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Abstract

Brewing and consumption of beer is central to many cultures and is one of the oldest
and most enduring forms of biotechnology. The commercial market for beer is large,
and the available variety of styles and types is vast and constantly expanding. However,
much of our understanding of beer and the categories thereof is based on tradition and
artistic expression rather than a scientific foundation. The Systems Brewology Project
in AlmaasLab at NTNU Trondheim aims to expand our scientific understanding of beer
categorization, characterization, production process, and sensory experience. With the use
of data mining and machine learning tools for analysis of a large database of chemical
composition data on annotated beer samples, we aim to gain new insights into the ancient
art of brewing.

The aim of this thesis has been to lay the foundation for creating a database capable
of facilitating massive-scale data analysis. The efforts used in laying this foundation can
be split into two categories: practical and theoretical. The practical efforts consisted of
generating sample data to examine the viability of chemical analysis, data exploration
by multivariate statistical analysis, and creating documentation for sample preparation
and one-dimensional proton nuclear magnetic resonance (1D 1H NMR) acquisition. The
theoretical efforts were focused on creating a storage structure for the coming database
and evaluating options for database platforms, as well as the development of a platform
for citizen-science by creating a website for contact with homebrewers.

The practical efforts aimed to explore the capabilities and limitations of fingerprinting by
1D 1H NMR in beer samples. For this, the following three case studies were completed:
(1) study of traditional categorization of samples from a commercial brewery on the basis
of chemical composition; (2) study of the effects of different pitching rates on taste and
chemical spectra; (3) exploring the chemical changes caused by aging in beers flavoured
with algae. Samples for these studies were produced in-house, as well as gathered through
industry cooperation. These were analyzed using 1D 1H NMR spectroscopy. The resulting
spectra were processed and analyzed using a variety of multivariate statistics, including
Principal Component Analysis (PCA), Partial Least-Squares Discriminant Analysis (PLS-
DA), t-Distributed Stochastic Neighbor Embedding (t-SNE), hierarchical clustering, k-means
clustering, and compound quantification. The sample treatment process was standardized
and compiled into a comprehensive manual for sampling, preparation and NMR acquisition.

The theoretical efforts aimed firstly at creating a storage structure for the database. To this
end, a deeper understanding of the hierarchical structure used for categorization of beer
types were required to sort and store a large number of beer samples. In order to document
this structure and create a template for a database, an ontology of beer style categories was
created. The ontology contains descriptions of most known beer styles, as well as records
of the samples created in the practical efforts. The second aim of the theoretical efforts
was to evaluate different database system solutions based on the characteristics of data
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from the practical efforts.

The work done during this thesis has demonstrated that a streamlined method of 1D
1H NMR spectroscopy can be used to quickly analyze multiple samples of beer to produce
informative results. It also demonstrates how statistical analysis tools for multivariate data
analysis can be used to examine high-dimensional data produced by NMR spectroscopy
of beer samples. Findings from case studies of beer samples did not detect statistically
significant differences between conventional categories of beer, however, differences due to
pitching rate and aging were detected. The approach using fingerprinting by multivariate
analysis on 1D 1H NMR spectra showed promise for quick exploration of sample sets.
Limitations in accuracy of 1D 1H NMR were encountered for complex solutions like beer,
and suggestions for future improvements are detailed herein. Based on lessons from the
data produced in the practical efforts, the database solution openBIS was chosen as the
optimal database system framework for building a repository. The comprehensive ontology
provided can be used to inform the storage structure of a database, as well as function as
a controlled language for sample annotation.

Overall, this work presents an NMR-based omics-level analysis pipeline for beer. This
includes an investigation of different central control parameters and a selection of statistical
analyses for the resulting high-dimensional data. It also presents the groundwork for a
comprehensive database, including an ontology and choice of an appropriate software for
implementation of future compilation and analysis of data from beer, using both the above-
mentioned and other new methods for data collection and analysis.
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Sammendrag

Brygging og konsum av øl er sentralt i svært mange kulturer, og er en av de eldste ved-
varende formene for bioteknologi vi har. Det kommersielle markedet for øl er stort, med
enormt mange ulike typer og stiler allerede i produksjon, og en hurtig utvikling på fel-
tet. Likevel er mye av vår forståelse av produksjon og kategorisering av øl basert mer
på tradisjon og håndverk enn på vitenskapelig grunnlag. Systems Brewology-prosjektet
ved AlmaasLab, NTNU Trondheim har som mål å utvikle vår vitenskapelige kunnskap om
kategorisering, vurdering, produksjon og sensoriske opplevelser av øl. Gjennom bruk av
verktøy for datautvinning og maskinlæring for analyse av databaser med informasjon om
kjemisk sammensetting av øl, håper vi å kunne utvinne ny kunnskap om bryggekunsten.

Målet for denne avhandlingen har vært å legge grunnlaget for å etablere en database
som kan fasilitere storskala dataanalyse av øl. Arbeidet med å legge dette grunnlaget
kan deles i to kategorier: praktiske og teoretiske. Det praktiske arbeidet har bestått
av å produsere data for å undersøke mulighetene for bruk av kjemiske analysemetoder,
evaluering av statistiske metoder for multivariatanalyse, og produksjon av protokoller for
prøvebehandling og henting av one-dimensional proton nuclear magnetic resonance (1D
1H NMR). Det teoretiske arbeidet gikk ut på å etablere en struktur for den kommende
databasen, og å evaluere potensielle databaseplattformer. En plattform for citizen-science
ble også etablert ved å utvikle en nettside for kontakt mellom hjemmebryggere og Systems
Brewology prosjektet.

Det praktiske arbeidet hadde som hensikt å utforske muligheter og begrensninger ved fin-
gerprinting av prøver fra øl med 1D 1H NMR. For å oppnå dette ble de følgende tre
studiene gjennomført: (1) Evaluering av tradisjonelle kategoriseringer av øl fra et kom-
mersielt bryggeri på basis av kjemisk sammensetning; (2) undersøkelse av de sensoriske
og kjemiske effektene ved ulike gjærmengder under fermentering; (3) studie av kjemiske
endringer forårsaket av aldring i øl smaksatt med alger. Prøver for disse studiene ble prod-
usert i våre laboratorier, eller innhentet gjennom samarbeid med industri. Alle prøvene
ble analysert ved bruk av 1D 1H NMR-spektroskopi. Spektra fra prøvene ble analysert
ved bruk av ulike metoder for multivariatanalyse, slik som Principal Component Analysis
(PCA), Partial Least-Squares Discriminant Analysis (PLS-DA), t-Distributed Stochastic
Neighbor Embedding (t-SNE), hierarchical clustering, k-means clustering, og kvantifisering
av forbindelser. Prosessen for prøvebehandling ble standardisert og samlet til en detaljert
manual for prøvetaking, behandling, og innhenting av spektra ved NMR.

Det teoretiske arbeidet siktet for det første på å etablere en lagringsstruktur for den kom-
mende databasen. For å gjøre dette var det nødvending å utvikle en dypere forståelse
for den hierarkiske strukturen brukt for kategorisering av ulike øltyper, ettersom denne
strukturen vil være sentral for hvordan prøver skal kategoriseres og lagres. En ontologi for
kategorier og beskrivelser av øl ble derfor utviklet, noe som vil bidra til forståelse og doku-
mentering av strukturen, samt fungere som et grunnlag for en database. Det andre målet
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for det teoretiske arbeidet var å undersøke ulike tilgjengelige databaseløsninger, og vurdere
dem i forhold til nødvendige egenskaper basert på karakteristikken til dataen funnet under
det praktiske arbeidet.

Arbeidet gjort i denne avhandlingen har vist at en strømlinjet metode for 1D 1H NMR-
spektroskopi kan bli brukt til å raskt og effektivt analysere flere ulike øl og fremstille
informative resultat. Det blir også vist hvordan ulike statistiske metoder kan bli brukt for
å vurdere høydimensjonell data produsert fra NMR-spektroskopi av øl. Studiene gjort her
kunne ikke avdekke statistisk signifikante forskjeller mellom konvensjonelle kategorier av
øl, men forskjeller på basis av gjærmengde og aldring ble oppdaget. Bruk av fingerprinting
ved multivariatanalyse av 1D 1H NMR-spektra gav lovende resultat for hurtig vurdering av
prøver, men visse begrensinger ved bruk av 1D 1H NMR for komplekse medium, slik som
øl, ble oppdaget. Forslag til mulige forbedringer beskrives i denne avhandlingen. Basert
på kunnskap fra strukturen av dataen produsert under det praktiske arbeidet ble data-
basesystemet openBIS valgt som den optimale løsningen for etablering av en database for
ølprøver. Ontologien som ble fremstilt vil kunne fungere som mal for databasestrukturen,
og som et kontrollert vokabular ved annotering av prøver.

Totalt sett presenterer dette arbeidet en NMR-basert omics-level analysemetode for øl.
Dette inkluderer undersøkelser av sentrale kontroll-parametere og valg av metoder for
statistisk analyse av de resulterende høydimensjonelle dataene. Grunnarbeidet for en om-
fattende databaseløsning legges også frem, bestående av en ontologi samt valg av passende
datasystemer for fremtidig ansamling og analyse av data fra øl, både ved nevnte og nye
potensielle metoder for innhenting og analyse av data.
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Chapter 1

Introduction

This chapter will introduce the aims of this thesis and the larger project around it, as well
as the motivation and reasoning behind the efforts made therein.

1.1 Importance of beer

The brewing of fermented beverages might be the oldest example of biotechnology we
have. Simple beer-like drinks have been discovered as far back as 5 000 BC [1], and
here in Norway beer has been an integral and spiritual part of our tradition ever since
the Viking age. The consumption of beer is a significant part of the diet for many of
us, according to statistics from ourworldindata.org [2] it represents a 45% share of our
total alcohol consumption in Norway, with annual consumption per capita during 2014
at 52 L. The numbers for the US, UK and Germany were even higher with 76L (50%),
83L (37%) and 117L (54%) respectively. Although there the global brewing industry is
quite large and there is a blooming interest in smaller craft beer focused breweries, there
still is a pervading non-scientific approach when it comes to the brewing process and the
categorization of beer. The brewing process is often viewed more as an art than a science,
with a tendency towards know-how rather than know-why, possibly expressed best in two
quotes accredited to Fritz Maytag, an important figure in the history of modern craft beer:

"We brewers don’t make beer, we just get all the ingredients together and the
beer makes itself."

"Beer does not make itself properly by itself. It takes an element of mystery
and of things no one can understand."

— Fritz Maytag

The Systems Brewology Project aims to contribute to the unveiling of these proverbial mys-
teries and gain a deeper and more scientific understanding of the categorization of different
beer types, the relations between them, and the processes involved in their creation.

With the aim of better understanding the minutiae in the difference between beer styles,
brewing methods, treatments, and storage, we believe massive-scale chemical and compos-
itional analysis will be a valuable tool. This means examining a large variety of beers with
detailed methods of compositional analysis, creating a comprehensive library of samples
representative of all the categories and types of beer available. To this end, a platform
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is needed to facilitate the storage and analysis of detailed information on beer brewed in
controlled laboratory experiments, samples gathered from breweries and home brewers, as
well as samples from commercially available products. We therefore aim to construct a
database for storing detailed information on every facet of a sample, including the recipe,
brewing process, treatment, and other factors affecting a sample.

To be able to discover trends, patterns, and emergent properties from analysis of these
samples, it is important to have the capability to store and export all relevant information
about the samples and the chemical analysis performed on them. We therefore need to
construct or tailor a database structure to our specific needs where we can easily enter and
export all pertinent information for a given data analysis we wish to perform.

In order to set up such a data repository, we must understand the nature of the data to
be stored there, the structure of sample categorization, as well as the input and export
criteria for storing and extracting data. In addition to this, we also need to establish
simple, universally viable sample preparation, analysis, and annotation protocols so that
all relevant samples can be treated in a consistent manner for the lifetime of the project.
There is also a need to establish a way of receiving samples from external sources and
contributors, as generating the necessary sample volume for massive-scale analysis by in-
house brewing is not feasible. There is a need for a solid foundation in order to implement
a database that meets all the requirements, as well as having procedures and channels in
place for generating and analyzing the data.

1.2 Aim of the project

There are multiple eventual goals for the Systems Brewology Project, a deeper under-
standing of beer and the brewing process is just a part of what we aim to accomplish.
We believe that understanding beer making and composition can be a stepping stone to
new discoveries in quite disparate fields like yeast and microbial fermentation, health, and
consumer choice. Large-scale analysis of samples with many different strains of yeast and
other microorganisms under different conditions and subjected to a vast array of different
metabolites, coupled with detailed chemical analysis of the resulting product, could help
us understand and discover new fermentation paths and products. Such discoveries could
guide deeper research on pathway modeling and microbiological experiments on microor-
ganisms that are used every day. This could lead to benefits not only for basic science, but
also for society and industry.

Research into the production and composition of beer can also lead to a better under-
standing of the health effects of a product that is both used and abused worldwide on a
daily basis. Beer is, as mentioned above, a large part of many people’s diets, and this
can have both beneficial and adverse effects on health. Multiple studies ([3], [4]) have
shown beneficial effects of moderate beer consumption on cancer development, cardiovas-
cular disease, immune system stimulation, and reduced risk of dementia. One example of
such an effect is the impact on the risk of cardiovascular disease with elevated levels of
High-Density Lipoprotein (HDL) and apolipoprotein A1, both of which are associated with
a lowered risk of atherosclerosis. However, we also know that excessive consumption can
have severe detrimental effects on aspects of our health, such as increased risk of obesity,
allergy induction, cancer development and social misbehaviour, to name a few. We aim
not only to understand beer production, but also to inform on it based on our research,
and with a combination of information on the chemical components in beer, as well as
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their effects on human health, we may well be able to inform on the production of beer
and other fermented products with greater health benefits and less detrimental effects.

The industry around beer is substantial, with an estimated worth of US$ 187.89 billion,
and is predicted to rise steadily in the years to come [5]. A large part of the total beer
market consists of the pale lager / pilsner category, with more specialized beer making up
smaller portions. However, not everyone prefers pale lager beer, and the choice of what to
produce may be based largely on guesswork or on fluctuating economic markets where beer
preferences might not be fairly represented [6]. By combining data on the composition of
different beers with sensory analysis data, as well as expert and consumer preference data,
we believe it will be possible to discover certain customer group preferences for certain
taste components or profiles, and thereby be able to create and tailor new products that
might appeal to a certain category of customers. If such a method is achievable, it might
be immensely valuable to the brewing industry, as well as to guide new discoveries in
psychology and consumer preference.

1.2.1 Platform development

The study of beer is important, but there is another major benefit of the work in this
project: The development of the research platform itself. The methodology we are devel-
oping in order to enable massive-scale analysis of beer can, with only minor changes, be
adapted to enable the analysis of almost any other beverage or food. The process would
hardly have to change if one were to use it for research on liquids like coffee or soda, and
could be adopted to use on solid foods with small changes in the laboratory procedure
for chemical analysis. There are of course specific attributes of the chemical analysis and
customised data repositories that would have to change in order to apply the protocols
to other materials, but the methodology and ideas would remain the same. This could
increase the possible applications of our work many-fold, and pave the way for many new
projects in food science and related disciplines.

1.2.2 Aim of the thesis

As explained above, there is a multitude of reasons both to study beer and for the develop-
ment of the research platform. The aim of this thesis is therefore to lay the groundwork
to facilitate massive-scale computer analysis of fermented beverages, as well as provid-
ing a structure for categorization and storage of the generated data. This will involve a
combination of the following efforts:

• Documentation and standardization of sampling and analysis protocols in a user
manual.

• Case studies analyzing different sets of samples as pilot studies for evaluation of the
analysis pipeline.

• Creation of a custom ontology for categorization of beer samples.

• Evaluation of requirements for a database structure based on experience from case
studies.

• Recommendations on specific database solutions based on the requirements found.
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• Creation of a project website to facilitate contact with external contributors.

A visual representation of the efforts and processes of this thesis is provided in figure 1.1,
illustrating the role of this work as the foundation for future work in this project. Together,
these efforts will help us form an understanding of the requirements and the potential of
developing a full research platform for the study of fermented beverages.

Figure 1.1: Visual overview of the scope of the thesis and aims of the overarching
project. Purple nodes represent sources, blue nodes represent processes or general concepts, light
blue nodes represent the direct products of this thesis.
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Chapter 2

Background

This section will present the theoretical background necessary to understand the work
performed for this thesis. This will include brief explanations of central themes in brewing,
nuclear magnetic resonance spectroscopy, and its use in beer research, multivariate analysis,
and database structure.

2.1 A brief history of beer

This section is based on the chapter "A Brief Economic History of Beer", from the book
"The Economics of Beer", a comprehensive review of the history and economic perspective
of the brewing industry by E. Poelmans, 2012 [7]. As well as "A Comprehensive History
of Beer Brewing", an exploration of brewing in ancient cultures by F. Meussdoerffer, 2009
[1].

Beer, or at least beer-like fermented beverages, has been discovered independently by
almost all human societies. The production of such alcoholic beverages by fermentation of
sugar-rich foods like fruits or grains represents some of the very first applications of what
we may think of as biotechnology. Evidence of fermented drinks has been found in ancient
China as early as 7 000 years BC, and traces of barley beer have been confirmed in early
Mesopotamia and Egypt around 5 000 years BC [1]. Here in Norway beer has served an
important role in Old Norse culture and ideology, with significant parts of the theogony
and myths of Norse mythology being beer-related [8].

The history of fermented beverages and beer is as long as civilisation itself, but here we
need only understand the more modern developments in Europe after the 14th century, as
this is the source of the majority of modern beer making methods and traditions, and has
thus largely shaped beer into what it is today.

Until the mid-to-late Middle Ages, brewing was mainly done in homes, farms, and mon-
asteries. Monasteries were the only producers of beer on a large scale and brewed mainly
for the consumption of the monks, pilgrims, and the poor who sought help there. Between
1300 and 1500 AD, beer evolved from being produced on a small scale, to becoming a
large-scale export industry with dedicated breweries producing higher quality beer on a
larger scale. The move from small-scale home production to larger-scale export was due to
a myriad of factors, some of which were a rising demand for beer during the reexpansion
after the bubonic plague that killed a large part of the European population, coupled with
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a growing preference for beer over water, as the beer was boiled and thus significantly
less likely to transmit disease compared to the polluted water that was the alternative.
Another important factor in the growth of the brewing industry was travel. As more and
more merchants traveled between towns, the demand for lodging and food grew, and so
the number of inns and taverns increased. These became centers for social interaction,
and naturally the sale of alcoholic beverages, primarily beer, became common in these
places. One important factor in the change from monastic to commercial brewing were the
taxation of beer. Prior to the use of hops, a mixture of herbs called grut were usually used
for flavouring. The local rulers used to tax beer by forcing the brewers to buy grut from
them instead of taxing beer directly, however, with the switch from grut to hops during
the late Middle Ages, taxation became more difficult as the hops could be produced far
more easily and the rulers thus lost their monopoly on flavouring additives. The solution
was clearly to tax the beer itself, and since the Catholic monasteries were exempt from
tax, the local rulers would favour commercial breweries who would provide taxes for the
beer they produced [7], [1].

The use of hops started in northern Germany during the 13th century and significantly
improved both the taste and the shelf life of beer. It was discovered that the hop plant
(Humulus lupulus) had slight antibacterial effects that reduced spoilage and stabilized taste
compounds in the brew. This allowed for longer storage times and thus the possibility of
large-scale distribution and export. This, coupled with the use of larger brewing vessels
and thus larger production volumes, turned brewing into a more capital-intensive industry,
which also contributed to the centralization of the brewing process [9].

Unification of brewing into larger facilities and the increased commercial interest in beer
lead to many important developments in brewing technology during the 18th and 19th cen-
turies. One of the most noteworthy of these were an increased understanding of brewer’s
yeast and fermentation, which led to the development of the lagering process, and the pro-
duction of bottom-fermented lager beers. The introduction of steam engines for production
and transport, as well as new methods of refrigeration and new options for storage in glass
bottles and later cans, significantly increased the ability to store and distribute beer. This
increase in distribution and storage further pushed the brewing industry towards more
centralization and large-scale production. [7], [1]

The modern day result of all this evolution in brewing technology is a substantial global
market, comprising both large and small breweries that together produce a large variation
of different beer types and styles [10].

2.1.1 Classification of beer

The definition of beer has changed widely since the first jars of fermented barley in ancient
Mesopotamia, and many restrictions on what constitutes beer have been used since then.
In Germany in 1516, William IV of Bavaria adopted a law called the Reinheitsgebot, which
translates to purity law. He sought to specify and constrict the ingredients used in beer, as
well as the price of the beer. Under this law, the only ingredients allowed were barley, hops
and water. These restrictions may have had many reasons, such as preventing competition
for grain with bakeries by restricting brewing to the use of barley, or to prevent the sale of
beers from Northern Germany that contained additives not used in Bavaria. The observant
reader may notice that yeast is not included in the purity law, which might seem like
a grievous oversight. Brewers in this period saw yeast as a fixed part of the brewing
process, the yeast culture in one beer batch was usually transferred to the subsequent
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batch, thus specifying yeast in the law would be like specifying what kettle or stirring rod
to use. Only later with the understanding of fermentation following the discoveries made
by Louis Pasteur was yeast specified in the Reinheitsgebot. The law is of course no longer
enforced, but many breweries still adhere to these strict specifications, and it still to this
day represents our general understanding of what beer is. [7], [1]

2.1.2 Beer styles

Despite strict specifications of what goes into beer, a vast assortment of different beer styles
has developed over the years by varying the ingredients and brewing procedure of the beer.
There is no official consensus on what defines one beer style and separates it from another,
but there is a general understanding of roughly what constitutes each style of beer. In most
cases, the style is determined by the brewer who will classify the beer by the ingredients
used and the style he or she intends the beer to be. Different styles of beer are usually
separated either by the ingredients used, the taste profile, or by the area the style originates
from. Most generally, we divide beer types in two main categories: Ales and lagers, defined
by the use of top and bottom-fermenting yeasts, respectively. The main difference between
these two types is their fermentation temperatures and fermentation time, as well as the
flavour profile they produce. Ales usually ferment at temperatures between 17 and 22
°C, while lagers usually ferment in the range 8 to 12 °C. Traditionally, these yeast types
have been Saccharomyces uvarum and Saccharomyses cerevisiae for lager and ale yeasts,
respectively. Within both categories we find beer with varying characteristics, like dark
or light color, high or low levels of bitterness, or even the inclusion of other additives like
fruit or spices that contribute to the taste. Variations in the malt bill, hop type, yeast, and
flavour additives, among other things, will all affect the style or type of a beer [11].

2.2 The brewing process

Background for the brewing process is based on the chapter "The Brewing Process", from
the book "Brewing Yeast and Fermentation" by Boulton & Quain [12], a detailed work
describing common industrial brewing practices and the theoretical background behind
them. This is supplemented by commonly known brewing procedures that may not be
referenced.

The details in the process for brewing beer vary a lot depending on the beer, but the
general procedure is usually the same for most styles. In short, it consists of malting and
milling grains, extracting the sugars from the grains into water, boiling the water with
hops, and then fermenting the resulting sugar water for a certain amount of time using a
specific yeast or other fermenting organism. The procedure can vary greatly for different
beer types, as well as for the scale of production. Large scale commercial breweries will
use a significantly more complex procedure for purification and stabilization of the product
compared to what a small-scale home brewer might. The procedure described here pertains
to the general method used in our laboratory and is illustrated in figure 2.1.
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Figure 2.1: Visual representation of a simplified brewing process.

2.2.1 Malt and hops

Malt is grain that has gone through a malting process. This process is performed on grain
that is to be used in brewing, and can be performed on many types of grain, but the
procedure described here is for barley, the grain most commonly used in brewing. The
barley undergoes controlled germination by steeping in water, this activates enzymes that
break down starch into energy for the developing seed. This process is then prematurely
terminated by applying heat in a process known as kilning. The enzyme systems and
sugar reserves are now dormant, and will be reactivated again to release sugars during the
mashing process.

Hop is a taste and conservation additive used in brewing that imparts bitterness and
other floral and herbal taste components. It is made from the seed-bearing cones of the
female Humulus lupulus plant, that are usually dried and pressed into pellets. Hops can
be used in different stages of the brewing process, either during wort boiling and/or during
fermentation.

Milling, or crushing, is the process by which the malted grain is crushed to expose the
contents of the malt to the mashing water. This step is usually done shortly before the
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brewing starts [12].

2.2.2 Mashing

Mashing is the process by which the crushed malt is exposed to water and the enzymatic
reactions started during malting are reactivated. These reactions, catalysed by α and
β-amylase enzymes, change the starch-based energy reserves of the malt endosperm into
fermentable sugars that can be utilized by the yeast during fermentation. When the ex-
traction is finished, the spent malt is removed from the water. The steps of adding and
removing the mash is known as mash-in and mash-out respectively. The resulting sugar
rich water is known as wort. The mashing process is usually done at temperatures in the
range of 55-68 °C, with different temperatures favoring the two main amylase enzymes
differently, which effects the final sugar composition of the wort [12].

2.2.3 Boiling

After the mash is removed and the sugar-rich wort is formed, the mixture is boiled. Boiling
is done for at least 60 minutes, and the process serves a host of different purposes. Firstly, it
sterilizes the wort and inactivates any amylase enzymes left after mashing. The sterilization
is noteworthy, as it allows all previous steps of the process to be performed under less
rigorous conditions, significantly simplifying the process. The boiling also gets rid of many
undesirable volatile compounds, many of which are extracted from the malt during the
mashing process.

Adding hops, known as hopping, also happens during boil. The boiling process helps
extract and isomerize the alpha acids from the hops, a process that is necessary for the
desired flavor development in many hop variants. Those that impart mostly bitterness are
added early in the boil and are heavily isomerized, but most of their aromatic compounds
are lost, while others are added later and have a more balanced isomerization to aromatic
ratio. This all depends on the hop used and the intended taste profile of the beer. The
hops are removed prior to fermentation.

Clarification of the wort is another benefit of the boiling process, where the elevated tem-
perature causes proteins to coagulate and polyphenols to form an insoluble precipitate with
other unwanted compounds. Most of this precipitate, called terb, gathers at the bottom of
the boiler when the wort is cooled, and is therefore not transferred to the fermentor. This
makes the final product clearer and gives a cleaner and more predictable taste profile [12].

2.2.4 Fermentation and yeast

When the sugars have been extracted during the mashing process, the mixture is sterile,
and unwanted compounds have been removed during boiling, the wort is ready for fer-
mentation. Firstly, the wort is cooled to an appropriate fermentation temperature, this
depends on the yeast type but is generally in the range of 12-30 °C, and transferred into
a fermentation vessel. The style of fermentor used can vary from large stainless steel fer-
mentors in commercial breweries to small plastic buckets used for home brewing, however
the general process is the same. At this point, it is important that all instruments that
come in contact with the wort, including the fermentation vessel itself, are sterile. The
sugar-rich wort is highly susceptible to contamination by unwanted microorganisms that
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will affect the fermentation process and result in an imperfect product. When the wort
has been transferred to a clean fermentor, a specific yeast strain is added to the wort,
whereupon the liquid is mixed thoroughly to distribute the yeast evenly and introduce
oxygen to the mixture to allow the yeast to multiply under aerobic conditions before the
main fermentation starts.

The fermentation itself occurs within the fermentor under anaerobic conditions, during
which the yeast metabolizes carbohydrates into ethanol and CO2. There are multiple com-
plex reactions taking place during yeast metabolism, and the fermentation process produces
a myriad of different taste compounds in addition to ethanol from different fermentable
compounds in the wort [12].

The resulting taste compounds produced during the fermentation process depend on mul-
tiple factors, like yeast strain, temperature, wort composition, amount of yeast used for
inoculation, known as pitch rate, as well as the use of taste additives like fruit, spices and
hops.

Different yeast strains can produce vastly different taste profiles from the same wort, as
different strains have slight variations in metabolic pathways, and thus vary in what taste
compounds they produce and what substrates they can metabolize [13].

Pitching rate can also affect the taste profile of the fermentation product, as the yeast
population is experiencing varying levels of stress during the fermentation process depend-
ing on the number of yeast cells used for inoculation. Stressing the yeast will change its
gene expression pattern, and thus also its metabolic pathways, resulting in different taste
profiles. The effect of pitching rate varies between yeast strains and depends heavily on
their resilience to stress [14].

Hops can also be added during the fermentation process. This is called dry hopping,
whereby hops are added to the fermentation vessel and allowed to steep. This will release
different flavours from the hops added here compared to the hops added during boil, and
will often impart more complex floral notes to the beer. The flavour imparted by the hops
during dry hopping is heavily dependent on the hop variant, the amount used, and the
length of time it spends in the wort [9].

2.2.5 Storage and bottle fermentation

When the fermentation is complete, the finished beer is transferred into either bottles or
kegs for storage. Storing the beer will impact the taste of the beer, as reactions occur
within the beer over time. In contrast to some wines, the aging of beer is usually not
considered a benefit for flavor quality, however, it may result in a rounder and milder taste
in cases where spices are heavily used for flavoring. There are many reactions responsible
for the change in flavor, both oxidative reactions caused by the presence of oxygen and
Reactive Oxygen Species (ROS), and non-oxidative reactions like esterifications, breakdown
of products form Maillard reactions, and glycoside to name a few. The degradation of the
beer during storage is highly dependent on the environment the beer is stored in as well as
the initial ingredients and the brewing process employed [15]. Different beer types react
quite differently to storage, and studies have shown that specialty beer like dark and hoppy
ales are less stable in taste profile compared to light lagers [16].

Another aspect of storage is adding CO2 to the beer, often referred to as carbonation. This
can be done either by forced carbonation, where the beer filled in a keg and pressurized
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with CO2, or by a process called bottle fermentation. Bottle fermentation is done by
transferring the finished beer into a bottle and adding a small amount of sugar, this allows
the remaining yeast in the beer to continue fermentation for a short time, and will thus
produce CO2 that carbonize the beer [17].

2.3 Nuclear magnetic resonance spectroscopy

This section describing the theory of NMR is based on the book "Spin Dynamics: Basics
of Nuclear Magnetic Resonance" [18], a comprehensive and modern introduction to the
principles of NMR by M. Levitt, 2008.

Nuclear Magnetic Resonance (NMR) spectroscopy is a technique that can be used to
elucidate the chemical structure of molecules within solution. The basic principle of NMR
spectroscopy is measurement of the phenomenon of magnetic resonance of nuclei. If a
sample in a magnetic field is subjected to radiation (energy) at a specific frequency, the
sample can absorb the energy and reach a new energy state, called excitation. The specific
radiofrequency necessary to achieve excitation is dependent on a few things: The type of
nucleus to be exited (e.g., 1H or 13C), the chemical environment of the nucleus (e.g., protons
in a methyl, hydroxyl or amino group), and the spatial location within the magnetic field
if the field is not uniform. [18]

2.3.1 Nuclear spin

Nuclei have magnetic fields, these fields are created by the combination of the positive
charge of the nucleus and nuclear spin, where the nucleus acts as though it is spinning
around a single axis. If the nucleus is subjected to a magnetic field, the spin axis will
orient itself in a specific direction determined by the magnetic field. However, the axis
of spin can be in one of two states, one being a stable state (low energy state) and the
other being an unstable state at exactly 180° in the opposite direction (high energy state).
This two-state situation is not the case for all nuclei, but for many of those with biological
interest (i.e., 1H, 13C, 15N, 19F and 31P) this is the case. These are said to have a nuclear
spin number I = 1/2. [18]

2.3.2 Resonance phenomenon

If a nucleus in a magnetic field is subjected to irradiation in the radio frequency range, and
the energy is exactly the same as the energy difference between the orientation states in
the nucleus, the nucleus will "flip" and enter the other energy state. When the irradiation
is removed, the nuclei will revert to their original state. Both the excitation and relaxation
processes can be detected by finely tuned coils of wire that measure the voltage induced
by the excitation process. This signal is known as Free Induction Decay (FID).

The energy required to excite the nuclei (∆E) is dependent on the strength of the magnetic
field (B0), the gyromagnetic ratio for the type of nucleus (γ), the Larmor resonance fre-
quency (ω0 = 2πν0), as well as the Planck’s constant (h). The equation for the excitation
energy is expressed as:

∆E = γhB0/2π (2.1)
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Using the Bohr condition (∆E = hv), stating that the frequency of the transition is equal
to the change in energy between two states, we can express the frequency of the excitation
energy as:

ν0 = γB0/2π (2.2)

By measuring the frequency required to excite a nucleus, it is possible to determine its
chemical shift. A chemical shift is caused by the magnetic field created by the electron
cloud in the vicinity of the nucleus, having a shielding effect on the magnetic field being
applied, and thereby changing the resonance frequency compared to an identical nucleus in
a different chemical environment. Measurements of the excitation frequency of all proton
nuclei in a sample can therefore yield accurate information on the environment around the
different nuclei, which can be interpreted to reveal the molecular structure.

The explanation above gives a brief introduction to how NMR works. The most basic
form of NMR is 1D proton spectroscopy, meaning that the magnetic field is tuned to affect
hydrogen nuclei. This is quite useful as most compounds of biological interest contain at
least one hydrogen atom. The measurements described can also elucidate further inform-
ation, like the chemical neighbourhood of a nucleus based on coupling constants between
other similar nuclei. NMR can also be used quantitatively to determine the concentra-
tions of compounds, and while it has traditionally been used to analyze pure compounds,
developments in techniques have allowed for use in complex mixtures like that of beer [18].

2.4 Treatment and chemical analysis of beer by NMR spec-
troscopy

This thesis aims to enable quantitative analysis of components in different beers using
NMR spectroscopy. To gain any useful insight from the comparison of NMR spectra from
different beer samples, both the sampling and data treatment methods must be as uniform
as possible without introducing any bias towards certain sample types.

2.4.1 Use of NMR spectroscopy for beer analysis

NMR spectroscopy has been used in multiple studies of beer since the 1980s, and the
methods have developed over the years since. NMR has been used both in qualitative and
quantitative studies on beer, ranging from differentiation of beers from different brands
[19], to quantification of specific compounds [20].

Most compositional analysis by NMR has been done on either hop compounds [20], or
carbohydrate composition [21]. Hop compounds are of great interest because of their
importance in the overall taste profile, as well as effects on the bitterness and stability
of the finished product. Analyses of hops revolve mostly around the formation, stability,
and taste of α- and β-acids, as well as their isomerization process [22]. Carbohydrates
are of interest due to their contribution to the mouthfeel and body of the beer, as well as
their affects on viscosity, filtering requirements and haze formation, all important aspects
of both taste and quality of beer products [23].

In recent studies, the combination of NMR spectroscopy with Multivariate Data Analysis
(MVDA), like Principal Component Analysis (PCA) and Partial Least Squares-Discriminatory
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Analysis (PLS-DA), has shown promising results in both differentiation of beers based on
type (ale or lager) [24], [19], and in rapid quantification of certain important compounds
in a beer sample [20], [25], [26]. A thorough review of the state of NMR beer research in
2011 by J. E. A. Rodrigues [22], recognized that to create models with predictive or real
statistical power large scale data would be needed. They also noted that the combination
of NMR spectroscopy and Mass Spectrometery (MS), with MVDA would be a powerful
tool in future studies towards a better understanding of the effects of raw materials on
the final product, tracking of compositional changes during different processes, and the
development of new methods for correlating chemical analysis data to quality control and
sensory analysis. [22].

2.4.2 Sample treatment

Some of the important considerations in sample preparation is firstly that the samples
must have a similar pH. Differences in pH cause significant differences in the resulting
NMR spectra, as pH effects the protonation state of functional groups, and in turn the
chemical shift. Control of pH can be achieved using an inorganic buffer to adjust the pH
of different samples to be similar without introducing anomalies that could be mistaken
for yeast metabolites [27]. Secondly the sample must be homogeneous, as gas or particles
can cause disturbances in the magnetic field during NMR acquisition and can affect the
quality of the spectra. Filtering and ultrasonication will remove particles and gas bubbles
that could cause issues in the sample [28], as well as removing any yeast cells present,
thereby preventing any further fermentation within the sample. Thirdly, the sample needs
to contain a reference compound, with a known chemical shift to calibrate the shift of the
spectrum. This can be solved by including a known quantity of Trimethylsilylpropanoic
Acid (TSP) with the sample for reference as the 1H signal in the TSP will not overlap with
any of the signals occurring in the beer [28].

2.4.3 Data treatment

In order to evaluate differences in beers with NMR spectroscopy, it is crucial that the
treatment of the data allows for proper comparison between spectra. An important step
in this process is the alignment of the different spectra. In order to be able to statistic-
ally compare different spectra, they must first calibrated using an internal standard, as
well as being perfectly aligned with each other. Further misalignment can be caused by
small differences in pH that remain after buffering, or by slight temperature differences.
Alignment can be completed using the icoshift software in Matlab, which allows for quick
and flexible alignment of 1D NMR spectra for metabolomics. Icoshift allows for processing
of full resolution spectra, so that any dimensionality reduction we would wish to do can
happen after alignment and therefore do not affect the accuracy. [29]

Normalization and scaling for statistical analysis are also important considerations in pre-
treatment that may affect the results of any analysis to be performed. Normalization is a
process by which the relative intensities of the spectra are scaled to be the same. This is
crucial to account for differences in dilution between samples. In this thesis, all normal-
ization is done using probabilistic quotient normalization, which scales the spectra using
a calculated median of all spectra in the study as a reference [30]. Scaling is the final
pretreatment method that is relevant for our data. The aim is to adjust for the difference
in variation between the compounds, by converting the values into differences in relative
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abundance compared to a scaling factor. Unit variance scaling, also known as auto scal-
ing, is a common approach that uses standard deviation as a scaling factor. It leaves all
compounds with a standard deviation of one, and thus allows for analysis on the basis of
correlation instead of covariance [31]. Scaling can however cause problems with baseline
noise in spectroscopy, scaling is therefore not used for nonparametric statistical analysis in
this thesis. For parametric tests like Student t-test (t-test) however, unit variance scaling
was applied.

2.5 Statistical data analysis

For the actual statistical analysis of the spectra, one observation is important: There is
no single outcome variable to evaluate. When comparing and analyzing differences in
these NMR spectra, we are looking at what is essentially many measurements made on
each experimental unit (sample) with multiple outcome variables to consider. This is a
multivariate problem, and we must therefore use analysis methods that handle multivariate
analysis, such as PCA, PLS-DA, and clustering methods [32]. There is a multitude of
possible analysis tools for multivariate analysis, one of which is the web-based service
MetaboAnalyst, a free service that enables rapid analysis using a variety of different analysis
methods, including specialized tools for metabolomics data from NMR-analysis, which is
the closest common analogy to our type of data. MetaboAnalyst also provides code in the
R-syntax for all analysis performed to enable ease of reputability and transparency [33].

2.5.1 T-tests and ANOVA

The statistical tools t-test and Analysis of Variance (ANOVA) are both methods for eval-
uating if there is a true difference in the mean between groups. The t-test is used in cases
of only two groups, while ANOVA is used in cases of more than two groups. Based on
the means, variance, and sample size of the groups, a t-test will calculate the probability
of random chance resulting in a difference in the means equal to or greater than the one
observed. In the case of an ANOVA, the principle is the same, only expanded to evaluate
differences in means between more than two groups [34].

2.5.2 Principal Component Analysis

PCA is a fundamental analysis method in multivariate analysis and is based on reducing
the dimensionality of the data into the dimensions that explain the most variance. The
algorithm creates consecutive principal components by finding the regression line that max-
imises the variance along the line, then finding the next such line that is orthogonal to
the first one, and so on until no variance remains. In mathematical terms, this amounts
to calculating the eigenvectors of the covariance matrix and ranking them by their corres-
ponding eigenvalues in decreasing order. Thus, the principal components become the new
axis of the data, constructed so that they explain the maximum variance possible. Each
principal component explains as much of the remaining variation as possible, therefore the
first components explain the majority of the variance. The loadings of the PCA describe
the weight of each variable in the construction of the principal component. In practical
terms, this means that variables with large absolute values in their loadings have more
variation between samples, and is therefore more important for the placement of a sample
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along a given principle component. To find variation in peaks between samples in our
spectra, we can therefore look for data points with high loading values. [35].

2.5.3 Clustering and supervised analysis

Unsupervised methods for multivariate analysis, such as PCA, can be used to detect pat-
terns, trends, and outliers in a data set. However, unsupervised methods are incapable
of discriminating between variations within a sample group and between different groups.
Supervised methods, like PLS-DA, take group identification into account when evaluat-
ing variation. These methods can therefore be used to highlight the actual differences in
compounds that separate the different sample groups or treatments, and provide loading
plots to identify the areas of the spectra that are responsible for the observed variation.
Much like in PCA, the loadings from PLS-DA identify peaks that vary between samples,
however, since PLS-DA tries to separate based on categories, these loadings show peaks
with categorical differences. Note that supervised methods are prone to overfitting and
must therefore be validated. This can be done using a permutation test, which runs the
model multiple times, each time assigning incorrect class labels to some of the samples, and
comparing the separation of the incorrect classes to the results from the original classifica-
tions. This way, the permutation test measures of the classification given are significantly
better than randomly assigned classes, and provide a p-value for the probability of the
separation observed to be due to random chance [36].

Other unsupervised methods for clustering can help group samples according to similar-
ities, and may therefore be valuable in evaluating the categorization of the data or for
validating analysis methods. The most commonly used unsupervised clustering method is
k-means clustering, which creates k-number of clusters by minimizing the Euclidean dis-
tance from each sample to one of k-number of cluster centers, using the first two principal
components [37]. Agglomerative hierarchical clustering, represented by a dendrogram is an-
other valuable exploratory clustering algorithm that does not require a specified number of
clusters, as opposed to the k-means algorithm. Dendrogram clustering creates binary pairs
by grouping each sample with the most similar other sample in the set, creating nodes for
each pair, and continuing in an iterative process to create new pairs of the nodes until a root
node is reached. The resulting clusters can be easily visualized in a dendrogram [38]. An-
other powerful and flexible tool for examining clustering is an algorithm called t-Distributed
Stochastic Neighbor Embedding (t-SNE). This algorithm is commonly used in the field of
machine learning and is intended as a tool for faithfully mapping high-dimensional data
onto a low-dimensional space [39], and allows for visualization of any apparent structure
in the data that might not be evident by PCA or PLS-DA analysis. This is done by calcu-
lating similarity scores for all points in the high-dimensional space, these scores describe
the distance between each set of two points. The scores are then scaled using a normal dis-
tribution, and then projected onto a lower-dimensional space. The algorithm recalculates
the similarity scores for the lower-dimensional space, scales them using a t-distribution,
and thereafter iteratively rearranges the points until the pattern of the similarity score
matrices for the high and low dimensional data are identical. The t-distribution is used
for scaling of the low-dimensional similarity scores because it creates more relative space
between clusters in comparison to other distributions, making visualization much simpler.
This way, the algorithm is able to map the data onto a lower-dimensional space while
the clustering in the high-dimensional space is preserved [40]. The perplexity parameter
in t-SNE allows us to tune the balance between local and global aspects of the data by
providing a number of expected close neighbours for each data point [39].
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2.5.4 Fingerprinting

When attempting to analyse highly complex media such as beer by NMR spectroscopy, it
quickly becomes evident that identifying all compounds and peaks will be quite difficult
if not impossible, as we have large areas with heavily overlapping signals. A traditional
approach of compound identification and quantification will not be viable for regular 1D
proton NMR, however the use of metabolite fingerprinting is a promising alternative. The
approach aims to highlight compositional similarities and differences in samples and groups
of samples, evaluating the spectra as whole systems instead of trying to quantify sample
differences in each compound [41]. The fingerprinting approach will be used for most of this
thesis, combined with efforts of identification and quantification of important compounds
when possible.

2.5.5 Machine-guided analysis methods

An eventual goal for the database effort is to have access to a large data set for analysis.
Such analysis can hardly be done manually, therefore we must consider possible machine-
guided analysis methods for analyzing large quantities of data. The relevant methods for
our efforts fall roughly into two categories: Knowledge discovery and knowledge prediction.

Knowledge discovery methods aim to explore data sets and uncover unknown structures
within the data, such as patterns, connections, and similarities that might not be immedi-
ately apparent to human analysts. One major method for knowledge discovery is the use of
data mining algorithms, these algorithms sift through the data searching for all discernible
patterns therein. Normally such algorithms do not discriminate, however, and false dis-
coveries will be highly prevalent. It is therefore important to develop accurate algorithms
and to employ the knowledge of domain and data experts when evaluating the structures
found [42].

Knowledge prediction pertains to constructing models for extrapolating on known data to
predict unknown information. This can be predicting the results of trends in the data or
creating connections between elements based on similar relationships in other elements.
Machine learning is one of the most powerful modern tools of knowledge prediction, these
complex algorithms are able to teach themselves to recognize and predict patterns based
on knowledge gathered through data mining, and form new prediction algorithms that are
not explicitly programmed beforehand [43].

In our case, such tools will likely be essential for studying the classification structure of
beer, evaluating similarities and differences between sample treatments, and searching for
patterns in customer preference. As well as predicting new patterns, preferences, and
categories that might not be fully realised yet.

2.6 Ontology

This section is based on a manual for ontology development by Natalya F. Noy and Deborah
L. McGuinness at Stanford University, titled "Ontology Development 101" [44]. The work
is a comprehensive guide to establishing an ontology, as well as the theoretical background
needed to do so.
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2.6.1 Defining ontologies

Defined as “explicit formal specifications of terms in the domain and relations among them”
by Thomas Gruber in 1993 [45]. Meaning it is essentially a vocabulary of terms within a
given domain or field, where all relevant concepts are defined and named. This definition
is quite cursory and there is a lot more to ontologies than just glorified vocabularies.
Ontologies let us create accurate understandings of the concepts within our domain, the
relationships between those concepts, and the rules that govern both the definitions and
relations. Modern ontologies are both machine and human readable and they can help us
structure, store, and infer information from our knowledge base [44].

2.6.2 Purpose of ontologies

The purpose of ontologies is to facilitate communication between users of a domain, as
well as between the users and computer software. For any communication to be accurate,
we need clear definitions of concepts and instances within our domain. This allows us
to avoid misunderstandings or errors caused by a vague understanding of a concept, or
miscommunication caused by the use of different synonyms or naming conventions among
domain users. These definitions, as well as the relations between them may be recorded in
an ontology [44], [46].

Another major benefit of using ontologies is the ability to link our knowledge structure to
software. By constructing classifications and relations with rules that are machine readable,
we can produce intuitive digital storage repositories based on the ontology structure. We
may also use the rules for structures and relations in the ontology to guide software to
infer information about the instances we include. The machine readability of ontology
languages are among their most important and defining features, as the interaction between
ontologies and software is what elevates them from mere dictionaries to truly powerful tools
of annotation and reasoning. When digital knowledge bases with overlapping coverage can
use the same exact naming conventions and definitions, the sharing of knowledge and data
between repositories becomes significantly simpler. The use of universal ontological terms
for describing domains also simplifies the extension of domain knowledge and facilitates
the sharing of methods for describing complex concepts between domains. One example
used by Noy & McGuinness(2001) [44] is the ability to share ontological representations
of time, like time intervals, points in time, etc. Making such definitions universal would
greatly improve our ability to share knowledge and data in exact ways.

The ability to make domain assumptions explicit and editable is also a benefit of digital
ontologies. If the assumptions and definitions of a domain are stated in an ontology, they
can easily be edited and changed over time as our understanding of the domain concepts
evolve and expand. Having these definitions stated also simplifies the transition into a
domain for new users, as having clearly stated and structured definitions of concepts will
make learning them significantly easier [44].

The creation of an ontology for the classification of beer will be central to the aim of this
thesis. Since there is no official consensus on the definitions of beer types and classes,
we must define our own classifications in order to have our analysis be informative and
useful. This classification structure will also be made publicly available, so that it may be
used by others and thereby contribute to a standardization of beer categorization. This
classification system will also serve as the template for the database structure that is to
follow from this thesis, and serve as a temporary method of recording and annotating
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samples generated or gathered for the project.

2.6.3 Ontology concepts

There are a few terms that will be necessary to understand in order to comprehend the
descriptions of the ontology, these are as follows:

• Instances: The smallest units included in a class structure of an ontology, usually
the objects or concepts the ontology is seeking to categorize.

• Object properties: Properties of a class or an instance that describe the object in
relation to other objects. In this ontology these are properties that describe concepts
like one object either being or having an ingredient.

• Data properties: Properties describing the nature of a data field, this can be concepts
like date, age, or name.

• Property assertions: The connection of a data or object property between two ob-
jects. These function as links between objects, and describe certain concepts like a
certain object being an ingredient in another.

• Class axioms: Specific rules for a class, describing a defining trait of the class, often
in relation to other classes.

Note that property assertions and class axioms serve a similar purpose, the difference being
property assertions acting on instances of a class, and class axioms acting on the class itself
[44, 47].

2.7 Databases

2.7.1 Fundamentals of databases

A database is an organized repository of stored information. Storage is generally digital,
and there is usually some implementation of software to enable data access through quer-
ies and data filtering. There are endless variations on how databases are structured, but
a general design principle is based on there being multiple parts of a database system,
with a central component called a Database Management System (DBMS) handling com-
munication between the actual information repository and the users or applications that
are fetching or delivering the information [48]. There are multiple types of databases, a
widespread type is relational databases, which is what we will focus on here.

A relational database consists of multiple tables of columns and rows that represent rela-
tions. Generally, a table represents a data category where rows are referred to as records
and columns as attributes. Each record is usually an instance of a type, such as a car, and
the attributes represent some value of the instance, like the registration number for the
car. Each record, or row, will have a unique key. This key can appear in different tables
giving the instance multiple attributes within different data categories. Tables can also be
linked by relationships, which function as logical links based on the interaction between
the tables [48].
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2.7.2 Structured Query Language

Querying, filtering, and retrieving the data stored in a repository is usually handled by
a querying language. Structured Query Language (SQL) is the most commonly used lan-
guage to handle relational databases. It consists of multiple sublanguages that handle
querying, access control, data definition, and classification, as well as data manipulation
like deletion, insertion, or updating. While there are multiple versions of SQL, their general
functionalities are similar [49].

2.7.3 Application programming interface

An Application Programming Interface (API) is a part of many database systems. These
interfaces facilitate controlled use of external programs to interact with the database sys-
tem. Using an API, we can design custom applications to handle any sort of interaction
with the database, such as importing, exporting, or reading information in ways required
for specialized data structures. The flexibility of APIs allows for a far broader functionality
of most database systems, and API support will be required for the database solution in
this project [50].

2.7.4 Challenges in beer studies

Storage of data for beer research poses a challenge in sample categorization and metadata
recording. Firstly, there is no established way to store scientific data on beer along with
chemical spectra or data from other analysis methods. Beer is a complex medium made
up of many different ingredients, as well as a variety of production processes that must all
be captured in a database. Information on the beer production and recipe will be stored
as metadata: supplementary data unique to each sample that describes its properties.
Because the structure of the metadata can vary significantly between different beers, the
database used must be highly flexible. The second challenge comes in the form of chemical
spectra. These are large spreadsheets, whom in their native formats require proprietary
software to interact with. This causes limitations in the querying and filtering processes
applied to the spectra themselves.
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Chapter 3

Materials and Methods

This section will describe the methodology and equipment used in the various parts of this
project. The experimental efforts will be described in detail, while the theoretical efforts
that make up a significant part of this thesis, including decision making and design choices,
will be explained here briefly and be discussed in detail in chapter 5.

3.1 Case studies

To generate examples of the data to be included in the database, three different data sets
were generated. The first is comprised of 19 commercial samples from Austmann Brewery.
The second includes nine samples from an experiment manipulating the yeast pitch rate
used in the same wort. The third data set is comprised of 30 samples from an experiment
designed to evaluate the use of algae as a flavouring additive in beer, these samples were
run twice at two different time points to examine the effects of aging, thus the data set
contained 60 samples. The total number of spectra analyzed in this thesis was 88, however
no analysis were done on the collection as a whole.

3.1.1 Brewing procedure

For the samples produced in-house the following general brewing procedure was used and
changed when necessary for the given recipe. Explanations of brewing-specific terms can
be found in the background chapter, section 2.2.

The wort is generally brewed in a 55 L Braumeister Speidel using malt specified in the
recipe of the beer. The malt is ground prior to brewing, and mash-in is performed at 58
°C. Salts are added to the water prior to mash-in, according to the water profile of the beer
style. Mashing time and temperature is chosen according to the given recipe, and mash-out
is done at 75 °C for 15 min. During mashing, stirring is performed every 15-20 minutes
in order to break up channels forming in the mash and increase the sugar extraction rate.
After mash-out, the mash is rinsed with water at 70 °C, which is later returned to the wort.
The wort is boiled according to the recipe, usually for 60 min, and hops are added during
the boiling according to the recipe. Flocculation material (Irish moss and Whirlflock) is
usually added to the wort 15 min before the end of boil, this has no effect on taste and
is intended to help larger particles flocculate before transferring the wort to fermentation
tanks.
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3.1.2 Categorization study of Austmann samples

For the study examining beer style categories, nineteen beers were sampled from the Aust-
mann Brewery in Trondheim. The beers sampled represented the majority of the brewery’s
assortment of beer. Each beer was sampled and treated as described in sections 3.2. They
were divided into four basic categories for analysis based on their profile. The included
beers and their categorization are shown in table 3.1.

Table 3.1: List of sampled beers from Austmann brewery. Including name, sample
ID and categorization.

Beer name Sample ID Style category
Lynchburg Latte AU10 Dark
Northie AU11 Dark
Stille natt AU18 Dark
Coffee Porter AU3 Dark
Liquid Lumberjack AU9 Dark
Old School IPA AU12 IPA
Onkel I Amerika AU13 IPA
Pine Shoot AU16 IPA
Psycho Tropic AU17 IPA
Captain Cold One AU2 IPA
Hawaiian IPA AU4 IPA
Hopbird AU5 IPA
Pilsner AU15 Light
Utpå AU19 Light
Hoppy Blonde AU6 Light
Lager 11 AU8 Light
Blood And Thunder AU1 Sour
Peach Piñata AU14 Sour
Hula Hula AU7 Sour

3.1.3 Study of the effects of differing pitching rates on beer composition

For studying the effects of pitching rate, three different rates (underpitched, normal pitch,
and overpitched) were performed in three parallels, each with the same wort using the same
yeast, as illustrated in figure 3.1. One batch of wort was made and separated into nine
fermentation vessels. Different amounts of yeast were added to each fermentor depending
on the pitching rate, and three fermentors were pitched with each of the three rates. All
fermentors contained 1 L wort and allowed to ferment for 14 days at 20 °C.
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Figure 3.1: Experimental setup of pitch rate study. The figure illustrates one of three
parallels in the study.

The recipe used for the beer was a Belgian-style witbier, a beer style with a light color and
a significant portion of wheat in the malt bill. This recipe was chosen based on its yeast-
dependent flavour profile and short fermentation time. The yeast used was a Bavarian
Weizen ale yeast, produced by Whitelabs, designation WLP351. The yeast was chosen for
its distinct flavour profile and high variability with different pitch rates.

The yeast was prepared by growing 40 mL (1 packet) of WLP351 in 2 L of malt extract
in order to create enough yeast to inoculate the different samples. The total yeast mass
produced by the starter was 30 g centrifuged yeast mass. Cell counts were done by cent-
rifuging the yeast slurry in 50 mL Eppendorf centrifuge tubes for 2 minutes at 4500 rpm
and 27 °C, discarding the supernatant and weighing out a small amount of centrifuged
yeast mass. The yeast sample was then diluted in water and counted by microscopy in a
Burker hemocytometer with 0.04 mm3 counting chambers. Ten counting chambers were
counted at varying locations on the hemocytometer, and the values were averaged. The
cells / gram count was then calculated from the average hemocytometer count using the
weight of the counted yeast mass and the dilution.

Pitch rates were chosen based on standard pitch recommendations of 1 × 106 yeast cells
/ mL wort / °Plato [14]. The assumed gravity of the wort before fermentation was 15.3
°P, for 1 L wort the normal pitch rate was thus calculated at 1.53× 1010 cells / fermentor.
This results in 1.27 g of centrifuged yeast mass / fermentor based on the assumption that
1 mL centrifuged yeast mass weighs approximately 1 g. For this study, the standard pitch
rate was set to 1 g centrifuged yeast slurry / fermentor. A "low" pitch rate was chosen at
0.1 g yeast / fermentor, and a "high" pitch rate was chosen at 7 g yeast / fermentor (due
to limitations in yeast amount). Before inoculation, the yeast was centrifuged to an even
mass and the supernatant removed. The amounts of yeast corresponding to each pitch
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rate were weighed and subsequently used for inoculation of the corresponding fermentor.
The amount of yeast used in the fermentation of each sample is shown in table 3.2.

The finished wort was transferred to 10 fermentation tanks (200 mL Schott Duran protect
bottles with yeast locks) in 1 L batches. Each pitch rate were performed in three parallels,
with one additional fermentor that was not inoculated as a control. The fermentors were
then sealed with a yeast lock to provide an anaerobic environment, and placed in three
different water baths containing one fermentor of each pitch rate to counteract potential
temperature differences caused by the different pitch rates. Experimental setup for one
parallel is shown in figure 3.1. The wort was then allowed to ferment for 14 days at 20 °C,
before being transferred to a cooler to cold-crash for 4 days. After fermentation, a sample
was taken from each fermentor, and the remaining beer was transferred to bottles for
secondary bottle fermentation. The samples were then treated and analyzed as described
in section 3.2.

Table 3.2: Table of pitching rates for samples in pitch rate study

Sample name Pitch rate group Pitch rate
(cells / ml / °P)

Pitch rate
(% of recommended)

Yeast used
per 1 L (grams) Sample ID

Under 1 Underpitched 8.5 × 104 8.5 0.10 WU1
Under 2 Underpitched 8.5 × 104 8.5 0.10 WU2
Under 3 Underpitched 9.4 × 104 9.4 0.11 WU3
Normal 1 Normally pitched 8.7 × 105 87.2 1.02 WN1
Normal 2 Normally pitched 8.9 × 105 88.9 1.04 WN2
Normal 3 Normally pitched 9.0 × 105 89.7 1.05 WN3
Over 1 Overpitched 6.0 × 106 602.6 7.05 WO1
Over 2 Overpitched 6.0 × 106 603.4 7.06 WO2
Over 3 Overpitched 6.0 × 106 602.6 7.05 WO3

Sensory analysis

For the pitch rate study, a quick qualitative sensory analysis was performed to evaluate
if a taste difference in the samples could be detected, and if any trends were identifiable.
The analyses were performed by 16 untrained participants in six independent groups. The
participants had no prior knowledge of the experimental setup or variables of the samples,
they were given one sample from each pitching rate and asked to identify any differences or
trends in the taste profiles and sort the samples accordingly. Notes on the responses from
the participants were compiled into a list of general taste descriptors and their intensities
for each pitch rate.

3.1.4 Study of aging in algae-flavoured beer samples

The samples of beers flavoured with algae were produced in-house, and the worts for the
four beers were brewed according to the procedure described in section 3.1.1, following the
recipes in appendix A.2. After brewing, each wort were separated into either nine (Algae
amber lager & Algae brown ale) or six (Algae IPA & Algae goose) small fermentors holding
2 L each. Yeast was added to the fermentors according to table 3.3, creating 10 different
combinations of wort and yeast. The samples were fermented at 20 °C, however exceptions
were made for fermentors with Dahls yeast that were set at 12 °C, and fermentors with Oslo
kveik that were set at 30 °C. The temperature was regulated by placing the fermentors in
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water baths holding the appropriate temperature. After half of the fermentation time had
passed, 6 g of freeze dried and blanched algae of types Saccharina latissima (SL) and Alaria
esculenta (AE) were added to each of the appropriate fermentors according to table 3.3.
This setup resulted in 30 unique combinations of wort, yeast, and algae, including samples
not containing algae. An example of the experimental setup for one beer type and one
yeast is illustrated in figure 3.2. After fermentation, the samples were prepared, treated,
and analyzed according to the procedure described in section 3.2.

Figure 3.2: Algae beer experiment setup of one combination of wort and yeast.

The algae-flavoured beer samples were then stored in glass bottles in a dark cooler holding
4 °C for between 155-161 days (depending on the brewing date), a storage time of about 5
months or 22 weeks. After the storage time, samples were analyzed again according to the
procedure described in section 3.2, and a comparative analysis were performed between
the aged and non-aged samples.

Table 3.3: List of samples produced for the study of aging in algae flavoured
beer. Including sample ID, beer type, yeast, algae type, brewing date, and sampling date.

Sample nr. Beer type Yeast Algae Brewdate Sampling date
A1 Amber Lager WLP001 SL 14-Oct 28-Oct
A2 Amber Lager WLP565 AE 14-Oct 28-Oct
A3 Amber Lager WLP001 No Algae 14-Oct 28-Oct
A4 Amber Lager WLP001 AE 14-Oct 29-Oct
A5 Amber Lager WLP565 SL 14-Oct 29-Oct
A6 Amber Lager Dahls AE 14-Oct 19-Nov
A7 Amber Lager Dahls SL 14-Oct 19-Nov
A8 Amber Lager WLP565 No Algae 14-Oct 30-Oct
A9 Amber Lager Dahls No Algae 14-Oct 19-Nov
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B1 Brown Ale WLP013 AE 15-Oct 29-Oct
B2 Brown Ale WLP001 SL 15-Oct 29-Oct
B3 Brown Ale WLP002 SL 15-Oct 29-Oct
B4 Brown Ale WLP002 AE 15-Oct 29-Oct
B5 Brown Ale WLP001 AE 15-Oct 30-Oct
B6 Brown Ale WLP013 SL 15-Oct 30-Oct
B7 Brown Ale WLP001 No Algae 15-Oct 30-Oct
B8 Brown Ale WLP013 No Algae 15-Oct 29-Oct
B9 Brown Ale WLP002 No Algae 15-Oct 30-Oct
C1 IPA WLP565 AE 16-Oct 30-Oct
C2 IPA WLP565 SL 16-Oct 30-Oct
C3 IPA WLP001 AE 16-Oct 30-Oct
C4 IPA WLP001 SL 16-Oct 30-Oct
C5 IPA WLP001 No Algae 16-Oct 30-Oct
C6 IPA WLP565 No Algae 16-Oct 30-Oct
D1 Goose Oslo Kveik SL 20-Oct 2-Nov
D2 Goose Oslo Kveik AE 20-Oct 2-Nov
D3 Goose WLP001 SL 20-Oct 2-Nov
D4 Goose WLP001 AE 20-Oct 2-Nov
D5 Goose Oslo Kveik No Algae 20-Oct 2-Nov
D6 Goose WLP001 No Algae 20-Oct 2-Nov

3.2 Sample preparation, NMR spectroscopy, and statistical
analyses

3.2.1 Pipeline overview

The procedure to take a sample from the bottle through preparation, NMR acquisition,
and analysis is based on the work done for the project by Kristoffer Zotchev [51], and is
further standardized here. The procedure consists of four main steps:

1. Sample preparation

2. NMR acquisition

3. Spectral processing

4. Statistical analyses

Protocols for the first three of these procedures were standardized and a comprehensive in-
struction document was produced as a part of this thesis. This can be found in appendix E.

3.2.2 Sample preparation

The following is the protocol for preparing a sample acquired during the brewing process
or from a finished beer for NMR analysis.
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Samples of at least 2 mL were sterile filtered through a 25 mm diameter, luer-lock, 0.2 µm
pore size filter into 5 mL Eppendorf tubes. If at the time of sampling sterile filtering was
unable to be carried out, the sample was frozen and then thawed before filtering. The tube
was then placed in an ultrasonic bath for 10 minutes in order to properly degas the sample.
Degassing was also performed on samples that have not been carbonated to ensure equal
treatment of all samples. After degassing the samples were buffered by combining 720 µL
of sample with 80 µL of buffer (500 mM sodium phosphate, pH 7.4, prepared in deuterated
water (D2O 99.9 %) with TSP (1 %)) in a 1.5 mL Sarstedt SafeSeal tube. This resulted
in a final buffering solution of 50 mM sodium phosphate, 10% D2O, 0.1% TSP. For NMR
acquisition, 600 µL of the sample was transferred into a 5 mm LabScape Stream NMR tube
(Bruker LabScape). A visual representation for sample preparation is shown in figure 3.3.

Figure 3.3: Sample preparation procedure.

3.2.3 NMR acquisition

NMR experiments were acquired on a Bruker Avance III HD 800 MHz spectrometer, using
a 5 mm Z-gradient CP-TCI (H/C/N) cryoprobe and SampleJet autosampler at the NMR
Laboratory of Natural Sciences at NTNU.

The NMR experiments used here are the same as those used previously in this project
by Kristoffer Zotchev [51], which were adapted from Monakhova et al. 2011 [52]. Three
sequential experiments were performed for each sample. Firstly, a standard water pres-
aturation pulse program was used for water suppression, and the resulting spectrum was
used to determine the frequencies of the seven peaks of the ethanol signal in the specific
sample. These values were then then used to guide the optimization of the shape pulse for
multiple solvent suppression in the later experiments. This process was automated using
a purpose-made ICON-NMR script written by Gaston Courtade and Trygve Andreassen.
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The second experiment was a 1D 1H noesygpps1d spectrum where only water suppression
was performed. The purpose of this experiment was to allow for recording of the ethanol
peaks, and thereby enable measurements of ethanol content and attenuation by the yeast.

The third experiment was a 1D 1H noesygpps1d spectrum with both water and ethanol
suppression, using the values recorded during the first experiment to generate the shape
pulse. Continuous wave iterations were also applied to the center of the ethanol quartet
during the relaxation delay to suppress the effects of 13C satellites.

Both noesygpps1d experiments were acquired with the following parameters:

• Time domain size (TD): 64k complex points

• Number of scans (ns): 8

• Dummy scans (ds): 4

• Relaxation delay (d1): 5

• Acquisition time (AQ): 2.5 seconds

• Spectral width (SW): 21.6966 ppm

• Receiver gain (rg): 10

3.2.4 Spectrum processing

Processing of the raw spectra from NMR acquisition is necessary for any meaningful ana-
lysis. This procedure consists of two main parts: processing and alignment.

TopSpin processing

Spectrum processing was done in the TopSpin software (Bruker, version 4.1.1), and con-
sisted of a 0th order automatic phase correction and a 1D Fourier transformation with
exponential window multiplication. All samples were examined manually for anomalies
or suboptimal signal suppression and deemed satisfactory. After processing, the spectra
from each experiment were exported as an intensity matrix and ppm-scale by an in-house
Python script (bruker-to-mat, appendix D) for import into Matlab.

Matlab processing

Further data processing was completed in Matlab (Mathworks, version R2020b), and in-
volved alignment of spectra, normalization, and binning. Alignment was done using the
Icoshift software for Matlab [53]. Firstly, the spectra within each data set were aligned to
each other using the "average2" mode with a multiplier of 3.0 in the Icoshift function ap-
plied to the whole spectrum. Thereafter, the spectra were aligned by the TSP-peak, again
using the "average2" mode with a multiplier of 3. A corrected ppm scale was calculated by
calibrating the TSP peak to 0 ppm. After TSP-correction, the spectra were plotted and
inspected for alignment errors. If further alignment was required, an additional interval-
based alignment step was included. This was done by defining regions as a set of intervals
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to be aligned independently using the "average2" mode with a multiplier of 3. The Matlab
script used for alignment can be found in appendix B.1.

Normalization was done using an in-house Matlab-script written for normalising data using
Probabilistic Quotient Normalization (PQN) based on [30], shown in appendix B.2. During
normalisation, the spectra are also truncated to the region 0.8 and 9 ppm, while excluding
the residual ethanol and water peaks. Negative values are also excluded. Finally, binning
was performed on the spectra using an in-house Matlab script that sums the values for each
spectrum within a given bin size, available in appendix B.3. This reduces the dimensionality
of the data set, allowing for faster processing times of statistical analyses. Most data sets
were analyzed both with and without binning with very similar outcomes.

3.3 Statistical analysis

After spectrum processing in Matlab, the spectra were exported to matrices in spreadsheets
in .csv format. Files were uploaded to the metaboanalyst.ca website and statistical analysis
was performed using the generic statistical analysis tool set. Files were uploaded as spectral
bins, no filtering was applied, and only mean centering were used for normalization within
Metaboanalyst. Thereafter, the data sets were analyzed with a variety of multivariate
analysis tools depending on the study. Figures for the multivariate analyses presented
here were exported from Metaboanalyst. In this thesis, no scaling was performed on the
spectra due to issues with traditional scaling methods having adverse effects on noise in
the baseline and crowded regions of the NMR spectra. In the case of parametric tests like
t-tests, the data was scaled using unit variance scaling.

Within Metaboanalyst, both unsupervised and supervised methods of clustering and di-
mensionality reduction were used, as well as t-tests. PCA was performed on all data sets
and decisions on what combination of principal components to evaluate were made based
on scree plots of the variance explained by each component, as well as the apparent sep-
aration of the expected categories in the PCA. PLS-DA was performed in cases where we
observed separation of categories in PCA. All PLS-DA plots were validated using permuta-
tion tests. T-tests were used to evaluate the difference between groups in the case of the
aging study, for these tests the data was scaled using unit variance scaling.

Determination of the optimal number of clusters (k) for k-means clustering was done using
NbClust package in R-studio. Optimal k was evaluated by three different methods: Elbow
method, silhouette methods, and gap statistic method. Results from the gap statistic method
were used in case of differing results. The script used can be found in appendix C.1.

Clustering analysis by t-SNE was performed in Matlab using the same data sets that
were studied in Metaboanalyst. The analysis were performed using the tsne function with
Euclidean distance as the distance measure. Perplexity was optimized for each data set by
iteratively performing the analysis with increasing perplexity and choosing the value that
provided the optimal separation of clusters.

Statistics on ethanol content in samples from the pitch rate study were achieved by compar-
ing area-under-the-curve measures of the ethanol peak and the internal standard TSP-peak
in TopSpin. Based on information about the amount of TSP, the amount of ethanol could
be calculated. The differences in mean between groups were evaluated using ANOVA.
Plots and statistical tests for these results were done using an in-house script in R-studio,
and the script is available in appendix C.2.
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3.4 Choice of database solution

The evaluation of different database solutions as a recommendation for future work in
this project was done based on the necessities discovered during the studies performed
for this thesis, as well as the general requirements for database solutions agreed upon by
the research group. A shortlist of solutions for evaluation were provided by field experts,
and examined by studying the documentation and use cases of the relevant solutions. A
detailed description of the selection process and criteria used can be found in section 5.5.

3.5 Ontology creation

The beer ontology was created using the Protege ontology creation software. The classific-
ations were based on two style guidelines published by the Brewers Association [54] and
CraftBeer.com [55]. Final choices on preliminary classifications were made by consensus
within the research group, however the classifications are at this point only guidelines, and
are expected to change as new information is gathered. A detailed discussion on the design
choices and procedure behind the ontology is presented in section 5.6.

3.6 Project website

The website for the project was created to enable citizen science by facilitating contact
and sharing of knowledge and samples between the Systems Brewology Project and experts
on beer, like professional brewers and experienced homebrewers. The website was created
using WordPress, and the graphics and logo for the project was created in Adobe Illustrator
2020 to increase the visual appeal of the website.
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Chapter 4

Results and Analysis

The following chapter will present and analyze the results found during the different efforts
of this thesis. This will include findings from the case studies of samples, as well as a
brief presentation of decisions made regarding ontology design and evaluation of database
solutions. This chapter will aim to evaluate and discuss the results on their own, the
broader implications of these results will be discussed in chapter 5.

4.1 Case studies of beer samples

This section details the findings in the three different case studies performed on three sets of
beer samples. These include an analysis of categories in commercial beer samples from the
Austmann brewery, the study of the effect of varying the pitching rate during the brewing
process, and the study of the results of aging in a complex sample set of algae-flavoured
beer.

4.1.1 Description and overview

To generate the data to be included in the database, three different brewing case studies
were conducted. The resulting data were analyzed and examined in order to attain a
clearer picture of the possibilities and limitations of the analytical and statistical methods
used. Each data set were examined with one aspect of brewing or beer treatment in mind.
The first data set is comprised of commercial samples from the Austmann brewery and
were used to evaluate methods of categorization of beer by type. The second data set
is from a study examining the effects of pitching rate in a heavily yeast-dependent beer
brewed in-house. This data set was examined and cross-referenced with qualitative sensory
data to evaluate the detection accuracy in the analysis. The third data set was from a
study evaluating the viability of including algae as a flavor additive during beer brewing.
This data set was sampled at two different time points, and the analysis performed here
examined the effects of aging on the samples in this data set.

These analyses are intended as proof-of-concept and are mostly performed on small data
sets from studies not specifically designed to examine the hypothesis in question. These
results should therefore be considered not as conclusive evidence for or against the hypo-
thesis, but rather as indications that may lead to future discoveries in large-scale targeted
studies.

30



4.1.2 Data treatment and scaling

The general procedure for data treatment described in section 3.2.4 provided quick and
easily analyzable raw data. The sample preparation procedure, NMR-acquisition, and
spectrum processing done in Matlab were efficient and reproducible. A detailed instruc-
tion manual was created in order to document and standardize the process of taking a
sample from a beer bottle through preparation, treatment, and acquisition by NMR. The
manual was illustrated for better visual guidance in navigating complex software for NMR-
acquisition. The manual is intended as a tool and reference material for later experiments,
ensuring that the sampling procedure is consistent for every sample in the database. The
full manual can be found in appendix E.

A problem with scaling procedures were discovered early during the process of standardiz-
ing data treatment, where common scaling methods such as unit variance scaling, Pareto
scaling, and range scaling caused scaling of random noise in the baseline of the spectra to
be overestimated compared to the actual differences in relevant peaks. This is an inherent
problem in the full-spectrum approach because of the vast differences in the amplitude of
peaks in different areas of the spectrum, the noise in one area might be larger than the
relevant peaks in another, making scaling and filtering by normal methods an unviable op-
tion. To achieve a method of data treatment that would allow us to study the differences in
peaks without baseline noise effecting the results, we opted to not perform scaling in these
studies. This would allow the statistics to detect categorical differences in peaks in the
nonparametric tests, although the relative statistical importance of different peaks were
overestimated in cases of high amplitude and underestimated in areas of low amplitude. In
cases of parametric testing, such as t-test, unit variance scaling was used, as these results
would have been completely unreliable had scaling not been performed.

Evaluations of differences between binned and unbinned spectra were also done, and no
perceptible differences were detected. For the following studies, all data was therefore
binned, as it allowed for significantly shorter computing times and reduced errors due to
the large size and high dimensionality of the unbinned data. Dimensionality were reduced
by a factor of 80 without detecting noticeable effects on the statistical results.

4.1.3 Compound identification

A list of 22 compounds were identified by Leesa J. Klau, along with their location along
the Parts per Million (ppm)-axis of the spectra. These are listed in table 4.1, and a visual
representation of the location of the compounds in a representative NMR spectrum is given
in figure 4.1. Later identification of taste compounds and annotation of spectra are based
on this.
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Table 4.1: List of identified compounds and their location in the spectra. Supplied
by Leesa J. Klau.

Molecule ppm in spectra
Histidine 8.00
Phenylalanine 7.43
Phenylalanine 7.39
Phenylalanine 7.33
Tyrosine 7.19
Histidine 7.06
Tyrosine 6.89
Acetylchline 3.22
Mallic acid 2.68
Succinic acid 2.41
Pyruvic acid 2.37
Acetylcholine 2.08
Proline 2.00
Acetic acid 1.92
Isobutanol 1.75
Isopentanol 1.66
Alanine 1.48
Isopentanol 1.44
Lactic Acid 1.33
Valine 1.04
Higher alcohols 0.89
TSP-d4 0.00

Figure 4.1: Full spectrum view of a representative raw spectrum with all iden-
tified compounds annotated. Identification supplied by Leesa J. Klau.
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4.1.4 Categorization study of Austmann beers

The purpose of this study was to determine if the conventional categorizations used for
commercial beers would be supported by the clustering and categorization methods used
in the statistical analysis of the 1H NMR spectra. The following hypothesis was formulated
and tested: "Beer samples in the same categories would have more similar NMR profiles
than those in different categories, and would therefore cluster together when analyzed."
The beers and categorization used can be found in table 3.1, and an overview of the
categories and number of samples in each can be found in table 4.2.

Table 4.2: Table of original style categories of Austmann samples and number
of samples in each category.

Category Number of samples in category
Dark 5
IPA 7
Light 4
Sour 3

Initial analysis of traditional categories

Principal component analysis score plot of the NMR data, figure 4.2, shows a clear sep-
aration of the sour beers, while the rest form a line of three loose clusters with members
across three of the categories. We do not observe a clear differentiation of the purported
categories here.
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Figure 4.2: Scores plot of 1st and 2nd principal components from PCA of initial
categorization analysis of samples from Austmann. Each point represents a sample,
and the categories are denoted by shape and color, as seen in the legend in the top right. Explained
variances of each component displayed in brackets next to the principal component.

The partial least squares discriminatory analysis (PLS-DA) score plot, figure 4.3, again
confirms the findings from the PCA, with clear separation of the sour beers. Here we also
find a slight separation of the darker beers, while the light and IPA categories are still
indistinguishable from each other.
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Figure 4.3: Scores plot of 1st and 2nd components from PLS-DA of initial cat-
egorization analysis of samples from Austmann. Each point represents a sample, and
the categories are denoted by shape and color, as seen in the legend in the top right. Explained
variances of each component displayed in brackets next to the principal component.

To ensure that these findings are valid and not due to overfitting of this supervised model,
cross-validation was performed using a permutation test. The results, displayed in ap-
pendix figure F.1, show that the separation distances were indeed significant with an ob-
served p-statistic of p < 0.001, indicating that the results are not due to overfitting of the
model.

In order to see which peaks drive this separation of categories, we can examine the Variable
Importance in Projection (VIP) scores in the PLS-DA analysis. Figure 4.4 displays the
15 ppm bins with the highest VIP scores, meaning that they explain the most variation
responsible for categorical separation. We note that the two bins with the highest VIP
scores are at 1.325 and 1.335 ppm. These bins contain the peak associated with lactic
acid and are most likely responsible for the separation of the sour beers from the other
categories. The rest of the bins have lower VIP scores, and we find those in the region of
3.5 to 4.5 ppm, which is a highly crowded region of the NMR spectrum, making compound
identification difficult. Distinction between categories originating in this region might not
be reliable, as multiple compounds create overlapping signals. However, as the model is
validated using a permutation test, we can be reasonably certain that there is some validity
behind these results.
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Figure 4.4: Variable Importance in Projection (VIP) scores for PLS-DA analysis
of initial categorization test of samples from Austmann. X-axis represents VIP score,
Y-axis displays the ppm of the bin, or feature.

To thoroughly investigate the data set for any possible clustering, we also performed t-SNE
analysis of the data. The t-SNE plot shown in figure 4.5 supports the findings of PCA and
PLS-DA, showing four groupings where only the sour beers display unequivocal separation
from the rest of the data set.
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Figure 4.5: Clustering analysis of Austmann samples by t-SNE. Data points are
colored after conventional categorizations. Perplexity = 5.

The initial analysis based on conventional categories did not show the clustering pattern
expected, and thus did not support the assumptions of the hypothesis. Separation were
found for the group of sour beers, however, the light and IPA categories did not separate
from each other, although this is not surprising as these categories are rather similar in
taste profile. It is important to note here that the lack of differences detected during this
analysis does not reflect a weakness in the traditional categorization scheme based on the
taste of the beer, only that an objective analysis of the NMR spectrum weighs the relative
importance of taste components differently than the human pallet. As we did not observe
the separation of clusters we expected, we chose to reject the hypothesis and attempt
to create more objective categorizations by reclustering the samples using unsupervised
methods.

Unsupervised clustering of Austmann samples

With the aim of exploring a more objective approach to categorization, we applied an
unsupervised clustering analysis to create new categories of the 19 samples. The clustering
technique used was k-means clustering, and the optimal number of clusters was determined
to be four, using the stop-gap method. The four clusters are shown in figure 4.6, and listed
along with beer names, sample ID, and traditional categorization in table 4.3.
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Figure 4.6: Clusters containing the different samples. Original categorization is dis-
played in color code: Sour: light blue, dark: red, IPA: green, light: dark blue.

Table 4.3: Table of samples from Austmann. Including new clusters assigned accord-
ing to chemical spectra.

Beer name Category Cluster based on chemical composition Sample ID
Blood And Thunder Sour

1
AU1

Peach Piñata Sour AU14
Hula Hula Sour AU7
Coffee Porter Dark

2
AU3

Hopbird IPA AU5
Liquid Lumberjack Dark AU9
Northie Dark

3

AU11
Onkel I Amerika IPA AU13
Pilsner Light AU15
Stille natt Dark AU18
Utpå Light AU19
Captain Cold One IPA AU2
Hawaiian IPA IPA AU4
Hoppy Blonde Light AU6
Lynchburg Latte Dark

4

AU10
Old School IPA IPA AU12
Pine Shoot IPA AU16
Psycho Tropic IPA AU17
Lager 11 Light AU8

We see that the sour beers appear in their own cluster, however the rest of the clusters
contain samples from multiple categories.

The original data set was then relabeled with new clusters instead of the conventional
categories, and reanalyzed to determine what aspects of the data were responsible for the
new categorizations. PLS-DA and t-SNE were repeated using the clusters established with
k-means. The score plot for PLS-DA, figure 4.8, and the t-SNE visualization, figure 4.7
now shows four clear clusters corresponding almost perfectly to the four clusters identified
by k-means. Permutation test (appendix figure F.2) validates the fit of the PLS-DA model
(p = 0.016).
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Figure 4.7: Clustering analysis of re-clustered Austmann samples by t-SNE. Data
points are colored according to the new clusters found by k-means. Perplexity = 4.

Figure 4.8: Scores plot of 1st and 2nd components from PLS-DA of re-clustered
categorization analysis of samples from Austmann. Each point represents a sample,
and the categories are denoted by shape and color, as seen in the legend in the top right. Explained
variances of each component displayed in brackets next to the principal component.
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Figure 4.9: Important features for PLS-DA analysis of re-clustered categoriza-
tion test of samples from Austmann. X-axis represents importance score, Y-axis displays
the ppm of the bin, or feature.

We can now evaluate the VIP scores to determine which areas of the spectra drive the
separation of the new clusters. The top 15 bins with the highest VIP scores are shown in
figure 4.9 These bins are mostly the same as the ones found in the initial categorization.

Visualizing the loadings of the PLS-DA along with the collection of spectra analyzed,
figure 4.10, we see that the most important peak for the separation in the first PC represents
lactic acid, dominated by the cluster of sour beers (red lines) in the spectrum plot. This
was expected from the PLS-DA score plot where the same cluster of sour beers (red lines)
stand out from the rest. Most of the weight in the loadings plot is in the heavily crowded
3.5-4.5 region, where compound identifications are difficult. More detailed plots of the
spectra and loadings are shown in appendix A, illustrating that the different clusters show
slightly elevated levels in different peaks, but that most stand-out areas of difference are
dominated by red lines, representing the category of sour beers.
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Higher alcohols

Valine

Lactic acid

Isopentanol

Alanine

Isobutanol

Acetic acid
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Acetylcoline

Pyruvic acid

Malic acid

Acetylcoline
Other choline products
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Figure 4.10: Full spectra and loadings for reclustered Austmann samples. Upper
field shows a plot of all binned NMR spectra for the reclustered Austmann samples overlaid and
colored by cluster (cluster 1: red, cluster 2: light blue, cluster 3: green, cluster 4: deep blue).
Some identifiable compounds are annotated. Lower field shows PLS-DA loadings for the first PC,
taller peaks indicate more weight in PLS-DA. X-axis: PPM, Y-axis: intensity of signal / weight in
PLS-DA.

Evaluation of categorization study

As we can see from the results above, an objective approach to classification does not
support the conventional categories of these beers. The conventional categories are based on
the taste and ingredients used in the brewing of these samples, and the difference between
the categories suggested by the analysis of NMR spectra and the categories originally used
may be due to differences in how some compounds are perceived while consuming the beer
compared to their prevalence in the sample detected by NMR. Some compounds may be
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essential for taste, but be present in only small amounts in the beer, and therefore may
not be highlighted when analyzing the NMR spectra.

4.1.5 Pitch rate study

The pitch rate study was a simple proof-of-concept study designed specifically for testing
whether our analysis method could discern a difference between identically brewed beers
with varying pitch rates (amount of yeast used for inoculation), the hypothesis being:
"Differences in the pitching rate of yeast in samples create differences detectable by both
NMR, and sensory analysis. These differences will cause samples with the same pitch
rate to be grouped together under various analysis." Pitching rates and categories can be
found in table 3.2. Three different approaches were used to examine differences in the
three pitching rates; sensory analysis, multivariate statistical analysis of NMR spectra,
and ethanol percentage calculation.

Sensory analysis

The sensory analysis was done only to determine if a difference could be found between
samples, and if a trend could be identified. The tests were intended to collect qualitative
sensory data to help inform database decisions, and were conducted in an informal setting.
Sixteen individuals in 6 independent groups were asked to describe the taste of a sample
from each pitch rate without prior knowledge of the difference or experiment setup. The
participants were also asked to identify any trends in the samples and sort them accordingly.

Invariably, each independent group sorted the samples in the same order and attributed
similar taste descriptors to the samples. A graphical representation of the descriptors and
trends are shown in figure 4.11.

The qualitative sensory data, while limited, appear to indicate that there is a perceptible
difference. However, to be able to investigate these relationships further, a rigorous sensory
experiment is required. Based on these findings, we expect that differences should also be
detectable using NMR spectroscopy.

Over

Normal

Under

DescriptorsPitch rate

Trend

Dry Balanced Harsh Metallic Smooth Sour

Figure 4.11: Illustration of trends recorded for sensory analysis of pitching study.
Direction of trends are illustrated by arrows, indicating that the majority of participants described
the intensity of the given characteristic for each category in the direction of the arrow. E.g:
Overpitched samples were generally described as less sour than underpitched samples.
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Multivariate analysis

Examining the multivariate analysis of the pitch rate study samples, there is little to no
clear separation that would reflect the findings in the initial sensory test. Only PCA gives
some hints at a clear separation, and the results are ambiguous.

Examining the PCA score plot of the 1st and 3rd principal components (as these gave
the best groupings), as well as the t-SNE plot of the data set, figures 4.12 and 4.13, we
can visualize some separation in the three pitching rates. The underpitched sample in the
second parallel (WU2) appears as an outlier in both plots, however the other samples fall
somewhat into three clusters. Based on this, we would expect a supervised model like
PLS-DA to be able to identify the areas driving the separation. However, the supervised
model could not be used in this scenario as the PLS-DA permutation test heavily indicated
overfitting, as seen in appendix figure F.3 (p = 0.168). Therefore, we can only interpret
the PCA results in this case.

Figure 4.12: PCA scores plot of 1st and 3rd principal components of differential
analysis of samples from pitch rate study. Each point represents a sample, and the
categories are denoted by shape and color, as seen in the legend in the top right. Explained
variances of each component displayed in brackets next to the principal component.
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Figure 4.13: Clustering analysis of pitch rate samples by t-SNE. Data points are
colored according pitching rate used. Perplexity = 4.

Evaluating the overlay of the spectra and the PCA loadings for the first and the third
principal component, figure 4.14, we can identify a few notable compounds that are heavily
weighted in the PCA loadings. More detailed spectra and loadings plots can be found in
appendix B. Looking at the loadings for PC1 and PC3 (yellow and purple lines in the lower
field of figure 4.14), we see that most of the highly contributing areas are in the crowded
region between 3.5 and 4.5 ppm. However, we have a few identifiable peaks that display a
difference between the pitch rates. Examples of these are:

• Lactic acid (ca. 1.32 ppm), which imparts a sour taste to beer [56], this peak is highest
in the overpitched samples and lowest in the underpitched, indicating a positive
association between pitching rate and lactic acid production in this study.

• Acetic acid (ca. 1.91 ppm) imparts a sour, vinegar-like taste that is generally con-
sidered undesirable in beer [57]. This compound seems to be present in higher levels
in under-pitched samples, and lower in over pitched ones, indicating a negative cor-
relation between pitching rate and acetic acid production.

• Succinic acid (ca. 2.41 ppm), which is not associated with a specific taste, but
is considered an undesirable compound that may reduce the drinkability of a beer
due to its role as a potential stimulant of gastric acid secretion [58]. In this study,
succinic acid is clearly higher in overpitched samples and lower in underpitched ones,
indicating a positive correlation between pitch rate and scuccinic acid prevalence.

Tying these compounds back to the trends in taste found during the initial sensory evalu-
ation, there are no obvious parallels that stand out between the identified compounds and
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the sensory trends, but we can note that underpitched beers are described as more sour
tasting than the others although lactic acid is less prevalent in the underpitched samples,
indicating that other taste compounds like acetic acid might be the cause of the sour taste
in these beers. These preliminary results may be of interest for more detailed studies.

Higher alcohols

Valine

Lactic acid

Isopentanol

Alanine

Isobutanol

Acetic acid

Proline

Acetylcoline

Pyruvic acid

Malic acid

Acetylcoline

Other choline products

Proline

Succinic acid

Histidine

Tyrosine
Phenylalanine

Formic acid

Figure 4.14: Full spectra and loadings for pitch rate samples. Upper field shows
a plot of all binned NMR spectra for all pitch rate samples overlaid and colored by pitch rate
(underpitched: blue, normal pitch: green, overpitched: red). Some identifiable compounds are
annotated. Lower field shows PCA loadings for the first PC, more extreme peaks indicate more
weight in the separation found in PCA. X-axis: PPM, Y-axis: intensity of signal / weight in PCA.

Using a dendrogram to visualize the hierarchical clustering to examine the similarity of
the samples, shown in figure 4.15, we find that there is no clear trend here either. This
somewhat weakens the assumption made in the hypothesis that we may find significant
differences between the treatment categories using multivariate analysis.
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Figure 4.15: Dendrogram showing clustering of samples from pitch rate study
using Euclidean distance and Ward clustering algorithm.

We receive somewhat unclear results from the multivariate analysis, however, we can still
identify some trends and separation between the different pitching rates, or treatments.
Therefore, we cannot reject the hypothesis based on this, although the differences are not
as noticeable as we had expected. We move on to evaluate ethanol content, as this is
one of the more prevalent components present but is not included in the spectra used for
multivariate analysis.

Ethanol content

Another interesting aspect aspect of the different pitching rates is the ethanol content, as
this will significantly affect the taste profile of the beer. Ethanol content is not explored in
the normal analysis of the spectra, as that signal is suppressed in the spectra used for the
main analysis in order to evaluate the presence of less prevalent taste compounds. Spectra
without ethanol suppression were used to estimate the alcohol concentration for the three
different pitching rates.

As we can see from figure 4.16, there is a trend in the alcohol content produced in the
three different groups, indicating that the alcohol percentage of the brew decreases as the
pitch rate increases. This trend might explain the findings from the preliminary sensory
experiment, as some of the descriptors assigned to the underpitched samples could be
associated with a higher alcohol content. Note that the difference is not statistically
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significant, as the large variation within the groups and the small number of samples
lead to great uncertainty in the results. Summary of ANOVA shown in figure 4.17.

Figure 4.16: Boxplot of ethanol concentration in the three different pitching
rates.

Figure 4.17: Summary of ANOVA of differences in ethanol content between
pitching rates.

Evaluation of the hypothesis for the pitch rate study

Based on the findings above, the hypothesis still stands, as we did detect some differ-
ences. However, the size of the data set is insufficient for appropriate statistical analyses.
One interesting aspect of this study is the clear results found by the sensory analysis in
relation to the less clear results from the analysis of NMR spectra. This indicates that
the compounds detected by the pallet and olfactory senses during tasting are weighted
quite differently than the prevalence of these compounds detected by NMR. These discov-
eries should be investigated further, as more comprehensive studies are required for truly
informative results.
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4.1.6 Aging study of algae-flavoured beer

Analysis of samples from the study of aging in algae-flavoured beer focused on exploring the
differences in the same set of 30 beers sampled at two different time points. The aim was
to determine if the proposed analysis method could determine any categorical differences
caused by aging in the 30 samples, based on the hypothesis: "Aging will cause changes to
the chemical composition of the samples, therefore samples in the same aging category will
have more similar NMR spectra and will cluster together during analysis."

Full data set analysis

Firstly, the full data set were analyzed in order to explore global trends. Examining t-tests
between the different groups for each feature, figure 4.18, there are many peaks where
we see a significant difference in the two groups, indicating clear differences might be a
difference in the different aging times.

Figure 4.18: Paired t-test of difference in two age categories in the full algae-beer
data set. Unit variance scaling was performed prior to t-test.

Examining the data using PCA, figure 4.19a, PLS-DA, figure 4.19b, and t-SNE, figure 4.20
we cannot discern a clear trend that indicates a difference between the aged and non-aged
sample groups. We therefore separated the data set into the four different types of beer in
the study and examined each type on its own.
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(a) Overview of the first five principal compon-
ents of the PCA analysis of all algae-beer samples.

(b) Overview of the first five principal compon-
ents of the PLS-DA analysis of all algae-beer
samples.

Figure 4.19: Overview of the first five principal components of the PCA and
PLS-DA analyses of all algae-beer samples. Each point represents a sample, red triangles
represent non-aged samples, green crosses represent aged samples. Percentage of variance explained
by each component is displayed below the component.

Figure 4.20: Clustering analysis of entire sample set from aging study by t-SNE.
Data points are colored according to aging category. Perplexity = 8.
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Separate analysis

When evaluating each beer separately, only the brown ale category showed any signs of
clear separation between the two groups. Examining the PCA of the brown ale samples,
figure 4.21, we find that the 1st principal component divides the data in two main clusters
with a clear distinction between sample groups. The same pattern is observed in the t-SNE
plot, figure 4.22. This might be an indication of an actual difference between aging groups.
This is also reflected in the t-test performed on the two groups, figure 4.23 resulting in 532
features with a significant difference between the aged and non-aged samples. The same
trend is visible in the dendrogram, shown in figure 4.24, where the two differently aged
groups separate quite well into two main clusters.

Figure 4.21: PCA plot of 1st and 2nd component of samples from the Brown
Ale group in the aging study.
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Figure 4.22: Clustering analysis of Brown Ale samples from aging study by t-
SNE. Data points are colored according to aging category. Perplexity = 6.

Figure 4.23: T-test of difference in aged and non-aged groups for each feature in
brown ale samples from the aging study. Unit variance scaling performed on data set
prior to t-test.
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Figure 4.24: Dendrogram showing clustering of samples from the brown ale group
of the aging study. Clustering using Euclidean distance and Ward clustering algorithm.

Taking a more detailed look at the NMR-spectra of the brown ales along with the loadings
from the PCA in figure 4.25, we see that most of the points of separation are in the region
from 3.5 to 4-5 ppm, where compound identification is nearly impossible. However, we
notice four identifiable peaks that stand out in the loadings in the 0.8 to 2.5 ppm region
of the spectrum (more detailed plots can be found in appendix C). These are the higher
alcohols, lactic acid, acetic acid, and succinic acid:

• Higher alcohols (ca. 0.86 - 0.91 ppm) contribute to the flavour profile by intensifying
alcohol perception and resulting in a warm mouthfeel [59]. In this case, the aged
samples look to have higher concentrations of these compounds in general.

• Lactic acid (ca. 1.32 ppm), which imparts a sour taste to beer [56], this peak is
highest in the non-aged samples, indicating a lessening of the lactic acid content over
time.

• Acetic acid (ca. 1.91 ppm) imparts a sour, vinegar-like taste that is generally con-
sidered undesirable in beer [57]. This compound seems to be present in higher levels
in non-aged samples, however both categories have samples both low and high in this
compound, making categorical differences speculative at best.

• Succinic acid (ca. 2.41 ppm), which is not associated with a specific taste, but
is considered an undesirable compound that may reduce the drinkability of a beer
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due to its role as a potential stimulant of gastric acid secretion [58]. In this study,
succinic acid content seems to be similar between the two categories, even though
it is weighted in the loadings. This looks to be caused by some of the non-aged
samples seemingly lacking a peak for the compound (same for pyruvic acid (ca. 2.37
ppm)), which may be caused by alignment errors in the data processing step, or
contamination of the samples.

Higher alcohols

Valine

Lactic acid

Isopentanol

Alanine
Isobutanol

Acetic acid
Proline

Acetylcoline

Pyruvic acid

Malic acid

Acetylcoline

Other choline products
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Tyrosine
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Figure 4.25: Full spectra and loadings for algae flavoured samples. Upper field shows
a plot of all binned NMR spectra for all algae brown ale samples overlaid and colored by aging
category (non-aged: blue, aged: red). Some identifiable compounds are annotated. Lower field
shows PCA loadings for the first PC, more extreme peaks indicate more weight in the separation
found in PCA. X-axis: PPM, Y-axis: intensity of signal / weight in PCA.

Analysis of the other beer types yielded no noteworthy results. This may be caused by
differences in the composition of the beers reacting differently to aging, but as the analysis
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was done on samples with a large number of variable factors, we cannot draw any definite
conclusions. The results found above show that we did indeed detect differences between
aging categories for one of the beer types, and that these differences caused most of the
samples in the two categories to form two distinct clusters. Based on this, the hypothesis
still stands, however only one of the four beer types showed a clear separation between age
groups, therefore the results cannot be generalized for other types of beer.

4.2 Ontology

The beer ontology was created with the aim of allowing classification of all relevant samples
the project might encounter, as well as the ingredients and other aspects of the samples.
The aim was to allow as much of the information as possible to be represented as objects
and relations, instead of just metadata in text fields.

4.2.1 General design

The ontology was created to categorize samples with a reasonable level of detail. To this
end, the decision was made that the instances of the ontology were to be individual samples,
sorted by the style of the beer the sample was based on. The reasoning behind this was
that using object property assertions to create structures that would contain detailed recipe
information would be more flexible than using class axioms in a similar way.

The final design is a structure where each sample is recorded as an instance, with each
instance connected to both a style category describing the ingredients and the area of origin,
as well as being connected to a project detailing the experimental or analytical strategy for
the sample. Each sample is also connected to the different ingredients used in the brewing
process, as well as to the producer of the sample. These connections are annotated as
object properties, describing the nature of the link between the sample and the ingredient.
In this way, a detailed network is created, containing the pertinent information on the
sample in question. An example illustrating part of the structure within the pitch rate
study can be seen in figure 4.26.

Figure 4.26: Example of partial ontology structure for samples in the pitch rate
study in network view for illustrative purposes. Full lines represent parent/child
relationships, dashed lines represent custom object properties. Figure created in Protege.
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4.2.2 Parts of the ontology

Beer types

The classification of beer types were approached from multiple different angles: by in-
gredient and taste profile, region of origin, producer, and project. Firstly, the different
beer types represented in the ontology (132 at the time of writing) were classified in two
main categories: ale and lager, depending on the yeast type (typically) used in the beer.
A separate category for specialty beer styles that may use either lager or ale yeast were
also added. Thereafter, each subcategory were divided into increasingly specific classes
depending on the ingredients, brewing process or taste profile of the style, an example of
some sub classes of ales are shown in figures 4.27 and 4.28. In some special cases, the class
was shared between both ale and lager, as the style can be brewed with both yeast types.
Such ambiguous definitions were avoided as often as possible.

Since beer is a deeply cultural product that traditionally were heavily influenced by the
area it was brewed in, the decision was made to add a layer of categorization by region of
origin to the list of beer styles. This means that taste-style were cross-referenced with a
list of countries (or sometimes specific areas within countries) to create a more complete
ontology that provides information on both forms of classification. Each sample was also
categorized by what study and project it belonged to, as well as who produced it. This
model of multiple angles of categorization for each sample allows for a more detailed and
comprehensive ontology, as well as offering multiple approaches to categorization, making
the ontology intuitive for different users with varying backgrounds and conventions for
beer categorization. It also allows for a variety of category analyses down the line when
chemical spectra are available for representative samples of different categories.

Figure 4.27: Example of a few sub classes of the ale category in the ontology
structure. Figure created in Protege.
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Figure 4.28: Example of partial ontology class structure for the ale category. Full
lines represent parent/child relationships, dashed lines represent custom object properties. Figure
created in Protege.

Ingredients

Each ingredient that is used in the brewing process is also categorized in its own hierarchical
structure, which is separated into seven general categories: fermenting organism (yeast and
other fermenting organisms); fermentable (malt and other grains); flavour additive (spices,
fruits, etc); hops; salts; secondary additives (flocculation agents, yeast nutrients, etc); and
water.

In contrast to the beer styles, the instances of ingredients are types of product, not indi-
viduals of that product. An example of the "ingredient" category is shown in figure 4.29
This decision was made as we do not expect there to be enough differences in individual
products of the same type from the same producer to warrant recording. If cases should
arise where we expect specifics like this to be relevant, those can be recorded as metadata.

Ingredients were, as with beer styles, also categorized by area of origin, as well as by
producer.
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Figure 4.29: Example of partial ontology structure for the ingredient category,
including connections between an ingredient instance and a sample instance.
Full lines represent parent/child relationships, dashed lines represent custom object properties.
Figure created in Protege.

Object properties

Recipes for the different samples are represented as links between an instance of a beer
type (sample) and an instance of an ingredient. This was achieved using custom object
properties as links between the instances, like the property has_hop being a link between
a sample and a hop type used in the sample. The reasoning for representing the recipes
in this manner is that this allows for a much more transparent and detailed network
of information, as opposed to only describing the recipe in text format as metadata for
each sample. This structure enables multiple approaches for investigating the use of an
ingredient or other components in a certain beer. The current list of object properties used
in the ontology is shown in figure 4.30.
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Figure 4.30: List of custom object properties used in the ontology. Figure created
in Protege.

Data types and data properties

Custom data types were created to represent sample ID, and custom data properties were
created to record the beer name; brewing and sampling dates; and gravity measurements.
Measurements of European Brewery Convention (EBC) standard for beer color and Inter-
national Bitterness Units (IBU) scale were also recorded as custom data properties. In
certain cases, custom properties were created to describe aspects relevant only to a few
samples, like a property for recording the pitch rate.

4.2.3 Public access

The OWL-code for the ontology is published on a GitHub page dedicated to the Systems
Brewology Project, and is available at: https://github.com/AlmaasLab/SystemsBrewology.
This allows for public access to the current ontology, as well as any future updates to
be made throughout the lifetime of the project. This way, the ontology can be a valuable
resource for any venture needing an organized way to structure and annotate beer samples.
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4.3 Database framework

The database framework chosen was openBIS, as this was the most flexible and fully
featured of the systems under evaluation. openBIS was the only system that would allow for
a fully customizable structure that would be ideal for our use, allowing for less compromise
in the database design compared to other solutions. A detailed explanation of the decisions
made for this decision is presented in section 5.5.

Figure 4.31: Logo for openBIS.
Procured from https://openbis.ch/

4.4 Outreach

Sample production for this thesis were done primarily in-house, but the aim is to set up
a much larger collection system where both private and commercial brewers can send in
samples to include in the database. As a start in this direction, one of the studies in this
thesis was done using samples from commercial beers made by the Austmann Brewery,
who were interested in sharing samples and recipes with the project. Similar conversations
have been started with other commercial breweries in the region.

To spread information on the project and enable communication between us and potential
contributors, a project website was created. The website contains brief information on the
project and how others may contribute to the effort, as well as contact information for
further communication. The website can be found at URL: https://almaaslab.nt.ntnu.no/
index.php/research/systems-brewology/, and an example is shown in figure 4.32.

The design and content of the website is intended to draw attention and interest from
the general brewing enthusiast, rather than appealing to the scientific community. The
aesthetic is simple and clean with a clear theme throughout, and does not include detailed
technical information that would not be of interest to non-academic visitors. We do,
however, intend to add additional pages where more details on the project, work, and aims
can be found. The current version is only intended to supply cursory information and
enable contact between us and potential contributors.
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Figure 4.32: Illustration of the Systems Brewology website.
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Chapter 5

Discussion

This chapter will discuss in detail the findings presented in chapter 4. The implications
of findings from the beer sample case studies will be discussed, as well as the limitations
of these simple studies and suggested improvements for more reliable results. Experiences
from the case studies in terms of implications for the proposed database in terms of re-
quirements for importing, storing, and exporting the relevant data will be evaluated in
detail, and the decisions made in the design and setup of the beer ontology, as well as the
rationale behind the evaluation of different database solutions will also be laid out in this
chapter.

5.1 Case studies of beer samples

5.1.1 Categorization study of Austmann samples

The purpose of this analysis was to examine if our analysis method would support or
refute a simple conventional categorization of the 19 samples from Austmann. As shown
in section 4.1.4, only one of the assumed categories were supported by the analysis, while
the three others showed strong overlap in chemical features and were placed in mixed
clusters by the k-means clustering algorithm. Perhaps not surprisingly, the category of
sour beers where the only one to be supported by this analysis. This may be due to the
large difference in lactic acid content between sour beer and other types, as can be seen in
the spectra in figure 4.10, as well as the presence of taste compounds from fruit and other
additives used in these beers. Because the pH of these beers is quite low, it may have been
outside of the buffering range for the buffer used in the sample preparation. Therefore, it
is possible that the low pH of the resulting samples has affected the alignment algorithms
and thereby caused false differences between the spectra.

For the other categories, most of the peaks driving the difference are located in the highly
crowded regions of the spectra, making any compound identification difficult, and thereby
making it hard to assign differences in compounds to the new sample clusters. Unfor-
tunately, recipes for these commercial beers were not attainable at the time of writing,
making any evaluation of the new clusters on the basis of ingredients purely speculative.

Ideally, we would like to be able to create more objective categorizations of these beers
based on the chemical composition instead of taste, cultural origin, ingredients, or color
as the conventional categories are. Such categorizations might be less informative to the
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general consumer, as all compounds detected by NMR are not experienced the same while
consuming beer. However, we believe understanding the chemical similarities and differ-
ences in beer categories, as well as exploring new approaches to categorization will lead
to new insights that may be valuable to the field. As the full-spectrum approach cannot
provide fully conclusive results in this study, further improvements are required. Some
suggestions are as follows:

Larger sample size could potentially make trends and patterns more clear. As this study
only consisted of nineteen samples, some of the original categories included only three
samples. This provides low statistical power for many of the tests performed. A signific-
antly larger collection of samples could potentially lead to the discovery of some common
identifiers either supporting or refuting conventional categorization.

Another approach than full-spectrum analysis, that is used in many studies, is to analyze
separate areas of the spectra individually to gain insight into the differences in a small
collection of compounds, or sometimes a compound type occurring in a given ppm region
[20, 25, 26]. This approach would avoid the problem of crowded regions affecting the
analysis without providing information on what compounds actually differ. Another benefit
to a partial spectrum approach would be the ability to apply scaling functions to a specific
region of similar peak intensity, making the process of distinguishing between baseline and
peaks easier for the scaling algorithm compared to the full spectrum. This approach would
sacrifice some of the benefits of quick full-spectrum fingerprinting in order to gain greater
accuracy. A combined approach could be a possibility, where a more detailed analysis
could be guided by preliminary discoveries from a full-spectrum evaluation.

Finally, an even more detailed approach would be to quantify the concentrations of relevant
compounds by peak integration, described in section 3.3. This would allow for even more
accurate studies of the relative quantities of compounds between samples as well as between
and within groups or categories. Such quantification processes are time consuming and
labour intensive however, and would therefore not be suitable in a fingerprinting capacity,
as we envision for the full-spectrum approach.

All in all, results of the categorization study did not support most of the conventional
categories, but failed to construct more informative categorizations based on the chemical
spectra of the samples. This failure seems mainly due to lacking sample metadata and
resolution in the statistical analysis.

5.1.2 Pitch rate study

The study examining the effects of pitching rate was the only experiment designed specific-
ally for this thesis with a clear hypothesis in mind. The goal was to explore the difference
in chemical composition caused by different pitching rates, as described in section 3.1.3.
The results of the analysis, section 4.1.5, show a few interesting trends but also reflect a
general lack of clear separation between the three pitching rates reflected in the chemical
spectra. The most noteworthy result here might be that multiple independent sensory
analyses provided the same clear trends and similar descriptors for the different samples,
while the statistical approach failed to do the same. This is most likely due to the human
sensory system detecting and experiencing compounds very differently from the objective
NMR approach.

Looking at the PCA along with the spectra and the PCA loadings, figures 4.12 and 4.14,
we can see some categorical separation, however, the main source of separation lies in the

62



crowded region of the spectra, making it hard to identify what compounds are actually
differing between the treatments. We are able to identify a few compounds with actual
differences, however there is clearly much we are missing. The separation seen in PCA and
t-SNE were not supported by the dendrogram in figure 4.15, where the three treatment
groups form mixed clusters. This suggests that the separation found in PCA and t-SNE
might not be accurate.

Interestingly, there seems to be a trend present in the ethanol content of the three samples.
Illustrated in figure 4.16, we see a seemingly negative relationship between the amount of
yeast used for inoculation and the ethanol content in the resulting beer. A detailed study
of the effects of pitching rates in beer [14] demonstrates no difference in ethanol content
between different pitching rates, putting our findings into question. The trend illustrated
here is not statistically significant, figure 4.17, meaning we cannot draw definite conclusions
from these results.

This pitch rate study was just a small-scale case study and would have to be improved
and scaled up to yield truly significant results. Some suggestions for improvements are as
follows:

The same improvements mentioned above for the categorization analysis of Austmann
samples would apply here as well. Increased sample size, partial-spectrum analysis, and
compound quantification would probably provide better insight into the effects of pitch
rate.

The study design could also be improved by increasing the number of treatment categories
to five, making trends easier to identify than with only three treatments. A more accurate
system for growing and measuring yeast would also be beneficial if this was to become a
large-scale experiment. Finally, a proper sensory analysis performed by a trained panel,
or a large number of participants, would yield more accurate information on the sensory
aspect of the samples, possibly revealing other trends than those found here.

5.1.3 Aging study in algae-flavoured beer

The analysis of aging in beer flavoured with algae was originally not intended for the study
of any specific hypothesis, but rather designed to evaluate the suitability of algae as a
flavouring additive in different beer types using different fermenter organisms. The nature
of this data set with a large number of variables made it quite suitable as a case study for
our analysis platform, as most of the samples we would expect to receive for an eventual
database would be from vastly different samples not designed for scientific experiments.
The purpose of this analysis was therefore to evaluate the possibility of reducing the number
of variable factors to a level where we could study some specific aspects of the data. In this
case, we had the opportunity to run two NMR analyses at different time points, allowing
for a study of aging.

As seen in section 4.1.6 there was no discernible trend caused by aging across the whole
data set of the four beer types, only in the brown ale category did we see a clear separation
between the two aging groups. These results are in line with the findings of [16], where
darker beers were shown to be more affected by aging than lighter beers.

Looking at the spectra along with the PCA loadings, figure 4.25, we see the usual trend
of highly weighted compounds being located in the crowded region of the spectra, foiling
our efforts of identifying the differences in compounds caused by aging. Still, we see a few
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notable compounds change according to age group, as mentioned in section 4.1.6. This
indicates that there might be a difference to be found, however, the analysis methods
are limiting due to the large effect of the crowded region of NMR spectra, making our
discoveries inconclusive.

The same improvements as mentioned above for the pitch rate study and the classification
analysis would be applicable here. Larger sample size, partial-spectrum analysis, and
quantification of compounds would most likely yield more information on the effects of
aging. Additionally, a specialized study should be designed to examine the effects, with
less variables like different yeasts and algae flavouring included.

5.1.4 Evaluation of the analysis pipeline as a whole in light of the three
case studies explored

As illustrated by the three different case studies performed in this thesis, the analysis
pipeline has both benefits and some areas of potential improvement. As a method of quick
evaluation of a sample set for indication of trends or effects for further study, the pipeline
works fairly well. The required time between sampling a beer and having preliminary
results from multivariate analysis can be less than 24 hours, depending on the complexity of
the data set and the statistical analysis involved. This enables a high potential throughput
of samples for evaluation, although with low accuracy for detection of certain compounds.
More detailed studies on discovery rate would be beneficial in evaluating this method of
analysis.

The shortcomings of the approach demonstrated here lie mostly in the lack of accuracy of
a full 1D spectrum analysis approach. A common problem noted in all three case studies
is the heavy weighting of the crowded 3.5-4.5 region of the spectra in the loadings of mul-
tivariate analysis. One approach that may lead to a better understanding of this region
would be 2D NMR spectroscopy, which could potentially provide better resolution to the
spectra by adding another dimension to the analysis. This would however increase the ana-
lysis time and complexity considerably, as well as complicating the statistical analysis. The
2D NMR approach to beer analysis has shown promise in previous studies [60], indicating
it as a possible approach for later studies.

Another potential approach mentioned above would be to pick out identifiable peaks of in-
terest and perform a more thorough quantitative analysis of these peaks. The problem with
this approach alone is the lack of discoverability as unexpected peaks might be overlooked
if only predetermined areas of the spectra are analyzed. A similar problem is present in
other chemical analysis methods commonly used for studying certain compounds in beer,
like High Performance Liquid Chromatography (HPLC) and Gas Chromatography-Mass
Spectroscopy (GC-MS), where high resolution is achieved at the cost of a much narrower
view where only a specific subset of compounds are detected. These methods are therefore
not suited to obtain a full profile of a complex medium such as beer; however, as a sup-
plementary analysis to a full-spectrum NMR approach, these detail-oriented analyses may
be quite beneficial.

The statistical methods used here have varied between the different case studies, as different
tests and measures were more suited to the different data sets and hypotheses. While we
believe a flexible toolbox of statistical tests is important in order to adapt to different
hypotheses, a standardized set of initial statistical analysis could be beneficial to evaluate
trends in comparison to previous studies and to not only choose statistical tests based on
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the results we expect, thereby reducing biases and increasing the chance of discovery of
unexpected results.

Compound identification is another area that would benefit from more work. As of yet, we
only have a few peaks of the spectra identified and linked to compounds, and only a few of
these are possible to quantify with acceptable accuracy. Developing a comprehensive library
of known compounds and their expected chemical shift in the spectra would significantly
increase the insight gained from a simple 1D spectrum, and will be a prerequisite for
more detailed quantitative analyses. This will require a combination of literature studies
for known compounds of interest, as well as analysis by heteronuclear single quantum
coherence spectroscopy (HSQC) to identify compounds present in small quantities.

In conclusion, the recommendation for future analysis is to create a robust and compre-
hensive analysis pipeline based on rapid 1D full-spectrum analysis for initial discovery,
guiding more detailed quantitative methods like 2D NMR or GC-MS. Coupled with a ver-
satile suite of multivariate analysis techniques and a comprehensive library of identifiable
compounds, this approach to beer analysis could have great potential for the discovery of
new and valuable insights into the production of beer.

5.2 Data treatment

5.2.1 Challenges and decisions on scaling of chemical spectra

As described in section 4.1.2, an issue with commonly used scaling methods was discovered
during multivariate analysis, where the scaling process would scale the noise of the baseline
or crowded regions of the spectra to the same level of significance as the peaks where the
actual informative differences lie. The problem resulted in real peaks rarely driving the
difference between groups, as random differences in the baseline might represent more
relative differences in the scaled data.

To work around this problem, all nonparametric analyses were performed without scaling,
as this allowed the differences in the peaks to be weighted more than those in the baseline.
This is far from a perfect solution, and statistical results from the multivariate analyses
must be viewed in this light.

We believe the unscaled approach to be a viable option for achieving quick results of
indications of trends and structures in the data. However, we also suggest solutions for
scaling and filtering of full spectra should be developed in order to gain a more accurate
method of analysis.

5.3 Lessons from the case studies for data storage

Circling back to evaluate the original purpose of the three case studies of beer: To gain a
better understanding of the strengths and weaknesses of our analysis pipeline, as well as
to evaluate the structure and nature of the data to be stored in the proposed database.
The first purpose is discussed at length above, as for the second purpose we distinguish
between three main categories of data: Metadata, analysis data, and results data.
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5.3.1 Metadata

Metadata in this sense encompasses all information about a sample that is not gained from
the analysis, including recipe, style and type descriptions, producer, brewing and sampling
dates, and any other pertinent information. After going through the case studies, it became
clear that different data were important in different analyses, and that what information
is needed might not be known prior to analysis. It is therefore recommended to record
as much metadata as is practical for any given sample. Lack of metadata can severely
limit analysis, as was the case in the Austmann case study where we were unable to obtain
production recipes for the samples in time for this thesis, resulting in a somewhat stunted
analysis effort.

Some metadata might seem relevant only for a given experiment, such as detailed in-
formation on the pitching rate for the second case study. However, having knowledge on
pitching rates for all samples would enable a more comprehensive analysis, evaluating the
effect across multiple variables.

The storage structures for metadata were not a concern for the small studies performed
by hand for this thesis, however it might become important for larger analyses where
machine-readability is a concern. A standardized way of storing metadata should therefore
be developed in the proposed database.

5.3.2 Analysis data

All data recorded during some form of analysis, either chemical spectra from NMR or
descriptors recorded by sensory analysis, will be considered analysis data in this section.
Through the three case studies different forms, or stages, of analysis data were recorded.

Firstly, three raw NMR spectra were recorded for each sample, where two of these were
relevant for further analysis. These spectra should be stored in a format that retains as
much of the original information as possible, ideally in the native storage files of Bruker
TopSpin, containing all the information of the spectra, as well as metadata on the NMR-
acquisition, process, and parameters used. This data is stored in a folder structure readable
in TopSpin, and might prove difficult to store and read within a database system. A
solution could therefore be to store the raw spectra as spreadsheets which can be stored
and read by a database system, while maintaining a separate backup of the spectra as
Bruker files, possibly in a compressed format for storage purposes.

Secondly, composite spectra are created for each case study, where spectra from the rel-
evant samples are merged and aligned into a matrix of multiple spectra, as described in
section 3.2.4. This alignment must be done for each collection of spectra in order to avoid
false discoveries in the statistics caused by misalignment of the spectra. The alignment
procedure is time consuming, and it might have to be done slightly differently for each col-
lection of spectra. For traceability and reproducibility of results, it is therefore important
that these spectra collections are kept after a completed study. These collected spectra
can be stored as large spreadsheets, which can be stored and read by the database system.
The intermediate files and the procedure for creating these collections can also be stored
in the form of Matlab workspace files. Although this is useful for reproducibility, it might
be excessive in terms of storage space.

Thirdly, data from other forms of analysis must be considered. Other chemical analysis
methods can most likely be stored in a similar way as the NMR spectra, as these would be
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either the spectra themselves or tables of peak intensities. Storing more detailed results
from sensory analysis could pose more of a problem, as the variables analysed by a tasting
panel might not be identical for different studies. Standardization is important to machine-
readability when considering large scale or global analysis of a whole library of samples
using computer tools, and therefore the development of a standardized way of recording
and storing sensory data is recommended.

5.3.3 Results data

In some cases, we might be interested in analyzing the outcomes of different studies, eval-
uating them in relation to each other, and performing internal meta-studies. To facilitate
such efforts, it is important to store detailed results of the studies already performed, not
only for the purposes of publication and reproducibility, but also for later evaluation of
the findings. Making earlier discoveries easily available in an ordered fashion would also
help in the exploration of possible findings from previous studies that were not followed
up, making it more likely that indications of findings or trends are found and tested.

Storage of results would by its very nature be individual to each hypothesis tested, how-
ever, developing a unified storage solution for statistics from previous studies would be
recommended for a long project of this type.

5.4 Outreach and contributions

The results of the effort to establish cooperation with the brewing community can be
considered partially successful. Meetings with representatives from Austmann Brewery in
Trondheim and Voss Brewery in Voss, have resulted in preliminary agreements to share
recipes and samples from the brewing process. Smaller studies, like the study of algae
as a flavouring agent in beer, was performed in cooperation with E.C. Dahls Brewery in
Trondheim and SINTEF, with the aim of exploring potential new commercial products
using algae. Such scientific and industry cooperation is highly beneficial, as it allows the
same samples to serve multiple purposes.

Gathering of samples from breweries has been limited however, due to the restrictions
caused by the SARS-CoV-2 epidemic starting in late 2019. These restrictions have caused
delays in analysis development, as well as severe limitations in the brewing industry, making
it necessary for some potential contributors to postpone involvement. We do, however,
believe there is great potential for cooperation from the local brewing industry when the
situation returns to normal. We now have a more streamlined analysis procedure that will
enable quick results after sample gathering, as well as having access to previous results
that may spark interest in potential contributors.

The homebrewing community could also be a resource for gathering a large number of
samples. The website created is a first step in the direction of enabling contact with
homebrewers, however, creating a base of contributors in the homebrewing community is
beyond the scope of this thesis. For future efforts, we recommend establishing rapport
with homebrewers through forums, social media, and conventions. Facilitating the sharing
of results and knowledge between this project and the homebrewing community could be
of great value for both parties, and a good opportunity for citizen science.
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5.5 Database selection

A substantial part of the groundwork necessary for massive-scale analysis envisioned in this
thesis was choosing a database structure based on our needs. Multiple alternative database
models or services were evaluated based on the prerequisites we had. The following is a
short overview of the requirements for our database solution:

• The system must be highly configurable and flexible in terms of structure and con-
tents.

• The system must support a hierarchical structure of sufficient depth to handle de-
tailed categorization.

• Objects in the database must be queryable and filterable by multiple identifiers.

• The system must allow for the creation of custom data fields or templates for record-
ing of diverse metadata.

• The system must be able to store and read either NMR spectra in native format, or
large spreadsheets.

• Queries must be exportable in formats that can be used in analysis.

• The system must include security options to restrict access to potential industry
secrets.

• Custom input options or templates must be configurable so that non-experts can
input information to the database.

It should also be mentioned that multiple projects within the same research group might
be developing database solutions alongside the Systems Brewology Project. Suitability for
other applications might therefore affect the final decision on what will end up being im-
plemented. The conclusion in this thesis will be a recommendation based on the suitability
for the solution for the problems posed in this thesis.

5.5.1 Alternatives

Based on the requirements above, multiple known database structures where evaluated.
This section contains the considerations made for a short-list of the most promising altern-
atives, which includes the following:

• Fully custom-made database structure based in Python

• Metabolomics Workbench

• Fairdom Seek4Science

• ISA Tools

• openBIS
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Custom Structure

The first alternative considered for the database solution was to construct a fully custom
database using Python and MySQL. This would allow for a fully customizable relational
database structure where we would be able to construct whatever internal structures and
external interfaces we would need. The versatility of this option makes it a compelling
alternative.

The drawbacks of a fully custom solution is that it requires a great deal of skill and
knowledge to construct, and constructing such a database on par with already available
solutions would require time and resources that are far beyond the scope of this thesis, and
possibly even the project as a whole.

Metabolomics Workbench

Metabolomics Workbench is a browser-based data repository consisting of multiple meta-
bolomics databases for biomedical research. Their service also allows for creating custom
studies and uploading metabolomics data for the study, including metabolite analysis like
MS and NMR spectra as well as accompanying metadata for the samples. [61]

Such a solution would fit well with many of our requirements, as the structure for storing
NMR spectra and metadata is already in place, search and filtering systems are in place,
and even simple analysis as well as data visualization is possible within the database.
The service comes up short in terms of customizability, and the available templates for
metadata and annotation will not fit our requirements for storing recipe information and
brewing process used for beer samples. Another problem presents itself in the require-
ment for security, as Metabolomics Workbench stores all information in publicly available
repositories, and we might need to store recipes that are not public knowledge.

ISA-Tools

ISA-Tools, based on the ISA framework, is a software suite of multiple applications. It
is based on the ISA data model, consisting of a hierarchical structure describing "In-
vestigation" (project), "Study" (unit of research), and "Assay" (analytical measurement).
This structure enables a comprehensive overview of the recorded study, with appropriate
metadata recorded at each level in the ISA hierarchy. The software suite enables the cre-
ation of customizable repositories, using a host of different software packages for creating,
annotating, and exporting data. External API support for iPython and Jupyter notebooks
is also included, enabling fully custom interaction with the repository if needed. [62]

This solution could be a good fit for our needs, the customizability available with the
software suite would most likely allow us to create a structure suitable for our needs.
The limitations of the ISA structure is, however, a concern. Limiting the hierarchical
structure to a scientific standard that may prove restrictive to the unconventional needs
of studies on fermented beverages. These restrictions could possibly be circumvented by
bending the rules of the hierarchical structure, but a more flexible solution would still be
preferable. Security could be upheld with ISA-Tools using local hosting of the repository,
and integrated connections to publications would ease efforts in knowledge sharing and
dissemination.
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Seek

The Fairdom Seek4Science platform is another ISA-based platform. Seek expands on the
regular ISA model, claiming it to be more configurable and usable outside traditional
biology. Otherwise, seek has many of the same properties as ISA-Tools, although with
a smaller suite of additional software. It also offers integrated use of ontologies with
RightField enabled spreadsheets for metadata annotation. [63]

Seek seems to be a well-suited solution, as it lessens the restrictions imposed by the ISA
format, while maintaining many of the attractive features offered by ISA-Tools. The
integration of ontologies for metadata annotation could be a great benefit in this project,
as the initial sample structure is based on a custom ontology. Seek also includes access
control to keep contents in the database private and offers versions for private hosting. One
notable drawback to Seek is the lack of support for data spreadsheets linked to a sample,
this would require NMR spectra to be included as data files with their contents unavailable
to be searched or interfaced with within the repository. Exporting options also seem to be
limited, however this might be solved with external scripts through API. Otherwise, the
sample annotation and filtering system would fit well with our needs.

openBIS

openBIS is the most comprehensive option on our list, it includes solutions for inventory
management, lab notebook, version tracking, and extensive systems for data management,
analysis, import/export, as well as API and plugin support. Data storage capabilities
include full data spreadsheets accessible from the interface, as well as configurable data
fields for metadata. Import and export can be automated with the integration of API or
plugins, and simple analysis can even be performed within the database. Data files of spec-
tra can also be included and linked to the samples, however these cannot be manipulated
within the database. Querying and filtering is possible in both annotated data tables and
metadata fields. The whole setup can also be hosted locally with access control, ensuring
secure storage if necessary. [64]

openBIS is a somewhat different solution from the others on this list, as it offers a more
complete environment for up to multiple projects. This may or may not be a benefit in
our case, but should be considered in case the need arises. The data storage solution
offered by openBIS is as customizable as both ISA-based options, but with more support
for interaction with raw data like spreadsheets. The extensive support for API and plugins
also offer possibilities for simplified or even semiautomated input procedures of sample
data, as well as customizable export options. The major drawback of openBIS is the
complexity of the system and the time necessary to set up and configure the database.

Final Decision

The final decision for a database solution will be openBIS, with Seek as a good altern-
ative. Both of these solutions offer all the functionality required for implementation of
the database, and stands out compared to other alternatives in terms of flexibility and
support for external tools. From the initial research, openBIS appears to be a somewhat
more flexible system compared to Seek, and offers a more complete solution that may have
benefits for later efforts during the lifetime of the project. openBIS does, however, come
with a more complicated installation and setup procedure that may require significant
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time and resources to complete, which may not be the case with Seek as it is a far less
complex system. Despite a more demanding initial process, we believe the benefits of a
more comprehensive solution will outweigh the drawbacks.

5.6 Ontology

5.6.1 Accuracy of classifications

The ontology aims to introduce an attempt at standardization to a subject fraught with a
wide array of differing opinions on definitions and standards. The purpose of constructing
this new ontology, based on a collection of definitions offered by different experts and
authors, is to capture a unified snapshot of the current state of understanding of beer style
classification. Such a pieced-together set of definitions might have minute overlaps in the
classifications used in our annotation, either due to a lack of intimate understanding of the
beer by the annotator, or poor definitions offered by the author of the source. The creation
and curation of such an ontology is by necessity an iterative process, and will have to be
reevaluated and changed by those continuing my work on this project. With the aid of the
analysis pipeline developed in this thesis, we can hopefully offer new perspectives on the
classification of beer styles.

Sourcing of classifications

The beer style categorization was based on two main sources: The beer style guides of
craftbeer.com [55], and the Brewers Association [54]. These are organizations based in the
United States, promoting knowledge and education about craft beer and brewing proced-
ures. They both publish style guides detailing the taste, characteristics, and important
ingredients of a large number of beer styles. Together, these two guides cover most of
the known beer styles in sufficient detail for the purposes of our ontology. However, a
more detailed annotation process will have to be undertaken for the ontology to accur-
ately identify and cover all possible styles of beer. In a few cases where the style guides
were sparse on information, some descriptions were supplemented by information found on
Wikipedia.com, we considered this an acceptable source in this endeavour as it represents
a common understanding of the beer styles described. Which, by the very nature of beer
styles, is what the ontology is designed to provide.

Class structure

The design of the class structure for the beer styles is somewhat unconventional as it
categorizes a style both by a description of ingredients and characteristics, as well as by
region of origin. This adds a layer of complexity to the categorization that might serve to
make the ontology harder to incorporate into a database or other structure. However, we
believe the added benefit of multiple avenues of categorization makes up for the additional
complexity. The two different avenues of categorization are separate, and one can therefore
be removed if needed.

Based partially on categorizations from the style guides and partially on our own knowledge
on the ingredients and processes of the different styles, similar styles were grouped together
under a common name, like the different versions of the German beer style Bock for
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example. These groupings can definitely be improved with further research and annotation.
As different sources disagree on these groupings, more detailed research are required to
make sound and consistent design choices on how to define these in the ontology.

Object properties and links

Choosing to construct the recipes of samples in a network form using object properties
to describe the inclusion of ingredients, rather than just adding a recipe to the metadata,
does also add to the complexity of this ontology. The reasoning behind this choice is that
more information can be included in this way, as separate metadata can be annotated
for a specific ingredient, giving us the ability to annotate the ingredients themselves with
results from our studies or literature research. This results in a more flexible and interactive
structure, again providing multiple avenues of inquiry into the ontology. Using an approach
like this provides information in both directions for one annotation; not only can you easily
figure out what hops are used in a certain beer, but also what beers contain a certain hop.

The current structure of object properties only covers the basic connections between a
sample and instances of ingredients, producers, and styles. This annotation system still
needs more development in order to enable the annotation of more complex information
about the brewing procedure for a sample, like the time point an ingredient is added, or the
amount used. This information could also be added as metadata for the sample, however
recording it as part of a link would be beneficial in some instances.

All information on a sample cannot be included in the links for practical purposes, and
the choice of what to include as metadata and what to include in custom connections is
a complex one. This will require much practical testing and evaluation of the ontology by
experienced brewers and other domain experts.

5.7 Summary of recommendations for future efforts

Following the reasoning in section 5.5, the openBIS database solution should be used for
the construction of a the database. It meets all the requirements set in this thesis, as well
as being a comprehensive solution suite that can be used for multiple projects and efforts
in the future. Should openBIS not perform as expected, the recommendation is to use
Seek, which also met all the criteria we set.

The final system will have to contain standardized templates for importing and annotating
samples in order to keep the information structure similar and easily available for exporting
algorithms. All available metadata should be recorded for a given sample, as seemingly
unimportant features might be relevant for some studies. The import templates for the
database should account for this, and should therefore be developed to account for every
known type of ingredient or treatment, as well as have the flexibility to encompass new
aspects of beer we have yet to predict.

The database should be designed to store large quantities of spectral data, multiple spectra
may be needed to fully encompass each sample. The storage system must also be designed
to handle not only 1D NMR spectra as first expected, but also other forms of chemical
analysis like HSQC, HPLC, and GC-MS, as well as data from sensory analysis. There
should be standardized ways of importing and storing all relevant forms of chemical analysis
in order to make querying and filtering possible for all facets of a sample. The proposed
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database must also have a solution for recording findings from previous studies, as well as
any composite spectra or similar treated data used in the study. This will enable a more
iterative approach to these studies, making illusive discoveries readily available by building
upon previous discoveries or exploring weak indications in previous studies.

Looking at the results and discoveries from the case studies, sections 4.1 and 5.1, we
find that the methods used have both limitations and potential. The limitations lie in
the problems caused by highly crowded regions of the NMR spectra limiting compound
identification, as well as in problems with scaling methods either amplifying noise in the
spectra or underestimating differences in smaller peaks. These problems are inherent in the
full-spectrum approach, but may be solved by customizing methods of filtering and scaling
for the type of spectra. We see great potential in the approach, as we can very quickly
treat, analyse, and evaluate a large number of samples. This gives us a solid platform
for discovering potential features for more targeted approaches. Therefore, we believe the
optimal analysis strategy for this project lies in a combination of different chemical analysis
methods at different levels of specificity.

In terms of gathering samples, the time working on this thesis has shown that brewing
our own samples is a valuable resource for targeted experiments, but it will be far too
costly and impractical to produce samples in the quantities and variation we would need
for a comprehensive database covering representative sample sets from all major types of
beer. The need for external samples is clear, and strategies must be developed to facilitate
this. During this thesis we had limited luck receiving samples and recipes from professional
breweries, however, we believe this to be caused mainly by the Covid-19 pandemic severely
impacting the brewing industry. In future efforts, we should focus on reestablishing con-
tacts with potential contributors in the industry, as well as developing rapport with the
homebrewing community to receive samples and input from them.
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Chapter 6

Outlook and summary

This chapter will summarize the conclusions of this thesis, as well as present suggestions
for the future of the Systems Brewology Project, what steps need to be taken to achieve
the aims set for the project and what sort of findings might be reasonable to expect.

Summing up the findings and the work performed for this thesis, we see that we now have
a solid foundation on which to build a database solution for later studies, a methodology
for performing these studies, and structures for both procuring and annotating samples for
the project.

Based on the results of the case studies of beer samples done for this thesis, we can conclude
that 1D 1H NMR spectroscopy is a quick and efficient method for qualitative studies of
beer. The statistical methods of PCA, PLS-DA, t-SNE, hierarchical clustering, k-means
clustering, and compound quantification were valuable tools for analyzing the spectra
produced by NMR. Some limitations in the accuracy of 1D NMR for use on complex media
were discovered however, and for future efforts we recommend evaluating a combination of
chemical analysis methods.

The case studies performed for this thesis resulted in interesting discoveries about tradi-
tional categorizations of beer styles, and new categories were explored based on clustering
of the chemical spectra. Notable effects caused by varying pitching rate on the taste of beer
were documented, along with preliminary results on differences in chemical spectra and in
certain chemical compounds, as well as ethanol content in the finished beer. Differences
in aging of certain beer types flavoured with algae were also studied, and clear effects of
aging were discovered in the chemical compositions of samples of a darker beer style.

Based on evaluation of the data used in the case studies, critical recommendations were
made regarding the implementation of a database for storing of the samples. The recom-
mendation is to employ the openBIS database system as a framework for constructing a
database. From observation of the requirements for statistical analysis, it is recommended
that a highly standardized importing and exporting system is developed for the database,
so that data can be both imported and exported in standardized formats. This will be
critical for consistency in the data structure, both for the use of querying applications and
for the use of exported data sets in data mining and machine learning algorithms.

The custom ontology created during this work will be valuable both for informing the
structure of the database and for understanding the hierarchical structure of beer styles.
This allows for a detailed annotation solution for the samples used in this project, as well
as enables sharing of concepts between users and experts of the field using a standardized
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knowledge base. This may also be of value in communication between researchers and
brewers. The ontology is made publicly available, and it is highly recommended that
future work in this project involves continued development of the ontology.

Procurement of future samples will be facilitated by the project website created as part
of this thesis, while the sample treatment and NMR acquisition procedure is standardized
and documented for future use in the manual found in appendix E. This contributes to
usability and knowledge transfer to new users of the pipeline.

This project has great promise for future studies, the preliminary results from case studies
presented in this thesis already demonstrate the ability to detect trends and characteristics
in different sample sets. We believe that building on the work documented here, and
with the right improvements to the analysis pipeline, data storage solutions, and sample
procurement, this project will produce valuable results.

There are multiple paths forward for this project, the most important of which will be
constructing a research platform based on the requirements and suggestions discussed in
chapter 5. With this platform in place, the next step would be to start gathering samples
in large quantities and running them through NMR analysis to incorporate them into the
database. When the samples are in place, analysis can start by using mining algorithms to
look for trends or patterns in the data, as well as to manually perform targeted analyses
such as those used in this thesis to study specific hypotheses.

In platform development, the next step is to start constructing the actual database using
the openBIS database structure, as presented in section 5.5. A separate work needs to
be done to elucidate the final data structure to record the expected samples, although
this effort may be guided by the ontology created in this thesis, as well as by the recom-
mendations made here. However, there will most likely be unforeseen peculiarities of the
openBIS system that will require extensive deliberation of the information structure to be
implemented.

The required aspects of the database envisioned here include custom import and export
procedures, sorting and querying systems, as well as security systems.

The importing and annotating system will have to be standardized to ensure that the
metadata for all samples are structured in the same way. Our recommendation for achieving
this is to construct custom templates in openBIS, or using scripts incorporated through
APIs. Ideally, these templates would employ a controlled language based on the ontology
created for this thesis, as well as specialized data fields for recording the most common
items of metadata that would be present in all samples.

The exporting system will have to be designed along with the querying and filtering system.
For exporting, it is critical that the files are both human and machine-readable, enabling
both manual studies as well as the use of machine learning algorithms. For querying, it
will be important that the importing system is standardized, and that the recorded spectra
are readable by the querying algorithms. This may require some annotation during the
importing step. We expect the exporting can be done mainly by the systems included in
the openBIS suite, however there might also be a need for some use of external scripts
through API should the exporting systems in openBIS be limiting. The querying system is
already incorporated in the openBIS solution, and will be well suited to the tasks required
for this project, provided the data is stored in a readable format.

In terms of gathering samples, this thesis has proven that brewing our own samples is a
valuable resource for targeted experiments, but it will be far too costly and impractical
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to produce samples in the quantities and variation we would need for a comprehensive
database covering representative sample sets from all major styles of beer. The need
for external samples is clear, these may come either from commercial breweries or the
homebrewing community.

For industry cooperation, the recommendation for future efforts is to contact local breweries
and brew-pubs to inquire about procuring small samples along with recipes and other
metadata. For contact with homebrewers we recommend developing rapport with the
community through a presence in forums and social media, as well as brewing conventions
like NorBrew Con. The project website will also be a useful tool in contact with both
commercial and amateur brewers.

When a final database is constructed and populated by samples, the analysis can begin.
We suggest the use of data mining and machine learning algorithms for discovering trends
in the samples. Early efforts would primarily focus on data mining where the aim of
discerning new patterns in the data sets. This might, for example, lead to new ideas
of beer style classification, or relations between ingredients that are believed unrelated.
Machine learning focused on predicting new information based on known data could also be
a useful tool to discover new possibilities that might not exist yet, or coupled with sensory
analysis and preference data, might be able to predict new combinations of ingredients and
procedures to brew new beer types targeted to certain customer groups.

Relating sensory experiences to chemical spectra is another important area of study with
regard to machine learning. Using large data sets of chemical and sensory data on beer
samples, we may be able to train our analysis algorithms to interpret the chemical spec-
tra in similar ways to how a human experiences beer. This could lead to highly valuable
discoveries when coupled with preference data and other metadata on how we experience
beer. User data from applications like Untapped who collect information on peoples exper-
ience of beers may aid in such endeavours. The possibilities of the use of computational
algorithms in beer studies are just speculation as of yet, however, we believe they will have
an important role in the future of this project.

Manually targeted analysis will also be an important part for future studies using this
database. Exploratory statistical efforts like those in this thesis will allow us to further
study the trends we discover using computer algorithms, or statistically evaluate findings
from targeted experiments using in-house samples.

In conclusion, I believe there is potential in this line of research and the project as a whole,
although it may come with many challenges. It is my hope that the groundwork done in
this thesis will be a solid foundation for the future development of a valuable and flexible
research platform that will bring new understanding to the ancient art and science of beer
brewing.
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7 EBC

Belgian Witbier - 6.6%
Witbier
Author: Hoppy Indian Brewery

Type: All Grain

IBU                   : 16 (Tinseth)
Color                 : 7 EBC
Carbonation           : 2.6 CO2-vol

Pre-Boil Gravity      : 1.057 / 14 °P
Original Gravity      : 1.062 / 15.3 °P
Final Gravity         : 1.012 / 3.1 °P

Speidel Braumeister 50L
Batch Size        : 46 L
Boil Size         : 55 L
Post-Boil Vol     : 50 L

Mash Water        : 55 L
Sparge Water      : 7.56 L

Boil Time         : 60 min
Total Water       : 62.56 L

Brewhouse Efficiency: 74%
Mash Efficiency: 77.2%

Fermentables (12.2 kg)
5.5 kg - Pale Malt, Ale 3.9 EBC (45.1%)
5.5 kg - Wheat Malt 3 EBC (45.1%)
1.2 kg - Oats, Flaked 2.8 EBC (9.8%)

Hops (100.5 g)
60 min - 50.5 g - Hallertauer Mittelfrueh - 3...
30 min - 50 g - Hallertauer Mittelfrueh - 3.6...

Miscellaneous
Mash - 20 ml - Lactic Acid 80%
5 min - Boil - 20 g - Coriander Seed
5 min - Boil - 50 g - Orange Peel, Sweet

Yeast
1 pkg - White Labs Bavarian Weizen Yeast WLP351
1 pkg - White Labs Belgian Ale WLP550

Starter
Step 1: 3.9 L (383 g DME / 468 g LME)
100 billion cells overbuild: 0.61 L
3.29 L pitch amount
635 billion yeast cells
12 million cells / ml

Mash Profile
More dextrinous
69 °C - 60 min - Temperature
75 °C - 10 min - Mashout

Fermentation Profile
Ale
20 °C - 4 days - Primary
26 °C - 12 days - Secondary
4 °C - 4 days - Cold Crash

Measurements

Mash pH:

Boil Volume:

Pre-Boil Gravity:

Post-Boil Kettle Volume:

Original Gravity:

Fermenter Top-Up:

Fermenter Volume:

Final Gravity:

Bottling Volume:

Recipe Notes

I used fresh 50gms orange peel,bit next time I will use atleast 100gms. You can also use dry orange
peel.
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A.1 Pitch rate samples base recipe
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45 EBC

Algae Brown Ale - 5%
Engelsk Brown Ale
Forfatter: Viggo

Type: Kornbasert

IBU                   : 17 (Tinseth)
Farge                 : 45 EBC
Karbonering           : 4.6 g/L

Gravity før kok       : 1.045 / 11.2 °P
Original Gravity      : 1.050 / 12.4 °P
Final Gravity         : 1.012 / 3.1 °P

Speidel Braumeister 50L
Størrelse på brygg: 45 L
Kokestørrelse     : 53.96 L
Volum etter kok   : 48.96 L

Meskevann         : 55 L
Skyllevann        : 4.71 L

Koketid           : 60 min
Total vannmengde  : 59.71 L

Brygghuseffektivitet: 74%
Meskeeffektivitet: 77.3%

Gjærbare ingredienser (9.88 kg)
7.1 kg - Pale Malt, Maris Otter 5.9 EBC (71.9%)
880 g - Brown Malt 175 EBC (8.9%)
800 g - Chateau Biscuit 50 EBC (8.1%)
800 g - Dark Crystal Malt 220 EBC (8.1%)
300 g - Pale Chocolate 600 EBC (3%)

Humle (20 g)
60 min - 20 g - Columbus/Tomahawk/Zeus (CTZ)...

Diverse
Mesk - 5.22 g - Calcium Chloride (CaCl2)
Mesk - 8.28 g - Epsom Salt (MgSO4)
Mesk - 5.4 g - Gypsum (CaSO4)
15 min - Kok - 1.8 stk - Servomyces
15 min - Kok - 3.6 g - Yeast Nutrients
10 min - Kok - 9 g - Irish Moss

Meskeprofil
Medium fermentability
66 °C - 90 min - Temperatur
78 °C - 15 min - Mash out

Gjæringsprofil
Ale
18 °C - 14 dager - Primær
20 °C - 3 dager - Primær
3 °C - 3 dager - Cold Crash
3 °C - 1 dager - Karbonering
3 °C - 14 dager - Modning

Vannprofil
Trondheim (Kilde: Øltid)  (Style - N. English...
Ca 45 Mg 9 Na 4 Cl 30 SO 61

SO/Cl-forhold: 2
Mesk pH: 5.33

Målinger

Mesk pH:

Kokevolum:

Gravity før kok:

Volum i kjele etter kok:

Original Gravity:

Gjæringskar-påfyll:

Gjæringskar-volum:

Final Gravity:

Flaskevolum:

A.2 Alage-beer samples base recipes

A Brown Ale recipe
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21 EBC

Algae IPA - 5.6%
Amerikansk IPA
Forfatter: Trond Viggo Pettersen

Type: Kornbasert

IBU                   : 45 (Tinseth)
Farge                 : 21 EBC
Karbonering           : 4.7 g/L

Gravity før kok       : 1.054 / 13.3 °P
Original Gravity      : 1.059 / 14.5 °P
Final Gravity         : 1.016 / 4.1 °P

Speidel Braumeister 50L
Størrelse på brygg: 45 L
Kokestørrelse     : 53.96 L
Volum etter kok   : 48.96 L

Meskevann         : 55 L
Skyllevann        : 6.24 L

Koketid           : 60 min
Total vannmengde  : 61.24 L

Brygghuseffektivitet: 74%
Meskeeffektivitet: 77.3%

Gjærbare ingredienser (11.8 kg)
7 kg - Chateau Pilsen 2-Row 3.5 EBC (59.3%)
2.8 kg - Carahell 25.5 EBC (23.7%)
2 kg - Carared 47.5 EBC (17%)

Humle (302 g)
60 min - 37 g - Columbus/Tomahawk/Zeus (CTZ)...
5 min - 25 g - Amarillo - 9.2% (3 IBU)
5 min - 20 g - Simcoe - 12.8% (4 IBU)
5 min - 20 g - Sorachi Ace - 13% (4 IBU)

Hop Stand
10 min hopstand @ 80 °C
10 min - 35 g - Amarillo - 9.2% (1 IBU)
10 min - 30 g - Cascade - 5.5% (1 IBU)
10 min - 30 g - Centennial - 10% (1 IBU)
10 min - 20 g - Simcoe - 12.8% (1 IBU)

Tørrhumle
5 dager - 25 g - Simcoe - 12.8%
5 dager - 20 g - Amarillo - 9.2%
5 dager - 20 g - Cascade - 5.5%
5 dager - 20 g - Centennial - 10%

Meskeprofil
4 trinn
63 °C - 15 min - Temperatur
67 °C - 15 min - Temperatur
70 °C - 60 min - Temperatur
78 °C - 15 min - Temperatur

Gjæringsprofil
Ale
18 °C - 14 dager - Primær
20 °C - 4 dager - Primær
2 °C - 3 dager - Cold Crash
2 °C - 1 dager - Karbonering
10 °C - 14 dager - Modning

Målinger

Mesk pH:

Kokevolum:

Gravity før kok:

Volum i kjele etter kok:

Original Gravity:

Gjæringskar-påfyll:

Gjæringskar-volum:

Final Gravity:

Flaskevolum:

B IPA recipe
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7 EBC

Algae Tornwood Goose - 5.1%
Gose
Forfatter: Trond Viggo Pettersen

Type: Kornbasert

IBU                   : 8 (Tinseth)
Farge                 : 7 EBC
Karbonering           : 5.8 g/L

Gravity før kok       : 1.043 / 10.7 °P
Original Gravity      : 1.048 / 11.8 °P
Final Gravity         : 1.009 / 2.3 °P

Speidel Braumeister 50L
Størrelse på brygg: 45 L
Kokestørrelse     : 53.96 L
Volum etter kok   : 48.96 L

Meskevann         : 55 L
Skyllevann        : 4.08 L

Koketid           : 60 min
Total vannmengde  : 59.08 L

Brygghuseffektivitet: 74%
Meskeeffektivitet: 77.3%

Gjærbare ingredienser (9.1 kg)
4.5 kg - Chateau Wheat Blanc Nature 4.5 EBC (...
4.4 kg - Pilsen Malt 3.5 EBC (48.4%)
200 g - Acidulated 6 EBC (2.2%)

Humle (45.1 g)
60 min - 19.6 g - Hallertauer Mittelfrueh - 3...
30 min - 9.8 g - Hallertauer Mittelfrueh - 3....
15 min - 15.7 g - Hallertauer Mittelfrueh - 3...

Diverse
Mesk - 1 pkg - WildBrew Sour Pitch
Mesk - 10 g - Calcium Chloride (CaCl2)
Mesk - 1.3 g - Epsom Salt (MgSO4)
Mesk - 1.4 g - Gypsum (CaSO4)
Mesk - 10 ml - Lactic Acid 80%
Mesk - 3 g - Magnesium Chloride (MgCl2)
15 min - Kok - 2 stk - Servomyces
15 min - Kok - 1 stk - Whirlfloc
15 min - Kok - 4 g - Yeast Nutrients (WLN1000)
Kokeslutt - 150 g - Algae - freeze dried
Primær - 1500 g - Tindved - Thornwood

Gjær
1 pkg - White Labs California Ale WLP001

Starter
Steg 1: 2.2 L (216 g DME / 264 g LME)
401 milliarder gjærceller
9 millioner celler / ml

Meskeprofil
Max fermentability with highest yield
63 °C - 30 min - Temperatur
70 °C - 60 min - Temperatur
78 °C - 15 min - Mash out

Gjæringsprofil
Lager
18 °C - 14 dager - Primær
20 °C - 3 dager - Primær
3 °C - 3 dager - Cold Crash
3 °C - 1 dager - Karbonering
3 °C - 14 dager - Modning

Vannprofil
Trondheim (Kilde: Øltid)  (Style - Fruit Lambic)
Ca 40 Mg 9 Na 4 Cl 50 SO 25

SO/Cl-forhold: 0.5
Mesk pH: 5.45

Målinger

Mesk pH:

Kokevolum:

Gravity før kok:

Volum i kjele etter kok:

Original Gravity:

Gjæringskar-påfyll:

Gjæringskar-volum:

Final Gravity:

Flaskevolum:

C Goose recipe
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33 EBC

Amber Algae Lager - 4.9%
European-Style Dark Lager
Forfatter: Trond Viggo Pettersen

Type: Kornbasert

IBU                   : 23 (Tinseth)
Farge                 : 33 EBC
Karbonering           : 4.7 g/L

Gravity før kok       : 1.047 / 11.7 °P
Original Gravity      : 1.051 / 12.7 °P
Final Gravity         : 1.014 / 3.6 °P

Speidel Braumeister 50L
Størrelse på brygg: 45 L
Kokestørrelse     : 53.96 L
Volum etter kok   : 48.96 L

Meskevann         : 55 L
Skyllevann        : 4.96 L

Koketid           : 60 min
Total vannmengde  : 59.96 L

Brygghuseffektivitet: 74%
Meskeeffektivitet: 77.3%

Gjærbare ingredienser (10.2 kg)
6.5 kg - Chateau Pilsen 2-Row 3.5 EBC (63.7%)
2.5 kg - Carared 47.5 EBC (24.5%)
1.2 kg - Triple Melanoidin 197 EBC (11.8%)

Humle (27 g)
60 min - 27 g - Columbus/Tomahawk/Zeus (CTZ)...

Diverse
15 min - Kok - 2 stk - Servomyces
15 min - Kok - 1 stk - Whirlfloc
15 min - Kok - 5 g - Yeast Nutrients (WLN1000)
5 min - Kok - 50 g - Black pepper - crushed

Gjær
1000 ml -  Dahls yeast

Meskeprofil
4 trinn
63 °C - 15 min - Temperatur
67 °C - 15 min - Temperatur
70 °C - 60 min - Temperatur
78 °C - 15 min - Temperatur

Gjæringsprofil
Lager
12 °C - 14 dager - Primær
14 °C - 10 dager - Primær
3 °C - 7 dager - Cold Crash
3 °C - 1 dager - Karbonering
3 °C - 14 dager - Modning

Målinger

Mesk pH:

Kokevolum:

Gravity før kok:

Volum i kjele etter kok:

Original Gravity:

Gjæringskar-påfyll:

Gjæringskar-volum:

Final Gravity:

Flaskevolum:

D Amber Lager recipe
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Appendix B

Matlab scripts for alignment,
normalization and binning

B.1 Alignment steps

Collection of steps for alignment compiled by Leesa J. Klau.

% Notes for processing beer 1H NMR spectra using icoshift
% buffered samples, with double suppression (H2O and EtOH) used as examples
%
%
% SUMMARY OF DATASETS
% --------------------
% filenames:
% noesygpps1d_13Cdec_buff.mat
% noesygpps1d_13Cdec_unbuff.mat
% noesygpps1d_buff.mat
% noesygpps1d_unbuff.mat
%
% experiment type
% noesygpps1d_13Cdec: double suppression (H2O and EtOH)
% noesygpps1d: single suppression (H2O)
% sample type
% buff: buffered samples
% unbuff: unbuffered samples
%
% contents of each dataset:
%--------------------------
% barcode: barcode ID number for each sample
% buff_ints: defined intervals used for alignment for the buffered

samples↪→

% ppm: x-axis scale for [] in ppm
% ppm_corr: ppm scale corrected using TSP reference peak
% TSPppm: co-ordinates of TSP peak in [XcoshiftTSP] (used to correct

ppm scale)↪→
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% unbuff_ints: defined intervals used for alignment for the buffered
samples↪→

% X: raw data, samples x ppm
% Xaligned: aligned data, samples x ppm (use with ppm_corr)
% Xcoshift: coshifted data, samples x ppm
% XcoshiftTSP: coshifted and referenced to TSP, samples x ppm (use with

ppm_corr)↪→

%
%
%
% ANLIGNMENT STEPS
%------------------
%
% 1. load the data file - add filename
% ----------------------------------
% datafile should consist of:
% ppm : row vector of the ppm scale
% X : matrix of raw data, samples x ppm
%
load('noesygpps1d_13Cdec_buff.mat')
%
%
% to generate plot of raw data:
% -----------------------------
%
plot (ppm, X'); set(gca, 'XDir', 'reverse')
%
%
% 2. create a matrix of COshifted data
% ----------------------------------
% this is an alignment based on the whole spectrum. the best mode for the
% buffered samples seems to be 'average2' with a multiplyer of 3. for the
% unbuffered samples the best seems to be using 'median'. also using the
% 'b' setting: algorithm search for the best 'n' for each interval
%
% buffered samples
[Xcoshift] = icoshift ('average2',X,'whole','b',[2 1 0],ppm);
%
% unbuffered samples
[Xcoshift] = icoshift ('median',X,'whole','b',[2 1 0],ppm);
%
%
% 3. align coshifted data using TSP reference region
% -----------------------------------------------
% define the TSP region from the coshifted matrix.
% Note:
% in buffered samples, seems there are a couple that affect the TSP
% peak? Therefore only used the main peak (on the right) for the TSP
% alignment.
% in unbuffered samples the TSP peak seems more widely affected by the
% the individual sample?
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%
%
% buffered samples
[XcoshiftTSP] = icoshift ('average2',Xcoshift,(52079:52730),'b',[2 1

0],ppm);↪→

%
% unbuffered samples
[XcoshiftTSP] = icoshift ('average2',Xcoshift,(52340:52443),'b',[2 1

0],ppm);↪→

%
%
%
% 4. compute a TSP corrected ppm axis
% --------------------------------
%
% plot the TSP corrected matrix data
plot (ppm, XcoshiftTSP'); set(gca, 'XDir', 'reverse')
%
% select the TSP peak using the "data tips" tool
% right-click, select "export curser data to workspace"
% name "TSPppm"
% compute corrected ppm scale:
ppm_corr = ppm - TSPppm.Position(1);
%
% plot with corrected scale
plot (ppm_corr, XcoshiftTSP'); set(gca, 'XDir', 'reverse')
%
%
% 5. define intervals and align coshifted data
% -----------------------------------------
% use the coshifted and TSP aligned matrix (XcoshiftTSP) generated from
% previous steps as a starting point. use corrected ppm scale (ppm_corr).
% best mode for alignment seems to be 'average2' with multiplyer of 3.
% select missaligned regions and manually define intervals
% (buff_ints/unbuff_ints). this usees the column numbers from the
% ppm/ppm_corr vectors and therefore is the same for both scales. the
% buffered and unbuffered intervals differ slightly. They have the same
% number of intervals and same approximate positions but have been moved
% to accomodate approximately the same signals between both datasets
%XcoshiftTSP
%
% buffered samples
[Xaligned] = icoshift ('average2',XcoshiftTSP,buff_ints,'b',[2 1

0],ppm_corr);↪→

%
% unbuffered samples
[Xaligned] = icoshift ('average2',XcoshiftTSP,unbuff_ints,'b',[2 1

0],ppm_corr);↪→

%
%
%
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B.2 Normalization script

Script made by Christian Schulz.

function [normalised, ppmNew] = beernormal(inputdata, ppm, excludeAreas,
varargin)↪→

% This function normalises data using pqn based on
% [1] Dieterle, F et al., Analytical Chemistry 78(13), 4281-4290
% Additionally, it excludes areas from the data, such as ethanol and water
% areas before the normalisation
% The function truncates the spectrum automaitcally: Typically only from

-0.5↪→

% to 11 will be used.
% Furthermore, negative values will be eliminated.
%
% Scaling will be performed based on
% [2] R. A. van den Berg, H. C. Hoefsloot, J. A. Westerhuis, A. K. Smilde,

M. J. van der Werf, BMC Genomics. 7, 142 (2006).↪→

% The options are:
% 'auto', 'pareto', 'vast', 'level' or 'range'
% which should be given as variable arguments.
%
%
% Example usage:
% excludeAreas = {{1.152,1.247},{3.608,3.681},{4.751,4.928}};
% Used (adrian): excludeAreas =

{{-0.0501,0.0501},{1.0902,1.2902},{3.6151,3.6500},{4.7001,4.8500}};↪→

%
% [normalised, ppmNew] = beernormal(Xaligned, ppm_corr, excludeAreas,

'scale', 'pareto');↪→

% This removes the unwanted areas, truncates the data, normalises it and
% scales it according to pareto scaling.
%
% [normalised, ppmNew] = beernormal(Xaligned, ppm_corr);
% This normalises data, truncating it, without removing further areas nor
% scaling the data.
%
%
% HOWEVER: Scaling and removal of water/ethanol peaks is recommended!
%
%
% Christian 22.04.2020
%

% ppm truncate values:
ppmscaleEnd = 9;
ppmscaleStart = 0.8;
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%% check inputs and add the truncates to possible excluded areas.

% Check ppm scale
if numel(ppm)~=size(inputdata,2)

error('The ppm scale and input data do not match in length.')
end

% generating and checking the ppm truncats
startPPM = ppm(end);
endPPM = ppm(1);
if startPPM > endPPM

error('Something wrong with the ppm scale (maybe inverted?).')
end
if ppmscaleEnd > endPPM

error('The ppm scale is shorter than 11. Fix this script in the start
for the truncation.')↪→

end
if ppmscaleStart < startPPM

error('The ppm scale is shorter than -0.5. Fix this script in the start
for the truncation.')↪→

end
addlisting = {{endPPM,ppmscaleEnd},{ppmscaleStart,startPPM}};

% Adding the ppm truncates to the list
if exist('excludeAreas', 'var')

excludeAreas{end+1} = addlisting{1};
excludeAreas{end+1} = addlisting{2};

else
excludeAreas = addlisting;

end

% actually checking the excluded areas
for ii = 1:numel(excludeAreas)

if numel(excludeAreas{ii}) ~= 2
fprintf(2,"Error in excluded Areas: Area %i has not two ppm values

defined.\n", ii);↪→

error('Returning.')
end

end
inpLoc = excludeAreas;
for ii = 1:numel(excludeAreas)

for jj = 1:numel(excludeAreas{ii})
inpLoc{ii}{jj} = find(ismembertol(ppm,excludeAreas{ii}{jj},

0.00001)); % TO adjust for non exactly values in the ppm
scale, since they have more digits

↪→

↪→

if numel(inpLoc{ii}{jj}) ~=1
fprintf("ppm couple:%i value: %i\n", ii, jj);
error('Given ppm values not in ppm list. Maybe there is an

error with the accuracy (NMR ppm are NOT EXACTLY)')↪→

end
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end
end

% Checking input for rhe scaling
scaleType = [];
% Valid options for scaling
options = {'auto','pareto','vast','level','range','paretoNC'};

% Check input type
for j = 1:length(varargin)

if isequal(varargin{j},'scale')
for n = 1:length(options)

if isequal(varargin{j+1},options{n})
scaleType = n;

end
end

end
end

if isempty(scaleType)
scaling = false;
fprintf(2,"No scaling will be performed!\n");

else
scaling = true;

end

%% remove the exctration areas from the matrix

RemovedMatrix = inputdata;
ppmNew = ppm;
removeline = [];
for ii = 1:numel(excludeAreas)

num = [inpLoc{ii}{1} inpLoc{ii}{2}];
minnum = min(num);
maxnum = max(num);
numbers = [minnum:maxnum];
removeline = [removeline,numbers];

end
RemovedMatrix(:,removeline) = [];
ppmNew(:,removeline) = [];

%% Adjusting for negative values

RemovedMatrix(RemovedMatrix<0) = realmin;
% This uses the smales value in matlab (2.225073858507201e-308) instead of
% a negative value.

%% normalistion using pqn

[row, col]=size(RemovedMatrix);
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% Perform an integral normalization (typically a constant integral of 100
is used).↪→

integral=sum(RemovedMatrix,2);
integral_normed = 100*RemovedMatrix./repmat(integral,1,col); %now each

spectra sum to 100↪→

%choose a reference or template spectrum, am selecting the median
ref=median(integral_normed);

% Addition here
% Apparently, a 0 in the ref is a problem...
% Therefore, we will manualy check it
if sum(ismember(ref, 0))>0

posnill = find(ismember(ref, 0));
for ii = 1:numel(posnill)

med = median(integral_normed(posnill(ii)));
if med ~=0

ref(posnill(ii)) = med;
else

ref(posnill(ii)) =
median([ref(posnill(ii)-1),ref(posnill(ii)+1)]);↪→

end
end

end

% Calculate the quotients of all variables of interest of the test spectrum
with those of the reference spectrum.↪→

quotients = integral_normed./repmat(ref,row,1);
% Calculate the median of these quotients.
median_q = median(quotients,2);
% Divide all variables of the test spectrum by this median.
data = integral_normed./repmat(median_q,1,col);

%% scale data

% Handle scale type
if scaling

if scaleType == 1 % auto scaling
scaledData = zscore(data);

elseif scaleType == 2 % pareto scaling
for j = 1:size(data,2)

scaledData(:,j) =
(data(:,j)-mean(data(:,j)))./sqrt(std(data(:,j)));↪→

end
elseif scaleType == 3 % level scaling

for j = 1:size(data,2)
scaledData(:,j) = (data(:,j)-mean(data(:,j)))./mean(data(:,j));

end
elseif scaleType == 4 % vast scaling

for j = 1:size(data,2)

94



scaledData(:,j) =
((data(:,j)-mean(data(:,j)))./std(data(:,j))).*(mean(data(:,j))./std(data(:,j)));↪→

end
elseif scaleType == 5 % range scaling

for j = 1:size(data,2)
scaledData(:,j) =

(data(:,j)-mean(data(:,j)))./(max(data(:,j))-min(data(:,j)));↪→

end
elseif scaleType == 6 % paretoNC scaling

for j = 1:size(data,2)
scaledData(:,j) = (data(:,j))./sqrt(std(data(:,j)));

end
end
normalised = scaledData;

else
normalised = data;

end

%% plott the new graph

plot (ppmNew, normalised); set(gca, 'XDir', 'reverse')

B.3 Binning script

Script made by Leesa J. Klau.

%%
%%% BINNING NMR SPECTRA %%%%%%
%
%
% will bin the ppm scale to predefined width
% takes the mean of the signal within the bin
% outputs an adjusted ppm scale, and matrix of mean or sum binned spectra
%
%
% required inputs
% ---------------
% first define [Bins] by:
% Bins = (minppm:width:maxppm)
% e.g. Bins = (-0.5:0.01:11); this will return bins with a width of 0.01
% ppm from the range -0.5 to 11 ppm
%
% inputspectra is the matrix of aligned spectra (samples x ppm) - this
% matrix will be transposed during binning
%
% the ppm scale that matches the inputspectra
%
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% define n as the number of samples
%
% 'mode' either as 'mean' or 'sum'
%
% outputs
% -------
%
% ppmBin is the new ppm scale of the binned data
%
% spectraBin is the binned data with mean of each bin
%
%
%%
function [ppmBin,spectraBin]=binning(inputspectra, ppm, n, Bins, varargin)

spectra=inputspectra';
[~,~,loc]=histcounts(ppm,Bins);

Mode = [];
% Valid options for scaling
options = {'mean','sum'};

% Check input type
for j = 1:length(varargin)

if isequal(varargin{j},'mode')
for m = 1:length(options)

if isequal(varargin{j+1},options{m})
Mode = m;

end
end

end
end

if isempty(Mode)
binningstuff = false;
fprintf(2,"No binning will be performed!\n");

else
binningstuff = true;

end

if binningstuff

for i = 1:n
if Mode == 1 % mean

spectraBin(:,i)=accumarray(loc(:),spectra(:,i),[],@mean);
elseif Mode == 2 % sum

spectraBin(:,i)=accumarray(loc(:),spectra(:,i),[],@sum);
end
spectraBin = spectraBin;

end
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end
ppmBin = 0.5*(Bins(1:end-1)+Bins(2:end));

ppmBin = ppmBin;

plot(ppm,inputspectra), hold on; plot(ppmBin,spectraBin,'r'); set(gca,
'XDir', 'reverse')↪→
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Appendix C

R-scripts for statistical tests and
plotting

C.1 R-script for determining optimal clusters for K-means

library(factoextra)
library(NbClust)

df <- scale(example_filename)
head(df)

fviz_nbclust(df, kmeans, method = "wss") +
geom_vline(xintercept = 4, linetype = 2)+
labs(subtitle = "Elbow method")

fviz_nbclust(df, kmeans, method = "silhouette")+
labs(subtitle = "Silhouette method")

set.seed(123)
fviz_nbclust(df, kmeans, nstart = 25, method = "gap_stat", nboot = 50)+

labs(subtitle = "Gap statistic method")

C.2 R-script for plotting and anova test of ethanol content

library(dplyr)
library(ggpubr)
library(readr)

# Importing data set
ethValues <- read.csv("Pitch Exp. Ethanol integration values.csv")

# Cleaning up data set for plotting
dplyr::sample_n(ethValues, 9)
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levels(ethValues$PitchNr)

group_by(ethValues, Pitch_Rate) %>%
summarise(

count = n(),
mean = mean(Percentage, na.rm = TRUE),
sd = sd(Percentage, na.rm = TRUE)

)

# Box plots
# ++++++++++++++++++++
# Plot weight by group and color by group

ggboxplot(ethValues, x = "Pitch_Rate", y = "Percentage",
color = "Pitch_Rate", palette = c("#00AFBB", "#E7B800",

"#FC4E07"),↪→

order = c("Under", "Normal", "Over"),
ylab = "Percent ethanol by volume", xlab = "Pitch Rate")

# Mean plot
# ++++++++++++++++++++
# Plot weight by group
# Add error bars: mean_se
ggline(ethValues, x = "Pitch_Rate", y = "Percentage",

add = c("mean_se", "jitter"),
order = c("Under", "Normal", "Over"),
ylab = "Percent ethanol by volume", xlab = "Pitch Rate")

# Formulating a linear model for anova
model1 <- lm(Percentage ~ Pitch_Rate, data = ethValues)

# Residual plots for model verification
plot(model1)

# Summary of anova
summary(model1)
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Appendix D

Python script for transforming
Bruker files into Matlab files

Script made by Gaston Courtade.

{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"scrolled": true

},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[12.71151739 12.7112729 12.71102841 ... -3.31078641 -3.31103091\n",
" -3.3112754 ]\n",
"[12.71151739 12.7112729 12.71102841 ... -3.31078641 -3.31103091\n",
" -3.3112754 ]\n",
"[12.71151739 12.7112729 12.71102841 ... -3.31078641 -3.31103091\n",
" -3.3112754 ]\n",
"[12.71151739 12.7112729 12.71102841 ... -3.31078641 -3.31103091\n",
" -3.3112754 ]\n",
"[12.71151739 12.7112729 12.71102841 ... -3.31078641 -3.31103091\n",
" -3.3112754 ]\n",
"[12.71151739 12.7112729 12.71102841 ... -3.31078641 -3.31103091\n",
" -3.3112754 ]\n",
"[12.71151739 12.7112729 12.71102841 ... -3.31078641 -3.31103091\n",
" -3.3112754 ]\n",
"[12.71151739 12.7112729 12.71102841 ... -3.31078641 -3.31103091\n",
" -3.3112754 ]\n",
"[12.71151739 12.7112729 12.71102841 ... -3.31078641 -3.31103091\n",
" -3.3112754 ]\n",
"[12.71151739 12.7112729 12.71102841 ... -3.31078641 -3.31103091\n",
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" -3.3112754 ]\n",
"[12.71151739 12.7112729 12.71102841 ... -3.31078641 -3.31103091\n",
" -3.3112754 ]\n"

]
}

],
"source": [
"# Read and plot processed 1H bruker spectra\n",
"# Also save them as .mat files\n",
"# Gaston Courtade - 06.03.20\n",
"\n",
"import nmrglue as ng\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import scipy.io as sio\n",
"\n",
"\n",
"# 3 spectra per sample, zgpr, noesygpps1d H2O supp, noesygpps1d H2O +

EtOH supp\n",↪→

"# sample order: IPA, Lager, AustmannStout, SourStout, Tripp, Weiss\n",
"# alternate between vortex/ultrasonication, reps 1,2,3\n",
"# buffered samples: 74-181\n",
"# unbuffered samples: 185-292\n",
"# skip samples: 95-97 (LAG_B_S1), 203-205 (LAG_U_V1), 182-184

(testshims)\n",↪→

"\n",
"# change these three lines maybe\n",
"start = 3\n",
"end = 33\n",
"skip = []\n",
"filename = 'Pitch_Experiment.mat'\n",
"# ints = [52333,52555] #makes an interval file\n",
"\n",
"# no need to edit below this, really\n",
"spectra_list = []\n",
"i = start\n",
"while i < end+1:\n",
" if i not in skip:\n",
" spectra_list.append(i)\n",
" i+=3\n",
"\n",
"\n",
"data_matrix = []\n",
"ppm_list = []\n",
"SF = 800.13\n",
"for expno in spectra_list:\n",
"\n",
" # nmrglue magic\n",
" dic, data = ng.fileio.bruker.read_pdata(f'{expno}/pdata/1')\n",
" udic = ng.bruker.guess_udic(dic, data, strip_fake=True)\n",
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" udic[0]['car'] = 3760.61 # 4.7 ppm\n",
" uc_1h = ng.fileiobase.uc_from_udic(udic, dim=0)\n",
" ppm_1h = uc_1h.ppm_scale()\n",
" print(ppm_1h)\n",
" #add this data to the matrix\n",
" data_matrix.append(data)\n",
"\n",
" \n",
"#save to matlab \n",
"sio.savemat(filename, {'ppm':ppm_1h, 'X':data_matrix})\n"

]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"*repeat for both datasets (noesygpps1d H2O supp, and H2O+EtOH

supp)\n",↪→

"*make sure that SR = 0Hz\n",
"\n",
"\n",
"1. make sure script location is in same folder as experiment

folders\n",↪→

"2. run the script above with Shift + Enter\n",
"3. load the .mat file into MatLab and see beer_alignment.m for

processing details"↪→

]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []

}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"

},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3

},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
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"pygments_lexer": "ipython3",
"version": "3.8.5"

}
},
"nbformat": 4,
"nbformat_minor": 4

}
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Appendix E

Manual for sample treatment and
NMR acquisition
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Beer project NMR Manual

A. Antonsen, L. Klau, C. Schulz

February 2021

1 Introduction

This manual provides instructions for taking beer samples through all the steps
from sample collection to preparation and NMR-acquisition. Please note that
this document is not a replacement for proper training, and that none of these
procedures should be performed without the appropriate HSE training.

2 Working with beer samples

When working with beer samples it is important to keep in mind that the
samples are in a more or less active state of fermentation, and are quite sensitive
to both contamination and change over time. Make sure to always work with
proper sterile technique, and to keep samples frozen when not used. Prepared
NMR-samples should be run within 24h of preparation.
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3 Sample filtering

• Fill sterile syringe with beer sample and attach sterile filter.

– Filter: 0.2 µm pore size, 25mm diameter, luer lock (female).

• Press sample through filter into appropriately sized tube, you should have
at least 2 mL filtered sample. Change filter during the process if necessary.

• Note sample ID/name and date on tube.

4 Sample preparation for filtered samples

• Thaw sample (if frozen).

• Place sample in ultrasonic bath for 10 minutes (with the tube lid open)
for degassing.

• Move 720 µL of the sample into an appropriately sized tube.

• Add 80 µL buffered stock solution to the same tube.

– Buffered stock solution: 500 mM sodium phosphate pH 7.4 buffer
containing D2O (99%) and TSP (1%).

– If there is precipitate in the buffered stock solution, warm slightly in
water/hand and vortex until mixed.

• Vortex shortly to mix.

• Move 600 µL mixed sample into 5mm NMR-tube.

• Note barcode on tube lid and record this along with sample ID/name.

• Gently press the tube lid onto the NMR-tube until a click is heard.

• If bubbles are present in the tube, shake firmly to settle the sample in the
bottom of the NMR-tube.

• Wipe the glass tube with clean, lint free cleaning paper to remove grease
and debris that can affect the acquisition.

• Place the tube in the sample holder. Remember the placement of the
different samples, this will make it easier to place in the NMR auto sampler
later.
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5 Software-interface overview

When operating the NMR-magnets, there are two main software interfaces you
will use, these are Topspin and IconNMR. Topspin is the main software that
controls the acquisition process, as well as lets us view and analyze our spectra
after acquisition. Here you will not use Topspin directly to run samples, instead
using the automation software IconNMR that lets us queue multiple samples
with pre-made parameter settings in order to maintain the same procedure for
all samples. The following figures will show an example of the interfaces of both
applications with important sections annotated.

Sample library and �le structure,
completed experiments will appear here.

Command line.

Acquisition information and status,
left feild will appear blank when nothing is running.

Magnet status.  This symbol indicates that a sample is currently in the magnet. 
A question mark would indicate there is no sample in the magnet.

Spectrum viewer, drag and drop an experiment here to view.

Figure 1: TopSpin interface overview.
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Automation control panel.

Sample and experiment parameter settings.

Sample editing options.

Job status view. User selector.

Figure 2: IconNMR interface overview.
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6 NMR analysis procedure

• - Check that Topspin and IconNMR is running

– Topspin can be started through the desktop icon for Topspin.

– IconNMR can be opened by typing “iconnmr” in the topspin com-
mand field, and selecting the ”automation” option in the startup
window, see figure 3.

• Check if acquisition is running in Topspin by reading the lower right-hand
side of the Topspin interface, see figure 1.

• Check if automation is running in IconNMR by reading of the top left-hand
side of the IconNMR interface. If the start button is active automation is
off, if it’s inactive automation is running.

– If acquisition and automation is running the experiments can be set
up and queued as usual, with some exceptions in the procedure for
placing samples in the autosampler, noted in section 7.

– If acquisition is running but automation is not, the experiment can
be set up, but not queued.

– If no acquisition or automation is running, automation needs to be
started before the samples can be run, see section 9.

– If no acquisition is running, but automation is, you can proceed to
the next steps.

Figure 3: IconNMR startup interface.
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7 Sample setup in IconNMR

• Change to the correct user, in this case the “beer” user, if you did not do
this when opening IconNMR.

• Select a set of available sample holders in the IconNMR interface, pre-
ferrable in sequential order and in the same sample rack if possible.

• Make sure the holders are available by checking the physical rack.

– If you are placing multiple samples, or replacing old ones, taking
the rack out of the autosampler and into the computer room will
make the next steps easier. Note that this can only be done when
no acquisition or automation is running. For instructions on how to
retrieve and replace the rack, see section 8 of this manual.

• Select the first sample holder in your sequence and click the add option in
the lower panel. A line will appear containing four drop-down menus, as
well as a few symbols, see figure 4.

∗ Note: Be careful with scrolling while editing, as this will scroll
through dropdown menus if hovering over one. Best practice is
to always collapse a holder after editing and double check all
experiments before submitting.

– The first field indicates the directory, or folder, where the samples
will be placed.

– The second field indicates the experiment number within the direc-
tory. Each sample will create its own folder in the directory with
the number specified in this field. Make sure these are unique and
sequential. If you provide an experiment number that already exists
in the directory the experiment will be skipped.

– The third field indicates the solvent used in the sample. In our case
you will use the “beer” preset.

– The fourth field indicates what experiment to run. In our case you
will use the “beer” presets here. There are four available, see table
?? for names and descriptions. If you are unsure of what to use, talk
to your supervisor.

∗ You may want to run multiple experiments on the same sample,
to set this up simply press the “add” button on the lower panel
while the current sample is highlighted and select a different
experiment.

– To the right of the six symbols there is a field where you can name
your sample. Use sample ID or other identifier. It may also be useful
to add the barcode of the NMR-tube in this field, this will appear in
the ”title” tab of the experiment, and can be done with the barcode
scanner next to the computer.
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• When a sample has been properly filled in it can be copied into the re-
maining sample holders using the “copy” option in the lower panel. After
copying the name and barcode will need to be changed. The experiment
number should increment correctly automatically. Make sure all names
and experiments are correct after copying. Note that copying can only be
done into sequential, empty sample holders.

• Replace the sample rack in the autosampler if applicable.

Holder status.
Directory name.

Sample number.

Solvent. Experiment parameters. Sample name.

Figure 4: Sample holder in IconNMR with four different experiments specified.

7.0.1 Experiment list and routine:
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Table 1: Name, description and usage of NMR experiments

Name in IconNMR from experi-
ment drop down list (EXP)

Pulse program
name (PUL-
PROG)

Description When to use

N auto BEER ZGPR zgpr
1D proton spectrum with
water suppression

This is a short experiment used
to determine the position of the
ethanol signals. After acquisi-
tion a processing script is au-
tomatically run that picks the
ethanol peaks (a quartet at 3.6
ppm and triplet at 1.2 ppm)
and generates a shape file (beer-
shape)

N auto BEER NOESYGPPS water noesygpps1d
1D proton spectrum with
water suppression

This experiment suppresses only
the residual water signal, the
ethanol signals remain.

N auto BEER NOESYGPPS ethanol noesygpps1d 13Cdec

1D proton spectrum
with water suppression,
ethanol suppression, and
13C decoupling of ethanol
CH2 group at 3.6 ppm

This experiment uses the shape
file generated in the first experi-
ment and suppresses the ethanol
signals. There is also 13C decou-
pling but only for the CH2 quar-
tet ( 3.6 ppm)

N auto BEER 13C-HSQC hsqcedetgpsisp2.3
2D 1H-13C HSQC spec-
trum

This experiment is not required
for all samples. It is used when
confirmation of identified compo-
nents is required.

Routine:
Routine acquire:

1. N auto BEER ZGPR

2. N auto BEER NOESYGPPS water

3. N auto BEER NOESYGPPS ethanol

No need to run the ethanol suppression experiment for samples that contain no
ethanol (e.g. control samples). If 2D HSQC spectrum is required can acquire at
the same time as the fourth experiment or can acquire later. If acquired later
then use:

1. N auto BEER NOESYGPPS water

2. N auto BEER 13C-HSQC
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8 Autosampler

• On the 800-magnet you will find an autosampler, this mechanism will run
our samples for us, we only need to place them in the right locations and
give the right instructions.

• On the autosampler you will find a screen, check if the magnet is empty
(indicated by two lines. A number on screen indicates a sample is running).

• Select wanted location by pressing “select rack”, then the rack number.
The autosampler will now rotate the appropriate rack to the small door
in the sampler. If a sample is running this rotation might take a while,
make sure the door is closed while rotating.

• Lift the rack out carefully and place your samples in the desired location.

– NOTE: Do not lift the rack out if automation is running. You may
still place or remove samples while the rack is in the autosampler.

– NOTE: If automation is running you will have a time limit to place/remove
samples from the rack, this will be displayed on the autosampler
screen, to extend this limit press the “more time” option on the
screen.

– Remove any old samples if necessary.

• Carefully replace the rack in the correct orientation, indicated by the
slanting corner.

• Reset screen by pressing “system status”.

9 Submitting samples and starting automation

• When all samples are correctly entered in their sample holders they need
to be submitted in IconNMR. To do this, highlight all the relevant sample
holders by shift-clicking the first and last holder, and select the “submit”
option in the lower panel.

• If automation is not running it must be started in IconNMR. Before you
do this, make sure no acquisition is running in Topspin and that no sample
is inside the magnet. Starting automation is done by selecting the “start”
option in the top left-hand corner of IconNMR and selecting what sample
to start on, this will be the first sample in your queue.

• Take note of run time and estimated time of completion in the bottom
panel of IconNMR.
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10 Removing and storing samples

After your experiments are done, and you are have made sure all the acquisitions
were successfully, you should remove your samples in order to make room for
others using the machines. Remove physical samples from the auto sampler and
delete them from IconNMR so the sample holder becomes available. Store the
samples in a freezer or other appropriate location.
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Appendix F

Supplementary plots for statistical
results

F.1 Validation plots for PLS-DA analysis

A Austmann samples

Figure F.1: Permutation test statistic for PLS-DA analysis of initial categorization test of
samples from Austmann.
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Figure F.2: Permutation test statistic for PLS-DA analysis of re-clustered categorization
test of samples from Austmann.
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B Pitch rate samples

Figure F.3: Permutation test statistic for PLS-DA analysis of pitch rate study samples.
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F.2 Detailed spectrum and loading plots

A Austmann samples loading plots

Higher alcohols

Valine

Lactic acid

IsopentanolAlanine

Isobutanol

Figure F.4: Detailed spectra and loadings in 0.8-1.8 ppm region for Austmann samples.
Lower field shows a plot of 0.8-1.8 ppm region of all binned NMR spectra for the reclustered

Austmann samples overlaid and colored by cluster (cluster 1: red, cluster 2: light blue, cluster 3:
green, cluster 4: deep blue). Some identifiable compounds are annotated. Upper field shows

PLS-DA loadings for the first PC, taller peaks indicate more weight in PLS-DA. X-axis: PPM,
Y-axis: intensity of signal / weight in PLS-DA.
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Acetic acid

Proline
AcetylcolineMalic acid

Acetylcoline

Other choline products

Proline

Pyruvic acid

Succinic acid

Figure F.5: Detailed spectra and loadings in 1.8-3.5 ppm region for Austmann samples.
Lower field shows a plot of 1.8-3.5 ppm region of all binned NMR spectra for the reclustered

Austmann samples overlaid and colored by cluster (cluster 1: red, cluster 2: light blue, cluster 3:
green, cluster 4: deep blue). Some identifiable compounds are annotated. Upper field shows

PLS-DA loadings for the first PC, taller peaks indicate more weight in PLS-DA. X-axis: PPM,
Y-axis: intensity of signal / weight in PLS-DA.
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Tyrosine

Figure F.6: Detailed spectra and loadings in 5.8-7.1 ppm region for Austmann samples.
Lower field shows a plot of 5.8-7.1 ppm region of all binned NMR spectra for the reclustered

Austmann samples overlaid and colored by cluster (cluster 1: red, cluster 2: light blue, cluster 3:
green, cluster 4: deep blue). Some identifiable compounds are annotated. Upper field shows

PLS-DA loadings for the first PC, taller peaks indicate more weight in PLS-DA. X-axis: PPM,
Y-axis: intensity of signal / weight in PLS-DA.
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Histidine

Tyrosine

Phenylalanine

Figure F.7: Detailed spectra and loadings in 6.9-8.2 ppm region for Austmann samples.
Lower field shows a plot of 6.9-8.2 ppm region of all binned NMR spectra for the reclustered

Austmann samples overlaid and colored by cluster (cluster 1: red, cluster 2: light blue, cluster 3:
green, cluster 4: deep blue). Some identifiable compounds are annotated. Upper field shows

PLS-DA loadings for the first PC, taller peaks indicate more weight in PLS-DA. X-axis: PPM,
Y-axis: intensity of signal / weight in PLS-DA.
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Formic acid

Figure F.8: Detailed spectra and loadings in 7.8-9 ppm region for Austmann samples.
Lower field shows a plot of 7.8-9 ppm region of all binned NMR spectra for the reclustered

Austmann samples overlaid and colored by cluster (cluster 1: red, cluster 2: light blue, cluster 3:
green, cluster 4: deep blue). Some identifiable compounds are annotated. Upper field shows

PLS-DA loadings for the first PC, taller peaks indicate more weight in PLS-DA. X-axis: PPM,
Y-axis: intensity of signal / weight in PLS-DA.
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B Pitch rate samples loading plots

Higher alcohols

Valine

Lactic acid

Isopentanol

AlanineIsobutanol

Figure F.9: Detailed spectra and loadings in 0.8-1.8 ppm region for pitch rate samples.
Upper field shows a plot of 0.8-1.8 ppm region of all binned NMR spectra for all pitch experiment
samples overlaid and colored by pitch rate (underpitched: blue, normal pitch: green, overpitched:
red). Some identifiable compounds are annotated. Lower field shows PCA loadings for the first
PC, more extreme peaks indicate more weight in the separation found in PCA. X-axis: PPM,

Y-axis: intensity of signal / weight in PCA.
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Acetic acid

ProlineAcetylcolineMalic acid

Acetylcoline

Other choline products

Proline

Pyruvic acid

Succinic acid

Figure F.10: Detailed spectra and loadings in 1.8-3.5 ppm region for pitch rate samples.
Upper field shows a plot of 1.8-3.5 ppm region of all NMR spectra for all pitch experiment

samples overlaid and colored by pitch rate (underpitched: blue, normal pitch: green, overpitched:
red). Some identifiable compounds are annotated. Lower field shows PCA loadings for the first
PC, more extreme peaks indicate more weight in the separation found in PCA. X-axis: PPM,

Y-axis: intensity of signal / weight in PCA.
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Tyrosine

Figure F.11: Detailed spectra and loadings in 5.8-7 ppm region for pitch rate samples.
Upper field shows a plot of 5.8-7 ppm region of all binned NMR spectra for all pitch experiment
samples overlaid and colored by pitch rate (underpitched: blue, normal pitch: green, overpitched:
red). Some identifiable compounds are annotated. Lower field shows PCA loadings for the first
PC, more extreme peaks indicate more weight in the separation found in PCA. X-axis: PPM,

Y-axis: intensity of signal / weight in PCA.
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Histidine

Tyrosine

Phenylalanine

Figure F.12: Detailed spectra and loadings in 7-8 ppm region for pitch rate samples.
Upper field shows a plot of 7-8 ppm region of all binned NMR spectra for all pitch experiment

samples overlaid and colored by pitch rate (underpitched: blue, normal pitch: green, overpitched:
red). Some identifiable compounds are annotated. Lower field shows PCA loadings for the first
PC, more extreme peaks indicate more weight in the separation found in PCA. X-axis: PPM,

Y-axis: intensity of signal / weight in PCA.
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Formic acid

Figure F.13: Detailed spectra and loadings in 7.8-9 ppm region for pitch rate samples.
Upper field shows a plot of 7.8-9 ppm region of all binned NMR spectra for all pitch experiment
samples overlaid and colored by pitch rate. Some identifiable compounds are annotated. Lower
field shows PCA loadings for the first PC, more extreme peaks indicate more weight in the

separation found in PCA. X-axis: PPM, Y-axis: intensity of signal / weight in PCA.
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C Algae-beer samples loading plots

Higher alcohols

Valine

Lactic acid

Isopentanol

AlanineIsobutanol

Figure F.14: Detailed spectra and loadings in 0.8-1.8 ppm region for algae-beer samples.
Upper field shows a plot of 0.8-1.8 ppm region of all binned NMR spectra for all algae brown ale
samples overlaid and colored by aging category (non-aged: blue, aged: red). Some identifiable

compounds are annotated. Lower field shows PCA loadings for the first PC, more extreme peaks
indicate more weight in the separation found in PCA. X-axis: PPM, Y-axis: intensity of signal /

weight in PCA.
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Acetic acid

Proline
Acetylcoline

Malic acid

Acetylcoline

Other choline products

Proline Pyruvic acid

Succinic acid

Figure F.15: Detailed spectra and loadings in 1.8-3.4 ppm region for algae-beer samples.
Upper field shows a plot of 1.8-3.4 ppm region of all binned NMR spectra for all algae brown ale
samples overlaid and colored by aging category (non-aged: blue, aged: red). Some identifiable

compounds are annotated. Lower field shows PCA loadings for the first PC, more extreme peaks
indicate more weight in the separation found in PCA. X-axis: PPM, Y-axis: intensity of signal /

weight in PCA.
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Tyrosine

Figure F.16: Detailed spectra and loadings in 5.8-7 ppm region for algae-beer samples.
Upper field shows a plot of 5.8-7 ppm region of all binned NMR spectra for all algae brown ale
samples overlaid and colored by aging category (non-aged: blue, aged: red). Some identifiable

compounds are annotated. Lower field shows PCA loadings for the first PC, more extreme peaks
indicate more weight in the separation found in PCA. X-axis: PPM, Y-axis: intensity of signal /

weight in PCA.
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Histidine

Tyrosine

Phenylalanine

Figure F.17: Detailed spectra and loadings in 7-8 ppm region for algae-beer samples.
Upper field shows a plot of 7-8 ppm region of all binned NMR spectra for all algae brown ale
samples overlaid and colored by aging category (non-aged: blue, aged: red). Some identifiable

compounds are annotated. Lower field shows PCA loadings for the first PC, more extreme peaks
indicate more weight in the separation found in PCA. X-axis: PPM, Y-axis: intensity of signal /

weight in PCA.
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Formic acid

Figure F.18: Detailed spectra and loadings in 7.8-9 ppm region for algae-beer samples.
Upper field shows a plot of 7.8-9 ppm region of all binned NMR spectra for all algae brown ale
samples overlaid and colored by aging category (non-aged: blue, aged: red). Some identifiable

compounds are annotated. Lower field shows PCA loadings for the first PC, more extreme peaks
indicate more weight in the separation found in PCA. X-axis: PPM, Y-axis: intensity of signal /

weight in PCA.
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