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Abstract   
  

Background   

In this study, a type of convolutional neural network 

(CNN), EfficientHourglass, was validated analysing ski jumping technique. CNN has shown 

to be the state-of-the-art (SOTA) algorithm to solve challenging human pose estimation 

(HPE) and motion tracking tasks from video and images. Today, kinematic variables 

are obtained from 3D motion capture and from in-hill training and -competition jumps, 

IMUs, or manual video annotation. However, IMUs require several sensors to obtain 

precise results, and manual annotation are prone to subjective error. Thus, there is a lack 

of methods for in-competition analysis of the ski jump kinematics.  

Hypotheses   

Two hypotheses were tested. That the EfficientHourglass was able 1) to detect the ski 

jumper body key points and 2) to identify hip-, knee-, and ankle joint angles, both with 

human expert precision.   

Methods   

A dataset containing 9324 images of ski jumpers in the sagittal plane were annotated by 

7 raters. Due to the size of the dataset, transfer learning and pretrained 

blocks on MPII were used in the encoder part on the CNN. Human inter-rater precision was 

calculated using 99 randomly chosen images from the dataset. The dataset was split into 

three subsets: training (72%), validation (8%) and test (20%). The method includes a 

description of the blocks included in the EfficientHourglass architecture.  

Results  

All four models obtained the human precision of 90.86% in PCKh@30. None obtained the 

human precision in PCKh@10 or PCKh@error_head of 52.7% and 0.1336, respectively. 

Noteworthy, top head, thorax, pelvis, right and left hip obtained low precision. The 

inflection point of the optimal image resolution in terms of precision against GLOPs was 

approximately 256x256 to 288x288 in all performance measures. Calculated joint angles 

by the models of the hip, knee and ankle were between 2.34° and 4.57°.  

Conclusion  

This study confirmed the hypotheses on some of the performance 

metrics, that EfficientHourglass was able to detect the body key points of the ski 

jumpers and to calculate the three joint angles within the limit of error. A 

markerless motion tracking would result in a more objective and time-efficient measure of 

the kinematic variables. To improve the precision of the network, the precision of the raters 

must be improved by, e.g., a more detailed description of the body key points and perhaps 

several annotations for a body segment prone to high error/low precision (e.g., the hip 

joint). This will benefit the calculation of the joint angles and reduce the ME in degrees.  

Keywords: convolutional neural network; human pose estimation; markerless motion 

tracking; kinematics; ski jumping 
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Abstrakt  
 

Bakgrunn  

I denne studien ble en type nevrale nettverk (CNN), EfficientHourglass, validert i 

analysering av teknikk i skihopp. CNN har vist seg til å være den siste og beste (SOTA) 

algoritmen til å løse komplekse oppgaver ved menneskelig- og markørløs 

bevegelsesanalyse i video og bilder.  Per i dag blir kinematiske variabler målt ved bruk av 

3D bevegelsesanalyse fra imitasjonshopp eller hopp fra konkurranser, IMUs eller manuell 

video annotering. Problemet er at flere sensorer (IMUs) trengs for å oppnå 

et presist svar og manuell annotering er disponert for subjektiv error. Det er en 

etterspørsel etter metoder å bruke ved hopp i konkurranser for å analysere kinematiske 

variabler i skihopp.  

Hypoteser  

To hypoteser ble testet i studien: At EfficientHourglass var i stand til 1) å annotere 

skihopperens anatomiske landemerker og 2) å identifisere hofte-, kne-, og ankel-ledd 

vinkler, begge med menneskelig presisjon.   

Metode  

Et datasett som inkluderte 9324 bilder av skihoppere i sagittalplanet og ble annotert av 7 

ulike annotører. Grunnet størrelsen på datasettet ble transfer learning og implementering 

av pre-trente blokker på MPII brukt i encoder-delen. Menneskelig inter-rater presisjon ble 

regnet ut ved å bruke 99 tilfeldig utvalgte bilder fra datasettet. Bildene ble delt inn i 

tre grupper; trening (72%), validering (8%) og test (20%). Metoden i studien beskriver 

blokkene inkludert i oppbyggingen av EfficientHourglass.  

Resultat  

Alle fire modeller oppnådde menneskelig presisjon av 90.86% i PCKh@30. Ingen 

nådde menneskelig presisjon av 52.7% i PCKh@10 eller ME av 0.1336 i 

PCKh@error_head. Høyre og venstre hofte, toppen av hodet, pelvis og thorax hadde lavest 

presisjon. Optimal bildeoppløsning ble satt til 288x288 med tanke på presisjon mot bruk 

av GLOPs i alle presisjonsmålinger. Utregnet leddvinkler av hofte, kne, og ankel var 

mellom 2.34° og 4.57°.   

Konklusjon  

Studien bekrefter hypotesene på noen av presisjonsmålene, at EfficientHourglass var i 

stand til å annotere anatomiske landemerker på skihopperen og regne ut de tre 

leddvinklene innenfor en gitt grense for error. En markørløs bevegelsesanalyse vil resultere 

i en mer objektiv og tidseffektiv måling av kinematiske variabler. For å forbedre 

presisjonen av modellene, må presisjonen av menneskelig annotasjon forbedres, for 

eksempel ved en mer detaljert beskrivelse av annotasjonspunktene og ved å bruke 

gjennomsnittet av flere markører på et spesifikt punkt som per nå er utsatt for lav 

presisjon/høy error, som for eksempel hofteleddet. Dette vil påvirke utregningen av 

leddvinkler positivt og redusere ME i grader.  

 

Nøkkelord: nevrale nettverk; markørløs bevegelsesanalyse; estimering av kroppslig 

posisjon; kinematiske variabler; skihopp  
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1. Introduction  
For athletes competing in ski jumping, the result is mainly determined by the length of the 

jump. It is therefore important to have information regarding the technique and how to 

exploit the aerodynamics to perform optimally. The ski jump can be divided into four 

different phases: in-run, take-off, flight, and landing. All phases affect the jump, but early 

flight and take-off are considered to be the most crucial (1, 2). The main purpose of the 

in-run is to gain speed and establish optimal body position for the take-off phase (1, 3). 

The in-run is characterized by the ski jumper standing in a squat position, which needs to 

be low enough to reduce frontal drag and maximize horizontal speed (1), typically a 113 

to 116 degree, 58 to 66 degree and 49 to 54 degree flexion in the hip, knee and ankle, 

respectively (4, 5). At the same time, the squat must be high enough to allow rapid 

extension of the lower extremities during take-off (1). A lower in-run position decreases 

the duration of take-off and increases the rate of force development (1). This will benefit 

the following stage, the take-off, which establishes the initial conditions for the flight. The 

take-off phase is often performed within 300 milliseconds and at speeds up to 25 m/s (6). 

The initial take-off phase is characterized by a 29 to 36 degree, 70 to 79 degree and 50 to 

53 degree flexion in the hip, knee and ankle respectively (2, 7). The rate of force 

development is crucial for the take-off raising the center of mass (CoM) by a rapid knee 

and hip extension with typical angular acceleration of -92 to -131°/s, depending on the 

performance level of the ski jumper (1). This achievement produces forward-rotating 

angular momentum, which is needed to compensate for the backward-rotating angular 

momentum produced by drag on the skis during early flight (1). Previous studies have 

stated a positive correlation between acceleration of leg extension and length of the ski 

jump in the sagittal plane and between the position of the squat and length of the jump 

(1, 3, 7). Thus, investigating these kinematic variables, hip, knee, and ankle joint angles 

are important to evaluate the performance of a ski jump.  

Due the challenges to practice multiple in-hill jumps within the same session, the hip-, 

knee-, and ankle joint angles are mostly assessed by in-lab imitation jumps (3, 8). 

However, the in-lab imitation jumps have several important differences compared to an 

in-hill jump: Firstly, the influence of air resistance is different in the two jump conditions. 

Virmavirta, Kivekas & Komi (2001) investigated what a difference in air resistance made, 

and found a 14% reduction in take-off duration (9). The lack of air resistance and friction 

between the track and the skis affects the in-run velocity (8, 9). Secondly, possibly due to 

the same reason, Schwameder & Müller (2001) observed a more apparent forward-

oriented movement and higher take-off forces for the in-lab jumps compared to in-hill 

jumps. Thirdly, different types of shoes are used during in-lab practice and in-hill jumps. 

The shoes used in competition are stiff and prevent the foot from doing a plantar flexion, 

which minimizes air friction and maximizes lift (5, 8, 10). As the boundary conditions 

change, one would think the kinematic outcome would change, but it is still unknown to 

which degree (11). Together, these observations make it difficult to generalize results from 

studies of in-lab simulation jumps to actual in-hill competition jumps. 

To analyze the kinematics of in-hill ski jumps different technologies have been utilized. The 

most familiar methods are recordings from inertial measurement units (IMUs) and video 

recordings (3, 10). IMUs are sensors containing accelerometers and gyroscopes which 

measure acceleration and change in orientation (i.e., rotation) for the body segment the 

IMU is placed on (12). IMUs were used by Logar & Munih (2015) to estimate joint forces 

and moments of six jumpers during the in-run and take-off. Two were attached to the skis 

in front of bindings, six were attached to shanks, thighs, upper arms and the two last at 
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the sacrum (13). Chardonnens, Favre, Cuendet, Gremion & Aminian (2014) also used IMUs 

in analysis of 22 athletes, where five were placed on the body (sacrum, thighs and shanks), 

and two placed on the back of the skis (14). The IMUs are non-invasive and therefore 

convenient, and do not rely on external sources nor affected by external factors such as 

light conditions (12). However, the IMUs rely on double integration of the acceleration 

signal to calculate position, and thus prone to amplification of small drift in the original 

signal (12). Any minor error in data will cause possible result in error of positional estimates 

(12). For the IMUs to obtain accurate precision the sensor needs to be placed on correct 

anatomical landmarks and several sensors are required (15, 16). This may affect the ski 

jumper’s performance negatively and decrease the reliability of the precision obtained by 

the IMUs (15). Consequently, most coaches of the athletes utilize video recordings to 

evaluate the kinematic variables, such as the hip-, knee-, and ankle joint angles.  

Studies which have utilized manual annotation of video sequences or images are 

summarized in Table 1.  

TABLE 1: A SUMMARY OF DIFFERENT STUDIES WHICH HAVE PERFORMED MANUAL VIDEO ANNOTATION, THE NUMBER OF JUMPS 

INCLUDED, WHICH BODY KEY POINTS WERE ANNOTATED, WHICH JOINT WERE INCLUDED, IF MEASURE OF INTER-RATER ERROR WAS 

INCLUDED AND WHICH PHASE OF THE SKI JUMP WAS INVESTIGATED. 

Study # of 

jumps  

Equipment 2-D model 

annotation 

Angles 

utilized 

Inter-rater error Phase 

analyzed  

Virmavirta, 

Isolehto, Komi, 

Schwameder, 

Pigozzi & 

Massazza 

(2009) 

28  2 high-speed cameras 

(200 Hz). Stationary 

7 unilateral segments 

(joint centers) 

calculated from 

manually digitized data 

Upper body, hip, 

knee, shank 

Not described in the 

study  

Take-off 

Arndt, 

Brüggemann, 

Virmavarta & 

Komi (1995) 

20 2 3-CCD video 

cameras. 50 fields/s. 

NAC high speed video 

system (HVS400) 

Four arm segments, 

six leg segments, 

torso, one head/neck 

Torso, hip, knee, 

shank, 

somersault 

angle, COM-

ankle 

Not described in the 

study  

Take-off and 

early flight 

Lorenzetti, 

Ammann, 

Windmuller, 

Haberle, Müller, 

Gross, Plüss, 

Plüss, Schödler 

& Hübner 

(2019) 

50 2 video cameras. 1 

Legria HF R66 (50 Hz) 

for frontal plane, 1 

Bosch for sagittal (50 

Hz)  

Neck/head, torso, 

shoulder, hip, knee, 

ankle 

Lower body 

angle, upper 

body angle, 

shoulder, hip, 

knee, ankle 

Not described in the 

study  

In-run and 

take-off 

Virmavarta, 

Isolehto, Komi, 

Brüggemann, 

Müller, 

Schwameder 

(2005) 

22 2 high-speed cameras 

(HSC-200). 200 

frames/s. 

12 segments. 

Undefined in article 

Ski angle, body 

angle, upper 

body, angle, 

COM  

Not described in the 

study  

Early flight 

Janurova, 

Janura, Cabell, 

Svoboda, 

Vareka, Elfmark 

(2013) 

28  1 stationary camera. 

Grundig S-HVS 180 or 

Sony DCR-TRV 900, 

sampling frequency 

50 Hz. 

Shoulder, elbow, hip, 

knee, ankle 

Body COM in 

sagittal plane, 

shoulder, elbow, 

hip, knee, ankle 

Not described in the 

study  

In-run 

Janura, Cabell, 

Elfmark & 

Vaverka (2010) 

15 1 stationary camera. 

Grundig S-HVS 180 or 

Sony DCR-TRV 900, 

sampling frequency 

50 Hz. 

Head, neck, upper 

arm, forearm (wrist 

included), trunk, thigh, 

shank, foot 

COM angle, 

trunk, 

hip, knee, ankle 

 

Not described in the 

study 

In-run 
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Manual annotation provides trainers and athletes with useful information regarding the 

kinematics of the performed ski jump and, consequently, guidelines to further improve the 

technique. Even when performed by experts and trained analysists, manual annotation in 

sports can have limitations (17). Two challenges in manual video annotation are 

subjectiveness and the time-consuming work. Thus, it is only applied to a limited number 

of videos (15, 17). The task is often monotone and can eventually make the rater 

inconsistent in their annotation over time. This is called the “speed-accuracy trade-off”,  

meaning the faster the annotation, the less precise and thus, higher inter-rater error (18). 

As most studies with manual annotation do not state the inter-rater error, it is difficult to 

determine the accuracy of the annotations.  

Recently, to meet these challenges, innovative automated video-based motion tracking 

systems has been developed based on convolutional neural networks (CNN). It is a type of 

machine learning algorithm able to detect human skeletal key points from a sequence of 

video frames. It has shown to be the state-of-the-art (SOTA) algorithm to solve challenging 

human pose estimation (HPE) and motion tracking tasks of large-scale data sets such as 

MPII and COCO (19, 20). Different CNN architectures, such as OpenPose (21, 22), 

DeeperCut (23) and Stacked Hourglass (24), have been suggested as SOTA for HPE 

benchmarks. OpenPose was the first real-time multi-person system to jointly detect human 

body, hand, facial and foot key points on single images. OpenPose is a bottom-up 

approach, meaning it detects body key points for every person in the picture, followed by 

assigning parts to distinct individuals (21). DeeperCut is another multi-person pose system 

which uses the bottom-up approach. DeeperCut included convolutional layers in spatial 

models, which improved the overall accuracy of HPE (23). Different benchmarks of CNN 

have been applied in specific video-based motion tracking in sports like basketball, ballet, 

and tennis (25-27). These applications improved the precision compared to previous 

architectures, yet only Chen & Wang (2020) stated which architecture (LSTM) was used 

(25-27). Many of these SOTA CNNs have been used based on training on MPII and COCO 

without specific adaption to the task at hand. The focus in current SOTA CNNs seems to 

be designed for multi-person pose estimation with random occlusion e.g., body parts from 

other people. Thereby, the CNNs are often unnecessary complex and, consequently, more 

computer inefficient in appliance of simpler single-person HPE tasks such as kinematic 

analysis of a ski jumper in the sagittal plane.  

Recently, EfficientHourglass was presented by Groos, Ramampiaro & Ihlen (2020) which 

outperforms other widely used CNN models, like OpenPose, in accuracy, size, and 

computational efficiency EffientHourglass had a percentage of correct key points of 81.2% 

compared to 34.7% for OpenPose (28). The EfficientHourglass had 1.4-54x fewer 

parameters and a 2.2-168x reduction in number of floating operations (FLOPs) and an 

overall 16x speed-up of inference was achieved (28). Thus, EfficientHourglass may be a 

suitable CNN for automatic video-based motion tracking of ski jumpers in the take-off 

phase and for the kinematic assessment of the ski jumper’s hip-, knee-, and ankle joint 

angles in the take-off phase. 

The research aim of the thesis is to validate the EfficientHourglass CNN in markerless 

tracking of ski jump kinematics: hip-, knee-, and ankle joint angles during take-off. There 

are two hypotheses that will be tested: That the EfficientHourglass is able to 1) detect the 

ski jumper body key points and 2) identify hip-, knee-, and ankle joint angles, both 

hypotheses with human expert precision.  
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2. Method 
In this section the ski jumper pose data set and the EfficientHourglass architecture are 

presented, including the pre-processing, training procedure and performance metrics 

utilized to evaluate the precision of the different network models.  

2.1 Ski jumper pose dataset 
The ski jumper dataset contained a total of 9324 images with 149184 body key points 

labels collected from ~4 images per video of ski jumpers. The ski jumps were collected 

from 41 different in-hill training- or competition jumps, both female and male elite athletes 

on either national or international level. The 16 body key points were compromised to a 

full body kinematic model of the ski jumper: top of the head, upper neck, shoulders, 

elbows, wrists, upper chest, right/mid/left pelvis, knees, and ankles (see Figure 2).  

2.1.1 Manual annotation  
The manual annotation was performed by 7 raters. One works at Granåsen 

Toppidrettssenter, five have a background in Movement Science and one has a background 

in Computer Science. Each rater was given a full description of the procedure regarding 

the manual annotation. The body key points were described and depicted as shown in 

Figure 1. Prior to the manual annotation, each had to correctly complete a practice set of 

five images of ski jumpers to ensure that the rater had a correct interpretation of the body 

key point description. The full description each rater was handed prior to the task is 

available in Appendix 1. 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2 Inter-rater error  
From the 9324 images, 100 images were randomly chosen to be annotated by each rater. 

One of the images was excluded due to difficulties in annotation (n=99). The calculation 

of the inter-rater error was performed to ensure the degree of agreement among raters, 

and to affirm the validity of the human annotation. The inter-rater error is the “gold 

standard” for the automated annotation by the CNN.   

FIGURE 1: PICTURE GUIDELINE FOR HOW THE BODY KEY POINTS SHOULD BE ANNOTATED. 
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2.2 Architecture  

2.2.1 Top-down approach 
EfficientHourglass is applied in a top-down approach where the ski jumper is first detected 

in the video frame and then EfficientHourglass is applied for HPE of the identified bounding-

box of the ski jumper (Figure 2). In this study the bounding-box is created with a frame 

with size 7.5-15% of the distance range of the annotated body key points. The frame size 

was randomized in the range 5-10% to conceal the exact position of the body key points. 

The bounding box image was the input image for the EfficientHourglass networks.  

 

FIGURE 2: ILLUSTRATION OF HOW EFFICIENTHOURGLASS WORKS IN A TOP-DOWN APPROACH, INCLUDING APPLIANCE OF THE 

BOUNDING BOX. 

2.2.2 EfficientHourglass architecture 
The EfficientHourglass network contains two main parts: the encoder and the decoder part. 

The encoder part is the pretrained blocks from EfficientNet (29), which is illustrated as the 

blue blocks depicted in Figure 3. This part downscales the input image resolution and 

transforms the input pixels to features. A feature contains descriptive information, such as 

edges, lines or colour intensity (30). CNNs, and EfficientHourglass, learns simple edge 

detectors in the early layers and more abstract features in the deeper layers (31). The 

decoder part upsamples the image resolution from a low input image resolution to a high 

output image resolution (32), and illustrated as the green blocks in Figure 3. The 

EfficientHourglass network architecture is inspired by the single-stage hourglass 

architecture (24). Thus, information from different image resolutions were connected by 

bridge blocks containing feature maps from block 2, 3 and 5, depending on the size of the 

network.   

2.2.3 Small and large network   
To find an optimal complexity (number of parameters) of the architecture in terms of 

performance, a large and small network of EfficientHourglass were developed as described 

below.  

Large network: Block 1 – 6 of EfficientNetB0 and -B1 was included, whilst block 7 was 

excluded (29). The result is a reduction to 1/32 of the input image resolution at the end of 

Block 6. Three transpose convolutions, including the bridge connections from block 2, 3 

and 5, are performed to upscale the feature maps to the final output confidence map. 
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Small network: Block 1 – 5 of EfficientNetB0 and -B1 was included. Block 6 and 7 was 

excluded to reduce the complexity of the network. The result is 1/16 of the input image 

resolution. This was followed by two transpose convolutions with two bridge connections 

from block 2 and 3. 

In total four models of EfficientHourglass were tested to investigate the influence of 

different width and depth on the ski jumping motion tracking performance. The architecture 

is presented in Table 2.   

 

FIGURE 3: A) SHOWS THE DIFFERENT STAGES IN THE LARGE NETWORK, AND B) FOR THE SMALL NETWORK. THE BLUE BOXES ARE THE 

ENCODER PART OF THE NETWORKS. THE TRANSPOSE CONVOLUTIONS ARE THE GREEN BLOCKS. OUTPUT CONFIDENCE MAPS COMBINE 

THE FEATURES FROM THE DIFFERENT FEATURE AMPS. THE OUTPUT IS AN ANNOTATED IMAGE OF A SKI JUMPER. 

TABLE 2: HOW THE EFFICIENTHOURGLASSB0 AND -B1 ARE ORGANIZED, IN BOTH THE SMALL (BLOCK1TO5) AND LARGE NETWORK 

(BLOCK1TO6) FROM FIGURE 4. S = STRIDE CONVOLUTION. 

Block Layer Output 

size 

B0 block1to5 B1 block1to5 B0 block1to6 B1 block1to6 

→ 1 

1  

Conv, S 

MBConv1 

1/2 [3x3, 32] 

[3x3, 16] 

x1 

[3x3, 32] 

[3x3, 16] 

x2 

[3x3, 32] 

[3x3, 16] 

x1 

[3x3, 32] 

[3x3, 16] 

x2 

1 → 2 

2 

MBConv6, S, 

MBConv6 

1/4 [3x3, 24] 

[3x3, 24] 

x1 

[3x3, 24] 

[3x3, 24] 

x2 

[3x3, 24] 

[3x3, 24] 

x1 

[3x3, 24] 

[3x3, 24] 

x2 

2 → 3 

3 

MBConv6, S, 

MBConv6 

1/8 [5x5, 40] 

[5x5, 40] 

x1 

[5x5, 40] 

[5x5, 40] 

x2 

[5x5, 40] 

[5x5, 40] 

x1 

[5x5, 40] 

[5x5, 40] 

x2 

3 → 4  

4 

 

5 

MBConv6, S, 

MBConv6 

 

MBConv6 

1/16 [3x3, 80] 

[3x3, 80] 

x2 

[5x5, 112] 

x3 

[3x3, 80] 

[3x3, 80] 

x3 

[5x5, 112] 

x4 

[3x3, 80] 

[3x3, 80] 

x2 

[5x5, 112] 

x3 

[3x3, 80] 

[3x3, 80] 

x3 

[5x5, 112] 

x4 

5 → 6 

6 

MBConv6, S, 

MBConv6 

 

1/32 ---- 

---- 

 

 

---- 

---- 

 

 

[5x5, 192] 

[5x5, 192] 

x4 

 

[5x5, 192] 

[5x5, 192] 

x4 

 

 
The main building block of EfficientHourglass is the mobile inverted bottleneck sub-blocks 

(MBConv). The MBConv-block have the following layers:  

1) A 1x1 convolution (conv) inverted bottleneck which increases the number of input 

channels from N to mN where m is a factor (see number within brackets in Table 2). 
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EfficientHourglass uses m=1 and 6 defining MBConv1 and MBConv6. For m=1, the 1x1 

conv is omitted.  

2) A depth-wise convolution (dConv) with a receptive field of 3x3 or 5x5 is the feature 

extractor in the MBConv-block and is more efficient compared to ordinary convolution in 

terms of FLOPs because the convolution is conducted channel-wise.  

3) Squeeze-and-excitation (SE) layer provides channel-wise attention by assigning each 

channel (e.g., feature map) a value between 0 and 1, where 0 means no significance and 

1 means great significance for body key point detection (33).  

4) A 1x1 convolution bottleneck decreases the number of channels of the feature tensor 

from mN to N before a residual connection adds the feature tensor of the former MBConv-

block. The 1x1 conv increases/reduces the number of channels in the feature tensor.  

All convolution layers in the MBConv block are followed by a batch normalization (BN) layer 

that standardizes the means and variances of the input pixels to accelerate the training of 

the network (34). All BN layers are followed by a non-linear activation function, called 

Swish, for the network to learn complex features (35). See Appendix 2 for more detailed 

information regarding CNN layers like BN, activation function Swish, and SE-layer.  

 

FIGURE 4: DESCRIPTION OF THE DIFFERENT BLOCKS FOUND IN THE NETWORK. MBCONV1 IS USED IN BLOCK 1, MBCONV6 IS USED 

IN BLOCK 2-6 IN THE LARGE NETWORK, OR 2-5 IN THE SMALL NETWORK. 

 

2.3 Training of EfficientHourglass 
The model architecture was developed in TensorFlow, and the training was performed on 

three GPUs (Nvidia GTX 1080 Ti, Nvidia RTX 3090 and Quadro RTX 8000).  

2.3.1 Input resolution 
The original image resolution of the 9324 annotated images was cropped and resized in a 

squared frame with image resolution 1024x1024. All four models of EfficientHourglass were 

tested on multiple resized input image resolutions ranging from 128x128 to 512x512. This 

was performed to find the optimal image resolution in body key point detection.  

2.3.2 Training-, validation- and test subset  
The total dataset was divided into three different subsets: training, validation, and test. 

These included 6713 (72%), 747 (8%), and 1864 (20%) images, respectively. The training 

subset was used to fit the models’ weights, whilst the validation dataset was used to 

evaluate the performance of the training. The final evaluation was performed on the test 

subset, and this subset was separated from the two others to ensure reliable results. 

Training and validation of the model was performed until the model converged to optimal 
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performance. The training-, validation-, and test subset was stratified for a person-hill 

combination: i.e., Lillehammer140_Granerud, and Lillehammer140_Tande. This to ensure 

that images from the same person-hill trial was included exclusively in only one of the 

subsets to prevent an over-optimistic performance.  

2.3.3 Exclusion of images  
After the raters had manually annotated the entire dataset, the images and their respective 

annotations were reviewed in MATLAB to ensure applicable annotations. If the annotations 

were placed in the corner or in the top of the image it would be excluded. Such errors could 

affect the data training and thereby the precision of the models negatively. This resulted 

in a total of 12 excluded images due to the ski jumper did not appear in the image (n=1) 

and only half of the ski jumper was visible (n=11).  

2.3.4 Transfer learning  
Due to the relatively small size of the dataset, transfer learning was used in training. 

Transfer learning is where pretrained weights for one task are fine-tuned to a related 

second task (30). To fine-tune the model, the pretrained weights in the network layers 

were used to learn the body features of the ski jumpers. Such fine-tuning of the pretrained 

network weights can reduce time of training and improve the overall precision of the model 

(30). The encoder part of the EfficientHourglass was pretrained on ImageNet, a large 

database of 14 million images organized in a hierarchical WordNet, meaning the images 

are described in words and sentences (36). The entire EfficientHourglass network was then 

pretrained on MPII Human Pose data base (19), for evaluation of articulated human pose 

estimation which contains ~25 000 images of different human activities.  

2.3.5 Optimization of EfficientHourglass  
The model automatically learns features from the images by continually updating the 

network weights during training. The loss function takes the prediction of a body key point 

made by the network and compares it to the ground truth, the human annotation (30). It 

is an evaluation of the models’ performance on the training data. The loss function acts as 

a feedback to adjust the values of the input weights. The goal of an optimally trained model 

is achieved when the global minimum of the loss function is found. The optimizer of the 

model is the mechanism that will change the gradient of the loss function to update the 

weights. The gradient of the loss function and changes in weights gives information on the 

rate of the loss function, and thereby if the training is close to a minimum and how fast. 

The partial derivatives in each mini-batch are collectively called the gradient (31).  

The dataset is divided into mini-batches with a batch size of 16 images, and the result is 

419 mini-batches (6713/16=419). After 419 iterations, the model has completed one 

epoch of training. Each iteration consists of a forward-pass (evaluation of the model) and 

a backpropagation (adjustment of the weights), as shown in Figure 6. After each epoch, 

the model is evaluated against the validation subset and the validation-loss is used as input 

in the next epoch. In EfficientHourglass, the number of epochs is set to 50. The learning 

rate can be seen as the magnitude of change of the model weights after each iteration to 

achieve a minimum of the loss function during training (31). The adjustments of weights 

are a continuous process, and the backpropagation (BP) algorithm uses the chain rule of 

calculus to compute the derivative (31). New weight → (old weights) + (learning rate) * 

(gradient).   

In EfficientHourglass, the Adam optimizer is utilized due to its adaptive learning rate which 

adjusts according to how close the loss function is to its minimum during training (37). 
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Data augmentation is used, and each image in a mini-batch is rotated +/- 45 degrees, 

rescaled +/- 0.25 times and flipped (right/left) to ensure variation of the images in the 

training subset and prevent overtraining of the model.  

 

FIGURE 5: X IS THE INPUT, W IS THE WEIGHTS (IN EACH FILTER), AND Y IS THE OUTPUT AFTER THE FUNCTION X*W. 

2.4 General performance metrics 
To evaluate the EfficientHourglass models, the performance metrics described below were 

used. 

2.4.1 The mean error relative to head size  
The mean error of head-size (ME-h) defines the average precision on the body key points 

b, where the estimated body key points by the EfficientHourglass is [𝑥̅, 𝑦̅] and by the raters 

[𝑥, 𝑦].  

𝑀𝐸 − ℎ𝑏 =
1

𝑛
∑

𝑑𝑏,𝑖

𝑙𝑖

𝑛
𝑖=1     (1) 

Where li is the Euclidian distance between the annotated position of key point of top head 

and upper neck.  

The Euclidian distance db,i  is compute for each key point b and image i is given by:  

𝑑𝑏,𝑖 =  √(𝑥𝑏,𝑖 − 𝑥̅𝑏,𝑖)
2 + (𝑦𝑏,𝑖 − 𝑦̅𝑏,𝑖)

2  (2)  

The average in Equation (2) is computed in each image n in the test set. ME-h is given as 

a relative distance between 0 and 1 across the diagonal of the image for each body key 

point in the general performance metrics. The ME-h is in percentage of the head size of 

the ski jumper, e.g., a ME-h of 0.133 = 13% of the head size, where 1.0 = 100% of the 

head size. Using a relative error, like ME-h and PCKh below, will make it easier to interpret 

results across different studies irrespective of the chosen video frame pre-processing.   

2.4.2 PCKh@τ 
PCK stands for percentage of correct key points. The equation includes a percentage τ of 

the ski jumpers head size.  

𝑃𝐶𝐾ℎ@𝜏 =  
∑ 𝛿𝑛

𝑖=1 (𝑑𝑏,𝑖< 
𝜏

100
𝑙𝑖)

𝑛
∗ 100%  (3) 

δ is the Boolean operator that are equal to 1 when the argument is satisfied and 0 otherwise 

and where distance db,i is given by Equation (2). The smaller τ, the smaller error area for 

the spesific body key point to be placed within. In this study the τ was calculated to be 

10% and 30% of the head segment size li, the Euclidian distance between upper neck and 
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top head key point. E.g., PCKh@10 means that the annotated body key point needs to be 

within that circle that marks 10% of the head segment size (Figure 4).  

 

 

FIGURE 6: THE BLUE CIRCLE IS PCKH@10, THE RED CIRCLE IS PCKH@30 AND THE YELLOW CIRCLE IS PCKH@50. THE TWO FIRST 

WILL BE USED IN THE STUDY, AND THE LAST IS MENTIONED AS IT IS THE ACTUAL SIZE OF THE HEAD. 

2.4.3 Inter-rater spread 
ME-h and PCKh were also calculated for the human annotation, for a comparison of the 

models to the human inter-rater precision (HIRP). The HIRP is based on the 99 similar 

images the 7 raters annotated prior to training where the Euclidian distance in Equation 

(3) is between the individual rater and inter-rater mean.  

2.4.4 Illustration of results 
The general performance metrics were computed for each of the 16 body key points and 

as a mean value across all points. The mean values of the performance metrics were 

presented against the computer efficiency of the network, giga floating operations per 

second (GLOPs), for all four models for different input image resolutions from 128x128 to 

512x512. GLOPs show the efficiency of the network, mainly related to the network design 

and the specifically used GPUs (38). 

2.5 Ski jump specific metrics 
The second part of the hypothesis was to see if the EfficientHourglass was able to calculate 

the hip-, knee-, and ankle joint angles during the take-off phase.  

The annotation of body key points resulted in x- and y-coordinates assessed in a csv-file. 

All calculations used inverse tangent conversion. The ski jump specific metrics are 

presented as mean error (ME) in degrees against GLOPs for all four models for different 

input image resolutions from 128x128 to 512x512. 

2.5.1 Hip-, knee-, and ankle joint angle calculation 
As an example, equation (6), (7) and (8) show how the hip was calculated the annotations 

from the ground truth:  
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𝑋𝑎ℎ𝑖𝑝 = [𝑈𝑝𝑝𝑒𝑟𝑏𝑜𝑑𝑦𝑥{𝑎𝑛𝑔}
− 𝐻𝑖𝑝_𝑥{𝑎𝑛𝑔},0]     (6) 

𝑋𝑏ℎ𝑖𝑝 = [𝐾𝑛𝑒𝑒_𝑥{𝑎𝑛𝑔} − 𝐻𝑖𝑝_𝑥{𝑎𝑛𝑔},0]      (7) 

𝑋𝑐ℎ𝑖𝑝 = 𝑐𝑟𝑜𝑠𝑠(𝑋𝑎ℎ𝑖𝑝 , 𝑋𝑏ℎ𝑖𝑝)       (8) 

The hip joint was calculated using the upper body (the mean of the thorax, right shoulder 

and left shoulder markers) and the hip (the mean of the right hip, left hip and pelvis 

markers) and the knee (the mean of the right and left knee markers). See Figure 7.  

The knee joint was calculated using the hip (from above) and ankle (the mean of the 

right and left ankle markers).  

As the ankle marker was the last marker in the annotation, the ankle (the mean of both 

ankles) and the x-coordinates from the knee annotation (the horizontal axis) were used. 

As not all triangles were right-angled triangles, the given equation was used to calculate 

the models ground truth in MATLAB: 

𝑥𝑎𝑛𝑔𝑙𝑒 = 180
𝑝𝑖⁄ ∗ 𝑎𝑡𝑎𝑛2(𝑛𝑜𝑟𝑚(𝑋𝑐𝑎𝑛𝑔𝑙𝑒), 𝑑𝑜𝑡(𝑋𝑎𝑎𝑛𝑔𝑙𝑒 , 𝑋𝑏𝑎𝑛𝑔𝑙𝑒))   (4) 

A similar equation was used to calculate the models’ joint angles:  

𝑦𝑎𝑛𝑔𝑙𝑒 = 180
𝑝𝑖⁄ ∗ 𝑎𝑡𝑎𝑛2(𝑛𝑜𝑟𝑚(𝑌𝑐𝑎𝑛𝑔𝑙𝑒), 𝑑𝑜𝑡(𝑌𝑎𝑎𝑛𝑔𝑙𝑒 , 𝑌𝑏𝑎𝑛𝑔𝑙𝑒))   (5) 

where xtheta_angle or ytheta_angle is the unknown joint angle, 180/pi to get the answer in 

degrees, atan2 (inverse tangent), Xc  and yc is the cross product of the two known vectors 

in the angle (third is the z-direction which is unknown and set equal to 0). Xa and ya use 

the x- and y-coordinates in two of the known body key points of the angle. Xb and yb use 

the x- and y-coordinates of the two other known body key points used in the angle. 

 

FIGURE 7: THE LIGHT BLUE COLOURS ILLUSTRATE CALCULATION OF THE HIP ANGLE USING THE UPPER BODY/THORAX (MEAN ACROSS 

UPPER BODY, RIGHT SHOULDER AND LEFT SHOULDER) AND KNEES; THE DARK BLUE COLOURS ILLUSTRATE THE KNEE ANGLE USING 

THE HIP (MEAN OF PELVIS, RIGHT AND LEFT HIP) AND ANKLES; THE GREEN ILLUSTRATES THE ANKLE ANGLE USING THE KNEES AND 

HORIZONTAL POINT OF THE KNEE ANNOTATION.  
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3. Results 
As an illustration of how the models annotated the body key points, three annotated images 

from the test subset are presented in Figure 8. Two of the images are annotated correctly, 

but the third has misplaced some of the annotations. None of the four models achieved 

human inter-rater precision (HIRP) in the PCKh@10 (Figure 10 (A)). All four models 

obtained a higher percentage than HIRP in the PCKh@30 (Figure 10 (B)) where -B1 

block1to5 obtained the highest precision. In the PCKh@error_head in Figure 11, HIRP 

obtained a ME-h of 0.1336, where -B1 block1to6 and -B0 block1to6 were close. All models, 

except -B0 block1to5 in the knee- and ankle joint angles, were able to calculate joint angles 

in accordance with the ME in degrees obtained by the HIRP (Figure 12). The inflection point 

of the performance measure graph plotted against the number of floating operations 

indicate the optimal resolution for each of the models. This was found to be at 256x256 to 

288x288 for most of the performance measures, see Figure 9 and 12.  

 

FIGURE 8: THREE EXAMPLES ON HOW THE MODELS HAVE ANNOTATED THE BODY KEY POINTS. THE LEFT AND MIDDLE IMAGE IS 

EFFICIENTHOURGLASSB1 BLOCK1TO6 IN IMAGE RESOLUTION 192X192. THE LEFT IMAGE IS EFFICIENTHOURGLASSB0 BLOCK1TO5 

IN 192X192.  

3.1 General performance metrics 
The mean precision or ME-h in different image resolutions of PCKh@10 (A), PCKh@30 (B) 

and PCKh@error_head (C) are presented in Figure 9, 10 and 11 and Table 3.  

               

(A) (B) 
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FIGURE 9: (A) MEAN PRECISION AT PCKH@10, (B) MEAN 

PRECISION AT PCKH@30 AND (C) MEAN PRECISION MEASURED IN 

ME-H FOR THE PCKH@ERROR_HEAD. THE Y-AXIS: PRECISION IN 

PERCENTAGE, OR ME-H. THE X-AXIS: NUMBER OF GLOPS. THE 

BLACK DOTTED LINE: CONFIDENCE INTERVAL; THE BLACK LINE: 

HUMAN INTER-RATER PRECISION (HIRP). 

Seen in Figure 9, the HIRP obtained a 

precision of 52.7% in PCKh@10, 92.72% in 

the PCKh@30 and 0.1336 in 

PCKh@error_head. The models obtained a 

precision above the black line illustrating 

HIRP in Figure 9 (B) but were under in 

Figure 9 (A). Some of the models obtained 

HIRP in Figure 9 (C), but this is from an 

image resolution of 320x320 and increasing. 

In Figure 9, the models are observed to 

reach a plateau and flatten out around 

288x288 and 320x320. This is due to the 

models obtaining a close precision to the HIRP, which is their limit of performance. The 

only model clearly obtaining a lower precision than the HIRP is -B0 block1to5. The best 

performing model seems to be -B1 block1to5 or -B1 block1to6, but the -B0 block1to6 is 

also close in precision and GLOPs (Table 3). The model precision increases as image 

resolution increases, but a higher image resolution does not equal better performance 

and will to a large extent be dependent on the precision of the raters. A larger image 

resolution, e.g., in Figure 9 between 384x384 and 288x288, doubles the number of 

GLOPs for a ~1 percentage difference and a reduction of ~0.04 in ME-h, depending on 

the model. The inflection point seems to be around 256x256 and 288x288. Table 3 is an 

overview over the different performance metrics, the models’ precision in each and use 

of GLOPs. 

TABLE 3: @10, @30 AND @E_H ARE ABBREVIATIONS FOR PCKH@10, PCKH@30 AND PCKH@ERROR_HEAD, RESPECTIVELY. 

EfficientHourglass Image 

resolution 

@10 @30 @e_h GLOPs 

-B0 block1to5 256x256 45.8% 91.8% 0.1407 1.032 

-B0 block1to5 288x288 46% 91.8% 0.1407 1.306 

-B0 block1to6 256x256 47.7% 92.4% 0.1347 1.404 

-B0 block1to6 288x288 47.6% 92.7% 0.1344 1.775 

-B1 block1to5 256x256 46.6% 92.3% 0.1373 1.297 

-B1 block1to5 288x288 47.8% 92.5% 0.1353 1.641 

-B1 block1to6 256x256 47.8% 92.8% 0.1343 1.728 

-B1 block1to6 288x288 49.1% 92.2% 0.1343 2.188 

 

The models obtained the closest precision to the HIRP in 288x288, especially -B1 block1to5 

and -B1 block1to6 (Table 3). Also, the use of GLOPs in that image resolution did not differ 

that much between the models. In PCKh@error_head, two of the models were particularly 

close, -B0 block1to6 and -B1 block1to6. These obtained a ME-h of 0.1344 and 0.1343, 

respectively. The small network (-B0) used 1.775 GLOPs whilst the large network (-B1) 

used 2.188 GLOPs. Thus, the image resolution 288x288 will be used as an example to 

present the obtained percentage of each body key point.  

(C) 
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FIGURE 10: THE X-AXIS SHOWS THE 16 BODY KEY POINTS OF THE SKI JUMPER, AND THE Y-AXIS SHOWS THE ACCURACY IN 

PERCENTAGE. (A) FOR PCKH@10 AND (B) FOR PCKH@30.  

(A) 

(B) 
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FIGURE 11: THE X-AXIS SHOWS THE 16 BODY KEY POINTS ANNOTATED, AND THE Y-AXIS SHOWS THE ME-H. 

In Figure 10 (A), none of the models obtained the HIRP of 52.7%. The -B1 block1to6 had 

the highest precision with 48.94%, followed by -B1 block1to5, -B0 block1to6 and -B0 

block1to5, respectively. Worth noticing, the annotation of the top head, pelvis, right hip, 

left hip, and thorax obtained a low precision. The HIRP obtained a precision of 27.56%, 

27.99%, 24.96% and 33.62%, respectively. In -B1 block1to6, the same body key points 

obtained a precision of 60.26%, 35.52%, 33.72%, 34.35% and 42.9%, respectively.  

Regarding Figure 10 (B), the HIRP obtained a mean precision of 90.69% compared to the 

best performing model, -B1 block1to5, which obtained a mean precision of 92.71%, 

followed by -B0 block1to6, -B1 block1to6 and -B0 block1to5. All four models achieved the 

HIRP in PCKh@30, and did especially well on right shoulder, right knee, left elbow, and left 

wrist. The -B1 block1to5 obtained a precision of 96.05%, 94.93%, 92.09% and 91.56%, 

respectively compared to the HIRP of 96.83%, 95.09%, 92.2% and 92.5% on the same 

body key points.  

Seen in Figure 11, the HIRP obtained a ME-h of 0.1336. The tendency of the model 

precision is the same in this performance metrics, as the HIRP obtained a higher ME-h on 

the body key points top head, thorax, pelvis and right and left hip, and obtained a low ME-

h on both shoulders and wrists. A ME-h of 0.172, 0.205, 0.181, 0.834 and 0.196, 

respectively. As -B0 block1to6 used less GLOPs than -B1 block1to6, with only a 0.001 

difference in obtained ME-h, that model will be used as an example (Table 3). It obtained 

a ME-h of 0.106, 0.162, 0.155, 0.164 and 0.165, respectively.   
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3.2 Ski jump specific metrics 
Figure 12 compares the predicted hip- (A), knee- (B), and ankle (C) joint angle of ME in 

degrees for the four models with increasing image resolution to HIRP.  

 

FIGURE 12: THE X-AXIS SHOWS THE NUMBER OF FLOATING 

OPERATIONS (GLOPS) USED BY THE MODEL. THE Y-AXIS 

SHOWS THE ME IN DEGREES. 

Seen in Figure 12, -B0 block1t5 is the 

only model to not obtain the ME of the 

HIRP in the knee- and ankle joint angles. 

The three other models were close in the 

hip-, knee- and ankle joint angles, 

whereas -B1 block1to6 seems to be the 

best performing model when comparing 

ME to GLOPs (Table 4). The inflection 

point is around the image resolution 

288x288 and 320x320 depending on the 

model, as seen in Figure 12 (A), (B) and 

(C). Thus, the image resolution 288x288 

is used as an example to investigate the 

obtained ME in degrees between the four 

models. The HIRP obtained a ME of 5.36°, 4.24° and 2.49° in the hip-, knee-, and ankle 

joint angle, respectively. The ankle joint has a generally lower ME, both in the HIRP and 

the four models. All ankle joints were calculated between a ME of 2.32° to 2.61°. The 

models obtained a ME between 4.31° to 4.55° in the hip joint angle, and 4.01° and 4.52° 

in the knee joint angle (Table 4).  

  

 

(A) (B) 

(C) 
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TABLE 4: AN OVERVIEW OVER THE THREE CALCULATED JOINTS IN THE IMAGE RESOLUTION 288X288. AVERAGE ME IN DEGREES 

AND NUMBER OF GLOPS. 

 

Model 

  

Ankle 

 

Knee  

  

Hip 

 

GLOPs 

-B0 block1to5 2.61° 4.52° 4.55° 1.306 

-B0 block1to6 2.38° 4.09° 4.47° 1.775 

-B1 block1to5 2.40° 4.14° 4.43° 1.641 

-B1 block1to6 2.32°  4.01° 4.31° 2.188 

Human inter-

rater precision  

2.49° 4.24° 5.36° -----  

 

In summary, the models -B0 block1to6, -B1 block1to5 and -B1 block1to6 were able to 

detect the 16 body key points of the ski jumpers and the hip-, knee-, and ankle joint angles 

with HIRP.   

4. Discussion  
The study aimed to validate the EfficientHourglass CNN in markerless motion tracking of 

ski jump kinematics: hip-, knee-, and ankle joint angles during take-off. The results 

confirm that EfficientHourglass achieved human precision in terms of annotating the body 

key points and joint angles. Hence, the EfficientHourglass accomplished the given 

hypotheses that it was able 1) to detect the ski jumper body key points and 2) identify the 

hip-, knee-, and ankle joint angles, both with human expert precision.  

The top of the head, thorax, pelvis, right hip and left hip annotation obtained precisions 

ranging from 24.96% to 35.06% in HIRP as seen in Figure 10 (A). The low precision of 

these body key points in HIRP may be due to the ski jumper position or type of clothing, 

which results in a higher ME in the calculation of the joint angles. The mentioned body key 

points above are included in the hip joint, which was calculated using the upper body (the 

mean of the right shoulder, left shoulder, and upper body/thorax) and the knee annotation 

(the mean of both knees). The knee joint was calculated using the hip (the mean of the 

pelvis, right hip and left hip) and the ankle annotation (the mean of both ankles). Though 

the right and left shoulder obtained a close precision to the HIRP, the other body key points 

used in the calculation of the hip- and knee joint angles obtained a low precision, and 

thereby in all four models, which make them prone to a higher ME in degrees (Figure 10). 

The calculation of the hip joint obtained a ME with twice the magnitude compared to the 

ankle joint (Figure 9). The body key points used to calculate the ankle joint obtained a 

higher percentage in the general performance metrics and thus, obtained a lower ME in 

the angle calculation. Despite the low precision in the influential body key points, e.g., in 

the hip, the obtained ME in degrees in the joint angles predicted by the models in this 

study are equivalent to other studies investigating kinematic variables and joint angles. A 

systematic review concerning clinical assessment of gait analysis in the sagittal plane 

stated that estimates of data error between 2° and 5° are acceptable in a clinical setting, 

but may require consideration in data interpretation (39). Errors in the sagittal plane were 

usually around 4° (39). Another literature review of wearable technology in sport 

kinematics stated that an error below 5° in the sagittal plane would be of significance (15), 

which can be interpreted as the joint angle calculations performed by the models are within 

the limit of error in a clinical setting. However, previous studies on ski jumping have used 

a limit of error that varied between below 3° and up to 15° (5, 14). As the ankle joint angle 

obtained a ME of 2.4° using annotations that obtained high precision in the HIRP, it is 

realistic to expect the hip- and knee joint angles to obtain a similarly low ME if the precision 
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of the hip improves. As mentioned, this study used the mean of the occluded and visible 

side in the calculation of joint angles. To lower the ME in the hip-, and knee joint angle 

calculations explicit use of the visible side of the sagittal plane and post-processing can be 

used to increase precision, such as a median or low-pass filter on the marker and joint 

angle time series. Future studies must investigate if these methods will influence and lower 

the obtained ME in degrees to an acceptable limit of error for the EfficientHourglass to be 

implemented in analysis of ski jumping technique. 

The four models underwent training on a range of image resolutions, and all four reached 

the inflection point around 256x256 and 288x288. Higher image resolution would result in 

the models using more GLOPs with only a minor improvement of performance and 

potentially becoming a slower motion tracker. There is a tendency of increasing precision 

between -B0 to -B1 and block1to5 to block1to6. A study using the same CNN architecture 

(28) in motion tracking of infants had a 23.5% difference in HIRP in PCKh@10. This 

difference, and the models’ precision, may be due to the fact that the infants’ images are 

taken in the frontal plane, whilst the ski jumpers’ images are taken in the sagittal plane. A 

problem with images taken in the sagittal plane is the occlusion of one side of the body. 

The occlusion of one side in the sagittal plane most probably affects the performance of 

the raters to annotate more randomly in the hope of placing the marker correctly without 

being able to see exactly where the body part is, though this has not been investigated.  

It would be interesting to see how much the visible versus occluded side affected the 

prediction of the body key points in terms of precision. Especially in the PCKh@10 as that 

is a finer precision measure used in HPE, and how that would affect the calculation of the 

ski jump specific angles. Though this study did not compare the precision against previous 

SOTA architectures, it may be similar to Groos et al. (2020) due to simpler architecture 

and the fact that this is also a single-person pose estimation with little to no occlusion in 

the analyzed image (28). 

4.1 Limitations of the study 
Firstly, an issue with the comparison of the model precision to the HIRP is the 

heterogeneous number of images in the models’ test subset compared to the number of 

images for the inter-rater spread (HIRP). The use of an explicit subset for evaluation of 

performance (the test subset) of the four models is considered positive (40), as it is 

separated from the training- and validation subset used in training of the model. However, 

the models’ test subset includes 1864 images, while the HIRP only includes 99 images. 

This is a considerable difference, and in a perfect study the test subset and HIRP would 

have an equal number of images. Though, if each rater were to annotate 1864 images, 

this would be time-consuming. The precision could be affected by the “speed-accuracy 

trade-off” (18), i.e., if the rater would use sufficient time to ensure a precise annotation 

despite the increased number of images. The increased number of images could result in 

a lower precision, and thus, an increase in error.  

Secondly, the precision in the EfficientHourglass, or other markerless motion tracking 

alternatives, is linked to the manual annotation of the raters due to their supervised 

learning. Hence, the model precision can only improve if the precision of the raters 

improve. A solution could be several annotations for one joint, e.g., the hip which obtained 

a high ME across all models (Figure 12(C)). Instead of using one annotation of the pelvis 

and each side of the hip, there could be two annotations in front, e.g., the spina iliaca 

anterior superior and greater trochanter and two in the back of the hip. Then calculate the 

mean of the ~four annotations and use that as one annotation. A mean of the different 

anatomical landmarks could ensure less inter-rater variation for the hip segment, and as 
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a result increase the precision of the model. Changes in annotation could also benefit for 

other body key points prone to low precision or high ME-h (30), such as the top of the 

head. As seen in Figure 10, all four models outperformed the HIRP with a lower ME-h. A 

possible reason for this could be the vague description of the annotation point. The depicted 

markers in Appendix 1 are marked in the frontal plane and could make it difficult for the 

raters to know which is the correct placement: mid-forehead or actual top of the head. 

Replacing the current guidelines with new ones seen from the sagittal plane or emphasize 

a more precisely written description of each body key point could be beneficial.  

Thirdly, the acceptable limit of error in ski jumping has not been specified. The calculated 

error of in-field studies has varied between below 3° and up to 15° (5, 13, 14). One study 

(5) stated that the maximum difference between the in-field angles and analyzed angles 

did not exceed an error over 3°. The study used 2D video image data from one stationary 

camera placed 18 m from the edge of the jumping hill (5). Two other studies used the 

validity analysis of the ski jumping kinematics in take-off and early flight proposed by 

Chardonnens et al. (14), where 75% of error of the analyzed angled were below 6° and 

90% were below 15°. Due to the differences in technological appliances, there will probably 

be small differences between the analyzed angles (12, 14), but a narrower and more 

explicit limit of error must be discussed. A given limit of error is beneficial for new 

technology, e.g., for different SOTA CNNs, to understand how precise they must be for 

coaches and athletes to apply it in their analysis of technique in ski jumping. One way 

could be to compare the EfficientHourglass, or other markerless motion capture 

alternatives, against a well-established marker-based motion capture, such as Vicon or 

Qualisys. Some studies have validated Kinect or Organic Motion against a marker-based 

motion capture, and so far this has been done in gait analysis(41, 42), football (43) and 

as risk monitoring in sport (44). Though the results from these studies show that the 

markerless motion capture alternatives provide valid results in the sagittal and frontal 

plane, it might be challenging to apply due to the nature of ski jumping, e.g., the hill.  

Fourthly, it is difficult to state which of the four EfficientHourglass models is the best 

performing. Larger models obtain higher precision, but also increase the use of GLOPs. The 

minor differences in obtained precision and ME-h, except -B0 block1to5, make it difficult 

to determine which to go forth with. It would be interesting to see if a re-run of the training 

would result in the same obtained precision in the models. Inclusion of a smaller confidence 

interval should be applied to see if there is a significant difference between the models to 

identify the optimal model. Regarding the optimal image resolution, the ankle joint was 

calculated using the x-coordinate (the horizontal axis) from the knee annotation. This 

placement differs from previous studies doing kinematic analyses, where the last 

annotation was placed on the back of the skis of the ski jumper (13, 45). This would only 

increase the size of the bounding box of the ski jumper, thereby increasing the optimal 

image resolution and use of GLOPs.  

Fifthly, modern architectures seem to have low operational intensity (46). Further 

improvement of a model would be to change the architecture or choice of hardware. Using 

efficient hardware, such as a GPU, can speed up training and inference times (30). When 

designing a model architecture, consideration regarding which blocks to include and what 

specific task it will perform is needed. Earlier this year, Li et al. (2021) published an article 

on EfficientNet-X where they changed existing building blocks regularly used in CNN’s with 

LACS (latency-aware compound scaling) and a fused convolution structure (46). LACS 

implement accuracy and latency as a multi-objective with compound scaling (the search 

for the optimal scale of depth, width and resolution), which seems to positively influence 
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the performance of the network (46). The article emphasizes that existing CNNs are 

insufficient in operational latency and low in execution efficiency. Compared to EfficientNet, 

the EfficientNet-X is 2x faster with similar accuracy. Compared to other architectures such 

as RegNet and ResNet, it is up to 7x faster (46). Whenever the pretrained blocks from the 

new model are released, it would be interesting to see if the architecture can improve 

further with an EfficientNet-X backend.  

Future studies could develop a Lite-version of EfficientHourglass, as Lite-versions have 

shown similar precision, despite not including the same blocks or activation functions as 

the original network. The paper regarding EfficientNet (29) proposed the usage of 

EfficientNet-Lite on smaller hardware, such as a mobile device. The Lite-version included 

a ReLU6 activation function, instead of Swish, and removed the SE-layer. A systematic 

review looking at the role of wearable technology in sports stated that it is essential to 

make the data easy to interpret and “provide simple real-time feedback to athletes” (15). 

Tools easy to interpret could be especially useful for coaches or athletes to use 

EfficientHourglass while performing an in-hill jump.  

4.2 Conclusion  
The study validated a new type of CNN, EfficientHourglass, to annotate body key points 

and calculate the hip-, knee-, and ankle joint angles in ski jumping. The four 

EfficientHourglass models achieved human inter-rater precision (HIRP) in two of the 

performance metrics, PCKh@30 and PCKh@error_head, though this was not achieved in 

PCKh@10. The hip-, knee-, and ankle joint angles obtained a ME between 2.24° and 4.61°, 

which is in accordance with the HIRP, and within the limits of current acceptable errors for 

technique in ski jumping. The model performance could be further enhanced by 

improvement in human annotation, exclusive use of the visual side in the sagittal plane, 

and post-processing of the marker and joint angle time series. Thus, with the suggested 

improvements, the EfficientHourglass could be utilized as a tool for athletes and coaches 

to analyze technique of in-hill jumps.    
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Appendix 2: Further explanation of the different layers and 

functions in CNN and the EfficientHourglass  
 

A 
Activation functions (Swish): Other layers in a CNN are linear functions. For the model to 

learn complex features, a non-linear function is needed. This is where the activation 

function comes in. The negative input is transformed to a value close to zero, whilst 

positive input is unchanged. The activation function helps to decide if a neuron would fire 

or not (35).  

Adam optimizer: Adam stands for Adaptive Moment estimation. The optimizer wants to 

minimize the loss function (37). Appliance of momentum to not get stuck in the local 

minimum and find the global minimum of the loss function. See figure 1.  

 

FIGURE 13: ILLUSTRATION OF THE LOSS FUNCTION AND OPTIMIZER, FROM CHOLLET (2017) (31). 

Add-layer: to keep salient features “in the loop”. By applying the add-layer, the earlier 

feature maps can be further used in the training of detecting the body key points. 

Attention (and gating) mechanism: a mechanism used in the SE-layer. Scaling the more 

important channels to a higher value. Attention to the salient features relevant for the 

task (33). Suppressing feature activations in irrelevant regions.  

Average pooling: applied after a convolutional layer. Used to reduce the spatial size of 

the convolved feature map, depth remains the same. By reducing size of feature map → 

decrease computational power required to process the data. Returns the average of all 

values from the portion of the feature map (30).  

 

B   
Backpropagation (BP) algorithm: after each forward-pass of all iterations in the dataset, 

the BP algorithm use the final loss value and work backwards from the top to the bottom 

layers (31). Applying the chain rule (gradient) + learning rate to compute the 

contribution that each parameter had in the loss value. New weights → (old weights) + 

(learning rate) * (gradient).  

Batch normalization (BN): standardizes the input to a layer for each mini-batch. Allows 

each layer of a network to learn by itself a little bit more independently of other layers. 

In each mini-batch the values are normalized in respect of the batch inputs. The BN 

calculates the mean and the standard deviation of the batch “at hand”. Doing so speeds 



 

up the training, forms a smoother optimization landscape and decreases the importance 

of the initial weights (31). 

Bottom-up approach: used in multi-person pose estimation. First identifies all the body 

key points in the image, then group them into person specific key points (21).  

Bridge blocks: Found in block 2, 3 and 5 depending on the model. Takes out detailed 

information for later use. A connection between encoder part and the decoder part 

(transpose convolution), as the image resolution goes from low-to-high. For the network 

to access feature maps in blocks in the encoder part. 

 

C 
Confidence maps: the output, the annotated body key points on the ski jumper, 

performed by the models. Use feature maps from the bridge blocks and add-function to 

predict body key points correctly.  

Convolution: a mathematical operation. E.g., a 128x128 input image multiplied with a 

3x3 filter. Elementwise multiplication over the input image. This multiplication results in 

one pixel of the feature map (31).  

Convolutional neural network: differ from other machine learning approaches as the CNN 

learns data incrementally layer by layer, and these incremental representations are 

learned jointly. The architecture of CNNs is inspired the human brain and its structure. 

Learned patterns from a convolution layer are translation invariant. After learning, the 

pattern can be recognized anywhere in the image (31). Successive layers of 

representations, and structured in literal layers stacked on top of each other (31). The 

main purpose is to downscale (encoder) the input image to a form which is easier to 

process and retain features that can be used in the upscaling (decoder) which are critical 

for a good prediction of the body key points.  

Convolutional layer (convL): a type of filter, multiplies a set of weights with the given 

input image. Results in a feature map. Automatically learn features (31). Can either 

increase the depth of the receptive field or decrease the depth of the model depending 

on the size of the convolutional layer applied. 1x1, 3x3 and 5x5. 

 

D 
Data augmentation: to prevent an overtrained model, data augmentation is performed 

on the training subset. This could be rotation, flipping or scaling of the given input image 

during training (30). 

Decoder part: upsample the feature representation in the network to a desired image 

resolution, the output image. Low-to-high image resolution. Also known as transpose 

convolution (30).  

Derivative: a continuous, smooth function. A small change in x, results in a small change 

in y.  

 

E 
Epoch: one epoch is when the whole training sub-set has been passed forward and 

backward through the CNN algorithm once. A training subset goes through several 

epochs, this makes it possible for the CNN to readjust the weights (31).  



 

Encoder part: downscale the input image resolution in the network. Goes from high-to-

low image resolution. More computer efficient to look at a small part of an image, 

compared to the input image resolution. The encoder part can be seen as a magnifying 

glass moving over the image (30).  

 

F 
Feature: an individual measurable property of the data (31). A feature could be colour, 

edge or size.  

Feature map: the result of a filter. The feature map accentuates the unique features from 

the original image and assigns what is important in the image to classify the body key 

points correctly (31). 

Filter: feature extraction → different filters extract different features. A set of weights, 

moves across the image, and systematically applied to the input image and results in a 

respective feature map (31). Detects spatial hierarchies of patterns in the input image.  

Fine-tuning: using a pretrained model (i.e. MPII or ImageNet) can improve computer 

efficiency of the model as well as improve the overall precision (30). Earlier layers in the 

CNN detect more generic, reusable features, while deeper layers detect more specialized 

features. By slightly adjusting the more abstract features of the model being reused to 

make it more relevant for the task at hand.  

FLOPs: floating point operations per second. A measure of the computer performance. 

FLOPs often on the x-axis plotted against a performance metrics, such as ME-h or 

PCKh@τ on the y-axis.  

 

G 
Gradient: adaptive learning rate. If the gradient is positive, it indicates an increase in 

weights. If the gradient is negative, it indicates a decrease in weights. The partial 

derivatives are collectively called the gradient (31). As it is iterative, it needs to get 

results multiple times to become optimal. The gradient use information from the learning 

rate and loss function.  

Global minimum: a term used when talking about the loss function. An optimally trained 

model has obtained a global minimum of the loss function in the validation subset. See 

illustration under “ADAM optimizer”.  

GLOPs: giga (billion) floating points per second.  

 

H 
Hourglass architecture: consists of an encoder and decoder part, which is a high-to-low 

resolution network in the encoder part. Low-to-high resolution network in the decoder 

part. Combines features captured across different image resolutions. Including bridging 

convolutional layers between the encoder and decoder part (24)  

Human pose estimation (HPE): a complex task of detecting and connecting body key 

points on a human body to understand their pose (24). Localization of human joints in an 

image or video sequence.  

 



 

I  
ImageNet: a large database containing images of humans in different activities and 

situations. The database is organized in a hierarchical WordNet, meaning the images are 

described in words and sentences. These are called synsets, and each synset in 

ImageNet has at least 1000 pictures. The images are quality-controlled and human-

annotated (36). 

Inter-rater error: a collected mean error for the manual annotation performed by human 

raters. Calculated to see how similar the human raters annotate compared to each other. 

Seen as the “gold standard” for the network. All predictions made by the network is 

compared to the manual annotation.  

Iterations: the ski jumper dataset of 9324 images were split into mini-batches of 16 

images in each. 9324/16 = 419 iterations. Each iteration repeats the similar process to 

achieve a desired goal (minimum loss function) where the result of one iteration is the 

starting point for the next (31).  

 

L  
Loss function: computes a distance score of the prediction of the network and the ground 

truth (the human inter-rater precision). The loss function captures how well the network 

has done on the specific task. The score is used as a feedback signal used for learning 

and represents a measure of success for the task at hand (31). 

Learning rate: a set value between 0 and 1 multiplied with the specific value of a 

gradient. Can be seen as the magnitude of change of the model weights after each 

iteration to achieve a minimum of the loss function during training (30). In 

EfficientHourglass, the learning rate was set to 0.001.  

 

M  
Mini-batch: in a big dataset the whole dataset/batch is divided into several smaller mini-

batches. In EfficientHourglass, the mini-batches are set to 16 images in each.   

Mobile inverted bottleneck sub-blocks: called MBConv1 and MBConv6. Expand the 

number of channels → image is height (H) * width (W), * channels (C) (28).  The stages 

are described below: 

 1) 1x1 conv inverted bottleneck 

 2) Depth-wise convolution 

 3) SE-layer 

 4) 1x1 conv bottleneck 

MPII Human Pose Estimation algorithm: a dataset trained on the ImageNet database. For 

evaluation of articulated human pose estimation. It consists of ~25 000 images of 

humans in different human activities seen from different angles and light (19). In 

EfficientHourglass, the pretrained blocks from MPII are used in the encoder part.  

 

N 
Neuron: Learnable weights. Computes a dot product of the weights after an applied filter 

(31). Connected to the receptive field.  



 

O 
Optimizer: in EfficientHourglass, the ADAM optimizer is implemented. The optimizer is a 

type of algorithm used to update the network weights and learning rate in order to 

reduce the loss function (31).  

 

R 
Rhb_index: The filenames without information on hill or person were separated from the 

phb_index. Each random combination was given a unique number, e.g., for 

NM20PL_Mbib87 and SJs2. The percentage of images in each subset was calculated after 

phb_index, and the needed amount to achieve the desired percentage was supplemented 

from the rhb_index sheet. 

Receptive field: is a patch of the whole input image, i.e., the information a neuron has 

access to. A large enough receptive field is important for the network to detect features 

to predict precisely. To increase the receptive field: more conv. layers (deepen the 

network), depth-wise convolution and use of bridge blocks (different receptive fields 

across different ranges of image resolutions) (30).  

 

P  
Parameters: also known as weights.  

PCK: percentage of correct key points. Defined as the fraction of predictions residing 

within a given distance, in this study the size of the head. “If a predicted joint falls within 

a threshold of the ground-truth joint location, it is counted as a true positive” (38). 

 

S 
Swish: the activation function used in the EfficientHourglass. A non-linear function. Not 

only positive values, but also small negative values for the non-monotonicity. Unbounded 

above, bounded below (35).   

Stride: the filter step size. Moves across the input image. 

Squeeze-and-excitation layer: assign weight to feature maps based on their relevance for 

a given output. Puts attention to more relevant features and suppress less useful ones 

(33).  

1. Input image is a tensor with (height(h) + weights(w)) + channels(c) 

2. Global average: multiply h*w to get 1 pixel → average of feature maps  

3. 1 x 1 x c is the “new” tensor  

4. A 1x1 convL is performed on the 1 x 1 x c  

5. The channel weights are assigned a value between 0 and 1, with help from the Swish 

activation function 

6. The old tensor is multiplied to the new values  

7. Attention → more efficient for the model training → what is interesting for the model 

to focus on  

 

T 
Transfer learning: a model trained for a task is reused as the starting point for another 

model on a second task. Such as using the MPII as benchmark in EfficientHourglass, 



 

which is pretrained on ImageNet. Increases computer efficiency, reduces time resources 

and can increase the precision of the retrained model.  

Transpose convolutions: the same as the decoder part. Upscale the image and going 

from low-to-high resolution. Uses feature maps from the encoder part.  
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