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Abstract 
 

Background: The NTNU Human Activity Recognition (HAR) model utilize state of the art 

machine learning techniques to predict the type of daily physical activity (PA) the participant 

is doing with 94% accuracy. Validation on other complex activity patterns like ballgames 

and novel analysis methods to detect ballgames from the NTNU HAR-model predictions are 

in demand. 

Study Aim: The aim of this study is to use handball as a paradigm to assess the validity of 

the NTNU HAR-model as a classifier during ballgames.  

We also explore the possibility of using the NTNU HAR-model predictions to detect periods 

of ballgames based on how many times the predicted activity changes (PAC) within a 

specific timeframe. 

Methods: Six adolescent males equipped with two tri-axial accelerometers carried out two 

handball training sessions over two days with their team while being filmed from all corners 

of the sports hall. Accelerometers were kept on between training sessions. Using predefined 

PA definitions, the observed physical activity type (e.g. walking, running, standing) from the 

video was annotated frame-by-frame to use as a solution in validating the NTNU HAR-

model. Inter-rater reliability (IRR) of the video annotation was calculated. The predictions 

from the NTNU HAR-model were grouped in different windows and the calculated PAC was 

used to detect ballgame periods. 

Results: Overall accuracy of the NTNU HAR-model was 77% with sensitivity variating from 

67% to 84% and precision variating from 63% to 96% in the four main activity type 

categories (sitting, standing, walking, running). IRR scores had Cohen’s Kappa values of 

0.92 and 0.95. The detecting ballgame model proved to reach an accuracy and specificity of 

above 90% with high resolution (7min) but with lower sensitivity and precision scores of 

below 70%. Lowering the resolution (30-40min) increased all parameters with up to 96% 

accuracy and specificity, with above 80% sensitivity and precision. 

Conclusion: The NTNU HAR-model in its current state does not provide us with a valid tool 

to predict activity types during ballgames. It is therefore recommended to use a different 

HAR-model approach or altered classification method of the NTNU HAR-model if the target is 

to predict activity types during ballgames.  

Based on the results from this thesis, we can use PAC calculated from predictions generated 

by the NTNU HAR-model to detect periods of ballgames. However, this method should be 

tested on a larger study population including other moderate to vigorous PA before used in 

future research.  
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Sammendrag 
 

Bakgrunn: NTNU Human Activity Recognition (HAR) modellen utnytter toppmoderne 

maskinlæring teknikker til å predikere hvilken type daglig fysisk aktivitet (FA) deltakeren 

utfører med 94% nøyaktighet. Det er behov for validering av modellen på komplekse 

aktivitetsmønstre som ballspill, og bruk av NTNU HAR-modell prediksjonene til å oppdage 

ballspill. 

Mål: Målet med denne studien er å bruke håndball som et paradigme for ballspill til å 

validere NTNU HAR-modellen på komplekse aktivitetsmønstre. Vi utforsker også muligheten 

til å bruke NTNU HAR-modell beregningene til å predikere ballspill basert på hvor mange 

aktivitetsskifter (PAC) vi har innenfor en definert tidsramme. 

Metode: Seks unge (16år) menn, utstyrt med to tre-akslet akselerometre, utførte to 

håndball treninger over to dager sammen med deres håndballag. Laget ble filmet fra alle 

hjørner i sportshallen. Akselerometrene ble brukt mellom treningsøktene. Ved å bruke 

forhåndsbestemte FA definisjoner ble den observerte fysiske aktivitetstypen (f.eks. gå, løpe, 

stå) annotert bilde for bilde fra videoen for å brukes til fasit under validering av NTNU HAR-

modellen. Prediksjonene fra NTNU HAR-modellen ble grupperte i ulike vinduer og den 

kalkulerte PAC ble brukt til å oppdage ballspillperioder. 

Resultat: Den generelle nøyaktigheten til NTNU HAR-modellen var 77% med sensitivitet 

mellom 67% og 84%, og presisjon mellom 63% og 96% i de fire hovedaktivitetstypene 

(sitte, stå, gå, løpe). IRR resultatene hadde Cohen`s Kappa verdier på 0.92 og 0.95. 

Modellens evne til å predikere ballspill viste en nøyaktighet og spesifikasjon på over 90% 

med høy oppløsning (7min), men med lavere sensitivitet og nøyaktighet på under 70%. Ved 

å senke oppløsningen (30-40min) økte alle parameterne opp til 96% for nøyaktighet og 

spesifikasjon, og over 80% for sensitivitet og presisjon. 

Konklusjon: NTNU HAR-modellen i nåværende tilstand gir oss ikke et gyldig verktøy til å 

predikere aktivitetstyper under ballspill. Det er derfor anbefalt å bruke en ulik HAR-modell 

metode eller en endret klassifiseringsmetode for NTNU HAR-modellen hvis målet er å 

predikere aktivitetstyper under ballspill. Basert på resultatene fra denne avhandlingen, kan 

vi bruke PAC kalkulert fra prediksjoner generert av NTNU HAR-modellen, til å oppdage 

perioder med ballspill. Det er likevel nødvendig å teste denne metoden på en større 

testgruppe, inkludert andre moderate til vigorøse FA, før det brukes i framtidige studier. 
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1. Introduction 
New technology and applications provide opportunities to improve physical activity 

characterization and enable novel analysis methods as a viable option.  

It is well known that physical activity (PA) is one of the most beneficial lifestyle 

supplements to improve physical and psychological well-being (1-7). Health benefits of 

physical exercise starts immediately and will also provide long term results including 

reduced risk of several non-communicable diseases such as diabetes type 2, cardiovascular 

disease and certain types of cancer (3).The World Health Organization (4) define physical 

activity as “any bodily movement produced by skeletal muscles that requires energy 

expenditure”, which can be further categorized depending on the amount of energy 

expenditure needed. The “Metabolic equivalent of task (MET) refers to the energy 

expenditure required to carry out a specific activity, and 1 MET is the rate of energy 

expenditure while sitting at rest.” as defined by The Physical Activity Guidelines for 

Americans (5). The categories commonly used to describe the intensity of PA are light 

(>3.0MET), moderate (3.0-6.0MET) and vigorous (<6.0MET) physical activity (5, 6). The 

World Health Organization recommends 150 minutes of moderate PA, or 75 minutes of 

vigorous PA weekly for adults aged 18-64 years. For adolescents aged 5-17 years, 60 

minutes of moderate to vigorous physical activity (MVPA) is recommended daily. Muscle 

strengthening activities should also be included 2-3 times a week. Globally, around 23% of 

adults and 81% of adolescents did not meet the recommended levels of physical activity in 

2010 (4, 7). 

With the COVID-19 pandemic, a further decrease in PA is expected due to public health 

recommendations including stay-at-home orders and closure of PA enabling facilities (7). 

Great recommendations and documentation have been made to mitigate these effects (e.g. 

Hammami et. al (8)), but it is hard to influence all elements affected by the pandemic. 

Social isolation in itself has also proven to negatively impact PA levels for multiple age 

groups, which is a concern in today’s society (9, 10). 

To understand and govern physical activity patterns in society, accurate 

measurement methods to correctly quantify and assess activity levels are needed. Being 

able to work with valid and precise measurements leads scientists and health personnel to 

improved health recommendations and research (11, 12). 

To accurately classify physical activity volume and intensity, an objective 

measurement method is preferred to a subjective one (13, 14). The technological advances 

in accelerometry sensors and micro-electronics over the past years have made use of 

accelerometers in research more feasible. With their small size, high precision, enduring 

battery, and relatively low cost, using accelerometry makes it possible to use an objective 

measurement method even in larger epidemiological studies (15).  

The potential to model physical activity energy expenditure from simple linear 

regression approaches using the accelerometer manufacturers output method; counts, have 

been the easiest and most common statistical post-processing approach used by 

researchers (15). Counts can be classified as the number of times the acceleration signal 

surpass a threshold within a time frame (16). The potential problem with this method is the 

lack of knowledge about the manufacturers signal processing, which most often is a closely 

guarded secret within each company. This difference makes the intensity based cut off 
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points for physical activity different and non-comparable between accelerometer models, 

which limits the research possibilities of a study (15, 16). 

At the Norwegian University of Science and Technology (NTNU), a Human Activity 

Recognition (HAR) model that uses raw acceleration data to predict the type of physical 

activity being performed has been developed (17-21). Raw acceleration data is not post-

processed, which give scientists the opportunity to utilize pre-collected data with future 

software and machine learning techniques without being held back by old post-processing 

methods. Raw acceleration can also provide detailed information that other objective 

measurement methods like heart rate (HR), counts, steps and GPS have trouble providing. 

By using the gravity component of the acceleration signal, researchers can detect posture of 

the body or a limb dependent on where the accelerometer is placed (22). Combining this 

with multiple accelerometers in different positions unlocks the potential to gain a complete 

picture of static activities. Dynamic activities can be classified by their unique acceleration 

patterns, but both static and dynamic activities require the use of advanced tools to be 

analyzed (18). 

The NTNU HAR-model utilizes state of the art machine learning techniques and can 

predict the type of daily physical activity the participant is doing with 94% accuracy (19). 

The NTNU HAR-model studies and other research (23) provides us with a baseline accuracy 

of above 80% as acceptable, and above 90% as excellent. This includes static activities like 

sitting, standing, lying down, and dynamic activities like walking, running, bending and 

jumping. The NTNU HAR-model achieves this by analyzing raw acceleration signals from two 

tri-axial accelerometers placed on the lower back and middle of the right thigh, and 

recognizing patterns using advanced calculations based on multiple time and frequency 

domain features. The NTNU HAR-model has also been developed to encompass different 

challenges and goals, as identifying sensor no-wear time with above 97% accuracy (21), 

detecting sleep and wake periods with above 94% accuracy (17), and specialization toward 

activity recognition in stroke patients achieving above 93% accuracy (20).  

The purpose of the NTNU HAR-model is to analyze accelerometer data from more 

than 58 000 participants that were given the choice to wear the two tri-axial accelerometers 

for a week during the latest iteration of The Nord-Trøndelag health study - HUNT4. A total of 

above 38 000 chose to wear the accelerometers during the study (24). Because of this 

target group, the NTNU HAR-model has been developed with datasets focused on free-living 

daily activities in adults. With the NTNU HAR-model developed for daily activities in 

thousands of people, it does have some limitations. For example, activities that are mainly 

performed in specialized settings instead of normal daily activities tend to include 

movement patterns the developers never trained the model to recognize. The time window 

of each prediction might also be a limiting factor in these settings, as the model predicts 

what activity the person has done the most of within a 5 second window (19). 

Some activities where this could become detrimental can be classified as complex 

physical activities (CPA) (e.g., football, handball, dance, gymnastics) (25, 26). Viewing 

ballgames as a paradigm for CPA, needing multiple movement patterns to achieve the 

players goal within a short time window is common (27, 28). This could result in a loss of 

important data for researchers analyzing PA based on the NTNU HAR-model. 

Ballgames are usually classified as MVPA (27, 29, 30) but includes periods of 

activities recognized as sedentary or light (e.g. standing, walking, sitting, lying, bending). 

Differences in human activity recognition and physical response between healthy adults and 
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adolescents during ballgames should be minor (25, 26). With the potential challenges of 

scientists recognizing a bout of ballgames as MVPA based solely on the NTNU HAR-model 

predictions, a solution utilizing the possibilities of the existing model to further increase 

gained knowledge without the need of making changes to the model is needed. 

The aim of this study is to use handball as a paradigm to assess the validity of the 

NTNU HAR-model as a classifier during ballgames.  

We also explore the possibility of using the NTNU HAR-model predictions to detect periods 

of ballgames based on how many times the predicted activity changes (PAC) within a 

specific timeframe. 
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1. Method 
Data collection used in this thesis is part of a larger validation study on CPA and Human 

Activity Recognition. The study protocol was executed by scientists at NTNU with approval 

from NSD – Norwegian Center for Research Data. 

2.1 Participants 
Six healthy adolescent participants where included in the data collection used for this thesis. 

Characteristics of the participants are found in table 2.1. The participants were recruited 

through their handball organization with explicit information that participation will not 

impact the subject’s relationship with their organization or support staff. All interested team 

members received written information prior to participation and signed a written consent 

upon inclusion in the study. 

Table 2.1: Characteristics of the study participants. Values are mean  standard deviation (range). 

                                                   Boys (n=6)                                

Age (years)                                16   0,0 (16 - 16)                   

Weight (kg)                               77,2   8,0 (62 - 85)                  

Height (cm)                               182,5  4,5 (174 - 186)             

 

2.2 Data collection and equipment 
Two scientists from NTNU with two observing master students guided the participants 

though a pre-planned protocol in February 2019. Data collection started in the evening. 

Anthropometry data was first collected, followed by the mounting of two Axivity AX3 

accelerometers placed on the lower back and middle of the right thigh as presented in figure 

2.1. The subjects were also equipped with a Polar m400 heart rate (HR) -watch with HR-

belt. Four GoPro cameras were set-up in a quadrant to film one subject at a time from all 

horizontal angles. Synchronization of cameras and each of the subjects equipped AX3 

accelerometers and HR watch followed. 
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Figure 2.1: Anatomically correct placement of AX3 on lower back and thigh. 

The cameras where then shifted to each corner of the empty room before the 

subjects followed a structured protocol of common movements in handball to increase 

baseline data. The cameras where then moved and placed in each corner of the sports hall 

(figure 2.2), where the subjects joined the rest of their handball team for a normal practice. 

After practice, the subjects turned in their HR-watch and belt but kept the accelerometers 

on.  

On day two, the subjects arrived back in the sports hall for normal practice at 

approximately the same time of day as day one. After handing out HR-equipment and a 

short interview to assess if there were any sensor no-wear periods of accelerometers or 

notable bouts of physical activity between the practices, another round of synchronization 

ensued before the subject joined their normal practice. After the practice, all the equipment 

was returned to the scientists for analysis. 

2.3 Video annotation 
The video annotation was done frame-by-frame from the 25fps GoPro video in ANVIL 

(version 6.0). The program is a video and audio annotation tool where user defined 

specifications and features can be added to suit the annotation objective. The annotators 

use the program to register which of the 14 defined main activities (appendix 1) the 

participant is doing every 0,04s during the ballgame session as illustrated in figure 2.2. The 

acceleration and pulse signals are not visible while annotating. The completed annotations 

were exported to text format to be used in later validation analysis. 

 

Figure 2.2: Illustration of ANVIL with censored data 

2.3.1 Inter-rater reliability 
The Inter-rater reliability (IRR) of the video annotation was calculated using an in-built 

feature of ANVIL. IRR was calculated between annotator 1 and 3, as well as annotator 2 and 

3. By numbering each 20min video that annotator 1 and 2 annotated, annotator 3 used 
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google random number generator (31) to randomly pick out which video was to be used for 

IRR by both annotators. IRR performance was analyzed by Cohen’s kappa coefficient (). All 

14 unique main activities (appendix 1) were included in the IRR analysis. 

2.4 NTNU HAR-model 
The acceleration signals and annotations were handed over to the Department of Computer 

and Information Sciences (IDI) at NTNU for processing using the NTNU HAR-model. The 

NTNU HAR-model utilize a supervised machine learning approach, where the model 

observes input-output pairs to learn what determines an outcome (e.g. The model knows 

that a chosen 10sec period consist of running from the annotated data, and tries to 

determine rules in the acceleration signal to distinguish the activity from other known 

examples) (32).  

Decisions are made by the model through a random forest (RF) method, which is a 

collection of multiple decision trees (DT) (33). A DT uses predetermined rules learned from 

supervised learning to determine the correct answer of a classification, regression, ranking 

or probability estimation problem (e.g. You have a glass of red liquid. The DT can answer 

wine or water. Because of a rule stating that water cannot be red, the DT determines the 

liquid to be wine). A vital element to make these methods viable is the signal features that 

are extracted from the acceleration signals. The NTNU HAR-model uses 138 features to 

explain characteristics of the acceleration signals, including time domain features like mean, 

standard deviation and range, as well as frequency domain features like amplitude 

statistics. 

 The RF decision trees are independent of each other, which means that we can utilize 

bagging (34) to give each tree a random subset of the data and combination of features. 

This creates diversity in the DT that are created, and if done right, usually leads to a more 

robust model (33) (e.g. With our earlier wine example, juice is introduced as an answer and 

positive alcoholic content is introduced as a feature. The original DT without knowing the 

additional feature answer 50% wine and 50% juice. A new DT that knows the additional 

feature answer 100% wine). In the end, a majority-voting approach is used to determine 

the final prediction. (e.g. With our wine example, if we have an even number of the 

different DTs in our RF, wine would be chosen as the final prediction with 75% of the votes). 

 

2.5 Statistical analysis 
Results from IDI were presented as a confusion matrix (appendix 2), which is a table that 

display every predicted activity in relation to its true label counterpart from annotation data. 

We define the distribution of classifications as: 

1) True positive (TP) – Correct prediction of chosen activity. 

2) False positive (FP) – Wrong prediction of chosen activity. 

3) True Negative (TN) – Prediction of another activity when chosen activity is wrong. 

4) False Negative (FN) – Prediction of another activity when chosen activity is correct. 
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After receiving the predictions back from IDI, the accuracy, sensitivity, precision, 

specificity and a combined total of the predictions in relation to our annotations were 

calculated using equations: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

𝑇𝑜𝑡𝑎𝑙 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

Eq1: Equation used during NTNU HAR-model performance analysis and detecting ballgames. 

Since the NTNU HAR-model gives predictions in 5sec windows, the true label from 

annotation is calculated as the most featured activity in the same 5sec windows. For ease of 

use and increased validity, some labels and predictions have been combined or excluded.  

Running forward and backward from true labels has been combined into running to match 

predictions.  

Shuffling has been labeled as standing, so all shuffling predictions has been added to 

standing predictions.  

Stairs ascending and descending has been combined to stairs for both predictions and true 

label.  

Lying prone, supine, right and left have all been included in lying for both predictions and 

true label.  

Cycling sitting and standing has been combined to cycling for both predictions and true 

label.  

Picking, vigorous activity, non-vigorous activity, transport and commute have been 

excluded from predictions because the category does not exist in labels.  

Undefined, crabwalk, other activity and skipping have been excluded from labels because 

the category does not exist in predictions.  

Heel drop have been excluded because the category is only usable as an indicator of start 

and end of annotation in the acceleration signal. 

2.6 Detecting ballgame 
Data manipulation was done in Excel (Microsoft Office 2016) by excluding all the predictions 

before and after the first heel drop on day one and the last heel drop on day two (signifies 

the start and end of data collection).  

Using multiple for-loops in MATLAB (9.8.0 R2020a, Mathworks Inc., Natick, MA, 

USA), the predictions were then grouped in windows of 2-60min with 1min steps and 

returned the number of changes within each window (PAC). A window of 2 minutes includes 

24 predictions as one prediction is 5sec. The windows where then blocked (added together) 

in every combination possible from 1 to 20 while never exceeding 60min total (e.g. 5min 
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window with 1 block gives a total of 5min, 2 block gives 10min … 12 block gives 60min. Or a 

6min window with 1 block gives 6min … 10 block gives 60min). Where fractions are needed 

to reach 60min, the number of blocks were adjusted down to the nearest integer. Every 

combination of window size and blocking was then run through analysis with different 

thresholds for how many changes of activity a window*block combination needed for the 

window*block to be considered ballgame. The looped threshold values were calculated with 

a step-size of five to run from:  

𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =
𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒

6
∗ 𝑏𝑙𝑜𝑐𝑘  →  𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =

𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒

6
∗ 4 ∗ 𝑏𝑙𝑜𝑐𝑘 

As small changes were discovered with individually increasing the threshold by one, 

we picked out the five strongest values and repeated the calculation for every step between 

them. With each iteration we receive a 2x2 confusion matrix for each subject. These 

confusion matrices were then combined into a single 2x2 confusion matrix before analyzing 

the performance using Eq1.  

The analysis was then repeated while incorporating an overlap with one and two 

elements. This was done by having the last one and two elements of the previous window 

copied to be the first one and two elements of the next window. The time variable was then 

adjusted as we are adding five and ten seconds to each window. Smaller tests with overlap 

from 10-50 with a step size of 10 was done in the end. The overlap never exceeded 20% of 

the window size. 
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3. Results 
A total of 12824 predictions (17h 48min 40sek) covers the annotation work used in the 

initial NTNU HAR-model performance analysis from IDI (appendix 2), while 10064 

predictions (13h 58min 40sek) was used after exclusion. In our analysis for detecting out 

ballgames, a total of 108763 predictions (151h 3min 35sek) was used with no exclusions. 

3.1 Participation notes 
All six participants completed the first handball practice, while subject 1007 did not 

participate in the second practice.  

Participant 1008 had a broken finger and did alternative footwork drills during both practice 

sessions.  

Participant 1009 and 1012 reported a 1h 15min handball practice with timestamps between 

practice one and two, while participant 1010 reported strength training right after school 

but without timestamps. The annotated strength training session is therefore an assumption 

based on school schedule, predicted activities and PAC. 

All participants reported wearing the accelerometers for the entire duration of the study, 

which results in 0% sensor no-wear time. 

3.2 Annotation 
Amount of total video annotation done by each annotator was 18% for annotator one, 27% 

for annotator two and 55% for annotator three. Table 3.1 present the IRR between 

annotator one and three, and annotator two and three. Cohen’s kappa coefficients were 

0,95 and 0,92 respectively.  

Table 3.1: Calculated Cohen’s kappa, number of unique activities, and number of activity changes. 

Annotator  -value Unique activities                        Activity changes 

1 vs. 3 0.95 11 vs. 11 166 vs. 154 

2 vs. 3 0.92 10 vs. 10 214 vs. 219 
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3.3 NTNU HAR-model 
The NTNU HAR-model correctly classified 6437 of 12824 instances achieving an accuracy of 

50% before exclusion, and the accuracy increased to 77% with 7798 of 10064 correct 

instances after exclusion. Statistical analysis of overall accuracy, sensitivity, precision and 

specificity for every included activity after exclusion is presented in table 3.2.  

Table 3.2: Overall accuracy, sensitivity (Sens.), precision (Pre.), specificity (Spe.) and number of 

predictions (N) for every included activity. 

 

Specificity was 0.99-1.00 for every activity with >1000 predictions, 0.95 for 

standing, 0.93 for running and 0.79 for walking. The sensitivity was >80% for walking, 

running and sitting, with standing following suit at 67%. While precision was >80% for 

walking, standing and sitting, with running following suit at 63%. Transition and bending 

had very few correct predictions (1 and 17) which is reflected in a very low sensitivity and 

precision. Stairs, lying and cycling had zero correct predictions, which in turn gave them 0% 

sensitivity and precision. Jumping was never predicted. The distribution of predictions is 

presented in table 3.3.  

 

Activity  Sens. Pre. Spe. N  

Walking 0.81 0.81 0.79 5319  

Running 0.84 0.63 0.93 1669  

Stairs 0.00 0.00 0.99 54  

Standing 0.67 0.80 0.95 1824  

Sitting 0.84 0.96 0.99 969  

Lying 0.00 0.00 0.99 117  

Transition 0.14 0.02 0.99 47  

Bending 0.09 0.45 0.99 38  

Cycling 0.00 0.00 0.99 27  

Jumping 0.00 0.00 1.00 0  

Accuracy 0.77  
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Table 3.3: Confusion matrix for the NTNU HAR-model predictions. The green cells represent the amount of correctly identified instances of 

each activity. Rows represent the labeled activities, and the columns represents predictions from the NTNU HAR-model. The column second 

most to the right is the total number of instances annotated in each category. The second most bottom row is the total number of instances 

detected by the model. The cells with red text represent the wrong positive (bottom) and negative (right) instances in each category. 

Excluded activities was not included in the table. 

 

Annotated 

activity 

Predicted activity 

 
Walking Running Stairs Standing Sitting Lying Transition Bending Cycling Jumping Total Wrong 

 
Walking 

4353 575 48 316 12 0 29 13 9 0 5355 1002 

 
Running 

191 1047 3 1 0 0 0 0 0 0 1242 195 

 
Stairs 

0 0 0 0 0 0 0 0 0 0 0 0 

 
Standing 

644 32 1 1454 11 0 7 8 5 0 2162 708 

 
Sitting 

33 1 0 21 926 114 10 0 3 0 1108 182 

 
Lying 

0 0 0 0 0 0 0 0 0 0 0 0 

 
Transition 

4 1 0 0 0 0 1 0 1 0 7 6 

 
Bending 

90 10 2 32 20 3 0 17 9 0 183 166 

 
Cycling 

0 0 0 0 0 0 0 0 0 0 0 0 

 
Jumping 

4 3 0 0 0 0 0 0 0 0 7 7 

 
Total 

5319 1669 54 1824 969 117 47 38 27 0 10064 N/A 

 
Wrong 

966 622 54 370 43 117 46 21 27 0 N/A 2266 
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3.4 Detecting ballgame 
Table 3.4 show combined results with an even distribution of window, block, overlap and 

threshold combinations for detecting ballgames during our 151h 3min 35sek of possible 

predictions. The chosen combinations are based on overall performance. Accuracy proved to 

be excellent (>90%) for most combinations with a window*block size of more than 10min, 

while also staying above 90% with a resolution as high as 7min with 84*1 (window*block) 

combination. Sensitivity and precision changes drastically when adjusting the threshold, but 

the relationship between them is not linear. With 360*1 (window*block) and 2x overlap 

combination and a threshold of 175 instead of 200 (table 3.4), we get an accuracy of 95%, 

sensitivity of 94% and precision of 70%. If we increase the threshold to 225, we get an 

accuracy of 95%, sensitivity of 71% and precision stays at 80%.  

Increasing the overlap up to 50 when increasing window size did not improve overall 

performance. For 360*1 (window*block) with 50 overlap, sensitivity saw an overall 

improvement of 8%, but accuracy, precision and specificity slightly decreased in 

performance by 1%, 7% and 1%. 

Individual details with the combination 84*1 (window*block) and a threshold of 54 is 

presented in figure 3.1 and table 3.5. Accuracy proved to be excellent (>90%) for every 

participant except 1010 which scored 84%. Sensitivity varied from 58% to 80% while 

precision varied from 43% to 100%. Specificity was excellent (>90%) for every participant 

except 1010 who scored 85%. The system overestimated the amount of ballgame by 44% 

for participant 1007 and 79%* for participant 1010 and underestimated the amount of 

ballgame by 43%, 17%, 5% and 13% for participants 1008, 1009, 1011 and 1012. In total 

71820sec was predicted by the system, with 71590sec being played. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*13% if counting strength training as ballgames. 
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Table 3.4: Combined results. Window size (Win), block size (Block), Time, threshold (Thr.), accuracy (Acc.), sensitivity (Sens.), precision 

(Pre.), specificity (Spe.) and Total statistics for detecting ballgame. Separated by number of overlaps and organized with guidelines by 

number of blocks. 

No overlap 1x overlap 2x overlap 

Win*block Time Thr. Acc. Sens. Pre. Spe. Total Thr. Acc. Sens. Pre. Spe. Total Thr. Acc. Sens. Pre. Spe. Total 

  84*1 7min 56 0.90 0.61 0.58 0.94 3.04 54 0.91 0.70 0.64 0.94 3.19 54 0.92 0.69 0.68 0.95 3.25 

120*1 10min 75 0.93 0.79 0.66 0.95 3.32 70 0.94 0.86 0.70 0.95 3.45 70 0.94 0.85 0.71 0.95 3.45 

240*1 20min 150 0.95 0.80 0.75 0.96 3.46 145 0.94 0.80 0.73 0.96 3.44 150 0.95 0.76 0.78 0.97 3.46 

360*1 30min 170 0.95 0.97 0.69 0.94 3.55 175 0.95 0.94 0.71 0.95 3.55 200 0.96 0.82 0.80 0.97 3.55 

480*1 40min 265 0.97 0.95 0.76 0.97 3.65 275 0.97 0.90 0.78 0.97 3.62 268 0.98 0.95 0.83 0.98 3.73 

  30*4 10min 44 0.89 0.73 0.49 0.91 3.01 45 0.91 0.76 0.64 0.93 3.24 40 0.90 0.71 0.60 0.93 3.14 

  60*4 20min 95 0.94 0.76 0.71 0.96 3.37 85 0.94 0.88 0.72 0.95 3.49 92 0.94 0.73 0.75 0.97 3.38 

  90*4 30min 144 0.95 0.84 0.73 0.96 3.49 150 0.96 0.78 0.81 0.98 3.52 134 0.96 0.84 0.79 0.97 3.57 

120*4 40min 184 0.97 0.92 0.86 0.98 3.73 175 0.97 0.92 0.83 0.97 3.69 180 0.95 0.81 0.78 0.97 3.51 

  15*8 10min 38 0.86 0.66 0.35 0.88 2.75 40 0.91 0.75 0.62 0.93 3.22 42 0.88 0.42 0.53 0.95 2.77 

  30*8 20min 80 0.91 0.75 0.56 0.93 3.15 70 0.93 0.92 0.68 0.93 3.47 80 0.91 0.65 0.67 0.95 3.18 

  45*8 30min 134 0.95 0.81 0.74 0.97 3.47 125 0.95 0.78 0.81 0.97 3.51 100 0.93 0.84 0.66 0.94 3.37 

  60*8 40min 160 0.95 0.95 0.69 0.96 3.55 170 0.97 0.92 0.83 0.98 3.70 162 0.96 0.85 0.85 0.98 3.64 
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Individual timeline of PAC for detecting ballgame 

Figure 3.1: Bar graph PAC per 84*5sec windows with 2x overlap. Space between green bars represent 

time spent during ballgames, while space between red bars represent time spent during strength 

training.  
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Table 3.5: Individual statistics including window size (Win), block size (Block), threshold (Thr.), 

accuracy (Acc.), sensitivity (Sens.), precision (Pre.), specificity (Spe.), Total statistics and Predicted 
vs. Actual time in seconds and %-over or underestimation (%est.) of time spent detecting ballgame 
with 2x overlap. 

*6740sek spent during strength training: 20580/18250 – 113%. 

 

 

 

 

 

 

 

 

 

  

Subject  Win*block Thr. Acc. Sens. Pre. Spe. Total Pred./actual (sec) %est. 

1007 84*1 54 0.94 0.80 0.55 0.95 3.24 9240/6420 144 

1008 84*1 54 0.95 0.58 1.00 1.00 3.53 6300/11120 57 

1009 84*1 54 0.92 0.69 0.81 0.97 3.39 13020/15695 83 

1010 84*1 54 0.84 0.78 0.43 0.85 2.90 20580/11510* 179* 

1011 84*1 54 0.91 0.63 0.65 0.95 3.15 10920/11495 95 

1012 84*1 54 0.94 0.71 0.96 0.99 3.61 11760/15350 77 

Total 84*1 54 0.92 0.69 0.68 0.95 3.25 71820/71590 100 
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4. Discussion 
The aim of this study was to use handball as a paradigm to assess the validity of the NTNU 

HAR-model as a classifier during ballgames, and explore the possibility of using the NTNU 

HAR-model predictions to detect periods of ballgames based on PAC. The main results show 

that the NTNU HAR-models accuracy performed below the acceptable threshold of 80%, 

with large fluctuations between the different activities. Detecting ballgames solely through 

the NTNU HAR-model predictions is achievable, but with large variations in individual over- 

and underestimation. 

4.1 NTNU HAR-model performance 
The NTNU HAR-model achieved below acceptable results with an accuracy of 77%, even 

after exclusion of PA types as described in section 2.5 Statistical analysis. The exclusion 

process makes the results comparable to previous NTNU HAR-model studies. Reinsve (19) 

proved the same model to have an accuracy of 94% in adults during daily activities which is 

leaps and bounds above our results. 

The accuracy of the NTNU HAR-model is dependent on how well the predictions 

match with the video annotation, so poor annotation would result in decreased accuracy. In 

this study however, the fact that three annotators collaborated during the annotation 

process can be used to pseudo validate the quality of annotations with the use of IRR. The 

IRR between annotator 3 and the other two annotators were very satisfying according to 

interpretations of Kappa values needing to equal or exceed 0.82 (35). It was not possible to 

calculate IRR between annotator 1 and 2, but we can predict that the IRR between 

annotator 1 and 2 should be higher than 1-(0,08+0,05)=0,87 considering both annotators 

had a Cohen’s Kappa coefficient of 0,92 and 0,95 with annotator 3. This gives us an 

indication of having close to zero annotation bias and is a corner stone for future analysis. 

The IRR score and the fact that annotator 3 was not part of developing the activity 

definitions indicate the robustness of the definitions used in this study. A key strength of 

using the Kappa value to signify IRR is that the algorithm considers the possibility that the 

annotators were guessing during annotation, which eliminates possible overestimation with 

other methods like percent agreement (35, 36). 

With the discussed support behind our annotations, closer analysis is needed to 

understand the accuracy of the NTNU HAR-model during ballgames. The model predicted 

most instances of walking (5319), standing (1824), and running (1669). Walking was the 

only activity out of the three with an acceptable sensitivity and precision of 81% each, but 

we also have the activity sitting with 969 instances reaching a sensitivity of 84% and a 

precision of 96%. We can see from the distribution of activities related to standing in table 

3.3 and the low sensitivity in table 3.2 that the NTNU HAR-model slightly underestimates 

standing due to instances of walking. This can be influenced by shuffling being defined as 

standing during annotation, but it has probably more to do with the definition of walking. 

The definition of walking requires “locomotion toward a destination, one stride or more”, but 

based on the annotations, movement back and forth without a clear destination happens 

often during ballgames. This can make the annotators interpret the movements as shuffling, 

while the acceleration signals and patterns are more consistent with the NTNU HAR-models 

training data for walking.  

According to the distribution of activities in table 3.3 and the low precision in table 

3.2, the NTNU HAR-model also slightly overestimates running due to instances of walking. 
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The can be influenced by the typical MVPA nature of ballgames (27-29, 37), where 

movements observed as walking could have features from the acceleration signal more 

reminiscent of running. 

However, the largest impact in performance should most likely come from ballgames 

not being a good fit for the NTNU HAR-models’ specifications. The current iteration of the 

NTNU HAR-model classifies which PA the participant is performing by calculating signal 

features from the raw acceleration data collected with two tri-axial accelerometers. This 

classification is a prediction with a window size of 5sec due to achieving increased accuracy 

during earlier testing with different datasets where participants mostly did one activity 

within the 5sec window (18, 19). However, during CPA like ballgames, the amount of 

information within a 5sec window can include more than the current NTNU HAR-model is 

able to process. During annotation we saw that our participants could do five different 

activities in a 5sec window, and 3 different activities in a 1sec window (figure 2.2). McInnes 

et. al (28) reported an average change in activity every 2sec during basketball, solidifying 

our results. Decreasing the window size of the NTNU HAR-model could therefore enable 

better detection and possibilities for distinguishing smaller bouts of different PA, which in 

turn should increase performance for CPA. This is something that should be tested in future 

studies, but revisions like these would have an impact on every aspect of the NTNU HAR-

model program. Challenges with comparing to previous NTNU HAR-model studies, 

decreased performance during daily life, and incorporating HAR-additions like sensor no-

wear time (21) and sleep-wake classification (17) would all need to be overcome. A better 

solution could be to detect periods where a shorter window size can bring beneficial results 

and run those periods with a second HAR-model designed for similar data characteristics. 

4.2  Detecting ballgame 
For detecting ballgame, our best results with a relatively high resolution of 7min windows is 

the combination with 84*1 (window*block), 54 threshold and 2x overlap that yielded an 

accuracy of 92%, a sensitivity of 69% and a precision 68%. As we will discuss later, even 

with excellent accuracy, sensitivity and precision should be our main priority. These values 

are considered good enough to give us a valuable indication of when ballgames were played 

but having both above 80% is preferable as acceptable standards to use in future research. 

Even though a 7min resolution provide below preferable results with our data, the resolution 

might be a better choice if all of our assumptions discussed in section “4.2.2 Analysis based 

on assumptions” are correct. A solution with a window*block size of 7min with 2x overlap 

should therefore not be immediately excluded as a future choice. Based purely on table 3.4 

though, if we want both sensitivity and precision to exceed 80%, we need to use a lower 

resolution. Either the 360*1 (window*block) with 2x overlap that yielded an accuracy of 

96%, a sensitivity of 82% and a precision of 80%, or one of our 40min windows that also 

yielded akin to or better results.  

Increasing the overlap from x0, x1 and x2 until an overlap of up to x50 did not 

provide better overall performance, but rather increased overestimation of the system. This 

could be caused by having smoother transitions before and after periods with many PAC and 

could therefore be a possible solution for studies where underestimation becomes an issue. 

The ability to detect ballgame from the existing NTNU HAR-model results provide 

scientists valuable information that can be used to determine periods of MVPA. We can see 

from table 3.2 that the existing NTNU HAR-model classified running only 17% of the 
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practice time and misclassified cycling 0,3%. These are the only possible MVPA periods 

classified, and researchers could only classify this period of 17,3% as MVPA if no other 

information is provided. Based on Póvoas et al. (27), elite handball players stayed above 

60% of maximum HR for 93% of the time during matches. This indicates that ballgames 

should provide more than 17,3% time spent as MVPA and is supported by Leek et. al (30) 

where adolescents spent above 50% of soccer practice as MVPA. 

One of the most valuable metrics for researchers from a method like detecting 

ballgames from PAC should be how much time the participant spends engaging in 

ballgames, which can be related to how much time the participants spends in MVPA. An 

accurate measurement can be achieved if we have an even distribution of sensitivity and 

precision. As we see in table 3.5, our chosen metric from table 3.4 with an even distribution 

have close to no difference in time spent during ballgames compared to the reported and 

labeled time. If we dig deeper though, our individual scores have great variability. 

 The individual statistics from figure 3.1 and table 3.5 give us great insight about our 

combined results in table 3.4. We can read from figure 3.1 that periods of ballgames have a 

lot more PAC than regular daily activities. However, we need a high threshold because 

multiple periods of daily activities also achieve high amounts of PAC. Without these periods, 

we should be able to lower our threshold without the effect of reducing our precision, which 

again would increase sensitivity and overall performance. If these periods of daily activity 

could be identified during data collection, we could look at a possibility to extend the model 

from detecting ballgame to e.g. detecting MVPA. This all depends on the results from data 

collection and is further explored in 4.2.2 analysis based on assumptions. 

Another strength for researchers being able to detect ballgames, is the possibility to 

exclude these periods from the original NTNU HAR-model and use a more specialized HAR-

model developed for CPA. As CPA includes small bursts of different PA, CPA can largely be 

compared to the activity pattern of children during play (38). With this, the possibilities for 

improvement and usability stretches even further, but it all depends on the detecting 

ballgames model being able to detect the correct periods, and how well a new HAR-model 

would perform.  

Our approach to detect periods of ballgames relies on how often the NTNU HAR-

model predicts the participant switching from one activity to another. We do not put 

different weights on different activities as data from other studies, especially the dataset 

Trondheim Free Living used in earlier NTNU HAR studies, suggest daily activities does not 

include as many PAC as ballgames has proven to include (19, 26, 28). But we still need to 

keep this in mind, as changing between sitting and lying count the same as changing 

between walking and running. 

We had relatively few participants (six) in this study, but the amount of data is still 

quite large. This makes it hard for a human to calculate the most optimal window and block 

size. The solution was to give this task to a computer that can systematically calculate every 

combination within our specified limits. We chose a window of 2min – 60min with blocking 

from 1 – 20 while never exceeding the 60min maximal combined window*block size.  

The reason we start at 2min is based on a trail where 2min is the preferred window 

size for the most accurate amount of changes during ballgames in relation to vigorous PA 

measured by pulse. This concept will be further discussed in 4.3 future research. The reason 

we end at 60min as our maximum combined window*block size is because a larger 
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window*block size would make smaller periods of ballgames harder to distinguish from daily 

activities, and overestimation could become prevalent if the period is detected.  

The optimal lower and upper threshold limits were chosen after early probing 

resulted in every single optimal threshold value being found within these limits. Because of 

a small probing size, the possibility of having to run the script a second time with different 

limits were evaluated on every combination before choosing the five strongest values. This 

was done instead of trusting probability analysis like confidence interval, as the time saved 

with probability analysis was minor. The only reason for choosing limits like this was to 

reduce run-speed in MATLAB. Another solution to increase run-speed was to combine the six 

2x2 individual confusion matrices before running analysis, and only run individual analysis 

on chosen examples.  

4.2.1 Statistical understanding 
As with the NTNU HAR-model’s performance discussed in section 4.1, using accuracy, 

sensitivity, precision and specificity are great measurements of performance for detecting 

ballgames. 

 Accuracy measures the selection of correct time-sensitive predictions. A correct 

prediction results in the system (our combination of window size, block size, threshold and 

overlap) predicting whether the participant is engaging in ballgames at a specific point in 

time. This translates to accuracy being a definition of the number of windows where the 

system guessed the right activity at the right time, both positive and negative, divided by 

the total amount of guesses. It is our most important parameter but might need to be 

higher than other studies because most of the 25h duration of our study is spent far below 

our threshold (e.g. sedentary while sleeping). This makes the amount of correct negative 

predictions skyrocket during the night, which pushes accuracy higher compared to studies 

where a higher amount of predictions has closer to equal chance to be both positive and 

negative. We should still consider our >90% score on most combinations in table 3.4 and 

table 3.5 to be an excellent indication of the potential behind detecting ballgames based on 

PAC (23). 

Sensitivity measures the portion of correct positive predictions during the time 

period labeled as ballgames. Since sensitivity only includes instances where changes should 

be above our ballgames threshold, this parameter will tell us how well the system can 

predict windows that should, according to our hypothesis, include a high amount of PAC. If 

the threshold is too low, sensitivity will approach 0%. If the threshold is too high, sensitivity 

will approach 100%. Sensitivity is one of our most important measurements, but only 

combined with precision to tell a complete story.  

Precision measures the portion of positive predictions that are correctly classified. A 

high threshold will make precision approach 100%, while a low threshold makes precision 

approach 0%. Combining sensitivity and precision paints a more complete picture of our 

results because sensitivity utilizes false negatives while precision utilizes false positives. If 

precision is low while sensitivity is high, we can conclude that the systems predictions are 

skewed toward overestimating instances of ballgames. An underestimation of ballgames will 

occur if the opposite happens. Using sensitivity and precision, we can see that there are big 

differences in the different combinations presented in table 3.4. During analysis, 

manipulating sensitivity and precision using different thresholds provided big changes while 

not having a large impact on our accuracy. This supports our discussion earlier about the 
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vast amount of negative instances compared to positive instances having an impact on our 

accuracy.  

Specificity measures the portion of negative predictions that are correctly classified. 

With a low threshold, specificity approaches 100% because false positive predictions 

approach 0. This value will be a lot less sensitive if the relationship between time spent 

during ballgames is far more or less than the time spent not engaging in ballgames. This is 

evident in our results, as specificity constantly stays as the best performing statistic. In our 

study, sensitivity and precision are more significant in answering our study aim. This is 

reflected in specificity behaving the same way as accuracy discussed earlier. 

This thesis implements a total statistic. The optimal result for every statistic is 100% 

which equates to 1.0 for the four previously mentioned statistics in section 4.2.1 Statistical 

understanding. This makes it easy to use our total statistic as an overview of total 

performance where 100% equates to 4.0. During analysis, accuracy was favored as the 

most important statistic to select the best performing combination of adjustable factors. 

Having a total statistic as a secondary value of performance helped us faster understand 

overall performance as the analysis results were processed manually. We could also add 

weights to the statistics depending on their importance for our goal but chose not to do so 

because the total is only used as a different representation of our results. 

Resolution can be explained as how many times we can predict if the participants 

are engaging in ballgames. Decreasing the window size increases resolution, while the 

opposite is also true. With a total collection time of approximately 25h 7min per person, our 

resolution with a 7min window will become 215 predictions. Multiplying this with 6 

participants gives us 1290 predictions in total. If we increase the window size to 40min we 

only get 220 predictions in total. By adding elements through overlap, we will increase the 

predictions of our 7min window by 30 with 2x overlap. Having a high resolution decreases 

the amount of possible changes within the given timeframe. This in turn has the natural 

effect of reducing the possible difference in changes between ballgames and other daily 

activities. Decreasing the window size is positive because we can more accurately predict 

the start, end, and total time spent during ballgames. If there are longer breaks as well, a 

higher resolution will let us classify the active parts before and after as ballgames, and the 

break as non-ballgames. With a lower resolution, depending on the length of the break and 

the number of changes in the period before and after the break, the break can be classified 

as ballgame, or the period before and/or after the break can be classified as non-ballgame. 

A limitation of reduced resolution includes the increased possibility of short bouts of other 

activities being classified as ballgames, and parts of a ballgame session that does not 

include as many PAC can be classified as non-ballgames. Because of this “give and take” 

nature of high and low resolution, choosing a correct balance depends on the study and 

research question. With a study where the aim is to estimate the number of 

practices/matches of a certain length is desirable, choosing a low resolution will provide 

more accurate results. If the study is researching the time of day, or amount of time spent 

during ballgames, then a high resolution is preferable. 

Changing the window size of the NTNU HAR-model should have a similar impact as 

changing the resolution has on detecting ballgames, and the give and take relationship that 

resolution have should be largely mitigated. Decreasing the window size of the NTNU HAR-

model would most likely increase the amount of PAC for every non-static PA, but it should 

also widen the gap between the amount of PAC predicted between daily activities and CPA 



25 
 

(19, 26, 28). This would in return increase our accuracy when detecting ballgames, even if 

our previous assumption about an increased accuracy of the NTNU HAR-model would be 

wrong. If this proves to be correct, adjusting the window size of the NTNU HAR-model might 

be preferrable depending on the study aim. 

4.2.2 Analysis based on assumptions 
Looking back on the information we have gathered, some assumptions could explain parts 

of our results.  

Participant 1007 reported not participating in practice on day two of the study, but 

we can assume that he engaged in some physical activity based on the knowledge we have 

acquired from the predicted activities and PAC in figure 3.1. Overestimation for participant 

1007 could possibly be explained based by this assumption.  

Participant 1008 had a broken finger and did alternative footwork drills for both 

practice sessions. This can explain the underestimation of our system as the practice drills 

where repetitive with less complex movements. 

Participant 1010 reported a dynamic strength training session after school. The 

NTNU HAR-model predicted a lot of changes between activities during this period, so we can 

assume the participant was almost always moving and changing positions during this time.  

The threshold could be lowered to achieve better overall performance without these 

outliers, but we should consider the outliers to be representative incidents for our target 

population based on these results. Further research with a larger study population is needed 

before we can make other assumptions. 

The outliers can also indicate that the NTNU HAR-model does not need a regular CPA 

to predict a lot of different activities, possibly because the window size of the NTNU HAR-

model is 5sec. This in turn leads us to consider a new definition of CPA tailored for the NTNU 

HAR-models 5sec windows, as changing movements more often than every 5sec does not 

make a difference in the model. We can then assume that more activities than initially 

thought could be indistinguishable from ballgames. Our strength training session is solid 

evidence for this, but it is impossible to conclude anything without detailed information 

about the session and more test-data. What could be concerning are PA not moderate to 

vigorous in nature being indistinguishable to ballgames. Our study population were six 

adolescent boys over approximately 25h 7min during winter, so we can assume that we do 

not have any data including activities like light housework or garden work. If these activities 

would be recognized as ballgames by our system, then that is a big limitation.  

4.3 Future research 
Based on our assumptions about detecting ballgames, future studies can use already 

existing annotated data from training and validating the NTNU HAR-model to further explore 

limitations including house and garden work with a larger study population. 

Exploring different feature sets and window sizes within the NTNU HAR-model based 

on data using CPA might also provide different opportunities. This includes potentially 

increased performance on children, detecting ballgames, and new analysis opportunities 

during ballgames.  

During this study, a third aim to determine if the participants were performing MVPA 

during ballgames was roughly explored. The method uses PAC in a similar fashion as 

detecting ballgames from the NTNU HAR-model predictions. To validate if the participant 
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was engaging in MVPA, the collected HR-data was used. As HR-data comes from a delayed 

physical response, the synchronization was only visually performed to fit the model while 

validating with annotation video in ANVIL. No protocol was developed but using a more 

documented best-fit method for each participant might be a viable solution. Early results 

suggest an accuracy of around 80% when using 2min window sizes without overlap on the 

annotated data, and an accuracy of around 50% on the predicted data from the NTNU HAR-

model. More interesting is the fact that the predicted amount of time spent in MVPA during 

the practice should come within 20% of the actual time. Participant 1010 and 1012 spent 

70% and 46% of the first practice in MVPA according to HR-data, while using NTNU HAR-

predictions and PAC we achieved 65% and 56%. This can be used as proof of concept for 

further research. 

4.4 Strengths and limitations 
Some strengths and limitations of this study have already been discussed, but there are 

more that should be thoroughly explored. To my knowledge, this is the first study to explore 

the characteristics of PAC from HAR-model predictions to classify periods of different activity 

types. 

With only 6 male participants of approximately the same age and body size our 

group is very homogenous. This can be both positive and negative as our results are less 

influenced by individual differences within a population. While it is impossible to compare 

our results directly with a general population, the accuracy for our target group will have 

increased validity. We could also use data from different studies together with our results to 

form a well-documented hypothesis for other population groups. Although a challenge of 

comparing our results with other studies are a lack of studies using CPA or PAC comparable 

to ours. As the NTNU HAR-model is originally developed for use in HUNT4, we should 

consider the importance of reaching the highest accuracy in the largest target population 

group. Young Norwegian men are according to Statistics Norway (39) the most active group 

engaging in ballgames.  

More participants would give us the opportunity to make random groups when 

processing data, which would make it possible to create a threshold for one group and 

validate with another. Right now, we are using the entire study population to create our 

threshold, while doing the validation individually.  

As we have unreported periods of high amount of PAC on 2/6 participants, the 

accuracy and sensitivity could be higher with a larger study population or a different study 

protocol that made the participants record every case of PA. We also have a period of 

strength training for one participant that was classified as ballgames by our detecting 

ballgame model. Based on the unrecorded periods and our strength training period, we can 

estimate that our system will pick out any period of multiple activities done in short 

succession, not just what is defined as CPA. This might be mitigated by shortening our 

prediction window in the NTNU HAR-model as discussed earlier, because it should provide 

us with a larger discrepancy of PAC between ballgames and daily activities. 

Unfortunately, some problems occurred with synchronization between acceleration 

signals and annotations during testing of the NTNU HAR-model at IDI. This resulted in the 

researchers having to manually synchronize the data based on timestamps from the 

accelerometers, HR-watches, GoPro-files, and annotation timeline in ANVIL. This was done 
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by researchers with experience in using this method, but it is still possible that it could 

cause a change in performance. 

A strength of this study is that the NTNU HAR-model is open source and uses raw 

acceleration signals. This ensures full transparency and provide opportunities for other 

researchers to confidently compare results. 

 Another strength is the use of objective measurements from an accurate method of 

observation with video recordings (40) in combination with robust activity definitions 

(appendix 1) as the groundwork for NTNU HAR-model validation.  

4.5 Conclusion 
The NTNU HAR-model in its current state does not provide us with a valid tool to predict 

activity types during ballgames. It is therefore recommended to use a different HAR-model 

approach or altered classification method of the NTNU HAR-model if the target aim is to 

predict activity types during ballgames.  

Based on the results from this thesis, we can use PAC calculated from predictions generated 

by the NTNU HAR-model to detect periods of ballgames. However, this method should be 

tested on a larger study population including other moderate to vigorous physical activities 

before used in future research.  
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Appendix 1 

DEFINITION OF ACTIVITIES  

Activity Description 

Sitting When the person’s buttocks are on the seat of the chair, bed or floor. Sitting can include some 

movement in the upper body and legs; this should not be tagged as a separate transition. Adjustment 

of sitting position is allowed.  

Standing Upright, feet supporting the person’s body weight, some feet movement is allowed («on the spot”, no 

substantial displacement). If both feet are lifted from the ground, another activity is inferred. 

Movement of upper body and arms is allowed until forward tilt and arm movement occurs below 

knee height. Then this should be inferred as bending. 

Walking Locomotion towards a destination, one stride or more, where both feet are lifted from the ground. 

Walking along a curved line is allowed. Walking can occur in all directions and with a ball. As soon as 

heel-off occurs, walking has started and ends when both feet are at rest or another activity is 

inferred. 

Running Forward: The movement starts when the person lifts one foot from the ground, with locomotion 

towards a destination in a forward direction.  

Backwards/partly sideways: The movement starts when the person lifts one foot from the ground, 

with locomotion towards a destination in a backwards/sideways direction.  

Running along a curved line is allowed. Running can be with a ball. Running ends when both feet are 

at rest or another activity is inferred.  

Lying down  The person lies down. Adjustment after lying down is allowed if it does not lead to a change between 

the prone, supine, right and left lying positons. Movement of arms and head is allowed. Movement of 

the feet is allowed as long as it does not lead to change in posture.  

Prone: On the stomach.  

Supine: On the back.  

Right side: On right shoulder.  

Left side: On left shoulder.  

Bending Bending towards something below knee-height is tagged as bending. Steps can occur during bending. 

Bending ends when another activity is inferred. Bending while sitting is tagged as sitting.  

Crab walking  The movement starts when the person lifts one foot sideways or backwards, with locomotion towards 

a destination with at least two steps. Center of gravity is lower than during walking/running, feet 

move at a higher speed. Feet do not necessarily leave the ground.  

Can occur in all directions.   

Crab walking ends when both feet are at rest or another activity is inferred. 

Sit Cycling  Pedaling while the buttocks are placed at the seat. Cycling starts on first pedaling and finishes when 

pedaling ends.  

For outdoor bicycling: Cycling starts at first pedaling, or when both feet have left the ground. 

Cycling ends when the first foot is in contact with the ground.  

Not pedaling: Sitting without pedaling should be tagged separate as sitting.  

Stand cycling  Pedaling while standing. Cycling starts on first pedaling and finishes when pedaling ends.  

Standing without pedaling should be tagged separate as standing.  
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Jumping A bounce from the ground into the air, where both feet leave the ground. Jumping can occur from one 

or both feet, and in vertical and horizontal direction. The movement starts when the person`s last 

foot, or both feet simultaneously, leave the ground. Jumping ends when another activity is inferred. 

Skipping Step forward and jump on the same foot, with at least two steps where both feet leave the ground 

during each stride. 

Other activities All movements that are recognizable, but do not classify according to the definitions. This could be 

goalkeeper movements, falling, push-ups, hand stand etc., or activities that are uncontrolled or 

unintended. 

Undefined  Periods until all the sensors are attached, or final adjustment made to position the video camera, can 

be tagged as undefined. 
All postures/movements that cannot be clearly identified due to blocking of the camera/view should 

be tagged as undefined.  

TRANSITIONS 

Transition  Change from one movement to another, the period between movements should be tagged as a 

transition if this period is controlled and/or intended.  

Transitions that will be tagged separately as a transition/undefined 

Upright to sitting  Can be from walking, running, crab walking or standing, as soon as forward trunk tilt occurs, or a 

lowering of the trunk, the transition has started. Steps can occur during the transition for positioning. 

Transition ends when buttocks are in contact with the seat of the chair, bed or floor.  

 

Sitting to upright  Transition starts when the person’s buttocks leave the chair and ends when the trunk has reached its 

upright position. Steps and turning can occur during the transition from sitting to upright. Can be 

followed by standing, walking, crab walking or running.   

Upright to lying Can be from walking, running, crab walking or standing. When the trunk flexion begins, or a 

lowering of the center of mass, the transition has started. Transition finishes when the person is lying 

flat with the trunk in a stable position.  

 

Lying to upright  While lying, the transition begins with an upward movement of the trunk or leg movement that leads 

to a stable upright position or continuous walking. The trunk angle should be in a steady posture for 

the transition to finish. Steps can occur during the transition. 

Transitions that will not be tagged separately as transitions 

Transitions between the 

activities walking, 

running, crab walking, 

jumping and standing 

Switching between these activities can occur directly and should not be tagged as a transition. The 

current activity switches directly into the subsequent activity. 

 

Jumping to sitting/lying The movement ends when the body is in recline- or sitting position.  

 

Sit cycling to stand 

cycling / stand cycling to 

sit cycling  

When the buttocks leave the seat, stand cycling can be inferred. When the buttocks are placed at the 

seat, sit cycling can be inferred.  
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Appendix 2 
 

Confusion matrix of the NTNU HAR-model validation on CPA 
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