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Abstract

Effective pavement maintenance targeted at the right locations is important
for retaining a high degree of road safety and maximizing the socioeconomic
benefits from the resources allocated to maintenance activities. In cooperation
with NTNU the Norwegian Public Road Administration target this problem,
seeking methods for smarter maintenance.

In this thesis annual pavement surface measurements from 2016-2020 for
E16 from Bergen to Voss are used to investigate the spatial dependencies
between road segments in terms of the annual change in rut depth, i.e. rutting,
in addition to a brief study on the occurrence of accidents. Various spatial
models are proposed within a Bayesian framework, as latent Gaussian mod-
els, where spatial dependencies are included as Gaussian random fields (GRF).
Spatial stationarity and non-stationarity varying with respect to the traffic
intensity are considered for the rutting whereas non-stationarity varying with
respect to curvature is considered for occurrence of accidents. The aim is two-
fold, where the first is to learn about the physical nature of the spatial de-
pendencies for these two responses, and if the road characteristics influence
the spatial properties. Second, is the aim of capturing spatial variation con-
stant in time, possibly highlighting locations with elevated rutting requiring a
physical inspection, where a GRF model for rutting including a yearly spatial
field and a spatial field constant in time is proposed and fitted.

The proposed models for rutting seems to work and provide insight into
the physical nature of the spatial dependencies, with results indicating non-
stationarity for rutting, with increasing standard deviation and decreasing spa-
tial range of the GRF as the traffic intensity increases. Inclusion of a GRF
constant in time is tractable from a maintenance and interpretation point of
view, and seems to work well particularly at high traffic intensities, although
the prior sensitivity is high. Assessing possible non-stationarity for the occur-
rence of accidents yields no clear results, and the proposed models are not able
to distinguish between simulated data from a stationary and non-stationary
process, which they did to some extent manage for the rutting models.
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Sammendrag

Effektivt vedlikehold av vegdekker utført på egnede lokasjoner er viktig for å
opprettholde en høy grad av trafikksikkerhet og maksimere den samfunnsøko-
nomiske nytten av midler satt av til vedlikeholdsaktiviteter. I samarbeid med
NTNU sikter Statens Vegvesen seg inn mot denne problemstillingen, og søker
metoder for smartere vedlikehold.

I denne oppgaven blir årlige målinger av tilstand på vegdekker mellom
2016-2020 for E16 mellom Bergen og Voss brukt til å undersøke romlige avhen-
gigheter mellom vegsegmenter ved å se på årlig endring i spordybde, i.e. spor-
ing, i tillegg til en kort studie av ulykkeshendelser. Ulike romlige modeller er
foreslått innen et Bayesiansk rammeverk, i form av latente Gaussiske mod-
eller, hvor romlige avhengigheter er inkludert som Gaussiske tilfeldige felt
(GRF). Romlig stasjonæritet samt ikke-stasjonæritet som varierer med hensyn
på trafikkmengde er vurdert for sporing, og romlig ikke-stasjonæritet som vari-
erer med hensyn på horisontal kurvatur er vurdert for ulykkeshendelser. Målet
med studien er tosidig, hvor det første er å lære mer om den fysiske naturen til
de romlige avhengighetene for disse to responsene, og hvordan ulike vegkarak-
teristikker påvirker de romlige avhengighetene. Det andre målet omhandler å
fange opp romlig variasjon konstant over tid, for å gi indikasjoner på lokasjoner
med forhøyet mengde sporing og som krever en nøyere visuell inspeksjon, hvor
en GRF modell for sporing som inkluderer et årlig romlig felt og et romlig felt
konstant over tid er foreslått og tilpasset.

De foreslåtte modellene for sporing synes å virke og gir innsikt i den fys-
iske naturen til de romlige avhengighetene, med resultater som indikerer ikke-
stasjonæritet for sporing, med en økning i standardavvik og reduksjon i den
romlige rekkevidden for et GRF når trafikkmengden øker. Inkluderingen av
et GRF konstant i tid viser nyttige egenskaper fra et vedlikeholdsperspektiv,
med god tolkbarhet, og synes å virke bra spesielt ved høye trafikkmengder,
dog er prior sensitiviteten høy. Mulig ikke-stasjonæritet for ulykkeshendelser
gir ingen klare resultater, og de foreslåtte modellene er ikke i stand til å skille
mellom simulerte data fra en romlig stasjonær- og ikke-stasjonær prosess, noe
de foreslåtte modellene for sporing i større grad klarte.
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Chapter 1

Introduction

Maintaining a sufficient quality of the road pavement surface is of high import-
ance for retaining safe driving conditions. A pavement surface in bad condition
pose a serious threat for the traffic safety and increase the external stress acted
upon vehicles. Following Nullvisjonen decided by the Norwegian Parliament in
2002, stating a vision that there should not be anyone killed or severely in-
jured on Norwegian roads, there is a continuous effort made to make roads
more suited to an increase in the total traffic, challenging weather conditions
and dangerous surroundings. The Norwegian Public Roads Administration is
responsible for this work and the Norwegian government (2016) has set a pre-
liminary goal of a maximum of 350 killed and severely injured in 2030 to move
in the right direction of achieving Nullvisjonen. Achieving the preliminary goal
will need a substantial reduction compared to the annual averages the last five
years with 751 killed and critical injured individuals (Statistics Norway, 2020).

Maintenance and prevention of pavement deterioration is a continuous pro-
cess intertwined with the expansion of the road traffic network to an ever
increasing traffic intensity and needs for more complex road structures, in-
creasing the overall complexity of the road network. A more complex road
network requires more maintenance and preventive measures, in which some
locations and areas may lag behind as the complexity increases. Sund (2012,
2013) estimated the cost of eliminating the maintenance backlog on Norwegian
state and county roads to 70-125 billion NOK, where around 40 percent are
costs related to pavement and drainage. A solid pavement has an expected life-
time of 20-25 years, under ideal conditions, but average repaving frequencies in
Norway is around 15 years (Aurstad et al., 2016) and even lower as the traffic
intensity increases, observed average rutting were shown by Saba et al. (2006)
to be increasing with respect to increasing traffic intensity. Although Bakløkk
(2017) note that historically some of the deterioration at high traffic intensities
is attributed to the use of studded tires, and the usage of such tires has de-
clined in recent years, with the consequence that the repaving frequencies for
roads with high traffic intensity have decreased slightly. The research project
SMARTer maintenance initiated by the Norwegian Public Roads Administra-
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tion (NPRA) in cooperation with the Norwegian University of Science and
Technology is directed at improving and creating more efficient tools for main-
tenance and identifying locations at which maintenance or preventive measures
are required, this thesis is written as a part of the research project.

No unique metric exist in terms of evaluating the overall condition of the
pavement surface, considering the macroscopic properties of the surface, the
rut depth, describing a depression in the surface formed by wheels, is commonly
used to describe the condition. An elevated rut depth may be due to heavy
traffic load, but also problems related to the sub base of the pavement or
the subsoil. Ruts affect the steering abilities of a vehicle and prevent effective
drainage, retaining water at the surface and leading to an increased risk of
aquaplanning, in addition the presence of water further deteriorates the road.

The spatial variability of different pavement properties have been invest-
igated by Lea and Harvey (2015a, 2015b), in general showing that correlation
ranges might be far lower than pavement engineers might guess, with high
spatial variability even within one area unit thought to be uniform. Svenson
et al. (2016) employ a mixed proportional hazards model with a spatial ran-
dom effect modelled as an intrinsic conditional autoregressive (ICAR) model
to identify road segments needing maintenance, finding that spatial variation
is present, but only explains around 17% of unexplained variation for the life-
time between road segments, and an estimated spatial range of 4 km for the
lifetime of road segments. Using the ICAR model to include spatial effects are
also found by Zhao et al. (2019) to be preferable, but only slightly, in terms
of predicting the pavement deterioration, noting that the real gain from in-
cluding spatial effects is the ability to estimate pavement deterioration when
observations are missing, and the possibility to visualise regions with elevated
deterioration.

In this thesis we consider the annual change in rut depth for road segments
of 20 meter, with the objective of investigating the spatial dependencies along
the road, specifically the nature of the spatial dependence structure. Following
the framework introduced by Ingebrigtsen et al. (2014) and Ingebrigtsen et al.
(2015) for including explanatory variables in the dependence structure of a
Gaussian random field (GRF), we include spatial non-stationarity dependent
on the traffic intensity at each road segment. Considering only spatial effects,
among with different intercept terms, the spatial dependencies is the focus,
and whether including different spatial fields can tell us something about the
spatial nature of the change in rut depth and if this can highlight locations
with elevated rutting and indicate where a physical inspection should be con-
ducted. The inclusion of a GRF constant in time, proposed by Ingebrigtsen
et al. (2015) for improving forecasting and interpolation of the spatial field for
a precipitation process, and later used by Ødegård (2017) showed favourable
results when a non-stationary spatial field which is constant in time is included.
In this thesis the inclusion of such a field is motivated by the interpretation it
has towards the rutting at different locations over time. The need for including
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spatial non-stationarity has been questioned by Fuglstad et al. (2015), show-
ing that non-stationary GRFs might not be needed to model non-stationary
spatial data, and what specific type of non-stationarity being present need to
be considered.

The spatial properties of road traffic accidents have been analysed and
modelled for several decades, where modelling the spatial dependency between
areal units and using spatial effects to account for unmeasured information are
common approaches. Less attention has been given to geometrical features of
the road in the last decades, possibly due to missing data or difficulties re-
garding data acquisition (Ziakopoulos & Yannis, 2020). Accounting for spatial
effects in crash frequency analysis show an extensive use of conditional auto
regressive (CAR) models (Ziakopoulos & Yannis, 2020), whereas modelling
spatial dependencies with GRFs are not as widely applied in crash frequency
analysis, although recent studies by Galgamuwa et al. (2021) incorporate spa-
tial random effects with a GRF, and find it preferable over non-spatial models.
Ziakopoulos and Yannis (2020) points to spatial modelling of micro-level road
safety as one field within spatial crash frequency analyses given very little
attention.

In the preliminary work of this thesis (Vedvik, 2020), one of the finding
were that increasing the horizontal curvature of neighbouring road segments
elevated the probability of accident. As a consequence we use the same models
introduced for the change in rut depth and investigate if spatial dependencies
regarding the occurrence of accidents may be attributed with non-stationarity
controlled by the horizontal curvature of the road. The high number of road
segments and low accident count lead to consider this through a Bernoulli
likelihood, either accident or no accident, for each road segment.

The spatial dependence structure of the change in rut depth and occurrence
of accidents are studied by considering the road E16 between the outskirts of
Bergen and Voss. This constitutes a road of length 80 km, mainly in rural
areas with a fair amount of changes in curvature. Historically this is a road
very prone to accidents and one where great investments have and are to be
made to increase the safety and conditions along the road. It is located in the
western part of Norway, with a coastal climate and is among the locations with
most annual precipitation in Norway. Water pose one of the biggest threats
to the road in terms of flooding and in general reducing the lifetime of the
road due to increased deterioration when water is present at the surface and
subsoil of the road. This make it a suitable case study area for both the change
in rut depth and occurrence of accidents. Annual road surface measurements
aggregated every 20 meter are made available from NPRA, and we let each
of these represent individual road segments, placing the approach taken in
this thesis within a spatial micro-level domain for road safety, where the vast
majority of previous studies have considered data aggregated for larger spatial
units. The abundancy of road surface measurements make it feasible to consider
small spatial units of 20 meter.
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The proposed models are within a Bayesian framework, as latent Gaussian
models (LGMs), a flexible subclass of Bayesian hierarchical models, where we
have a latent field assumed to be Gaussian distributed. By assumption, a GRF
can be included in the latent field, and the extensive use of GRFs in spatial
modelling make LGMs applicable for modelling a wide range of spatial phe-
nomena. The computational bottleneck of GRFs is overcome by creating a
Gaussian Markov random field representation (GMRF) through the stochastic
partial differential equation (SPDE) approach for GRFs with Matérn covari-
ance function (Lindgren et al., 2011). The GMRF representation enables the
use of the integrated nested Laplace approximation (INLA) for fast approxim-
ate Bayesian inference (Rue et al., 2009), a computational efficient alternative
for LGMs compared to traditional simulation based techniques relying upon
Markov chain Monte Carlo. The inference is carried out using the R-INLA pack-
age in R.

A note is to be made on the nomenclature used in the thesis, we consider
annual changes in rut depth, and for practical reasons use the term rutting
to describe this, e.g the phrase rutting in 2016 describes the change in rut
depth between 2015 and 2016. The pavement surface measurements are made
in the summer months, so the aforementioned phrase really means the rut
depth change between summer 2015 and summer 2016.

The thesis is organised in the following manner. The study area and data are
introduced in Chapter 2, among with a brief exploration of the data. In Chapter
3 the relevant theory for latent Gaussian models, Gaussian random fields, INLA
and SPDE approach are given. The models used for rutting and accidents, with
their prior assumptions, are given in Chapter 4. The results from the rutting
models are presented in Chapter 5, among with a prior sensitivity analysis
and a simulation study. Brief results and a simulation study for the accident
models are presented in Chapter 6, before closing the thesis with discussion,
concluding remarks and suggestions for further work in Chapter 7.



Chapter 2

Study area and exploratory
data analysis

In this chapter we present an introduction to the study area used in the case
study, the relevant road measurements and a brief exploration of the data.

2.1 Study area and road measurements

Road measurements and accidents along the road E16 between the outskirts of
Bergen and Voss are considered in the case study. This constitutes a total road
length of 80 km, mainly in rural areas. The road is located in the western part
of Norway, as displayed in Figure 2.1b, with a coastal climate and is among the
locations with most annual precipitation in Norway. The actual road is shown
in Figure 2.1a, with apparent proximity to fjords and mountains over a large
proportion of the road.

2.1.1 Aggregation of road condition measurements

Road condition measurements for E16 in the years 2015-2020 have been made
available by the courtesy of NPRA, where the road surface conditions are
measured annually for the entire Norwegian road network. These observations
consists of a large amount of road surface measurements, among them various
geometry and structural metrics describing the overall condition of the road.

The data is gathered by ViaPPS, a measurement system developed by
ViaTech in cooperation with NPRA. The system is mounted onto a vehicle,
utilizing LiDAR technology to accurately measure the surface of the road and
nearby surroundings. Measurements are made approximately every 8 centi-
metres of the road, given a driving velocity of 60 km/h of the vehicle conduct-
ing the measurements, the measurements are then aggregated and reported for
every 20 meter. Each observation we consider represent aggregated data for 20
meter of road, from now on termed as a road segment, and we use the reported
median values of the measurements within each road segment.

5
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(a) Map of E16 from Bergen to Voss (b) Map of Norway with
the study area located
within the green box

Figure 2.1: Location of the study area.

The annual measurements does not start at the exact same location every
year, hence we treat the measurements for 2020 as the basis for creating the
road segments, and use the geographical coordinates associated with the meas-
urements for the previous years to find the most nearby road segment in the
2020 data set. If there are no errors in the registered locations the distance to
the most nearby road section should not exceed 10 meters, thus a visual inspec-
tion is made for all cases where this occurs. This reveals that there are some
small parts of the road that seems to have been altered and slightly moved
during the study period, these measurements are included and is responsible
for the high distances seen in Figure 2.2, but overall we find measurements
from 2015-2019 very close to the road segments defined from the 2020 data.
The measurements from 2015 and 2016 are incomplete, as seen from the annual
number of road segments with valid measurements in Table 2.1. In addition
the attempt to detect possible maintenance, introduced in Section 2.1.2, is not
sufficiently accurate for the rutting in 2016, this combined with more than
30% missing measurements lead to omitting the rutting in 2016, and consider
rutting for 2017-2020.

2.1.2 Rut depth

We consider the pavement deterioration in terms of the rut depth, and how
this evolves over the period under study. Recall that the change in rut depth
between two consecutive years is termed as the rutting and the rut depth is
the actual depth of the rut in the given year. Let yij be the rutting and dij
the rut depth for road segment i in year j. The road is subject to maintenance
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Figure 2.2: Distance between measurements 2015-2019 and the road seg-
ments defined by the measurements in 2020.

Table 2.1: Number of road segments with valid measurements and number
of rural accidents.

Year Measurements Accidents
2015 2598 9
2016 2787 9
2017 4020 15
2018 4030 6
2019 4030 3
2020 4030 2

during the observation period and we see from Figure 2.3 that the rut depth
for each road segment is slightly increasing, i.e. positive value for the rutting,
until it suddenly decreases to a value equal or close to zero. We are interested in
the deterioration of the road and do not want to capture the opposite process,
maintenance. The measurements itself are highly accurate, but we showed that
there are some error in the measurement locations within one road segment
between different years. Because of this we cannot filter out maintenance solely
based on whether the rutting in one particular year is negative or not, instead
we filter this as

yij =

{
yij , if yij ≥ −dij/2,
NaN, if yij < −dij/2.

If the rut depth has decreased, i.e. rutting, by at least 1/2 of the actual rut
depth, the rutting for the particular road segment that year is attributed as a
missing observation. This results in including some values for rutting corres-
ponding with negative values, with the source of error being this filtration and
the location error for the road segments over consecutive years.

A more detailed view of the annual rut depth and rutting for a subset of the
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Figure 2.3: Rut depth for all road segments 2015-2020, each line represent
the rut depth for one road segment.

road is shown in Figure 2.4, where the most notable trait of the rut depth for
this part of the road is the decrease in rut depth for a large proportion of the
road from 2019 to 2020, indicating that maintenance have been conducted. We
also see that the filtering done to exclude maintenance seems to work in this
particular case, as almost all of the rutting values at these road segments for
2020 are set as missing observations. We also observe that the annual rutting
in general fluctuates around 0.5 and 2.0 mm, with some spikes at specific road
segments.

2.1.3 Traffic intensity

The traffic intensity, measured in annual average daily traffic (AADT), is ob-
tained through the publicly available data in the National Road Database
(Statens Vegvesen, 2020). The traffic intensity is assumed to be constant in
time, as the studied time period is limited. The traffic intensity is reported as
1000 meter stretches of road with the same intensity, and the traffic intensity
for each 20 meter road segment is found by locating which of these stretches
of intensity it is located within. The traffic load is the traditional way of in-
corporating the external stress caused by vehicles, taking into account the
distribution of different vehicles and their loading. In this case the proportion
of heavy vehicles is homogeneous along the road, thus the traffic load and the
traffic intensity are proportional, and we consider the traffic intensity as an
accurate measure of the traffic load.

2.2 Traffic accidents and curvature

Rural accidents in the period 2015-2020 is considered, that is accidents occur-
ring along clean stretches of road with no nearby urban road structures, i.e.
intersections, roundabouts, exit-ramps etc. We want to investigate how the ac-
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Figure 2.4: Annual rut depth and rutting for a subset of the road in a high
traffic intensity area, constituting a total of 489 road segments.

cidents varies with curvature of the road, as found by Vedvik (2020), including
urban accidents affects a spatial random effect, modelled by a GRF, to capture
the clustering of accidents nearby urban road structures, thus urban accidents
are excluded in this case.

As seen from Table 2.1 there are large annual variations in the number
of accidents, but relative to the number of road segments this is low, hence
we aggregate all the accidents in the period and record the observations as
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accident/no accident for each road segment over the whole period 2015-2020.
The horizontal curvature is a geometrical metric of each road segment,

measured as the radius of curvature, i.e. turning radius, with the curvature
being the reciprocal of the radius of curvature. Consider a road segment with
radius of curvature r, by combining the road segment multiple times into a
full circle, this circle have a radius r, i.e. lowering the radius of curvature
increases the actual curvature c = 1/r. The radius of curvature is measured
as values r ∈ (0 m, 2000 m], where 2000 m for practical purposes describes a
road segment with no measurable curvature, thus the curvature has a range
c ∈ [1/2000,∞). The curvature for the road segments are displayed in Figure
2.5, we see that almost half of the road segments corresponds to completely
or almost straight stretches of road, the rest of the road segments are curved
and there are a gradually decreasing number of segments for an increase in
curvature.
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0.0000 0.0025 0.0050 0.0075 0.0100
Curvature
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nt

Figure 2.5: Curvature of the 4030 road segments.

2.3 Exploratory data analysis

The traffic intensity along the road is displayed in Figure 2.6, we see that
the average annual daily traffic decreases as we move from west to east, with
the largest fluctuations in AADT in the western part of the road, close to
Bergen. The maximum value of 17 000 AADT is found at the westernmost
road segments and the minimum value of 4500 AADT at the easternmost road
segments.

The density estimates of the annual rutting after we have performed the
filtering described in Section 2.1.2 are displayed in Figure 2.7. We see that
the filtering seem to have excluded almost all of the maintenance activities,
with only a small proportion of negative values for the rutting. The summary
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Figure 2.6: Annual average daily traffic along E16.

statistics in Table 2.2 shows more serious rutting in 2019 than the other years,
with clearly higher mean and maximum values, the number of missing observa-
tions is fairly low for 2018-2020, but there are a large number of road segments
with missing values for rutting in 2017, this is attributed to mostly the large
amount of missing measurements in 2016, i.e. rutting for 2017 is not possible
to calculate, and some values filtered as possible maintenance.

Table 2.2: Summary statistics of rutting for each year.

Year Mean Standard deviation Minimum Maximum Missing observations
2017 1.14 1.05 -5.7 12.4 1777
2018 0.96 0.92 -3.3 14.0 72
2019 1.77 1.20 -4.5 28.5 117
2020 0.84 0.89 -5.8 11.8 347

Summary statistics for the rutting for four different traffic intensity groups
are given by Table 2.3, the most notable trait is the high proportion of the
road segments in the group with lowest traffic intensity. The mean rutting and
standard deviation increases with increasing traffic intensity, but we also note
a decrease as we move to the highest traffic intensity group.

The spatial variability of the annual rutting is displayed in the empirical
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Figure 2.7: Density estimates of the rutting 2017-2020.

Table 2.3: Summary statistics of rutting grouped by traffic intensity, AADT.

AADT Mean Standard deviation Segments
[4500, 7040] 0.84 1.08 3035
(7040, 12 100] 1.37 1.15 247
(12 100, 14 700] 1.54 1.43 200
(14 700, 17 200] 1.21 1.19 548

semivariograms in Figure 2.8. There is a clear tendency for all the variograms
to level out at a short distance, in general around 400 meter, but 2019 has
sudden spikes after 400 meter as well. The actual values of the semivariance
between the years differ, this is partially explained by the density estimates in
Figure 2.7, where 2019 have density estimates with higher variance than the
other years, hence the semivariance attains higher values this year.

The location of the rural accidents in Figure 2.9 may indicate slightly more
accidents in the western part of the road with higher traffic intensity, but
considering that the traffic intensity in the west is more than threefold the
intensity in the east, the effect of traffic intensity on the occurrences of accidents
does not seem to be high.
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Figure 2.8: Variogram of the annual semivariance for rutting.

Figure 2.9: Location of rural accidents 2015-2020 along E16.





Chapter 3

Background

We introduce the necessary background and theory to describe our proposed
models, how to do inference for the models and different model selection cri-
terion. The main references are stated at the beginning of each section, and
unless other references are given throughout the text, these are the referred
source of each section.

3.1 Latent Gaussian model

We start by introducing the Latent Gaussian model (LGM), a particular sub-
class of the highly flexible Bayesian hierarchical model, following Blangiardo
and Cameletti (2015) and Rue et al. (2009).

Bayesian inference is the process of updating prior beliefs upon observed
data, opposed to the frequentist domain where model parameters are con-
sidered as unknown but fixed values, the Bayesian domain treats the model
parameters as unknown random variables. The updating of the prior beliefs of
the model parameters x, given observed data y, gives the posterior distribution
of the model parameters, found from Bayes theorem as

p(x|y) =
p(y|x)× p(x)

p(y)
. (3.1)

The prior distribution p(x) represents the prior belief, p(y|x) the likelihood
function and p(y) the marginal distribution of the data. By observing that the
denominator is independent of x and considering this quantity as a normalizing
constant, the posterior distribution is often specified as

p(x|y) ∝ p(y|x)× p(x). (3.2)

A Bayesian hierarchical model is often used in applications with several
parameters defined on different levels, we now present a three-stage hierarch-
ical model and introduce the term hyperparameters θ, that is parameters con-
trolling the priors of the model parameters. A three-stage hierarchical model

15
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consist of a likelihood function, a latent process and priors for the hyperpara-
meters, stated as

Stage 1: y|x,θ ∼ p
(
y|x,θ

)
, (3.3a)

Stage 2: x|θ ∼ p(x|θ), (3.3b)
Stage 3: θ ∼ p(θ). (3.3c)

The latent Gaussian model arises when all the elements of the latent field
x are assigned Gaussian priors. The mean µi of observation yi is connected
to a structured additive predictor ηi through an appropriate link function,
g(µi) = ηi, where the structured additive predictor takes the form

ηi = β0 +

nβ∑
p=1

βpxpi +

nf∑
j=1

f (j)(uji) + εi, (3.4)

where β0 is the intercept and βp a linear effect of covariate xp. The terms
{f (j)(·)} are unknown functions of the covariates u, used to model random
effects. These may take several different forms, depending on the problem at
hand, a collection of examples include smooth and nonlinear effects of the
covariates, random intercept and slopes and temporal or spatial random effects.
This yields a flexible model framework applicable to many different problems
and models such as regression-, dynamic-, spatial- and spatiotemporal models.

All structured additive predictors and it’s components are collected in the
latent field, such that x = {β0,β,η, f (1)(·), f (2)(·), . . . }, and the observations
y are assumed to be conditionally independent given the latent field and hy-
perparameters. The likelihood function for stage 1 in (3.3a) is now

p(y|x,θ) =

n∏
i=1

p(yi|xi,θ), (3.5)

where each observation yi is dependent on only one element of the latent field.
Assuming a multivariate Normal prior of the latent field, with mean 0

and precision matrix Q(θ), the latent process of stage 2 in (3.3b) is x|θ ∼
N
(
0,Q(θ)−1

)
with density

p(x|θ) = (2π)−n/2
∣∣Q(θ)

∣∣1/2 exp

(
− 1

2
x

′
Q(θ)x

)
, (3.6)

where |·| is the matrix determinant and ′ the transpose operator. Assuming that
the elements of the latent Gaussian field are conditionally independent, yields
a sparse precision matrix Q(θ) such that (3.6) is a Gaussian Markov random
field, introduced in Section 3.2.1. This specification gives rise to computational
benefits to be utilized by the integrated nested Laplace approximation intro-
duced in Section 3.3

The hyperparameters are assigned prior distributions in stage 3, and the
Gaussian assumption of the latent field does not apply to these, they may be
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assigned to any suitable prior distribution. The joint posterior distribution of
the latent field and the hyperparameters, given the observations are found from
(3.2) by using all three stages of the Bayesian hierarchical model (3.3), which
yields

p(x,θ|y) ∝ p(θ) p(x|θ) p(y|x,θ)

∝ p(θ)
∣∣Q(θ)

∣∣1/2 exp

(
− 1

2
x

′
Q(θ)x+

n∑
i=1

log
(
p(yi|xi,θ)

))
.

(3.7)

3.2 Gaussian random fields

Data containing geographical information are collected and has applications
within a vast area of disciplines. Spatial statistics governs a field within statist-
ics where the random process assumed to be generating the data is considered
a spatial random process, by taking the geographical information of the data
into consideration.

We introduce the Gaussian random field, the associated covariance func-
tion, in particular the Matérn covariance function and Gaussian Markov ran-
dom fields, based on Gelfand et al. (2010), Banerjee et al. (2004) and Rue and
Held (2005).

Gaussian random fields (GRFs) are used extensively for spatial phenomena
continuous in space, with convenient analytical properties and providing a
good representation of the spatial phenomena in a wide range of applications
(Lindgren et al., 2011). Consider a spatial domain D ⊂ Rd, the random field
{Y (s) : s ∈ D} is a Gaussian random field if for any set of spatial locations
{s1, . . . , sn} and all n ∈ N(

Y (s1), . . . , Y (sn)
)
∼ N (µ,Σ), (3.8)

with mean vector µ =
(
µ(s1), . . . , µ(sn)

)
and covariance matrix Σ with ele-

ments Σij = Cov
(
Y (si), Y (sj)

)
= C

(
Y (si), Y (sj)

)
, where C(·, ·) denotes the

covariance function, and may be any positive definite function.
The GRF is said to be strictly stationary if the random field is invari-

ant under spatial shifts, i.e.
(
Y (s1), . . . , Y (sn)

)
has the same distribution as(

Y (s1 + h), . . . , Y (sn + h)
)
for any h ∈ Rd. Second-order stationarity is a

less restrictive condition, requiring that the mean vector is constant in space
µ(si) = µ for any location si ∈ D, and that the covariance function does
not depend on the location, only on the distance vector (si − sj), such that
Cov(si, sj) = C(si−sj). Strict stationarity implies second-ordrer stationarity,
in general the converse is not true, but a special property of GRFs is that the
converse statement is true and when we use the term stationary GRFs it is a
reference to both strictly and second-order stationary GRFs. If the covariance
function solely depend on the Euclidean distance between locations, and not
the direction, the GRF and covariance function Cov(si, sj) = C(||si−sj ||) are
said to be isotropic.
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The dependence structure of a GRF is defined through the covariance func-
tion, several choices exists, although Stein (1999) makes a strong claim that the
Matérn covariance function should be the preferred choice. Due to the Matérn
covariance functions application in the SPDE approach for GRFs, introduced
in Section 3.4, it is the covariance function considered in this study.

The covariance between the locations si, sj ∈ D given by the isotropic
Matérn covariance function is

C(si, sj) =
σ2

Γ(ν)2ν−1
(
κ||si − sj ||

)ν
Kν

(
κ||si − sj ||

)
(3.9)

where || · || is the Euclidean distance, Γ(·) the gamma function, σ2 the marginal
variance and Kν the modified Bessel function of second kind and order ν > 0,
with ν being the critical parameter measuring the smoothness. The constant
κ > 0 is a scaling parameter related to the spatial range ρ, empirically derived
to be

ρ =

√
8ν

κ
(3.10)

with the interpretation that ρ is the distance at which the spatial correlation
is close to 0.1, for ν ≥ 0.5 (Lindgren et al., 2011).

Aside from the tractable properties of GRFs, the covariance function in
general give rise to dense covariance matrices Σ, with a computational cost
of O(n3) in terms of factorizing dense n × n matrices, referred to as "the
big n problem" of GRFs. Improving on the computational cost motivates the
introduction of Gaussian Markov random fields.

3.2.1 Gaussian Markov random fields

Among the proposed workarounds of the computational bottleneck of GRFs,
replacing the GRF with a Gaussian Markov random field (GMRF) is con-
venient and has several applications, notably in the SPDE approach for GRFs
introduced in Section 3.4.

We introduce the notion of undirected graphs before the full definition of a
GMRF. Consider a undirected graph G = (V, E), where V is the set of vertices
in the graph and E the set of edges {i, j} where i, j ∈ V and i 6= j. There is an
undirected edge between vertices i and j if, and only if, {i, j} ∈ E , in the case
where V = {1, 2, . . . , n} the graph is said to be labelled.

The concept of conditional independence is important for understanding
GMRFs, consider the random vector Y = (Y1, . . . , Yn), the conditional inde-
pendence between Yi and Yj are denoted as

Yi ⊥ Yj |Y −ij ,

where Y −ij is all elements of Y except Yi and Yj . Conditional independence
implies that the joint conditional distribution can be expressed as

p(Yi, Yj |Y −ij) = p(Yi|Y −ij)p(Yj |Y −ij). (3.11)
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An important property of the precision matrix Q = Σ−1 > 0 of a Gaussian
distributed random vector Y with mean µ and covariance matrix Σ, is that
for i 6= j

Yi ⊥ Yj |Y −ij ⇐⇒ Qij = 0. (3.12)

Conditional independence between Yi and Yj may be read directly from the
precision matrix, it also implies the reverse statement, if the conditional de-
pendence structure between the elements of Y is known, we also know which
elements of Q is nonzero.

The random vector Y ∈ Rn is a GMRF with respect to a labelled graph
G = (V, E) with mean vector µ and precision matrix Q > 0 if the density is

p(Y ) = (2π)−n/2
∣∣Q∣∣1/2 exp

(
− 1

2

(
Y − µ

)′
Q
(
Y − µ

))
, (3.13)

and
Qij 6= 0 ⇐⇒ {i, j} ∈ E for all i 6= j.

The computational efficiency of GMRFs is attained when the precision matrix
is sufficiently sparse, by using sparse matrix algorithms for the factorization of
the precision matrix the computational cost of a two-dimensional GMRF is in
general O(n3/2).

3.3 Integrated nested Laplace approximation

Historically Bayesian inference has often relied upon simulation based tech-
niques, such as Markov chain Monte Carlo (MCMC), with great flexibility
but limitations related to computational efficiency as the model complexity
increases. The integrated nested Laplace approximation (INLA), introduced
by Rue et al. (2009), improves the computational efficiency for LGMs, with a
deterministic algorithm for fast approximate Bayesian inference. Rather than
focusing on the joint posterior distribution, INLA approximates the marginal
posterior distributions of the parameters. The authors note that the approx-
imation bias from INLA is less than the MCMC error when applied to typical
examples from spatial statistics, that is, examples where the dimension of the
latent Gaussian field is a few thousand, the posterior marginals are approx-
imated by INLA in a couple of minutes, and a corresponding MCMC-sampler
may need days to compute accurate results. Examples of LGMs shown to work
well with INLA include generalized linear mixed models, stochastic volatility
models, spatial and spatio-temporal models, with a wide area of applications
(Martins et al., 2013).

We give an introduction to INLA based on Blangiardo and Cameletti (2015)
and the original paper by Rue et al. (2009).

The latent Gaussian model and it’s assumptions described in Section 3.1 is
applicable with INLA if the latent field is a GMRF with density given by (3.13),
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in addition there is the assumption that the dimension of the hyperparameter
vector θ should be kept small, typically 2-5 and not exceeding 20 (Rue et al.,
2017). The joint posterior density of the latent field and hyperparameters in
(3.7) is a high dimensional density and may be very difficult to interpret and
approximate by simulation based techniques. The inferential approach with
INLA focuses on approximating the posterior marginal densities p(xi|y) and
p(θj |y), that is, an approximation to the integrals

p(xi|y) =

∫ ∫
p(x,θ|y) dx−i dθ =

∫
p(xi|θ,y)p(θ|y) dθ (3.14)

p(θj |y) =

∫ ∫
p(x,θ|y) dx dθ−j =

∫
p(θ|y) dθ−j , (3.15)

where θ−j denotes all elements of θ except θj . The core of the INLA method-
ology lies in building appropriate approximations to p(θ|y) and p(xi|y,θ).

Starting with the joint posterior distribution of the hyperparameters, ap-
proximated as

p
(
θ|y
)

=
p
(
x,θ|y

)
p
(
x|θ,y

) (3.16)

∝
p
(
y|x,θ

)
p
(
x|θ
)
p
(
θ
)

p
(
x|θ,y

)
≈
p
(
y|x,θ

)
p
(
x|θ
)
p
(
θ
)

p̃
(
x|θ,y

) ∣∣∣∣
x=x∗(θ)

=: p̃
(
θ|y
)
, (3.17)

where p̃(x|θ,y) is the Gaussian approximation of p(x|θ,y) given by Laplace’s
method (Appendix A), constructed by matching the mode x∗(θ) and the
curvature at the mode of p(x|θ,y). The Gaussian approximation is usually
precise, as p(x|θ,y) is close to Gaussian, noted from the fact that it has a
prior representation as a GMRF and the marginal distribution of p(y) is usu-
ally well-behaved.

Finding p(xi|θ,y) is a slightly more complicated task, in general the di-
mension of x is far greater than θ, making it a more computationally expens-
ive task. In the original paper by Rue et al. (2009) three approximations to
p(xi|θ,y) are suggested, the Gaussian, the Laplace and a simplified Laplace
approximation. The Gaussian is computationally effective, but generally not as
accurate as the other, with possible errors in the location and lack of skewness
(Rue & Martino, 2007), thus the focus is on the Laplace and simplified Laplace
approximation.

By rewriting the latent field as x = (xi,x−i) and use the Laplace approx-



Chapter 3. Background 21

imation in a similar manner as in (3.17) we obtain

p
(
xi|θ,y

)
=
p
(
(xi,x−i)|θ,y

)
p
(
x−i|xi,θ,y

) (3.18)

∝
p
(
x,θ|y

)
p
(
x−i|xi,θ,y

)
≈

p
(
x,θ|y

)
p̃
(
x−i|xi,θ,y

) ∣∣∣∣
x−i=x∗−i(xi,θ)

=: p̃
(
xi|θ,y

)
, (3.19)

where p̃(x−i|xi,θ,y) is the Laplace Gaussian approximation to p(x−i|xi,θ,y)
and x∗−i(xi,θ) its mode for given xi and θ. The approximation is precise, but
computationally expensive, as p̃(x−i|xi,θ,y) must be recomputed for each
value of xi and θ.

The simplified Laplace approximation improves the computational effi-
ciency while retaining a sufficiently accurate approximation in most cases, as
this the default choice in R-INLA it is the one we will use. This approxima-
tion corrects the location and skewness errors of the Gaussian approximation
by a Taylor’s series expansion around the mode of the Laplace approxima-
tion p̃(xi|θ,y). For a detailed description of this approximation the reader is
referred to Rue et al. (2009).

The posterior marginals of interest in (3.14) and (3.15) are now approxim-
ated by

p̃(xi|y) =

∫
p̃(xi|θ,y)p̃(θ|y) dθ (3.20)

p̃(θj |y) =

∫
p̃(θ|y) dθ−j . (3.21)

The integral in (3.20) is solved numerically by

p̃(xi|y) =
∑
k

p̃(xi|θ(k),y)p̃(θ(k)|y)∆k, (3.22)

where {θ(k)} is a set of integration points and {∆k} a set of corresponding
weights. We close this section with a brief description of the numerical proced-
ure used by INLA.

Note that the posterior marginals for the hyperparameters can be obtained
directly from (3.21) by numerical integration, but this is computationally de-
manding, as we need to evaluate p̃(θ|y) for a large number of configurations of
θ. Instead p̃(θ|y) is explored to find a suitable set of integration points {θ(k)}
through the following steps

(i) Optimize log p̃(θ|y) with respect to θ to locate the mode θ∗.
(ii) Compute the negative Hessian H at the modal configuration. Let Σ =

H−1, that is the covariance matrix of θ if the density were Gaussian.
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Compute the eigendecomposition Σ = VΛ1/2V
′
and define θ via a new

variable z such that
θ(z) = θ∗ + VΛ1/2z.

(iii) Using the z-parameterization, a exploration scheme named the grid strategy
builds a grid of points, where the bulk of the mass of p̃(θ|) is located,
but the computational cost grows exponentially with the number of hy-
perparameters. Rue et al. (2009) suggest the central composite design
(CCD) strategy when the number of hyperparameters exceeds 4 to re-
duce computational costs, but it is suitable for fewer hyperparameters
as well. Using the mode θ∗ and Hessian H, suitable points in the re-
parameterized θ-space are selected for a second-order approximation of
a response variable. The CCD strategy reduce the number of integration
points, but is still able to capture the variability in the hyperparameter
space.

The posterior marginals p̃(θj |y) are now computed by using an interpolation
algorithm based on the values of p̃(θ|y) evaluated in the set of integration
points {θ(k)j }. The marginal posteriors p̃(xi|y) are computed by the numerical
integration in (3.22) where the conditional posteriors p̃(xi|θ(k),y) are evaluated
for every value in {θ(k)} on a grid of selected values for xi.

For detailed descriptions of the numerical procedure the reader is referred
to Rue et al. (2009) and Martins et al. (2013).

3.4 The stochastic partial differential equation ap-
proach

We give an introduction to the stochastic partial differential approach for sta-
tionary and non-stationary GRFs and how this enables inference for spatial
modelling with GRFs using INLA, based on Lindgren et al. (2011), Blangiardo
and Cameletti (2015) and Ingebrigtsen et al. (2014).

Spatial dependencies in the LGM framework are modelled by including
spatial random effects in the structured additive predictor (3.4). Letting the
spatial dependency be represented by a GRF is a convenient and common
approach, but involves a huge computational cost, as this give rise to dense
covariance matrices. As proposed by Lindgren et al. (2011) a GRF may be
represented by a GMRF in the special case where the GRF has a Matérn cov-
ariance function, where the sparse covariance structure of the GMRF improves
the computational efficiency, making it applicable with INLA.

The stochastic partial differential (SPDE) approach starts by noting that
a GRF with Matérn covariance function is a weak stationary solution to the
SPDE (

κ2 −∆
)α

2
(
τξ(s)

)
=W(s), s ∈ Rd, (3.23)
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where ξ(s) is the GRF, W(s) is a Gaussian spatial white noise process, ∆
the Laplacian, α a smoothing parameter, κ > 0 a scale parameter and τ a
parameter controlling the variance. The explicit link between the SPDE in
(3.23) and the Matérn parameters for the smoothness parameter ν and the
marginal variance σ2 is

ν = α− d/2 (3.24)

σ2 =
Γ(ν)

Γ(ν + d/2)(4π)d/2κ2ντ2
. (3.25)

For the one dimensional case we have d = 1, and we fix α = 2, as this is
the default choice in R-INLA, hence ν = 3/2, the empirically derived range
parameter from (3.10) is now ρ = 2

√
3/κ. The marginal variance for this

particular case is then σ2 = 1/4κ3τ2.
The solution to (3.23) is approximated by use of the finite element method

with a basis function representation on a triangulation of the domain D, stated
as

ξ(s) =
m∑
i=1

φi(s)wi, (3.26)

with a set of basis functions {φi} and zero-mean Gaussian distributed weights
{wi}, where m is the total number of vertices in the triangulation. Lindgren
et al. (2011) choose to use basis functions that are piecewise linear on each
triangle, resulting in φi having value 1 at vertex i and 0 at all other vertices.
The value of the field at vertex i is given by wi, and values of the field in the
interior of the triangles are determined by linear interpolation.

Obtaining the finite dimensional solution involves finding the distribution
of the weights in (3.26) that fulfils (3.23). Let Qα,κ2 be the precision matrix
for the weights w, with α = 1, 2, . . . , as a function of the parameter κ in the
SPDE (3.23). Using Neumann boundary conditions (zero normal derivative at
the boundary of the domain D), the precision matrices of the weights are

Q1,κ2 = Kκ2 ,

Q2,κ2 = Kκ2C
−1Kκ2 ,

Qα,κ2 = Kκ2C
−1Qα−2,κ2C

−1Kκ2 , for α = 3, 4, . . . .

(3.27)

The m×m matrices Kκ2 ,C and G has elements(
Kκ2

)
ij

= κ2Cij +Gij ,

Cij = 〈φi, φj〉,
Gij = 〈∇φi,∇φj〉,

where 〈·, ·〉 is the inner product and ∇ the gradient. Note that the matrix
C−1 is dense, in turn making the precision matrix dense, thus the matrix C
is replaced by a diagonal matrix C̃, where C̃ii = 〈φi, 1〉, making the precision
matrix of the weights w sparse and a GMRF representation of w is obtained.
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3.4.1 Non-stationarity

The SPDE approach for a stationary GRF can be extended to a non-stationary
model, recall that the parameters κ and τ in the SPDE defined in (3.23) were
constant in space. We introduce non-stationarity by letting the parameters
depend on the spatial location s, and rewrite the SPDE as(

κ(s)2 −∆
)α

2
(
τ(s)ξ(s)

)
=W(s), s ∈ Rd. (3.28)

This specification make it possible to include non-stationarity through the
SPDE parameters τ(s) and κ(s) directly, without altering the covariance func-
tion of the GRF. The SPDE parameters itself can be described by a log-linear
representation, as they tend to vary slowly with respect to the spatial location
s, given by

log τ(s) = θτ1 +

N∑
k=2

bτk(s)θτk (3.29)

log κ(s) = θκ1 +
N∑
k=2

bκk(s)θκk , (3.30)

where
{
b
(·)
k

}
are deterministic basis functions and the θ’s are weight paramet-

ers. This specification introduce the possibility of including spatial explanatory
variables in the dependence structure as basis functions.

The inclusion of space-dependent τ and κ only leads to minor changes in
the GMRF representation of (3.28) from the one found in the stationary case.
The precision matrix of the Gaussian weights w from (3.26) is a modified
version of the stationary one, for α = 2 we have

Q = T
(
K2CK2 + K2G + GK2 + GC−1G

)
T, (3.31)

where T and K are diagonal m ×m matrices with elements Tii = τ(si) and
Kii = κ(si), again C need to be replaced with C̃ in order for the Gaussian
weights w to be a GMRF.

The explicit link between the SPDE and Matérn parameters from (3.24)
and (3.25) are not valid in the non-stationary case. By disregarding the spatial
interaction between the non-stationary parameter fields nominal approxima-
tions of the range and variance, for α = 2 and d = 1, are

ρ(s) ≈ 2
√

3

κ(s)
(3.32)

σ2(s) ≈ 1

4κ(s)3τ(s)2
. (3.33)

Note that these approximations are valid for slowly varying κ(s).
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3.5 Model assessment

We have described the class of latent Gaussian models and how fast approx-
imate Bayesian inference is obtained by the use of INLA. The flexibility of the
latent Gaussian model framework allows for a wast combination of different
models, thus we need to introduce some model selection criterion in order to
compare different models. We introduce the deviance information criterion,
conditional predictive ordinate, marginal likelihood and credible interval cov-
erage.

3.5.1 Deviance information criterion

The deviance information criterion (DIC) proposed by Spiegelhalter et al.
(2002) is a model selection criteria widely used for Bayesian models. It is com-
posed of two terms, one quantifying the actual model fit and the second one
the model complexity. The deviance of a model with likelihood p(y|ψ) is

D(ψ) = − log
(
p(y|ψ)

)
, (3.34)

where ψ = (x,θ)
′ in the LGM framework. The first term of DIC is the posterior

expectation of the deviance D̄ = Eψ|y
(
D(ψ)

)
. The model complexity term is

measured by

pD = Eψ|y
(
D(ψ)

)
−D

(
Eψ|y(ψ)

)
= D̄−D(ψ̄), (3.35)

denoted as the effective number of parameters, and the last term is the posterior
mean of the parameters. The DIC is now given by

DIC = D̄ + pD, (3.36)

where models with smaller DIC are better supported by the data.

3.5.2 Conditional predictive ordinate

The conditional predictive ordinate (CPO) (Pettit, 1990) is a diagnostic for
Bayesian models, detecting surprising observations within a model. The CPO
for one observation yi is

CPOi = p(yi|y−i),

that is, the CPO for each observation is the posterior probability of observing
yi from a model fit with all the other observations y−i. A small value indicate
a poor fit of the model for observation yi, and may be regarded as an outlier.
The computation of CPO in INLA is found by solving

CPOi =

∫
p(yi|y−i,θ)p(θ|yi) dθ,

and is in practise computed by numerical integration, further details are found
in Held et al. (2010).
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A summary measure of the CPO is calculated by

CPO = −
n∑
i=1

log(CPOi),

where smaller values indicate better fit.

3.5.3 Marginal likelihood

An approximation to the marginal likelihood is computed by INLA from the
approximation of the joint posterior of the hyperparameters in (3.20) by mar-
ginalising with respect to y as

p̃(y) =

∫
p
(
y,x,θ

)
p̃
(
x|θ,y

) ∣∣∣∣
x=x∗(θ)

dθ. (3.37)

The marginal likelihood is difficult to compute exactly and the approximation
by INLA is shown to very accurate (Hubin & Storvik, 2016). We consider the
logarithm of the marginal likelihood as a model selection criterion, where larger
values indicate a better fit.

3.5.4 Credible interval coverage

Consider the (1−α)100% credible interval Ci = [θi|y1−α/2, θi|yα/2] for a para-
meter θi. Credible interval coverage, or only coverage, is a term we will refer
to when we fix the parameters θ∗, simulate y(k) from p(y|θ∗) and obtain new
posterior estimates θ(k)|y(k). Repeating the procedure n times, we estimate
the coverage of θi by

coverage =
1

n

n∑
k=1

I
(
θ∗i ∈ C

(k)
i

)
, (3.38)

where C(k)
i is the credible interval for θ(k)i |y(k) and I(·) the indicator function

I
(
θ∗i ∈ C

(k)
i

)
=

{
0 if θ∗i /∈ C

(k)
i

1 if θ∗i ∈ C
(k)
i



Chapter 4

Models and methods

We propose four different spatial models for the rutting, all within the LGM
framework, with stationary and non-stationary GRFs. For the traffic accidents
we propose two different models, with a stationary and non-stationary GRF.
A brief overview of the prior specification for the model parameters and the
triangulation used for the SPDE approach are also given.

We use the subscripts S and N-S to denote if the GRFs within each re-
spective model are stationary or non-stationary, in addition the subscripts are
used to discern between parameters from a model with stationary- and non-
stationary GRF. When no subscript are given for the two GRFs we refer to
the spatial fields in general, without any constraints on their stationary or
non-stationary nature.

4.1 Latent Gaussian models for rutting

Consider the spatial domain of the road D ⊂ R1, and a location s along the
road s ∈ D. Let the spatial process {ηj(s) : s ∈ D} describe the rutting
along the road in year j. The rutting yij for road segment i = 1, . . . , n in year
j = 1, . . . , T is given by the relation

yij = ηj(si) + εij , (4.1)

where the measurement errors are assumed to be independent and identically
distributed as εij ∼ N (0, τ−1ε ). The rutting yij for segment i in year j is a
discretized description for a 20 meter stretch of road, for the sake of simplicity
each road segment is treated as a single point, not a line, in the modelling,
where the midpoint of road segment i is set as the location si for the rutting
yij .

The components included in the spatial process ηj are where we differ
between the proposed models, for the sake of simplicity we include all fixed
and random effects inside ηj , even though we termed this as the spatial process,
the actual spatial effects are the elements in ηj described by a GRF.

27
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The first model, Model I, for ηj , denoted with a subscript I, is one with a
common intercept β, a year specific intercept γj and a GRF ξj(s), given by

ηj,S,I(s) = β + γj + ξj,S(s),

ηj,N-S,I(s) = β + γj + ξj,N-S(s),

where the year specific intercepts are assumed to be independently and identic-
ally distributed as (γ1, . . . , γT ) ∼ N (0, τ−1γ IT ). The spatial dependence is de-
scribed by a GRF ξ(s) with Matérn covariance function, where ξj(s) for each
j = 1, . . . , T are independent realisations, i.e. replicates, of ξ(s). The GRF
itself is described by a set of hyperparameters θ, to be specified in Section
4.1.1.

A second model is proposed, Model II, an extension of Model I, in addition
to the annually varying spatial field ξ(s), a spatial field which is constant in
time ω(s) is included. The motivation for including this is to capture the spatial
variation of the rutting that are constant over all years, we denote this field
as one describing the spatial variation attributed from the pavement stress at
different locations. The second model yields the following expressions for the
stationary and non-stationary spatial process

ηj,S,II(s) = β + ξj,S(s) + ωS(s),

ηj,N-S,II(s) = β + ξj,N-S(s) + ωN-S(s).

As noted by Ingebrigtsen et al. (2015), the inclusion of ω(s) alters the interpret-
ation of the annually varying GRF ξj(s), to now describing the annual spatial
deviation from the spatial field describing the pavement stress ω(s) and not
the overall spatial variation, as is the case in model I.

The two models are closely related, but where Model I is mainly directed
to target the actual spatial variation, Model II tries to distinguish between the
spatial variation constant in time and the deviation from this observed for every
year, where the field for the pavement stress ω(s) can possibly give indication
of locations in the spatial domain D with elevated rutting over several years.

4.1.1 SPDE approach

The spatial dependencies in the propsed models are all GRFs with Matérn
covariance function, making the SPDE approach for GRFs a tractable solution
for including non-stationarity and reducing the computational cost. The SPDE
approach involves constructing a triangulation of the spatial domain D, onto
which the basis function representation of the GRF is defined. We consider the
same triangulation for the two GRFs ξ(s) and ω(s) in both the stationary and
non-stationary case. The spatial domain is one-dimensional, thus we can create
a rather dense triangulation without compromising computational efficiency.
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The chosen triangulation has a vertex every 60th meter, that is, each triangle
covers three road segments, and we let the boundary extend 500 meter at each
ends of the road. The spatial domain is one-dimensional, so possible boundary
effects are considered to interfere with the results to a smaller extent than for
two-dimensional problems, where not including vertices outside of the obser-
vation borders may cause the variance to be twice as large at the border as
within the domain (Lindgren & Rue, 2015).

The basis function representation used by the finite element method in
(3.26) for each of the GRFs is now

ξj,S(s) =

m∑
k=1

φk(s)vk,j,S, ξj,N-S(s) =

m∑
k=1

φk(s)vk,j,N-S,

ωS(s) =

m∑
k=1

φk(s)wk,S, ωN-S(s) =

m∑
k=1

φk(s)wk,N-S.

Note that the Gaussian weights for ξj,S(s) and ξj,N-S(s) are dependent on j,
a consequence of the assumption that they for each j = 1, . . . , T are a inde-
pendent realisation of the GRFs ξS(s) and ξN-S(s). However the basis functions
{φ1, . . . , φm} are the same for all the GRFs, as the triangulation is the same.
The GMRF representation is mapped from the triangulation vertices to the n
observation locations by a projector matrix A ∈ Rn×m, where each row of the
projector matrix is given by Ai =

(
φ1(si), . . . , φm(si)

)
. The spatial process at

each observation location si may now be denoted as

ηj,S,I(si) = β + γj + Aivj,S, ηj,S,II(si) = β + Ai(vj,S +wS),

ηj,N-S,I(si) = β + γj + Aivj,N-S, ηj,N-S,II(si) = β + Ai(vj,N-S +wN-S),

where vj = (v1,j , . . . , vm,j)
′ . Recall that these are zero mean Gaussian weights,

with precision matrix given by (3.27) for vj,S and wS, and (3.31) for vj,N-S and
wN-S

The hyperparameters controlling the dependence structure of the GRFs are
given by the log-linear relations to the SPDE parameters τ(s) and κ(s) in (3.29)
and (3.30). For the stationary fields ξS(s) and ωS(s) these hyperparameters are
θS = (θ1,τ , θ1,κ)

′ , with the following relation to the SPDE parameters

log τ = θ1,τ ,

log κ = θ1,κ.

For the non-stationary fields ξN-S(s) and ωN-S(s) we introduce f(s) in the
dependence structure, that is the increase in traffic intensity at location s
relative to the minimum observed traffic intensity. Let g(s) be the actual traffic
intensity, on the scale 10000 AADT, and

f(s) = g(s)−min
s∈D

g(s),



4.1. Latent Gaussian models for rutting 30

such that f(s) ∈ [0,∞), this is done to ensure that the methodology for the
prior specification of the SPDE parameters given by Ingebrigtsen et al. (2015)
is applicable in this setting. The relation to the SPDE parameters is given by

log τ(s) = θ1,τ + f(s)θf,τ ,

log κ(s) = θ1,κ + f(s)θf,κ,

with hyperparameters θN-S = (θ1,τ , θf,τ , θ1,κ, θf,κ)
′ . If θf,τ = θf,κ = 0 we are

back at the stationary model. For the sake of simplicity we will from now on
use the term SPDE parameters to denote the hyperparameters θS and θN-S
with a log-linear relation to the actual SPDE parameters τ and κ.

4.1.2 Priors

Let x = (β,γ,v,w)
′ denote the latent field, by assigning Gaussian priors

to the elements of x we have a latent Gaussian field. The intercept is as-
signed a vague Gaussian prior, β ∼ N (0, 1000), and the elements of γ were
assumed to be independently and identically distributed as γ ∼ N (0, τ−1γ IT ).
The precision parameter τγ is a hyperparameter assigned a prior distribution
τγ ∼ Gamma(0, 5·10−5), as we have no prior information about the parameter,
and the same applies to the precision parameter of the measurement errors,
τε ∼ Gamma(0, 5 · 10−5). Recall from Section 3.4 that the weights v and w
are assumed to be zero-mean Gaussian, and the dependence structure of the
GRFs are controlled by the SPDE parameters θS and θN-S.

The priors for the SPDE parameters need to be set more carefully than the
other hyperparameters, as they are shown to be prior sensitive and especially
for θN-S the priors should not be too informative (Ingebrigtsen et al., 2014). In
addition there are no obvious physical interpretation of the parameters, further
complicating the process of setting priors with some sense of prior information.
We follow the procedure of Ingebrigtsen et al. (2015) for setting priors for the
SPDE parameters, and introduce the approach in a similar manner. We will
use the same priors for the stationary fields ξS(s) and ωS(s), and for the non-
stationary fields ξN-S(s) and ωN-S(s).

Recall the relation between τ and κ from the SPDE in (3.23) and the
marginal standard deviation

σS =
1

2κ3/2τ
,

and the spatial range

ρS =
2
√

3

κ
.

By assigning informative priors to these parameters, which have a more clear
physical interpretation, we get more informative priors for the SPDE paramet-
ers as well. Recall that log τ = θ1,τ and log κ = θ1,κ, assume θτ ∼ (µ1,τ , σ

2
1,τ )



Chapter 4. Models and methods 31

and θκ ∼ N (µ1,κ, σ
2
1,κ). Properties of the log-normal distribution yields

ρS ∼ logN (log 2
√

3− µ1,κ, σ21,κ),

and
σS ∼ logN (− log 2− µ1,τ − µ1,κ, σ21,τ + σ21,κ).

The quantile functions for the log-normal distributed spatial range and mar-
ginal standard deviation are

ρS(p) = 2
√

3 exp(−µ1,κ + σ1,κΦ−1(p)),

and
σS(p) =

1

2
exp(−µ1,τ − µ1,κ +

√
σ21,τ + σ21,κΦ−1(p)),

where 0 ≤ p ≤ 1 is a quantile, and Φ(·) the cumulative distribution function
for the standard normal distribution. By specifying two quantiles of ρS and σS,
we get a set of four equations which can be solved for µ1,τ , σ21,τ , µ1,κ and σ21,κ.

We consider values at the 0.5 and 0.9 quantile for the spatial range and
marginal standard deviation. We saw from the variogram in Figure 2.8 that
the spatial variability varied across different years, but relative to the size of
the domain, 80 km, the spatial range seem to be several orders of magnitude
lower. We set the 0.5 quantile to 400 m, and the 0.9 quantile to 1500 m, based
on the findings in Section 2.3, and find µ1,κ = −4.75 and σ21,κ = 1.06. For the
marginal standard deviation we find from the data reasonable values for the 0.5
quantile to be 0.6 mm and 0.9 quantile to be 3 mm, this yields µ1,τ = 4.57 and
σ21,τ = 0.51. This result in a rather narrow prior for θ1,τ , but in the equations
for µ1,τ and σ21,τ they are dependent on each other, as well as µ1,κ and σ21,κ,
and staying within sensible values for the 0.5 and 0.9 quantiles for the spatial
range and standard deviation this are the best possible prior setting for θ1,τ .

In the non-stationary case we rely on the nominal approximations in (3.32)
and (3.33) for ρN-S(f) and σN-S(f), where f = f(s) is the traffic intensity.
Assigning Gaussian priors to θN-S and following the reasoning in the stationary
case we have

θ1,τ∼ N (µ1,τ , σ
2
1,τ ), θf,τ ∼ N (µf,τ , σ

2
f,τ ), (4.2)

θ1,κ∼ N (µ1,κ, σ
2
1,κ), θf,κ ∼ N (µf,κ, σ

2
f,κ). (4.3)

Assuming independence of the θ’s, the log-normal distributions of the nominal
spatial range and standard deviation are now

ρN-S(f) ∼ logN (log 2
√

3− µ1,κ − fµf,κ, σ21,κ + f2σ2f,κ),

and

σN-S(f) ∼ logN (− log 2−µ1,τ−µ1,κ−f(µf,τ+µf,κ), σ21,τ+σ21,κ+f2(σ2f,τ+σ2f,κ)).
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As these distributions change with the traffic intensity, a set of conditions is set
up in order to make valid comparisons with the stationary prior distributions
for the spatial range and marginal standard deviation:

1. ρN-S(0)
d
= ρS(0) and σN-S(0)

d
= σS(0)

2. µf,τ = µf,κ = 0
3. For a given reference traffic intensity f0, cρ is the coefficient of variation

for the ratio ρN-S(f0)/ρN-S(0) and cσ the coefficient of variation for the
ratio σN-S(f0)/σN-S(0)

The first condition simply state that the stationary and non-stationary priors
for the spatial range and standard deviation is equal at the lowest observed
traffic intensity along the road. The second condition implies that the non-
stationary spatial range and standard deviation has a prior assumption of no
effect from a change in traffic intensity. The third condition let us control
how much the priors are allowed to change as the traffic intensity changes, by
specifying the coefficient of variation. This result in the following equations

µ1,τ,S = µ1,τ,N-S, σ21,τ,S = σ21,τ,N-S,

µf,τ = 0, σ2f,τ =
1

f20
log

(
c2σ + 1

c2ρ + 1

)
,

µ1,κ,S = µ1,κ,N-S, σ21,κ,S = σ21,κ,N-S,

µf,κ = 0, σ2f,κ =
1

f20
log(c2ρ + 1),

in order to ensure positive variance we need to require that cσ > cρ. A more
thorough evaluation of the coefficients of variation and the prior sensitivity is
found in Ingebrigtsen et al. (2015).

We set the reference traffic intensity to f0 = 0.45, corresponding to an
actual traffic intensity of 9000 AADT, as mins∈D g(s) = 4500. By setting
cρ = 0.9 and cσ = 1.2, we get σ2f,τ = 1.47 and σ2f,κ = 2.93, with the priors
θf,τ ∼ N (0, 1.47) and θf,κ ∼ N (0, 2.93).
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4.2 Latent Gaussian models for road accidents

We consider the same spatial domain D ⊂ R1 as for the rutting models.
The sparsity of accidents for each year along the road, as discussed in sec-
tion 2.2, leads to omitting any temporal dependencies and consider all the
accidents to be generated from one single realization of a spatial process. Now
let the response variable of interest, yi, be the binary outcome variable {0, 1}
denoting {no accident, accident} for road segment i = 1, . . . , n, such that
yi ∼ Bernoulli(πi), where πi = p(yi = 1). This non-Gaussian response is fit-
ted into the LGM framework with an appropriate link function g(·) such that
ηi = g(πi) = g

(
E(yi)

)
, with the logit link we have

ηi = ln

(
πi

1− πi

)
⇐⇒ πi =

exp(ηi)

1 + exp(ηi)
,

where ηi contains the elements of the latent Gaussian field.
Following Model I introduced for rutting we propose the inclusion of a

stationary and non-stationary GRF with Matérn covariance function in ηi,
among with a common intercept β, given as

ηi = β + ξS(si),

ηi = β + ξN-S(si).

Omitting the temporal dimension we are now left with only one single realiz-
ation of the GRFs ξS(s) and ξN-S(s).

4.2.1 SPDE approach

We follow the same configuration used for the GRFs for the rutting models,
with the same triangulation of the domain. The basis function representation
is now

ξS(s) =
m∑
i=1

φi(s)vi,S,

ξN-S(s) =
m∑
i=1

φi(s)vi,N-S.

The log-linear relation to the SPDE parameters for the stationary GRF
ξS(s) are

log τ = θ1,τ ,

log κ = θ1,κ.

The curvature at location s, given by c(s) is introduced in the dependence
structure for the non-stationary GRF ξN-S(s), with a log-linear relation to the
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SPDE parameters as

log τ(s) = θ1,τ + c(s)θc,τ ,

log κ(s) = θ1,κ + c(s)θc,κ,

where the curvature c(s) is scaled by a factor of 100, for the sake of avoiding
computational issues in R-INLA, and we saw in Section 2.2 that the curvature
mainly were under 0.01, such that the curvature values after scaling are still
below 1.

4.2.2 Priors

Let the latent field be denoted by x = (β,v)
′ , by assigning Gaussian pri-

ors to the elements of x the non-Gaussian likelihood is now fitted into the
LGM framework. Similar to the priors used for the rutting models we let
β ∼ N (0, 1000), and the weights v are zero-mean Gaussian. The approach
for assigning priors to the SPDE parameters as for the rutting models is diffi-
cult to apply now, as the sparsity of data make the prior assumptions regarding
the spatial range and marginal standard deviation more difficult to assess. In
addition the inclusion of a link function between the mean and the structured
additive predictor where the GRF is contained, further complicate the inter-
pretation, compared to the case with a Gaussian likelihood, thus we refrain
from this approach.

We consider the SPDE parameters to be zero mean Gaussian, with variance
2.5 for θ1,τ and θ1,κ, and variance 1.5 for θc,τ and θc,κ. Then the two models are
fitted to the data, and let θ̂1,τ,S denote the marginal posterior mean of θ1,τ from
fitting Model IS. The marginal posterior means for all the SPDE parameters
are used to refit Model IS and IN-S with new prior means, the priors for Model
IS is now

θ1,τ,S = N (θ̂1,τ,S, 2.5), θ1,κ,S = N (θ̂1,κ,S, 2.5),

and Model IN-S

θ1,τ,N-S = N (θ̂1,τ,N-S, 2.5), θc,τ = N (θ̂c,τ , 1.5),

θ1,κ,N-S = N (θ̂1,κ,N-S, 2.5), θc,κ = N (θ̂c,κ, 1.5).

These are rather restrictive priors, as noted by Lindgren and Rue (2015), set-
ting priors for these parameters is difficult, and letting the prior variance of θc,τ
and θc,κ become to large we run into numerical issues. Also Ingebrigtsen et al.
(2014) encountered the same problems, noting that the optimisation procedure
for finding the mode of p(θ∗|y) fails if the priors of these parameters are to
vague.

4.3 Simulation studies

In order to assess the models ability to separate between stationarity and non-
stationarity we conduct a simulation study, where the purpose is to investigate
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Model IS and IN-S’s ability to separate data generated from a stationary and
non-stationary GRF. This is performed for both the rutting and accident mod-
els.

For the rutting models we keep the priors used for Model IS and IN-S for
the actual rutting data, described in Section 4.1.2. We consider four replicates
from the GRF ξ(s), and discard the year specific intercept term γj from ηj,S,I(s)
and ηj,N-S,I(s). The parameter values βS, βN-S, τε,S, τε,N-S,θS and θN-S are fixed
according to the marginal posterior means from fitting Model IS and IN-S to
the actual rutting data, presented in Table 5.1. The procedure for simulating
a stationary and non-stationary data set for rutting, with 4 different observa-
tion years, and fitting models to the simulated observations, is described by
Algorithm 1. Where 1nT is a vector of one’s with nT elements.

Algorithm 1 Simulation study rutting
1: procedure Simulation rutting
2: fix βS, βN-S, τε,S, τε,N-S,θS and θN-S
3: repeat
4: sample vS ∼ N (0,Q−1S )
5: sample vN-S ∼ N (0,Q−1N-S)
6: sample εS ∼ N (0, τ−1ε,S I)

7: sample εN-S ∼ N (0, τ−1ε,N-SI)
8: calculate stationary sample yS = βS1nT + AvS + εS
9: calculate non-stationary sample yN-S = βN-S1nT + AvN-S + εN-S

10: fit Model IS and IN-S to yS
11: fit Model IS and IN-S to yN-S
12: until 100 repetitions
13: end procedure

For the accident models we keep the priors given in Section 4.2.2 for Model
IS and IN-S. Fixing the parameter values β = −4, θ1,τ = 8 and θ1,κ = −5 in the
stationary case, and include θc,τ = −5 and θc,κ = 2 in the non-stationary case,
i.e. β, θ1,τ and θ1,κ are equal in both the stationary and non-stationary case.
The full procedure is given in Algorithm 2, where logit−1(ηi) = exp(ηi)/(1 +
exp(ηi)) denotes the inverse logit link function.

4.4 Inference and software

The proposed models for rutting and accidents fit into the LGM framework, as
we assume all elements of the latent field x to have Gaussian priors, in addition
the spatial effects are modelled through GRFs, and using the SPDE approach
we obtain GMRF representations of the GRFs making the models applicable
with INLA, for fast approximate Bayesian inference. All data analysis and
model fitting are performed by the use of the statistical computing tool R
(R Development Core Team, 2008) and the implementation of INLA in the
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Algorithm 2 Simulation study accidents
1: procedure Simulation accidents
2: fix βS, βN-S,θS and θN-S
3: repeat
4: sample vS ∼ N (0,Q−1S )
5: sample vN-S ∼ N (0,Q−1N-S)
6: calculate ηS = βS1n + AvS
7: calculate ηN-S = βN-S1n + AvN-S
8: calculate πi,S = logit−1(ηi,S), πS = (πi,S, . . . , πn,S)

′

9: calculate πi,N-S = logit−1(ηi,N-S), πN-S = (πi,N-S, . . . , πn,N-S)
′

10: sample stationary accidents yS ∼ Bernoulli(πS)
11: sample non-stationary accidents yN-S ∼ Bernoulli(πN-S)
12: fit Model IS and IN-S to yS
13: fit Model IS and IN-S to yN-S
14: until 100 repetitions
15: end procedure

package R-INLA (Rue et al., 2009) is used for fast inference for all the proposed
LGMs.

The spatial properties of the data used for finding the distance between
annual road measurements are handled by the use of the sf package (Pebesma,
2018). Plotting are performed by the ggplot2 package (Wickham, 2016), except
for the different maps, these are generated by use of the mapview package, to
generate high resolution maps for small spatial domains.
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Results: Rutting

In this chapter we fit the models introduced in Section 4.1 to the rutting in
2017-2020, that is, in total four models, a stationary and non-stationary model
within each of the proposed models, Model I and II. The models are compared
in terms of their fit to the data, the interpretation of the potential underlying
process driving the change in rutting and their usability from a maintenance
planning perspective.

The models’ ability to separate data generated from a spatial stationary
and non-stationary process are investigated in a simulation study. In addition
to an investigation of how the approach for setting informative priors for the
SPDE parameters fares compared to a more naive non-informative approach.

The subscript ξ and ω are used for the SPDE parameters from Model II to
reference which GRF they are contained within.

5.1 Case study

We start of by presenting results from model I, in particular the estimates for
the SPDE parameters and the implication for the spatial dependency structure.
We also look at how the results differ between the different years, by fitting
the model to only a single year at a time, for each year 2017-2020. We continue
by presenting results from Model II, and compare the results with Model I,
upon which it is based, but with a more complex structure. The models ability
to fit to the data is evaluated by DIC, CPO and the marginal likelihood. The
prior distributions are as described in Section 4.1.2, recall that we use the same
priors for the SPDE parameters for both fields ξ(s) and ω(s) in Model II.

5.1.1 Model fit

The estimated parameters and 95% credible interval from the stationary and
non-stationary model I fitted to data 2017-2020 are displayed in Table 5.1. The
intercept term β shows no obvious deviations between the stationary and non-
stationary case, we observe the same for the precision τε of the error term ε, with

37
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τε,S slightly lower than τε,N-S, indicating that the error term in the stationary
model explains more of the overall variability than in the non-stationary model.
The precision τγ for the random intercept term for the different years show
the same pattern, with slightly lower estimated precision for the stationary
model. We also note that the credible intervals for both τγ,S and τγ,N-S is very
wide, hence the estimated precision is quite uncertain, although neither of
the credible intervals contain zero, so there seems to be significant differences
between the years.

Continuing with the SPDE parameters we see that the parameters θ1,τ,S
and θ1,τ,N-S are fairly similar, both of the estimated parameters are contained in
the other ones credible interval, and neither contain zero. We observe a larger
deviation between the estimate for the parameters θ1,κ,S and θ1,κ,N-S, where
both estimated parameters are barely contained within the others credible
interval. Moving on the the SPDE parameters controlling the non-stationarity
of the GRF ξN-S(s), we see that the credible intervals for both θf,τ and θf,κ does
not contain zero, rather far from it, indicating that non-stationarity controlled
by the traffic intensity might be reasonable.

Table 5.1: Posterior mean and 95% credible interval of the hyperparameters
and fixed effect, from stationary and non-stationary model I fitted to rutting
2017-2020.

mean 95% CI
Model IS IN-S IS IN-S

β 1.18 1.24 (0.79, 1.56) (0.92, 1.56)
θ1,τ 6.94 6.63 (6.56, 7.24) (6.13, 7.00)
θ1,κ -4.74 -4.53 (-4.93, -4.50) (-4.76, -4.23)
θf,τ -3.27 (-3.62, -2.92)
θf,κ 1.84 (1.64, 2.04)
τγ 9.95 10.80 (2.05, 26.94) (2.26, 29.05)
τε 1.42 1.58 (1.38, 1.47) (1.53, 1.64)

The interpretation of the estimated SPDE parameters are displayed in Fig-
ure 5.1, where the spatial range and standard deviation is attained by using
the relations in (3.10) and (3.25), and the nominal approximations in the non-
stationary case from (3.32) and (3.33). The posterior mean of the range is 396
m in the stationary model, the implication of the posterior marginal mean of
θ1,κ,N-S being higher than θ1,κ,S is now clear, as the range for the non-stationary
model is below 396 m even at the base level traffic intensity, and decrease as
the traffic intensity increases. The non-stationary range show a steep decrease,
and for the maximum observed traffic intensity of 17 000 AADT, it is only 31
m, indicating that road segments being second neighbours (40 meters apart)
are practically uncorrelated. We should note that only about 25% of the road
has a traffic intensity exceeding 10 000 AADT, and we might see signs of
overfitting to the small proportion of the road with high traffic intensity, and
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further extrapolating to higher traffic intensities than 17 000 AADT lead to
a range where each road segment is uncorrelated to it’s closest neighbour as
well. The standard deviation in the stationary case is 0.63 mm, and for the
non-stationary 0.625 mm at the base level, increasing as the traffic intensity
increases. We observe that the standard deviation of the field, given as dots,
show the same tendency, although for a given traffic intensity their deviation
is rather large, and the standard deviation in the non-stationary case seems to
follow the maximum observed standard deviations, possibly indicating a too
strong dependency on the traffic intensity.
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Figure 5.1: Range and standard deviation for the GRF ξ(s) in Model I, with
IS as dotted line, IN-S solid line and the standard deviation of ξN-S(s) at the
observation locations as dots. Note that the traffic intensity (AADT) is scaled
back to it’s actual value.

By assumption, the GRF each year ξj(s) is considered a replicate, i.e. real-
ization, of the GRF ξ(s). We fit Model IS and IN-S to each single one of the
years 2017-2020, one year at a time, with the year specific random intercept
term excluded. The measures of the model fit is displayed in Table 5.2, where
there seems to be no difference between the stationary and non-stationary
model for 2017, for 2019 the non-stationary model is favourable. Finally for
2018 and 2020 the non-stationary is clearly a better fit, with large differences
in DIC, CPO and log likelihood, compared with the stationary model. It is no
clear tendency for the non-stationary model being superior for all the years,
posterior marginals for the SPDE parameters in Appendix B.1 show large dif-
ferences between the years, with 2018 and 2020 overall showing most similarity
in the posterior marginals. In particular, zero is contained in the credible inter-
vals for θf,τ and θf,κ for 2017, again indicating a non-stationary model is not
reasonable for 2017. Having only four replicates of ξ(s) may not be sufficient
to get accurate estimates of the SPDE parameters, considering the large dif-
ferences seen between the different years. Also Ingebrigtsen et al. (2015) show
through simulation studies that the coverage of the SPDE parameters increases
as more replicates are added, especially for the spatial range parameters θ1,κ
and θf,κ, which are more sensitive to a limited number of replicates.
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Table 5.2: DIC, CPO and log likelihood for Model I, when fitting to one
single year at a time.

2017 2018 2019 2020

DIC IS 5276.4 9364.9 10861.9 8503.5
IN-S 5270.6 8868.6 10830.2 8320.5

CPO IS 2741.3 4691.6 5468.1 4267.2
IN-S 2740.2 4552.7 5448.0 4232.3

Log likelihood IS -2965.0 -4840.2 -5889.2 -4380.3
IN-S -2964.2 -4734.3 -5882.5 -4324.7

Moving to Model II, with an additional GRF ω(s) representing the pave-
ment stress, we find the estimated parameters and 95% credible interval from
the stationary and non-stationary Model II fitted to data 2017-2020 in Table
5.3. There are no differences for β and τε, and only slight differences between
the stationary and non-stationary model for θ1,τ,ξ, θ1,κ,ξ, θ1,τ,ω and θ1,κ,ω. Re-
call from Section 4.2 that now the interpretation of ξ(s) is describing the
annual spatial deviation from the pavement stress ω(s). The parameters θf,τ,ξ
and θf,κ,ξ both have credible intervals containing zero, indicating that the
annual spatial deviation from ω(s) might not have a non-stationary nature.
Non-stationarity for the pavement stress ω(s), seems reasonable by the cred-
ible intervals of θf,τ,ω and θf,κ,ω, although pretty wide, neither contains zero.
The possible non-stationary nature of the rutting indicated by Model IN-S now
seems to be captured by the GRF for the pavement stress.

Table 5.3: Posterior mean and 95% credible interval of the hyperparameters
and fixed effect, from Model IIS and IIN-S fitted to rutting 2017-2020.

mean 95% CI
Model IIS IIN-S IIS IIN-S

β 1.19 1.19 (1.10, 1.27) (1.09, 1.28)
θ1,τ,ξ 8.37 8.31 (8.05, 8.69) (7.96, 8.67)
θ1,κ,ξ -5.74 -5.69 (-5.95, -5.53) (-5.94, -5.44)
θf,τ,ξ 0.14 (-0.69, 1.07)
θf,κ,ξ -0.14 (-0.80, 0.45)
θ1,τ,ω 6.14 6.34 (5.57, 6.70) (5.80, 6.91)
θ1,κ,ω -3.56 -3.56 (-3.93, -3.18) (-3.96, -3.19)
θf,τ,ω -1.84 (-2.71, -1.06)
θf,κ,ω 0.75 (0.27, 1.27)
τε 1.38 1.39 (1.34, 1.42) (1.35, 1.43)

The range and marginal variance for the annual spatial deviation from
ω(s) is displayed in Figure 5.2. The range in the stationary case is 1077 m,
and 1025 m at the base level in the non-stationary case, and increasing as the
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traffic intensity increases, with range equal to the stationary case for a traffic
intensity of 8000 AADT. The marginal standard deviation is 0.63 mm in the
stationary case and 0.62 mm at the base level in the non-stationary case, with
a slight increase for increasing traffic intensity.

The range and marginal variance for ω(s) is displayed in Figure 5.3. The
range is 121 m in both the stationary case and at the base level in the non-
stationary case, which decreases with increasing traffic intensity. At the max-
imum observed traffic intensity the range has dropped to 47 m. In the sta-
tionary case the marginal standard deviation is 0.22 mm, and 0.18 mm at the
base level in the non-stationary case. The marginal standard deviation for the
non-stationary case has increased to 0.56 mm at the maximum observed traffic
intensity.
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Figure 5.2: Range and standard deviation for the GRF ξ(s) in Model II,
with IIS as dotted line, IIN-S solid line and the standard deviation of ξN-S(s)
at the observation locations as dots. Note that the traffic intensity (AADT)
is scaled back to it’s actual value.

5.1.2 Model comparison

The most obvious comparison between the proposed models are conducted by
considering the model selection criterion’s displayed in Table 5.4, we see that
for both Model I and II all the measures of fit, DIC, CPO and log likelihood,
indicate a better fit for the two non-stationary models, each compared to it’s
corresponding stationary model. Comparing Model I and II we see that IIN-S
are found to be inferior to both IS and IN-S by all measures of fit, and the
added complexity of IIN-S does not result in an overall increase in model fit.

A further assessment of the model fit is seen in Figure 5.4 where difference
in CPO for each road segment is compared between different models, note
that we have described the road in one dimension, i.e. stretched it out and let
each road segment be 20 m apart in the horizontal direction, in Figure 5.4a
the actual road in two-dimensions is displayed with the traffic intensity. The
difference in CPO for each road segment and year, i.e. CPOij , between Model
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Figure 5.3: Range and standard deviation for the GRF ω(s) in Model II,
with IIS as dotted line, IIN-S solid line and the standard deviation of ωN-S(s)
at the observation locations as dots. Note that the traffic intensity (AADT)
is scaled back to it’s actual value.

IN-S and IS is shown in Figure 5.4b, where positive values indicate a better fit
of IN-S. The results are somewhat surprising, as the stationary model overall
seems to be slightly better at the highest traffic intensities, but with large
deviations between which model seems preferable. Whereas the non-stationary
provide a slightly better fit at the large proportion of the road with low traffic
intensity, although they are very similar at low traffic intensities, consistent
with the results in Figure 5.1. The difference between Model IIN-S and IN-S
in Figure 5.4c show that IIN-S is better for high traffic intensities, but still
with large deviations, and IN-S still slightly better at lower traffic intensities,
but now with larger deviations. In Figure 5.4d we see that there is no clear
visible pattern between the differences of Model IIN-S and IS, other than several
locations with large deviations where the preference of either models change
rapidly. There are no visible difference between the years.

Table 5.4: DIC, CPO and log likelihood for Model IS, IN-S, IIS and IIN-S
fitted to rutting 2017-2020.

Model I Model II

DIC S 35597.6 35803.5
N-S 34958.2 35699.5

CPO S 17624.3 17742.4
N-S 17406.1 17699.3

Log likelihood S -18399.0 -18436.9
N-S -18365.7 -18426.5

Although both IS and IN-S seem to fit the data better than IIS and IIN-S, the
GRF ω(s), representing the pavement stress, of the latter two has tractable
properties in terms of interpreting the deterioration at different locations of
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Figure 5.4: Difference in CPO, at each road segment, each year, orientation
west to east.

the road during the observation period. In Figure 5.5 the posterior mean and
standard deviation of the GRF representing the pavement stress from IIS and
IIN-S is displayed for a subset of the road where the traffic intensity has rapid
changes. The posterior mean of the GRF from IIS show a higher degree of
smoothing, whereas the GRF from IIN-S show greater deviations and more
clearly highlighting possible locations with elevated pavement stress. We also
observe large differences in the posterior standard deviation, with the overall
trend in the non-stationary case of increasing standard deviation as the traffic
intensity increases, as expected from Figure 5.3.

The ηi’s from Model IN-S and IIN-S in Figure 5.6 clearly show that the
structured additive predictor of IN-S has more rapid changes specifically in the
regions with higher traffic intensity, to the left in the plots, indicating that
the traffic intensity influence the dependence structure in a stronger way than
compared to Model IIN-S. But we also saw from the CPO values in Figure 5.4c
that Model IIN-S in general fitted the data better than IN-S in these high traffic
regions of the road, thus the non-stationarity of IN-S might be overestimated.

Summarising the case study for rutting there are no unique model per-
forming better at all the different parts of the road, overall Model IN-S shows
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Figure 5.5: Properties of the pavement stress ω(s) in the stationary and non-
stationary case, for a subset of the road, of 600 road segments, with values of
the pavement stress field projected onto each single road segment.

best fit to the data, but with possible overestimation of the traffic intensity’s
influence on the dependence structure of ξN-S(s). The increased complexity in
Model II does not contribute to a better fit considering the whole road, but
Model IIN-S show interesting results and model fit equal to or better than IS
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Figure 5.6: ηi in mm for Model IN-S and IIN-S for each year 2017-2020. ηi,N-S,I
is represented by grey lines and ηi,N-S,II black lines.

and IN-S for high traffic intensities. In addition the pavement stress ωN-S(s)
highlights locations with elevated pavement stress in the period under study,
and model fit for high traffic intensities indicate that this may be utilized in
maintenance planning at particularly these subsets of the road.

5.2 Simulation study

In order to assess the models ability to separate between stationarity and non-
stationarity we conduct a simulation study, where the purpose is to investigate
model IS and IN-S’s ability to separate data generated from a stationary and
non-stationary GRF, with the procedure given in Section 4.3.

The coverage for all parameters when fitting Model IS and IN-S to data
simulated from a stationary and non-stationary process are given in Table
5.5. For stationary data we see that the coverage is similar between the two
models, and most of the time Model IIN-S correctly imply stationarity, with
a coverage of 0.83 for θf,τ and 0.86 for θf,κ. Moving to the non-stationary
data, we observe poor coverage for all parameters of Model IS, with zero for
θ1,τ and θ1,κ, except for β, whereas the coverage for parameters of Model IN-S
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Table 5.5: Credible interval coverage for parameters of IS and IN-S from
fitting the models to rutting simulated from a stationary and non-stationary
GRF ξ(s).

Data stationary non-stationary
IS IN-S IS IN-S

β 0.94 0.94 0.87 0.85
θ1,τ 0.90 0.89 0 0.90
θ1,κ 0.91 0.94 0 0.90
θf,τ 0.83 0.83
θf,κ 0.86 0.84
τε 0.71 0.70 0.31 0.66

is retained, with a decrease for some of the parameters. Overall the coverage
is only modest, where estimating the marginal posteriors of the parameters
controlling the non-stationarity is a problem in both cases. Model IN-S seems,
in most cases, to be able to separate data generated from a stationary and
non-stationary GRF reasonably well.

Looking at the measures of fit in Figure 5.7a, displaying the difference in
DIC and CPO between Model IN-S and IS for the stationary data, we see very
similar measures of fit for the two models. For the non-stationary data in Figure
5.7b, the median of the difference in CPO is -290 and DIC -605, indicating a
clear preference for Model IN-S over IS.
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Figure 5.7: Difference in CPO and DIC between IN-S and IS fitted to rutting
simulated from a stationary and non-stationary GRF ξ(s).

The marginal posterior means are shown in Figure 5.8, with the true values
given by red dots. Although we saw less than ideal coverage for most of the
parameters, the overall spread does not seem to be very high, and for the SPDE
parameters the implications for the nature of the GRF may not necessarily be
very large. We notice in particular from Figure 5.8b that the parameters θ1,τ
and θ1,κ, miss the actual parameter value, as the coverage are 0 for both, but
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they are not very far of, indicating that the range and standard deviation of
the GRF will be fairly similar at the base level traffic intensity. In addition we
observe that the posterior marginal means of θf,τ varies more around the true
parameter value than θf,κ, for both stationary and non-stationary data.
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Figure 5.8: Boxplot of marginal posterior means for parameters of IS and
IN-S fitted to rutting simulated from a stationary and non-stationary GRF
ξ(s). With the true parameter values of the simulated data given by red dots.
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5.3 Prior sensitivity

We now make a brief investigation of how the approach for setting inform-
ative priors for the SPDE parameters fares compared to a more naive non-
informative approach. The prior sensitivity for varying the values of cρ and
cσ were shown by Ingebrigtsen et al. (2015) to be stable, when five replicates
of the GRF were used, compared to only one replicate, with more unstable
results. Instead we consider the case were we don’t have any prior information
about the spatial process, and default to non-informative priors for the SPDE
parameters. We look at the two non-stationary models, Model IN-S and IIN-S,
along with three different designs, A, B and C with different priors for the
SPDE parameters, all of which are given in Appendix B.2. The priors for the
other parameters β, τγ and τε are set according to the priors in Section 4.2.2,
for all three prior designs.

5.3.1 Model I

Design A is a fully non-informative approach where we let the priors be given
as

θ1,τ,ξ, θ1,κ,ξ
iid∼ N (0, 10),

θf,τ,ξ, θf,κ,ξ
iid∼ N (0, 2),

where the variance for the priors of the SPDE parameters cannot be chosen to
high, in order to avoid numerical issues, as mentioned in Section 4.2.2.

In design B we take a semi-informative approach for setting the priors, by
using the marginal posterior means from design A as prior means. We keep the
results of the simulation study in Section 5.2 in mind, as we observed a coverage
of 0 for θ1,τ and θ1,κ when the data were generated from a non-stationary
process. Thus we need to ensure that the prior variance is sufficiently high in
this design, and refrain from using the marginal posterior variances from the
results of design A, keeping the variance of the priors the same, i.e. 10 and 2.

Design C is simply Model IN-S with priors as specified in Section 4.1.2, and
results presented in Section 5.1.

Marginal posterior means and 95% credible intervals for the parameters
from the three prior designs are presented in Table 5.6, we see that the res-
ults from design A in particular deviate from design C in terms of the SPDE
parameters controlling the non-stationarity, θf,τ and θf,κ. This difference is
decreased when we move on to design B, and it seems that supplying some
information about the parameters θ1,τ and θ1,κ lead to big changes in the mar-
ginal posteriors for θf,τ and θf,κ, now indicating non-stationarity in a manner
similar to that of design C, but still with considerable differences. We need to
stress that the posterior marginals in design C by no means are the correct
ones, and the comparison with respect to design C is merely an examination
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of the prior sensitivity when fitting model IN-S, with different priors, to the
actual rutting data.

Table 5.6: Marginal posterior means and 95% credible intervals for paramet-
ers of Model IN-S with three different prior designs for the SPDE parameters.

mean 95% CI
Design A B C A B C

β 1.21 1.20 1.24 (0.18, 1.47) (1.58, 1.69) (0.92, 1.56)
θ1,τ 7.00 6.20 6.63 (6.02, 6.40) (6.87, 7.17) (6.13, 7.00)
θ1,κ -4.69 -4.26 -4.53 (-4.83, -4.60) (-4.38, -4.15) (-4.76, -4.23)
θf,τ -0.23 -2.62 -3.27 (-1.36, 0.50) (-2.93, -2.30) (-3.62, -2.92)
θf,κ -0.10 1.44 1.84 (-0.64, 0.73) (1.25, 1.61) (1.64, 2.04)
τγ 7.34 10.47 10.80 (1.31, 19.95) (2.21, 28.20) (2.26, 29.05)
τε 1.42 1.64 1.58 (1.38, 1.47) (1.58, 1.69) (1.53, 1.64)

5.3.2 Model II

We use the same prior designs for examining the prior sensitivity of Model
IIN-S as introduced for Model IN-S, with only minor adjustments. In design A
we set the priors

θ1,τ,ξ, θ1,κ,ξ, θ1,τ,ω, θ1,κ,ω
iid∼ N (0, 2.5),

θf,τ,ξ, θf,κ,ξ, θf,τ,ω, θf,κ,ω
iid∼ N (0, 2),

notice the decreased variance compared to design A for Model IN-S, again, this
is due to the numerical issues regarding the optimisation routine in R-INLA.
The inclusion of ωN-S(s) increases the hyperparameter space, and we encounter
numerical issues very quickly if the variance of the priors exceed the values set
here. Design B use the marginal posterior means from the results of design A
above, keeping the variance of the priors as in design A. Design C is Model
IIN-S with priors as specified in Section 4.1.2, and results presented in Section
5.1.

The results from using three different prior designs for Model IIN-S are
given in 5.7, starting with design A and the parameters of ξN-S(s) we see that
the posterior marginals clearly have moved away from the priors, for all four,
and the parameters of ωN-S(s) show the same tendency as seen for design A in
Model IN-S, in regards to the parameters controlling the non-stationarity, θf,τ,ω
and θf,κ,ω not indicating any non-stationarity. Moving on to design B we see
the same tendency as earlier, were the posterior marginals of the parameters
controlling the non-stationarity of the GRF’s are influenced to a greater extent
than with the priors given by design A. Note that the differences compared
to design C is now considerable, indicating a whole different kind of non-
stationarity, that is, the annual spatial deviation ξ(s) from the pavement stress
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Table 5.7: Marginal posterior means and 95% credible intervals for paramet-
ers of Model IIN-S with three different prior designs for the SPDE parameters.

mean 95% CI
Design A B C A B C

β 1.11 1.13 1.19 (1.00, 1.23) (0.99, 1.26) (1.09, 1.28)
θ1,τ,ξ 7.10 7.44 8.31 (6.89, 7.32) (6.93, 7.81) (7.96, 8.67)
θ1,κ,ξ -4.87 -5.10 -5.69 (-5.02, -4.73) (-5.33, -4.79) (-5.94, -5.44)
θf,τ,ξ -4.69 -5.51 0.14 (-4.98, -4.40) (-5.84, -5.18) (-0.69, 1.07)
θf,κ,ξ 2.78 3.27 -0.14 (2.64, 2.93) (3.10, 3.44) (-0.80, 0.45)
θ1,τ,ω 10.00 11.01 6.34 (9.14, 10.77) (10.11, 12.19) (5.80, 6.91)
θ1,κ,ω -6.23 -6.93 -3.56 (-6.81, -5.58) (-7.81, -6.25) (-3.96, -3.19)
θf,τ,ω -0.50 -1.65 -1.84 (-1.54, 0.68) (-3.21, -0.46) (-2.71, -1.06)
θf,κ,ω -0.25 0.54 0.75 (-1.24, 0.61) (-0.47, 1.85) (0.27, 1.27)
τε 1.57 1.54 1.39 (1.52, 1.62) (1.49, 1.54) (1.35, 1.43)

ω(s) seems to be non-stationary, and possible non-stationarity of the pavement
stress is more ambiguous. The implications for the nature of the field ωN-S(s)
is a higher degree of smoothing, while ξN-S(s) shows larger and more rapid
fluctuations, especially for high traffic intensities. The smoothing of ωN-S(s)
is clear from Figure 5.9, where the pavement stress for Design A and B are
considerably smoother compared to Design C. This difference is attributed to
the spatial range of the pavement stress, at the base level traffic intensity it is
1759 m and 3542 m for Design A and B, whereas for Design C only 121 m.

In addition the hyperparameter space of Model IIN-S is nine dimensional,
further complicating the optimisation routine in R-INLA, posing restrictions
on how vague the hyperpriors can be without getting into numerical issues.
We also observe that the approach for setting informative priors, in design C,
might impose to restrictive priors, where θ1,τ,ξ and θ1,τ,ω have a prior variance
of 1.06, and θ1,κ,ξ and θ1,κ,ω a prior variance of 0.51.
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Figure 5.9: Posterior mean of the non-stationary pavement stress ωN-S(s)
from Model IIN-S fitted to rutting 2017-2020 with prior Design A, B and C.





Chapter 6

Results: Traffic accidents

In this chapter we present the results from fitting the models introduced in
Section 4.2 for the occurrence of accidents. The models are compared in terms
of the marginal posteriors of the parameters and their implication of a potential
underlying process, in addition to the models fit to the data.

The models’ ability to separate data generated from a spatial stationary
and non-stationary process is investigated in a simulation study, as described
in Section 4.3.

6.1 Case study

The stationary and non-stationary model introduced in Section 4.2 are fitted to
the observations of an accident occurring within a road segment in the period
2015-2020, with prior distributions of the parameters given in 4.2.2.

The marginal posterior means and 95% credible interval of the intercept
and SPDE parameters are shown in Table 6.1. We observe exactly the same
results between the two models for the intercept β, for the SPDE parameters
θ1,τ and θ1,κ there are considerable differences between the models, with wide
credible intervals, all except for θ1,κ,S containing zero, and no clear indication of
the nature of the GRF. The same results goes for the parameters θf,τ and θf,κ,
neither indicating any non-stationarity. The estimated parameters indicate an
extremely low spatial range, below 1 m, considered highly unlikely, indicating
no spatial correlation between neighbouring segments.

The measures of fit in Table 6.1 show no discernable difference between the
stationary and non-stationary model. A closer investigation show low CPO
values at all road segments with accidents, and very high values at all other
road segments, for both models, implying that neither of the models seem
to pick up any information regarding the accident locations. We note that
the number of accidents, 44, relative to the number of road segments, 4030,
possibly impart estimation of the marginal posteriors.

There are no signs of any non-stationarity and in excess of any other explan-
atory variables the GRF does not seem to capture any unobserved information
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Table 6.1: Posterior mean and 95% credible interval of the hyperparameters
and fixed effect, from Model IS and IN-S fitted to accidents 2015-2020.

mean 95% CI
Model IS IN-S IN-S IN-S

β -4.50 -4.50 (-4.81, -4.22) (-4.81, -4.22)
θ1,τ 0.36 1.79 (-4.53, 3.44) (-0.45, 4.54)
θ1,κ 4.97 1.82 (2.54, 9.53) (-0.36, 4.54)
θc,τ 0.81 (-1.59, 3.22)
θc,κ 0.89 (-1.51, 3.30)

Table 6.2: DIC, CPO and log likelihood from Model IS and IN-S fitted to
accidents 2015-2020.

IS IN-S
DIC 487.03 487.03
CPO 243.52 243.52
Log likelihood -247.87 -247.90

regarding the event of accident or not either.

6.2 Simulation study

In line with the simulation study in Section 5.2, we investigate if the models
are able to distinguish between data generated from a stationary and non-
stationary process, with the procedure described in Section 4.3.

We experience the same results as in the case study, in regards to separat-
ing the two models. Results from the simulation study are shown in Appendix
C, where none of the models are able to cover the true parameter values or
identifying whether the data are generated from a stationary or non-stationary
process. The differences in measures of fit shows no clear preference for either
models. These results are the same for both the two simulated data sets, sta-
tionary and non-stationary.

The simulation study is only very brief, but show that the estimation of
the SPDE parameters is increasingly difficult when moving to a Bernoulli like-
lihood, opposed to a Gaussian likelihood in Section 5.2, and extreme care must
be taken when fixing the parameters. The influence the SPDE parameters have
on the probability of an accident are more complicated with such a likelihood
as well, they are connected through the logit link function, and minor changes
in the SPDE parameters may lead to a large change in the probability of ac-
cident. In particular, letting the marginal and nominal standard deviation of
the GRF vary to much with respect to the curvature quickly lead to numerical
issues, in the same manner as described in Section 4.2.2 and 5.3.



Chapter 7

Discussion and concluding
remarks

In this thesis we investigated the annual change in rut depth, rutting, in ad-
dition to the occurrences of accidents, for road segments of 20 meter, along
the 80 km road E16 from Bergen to Voss. The spatial dependencies between
road segments were investigated, modelled as stationary and non-stationary
Gaussian random fields within the latent Gaussian model framework. Where
the purpose was two-fold, first, to learn about how the traffic intensity possibly
influence the spatial dependence structure of the rutting, and the horizontal
curvature for the occurrences of accidents, with the main focus directed to rut-
ting. The second purpose was to develop models capable of highlighting road
segments with elevated rutting which may require a physical inspection and
possible maintenance.

The main results from evaluating the four proposed models for rutting in-
dicate non-stationarity for the rutting, where the spatial dependence structure
varies with the traffic intensity. This is indicated by posterior marginals con-
trolling the non-stationarity being significantly different from zero, in addition
to the model selection criterion’s DIC, CPO and log likelihood all favouring
the two non-stationary models over the corresponding stationary model. No
unique model were found to be superior for all different subsets of the road, in
particular when considering the high traffic intensity areas against low traffic
intensity, the preferred model changes. Within the proposed models and the
chosen priors, the effect of increased traffic intensity on the spatial dependence
structure show a decrease in spatial range and increase in standard deviation,
indicating higher spatial variability in the rutting at high traffic intensities,
with the possible consequence being a higher frequency of repaving or other
maintenance activities, as indicated by Aurstad et al. (2016) and Bakløkk
(2017). For the models with one GRF and four replicates of the spatial field,
the simulation study show that the non-stationary model in most cases indic-
ate stationarity when there is no non-stationarity present, with fairly similar
indications towards non-stationarity when it is present. Although the results
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indicate non-stationarity depending on the traffic intensity for rutting, the type
of non-stationarity present is ambiguous, especially for models with two GRFs,
and the nature of the GRFs are very prior sensitive, as shown by the prior sens-
itivity analysis in Section 5.3, with somewhat informative and non-informative
priors. As noted by Fuglstad et al. (2015) there is a need to not only determine
if there is non-stationarity, but also consider what type of non-stationarity is
present, and possibly target this directly and not through flexible models. The
prior sensitivity analysis also highlight that some of the priors said to be in-
formative might be too restrictive, and we may also question how informative
the chosen priors actually are in the case where we have two GRFs in Model
II. The assumption taken in this thesis of setting the same priors for the para-
meters of these two GRFs is rather weak, and warrants a further investigation.

The aim of highlighting road segments with elevated rutting motivated the
inclusion of a GRF for the pavement stress, this field shows tractable proper-
ties in terms of locating problematic road segments over time, and the model
with non-stationary pavement stress seems to be the one providing the best
fit in areas of high traffic intensity. Hence, this may be utilized in mainten-
ance planning for locating possible locations where maintenance is due or a
closer physical inspection should be conducted, especially for areas with high
traffic intensity. This shows that the inclusion of such a field is useful in terms
of interpreting the evolution of the rutting, previously proposed by Ingebrigt-
sen et al. (2015) for improving forecasting and interpolation with respect to a
precipitation process, and used by Ødegård (2017). Aside from the tractable
properties of representing the pavement stress by a second GRF, having two
GRFs greatly increase the dimension of the hyperparameter space, and numer-
ical issues regarding the numerical optimisation routine in R-INLA are likely
to appear, where the solution is to decrease the variance of the hyperpriors,
thus including a second GRF does not come without additional constraints
and more care need to be taken compared to models with one single GRF.

The brief results from considering traffic accidents and including non-
stationarity dependent on the curvature are inconclusive, with no signs of
non-stationarity, and the stationary and non-stationary model show similar
traits with extremely low spatial ranges, lower than the actual length of each
road segment. The spatial fields does not seem to pick up any latent unobserved
effects, nor any sense of borrowed information between different road segments.
The accidents were not the main focus of this study, it was merely an invest-
igation whether the models proposed for rutting could be used within other
parts of the road safety domain, motivated by the findings in the preliminary
work (Vedvik, 2020) and the lack of prior studies of traffic accident modelling
for small spatial units. Thus a more thorough study should be conducted to
clarify if the approach possibly can provide any insight, where the first step
should be to check in a more thorough manner if data simulated from a non-
stationary process actually can be detected as non-stationary by the models.
Ziakopoulos and Yannis (2020) points to missing data or difficulties with data
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acquisition as a possible cause for the lack of studies at small spatial units, but
the sparsity of actual accidents may also cause inferential problems.

The proposed models for rutting do only contain various intercept terms
and various GRFs, as the main interest was to investigate possible spatial de-
pendencies and highlight locations with elevated rutting over time, but if the
purpose is directed at forecasting the rutting next year, one would possibly
include other explanatory variables such as temperature, precipitation, speed
limit, pavement age and the use of studded tyres (Saba et al., 2006). Including
random intercepts, for each specific road segment or different traffic intens-
ity groups, is another possibility, and if even more years of measurements are
available, temporal random effects may be considered for increased forecast-
ing accuracy, treating the evolution of the rutting at different road segment
as separate replicates of the temporal effect. The effects should possibly be
included in either the stationary or non-stationary Model I, as the hyperpara-
meter space and model complexity of the models containing two GRFs, Model
II, is already high and their overall fit to the data worse. Further studies should
also consider roads where the distribution of the traffic intensity is more evenly
distributed, here around 75% of the road were low traffic intensity areas, and
few road segments within each of the high traffic intensities. The measure-
ment errors originating from aggregating annual measurements according to
the 2020 measurement locations may be dealt with by considering the actual
locations of each single measurement, this would work in the models used in
this thesis, but not for some of the alterations proposed here which depend on
annual measurements at each road segment.
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Appendix A

Laplace approximation

The Laplace approximation is an approximation to an integral by use of the
Laplace method, following Blangiardo and Cameletti (2015), suppose we are
interested in computing the integral∫

f(x) dx =

∫
exp
(
log f(x)

)
dx,

where f(x) denotes the density function of a random variable X.
Let log f(x) be represented by a second order Taylor series expansion

around x = x0. Setting x0 equal to the mode x∗ = argmaxx log f(x), the
second term ∂ log f(x)/∂x

∣∣
x=x∗

, of the Taylor series expansion vanishes and
the approximation becomes

log f(x) ≈ log f(x∗) +
(x− x∗)2

2

∂2 log f(x)

∂2x

∣∣∣∣
x=x∗

.

The integral can now be approximated as∫
f(x) dx ≈ exp

(
log f(x∗)

) ∫
exp

(
(x− x∗)2

2

∂2 log f(x)

∂2x

∣∣∣∣
x=x∗

)
dx,

letting σ2∗ = −1/∂
2 log f(x)
∂2x

∣∣
x=x∗

we obtain∫
f(x) dx ≈ exp

(
log f(x∗)

) ∫
exp

(
− (x− x∗)2

2σ2∗

∣∣∣∣
x=x∗

)
dx,

and recognize the integrand as the kernel of a Normal distribution with mean x∗

and variance σ2∗ . The integral evaluated in the interval (a, b) is approximated
by ∫ b

a
f(x) dx ≈ f(x∗)

√
2πσ2∗

(
Φ(b)− Φ(a)

)
,

where Φ(·) is the cumulative density function of a Normal(x∗, σ2∗) distribution.
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Appendix B

Additional results from rutting
case study and priors

B.1 Model I fitted to single years

Table B.1: Marginal posterior distributions for the model parameters when
fitting Model IS and IN-S to the rutting for every single year 2017-2020, one
year at a time.

2017 2018 2019 2020
Model IS IN-S IS IN-S IS IN-S IS IN-S

β 1.18 1.14 0.96 1.04 1.76 1.79 0.84 0.75
θ1,τ 4.80 4.66 7.63 8.23 3.09 3.39 8.38 8.56
θ1,κ -3.61 -3.55 -5.09 -5.36 -2.58 -2.78 -5.53 -5.26
θf,τ 0.63 -5.30 -1.54 -3.25
θf,κ -0.25 2.82 0.96 1.16
τε 2.17 2.18 1.73 2.08 1.45 1.46 1.79 1.93
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Figure B.1: Marginal posterior distributions for the SPDE parameters when
fitting Model IS and IN-S to the rutting for every single year 2017-2020, one
year at a time.
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B.2 Priors in prior sensitivity analysis

Table B.2: Prior distributions for the SPDE parameters in the three prior
designs of the prior sensitivity analysis for Model IN-S for rutting.

A B C
θ1,τ N (0, 10) N (7.00, 10) N (4.57, 0.51)
θ1,κ N (0, 10) N (−4.69, 10) N (−4.75, 1.06)
θf,τ N (0, 2) N (−0.23, 2) N (0, 1.47)
θf,κ N (0, 2) N (−0.10, 2) N (0, 2.93)

Table B.3: Prior distributions for the SPDE parameters in the three prior
designs of the prior sensitivity analysis for Model IIN-S for rutting.

A B C
θ1,τ,ξ N (0, 2.5) N (7.10, 2.5) N (4.57, 0.51)
θ1,κ,ξ N (0, 2.5) N (−4.87, 2.5) N (−4.75, 1.06)
θf,τ,ξ N (0, 2) N (−4.69, 2) N (0, 1.47)
θf,κ,ξ N (0, 2) N (−2.78, 2) N (0, 2.93)
θ1,τ,ω N (0, 2.5) N (10.00, 2.5) N (4.57, 0.51)
θ1,κ,ω N (0, 2.5) N (−6.23, 2.5) N (−4.75, 1.06)
θf,τ,ω N (0, 2) N (−0.50, 2) N (0, 1.47)
θf,κ,ω N (0, 2) N (−0.25, 2) N (0, 2.93)





Appendix C

Results from simulation study
on accidents

Table C.1: Credible interval coverage for parameters from fitting Model IS
and IN-S to accidents simulated from a stationary and non-stationary GRF
ξ(s).

Data stationary non-stationary
S N-S S N-S

β 0.82 0.81 0.77 0.79
θ1,τ 0.04 0.00 0.06 0.00
θ1,κ 0.00 0.00 0.00 0.00
θc,τ 0.73 0.00
θc,κ 0.19 0.06

−10

0

10

∆CPO ∆DIC

(a) Stationary data

−10

0

10

∆CPO ∆DIC

(b) Non-stationary data

Figure C.1: Difference in CPO and DIC between Model IN-S and IS fitted
to accidents simulated from a stationary and non-stationary GRF ξ(s).
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Figure C.2: Boxplot of marginal posterior means for parameters of Model IS
and IN-S fitted to accidents simulated from a stationary and non-stationary
GRF ξ(s). With the true parameter values of the simulated data given by red
dots.



Appendix D

Implementation in R-INLA

We show code examples for how some of the proposed models for rutting are
implemented in R-INLA, namely how to generate samples from the spatial field
ξN-S(s) used in the simulation study in Section 5.2, and the setup and fitting
of Model IIN-S to rutting.

D.1 Simulating from non-stationary GRF

The vector knots.loc contains the locations of the vertices for the triangula-
tion, as described in Section 4.1.1, one every 60 meter. The vector obs.loc is
the observation locations, that is the midpoint for every road segment every
year, and AADT the traffic intensity at the edges in the triangulation, chosen
to be the traffic intensity of the road segment halfway between two vertices,
scaled according to the description in Section 4.1.1.
# Fix parameter values for simulating from non-stationary Model I
b.0 <- 1.24
theta.tau.1 <- 6.63
theta.tau.f <- -3.27
theta.k.1 <- -4.53
theta.k.f <- 4
prec.err <- 1.58

# Prior means and variances
mu.tau.1 <- 4.57
mu.k.1 <- -4.75

sigma2.tau.1 <- 1.06
sigma2.k.1 <- 0.51
sigma2.tau.f <- 1.47
sigma2.k.f <- 2.93

repls <- 4
n.obs <- length(obs.loc)

# Set up mesh and projection matrix for simulation
mesh1d <- inla.mesh.1d(
knots.loc,
interval = c(min(knots.loc) - 500, max(knots.loc) + 500))
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A <- inla.spde.make.A(
mesh1d,
loc = obs.loc,
index = rep(1:n.segs, times = repls),
repl = rep(1:repls, each = length(unique(obs.loc))),
n.repl = repls

)

# SPDE
spde.xi <- inla.spde2.matern(
mesh1d,
B.tau = cbind(0, 1, AADT, 0, 0),
B.kappa = cbind(0, 0, 0, 1, AADT),
theta.prior.mean = c(mu.tau.1, 0, mu.k.1, 0),
theta.prior.prec = c(
1 / sigma2.tau.1,
1 / sigma2.tau.f,
1 / sigma2.k.1,
1 / sigma2.k.f),

alpha = 2
)

# Precision matrix for the Gaussian weights
Q.xi <- inla.spde2.precision(
spde = spde.xi,
theta = c(
theta.tau.1, theta.tau.f,
theta.k.1, theta.k.f

)
)

# Generate rutting sample from
# the non-stationary GRF and measurement errors
samp.xi.field <- as.vector(inla.qsample(n = repls, Q = Q.xi))
y.samp <- b.0 + as.vector(A %*% samp.xi.field) +

rnorm(n = n.obs, mean = 0, sd = sqrt(1 / prec.err))
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D.2 Fitting non-stationary Model II

The setup for the GRF ξN-S(s) in the previous section are used, and we set up
the necessary structure for including ωN-S(s) and fit Model IIN-S. The vector
rut, contains the rutting for all road segments in the whole period 2017-2020.

# Mesh and projector matrix for pavement stress field omega(s)
mesh1d.omega <- mesh1d
A.omega <- inla.spde.make.A(
mesh1d.omega,
loc = obs.loc,
index = rep(1:n.segs, times=repls)

)

# SPDE for pavement stress, same priors for both GRFs
spde.omega <- spde.xi

# Make indexes for the GRFs
omega.idx <- inla.spde.make.index(
name = "pavement.field",
n.spde = spde.omega$n.spde

)

xi.idx <- inla.spde.make.index(
name = "spatial.field",
n.spde = spde.xi$n.spde,
n.repl=repls,

)

# Make INLA stack
stk <- inla.stack(
data = list(rut = rut),
A = list(A, A.omega),
effects = list(c(
xi.idx,
list(intercept = 1)

), c(omega.idx)),
tag = "est"

)

# Formula
f.mod2.ns <- rut ~ -1 + intercept +
f(spatial.field,
model = spde.xi,
replicate = spatial.field.repl) +

f(pavement.field, model = spde.omega)

# Fit non-stationary Model II
mod2.ns.rut <- inla(
f.mod2.ns,
family="Gaussian",
data = inla.stack.data(stk),
control.family = list(link="identity"),
control.inla = list(tolerance = 0.000001, h = 0.001),
control.predictor = list(A = inla.stack.A(stk), compute = FALSE),
control.compute = list(dic = TRUE, cpo=TRUE)

)
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