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Abstract

The ongoing coronavirus pandemic has so far claimed more than 430 000 human lives
worldwide. The crisis has led to a massive global effort in the search for knowledge about
the characteristics of the virus and how the spread can be limited. In order to obtain a
better understanding of the epidemiological mechanisms affecting the viral transmission
among human beings, computational modeling provides a useful tool.

This master’s thesis presents a novel modeling framework built for the purpose of in-
vestigating how SARS-CoV-2 spreads on a temporal contact network in a virtual hospital.
The model is agent-based and simulates both the generation of the inter-individual contacts
and the virus transmission based on assigned agent attributes and a set of rules governing
their interactions. The temporal contact network on which the virus spreads is based on
rules derived from the observed contact patterns in an empirical close-proximity interac-
tion network. The network evolves simultaneously as the simulation and takes staff shifts,
patient hospitalization and any quarantine restrictions or isolation into account. The rules
governing the epidemiological part of the model are derived from the available literature.
Most of these parameter values are tunable, giving the user the possibility to explore a
wide range of epidemiological parameters and to evaluate the effect of several key control
measures.

Self-consistency tests were conducted to validate the model functionality, yielding
model output consistent with the expectations. The model stability was assessed by inves-
tigating the variability in output of several simulations run with identical input parameters.
Although the infection only spread to a few agents in some of the simulations, a large
proportion of the runs resulted in considerable outbreaks. Static and temporal analysis of
the generated contact network showed that the simulated network outperformed the ran-
domized reference network in terms of approximating the empirical network properties.

The developed modeling framework is detailed and allows the user to investigate how a
range of key epidemiological parameters affect the spread of SARS-CoV-2. The work lays
a solid foundation for future epidemiological analyses and evaluation of infection control
measures.
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Sammendrag

Den pågående koronapandemien har så langt krevd mer enn 430 000 menneskeliv på ver-
densbasis. Krisen har ført til en massiv global innsats i søken etter kunnskap om virusets
egenskaper og hvordan spredningen kan begrenses. I arbeidet mot en bedre forståelse av
de epidemiologiske egenskapene som påvirker spredningen av viruset blant mennesker,
utgjør datamodellering et nyttig verktøy.

Denne masteoppgaven presenterer et nytt modelleringsrammeverk bygget for å un-
dersøke hvordan SARS-CoV-2 spres på et temporalt kontaktnettverk på et virtuelt syke-
hus. Modellen er agentbasert og simulerer både genereringen av de mellommenneske-
lige kontaktene og virusspredningen basert på tildelte egenskaper hos agentene og et sett
med regler som styrer interaksjonene mellom dem. Det temporale kontaktnettverket som
viruset spres på er basert på utledede regler fra de observerte kontaktmønstrene i et em-
pirisk kontaktnettverk. Nettverket utvikles samtidig med simuleringen og tar hensyn til
personalskift, pasientopphold og eventuelle karantenerestriksjoner eller isolasjon. Reg-
lene som styrer den epidemiologiske delen av modellen er utledet fra tilgjengelig litteratur.
De fleste av disse parameterverdiene er regulerbare, noe som gir brukeren mulighet til å
utforske et bredt spekter av epidemiologiske parametere og å evaluere effekten av mange
viktige smitteverntiltak.

Selvkonsistenstester ble utført for å validere modellens funksjonalitet, og ga modell-
resultater som var konsistente med forventningene. Modellens stabilitet ble evaluert ved
å undersøke variabiliteten i modellresultatene av flere simuleringer med identiske param-
eterverdier. Mens infeksjonen ebbet ut i noen av simuleringene, resulterte en stor andel
av kjøringene i betydelige utbrudd. Statiske og temporale analyser av det genererte kon-
taktnettverket viste at det simulerte nettverket approksimerte de empiriske nettverksegen-
skapene bedre enn et randomisert referansenettverk.

Det utviklede modelleringsrammeverket er detaljert og gir brukeren muligheten til å
undersøke hvordan en rekke epidemiologiske parametere påvirker spredningen av SARS-
CoV-2. Arbeidet legger et solid grunnlag for fremtidige epidemiologiske analyser og vur-
dering av smitteverntiltak.

ii



Table of Contents

1 Introduction 1

2 Theory 3
2.1 Coronavirus Disease 2019 . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Course of the Disease . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Control Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Networks and Spreading Phenomena . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Static Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Temporal Networks . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Empirical Contact Networks . . . . . . . . . . . . . . . . . . . . 22

2.3 Epidemic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Compartmental Modeling . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Agent-Based Modeling . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Statistics and Statistical Distributions . . . . . . . . . . . . . . . . . . . 30
2.4.1 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 Correlation Analysis and Mean Squared Error . . . . . . . . . . . 34

3 Methods and Software 35
3.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2 Cytoscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Generating a Temporal Contact Network . . . . . . . . . . . . . . . . . . 36
3.2.1 Introducing Temporal Variations Throughout a Day and Night . . 37
3.2.2 Estimating Staff Shifts and Patient Hospitalization . . . . . . . . 42
3.2.3 Individual Heterogenities . . . . . . . . . . . . . . . . . . . . . . 54
3.2.4 Implementation of Temporal Network Into the Model . . . . . . . 58

3.3 Building an Epidemiological Model . . . . . . . . . . . . . . . . . . . . 64
3.3.1 Susceptible state . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.2 Exposed state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

iii



3.3.3 Asymptomatic State . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.4 Infected State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.5 Recovered state . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3.6 Implementation of Control Measures . . . . . . . . . . . . . . . 76
3.3.7 Implementation of the Epidemiological Part of the Model . . . . 79

3.4 Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Results and Analysis 83
4.1 The Modeling Framework . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Model Validation and Self Consistency . . . . . . . . . . . . . . . . . . . 86

4.2.1 Stochasticity and Model Stability . . . . . . . . . . . . . . . . . 91
4.2.2 Spread Across Several Wards . . . . . . . . . . . . . . . . . . . 94

4.3 Comparison of Empirical and Simulated Network . . . . . . . . . . . . . 96
4.3.1 Analysis of Static Aggregation . . . . . . . . . . . . . . . . . . . 97
4.3.2 Temporal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Discussion 103
5.1 Key Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1.1 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Conclusion 107

Bibliography 109

Appendix 121

A Theory Supplementary 123
A.1 Theory Presented in Project Report . . . . . . . . . . . . . . . . . . . . . 123

B Method Supplementary 125
B.1 Python Modules and Data Types . . . . . . . . . . . . . . . . . . . . . . 125
B.2 Temporal Contact Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.2.1 Contact Duration Distribution . . . . . . . . . . . . . . . . . . . 127
B.2.2 Comparing Normal, Truncated and Folded Distribution . . . . . . 128
B.2.3 Contacts per Hour . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.2.4 Patient Hospitalization . . . . . . . . . . . . . . . . . . . . . . . 137
B.2.5 Contact Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.2.6 Solving Lognormal Parameter Equations . . . . . . . . . . . . . 143
B.2.7 Model Parameters Values . . . . . . . . . . . . . . . . . . . . . . 145

C Results Supplementary 147
C.1 Text File Summarizing Output . . . . . . . . . . . . . . . . . . . . . . . 147
C.2 Model Stability Assessment . . . . . . . . . . . . . . . . . . . . . . . . 148

iv



Abbreviations

ABM = Agent-Based Modeling
BC = Betweenness Centrality
CC = Closeness Centrality
CDF = Cumulative Distribution Function
CFR = Case Fatality Rate
COVID-19 = Coronavirus Disease 2019
CPI = Close-Proximity Interaction
EEA = European Economic Area
EU = European Union
GC = Giant Component
GEXF = Graph Exchange XML Format
GLEaM = Global Epidemic and Mobility
HCW = HealthCare Worker
HIV = Human Immunodeficiency Virus
IBM = Individual-Based Model
ICU = Intensive Care Unit
IFR = Infection Fatality Rate
MERS = Middle East Respiratory Syndrome
MSE = Mean Squared Error
MRSA = Methicillin-Resistant Staphylococcus Aureus
MSSA = Methicillin-Sensitive Staphylococcus Aureus
NIPH = Norwegian Institute of Public Health
PDF = Probability Density Function
RFID = Radio-Frequency IDentification
SARS = Severe Acute Respiratory Syndrome
SARS-CoV-2 = Severe Acute Respiratory Syndrome CoronaVirus 2
SIR = Susceptible - Infected - Recovered
WHO = World Health Organization

ADM = Administrative staff
MED = Medical doctors
NUR = Nurses and nurses’ aides
PAT = Patients

v



vi



Chapter 1
Introduction

The ongoing coronavirus pandemic is not the first pandemic to ravage the world [1]. In-
fectious diseases have existed since the early hunter-gathering days. The pathogens that
established in these societies, often consisting of 50 to 100 individuals, were character-
ized by high transmission rates and by inducing low immunity [2]. The domestication of
animals and the increasing population density following the Neolithic Revolution played
an important role in the increasing prevalence of communicable diseases [3]. Several of
the currently existing infectious diseases are thought to originate from domestic animals.
For instance, smallpox is likely to have evolved from cowpox, whereas the virus causing
measles is closely related to rinderpest, also known as cattle plague [2]. The denser living
conditions facilitated the spread of disease and did also have an impact on hygiene aspects,
such as the quality of drinking water [4]. In recent times, globalization has shrunk the time
and space by erasing economic, political and technological borders. The increased human
interactions across the globe facilitate a more rapid spread of infectious diseases and make
it more difficult to contain outbreaks [5]. Although we now dispose a completely different
arsenal of weapons concerning medical resources and infection control strategies com-
pared to the hunter-gathering societies, detailed knowledge on the underlying spreading
mechanisms is crucial to implement well-founded and effective control measures.

Because human infectious diseases transmit from one individual to another, networks
describing human interactions are central in the efforts to understand how these diseases
evolve and spread [6]. The routes of transmission may vary [7]: Respiratory transmission
involves the spread of pathogens via respiratory droplets, for instance the transmission of
the influenza virus in droplets resulting from a sneeze or a cough [8]. Other pathogens
transmit via fecal-oral routes, such as several Salmonella species transmitting from the
feces of an infected individual by contaminating food or water sources [9]. Vector-borne
diseases transmit between two organisms via a vector, an agent carrying the pathogen. Ex-
amples include the mosquito-borne pathogens causing diseases such as malaria and dengue
fever [10] or the oriental rat flea carrying Yersinia pestis [11]. The latter is the causative
agent for the Black Death, which spread across Europe in the middle of the 14th century,
killing an estimated one-third of the European population [12]. Other pathogens spread
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Chapter 1. Introduction

via sexual transmission, such as the bacterial species Neisseria gonorrhoeae and Chlamy-
dia trachomatis causing gonorrhea and chlamydia, respectively. Thus, when studying the
spread of an infectious disease, its route of transmission may affect the choice of a suit-
able inter-individual network. For instance, a network based on reported sexual contacts
is likely to capture the spread of a sexually transmitted infection better than a network
created from detected physical proximity would. In addition, the scale of the network may
vary [13]: Networks may be large-scale, as the global air traffic network [14] connecting
Wuhan Tianhe International Airport in the Hubei province with airports across the globe,
national as inter-hospital networks consisting of healthcare institutions connected by pa-
tient transfers [15], or local as inter-individual networks connecting physicians, nurses and
patients through close-proximity interactions in a hospital ward [16].

Computational modeling is a helpful tool in the work of obtaining a better understand-
ing of how a disease spreads [17]. By creating a digital imitation of the world, a country
or a hospital ward, modeling allows for the exploration of control measures and variations
in epidemiological variables, circumnavigating the ethical dilemmas these experiments
would entail in real-life scenarios [18]. Several modeling frameworks have been developed
for this purpose, such as the Global Epidemic and Mobility (GLEaM) model which incor-
porates spatial population data and travel patterns to simulate worldwide epidemic spread
[19]. A branch of the modeling universe called agent-based modeling (ABM) has proven
particularly useful for exploring how macro-level patterns evolve from micro-level rules
[20]. This modeling approach is built upon interacting agents, all with a set of properties
and actions governing their behavior [21]. Compared to more traditional equation-based
models, ABMs are able to capture minor differences in agent behavior or characteristics.
Hence, the system is not averaged out, but able to capture heterogeneity [22].

The urge to obtain a better understanding of the nature of human pathogens and their
spreading potential is everlasting and fundamental. Originally, this thesis aimed to in-
vestigate the evolution and spread of antibiotic resistance, an increasingly severe medical
challenge that the World Health Organization (WHO) characterizes as “one of the biggest
threats to global health” [23]. The rising prevalence of the novel coronavirus over the past
months, however, offered an opportunity to shift the focus and take part in the ongoing
work towards obtaining a better understanding of the spreading nature of SARS-CoV-2.
Therefore, this thesis aims to develop a novel modeling framework for simulation of
the spread of SARS-CoV-2 on a time-evolving contact network, which can be used to
examine underlying spreading mechanisms and identify effective control measures.
We divide this aim into three objectives: The first objective is to extract parameter values
from observed patterns in an empirical, temporal contact network. The second objective is
to build an agent-based model that combines the simulation of a temporal contact network
and the spread of SARS-CoV-2 through the evolving inter-individual contacts. The third
objective is to demonstrate some of the model features, test the model consistency and sta-
bility, and lastly evaluate how well the simulated contact network performs in recreating
the empirical contact network properties.
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Chapter 2
Theory

This chapter is divided into four main parts: The first part gives an introduction to relevant
theory regarding the Coronavirus Disease 2019, with emphasis on epidemiological charac-
teristics and the course of disease. The second part presents theory related to networks and
network spreading phenomena, including an introduction to temporal contact networks.
The third part discusses epidemic modeling approaches and describes agent-based model-
ing in more detail. Lastly, the fourth part presents a selection of relevant theory regarding
statistics and probability distributions.

Parts of this chapter dealing with network theory and epidemic modeling is based on
material presented in my previous project report “Agent-Based Modeling of Evolution and
Spread of Antibiotic Resistance on Networks: A Literature Review” [24]. An overview of
the relevant sections can be found in Appendix A.1.

2.1 Coronavirus Disease 2019
In late December 2019, the China National Health Commission received reports of several
cases of pneumonia of unknown origin [25]. Many of the cases were linked to the Huanan
seafood wholesale market in Wuhan, the capital city of the Hubei province in China [26].
Analysis of the isolated virus revealed a novel Betacoronavirus strain showing a consider-
able nucleotide identity with the viral strains causing Severe Acute Respiratory Syndrome
(SARS) and Middle East Respiratory Syndrome (MERS) [27]. The first fatal outcome
among confirmed cases was reported on January 11 [28, 29]. Two months later, on March
11, there were reported more than 118 000 cases in 114 different countries, and the WHO
declared the outbreak a pandemic [30]. At the time of writing (June 15, 2020), there are
over 7 873 221 confirmed cases and 432 173 deaths reported worldwide [31].

The ongoing pandemic of the coronavirus disease 2019 (COVID-19), is caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [32]. In humans, coron-
aviruses can cause diseases ranging from mild respiratory infections to severe pneumonia.
Coronaviruses can also be pathogenic in other mammals and birds [33]. The term ‘coron-
avirus’ was firstly used in 1968 by a group of virologists describing a new family of viruses

3



Chapter 2. Theory

Figure 2.1.1: Transmission electron micrograph of an avian coronavirus belonging to the same viral
family as SARS-CoV-2. The surface protein spikes resemble a solar corona and has given the family
its name [34, 35]. Photo credit: Centers for Disease Control and Prevention, Dr. Fred Murphy.

[34]. When studying the virus by electron microscopy, the encircling halo of protein spikes
on the virus surface gave associations to the solar corona [35], illustrated in Figure 2.1.1.

The current pandemic joins the ranks of two other prominent coronavirus outbreaks
during the last twenty years. The outbreak of SARS in 2002-2003 started in the Guang-
dong Province in the southern part of China. The outbreak resulted in just over 8000 cases
and 774 deaths, giving a case fatality rate of approximately 9.6 % [33]. After mainland
China, Hong Kong, Taiwan, Canada and Singapore reported the most number of cases
[36]. Several activities in the southeast part of Asia and Toronto, Canada were shut down
to prevent spreading. It is estimated that the SARS outbreak resulted in a loss of economic
activities worth nearly $40 billion US dollars [33]. In comparison, the Asian Development
Bank has estimated that the economic impact of COVID-19 could reach $8.8 trillion US
dollars [37]. A new coronavirus started spreading in the Middle East approximately ten
years after SARS emerged [33]. The novel virus caused several cases of severe respira-
tory tract infections. The disease, known as MERS, killed over one-third of the infected
individuals, 858 out of approximately 2500 confirmed cases [38]. The case fatality rate
of 34.4 % is hence significantly higher than for SARS. There have been several cases of
resurgence in the years following the initial outbreak in 2012, for instance in South Ko-
rea in 2015 where a total of 168 cases were confirmed in the months following the return
of an infected 68-year-old man who had been visiting several Middle East countries on a
business trip [39]. Both SARS-CoV and MERS-CoV have shown to originate from bats:
The former spread from bats to humans via Asian palm civets, whereas the latter spread
from bats to humans via camels [40, 41].

The global death toll due to COVID-19 has long since passed the number of deaths
caused by SARS and MERS combined, even though COVID-19 so far has shown to have
a lower case fatality rate than its previous relatives [38]. The three following sections give
an introduction to relevant theory related to the transmission of SARS-CoV-2, the course
of disease and lastly control measures implemented in order to slow the spread.
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2.1 Coronavirus Disease 2019

2.1.1 Transmission

At an early stage, there was no evidence of inter-individual transmission of SARS-CoV-2
in the scientific literature [28]. Many of the early cases were directly linked to the Huanan
seafood wholesale market and pointed towards a possible animal-to-human transmission
[42]. Studies do suggest that this coronavirus, like its predecessors, originates from bats,
and that an animal sold at the seafood market may have served as an intermediate animal
host enabling transmission to humans [43–45]. One of the earliest indications of human-to-
human transmission was presented by Chan et al. who analyzed five cases of pneumonia
in a family who had returned to Shenzhen after visiting Wuhan. An additional family
member, who had not visited Wuhan, was infected with the virus after several days of
contact with the infected family members [26]. Li et al. points out that the rapid spread
of SARS-CoV-2 must imply a high degree of human-to-human transmission and not by
spillover events from animals to humans alone [45].

After it became clear that SARS-CoV-2 spreads among humans, efforts have been
made to determine how the virus spreads [47]. The question of whether the virus can
transmit through the air has been of particular interest. Whereas some pathogens transmit
through droplets generated from coughing or sneezing, other pathogens can spread through
exhaled aerosols [47]. The size of the particle carrying the pathogen affects both how long
and the particle can linger in the air before it settles on a surface, and how far down the
respiratory tract of a susceptible individual the virus can reach [46]. Figure 2.1.2 illustrates
how the continuous specter of particle sizes can be classified based on the aerodynamic
diameter, dA: The largest droplets, dA > 100µm, will settle on a surface within seconds
after being expelled. Pathogens carried by large droplets can thus only be transmitted
through direct or indirect contact, for instance through fomites [46] such as door handles
or payment terminals. Droplets smaller than 100µm, on the other hand, are inhalable and
can enter the body through the nose or mouth. The smallest particles are referred to as
respiratory droplet nuclei. These settle slowly, travel further than larger droplets and can
penetrate to the alveolar region of the lungs [46].

Studies have established that SARS-CoV-2 transmits from one individual to another

Figure 2.1.2: Respiratory droplets can be classified based on their aerodynamic diameter: Res-
pirable droplet nuclei and inhalable large droplets contribute to airborne, droplet and contact trans-
mission, whereas large droplets settle on surfaces within seconds only can spread via contact trans-
mission. Based on [46].
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Chapter 2. Theory

via respiratory droplets in close contact settings1 or indirectly via contaminated fomites
[29, 42, 50]. According to the WHO, there is not sufficient evidence for claiming that
the novel coronavirus is airborne [51]. However, a recent study measuring the level of
SARS-CoV-2 in aerosols in two Wuhan hospitals shows elevated concentrations of viral
RNA in patients’ toilets and public areas. The analysis does not confirm the infectivity of
the detected viruses but suggests a potential airborne route of transmission [52].

The Basic Reproduction Number

There is also uncertainty related to the contagiousness of SARS-CoV-2, i.e. how easily
it spreads from one individual to another [53]. A frequently used quantity describing the
transmission potential of a pathogen in a population is the basic reproduction number, R0.
This quantity is defined as the number of secondary cases one single infective individual
can cause in a fully susceptible population, i.e. where no one has immunity towards the
given pathogen [54]. The basic reproduction number is not solely determined by the char-
acteristics of the pathogen: The number depends on how long the infected individuals are
infectious, the number of contacts they make with susceptible individuals in this period
and lastly the probability of transmission during each of these contacts [55]. Hence, R0

for the same disease can vary from one place to another, for instance depending on social
behavior. As long as the value ofR0 is kept below one, the disease will eventually become
extinct as each infectious individual infects less than one new individual. If R0 exceeds
one, on the other hand, the initial cases may result in a large outbreak affecting nearly all
individuals in the population [55].

There exists several estimates of R0 for SARS-CoV-2. Some of the estimates are
presented in Table 2.1.1, ranging from below 2 to almost 6. In February, WHO estimated
the value of R0 to be between 2.0 and 2.5 [56]. In comparison, R0 is estimated to 12-18
for measles and approximately 1.3 for the seasonal influenza [57, 58].

Table 2.1.1: Estimated values for the basic reproduction number R0 for SARS-CoV-2 with 95 %
confidence intervals. Most results are based on numbers from Wuhan and/or mainland China, except
the results presented by Zhang et al. which are based on data from the outbreak on the Diamond
Princess cruise ship. ∗The interval is given as a 90 % high density interval. †Assumes an 8-fold
increase in reporting rate. ‡Assumes a 2-fold increase in reporting rate.

Authors R0 estimate 95% CI Citation

Wu et al. 1.94 (1.83 - 2.06) [59]
Ferretti et al. 2.0 (1.7 – 2.5) [60]
Riou & Althaus 2.2 (1.4 - 3.8)∗ [61]
Li et al. 2.2 (1.4 - 3.9) [50]
Zhao et al. 2.24† (1.96 - 2.55) [62]
Zhang et al 2.28 (2.06 - 2.52) [63]
Zhao et al. 3.58‡ (2.89 - 4.39) [62]
Sanche et al. 5.7 (3.8 - 8.9) [64]

1The World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC) define close
contact as being within a range of one and two meters, respectively [48, 49].
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2.1 Coronavirus Disease 2019

2.1.2 Course of the Disease
The previous section gave an introduction to how SARS-CoV-2 transmits and presented
estimates of the basic reproduction number describing its transmission potential in a popu-
lation. The following section introduces key aspects of the course of disease of COVID-19,
including the duration of the incubation period, common symptoms, the rate of asymp-
tomatic cases, presymptomatic contagiousness and the observed case fatality rate.

Incubation Period and Main Symptoms

The delay from an individual is invaded by a pathogen until symptoms appear is referred to
as the incubation period [65]. In order to determine the incubation period for SARS-CoV-
2, one must therefore estimate the time of exposure, for instance by mapping travel patterns
from Wuhan or by identifying contact periods with infected individuals, in addition to the
time of symptom onset [66].

In February 2020, the WHO published a mean incubation period of approximately 5
to 6 days, with a range spanning 1 to 14 days [56]. This estimate is supported by several
analyzes: Zhang et al. analyzed data from over 8500 cases in 30 Chinese provinces and
estimated the mean incubation period to 5.2 days, with a 95 % confidence interval spanning
1.8 to 12.4 days [67]. Linton et al. estimated the incubation period based on data from
158 individuals traveling in Wuhan and found a mean incubation time of 5.6 days, with a
range spanning from 2 to 14 days with 95 % confidence [68]. Lauer et al. analyzed the
incubation time among 181 confirmed cases in China where both exposure and symptom
onset were identifiable. They estimated the median incubation time to 5.1 days. Based
on their analysis, they concluded that 97.5 % of all infected who develop symptoms, do
so within 11.5 days after exposure. This analysis also pointed out that approximately 1 %
of infected individuals develop symptoms after 14 days [66]. Backer et al. studied 88
confirmed cases by linking their travel history to or from Wuhan together with symptom
onset. They estimated the mean incubation time to be 6.4 days, ranging from 2.1 to 11.1
days [69]. As these estimates show, the incubation period of COVID-19 can vary greatly
among individuals.

Also the clinical picture of COVID-19 has shown to manifest very differently from
person to person [70]. In February, the WHO presented a list of the most common symp-
toms based on almost 56 000 confirmed cases [56]. The top five most common symptoms
and their associated frequencies are presented in Table 2.1.2.

Table 2.1.2: The five most frequent symptoms of COVID-19, based on approximately 56 000 con-
firmed cases. The numbers were presented in the middle of February 2020 [56].

Symptom Frequency (%)

Fever 87.9
Dry cough 67.7
Fatigue 38.1
Sputum production 33.4
Shortness of breath 18.6
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Probability of Asymptomatic Infection

While the incubation period describes the duration from infection to symptom onset, not all
individuals infected with SARS-CoV-2 experience symptoms [71]. Asymptomatic courses
of disease have been observed in all age groups [71], but children and younger adults seem
to have a greater probability of not developing symptoms [72, 73].

As per May 2020, there is limited literature on the rate of asymptomatic infections.
An important contribution comes from the COVID-19 outbreak on the Diamond Princess
cruise ship, where over 3700 people were put in quarantine after a former passenger had
tested positive for SARS-CoV-2 [74]. The ship arrived in Yokohama, Japan on February
5, and by February 21, 634 people had tested positive for the virus. Based on the results
from the 3063 conducted tests, Mizumoto et al. estimated the asymptomatic proportion
to be 17.9 % with a 95 % credible interval ranging from 15.5 to 20.2 %. Approximately
three-quarters of those who tested positive were aged 60 years or older [74]. In Vo’, a
municipality in the Italian region Veneto, the entire population was put under lockdown
for 14 days after a resident, the first in Italy, died from a COVID-19 infection on February
21, 2020 [75]. During this two-week period, the entire population was tested twice for
SARS-CoV-2, using nasopharyngeal swabs. Results from the two surveys showed that
43.2 % of the confirmed cases were asymptomatic [75]. Additionally, according to results
from voluntary testing conducted on Iceland, approximately 50 % of the individuals who
tested positive reported no symptoms of the disease [76]. These results underpin that the
rate of asymptomatic COVID-19 cases could be high.

Infectiousness in Absence of Symptoms

When discussing asymptomatic carriers of SARS-CoV-2, another question arises: To
which extent do infected individuals without symptoms contribute to the overall trans-
mission? Bai et al. were one of the first to report evidence of transmission from an asymp-
tomatic individual. They analyzed the case history of a family of five individuals in China,
who were all infected with SARS-CoV-2 after having contact with an asymptomatic fam-
ily member returning from Wuhan. Based on the sequence of events, it is likely that the
family was infected by the asymptomatic individual [77]. Analysis of samples taken from
the upper respiratory tract of patients with confirmed COVID-19 infections has shown
similar levels of viral load in asymptomatic individuals as in symptomatic individuals [75,
78]. These results suggest that also asymptomatic carriers can shed the virus and hence in-
fect others. The studies comparing levels of viral load or presenting examples of probable
cases of asymptomatic transmission suggest that individuals lacking symptoms may con-
tribute to the spread of the novel coronavirus but does not quantify the contribution to the
overall spread. The actual role of asymptomatic individuals in the spread of SARS-CoV-2
remains to be determined. [79].

The question of transmission in the absence of symptoms applies to presymptomatic
carriers as much as asymptomatic carriers. One way to evaluate the role of presymptomatic
transmission is to investigate the serial interval, also known as the generation time [65, 80].
This term refers to the time span between two analogous phases in the course of a disease,
for instance the symptom onset, in a chain of successive infection cases [65]. An example
of two successive cases is illustrated in Figure 2.1.3. If the duration of the serial interval
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Figure 2.1.3: The serial interval, also called the generation time, is defined as the time span between
two analogous phases, for instance the symptom onset, in a chain of successive cases [65]. The
figure illustrates two successive cases, an infector and an infectee, where the serial interval is shorter
than the incubation period. The different phases of the disease are color-coded and named in the
respective boxes. Based on theory presented in [80].

is shorter than the incubation time, the virus must necessarily have been transmitted while
the infector was still in the incubation period [80].

Several studies present numbers supporting presymptomatic transmission of SARS-
CoV-2: Tindale et al. investigated data from 93 confirmed cases in Singapore and 135
confirmed cases in Tianjin, China. In both data sets, the mean serial interval was found to
be shorter than the estimated mean incubation time, see Table 2.1.3. Hence, they inferred
that the virus on average was transmitted 2.55 and 2.89 days before symptom onset, in-
dicating presymptomatic transmission [80]. Another, larger study comprising 468 cases
from mainland China estimated the average serial interval to be 3.96 days [81], thus even
shorter than 4.56 and 4.22 days. In the same study, Du et al. reported that in 12.6 % of
these cases, the infectee had symptoms earlier than the infector, hence yielding a negative
serial interval. These results also support presymptomatic transmission [81]. He et al. es-
timated the serial interval of 77 transmission pairs and found that the infected individuals
were infectious from 2.3 days before symptom onset. They also estimated 44 % of the
infectees were infected before symptom onset of the infector [82].

Table 2.1.3: Estimated durations of incubation time and serial intervals for two data sets obtained
from confirmed cases in Singapore and Tianjin, respectively. The time spans are given as the mean
number of days, with a 95 % confidence interval in brackets [80].

Data set Incubation time Serial interval

Singapore 7.11 (6.13, 8.25) 4.56 (2.69, 6.42)
Tianjin 9.02 (7.92, 10.2) 4.22 (3.43, 5.01)

Other studies suggest that the serial interval exceeds the incubation time and do there-
fore speak against presymptomatic transmission. Ki et al. estimated the incubation period
and serial interval based on 28 cases in Korea to 3.9 and 6.6 days, respectively [83]. Based
on the first 425 confirmed cases in Wuhan, Li et al. estimated the average incubation time
to 5.2 days and the serial interval to 7.5 days [50]. The results presented by Ki et al. and
Li et al. do hence suggests that SARS-CoV-2 transmits after symptoms have appeared.
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Duration of Infection and Infectiousness

The duration of a COVID-19 infection has shown to depend on the severity of disease. In
case of a mild infection, the symptoms most often pass within one to two weeks, whereas
in case of a more severe disease course, the symptoms may last for three to six weeks
[73]. Thus, there is a great variety in the infection duration among individuals. There
exist several estimates of the duration COVID-19 infections, several of them investigating
the time span from symptom onset to death. Wang et al. analyzed data from the first
seventeen reported deaths in China. They reported a median of 14 days from the first
symptoms to death, with a range spanning 6 to 41 days [25]. Two other estimates are given
as lognormal distributions2: Jung et. al deduced a lognormal distribution with location and
scale parameters of 2.84 and 0.52, respectively, yielding a median value of approximately
17 days from symptom onset to death [84]. Linton et al. report a median value of 13.2
days, and that 99 % of deaths occurred within 36.0 days from symptom onset [68].

The time span of which an infected individual is infectious has a big impact on the
spreading potential of a disease [55]. The existing literature on the infectiousness of
COVID-19 suggest that the infectiousness varies throughout the course of the disease [78,
82, 85, 86]: In one of these studies, He et al. investigated the temporal transmissibility
dynamics of COVID-19 by combining analysis of viral load throughout the disease course
with estimated serial intervals among infector-infected pairs. They observed that the viral
load was highest at the time of symptom onset, followed by a gradual decrease towards
towards the limit of detection around three weeks. They also observed a substantial trans-
mission potential before symptom onset [82]. Another study, which showed a similar
decline of viral load in the sputum, also observed that the shedding of viral RNA outlived
the presence of symptoms [85].

Case Fatality Rate

As previously introduced, COVID-19 has shown to be less deadly per infection case than
its coronavirus relatives SARS and MERS [38]. An important measure of the severity
of a disease is the case fatality rate (CFR). This term describes the fraction of fatalities
among confirmed cases [87, 88], see Equation (2.1.1). Due to limited testing capacity
and the perpetual challenge of identifying infected individuals with asymptomatic or mild
disease courses, the number of confirmed cases in the denominator is often lower than
the actual number of infection cases. Hence, the calculated CFR can be an overestimated
representation of the reality [88]. The term ‘infection fatality rate’ (IFR) is sometimes
used to capture fatal outcomes among all infected individuals [89].

CFR =
number of deaths

number of confirmed cases
(2.1.1)

Several risk factors are affecting the severity and mortality of a COVID-19 infection
[90]. One of them is the presence of underlying health conditions, such as chronic respira-
tory disease, cardiovascular disease, cancer, hypertension or diabetes. There has also been
reported an increased risk in men than in women, an observation that may be influenced
by higher smoking rates and related comorbidities. Another key risk factor is related to

2See Section 2.4.2 for details on probability distributions.
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Figure 2.1.4: Estimated age-specific case fatality rates among symptomatic individuals from Hubei
and Italy. The error bars indicates a 95 % credible interval [91]. The inset figure gives a closer look
at the age groups with lower mortality rates. Based on data presented in [91].

older age [90]. Hauser et al. presented estimated age-specific case fatality rates based
on data from the Hubei province in China and the northern part of Italy [91]. Their re-
sults show that the mortality increases with age and are thus in compliance with previous
analyses [90]. Figure 2.1.4 presents their estimated age-specific case fatality rate among
individuals with symptoms.

Secondary infections may also affect the mortality of COVID-19 [92]. Opportunis-
tic pathogens take advantage of the absence of a normal host resistance, for instance in
individuals where the pulmonary tissue is weakened after a respiratory infection or in pa-
tients requiring mechanical ventilation. In the latter case, the tube that is passed down
the windpipe offers an artificial surface ideal for bacterial biofilm formation [93–95]. In-
creased morbidity and mortality associated with bacterial secondary infections have, for
example, been shown for both seasonal and pandemic influenza [95, 96]. In a study inves-
tigating demographic, clinical and laboratory data from 191 COVID-19 patients admitted
to two hospitals in Wuhan, Zhou et al. observed that half of the patients who died from
COVID-19 had contracted a secondary infection, compared to 1 % of the survivors [32].
Almost one-third of the patients who received invasive mechanical ventilation experienced
ventilator-associated pneumonia [32].

Moreover, 95 % of the hospitalized patients were treated with antibiotics [32], which
leads to the question of whether the prevalence of antibiotic resistance may affect the mor-
tality of the ongoing pandemic. Through varying mechanisms of action, resistant bacteria
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can withstand antibiotic treatments. Either, the bacteria are able to reduce the concentra-
tion of drugs reaching its cellular target, for instance by inactivating the drug, decreasing
the uptake or by producing efflux pumps that transport the drug out of the cell. Or, the
bacteria circumnavigate the metabolic target of the drug, for instance by using an alterna-
tive metabolic pathway or by altering the structure of the enzyme of attack so that it is no
longer recognizable [97]. Thus, resistant bacteria do not respond to antibiotic treatment as
susceptible bacteria would, resulting in increased morbidity and mortality [98]. A central
opportunistic bacteria associated with an increasing antimicrobial resistance is Staphylo-
coccus Aureus [99]. This bacterial species can cause diseases ranging from skin infections
to respiratory tract infections and sepsis [100]. Table 2.1.4 shows how the prevalence
of methicillin-resistant S. Aureus (MRSA) has evolved in some European countries from
2015 through 2018 [101]. The population-weighted mean of the countries belonging to the
European Union (EU) or the European Economic Area (EEA) is included for reference.
There exist several opportunistic bacteria that potentially can contribute to an increased
COVID-19 mortality. To narrow the scope of this work, MRSA is used for demonstration.

Table 2.1.4: Overview of the determined percentage of methicillin-resistant bacteria among invasive
isolates of S. aureus (MRSA) in a selection of countries belonging to EU or EEA. The population-
weighted mean is marked in boldface. Obtained from [101].

Country 2015 2016 2017 2018

Norway 1.2 1.2 1.0 0.9
Sweden 0.8 2.3 1.2 1.9
United Kingdom 10.8 6.7 6.9 7.3
EU/EEA 19.0 17.7 16.8 16.4
Spain 25.3 25.8 25.1 24.2
Italy 34.1 33.6 33.9 34.0

There exist several studies comparing the mortality of infections caused by methicillin-
resistant and methicillin-sensitive S. aureus (MSSA) strains: Hanberger et al. investigated
data from 13 796 patients admitted to intensive care units (ICUs) from 75 countries. Ap-
proximately 1000 of these patients contracted an S. aureus infection, roughly equally many
susceptible as resistant towards methicillin. They observed a statistically significant differ-
ence in mortality rates between patients infected with MRSA compared to MSSA [102],

Table 2.1.5: Comparison of some observed case fatality rates of S. aureus infections caused by
methicillin-resistant and -susceptible bacteria, denoted MRSA and MSSA, respectively.

Authors MRSA MSSA Ratio Comment Citation

Hanberger et al. 36.4 % 27.0 % 1.35 Hospital [102]
Hanberger et al. 29.1 % 20.5 % 1.42 ICU [102]
Gastmeier et al. 16.9 % 7.0 % 2.41 - [103]
Blot et al. 63.8 % 23.7 % 2.69 In-hospital mortality [104]
Blot et al. 53.2 % 18.4 % 2.89 30-day mortality [104]
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see Table 2.1.5. In another study, Gastmeier et al. investigated the mortality among pa-
tients with S. aureus pneumonia. The case fatality rate among patients with a resistant
strain was more than double as high as for patients with the susceptible strain [103]. Blot
et al. found even larger ratios when investigating the mortality among 85 patients with S.
aureus bacteremia, a condition where the bacteria is present in the blood, with ratios equal
to 2.69 and 2.89 for in-hospital mortality and 30-day mortality, respectively [104].

Immunity and Risk of Reinfection

As per May 2020, there exists no approved vaccine providing immunity towards SARS-
CoV-2 [105]. Immunity can hence only be acquired by being exposed to the virus, re-
sulting in a production of antibodies [65]. Reports of patients who have tested positive
after recovery, however, have raised questions about whether convalescing patients could
be reinfected [106, 107].

Two recent studies suggest that COVID-19 infections do results in the production of
antibodies: Bao et al. infected four adult rhesus macaque monkeys with SARS-CoV-2 and
monitored clinical signs and immune response in the following weeks [107]. 28 days after
the initial infection, all monkeys tested positive for the specific antibodies. Then, two of
the monkeys were rechallenged with the same viral dose to investigate a potential reinfec-
tion. Analyses of viral loads in nasopharyngeal and anal swabs five days after re-exposure
showed no signs of infection recurrence, hence indicating that the primary infection pro-
tected the monkeys from the secondary exposure [107]. Fafi-Kremer et al. tested 162
recovered hospital staff members from Strasbourg University Hospitals for anti-SARS-
CoV-2 antibodies [108]. All participants had recovered from a mild COVID-19 infection.
They found that antibodies against SARS-CoV-2 were detectable in nearly all hospital
staff thirteen days after symptom onset. Their analysis also showed that the proportion of
individuals with detectable antibodies increased with the number of weeks after symptom
onset [108].

2.1.3 Control Measures
Several infection control measures have been implemented in order to slow the spread of
SARS-CoV-2. This section briefly presents some of the key interventions and the current
guidelines on testing, isolation, quarantine and contact tracing given by the Norwegian
Institute of Public Health (NIPH).

• Social distancing: By increasing the physical distance between individuals, social
distancing aims to reduce the mixing of infectious and susceptible individuals [109].

• Testing: A test can either be conducted to confirm or deny a current infection, or
to determine whether an individual has antibodies from a previous infection [110].
Only the former test is relevant here. The limited testing capacity has necessitated
a prioritizing of suspected COVID-19 cases based on their clinical picture, profes-
sion within healthcare services or close contact with confirmed cases of COVID-19
[111]. As of April 1, 2020, NIPH recommends testing of all people with “[...] acute
respiratory tract infection with fever, cough or breathing difficulties.” The following
prioritized list is given (directly obtained from [111]):
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1. Patients in need of hospital admission

2. Patients / residents in health institutions

3. Employees in the healthcare service with work that puts them in the vicinity
of patients. (This group may be considered for testing even for milder acute
respiratory symptoms with no other probable cause that have lasted for more
than 2 days.)

4. People over the age of 65 who have underlying chronic diseases, e.g.:

– cardiovascular disease
– diabetes
– chronic lung disease
– cancer
– high blood pressure.

5. People who have been in close contact with a confirmed case of COVID-19.

• Isolation: Isolation of confirmed cases is implemented in order to prevent the virus
from spreading to susceptible individuals. As per April 1, 2020, individuals with a
confirmed COVID-19 infection should be isolated until SI7 days after symptoms
are gone [112].

• Quarantine: Individuals who have had close contact with a confirmed COVID-19
case should enter a quarantine lasting 14 days3 after the last contact with the infected
individual [113].

• Contact Tracing: A positive COVID-19 test initiates tracing of contacts with po-
tential infectees. These include all individuals who have had close contact with the
confirmed case from 24 hours4 before symptom onset until the infected individual
comes out of isolation [114]. Indoors, NIPH defines ‘close contact’ as being closer
than two meters for more than 15 minutes continuously.

This section has introduced relevant theory and quite a few numbers describing the
transmission of SARS-CoV-2 and the course of disease of COVID-19. The next main
section discusses theory related to networks and network spreading phenomena, which is
useful for describing how SARS-CoV-2 spreads in a human population.

3On May 8, 2020 the duration of quarantine was changed to 10 days after last contact with a confirmed case.
4On May 8, 2020 the definition was changed to include close contacts from 48 hours before symptom onset.
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2.2 Networks and Spreading Phenomena
A network consists of nodes connected by links [115]: A social network may consist of
users connected by friendships, or an air traffic network of airports connected by flights,
illustrated in Figure 2.2.1. The links of a network may be directed or undirected, depend-
ing on whether the interactions have directionality or not. In the social network example,
Facebook is an example of an undirected network where a friendship is a two-way inter-
action between two users. Twitter, on the other hand, is an example of a directed network
where one user may follow the other one without being followed back. The links of a
network may also be weighted or unweighted. The former case is exemplified through an
air traffic network where the frequency of flights between two destinations matter; a route
flown several times a day will have a greater weight than a route flown once a week.

Figure 2.2.1: Illustration of networks with nodes connected by links. A social network with users
connected by friendships and an air traffic network with airports connected by flights.

Networks are useful for describing several spreading phenomena [115]: Biological
spreading phenomena comprise the transmission of pathogens on networks interconnect-
ing human beings. An example of such a network is the airline network and its role in the
2003 outbreak of SARS [116]. Another is the networks of sexual partners and their signif-
icance in the transmission of the human immunodeficiency viruses (HIV) [117]. Digital
spreading phenomena may include the spread of digital viruses, malicious software which
for instance can spread through an e-mail network [118]. Social networks can capture the
spread of knowledge, behavior or rumors. Twitter has proven useful for studying such
phenomena as all messages by default are public [119]. When investigating spreading
phenomena on networks, the spreading ability of different nodes is of interest. Locating
nodes central to the spreading process in a network may, for instance, be an important step
in the process of designing efficient measures to prevent epidemic spreading [120]. Exam-
ples include targeted vaccination in a population [121] or targeted allocation of infection
control resources in an inter-hospital network [122].

The following section will give an introduction to network theory and relevant tools
for describing network topology and identifying central nodes. The first part addresses
static networks, whereas the second part discusses networks that evolve with time. The
third part introduces empirical contact networks and how these can be generated based
on close-proximity interactions. This part also presents a hospital ward contact network
in more detail. The theory presented in this section presents only a small excerpt of an
extensive field of study. The reader is referred to Barabàsi [115] or Newman [123] for
a more comprehensive introduction. Unless otherwise specified, the presented network
theory is based on these references.
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2.2.1 Static Networks

A network can be represented in several ways. For instance, all nodes connected by a link
might be stored in a list: {(1, 2); (2, 3); (1, 3)}. This list represents a network where
three nodes are linked in a triangle. For mathematical network analysis, a network is often
represented by its adjacency matrix A, where entry ij represents the relationship between
nodes i and j, as shown in Equation (2.2.1): In an undirected, unweighted network, an
entry equal to 1 represents an existing link between nodes i and j, whereas an entry equal
to 0 represents the absence of a link. The adjacency matrix of an undirected network is
symmetric, giving that if there exists a link between nodes ij, the same link exists between
ji. For a directed network, on the other hand, the value of entry ij only tells whether a
link from i to j exists, not if there is a link from node j to i. For weighted networks, the
entries of the adjacency matrix also give information about the weight of the links.

A =

A1,1 A1,2 ... A1,j

A2,1 A2,2 ... A2,j

...
...

. . .
...

Ai,1 Ai,2 Ai,3 Ai,j

(2.2.1)

The number of nodes in a network is denoted N and equals the number of rows or
columns in the square adjacency matrix. The total number of links is denoted M . For an
undirected network, the number of links is calculated by summarizing the number of all
non-zero entries in A and divide this number by two. Due to undirected links and sym-
metry in the adjacency matrix, all links are counted twice. As the following sections will
demonstrate, the adjacency matrix is useful for determining important network character-
istics, both for specific nodes and the network as a whole.

Local Centrality Measures

One of the most central node properties in a network is the node degree, describing the
number of neighbors the node is connected to. The degree for node i is denoted ki. For
an undirected and unweighted network, ki is calculated by summarizing the entries of its
corresponding column in the adjacency matrix, as shown to the left in Equation (2.2.2).
For directed networks, one distinguishes between incoming and outgoing degrees from a
node. For weighted networks, the equivalent of the node degree is called the node strength,
denoted si [124]. The node strength takes the link weights into account and is calculated by
summarizing the entries of the corresponding column for node i in the weighted adjacency
matrix w, as shown to the right in Equation (2.2.2).

ki =

N∑
j=1

Ai,j si =

N∑
j=1

wi,j (2.2.2)

Figure 2.2.2 illustrates three static networks. The network in panel A is both undirected
and unweighted, whereas the networks in panel B and C are directed and weighted, re-
spectively. The degree of the red-colored node in panel A simply equals the number of
nearest neighbors, yielding ki = 4. In panel B, the in-degree equals kini = 3, whereas the
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out-degree equals kouti = 2. The strength of the red-colored node in panel C takes the link
weights into account, yielding si = 11.25.

Figure 2.2.2: Local centrality measures in three static networks: Panel A shows an undirected,
unweighted network where the red-colored node has a degree equal to 4. In the directed network
in panel B, the red-colored node has an in-degree and out-degree of 3 and 2, respectively. Panel C
shows a weighted network where the red-colored node has a strength of 11.25.

The node degrees in a network can be used to say something about the network as
a whole. The average degree represents the average number of links per node, and can,
for instance, be used to characterize how dense or sparse the network is. Another central
network characteristic is the degree distribution, i.e. the probability P of a randomly
chosen node to have a degree k. The shape of the degree distribution can have a great
impact on how easily something spreads across the network. If a spreading agent reaches
a node with a high degree, this “super-spreader” can pass it on to many neighbors at once.

Path and Distances

In light of spreading phenomena, several important network measures relate to the path
between nodes, i.e. the number of steps required to move from one node to another.
Figure 2.2.3 illustrates the four steps required to move from node i to j. More specifically,
these steps constitute the shortest path between the two nodes. Additionally, one could
reach node j by either of the two other paths depicted with dashed links. These paths,
however, include one extra step compared to the shortest path. The shortest path between
node i and j is denoted L(i, j) and is defined as the lowest amount of steps required to
get one node to the other. The average shortest path for a node, 〈Li〉, is calculated by
summarizing the shortest paths to all other reachable nodes and divide by the total number
of nodes N , as shown in Equation (2.2.3).

Figure 2.2.3: The shortest path from node i to node j, enumerated and depicted with red-colored
links, consists of four steps. Additionally, one could reach node j by replacing step four with the
routes depicted by dashed links.
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〈Li〉 =
1

N

N∑
j=1

L(i, j) (2.2.3)

In undirected networks, all nodes are reachable from one another as long as they be-
long to the same connected component. Figure 2.2.4 shows an example of a network
consisting of two disconnected components. The three nodes in the smallest component
are not reachable from any of the nodes in the larger component. The largest connected
component in a network is often referred to as the giant component (GC). In directed net-
works, however, the directionality of the links may provide a path from node i to j without
offering a returning path. However, if a path exists from node i to j and from node j to k,
this implies that a path from i to k exists.

Figure 2.2.4: A network consisting of two disconnected components. The three nodes in the small-
est component are not reachable from any of the nodes belonging to the larger component. Once
you have seen the football player in this figure, there is no way to unsee it.

Global Centrality Measures

The node degree and node strength are local centrality measures for a node but does not
take the node’s position in the network as a whole into account. Two important centrality
measures that do are the closeness centrality (CC) and betweenness centrality (BC). The
closer to all other nodes a node is, the higher its CC is. The closeness centrality is defined
as the inverse of the average shortest path, as shown to the left in Equation (2.2.4). Con-
sequently, the shorter path node i has to all other nodes in the network, the higher CCi is.
The betweenness centrality is also based on shortest paths, but instead of looking at the
average shortest paths from node i, the BC is a measure of how many of the other nodes’
shortest paths are going through node i. This centrality measure is therefore suitable for
identifying important “bridges” in the network. Removing a node with a high BC from
the network would result in a drastic increase in the average shortest path in the network,
or split the network into separate, disconnected components. By denoting the number of
shortest paths between node j and k as ρ(j, k), and the number of these shortest paths
going through node i as ρi(j, k), the BC for node i is calculated as the sum of the ratio
between the two, as shown to the right in Equation (2.2.4).

CCi = 〈Li〉−1 =

(
1

N − 1

N∑
j=1

L(i, j)

)−1
BCi =

N∑
j,k=1;j 6=k 6=i

ρi(j, k)

ρ(j, k)
(2.2.4)
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The two global centrality measures CC and BC may rate the centrality of the same
node in a network differently. Figure 2.2.5 shows an illustration of calculated CCs and
BCs of nodes in the same network. The panel to the left shows that the red-colored node
in the very middle has the highest CC of all nodes. This node reaches all other nodes with
an average of 1.75 steps. The inverse of 1.75 is approximately 0.57. The panel to the right
shows that the most central node according to BC no longer is the node in the middle, but
the red-colored node to its left. Some of the nodes in this network have a betweenness
centrality of zero, implying that no shortest paths go through these nodes.

Figure 2.2.5: Illustration of closeness centrality and betweenness centrality of nodes in a simple
network. The red-colored node represents the most central node. The figure illustrates how different
centrality measures can range the same node in a network differently. The values are found by using
the software Cytoscape, see Section 3.1.

Another approach for identifying nodes that are central in a network is by peeling off
less central nodes until an interconnected core remains [125]. For unweighted networks,
the k-core is calculated based on the node degree, where k denotes the minimum degree
of all nodes in the remaining subset of the network [126]. Thus, to find, for instance, the
2-core of a network, all nodes with a degree less than two is recursively removed until
all remaining nodes have a degree equal to or greater than two. The 1-core of a network
refers to the connected component where no isolated nodes in the network remain [126].
Figure 2.2.6 illustrates different k-cores of a simple network. For weighted networks, the
equivalent is called the s-core, peeling of nodes having a strength si less than s [125].

Figure 2.2.6: Illustration of a simple network and its k-cores. Nodes with degree less than k are
recursively peeled off, leaving a remaining core where all nodes have degree k or more. The given
network has no 4-core.
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2.2.2 Temporal Networks

So far, the discussion of networks has revolved around static networks, where the adja-
cency matrix A describes a set of non-dynamic interactions between nodes. In many real-
life cases, however, the interaction between nodes is not continuous. In cases where the
network changes with time, it is referred to as a temporal network [115]. These networks
can be described using a time-evolving adjacency matrix, Aij(t), where entry i, j is equal
to 1 if nodes i and j are connected at time t. Temporal networks are especially impor-
tant in terms of describing spreading phenomena where the spreading and network evolve
approximately at the same time scales [127]. An illustrative example is the spread of sex-
ually transmitted diseases. In sexual contact networks, the transmission of the infection is
directly correlated to the evolution of the contact network itself [128].

In the same way as the network topology influences the spreading dynamics on a net-
work, the temporal structure can have a great impact on the transmission process [127].
Panel A of Figure 2.2.7 illustrates how a temporal network can be visualized, denoting the
time-points of when the links are active indicated on each link. Panel B shows the corre-
sponding static aggregation. Panel C shows how the links of the temporal network evolve
with time. This network is rather simple, but illustrates an important concept related to
spreading phenomena on temporal networks: If the temporal network was projected to
a static network, a spreading agent would reach all nodes in the network in the course of
maximum two steps, regardless of which node it started at. In the temporal network, on the
other hand, the temporal structure sets limits for how large parts of the network a spread-
ing agent can reach and how fast it spreads [127]. If node A carries a spreading agent,
and this agent spreads immediately upon link-activation, node B is infected at time-step 6,
whereas node C is infected at time-step 8. Node D will not become infected. If node D is
the initially infected node, however, all nodes in the network are infected at time-step 6.

Figure 2.2.7: Panel A shows a temporal network with time-evolving links. The time-points of
activation are indicated on each link. Panel B shows a static projection of the temporal network.
Panel C shows explicitly how the links evolve through a series of time-steps. Adapted from [127].

20



2.2 Networks and Spreading Phenomena

As the example above points to, projecting a temporal network to a static network, may
result in significant loss of information about the system. In the following, a selection of
measures of temporal-topological structures are presented. Where not specified otherwise,
the following theory is based on Holme & Saramaki [127].

Time-respecting paths

As discussed in Section 2.2.1, a path refers to the sequence of steps required to get from
one node to another. In temporal networks, these paths are necessarily constrained by
the order of link activation, as the example presented above underlines. Within a certain
observation window t ∈ [t0, T ], a time-respecting path defines which nodes are reachable
from which other nodes in the temporal network. In the example above, for example,
there exists no time-respecting path from node A to node D. Similarly to static, directed
networks, an existing path from node i to j does not guarantee an existing path from j to
i. However, as opposed to directed networks, where an existing path from node i to j and
from node j to k implies that there is a path from i to k, the paths in a temporal network
are not transitive. The paths of a temporal networks are also temporal.

Two key measures follow the definition of time-respecting paths. Firstly, the set of
influence is a node specific property representing the set of nodes which can be reached
by time-respecting paths starting at node i. Thus, the set of influence for node A in the
example above includes nodes B and C, but not D. Secondly, the reachability ratio is a
network specific property based on the sets of influence for all nodes in the network. The
fraction of nodes in the set of influence is calculated for each node, contributing to the
average fraction of reachable nodes in the network as a whole. Hence, a reachability ratio
of 1.0 implies that all nodes can reach all other nodes through time-respecting paths in the
given time window.

In some spreading phenomena, one could imagine that a clock starts ticking when a
node becomes infected. The spreading agent could for instance be a rumor that is passed

Figure 2.2.8: Reachability ratio as function of maximum allowed waiting time for two real-life
temporal networks. Panel A shows a network of mobile telephone calls, whereas panel B shows an
airline network of passenger flights. Obtained from [127], based on data from [129].
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on from person to person or an infectious virus transmitting upon contact. When the given
time has passed, the node recovers and can no longer pass the spreading agent on to its
neighbors. Thus, in order for the spread to progress on the network, the node must be
able to infect its neighbors while still being infectious. The upper limit of this time span
from infection to recovery is called the maximum allowed waiting time, ∆c, and affects
the reachability ratio of the network. If a node never recovers once infected, ∆c → ∞,
a significantly larger proportion of the network can become infected compared to a case
where the the nodes recover almost immediately. How the reachability ratio varies with
maximum allowed waiting time gives important information about the temporal charac-
teristics of a given network. Figure 2.2.8 shows two examples: Panel A presents a mobile
telephone call network consisting of over 150 000 calls between almost 2000 users [129].
The reachability ratio increases rapidly when the maximum allowed waiting time passes
two days. Hence, if the interest of conveying an interesting rumor languishes within two
days, the story remains within a rather low proportion of the network. In panel B, which
presents an airline network consisting of approximately 180 000 flights connecting 279
US airports, the corresponding increase is observed around 30 minutes, which is consis-
tent with the minimum allowed transfer time between two connected flights [127, 129].

Temporal Centrality Measures

Many of the tools presented in Section 2.2.1, useful for describing static networks and
identifying nodes central to the spreading process, can be transferred to temporal net-
works. For instance, the time-dependent degree of a node i can be defined as the number
of links connecting the node to its neighbors in a given time window. For calculating
global centrality measures depending on paths, the path in static networks can be replaced
by the time-respecting path in temporal networks. The shortest path in a temporal network,
however, can be defined in two different ways: The distance refers to the number of links
required to get from one node to another, whereas the latency refers to the duration. The
average latency can be used to characterize the “velocity” of the temporal network and
describes how fast something can spread.

Regardless of choice of shortest path, either distance or latency, the temporal closeness
centrality and betweenness centrality can be expressed as presented in Equation (2.2.5). In
addition to deciding whether to describe the shortest path in terms of distance of latency,
one also must define the time interval t.

CCi,t = 〈λi,t〉−1 =

(
1

N − 1

N∑
j 6=i

λt(i, j)

)−1
BCi,t =

N∑
i 6=j 6=k

ρi,t(j, k)

ρt(j, k)
(2.2.5)

2.2.3 Empirical Contact Networks

The two examples of temporal networks presented in Section 2.2.2 illustrate how modern
inventions such as mobile telephones and air travels facilitate communication and inter-
action between human beings. Despite the technological development, face-to-face inter-
actions continue to be an important part of human behavior [130]. The social networks
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formed by these physical proximity interactions play an important role in the dissemina-
tion of information, opinions and not least infectious diseases. Therefore, building tem-
poral networks based on accurate empirical contact data may provide valuable insight into
epidemic spreading and the design of efficient control measures [130].

Traditionally, empirical contact networks have been generated based on self-reporting
systems such as contact diaries and surveys [131]. During the period of study the partic-
ipants note down information about the contacts they make, such as time, duration and
the name of the contact partner. This method of recording contacts has, however, shown
to have limited correlation with the actual contact patterns, largely influenced by underre-
porting of contacts [131]. The same contact data could also be registered by third party
observers monitoring the contacts between individuals [132]. A key limitation associated
with these approaches is the bias coming from the observation itself, as the presence of
observers may give rise to behavioral modifications [16].

A third approach is offered by the use of electronic proximity sensors [132]. Radio-
Frequency IDentification (RFID) technology registers close-proximity interactions (CPIs)
between all participants wearing badge-size electronic devices [133]. These wearable de-
vices exchange small ultra-low-power radio packets when being within a certain range, for
instance 1.5 meters. The registered contact results in a link between the two individuals in
the forming temporal network, as illustrated in Figure 2.2.9. The human body functions
as a radio frequency shield. Thus, by wearing the badges on the chest, only face-to-face
contacts are registered. By detecting contacts every 20 seconds, for instance, the use of
RFID tags offer a high resolution empirical contact network [16].

One RFID system used to generate several empirical inter-individual contact networks
is developed by SocioPatterns, a collaboration between several researchers and developers.
Many of the datasets obtained through this platform is made publicly available. These in-
clude contact networks from a primary school [134], a high-school [135], an office build-
ing [136], households in Kenya [137], two conferences and a museum exhibition [138,
139]. A network generated from registered contacts in a hospital ward [16] serves as basis
for the model developed in this thesis, and is presented in more detail below.

Figure 2.2.9: Contacts among participants wearing RFID devices are only detected when two in-
dividuals are located within a certain distance and facing each other. The signal is registered by an
RFID reader. Obtained from [133].
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A Hospital Ward Contact Network

The data constituting the empirical contact network presented by Vanhems et al. were
collected in a short stay geriatric unit with 19 beds in a hospital in Lyon, France in 2010.
The data were collected in the course of four days, lasting from Monday 6 December
at 13:00 to Friday 10 December at 14:00. In the course of these 97 hours, over 14 000
contacts were registered among the 46 staff members and 29 patients who participated,
75 individuals in total. The participation rate was 92 % and 94 %, for staff and patients
respectively. The material presented in this section is based on the work presented by
Vanhems et al. [16].

The individuals were categorized into four different classes based on their role in the
ward. An overview of the classification is presented in Figure 2.2.10. One of the roles be-
longing to the healthcare worker category, denoted NUR, consisted of paramedical staff,
including nurses and nurses’ aides. This category also encompassed several staff members
working on-demand or without any fixed schedule, such as a physiotherapist, a nutrition-
ists, a counselor and a physical therapist. There were 27 individuals belonging to this
category participating in the study. The second healthcare worker role, MED, consisted of
medical doctors, including physicians and interns. There were eleven individuals belong-
ing to this role in the study. In addition to healthcare workers, the workforce also consisted
of eight individuals belonging to the administrative staff, denoted ADM. The fourth role,
PAT, consisted of 29 patients. The article provides information about working shifts for
nurses and nurses’ aids, as well as medical doctors. The given information is summarized
in Table 2.2.1. No information regarding working hours for the administrative staff, nor
patient admissions or discharges are provided.

Figure 2.2.10: Overview of the four different role categories in the ward; NUR, MED, ADM and
PAT. The two former roles constitute the healthcare workers, which together with the administrative
staff constitute the staff in the ward. Based on information presented in [16].

The empirical network is available as supplementary material of the original article and
can be accessed here. The network is stored in Graph Exchange XML Format (GEXF),
divided into five different files representing each day Monday through Friday. The dataset
has a temporal resolution of 20 seconds, and does not provide any spatial data. The com-
bined network consists of 75 nodes, each representing a unique RFID tag, and 1139 links
corresponding to registered contacts between them. Each node has one attribute describing
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Table 2.2.1: Overview of the given shifts for all three roles belonging to the ward staff. In the course
of 24 hours, a total of fourteen nurses and nurses’ aids (NUR) work in the ward, divided into four
shifts. Four medical doctors (MED) work during daytime. No information is provided regarding the
administrative staff (ADM). Based on information presented in [16].

Role Shift Duration Staffing

NUR Morning 07:00 - 13:30 5
Afternoon 13:30 - 20:00 5
Night 20:00 - 07:00 2
Day 09:00 - 17:00 2

MED - 08:00 - 17:00 4
ADM - - -

the role. Each link has three attributes, namely the total number of contacts, the cumulative
duration of them and lastly a list of all the time intervals of registered contacts. The node
and link attributes are summarized in Table 2.2.2. An example of two RFID tags and the
information contained in the link interconnecting them is provided in Figure 2.2.11. Links
to other nodes are omitted for simplicity.

Table 2.2.2: Overview of nodes and links and their corresponding attributes in the empirical close-
range interaction network presented by Vanhems et al. [16]

Corresponds to Attributes

nodes RFID tag role
links contact Ncontacts

cumulativeduration
list contacts

Figure 2.2.11: Example of two nodes corresponding to two different RFID tags carried by a nurse
and a patient, respectively. The node attribute is given below the tag id, whereas the link attributes are
given below the link. This pair of individuals had only one contact in the course of the observation
period, which lasted for 20 seconds. All other links are omitted for simplicity.

The empirical network presented by Vanhems et al. has been analyzed and used by
several others. Examples include analysis of temporal characteristics [140] and the simu-
lation of several spreading phenomena on the temporal network [141] or its corresponding
static aggregation [142]. To my knowledge, the network has not been used to derive agent-
based model parameters used for subsequent network simulation.
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2.3 Epidemic Modeling
It is clear that the spread of SARS-CoV-2 is a complex process affected by a wide range
of epidemiological parameters, and that empirical contact networks may serve as a basis
for investigating the inter-individual transmission. In order to gain a solid understand-
ing of the interplay between these elements, computational modeling provides a valuable
tool. Using mathematical models to investigate epidemiology and infectious diseases is
not a new phenomenon. In 1760, the Swiss scientist Daniel Bernoulli presented a math-
ematical analysis investigating the mortality of smallpox and the potential advantages of
universal vaccination [143]. In 1927, the British scientists Kermack and McKendrick pre-
sented their work on epidemiological modeling in “A Contribution to the Mathematical
Theory of Epidemics” [144], laying an important foundation for the modern mathematical
epidemiology.

A model can be defined as an abstract and simplified representation of an existing or
planned reality and is often designed to explain observed or predicting future phenomena
[145]. Computational models have become helpful tools for public health decision-making
and evaluation of potential control measures [146]. The tree of computational modeling
splits into two main branches: Compartmental models aggregate the population into differ-
ent categories and use differential equations to describe the transitions from one category
to another. Agent-based models shift the focus on to each individual and interactions be-
tween them [147]. The following section will give a brief introduction to both approaches,
including main principles, capabilities and limitations. Although computational modeling
can be used to model any kind of population, only individuals of human populations are
used in the following.

2.3.1 Compartmental Modeling
In compartmental models, individuals are classified into different compartments based on
given states. For instance, an individual can be categorized as susceptible to, infected by or
recovered from a disease. The flux of individuals from one state to another is described by
differential equations. The models are often denoted with the acronym of the flow pattern
between the states, where the SIR model (susceptible, infected, recovered) is one of the
most central [148]. Compartmental models are based on two key assumptions [115]:

1. Compartmentalization: All individuals are divided into a set of compartments de-
scribing their states. All individuals within one compartment are treated equally.

2. Homogeneous mixing: All individuals are homogeneously mixed, meaning that all
individuals have the same chance of interacting with all other individuals.

The SIR model is useful for capturing the development of immunity against a pathogen
after recovering from an infection [115]. In this model, S denotes healthy, non-infected
individuals who can become infected with a pathogen. When infected, the individual
changes state from S to I . The individual will eventually recover from the disease and
return to a healthy state. When recovered, R, the person is assumed to have developed im-
munity to the pathogen, and cannot be infected again [148]. The three states are presented
in Figure 2.3.1. In order to model the transition dynamics between the states, differential
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Figure 2.3.1: Illustration of the three epidemiological states in the SIR model, susceptible, infected
and recovered. The arrows indicate possible transitions. The dashed line from susceptible to recov-
ered state exemplifies how control measures such as vaccination can be incorporated in the model
through introduction of additional transitions. Adapted from [115].

equations are used to describe the change in the number of individuals in the states S,
I and R per time unit. Examples of equations describing these transitions are shown in
Equation (2.3.1). β denotes a transmission coefficient, which combines both the contact
rate and the transmission rate in case of contact between a susceptible and an infected in-
dividual. 1/γ describes the average infectious period. The larger value of γ, the shorter it
takes for an individual to recover [149, 150].

Ṡ = −βSI
İ = βSI − γI
Ṙ = γI

(2.3.1)

In order to investigate the impact of control measures, compartmental models can be
modified in two ways. One can either quantitatively change the parameters, such as trans-
missibility or length of infectious periods, or one can introduce new transition routes be-
tween states. The introduction of a vaccination program can, for instance, be modeled
by introducing a transition directly between the S and R states, as vaccination provides
immunity without first being infected [151].

Although compartmental models allow for a relatively accessible mathematical ap-
proach for modeling epidemics, one primary limitation is the assumption of homogeneity
within each compartment [152]. Individual differences affecting factors such as dissem-
ination and disease progression are not captured in the common transmission parameter
β and recovery rate γ. Compartmental models can, however, be extended to take het-
erogeneity into account. For instance, age-related differences in hospital admission and
treatment rates in a model describing the transmission of MRSA have been incorporated
by subdividing each compartment into smaller age classes, letting parameters describing
admission and discharge, contact and treatment rates vary with age [153].

Networks can also be incorporated into compartmental models by a degree block ap-
proximation [115]. Similar to the subdivision into age classes, this approach introduces a
new level of compartments. Nodes are separated into blocks based on their degree. Fig-
ure 2.3.2 illustrates an example of a SIR model on a network with four different degrees.
In total, this model has 4·3 different compartments. Nodes with equal degrees are assumed
to be statistically equivalent [115].
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Figure 2.3.2: Illustration of a network incorporated into a compartmental SIR model. The nodes
have degrees between k = 1 and k = 4, and can take one of the following epidemiological states:
Susceptible (S), infected (I) or recovered (R). Adapted from [115].

The SIR model has been compared to the ideal gas and simple harmonic oscillator
within the field of physics, as it represents an elegant and tractable simplification of the
real world. Like the other mentioned simplifications, however, the SIR model is not fully
capable of capturing the full complexity of real-world settings [151].

2.3.2 Agent-Based Modeling

Agent-based models are capable of capturing heterogeneity. Instead of treating all indi-
viduals within a (sub)compartment equally, each agent has its own set of characteristics
and abilities governing its behavior [20]. For instance, an individual may be assigned with
properties that are expected to affect its susceptibility of being infected or to have an ef-
fect on the course of disease. Such properties may be age, gender, occupation, degree
of skepticism towards vaccines or immune response. Agent-based models are also called
individual-based models (IBM) [154]. Compared to compartmental models, ABMs do
not “average out” the system [22]. ABMs are particularly suitable for capturing emerging
population phenomena based on differences on microscale level [119].

Agent-based modeling was originally developed for the field of economics, where
economists formulated equations mirroring the behavior of different economic entities
[155]. Within microeconomics, a field dealing with the behavior of individual consumers
and producers, entities would typically be individuals, households and firms. Within
macroeconomics, a field dealing with the total economic behavior of a nation, entities
could be all households and all firms. With increasing computational abilities, economists
were able to use ABM to combine simulations on micro- and macroeconomic scale [155].

One of the earliest agent-based models was presented by the American economist
Thomas Schelling in 1971. In his article “Dynamic Models of Segregation”, he pre-
sented several models investigating the dynamics of discriminatory individual behavior,
conscious or unconscious [156]. Schelling modeled how black and white people moved
in an abstract neighborhood, aiming to obtain neighbors with a higher proportion of indi-
viduals with the same skin color as themselves. These agents were able to change their
position based on a set of rules depending on their environment. The simulations were
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Figure 2.3.3: Emerging segregation patterns between black and white individuals in a two-
dimensional abstract neighborhood. Obtained from [156].

performed by hand and eye with rather simple instruments such as dice and graph pa-
per [156]. Schelling demonstrated how patterns of segregated communities emerged as a
result of individual behavior, as shown in Figure 2.3.3.

Even though Schelling simulated emerging patterns based on agent behavior using
dice and hand drawings, this is a rather tedious approach. Agent-based simulations are
computationally demanding [157]. ABMs are time discrete, meaning that for each time
point, the agents behave accordingly to their current set of characteristics and the environ-
ment [158]. Thus, large amounts of data are generated in the course of a simulation. If
investigating the position of each cell in a bacterial population of 100 million cells, each
time point would generate over 1 GB of raw data. It is worth mentioning that this number
of cells is modest in bacterial context [22]. In addition to being computationally demand-
ing, agent-based models require high-quality data to specify realistic agent behavior [155,
158]. Uncertainty in the input parameters contributes to variability in the model output.
Besides, one often makes unverifiable assumptions about one or more key processes in the
model. There is also a level of stochastic variability due to run-to-run fluctuations [158].
Overall, agent-based models are prone to uncertainty in input and model assumptions, in
addition to variability brought about by stochasticity.

Despite computational demand, uncertainty and variability, agent-based models are
useful for bridging the gap between microscale rules and emerging macroscale behavior
[20, 22, 119]. ABMs do also allow for capturing interdependent behavior: In the short run,
individuals tend to respond to their environment, whereas in the long run, the accumulation
of individual choices tends to shape the environment [158]. Agents do also have the ability
to remember and adapt to past experiences. Mathematical analysis does typically have a
limited ability to capture such interactions [20].

A central part of agent-based models is the element of stochastic processes [159].
The agents’ actions in each time step are based on certain probabilities. Hence, running
a simulation several times with identical input parameters will produce different results.
This variability can to some extent be balanced by using a sufficiently large population and
running the simulation multiple times. The next section provides an introduction to some
statistical tools useful for processing the output of such simulations.
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2.4 Statistics and Statistical Distributions
As mentioned in the previous section, stochastic processes are central to agent-based mod-
eling [159]. Identical input parameters can produce a myriad of different results. In order
to collect, display and analyze these data, the field of statistics comes in handy [160]. The
following section gives a brief introduction to relevant theory regarding descriptive statis-
tics, including measures for location and variability and statistical inference, including
discrete and continuous probability distributions. The theory presented in the following
section is mainly based on Walpole [161].

2.4.1 Descriptive Statistics
An important part of statistics deals with organizing and summarizing the data for the
purpose of interpretation and to facilitate further analysis: The descriptive statistics deals
with characterizing the nature of the data [161, 162]. Two important measures in that
regard is the location, often the center, and the spread of the data. One key measure
of the center is the sample mean, which is the numerical average of n observations, see
Equation (2.4.1).

x̄ =

n∑
i=1

xi
n

=
x1 + x2 + ...+ xn

n
(2.4.1)

Whereas the sample mean is susceptible to extreme values, the sample median is not af-
fected by ouliers. This centrality measure describes the middle value when the data are
sorted in ascending order, as presented in Equation (2.4.2).

x̃ =

{
x(n+1)/2, if n is odd
1
2 (xn/2 + xn/2+1), if n is even (2.4.2)

A third location measure is the sample mode, i.e. the value appearing most frequently in
the data set. There also exist several measures of variability in a sample. One example is
the sample range, simply describing the difference between the largest and smallest value
in the sample. The most widely used measure of spread, however, is the sample standard
deviation, which is given by the positive square root of the sample variance, as presented
in Equation (2.4.3). As the expression shows, the variance is based on the summarized
distances of each sample measurement from the sample mean.

s =
√
s2 =

√√√√ n∑
i=1

(xi − x̄)2

n− 1
(2.4.3)

To summarize, the above-mentioned expressions can be used to describe the nature of
a sample, more specifically the location and variability, also known as the scale. These
tools can, for instance, be used to describe the average and variability in the height of 100
individuals randomly drawn from the population of Trondheim. The field of inferential
statistics is helpful in order to draw conclusions about the population of which the sample
is drawn from, for example the height distribution of the entire population of Trondheim.
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The following section gives a brief introduction to discrete and continuous probability
distributions.

2.4.2 Probability Distributions
When conducting a statistical experiment, the set of all potential outcomes is referred to
as the sample space. If the number of outcomes are finite and countable, such as the six
possible outcomes of throwing a die when playing Ludo, the sample space is discrete. Re-
turning to the example of the population height in Trondheim, on the other hand, one could
measure a countless numbers of different heights, depending on the degree of accuracy. In
such cases, where the sample space constitutes an infinite number of possible outcomes,
the sample space is referred to as continuous. The probability distribution, giving the prob-
ability of a given outcome in the sample space, can hence also be discrete or continuous.
A selection is presented below.

Discrete Probability Distributions

Many phenomena are binary, meaning they can take one out of two possible outcomes.
For instance, a coin flip may result in heads or tails, Schrödinger’s cat may be dead or
alive5, or a randomly chosen person may or may not be infected with a given disease. If
an experiment consists of independent, repeated trials where the probability of success
p remains constant, each trial of the experiment is referred to as a Bernoulli trial. The
probability of failure is hence q = 1 − p. The probability of x successes in n Bernoulli
trials is described by the binomial distribution, see Equation (2.4.4).

b(x;n, p) =

(
n

x

)
pxqn−x, x = 0, 1, 2, ..., n (2.4.4)

In the special case where only a single Bernoulli trial is conducted, n = 1, the Binomial
distribution is referred to as a Bernoulli distribution. In such cases, Equation (2.4.4) is
simplified to the following expression [163]:

f(x; p) =

{
p if x = 1
1− p if x = 0

(2.4.5)

As an example, p could for instance denote the chance of becoming infected with a
pathogen. If p = 0.01, the Bernoulli distribution would return ’yes’ for infection in 1
in 100 cases on average. Figure 2.4.1 shows three Bernoulli distributions with probabili-
ties of success equal to p = 0.2, p = 0.4 and p = 0.7, respectively.

In cases where a trial has more than two possible outcomes, the experiment is re-
ferred to as multinomial. The corresponding multinomial distribution gives the probabili-
ties p1, p2, ..., pk for the k possible outcomes. In a complete deck of cards, the probabilities
of drawing a card belonging to one of the four suits can be described as a multinomial ex-
periment, given that the card is replaced. There exists several other discrete probability
distributions, including the hypergeometric distribution, geometric distribution andPois-
son distribution.

5Requires that an observer opens the box to check its state, off course.
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Figure 2.4.1: Three different Bernoulli distributions with probability of success (x = 1) equal to
p = 0.2, p = 0.4 and p = 0.7, respectively. The probability of failure (x = 0) equals q = 1− p.

Continuous Probability Distributions

The most central continuous probability distribution is the normal distribution. The bell-
shaped graph of a normal distribution is fully described by the mean, µ, and variance, σ2,
as shown in Equation (2.4.6).

n(x;µ, σ) =
1√
2πσ

e−
1

2σ2 (x−µ)2 , x ∈ (−∞,∞) (2.4.6)

Figure 2.4.2 shows the probability density function for a variable x ∼ N (µ, σ2), with
a mean value µ = 2 and variance σ2 = 1. This figure illustrates several key aspects of
the normal distribution. The curve is symmetric around the mean µ, and both the median
and mode coincides with this vertical line. In both directions from the mean, the curve
approaches the horizontal axis asymptotically. The total area under the curve still equals
one. In addition, a variable drawn form a normal distribution can take both positive and
negative values.

Figure 2.4.2: The probability density curve for a normal distributed variable x, with mean µ = 2
and variance σ2 = 1. As the coinciding lines illustrate, the mean, median and mode are equal.
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In some cases, however, it is desirable to use a normal distribution to describe a variable
which cannot take negative values [164]. For instance, given that a laboratory weight is
correctly calibrated, the measured weight of a substance should only yield non-negative
values. In order to preserve important characteristics of the normal distribution, while
avoiding negative or another range of extreme values, one could use a truncated normal
distribution [164]. This distribution is derived from the normal distribution, and is bounded
by a lower limit a and/or a upper limit b. The left panel of Figure 2.4.3 shows the truncated
form of the normal distribution presented above, where the lower limit a is set to zero. This
distribution has no upper limit, meaning that b→∞.

Another distribution ensuring positive variable values is the folded normal distribution
[165]. This distribution is based on the absolute value of the normal distribution, as il-
lustrated in the right panel of Figure 2.4.3: The dotted line shows the probability density
function of the normal distribution folded around the vertical line in x = 0. The blue curve
makes up the sum of the normal probability density function of both −x and x, [165].

Figure 2.4.3: Two distributions derived from the normal distribution: The truncated and the folded
normal distribution. The left panel shows a purple-colored truncated distribution with lower limit
a = 0. The right panel shows a blue-colored folded distribution. The dotted line shows the mirror
image of the normal distribution taking negative values. In both panels, the density function of the
normal distribution with mean µ = 2 and variance σ2 = 1, is plotted in a dashed curve.

The normal distribution and its derivatives, however, are not suitable for describing all
variables. Some data are best described using an asymmetric distribution, being skewed to
the left or to the right. One of these distributions having a positive skew is the lognormal
distribution. This distribution describes variables where the natural logarithm is normally
distributed. The probability density function is presented in Equation (2.4.7).

f(x;µ, σ) =

{
1√

2πσx
e−

1
2σ2 [ln (x)−µ]2 , x ≥ 0

0, x < 0
(2.4.7)

As the probability density function shows, a variable drawn from a lognormal distribution
will always yield non-negative values. The left panel of Figure 2.4.4 shows a lognormal
distribution with µ = 2 and σ2 = 1. As the figure shows, the mean, median and mode
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Figure 2.4.4: The left panel shows a lognormal probability density function with a mean µ = 2 and
variability σ2 = 1. The mean, median and mode are depicted as vertical solid, dashed and dotted
lines, respectively. The right panel shows a normal distribution natural logarithm of x.

values do not coincide as they do in a normal distribution: The mean is greater than the
median which is greater than the mode. The right panel shows the the normal distribution
of the natural logarithm of the corresponding x values.

2.4.3 Correlation Analysis and Mean Squared Error
So far, this section has discussed descriptive statistic tools and probability distributions of
the one variable x. In cases where the dependence between two variables x and y comes
of interest, correlation analysis is useful for describing the relationship between them. The
Pearson correlation coefficient, see Equation (2.4.8), is commonly used as a measure of
linear correlation between two variables. The coefficient takes values in the range [−1, 1],
where ρ = −1 indicates a perfect negative linear correlation and ρ = 1 indicates a perfect
positive linear correlation. If the coefficient equals zero, there is an absence of linear
relationship between the two variables [166], although other non-linear relationships may
occur.

ρxy =

∑n
i=1 (xi − x̄)(yi − ȳ)√∑n

i=1 (xi − x̄)2
√∑n

i=1 (yi − ȳ)2
(2.4.8)

Given two sets of values x1, x2, ..., xn and y1, y2, ..., yn, one can use the mean squared
error (MSE) to determine the overall deviation between them. The values of x and y could
for instance be estimated and actual values of a given variable. As the name implies,
the mean squared error is calculated by determining the mean value of all squared errors
ei = xi − yi [167]. The expression is given in Equation (2.4.9).

MSE =
1

n

n∑
i=1

(xi − yi)2 (2.4.9)
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Chapter 3
Methods and Software

The overall aim of this thesis is to build an agent-based model for exploring the mecha-
nisms governing the spread of COVID-19 on a temporal contact network. This chapter
gives a detailed introduction to the underlying data processing and algorithms. After a
brief presentation of the relevant software, the first part of the chapter describes how the
model simulates a time-evolving contact network among staff members and patients in a
virtual hospital. The second part of the chapter gives an introduction to the epidemiolog-
ical part of the model, including a description of the different epidemiological states and
the transitions between them. This part also includes the implementation of several control
measures. The chapter is concluded by a summary of the values constituting the baseline
model parameter set.

3.1 Software

3.1.1 Python
Most of the data analysis and modeling work in this thesis is performed in Python [168],
version 3.7.3. Python is an open source, high-level general-purpose programming lan-
guage, available for several operating systems. In addition to a library of standard mod-
ules, several additional modules can be imported to handle a wide range of operations.
Imported modules from the Python Standard Library, in addition to installed modules, are
presented in Table B.1.1. Python can be downloaded from www.python.org.

3.1.2 Cytoscape
All network visualizations are produced using Cytoscape [169], version 3.8.0. Cytoscape
is a software platform for analysis and visualization of complex networks, originally de-
veloped for biological research. Additional features, such as random network generation
or additional layout algorithms, can be downloaded as Apps. Cytoscape is open source
and can be downloaded from www.cytoscape.org.
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Chapter 3. Methods and Software

3.2 Generating a Temporal Contact Network

A key sub-goal is to develop a temporal contact network mirroring the inter-individual
contacts in a geriatric hospital ward. More specifically, the aim is not to construct one
single network, but to derive a set of rules governing the evolution of a contact network
building simultaneously as a simulation runs. In this way, the network rules could be set
to adapt to changes in the system, for example to take staff shifts into account, replace reg-
ular staff members with temporary staff in case of quarantine or sick leave, or prolonging
patient hospitalizations in case of illness.

The contact network should also be able to capture temporal and individual variations.
In the model, this is done by extracting patterns from an empirical contact network and
translate the information into model parameters and agent attributes. Figure 3.2.1 illus-
trates the two main steps in this process. As the empirical contact network contains large
amounts of information, the step of pattern extraction requires that some network prop-
erties are selected at the expense of others. Focusing on a few patterns is also useful in
regards to the simulation step, where a trade-off between complexity and computational
running time must be made.

Figure 3.2.1: Illustration of the process of simulating a temporal network capturing inter-individual
contacts based on an empirical contact network: The extracted patterns are translated into parameter
values incorporated into an agent-based model. The simulated contact network is then built stepwise
and simultaneously as the model simulation proceeds.

The empirical contact network presented by Vanhems et al. [16] serves as a basis
for the inter-individual contact network in this model. See Section 2.2.3 for a detailed
introduction. This empirical network contains data on over 14 000 registered contacts
between 75 individuals in a short stay geriatric ward of a hospital in Lyon, France. As
earlier described, the contacts in this network refer to detected close-range interactions,
where wearable sensors carried by the participants signalize proximity if the individuals
are located face-to-face within 1.5 meters from each other. The network has a high tem-
poral resolution and provides potential real-life transmission routes for the spread of a
pathogen. However, the short time span of only four days makes it challenging to model
realistic epidemiological spreading phenomena on the network directly. In order to inves-
tigate pathogen transmission dynamics over a longer period of time, a synthetic network
based on the empirical one is simulated to recreate the most central network properties.

The empirical network has a temporal resolution of 20 seconds. Proceeding with this
resolution would generate 4320 time steps in the course of 24 simulation hours and would
be computationally demanding when running a simulation over several days or weeks.
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On the opposite side, one could aggregate the network to a static network. This solution
greatly reduces running complexity but results in loss of all temporal information. The
question of choice of temporal resolution does not only concern running time, but also
the statistical foundation in the process of extracting patterns: Examining the contact data
using time slots of 20 seconds would yield considerably fewer data points per time slot
than if choosing periods of minutes, hours or days. In the original article, the network
data is aggregated on an hourly basis. This resolution seems reasonable for ensuring an
adequate amount of data per time slot and would also reduce the complexity in terms of
running time.

The following sections give an introduction to how the temporal contact network is
built. As the rules governing the construction of this network are based on patterns ex-
tracted from an empirical network, some of the material presented in these sections com-
prises results from the processing and analysis of the given empirical data. They are in-
cluded in this chapter for the sake of coherence and because the choice of model behavior
and parameters are derived directly from these intermediate results. The choices of which
contact properties to focus on are based on the key findings presented by Vanhems et al.
They involve a repeating daily contact pattern and large variations in the observed number
of contacts both between and within the four ward roles.

Figure 3.2.2: The pattern extraction from the empirical contact network involves three main steps.

The section is divided into four main parts, see the illustration of the three first in Fig-
ure 3.2.2: The first part describes how the temporal contact variations throughout a day
and night are replicated, the second part discusses how staff shifts and patient hospitaliza-
tions are determined, and the third part presents how individual heterogeneities in terms
of relative contact rates and interactions between the role pairs are identified. Lastly, the
fourth part summarizes the section by showing how the contact network is implemented
into the model.

3.2.1 Introducing Temporal Variations Throughout a Day and Night
In a most simplistic approach, one could simulate the temporal contact network based
on the average number of registered contacts per hour. Given 14 037 detected contacts
in the course of the 97 hours, the average number of contacts per hour is approximately
145. Panel A of Figure 3.2.3 shows a network consisting of 75 nodes and all possible links
between them. Each node represents an individual and each link a possible inter-individual
interaction. Panel B through D shows three realizations where 145 contacts are randomly
drawn among the links in panel A. The node size increases with the node degree and the
link thickness increases with the number of contacts in the given hour.

Given a simulation over 97 hours, this temporal network would generate approxi-
mately the same number of unique contacts as the empirical network, but without taking
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Figure 3.2.3: Panel A shows a network consisting of 75 nodes and all 2775 possible links between
them. Panel B through D shows three time step examples, where 145 contacts have been randomly
drawn among the possible node pairs. The node size increases with the node degree and the link
thickness increases with the number of contacts in the given hour.

any temporal fluctuations or variations between roles or individuals into account. In ad-
dition, this network assumes that all individuals are present in the ward at any hour in the
simulation, and is hence neglecting both patient admissions and discharges, staff shifts and
potential sick leaves or quarantines.

Daily Contact Number Variations

Vanhems et al. observed large variations in the number of contacts registered throughout
a day and night, but a similar evolution from day to day [16]. The number of registered
contacts for each hour in the study period is presented in Appendix B.2.3. A visual rep-
resentation of these data is presented in Figure 3.2.4: The upper panel presents the total
number of contacts registered for each of the 97 hours in the study period, whereas the
lower panel shows the same data split into each of the five days Monday through Friday.
Corresponding plots where the contacts are filtered based on role or role pairs are pre-
sented in Figures B.2.2 to B.2.15. These figures correspond to Figure 2 in the original
article and are generated from the available raw data.
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Figure 3.2.4: Upper panel: Number of registered contacts per hour, starting from Monday 13:00.
Lower panel: Number of registered contacts per hour for each day Monday through Friday.

As the figure shows, the hourly contact number is relatively similar from day to day.
Thus, instead of using an average of 145 contacts per hour, the hourly contact numbers
could be based on the observed daily temporal contact pattern, for instance by drawing
the number of contacts for each hour from distributions based on the sample mean and
standard deviation. This approach would for instance yield few contacts throughout the
night and several hundred contacts in the hours around noon. Due to the size of the data set,
with four (or five) data points per hour, the process of determining a suitable distribution
becomes rather arbitrary. Assuming that the hourly number of contacts could vary in
both directions from a mean value in case of more quiet or more busy days, a normal
distribution could be appropriate for describing this parameter. Thus, for each of the 24
hours, the number of contacts is drawn from a normal distribution with mean µ equal to
the sample mean x̄, and variance σ2 equal to the sample variance s2 for that given hour.
For the purpose of allowing for up-scaling of number of wards and/or beds, the number
of contacts per hour is calculated with the basis of contacts per bed. Figure 3.2.5 presents
the average value of contacts per bed for each hour, with error bars corresponding to the
sample standard deviation.
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Figure 3.2.5: Number of contacts per bed for each hour throughout the day and night. Each point
represents the sample mean calculated from the empirical data, whereas the error bars represent the
sample standard deviation. The data for hour 20:00 is marked in red and is used as an example in
the following.

The red colored data point in Figure 3.2.5 corresponds to the sample mean and standard
deviation for the contacts registered in the hour starting from 20:00 in the empirical net-
work. The corresponding normal distribution,N (µ, σ2) with µ = 3.9474 and σ = 2.1110,
is plotted in Figure 3.2.6. The mean value is plotted using a black, dashed line, whereas the
interval spanning µ ± σ is marked with dotted lines. The red colored histogram presents
10 000 values drawn from the normal distribution.

Figure 3.2.6: The solid curve represents the normal distribution N (µ, σ2) with µ = 3.9474 and
σ = 2.1110 from which the number of contacts per bed for the hour 20:00 is drawn. The mean value
µ and the interval spanning µ± σ are plotted using black dashed and dotted lines, respectively. The
red colored histogram represents 10 000 values drawn from the distribution.
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Figure 3.2.7: Three different distributions (solid lines) illustrating the number of contacts per bed
for the hour 20:00. The dashed lines refers to the average value, whereas the dotted lines encloses
µ± σ. Normal, truncated normal and folded normal distribution.

As Figure 3.2.6 shows, a considerable proportion of the drawn contact numbers are
negative. This is also the case for several of the other time points. A relatively simple
solution is to set all negative values to zero. Other alternatives include using a truncated
normal distribution with lower bound set to zero or a folded normal distribution. The
probability density function and a corresponding histogram presenting 10 000 drawn val-
ues from each other three distributions are presented in Figure 3.2.7. As for the distribution
presented in Figure 3.2.6, the dashed and dotted lines present the mean µ and the interval
spanning µ± σ, respectively. In order to determine which of the three alternatives to use,
the mean of 1 000 000 drawn values for each of the 24 hours were calculated and com-
pared to the empirical means. The difference between the simulated and empirical means
were calculated using the mean squared error (MSE), see details in Appendix B.2.2. The
lowest MSE was found when drawing the contact numbers from the normal distribution
with negative values set to zero. Therefore, this distribution is used to determine the hourly
contact numbers.

Figure 3.2.8: The panels show three different randomly generated networks representing contact
pattern in the hours 08:00, 14:00 and 20:00. The numbers of contacts are drawn from normal distri-
butions based on the registered number of contacts for the given hours. The node size increases with
the node degree and the link thickness increases with the number of contacts in the given hour.
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By drawing the hourly number of contacts from a normal distributions with parameters
derived from the empirical contact network, the randomly generated networks presented
in Figure 3.2.3 with an average of 145 contacts per hour can be updated to mirror the
temporal evolution throughout a day and night. Figure 3.2.8 shows three different snippets
from a temporal network taking the discussed temporal variations into account. The node
pairs are still chosen randomly. The implementation of these temporal variations result in a
time-evolving network where the number of hourly contacts pulse in pace with the pattern
observed in the empirical network. Still, however, the network assumes all individuals
to be present in the ward and available for contacts at all times. In a real life scenario,
however, it is natural to assume that the staff members are present in the ward during
shifts and absent when off work, and that patients only are present in the ward in the time
span between admission and discharge. The following section discusses how staff shifts
and patient admissions and discharges are estimated based on the data in the empirical
network.

3.2.2 Estimating Staff Shifts and Patient Hospitalization

As presented in Section 2.2.3, the original article provides some information about the
duration of shifts and how many individuals are required to cover them. However, initial
analysis of the registered contacts suggests that there exists some deviation between the
given information and the recorded data. In addition, no information about the adminis-
trative staff shifts or the duration of patient hospitalizations are provided. Since a recorded
contact necessarily implies that the given individual is present in the ward, the staff shifts
and patient hospitalization can be estimated from the detected contacts.

The original data set consists of five different files storing the network information for
each of the days Monday through Friday, see details in Section 2.2.3. After merging the
information into one file, the data contained in the network nodes and links were extracted
and stored in a data structure, see a snippet in Table 3.2.1. The id and role were retrieved
directly from the node, whereas the total number of contacts, the cumulative duration and
the listed intervals of contacts were found by combining the information contained in each
of the links connecting the node to its neighbors. Figure 3.2.9 was made by stripping the

Table 3.2.1: The data structure contains the summarized contact network information for each of the
75 individuals; the RFID id number and role, as well as the total number of contacts, the cumulative
duration and a list containing all contact time intervals of registered contacts.

id role contacts duration listed

0 1152 MED 79 4720 [(8300, 8320), (8480, 8500), ... ]
1 1157 MED 1195 56 960 [(8300, 8320), (8480, 8500), ... ]
2 1159 MED 710 31 540 [(13 840, 13 860), (14 080, 14 100), ... ]
3 1164 NUR 1053 42 140 [(71 300, 71 320), (75 760, 75 780), ... ]
· · · · · · · · · · · · · · · · · ·
73 1784 PAT 35 1220 [(330 700, 330 740), (334 760, 334 780), ... ]
74 1469 PAT 87 3280 [(255 620, 255 660), (255 700, 255 720), ... ]
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Figure 3.2.9: The four panels present hours of detected contacts for individuals belonging to each
of the four roles NUR, MED, ADM and PAT. The x-axis corresponds to the time in the study period,
counting from Monday at 00:00, whereas each row corresponds to one unique individual.

listed contact intervals down to a set of unique hours of detected contacts: The colored
points in each of the four panels, each representing one role, denote hours of which one or
more contacts has been registered. Each row corresponds to one individual belonging to
the given role.

There are two main challenges related to the process of estimating shifts and hospital-
izations from the given contact data. Firstly, although a registered contact implies presence
in the ward, the lack thereof does not necessarily imply that the individual is absent. For
instance, a consecutive sequence of hours with registered contacts may contain enclosed
vacancies, as observed several places in Figure 3.2.9 and illustrated by arrow number one
in the clipart presented in Figure 3.2.10. This figure presents hours of registered contact
for three different individuals belonging to the MED role at a given day. In the hour where
no contacts have been registered, the individual could for instance have had contact with
another individual not wearing an RFID sensor (8 % of staff members and 6 % of patients).
In case of silent hours enclosed by hours of contact supporting the assumption of presence,
one could, within reasonable limits, assume that the individual is present in the ward. It
is more challenging to determine whether leading and trailing vacancies, as illustrated by
arrow number two in Figure 3.2.10, are a result of the individual not being present in the
ward or not. Examining the hours of contact registered for the patients in the lower right
panel of Figure 3.2.9, for instance: Is the first hour of contact equivalent with the patient
admission or could the patient have been hospitalized from before the study period started?
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Figure 3.2.10: A clipart showing the registered hours of contact for three individuals belonging to
the MED role on one of the five week days. Arrow number one points at an enclosed vacancy where
no contacts have been registered. The second arrow points at a leading vacancy.

Secondly, whereas the individuals of the MED and seemingly the ADM roles only
work during day time, the NUR individuals work in four different, partially overlapping
shifts. In addition, there seems to be large variations in the shift patterns among individuals
in all three staff roles. In order to reduce the stochasticity in the model, it is desirable
to derive fixed rules governing the shift schedule for the three roles; the duration and
staffing per shift. The three following sections present algorithms and analysis behind the
derivation of these rules and describe the reasoning behind choices of simplifications. The
fourth section deals with patient admissions and discharges.

Nurses or Nurses’ Aides

According to Vanhems et al., the nurses and nurses’ aids work in four different shifts,
see an overview of the shift durations and staffing in Table 2.2.1. As this table shows,
the morning and afternoon shifts overlap at 13:30. Due to the temporal resolution of one
hour, both shifts are extended in order to capture the whole hour: The model morning
shift ends at 14:00 and the afternoon shift begins at 13.00. In addition to the nurses and
nurses’ aids, the NUR role includes several staff members working on-demand or without
a fixed schedule. As they are included as NUR individuals in the empirical network and
contribute to the overall contacts, the model attempts to recreate the observed patterns of
presence among all individuals registered as NURs, not only the nurses and nurses’ aids
shifts provided in the staffing information.

The hours of detected contacts presented in Figure 3.2.11 serve as basis in this analysis.
The first aim is to identify all independent shifts, i.e. tell hours of absence apart from hours
of presence without contacts. The second aim is to match the identified shifts up to the
provided shift hours by comparing the relative overlaps. The NUR shifts are established
by the following algorithm. The contact data for the individual with RIFD id number 1485
is used as an example.

1. The starting time of listed contact intervals presented in Table 3.2.1 are extracted.
[202 180, 202 180, 202 240, 202 240, 202 300, 202 300, ..., 323 460]

2. Each list entry is converted to its corresponding hour, starting from Monday 00:00.
[69, 69, 69, 69, 69, 69, ..., 102]
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3. All unique hours are extracted, resulting in a set of all hours of detected contacts.
[69, 70, 71, 73, 74, 75, 77, 78, 93, 94, 95, 96, 97, 98, 99, 101, 102]

4. The set of unique hours is divided into groups of consecutive hours.
[[69, 70, 71], [73, 74, 75], [77, 78], [93, 94, 95, 96, 97, 98, 99], [101, 102]]

5. Groups where the gap between them is smaller than a certain cutoff value are
spliced. The cutoff value is set to 5 hours to avoid having a shift spanning 23 hours.
[[69, 70, 71, 73, 74, 75, 77, 78], [93, 94, 95, 96, 97, 98, 99, 101, 102]]

6. The hours in each spliced list are assumed to belong to the same shift. The enclosed
vacant hours are filled in.
[[69, 70, 71, 72, 73, 74, 75, 76, 77, 78], [93, 94, 95, 96, 97, 98, 99, 100, 101, 102]]

7. Each spliced list of hour is checked up against all possible shifts in order to find
the greatest overlap.
- The list of hours [69, 78] has a 91 % overlap with the 3rd night shift [68, 78].
- The list of hours [93, 102] has a 91 % overlap with the 4th night shift [92, 102].

By following this algorithm, NUR 1485 is found to have worked two shifts in total, the
third and the fourth night shift, respectively. In cases where several shifts have an equally
high overlap score, the shift type is assigned according the the following hierarchy: Day>
night > afternoon > morning. Such cases were most frequently occurring in the very be-
ginning and end of the study period, where data points were few. In addition, an exception

Figure 3.2.11: Each point marks an hours where one or more contacts has been registered for the
individuals belonging to the NUR role. The x-axis corresponds to the time in the study period,
counting from Monday at 00:00, whereas each row corresponds to one unique individual.
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Figure 3.2.12: The figure shows hours of detected contacts (black dots) and the corresponding shifts
(colored patches) having the highest overlap for all individuals belonging to the NUR category. Each
individual has its own row, and are sorted based on their order of first detected contact. The patches
are color coded after the type of shifts.

from the provided shift hours were made to capture five single hours of contact detected
at hour 14: The very first morning shift was extended to capture these data points, based
on the assumption that both the day and afternoon shifts probably would have resulted in
contacts in the hours beyond 14:00.

As Figure 3.2.12 shows, the predicted shifts cover parts of the registered contact hours
quite nicely. The number of staff members covering each shift tends to vary from day to
day, as exemplified by the night shifts which are covered by two, zero, two and one nurse
in the course of the week. Again, the lack of data may be a result from the participation
rate not being 100 %. As the figure shows, the predicted shifts fail to capture some of
the hours of detected contact and covers other hours where no contacts are detected. A
Venn diagram representing the overlap between hours of detected contact (contact hours)
and predicted shift hours (shift hours) is presented in Figure 3.2.13. In total, 436 out of
504 shift hours (87 %) are supported by detected contacts, whereas 436 out of 519 contact
hours (84 %) are captured by the estimated shifts. It is worth mentioning that the 68 shift
hours not supported by contact hours include the enclosed vacancy hours. A considerable
proportion of the 83 hours of contact not captured by the shifts seems to come from leading
and/or trailing hours of a shift. If an individual has a shift from 09:00 to 17:00, but has
detected contacts at 08:59 and 17:01, for instance, both hours from 08:00 to 09:00 and
17:00 to 18:00 are registered.
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Figure 3.2.13: The Venn diagram represents the overlap between hours containing registered con-
tacts (’contact hours’) and hours covered by the estimated shifts (’shift hours’) for NURs.

Since the estimated shifts appear to cover the observed contact hours relatively well,
duration of the shifts in the model are directly retrieved from the provided shift informa-
tion, with the exception of the discussed adjustment of the morning and afternoon shifts
due to the temporal resolution. The number of staff members required to cover each shift
is adjusted accordingly to the observations made in Figure 3.2.12. The day, afternoon and
night shifts are covered by 2, 5 and 2 NUR individuals respectively, as provided in the orig-
inal article, whereas the staffing of the morning shift is increased from 5 to 9 individuals.
This information is summarized in Table 3.2.4.

When a new shift is to begin, the model can only choose from NUR agents that are
available: An agent cannot begin a new shift it is already preoccupied with another, or
if it is subject to restrictions such as quarantine or isolation. The shift can be assigned
by randomly drawing among the available agents. In the model, this shift assignment
approach is called ’random’. Two additional elements can included in order to prioritize
the shift assignment:

1. Percentage of employment: The agents can be assigned with percentages of employ-
ment based on the observed distribution of number of shifts in the study period, see
the left panel of Figure 3.2.14. After determining the pool of available NURs, the
required number of agents are drawn with probabilities depending on their relative
working percentages. Thus, a person having a work percentage of 1.0 has a greater
chance of being chosen for a shift than a person having a percentage of 0.4. This
shift assignment is referred to as ’percentage’ in the model.

2. Resting hours after shift: The model can take resting hours after an ended shift into
account. As the right panel of Figure 3.2.14 shows, the number of hours between
two consecutive shifts may vary from 12 to almost 70 hours. Then median number
of resting hours, 18, is used as baseline value in the model. When taking resting
hours into account, the NUR agents with the lowest number of remaining resting
hours are prioritized.
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Figure 3.2.14: The left panel shows a bar plot representing the estimated number of shifts in the
course of the study period for each individual belonging NUR role. The bar plot in the right panel
represents the number of hours between the estimated shifts.

Medical Doctors

The process of replicating the shift pattern for the 11 medical doctors is somewhat easier
than replicating the shift pattern for the nurses since the individuals belonging to the MED
role only work during daytime. According to the original article, there were two physi-
cians and two interns present between 08:00 and 17:00 every day. Figure 3.2.15 shows
all hours of registered contacts for each of the medical doctors, indicating that more than
four individuals from this category were present each day. In addition, several of the in-
dividuals have contact hours indicating presence exceeding the given nine-hour shift. The
number of detected MED contacts for each hour is plotted as bars in Figure 3.2.16. The

Figure 3.2.15: Each point marks an hours where one or more contacts has been registered for the
individuals belonging to the MED role. The x-axis corresponds to the time in the study period,
counting from Monday at 00:00, whereas each row corresponds to one unique individual.

48



3.2 Generating a Temporal Contact Network

given working hours from 08:00 to 17:00 are indicated with lighter blue shades, cropped
at the beginning and end of the study period. As the this figure shows, a relatively large
proportion of the contacts are registered after the original working hours. The relative
fraction of contacts registered for each hour is presented in the left panel of Figure 3.2.17.
These numbers do for instance show that a very low proportion of the contacts are made
in the hour from 08:00 to 09:00.

Figure 3.2.16: The bars represent the number of contacts registered for MEDs for each hour. The
lighter blue shaded areas represent the given working hours, 08:00 to 17:00.

The data presented in the two other panels of Figure 3.2.17 is based on the assumption
that one or more hours of registered contacts between 08:00 and 19:00 corresponds to a

Figure 3.2.17: Left panel: The fraction of contacts registered for each hour summarized over the
entire study period. Middle panel: Distribution showing how many shifts the MED individuals have
during the study period. Right panel: Distribution showing the number of registered MED shifts per
day in the ward.
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shift: The middle panel of Figure 3.2.17 shows the distribution of how many shifts each
individual worked during the study period. The third panel shows the number of MED
shifts that were registered per day. Based on the given contact information and the above-
mentioned assumption, this number varies between 8 and 9 individuals per day.

Based on the observed hours of contact in the above-mentioned assumptions, the fol-
lowing rules are set for the model MED shifts: The working hours are changed from 08:00
- 17:00 to 09:00 - 19:00 to cover a larger proportion of the observed contacts. In addition,
the number of agents set to cover each shift is changed from 4 to 8, see Table 3.2.4. Also
for this role, the user can set the shift assignment to be random or prioritized based on
given percentages of employment.

Administrative Staff

Unlike the two other staff categories, no information about the administrative staff shifts
are provided in the original article. Therefore, the shift assignment for this role is solely
based on the empirical contact data and a range of assumptions. The hourly registered
contacts presented in Figure 3.2.18 serves as basis.

Figure 3.2.18: Each point marks an hours where one or more contacts has been registered for the
individuals belonging to the MED role. The x-axis corresponds to the time in the study period,
counting from Monday at 00:00, whereas each row corresponds to one unique individual.

As Figure 3.2.18 shows, the ADM individuals seem to work during daytime. The hours
of contacts vary greatly from day to day, and also among the individuals working in the
ward. The number of contacts registered through the study period is presented as bars in
Figure 3.2.19. The orange shaded areas denotes the time span of fifteen hours of registered
contacts, going from 06:00 to 21:00. The longest observed shift in this category spans 10
hours. Therefore, the ADM shifts in the model are determined by identifying the time
span of 10 hours covering the largest possible number of contacts. The leftmost panel of
Figure 3.2.20 shows the fraction of ADM contacts registered in each of the fifteen hours.
Setting the ADM shift from 08:00 to 18:00 results in the largest proportion of contacts
covered by a ten-hour shift.

Also for the ADM role, one or more registered contacts in the course of a day is set
as identification criterion for a shift. This assumption yields the distribution of number of
shifts worked in the course of the study period (middle panel) and the number of individ-
uals in the ward per day (right panel) for the ADM role, see Figure 3.2.20. The number of
ADM agents drawn for each shift is set to 4, equivalent to the median value of the number
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of ADMs present in the ward per day, see Table 3.2.4. Also for the ADM role, the shift
assignment can be done randomly of according to percentages of employment.

Figure 3.2.19: The bars represent the number of contacts registered for ADMs for each hour hour.
The lighter orange, shaded areas represent the span of working hours, from 06:00 to 21:00.

Figure 3.2.20: Left panel: The fraction of contacts registered for each hour summarized over the
entire study period. Middle panel: Distribution showing how many shifts the ADM individuals have
during the study period. Right panel: Distribution showing the number of registered ADM shifts per
day in the ward.

Patients and Hospitalization

In the course of the study period, there are registered contacts for 29 unique patients in the
hospital ward. In Figure 3.2.21 each green point represents an hours in which one or more
contact has been registered, each row representing one unique patient. Ideally, the duration
of hospitalization would be derived directly from the empirical data, for instance by fitting
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the observed lengths of hospitalizations with a suitable distribution. Due to the short time
span, however, these durations are hard to identify: It is difficult to determine whether the
first hour of contact corresponds to the time point of admission, or if it is simply the first
hour of registered contact in the time window short corresponding to the study period.

Figure 3.2.21: Each point marks an hours where one or more contacts has been registered for
the individuals belonging to the PAT role. The x-axis corresponds to the time in the study period,
counting from Monday at 00:00, whereas each row corresponds to one unique individual.

An alternative approach is to base the hospitalization length on the patient turnover
rate. The number of admissions and discharges in the course of the 97 hours can be de-
termined based on the following assumptions: Initially, the time points of admission and
discharge are set to the first and last hour of registered contacts, respectively. However, if a
patient has registered contacts within the first twelve hours, the patient is assumed to have
an admission time point preceding the study period. Similarly, if the patient has registered
contacts during the last twelve hours, the patient is assumed to have a discharge succeed-
ing the study period. For the individuals to which these assumptions apply, no admission
and/or discharge is registered. Figure 3.2.22 presents a visualization of the described as-
sumptions. The light green patches correspond to the time span between first and last
registered hour of contact, whereas the darker green patches correspond to hours where
the patient is assumed to be present in the ward even though no contacts are registered.

Based on these assumptions, there are 13 admissions and 12 discharges in the ward
in the course of the 97 hours, giving an average of 12.5 patient replacements. As shown
in Equation (3.2.1), the average turnover rate is approximately 6.78× 10−3 replacements
per bed per hour.
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Figure 3.2.22: Each point marks an hours where one or more contacts has been registered for the
individuals belonging to the PAT role. The light green shaded areas mark the time span between the
first and last detected hour of contact. The darker green shaded areas present additional hours of
where the patient is assumed to be present in the ward.

rturnover = 12.5 · 1

19 beds
· 1

97 hours
≈ 6.78× 10−3

1

beds · hours
(3.2.1)

The average number of bed hours, i.e. the average duration of hospitalization, is given by
the inverse of the turnover rate, as shown in Equation (3.2.2).

thospitalization = rturnover
−1 ≈ 147.44 bed hours (3.2.2)

The average duration of hospitalization equal to 147.44 hours corresponds to just over
six days. Although some variance in the duration of hospitalization is excepted, it is dif-
ficult to determine the magnitude of it. Under the above-mentioned assumptions, only
one patient is admitted and discharged in the course of the study period. This patient is
present in the ward for 44 hours. Therefore, the following assumption is made: The hos-
pitalization duration for each patient is drawn from a normal distribution with expectation
value µ = 147.44 days and a standard deviation σ so that the observed hospitalization of
x = 44 hours falls within the 95 % confidence interval. Since 95 % of the area under the
normal distribution curve lies within approximately 1.96 standard deviations away from
the mean [161], the standard deviation σ can be calculated as shown in Equation (3.2.3).
The resulting normal distribution is presented in Figure 3.2.23.

1.96 · σ = µ− 44 ⇒ σ =
147.44− 44

1.96
≈ 52.78 (3.2.3)
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Figure 3.2.23: The length of hospitalization, in hours, for all patients is drawn from a normal distri-
bution with mean value µ = 147.44 and standard deviation σ = 52.78. The solid curve represents
the probability density function, whereas the solid, vertical line represents the mean value. The
dashed and dotted lines indicate one and two standard deviations away from the mean, respectively.

When a new PAT agent is admitted into the model hospital ward, the length of hospi-
talization is thus drawn from a normal distributionN (µ, σ2) where µ = 147.44 hours and
σ = 52.78. In order to avoid very short time spans, a minimum limit is set to 8 hours,
meaning that all drawn values below this value is set to 8. In order to avoid all initially
admitted patients from starting their hospitalization when the simulation begins, their re-
maining hours of hospitalization is drawn randomly among all hours in the range spanning
the minimum value and the drawn hospitalization length.

Some simplifications are made in terms of bed occupancy and the window of admis-
sions and discharges: Figure B.2.16 shows a plot of how the bed occupancy in the ward
varies with time, based on the discussed assumptions of presence in the ward given regis-
tered contacts within the twelve first or last hours in the study period. Both the mean and
median bed coverage in the ward equal 16.0 out of nineteen beds, yielding a coverage of
approximately 84.21 %. In the model, the bed coverage is assumed to remain stable at this
percentage. Hence, a patient discharge results in an immediate admission in the following
hour. In the empirical data, all admissions and discharges occur between 07:00 and 20:00
during the day. In the model, this window is not taken into account, and patients may be
admitted and discharged at any hour.

3.2.3 Individual Heterogenities
The somewhat cumbersome work of identifying staff shifts and patient hospitalizations
serves another role than just replicating a resembling work schedule and patterns of pa-
tient admission and discharge. These estimates can also be used to determine the relative
contact numbers for each individual, adjusted for the estimated hours of presence in the
ward. Although the original article provides information about the total number of con-
tacts for each participant in the study, it is worth investigating whether the total contact
number correlates with the hours of presence, or if some individuals are more extroverted
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Figure 3.2.24: The upper four bar plots present the total number of registered contacts for each
individual, each panel corresponding to one role. A color gradient is included to make it easier to
compare the contact numbers across the panels. The lower four bar plots present the relative contact
number, given as the number of registered contacts per estimated hour of presence in the ward.
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than others. The objective is to assign all agents with a degree of extroversion which is
drawn from a distribution mirroring the relative contacts rates for each of the four roles.

The relative contact rates are simply calculated from the total number of contacts reg-
istered throughout the study period and the estimated number of hours of presence in the
ward. The upper four panels of Section 3.2.3 illustrate the total number of contacts regis-
tered for each individual, each panel corresponding to one role. The y-axes, representing
the total number of contacts, span quite different numerical ranges in the four different
panels. The color gradient is included to make it easier to compare the numbers across
the panels. A stacked area plot showing how the accumulated number of contacts evolves
with time is presented in Figure B.2.17.

The estimated hours of presence in the ward are based on the registered contacts
and the assumptions made regarding staff shifts and patient hospitalizations as described
above. The relative contact rate is simply found by dividing the total number of registered
contacts with the estimated number of present hours. Table B.2.4 provides a complete
overview of the role, ID number and the numbers providing the basis for the calculated
contact rate per hour. A graphical illustration of the relative contact rate is presented as
the lower four panels in Figure Section 3.2.3, where the order of the individuals from the
figure above is preserved for comparison.

In order to recreate a similar pattern of relative contact rates in the model, the data
representing the number of contacts per hour are plotted as histograms and fitted by log-
normal curves, see the left panels of each role in Figure 3.2.25. Again, the size of the
dataset makes it challenging to make good reasoning for the choice of a distribution fitting
the data well, however, the lognormal distribution makes it possible to capture individuals

Figure 3.2.25: Out of the eight panels, two and two represents one role. Of these, the panel to
the left represents a histogram corresponding to the calculated relative contact rate and a lognormal
distribution based on the mean and standard deviation of these data. The panel to the left presents
the same distribution and 100 simulations with drawn values from this distribution. The number of
drawn values in each simulation equals the number of individuals belonging to each role.
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contributing with a particularly high relative contact rate. In order to prevent the log-
normal distribution from creating individuals with superficially high relative contact rates
compared to the original data, a limit of 1.20 is set relative to the highest observed relative
contact rate: If a value drawn from the distribution exceeds 120 % of the highest observed
relative contact rate, the drawing is repeated. The resulting distributions with histograms
from 100 simulations are presented in the right panels for each role in Figure 3.2.25. A
corresponding figure where no upper limit is set, is presented in Figure B.2.19. The pa-
rameters determining the lognormal distributions, as well as the upper limit, are presented
in Table 3.2.2.

Table 3.2.2: The table presents the location and scale parameters for the lognormal distribution
governing the relative contact rates drawn for each agent in the model, in addition to the highest
observed number of contacts per hour and a maximum limit set to 1.20 times this value.

Role Location, µ Scale, σ Highest Upper limit

NUR 3.1568 0.7804 86.8571 104.2285
MED 2.6911 0.6861 35.1875 42.2250
ADM 1.6713 1.4697 23.3077 27.9692
PAT 0.7410 0.6019 5.2474 6.2969

In addition to taking individual heterogenities in terms of extroversion into account,
the contact network in the model attempts to mirror the observed interactions between
the pair of roles. Through a series of contact matrices showing the number of contacts
between the four different roles, Vanhems et al. observe that some role pair interactions
constitute a larger proportion of the total number of contacts than other. Figure 3.2.26
presents a graphical illustration of the relative probability of interaction with an individual
of the four different roles. For instance, if one of the individuals in a contact pair belongs
to the NUR category, there is a 50 % chance that the individual making up the other half
does also belong to the NUR role.

Figure 3.2.26: The bars represent the relative contact rates among roles in the ward for each of the
four roles in the ward. The bars for each role summarize to 1.0.
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3.2.4 Implementation of Temporal Network Into the Model
This section has given an introduction to how data extracted from the empirical contact
network can be used to mirror the daily pulses of contacts in the ward, how staff shifts and
patient hospitalizations can be replicated based on hours of registered contacts and lastly
how individual variations within and among each of the four roles can be reproduced by
fitting the data with lognormal distributions. The last section dealing with the generation
of the temporal contact network summarizes how these three approaches are implemented
in the model. The first part deals with agent initialization, whereas the second part covers
the algorithm of the simulation steps.

Agent Initialization

After the model parameter are set, the model agents are initialized. In this step, the desired
number of agents belonging to each of the four roles NUR, MED, ADM and PAT are
created and assigned with attributes such as an id number and which role they belong to.
After an agent is initialized, it is added to a list keeping track of all agents in the simulation.
In addition, a node representing the agent is added to the temporal network.

The data giving rise to the empirical contact network presented by Vanhems et al. was
obtained from a geriatric hospital ward with 19 beds. This model allows for up-scaling of
the number of wards and the number of beds per ward. Hence, the initial number of staff
members is calculated based on the staffing per bed in the empirical data. For instance, 8
individuals in the administrative staff per 19 beds in the ward, results in approximately 0.42
administrative staff per bed. Thus, for each ward in the model, the number of initialized
agents with an ADM role is calculated using

aADM =

⌊
8

19
· nbeds

⌋
,

with equivalent expressions for the initial number of staff belonging to the other roles. The
same strategy applies for the number of staff members covering each of the given shifts:
If two nurses cover the night shift in the original ward, 3 · 2 NURs have to work during
night time if the number of beds in the ward has tripled. This information is summarized
in Table 3.2.4. Figure 3.2.27 presents an illustration of how the staff agents are initialized.

Figure 3.2.27: The initialization of agents belonging to one of the three staff classes can be divided
into several steps: The user can create w number of wards with n number of beds in each ward.
For each of the three roles NUR, MED and ADM, a agents are initialized in each ward, based on
a potential up-scaling of the number of individuals given in the empirical data. A new staff agent
results in a new node in the temporal network, storing the role and ward as node attributes.
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The staff agents that are initialized in the very beginning of the simulation, are clas-
sified as regular staff. That is, if none of the staff members have to stay home due to
quarantine or sick leave during the simulation period, these are the only staff agents who
are initialized in the course of the simulation. If there are no available staff members to
cover a shift, however, temporary staff members are initialized, see the discussion below.
Regardless of whether the agent is a part of the regular or temporary staff, all staff agents
are assigned with a given ward number. The agent can only cover shifts belonging this
ward. The staff agents are also assigned with a percentage of employment. If the user sets
the shift assignment to be ’random’, all agents receive a percentage of 1.0. If the assign-
ment is set to ’percentage’, on the other hand, the percentage is drawn from a multinomial
distribution derived from on the observed number of shifts, see Table 3.2.3.

Table 3.2.3: A staff agent is assigned a percentage of employment when being initialized. This table
shows the percentages, x, the total number of individuals in the original data working with the given
percentage, N , and the corresponding relative probability P (x) for each of the staff roles.

Percentage Frequency Probability
NUR MED ADM NUR MED ADM

0.2 5 0 1 0.19 0.00 0.13
0.4 6 2 2 0.22 0.18 0.25
0.6 7 2 3 0.26 0.18 0.38
0.8 6 3 1 0.22 0.27 0.13
1.0 3 4 1 0.11 0.36 0.13

Sum 27 11 8 1.00 1.00 1.00

The number of initial patients is calculated by multiplying the number of wards with
the number of beds per ward and the average bed occupancy set to 84.21 %. Each of
these patients are initialized and assigned an id number and ward, similarly as for staff
agents. The remaining number of available beds are updated simultaneously. In addition,
the patient agents are assigned with the hour of admission and the number of remaining
hours before discharge: The duration of hospitalization, thospitalization is drawn from a nor-
mal distribution as described above. For the patients initialized in the very beginning of
the simulation however, the remaining number of hours in the ward is drawn randomly
from the range spanning [tmin, thospitalization]. In a scenario without a spreading infection,
all patients are discharged when their drawn length of hospitalization has come to an end.
If a patient is put in a quarantine or isolation due to suspected or confirmed disease, how-
ever, the hospitalization is extended to contain this period. Hence, the average duration of
hospitalization may increase in case of an extensive disease outbreak.

All agents are assigned with a degree of extroversion when being initialized. As de-
scribed above, this number is drawn from a distribution corresponding to their given role,
and is set to not exceed 1.20 time the highest observed relative contact rate among the
participants. All agent attributes that are set during initialization are presented in Fig-
ure 3.2.28.
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Figure 3.2.28: All agents are assigned with id number, role, ward and degree of extroversion when
being initialized. In addition, staff agents are given a percentage of employment and confirmed
regular staff if being initialized in the very beginning of the simulation. Patients are assigned with
the hour of admission and the number of hours left before discharge. The data types denoted to the
right are briefly explained in Table B.1.2.

The Simulation Step

The agent initialization step is followed by the the actual simulation. In this step, the model
iterates through each of the H simulation hours. For each of these hours, denoted h, the
model goes through five steps, presented in Figure 3.2.29. The three first steps deals with
presence in the ward and contact generation and are described below. Step four and five
deals with the epidemiological spread and summarizing the spreading state in the system,
and are therefore described in the next main section.

1. Shifts and patient hospitalization: If the simulation hour h corresponds to the be-
ginning of a new shift, the model shift manager ensures that the shifts are covered
according to the model parameter values, see Table 3.2.4. A list of available staff
members is made based on the following criteria: The agent is not currently present
in the ward, neither restricted to come due to quarantine, for example. In addition,
the agent must be part of the regular staff and the ward number and role must com-

Table 3.2.4: Overview of the number of agents belonging to the three different staff roles initialized
per ward, in addition to information about staffing, duration and start time of the shifts.

Role Regular staff Shift type Staffing Duration (h) Start

NUR 27 · n/19 morning 9 · n/19 7 07:00
day 2 · n/19 8 09:00
afternoon 5 · n/19 7 13:00
night 2 · n/19 11 20:00

MED 11 · n/19 - 8 · n/19 10 09:00
ADM 8 · n/19 - 4 · n/19 10 08:00
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ply with the requirements. If the list of available staff is longer than the required
number of agents needed to cover the shift, a selection is chosen based on employ-
ment percentages and remaining resting time, see next paragraph. If there are not
available agents among the regular staff, the same screening process is repeated for
any existing temporary staff members. If there are still not enough agents to cover
the shift, new staff members are initialized as described above, with the exception
of that the regular staff-attribute is set to false. To summarize, the model is built
to 1) choose regular staff over temporary staff, and to 2) choose already existing
temporary workers over generating new ones.

If there are more available staff members than shift vacancies to cover, the required
number is drawn based on the percentages of employment. For instance, if there are
three available nurses A, B and C with percentages 0.6, 0.6 and 0.8, and only two
of them are required for the night shift, the percentages are first normalized in order
to summarize to one (0.3, 0.3 and 0.4). These weights affect the probability of each
agent being chosen, implying that the latter NUR agent has a higher probability of

Figure 3.2.29: Each simulation step is divided into five main parts: The first step manages new
shifts and admits patients if there are available beds. The second step counts down remaining hours
of shifts, resting hours and hospitalization hours. The third step generates contacts among the agents
present in the ward. Steps four and five govern the spreading and the summary of the epidemiological
status in the ward.
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working the given shift. The user can determine if resting hours for the NUR agents
are taken into account. If they are, each NUR starts a countdown at 18 hours of
rest when ending a shift, and the agents with the lowest remaining hours when a
new shift is to start are chosen in front of other agents, even if the agent has a lower
working percentage. Returning to the example above, if the NUR agents A and B
are fully rested, whereas agent C is not, the two former are chosen to cover the shift.

After any new shift has been covered, potential available beds are filled up by admit-
ting new patients. These are initialized as described above, except from that their
duration of hospitalization is drawn directly from the distribution and not shorted
down. The remaining hours in the ward is extended if the patient is quarantined or
isolated due to illness, as will be discussed in the next main section.

2. Count down of hours governing presence: In this step, the simulation runs through
all agents in the simulation, not only those present in the ward. If the agent is
currently present in the ward, the remaining hours, either of the shift or the hos-
pitalization is reduced with one hour. When reaching zero, the staff agents leave
work whereas the patient agents are discharged, freeing up a bed. For agents of the
NUR role who are currently not present in the ward, their remaining hours of rest
are counted down. For agents in quarantine or isolation, the remaining restriction
hours are reduced by one. When reaching zero, the agent returns to a state of no
restrictions.

3. Contact generation: The contacts for the given hour are generated among the
agents who are present in the ward. Firstly, the number of contacts per bed is drawn
from a normal distribution with parameters corresponding to the given hour h. If
the number of contacts per bed is larger than zero, it is multiplied with the number
of wards and number of beds per ward. The total number of contacts for the given
hour, here denoted C, can be reduced to mimic social distancing, see Section 3.3.6.

The C number of contacts must consist of pairs of agents. These are referred to as
contact pairs and consist of a person A and a person B. Firstly, persons A of all con-
tact pairs are drawn from a multinomial distribution (with replacement). The proba-
bility of being drawn corresponds to their degree of extroversion, again normalized
in order to summarize to one. Thus, an agent with a high degree of extroversion may
be drawn multiple times, see Figure 3.2.30.

Figure 3.2.30: The person A of all contact pairs is drawn among the present agents in the wards and
depend on their degree of extroversion, here denoted by numbers on each of the six example agents.
When drawing without replacement, the same agent may serve as person A in several contact pairs.
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After person A of all contact pairs have been drawn, the model iterates through
the list unique agents. If a given agent was draw 10 times, 10 persons B must be
drawn from the remaining agents in the ward. However, the probabilities governing
these drawings depend not only on the agent’s degree of extroversion, but their role
relative to the role of person A and their assigned ward relative to the assigned ward
of person A. The probability for each potential person B is calculated by multiplying
three values:

(a) The degree of extroversion: Agent attribute.

(b) The probability of interaction between the role pairs: If person A for instance
belongs to the NUR role, a potential person B candidate belonging to the NUR
role will have a greater probability of being drawn compared to an agent be-
longing to the MED role, see Table 3.2.5.

Table 3.2.5: Relative contact rates for each of the four roles in the ward.

NUR MED ADM PAT

NUR 0.5000 0.2547 0.6843 0.7662
MED 0.0962 0.5332 0.1401 0.1497
ADM 0.1256 0.0681 0.0590 0.0589
PAT 0.2782 0.1440 0.1165 0.0252

(c) The degree of collaboration across the wards: In case of simulating multiple
wards, the user can determine the degree of collaboration across the wards by
tuning the value of a ward isolation parameter. Patients can only interact with
patients belonging to the same ward, but all staff members can have contact
with agents belonging to other wards. Thus, if this parameter is set to 1.0, the
wards are totally isolated and no intra-ward contacts occur. On the other hand,
if the parameter is set to 0.0, a staff member is just as likely to have contact
with a agent from another ward as an agent belonging to the same ward as
itself.

From the available agents the contact partners for person A are drawn using a multi-
nomial distribution with probabilities corresponding to the product of the extrover-
sion, the role pair interactions and the ward isolation parameter. For each of the
resulting contact pairs, the number of contacts in this given hour h is registered in
both of the agents’ lists managing contacts. In addition, their corresponding link in
the building contact network is either added or updated.

The user can control the randomness in the described contact generation by tuning
a contact randomization parameter. When this is set to 0.0, the contact generation is
just as described above. By increasing the parameter value, potentially up to 1.0, an
increasingly larger proportion of the C contact pairs are drawn randomly, without
taking the degree of extroversion or role pair interactions into account. The ward
isolation is not affected.
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3.3 Building an Epidemiological Model
The previous section introduced how a temporal contact network is generated based on
patterns extracted from an empirical hospital ward network. These inter-individual con-
tacts form the basis for transmission of SARS-CoV-2. The model is agent-based and built
upon transitions between several epidemiological states. The following section introduces
these states, the transitions between them and attempts to quantify the relevant parame-
ters. The section is concluded by describing how the epidemiological part of the model is
implemented, including some key infection control measures.

Epidemiologial States and Transitions

The choice of epidemiological states and associated transitions are based on the current
knowledge regarding COVID-19, as presented in Section 2.1. Upon transmission, a sus-
ceptible individual (S) enters an exposed state (E). The incubation period is followed by
an infection, which could be either symptomatic (I) or asymptomatic (A). In this model,
all asymptomatic individuals are assumed to recover (R), whereas individuals with symp-
toms may experience a fatal outcome (D). In addition, the model includes the possibility
of vaccination through a direct transition from susceptible to recovered state. The debated
chance of not obtaining immunity after an infection is reflected in the transition from re-
covered to susceptible state. All six states and the possible transitions are illustrated in
Figure 3.3.1.

Figure 3.3.1: Flow chart representing the epidemiological states and the transitions between them
in the model describing the spread of SARS-CoV-2. Dashed lines indicate transitions determined by
probabilities, p, whereas solid lines indicate transitions determined by time spans, t. The states and
transitions are introduced in the text.

As the figure shows, the transitions between the states depend on several parameters. The
dashed arrows represent probabilities, p, whereas the solid arrows represent time spans, t.
These parameters are shortly described in Table 3.3.1 and further discussed in the follow-
ing.
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Table 3.3.1: Overview of the parameters governing the epidemiological model describing the spread
of SARS-CoV-2. The parameters are either transition probabilities, p, or time spans, t.

Parameter Description

pT transmission in contact with infectious agent
pA asymptomatic course of disease
pD fatal outcome given symptomatic course of disease
pV being vaccinated towards the virus
pE full protection given vaccination, i.e. efficacy
pS not gaining immunity after infection

tE incubation period
tI infection period
tA asymptomatic period

Sections 3.3.1 to 3.3.5 give an introduction to five of the epidemiological states, in-
cluding the characteristics of the agents they comprise and the possible transitions to other
states. As the following material will demonstrate, some of the listed parameters depend
on several others. The state comprising diseased agents, state D, is not described in any
further detail as there are no transitions from this state.

3.3.1 Susceptible state
The susceptible state comprises all agents who can become infected with the virus upon
exposure. These agents do not carry the virus and are hence not infectious. Nor do they not
have immunity towards it. All agents in the model, except for the initially infected ones,
reside in this state when being initialized. Susceptible agents have two possible transitions
to the following states:

• Exposed (E): A susceptible agent can acquire the virus when being in contact with
an infectious agent. The probability of transmission is given by pT .

• Recovered (R): A susceptible agent can obtain immunity towards the virus through
vaccination. The probability of immunization is given by the product of vaccination
probability pV and vaccination efficacy pE .

Transmissibility

The transmissibility pT is a measure of how easily the virus transmits from one agent to
another. As discussed in Section 2.1.1, the two key routes of SARS-CoV-2 transmission
encompass close contact, where respiratory droplets are transferred in close proximity
interactions, and indirect contact where the virus is transmitted through fomites. For the
purpose of investigating how the pathogen spreads across the simulated temporal contact
network, the latter route of transmission is neglected. The threshold value for contact
detection in the empirical contact network of 1.5 meters correspond well with the mean
value of the WHO and CDC definitions of close contact; 1 and 2 meters, respectively.
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Some modeling frameworks investigating close-contact transmission of the influenza
virus propose an expression where the transmissibility depends on the weight of the con-
tacts between two individuals. This contact weight could for instance be the number or
duration of contacts made in a given time period. Their proposed equation is presented
in Equation (3.3.1), where c denotes the contact weight and the value 0.003 represents
the transmissibility per contact. This value is calculated based on the attack rate of an
influenza outbreak on a jet airliner in 1979 [170–172].

pT (c) = 1− (1− 0.003)c (3.3.1)

The equation representing the influenza virus transmissibility serves as basis for the
transmission probability pT in this model. The contact weight c is defined as the total
number of contacts made between two agents in the course of an hour. The relative conta-
giousness of SARS-CoV-2 compared to the influenza virus is accounted for by multiplying
the baseline transmissibility value with a factor γ. If this value is set to two, for instance,
the coronavirus transmits twice as easily as the influenza virus. Based on the presented
R0 values, the baseline value for γ is set to 2. Figure 3.3.2 illustrates how the probability
of transmission evolves with number of hourly contacts. The three different colors cor-
respond to three levels of contagiousness. The dotted lines represents a linear reference;
pT = γ · 0.003 · c.

Figure 3.3.2: The solid lines present the probability of transmission of SARS-CoV-2 from a con-
tagious agent to a susceptible agent as function of the hourly number of contacts. The three curves
represent three cases where SARS-CoV-2 transmits one, two and three times as easily as the in-
fluenza virus, respectively. The dotted lines provides a linear reference; pT = γ · 0.003 · c

Of the six epidemiological states in the model, only agents in the exposed (E), infected
(I) and asymptomatic (A) states carry the virus. Agents in the infected state represent
obvious candidates for transmission of the virus. As earlier introduced, however, see Sec-
tion 2.1.2, some studies have shown that the novel coronavirus may transmit in the absence
of symptoms. The level of contagiousness regarding presymptomatic and asymptomatic
carriers relative to symptomatic individuals is not yet quantified. In order to allow for
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exploring how the level of pre- or asymptomatic infectiousness affects the overall disease
transmission, the factor α is introduced. The infectiousness of agents in state I, assumed to
be constant and equal for all agents in the state, is used as a base; αI = 1. For non-carriers
the value is set to zero. Since the virus transmits through droplets, it is natural to assume
that agents without symptoms are less contagious than agents with symptoms. Hence, the
value for αA, representing presymptomatic agents in state E and asymptomatic agents in
state A, is assumed to lie somewhere between 0 and 1. The parameters governing the rel-
ative contagiousness are summarized in Table 3.3.2. The baseline value for αA is set to
0.5. Given contact between a susceptible and an infected agent, this value corresponds to
an assumption of the infectiousness being halved if the infected agent does not have any
symptoms.

Table 3.3.2: The relative infectiousness, α, varies with the state of disease and presence of symp-
toms. ∗Agents without symptoms include both agents with an asymptomatic course of disease and
agents in incubation phase. †Agents in state E may be contagious only in parts of their incubation
phase, see discussion in Section 3.3.2.

Relative contagiousness Description States

αI = 1 Symptomatic I
αA ∈ [0, 1] Asymptomatic∗ A, E†

αN = 0 Non-contagious N, R, D

So far, the expression describing transmission probability is supplemented with a factor
γ describing the relative contagiousness of SARS-CoV-2 compared to the influenza virus,
and a factor α capturing the relative contagiousness of agents lacking symptoms compared
to agents with symptoms, see Equation (3.3.2). These values can be tuned for the model as
a whole, but is assumed to be equal for all model agents. The probability of transmission is
also affected by any infection control measures initiated by agent quarantine or isolation,
which is discussed in Section 3.3.6.

pT (α, γ, c) = 1− (1− α · γ · 0.003)c (3.3.2)

Vaccination

There is currently no approved vaccine providing immunity towards the coronavirus. How-
ever, for the purpose of evaluating the effect of a future vaccine on a possible resurgence,
vaccination is included in the model. The vaccination coverage pV denotes the proportion
of agents who takes a vaccine. Regarding the seasonal influenza virus, the World Health
Organization recommends a vaccination coverage of 75 % for all individuals in high risk
groups, including elderly and individuals with chronic illnesses [173]. The vaccine effi-
cacy pE denotes the probability of a vaccine, once taken, providing full immunity towards
the pathogen of interest. Again using the seasonal influenza as a reference, the value of pE
lies around 60 %, varying slightly from year to year [174]. Based on these numbers and
the current situation where no approved SARS-CoV-2 vaccine exists, the baseline values
are set to pV = 0 and pE = 0.60.

67



Chapter 3. Methods and Software

3.3.2 Exposed state

The exposed state comprises all agents being in the incubation period. These agents carry
the virus, but do not have an active infection. The initially infected agents, serving as
patients zero in the model, start their incubation period when being initialized. When
leaving the exposed state after the given time span tE , agents have two possible transitions
to the following states:

• Asymptomatic (A): An exposed agent can enter an asymptomatic course of disease
with the probability pA.

• Infected (I): If not entering an asymptomatic infection, an exposed agent enters a
symptomatic course of disease. The probability is hence given by 1− pA.

Duration of the Incubation Period

As introduced in Section 2.1.2, the incubation period for COVID-19 can vary greatly be-
tween individuals. In order to capture this variation, it seems reasonable to model the
incubation period using a probability distribution. A lognormal distribution is chosen in
order to capture the positive skew. This probability distribution is determined by a location
parameter µ and a scale parameter σ, see Section 2.4.2. Based on the given incubation pe-
riod estimates [56, 66–69], which provide information about both centrality and variance
in the analyzed data, the following set of equations is proposed for deriving the lognormal
parameter values: The first equation, see Equation (3.3.3), is based on the scale value,
either the mean, x̄, or the median value, x̃:

x̃ = exp (µ) x̄ = exp

(
µ+

σ2

2

)
(3.3.3)

The second equation is based on the variation in the data, and utilizes that the sum of
the area under the probability density curve (PDF) can be specified by choosing a given
lower and upper bound: When a lower bound a and upper bound b is given, the lognormal
parameters can be set so that the integral spanning the interval [a, b] summarizes to a given
sum s. For instance, Linton et al. estimated the mean incubation period to 5.6 days with
a 95 % confidence interval spanning 2 to 14 days [68]. Hence, the lognormal parameters
can be set so that there is a 95 % chance of drawing an incubation period tE which lies
within the interval [2, 14] days. The equation is presented in Equation (3.3.4).

∫ b

a

1

xσ
√

2π
exp

(
− (lnx− µ)2

2σ2

)
dx− s = 0 (3.3.4)

The set of equations can then be solved to determine the values of µ and σ. The
code solving this set of equations based on the mean value is provided in Appendix B.2.6.
Here is also a graphical illustration of how the given example above is solved numerically.
The mean or median value, as well as the lower bound, upper bound and sum of integral
determined from the given references are presented in Table 3.3.3.
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Table 3.3.3: Overview of the estimated mean or median incubation time for a set of references. The
integral of the lognormal probability density function between the lower and upper bounds a and b
is set to summarize to the given sum. ∗WHO does not provide a confidence interval or percentage
of cases falling within the given range. The sum is set to 0.99 in order to let the given range capture
a high proportion of the cases.

Authors Mean Median Lower Upper Sum Citation

WHO 5.5 - 1 14 0.99∗ [56]
Zhang et al. 5.2 - 1.8 12.4 0.95 [67]
Linton et al. 5.6 - 2 14 0.95 [68]
Lauer et al. - 5.1 0 11.5 0.975 [66]
Backer et al. 6.4 2.1 11.1 0.95 [69]

A visualization of the resulting lognormal distributions based on the values given in Ta-
ble 3.3.3 is presented in Figure 3.3.3. The solid lines represent the probability density
function, whereas the dotted, vertical lines represent the median value.

Figure 3.3.3: Five different lognormal distributions based on estimated incubation times. The solid
curves represent the probability density function, whereas the dotted lines represent the calculated
median value.

In the epidemiological model, the incubation time is drawn from the lognormal distri-
bution based on the parameters derived from the WHO numbers, see Equation (3.3.5). As
Figure 3.3.3 shows, the numbers used by the World Health Organization are supported by
the estimates provided by several peer-reviewed articles. The distribution from which the
incubation periods are drawn from can be shifted in both directions from the baseline by
tuning the values for µ and σ.

tE ∼ Lognormal (µ, σ2), where µ = 1.6067 and σ = 0.4427 (3.3.5)
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Infectiousness in Exposed State

As discussed in Section 3.3.1, the level of infectiousness is assumed to differ between
agents with and without symptoms. In order to investigate the impact of potential presymp-
tomatic transmission, also agents in the incubation period can be infectious. The relative
level of infectiousness is assumed to equal that of asymptomatic agents, αA. Although the
viral load has shown to vary in a curve-like fashion in the course of the disease, it is here,
for simplicity, assumed to be a flat rate. Exposed agents become infectious when h hours
of the incubation period remains, as illustrated in Figure 3.3.4. If the drawn duration of
the incubation time is shorter than h, the agent is assumed to be infectious directly after
transmission.

Figure 3.3.4: Timeline illustrating the infectiousness of an agent changing with its epidemiological
state. An agent enters the incubation period upon transmission from an infectious agent. The agent
itself becomes infectious when entering the last h hours of its incubation period, and is infectious
until leaving either state I or A.

The value of h is assumed to be equal for all agents in the exposed state. The baseline
value is based on the averaged estimates presented by Tindale et al. and He et al. [80, 82],
see Equation (3.3.6).

h =
2.55 day + 2.89 day + 2.3 day

3
= 2.58 days ≈ 62 hours (3.3.6)

Probability of Asymptomatic Infection

Despite the fact that COVID-19 materializes in a range of symptoms and degrees of sever-
ity, this model assumes a binary distinction between asymptomatic and symptomatic in-
fection. As the rate of asymptomatic cases seems to be higher for younger individuals, it
could be reasonable let the pA parameter value differ for patients and staff in the ward. The
estimated rate of asymptomatic infections proposed by Mizumoto et al., 17.9 %, was based
on tests conducted among individuals where about three quarters were 60 years or older
[74]. Assuming that most patients visiting the geriatric ward are in the same age range, the
baseline value for patients is set to pA ≈ 0.18. The registered rate of asymptomatic cases
among the infected residents of the Italian Municipality Vo’, 43 % [75], serves as baseline
value for agents belonging to any of the Staff roles, see Equation (3.3.7).

pA =

{
0.43, if STAFF
0.18, if PAT

(3.3.7)
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3.3.3 Asymptomatic State

The asymptomatic state comprises all agents being infected with SARS-CoV-2 without
having any symptoms. Asymptomatic infections are therefore assumed to go unnoticed in
terms of testing and initiation of control measures. The relative infectiousness compared
to symptomatic cases is given by the parameter αA, and is assumed to remain constant as
long as the infection lasts. Since the fatality rate among asymptomatic agents is assumed
to be zero, agents in this state only have one possible transition:

• Recovered (R): An agent with an asymptomatic course of disease enters a recovered
state after a time span tA.

Duration of Asymptomatic Infection

As asymptomatic COVID-19 cases easily pass undetected, it is difficult to establish the
duration of asymptomatic courses of disease. Hence, the value of the tA parameter in
this model is a guesstimate based on the duration of mild cases, where symptoms usually
pass in the course of one to two weeks, see Section 2.1.2. Similarly to the incubation
period, the duration of an asymptomatic infection is drawn from a lognormal distribution.
Figure 3.3.5 shows three examples with varying median values, where 99 % of the area
under the curves falls within fourteen days.

Figure 3.3.5: The solid curves represent three different lognormal probability curves with median
values of 3, 7 and 10, respectively. 99 % of the area under the curves fall within zero and fourteen
days. This area is shaded. The dotted, vertical lines represent the median value.

In the model, the baseline distribution for tA corresponds to the lognormal probability
function using a median value of seven days, see Equation (3.3.8). The distribution can
easily be shifted by tuning the location and scale parameters.

tA ∼ Lognormal (µ, σ2), where µ = 1.9459 and σ = 0.2980 (3.3.8)
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3.3.4 Infected State
The infected state comprises all agents infected by SARS-Cov-2 who also have symp-
toms of the disease. All agents having symptoms are assumed to be equally infectious,
with αI = 1. The presence of symptoms initiates several control measures, as will be
described in Section 3.3.6. Agents belonging to this state have two possible transitions to
the following states:

1. Recovered (R): An infected agent can recover from the disease when reaching the
end of the time span tI .

2. Diseased (D): An agent with severe symptoms may suffer a fatal outcome. The
probability of a fatal outcome is given by the fatality probability pD.

Duration of Symptomatic Infection

Compared to asymptomatic infections, the literature covering the duration of symptomatic
courses of disease is somewhat more copious, see Section 2.1.2. In this model, the pa-
rameter tI is based on estimates of the duration from symptom onset to death. When an
agent comes to the end of this time span, the probability parameter pD determines whether
the outcome actually is fatal or not. Section 2.1.2 presented three estimates of the duration
from symptom onset to death. Jung et al. provided parameters for a lognormal distribution
[84], whereas Linton et al. and Wang et al. reported a median value and a given range
wherein a given proportion of all cases fell within [25, 68]. The information provided by
the two latter references were used to derive lognormal parameters. The three resulting
probability density curves are plotted in the left panel of Figure 3.3.6.

Figure 3.3.6: Left panel: Three lognormal distributions of the duration from symptom onset to
death. The dotted vertical lines represent the median value of the distributions. Right panel: A
histogram of 10 000 values drawn from each of the three distributions is plotted in red. The combined
data are fitted by a log-normal distribution, represented by the dashed curve. Approximately 1.43 ‰
of the drawn values exceed 70 days and are omitted from the plot to improve readability.
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The lognormal parameters determining the probability distribution of tI is based on a
combination of all three curves. 10 000 values were drawn from each of the three distribu-
tions presented in the left panel, and a new, combined lognormal curve was derived based
on the mean and median values of the 30 000 drawn values combined. The right panel of
Figure 3.3.6 shows the histogram of the drawn values together with a dashed curve repre-
senting the combined lognormal probability curve and a dotted, vertical line representing
the median value. The baseline parameter values used to describe the duration of symp-
tomatic courses of disease in the model is presented in Equation (3.3.9). This distribution
has a median of fourteen days.

tI ∼ Lognormal (µ, σ2), where µ = 2.6931 and σ = 0.4016 (3.3.9)

There are some issues regarding the assumption of using the duration from symptom
onset to death as foundation for tI , as this parameter is supposed to give a realistic picture
of the duration of all symptomatic cases, not only the most severe. As introduced in
Section 2.1.2, the duration of milder cases is shorter than the duration of more severe cases.
In addition, the fatality rate, see below, is clearly linked to age. Hence, the model assumes
that the staff in the ward, if infected, are likely to go through a milder and shorter course
of disease with a lower probability of a fatal outcome than the hospitalized patients. The
model allows for distinguishing between the duration of disease course between patients
and staff by letting the user set the relative ratio r. This ratio goes from zero to one, and
shifts the lognormal curve to the left by multiplying the median and mode by the provided
ratio. The lognormal parameters are calculated as shown in Equation (3.3.10). Figure 3.3.7
visualizes the two distributions using a ratio r = 0.5. This value serves as baseline in the
model.

µ∗ = ln (r · exp (µ)) σ∗ =
√
µ∗ − ln (r · exp(µ− σ2)) (3.3.10)

Figure 3.3.7: The two lognormal distributions describes the duration of a symptomatic course of
disease and differs between patients and agents belonging to any of the staff roles. In this plot, the
median and mode value of the distribution governing the staff tI is half the values of median and
mode governing the distribution for the patient tI parameter.
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Fatal Outcome

The observed case fatality rate (CFR) among individuals with a symptomatic COVID-19
infection has shown to vary greatly with age, see Figure 2.1.4. Hence, it becomes natural
to distinguish between staff and patients when determining the value of the parameter pD.
Assuming that all agents belonging to any of the staff classes are between the age 20 and
60, and that patients are all 60 years or older, the following estimates for the fatality rate
pD are derived, based on the CFR among symptomatic individuals in Hubei and Italy:

Table 3.3.4: Age-aggregated estimates for the model parameter pD based on estimated case fatality
rates from Hubei and Italy. The values for the staff and patient classes are based on CFR values for
individuals aged 20 to 60 years and 60 years and above, respectively.

pSTAFF
D pPAT

D

Hubei 0.00975 0.219
Italy 0.00325 0.434

Mean 0.00650 0.327

The estimated means serve as baseline values in the model. If varying the probability of
fatal outcome, it seems reasonable to let the pSTAFF

D and pPAT
D parameters take values in the

order of magnitude of 10−3 and 10−1, respectively.
The model also includes the probability of an agent dying from a secondary infection,

independent of the outcome of the primary infection. Ideally, the spread of an opportunistic
pathogen would be implemented as a distinct spreading agent with its own epidemiological
states and transitions. Due to time constraints, however, the current version of the model
implements the risk of fatal secondary infections as a series of Bernoulli trials. The line of
thinking is presented in Figure 3.3.8. The baseline values for the model, estimated from
the theory presented in Section 2.1.2, are summarized below.

1. Probability of secondary infections: Zhou et al. determined the proportion of sur-
vivors and non-survivors who had secondary infections: Out of 137 survivors, only 1
person had a secondary infection compared to 27 out of 54 non-survivors. However,
these observations yield estimated probabilities of secondary infection given fatal
and non-fatal outcomes, not the probability of acquiring a secondary infection given
a primary infection. The baseline value of psecondary infection is therefore guesstimated
to 0.5.

2. Antibiotic treatment: Zhou et al. reported that 95 % of the hospitalized patients were
treated with antibiotics. pantibiotics = 0.95.

3. Resistant bacteria: The prevalence of antibiotic resistant bacteria varies greatly
across Europe, see Table 2.1.4. As for Norway, the baseline values is set to presistant =
0.009, but could for instance be raised to 0.34 to mirror the situation in Italy.

4. Successful treatment: In case of an antibiotic-treated secondary infection with a
susceptible bacterial strain, the chance of a fatal outcome is based on the average of
the estimated case fatality rates for MSSA, see Table 2.1.5: pfatal, susceptible = 0.19.
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Figure 3.3.8: Flowchart representing the Bernoulli trials governing the probability of dying from a
secondary infection for COVID-19 patients in the hospital ward.

5. Successful immune system recovery: In the case where a secondary infection is not
treated with antibiotics or antibiotics are used in the attempt of treating a resistant
bacterial strain, the agent depends on a successful immune system recovery in order
to survive. In both cases, the probability of a fatal outcome is based on the average
value of estimated case fatality rates for MRSA: pfatal, resistant = 0.40.

Since the given data is based on hospitalized patients, only agents belonging to the PAT
class in the model can die from secondary infections.

3.3.5 Recovered state
The recovered state comprises all agents who have received immunity toward the virus,
either through an infection or through vaccination. These agents cannot be re-infected
with SARS-CoV-2. Agents in this state have one possible transition to the following state:

• Susceptible (S): A recovered individual may return to a susceptible state if it does
not gain immunity after going through an infection. The probability is given by pS .

Probability of Loss of Immunity

Whether an individual who has gone through a COVID-19 infection can be re-infected is
still debated. In this model, the potential loss of immunity following the recovery from the
viral infection is captured by including a returning transition to state S. The probability pS
is assumed to be equal for agents recovering from both symptomatic and asymptomatic
infections. The baseline value is set to pS = 0.01. Agents who gain immunity through
vaccination are assumed to remain immune and cannot return to state S.
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3.3.6 Implementation of Control Measures
As introduced in Section 2.1.3, several control measures have been implemented (in the
real world) in order to limit the spread of SARS-CoV-2. This section describes how some
of the most central interventions are implemented in the epidemiological model.

Social Distancing

The model implements social distancing as a reduction of the total number of contacts in
each simulation step. By increasing the inter-individual distance, fewer CPIs are detected.
Hence, if the parameter value is set to 0.1, only 90 % of the originally drawn contacts for
the given hour occur. One should keep in mind, however, that increasing the social dis-
tancing to 1.0 would eliminate all potential spreading in the ward due to the total absence
of inter-individual contacts, although this is not practically feasible in a hospital ward.

Testing

Due to limited testing capacity, not all individuals with symptoms of COVID-19 have been
tested. Based on the prioritized list presented in Section 2.1.3, however, both patients and
staff in the model ward are included as priority item 2 and 3, respectively. The model
therefore assumes that all infected agents in the hospital are tested, given that they have
one of the symptoms fever, cough or breathing difficulties. The probability of each of
these symptoms are given in Table 2.1.2. Thus, the following algorithm applies to testing
of the model agents:

1. When entering a symptomatic infection, the agent is assigned with symptoms. Each
of the three above-mentioned symptoms are drawn from Bernoulli distributions, as
demonstrated for fever:

f(fever; 0.879) =

{
0.879 if x = fever
1− 0.879 if x = no fever (3.3.11)

Hence, an infected agent may be assigned with zero to three symptoms.

2. If an agent has any of the three key symptoms, a test is conducted immediately. An
agent awaiting test results is set in quarantine, see discussion below. The waiting
time from a test is conducted until the test results are available is set by the user.
The baseline value is set to 36 hours.

3. Healthcare employees with milder symptoms are considered for testing if an acute
respiratory infection lasts for more than two days, see Section 2.1.3. In the model,
“milder symptoms” are interpreted as a symptomatic infection, but where all three
key symptoms are absent. Hence, if an agent belonging to any of the staff roles are
in state I (symptomatic infection) but lacks all of the three symptoms, a timer is set
to count down from 48 hours. If the agent still has an infection, i.e. remains in state
I, a test is conducted.

Once a positive test is reported, two control measures are implemented; contact tracing
and isolation, see discussion below.
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Contact Tracing

When an agent has tested positive for COVID-19, contact tracing is initiated in order to
capture potential cases of presymptomatic transmission. As the empirical network forms,
the temporal contact information for each agent is stored as an agent attribute. The growing
list contains information about who the agent has been in contact with, referred to as
neighbors, and number of contacts made with the given neighbor for each time-step.

The magnitude of the contact tracing in the model can be tuned by manipulating three
different parameters, illustrated in Figure 3.3.9: Firstly, the duration of the critical time
window describes how many hours before symptom onset contacts with potential infectees
are traced. The baseline value in the model is set to 24 hours, see Section 2.1.3. Secondly,
the proportion of remembered agents denote how many unique neighbors the agent re-
members having contact with. The baseline value is set to 0.5. Lastly, the minimum
required number of contacts mirrors the threshold value for defining the interaction as a
close contact. The baseline value is set to 20 contacts. It is important to emphasize that this
parameter value captures the total number of contacts between the confirmed COVID-19
case and the given neighbor in the course of the time window.

Figure 3.3.9: The contact tracing following a confirmed COVID-19 case depends on the duration of
the critical time window preceding symptom onset, the proportion of neighbors an agent remembers
and the minimum number of contacts required to be defined as a close contact.

These three parameters can be tuned for the model as a whole, but applies equally for all
agents in the simulation. Discharged patients are not included in the contact tracing. The
algorithm below describes the contact tracing following a positive COVID-19 test for an
arbitrary agent, using the baseline values described above for illustration.

1. The critical time window is calculated as an hour interval spanning 24 hours from
before symptom onset to the hour when the symptoms appear.

2. For each of the hours in this time window, information about neighbors and the
number of contacts are examined: For each neighbor, the total number of contacts
and the last hour of exposure are updated. The resulting data contains an overview
of all agents the agent has had contact with, including the total number of contacts
and the last hour of exposure.

3. Of all the neighbors listed, the agent only remembers having contact with half of
them. The updated list of remembered neighbors is drawn randomly from the origi-
nal list, and does for instance not take the number of contacts made with the respec-
tive neighbors into account.
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4. In the remaining list of neighbors, only those who have had 20 or more contacts
with the infected agent during the critical time window are notified. Neighbors who
are already in quarantine or isolation, are not notified. The duration of the resulting
quarantine is calculated based on the last hour of exposure.

Quarantine and Isolation

Both quarantine and isolation control measures have been mentioned in the context of
testing and contact tracing. These measures affect the staffing of shifts and the believably
the pathogen transmissibility between agents due to stricter hygiene measures.

Agents may enter a quarantine in one of three possible scenarios:

• The agent has symptoms in accordance with the testing criteria and enters a quaran-
tine pending the test results.

• The agent has an acute respiratory infection, but lacks the key symptoms. The in-
fection is therefore categorized as “mild” and the agent enters a quarantine lasting
until 24 hours after the symptoms have passed

• The agent has been in close contact with a confirmed COVID-19 case and enters a
quarantine lasting for fourteen days after the last exposure.

Quarantined patients are not discharged, but stay in the ward until the restriction is lifted.
Members of the staff cannot work when being in quarantine. If they enter a quarantine
during a shift, the user can choose if they are sent directly home or finishing their shift
by switching a boolean parameter. Agents only enter isolation if they test positive for
COVID-19. The isolation lasts until seven days after symptoms are gone. Similar as for
quarantine, patients are not discharged when being isolated and staff members have to stay
home. Also here, the user can choose if a member of the staff finishes its shift hours or is
sent directly home upon positive test results.

Members of the staff who stay home during a quarantine or isolation, do not pose any
risk of infection in the ward as they are not present. Patients, however, who necessarily
must uphold some degree of contact with the staff members in order to sustain the medical
treatment, may contribute to the spread of the virus. However, quarantine and isolation
of patients would believably reduce the probability of transmission due to more stringent
infection control procedures. Bringing back the transmissibility pT , see Equation (3.3.2),
the reduced transmission probability is reflected in the variable β: This parameter denotes
the relative risk of transmission between a situation with no restrictions, βN = 1, and
a situation with quarantine or isolation, where βQ and βI take values between zero and
one, respectively. The baseline values are guessed to βQ = 0.5 and βI = 0.1. The final
expression for transmissibility is presented in Equation (3.3.12),

pT (α, β, γ, c) = 1− (1− α · β · γ · 0.003)c, (3.3.12)

where α captures the presence or absence of symptoms, β the potential restrictions in
terms of quarantine and isolation, γ the relative infectiousness of SARS-CoV-2 compared
to the seasonal influenza and finally c which denotes the number of contacts between an
infector and a potential infectee in a given hour.
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3.3.7 Implementation of the Epidemiological Part of the Model

Before summarizing the model parameters, the following section provides a brief introduc-
tion to how the epidemiological part of the model is implemented. The discussion revolves
around the two remaining steps of the list presented in Figure 3.2.29, see Figure 3.3.10,
namely the pathogen spread on the contact network, including the incubation time, infec-
tion period and test results waiting time following a COVID-19 infection, and lastly the
summary step collecting and storing data on the epidemiological state of the system.

Figure 3.3.10: Each simulation step is divided into five main parts: The three governs the presence
and contacts made in the hospital ward(s). The fourth step handles the spread of SARS-CoV-2 on the
generated contact network in addition to counting down the remaining hours of incubation periods,
infections or test result waiting times. The fifth step summarizes current and cumulative data on the
epidemiological state in the system.

4. Spread of pathogen on contact network: For each simulation hour h, this step
loops through all simulation agents who are current carriers of the virus.

(a) Infect neighbors: If the agent is present in the ward and infectious, the model
runs through all susceptible neighbors the agent has had contact with in the
given hour. The transmissibility pT is calculated as shown in Equation (3.3.12),
choosing the restriction factor β based on the strictest restriction measure
among itself and the neighbor. Whether the neighbor is infected or not is
drawn from a Bernoulli distribution where p = pT . Infected neighbors enter
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state E and are no longer susceptible. They are assigned with a incubation
period tE .

(b) Count down incubation time: If the agent is in the incubation period (E), the
remaining hours of tE are reduced by one for each simulation step. For each
step, the model checks if the remaining hours correspond to the time point
when presymptomatic transmission begins. At this point, the αN is changed
to αI . When zero hours of the incubation period remains, the agent enters
an infection: The course of disease, symptomatic or asymptomatic, is drawn
using a Bernoulli distribution with p = pA and the duration of the infection is
drawn from the corresponding distributions. Based on the potential presence
of symptoms, testing and quarantine measures are implemented as described
in Section 3.3.6.

(c) Count down remaining infection hours: If the agent is in a state of infection
(A or I), the remaining hours of infection are counted down. When reach-
ing zero, the outcome is determined by the following factors: In case of a
symptomatic infection, a potential fatal outcome is drawn from a Bernoulli
distribution where p = pD. If the agent belongs to the PAT role, the potential
fatal outcome from a secondary infection is determined as described in Sec-
tion 3.3.4. If not dying from either infections, the agent may return to state S
depending on the outcome of a Bernoulli distribution where p = pS . If not
losing its immunity, the agent recovers. In any case, the agent is no longer a
carrier of the virus and the infectiousness is reset to αN .

(d) Wait for test results: If the agent is awaiting test results, the remaining waiting
time is reduced by one for each hour time step. When the test results are avail-
able, the potential control measures regarding isolation and contact tracing is
initiated as explained in Section 3.3.6. For an agent with a mild infection, the
remaining waiting hours before a test is conducted are counted down. When
reaching zero, the agent is tested if the infection persists.

5. Summarize current epidemiological data: The model keeps track of the epidemi-
ological states by lists and map structures counting the number of agents satisfying
certain criteria for each simulation step. For instance, the number of temporary staff
working the given hour is found by sorting the agents based on if they are currently
present in the ward and that they are not part of the regular staff. A list the summa-
rized data is presented in the next section.

After the initialization step, described in the previous section, a given number of the
initialized agents can be infection in order to function as patient zero in the ward. The
number of agents, which roles they belong to and if they should belong to the same ward
or not, are parameters set by the user. In the baseline parameter set, the initially infected
agents consist of two NUR agents belonging to the same ward.
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3.4 Parameter Values
This chapter is concluded by listing the parameter values required to run the model. The
following table presents model parameters which can be defined by the user. The table
provides information about the parameter name, the data type, a short description and the
baseline value used in the model. An overview of the constant parameter values, many of
them already presented in this section, is presented in Appendix B.2.7.
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Table 3.4.1: Overview of the model parameters based on user input. The parameter are divided into
five categories in order to make it easier to navigate. The columns present the parameter name and
type, in addition to a brief description and the baseline value. ∗The presented Python built-in data
types are described briefly in Table B.1.2.

Parameter Type∗ Description Baseline

(1 / 5) General

plot results bool Summarizes main results in graphs True
log as network bool Stores the evolving contacts in a network file True
print to console bool Prints messages and progression bar to console True
measure elapsed time bool Measures the elapsed simulation time True

number of days int Number of simulation days 90
number of wards int Number of distinct hospital wards 2
beds per ward int Number of beds per hospital ward 19

(2 / 5) Contacts and shifts

contact randomization float Share of all contacts within a ward drawn randomly 0.0
ward isolation float Share of all contacts that are made within the ward 1.0

shift assignment str Sets shift assigned (’random’ or ’percentage’) ’percentage’
resting time bool Sets if resting hours for NUR shifts are taken into account True

(3 / 5) Control measures

social distancing float Proportion of avoided contacts 0.0

t quarantine int Quarantine days after last exposure 14
t isolation int Isolation days after symptoms are gone 7
t milder int Quarantine days after mild symptoms are gone 1

test results waiting time int Hours of waiting before results are available 36
close contact definition int Number of contacts required for close contact 20
t notify contacts int Critical window for contact tracing 24
p remember float Proportion of unique individuals remembered 0.5

t quarantine exception int Potential quarantine exception made for HCW 14
send staff directly home bool Forces staff to leave the ward if quarantine/isolation True

(4 / 5) COVID-19

incubation time dict Lognormal parameter values for tE {’mu’: 1.6067, ’sigma’: 0.4427}
asymptomatic time dict Lognormal parameter values for tA {’mu’: 1.9459, ’sigma’: 0.2980}
infection time dict Lognormal parameter values for tI {’mu’: 2.6931, ’sigma’: 0.4016}
infection ratio float Relative symptomatic infection rate, STAFF : PAT 0.5

p asymptomatic dict Probabilities for asymptomatic infection {’STAFF’: 0.43, ’PAT’: 0.18}
p death dict Probabilities for fatal outcome among symptomatics {’STAFF’: 0.00650, ’PAT’: 0.327}

p vaccination float Probability of being vaccinated 0.0
p efficacy float Probability of obtaining immunity from vaccination 0.60
p susceptible float Probability of not obtaining immunity after infection 0.01

t presymptomatic float Number of infectious days before symptom onset 2.58

alpha dict Relative infectiousness to symptomatic infection {’N’: 0.0, ’A’: 0.5, ’I’: 1.0}
beta dict Relative infectiousness based on restriction level {’N’: 1.0, ’Q’: 0.5, ’I’: 0.1}
gamma float Relative infectiousness to the seasonal influenza 2.0

patient zero dict Information about initially infected agents {’n’: 2, ’role’: ’NUR’, ’ward’: True}

(5 / 5) Secondary infection

p secondary float Probability of acquiring a secondary infection 0.50
p antibiotics float Probability of being treated with antibiotics 0.95
p resistant float Proportion of bacterial infections being resistant 0.32
p D sensitive float Probability of dying given a sensitive strain 0.19
p D resistant float Probability of dying given a resistant strain 0.68
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Chapter 4
Results and Analysis

The previous chapter gave a detailed introduction to the logic and the assumptions under-
lying the network generation and epidemiological model. The resulting modeling frame-
work functions like a black box where the input parameters culminate in a set of output
data based on a range of algorithms. It is therefore important to test if the machinery
works as intended. This chapter is introduced with an overview of the developed model-
ing framework, including its main structure and output types. The second part presents
the results from a selection of self-consistency tests. The third part assesses the model
stability and compares the variability in outbreak sizes. Lastly, the fourth part compares
temporal snippets of the simulated network with the original, empirical contact network
through static and temporal analyses.

4.1 The Modeling Framework
The modeling framework is built in Python and can be downloaded from GitHub (https:
//github.com/signesaevareid/covid-19). The code is separated in three
different files: ward.py serves as the main modeling unit and imports all parameters
from parameters.py and the classes governing the behavior of all agents in the ward from
classes.py. The output files are stored in a created output folder.

The model can be divided into three main part, illustrated in the Figure 4.1.1: The input
consists of parameters which the user can tune freely and constant parameters derived
from the literature or the analysis of the empirical contact network. After these parameter
values are set, the simulation step includes the initialization of agents followed by the
main simulation. In each simulation step1 the contact network evolves allowing for the
transmission of SARS-Cov-2 through the generated inter-individual contacts. The model
output is stored in four different files: The main model output is listed in a text file. This
file contains the calculated case fatality rate and infection fatality rate, followed by several
dictionaries listing epidemiological data, for instance the number of carriers or confirmed

1In order to reduce running time, the simulation is stopped when there are no carriers present in the ward.
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Figure 4.1.1: Workflow of the model simulating the spread on SARS-CoV-2 on a temporal contact
network: The input parameters consist of those set by the user and other constant parameters. After
agents are initialized, the main simulation proceeds with a given number of simulation steps in which
the contact network evolves and the pathogen is spread. The model output is summarized in a text
file, several plots and two networks presenting the resulting contact network and a tree network
representing the routes of infection.

cases, for each time step. The file also lists the cumulative number of confirmed cases
and deaths, see Table C.1.1 for a complete overview. The second model output is a plot
consisting of four panels, see Figure 4.1.2. They portray graphical illustrations of the

Figure 4.1.2: An example of a model output plot. The four different panels present graphical
illustrations of how the key epidemiological data vary in the course of the simulation days.
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epidemiological modeling output given in the text file. The upper left panel presents the
number of agents carrying the virus (comprising states E, A and I), the number of infected
agents (states A and I) and lastly the confirmed cases (state I with positive test). The upper
right panel shows how the cumulative numbers of confirmed cases and deaths evolve with
time. The lower left panel presents a dissection of the ‘carriers’ curve in the panel above,
where each line represents agents in incubation period, asymptomatic and symptomatic
infection, respectively. Lastly, the lower right panel shows how the number of quarantined
and isolated agents, as well as the number of temporary staff, varies with time.

Figure 4.1.3: An example of the third model output; the generated contact network. This static
aggregation shows two hospital wards with no cooperation across the them. The network therefore
consists of two distinct components. The links are undirected and the node size increases with
increasing node degree. The colors correspond to the different roles, where nodes belonging to the
NUR role are colored in purple, MED in blue, ADM in orange and PAT in green. The simulation is
run with with the baseline set of parameter values.

The third and fourth model outputs consist of network files: The former network con-
tains the generated contact network where each node contains information about the agent
identification number, as well as the given role and ward number. The links contain in-
formation about the total number of contacts and the listed hours of when these contacts
were made. Figure 4.1.3 shows an example generated from the same simulation run as
the plots presented above. Figure 4.1.4 presents an example of the fourth model output,
namely a directed network showing the infection routes in the ward. As this specific ex-
ample shows, the two NUR agents with identification numbers 18 and 25 were initially
infected. Only one of them passed the infection on to other agents in the ward, resulting
in a total number of 46 cases. In addition to the identification number, role and ward,
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Figure 4.1.4: An example of the fourth model output; an infection tree illustrating the routes of
infection in the ward. The network is directed and the node size increases with an increasing degree
of extroversion. The colors correspond to the different roles, where nodes belonging to the NUR role
are colored in purple, MED in blue, ADM in orange and PAT in green. The hour of which the agent
was infected is denoted on the link. The simulation is run with with the baseline set of parameter
values.

the node contains information about the degree of extroversion and the hour of which the
agent caught the virus. In the network visualization, the node size is set to increase with
the degree of extroversion.

4.2 Model Validation and Self Consistency
In order to get an indication of whether the black box machinery works as intended, a
few self consistency tests were conducted. In general, they were conducted by setting a
parameter to an extreme value and observe if the model output was as expected.

The Effect of Not Obtaining Immunity

In the baseline parameter set, the probability of not obtaining immunity after going through
an infection is set to 0.01, indicating that one out of 100 agents, on average, return to
a susceptible state after recovering from the infection. Given this parameter set, most
simulation runs result in an outbreak that eventually dies out, see the example presented
in Figure 4.1.2. If this parameter value of pS is set to 1.0, indicating that no agents obtain
immunity, reoccurring waves of infection are expected, in addition to that the cumulative
number of confirmed cases and deaths should keep increasing instead of flattening out.
In order to test this hypothesis, a simulation was run over 300 simulation days where the
pS value was set to 1.0. As a reference, another simulation was run with pS = 0.0. The
resulting output plots are given in Figure 4.2.1.
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Figure 4.2.1: The upper four panels present the model output plot in the extreme case where all
agents return to a susceptible state after recovering from COVID-19, that is pS = 1.0. The lower
panels present the model output plot from a reference run where pS = 0.0. Except from the pS
parameter and the number of simulation days which is set to 300, all other parameters are set to their
baseline values.
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In the very upper left panel of Figure 4.2.1, representing the situation where no agents
obtain immunity, the number of carriers, infected and confirmed cases reaches a top after
approximately three weeks, then decreases for a few days before the numbers start in-
creasing again. This pattern is observed throughout the 300 days long simulation run, and
is also reflected in the two lower panels. The number of confirmed cases, see the upper
right panel, increases the most in the beginning. The increase somewhat levels off, but
the number of cases keeps increasing throughout the simulation. The number of deaths
seem to follow a fairly steady slope. In comparison, the upper left and two lower panels
of the reference run shows one outbreak peak, before the infection dies out after around
80 days. The cumulative numbers of cases and deaths stops increasing when there is no
longer carriers left in the ward. These numbers end up one order of magnitude below the
observed number of cases and deaths in the extreme scenario.

Social Distancing

The social distancing parameter, which reduces the total number of hourly contacts, is set
to 0.0 in the baseline parameter set. If it is set to 1.0, it is expected that the only carriers
in the hospital wards are those who were initially infected, hence giving an infection route
tree with two isolated, purple-colored nodes. It is also expected that the resulting contact
network consists of a number of isolated nodes, since 100 % of contacts are avoided. This
hypothesis was tested by performing 50 simulation runs with the social distancing set to

Figure 4.2.2: The model output plot from a simulation where the social distancing is set to its
maximum value, 1.0. All other parameters are set to their baseline values.
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its maximum value and all other parameter set to their baseline values. The resulting
output plot from one of these runs is presented in Figure 4.2.2. The corresponding contact
network and infection route tree are presented panels A and B of Figure 4.2.3, respectively.

Figure 4.2.3: Panel A shows a contact network generated from a simulation where the social distanc-
ing was set to its maximum, 1.0. This network consists of 210 isolated nodes, each corresponding
one of the simulation agents. Panel B shows the tree of infection routes belonging to the the same
simulation run. All parameters, except from the social distancing, were set to their baseline values.

All of the 50 simulation runs resulted in two SARS-CoV-2 carriers, equivalent to the
number of initially infected agents. As Figure 4.2.2 demonstrates, after these two agents
had finished their courses of disease, there was no longer any carriers left in the ward. In
this specific run, only one of the two agents developed symptoms. Figure 4.2.3 presents
the corresponding network outputs: A contact network consisting of 210 isolated nodes
and a tree of infection routes presenting the two initial carriers without any infectees.

Setting the Relative Infectiousness to 100

In the baseline parameter set, the relative infectiousness compared to the seasonal influenza
is set to γ = 2. Here, it is tested at γ = 100 in order to investigate how the model
behaves in response to an extremely infectious spreading agent. Since the probability of
transmission depends on several factors, for instance reduced in the absence of symptoms
or in case of quarantine or isolation, it is expected that the majority, but not necessarily all
agents, belonging to the ward where the virus is spread become infected. This hypothesis
was tested by running a simulation with γ = 100 and all other parameters set to their
baseline value. The resulting output plot is presented in Figure 4.2.4 and the corresponding
infectious route tree in Figure 4.2.5.

As the model output plot shows, the high relative infectiousness results in an exten-
sive outbreak where the number of confirmed cases reaches a top between two and three
weeks after the infection was introduced to the ward, before decreasing again. Following
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Figure 4.2.4: The model output plot from a simulation where the relative infectiousness is set to
γ = 100. All other parameters are set to their baseline values.

the cumulative number of confirmed cases in the upper right panel, the curve seems to
start flattening out in the subsequent period, but does not level off as observed when the
infection died out. Instead, the number of cases persists in the ward with smaller increases
and decreases, but without resulting in a new, large outbreak. The component of the con-
tact network corresponding to nodes belonging to the ward where this outbreak took place
consists of 229 nodes, of which 203 nodes (88.65 %) are present in the resulting infection
route tree, see Figure 4.2.5. Thus, almost nine out of ten individuals who were present in

Figure 4.2.5: An infection route tree from a simulation where the relative infectiousness is set to
γ = 100. The network consists of 203 nodes. The hours denoting the time of infection are omitted
for enhancing readability.
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Figure 4.2.6: A filtered infection route tree where all nodes correspond to agents that were infected
in the last two-thirds of the simulation, from day 25 to 90. This network consists of 88 of which
all belong to the PAT role. The hours denoting the time of infection are omitted for enhancing
readability.

the ward in this simulation were infected with SARS-CoV-2. It is also worth noticing the
curve showing the number of temporary staff present in the ward in the lower right panel of
Figure 4.2.4: The number of temporary staff present in the ward is considerable between
approximately 10 and 25 days before laying flat at zero in the remaining simulation time.
This indicates that all the shifts after the initial outbreak was covered by the regular staff in
the ward, even though there were still a considerable number of infection cases in the ward.
This result points towards that all regular staff members obtained immunity through the
initial outbreak, and that the continuing cases resulted from the admission of susceptible
patients. To examine this hypothesis, the infection route tree was filtered according to the
hour of infection: Figure 4.2.6 shows the nodes in the infection route tree corresponding
to agents that were infected after 25 simulation days. This network consists of 88 nodes,
all corresponding to agents belonging to the PAT role.

4.2.1 Stochasticity and Model Stability

The developed modeling framework is stochastic. Thus, feeding two simulations with
identical input parameters could result in two outputs differing significantly from each
other. In order to investigate the model stability, 100 simulations with identical parameters
were run. The parameter set was equal to the baseline parameters, except for the number
of wards which was set to one. The number of SARS-CoV-2 carriers was used as a model
indicator. Figure 4.2.7 shows the average number of carriers present in the ward at each
time step in the simulation period plotted as a solid line. The colored bands represent the
standard deviation error bars, and span the interval x̄±s. As the figure shows, the width of
the band is narrow in the very beginning of the simulation period before it widens with the
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Figure 4.2.7: The figure represents data obtained from 100 simulation runs using the baseline pa-
rameter set. The solid line represents the average number of SARS-CoV-2 carriers in the ward
calculated from these runs. The bands correspond to error bars representing the standard deviation
and span the interval x̄± s.

increasing mean value. Towards the end of the simulation, the bands narrow as the average
number of carriers approaches zero. Corresponding curves for the number of infected and
confirmed cases are presented in Figure C.2.1.

Figure 4.2.8: Illustration of the total number of unique SARS-CoV-2 carriers in the ward obtained
from 100 simulations using the baseline parameter set. The left panel shows a scatter plot of the total
number of unique carriers registered in the ward, sorted in ascending order. The right panel presents
the corresponding histogram.
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Figure 4.2.9: Infection route tree for a simulation run resulting in 60 unique carriers of SARS-CoV-
2 in the ward. The colors of the node correspond to the week of infection, where yellow denotes
week number one, green week number two, turquoise week number three, blue week number five
and purple week number six or later. The black-colored node is included for size reference across
figures. baseline parameter set, except from the number of wards which is set to 1.

The output results from the 100 simulation runs were examined in order to identify key
differences between the simulations resulting in differing output results. Firstly, the total
number of unique carriers in each run was examined. The left panel of Figure 4.2.8 shows
a scatter plot where the number of unique carriers for all runs were sorted in ascending
order. The right panel in the same figure shows the corresponding histogram. As these
results show, roughly one-fifth of the simulations resulted in less than ten SARS-CoV-2
carriers in the course of the 90 simulation days. When the number of total carriers exceeds
ten, an abrupt jump is observed, resulting in larger outbreak sizes.

Figure 4.2.10: Infection route tree for a simulation run resulting in 9 unique carriers of SARS-CoV-
2 in the ward. The colors of the node correspond to the week of infection, where yellow denotes
week number one and green week number two. The black-colored node is included for size reference
across figures. baseline parameter set, except from the number of wards which is set to 1.
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Figures 4.2.9 and 4.2.10 show two examples of infection route trees obtained from the
stability assessment. The node colors reflect the week of which the agents were infected.
The former figure illustrates a run which resulted in 60 unique carriers. Of these, 5 agents
were infected in the course of the first week, 26 in the second week, 10 in the third week,
9 in the fourth week, 4 in the fifth week and 6 in the sixth week or later. In comparison,
the latter figure shows the infection route tree of a run resulting in 9 unique carriers. Of
these 8 and 1 agents were infected in the first and second week, respectively. Of the nodes
infected in the course of the first week, the average number of infectees per infector was
2.8 and 0.875, respectively.

4.2.2 Spread Across Several Wards

The model allows for up-scaling of the hospital capacity, both in terms of wards and beds
per ward. In addition, the user can determine the degree of cooperation across the wards by
tuning the ward isolation parameter. To demonstrate how the interaction between agents
belonging to different wards may affect the spreading, a simulation was run by setting the
number of wards to 4 and the ward isolation to 0.9. Thus, on average, an agent will have
a ten times higher chance of interacting with another agent from its own ward than agents
belonging to other wards. Agents belonging to the PAT role cannot interact with other PAT

Figure 4.2.11: The contact network a simulation across four different hospital wards where the ward
isolation is set to 0.9. Links representing fewer than five interactions have been removed and isolated
nodes are deleted from the network. The node size increases with increasing node degree and the
link thickness increases with number of interactions.
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Figure 4.2.12: The thinned contact network generated from running a simulation over four wards
yields four distinct components when filtering the nodes based on the PAT role.

agents across the wards.
The static aggregation of the resulting contact network is dense, with 55 993 links

interconnecting 1133 nodes. In order to make the network a bit more sparse, all links
representing interactions with fewer than five contacts were deleted. This resulted in ap-
proximately half the number of links. Figure 4.2.11 presents the connected component of
the thinned network, where all isolated nodes are removed. As the figure shows, nodes
representing staff agents are centered in the middle, with nodes corresponding to PAT
agents spring out towards the four different corners. To check whether agents of the PAT
role were interacting across the wards, the contact network presented in Figure 4.2.11 was

Figure 4.2.13: A tree of infection routes illustrating the spread of SARS-CoV-2 from one hospital
ward (yellow-colored nodes) to three other wards through inter-ward contacts. The arrow points at
an example of a transmission which results in a large number of cases in the the ward of which the
infectee belongs to.
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filtered selecting for the PAT role. Isolated nodes were deleted. The resulting network
consists of four distinct components corresponding to each of the four wards, as seen in
Figure 4.2.12.

The given simulation resulted in 193 SARS-CoV-2 carriers, of which 122 were con-
firmed by laboratory tests. Figure 4.2.13 shows the tree of infection routes. Here, however,
the colors represent each of the four wards and not the roles: Yellow-colored nodes cor-
respond to agents belonging to the ward in which the infection started. The green-colored
nodes represent agents belonging to ward number two, blue-colored nodes to ward num-
ber three and lastly purple-colored nodes to ward number four. The figure shows that the
virus has spread from ward number one to all other wards in the hospital. The arrow in the
figure points at a link representing a transmission resulting in a large number of cases in
ward number three: This transmission results in 35 new cases in ward number three.

4.3 Comparison of Empirical and Simulated Network

The simulated contact networks may span several weeks, or as long as the user desires.
The original, empirical contact network, on the other hand, spans 97 hours. In order
to compare these two networks, one could therefore extract a temporal snippet from the
simulated network, containing contacts starting from 13:00 on the first simulation day and
lasting for 97 hours. Thus, for all links in the generated network, the time-points indicating
hours of contact are filtered, retaining contact hours ∈ [13, 109]. All other time-points of
detected contacts are removed from the list and links where no contacts falling within this
time window are deleted from the filtered network.

Figure 4.3.1: The original, empirical contact network is compared to temporal snippets of simulated
contact networks, using randomized contact networks as reference.

In the following analysis, the empirical network is compared to the snippets of simu-
lated contact networks using randomized contact networks as a reference, see Figure 4.3.1.
When running simulations for investigating the structure of the resulting contact networks
in this very short time span in the very beginning of the simulation, the simulations are
run without any spreading infection. Thus, the number of initially infected agents is re-
duced from 2 to 0 compared to the baseline parameter set. In addition, since there is only
one ward in the empirical network, the number of virtual wards is also set to 1. In the
randomized reference network, the following additional parameter values deviate from the
baseline set: The contact randomization is set to 1.0, the shift assignment to ’random’ and
the parameter governing the NUR role resting time is set to false. The hourly number of
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contacts are still intact in the randomized network. In the following, a few static and tem-
poral analyses of the empirical and simulated network are performed using a randomized
network as control.

4.3.1 Analysis of Static Aggregation

For the purpose of comparing the simulated with the empirical contact network, ten sim-
ulations were run using the parameters described above. After filtering out the contacts
corresponding to the time window of interest, the degree of each node was calculated. In
Figure 4.3.2, the black line shows the degree of each node in the static aggregation of
the empirical network, sorted in descending order. The colored lines represent the node
degrees in the simulated networks, whereas the gray lines represent the randomized net-
works. From this figure, the simulated network seems to overestimate the node degrees
for agents belonging to the NUR, MED and PAT roles, whereas a an underestimation or
a partially overlap is observed for the ADM role. In the upper left panel, the degrees of
the simulated network is somewhat entangled in the degrees of the random network, al-
though they on average seem to be positioned closer to the node degrees of the empirical
network. In the three other panels, the simulated network does a noticeably better job in

Figure 4.3.2: Comparison of the degree distribution of nodes comparing the empirical contact net-
work, 10 simulated networks and 10 randomized reference networks. Each panel represents the
degrees of the nodes in the static aggregation of the empirical contact network (black line with cir-
cular markers), and temporal snippets of ten realizations of simulated (colored lines) and randomized
(gray lines) contact network. The degrees are sorted in descending order.
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Figure 4.3.3: Comparison of the fraction of remaining nodes as function of k-core comparing the
empirical contact network, 10 simulated networks and 10 randomized reference networks. Each
panel represents how the fraction of remaining nodes in the network evolves with the k-core for each
of the four ward roles.. The black line in all four panels represents the fraction of remaining nodes
in the static aggregation containing nodes from all four roles. The solid, colored lines represent
the fraction of remaining nodes belonging to the given role. Similarly, the dashed, colored lines
represent the role-specific nodes remaining in the simulated networks and the dotted, gray lines
correspond to the randomized reference.

approximating the node degrees than the randomized reference.
A note on the registered number of individuals in each plot: Whereas the number

of patients present in the ward during this time window depend on the drawn lengths
of hospitalization, the number of initialized agents belonging to the staff roles are kept
constant. As the figure shows, however, the numbers of NUR and ADM individuals do in
some simulation runs deviate from the initialized number of agents. One explanation may
be that lacking agents were not chosen for any of the shifts in the time window, or that
its corresponding node in the contact network did not have any links to other nodes with
contacts registered within the same hour interval.

Another analysis which was performed based on the node degrees of the static aggrega-
tions was a k-core analysis. In this analysis, the number of nodes with degrees less than k
was recursively removed, resulting in a reduction in number of remaining nodes in the net-
work with an increasing k. Figure 4.3.3 presents the percentage of remaining nodes in the
respective networks as function of the k-core: The black, solid line in all panels represent
all nodes in the empirical network, whereas the solid, color-coded lines represent the num-
ber of remaining nodes belonging to the given role in the empirical network. The colored,
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Figure 4.3.4: The panels present the fraction of remaining links, the number of distinct components
and the relative size of the giant component as function of the minimum number of contacts in all
links in the network. The black lines correspond to the empirical network, the dashed, red lines to
the simulated network and the dotted, gray lines to the randomized reference.

dashed lines represent the simulated networks, whereas the dotted gray lines correspond
to the randomized reference networks. In general, the empirical network breaks down
faster than the simulated network does, which again breaks down faster than the random-
ized reference. Thus, the same pattern as above is observed: The curves of the simulated
networks lie closer to the empirical network curves than the randomized curves do. In
particular, the percentages of remaining nodes for the ADM role are partially overlapping
the observed evolution in the original data. However, none of the plotted percentages of
remaining nodes in the k-core fall as quickly as observed for the empirical data. Thus, the
static aggregations of the simulated (and randomized) networks are more interconnected
than the empirical network.

Finally, a similar analysis was performed by breaking the network down based on the
total number of registered contacts in each link, here referred to as the l-core. Starting
by deleting all links with 1 registered contact, the fraction of remaining links, the number
of distinct components and the relative size of the giant component was calculated. The
procedure was repeated by increasing the number of required contacts until no links were
left in the network. The resulting plots are presented in Figure 4.3.4: The black lines
correspond to the empirical network, the dashed, red lines to the simulated networks and
the dotted, gray lines to the randomized reference network.

The results presented in Figure 4.3.4 show that some of the nodes in the empirical
network are interconnected by links with considerably higher numbers of contact than both
the simulated and randomizes networks, although the behavior of the simulated network
better resembles the behavior of the empirical network than the randomized network does.
The results show that the links in the random network contain few contacts.
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4.3.2 Temporal Analysis
In order to get an indication of the temporal network properties, analyses of the network
reachability ratio was performed on the empirical network, one randomly chosen simu-
lated network and one randomly chosen randomized reference network. For each of these
networks, the reachability ratio was calculated as function of both the maximum allowed
waiting time and the link weight corresponding to the number of registered contacts in
the given hour. The larger maximum allowed waiting time, the longer each node can in-
fect other nodes. Therefore, the reachability ratio is expected to increase when increasing
this parameter value. The link weight corresponds to the minimum number of contacts
required for the infection to spread from one node to another. Thus, the reachability ratio
is expected to decrease with an increasing number of required contacts. For each network,
the maximum allowed waiting time was run from 0 to 99 hours with a step of 1 hour. The
link weight corresponding to the number of required contacts was run from 1 to 29, also
using a step of 1. The resulting threedimentional plots, each consisting of 2900 calculated
reachability ratios, is presented in Figure 4.3.5.

All three figures show that the reachability ratio increases with increasing maximum
allowed waiting time and decreasing link weight. Comparing the simulated and random-
ized reference network, the former results in temporal characteristics that better resembles
the original network. Most notably, the reachability ratio in the randomized network re-
mains low for most link weights before an abrupt jump is observed when the requirement
reaches low weight values. Thus, the simulated network shows to be able to better replicate
time-respecting paths in the original network than the randomized network.
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4.3 Comparison of Empirical and Simulated Network

Figure 4.3.5: The plots present calculated reachability ratios as function of the maximum allowed
waiting time and the link weight corresponding to the minimum number of registered contacts re-
quired for transmission from one node to another. The panels represent the empirical contact net-
work, a simulated contact network and a randomized reference network.

101



Chapter 4. Results and Analysis

102



Chapter 5
Discussion

As any other model, this modeling framework represents a simplified representation of a
real life situation [145]. Numerous assumptions and simplifications were described when
presenting how the model was built in Chapter 3. This section focuses on the main as-
sumptions and the challenges they imply.

As previously introduced, agent-based models are suitable for exploring how patterns
on the macro-level emerge from micro-level rules [20]. This also implies that the model
output is vulnerable to uncertainties in these micro-level rules. High-quality data are re-
quired in order to obtain realistic agent behavior in the model. In the developed modeling
framework, several of the mechanisms, both governing the contact network and the epi-
demiological spread, are based on conclusions drawn from rather scarce data.

The size of the data set describing the empirical network on which the simulated con-
tact network is based on, poses such a challenge: The data were collected in the course
of roughly four days (97 hours) and the 75 participants were divided into four categories
yielding even fewer individuals per role. Thus, the derived rules and distribution param-
eters were based on very few data points. There are several issues related to this pro-
cess: Firstly, when the hourly contact numbers are based on observations from four days
only, any irregularities in one of these days may shift the overall pattern. For instance,
Kulisiewicz et al., who examined the entropy in several temporal contact networks, pointed
out that that the very first day of contacts in the empirical hospital ward network stood out
from the other days, and questioned whether Saint Nicolas Day celebrated on December
6 could have influenced the dynamics [175]. Secondly, the choice of a suitable statistical
distribution becomes rather arbitrary when the data points are few. Choosing a lognormal
distribution over a normal distribution for describing the relative contact rates, for instance,
would facilitate for super spreaders in the network.

The challenge of deriving model rules from scarce empirical data applies also for the
epidemiological model. Several of the parameters, for instance the rate of asymptomatic
cases for patients and staff ward, were based on one estimated value only. Other parameter
values were based on several estimates, although the estimates could be biased: As an
example, Lauer et al. pointed out that the publicly reported cases of COVID-19 could
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contain an overweight of severe cases relative to milder cases, and thus that the estimated
incubation periods not necessarily covered all degrees of severity [66].

Modeling an ongoing crisis has been somewhat challenging in terms of obtaining a
wide and still in-depth literature foundation. Even though the knowledge and accessible
data resources have increased throughout the last six months, parts of the modeling frame-
work were developed before empirical evidence supporting the choice of model mech-
anisms was published. An example is the assumed flat rate of infectiousness both for
presymptomatic, asymptomatic and symptomatic individuals. The article where He et al.
presented a curve-shaped temporal infectiousness profile was first published on April 15.
Due to time restrictions, the model algorithms were not updated to include this dynam-
ics, although implementing the temporal infectiousness profile could have increased the
realism of the model. It is also worth mentioning that several of the underlying estimates
for epidemiological model are based on unpublished preprints obtained from archives as
arXiv, medRxiv and BioRxiv. These are not peer-reviewed. However, due to lack of pub-
lished literature related to this ongoing pandemic, these preprints constituted important
contributions to the developed framework.

To summarize, both the temporal contact network and the epidemiological model are
based on assumptions and numerical values estimated from a scarce data basis, either in
terms of few data points or due to the limitation of available literature. In addition to
the stochastic variability in the model, these assumptions and estimated input parameters
contribute to uncertainty in the model output. An improved future version of the model
would desirably incorporate updated parameter values taking the increasing knowledge of
COVID-19 into account.

5.1 Key Assumptions
In addition to the assumptions and simplifications made in regard to the temporal contact
network and the epidemiological characteristics of the spreading agent, some other key
assumptions have been made. They are discussed in the following:

• No imported COVID-19 cases: The model only contains one source of infection,
namely the initially infected agents. No new cases are imported into the hospital
wards in the course of the simulation run. Among other things, this implies that the
infection may die out if the initially infected agents do not infect any other agents
before they recover. In a real life scenario, new cases could probably have been
introduced by admitted patients being infected, members of the staff that could have
been infected outside the ward or by visitors carrying the virus. The probability of
importing new infection cases into the hospital wards in the course of the simula-
tion could for instance have been implemented through a simple parameter value
mirroring the national or regional level of infection.

• Transmission solely through inter-individual contacts: In the model, transmis-
sion through indirect contact is neglected. That implies that the transmission of
SARS-CoV-2 is restricted to close proximity interactions between the individuals,
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and that potential routes of transmission via contaminated door knobs, light switches
or the buttons of any microwave ovens are disregarded. Based on the enhanced real-
life hygiene measures in terms of frequent cleaning and disinfection, it is believed
that transmission through such indirect contacts would have contributed to the over-
all spread also in the virtual hospital. One way to implement the risk of being in-
fected through indirect contact with an infectious individual could be to introduce an
infection probability that is independent of contacts and which applies equally to all
susceptible agents in the ward. This parameter value could for instance increase pro-
portionally with the general level of infection in the ward. Alternatively, one could
add a spatial dimension to the model, as have been previously done when examin-
ing the spread of antibiotic resistant pathogens [176]. Figure 5.1.1 shows a dummy
illustration of how an infected person touching several objects could contribute to
the overall spread of the virus.

Figure 5.1.1: Example of a dummy virtual hospital ward where an infected person have touched the
elevator buttons (orange), several patient room door knobs (blue), the water tap in a toilet (purple)
and the common kitchen crockery, leaving contaminated fomites facilitating spread through indirect
contact for individuals touching the same objects subsequently.

• Equal transmission rates among all role pairs: The model takes the presence or
absence of symptoms, as well as the the enhanced hygiene measures in case of quar-
antine or isolation into account when calculating the probability of transmission in
a close contact setting. It assumes, however, that the probability of transmission is
equal among all role pairs: Given two identical situations, the model assumes equal
transmissibility in an interaction between two agents belonging to the PAT and NUR
role as two agents belonging to the PAT and ADM role. Keeping in mind the nature
of the work of a nurse relative to an individual belonging to the administrative staff,
it would be natural to assume that the former situation involves closer contact than
the latter. One could also imagine that the transmission probability not necessarily
is equal in both directions. Duval et al. investigated the transmission of MRSA on a
temporal contact network in a long-term care hospital in France and did for instance
find that the transmission rate from patient to staff was in an order of magnitude
102 times higher than the transmission rate from staff to patient. The transmission
rate from one staff member to another was found to be 104 times as large as be-
tween two patients [177]. One could either incorporate these numbers directly into
the expression describing pT , or at least introduce a set of parameters allowing for
exploration of how the variations in transmissibility among the ward roles affect the
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overall transmission dynamics.

• Transmission through CPIs: The whole model builds upon the assumption that
close-proximity interactions are able to capture the inter-individual transmission of
SARS-CoV-2. Given the threshold for contact detection of 1.5 meters and the WHO
and CDC definitions of close contact of 1 and 2 meters, respectively, it seems rea-
sonable to assume that transmissions are captured when model agents are within
this range. Earlier, CPIs have been demonstrated to capture the spread of MRSA,
but not Enterobacteriaceae [177, 178]. The latter bacterial family includes several
pathogenic species such as Salmonella, Escherichia coli (E. coli) and [179].

• All individuals comply to the given control measures: The model implements
several control measures, such as social distancing, contact tracing, quarantine and
isolation. The model also assumes that all individuals comply to these measures. In
a real life scenario, however, it would be possible that a few individuals shorten their
quarantine or ignores the social distancing. Since agent-based modeling allows for
heterogeneity among agents, it could be interesting to let a proportion of the agents
ignore the control measures in order to investigate how many dissidents the system
can tolerate before, presumably, the spreading increases.

5.1.1 Further Work
There exists an endless number of possibilities in terms of investigating the model func-
tionality, analyze the static and temporal characteristics of the generated contact networks,
explore the epidemiological parameter space and evaluate the effect of several key control
measures. Some suggestions are listed below:

• Compare the generated temporal contact network with reference models where the
time-points of contact are randomly permuted in order to study the effect of order of
events.

• Explore the N dimensional parameter space by running the model multiple times
with randomly drawn values in a given range of each of the N parameters.

• Determine the optimal control measure strategy, for instance the number of quaran-
tine days or number of hours before symptom onset included in the contact tracing,
by using an evolutionary algorithm, such as particle swarm optimization, to find the
parameter combination that gives the lowest fatality and the lowest usage of tempo-
rary staff, for instance.
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Chapter 6
Conclusion

The ongoing coronavirus pandemic is not the first pandemic to ravage the world, and will
most likely not be the last. Computational modeling provides an important tool for obtain-
ing a better understanding of the underlying spreading mechanisms of human pathogens.
In this thesis, a novel agent-based modeling framework was developed to explore the trans-
mission of SARS-CoV-2 on a temporal network mirroring the inter-individual contacts in
a virtual hospital.

The contact network facilitating the spread of SARS-CoV-2 was simulated based on
agent and system attributes derived from an empirical hospital ward network, including
the total number of registered contacts per hour, the relative contact rate for each individ-
ual and the pairwise role interactions in the ward. The resulting temporal contact network
evolved simultaneously with the simulation and laid the foundation for the viral trans-
mission. The baseline parameter set governing the epidemiological spread was derived
from the available SARS-CoV-2 literature, although a wide range of the parameters are
manipulable. For instance, the user is free to tune epidemiological parameters such as the
incubation time and pathogen infectiousness, or control measures such as social distanc-
ing and quarantine duration. The developed framework responded as expected to several
extreme parameter values, confirming the model functionality. The simulated contact net-
work was able to better replicate several empirical network properties than a randomized
reference network.

A future objective would be to explore the model parameter space in order to obtain a
firm understanding of key parameters crucial for the spreading mechanism of SARS-CoV-
2. The developed modeling framework constitutes a flexible modeling tool which easily
can be modified and utilized for capturing the spread of future human pathogens.
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Sci.(Paris) avec Mem, 1–45 (1760).

144. Kermack, W. O. & McKendrick, A. G. A Contribution to the Mathematical Theory
of Epidemics. Proceedings of the Royal Society of London. Series A, Containing Pa-
pers of a Mathematical and Physical Character (1905-1934) 115, 700–721. ISSN:
0950-1207 (1927).

145. Bandini, S., Manzoni, S. & Vizzari, G. Agent Based Modeling and Simulation: An
Informatics Perspective. Journal of Artificial Societies and Social Simulation 12.
ISSN: 1460-7425 (2009).
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Appendix A
Theory Supplementary

A.1 Theory Presented in Project Report
Parts of Chapter 2 are obtained from or based on material presented in my previous project
report “Agent-Based Modeling of Evolution and Spread of Antibiotic Resistance on Net-
works: A Literature Review” [24]. The following list provides an overview of the relevant
sections:

• Section 2.1.2: The theory related to mechanisms of antibiotic resistance is based on
material presented in [24].

• Section 2.2: The introductory text regarding network and network spreading phe-
nomena is obtained from [24], with minor textual alterations.

• Section 2.2.1: The material covering the adjacency matrix and centrality measures
of undirected, unweighted networks (node degree, closeness centrality, betweenness
centrality) is obtained from [24].

• Section 2.2.2: The first paragraph is obtained from [24]

• Section 2.2.3: The introduction on empirical contact networks and how they can be
generated based on self-reporting systems, external observers or electronic proxim-
ity sensors is based on theory presented in [24].

• Section 2.3: This section is obtained from [24], with some adaptations to SARS-
CoV-2 and minor textual alterations.

• Section 2.4.2: The theory related to Bernoulli distributions is based on [24].

In addition, the quote by Daniel Bernoulli presented in the very beginning is reused from
the project report.
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Appendix B
Method Supplementary

B.1 Python Modules and Data Types
Python Modules

Python modules utilized in the modeling work are presented in Table B.1.1. The table
presents both modules from the Python Standard Library and installed modules.

Table B.1.1: Imported modules from the Python Standard Library and installed modules.

Module Description Version

math mathematical functions
os operating system interfaces
shelve object persistence
time time-related functions
typing type hints
random generates pseudo-random numbers

matplotlib visualisation 3.1.2
matplotlib.venn venn diagrams 0.11.5
more itertools iterables 8.2.0
networkx complex networks 2.4
numpy scientific computing 1.18.1
pandas data analysis 0.25.3
scipy statistics 1.4.1
tabulate printing tabular data 0.8.6
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Built-In Data Types

Some central Python built-in types is presented in Table B.1.2, see the Python documentation
for a more detailed introduction.

Table B.1.2: Some of the most central built-in data types in Python.

Type Description Example

int Numeric type, integers 12
float Numeric type, floating point numbers 3.14
bool Boolean value, takes only one of two values True
str Text sequence type “This is a string”
list Sequence type, stores collections of items [A, B, C, D, E, F]
dict Mapping type, dictionary with keys and values {’name’: ’John’, ’age’: 100}
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B.2 Temporal Contact Pattern

B.2.1 Contact Duration Distribution

The relative frequency of contact duration is presented in Table B.2.1. The absolute fre-
quency is presented as a histogram in Figure B.2.1.

Table B.2.1: The relative frequency of duration (in seconds) per contact.

Duration (s) Relative frequency (%)

20 55.9188
40 20.1496
60 8.9601
80 4.8362
100 2.9701
120 2.1510
140 1.2037
160 0.8405
≥ 180 2.9700

Figure B.2.1: Histogram showing the frequency of duration per contact. Both axes are logarithmic.
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B.2.2 Comparing Normal, Truncated and Folded Distribution
In order to determine which of the normal, truncated normal and folded normal distribu-
tions was best suited for describing the number of contacts per bed for each hour in the
model, the mean of 1 000 000 drawn values for each distribution was calculated for each
hour. All negative values drawn from the former distribution was set to zero. The resulting
list of mean values for each distribution was compared to the list of empirical means by
calculating the mean squared error. The numerical results are presented in Table B.2.2.

Table B.2.2: The mean squared error (MSE) was calculated based on the empirical mean of contacts
per bed for each hour and the mean of 1 000 000 values drawn from each of the three distributions.
∗All negative values were set to zero.

Distribution MSE

Normal∗ 5.0881× 10−3

Truncated 9.4768× 10−2

Folded 1.9430× 10−2
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B.2.3 Contacts per Hour

The total number of contacts registered for each hour in the study period, as well as cor-
responding averages and standard deviations, are presented in Table B.2.3. Contacts span-
ning more than one hour are registered in the hour where the contact began.

Table B.2.3: Total number of registered contacts per hour in the study period. The average number
of contacts per hour and the sample standard deviation are listed in the two rightmost columns.

Hour Mon Tue Wed Thu Fri Average SD

00:00 4 0 0 1 1.25 1.8930
01:00 1 0 1 1 0.75 0.5000
02:00 2 0 13 2 4.25 5.9090
03:00 3 0 13 3 4.75 5.6789
04:00 0 0 0 0 0.00 0.0000
05:00 38 6 44 8 24.00 19.7990
06:00 27 37 54 47 41.25 11.7863
07:00 161 199 183 198 185.25 17.7459
08:00 250 235 226 234 236.25 10.0125
09:00 289 365 330 356 335.00 34.0686
10:00 467 448 445 421 445.25 18.8746
11:00 470 591 392 458 477.75 82.9232
12:00 395 485 372 456 427.00 52.4532
13:00 20 397 295 317 136 233.00 152.1299
14:00 113 206 247 191 189.25 56.0736
15:00 84 336 197 120 184.25 111.6076
16:00 109 260 203 114 171.50 73.1141
17:00 130 196 215 68 152.25 66.9446
18:00 171 196 94 56 129.25 65.3369
19:00 101 139 44 17 75.25 55.0659
20:00 84 122 69 25 75.00 40.1082
21:00 6 3 39 10 14.50 16.5831
22:00 33 0 59 16 27.00 25.2323
23:00 48 0 13 10 17.75 20.9185

Figure 3.2.4 shows how the number of registered contacts in the ward evolves with
time, and demonstrates that the pattern behaves similarly from day to day. This figure is
based on the total number of contacts in the ward. The following figures shows how the
number of contacts evolve with time when being filtrated based on role and pair of roles.
Figures B.2.2 to B.2.5 present contact numbers as function of time when at least one of
the involved individuals belong to the NUR, MED, ADM and PAT category, respectively.
Figures B.2.6 to B.2.15 presents contact numbers as function of time given specified roles
for both individuals involved in the contact, such as NUR-NUR or MED-PAT.
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Figure B.2.2: Number of registered contacts per hour, where at least one of the involved individuals
belong to the NUR category.

Figure B.2.3: Number of registered contacts per hour, where at least one of the involved individuals
belong to the MED category.
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Figure B.2.4: Number of registered contacts per hour, where at least one of the involved individuals
belong to the ADM category.

Figure B.2.5: Number of registered contacts per hour, where at least one of the involved individuals
belong to the PAT category.
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Figure B.2.6: Number of registered contacts per hour, where both of the involved individuals belong
to the NUR category: NUR-NUR.

Figure B.2.7: Number of registered contacts per hour, where the two involved individuals belong to
the NUR and MED categories: NUR-MED.
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Figure B.2.8: Number of registered contacts per hour, where the two involved individuals belong to
the NUR and ADM categories: NUR-ADM.

Figure B.2.9: Number of registered contacts per hour, where the two involved individuals belong to
the NUR and PAT categories: NUR-PAT.
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Figure B.2.10: Number of registered contacts per hour, where both of the involved individuals
belong to the MED category: MED-MED.

Figure B.2.11: Number of registered contacts per hour, where the two involved individuals belong
to the MED and ADM categories: MED-ADM.
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Figure B.2.12: Number of registered contacts per hour, where the two involved individuals belong
to the MED and PAT categories: MED-PAT.

Figure B.2.13: Number of registered contacts per hour, where both of the involved individuals
belong to the ADM category: ADM-ADM.
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Figure B.2.14: Number of registered contacts per hour, where the two involved individuals belong
to the ADM and PAT categories: ADM-PAT.

Figure B.2.15: Number of registered contacts per hour, where both of the involved individuals
belong to the PAT category: PAT-PAT
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B.2.4 Patient Hospitalization
In order to determine the duration of patient hospitalization, the patients were assumed to
be present in the ward from the beginning if they had registered contacts within the first
12 hours. Similarly, the patients were assumed to be present in the ward until the end of
the study period if they had registered contacts in the course of the 12 last hours. The
upper panel of Figure B.2.16 shows how the bed coverage varies with time given these
assumptions. The bar plot in the lower panel shows the distribution of bed coverage in the
course of the 97 hours.

Figure B.2.16: The upper panel shows the bed coverage as function of time given the assumptions
on patient admission and discharge. The lower panel shows the same data summarized in a bar plot.
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B.2.5 Contact Pattern
Accumulated Number of Contacts

The total number of contacts per individual serves as basis for the contact parameter ex-
traction discussed in Section 3.2.3. A stacked area plot visualizing how the number of ac-
cumulated contacts for each role category evolves with time is presented in Figure B.2.17.
The colors reflects the total number of contacts registered for the given individual over the
whole study period.

Figure B.2.17: Stacked area plot showing how the accumulated number of contacts evolve with
time for the four different roles.
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Relative Contact Rate

The contact rate per hour is calculated based on the total number of registered contacts
and the estimated number of hours present in the ward. Table B.2.4 presents the the total
number of contacts, estimated hours of presence and the calculated contact rate per hour
for each individual.

Table B.2.4: Overview of the total number of registered contacts, the estimated duration of presence
in the ward, and the calculated contact rate per hour for each of the 75 individuals constituting
the nodes in the empirical contact network. The table is divided in the four different roles, and
[innbyrdes] sorted in descending order based on the total number of contacts.

Contacts Estimated hours Contact rate
Role ID in total of presence per hour

NUR 1115 1665 30 55.5000
1210 1493 29 51.4828
1295 1424 30 47.4667
1207 1216 14 86.8571
1164 1053 25 42.1200
1193 1000 22 45.4545
1109 881 23 38.3043
1149 788 14 56.2857
1196 704 19 37.0526
1181 693 30 23.1000
1190 628 22 28.5455
1205 607 28 21.6786
1114 593 14 42.3571
1625 535 14 38.2143
1245 468 20 23.4000
1202 403 14 28.7857
1629 361 7 51.5714
1105 202 9 22.4444
1108 194 26 7.4615
1142 174 17 10.2353
1485 170 22 7.7273
1100 156 21 7.4286
1613 138 11 12.5455
1246 121 11 11.0000
1261 109 14 7.7857
1238 78 11 7.0909
1116 67 7 9.5714

MED 1157 1195 41 29.1463
1144 913 41 22.2683

Continued on next page
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Table B.2.4 – Continued from previous page

1221 778 30 25.9333
1159 710 36 19.7222
1260 615 35 17.5714
1191 563 16 35.1875
1148 516 41 12.5854
1130 442 31 14.2581
1660 175 25 7.0000
1168 159 41 3.8780
1152 79 11 7.1818

ADM 1098 757 41 18.4634
1658 606 26 23.3077
1179 392 25 15.6800
1671 105 6 17.5000
1232 95 21 4.5238
1209 85 36 2.3611
1535 13 16 0.8125
1525 10 16 0.6250

PAT 1365 509 97 5.2474
1378 352 97 3.6289
1352 307 97 3.1649
1383 287 97 2.9588
1391 238 97 2.4536
1362 180 72 2.5000
1307 166 74 2.2432
1702 165 55 3.0000
1401 160 48 3.3333
1393 156 48 3.2500
1374 151 50 3.0200
1363 135 69 1.9565
1395 131 50 2.6200
1327 100 50 2.0000
1701 97 50 1.9400
1460 97 31 3.1290
1547 97 23 4.2174
1385 95 44 2.1591
1469 87 26 3.3462
1320 79 54 1.4630
1769 77 52 1.4808
1416 52 45 1.1556
1377 48 25 1.9200
1399 47 24 1.9583

Continued on next page
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Table B.2.4 – Continued from previous page

1305 38 24 1.5833
1784 35 18 1.9444
1323 30 26 1.1538
1373 24 78 0.3077
1332 11 24 0.4583

Correlation Between Total Contact Number and Presence in the Ward

Figure B.2.18 presents scatter plots where the total number of contacts regiseterd in the
ward is plotted against the estimated number of present hours. The Pearson correlation
coefficient, ρ, is presented in the upper left corner of all four panels.

Figure B.2.18: The total number of contacts registered for an individual plotted against the estimated
hours of presence in the ward. The Pearson correlation coefficient, a measure of degree of linear
correlation between the two variables is presented in the upper left corners of the plots.
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Relative Contact Data Fitted by Lognormal Distribution

Figure B.2.19 presents eight panels corresponding to those presented in Figure 3.2.25.
There are two panels for each role: The panel to the left shows a histogram of the original
relative contact data fitted with a lognormal distribution depicted with a dotted curve.
The panel to the right shows the same probability function together with 100 simulations
where n numbers are drawn from the given distribution. The amount n corresponds to
the number of individuals belonging to each class, for instance 29 for the patient category.
These numbers are drawn without any upper limit. As a result, some of the drawn numbers
are multiple times higher than the highest contact rates in the original data. The magnitude
of the numbers on the x-axis mirrors the large differences.

Figure B.2.19: Out of the eight panels, two and two represents one role. Of these, the panel to
the left represents a histogram corresponding to the calculated relative contact rate and a lognormal
distribution based on the mean and standard deviation of these data. The panel to the left presents
the same distribution and 100 simulations with drawn values from this distribution. The number of
drawn values in each simulation equals the number of individuals belonging to each role.
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B.2.6 Solving Lognormal Parameter Equations
The epidemiological model depends on several parameters drawn from lognormal distribu-
tions. The parameters determining the shape of these distributions are either given directly
from the literature or found by solving a set of equations using provided data describing
the estimated centrality and variance. This set of equation is solved numerically, as il-
lustrated in the code snippet below. The code runs through a range of σ values between
0 and 1, and calculates the corresponding value for µ. Then, the difference between the
desired sum of the integral and the value of the cumulative distribution function (CDF) is
calculated. The CDF equals the integral of the probability density function (PDF). The
sigma value is found by choosing the lowest value of the absolute differences.

/ get lognormal parameters /

1 import numpy as np
2 import math as m
3

4

5 def get_lognormal_parameters(mean_value, min_value, max_value, integral):
6 min_value = 1E-10 if min_value == 0 else min_value
7 t = {}
8

9 for s in np.arange(0.00001, 1, 0.00001):
10 mu = m.log(mean_value) - 0.5 * (s ** 2)
11

12 cdf = (0.5 + 0.5*m.erf(np.divide((m.log(max_value) - mu), (2**0.5*s))))\
13 - (0.5 + 0.5*m.erf(np.divide((m.log(min_value) - mu), (2**0.5*s))))\
14 - integral
15 t[s] = abs(cdf)
16

17 sigma = min(t, key=t.get)
18 mu = m.log(mean_value) - 0.5 * (s ** 2)
19

20 return {'avg': mu, 'std': sigma}
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Figure B.2.20 shows a graphic illustration of an example where the following input is
given: The mean value is set to 5.6, minimum value to 2, maximum value to 14 and the
integral sum is set to 0.95. These numbers correspond to an incubation period of COVID-
19 where the mean value is estimated to 5.6 days with a range spanning form 2 to 14
days with 95 % confidence. The red-colored curve in the figure shows how the difference
between the CDF and the sum of integral varies with different values of σ, where the black,
dashed line marks the minimum. The grey, dashed line shows the corresponding µ value.

Figure B.2.20: Graphic illustration of how the set of equations is solved in order to determine the
values of the lognormal parameters σ and µ. The red-colored line presents the difference between the
CDF and the sum of integral. The black, dashed line marks the minimum value where the difference
is closest to zero.
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B.2.7 Model Parameters Values

This section gives an overview of all parameter not set by the user.

Table B.2.5: Location and scale parameter values for the normal distributions describing the number
of contacts per bed for each simulation hour.

Hour Location, µ Scale, σ

0 0.0658 0.0996
1 0.0395 0.0263
2 0.2237 0.3110
3 0.2500 0.2989
4 0.0000 0.0263
5 1.2632 1.0421
6 2.1711 0.6203
7 9.7500 0.9340
8 12.4342 0.5270
9 17.6316 1.7931
10 23.4342 0.9934
11 25.1447 4.3644
12 22.4737 2.7607
13 11.4000 8.8798
14 9.9605 2.9512
15 9.6974 5.8741
16 9.0263 3.8481
17 8.0132 3.5234
18 6.8026 3.4388
19 3.9605 2.8982
20 3.9474 2.1110
21 0.7632 0.8728
22 1.4211 1.3280
23 0.9342 1.1010

Table B.2.6: Location and scale parameter values for the lognormal distributions, describing the
relative contact rate for agents belonging to the different roles. The upper limit gives the maximum
relative contact rate an agent can be assigned.

Role Location, µ Scale, σ Upper limit (h−1)

NUR 3.1568 0.7804 104.2285
MED 2.6911 0.6861 42.225
ADM 1.6713 1.4697 27.9692
PAT 0.7410 0.6019 6.2969
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Table B.2.7: Relative contact rates among each of the four roles in the ward.

NUR MED ADM PAT

NUR 0.5000 0.2547 0.6843 0.7662
MED 0.0962 0.5332 0.1401 0.1497
ADM 0.1256 0.0681 0.0590 0.0589
PAT 0.2782 0.1440 0.1165 0.0252

Table B.2.8: Numbers determining the percentages of employment in the ward.

Percentage NUR MED ADM

0.2 5 0 1
0.4 6 2 2
0.6 7 2 3
0.8 6 3 1
1.0 3 4 1

Table B.2.9: Other parameter values set for the simulation.

Parameter Type Value

symptoms dict {’fever’: 0.879, ’cough’: 0.677, ’dyspnea’: 0.186}
hospitalization duration dict {’mu’: 147.44, ’sigma’: 52.78}
new shifts list [7, 8, 9, 13, 20]
occupancy float 0.8421
rest int 18
min hospitalization int 8
t0 int 7
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Appendix C
Results Supplementary

C.1 Text File Summarizing Output
The model output is summarized in four different files. One of them, a .txt file, summarizes
the main model output as a text file, see Table C.1.1.

Table C.1.1: Overview of the model output which is stored in the output .txt file.

Output Example value

cfr 23.3333
ifr 15.2174

carriers {7: 2, 8: 2, 9: 2, 10: 2, 11: 2, 12: 2, ...}
infected all {7: 0, 8: 0, 9: 0, 10: 0, 11: 0, 12: 0, . . . }
infected confirmed {7: 0, 8: 0, 9: 0, 10: 0, 11: 0, 12: 0, . . . }

cumulative cases [0, 0, 0, 0, 0, 0, ...]
cumulative deaths [0, 0, 0, 0, 0, 0, ...]

incubation {7: 2, 8: 2, 9: 2, 10: 2, 11: 2, 12: 2, ...}
asymptomatic {7: 0, 8: 0, 9: 0, 10: 0, 11: 0, 12: 0, ...}
symptomatic {7: 0, 8: 0, 9: 0, 10: 0, 11: 0, 12: 0, ...}

temporary staff {7: 0, 8: 0, 9: 0, 10: 0, 11: 0, 12: 0, ...}
quarantine {7: 0, 8: 0, 9: 0, 10: 0, 11: 0, 12: 0, ...}
isolation {7: 0, 8: 0, 9: 0, 10: 0, 11: 0, 12: 0, ...}

contacts {7: 406, 8: 472, 9: 798, 10: 907, 11: 773, 12: 883, . . .}
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C.2 Model Stability Assessment
In order to assess the stability of the stochastic model, 100 simulations with identical
input parameters were run; the base line parameter set with one instead of two hospital
wards. The average values with bands corresponding to the standard deviations, x̄ ± s,
are presented in Figure C.2.1. The panels present the number of carriers, infected and
confirmed cases, respectively.

Figure C.2.1: The three panels illustrate the number of carriers, infected and confirmed cases,
respectively, in 100 simulation runs where the number of wards is set to one, all other parameters to
their base line value. The solid lines represent the mean value, whereas the bands are made up of
error bars representing the calculated standard deviation in both directions, x̄± s.
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