
13
14 problem . ob j e c t i v e = @(omega ) L∗omega∗ s i n ( (L∗omega )

/2) − Bi∗ cos ( (L∗omega ) /2) ;
15 problem . x0 = i t ( i ) ;
16 problem . s o l v e r = ’ f z e r o ’ ;
17 problem . opt ions = optimset ( @fzero ) ;
18
19 lam ( i ) = f z e r o ( problem ) ;
20 i f lam ( i ) <= 0
21 lam ( i ) = [ ] ;
22 end
23 lam ( lam == 0) = [ ] ;
24 lam ( i snan ( lam) ) = [ ] ;
25
26 end
27
28 lam = un ique to l ( lam ) . /L ;
29 omg = lam ( 1 : n) ;
30
31
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32 %% Orthogonal i ty
33
34 wi = omg’∗ ones (1 , l ength (omg) ) ;
35 wj = ones ( l ength (omg) ,1 ) ∗omg ;
36
37 f = @(x ) cos ( ( x−(L/2) ) .∗wi ) .∗ cos ( ( x−(L/2) ) .∗wj ) ;
38 checkorth = i n t e g r a l ( f , 0 ,L , ’ ArrayValued ’ , t rue ) ;
39
40 %% Plot Orthogonal i ty
41 f i g u r e
42 imagesc ( checkorth )

Figure B.1: An image that displays scaled colours to verify that the spectral
method for the SLP is orthogonal with 20 modes. The blue colour is approxi-
mately zeros and yellow are non zero values.
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B.2. Orthogonality for the 2-D spectral Method

B.2 Orthogonality for the 2-D spectral
Method

Let Rn(r) and Rm(r) satisfy the Sturm Liouville problem. Subject to the
Robin boundary condition, viz.

Rm
d

dr

(
r
dRn

dr

)
−Rn

d

dr

(
r
dRm

dr

)
+ (λn − λm) rRnRm = 0 (B.1)

We perceive with integrating from 0 to a.

∫ a

0

(
Rm

d

dr

(
r
dRn

dr

)
−Rn

d

dr

(
r
dRm

dr

))
dr + (λn − λm)

∫ a

0

rRnRmdr = 0

(B.2)

We will consider the first part of the integrand and use integration by parts
with the BC. Verify that

∫ a

0

Rm
d

dr

(
r
dRn

dr

)
dr =

[
rRm

dRn

dr

]a
0

−
∫ a

0

r
dRn

dr

dRm

dr
dr

=

[
a
dRm

dr

Lc
Bi

dRn

dr

]a
0

−
∫ a

0

r
dRn

dr

dRm

dr
dr

(B.3)

Likewise for the second part of the integral

∫ a

0

Rn
d

dr

(
r
dRm

dr

)
dr =

[
rRn

dRm

dr

]a
0

−
∫ a

0

r
dRm

dr

dRn

dr
dr

=

[
a
dRm

dr

Lc
Bi

dRm

dr

]a
0

−
∫ a

0

r
dRm

dr

dRn

dr
dr

(B.4)

Insert the equations back, yields a orthogonality relationship.

(λn − λm)

∫ a

0

rRnRmdr = 0⇒
∫ a

0

rRnRmdr = 0 if n 6= m (B.5)

The orthogonality condition for the Bessel functions becomes

∫ a

0

rJ0

(
Γn
r

a

)
J0

(
Γm

r

a

)
dr = 0 if n 6= m (B.6)

83



Appendix B. Check of Orthogonality

B.3 Orthogonality Check for the 2-D Spec-
tral Method

1 %% Co e f f i c i e n t s
2 Bi = 20 ; % Constant
3 n = 20 ; % Modes
4 r = 1 ; % Length
5
6 %% Find Roots
7 i t = 0 : 0 . 1 : n ∗ 3 . 3 ; % I t e r t a t i o n domian
8 lam = ze ro s (1 , n ) ; % Pre A l l o ca t e
9
10
11 f o r i = 1 : l ength ( i t )
12
13 problem . ob j e c t i v e = @(gamma) −gamma∗ b e s s e l j (1 ,

gamma) + Bi∗ b e s s e l j (0 ,gamma) ;
14 problem . x0 = i t ( i ) ;
15 problem . s o l v e r = ’ f z e r o ’ ;
16 problem . opt ions = optimset ( @fzero ) ;
17
18 lam ( i ) = f z e r o ( problem ) ;
19 i f lam ( i ) <= 0
20 lam ( i ) = [ ] ;
21 end
22 lam ( lam == 0) = [ ] ;
23 lam ( i snan ( lam) ) = [ ] ;
24
25 end
26
27 lam = un ique to l ( lam ) ;
28
29 w = lam ( 1 : n) ;
30 Lambdda = w./ r ;
31
32 %% Check Orthogonal
33 wi = w’∗ ones (1 , l ength (w) ) ;
34 wj = ones ( l ength (w) ,1 ) ∗w;
35 a = r ;
36
37 Fi = @(R) R.∗ b e s s e l j (0 , wi .∗R/a ) .∗ b e s s e l j (0 , wj .∗R/a ) ;
38 checkorth = i n t e g r a l ( Fi , 0 , a , ’ ArrayValued ’ , t rue ) ;
39 f i g u r e
40 imagesc ( checkorth )
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B.3. Orthogonality Check for the 2-D Spectral Method

Figure B.2: An image that displays scaled colours to verify that the spectral
method for the SLP is orthogonal with 20 modes. The blue colour is approxi-
mately zeros, and the other colours are non zero values.
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C | Result

C.1 Telemetry for the Tenderloin

Time [min] Probe 1 Probe 2 Probe 3 u ovn u probe 1 u probe 2
0 17 17 NaN 250 40 40
2 17 18 19 250 150 162
4 17 18 20 250 172 187
6 17 19 21 250 190 209
8 18 21 22 250 195 216
10 19 25 24 250 195 218
12 20 28 25 250 198 220
14 22 32 27 250 220 237
16 24 36 30 250 229 241
18 26 39 32 250 228 241
20 29 43 35 250 227 242
22 32 47 38 250 227 239
24 35 51 41 250 223 237
26 38 54 NaN 25 145 160
28 41 57 NaN 25 86 98
30 44 59 NaN 25 59 64
32 47 59 NaN 25 NaN NaN
34 49 60 NaN 25 NaN NaN
36 51 59 NaN 25 NaN NaN
38 53 59 NaN 25 NaN NaN
40 54 58 NaN 25 NaN NaN
42 55 57 NaN 25 NaN NaN
44 55 56 NaN 25 NaN NaN
46 55 55 NaN 25 NaN NaN
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Appendix C. Result

C.2 Telemetry for the Round Steak

Time [min] Probe 1 Probe 2 Probe 3 u oven u probe 1 u probe 2
0 7 8 8 250 NaN NaN
2 7 8 8 250 NaN NaN
4 7 9 8 250 NaN NaN
6 7 11 10 250 NaN NaN
8 7 14 13 250 NaN NaN
10 8 17 16 250 NaN NaN
12 8 20 19 250 215 202
14 9 24 21 250 215 203
16 10 27 25 250 215 203
18 12 31 27 250 213 203
20 14 34 30 250 212 203
22 15 37 32 250 211 202
24 17 40 35 250 210 202
26 19 42 36 250 209 202
28 22 45 39 250 209 202
30 24 47 42 250 209 202
32 27 50 44 250 208 203
34 29 52 NaN 25 130 128
36 31 54 NaN 25 75 77
38 34 55 NaN 25 53 NaN
40 36 55 NaN 25 NaN NaN
42 39 54 NaN 25 NaN NaN
44 41 54 NaN 25 NaN NaN
46 42 53 NaN 25 NaN NaN
48 44 52 NaN 25 NaN NaN
50 45 51 NaN 25 NaN NaN
52 46 50 NaN 25 NaN NaN
54 47 49 NaN 25 NaN NaN
56 47 48 NaN 25 NaN NaN
58 48 47 NaN 25 NaN NaN
60 48 47 NaN 25 NaN NaN
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