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Summary

Every three seconds, someone in the world develops dementia [1]. Their brain cells die,
memory is gradually lost, and familiar places become unfamiliar. It is devastating not
only for the individual, but also for family and caretakers. This study sought to bring
new insight into the pathology of Alzheimer’s disease (AD), the most common cause of
dementia.

Microarray-based technologies are widely used to study patterns of gene expression
on a genome-wide scale [2]. The development of high-throughput experimental tech-
niques along with the growth in computational power has enabled the study of thou-
sands of genes in one experiment. It is now possible to investigate the interplay of
genes responsible for complex diseases, such as AD, by analyzing the changes in gene
co-expression patterns between healthy and disease states. In this work, the newly de-
veloped CSD (Conserved, Specific, Differentiated co-expression) method [3] was used
on AD microarray data for this purpose.

The method successfully generated a differential co-expression network enriched in
genes with AD-related functions. As much as 64 genes in the network were previously
associated with AD, including one of the largest hubs; VSNL1. 17 other network hubs
were identified: KIAA1841, NMNAT2, MIGA2, AQR, AL158206.1, HPRT1, GTF2I, TOM1L2,
YWHAH, GOT1, NAPB, TMEM178A, PLTP, LCAT, ENPP2, CADPS and MDH1. Their high
connectivity in the network and involvement in processes that are important for AD
progress make them prominent genes for further studies. The most highly enriched
pathways in the network were major signaling pathways essential for synaptic trans-
mission, which when aberrant can ultimately lead to synaptic loss and cell death, key
features of AD [4, 5].

Differential expression analysis (DEA) was added to the framework to look for changes
in the regulations of individual genes as well. In combination with the co-expression
analysis, DEA offered new insights both in terms of method development and for in-
creased biological insight into AD. Most genes in the network were not differentially
expressed genes (DEGs), which confirmed that a change in co-expression is not nec-
essarily due to changes in mean expression of the correlated genes. Interestingly, the
integrated analysis also revealed that the conserved (C)-type of co-expression is a valu-
able part of the CSD method and can even be directly interesting from a disease per-
spective. In particular, levels of gene expression were affected by the disease, mostly
down-regulated, even if the pairwise correlations were conserved. This is novel com-
pared to what has been assumed earlier when applying this method. More research
is needed to validate these new findings, and to explore the underlying mechanisms
behind the proposed disease gene candidates. In the end, the hope is that the identifi-
cation of dysregulations at the transcriptome level will aid in the clinical diagnosis and
treatment of AD.
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Sammendrag

Hvert tredje sekund blir én person i verden rammet av demens [1]. Hjernecellene deres
dør, hukommelsen går gradvis tapt og kjente steder blir ukjente. Det er ikke bare øde-
leggende for individet selv, men påvirker også familien og andre omsorgspersoner. Dette
studiet hadde til hensikt å gi ny innsikt i patologien til Alzheimers sykdom (AD), den
vanligste årsaken til demens.

DNA-mikromatriser er mye brukt for å studere genuttrykksmøntre på genomskala [2].
Utviklingen av eksperimentelle teknikker med høy gjennomstrømning sammen med
en stor vekst i datakraft har gjort det mulig å studere tusenvis av gener samtidig. Det
er nå mulig å undersøke samspillet mellom gener som er ansvarlige for komplekse syk-
dommer, som AD, ved å analysere endringene i koekspresjonsmønstre fra frisk til syk.
I dette arbeidet ble den nyutviklede CSD-metoden (konservert, spesifikk, differensiert
koekspresjon) [3] brukt på AD-mikromatrisedata til dette formålet.

Metoden lyktes med å generere et differensielt koekspresjonsnettverk beriket med gener
med AD-relaterte funksjoner. Så mye som 64 gener i nettverket var tidligere assosiert
med AD, inkludert en av de største navene; VSNL1. 17 andre nettverksnav ble identifis-
ert: KIAA1841, NMNAT2, MIGA2, AQR, AL158206.1, HPRT1, GTF2I, TOM1L2, YWHAH,
GOT1, NAPB, TMEM178A, PLTP, LCAT, ENPP2, CADPS og MDH1. Deres kobling til
mange gener i nettverket, samt involvering i prosesser relatert til sykdomsforløpet til
AD, gjør dem til fremtredende kandidater for videre studier. De mest overrepresen-
terte reaksjonssporene i nettverket var involvert i overføring av nervesignaler, som når
forstyrret kan ende i synapsetap og celledød, kritiske aspekter ved AD [4, 5].

Analyse av differensielt genuttrykk ble lagt til i rammeverket for å se etter endringer
i regulering av individuelle gener i tillegg til korrelasjon mellom genpar. Dette ga ny
innsikt, både med tanke på metodeutvikling og for økt biologisk innsikt i sykdommen.
Flesteparten av genene i nettverket var ikke differensielt uttrykte gener (DEGer), som
bekreftet at en endring i koekspresjon ikke nødvendigvis skyldes endringen i gjennom-
snittlig uttrykk for de to korrelerte genene. I tillegg avslørte den integrerte analysen
at den konserverte (C)-typen av koekspresjon er en verdifull del av CSD-metoden, som
kan være direkte interessant fra et sykdomsperspektiv. Spesielt ble nivåer av genuttrykk
påvirket av sykdommen, for det meste nedregulert, selv om de parvise korrelasjonene
var bevarte. Dette er nytt sammenlignet med hva som er tidligere antatt ved bruk av
denne metoden. Mer forskning er nødvendig for å validere disse nye funnene, samt for å
utforske underliggende mekanismer bak de foreslåtte sykdomsforbindelsene. Håpet er
at identifiseringen av dysreguleringer på transkriptomnivå til slutt kan bidra til klinisk
diagnose og behandling av AD.
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Chapter 1
Introduction

“We will never understand complex systems unless we develop a deep understanding of
the networks behind them.”

- Albert-László Barabási

Complex systems are everywhere around us, even if we realize it or not. Your ability
to comprehend what you are reading right now comes from the system of billions of
neurons communicating in the brain. It is difficult to derive the total behavior of com-
plex systems solely from knowledge of the individual components. This has led to a
paradigm shift in biology from the traditional reductionism to holism in the last cen-
tury [6]. "The whole is greater than the sum of its parts"1 is the general idea behind
the relatively new field called Systems biology. It is about studying the emergent proper-
ties of biological systems, those that arise from the interactions of the components of a
system [6].

Network science has emerged in the 21st century as a response to the challenge of de-
scribing complex systems. It is an enabling platform with a wide range of applications
in all fields of science; it can be used to study everything from information systems like
the World Wide Web, to transportation networks, to social networks and biological net-
works [7]. There are virtually endless possibilities for what a network can represent.
What is especially interesting (and surprising) is that all of these seemingly different
systems have fundamental principles in common and can therefore be analyzed with
a common set of network parameters. The universality of networks allows us to rep-
resent systems of any size, directly visible like social relationships or microscopic like
molecular interactions.

Modeling biological systems as networks lets us study them as a whole, focusing on the

1supposedly stated by Aristotle in Ancient Greece
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emergent properties that would not be observable otherwise. Not only can it provide
information about the structure - topology - of the network, but it can elucidate under-
lying principles of biological processes. It is a simple representation, but has proven
effective to capture the properties and behavior of many complex biological systems
[7, 8]. However, we are bound to lose some information when we make abstractions of
natural systems into simplified models [9], and this is important to consider.

Life itself is dependent on the coherent interactions between thousands of genes and
metabolites within our cells [7]. The cells in our body communicate and collaborate in
order to adapt to continually changing environments. Each cell plays a role in an ex-
tensive network of cells, forming specific tissues, organs, and organ systems. Almost all
cells in an organism have the same set of genes, but which ones are active (expressed)
determine their particular function. Also, there are many ways to regulate the steps
from active genes to translated function, and the complexity generally increases down-
stream from gene to product. The central dogma of molecular biology is that genetic
information flows from DNA to mRNA (transcription) and from mRNA to polypeptides
(translation) [10]. Simply put; DNA stores all genetic information, RNA carries and
translates the information to make proteins, which then perform a wide range of dif-
ferent functions in the body. This process of gene expression is in reality much more
complex, but it can be useful to generalize in order to obtain a more systems-level un-
derstanding.

Gene expression can be examined on different levels, targeting individual genes, or
screening thousands of genes simultaneously. The latter, most relevant for this the-
sis, is called gene expression profiling, or transcriptomics (when measuring the whole
transcriptome2). By studying the activity of thousands of genes at once, one can ob-
tain a global picture of the state of the cell or tissue. It allows for detecting system-level
trends that would not be discerned by targeting individual genes. The goal of gene ex-
pression analysis is usually to find out more about the function of genes and the regu-
lation of their expression in a context-specific manner. It is essential for understanding
normal cellular function, but also what goes wrong at the molecular level in disease
development. A number of diseases, such as several cancer types and neurodegenera-
tive diseases, have shown to have defects in the cellular machinery that regulates gene
expression [11, 12].

Alzheimer’s disease (AD) is the most common form of dementia and affects about 30
million people worldwide [13]. AD is a brain disease with devastating consequences,
including neurological function deficits like memory loss and incapacity to complete
simple daily tasks. The prevalence in aging populations is expected to increase as peo-
ple are living longer, yet we have no cure or effective treatment. Even though we know
some of the main characteristics of AD progression, much remains unclear. This is
partly due to the immense complexity of the human brain, of which we lack a detailed
map of nerve cell connections [7]. Further research to gain biological insights is there-
fore highly needed. For that reason, the World Health Organization (WHO) has pro-
moted it as a public health priority by initiating the Global Action Plan on Dementia

2total amount of all RNA transcripts in a cell or tissue in a given moment
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2017-2025 [1]. One of the plan’s objectives is to increase the amount of global dementia
research, and this thesis will contribute in that regard.

The genetic complexity of AD requires it to be studied on many fronts in order to ulti-
mately find a cure or better treatments than those already available. Research in fields
such as neuroscience, network medicine, and genetics will be necessary for increased
knowledge into the underlying pathogenesis, which offers the hope of developing treat-
ments with therapeutic success [14]. Advances in the global monitoring of gene expres-
sion have enabled a system-level study of gene correlations. It is essential to understand
how genes and proteins interact with each other and the environment to fulfill their
roles and functions [2]. High-throughput transcriptomics data combined with math-
ematical models to build gene co-expression networks can give vital new insights into
complex diseases, such as AD [15]. The CSD method is a newly developed framework
at the Department of Biotechnology and Food Science at the Norwegian University of
Science and Technology (NTNU) [3]. Recent studies have successfully predicted pat-
terns involved in disease transformation utilizing this method [16, 17]. It improves al-
ready existing methods for differential co-expression analysis by including three differ-
ent types of co-expression: conserved (C), specific (S), and differentiated (D). Therefore,
this method was chosen as a basis in this thesis for gaining insights into the develop-
ment of AD.

The main aim of this thesis was to identify genes and biological processes that have
potential roles in the pathogenesis of AD through system-level network analysis. Pub-
licly available gene expression data from postmortem brain tissue was used to a per-
form pairwise comparison of gene correlation patterns in healthy versus disease states.
The CSD framework [3] was used for the generation of a differential co-expression net-
work from the transcriptomic data. Analysis of this network was complemented by
differential expression analysis (DEA) and protein-protein interactions (PPIs) to gain a
better understanding of the molecular interactions underlying complex disease mecha-
nisms. The goal of this integrative analysis was to extract new information not captured
by the CSD method alone. Overall, data mining was used as an underlying approach
for this thesis. As opposed to testing a specific hypothesis, expression profiling can
help identify candidate hypotheses for future experiments.
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Chapter 2
Theoretical background

This chapter will give an overview of important theory and concepts for understanding
the methodology and analysis performed in this thesis. First, a description of the char-
acteristics and prevalence of Alzheimer’s disease will be provided. Then, an introduc-
tion to network theory will be given, with focus on the concepts specifically relevant for
this thesis. For more detailed information, the interested reader is encouraged to read
Barabási’s book of Network Science [7]. Further, gene expression profiling and analysis
through network construction will be explored. An extensive literature search was done
to provide a foundation of the research already performed and the future work needed.
The methodology used in this thesis is based on the CSD framework of Voigt et. al. [3],
which will be described in section 2.4.1. Finally, a brief introduction to PPIs is made.

2.1 Alzheimer’s disease

Alzheimer’s disease (AD) is a progressive neurodegenerative brain disease1 that results
in the loss of cognitive functions [18]. Common symptoms include short-term mem-
ory loss, confusion in familiar places, problems with finding words and behavioural
changes, leading to a reduced ability to perform everyday tasks. AD is the most com-
mon cause of dementia, and 29.8 million people worldwide (2015) are estimated to have
the disease, mostly people older than 65 [13]. Age is the biggest risk factor, and preva-
lence is expected to increase rapidly as the world population’s life expectancy rises [19].
Although AD mainly affects older people, it is not an assured consequence of aging.
Further, around 5 % of the cases are early-onset AD, starting in people younger than
65 years [19]. The disease progresses through gradually worsening symptoms, often re-
sulting in a total dependence on others for personal care and the inability to recognize

1Neurodegenerative diseases is a group of diseases which show loss of function and/or death of nerve cells
in the central- or peripheral nervous system (CNS or PNS).
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family and friends. It has a poor prognosis, with a life expectancy after diagnosis of only
three to seven years [20].

AD is a complex brain disease, and its course of action is associated with several bio-
logical mechanisms. The initial cause of AD is poorly understood, and it has no known
specific trigger. Still, there are many pathological features associated with the disease
that have been well studied. The two major hallmarks of AD are related to abnormal
protein aggregation; i) amyloid β (Aβ)-containing senile plaques and ii) hyperphos-
phorylated tau-containing neurofibrillary tangles (NFTs) [18]. AD is therefore classified
as a proteopathy, a disease associated with aggregation of misfolded proteins. Aβ is a
40-42 amino acid peptide generated by proteolytic cleavage of Amyloid Precursor Pro-
tein (APP) by γ- and β-secretases [21]. The extracellular build up of amyloid oligomers
(2-12 peptides) and plaques (larger aggregates) has a toxic effect by blocking cell-to-
cell signaling at synapses [14]. It also seems to trigger immune reactions that cause the
destruction of disabled nerve cells by programmed cell death [14]. NFTs form within
nerve cells by abnormal aggregation of the microtubule2-associated protein tau [14].
This protein normally stabilizes the microtubules, but in AD it becomes hyperphos-
phorylated and aggregates into insoluble threads (tangles). This leads to microtubule
disassembly, which obstructs nutrients from reaching the cells - eventually resulting in
cell death [14]. Other features associated with AD include oxidative stress, mitochon-
drial dysfunction, inflammatory responses, aberrant signaling and lipid metabolism,
and DNA damage [18]. These can both precede or be a consequence of protein aggre-
gation, but the underlying mechanisms remain elusive [12, 5].

The symptoms of AD is ultimately a result of losing nerve cells or some of their synapse
connections to other cells [22]. This leads to brain tissue damage and the shrinking of
the brain at the macroscopic level [14, 19]. Synaptic loss and neuronal death leads to
cognitive decline specific for the brain region affected. Although multiple areas are af-
fected, it is commonly understood that protein aggregation starts in the brain region
called hippocampus, responsible for storing memories [23]. Short-term memory loss is
therefore one of the earliest symptoms. Proteins then progressively invade other parts
of the brain. Braak staging is used to characterize the severity of brain damage associ-
ated with NFT evolution [24]. In the six stages (I-IV) the tau aggregation spreads pro-
gressively into different parts of the human brain. It is however important to note that
the process is a continuum where the stages can overlap [14, 19].

The genetic basis behind AD is heterogeneous - it is likely that the interplay between
several genetic changes plays a role in disease development. In addition to dividing AD
into early- and late-onset, the disease can be categorized by heredity. Most AD cases are
sporadic, meaning that they occur in people with no history of AD in their family [14].
Rare cases are familial (FAD), where the inheritance appears to be autosomal dominant
[14]. This means that each child of an individual with the disease has a 50 % chance
of inheriting the pathogenic gene variant. This form is predominantly early-onset, and
the earlier the onset of AD, the more likely there is a genetic cause [14]. Four genes have
to date been linked to cause FAD. Mutations in APP, Presenilin 1 (PSEN1), or Presenilin

2Microtubules are long, tubular structures part of the cytoskeleton, important for transport of nutrients
and other molecules.
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2 (PSEN2), are each causative of early-onset FAD, while the ε4 allele of Apolipoprotein
E (APOE) is mainly a risk factor of late-onset FAD [25]. On the other hand, the cause of
the most common type of AD (sporadic) is unknown, but genetic and environmental
interactions are likely to play essential roles. It is a complex disorder involving multiple
susceptibility genes [14]. Many genes have already been associated with increased risk
of AD, and there are lots of ongoing research on this. A list of 499 genes associated with
AD and their relevance scores from MalaCards database [25] can be accessed with this
doi: 10.6084/m9.figshare [26].

There are several risk factors other than genetic factors that can influence disease pro-
gression, both non-modifiable like age and modifiable such as lifestyle (sleep, diet, ex-
ercise) [27]. Studies have shown that the risk of dementia can be reduced by exercis-
ing regularly, eating healthy, not smoking, reducing the consumption of alcohol, and
maintaining a balanced blood pressure, cholesterol and blood glucose levels [28, 29].
It has also been demonstrated that higher intelligence and educational levels is associ-
ated with a reduced risk of developing AD [30, 31]. This is due to the higher cognitive
reserve - greater resilience against brain damage [31]. By being engaged in mentally
stimulating activities, the abundance and redundancy of synapses (neural connections)
is increased. This is possible because of neural plasticity, the brain’s ability to change
synapses based on experience [32].

The diagnosis of AD is complicated and usually requires a comprehensive assessment.
There is no single test for determining if someone has AD, but various approaches and
tools have been developed [33]. Diagnosis usually relies on the doctor spending time
with the patient, checking for signs and symptoms and taking their medical history.
Testing the mental status by neurological examinations is crucial in diagnosing AD.
Other assessments may include blood tests or brain scans - the latter is usually done to
rule out other conditions that produce similar symptoms, such as tumor or stroke [33].
Overall, it can be difficult to diagnose AD, partly because the disease can be considered
a continuum. From initial neuronal damage to clinical symptoms are detectable can
take many years [27]. Identifying the disease in the preclinical stage (before symptoms
occur) is now a major research focus [27]. Advanced techniques3 are available that can
detect Aβ and tau biomarkers in the brain at a preclinical stage, but these are invasive
and expensive [27]. It is proposed that a detection of both pathological hallmarks can be
used to define AD, even in the absence of cognitive symptoms [27]. Currently, however,
a diagnosis is only definitely confirmed by brain autopsy after death [33].

At the moment there is no treatment available that can cure or alter the course of AD.
However, many researchers and drug companies are working on the development of
drugs targeting the disease. The main ongoing therapeutic approaches are targeting
the protein aggregation process, either by preventing the formation or misfolding/ag-
gregation of the disease-causing proteins, or by promoting their removal [34]. A more
detailed understanding of how protein aggregation connects to tissue degeneration is
needed to develop successful therapies, and this will likely involve systems biology and
network medicine.

3e.g. positron emission tomography (PET)-imaging and cerebrospinal fluid (CSF) sampling
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2.2 Network Theory

In this section some of the basic properties of a network will be mentioned, using bio-
logical networks to demonstrate. The way concepts are explained is largely based upon
the "Network Science"-textbook [7].

A network is a representation of a (real) system of components - called nodes, and how
they connect with each other by links [7]. When explaining mathematical properties
of a system, which is not necessarily modeling specific real relationships, it is conven-
tionally called a graph, with the objects being called vertices and the interactions called
edges. Distinctions are made whenever it is appropriate, but in most cases these terms
are used interchangeably. The most basic characteristics of a network is the number
of nodes (network size), N , and the number of links, M [7]. The links can be either
undirected (straight lines) or directed (arrows). An essential aspect of network theory is
connectedness, describing how well the nodes in the network connect with each other
overall. A network can consist of one or multiple connected components, which are sub-
sets of nodes for which every pair of nodes is connected by at least one path. The largest
connected component, given that its size is substantially larger than other components
of the network, is often referred to as a giant component. An edge whose deletion in-
creases the number of connected components may be called a bridge [35].

Biological networks can be defined at different levels, with the system being for exam-
ple complete cells or a set of interacting biomolecules. The neural network is a repre-
sentation of connections between billions of nerve cells in the brain [7]. It can give us
information of how the brain works in order to maintain cognitive functions and how
it is affected by disease. Figure 2.1 shows a small example of a neural network, where
the nerve cells are represented by nodes and their synaptic connections by links. For
simplicity only 5 nodes are included, representing only an infinitely small fraction of all
the nerve cells in the human brain (system). Disease progress could be modelled by the
changes in size (N) and connectivity of the network. By using the network as a model
of disease progression, one could study neurodegeneration as node removal and neu-
ronal plasticity as addition/removal of links. Node removal could represent the death
of a neuron, while link removal could represent the case of synaptic loss. In this thesis,
the reader can imagine that we move further into the nerve cells and take a look at the
associations among genes (section 2.4) and potential interactions between the proteins
they encode (section 2.5). These interactions are in essence responsible for the form
and function of the nerve cells, and studying networks of such interactions can give
valuable new information.

There are many different ways to visualize the same network, so in order to obtain a
precise and unique description we need to use the language of mathematics. In ad-
dition, many networks of interest are far too large and complex to visualize, and it is
essential with mathematical modeling and computational power to extract meaningful
information from them. In the following subsections, we will provide a brief overview
of some common properties, both local and global, used to analyze complex networks.
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(a) Brain neurons [CC0 1.0] (b) Network representation

Figure 2.1: Example of a biological system and network representation. a) Brain neurons con-
nected by synapses. Image from [36], distributed under the Create Commons licence CC0 1.0.
b) Network representation of neurons, created in Python using NetworkX and Matplotlib. N
(nodes), M (links) = 5.

2.2.1 Adjacency matrix and node degree

In addition to representing networks graphically, one can represent them mathemat-
ically through matrices, which are more useful for analysis purposes [37]. For simple
graphs (no self-loops or multiple edges), the adjacency matrix A is a square nxn-matrix,
where n is the number of nodes and each element ai j quantifies the connection be-
tween nodes i and j [37]. The adjacency matrices of unweighted networks have bi-
nary values; 1 if the nodes are connected by an edge, and 0 if a lack thereof (Fig. 2.2).
Weighted networks, on the other hand, have adjacency matrices where the elements
take on a continuous range of numbers representing the weights of the edges. For undi-
rected networks, the adjacency matrix is symmetrical, meaning that ai j = a j i (Fig. 2.2).
A correlation network is an example of this, since if one node correlates with another
node it necessarily implies that the opposite is true. This is not the case for directed net-
works, such as regulatory networks, where the connection between two nodes mean
that one is regulating and the other is being regulated. Then the row and column of
the adjacency matrix would each represent one direction of interaction. Overall, the
adjacency matrix is a simple illustration of network topology.

The matrix representation is a compact way to store information which permits us to
calculate common network properties using basic concepts from linear algebra [38].
One of the most fundamental properties of a node i is its degree ki , which is the number
of edges adjacent to the node [8]. This can be calculated, for undirected networks, by
summing over the elements in its respective row or column in the adjacency matrix[37].
For example, the degree of node one in Fig 2.2 is k1 = 3, which is the sum of either the
first row or first column. The degree is thus equivalent to the number of neighbors
the node has, assuming that the network is without self-loops and multiple edges [8].
The word degree should not be mistaken with the word connectivity, which is related to
the number of nodes or edges whose removal is necessary to disconnect a graph. For
directed networks, one distinguishes between in-degree kii n - the number of arrows
(edges) pointing towards i - and out-degree kiout - the number of arrows pointing away
from node i [7]. From now on, weighted and/or directed networks will be omitted from
discussion unless explicitly stated otherwise, as they are outside the scope of this thesis.
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Ai j =


0 1 1 1 0
1 0 1 0 0
1 1 0 0 1
1 0 0 0 0
0 0 1 0 0


Figure 2.2: The same network as in Fig 2.1 with its corresponding adjacency matrix Ai j . The
network is undirected and unweighted, seen in the matrix by symmetry (ai j = a j i ) and binary
values, respectively.

2.2.2 Degree Distribution and Scale-Free Networks

By considering all node degrees in a network, a global parameter called the degree dis-
tribution P (k) can be obtained. This is a probability distribution, which gives the frac-
tion of nodes with degree k in the network [7]. The nature of this distribution has an
impact on the general structure of the network. For random networks (such as Er-
dos–Renyi), most nodes have an average number of neighbors, which leads to a bell-
shaped degree distribution [7]. The average degree in a network of N nodes and M
edges is < k >= 2M/N [7]. However, for real networks, including most biological net-
works, the average degree is not necessarily a good representation of the overall net-
work structure, as there is no "typical" degree. This lack of a general scale is why these
types of networks are called scale-free. This network class has degree distributions that
resembles a power law,

P (k) ∼ k−γ (2.1)

where the degree exponent is typically observed in the range 2 < γ < 3 [39]. The expo-
nent is the slope of the line that fits the data on log-log scale. In scale-free networks,
most nodes thus have a low degree, while only a few nodes are highly connected to
many other nodes. The highest-degree nodes are called hubs, and the existence of hubs
is a characteristic of such networks [7]. Another characteristic of scale-free networks is
their robustness to random failures, as removing random nodes or links are not likely
to affect the whole structure substantially. Conversely, they are very vulnerable to tar-
geted attacks: removing the hubs can rapidly disconnect and break down the whole
system. For this reason, defective hubs might contribute to more of the dysregulated
processes associated with disease progression than low-degree nodes. Therefore, the
study of hubs in a network is generally an essential step in network analysis.

Interestingly, the scale-free property suggests that biological networks are not orga-
nized randomly. There is a general belief that scale-free networks grow because of pref-
erential attachment (PA). This growth mechanism is based on the preferential addition
of new nodes to already highly connected nodes [39]. Even though this growth mech-
anism leads to a scale-free degree distribution, the converse is not necessarily true -
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not all power law distributions are generated from PA. It is important to notice that this
scale-free degree distribution is more a behaviour than a consistent definition, and that
it is not always present in the whole range of degrees. Even though it has been reported
to appear frequently in many different types of real-world networks, some have recently
argued that scale-free networks are actually rare [40]. This is controversial and further
work is needed to assess the universality of this property and potentially discover novel
more realistic degree structures in networks. Going beyond the degree distribution, we
find a somewhat related network measure called degree correlations that reflects the
way nodes connect to each other, which is not captured by P (k) alone.

2.2.3 Degree correlations

Mixing patterns in a network can influence the overall behaviour of the system. As-
sortative mixing is an important network property, which describes node correlations,
most often in terms of degree. Degree correlations capture how nodes with particular
degrees interact with each other. In assortative networks, nodes with high degree have a
tendency to connect to other nodes with high degree (hubs associate with hubs), while
networks in which high-degree nodes tend to pair up with low-degree nodes are called
disassortative [41]. In the latter, nodes with similar degree seem to repel each other. If
no correlation is found between the degree of adjacent nodes, the network can be called
neutral.

One common way to (qualitatively) determine node degree correlations is through the
neighborhood connectivity distribution knn(k), which is the average degree of the near-
est neighbors of a node with degree k as a function of the degree itself [7]. The neigh-
borhood connectivity, along with its approximation is shown in equation (2.2):

knn (k) = 1

ki

N∑
j=1

Ai j k j ≈ akµ (2.2)

where nn stands for "nearest neighbor", a is a constant and µ is the degree correlation
exponent [7]. The sign of the correlation exponent (slope) reveals if the network is as-
sortative (µ> 0), neutral (µ= 0) or dissassortative (µ< 0).

Most real networks display some form of degree correlations. Social networks are known
to have an assortative nature, where highly connected people tend to know each other.
The fact that celebrities often date other celebrities, is not random. On the other hand,
most technological (World Wide Web, Internet) and biological (metabolic, protein in-
teraction) networks are disassortative [42].

Degree correlations are important for many reasons, not only for academic purposes.
They influence other network properties such as clustering, shortest paths, diameter,
and its robustness to perturbations [7]. More information on these network parameters
can be found in the "Network science"-textbook [7].
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2.2.4 Clustering

Clustering is an important topological concept in network theory, which provides infor-
mation on neighborhood relationships not captured by the degree itself. The clustering
coefficient is a node parameter measuring how connected the neighbors of a node are
to each other. It is defined as the ratio of existing links connecting a node’s neighbors
to each other relative to the maximum possible number that could exist between them
[7]. For undirected networks it can be calculated by:

Ci = 2Ei

ki (ki −1)
, (2.3)

where Ei represent the number of links between the ki neighbors of node i [7]. The
clustering coefficient has a value between 0 and 1, where none or all of the neighbors
of the node link to each other, respectively. In the example network in Fig. 2.2 node one
has a clustering coefficient of C1 = 2·1

3·2 = 0.33. The extent of clustering - triangle forma-
tions - in the entire network can be captured by averaging the clustering coefficients for
all nodes.

2.2.5 Centrality measures

There are other ways than degree centrality to describe how important a node is in a
network. Closeness- and betweenness centrality are two related centrality measures
that are both based on distance, more specifically the shortest paths. The shortest path
(d) is defined as the path with the minimal number of edges between two nodes [7].

Closeness centrality (CC) is a measure of how close a node is to all other nodes in the
network. It is defined as the inverse of the sum of all the shortest paths from i to all
other nodes in a connected component (Eq. 2.4) [7]. A node with high CC is in a cen-
tral position where it can rapidly spread information to all other nodes. In the earlier
network example (Fig 2.2) node one and three are equally close to the other nodes and
both have CC = 0.8.

CCi = 1∑
j 6=i dg (i , j )

, (2.4)

Betweenness centrality (BC) is a measure of how often a node is a bridge between other
nodes. It is defined as the fraction of shortest paths that go through node i:

BCi =
N∑

j ,k=1; j 6=k 6=i )

σi ( j ,k)

σ( j ,k)
, (2.5)

where σi ( j ,k) is the number of shortest paths between nodes j and k that pass through
node i, and σ( j ,k) is the total number of shortest paths between nodes j and k [7]. A
node with high BC has an important role of information transfer between different parts
of the network. Node one and three in Fig 2.2 function as "bridge" nodes in the small
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2.2 Network Theory

network with BC1,3 = 0.5. All paths from the other nodes (with BC = 0) must go through
these central nodes.

2.2.6 Communities and modularity

The identification of network communities (often called modules in relation to gene
co-expression networks) is a common approach in network analysis that can provide
insight into functional properties of locally dense neighborhoods. The general assump-
tion is that nodes forming part of the same topological module have closely related
functions. For example, disease genes have been shown to have a tendency to interact
and form disease modules, which can aid in the prediction of disease pathways and
other disease genes [43].

In network science, a community is a group of nodes with a higher likelihood of con-
necting to each other than to other nodes of the network [7]. The central idea is that
nodes are assigned to subgraphs based on the link structure of the network. There are
several ways to define communities, but once clearly defined, we could identify them by
assessing all possible partitions until we have found the one that best fits the definition.
Yet, inspecting all partitions is computationally infeasible as the number of partitions
grows faster than exponentially with the size of the network [7]. Due to this we need
heuristic algorithms, where the common goal is to optimize a score called modularity.
The global modularity score, Q, measures the quality of partitioning a network into nc

communities [7]. It can be calculated by Eq. (2.6),

Q =
nc∑

c=1

[
Mc

M
−

(
kc

2M

)2]
(2.6)

where Mc is the total number of links within a community and kc is the total degree of
the nodes in the community [7]. The value is positive when there are more links within
groups than expected by chance. The higher Q the better the community structure of a
partition, up to a maximum of Q = 1. [7].

Many different algorithms exist for partitioning a network into smaller modules. Over-
all, they can be divided into agglomerative (bottom-up) and divisive (top-down) meth-
ods. Either may assign a unique group or multiple groups to each node. In this the-
sis, the Louvain community detection algorithm was chosen because it is a widespread
and fast algorithm that can easily be implemented in Python with the NetworkX pack-
age [44]. The Louvain-method is an agglomerative algorithm that maximizes modu-
larity in a two-step iterative process [45]. Initially, all nodes are assigned to their own
unique community. The first step is a local modularity optimization phase: each node
is moved to the community of a neighbor that leads to the largest positive change in the
modularity. This is repeated for all nodes until no further improvements in modularity
is achieved. In the second phase, nodes of the same community are joined to build a
new network whose nodes are the communities. The steps are repeated iteratively until
maximum modularity is reached. For more details, see the original article [45].
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2.3 Gene expression profiling

The general theory on gene expression in this section is primarily based on [46, 10].
Gene expression is the process of going from genetic information to a functional prod-
uct. The product is usually a protein, but it can also be ribonucleic acid (RNA). Cells
regulate their gene expression levels as a response to different environmental signals.
All (somatic) cells in our body have the same set of genes, but they still turn into entirely
different cell types with specific morphologies and functions. This is a result of the pro-
cess of differentiation, where cells become specialized. Specific genes are expressed
based on what is most appropriate in a particular time and condition. For instance,
skin cells and nerve cells "turn on" different genes, which is the main reason why they
look and behave differently. Also, different cells of the same type may have different ex-
pression patterns depending on their external and internal state. Molecular pathways
convert environmental signals - generally through a cascade of events - into a change
in gene expression. Regulating which genes are active and at what level is a complex
process that can happen at all the different levels of expression and involve several dif-
ferent molecules along the way. In general, the amount of protein (or other functional
products) at a given moment is the difference between what is synthesized and what is
being degraded (not considering cell export). Maintaining a balance between these two
processes is important for cell efficiency. In order to limit energy waste on synthesiz-
ing proteins that are not needed in a particular moment, gene expression is most often
regulated at the level of transcription. Some proteins, called transcription factors (TF),
are able to regulate whether other genes are activated or repressed. Together with other
TFs, they provide a combinatorial effect that contributes to determining the number of
RNA transcripts made from a gene. Transcriptomics techniques can measure the whole
transcriptome, meaning all RNA transcripts available in a specific context - both mRNA
encoding proteins, and other types of non-coding RNA (ncRNA) that might have regu-
latory roles as RNA directly.

Several techniques exist for the global monitoring of gene expression, with DNA mi-
croarray and RNA sequencing (RNA-seq) being the two most widely used [47]. Both
measure large-scale RNA expression, but which technique to use depends on several
factors. It can for example depend on what genome information is available for the
species of interest, which data analyses to use and often most importantly, it is a balance
between cost and performance. DNA microarray, often referred to as just microarray,
was developed first and is well established in research. RNA-seq, on the other hand, is
a more newly developed technology, based on next-generation sequencing (NGS) [48].
Microarray has generally been able to generate high-throughput data at a lower cost
than RNA-seq, but it is dependent on prior sequence knowledge. Unlike microarrays,
RNA-seq does not rely on probes, and can therefore detect structural variations such as
alternatively spliced transcripts, and even previously unknown genes [48]. RNA-seq is
therefore increasingly a preferred platform to use, but there are still challenges in stor-
ing the large amount of data, and standard protocols for downstream analysis are yet
to be established [47, 48]. The CSD framework used in this work (explained in 2.4.1) is
suitable for both data types, and so the availability of high-quality gene expression data
was the deciding factor. The transcriptomic data used in this thesis was taken from a
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2.3 Gene expression profiling

microarray experiment, and this technique will therefore be explained in more detail.
The following information was largely accessed from two books [2, 10].

2.3.1 DNA microarray

DNA microarray is a high-throughput assay for measuring the relative amount of RNA
in a sample, usually at the level of the whole transcriptome [10]. It gives an indication
of the relative activity of previously identified genes in the particular cell and condi-
tion. The microarray technique is based on DNA-DNA hybridization, the binding of
complementary sequences. A microarray chip is a solid support (glass slide or nylon
membrane) with microscopic arrays containing different DNA segments of known se-
quence, called probes, which are complementary to all possible mRNA that a cell might
express. These are used to recognize and bind complementary sequences in the exper-
imental sample [10].

The total RNA from the experimental sample is first isolated, and then reverse tran-
scribed to cDNA (with either primers to amplify only mRNA or random primers to am-
plify all RNA). The cDNA is further labeled and hybridized to the arrays according to the
experimental strategy. There are many varieties in the experimental design (platform)
such as probe type, labelling and detection method. The probes can be either comple-
mentary DNA (cDNA) or oligonucleotides (short nuclotide sequences). Probe synthesis
can be done prior to deposition or in situ, and the attachment to the spots on a chip by
robot spotting or photolitography, respectively. The target sample is labelled either with
a radioactive isotope or more commonly with a fluorescent dye. Detection can happen
for each experimental sample separately, or by mixing the two samples (usually case
and control) with distinguishable labels. The former is called single-color or 1-channel
detection, in which a single RNA sample is labeled and hybridized alone to the chip. In
the latter approach, dual-color or 2-channel, the two differently labelled samples are
hybridized together on a single microarray. Both are commonly used, and the overall
performance of each is found to be similar [49]. More detailed information about the
different types of microarrays can be found in [2].

After washing off nonspecific binding, the hybridized chips are scanned with a laser and
the signal extracted from the digital images is analysed and quantified by data software.
The observed amount of hybridization detected for a specific probe is proportional to
the number of corresponding RNA transcripts present (at the location). Overall, the
measured intensities indicate the relative level of gene expression, so the chip provides
a snapshot of which genes were actively transcribed at the time and condition when the
sample was taken [10].

Finally, in order to compare experimental samples, the resulting data must be normal-
ized and corrected for background noise. Normalization of the measured intensities
is important to adjust the differences in starting amount of RNA, and to reduce the
bias from systematic variation in the microarray experiment. A variety of nonbiolog-
ical sources, such as pipetting errors and label-detection efficiencies, can affect the
measured expression levels. These need to be eliminated to enhance the reliability of
the data in further downstream analyses. There are many different normalization algo-
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rithms available, but these will not be described here. Ultimately, and most importantly,
data mining can be used to extract biologically relevant information about the system
being studied from the large amount of data that the arrays generate. There are many
methods available, but they all depend on the integration of biological knowledge with
statistics and computer science [2].

2.3.2 Differential gene expression analysis

A common data mining approach in transcriptome profiling is the identification of
genes that are differentially expressed between sample groups in the data. Differential
expression analysis (DEA) determines the quantitative changes in mean levels of gene
expression across conditions [50]. When conditions compared are disease vs control,
the change in gene expression can provide clues about the mechanisms involved in the
molecular pathogenesis of the specific disease [18]. Being representative of the relative
amount of gene transcripts, this change in expression level indicates a transcriptional
regulation as a response to the altered cell condition. The increase (upregulation) or
decrease (downregulation) of a specific mRNA suggests a changed need for the protein
encoded by that mRNA. The change in the abundance of that protein can directly or in-
directly affect the rate of a biological pathway, potentially involved in the pathological
condition. Misregulation of certain genes can therefore increase the risk of disease or
accelerate the progression of disease [51].

Differentially expressed genes (DEGs) between two sample sets are usually found by
calculating the fold change (FC) and testing for statistical significance [52]. FC is a mea-
sure of the ratio between two quantities, the change of one with respect to the other.
Even though this is an intuitive measure, it treats increases and decreases in expres-
sion levels differently. A gene that is 2-times (doubled) up-regulated has a ratio of 2,
whereas a 2-times (halved) down-regulated gene has a ratio of 0.5. Logarithmic ratios
are commonly used as they make the ratios symmetrically distributed, which makes it
easier to compare up- and down-regulated genes in a similar fashion [50]. The most
widely used transformation is logarithm base 2, because it handles numbers and their
reciprocals symmetrically [50]. So for the example above log2(2) = 1 and log2( 1

2 ) = −1,
up- and downregulation by the same factor (2) is the same value with opposite sign. A
gene expressed at a constant level (FC = 1), hence not differentially expressed, will have
log2(FC) = 0. It is also important that the expression values are normalized to inhibit
bias [50].

An arbitrary cutoff value of FC (generally twofold) has traditionally been used as a fixed
threshold for DEG classification in microarray experiments [50]. However, the fold
change is in itself not a statistical test, because it does not provide a confidence level
when designating a gene as differentially expressed or not [2]. Therefore, it good prac-
tice to use a statistical method such as a two-sample t-test. The Student’s t-test assesses
whether the means of two groups are statistically different from each other, by taking
the Standard Error (SE) into account [53]. A t-value for a given gene is calculated by Eq.
(2.7), where M is the mean expression value, S is the standard deviation and subscripts
represent the two groups to be tested [53].
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t = M1 −M2√
S2

1 +S2
2

(2.7)

It estimates the signal-to-noise ratio, where signal is the observed difference between
sample means (numerator) and the noise is the standard error of the difference be-
tween the means (denominator). After the test statistic is computed, it is converted
to a p-value, which represents the probability that the observed difference could have
occurred by chance [52]. It is common to use a nominal level of 0.05 as a significance
value, below which genes are regarded as significant [52]. Due to the large number of
genes (>20,000 in the human genome) to be tested in a transcriptomic study, one would
expect a substantial amount of false positives if only individual p-values were consid-
ered [2]. For example, if 20 000 genes are tested with 0.05 as significance threshold, then
20000×0.05 = 1000 genes are expected to be found differentially expressed by chance.
It is therefore important to correct for multiple testing.

One common approach to solve for the multiple comparison problem is called the
Benjamini-Hochberg (BH) method [54]. It considers the false-discovery rate (FDR) -
the expected number of false positives among all genes initially recognized as differ-
entially expressed [52]. The FDR-value is limited to a chosen level α, commonly 0.05.
This means that 5 % of the "significant" results will be accepted as false positives. The
BH method adjusts (enlarges) the original p-values based on their rank, i and the to-
tal number of tests, m [54]. First, the p-values are ordered from smallest to largest and
assigned ranks. Then the FDR-adjusted p-values, also called q-values, are defined re-
cursively beginning with the largest. The largest q-value and the largest p-value are the
same. The rest of the q-values are calculated by

qi = pi ∗ m

i
(2.8)

and compared to the previous q-value. The smaller value is kept as the adjusted p-
value. Finally, all tests with q-values less than or equal to the chosen α (FDR) are con-
sidered significant [54].

2.3.3 Gene Co-expression analysis

While analyzing the differential expression of individual genes can predict their biolog-
ical function, it does not tell us about how genes may interact among each other. In
fact, biological molecules rarely act alone, and this limitation can be addressed by co-
expression analysis [47]. Two genes are said to be co-expressed if their gene expression
levels have a similar pattern across samples, due to the amounts of RNA transcripts ris-
ing and falling in a concordant fashion [55]. It has been demonstrated that co-expressed
genes have a tendency to be functionally related or have underlying regulatory relation-
ships [56, 57]. They might encode proteins that are part of the same pathway or protein
complex, or that are regulated by the same transcriptional program [58]. Studying co-
expression patterns can therefore provide insight into the underlying biological pro-
cesses [56]. It is an essential tool for the functional annotation of unknown genes based

17



Chapter 2. Theoretical background

on the "guilt by association"-principle [55]. Based on the assumption that co-expressed
genes are functionally related, it can be used to predict the function of genes within the
same co-expression module [56], and to identify disease gene candidates neighboring
genes already associated with a certain disease [59, 60].

Correlation

In order to study the coexpression of genes it is important to define a measure that
quantifies the similarity between expression profiles. Correlation is a similarity mea-
sure that is commonly used to determine whether two genes have similar expression
patterns [61]. Generally speaking, correlation is a statistical measure of relatedness be-
tween two or more variables. It can be used to indicate predictive relationships, but the
presence of a correlation does not necessarily imply causation (in either direction). If
any, the causes underlying the correlation may be indirect or unknown. It does however
provide possible causal relationships that can be interesting to investigate further [60].

Several types of correlation coefficients exist, with the Pearson’s correlation and Spear-
man’s rank correlation being among the most common [62]. They both measure the
strength and direction of the association between two variables. The value varies from
-1 to +1, where ±1 indicates a perfect correlation, and values becoming weaker as they
approach zero. The sign indicates the direction; a + sign meaning positive relationship
and a - sign indicating a negative relationship. The two correlation coefficients differ in
the type of relationship they infer. Whereas Pearson’s is only sensitive to linear relation-
ships, Spearman’s was developed with increased robustness in identifying nonlinear
relationships [62]. As gene pair correlations are not necessarily linear, the Spearman’s
correlation coefficient was used as the similarity measure in this thesis.

As the name implies, the Spearman’s rank correlation finds the dependence between
the rankings of two variables [63]. It is therefore more robust to outliers, since the ex-
treme values of the raw data are not used directly but turned into ordered values. It is
a non-parametric test that can be used without the need for any assumptions of data
distribution[63]. It does require that the data contains paired samples, which means
that the two variables must have the same number of measurements. The Spearman’s
correlation, rho, can be calculated by:

ρ = 1− 6
∑

d 2

n2(n −1)
(2.9)

where n is the number of measurements and d is the difference between the ranks of
the corresponding variables [63]. The Spearman’s coefficient looks for monotonic rela-
tionships between the ranked variables, which can happen in two ways [63]:

1. as the value of one variable increases, the other variable never decreases (mono-
tonically increasing), or,

2. as the value of one variable increases, the other variable never increases (mono-
tonically decreasing).
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2.4 Differential Gene Co-expression Networks

After correlation has been computed for each possible pair of genes in the gene ex-
pression data, a network can be constructed where nodes represent genes and links
represent the pairwise correlation [60]. Genes are connected by an undirected link if
there is a significant association between their expression levels across samples. Such
co-expression networks enable scientists to illustrate gene correlations in a graphical
way at a genome level. It is an holistic approach for analyzing high-throughput tran-
scriptomics data. As an extension of gene co-expression, it is increasingly common to
study differential gene co-expression, comparing the co-expression patterns between
two conditions, such as disease states, tissue types or organisms [60]. As the word “dif-
ferential” indicates, the goal is to find differences in co-expression patterns in order to
discover processes specifically relevant to a certain condition [3]. This can give bet-
ter conclusions about transcriptional regulation than the differential mean expression
alone [9].

(Differential) gene co-expression networks can be analyzed by the many existing net-
work algorithms, some of which were mentioned in section 2.2. However, it is important
to note that it is not a trivial task to infer biological relationships from these correlation
networks. As the networks are undirected, a link between genes is not evidence of a
causal relationship; it merely represents a coinciding expression pattern [3]. Genes that
are simultaneously active genes can indicate that they are active in the same biological
process, but correlation does not distinguish between regulatory and regulated genes
[60]. In this sense it is different from directed networks such as gene regulatory net-
works. Two co-expressed genes might be correlated due to different relationships: i)
direct effects, such as gene A causing gene B or vice versa, or bidirectional causation,
ii) indirect effects (transitivity), or iii) confounding effects (common regulator), such as
nutrient availability affecting both or a TF regulating both genes [9]. Despite the dif-
ficulty in determining the (potential) causal relationship, varying correlation patterns
hint at condition-mediated regions of the network where it could be worth conduct-
ing further detailed analysis. Differential gene co-expression networks have therefore
gained major interest, especially during the last decade. Many methods and tools for
studying differential co-expression networks have been reported, and the relevance of
each depends on the research question.

2.4.1 The CSD Framework

In this thesis, the CSD framework will form the basis for differential co-expression net-
work construction [3]. It was developed by André Voigt and Eivind Almaas at the De-
partment of Biotechnology and Food Science at NTNU. A systematic comparison be-
tween the CSD method and other available methods was presented in their work. They
found that the predictive power of the CSD method is higher than that of any of the
other nine differential co-expression methods studied for comparison [3].

What is new in this CSD framework is that it distinguishes between three different ways
a change in gene pair correlations can happen when comparing two conditions (or tis-
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sues or organisms) [3]. The name CSD corresponds to the three types of co-expression;
conserved (C), specific (S) and differentiated (D). Conserved (C) means that there is a
similar co-expression pattern between the gene pair, strong and same-sign correlation,
in both conditions. Specific (S) refers to cases where one of the conditions show strong
correlation of any sign between the genes, while in the other condition there is a weak
or no correlation between the gene pair. Finally, differentiated (D) co-expression repre-
sents strong gene pair correlations in both conditions, but with oppositely signed values
[3].

The CSD framework includes a set of software programs for network generation, where
the nodes are genes and the edges between gene pairs represent one of the three types
of co-expression relationships. The method starts with gene expression profiles from
two different datasets, obtained for example by microarray or RNA-seq (as described
in section 2.3). The first step towards a differential co-expression network is to define
a similarity measure, commonly a correlation parameter. In this case, the Spearman’s
rank correlation coefficient is used as default to calculate pairwise correlations across
all genes in each dataset separately. The correlation coefficient ρi j ,k represents the co-
expression of gene pair (i,j) in condition k. The values of ρi j ,k range from -1 to 1, where
values close to the bounds indicate strong correlations, whereas values close or equal
to zero indicate weak/no correlation. Each pairwise correlation gives a similarity score
si j , resulting in a similarity matrix S = Si j .

The next step is to turn the co-expression values into differential co-expression values
by calculating the change between conditions, using equations (2.10)-(2.12);

Ci j =
|ρi j ,1 +ρi j ,2|√
σ2

i j ,1 +σ2
i j ,2

(2.10)

Si j =
||ρi j ,1|− |ρi j ,2||√

σ2
i j ,1 +σ2

i j ,2

(2.11)

Di j =
|ρi j ,1|+ |ρi j ,2|− |ρi j ,1 +ρi j ,2|√

σ2
i j ,1 +σ2

i j ,2

(2.12)

where Ci j , Si j and Di j represents the C, S and D relationship scores between a pair of
genes i and j, with the numbers in subscript representing different conditions, tissues
or organisms [3]. The numerators are absolute correlations, while the denominators are
the root of the summed correlation variance. This variance can be estimated through a
sub-sampling algorithm, although as not part of the scope of this thesis, the interested
reader is referred to the work of Voigt et al. [3]. The relationship scores lie in the range
[0, ∞], and are designed to increase as the given differential co-expression gets stronger.
Figure 2.3 illustrates where these three possible differential co-expression relationships
lie on a plot where the axes are the gene pair correlations. The scores have large values
within their respective colored regions (blue = conserved, green = specific, red = differ-
entiated), and the white area represents combinations of correlations that are too weak
to be included in the final network.
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Figure 2.3: Score surface showing the combinations of correlation coefficients corresponding
to three types of differential co-expression; C, S and D [3]. C (blue) is conserved (strong co-
expression in both conditions with no sign change), S (green) is specific (strong co-expression
in only one of the conditions), and D (red) is differentiated (strong, but oppositely signed co-
expression values). ρ1 and ρ2 denote the Spearman’s rank correlation of a given gene pair in
condition 1 and 2, respectively. Only the values within the colored areas end up as links in the
network. Image from Voigt et al. [3], under the CC BY 4.0 licence.
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The final step is to transform the similarity matrix into an adjacency matrix, the fun-
damental element for network construction. To do this, one needs to decide a thresh-
old for what is considered a significant enough change, and in this framework a "hard"
thresholding-algorithm is performed. This means deciding a cut-off value τby which all
gene pairs with similarity values lower than this are rejected. However, since the three
similarity scores Ci j , Si j and Di j have different distributions[3], the scores are not di-
rectly comparable. Therefore one single threshold value is not solid enough. Instead,
three different cut-off values X C ,S,D

p are calculated independently from each underlying
distribution, based on a common sampling approach:
First, m samples si j of size L ¿ M is drawn from each pool of M total similarity scores C,
S or D. From this, each threshold value τ= Xp is defined as the average of the maximum
score per sample [3]:

Xp = 1

m

m∑
i=1

max
{si }

X (2.13)

To allow for meaningful comparisons in the final network, the three cut-off values are
based on a common importance level p, which maps the similarity scores onto a com-
mon scale. This is set as p = 1/L, which means that it is only dependent on the chosen
sample size L, which must be the same for all three similarity scores. The importance
level can be adjusted to give a network size suitable for downstream analysis. This ad-
justment corresponds to changing the colored areas in Fig. 2.3, by increasing or de-
creasing the amount of total edges included in the network. For each gene pair, at most
one of the similarity scores can be above their own threshold, ensuring that only one
type of differential co-expression link ends up in the network, classifying the gene pair
into the most appropriate category [3].

Even though a gene pair can only have one link type, a gene (node) in the network can
be connected to multiple other nodes with C-, S- or D-type of interactions. In order to
determine the fraction of the three different link types that a node has to its neighbors,
we can use a score called node homogeneity H :

Hi =
∑

j∈{C ,S.D}

(
k j ,i

ki

)2

, (2.14)

where kC ,i ,kS,i and kD,i is the number of C, S and D-type interactions that node i has,
respectively, and ki is the nodes degree. The highest score is H = 1, which means that
all of the nodes links are of the same type. The lowest score is H = 1/3, which indicates
an even distribution of C-, S- and D [3].

2.5 Protein-protein interactions (PPIs)

Interactions between proteins are fundamental for all cellular processes, including sig-
nal transduction, metabolic pathways, and cell cycle progression [10]. Therefore, in-
vestigating protein-protein interactions (PPIs) is crucial for comprehending biological
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functions both in healthy and disease states. The complete map of all possible pro-
tein interactions that can occur in a cell or organism is called the interactome [64]. Al-
though the human interactome is still far from complete, it allows for interrogation of
how proteins and protein complexes work at a system-level [64]. This proteome-scale
collection of PPIs can be represented as a complex network where nodes and undi-
rected links constitute proteins and the interactions between them, respectively. The
PPI network possesses many of the same characteristics as other biological networks
[7], and can be studied using the same network parameters explained in the Network
Theory (section 2.2). It is important to distinguish between an interaction - commonly
understood as a direct physical contact - and other relationships/associations that in-
dicate a shared function but not necessarily physical binding. While the former are
experimentally determined (known) interactions, the latter are predicted interactions,
for example from co-expresson data [65]. De Las Rivas et al. proposed the following
definition of PPIs: "specific physical contacts between protein pairs that occur by se-
lective molecular docking in a particular biological context" [65]. PPIs have varying
stability; some are stable/permanent, while others are highly transient. Protein com-
plexes, such as ATP synthase, often involve stable PPIs between the subunits working
together as a cellular machine. Other processes can rely on the brief interactions be-
tween several cascading proteins, such as in signaling pathways. Another important
aspect is the biological context. PPIs depend on factors such as cell type, environment,
post-translational modifications, cofactors, and other binding partners [65].

The number of PPIs reported has increased considerably in recent years as a response to
the development of efficient high-throughput techniques [65]. Many public databases
are available that integrate PPIs from multiple studies, both small-scale and large-scale.
There are many methods available for detecting PPIs, with the yeast two-hybrid (Y2H)
system being one of the most renowned experimental techniques. Y2H is a binary
screening method for detecting pairwise protein interactions [10]. It was first described
in Saccharomyces cerevisiae, and the method utilizes the transcription activation system
in yeast [37]. The two proteins tested (called "bait" and "prey") are fused separately to
the two domains of the transcriptional activator Gal4. Only if bait and prey interact do
they restore the function of Gal4, which results in gene expression of a chosen reporter
gene. Hence, the PPI can be inferred by measuring the resulting products of the reporter
gene expression. Often the HIS3 reporter gene is used, which only when activated pro-
duces the necessary histidine amino acid for yeast growth [10]. The use of yeast as host
system presents some limitations. First of all, it does not account for post-translational
modifications that would happen in human cells, and therefore leads to false negatives.
The method is also associated with a large rate of false positives. Even though proteins
physically bind when "forced" together, they might never do so inside cells, due to dif-
ferent localizations or lack of simultaneous gene expression. Several variants are being
introduced to handle these challenges, but this brief introduction is sufficient for this
work [37, 10, 65].
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Chapter 3
Materials and methods

This chapter provides the materials and methods used in this thesis. The first sections
describe the AD transcriptomic data material and the subsequent pre-processing and
sample selection. Then, a detailed description of the implementation of the CSD frame-
work on the chosen gene expression profiles is provided. The resulting networks are
visualized in Cytoscape, and node- and network parameters calculated. Further, the
network is partitioned into modules, and hub-genes identified. Functional enrichment
analyses extract biological insights for the investigation of disease association. Differ-
ential mean expression is calculated from the original microarray data, and the results
integrated as a network layer on top of the differential co-expression network (CSD net-
work). Finally, a high-quality PPI network was downloaded to look for relations be-
tween co-expressed genes in the network and their potential PPIs. An overview of the
complete methodology is visualized in Fig. 3.1.

The method developments and calculations in this thesis have largely been made using
a combination of the programming language Python (version 3.7.4) and terminal com-
mands in the Ubuntu Linux distribution (version 18.04.2 LTS). The main scripts used
can be found on Github [66].

3.1 The AD microarray data

The AD data used in this thesis, accession number E-GEOD-48350 was downloaded
from ArrayExpress database [67]. ArrayExpress is a public database of microarray-based
gene expression data at EMBL-EBI1 [68]. The gene expression profiles were generated
by single-color microarray as part of the experiment Microarray analysis of Alzheimer’s
disease patients across 4 brain regions. The data set has been used in several studies
[69, 70] and was made public on 21 April 2014. The raw data can also be found in the

1European Bioinformatics Institute, part of the European Molecular Biology Laboratory
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3.2 Data pre-processing and sample selection

Gene Expression Omnibus (GEO) by National Center for Biotechnology (NCBI), with
accession number GSE48350 [71].

The overall design of the microarray experiment performed by Berchtold et al. [67] was
as explained in the following paragraph. Postmortem brain tissue was collected from
human brain banks at the Alzheimer’s & Dementia Resource Center (ADRC). In total, 80
samples from patients diagnosed with AD and 173 healthy controls were gathered. De-
tailed information of samples can be found here: ebi.ac.uk/arrayexpress/experiments/E-
GEOD-48350/samples. From each sample, total RNA was isolated and transcriptome
profiling performed by high-density oligonucleotide expression arrays. The microarray
platform used was Affymetrix GenechipT M Human Genome U133 Plus 2.0 (GPL570).
The chip originally comprised of more than 54000 probe sets per sample, recognizing
more transcripts than earlier microarray platforms. This was reduced to 21060 points
by mapping to their respective genes in the platform. Normalization was performed
by GC-RMA as described by Wu et al. [72], an algorithm similar to Robust Multi-Array
analysis (RMA), but using a model based on GC (Guanosine-Cytosine)-content. Then
the values were log-transformed with base 2, in order to make the data symmetrical for
more accurate comparisons, especially important for differential expression analysis
(see section 2.3.2). For more details, see the protocol of the experiment [67].

3.2 Data pre-processing and sample selection

The AD data material and sample information was accessed as described in detail above.
It was chosen for this thesis based on the high total sample count (n = 253), includ-
ing 80 samples from patients diagnosed with AD and 173 healthy controls. In order
to make the data set ready for CSD implementation, it was quality-checked and fur-
ther processed. The code written in Python, called preprocess.py, can be found on
Github [66]. All probes mapping to more than one gene were removed to adjust for
cross-hybridization. The resulting unique probe IDs were converted into gene symbols
based on annotation according to platform GPL570. For genes with multiple associated
probes, the mean of the intensity values of the duplicated probes was calculated. The
resulting data matrix after filtration and gene-level summarization had 21044 unique
genes (rows).

Samples were chosen from the data according to the aim of this thesis, namely to iden-
tify genes involved in AD. Hence, a single factor study design was used for all further
analyses, and other potential confounding factors were intended minimized. The goal
was to find genes that behave differently in individuals with AD, compared to those that
do not have the disease. In the full data set, several factors other than disease could in-
fluence the analyses, and these were therefore considered carefully. Such experimental
factors include age, sex and organism part. Age was considered the most important po-
tential confounding factor, since it is a well-known risk factor of AD. Similar age span
for both case and control was therefore ensured to minimize the effect of age-related
gene expression. All AD patients were >60 years old (age span 60-95, mean 85.39 ± 7.37
years). Only age-matched controls were included (age span of 64-99 (mean age 81.27 ±
10.10 years), which reduced the control sample size from 173 to 93. Controlling for age
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was estimated to have a large impact on the resulting differential co-expression net-
work, and this effect was verified by performing the CSD method on the full data set
before filtration for comparison (see appendix F). The sex ratio was 129/124 female/-
male for the full data set, and 95/78 after filtering out the young controls, considered
quite well-balanced. The postmortem tissue was extracted from four different regions
of the brain - hippocampus (HC), entorhinal cortex (EC), superior frontal gyrus (SFG)
and postcentral gyrus (PCG). For the generation of the differential co-expression net-
work, these samples were pooled together in order to maintain a high sample size of n
= 173 (80 AD, 93 control). The network would therefore only consider disease-related
changes in brain tissue as a whole.

Based on the experimental design, the desired sample columns with their mean expres-
sion values were then extracted from the original data set into new text-files for down-
stream analysis. Each text-file contained either disease- or control-expression values,
all values being log2 ratios. For implementation into the CSD framework (next section),
it was important that these files had the correct format; a header and tab-separated
columns. The first column included the gene symbol and the remaining columns con-
tained the average expression of the transcripts for each of the 21044 unique genes in
the different samples (one row for each gene).
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Figure 3.1: Overview of methodology. The flowchart shows the steps performed in this thesis
from transcriptomic Alzheimer’s disease (AD) data accessed in the expression database to the
end goal of biological insight. The three steps of the CSD method for generating a differential co-
expression network (example network made in Cytoscape) are shown in blue. The two main ad-
ditional analyses integrated are represented in purple and pink. The section numbers explaining
each process are shown in parentheses. PPIs: Protein-Protein Interactions. PPI network shown
here (left) is the giant component of the HuRI (Human Reference Interactome) used in this work,
visualized in Cytoscape. Volcano plot on the right side was modified from [73].
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3.3 Differential co-expression network construction

The differential co-expression network analyzed in this thesis was constructed using
the CSD framework developed by Voigt and Almaas [3]. It includes a set of three soft-
ware programs, and the original software can be found at [74]. Adjustments made to the
original framework will be described here in detail. The programs were run on a HUNT
Cloud virtual machine [75], which had sufficient amount of memory storage and pro-
cessing power for this large-scale analysis. Specifically, the almaaslab-compute3 ma-
chine with 16 CPU cores and 295 GB RAM was used [75]. The three scripts were run
separately and performed each of the three main steps (blue in Fig. 3.1) in the differen-
tial co-expression analysis (explained in section 2.4.1):

1. Correlation coefficients calculation

2. CSD-scores calculation

3. Network generation

An important change to the original framework was that correlation variance calcula-
tion through sub-sampling was omitted from the implementation. It has been shown
earlier that skipping the variance correction has little influence on the robustness of
identifying disease-related genes for varying sample sizes compared to conventional
CSD [17]. It was therefore considered reasonable to have no sub-sampling in order to
decrease the running time of the program substantially. The scripts were changed ac-
cordingly, removing all variables and lines of code associated with sub-sampling calcu-
lation. All modified code is available at Github [66].

The first step in the CSD-implementation was the calculation of intra-cohort similarity,
using the Spearman’s rank as correlation coefficient. This was performed by the C++
script called FindCorr.cpp. Some parameters were changed depending on input file.
The sample size was set to 80 for disease data and 93 for control data, corresponding
to the number of data points per gene in each text file. The number of genes was set to
21044 for each input files. Once compiled, the script calculated the pairwise correlation
for all gene combinations in each expression file individually - one time for the disease
set and one time for controls. It was imperative that the two output files had match-
ing gene pairs line-by-line for the next step to be successful. This was ensured by the
original expression data input having the same number of genes sorted in equal order.

The output text-files from the two iterations of FindCorr.cpp were then used as input in
FindCSD.py. This Python script compared correlation values from the two conditions
and calculated the C-, S- and D-scores using the equations (2.10)-(2.12). The variance
variables were removed from the script, and the denominators of the similarity scores
(comboSD in the script) were set to 1. This restricted the range of the C,S,D-scores to
[0, 2] for Ci j and [0, 1] for Si j and Di j . The script produced a file containing correlation
under both conditions, as well as gene relationship scores for all gene pairs. It also
produced three files including only C-, S- or D-values for each gene pair, that were used
for network generation in the next step.

In the final step of the CSD framework the Python script CreateNetwork.py was used
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to generate four networks; one for each interaction type and one aggregate network
(the latter is exemplified in Fig. 3.1). Only the similarity scores above their respective
cut-off values, calculated with eq. (2.13), were included as interactions (edges) in the
network. The stringency of this cut-off was determined by the parameter selSize in the
code, corresponding to the sample size L used for determining a common importance
level p. Several different selSizes were tested in order to obtain a network with a size
appropriate for further analysis. The one used was L = 2 ·105, yielding an importance
level of p = 5 · 10−6. The output files had the same format: each line representing an
edge in the network, with the co-expressed genes in the first two columns and their
similarity score value and interaction type (C, S or D) in the third and fourth column,
respectively. The text-files were imported into Cytoscape for visualization.

3.4 Network analysis

Network topology was investigated using the software environment Cytoscape v3.7.2
[76]. Genes were represented as circular, gray nodes unless stated otherwise, and la-
beled when appropriate. The edges in the network were color-coded based on the type
of differential co-expression: C=blue, S=green and D=red. The default layout (Prefuse
Force Directed) was used unless stated otherwise. The included Cytoscape tool called
NetworkAnalyzer was used to calculate several node- and network parameters, such
as node degree, degree distribution and assortativity. The values for degree distribution
and neighborhood connectivity distributions were transferred from Cytoscape and read
into Python for plotting with matplotlib [66].

3.4.1 Node homogeneity

The self-written Python script homogeneity.py was used to calculate the fraction of the
three different link types that each node has to its neighbors. This node homogeneity
(H) was calculated using Eq. (2.14) on all genes in the CSD network. The homogeneity
was then plotted as a function of node degree, represented by a boxplot. The boxplot
was generated using the function "boxplot" in the matplotlib.pyplot interface [77]. De-
fault parameters were kept, except for the boolean value "showmeans" which was set
to "True" to show the arithmetic mean values of homogeneity per degree as green tri-
angles. The relative number of genes involved in each interaction (co-expression) type
in the network was presented in a Venn diagram. These numbers were calculated by
comparing the list of genes in each of the three individual networks using variations of
the "grep -x -f file1 file2 | wc -l" command in Ubuntu terminal.

3.5 Module detection

For further detailed study into the underlying biology of the network, it was of interest
to reduce the global network complexity by focusing on more manageable sub-graphs
of the network. The complete CSD network was therefore partitioned into smaller sub-
units of highly connected nodes, so-called modules (see example in Fig. 3.1). The Lou-
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vain community detection algorithm [45] was used to identify modules in the CSD net-
work. To implement this in Python, the Python_louvain-module was first installed. It
is dependent on NetworkX [44], which was used to read the complete network as an
edgelist. The network was partitioned by using the "best_partition"-function in the
community_louvain package. This function returns an index for each gene, represent-
ing their module affiliation. As explained in section 2.2.6, the Louvain algorithm de-
tects modules by optimizing modularity. To evaluate the quality of the partition, the
"modularity"-function was used to calculate the global modularity score, Q, based on
Eq. (2.6). The module indices were then imported into Cytoscape as node attributes in
the CSD network for further analysis.

3.6 Functional Annotation and Enrichment Analyses

For the most prominent genes in the network, the GeneCards Human Gene database
[78] was used to identify the annotated biological function of these genes individually.
Even though all genes in the network would essentially be interesting to examine as
they have passed the thresholds for co-expression, the biological interpretation of thou-
sands of genes is still a challenging task. Therefore, several bioinformatics tools with
biological knowledge from public databases were used to systematically find the most
enriched and relevant biology from the network.

Functional enrichment analyses of gene sets (both within networks and modules) were
performed using the Gene Ontology Consortium tools [79, 80]. This is a web-based
service that performs over-representation tests powered by the PANTHER classification
system [81]. A list of genes is taken as input and the test looks for genes with biolog-
ical associations that are either over- or under-represented in the gene set compared
to what would be expected by chance. A background reference list, which by default is
all the genes from Homo Sapiens in the PANTHER database, was used for comparison.
The ontology term "Biological Process" was selected for the search. Genes found to be
enriched for a biological process would indicate that their gene products have molec-
ular functions involved in that certain biological program [82]. It is a diverse concept
and the GO terms can be as broad as "signaling" or more specific like "negative regu-
lation of synaptic transmission". If not stated otherwise, only the most specific terms
are presented. To search for over-represented Pathways, the 2019 Kyoto Encyclopedia
of Genes and Genomes (KEGG) Pathway library in Enrichr was used [51, 83]. KEGG
has a widely used collection of pathway maps for analyzing systems of interconnected
molecular reactions and interactions [4].

The enrichment analysis returns a list of all the significant terms including the results
of statistical testing. The Fisher’s exact test with FDR correction, as calculated by the
Benjamini-Hochberg method, was used to determine q-values. A threshold of FDR <
0.05 was used to determine if the mapping of genes to a certain GO term or KEGG path-
way was statistically significant. The output was sorted by Fold Enrichment (FE) of the
most specific categories. The FE score represents the extent to which the number of
genes in the provided list is greater (+) or lower (-) than the expected number of genes
involved in the annotated biological process or pathway [79, 80].

30



3.7 Differential expression analysis

3.6.1 Disease Association

There are a lot of studies revealing almost endless genes associated with AD. Many dif-
ferent databases combine experimental data with curated articles. In this thesis the
MalaCards database [25] was chosen for the search, as it is based on the GeneCards
database which was used for individual gene annotation. It is an integrative database
which combines knowledge from a substantial amount of sources, including the com-
monly used databases Online Mendelian Inheritance of Man (OMIM) and Uniprot [25].
As stated in the MalaCards website, a gene is identified as associated with AD based on
i) the GeneCards search mechanism, ii) genetic testing resources supplying specific ge-
netic tests for the disease, iii) genetic variations resources supplying specific causative
variations in genes for the disease and iv) resources that manually curate the associa-
tion of the disease with genes [25]. For details on the annotation schemes, the reader is
referred to the original article [25]. The list of 499 AD-related genes was compared for
overlap in the original microarray data and in the constructed differential co-expression
network. Fold enrichment and p-values were calculated using the cumulative distribu-
tion function (CDF) of the hypergeometric distribution. AD-related genes in the net-
work were highlighted as diamond-shaped nodes.

3.7 Differential expression analysis

The next step in the transcriptomic analysis was to look for differentially expressed
genes (DEGs) in the microarray dataset (pink processes in Fig. 3.1). This was to iden-
tify genes that were significantly up- or down-regulated when comparing AD patients
to control, as these could be essential for disease progression. DEGs were identified
from the normalized log2-transformed gene expression values using fold change (FC)
and multiple testing. The Python script for performing these calculations on chosen
input data sets is given in appendix D. First, the mean expression level of each gene
across all samples was calculated for case and control files, separately. Because the
data was already log2-transformed, the FC was then calculated by taking the difference
between the two means directly. To test whether each mean level differed significantly
across samples, independent t-tests were performed using the ttest_ind from the scipy-
library in Python. This built-in function returned the T-statistic and the raw p-values,
indicating the significance of individual tests. To adjust for multiple comparisons, the
Benjamini-Hochberg (BH) method was used to control the false discovery rate, calcu-
lating the adjusted p-values (q-values) with Eq. (2.8). Genes were considered DEGs
when the q-value was < 0.05 and |log2 FC | > ±0.2.

To visualize both the magnitude and significance of change in gene expressions, a vol-
cano plot2 was generated where the negative log of the q-values for all genes between
healthy and AD-individuals was plotted against the log2FC. This plot was chosen be-
cause it can visualize the expression of thousands of genes (here 21044 genes) at the
same time, while highlighting significant DEGs. The plot was generated in Python us-
ing Bioinfokit, a bioinformatics data analysis and visualization toolkit [73]. Significantly

22D scatter plot with shape like a volcano
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up-regulated genes were colored red and down-regulated genes blue, as this is increas-
ingly common to do to avoid the color-blindness issue that arises from the traditional
red-green color scheme.

3.7.1 DEGs in the CSD network

It was further of interest to investigate the overlap between DEGs and differentially co-
expressed genes in the CSD network. To inspect the location of DEGs in the CSD net-
work, the csv-file with all values from the DEA was uploaded as a node attribute table
to the CSD network in Cytoscape. The size of the nodes in the network was sorted by
log2FC, using continuous mapping, but a minimal node size was set for all nodes that
were not DEGs. Nodes with significant differential expression (FDR < 0.05) were also
colored continuously based on the sign of log2FC - from decreased (blue) to increased
(red) expression. The greater the magnitude of log2FC, the darker the color. The nodes
with too low magnitude of change (|log2 FC | < ±0.2) were kept gray-colored.

3.8 Integration of Protein-Protein Interactions

To integrate protein interactions as a network layer with the CSD network (purple pro-
cess in Fig 3.1), a map of human reference protein interactions was collected from the
Center for Cancer System Biology’s (CCSB) database. Their newest collection of high-
quality PPI data, and the largest of its kind to date, was used: HI-Union [84]. This dataset
is an aggregate of all PPIs identified from several CCSB mapping efforts: HI-I-05, HI-II-
14, HuRI, Venkatesan-09, Yu-11, Yang-16, and Test space screens-19 [84]. All contain
high-quality binary interactions generated through systematic mapping of open read-
ing frames (ORFs) by yeast two-hybrid (Y2H)-assay [84].

The PPI data was downloaded as a tab-separated file with the interacting proteins being
indicated as pairs of Ensembl gene IDs. In order to compare the PPIs with the gene
pairs of the CSD network, the CSD interactions were converted from gene symbols to
Ensembl IDs. The two edge lists were imported to Cytoscape and the networks merged
to look for overlap. The search for edges present in both CSD and PPI was also done
by using "grep -x -f" in Ubuntu terminal, checking for common lines in the two edge-
list files. For easier interpretation, the IDs were converted back to gene symbols. The
network on the left in Fig. 3.1 shows the giant component of the PPI network used.
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Chapter 4
Results and analysis

This chapter presents the differential co-expression network generated from the tran-
scriptomic AD data and the biological analyses performed on it. It is divided into two
parts; section 4.1 provides the analyses performed directly on the CSD network, and
section 4.2 includes the integrated analyses; DEA (4.2.1) and PPIs (4.2.2).

4.1 CSD framework on AD Expression Data

This first part starts with a description of the overall topology of the network and eval-
uates network parameters such as homogeneity, degree distribution and assortativity.
Functional enrichment is considered both on network level and after modular decom-
position. Finally, the analysis was narrowed down to a study of the most prominent
genes in the network and their potential disease association.

4.1.1 CSD network construction and visualization

The CSD framework was implemented on gene expression data from brain tissue in
AD patients (n = 80) vs healthy controls (n= 93) to generate a differential co-expression
network. From the total of 21044 expressed genes in the data set, giving rise to more

than 200 million ( n2

2 ) co-expression link combinations, 2044 links were extracted as sig-
nificant based on the importance level of p = 5 ·10−6. Fig. 4.1 visualizes the resulting
aggregated network, with 1535 nodes (genes) and 2044 links, of which there is an evenly
distributed number of C-type (709), S-type (690) and D-type (645). The networks with
individual C-, S- and D- type links are visualized in Fig. 6.1-6.3 in appendix A. While it is
important to note that each figure shows only one of many possible Cytoscape visual-
izations of the same network, the connections and network properties remain the same
for each visualization.
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Figure 4.1: CSD network. Visualization of the aggregate differential co-expression network from
transcriptomic data (80 AD patients, 93 controls). N = 1535, M = 2044. Nodes represent genes
and links represent the type of co-expression between pairs of genes. Links are colored by type:
blue is conserved (C), green is specific (S) and red is differentiated (D). Network generated using
an importance level of p = 5 ·10−6 and visualized in Cytoscape.
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The first striking feature observable from the CSD network (Fig. 4.1) is that the con-
served links (blue) are generally separated from the specific and differentiated links,
which are highly interconnected. The giant component of the network, containing 1078
nodes and 1636 links, is split in two regions. The largest of those contain an even mix
of S- (608) and D-type (549), while the smallest region has almost exclusively conserved
links and is connected to the largest region only by a few "bridge" nodes. The two next
largest connected components are both entirely C-linked, with 66 and 10 nodes respec-
tively. The majority of the remaining 161 connected components form 127 isolated
pairs. Although the visualization of the network is a valuable starting point, it could
be misleading to solely focus on the visual aspects. Further analyses of network proper-
ties and central nodes are essential to develop a deeper understanding of the potential
underlying biological processes that are not visible by merely looking at the network.

4.1.2 Node homogeneity

The node homogeneity was calculated for each node individually in the CSD network,
and the results are summarized in Fig. 4.2. These results show that there is an overall
tendency of links with the same co-expression type to group together, in other words
the overall node homogeneity is high. From the Venn diagram in Fig. 4.2(left) we can
see that no node in the complete network is fully heterogeneous with links of all types.
This is also evident from the box plot (Fig. 4.2(right)) which shows that the lowest value
is 0.5 and not 1/3 which would indicate full heterogeneity. From the box plot we see a
trend of mean homogeneity values (green triangles) of H ≥ 0.8, independent of degree.
However, there are two outliers to this trend, which correspond to two of the largest
hubs, with degrees k = 69 and k = 31, they have relatively low H-values, H = 0.54 and
H = 0.65 respectively. Of all nodes with mixed interactions, the combination of specific
and differentiated is the most common (N=163). This is reasonable as these two type of
links are both differential, caused by a change of co-expression pattern from control to
case. The conserved (blue) links are highly interconnected and separate from the other
two types of differential co-expression, as seen clearly from Fig. 4.1, and summarized
by the numbers in the Venn diagram (Fig. 4.2(left)). Only 9 nodes with C-links are also
connected to nodes with either S- or D-type links.

4.1.3 Degree Distribution and Degree Correlations

The degree distribution and degree-degree correlations are both essential measures for
characterizing overall network topology based on the degree k. These parameters were
mostly used to verify earlier findings on co-expression network structure.

Degree Distribution

The node degree distribution of the total differential co-expression network is shown in
Fig. 4.3. The number of nodes plotted as a function of degree follows a power law,
as approximated by the straight (red) line in the log-log plot with a slope of −1,876
and an R2-value of 0.895. This suggests that the network, as expected from biological
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Figure 4.2: Node homogeneity. Left: Venn diagram of the relative number of genes involved in
each type of interaction (co-expression). Blue = conserved (C), green = specific (S) and red =
differentiated (D). Right: Box plot of node homogeneity binned by node degree. The boxes go
from the first quartile (25th percentile) on the bottom to the third quartile (75th percentile) on
top. Median values are represented by red bars and mean values by green triangles. The ends of
the whiskers correspond to the minimum and maximum values of H for the given degree.

networks, has a scale-free topology. Although the average degree of the network is <
k >= 2.66, no "typical" node exists, as compared to random networks where most nodes
have the average degree. In scale-free networks most nodes have low degrees, but at the
same time the probability of observing high-degree nodes is substantially higher than
random. This suggests that the correlations between the genes in the co-expression are
not random but has biological function.
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Figure 4.3: Degree distribution of the CSD network. The number of nodes as a function of degree
on a log-log scale. A power law of the form y = 782x−1.876 was fitted with R2 = 0.895 (dotted red
line).
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Figure 4.4: Neighborhood connectivity distributions for the individual C-, S- and D-networks.
The average degree of nearest neighbors of a node (<knn (k)>) as a function of node degree (k) on
log-log scale. Red dotted lines are power laws fitted to the data points: a) y = 7.36x0.163 (corre-
lation: 0.706 (R2 = 0.580)), b) y = 8.67x−0.211 (correlation 0.539 (R2 = 0.288)),c) y = 12.99x−0.598

(correlation: 0.869 (R2 = 0.594)).

Degree Correlations

To qualitatively determine how the nodes connect to other nodes with a certain degree,
the neighborhood connectivity distribution knn(k) was plotted for each individual C-,
S- and D-network (Fig. 4.4a-4.4c, respectively). From the log-log plots an approximated
power law fit returned the degree correlation exponent µ, which tells us if the network
has an assortative, neutral or disassortative nature. The assortative mixing of the CSD
network as a whole was not considered, as the three individual types of co-expression
have previously shown to have quite different characteristics of degree correlation [3].
As expected, the C-network is slightly assortative (Fig. 4.4a), as seen from the increasing
degree correlation function (µ= 0.163). This means that the nodes have a tendency of
connecting to other nodes with a similar number of neighbors as themselves. On the
other hand, both the specific and differentiated network show disassortative topology
(Fig. 4.4b,c), but the D-network to a much higher extent. The neighborhood connec-
tivity distributions of the S- and D-networks are decreasing, with negative correlation
exponents of µ = −0.211 and µ = −0.598, respectively. Negative degree correlations
indicate that there is a hub-and-spoke topology, where hubs tend to connect to low-
degree nodes and form "bouquet"-like structures. This is especially evident in the sub-
network with exclusively differentiated links, which can be revealed from Fig. 4.1, but
even more clearly from Fig. 6.3 in Appendix A.

Hubs

As the degree distribution shows, a few genes in the total network have considerably
higher degrees than average. These hubs are interesting to investigate as they contain
a major part of the interactions in the network, and contribute to most of the topol-
ogy. A limit of k ≥ 20 was used to define a node as a hub in the CSD network, and
this resulted in 18 hubs. These represent only 1.17% of the nodes in the network, but
contain as much as 21.5 % of the links. Table 4.1 displays these hubs sorted by degree
(k), along with the number of each link type (kC , kS and kD ) and their calculated node
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Table 4.1: Network hubs. Genes in the CSD network with node degree k ≥ 20. kC ,S,D : degree of
interaction type C,S,D. H : Node Homogeneity.

Gene k kC kS kD H
KIAA1841 69 0 25 44 0.54
NMNAT2 37 37 0 0 1.0
MIGA2 31 0 24 7 0.65
AQR 25 0 1 24 0.92
AL158206.1 24 0 0 24 1.0
HPRT1 23 23 0 0 1.0
GTF2I 23 0 1 22 0.92
TOM1L2 22 0 0 22 1.0
YWHAH 22 22 0 0 1.0
GOT1 21 21 0 0 1.0
NAPB 21 21 0 0 1.0
TMEM178A 21 0 21 0 1.0
PLTP 21 0 20 1 0.91
LCAT 21 0 11 10 0.5
ENPP2 20 20 0 0 1.0
CADPS 20 20 0 0 1.0
MDH1 20 20 0 0 1.0
VSNL1 20 20 0 0 1.0

homogeneity score (H). As we can see from the table, most of the hubs are homoge-
neous (H close or equal to 1.0), connecting to most or all of their neighbors with the
same co-expression type. The nine hubs with conserved (C) type of interaction to their
neighbors, meaning that they have strong co-expression under both conditions, are all
homogeneous. Hence all the heterogeneous hubs with H < 1.0 have a mixture of S-
and D-type of links. This is not surprising as the conserved regions (blue) are separated
from the differential regions (red and green), as we saw earlier from Fig. 4.1. Five hubs,
namely KIAA1841, AQR, AL158206.1, GTF2I and TOM1L2, are predominantly linked to
their neighbors by differentiated (D)-type. This indicates that these genes have strongly,
but oppositely signed co-expression under the two conditions. For the remaining four
nodes, representing the genes MIGA2, TMEM178A, PLTP and LCAT, the majority of the
interaction types are specific (S). This means that the co-expression is present only un-
der one condition. By looking more detailed into the calculated Spearman correlations,
it was found that all of these S-interactions go from no/weak correlation in control to
strong correlations in sick patients. This might be due to a coordinated regulation of
the genes in the disease. Before going into the biological importance of the individual
hubs (see section 4.1.7), we will start with a more global analysis of functional processes
on a network level.
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4.1.4 GO Enrichment Analysis on C-, S- and D-networks

To give an overview of biological processes that each of the different types of co-expressed
genes might be involved in, a GO functional enrichment analysis was performed on
each of the individual subnetworks.

GO on the C-network (N = 331) gave the largest number of significantly enriched bio-
logical processes. Genes in this network have a conserved co-expression, meaning that
the pairwise correlation patterns are unchanged for AD patients compared to healthy
individuals. The enrichment therefore highlight processes that might be conserved be-
tween conditions and thus prominent for brain tissue or cell functions in general. Here
we find genes enriched in processes such as nervous system development (FE = 2.70,
q = 2.17 ·10−17), synaptic transmission (FE = 4.50, q = 1.25 ·10−8) and vesicle-mediated
transport in synapse (FE = 10.13, q = 1.21 · 10−11). The complete table of results can
be found in the following doi: 10.6084/m9.figshare.13342217 [26]. To further limit the
overwhelming amount of information, a more local GO was performed on the smaller
C-modules (see section 4.1.6).

The genes in the S- and D-networks have changes in pairwise correlation that indicate a
disease-related change in the transcriptional program when comparing AD to control.
No statistically significant GO terms were found for the list of genes in the D-network
(N = 705). In the S-network (N = 671), some significant terms were found, but with
substantially lower enrichment scores than for the C-network. The GO terms were also
more general, mostly related to localization and signaling, and involving many genes.
The three most specific terms were plasma membrane bounded cell projection organi-
zation (FE = 1.72, q = 2.99 ·10−2), phosphate-containing compound metabolic process
(FE = 1.60, q = 2.86 · 10−3) and amide transport (FE = 1.60, q = 3.27 · 10−2). As these
processes are quite broad, further investigation is needed to provide new information
of mechanisms related to AD. The complete table of enrichment results is given in ap-
pendix B.1.

4.1.5 KEGG Pathway Enrichment

The 2019 KEGG Pathway database in Enrichr [51, 83] was used to search for overrep-
resented pathways in the network. The combined CSD network showed significant en-
richment for 6 categories, of which 4 are related to signal transduction and the other two
pathways are synaptic vesicle cycle and mineral absorption (Table 4.2). The signaling
pathways enriched are major pathways central to many biological processes, impor-
tant for the normal functioning of cells in general, including brain cells. It is therefore
reassuring to find such pathways enriched, as these are important for the regulation of
essential processes in brain tissue, where the analyzed samples were originally taken
from. The broadest category, with the largest number of genes enriched in the CSD
network, was PI3K-Akt signaling (FE = 1.69, q = 0.0191). The Phosphatidylinositol 3’-
kinase(PI3K)-Akt signaling pathway regulates fundamental cellular functions such as
transcription, translation, proliferation, growth, and survival [4]. The downstream ef-
fects of the phosphorylation cascade can be cell cycle progression or apoptosis, protein
synthesis or glycolysis/gluconeogenesis [4]. MAPK- and insulin signaling are highly re-
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Table 4.2: All KEGG Pathways significantly enriched in the CSD network, sorted by fold enrich-
ment (FE). Overlap: ratio of genes found vs expected from the reference list. FDR: Benjamini-
Hochberg adjusted p-value. Enriched genes are shown explicitly.

Term Overlap FE FDR Genes

Mineral absorption 11/51 2.81 0.0489
ATP1A2, ATP1B1, HEPH, HMOX1, MT1E,
MT1F, MT1G, MT1H, MT1X, MT2A, TF

Synaptic vesicle cycle 16/78 2.67 0.0248

AP2M1, ATP6V0A1, ATP6V1A, ATP6V1B2,
ATP6V1E1, ATP6V1F, ATP6V1G2, CLTC,
CPLX1, DNM1, NSF, SNAP25, STX1B, STXBP1,
SYT1, UNC13C

Glucagon signaling pathway 19/103 2.40 0.0220

ACACA, ATF2, CALM3, CPT1C, CREB1, CREB5,
G6PC3, PCK1, PDHA1, PFKL, PGAM2, PHKG1,
PPP3CB, PPP3R1, PPP4C, PRKAA1, PRMT1,
PYGL, PYGM

Insulin signaling pathway 25/137 2.38 0.0126

ACACA, BRAF, CALM3, CBL, EXOC7, G6PC3,
GSK3B, HK1, IKBKB, INPPL1, IRS1, MAP2K1,
MAPK10, MAPK9, PCK1, PHKG1, PRKAA1,
PRKAR1B, PTPRF, PYGL, PYGM, RAF1, RPS6,
SHC1, TSC2

MAPK signaling pathway 42/295 1.86 0.0116

ANGPT1, ATF2, BRAF, CACNA1I, CACNB2,
CACNG2, CDC42, CSF1R, DUSP3, ECSIT, ERBB2,
ERBB3, FGF1, FGF9, FGFR3, FLNA, GADD45B,
GNG12, HSPA2, IKBKB, IL1R1, JUND, MAP2K1,
MAP2K6, MAP3K1, MAP4K4, MAPK10, MAPK7,
MAPK9, MEF2C, MYD88, NF1, PAK1, PDGFD,
PGF, PPP3CB, PPP3R1, RAF1, RASGRP3, RRAS2,
TAB2, VEGFA

PI3K-Akt signaling pathway 46/354 1.69 0.0191

ANGPT1, ATF2, CCNE1, CCNE2, COL4A2,
COL4A5, COL4A6, CREB1, CREB5, CSF1R,
ERBB2, ERBB3, FGF1, FGF9, FGFR3, G6PC3,
GNB2, GNG12, GNG3, GSK3B, IKBKB, IRS1,
ITGB4, ITGB8, LAMA1, LAMA5, LPAR1, LPAR5,
MAGI1, MAP2K1, OSMR, PCK1, PDGFD, PGF,
PRKAA1, RAF1, RPS6, THBS3, THBS4, TLR2,
TNC, TSC2, VEGFA, YWHAG, YWHAH, YWHAZ

lated pathways, which explains why there are several genes commonly enriched (Table
4.2). Genes might be involved in the regulation of different processes, leading to a great
complexity in cell signaling. Alterations in these enriched signaling pathways that regu-
late the cell cycle can eventually lead to neuronal death, a common pathological feature
in neurodegenerative diseases [5].

When searching for enrichment in the individual C-, S- and D-networks, no significant
results were found in the S-only or D-only networks (q = 0.5). However, a long list of 44
significant pathway categories were found for the gene set of the C-network, which can
be found here: 10.6084/m9.figshare.13342247. This shows that most of the enriched
pathways in the combined network are caused by the genes in the C-network. It is not
that surprising that these general pathways are potentially conserved, since these are
vital for universal cell function. A dysregulation in these processes could lead to the pro-
gression of disease. The mineral absorption pathway had the largest fold enrichment
in the CSD network (FE = 2.81, q = 0.0489). Six of the enriched genes were metalloth-
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ioneins (MTs), proteins involved in metal homeostasis and oxidative stress response
[85]. All are found in the C-network (Table 4.2, located in the small 7-node module
third from the left in Fig. 4.1). This indicates that the genes form part of a protein
complex which maintains metal homeostasis across conditions. The synaptic vesicle
cycle was also largely enriched in genes from the C-network (FE = 10.8, q = 1.07 ·10−8,
data not shown). In fact, 14 of the 16 genes shown in Table 4.2 were found in the C-
network. Insulin- and MAPK signaling were also enriched in the C-network (q = 0.009).
Although these two processes were not significantly enriched in the individual S- and
D-networks, most of the genes enriched in these pathways in the combined network
belong to the S/D-region of the network.

Interestingly, the glucagon signaling pathway was not significantly enriched in the C-
network (3/103 expected genes, q = 0.44), but in the combined network it was (19/103, q
= 0.022, Table 4.2). An overlap of 16/103 was found for the combined S- and D-genes (FE
= 2.56, q = 0.14). This indicates that the genes enriched in glucagon signaling are mostly
differentially co-expressed (S-type and D-type) in the network, and that the pathway
might have an important role in the disease. Included in the list of enriched genes (see
Table 4.2) we find PHKG1 to have a prominent position in the network (indigo hub be-
tween node 1 and 12 in Fig. 4.6). It is found in the largest module, but has specific
co-expression with two hubs of other modules, namely KIAA1841 and TMEM178A. It
may therefore be interesting to look further into the role of this gene.

4.1.6 Module Analysis

In the hope of finding functionally related modular structures of co-expressed genes
in the network, the Louvain community detection algorithm was applied. It resulted
in 182 modules in total, however most of them with negligible sizes. Only the mod-
ules with 50 or more nodes were considered further. The resulting 11 modules were
visualized in Cytoscape and presented in Fig. 4.5, where each module has differently
colored nodes. The size, average degree, clustering coefficient and number of each co-
expression type is summarized for each module in Table 4.3. This table also shows the
largest hub of each module, but the biological function of these will be considered in
section 4.1.7, as mentioned earlier. The global modularity score was as high as Q = 0.83,
indicating an optimal partitioning of the network.

The community detection algorithm partitioned the giant component into 10 different
modules, and the last module (turquoise) was the next largest connected component
with 66 nodes (Fig. 4.5). The large S- and D-type region of the giant component was
split into 8 separate modules. We see from the figure (Fig. 4.5) that these modules
are quite sparse and spread across large areas of the region. As expected, the mod-
ules dominated by S- or D-type of interactions have clustering coefficients close to or
equal to zero (Table 4.3). Oppositely, we find the three modules with different shades of
blue, which include almost all the C-type links, to be more dense and clustered, forming
stronger communities. These modules have clustering coefficients substantially higher
than the average of the whole network (C = 0.061).

Module 1 (indigo) has as much as 150 nodes assigned to it, which is considerably higher
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Figure 4.5: The 11 modules with 50 or more nodes, detected by Louvain algorithm, highlighted
with unique colors in the CSD network. The color chart on the right side shows the assigned color
to each module and their ID, sorted by module size (largest on top). The node with highest degree
in each module is enlarged and color-labeled.
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than the size of all the other modules. It is found in the center of the network in Fig.
4.5. The large majority of links in this module are of specific type, meaning that the
co-expression between gene pairs is condition-dependent. The most highly connected
gene in this module is MIGA2 (k = 20), the third largest hub in the network. We also find
the previously identified network hub PLTP in this module. PLTP has reduced impor-
tance in degree centrality (k = 14), but has the largest closeness centrality in the module.
CYS1 was identified as a new node with modular importance, due to next largest degree
(k = 17) and highest betweenness centrality. The values of CC and BC are not shown, as
they are only relative and not directly comparable between modules.

Module 16 (green) is the next largest module, with 108 nodes. Here, there is a mixture
of D-type and S-type of interactions, with the differentiated co-expressions dominated.
The topology of the module is quite sparse, spreading over several of the other mod-
ules. The intra-modular hub of module 16 is AL158206.1, but another central node is
NF2, which has both the highest closeness- and betweenness centrality in the mod-
ule. It encodes Neurofibromin 2, a cytoskeletal protein involved in suppression of cell
proliferation and tumorigenesis [78].

As we can discern from the visualization of the modular partition, module 5 (red) and
module 8 (dark green) are the ones that look the most separated from the others in the
S- and D- rich region (Fig. 4.5). Interestingly, we also identified new high-degree nodes
from these two modules. Module 5 (red) has 95 nodes and about an even mix of S- and
D-type of links (Table 4.3). The nodes form several dispersed, bouquet-like structures.
The largest node by degree, forming an intra-modular hub is H2BC19P. It also has the
highest closeness and betweenness centrality. H2BC19P is a pseudogene coding for a
non-functional H2B Clustered Histone 19, a nucleosome component [78]. Although
pseudogenes encode non-functional products, the processed transcript could be im-

Table 4.3: Module parameters. Modules in the CSD networks (ID colored as in Fig. 4.5) detected
by Louvain algorithm with their number of genes (sorted by this), average degree (<k>), average
clustering coefficient (C ) and number of each link type (kC ,S,D ). The largest hub of each module
with its degree in the module is also presented.

Module ID #genes < k > C kC kS kD Hub
1 150 2.933 0.0 0 174 46 MIGA2 (k=20)
16 108 2.130 0.0 0 41 74 AL158206.1 (k=22)
5 95 2.042 0.011 0 44 53 H2BC19P (k=16)
4 92 3.630 0.211 167 0 0 VSNL1 (k=19)
24 90 2.289 0.0 0 77 26 TMEM178A (k=15)
6 86 6.116 0.383 263 0 0 NMNAT2 (k=28)
3 83 2.193 0.0 0 21 70 GTF2I (k=14)
26 68 1.971 0.0 2 20 45 KIAA1841 (k=51)
9 66 5.0 0.402 165 0 0 ENPP2 (k=20)
8 61 2.098 0.0 0 59 5 NDUFB1 (k=12)
14 61 2.066 0.0 0 22 41 TOM1L2 (k=20)
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portant for transcriptional regulation, and is therefore an interesting gene to consider
for further work.

Module 8 (dark green) is one of the two smallest modules with 61 nodes and a majority
of the gene pairs have specific co-expression (Table 4.3). NDUFB1 is another new high-
degree node in this module, and it is connected to all its 12 neighbors with specific co-
expression. The gene encodes the protein called NADH:Ubiquinone Oxidoreductase
Subunit B1, which is believed to transfer electrons in the respiratory chain from nicoti-
namide adenine dinucleotide (NADH) to ubiquinone [78]. PRKAA1 is another gene of
interest, as it has the highest centrality when it comes to closeness and betweenness.
It encodes the catalytic subunit of an adenosine monophosphate (AMP)-activated ser-
ine/threonine protein kinase [78].

Module 4 (dark blue) and module 6 (blue) are closely connected, but divide the largest
region of conserved gene pair connections in two. This indicates that this region might
involve two different sorts of biological processes, and this was explored further with
GO enrichment (in the following subsection). The network topology of module 4 and
6 are also slightly different. Even though they have almost the same number of nodes,
module 4 has almost half the size of average degree and clustering coefficient compared
to module 6 (Table 4.3). This means that module 4 is less connected to its neighbors
and the neighbors are less connected with each other. Module 6 is the most highly
connected of all modules, with a substantially higher average degree (<k> ≈ 6) than the
other modules, except module 9 which has a large average degree as well (<k> = 5).

Module 9 (turquoise) has the largest clustering coefficient (C = 0.402), which means
that there is a higher tendency of the genes in this module to form tight clusters. Some
of the clustered triangles can be observed directly in the turquoise module in the lower
left of Fig. 4.5. All 165 gene pair connections in this module are of conserved type, and
the node with the most of these connections is ENPP2. One of its neighbors, FRMD4B, is
another potentially interesting gene, as it has the highest closeness- and betweenness
centrality in the module. It encodes a FERM-domain containing protein with a likely
role as a scaffolding protein [78].

Module 24 (dark yellow) has 90 nodes and most of these have S-type links between
them. The highest connected node is the hub TMEM178A. Interestingly, it has specific
co-expression with ANK1, which is the most central node according to betweenness
and closeness in the module. It codes for the Ankyrin 1 protein, which attaches integral
membrane proteins to the underlying cytoskeleton [78]. Previous studies have found
this gene to be hypermethylated in AD [86, 87].

Module 3 (purple) is the most D-link dominated module. Here we find two of the net-
work hubs, GTF2I and AQR. These have ZNF423 as a common D-linked neighbor, which
is the modular node with highest betweenness centrality. ZNF423 encodes a zinc fin-
ger DNA-binding transcription factor, which can both act as an activator or repressor
[78]. Given its switch in correlation with two of the network hubs, this TF could be in-
teresting to investigate in further studies. As indicated from the network visualization,
module 3 overlaps with the two largest modules (indigo and green), but also with the
smallest; the orange-colored module (module 14). Apart from one large bouquet with
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the hub TOM1L2 in the core, the structure of module 14 is quite sparse. The hub LCAT
is directly connected with TOM1L2 by differentiated (D) co-expression, but it has half
the number of neighbors in the module.

Last, but not least, we have module 26, which is colored pink in Fig. 4.5. It has 68 nodes,
of which as much as 52 represent the largest hub KIAA1841 and its first neighbors. All
the other nodes in the module are therefore low-degree nodes. This is also the only
module with all interaction types represented. In this module we find the only two gene
pairs that have conserved co-expression among all the other S- and D-type of pairs in
the differentially co-expressed region.

GO Enrichment Analysis of modules

Enrichment analyses of the genes within the modules were performed to look for sig-
nificant functional associations to each module. Statistically significant GO categories
(FDR < 0.05) were only found for three of the modules. All of these modules, namely
module 4, 6 and 9, have exclusively conserved (C)-type of co-expression between their
92, 86 and 66 genes, respectively. We saw from Table 4.3 that these modules colored
with different shades of blue were all homogeneous.

Table 4.4 shows some of the biological processes that are enriched for each of these
three modules, sorted by fold enrichment (FE). For the sake of simplicity, only the most
specific GO terms - of particular interest to AD - are shown. The complete results
of all the significant terms are given in appendix B.2, Table 6.3-6.4. All processes are
over-represented compared to what could be expected to be drawn randomly from the
database of all human genes. Overall, we see many GO terms being regulations of other
processes. This might indicate that the modules include some TFs, and are therefore
important for transcriptional regulation.

Module 4 (dark blue) is mainly enriched in processes related to the development of
the nervous system and synaptic activity (Table 4.4 and appendix Table 6.3). Several
GO terms are related to signaling, transport and secretion by exocytosis, all of which
are central processes in the synaptic vesicle cycle and for neurotransmitter secretion.
A substantial amount of genes is enriched in neuron projection and regulation, which
involves the development of extensions from the neurons, such as axons and dendrites.
Also particularly interesting from a disease perspective is the regulation of long-term
and short-term neuronal synaptic plasticity (FE = 45.83, q = 1.20·10−2, FE = 26.44, q =
3.45·10−2), which is essential to AD pathology.

Module 6 (blue) is most highly enriched in biological processes involved in amino acid
metabolism (Table 4.4). The top 5 terms are related to the metabolism of the inter-
changeable amino acids glutamate, aspartate and oxaloacetate (Table 6.2 in appendix
B.2). In fact, the module is fully enriched in glutamate metabolism by the two genes
(GOT1 and GOT2) responsible for producing either 2-oxoglutarate or aspartate from
glutamate. GOT1 and GOT2 are cytosolic and mitochondrial aspartate aminotrans-
ferases, respectively, explaining the top 5 terms [78]. These are important regulators of
glutamate levels, a major excitatory neurotransmitter in the CNS [4]. Although only two
genes were enriched, GOT1 is one of the network hubs and therefore co-express with
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Table 4.4: GO biological processes enriched in module 4, 6 and 9 (N = 92,86,66, respectively.)
Only some of the most specific terms are included, sorted by fold enrichment (FE). #ref: num-
ber of genes in reference database. #genes: number of genes found in input gene list. FDR:
Benjamini-Hochberg adjusted p-value.

GO biological process #ref #genes FE FDR
Module 4
regulation of calcium ion-dependent exocytosis of neurotransmitter 3 2 >100 2.72E-02
regulation of synaptic activity 3 2 >100 2.70E-02
neurofilament cytoskeleton organization 8 3 85.92 3.43E-03
regulation of short-term neuronal synaptic plasticity 15 3 45.83 1.20E-02
regulation of vesicle fusion 23 3 29.89 2.67E-02
regulation of long-term neuronal synaptic plasticity 26 3 26.44 3.45E-02
associative learning 82 6 16.77 8.76E-04
vesicle docking 63 4 14.55 2.84E-02
negative regulation of neuron apoptotic process 152 6 9.04 1.24E-02
regulation of neuron projection development 522 18 7.90 3.60E-08
negative regulation of transport 449 9 4.59 2.52E-02
central nervous system development 1019 14 3.15 2.19E-02
Module 6
glutamate catabolic process to 2-oxoglutarate 2 2 >100 1.61E-02
glutamate catabolic process to aspartate 2 2 >100 1.60E-02
mitochondrial ATP synthesis coupled proton transport 22 4 42.60 1.05E-03
phagosome acidification 28 4 33.47 2.09E-03
organelle transport along microtubule 80 6 17.57 5.44E-04
synaptic vesicle cycle 117 6 12.01 2.82E-03
respiratory electron transport chain 110 5 10.65 1.90E-02
regulation of macroautophagy 177 7 9.27 2.73E-03
cellular response to insulin stimulus 177 6 7.94 1.91E-02
regulation of exocytosis 211 6 6.66 4.02E-02
chemical synaptic transmission 414 9 5.09 1.30E-02
intracellular protein transport 992 13 3.07 3.89E-02
nervous system development 2203 21 2.23 4.50E-02
Module 9
galactosylceramide biosynthetic process 6 3 >100 2.36E-03
central nervous system myelination 21 6 91.65 6.36E-07
oligodendrocyte differentiation 72 8 35.64 5.38E-07
peripheral nervous system development 77 5 20.83 4.07E-03
glial cell differentiation 180 9 16.04 1.56E-05
regulation of cell projection organization 710 10 4.52 2.97E-02
regulation of cellular component movement 1042 12 3.69 3.48E-02
regulation of hydrolase activity 1305 15 3.69 5.47E-03
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several genes that might be functionally related. We also find processes related to trans-
port and eradication of proteins, such as "organelle transport along microtubule" (FE
= 17.57, q = 5.44·10−4) and "regulation of macroautophagy" (FE = 9.27, q = 2.73·10−3)
(Table 4.4). These processes might be a response to the aberrant protein aggregation
seen in AD patients. Finally, the terms involving most genes are nervous system de-
velopment (FE = 2.23, q = 4.50·10−2) and intracellular protein transport (FE = 3.07, q =
3.89·10−2) (Table 4.4).

Module 9 (turquoise) is enriched in broad categories such as cellular development, both
in the central- (CNS) and peripheral nervous system (PNS) (Table 4.4). More specifi-
cally, we find the generation of neurons, which includes both glial cell- and oligoden-
drocyte differentiation. Oligodendrocytes are large glial cells in the CNS, largely respon-
sible for production of myelin (the lipid-rich insulating layer around neural axons) [88].
In fact, several of the enriched processes are related to myelination. The most spe-
cific and highly enriched GO term involves galactosylceramide, which is a sphingolipid
composed of ceramide and a sugar unit. This is a key lipid in the composition of the
myelin membrane [88]. In addition, as much as 15 genes are apparently involved in the
regulation of hydrolase activity (FE = 3.69, q = 5.47·10−3), indicating that some of these
genes might be TFs regulating the above-mentioned processes.

KEGG Pathway analysis of modules

Now with more local structures identified in the network, it was interesting to inves-
tigate which of these modules are responsible for the enriched pathways found in the
network as a whole (Table 4.2). Several pathways in the KEGG 2019 database were found
enriched in the modules 4 (dark blue) and 6 (blue), corresponding to the largest con-
served region in the network. Table 4.5 and 4.6 show the significantly enriched path-
ways in module 4 and 6, respectively. Other than synaptic vesicle cycle (enriched in
both module 4 and 6) and insulin signaling (enriched in module 4), the other four net-
work pathways were not enriched in the modules. Nonetheless, new and more specific
pathways showed up for modules that were not enriched when looking at the network
as a whole.

Module 4 was enriched in two new and more specific pathways; GABAergic synapse
(FE = 12.2, q = 8.70 ·10−3) and D-Glutamine and D-glutamate metabolism (FE = 87.0, q
= 0.0212). The latter is a subpathway of the former, which explains why the two genes
GLS and GLS2, coding for glutaminases, are enriched in both pathways. These enzymes
convert glutamine to glutamate, which is then converted to gamma aminobutyric acid
(GABA), the most abundant inhibitory neurotransmitter in the central nervous system
(CNS) [4].

Module 6 had the largest number of pathways significantly enriched, and most of these
can be related to AD. Only some of the most relevant terms are summarized in Table 4.6,
while the full table is given in appendix B.4. Several of the pathways enriched in module
6, such as VEGF- and mTOR signaling are related to or involved in PI3K-Akt signaling,
found earlier for the whole network. Module 6 was also highly enriched in pathways
related to amino acid metabolism, the most highly enriched by far was the biosynthesis
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Table 4.5: All significantly enriched KEGG Pathways in module 4, sorted by Fold Enrichment
(FE). Overlap: ratio of genes found vs expected from the reference list. FDR: Benjamini-Hochberg
adjusted p-value. Enriched genes are shown explicitly.

Term Overlap FE FDR Genes
D-Glutamine and D-glutamate metabolism 2/5 87.0 2.12E-02 GLS, GLS2

Synaptic vesicle cycle 6/78 16.7 4.87E-04
ATP6V0A1, DNM1, SNAP25,
STX1B, STXBP1, SYT1

GABAergic synapse 5/89 12.2 8.70E-03
GABRA1, GLS, GLS2,
GNG3, SLC12A5

Insulin signaling pathway 5/137 7.93 3.29E-02
BRAF, HK1, MAPK10,
MAPK9, PRKAR1B

Table 4.6: Some of the significantly enriched KEGG Pathways in module 6, sorted by Fold Enrich-
ment (FE). FDR: Benjamini-Hochberg adjusted p-value. Enriched genes are not shown for the
sake of simplicity, but can be found here: 10.6084/m9.figshare.13344245.v2.

Term Overlap FE FDR
Phenylalanine, tyrosine and tryptophan biosynthesis 2/5 93.0 5.07E-03
Synaptic vesicle cycle 7/78 20.9 2.70E-06
Epithelial cell signaling in Helicobacter pylori infection 6/68 20.5 2.40E-05
Oxidative phosphorylation 11/133 19.2 3.65E-09
Vibrio cholerae infection 4/50 18.6 2.16E-03
Parkinson disease 11/142 18.0 3.73E-09
Alzheimer disease 10/171 13.6 2.50E-07
Huntington disease 11/193 13.3 6.79E-08
VEGF signaling pathway 3/59 11.8 3.08E-02
Phagosome 5/152 7.65 1.19E-02
mTOR signaling pathway 5/152 7.65 1.29E-02
Cellular senescence 5/160 7.27 1.31E-02
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of phenylalanine, tyrosine and tryptophan (FE = 93.0, q = 5.07·10−3). However, again
only two genes (GOT1 and GOT2) were responsible for the over-representation (data
not shown). We also find several pathways related to viral infection enriched, which
indicates that this module might have a central role in immune responses. Interestingly,
disease pathways are also enriched, such as Parkinson- and Huntington disease, which
are two neurodegenerative diseases. Alzheimer disease was also highly enriched (FE =
13.6, q = 2.50·10−7), indicating that module 6 might be a disease module.

For the set of 66 genes in module 9 (turquoise), no significant enrichment was found in
KEGG Pathways after multiple testing correction (q = 0.077). However, there was high
fold enrichment in the two categories ether lipid- and sphingolipid metabolism (FE =
19.3, p = 5.02 ·10−4). Three genes were enriched in each category, of which UGT8 and
GAL3ST1 were common to both. In addition, the intra-modular hub ENPP2 was en-
riched in ether lipid metabolism, and CERS2 in sphingolipid metabolism. This pathway
enrichment corresponds well with the enrichment in GO biological processes related to
lipid metabolism (Table 6.4), shown earlier for this module.

Module 26 (pink) was the only module from the S/D-region which showed any signifi-
cant enrichment after multiple testing. It was enriched with genes related to the Notch
signaling pathway (FE = 24.5, q = 6.54·10−3). This pathway plays a key role in neuron
development, and has been associated with neurological disorders [89]. The nodes en-
riched from this module were KAT2B, APH1B, HDAC1 and JAG1, the first three of which
are nearest neighbors of and have differentiated (D) co-expression with the largest hub
KIAA1841. This indicates that this novel transcript might have a regulatory role in sig-
naling that is rewired as a response to AD. We will return to this topic in the discussion
section.

Though not significant, Module 3 (purple) showed a 7-fold enrichment in cGMP-PKG
signaling pathway (p = 6.39·10−4, q = 0.197), that might be interesting. The 5 genes
ATP1A2, ADRB2, PRKG1, SLC25A6 and the hub GTF2I were enriched. The remaining
modules had no significantly enriched pathways (q = 1.0).

4.1.7 Biological functions of prominent genes

As only the most significantly co-expressed gene pairs end up in the CSD network, it
would essentially be interesting to study each and every one of the genes and their in-
teractions. However, since the network hubs represent genes that are co-expressed with
a great number of other genes, exploring the biological function of these is especially
interesting. The GeneCards database [78] was used as a starting point for functional
annotation, followed by literature searches. A summary of the biological functions of
all the 18 hubs can be found in Table 6.8 in appendix C, but the most important find-
ings will be explored in the following paragraphs. We will start by describing the hubs
of the S&D-rich region of the giant component, and then move on to the hubs of con-
served regions. A visualization of the hubs and their first neighbors is given in Fig. 4.6,
including which module each gene was assigned to in the modular decomposition. The
numbering is in the same order as in the earlier shown table of hubs (Table 4.1).

KIAA1841 is by far the most highly connected node in the network, with 44 D-linked
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and 25 S-linked interactions. It is centrally located in the largest region of the giant
component, where it forms a bouquet-like (disassortative) topology with its neighbors.
Apart from one hub, the majority of its neighbors are low-degree nodes. KIAA1841 is
a protein-coding gene which encodes a protein belonging to the KIAA-family of un-
characterized proteins, containing a domain of unknown function (DUF) [78]. To my
knowledge, the biological function of this protein is unknown. It was therefore of in-
terest to consider its neighbors to hypothesize its function based on the guilt by asso-
ciation principle. The gene set of the 69 neighbors of KIAA1841 showed no significant
enrichment in any of the GO terms. KIAA1841 is however directly connected to the
hub PLTP by an S-type link. PLTP encodes the Phospholipid Transfer Protein, which
binds and transports a variety of lipid molecules, including cholesterol and vitamin E
[78]. The specific co-expression (strong correlation only in AD samples) indicates a bi-
ological association that is disease-dependent, although the nature of which cannot be
decided from this network alone.

MIGA2 is mostly connected by S-links, indicating condition-specific correlation with its
neighbors (k = 31). It is quite disassortative, connecting only to one other hub (PLTP).
The gene MIGA2 encodes Mitoguardin 2, a protein located in the outer mitochondrial
membrane, involved in glycerophosholipid metabolism [78]. Via phospholipase D6
(PLD6), it hydrolyzes cardiolipin into phoshatidic acid (PA) and phosphatidylglycerol
(PG) [78].

TMEM178A is a fully homogeneous hub with only S-linked neighbors. TMEM178A
encodes a transmembrane protein which is enriched in brain tissue [78]. It acts as
a negative regulator of osteoclast (multinucleated bone cell) differentiation, which to
my knowledge has unknown relation to neurogeneration. A transcriptional study did
however reveal that TMEM178A was the largest dysregulated hub in the transition from
normal to AD states [90], so it could be an interesting gene to investigate further. Other
than the hub PLTP, it is directly connected to LCAT.

LCAT is the most heterogeneous of all hubs (H = 0.5), connecting to 11 nodes with spe-
cific (S) co-expression and 10 nodes with differentiated (D) co-expression. It codes for
the enzyme Lecithin-Cholesterol Acyltransferase, which has a key role in cholesterol
transport [78]. This protein is primarily located in plasma, but is also produced in the
brain. The mix of S- and D-type links make the gene an interesting candidate for further
studies.

AQR has a central position in the network and has almost exclusively differentiated co-
expression with its neighbors. AQR codes for RNA helicase, which catalyzes the adeno-
sine triphosphate (ATP)-dependent unwinding of RNA helices [78]. It is involved in
pre-mRNA splicing as part of the spliceosome. Many cellular processes involve RNA
processing, and thus a malfunctioning could potentially lead to disease. Defective al-
ternative splicing has been associated with neurological disorders, including AD [91,
92].

AL158206.1 is a homogeneously D-linked hub (k = 24), and quite distanced from the
other differentially co-expressed hubs of the network. AL158206.1 is a novel transcript
coding for a long non-coding RNA (lncRNA), not a protein [78]. It has been proposed
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Figure 4.6: The 18 network hubs and their first neighbors. Hubs are enlarged nodes numbered
from largest to smallest degree; 1: KIAA1841, 2: NMNAT2, 3: MIGA2, 4: AQR, 5: AL158206.1,
6: HPRT1, 7: GTF2I, 8: TOM1L2, 9: YWHAH, 10: GOT1, 11: NAPB, 12: TMEM178A, 13: PLTP,
14: LCAT, 15: ENPP2, 16: CADPS, 17: MDH1, 18: VSNL1. Colors of nodes indicate the module
they belong to, using the same coloring scheme as earlier. Links are colored by co-expression
type; blue = conserved (C), green = specific (S) or red = differentiated (D). Diamond nodes are
previously AD-affiliated genes. N = 339, M = 439.
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that lncRNAs have vital roles in transcriptional regulation, making this an interesting
transcript for further studies [93]. The transcript also overlaps with an exon, which
translates into the protein Alkaline ceramidase 2. This is a Golgi-localized enzyme in-
volved in sphingolipid metabolism; it splits ceramide (a sphingolipid) into sphingosine
and free fatty acids [78]. It is found to be up-regulated in response to DNA damage,
where the increased sphingosine levels mediate programmed cell death [94].

TOM1L2 is also completely homogeneous, with D-links to all its 22 neighboring nodes,
including the above-mentioned hub LCAT. TOM1L2 translates into the Target Of Myb1-
Like 2 Membrane Trafficking Protein. The protein belongs to a family of proteins in-
volved in clathrin-mediated endocytosis, a form of vesicular transport [78]. Previous
findings have associated clathrin-mediated endocytosis with APP trafficking, indicat-
ing its role in the production of Aβ in neurons [95].

GTF2I has 23 nearest neighbors, of which all but one of the interactions have strong cor-
relations that switch sign when going from control to case (D-linked). GTF2I provides
instructions for two different proteins; TFII-1 and BAP-135. The former is a general
transcription factor, while the latter has been linked to the activation of B-cells (spe-
cialized white blood cells) in immune response [96]. TFII-1 is active in the brain and
has been associated with the regulation of calcium flow into cells [97].

The hubs in the conserved regions are all homogeneous and most are highly intercon-
nected, which explains the assortativity of the C-network (Fig. 4.4a). VSNL1 is a spe-
cially interesting hub because of its previous association with AD, although the hub has
only C-type of interactions to its 20 neighbors. It codes for Visinin Like 1, which is a
Ca2+-sensor protein in nerve cells [78]. The protein regulates the activity of adenylyl
cyclase, which modulates intracellular signaling in CNS. VNSL1 has a prominent posi-
tion in the network, forming a connecting node between the S/D-rich- and the largest
C-region (Fig. 4.6). Its neighbors SMYD2 and GLS, with specific co-expression with
KIAA1841 and conserved co-expression with NAPB, respectively, are therefore also in-
teresting candidates for further investigation ("bridge" node neighbors of node 18 in
Fig. 4.6).

NMNAT2 is the second most connected node in the network and the largest of the
conserved hubs (k = 37). It is a protein-coding gene which translates to Nicotinamide
Mononucleotide Adenylyltransferase 2, a cytoplasmic enzyme predominantly expressed
in the brain [98]. It transfers an adenylyl group from ATP to nicotinamide mononu-
cleotide (NMN) to yield NAD+. This is a cofactor which is essential for a variety of cellu-
lar processes, which might explain why the gene is co-expressed with many neighbors
with a conserved pattern.

Another hub related to nucleotide metabolism, and strongly connected with NMNAT2
in the network is HPRT1, which encodes Hypoxanthine Phosphoribosyltransferase 1
[78]. This protein is involved in the recycling of purines, which aside from forming DNA
and RNA, are central components of important biomolecules such as ATP, cyclic-AMP
(cAMP) and NAD [99]. Mutations in this gene is known to cause the neurodevelopmen-
tal Lesch Nyhan Syndrom, and the neurological aberrations resulting from the protein
deficiency has been predicted to play a pathogenic role also in AD [99]. Some of the

52



4.1 CSD framework on AD Expression Data

consequences of HPRT deficiency are aberrant cell cycle control, DNA repair, mem-
brane trafficking, defective neurotransmitters and sphingolipid metabolism [99].

The third largest conserved hub, YWHAH, has 22 nearest neighbors, including both
of the forementioned largest C-hubs. YWHAH codes for the eta isoform of a protein
which activates other proteins by binding to phosphoserine/threonine motifs. It is part
of the 14-3-3 protein family that regulates many vital processes such as signal trans-
duction, protein trafficking and apoptosis [78]. It has previously been associated with
Schizophrenia, another neurological disorder [100].

Two hubs which are directly connected in the network and have closely related func-
tional annotations are GOT1 and MDH1. Both genes code for proteins involved in glu-
cose metabolism, more specifically the tricarboxylic acid (TCA) cycle [4]. GOT1 codes
for the cytosolic form of Glutamic-Oxaloacetic Transaminase 1 [78]. GOT2, the mito-
chondrial form, also exists in the network, but its only neighbor is MDH1. MDH1 en-
codes Malate Dehydrogenase 1, a cytosolic enzyme which catalyzes the reversible ox-
idation of malate to oxaloacetate [78]. It is NAD-dependent, which might explain why
the gene is also co-expressed with NMNAT2 (which as mentioned provides NAD+).

Directly associated in a cluster with GOT and MDH1 is CADPS (Fig. 4.6). This gene is
strongly enriched in brain tissue, where it codes for the Calcium-Dependent Secretion
Activator, a membrane protein associated to synaptic vesicles [101]. It is potentially a
Ca2+-sensor which triggers the release of neurotransmitter from vesicles by exocytosis
[101]. Functionally related to CADPS, but not directly connected in the network, we
find NAPB (module 4 in Fig. 4.6). NAPB encodes the beta subunit of the soluble N-
ethylmaleimide-sensitive factor (NSF) Attachment Protein Receptor (SNARE) complex
[78]. The protein complex is involved in vesicle-mediated transport between the endo-
plasmic reticulum (ER) and the Golgi apparatus. It is also preferentially expressed in
brain tissue [78].

Lastly, ENPP2 is the hub of the disconnected C-linked graph (turquoise module), and
therefore quite distanced from the other hubs (Fig. 4.6). The gene, also referred to
as NPP2, encodes autotaxin, a member of the nucleotide pyrophosphatase and phos-
phodiesterase family [78]. Additionally, it has a lysophospholipase D activity, and this
generation of lysophosphatidic acid (LPA) stimulates cell proliferation [102]. LPAs are
phospholipids that have been implicated in AD, but their role in the potential pathology
is unknown [103].

Genes previously associated with AD

A systematic search for genes in the CSD network affiliated with AD was done using
the MalaCards integrated database [25]. From the original population of 21044 genes
in the microarray data, 420 genes had previous association with AD. As much as 64 of
these genes were recognized in the network of sample size N = 1535. This is more than
expected to be drawn randomly (FE = 2.09, p = 1.49 · 10−8). All the AD-related genes
identified in the CSD network are listed with the modules they belong to in Table 4.7
and visualized in the network in Fig. 4.7. In the figure they are highlighted by enlarged,
diamond-shaped nodes. Following the guilt by association-principle, essentially all of
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Figure 4.7: The 64 genes previously associated with AD (diamond nodes) recognized in the CSD
network. Genes (nodes) are colored according to the module they belong to, other than the genes
outside of the modules, which are gray. N = 1169, M = 1816.

the nearest neighbors of these nodes would be interesting to consider further. However,
due to time constraints only some will be considered here.

Overall from Fig. 4.7 we see that the AD-related genes are distributed across the whole
network, but with a larger concentration in the conserved (blue) regions. In fact, mod-
ule 4 and module 6 have the largest number of disease-associated genes, 11 and 12
genes respectively (Table 4.7). This is more than 1/3 of the gene list, an over-representation
compared to what can be expected by chance (FE = 6.47, p = 1.30 ·10−12). These mod-
ules are therefore candidate disease modules, although the gene pair correlations are
conserved between the two conditions.

Another observation from Fig. 4.7 is that many of the AD-related genes are peripheral
nodes in the network with low degrees. More than half of the 64 diamonds have degree
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k = 1, meaning that the genes are only strongly co-expressed with one other gene. 16
genes are not part of the large modules identified in the module analysis ("Other" in
Table 4.7). This might be explained by the degree distribution of the network, where
most genes are in fact low-degree nodes. Interestingly though, all conserved hubs have
at least one AD-related neighbor (see the blue nodes and their diamond shaped neigh-
bors in Fig 4.6). For example, YWHAH is co-expressed with as much as four AD-related
genes (CALM3, SNCA, UCHL1 and VDAC1), making it a prominent candidate for fur-
ther studies. VSNL1 is the AD-related gene with highest degree, and the only one of the
hubs. It is the intra-modular hub of module 4, which further indicates that this module
is a potential disease module. Note-worthily, VSNL1 is connected to SMYD2 (C-link),
which again is connected to KIAA1841 (S-link) and has one of the top 10 highest be-
tweenness centralities in the giant component. SMYD2 encodes the N-lysine methyl-
transferase, involved in cell proliferation and cancer [104]. Its annotated function and
prominent position in the network makes SMYD2 a novel interesting candidate for fur-
ther research.

Several genes in the network, some of which were already associated with AD, encode
parts of the large ATP Synthase complex. ATP5F1A and ATP5PD, both located in mod-
ule 6, are previously AD-associated (Table 4.7). Directly co-expressed with ATP5F1A
we find ATP5F1B and ATP5MC3, all three forming a cluster of conserved co-expression
in the module. All genes (starting with ATP5) encode different subunits of the mito-
chondrial ATP synthase [78]. ATP5F1B is also co-expressed with the AD-related gene
SLC25A4, which encodes a solute carrier protein exchanging cytoplasmic ADP with mi-
tochondrial ATP across the inner mitochondrial membrane [78]. Based on the guilt by
association principle, ATP5F1B and ATP5MC3 are potential disease genes. Also part of
the clustered region are the hubs GOT1 and MDH1, which as mentioned earlier have
related functions. Together, the mentioned genes are largely responsible for the en-
richment in GO terms related to mitochondrial ATP synthesis (Table 6.2) and the KEGG
pathway Oxidative phoshorylation (Table 4.6) in this module.

In relation to oxidative phosphorylation, several genes in module 6 also encode vacuo-
lar ATPases (v-ATPases), with ATP6V1A being especially interesting due to its associa-
tion with many neighbors (k = 17). Among its neighbors we find many of the hubs (NM-
NAT2, HPRT1, YWHAH, CADPS, GOT1 and MDH1), but also the two AD-related genes
UCHL1 and STMN2. In neurons, V-ATPases have been shown to generate a proton-
gradient in synaptic vesicles that provides the energy for loading and release of neu-
rotransmitters [105]. This supports why the ATP6-genes were enriched in the synaptic
vesicle cycle in addition to oxidative phosphorylation (data not shown).

Also interesting are the three AD-related genes of module 24 (dark yellow diamonds in
Fig. 4.7), located on the border between the two separated regions of the giant com-
ponent: GSK3B, S100B and PADI2. GSK3β (Glycogen Synthase Kinase 3 Beta) is a ser-
ine/threonine kinase involved in many essential pathways and with a central role in
AD, mainly through its involvement in the phosphorylation of protein Tau [106]. S100B
is a calcium binding protein which is associated with AD through its ability to suppress
Aβ aggregation [107]. PADI2 encodes Peptidyl Arginine Deiminase 2, a Ca2+-dependent
enzyme that converts arginine to citrulline on substrate proteins, including myelin ba-
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Table 4.7: Genes previously associated with AD and their location in the modules of the CSD
network, sorted from largest to smallest module. 16 genes (Other) were found outside of the 11
modules analyzed.

Module AD-affiliated genes
1 APOE, CSF1R, GFAP, IRS1, MAOB, NDRG2, TMED10
16 GLRX
5 DVL1, EIF2S1, MTR, PLA2G6, SPHK2
4 CLSTN1, MAPK10, MAPK9, NEFL, NRGN, SNAP25, SNAP91, SNCB, STMN2, SYP, VSNL1
24 GSK3B, HMOX1, PADI2, S100B
6 ATP5F1A, ATP5PD, CALM3, COX5A, COX6C, MAP2K1, MARK1, PLD3, SLC25A4, SNCA, UCHL1, VDAC1
3 SLC25A6
26 APH1B, KLC1
9 ABCA2, KLK6, NPC1, TF
8 CAT
14 ABCA7
Other APH1A, AZIN2, BLVRB, C1R, CREB1, CST3, DERL1, GLRX, HMGCR, MAOA, PPP3R1, PSEN1, RAF1, TFCP2, THBS4, TLR2

sic proteins in the CNS [78]. Of the three, GSK3B has the most central location in the
network, forming a bridge over to NMNAT2 in module 6. S100B and PADI2 have only
one neighbor, but it is a node shared by all three disease genes: GRSF1. GRSF1 is con-
nected to S100B and PADI2 by a differentiated (D)-link and to GSK3B with a specific
(S)-link. It also has specific (S) co-expression with an AD-related gene of module 6
(MARK1). GRSF1 has a relatively high betweenness centrality, which suggests that it
is important for the information flow in the network. Since it is co-expressed with four
AD-related genes, guilt by association highly implies GRSF1 to have a role in the disease.
GRSF1 (G-rich Sequence Binding Factor 1) is an RNA-binding protein (RBP) required for
posttranscriptional mitochondrial gene expression [78, 108].

Ultimately, it is worth mentioning that 7 AD-related genes were found in the largest
module (module 1, indigo) in the network (Table 4.7). Of these, we find APOE (Apolipopro-
tein E), the infamous gene of which the ε4-allele is associated with increased risk of
AD [25]. It has a modest role in the network, connecting only to MIGA2 by an S-link.
This however further supports that MIGA2 might have a role in AD. Also interesting is
IRS1, which has specific (S) co-expression with nine other nodes, among them the hub
PLTP. This gene encodes IRS1, a protein substrate of the intracellular insulin receptor
(IRS), which when tyrosine-phosphorylated activates PI3K [78]. Decreased phosphory-
lation or amounts of proteins in the insulin-IRS1-Akt pathway has been observed in AD
brains, and this defective insulin signaling leads to synaptic dysfunction and impaired
memory [109, 110].

56



4.2 Integrative Analysis

4.2 Integrative Analysis

This part complements the already established CSD framework in the hope of discov-
ering new interesting features of the network. To enhance the interpretation of the
complex differential co-expression network and better predict biological functions, two
main strategies were employed. First, differential mean expression levels were used to
increase the knowledge of regulation on the level of individual genes. This was initially
performed on all 21044 genes in the transcriptomic data, and then integrated on top of
the CSD network. Second, new data in the form of PPIs were added as a network layer
to look for signals on the protein level. There is often a need to integrate networks at
different molecular levels (e.g. transcriptome, proteome) to fully understand the link
between gene regulation and a resulting phenotype (in this case AD) [55].

4.2.1 Differential Expression Analysis

Differential expression analysis was performed to reveal potential disease-associated
genes not found in the differential co-expression network, and more importantly to
strengthen the signal of those actually forming part of the network. The resulting list
of genes that have changed mean expression between healthy and AD-individuals can
contribute to further insight into essential genes and processes related to the disease.

The overall result of the differential expression analysis on the AD microarray data (80
diseased and 93 age-matched normal controls) is visualized in a volcano plot (Fig. 4.8).
In this plot, the negative of the log10-transformed FDR-values (significance) is for each
gene in the data set plotted against the log2FC (magnitude). The vertical and horizon-
tal lines represent the "double"-filtration (Fig. 4.8). Significantly up-regulated genes
(up-DEGs) are colored red and down-regulated genes (down-DEGs) blue. In total, 1196
genes were differentially expressed (q = 0.05), of which 699 were down-DEGs and 497
were up-DEGs. The complete list of up-regulated and down-regulated genes can be
found in the following doi: 10.6084/m9.figshare.13366061.

In the plot (Fig. 4.8), the top 10 genes with the highest expression changes are labeled.
The summary of these top five up- and down-regulated DEGs with their expression
changes and statistical parameters is shown in Table 4.8. The top up-DEGs - RGS1,
CD163, LINC01094, ADAMTS2 and HLA-DRA, and the top down-DEGs - SST, BDNF,
PCDH8, MIR7-3HG and CALB1, are all good candidates for further studies. The elevated
or decreased abundance in mRNA levels of these genes might lead to similar changes in
protein levels, finally affecting their respective biological processes and potentially in-
fluencing disease transition. Further investigation is needed to validate the results and
explain the biological roles of the genes. Moreover, we see that the overall magnitudes
of change in mean expression between healthy and sick individuals were quite low (Fig.
4.8). In fact, no genes have |log2FC| > 1, which is a commonly chosen threshold in the
literature for analyses of differential expression. To investigate if the low values might
be due to tissue specificity, DEA was also performed on each of the four brain regions
(see appendix G). The analysis suggested that the hippocampal region is more affected
by AD, but due to time constraints this was not explored further.
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Figure 4.8: Volcano plot of average gene expression changes in AD vs control in terms of log2
fold-change (x-axis) and − log10FDR-corrected p-value (y-axis). The most up-regulated genes are
towards the right (red), the most down-regulated genes are towards the left (blue), and the most
statistically significant genes are towards the top. Genes with |log2FC| > 0.2 and F DR < 0.05 are
considered significantly differentially expressed (DEGs). The top 10 genes with greatest absolute
change are labeled with gene symbols.

Table 4.8: Top 5 up-DEGs and down-DEGs among all brain tissue of individuals >= 60 years in
Alzheimer’s dataset, sorted by log2FC (log2 Fold Change). Mean gene expression is transformed
with logarithm base 2 (log2). AD: Alzheimer’s disease. FDR = Benjamini-Hochberg adjusted p-
value.

Gene name Control exp. AD exp. log2FC Raw p-value T-statistic FDR
RGS1 6.47 7.17 0.71 4.31E-03 2.89 3.83E-02
CD163 7.60 8.24 0.64 1.68E-03 3.19 2.18E-02
LINC01094 7.08 7.72 0.63 1.18E-03 3.30 1.77E-02
ADAMTS2 6.35 6.94 0.60 1.34E-03 3.91 5.19E-03
HLA-DRA 9.26 9.85 0.60 6.07E-03 3.49 1.22E-02
CALB1 7.45 6.68 -0.77 2.66E-04 -3.72 7.47E-03
MIR7-3HG 6.89 6.09 -0.80 2.42E-08 -5.85 8.47E-05
PCDH8 8.67 7.84 -0.83 1.23E-04 -3.93 5.01E-03
BDNF 6.42 5.55 -0.87 1.11E-06 -5.05 5.86E-04
SST 8.41 7.49 -0.93 3.98E-06 -4.77 1.06E-03
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In order to infer some biological meaning of the DEA, GO enrichment analyses were
performed separately for the 497 up-DEGs and 699 down-DEGs. Separate enrichment
analyses of biological processes and pathways for up- and down-regulated genes has
been suggested by Hong et al. to be more powerful than analyzing all DEGs together
[111]. The lists of the most highly enriched processes are added to appendix B.3. Sev-
eral of the up-regulated processes are related to immune responses and related signal-
ing pathways. The most enriched process includes all genes in the reference, which
was "peptide antigen assembly with MHC class II protein complex" (FE = 42.90, q =
1.79 · 10−3). The down-DEGs were mostly enriched in processes involved in the regu-
lation of the synaptic vesicle cycle, including vesicle priming, -docking, -recycling and
-transmission. The largest fold enrichment found for down-DEGs was in "maintenance
of presynaptic active zone structure" (FE = 29.45, q = 6.44 ·10−3).

DEGs in CSD network

To inspect the location of DEGs in the CSD network, the log2FC node attribute was
studied in Cytoscape. In total, 350 genes in the network had gene expression changes
with an adjusted p-value lower than the threshold of 5% false positives. This means that,
statistically speaking, less than 18 genes are falsely identified as differentially expressed.
However, some of these genes had very low magnitudes of change, and therefore can-
not be justifiably called DEGs. The value of log2 FC =±0.2 was chosen to define a node
in the network as a DEG (q = 0.05, p = 6.6 ·10−3), indicating at least a 15% change in ex-
pression from control to case on average over all samples. The location of these DEGs
are highlighted in Fig. 4.9 and the gene names given in Table 4.9, where they are sorted
by the main regions visible from the figure. The nodes in the CSD network are only col-
ored red/blue if the magnitude of change was above the threshold and the differential
expression significant (FDR < 0.05), following the same coloring scheme as in the vol-
cano plot (Fig. 4.8). Some nodes are omitted from the visualization in order to highlight
the DEGs, and hence the network has a lower size than the original in Fig. 4.1. Genes
with previous association to AD are diamond-shaped (Fig 4.9) and marked in bold (Ta-
ble 4.9). Both graphics can be combined for keeping up with the following paragraphs.

An important question is if the DEGs are enriched in the network, more than expected
from the original microarray expression set. Significant enrichment would suggest that
the network has an association with AD progression at the level of transcriptional regu-
lation. In fact, 229 nodes from the original 1535 nodes in the CSD network were recog-
nized as DEGs. One would expect only about 87 DEGs by chance, so this was a 2.6-fold
enrichment (p = 5.88 ·10−44). Hence the CSD network is enriched with genes showing
individual differential expression, in addition to their gene pair correlated expressions.
All of the 229 DEGs would be interesting candidates for further research, thus the com-
plete list is given in appendix E.

The subset of genes identified from DEA showed significant, although quite weak signal
differences (low magnitude of change) between the two conditions. The gene with the
greatest change in expression recognized in the network was ADAMTS2 (log2FC ≈ 0.60,
q = 5.19·10−3). This was the only one out of the top 10 DEGs in the microarray data
(Table 4.8). The gene encodes a member of the ADAMTS family of disintegrin and met-
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allopeptidases with thrombospondin motifs [78]. The gene is up-regulated in AD and
has a central position in the S&D-region of the CSD network (the darkest red node in
the middle of Fig. 4.9). ADAMTS2 is located in the largest module (indigo) and has
ten neighbors (k = 10). It has an S-link to another up-regulated gene, namely ANGPT1
(log2FC ≈ 0.43, q ≈ 0.03). Another neighbor is the AD-related gene GFAP (red diamond
in Fig. 4.9), to which it has a specific (S) co-expression pattern. Although ADAMTS2 is
not one of the previously AD-associated genes, another gene in the same protein family
(ADAMTS4) has been associated with the disease. ADAMTS4 cleaves brevican, a CNS-
specific protein suggested to be important in neuroprotection [112].

A striking feature is that all of the DEGs in the largest conserved region on the right side
in Fig. 4.9 (corresponding to module 4 & 6) are down-regulated and closely connected.
Module 4 and module 6 have 31 and 55 down-DEGs, respectively, together representing
a more than 3-fold enrichment of DEGs in the network (p = 1.17·10−30). The expression
of these genes are on average slightly lower in the individuals with AD compared to
controls. Six of the down-DEGs in this region are the homogeneously conserved hubs
NMNAT2, CADPS, YWHAH, HPRT1, GOT1 and NAPB. These are significantly down-
regulated in AD, but to a varying degree (log2FC from -0.48 to -0.32, q = 0.039).

Oppositely, the DEGs in the S&D-region of the network are more dispersed and of both
signs of fold change. These genes are both differentially expressed individually and
differentially co-expressed (colored nodes with green or red links between them in Fig.
4.9). TMEM178A was the only differentially co-expressed hub recognized as a DEG,
being slightly down-regulated (log2FC = -0.204, q = 0.026).

Interestingly, in the next largest conserved region (module 9) all DEGs are up-regulated,
although to a lower extent. These are located on the left side of the module (Fig. 4.9).
The other up-DEGs in the CSD network seem to be quite spread out in the network, and
not clearly localized to any particular modules.

In addition to GFAP, some other DEGs in the network were also previously associated
with AD. These are represented as diamond nodes in Fig. 4.9 and marked in bold in
Table 4.9. The three most differentially expressed AD-related genes in the network were
STMN2 (log2FC = -0.473, q = 0.026), SNCB (log2FC = -0.413, q = 0.034), and SYP (log2FC
= -0.402, q = 0.004). These three are all located in module 4. Although most of the
DEGs in the network were not previously associated with AD, it cannot be ruled out that
similar genes are found in the MalaCards database. One example of this is the already
mentioned ADAMTS4.
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Node Fill Color:  log2FC

Figure 4.9: DEGs in the CSD network. Node size corresponds to the magnitude of change in
mean gene expression (|log2FC|). Colored nodes (DEGs) are above the threshold |log2FC| > 0.2
AND significant after multiple testing correction (FDR < 0.05). The fill color is mapped by the
sign of log2FC (see bottom-left chart); red and blue are up-regulated (+) and down-regulated (-)
genes, respectively. The larger |log2FC| the darker the color and the larger node size. Links are
colored by co-expression type; blue = conserved (C), green = specific (S) or red = differentiated
(D). Diamond nodes are previously AD-associated genes. N = 1219, M = 1841.
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Table 4.9: All DEGs recognized in the CSD network. Genes are categorized by region and whether
they are up-regulated (Up) or down-regulated (Down). All genes are listed from the largest to
the smallest magnitude of change (absolute log2FC). Genes previously associated with AD are
marked in bold. C-region: DEGs within region of conserved co-expression, belonging to module
9 (only up-DEGs), 4 or 6 (the latter two only down-DEGs). S&D-region: DEGs within the specific
and differentiated-linked region of the giant component. Other: The rest of DEGs outside the
giant component, bottom of Fig 4.9.

Network Region Up/Down Gene symbol

C-region
Up DOCK5, HSPA2, RNF130, RDX, USP54, NDE1, FRYL, GPRC5B, VAMP3

Down

RGS4 MAL2 OLFM3 KCNV1 RAB3C CDC42 NAP1L5 GABRG2 SYN2 NMNAT2 STMN2
CADPS SYT13 C3orf80 GNG3 ATP6V1G2 SEZ6L2 BEX5 PAK1 YWHAH NSF SNCB HPRT1
SYNGR3 SYP AMPH KALRN ACOT7 UCHL1 SYN1 DYNC1I1 ATP6V1B2 ATP8A2 EEF1A2
NECAP1 AP3B2 SCN2A TMEM178B GOT1 CALM3 SV2B SYT1 MLLT11 BEX1 DNM1 PLD3
PGAP4 SYNGR1 STX1B PHF24 NAPB TAGLN3 GPRASP1 MOAP1 ENO2 GPRASP2 SCG5
ADAM23 TBC1D9 ATP6V1A ITFG1 STXBP1 NDRG4 MAPRE3 EID2 DNAJC5 RNF41 FBLL1
INPP5F SV2A GPI SCAMP5 SULT4A1 VDAC1 CD200 AP2M1 MRPL15 GLT1D1 ATP5MC3
ATP6V1E1 BTBD10 ATP5F1B TOMM20 RAN PEX11B APOO

S&D-region
Up

ADAMTS2 ANGPT1 VAC14-AS1 HLA-DRB1 ITPKB GMPR NFKBIA CD74 SELL ITGB8
HCLS1 BBOX1 S1PR3 DNALI1 NACC2 PRKX AC005332.4 H1-2 RFX4 H2BC19P CSRP1
TP53INP1 CHST6 C1orf87 ZFP36L2 CGNL1 ZCCHC24 MAP4K4 GFAP TLR2 CHD7
MTMR10 RIN2 PANTR1 KIAA1958 EZR LIFR CCDC69 PLEKHA7 EMX2OS DIAPH3 CTSH
ANO6 AFF1 CRB1 ADGRA3 PTPN21 ZNF423 ARHGAP42 CRB2 HIPK2 MYO10 TEX26
STEAP3 GOLIM4 CDC42EP4 KLC1 PLXNB1 TOB1 SERPINI2 HMG20B TMEM47 CCDC151
IKBKB HEATR5A IQCK RNF19A PRKG1 NXT2 OR7E14P RFX2 CXCL16 CERS1 PLXNB2
PELI2 ANAPC16 TAB2 NOTCH2 TNS2 HDAC1 FBXL7 PTBP1

Down
RTN4RL2 PCLO TCERG1L HSPB3 CPNE4 RNF128 JPT1 UBE2T CLSTN2 CLSTN3 RFPL1S
KLF10 LYNX1 SLITRK3 AC139256.2 AFF2 BCAT1 AL031118.1 KIF3A AC005229.4 AC006058.1
PEX3 RER1 ADAM11 TMEM178A WDR47 CCDC32 WDR74

Other
Up

MYBPC1 HLA-DRB1 CD74 SLC38A2 C5AR1 ZCCHC24 MAP4K4 CHD7 POU3F2 ST6GALNAC3
ANP32B MMP8 C21orf62 HIPK2 LRP4 GLIS3 RNF19A USP53 WDR49 SAP30L

Down
GAD1 BRWD1 SNX10 LYRM9 RASAL1 RUNDC1 SGIP1 AC139256.2 HMGCR TFRC NKD2
YWHAZ PEX3
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4.2.2 Protein-Protein Interactions

A comparison with the reference PPI network was done to determine whether the edges
of the CSD network could represent a physical interaction between the proteins result-
ing from the expression of the pair of genes. The HI-Union data set downloaded from
CCSB [84] contained 9094 genes with 64 006 interactions (of which 764 were self-loops).
Of these genes, 8103 (89 %) were present in the original microarray data. However, as
this transcriptomic study included 21044 genes, only around 39 % of these were rep-
resented with at least one protein interaction in the PPI network. Of the 1535 genes
present in the CSD network, 713 (46%) had at least one connection to another protein
in the PPI network. This is a slight over-representation (by factor 1.21, p = 2.79 ·10−11).

Three gene pair interactions were found in common between the PPI and CSD net-
works, with the type of co-expression indicated in between the gene names:

• NAPB (C) SYT1

• ATP5F1A (C) ATP5F1B

• SDCBP (D) TMEM17

The first PPI found was between NAPB and SYT1, located in module 4 (dark blue). The
C-link between the nodes indicates a strong correlation in their gene expressions in
both conditions. NAPB is already mentioned as a network hub, with its 21 C-linked
neighbors. SYT1, however, has a more modest role in the network (k = 3). The gene
codes for Synaptotagmin-1, a protein in the membrane of synaptic vesicles thought
to work as a calcium sensor that triggers neurotransmitter release by exocytosis [78].
SYT1 was also one of the genes enriched in the synaptic vesicle cycle pathway in KEGG
(see Table 4.5). Their conserved co-expression and protein-protein association indicate
that they are both part of this pathway, whether they physically bind or not. The SNARE
complex that NAPB encodes a subunit of is known to contribute to membrane fusion
necessary for exocytosis, which again is dependent on calcium [113].

The second interaction was between ATP5F1A and ATP5F1B, encoding two subunits of
the same protein complex, which explains why they were connected in the PPI network.
The genes have conserved co-expression, indicating that the two subunits of the mito-
chondrial ATP synthase complex are regulated similarly in both conditions. ATP5F1A
was earlier identified as an AD-related gene, however. Both are down-regulated in AD
according to the DEA, although only ATP5F1B significantly (log2FC = -0.216, q = 0.026).
The identified PPI supports the assumption of the two down-regulated genes forming
part of a strongly connected complex. This again indicates a certain downregulation of
ATP synthesis and oxidative phosphorylation in AD.

The last overlapping pair was SDCBP and TMEM17, which has differentiated (D) coex-
pression in the CSD network. The gene pair is found in the periphery of the network
in module 5 (red). TMEM17 is a one-degree node, while SDCBP is connected to several
other one-degree nodes forming a bouquet-like structure. SDCBP encodes Syntenin-
1, a protein involved in vesicular trafficking that has several PDZ domains that bind
a variety of transmembrane proteins [78]. TMEM17 encodes such a transmembrane
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component, which is localized to the cilia transition zone, where it is required for sonic
hedgehog (SHH) signaling, a pathway involved in nervous system development [78, 4].
The differentiated type of co-expression suggests that the interaction is present under
both conditions, but with possibly different underlying mechanisms.
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Discussion

This thesis aimed to apply network analysis in the search for genes and biological pro-
cesses involved in AD pathology. The CSD framework was the foundation for the com-
parative study of gene expression from patients with AD compared to healthy individ-
uals. This method successfully constructed a differential co-expression network, show-
ing three types of transcriptional correlation between gene pairs. Although great insight
can be drawn from the network, it was an overall challenge to infer clear biological pat-
terns. This might be due to the disease’s genetic complexity and a multitude of envi-
ronmental factors affecting its development. The following sections will highlight and
discuss some of the main results of this comparative study, closing with an elaboration
of challenges and method limitations. We will start with evaluating the overall network
properties for verification of the CSD method and the resulting biological predictions.

5.1 Overall network analysis

5.1.1 Topological properties

The topological overview of the CSD network indicates a non-randomness in the orga-
nization of genes. A power-law degree distribution was observed, which was expected
from earlier studies on co-expression networks [114, 115]. This suggests that the topol-
ogy of the network is not random, but rather that the gene connections result from real
biological relationships. However, it is important to recall that the links in this network
do not reflect any direct biological interactions [3]. In addition, the CSD method was
applied to gene expression samples extracted from individuals at one particular time
point. Therefore, the resulting network is static, while in reality, gene expression is a dy-
namic process. For these reasons, we need to be careful about predicting or concluding
too much from the network.

The study of the overall topology of the different co-expression networks showed some
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interesting results. The individual C-network had quite different topological features
compared to the S- and D-type networks, which might be due to different underlying
regulatory mechanisms. The genes with conserved type of co-expression were densely
connected, and the overall C-network was slightly assortative. This demonstrates a ten-
dency of positive degree-degree correlation, which was supported by most of the nine
"conserved" hubs directly connecting to one or more of the other hubs of the same type.
On the other hand, the specific and differentiated networks show disassortative topolo-
gies with negative degree correlations. The hubs within the S/D-region were generally
not linked to each other directly, but through intermediate low-degree nodes. These
degree correlation patterns are quite similar to the ones found in the original article
describing the CSD method [3]. Even though there was an overall tendency in the CSD
network of same type of co-expression to group together, this homogeneity was more
evident for the conserved type of genes. These were highly homogeneous, with only
9 genes also being connected to either S- or D-type links. The S-type and D-type of
interactions were more overlapping in the giant component of the CSD network, and
some of the hubs were quite heterogeneous. It is difficult to determine a definite cause
behind these observations.

Further analysis of modular structures and central genes was carried out to give more
insight into the underlying biology of the CSD network. The Louvain community detec-
tion algorithm successfully partitioned the network into modules, verified by the high
modularity score (Q = 0.83). Only the 11 largest modules (size above 50) were chosen for
further studies. This was considered both manageable and sufficient for downstream
analyses. Interestingly, the largest region of conserved co-expression was split in two
modules of similar sizes. Whether this was accurate or not is hard to say, but will be
discussed further in the light of functional importance in section 5.3.

The scale-free characteristics show that most genes in the data co-express strongly with
only one or a few other genes, while a small number of genes are highly connected.
Based on the assumption that the correlations are not random but caused by some un-
derlying biological function, these network hubs are of special interest. In this work,
the nodes with 20 or more co-expressed partners (hubs) are likely to play a special role
in AD. Since these have strong associations with many other genes, they are more likely
to be essential and might have regulatory roles [8]. Chowdhury et al. suggest that the
genes which change behaviour across conditions with respect to a significant number
of neighbors are the most interesting for biomarker identification [47]. It is important
to note that the genes in the network are inferred because of their interactions, but we
mostly focus on hubs rather than the interactions directly because it is less challenging
and more annotated information is available in the literature.

5.1.2 Functional enrichment

Most of the enriched processes and pathways relate somehow to the progress of AD, and
have been associated with the disease in previous studies. There was also an overall 2-
fold enrichment of genes previously affiliated with AD in the CSD network. This verifies
a certain quality of the inferred network in representing AD-specific gene correlations.
At the same time, given the complexity of the disease, it would not be surprising to find
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a variety of cellular functions enriched.

From the enrichment analyses we saw that there was an overall trend in significant bi-
ological processes primarily showing up in regions of conserved co-expression. This
was the case both for whole networks and for the modules. Given the large number
of S- and D-type links passing the significance threshold, it is unlikely that they were
included randomly in the network. It could reflect a limitation in the use of GO anno-
tation, being less sensitive to situations were a single gene has a drastic effect. GO is a
quantitative rather than qualitative measure; each gene in the list counts only one time
no matter how important the individual genes might be for that process. This could
be a possible explanation for the lack of enrichment, especially in D-linked genes. It
could be that the specific (S) and differentiated (D) types of co-expression patterns are
involved in a variety of different processes that are not located closely in the network.
Oppositely, in the regions of gene pairs that are strongly co-expressed in both condi-
tions (C-type) there seems to be more genes working together in tandem, which could
explain why there is an over-representation in biological processes.

5.2 Integration of DEA with CSD

The differential expression analysis (DEA) performed in this work resolved one of the
limitations of the CSD method. Its focus on gene pair correlations might miss genes
with significant changes in gene expression levels between conditions. Such DEGs do
not necessarily have strong enough co-expression with other genes to be included in
the CSD network. The integration of DEA with CSD allowed the simultaneous identi-
fication of differentially expressed genes (DEGs) and differentially co-expressed genes
(DCGs) in one network, as visualized in Fig. 4.9.

Although the levels of differential mean expression is more commonly used as a thresh-
old before generating co-expression networks, this approach was not chosen in this
thesis. This was because we would lose information of gene pairs that show coordi-
nated correlation patterns but are not individually DEGs, which was confirmed by the
results. We saw that most of the genes in the CSD network were not differentially ex-
pressed (DEGs). This showed that changes in gene pair correlations can occur in the ab-
sence of individual differential expression, as has been found in previous studies as well
[116]. The CSD framework hence captured changes in regulatory patterns that would
not be detected by traditional DEA alone. Yet, the network was enriched with genes
showing individual differential expression, in addition to their gene pair correlated ex-
pressions. This was particularly evident for the regions with conserved co-expression,
which showed a 3-fold enrichment in DEGs. Another observation was that most of the
DEGs in conserved region were closely connected, while the DEGs in the S/D-region
were more individual and dispersed. This can be partly explained by the nature of the
correlations, but the interpretation is not straightforward.

Interestingly, the DEA has thus provided a new perspective to the C-links of the CSD
method by showing that they are not necessarily disease-independent. Although this
should be validated, it demonstrates that the inclusion of C-type links in the method

67



Chapter 5. Discussion

is highly valuable. To my knowledge, and based on the method comparisons made by
Voigt et al. [3], none of the other existing methods for differential co-expression inte-
grates conserved interactions in the resulting network. Most disease studies using co-
expression networks focus solely on the correlation changes and might therefore miss
coordinately dysregulated genes as those found in this thesis.

5.3 Regions with conserved co-expression

The genes with homogeneously conserved type of co-expression were separated in two
main regions in the CSD network (Fig 4.1), and further divided in three modules. The
detection of enriched processes related to AD, combined with differentially expressed
genes (DEGs) and previously AD-affiliated genes, make these modules and their hubs
interesting for further studies.

The results indicate that module 4 and 6, especially, are potential disease modules.
Most of the previously AD-related genes were found here (> 6-fold enrichment), indicat-
ing that these might actually be disease modules, despite the conserved co-expression.
The DEA revealed that the level of gene activity was changed between the two condi-
tions even though the correlation patterns between the genes were conserved. One hy-
pothesis could be that strong correlations are maintained because the genes are tightly
co-regulated or form part of complexes that are collectively altered in the diseased.
As expected, all closely connected DEGs were either up-regulated or down-regulated.
When one gene falls out of control, its co-expressed neighbor does so too due to strong
positive correlation. Specifically, in the largest conserved region, all of the DEGs - in-
cluding the highly connected hubs - were down-regulated to some extent. This means
that the processes and pathways found enriched in these two modules are likely to be
down-regulated in AD patients compared to healthy controls. Genes that are down-
regulated in AD might represent dysregulations important for disease progress. In fact,
most of the significantly enriched terms have been associated with AD development.
This includes important processes involved in signaling, synaptic activity, regulation
of neurotransmitter levels, intracellular protein transport and oxidative phosphoryla-
tion. The results from GO enrichment of all down-DEGs also indicated that AD brains
show a loss in the maintenance of synapse structure. The disruption of various aspects
of synaptic function corresponds well with the established role of synaptic loss in AD
patients, which eventually leads to memory impairment [22, 14].

The results of the enrichment analyses and the functional annotation of the two hubs
of module 4 indicate that the module is involved in processes related to neurotrans-
mitter release. In particular, high enrichment was found in KEGG pathways related to
GABAergic synapse. GABA is the main inhibitory neurotransmitter in the CNS, and a
reduction in the levels of this neurotransmitter has been observed in AD patients [117].
The transport and release of neurotransmitters happens with the aid of synaptic vesi-
cles, explaining why this module was also enriched in processes such as vesicle fusion
and docking (Table 4.4 and the "synaptic vesicle cycle" in general. Several genes in
the module form part of the SNARE complex, essential for the mentioned processes,
which includes the hub NAPB and its PPI-associated partner SYT1. The SNARE com-
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plex, and neurotransmitter release in general, is dependent on calcium. Impaired Ca2+-
homeostasis has been shown to follow from toxic Aβ-generation. VSNL1 is a calcium
sensor protein, and its misregulation has been associated with impaired neuroprotec-
tion, synaptic plasticity and eventually cell death [118].

Module 6 had the largest number of hubs represented, and was enriched in numer-
ous pathways that have earlier been associated with AD. Several pathways related to
PI3K-Akt signaling, which is an important intracellular signal transduction pathway
that regulates the cell cycle [119]. The over-represented pathways include VEGF- and
mTOR signaling (Table 4.6). The Vascular Endothelial Growth Factor (VEGF) is a diverse
growth factor that can stimulate both the PI3K-Akt and MAPK pathway [4]. Aberrant
VEGF signaling has been linked to neurodegeneration through the disruption of the
blood-brain barrier [120]. The mammalian target of rapamycin (mTOR) is part of pro-
tein complexes downstream of the PI3K-Akt signaling pathway [4]. It is a serine/thre-
onine protein kinase with a key role in the negative regulation of autophagy, a path-
way involved in the degradation of abnormal proteins [4, 121]. This corresponds well
with the "regulation of macroautophagy" found in GO analysis. Autophagy malfunc-
tion has been associated with AD, where it influences the generation and metabolism
of Aβ [121]. The enrichment in "cellular senescence" (Table 4.6) also indicates that
there might be an interruption of the cell cycle progress. Many of the enriched genes
in the pathways of this module were previously AD-related genes, which supports that
this kind of signaling is important for the disease progress.

Module 9 showed quite different trends compared to the other two C-modules, which
fits with the distance seen in the network. All DEGs identified in this isolated C-region
were up-regulated in AD, though only a few were significant (Table 4.9). It is therefore
difficult to determine the biological role of the genes within this module without further
detailed analysis. There were less terms enriched in this module, which might be due
to the lower gene set size (N = 66). Still, those that were enriched are processes mainly
involved in neuron development, such as myelination. This includes metabolism of
sphingolipids, key lipids in the protective myelin layers of neurons [88]. To the best of
my knowledge, not much is known about the role of myelin in AD, but myelin dam-
age has been observed [122]. The potential upregulation found in this work might be
a compensatory response to the deleterious mechanisms of AD, but more research is
needed.

By comparing the functional enrichment found for modules 4 and 6 individually, it was
possible to hint at whether the modular partitioning was biologically reasonable or not.
From a first glance at the GO results (Table 4.4) it looked like the modules represented
quite different biological processes. This would confirm the quality of the modular par-
titioning. With a more thorough comparison of all GO terms, several processes were
found in common between the two modules, some more specific than others. This
could explain why the two modules are closely interconnected in the network. The
most specific terms in common were "chemical synaptic transmission", "regulation of
synaptic vesicle cycle" and "regulation of exocytosis" (appendix B.2). These are biolog-
ical processes related to signaling and transport that are essential for the information
flow within and between nerve cells. Given the established role of aberrant signaling in
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AD, it is supportive to find such processes coordinately down-regulated [18].

These two modules of the largest conserved region could collectively be regulated by
some of the "bridge" nodes found in-between the two unique parts of the giant com-
ponent. With their high betweenness centrality they represent connectors between the
region of conserved co-expression and differential co-expression (S&D). Some of these
genes did show changed correlation patterns in AD patients, and their prominent po-
sition make them important candidates with regulatory roles. One of these was the
AD-affiliated gene GSK3B, well-known for its role in pathological role in AD [106]. Its
"bridge"-location in the network further supports its importance in signal transduc-
tion. Glycogen synthase kinase-3 (GSK3) is also sometimes called "tau kinase I" due to
its role in phosphorylating the protein known to form the abnormal tau protein [106].
Directly connected in the network was another potential disease-genes based on guilt
by association, namely GRSF1. In addition to its S-link to GSK3B, it is connected to
three other AD-related genes and has S/D-type co-expression with all its neighbors. It
encodes an RNA-binding protein (RBP), and such proteins have been associated with
neurological disorders due to their regulation of local mRNA translation at the synapses
[108, 123]. Finally, SMYD2 has an interesting location, connecting VSNL1 of module 4 to
the highest degree node (KIAA1841) in the network. SMYD2 encodes a protein methyl-
transferase, which by methylating other proteins, such as the tumor suppressor p53,
functions as a regulator of cell proliferation and cancer [104]. Yi et al. has stated that
"Methylation on substrates always cross-talks with other posttranslational modifica-
tions, especially phosphorylation, to affect signaling pathways and target genes related
to cancer and other disease." [104]. In this way, it might be involved in the regulation of
signaling pathways related to the development of AD.

5.4 Region with specific and differentiated co-expression

The S&D-region seems to be governed mainly by individual genes with influential roles
rather than collective trends (observed in C-regions). Although the S-type and D-type
networks had a larger gene set for the enrichment analyses, the result was still fewer
significant terms with lower enrichment values. This made it somewhat challenging
to infer global biological interpretations. Nevertheless, the region included some of
the largest hubs, and their change in pairwise correlations with many neighbors make
them interesting for further studies. Most of these hubs have "pure" differential co-
expression, co-expression not associated with a change in mean expression levels, mak-
ing them rewiring candidates [116]. The details of the changes in correlation values
from healthy to sick would be interesting to inspect further. All hubs were examined
considerably in chapter 4; hence only some will be discussed here, focusing on aspects
highly relevant for AD pathology. Genes in the S-network were slightly enriched in a
few broad categories, involving protein localization, transport, and signaling. A more
detailed analysis of prominent genes highlighted signaling and lipid transport neces-
sary for APP processing, which will be discussed in the following paragraphs.

Emerging evidence suggests that impaired energy metabolism is characteristic of AD
brains and that disrupted insulin and glucose metabolism can increase the risk of de-
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veloping AD [110, 109]. In particular, the Hisayama study found that insulin resistance
is associated with an increased risk of senile plaques in the brain [124]. Although no
significant KEGG enrichment was found within the S&D-region, a certain role in in-
sulin/glucagon signaling was inferred. PHKG1 was prominent, having specific (S) co-
expression with two of the largest hubs, KIAA1841 and TMEM178A. It encodes a subunit
of a serine/threonine-protein kinase and might have an important regulatory role [78].
This is also supported by its S-link to ADAMTS2, the most up-regulated gene in the CSD
network. Members of the ADAM-family have been identified with α-secretase-activity,
cleaving APP within the Aβ sequence and blocking pathological cleavage into amyloid
peptides [125]. ADAMTS2 might thus have a neuroprotective role, but this needs further
investigation. Defective insulin signaling was also supported by the involvement of the
previously AD-related gene IRS1, which was S-linked to the hub PLTP. In total, these
results indicate that changes in the regulatory patterns of this pathway play important
roles in AD.

Several of the hubs encode proteins related to lipid metabolism and transport. This in-
cludes PLTP, which had a central position in the network, connecting many of the other
hubs of the S&D-region. These hubs might regulate or form part of cell-signaling plat-
forms, called lipid rafts, where pathogenic signaling that underlie the neuropathology
in AD could happen [126]. The formation of such lipid rafts, which are cholesterol- and
sphingolipid-rich microdomains within the cell membrane, has been implicated in sev-
eral neurological diseases [126]. Past research has reported that Phospholipid Transfer
Protein (PLTP) has a role in the processing of APP into Aβ, which is tightly linked to
both lipid homeostasis and AD progression. In particular, Mansuy et al. proposed that
elevated activity of PLTP leads to a higher amount of Aβ in the brain [127]. In the DEA
performed in this thesis, PLTP was slightly up-regulated, but not significantly (log2FC =
0.23, q = 0.11). Although dysregulation of lipid homeostasis is linked to AD, it is unclear
whether the altered lipid levels are the cause or consequence of AD [21].

The most highly connected node in the region, and network as a whole, was a novel
transcript with minimal functional annotation; KIAA1841. The GO enrichment in sec-
tion 4.1.6 did not lead to any biological insight into module 26, of which KIAA1841 con-
tains a large proportion of connections. Interestingly though, one KEGG pathway was
significantly enriched in the module, namely the Notch signaling pathway (see section
4.1.6). This pathway has been associated with neurodegeneration and is partly regu-
lated by the infamous AD-gene PSEN1 [128]. This disease-gene was located in the net-
work, but with a modest role outside of the modules ("Other" in table 4.7). Yet, another
AD-related gene with a similar role was directly connected to KIAA1841, namely APH1B.
This gene codes for a subunit of the γ-secretase complex, which can cleave both Notch
receptors and APP [78]. This could explain why Notch signaling was enriched, and fur-
ther indicate that KIAA1841 has a central role in the disease. The more extensive lit-
erature search needed to conclude the biological relevance of all these genes is left for
future work due to time constraints.
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5.5 Relation to PPIs

An important limitation to correlation networks is that no causal interpretation of a
link between gene pairs can be inferred directly. However, several studies have shown
that subunits of a protein complex or otherwise interacting proteins tend to show sim-
ilar patterns of gene expression [56, 58]. The motivation of integrating PPI was there-
fore to investigate the potential physical interaction between the protein products of
co-expressed genes. Surprisingly, only three pairs of gene interactions were common
to both the PPI- and CSD network. Two of these were C-type links in the CSD network,
while the other was a D-link. The fact that two genes show a high degree of gene expres-
sion correlation does not seem to correspond with the existence of a protein-protein
interaction. The same was found in a previous study comparing co-expression and PPI
networks in yeast [129]. However, the three interactions found were interesting from a
disease perspective, as explored in section 4.2.2, and should be investigated further.

The PPI data was chosen because of its unbiased high quality, but it might have been too
stringent for comparison with the correlation network. In addition, only direct interac-
tions from the binary interaction map was investigated, hence potentially underlying
indirect biological relationships might have been missed by this approach. The limi-
tations of Y2H might explain some of the lack of identified protein interactions for the
co-expressed genes. PPIs in the human interactome can remain undetected by screen-
ing for reasons such as post-translational processing in humans that does not occur in
yeast, or transient binding stability of proteins [65]. It is important to remember that
the process of gene expression is complex - much can happen from gene to protein.

5.6 Method and study limitations

Overall, the methods used in this thesis were successful in identifying transcriptomic
changes in human AD brains. Nonetheless, various challenges and limitations were
experienced and will be addressed in the following paragraphs.

First of all, there are several challenges associated with microarray data, and transcrip-
tomic technologies in general. As experienced in this study, the original raw data re-
quires several steps of processing and quality assessment. This includes the non-trivial
task of annotating probes to the correct transcript (read: gene). It is also important
to note that the resulting values are relative and not absolute measures. Relative mea-
sures allow for comparing change in gene expression, as was done in the DEA, but in-
terpretations are not straightforward. The mRNA levels measured, being indicative of
active genes, do not necessarily correlate with protein levels. To validate the microarray
results, one could perform experimental procedures such as quantitative PCR (qPCR)
and/or Western blot on the most interesting candidate genes. This however brings us
to the challenge in deciding which genes to prioritize. Usually the ones with largest ex-
pression changes between the two conditions studied are chosen, but the threshold for
this is arbitrary. Another important aspect of microarray is that each chip gives a snap-
shot of gene expression, and it reflects the average values of expressions across millions
of cells (from a single experiment). The average may not be a good representation of the
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distribution of gene expression levels, which may vary between different cell types of
the brain. Latest advances in RNA-seq have led to single cell-RNA seq, which addresses
this issue [47]. It allows researchers to study cell-type-specific transcriptional changes,
which could be used to incorporate the cellular heterogeneity of the brain. Overall, the
use of microarray data was considered sufficient for the aim of this thesis. It could how-
ever be interesting to compare with gene expression data from RNA-seq, which are able
to quantify more non-coding RNAs and might give an even better understanding of the
regulatory mechanisms of the disease.

A downstream analysis is highly dependent on the quality of the original data [8]. It was
assumed that the data accessed from the public gene expression database should be
of high-quality and that poor results were more likely to result from improper sample
selection. However, the use of only one individual data set can raise study-specific bias.
Although the sample count from the study used was high, which has been found highly
important by many previous studies [130, 131], there could be confounding factors not
accounted for. For instance, some of the different samples extracted were taken from
different brain regions within the same individual. This is violating the assumption of
independent observations which is made when calculating correlation. For these rea-
sons, the results should be validated by at least one other independent data set. Ad-
ditionally, the assumption made for excluding variance calculation was not verified in
this work and might therefore have influenced the results.

Although it is generally recommended to use a large sample size, there are potential
downsides of pooling together multiple samples. In this thesis, combining all four brain
regions could explain the lack of specificity in enrichment results and the little change
in mean expression levels observed from DEA. In agreement, the DEA performed on
individual regions did show larger log2FC-values (appendix G). Although AD is gener-
ally thought to affect most brain regions eventually, some might not be as affected by
the disease. For example, the postcentral gyrus - containing the primary somatosen-
sory cortex - has been hypothesized to be relatively unaffected by AD [69]. This was
also seen from the lack of significant DEGs in this region (appendix G). However, more
recent studies have found functional changes in this area associated with mental dis-
orders such as major depression and Schizophrenia [132, 133]. Since this area of the
brain processes information such as touch, pain, and emotion [133] - it could be partly
responsible for mood changes observed in AD patients. Therefore, a more detailed
study into each of the four regions could be interesting, especially the hippocampus,
which had significant DEGs (appendix G). Regardless, the work performed in this the-
sis should capture unique AD signatures across all brain regions compared to non-AD
subjects.

The DEA was quite easily integrated with the established CSD framework and is a gen-
eral approach that can be used for any pairwise comparisons in future systems biology
research. Still, some challenges were experienced in this thesis that should also be ad-
dressed before future employment. The calculations of change in transcript abundance
for all genes were performed by "manual" scripts made in Python. Further use of DEA
as part of the CSD framework could benefit from using already established packages,
such as limma in R [134]. The most challenging aspect was the subsequent establish-
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ment of an appropriate threshold for DEG identification. Adjusting for multiple testing
is necessary, and this was done with the BH-method. The result was a list of genes that
were more likely to be indeed differentially expressed, with a false discovery rate of 5%.
As expected, the volcano plot showed a general trend of increasing significance with
increasing fold change. However, numerous genes were considered significant based
on the multiple t-tests but had a low (almost no) magnitude of change. These were fil-
tered out before integration with CSD. Whether the chosen limit of l og FC = ±0.2 was
an appropriate threshold or not is debatable. This factor influences all downstream pre-
dictions and should thus be carefully assessed. Given that FC is a relative measure, it
was decided valid to define DEGs as the genes with the greatest change compared to the
distribution of all genes in the data. The combination with significance in a "double"-
filtration approach highly increased the liability.

Modules were predicted solely from the wiring diagram of the CSD network and identi-
fied whether they are actually there or not. It is important to note that these community
structures do not necessarily reflect "real" communities. The Louvain community de-
tection algorithm used forms non-overlapping communities by assigning all genes to
only one distinct community, even though some genes might not even belong to a com-
munity, or might be part of several. From a biological perspective, community overlaps
would make sense as several genes are often involved in multiple biological processes
and pathways. This could be a reason for the lack of over-representation of biological
processes in the S- and D-type modules, which seem to "overlap" quite a bit in the net-
work. At the same time, there is no guarantee for clusters of co-expressed genes being
co-regulated or part of the same biological process [47].

Enrichment analyses are associated with various challenges, both within science in
general and for this work in particular. The main factors to consider are the input
size and reference background. Enrichment scores are dependent on gene set size,
and since the lists used in this work are not of equal length, it might not be valid to
compare these directly. Regarding the reference list, the total genes expressed in the
microarray data could have been used rather than the default database. Also, using the
same database for both GO and Pathways, e.g. PANTHER, could lead to easier com-
parisons. Another limitation in the GO annotation process is establishing a balance
between too broad and too specific terms. Broader categories include a higher number
of genes, but are not necessarily specific enough to give more insight. In this work, the
functional processes and pathways with the largest FE were often caused by only a few
genes. These are over-represented compared to what would be expected by chance, but
represent only a small proportion of the network. Given the small set of genes enriched,
it can be challenging to draw conclusions for larger parts of the network. It is also im-
portant to note that enrichment analysis is based on statistical significance and does
not directly imply the underlying biological event(s) [111]. For these reasons, enrich-
ment analyses should only be used as a guideline for biological annotation.

The implementation of the CSD method showed a high performance, but the software
used still has room for improvement. The time it took to calculate all pairwise gene cor-
relations was long, given the large data set, even after excluding variance calculation.
Being the rate-limiting step, further reducing the time complexity here would be very
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useful. Further work with the CSD framework would also largely benefit from combin-
ing the three software programs into one, possibly making a Graphical User Interface
(GUI) for more user-friendly implementation and easier manipulation of parameters.

75



Chapter 6
Conclusion & Outlook

This thesis aimed to identify transcriptomic changes specific to AD by using an inte-
grative approach based on the CSD framework. Published gene expression data from
human brain tissue was used to compare expression profiles in AD patients to age-
matched cognitively normal controls. Together, the work done in this thesis shows the
advantage of using systems- and network biology approaches in complex diseases such
as AD.

The constructed differential co-expression network successfully captured gene expres-
sion patterns that indicate response mechanisms to the change from healthy to dis-
eased. As much as 64 previously AD-affiliated genes were recognized in the network,
which is both indicative of high-quality network inference and at the same time allows
further biological predictions of pathogenesis. Potential roles of neighboring genes
were inferred based on guilt by association. The CSD network revealed many promi-
nent genes and pathways likely involved in AD development. Interestingly, novel genes
with minimal functional annotation were identified, such as the network hub KIAA1841.
Being the most highly connected node in the network, it is quite possibly essential. The
hub changes behavior with respect to all its neighbors across the two conditions and
might thus have a regulatory role in AD. Based on modular enrichment and the func-
tions of its neighbors, it might be involved in signaling pathways related to lipid- and
Aβ metabolism. Hence, KIAA1841 is a new candidate for a role in neurodegenerative
diseases such as AD, and should be investigated further.

The most significant contribution to the method framework was the differential expres-
sion analysis (DEA) performed in this work. The two main methods - differential ex-
pression and differential co-expression - complemented each other, each providing in-
formation that the other did not capture. The CSD method identified many genes with
pairwise correlation changes that did not show individual changes in mean expression.
Oppositely, the DEA found DEGs both outside and within the network, offering new in-
sights not captured by the differential co-expression network alone. 229 nodes from the
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original 1535 nodes in the CSD network were recognized as DEGs. These were enriched
in the regions of conserved (C) co-expression, where there was a trend of similarly reg-
ulated genes connecting with each other, suggesting a coordinated regulation. In the
largest conserved (blue) region of the network, including modules 4 and 6, all differen-
tially expressed genes (DEGs) were down-regulated in AD. Hence, although gene pair
correlations were maintained (strong positive correlations across samples in both con-
ditions), the mean expression levels decreased from control to sick.

Based on the high enrichment in disease association, combined with down-regulated
genes enriched in AD-associated processes, modules 4 and 6 are promising disease
module candidates. Both GO and KEGG analyses pointed out that the genes of this
module are involved in the synaptic vesicle cycle and might be responsible for impaired
signal transmission. This is a common pathological feature of AD and other neurode-
generative diseases [19]. Interestingly, all the C-type hubs had at least one AD-related
neighbor, making these hubs disease gene candidates. This includes genes such as
YWHAH, which has earlier been associated with Schizophrenia and was in this network
connected to four AD-related genes. The decrease in the expression of this transcrip-
tion activator might explain some of the down-regulated processes.

This work has, through DEA, demonstrated the importance of including the conserved
type of co-expression and not only the differential types of co-expression when com-
paring gene expression profiles. This is something that the CSD method does that is not
generally seen in other studies of co-expression networks [3]. The genes with C-type co-
expression from the CSD framework have usually not been considered valuable from a
disease perspective. The DEA put a new perspective on this by showing that the level
of gene expression was affected by disease even if the pairwise correlations were con-
served. Although salient, this finding should be validated by implementing the same
method on an independent data set. Moreover, it would be highly interesting to study
the correlation between differential expression and differential co-expression. Besides,
filtering based on mean expression levels before network generation could be consid-
ered for a more strictly defined CSD network, potentially highlighting the conserved
areas even more.

More detailed analyses of the relationships behind the correlation patterns are imper-
ative to understand their biological relevance to AD better. Experimental validations
of annotated gene functions and the inferred associations would be a good starting
point. Based on the PPI integration, there was no strong relation between correlated
gene expression and previously identified physical connections between the encoded
proteins. Only three gene interactions in the CSD network had known protein associa-
tions. For further studies, it could be interesting to investigate more indirect PPI links,
which might explain more of the relationships behind the CSD links. A more extensive
database with lower-quality PPIs, such as BIOGRID or STRING, could also be consid-
ered, but the validity of predictions would need careful assessment. Additional types of
data could be integrated for more details into the underlying mechanisms of AD patho-
genesis. For instance, it would be interesting to incorporate public TF data to explore
the potential regulatory roles of the genes involved in the identified signaling pathways.
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Alzheimer’s disease is heterogeneous and complex, so it was not surprising to find many
different biological pathways enriched in the network. Only some of them were ex-
plored in this thesis and it cannot be ruled out that other pathways may be more es-
sential in the disease progression. The same applies to the discussion of previously
AD-affiliated genes, and thus future studies could investigate the roles of each of the
64 genes and their immediate neighborhoods. It could also be interesting to compare
with AD-associated genes from other databases such as KEGG or DisGeNET [4, 135].
Further, it could be of interest to apply the CSD framework on gene expression pro-
files from other neurodegenerative diseases, such as Parkinson’s disease, that were en-
riched in the network. The resulting CSD networks could be compared to look for more
disease-specific expression patterns.

Although the work performed in this thesis answers the aim of capturing universal sig-
natures of AD pathogenesis, other aspects of the microarray data set could be addressed
in further research. First of all, given that aging is a major risk factor for AD, future stud-
ies could estimate this potential confounding factor. Even though this work controlled
confounding by design, further work could employ a multivariate statistical analysis.
Then, besides comparing with the network from the complete data set (w/ young con-
trols), it could be even better to compare with a CSD network created solely from con-
trols. This network would identify genes specific for aging by comparing young vs. old.
Only the diseased as a whole group (n = 80) was used in this thesis. Future work could
get a more detailed view by including Braak stages and APOE genotype, both of which
were registered in the microarray experiment [67] but omitted here for simplicity. Also,
to account for tissue-specificity, four smaller CSD networks could be generated for each
region (HC, EC, SFG and PCG) from the AD and healthy individuals of >= 60 years. In
addition, it would be interesting to check if some specific cell types were enriched in
the network, for example by using Enrichr [51, 83]. If so, cell heterogeneity could be
considered by implementing CSD on single-cell transcriptomic data from major brain
cell types in patients with AD. Regardless, given the limitations of the applied data set
and the method in general, one of the first steps should be to compare the results with
validated reference data. Preferably, a meta-analysis can be used to find universal pat-
terns across data sets that give stronger predictions than those made using individual
data sets [58].

All in all, a combination of several approaches, also involving the verification of func-
tional annotation by more detailed experiments, is needed to understand the com-
plex mechanisms underlying the pathogenesis of AD. The ultimate goal would be to
translate the knowledge obtained from this research into treatments that prevent, slow
down, or cure AD. Finally, beyond answering the aim of this thesis, the integrated ap-
proach provides a powerful platform that can be useful for future comparative studies
in systems biology.
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Appendices

A Individual C-, S- and D-networks

The individual networks with exclusively one link type generated from the CSD frame-
work were imported to Cytoscape and are visualized in Fig. 6.1-6.3. The network size of
the C-, S- and D-networks are N = 331, N = 671 and N = 705, respectively.
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Figure 6.2: S-network, nodes represent genes and links their specific type of co-expression.
N = 671, M = 690.
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Figure 6.3: D-network, nodes represent genes and links their differentiated type of co-expression.
N = 705, M = 645.

92



B Results from Enrichment Analyses

This appendix provides the complete results of the enrichment for GO biological pro-
cesses and KEGG Pathways in different parts of the network that were too long for the
Results section. All terms are considered significant with a BH-adjusted p-value (FDR)
< 0.05, and sorted by Fold Enrichment (FE). Processes are over-represented compared
to what could be expected to be drawn randomly from the database, unless stated oth-
erwise. The number of genes enriched in the input list (#genes) and number of genes
in reference list (#ref) is provided for all biological processes.

B.1 GO of S-network

Table 6.1 shows all significant terms enriched for the 671 genes with specific (S) co-
expression. The result is sorted by hierarchy of the terms; by FE within each family
of processes. FE above 1.0 represents an over-representation of genes, while values
smaller than 1.0 represents an under-representation.

Table 6.1: All GO biological processes enriched in S-network. Sorted by fold enrichment (FE)
within the hierarchy of the terms, most specific (child terms) first. #ref: number of genes in
reference list. #genes: number of enriched genes in network. +/-: over/under-representation
compared to expected. FDR: adjusted p-value by BH-method.

GO biological process #ref #genes FE +/- FDR
plasma membrane bounded cell projection organization 1157 65 1.72 + 2.99E-02
cell projection organization 1203 67 1.71 + 3.00E-02
cellular component organization 5699 234 1.26 + 4.29E-02
cellular process 15632 573 1.12 + 1.34E-04
phosphate-containing compound metabolic process 2167 113 1.60 + 2.86E-03
phosphorus metabolic process 2194 114 1.59 + 3.47E-03
metabolic process 8585 338 1.21 + 1.44E-02
amide transport 1574 82 1.60 + 3.27E-02
transport 4572 204 1.37 + 3.14E-03
establishment of localization 4704 206 1.34 + 7.92E-03
localization 5862 249 1.30 + 4.10E-03
cellular protein localization 1646 84 1.56 + 4.37E-02
cellular localization 3007 146 1.49 + 2.95E-03
macromolecule localization 2564 126 1.51 + 7.34E-03
protein localization 2200 110 1.53 + 1.42E-02
regulation of localization 2784 139 1.53 + 1.94E-03
establishment of localization in cell 2378 116 1.50 + 1.72E-02
organic substance transport 2225 108 1.49 + 3.12E-02
regulation of signaling 3615 163 1.38 + 1.59E-02
regulation of cell communication 3576 160 1.37 + 2.48E-02
organonitrogen compound metabolic process 5450 230 1.29 + 1.48E-02
Unclassified 2858 46 .49 - 9.95E-05
detection of chemical stimulus involved in sensory perception of smell 439 1 .07 - 1.93E-02
detection of chemical stimulus involved in sensory perception 484 2 .13 - 2.80E-02
detection of stimulus involved in sensory perception 550 3 .17 - 2.69E-02
detection of chemical stimulus 520 2 .12 - 1.45E-02
sensory perception of smell 468 2 .13 - 4.34E-02
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B.2 GO of C-modules

Tables 6.3-6.4 show the biological processes significantly enriched for each of the three
modules with conserved co-expression. Only the most specific GO terms are shown for
module 4 and 6, whereas for module 9 all significant terms are shown. The complete
lists of terms for module 4 and 6 are provided in the following doi: 10.6084/m9.figshare.

Table 6.2: GO enrichment analysis of biological processes on module 6 (N = 92). Only the most
specific terms are included, sorted by fold enrichment (FE). FDR: BH adjusted p-value.

GO biological process #ref #genes FE FDR
glutamate catabolic process to 2-oxoglutarate 2 2 >100 1.61E-02
glutamate catabolic process to aspartate 2 2 >100 1.60E-02
aspartate biosynthetic process 3 2 >100 2.37E-02
aspartate catabolic process 4 2 >100 3.35E-02
oxaloacetate metabolic process 8 3 87.86 2.44E-03
mitochondrial ATP synthesis coupled proton transport 22 4 42.60 1.05E-03
regulation of synaptic vesicle endocytosis 17 3 41.34 1.30E-02
cristae formation 32 5 36.61 2.75E-04
regulation of mitochondrial depolarization 21 3 33.47 1.98E-02
phagosome acidification 28 4 33.47 2.09E-03
transferrin transport 36 5 32.54 3.44E-04
gluconeogenesis 46 5 25.47 7.08E-04
organelle transport along microtubule 80 6 17.57 5.44E-04
synaptic vesicle cycle 117 6 12.01 2.82E-03
respiratory electron transport chain 110 5 10.65 1.90E-02
regulation of macroautophagy 177 7 9.27 2.73E-03
cellular response to insulin stimulus 177 6 7.94 1.91E-02
regulation of exocytosis 211 6 6.66 4.02E-02
vesicle localization 207 6 6.79 3.69E-02
regulation of neurotransmitter levels 216 6 6.51 4.46E-02
chemical synaptic transmission 414 9 5.09 1.30E-02
intracellular protein transport 992 13 3.07 3.89E-02
nervous system development 2203 21 2.23 4.50E-02
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Table 6.3: GO enrichment analysis of biological processes on module 4 (N = 86). Only the most
specific terms are included, sorted by fold enrichment (FE). FDR: Benjamini-Hochberg adjusted
p-value.

GO biological process #ref #genes FE FDR
regulation of calcium ion-dependent exocytosis of neurotransmitter 3 2 >100 2.72E-02
regulation of synaptic activity 3 2 >100 2.70E-02
glutamine catabolic process 3 2 >100 2.67E-02
postsynaptic intermediate filament cytoskeleton organization 3 2 >100 2.65E-02
JUN phosphorylation 4 2 >100 3.52E-02
exocytic insertion of neurotransmitter receptor to postsynaptic membrane 4 2 >100 3.49E-02
synaptic vesicle membrane organization 4 2 >100 3.46E-02
regulation of synaptic vesicle priming 7 3 98.20 2.69E-03
glutamate biosynthetic process 5 2 91.65 4.38E-02
negative regulation of peptidyl-cysteine S-nitrosylation 5 2 91.65 4.35E-02
neurofilament cytoskeleton organization 8 3 85.92 3.43E-03
cardiac muscle hypertrophy in response to stress 14 3 49.10 1.08E-02
regulation of short-term neuronal synaptic plasticity 15 3 45.83 1.20E-02
positive regulation of calcium ion-dependent exocytosis 20 4 45.83 1.14E-03
calcium ion-regulated exocytosis of neurotransmitter 16 3 42.96 1.35E-02
glutamate secretion 31 5 36.96 1.96E-04
positive regulation of neurotransmitter secretion 19 3 36.18 1.90E-02
synaptic vesicle endocytosis 49 7 32.73 3.98E-06
regulation of vesicle fusion 23 3 29.89 2.67E-02
regulation of long-term neuronal synaptic plasticity 26 3 26.44 3.45E-02
regulation of amino acid transport 37 4 24.77 7.18E-03
dendritic spine development 29 3 23.70 4.19E-02
clathrin-dependent endocytosis 30 3 22.91 4.34E-02
negative regulation of G protein-coupled receptor signaling pathway 48 4 19.09 1.39E-02
cellular response to nerve growth factor stimulus 53 4 17.29 1.85E-02
associative learning 82 6 16.77 8.76E-04
vesicle docking 63 4 14.55 2.84E-02
vesicle fusion 80 5 14.32 8.19E-03
cellular response to calcium ion 85 5 13.48 1.03E-02
negative regulation of neuron apoptotic process 152 6 9.04 1.24E-02
positive regulation of neuron projection development 155 6 8.87 1.36E-02
negative regulation of neuron projection development 133 5 8.61 4.07E-02
import into cell 179 6 7.68 2.35E-02
regulation of endocytosis 205 6 6.71 3.86E-02
negative regulation of transport 449 9 4.59 2.52E-02
neuron projection morphogenesis 502 10 4.56 1.39E-02
cell morphogenesis involved in neuron differentiation 456 9 4.52 2.67E-02
head development 817 12 3.37 3.17E-02
cellular chemical homeostasis 749 11 3.37 4.80E-02
central nervous system development 1019 14 3.15 2.19E-02
response to organonitrogen compound 1001 13 2.98 4.62E-02
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Table 6.4: GO enrichment analysis of biological processes on module 9 (N = 66). All significant
terms are shown (Benjamini-Hochberg adjusted p-value (FDR) < 0.05), sorted by fold enrichment
(FE).

GO biological process #ref #genes FE FDR
galactosylceramide biosynthetic process 6 3 >100 2.36E-03
glycosylceramide biosynthetic process 7 3 >100 2.99E-03
galactosylceramide metabolic process 9 3 >100 4.09E-03
galactolipid metabolic process 10 3 96.24 4.72E-03
central nervous system myelination 21 6 91.65 6.36E-07
glycosylceramide metabolic process 16 3 60.15 1.25E-02
oligodendrocyte development 46 6 41.84 2.57E-05
glycosphingolipid biosynthetic process 25 3 38.49 3.53E-02
oligodendrocyte differentiation 72 8 35.64 5.38E-07
ensheathment of neurons 112 10 28.64 6.81E-08
myelination 110 9 26.25 5.96E-07
ceramide biosynthetic process 51 4 25.16 1.24E-02
peripheral nervous system development 77 5 20.83 4.07E-03
glycosphingolipid metabolic process 63 4 20.37 2.48E-02
sphingolipid biosynthetic process 93 5 17.25 7.14E-03
glial cell development 115 6 16.74 2.35E-03
glial cell differentiation 180 9 16.04 1.56E-05
sphingolipid metabolic process 155 7 14.49 9.29E-04
regulation of gliogenesis 123 5 13.04 2.22E-02
gliogenesis 233 9 12.39 8.42E-05
membrane lipid biosynthetic process 133 5 12.06 3.00E-02
regulation of cell projection organization 710 10 4.52 2.97E-02
central nervous system development 1025 14 4.38 2.71E-03
neurogenesis 1703 21 3.96 4.75E-05
regulation of cellular component movement 1042 12 3.69 3.48E-02
regulation of hydrolase activity 1305 15 3.69 5.47E-03
generation of neurons 1599 16 3.21 1.26E-02
positive regulation of cellular protein metabolic process 1633 15 2.95 4.88E-02
cellular developmental process 3845 28 2.34 4.02E-03
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B.3 GO of up-DEGs and down-DEGs

Table 6.5 and Table 6.6 show the most highly enriched biological processes found for
the 497 up-regulated and 699 down-regulated genes in the AD transcriptomic data, re-
spectively.

Table 6.5: GO biological processes enriched in up-DEGs. Only the most specific terms (w/ FDR <
0.05) are included, sorted by fold enrichment (FE). FDR: Benjamini-Hochberg adjusted p-value.

GO biological process #ref #genes FE FDR
peptide antigen assembly with MHC class II protein complex 4 4 42.90 1.79E-03
regulation of macrophage migration inhibitory factor signaling pathway 3 3 42.90 1.43E-02
regulation of type IIa hypersensitivity 4 3 32.18 2.15E-02
oligodendrocyte cell fate specification 5 3 25.74 3.02E-02
glomerular visceral epithelial cell migration 6 3 21.45 4.10E-02
regulation of germinal center formation 9 4 19.07 1.08E-02
positive regulation of intracellular estrogen receptor signaling pathway 12 4 14.30 2.17E-02
notochord development 20 5 10.73 1.41E-02
detection of external biotic stimulus 21 5 10.22 1.62E-02
cellular response to platelet-derived growth factor stimulus 21 5 10.22 1.62E-02
negative regulation of B cell activation 35 8 9.81 6.62E-04
amyloid-beta clearance 22 5 9.75 1.88E-02
negative regulation of Rho protein signal transduction 23 5 9.33 2.15E-02
negative regulation of interleukin-2 production 27 5 7.95 3.48E-02
regulation of lipopolysaccharide-mediated signaling pathway 27 5 7.95 3.47E-02
lung epithelium development 30 5 7.15 4.93E-02
astrocyte development 38 6 6.77 2.44E-02
cortical actin cytoskeleton organization 38 6 6.77 2.43E-02
glial cell activation 40 6 6.44 3.00E-02
glomerulus development 54 8 6.36 6.24E-03
regulation of interleukin-10 production 54 8 6.36 6.20E-03
positive regulation of B cell proliferation 42 6 6.13 3.50E-02
positive regulation of myeloid leukocyte differentiation 58 8 5.92 8.89E-03
intermediate filament-based process 52 7 5.78 2.12E-02
T cell differentiation in thymus 52 7 5.78 2.11E-02
neural precursor cell proliferation 75 10 5.72 2.25E-03
cell differentiation involved in kidney development 45 6 5.72 4.59E-02
positive regulation of tumor necrosis factor production 85 11 5.55 1.35E-03
positive regulation of phagocytosis 64 8 5.36 1.45E-02
positive regulation of response to cytokine stimulus 57 7 5.27 3.06E-02
regulation of osteoclast differentiation 67 8 5.12 1.80E-02
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Table 6.6: GO biological processes enriched in down-DEGs. Only the most specific terms (w/
FDR < 0.05) are included, sorted by fold enrichment (FE). FDR: Benjamini-Hochberg adjusted
p-value.

GO biological process #ref #genes FE FDR
maintenance of presynaptic active zone structure 4 4 29.45 6.44E-03
regulation of synaptic vesicle priming 7 5 21.04 2.55E-03
spontaneous neurotransmitter secretion 6 4 19.63 1.53E-02
regulation of short-term neuronal synaptic plasticity 15 8 15.71 8.83E-05
synaptic vesicle maturation 11 5 13.39 9.70E-03
calcium ion-regulated exocytosis of neurotransmitter 16 6 11.04 5.26E-03
positive regulation of calcium ion-dependent exocytosis 20 7 10.31 2.19E-03
neurotransmitter receptor internalization 15 5 9.82 2.57E-02
synaptic transmission, glutamatergic 31 10 9.50 1.23E-04
positive regulation of neurotransmitter secretion 19 6 9.30 1.01E-02
synaptic transmission, dopaminergic 16 5 9.20 3.10E-02
corpus callosum development 17 5 8.66 3.74E-02
phagosome acidification 28 8 8.41 1.96E-03
synaptic vesicle endocytosis 49 14 8.41 3.92E-06
transferrin transport 36 10 8.18 3.01E-04
positive regulation of excitatory postsynaptic potential 29 8 8.12 2.30E-03
regulation of AMPA receptor activity 27 7 7.64 8.24E-03
glutamate secretion 31 8 7.60 3.22E-03
regulation of synaptic vesicle recycling 24 6 7.36 2.49E-02
axon extension 36 8 6.54 7.01E-03
vesicle docking involved in exocytosis 42 9 6.31 3.66E-03
long-term synaptic potentiation 48 10 6.14 1.96E-03
response to morphine 35 7 6.14 2.61E-02
long-term memory 35 7 5.89 2.60E-02
regulation of dopamine secretion 36 7 5.73 2.92E-02
neuron recognition 49 9 5.41 8.71E-03
regulation of postsynaptic membrane neurotransmitter receptor levels 39 7 5.29 4.12E-02
receptor localization to synapse 39 7 5.29 4.11E-02
regulation of sodium ion transmembrane transporter activity 56 10 5.26 5.03E-03
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B.4 KEGG Pathways in Module 6

The complete results from the KEGG Pathways enrichment of module 6, including all
gene symbols for each term is found in the following doi: 10.6084/m9.figshare. Table
6.7 shows all the significantly enriched pathways after correcting for multiple testing
(FDR < 0.05).

Table 6.7: All significantly enriched KEGG Pathways in module 6, sorted by Fold Enrichment (FE).
FDR: Benjamini-Hochberg adjusted p-value.

Term FE FDR
Phenylalanine, tyrosine and tryptophan biosynthesis 93.0 5.07E-03
Collecting duct acid secretion 34.5 2.28E-04
Phenylalanine metabolism 27.4 0.0334
Arginine biosynthesis 22.2 0.0400
Synaptic vesicle cycle 20.9 2.70E-06
Epithelial cell signaling in Helicobacter pylori infection 20.5 2.40E-05
Oxidative phosphorylation 19.2 3.65E-09
Vibrio cholerae infection 18.6 2.16E-03
Parkinson disease 18.0 3.73E-09
Cysteine and methionine metabolism 14.8 0.0176
Alzheimer disease 13.6 2.50E-07
Huntington disease 13.3 6.79E-08
VEGF signaling pathway 11.8 0.0308
Long-term potentiation 10.4 0.0372
Fc gamma R-mediated phagocytosis 10.2 0.0123
Rheumatoid arthritis 10.2 0.0116
Renin secretion 10.1 0.0374
Renal cell carcinoma 10.1 0.0388
T cell receptor signaling pathway 9.21 0.0162
Cardiac muscle contraction 8.94 0.0460
cGMP-PKG signaling pathway 8.41 2.50E-03
Phagosome 7.65 0.0119
mTOR signaling pathway 7.65 0.0129
Oxytocin signaling pathway 7.60 0.0114
Oocyte meiosis 7.44 0.0320
Cellular senescence 7.27 0.0131
Thermogenesis 7.05 2.39E-03
Non-alcoholic fatty liver disease (NAFLD) 6.24 0.0416
Human T-cell leukemia virus 1 infection 5.31 0.0342
Endocytosis 4.77 0.0416
Human papillomavirus infection 4.23 0.0385
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C Biological functions of network hubs

Table 6.8 shows the 18 network hubs identified with the biological function of their gene
product, as annotated from GeneCards [78]. These all have 20 or more neighbors in the
CSD network, indicating a prominent role for the network topology.

Table 6.8: Largest hubs in the CSD network and the associated biological function of their gene
product (mostly proteins). Genes are colored according to the predominant link type (C = blue, S
= green and D = red).

Gene Function
KIAA1841 Uncharacterized protein

NMNAT2
Nicotinamide Mononucleotide Adenylyltransferase 2. Cytosolic enzyme that catalyzes the formation
of NAD+ from nicotinamide mononucleotide (NMN) and ATP.

MIGA2

Mitoguardin 2. Regulator of mitochondrial fusion: acts by forming homo- and heterodimers at
the mitochondrial outer membrane and facilitating the formation of PLD6/MitoPLD dimers.
May act by regulating phospholipid metabolism via PLD6/MitoPLD.
(PLD6 gene codes for Mitochondrial cardiolipin hydrolase)

AQR
RNA helicase. Aquarius Intron-Binding Spliceosomal Factor.
Involved in pre-mRNA splicing as component of the spliceosome.

AL158206.1
Long non-coding RNA (lncRNA). Transcript overlaps with ACER2 (gene coding for the protein Alkaline
ceramidase 2, which catalyzes the hydrolysis of ceramide into sphingosine and free fatty acids at alkaline pH.

HPRT1
Hypoxanthine Phosphoribosyltransferase 1. Catalyzes the conversion of hypoxanthine to
inosine monophosphate and guanine to guanosine monophosphate (nucleotide metabolism).

GTF2I
Gene that codes for two proteins: TFII-1 and BAP-135. TFII-1 is a general transcription factor
which regulates gene activity by binding to promoter elements. BAP-135 is active in B-cells
where it contributes to normal immune system function.

TOM1L2
Target Of Myb1 Like 2 Membrane Trafficking Protein. Belongs to a family of TOM1-related proteins
involved in vesicular trafficking through the endocytic pathway. It recruits clathrin onto endosomes
and modulates endosomal function.

YWHAH
Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein (eta isoform).
Belongs to 14-3-3 family which mediate signal transduction by binding to and activating
phosphoserine-containing proteins.

GOT1
Glutamic-Oxaloacetic Transaminase 1. Pyridoxal phoshate-dependent enzyme which
synthesizes L-glutamate from L-aspartate or L-cysteine in the cytosol (amino acid metabolism).

NAPB
N-ethylmaleimide-sensitive factor (NSF) Attachment Protein Beta. Part of the 20S NSF-SNAP-SNARE complex,
required for vesicular transport between the endoplasmic reticulum (ER) and Golgi apparatus.

TMEM178A
Transmembrane Protein 178A. Negative regulator of osteoclast differentiation in basal and inflammatory
conditions by regulating Ca2+-fluxes.

PLTP
Phospholipid Transfer Protein. Transfers phospholipids and free cholesterol from low density lipoproteins (LDL)
and very low density lipoproteins (VLDL) into high-density lipoproteins (HDL).

LCAT
Lecithin-Cholesterol Acyltransferase. Glycoprotein which converts free cholesterol into cholesteryl esters
on the surface of lipoproteins, resulting in mature spherical HDL.

ENPP2

Ectonucleotide Pyrophosphatase/Phosphodiesterase 2, also called Autotaxin.
Functions both as a phosphodiesterase, which cleaves phosphodiester bonds at the 5’ end of oligonucleotides,
and a phospholipase, which catalyzes production of lysophosphatidic acid (LPA) in extracellular fluids.
LPA evokes growth factor-like responses including stimulation of cell proliferation and chemotaxis.

CADPS
Calcium Dependent Secretion Activator. Neural/endocrine-specific membrane protein
required for the Ca2+-regulated exocytosis of secretory vesicles, which also involves the synthesis
of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2).

MDH1

Malate Dehydrogenase 1. Catalyzes the NAD/NADH-dependent, reversible oxidation of malate to oxaloacetate
in many metabolic pathways, including the citric acid cycle. Cytosolic isozyme, which plays a key role
in the malate-aspartate shuttle that allows malate to pass through the mitochondrial membrane to be
transformed into oxaloacetate for further cellular processes.

VSNL1
Visinin Like 1. Member of visinin/recoverin subfamily of neuronal calcium sensor proteins. Modulates
intracellular signaling pathways of the central nervous system by regulating the activity of adenylyl cyclase.
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D Python scripts for DEA

The following code is the self-written Python script used for the identification of DEGs
and their statistical significance in the microarray data.

Listing 6.1: This script calculates mean expression of all genes in control and case patients sep-
arately. Then calculates log2 fold change, raw p-value, T-statistic and adjusted p-value (FDR by
Benjamini-Hochberg). DF: Dataframe (Pandas). User must change names of input and output
files, corresponding to desired sample set calculation.

import pandas as pd
import numpy as np

##Read expression data for control samples to DF##
data2 = pd . read_csv ( ’ ADcontrolold . t x t ’ , sep = ’ \ t ’ , header = None, skiprows = [ 0 ] , index_col =0)
df2 = pd . DataFrame ( data2 )
df2 [ ’mean ’ ] = df2 .mean( axis =1) #mean expression of each row ( gene )

##Expression for AD patients ##
data3 = pd . read_csv ( ’ADexp . t x t ’ , sep = ’ \ t ’ , header = None, skiprows = [ 0 ] , index_col =0)
df3 = pd . DataFrame ( data3 )
df3 [ ’mean ’ ] = df3 .mean( axis =1)

## Calculate fold change from control to AD##
log2FC = ( df3 [ ’mean ’ ]−df2 [ ’mean ’ ] ) #FC i s dif ference in mean, values already log2
newdf = pd . DataFrame ( index=df2 . index . copy ( ) ) #new DF with gene name as index column
newdf . index . names = [ ’Gene name ’ ] #Gene name as column name
newdf [ ’Mean control exp . ’ ] = round ( df2 [ ’mean ’ ] , 2 ) # control mean exp . to new column , 2 decimals
newdf [ ’Mean AD exp . ’ ] = round ( df3 [ ’mean ’ ] , 2 ) #add mean expression for sick as new column
newdf [ ’ log2FC ’ ] = round ( log2FC , 2 ) #add log2FC as new column to DF

##Perform multiple t−t e s t s , row−by−row ( for every gene in both DFs)##
from scipy . s t a t s import t t e s t _ i n d #independent t−t e s t
df_m = pd . merge ( df2 , df3 , l e f t _ i n d e x =True , right_index=True )
T_stat , p_vals = t t e s t _ i n d (df_m . i l o c [ : , df2 . shape [ 1 ] : −1 ] , df_m . i l o c [ : , : df2 . shape [1] −1] , axis =1)
newdf [ ’Raw p−value ’ ] = np . round ( p_vals , decimals = 4) #add p−values w/ 4 decimals to DF
newdf [ ’T−s t a t i s t i c ’ ] = np . round ( T_stat , decimals = 2) #add T−s t a t i s t i c w/ 2 decimals to DF

#Function that adjusts p−vals , returns Benjamini−Hochberg adjusted P−value
def fdr ( p_vals ) :

from scipy . s t a t s import rankdata
ranked_p_values = rankdata ( p_vals )
fdr = p_vals * len ( p_vals ) / ranked_p_values
fdr [ fdr > 1] = 1
return fdr

newdf [ ’FDR ’ ] = np . round ( fdr ( p_vals ) , decimals = 2) #perform function and add adjusted P−value

#Write DF to f i l e , sorted from highest to lowest fold change
newdf . sort_values ( by=[ ’ log2FC ’ ] , ascending = False , inplace = True )
newdf . to_csv ( ’ d i f f s t a t s _ a l l r e g i o n s o l d . t x t ’ , index=True , sep = ’ \ t ’ )
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Listing 6.2: This script opens the file generated in the previous listing, with the results from the
differential expression analysis. It prints the number of up-DEGs and down-DEGs and adds the
gene symbols of these to individual files for easy incorporation into functional annotation.

#Opens f i l e with r e s u l t s from the d i f f e r e n t i a l expression analysis
with open( ’ d i f f s t a t s _ a l l r e g i o n s o l d . t x t ’ ) as f :

upDEGs = [ ]
downDEGs = [ ]
f i r s t l i n e = f . readline ( )
for l i n e in f :

s p l i t l i n e = l i n e . r s t r i p ( ) . s p l i t ( ’ \ t ’ )
i f f l o a t ( s p l i t l i n e [ 6 ] ) < 0 . 0 5 : #genes with FDR < 0.05 are s i g n i f i c a n t

i f f l o a t ( s p l i t l i n e [ 3 ] ) > = 0 . 2 : #log2FC > 0.2 are upregulated
upDEGs. append( s p l i t l i n e [ 0 ] ) #add gene symbol

e l i f f l o a t ( s p l i t l i n e [3]) <=( −0.2) : #log2FC < −0.2 are downregulated
downDEGs. append( s p l i t l i n e [ 0 ] ) #add gene symbol

print ( len (upDEGs) , upDEGs) #Number of up−regulated genes and the l i s t of gene symbols
print ( len (downDEGs) , downDEGs) #Number of down−regulated genes and the l i s t of gene symbols

#Create a f i l e where the gene symbol of up−DEGs are on invidual l i n e s
with open( ’up−DEGs. t x t ’ , ’w’ ) as f i l e 1 :

for i , gene in enumerate (upDEGs ) :
f i l e 1 . write ( gene )
f i l e 1 . write ( ’ \n ’ )

#Create a f i l e where the gene symbol of down−DEGs are on invidual l i n e s
with open( ’down−DEGs. t x t ’ , ’w’ ) as f i l e 2 :

for i , gene in enumerate (downDEGs ) :
f i l e 2 . write ( gene )
f i l e 2 . write ( ’ \n ’ )
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E List of DEGs in CSD network

This appendix includes the full list of the 229 genes recognized in the CSD network as
differentially expressed genes (DEGs), split into up-DEGs and down-DEGs (Table 6.9).

Table 6.9: All DEGs recognized in the CSD network. 104 up-regulated genes and 125 down-
regulated genes. Genes are listed from the largest to the smallest magnitude of change (absolute
log2FC). Genes previously associated with AD are marked in bold.

Gene symbol

Up-regulated genes

ADAMTS2 MYBPC1 ANGPT1 VAC14-AS1 HLA-DRB1 ITPKB GMPR NFKBIA CD74 SELL ITGB8
HCLS1 DOCK5 BBOX1 S1PR3 HSPA2 DNALI1 NACC2 PRKX SLC38A2 AC005332.4 C5AR1 H1-2
RFX4 H2BC19P CSRP1 TP53INP1 CHST6 C1orf87 ZFP36L2 CGNL1 ZCCHC24 MAP4K4 GFAP
TLR2 CHD7 POU3F2 MTMR10 RIN2 ST6GALNAC3 PANTR1 RNF130 KIAA1958 EZR LIFR RDX
CCDC69 ANP32B PLEKHA7 EMX2OS DIAPH3 CTSH ANO6 AFF1 CRB1 ADGRA3 PTPN21 MMP8
ZNF423 C21orf62 ARHGAP42 USP54 CRB2 HIPK2 MYO10 LRP4 GLIS3 TEX26 STEAP3 GOLIM4
CDC42EP4 KLC1 PLXNB1 TOB1 SERPINI2 HMG20B TMEM47 NDE1 CCDC151 IKBKB HEATR5A
IQCK RNF19A FRYL PRKG1 NXT2 OR7E14P RFX2 USP53 CXCL16 WDR49 CERS1 PLXNB2 PELI2
ANAPC16 TAB2 NOTCH2 TNS2 GPRC5B HDAC1 FBXL7 PTBP1 SAP30L VAMP3

Down-regulated genes

RGS4 MAL2 OLFM3 KCNV1 RAB3C CDC42 NAP1L5 GABRG2 RTN4RL2 GAD1 SYN2 NMNAT2
STMN2 CADPS SYT13 C3orf80 BRWD1 GNG3 ATP6V1G2 SNX10 SEZ6L2 PCLO BEX5 PAK1 YWHAH
NSF TCERG1L HSPB3 SNCB CPNE4 HPRT1 SYNGR3 SYP AMPH RNF128 KALRN ACOT7 UCHL1
SYN1 DYNC1I1 ATP6V1B2 ATP8A2 EEF1A2 NECAP1 AP3B2 SCN2A JPT1 LYRM9 TMEM178B UBE2T
CLSTN2 GOT1 CALM3 SV2B SYT1 MLLT11 BEX1 DNM1 CLSTN3 PLD3 RFPL1S PGAP4 SYNGR1
STX1B PHF24 NAPB TAGLN3 RASAL1 GPRASP1 MOAP1 ENO2 GPRASP2 KLF10 SCG5 ADAM23
TBC1D9 ATP6V1A LYNX1 ITFG1 STXBP1 NDRG4 SLITRK3 MAPRE3 EID2 RUNDC1 DNAJC5 RNF41
FBLL1 SGIP1 AC139256.2 AFF2 INPP5F SV2A GPI SCAMP5 BCAT1 SULT4A1 VDAC1 AL031118.1
HMGCR CD200 KIF3A AP2M1 MRPL15 GLT1D1 ATP5MC3 ATP6V1E1 AC005229.4 TFRC NKD2
YWHAZ BTBD10 AC006058.1 ATP5F1B PEX3 TOMM20 RAN PEX11B RER1 ADAM11 TMEM178A
APOO WDR47 CCDC32 WDR74

A large number of the downregulated genes in Table 6.9 were found in module 4 and
module 6:

• Module 4: RGS4, STMN2, SYT13, GNG3, SNCB, SYNGR3, SYP, KALRN, SYN1,
ATP8A2, EEF1A2, SCN2A, SV2B, SYT1, DNM1, SYNGR1, STX1B, PHF24, NAPB,
TAGLN3, GPRASP1, ENO2, GPRASP2, STXBP1, FBLL1, INPP5F, SV2A, SCAMP5,
SULT4A1, CD200 and GLT1D1.

• Module 6: MAL2, OLFM3, KCNV1, RAB3C, CDC42, NAP1L5, GABRG2, SYN2, NM-
NAT2, CADPS, C3orf80, ATP6V1G2, SEZ6L2, BEX5, PAK1, YWHAH, NSF, HPRT1,
AMPH, ACOT7, UCHL1, DYNC1I1, ATP6V1B2, NECAP1, AP3B2, TMEM178B, GOT1,
CALM3, MLLT11, BEX1, PLD3, PGAP4, MOAP1, SCG5, ADAM23, TBC1D9, ATP6V1A,
ITFG1, NDRG4, MAPRE3, EID2, DNAJC5, RNF41, GPI, VDAC1, AP2M1, MRPL15,
ATP5MC3, ATP6V1E1, BTBD10, ATP5F1B, TOMM20, RAN and PEX11B.
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F CSD network from complete data set

The complete data set from E-GEOD-48350 [67] included 80 patients with AD (60-95
years) and 173 healthy controls (20-99 years). As seen, the age span for controls was
substantially higher than for case. Age was considered the most important potential
confounding factor in the microarray data set. Fig. 6.4 shows the network resulting from
implementing the CSD method on the full data set. Initially, we see that the network is
more dense and that the separate components seen in the main CSD network (Fig. 4.1)
are here all connected in the giant component. We can recognize some of the same
hubs, but there are also some hubs with substantially higher degrees (see table 6.10).
Together, the network hubs and their nearest neighbors represent as much as 45.4 % of
all the links in the network. It would be interesting to study the roles of the largest hubs
and compare the two CSD networks in order to indicate age-related gene expression.
This was however considered outside the scope of this thesis, and is left for future work.
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Figure 6.4: CSD network from full microarray data (80 AD patients and 173 controls). N = 1230,
M = 2072. Nodes represent genes and links represent the type of co-expression between pairs of
genes. Links are colored by type: blue is conserved (C), green is specific (S) and red is differenti-
ated (D). Network generated using an importance level of p = 5·10−6 and visualized in Cytoscape.
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Table 6.10: Network hubs and their degree in the CSD network from complete microarray data
(AD = 80, Control = 173). Node degree k>=20 identified as hubs. Gene symbols are colored based
on the predominant link type it has to its nearest neighbors: blue = C, green = S, red = D.

Gene k
SLC46A3 166
EXPH5 145
AP000766.1 96
GRSF1 63
HPRT1 41
CYS1 39
NF1 34
CLASP1 34
CRIP2 32
NMNAT2 31
LRIG1 29
AC009407.1 26
RTN1 25
CADPS 24
LINC00173 24
GOT1 23
GTF2I 23
KIFAP3 22
ERBB3 21
ATP6V1B2 20
ATP6V1G2 20
MDH1 20
MIGA2 20
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G DEA on specific brain tissue regions

DEA was performed on each of the 4 brain regions within the AD transcriptomic data
to look for larger expression changes than what was seen for the pooled samples used
in the main analysis. The number of samples (AD/control) for hippocampus (HC), en-
torhinal cortex (EC), superior frontal gyrus (SFG) and postcentral gyrus (PCG) were:

• HC: 19/25

• EC: 15/18

• SFG: 21/26

• PCG: 25/24

Significant differential expression after multiple testing correction was only found for
the hippocampus region (q = 0.04). This strengthens the hypothesis that the transcrip-
tional regulation in AD might be tissue-specific, at least for this data set. Table 6.11
shows that the top DEGs in HC have larger log2FC-values, especially the downregu-
lated genes. Specifically, the most downregulated gene was CALB1 had more than a
3-fold decrease in expression from control to case (log2FC = -1.81, p = 0.0002). This
gene and SST were also top 5 down-DEGs for the overall brain tissue as well, but with
lower magnitudes of change (Table 4.8).

Table 6.11: Top 5 up-DEGs and down-DEGs in hippocampus of individuals >= 60 years in
Alzheimer’s dataset, sorted by log2FC (log2 Fold Change). Mean gene expression is transformed
with logarithm base 2 (log2). AD: Alzheimer’s disease. FDR = Benjamini-Hochberg adjusted p-
value.

Gene Control exp. AD exp. log2FC Raw p-value T-statistic FDR
CP 7.99 9.07 1.08 0.0004 3.88 0.04
CRLF1 7.57 8.44 0.88 0.0005 3.75 0.04
ANGPT1 7.54 8.37 0.84 0.0009 3.58 0.04
TNFRSF11B 5.14 5.91 0.77 0.0002 4.06 0.04
CAPS 7.92 8.67 0.75 0.0009 3.57 0.04
MAL2 8.56 7.19 -1.37 0.0003 -3.91 0.04
SST 8.73 7.16 -1.56 0.0001 -4.34 0.04
CHGB 9.32 7.73 -1.6 0.0001 -4.2 0.04
TAC1 7.69 5.9 -1.79 0.0002 -4.13 0.04
CALB1 7.84 6.03 -1.81 0.0002 -4.06 0.04

No statistically significant DEGs were found in EC or SFG. However, the genes with the
highest magnitudes of change were LINC01094 (log2FC = 1.16, p = 0.0113, q = 0.28)
and ADAMTS2 (log2FC = 1.05, p = 0.0001, q = 0.09), respectively. The brain region PCG
seemed to be the least affected by the disease; virtually all "DEGs" were false positives
(q = 0.99).
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