
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f B
io

te
ch

no
lo

gy
 a

nd
 F

oo
d

Sc
ie

nc
e

M
as

te
r’s

 th
es

is

Christoffer Gretarsson Alexandersen

Acknowledging the uncertainty of
enzyme kinetic parameters in
constraint-based metabolic modeling

Master’s thesis in Biotechnology (5 year)

Supervisor: Eivind Almaas

May 2020

Christoffer Gretarsson Alexandersen

Acknowledging the uncertainty of
enzyme kinetic parameters in
constraint-based metabolic modeling

Master’s thesis in Biotechnology (5 year)
Supervisor: Eivind Almaas
May 2020

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Biotechnology and Food Science

I would like to thank my supervisor Prof. Eivind Almaas for introducing me to the
exciting world of systems biology and for enabling me to pursue my research interests
with an exceptionally engaging thesis. I would also like to give a warm thanks to Prof.
Allen Holder for his kind hospitality and invaluable mentoring during my stay in Terre

Haute. Finally, I would also like to thank my co-supervisor Pål Røynestad for his readily
attentive guidance.

Sammendrag

Begrensningsbaserte analysemetoder, slik som ”flux balance analysis” (FBA), har vist seg
å være nyttige og allsidige beregningsverktøy for å studere og tilvirke cellemetabolisme.
Med stadig nye anvendelser innenfor medisin og industri har FBA blitt en fanebærer for
systembiologisk forskning. Til tross for stor suksess har studier vist at FBA-metoden
kan feile grovt under visse omstendigheter. Dessuten viser beregningseksperimenter at
metoden er ustabil i møte med små endringer i biomassekomposisjonen, hvilket motsier
cellemetabolismens standheftige natur. En annen begrensningsbasert modelleringsmetode,
”robust analysis of metabolic pathways” (RAMP), forsøker å rette opp FBA-metodens
ustabilitet ved å anse biomassekomposisjonen som usikker. Som beregningsverktøy prest-
erer RAMP på linje med FBA og innehaver dessuten ønskede matematiske egenskaper.
De siste årene har det blitt utviklet en rekke utvidelser av FBA-paradigmet. Noen av disse
utvidelsene innebygger massebegrensninger på mengden enzym tilgjengelig for cellen
og tar dermed i bruk enzymkinetisk data ladet med både biologisk og eksperimentell
usikkerhet. I denne tesen utarbeides ”Robust Analysis of Metabolic Pathways under
Enzymatic Regulation” (RAMPER); en utvidelse og viderutvikling av RAMP som inkor-
porerer enzymkinetiske parametre. Vi diskuterer stokastiske tolkninger av metoden, intro-
duserer varianter av metodeformuleringen og viser at RAMPER arver RAMP’s viktigste
matematiske egenskaper. Vi implementerer så metoden slik at stokastiske og ustokastiske
simuleringer kan utføres både med og uten enzymkinetiske parametre. Deretter sam-
menligner vi implementasjonens beregningshastighet under forskjellige modelleringsan-
tagelser. Videre formulerer vi en provisorisk modell for usikkerhet i kinetiske parametre
ved å granske en omfattende enzymdatabase. Følgende analyserer vi betydningen av en-
zymkinetisk usikkerhet for metodens beregningsresultater og demonstrerer slik at RAM-
PER gjør rede for enzymkarakteristikker forbigåtte av tidligere modelleringsmetoder. Med
dette argumenterer vi for at RAMP formalismen, i likhet med FBA, er et utbyggbart og
ressurssterkt rammeverk for begrensningsbasert analyse av metabolske nettverk.

i

Summary

Constraint-based approaches, such as flux balance analysis (FBA), have proven proficient
and versatile computational tools for the study and engineering of cellular metabolism.
Growing ever more prevalent in medicine and industry, FBA has become a flag-bearer
of the systems biology research field. Yet despite the successes, FBA has been shown to
suffer substantial shortcomings in its predictive power. Additionally, computational exper-
iments demonstrate that FBA is sensitive to small parametric perturbations in the biomass
composition, contradicting the robust nature of cell metabolism. Another constraint-based
approach, robust analysis of metabolic pathways (RAMP), intends to mend the paramet-
ric instability in FBA by inherently modeling uncertainty in the biomass composition.
RAMP rivals FBA in its computational predictions and possesses desirable mathematical
properties. Over the last years, additional extensions to the FBA paradigm have intro-
duced mass constraints on the amount of metabolic enzyme available to the cell. These
extensions rely on enzyme kinetic parameters that are fraught with experimental and bi-
ological uncertainty. Herein we present Robust Analysis of Metabolic Pathways under
Enzymatic Regulation (RAMPER); an extension and further development of RAMP that
incorporates enzyme kinetic constraints. We discuss novel stochastic interpretations of the
method, introduce separate yet equivalent method formulations, and prove that RAMPER
inherits RAMP’s most essential mathematical properties. We then implement the method
computationally, allowing varying degrees of parametric uncertainty and the noncompul-
sory inclusion of enzyme kinetic constraints. We furthermore evaluate the computational
speed of the implementation under distinct modeling assumptions. Moreover, by inves-
tigating kinetic data extracted from a comprehensive enzyme repository, we formulate a
provisional model for kinetic parameter uncertainty. Thereafter, we analyze the impact
of enzyme kinetic uncertainty on modeling predictions and subsequently demonstrate that
RAMPER recognizes enzyme characteristics beyond the reach of earlier methods. We
thereby argue that the RAMP formalism, in similar fashion to FBA, is an extensible and
resourceful framework for constraint-based metabolic network analysis.

ii

Table of Contents

Sammendrag i

Summary ii

Table of Contents iii

List of Tables v

List of Figures vi

Abbreviations ix

1 Introduction 1

2 Background and Theory 5
2.1 Mathematical optimization . 5

2.1.1 Convex optimization . 8
2.2 Genome-scale metabolic models . 15

2.2.1 Applications of genome-scale metabolic models 16
2.2.2 Reconstruction process of genome-scale metabolic models 17

2.3 Constraint-based analysis of metabolic models 22
2.3.1 Flux balance analysis . 22
2.3.2 Robust analysis of metabolic pathways 24

2.4 Extending beyond canonical flux balance analysis 30
2.4.1 Michaelis-Menten kinetics . 30
2.4.2 Enzymatically constrained FBA 33

3 Material & Methods 37
3.1 Genome-scale metabolic models containing enzyme kinetic data 37

3.1.1 BRENDA . 37
3.1.2 The ecYeast8 reconstruction . 38

3.2 Computational tools . 38
3.2.1 Python . 39
3.2.2 Optimization solvers . 40

3.3 Computational implementation . 41
3.3.1 Implementing RAMPER . 41
3.3.2 Computational speed . 46
3.3.3 Retrieving and investigating turnover numbers 46
3.3.4 Probing sensitivity in turnover number uncertainty 47

iii

4 Results 49
4.1 Robust analysis of metabolic pathways under enzymatic regulation 49

4.1.1 Stochasticity in modeling parameters 50
4.1.2 Stochastic formulation . 52
4.1.3 Deterministic formulations . 52
4.1.4 Interpreting solutions and parameters 53

4.2 Mathematical properties . 55
4.2.1 Solution continuity in parametric uncertainty 55
4.2.2 Convergence under diminishing uncertainty 60

4.3 Computational speed . 61
4.4 Designing probability distributions of enzyme kinetic parameters 62

4.4.1 Uncertainty in turnover numbers 62
4.4.2 Composing uncertainty matrices for kinetic parameters 63

4.5 Analyzing the impact of stochasticity in enzyme kinetic parameters 64

5 Discussion 67

6 Outlook 73

Bibliography 75

Appendix 83
A.1 Nonuniqueness of uncertainty matrices 83

iv

List of Tables

2.1 Examples of TN values for various enzyme-substrate pairs. Table reprinted
from Nelson [86, Chapter 6]. 33

4.1 Computation times for the creation and solving of RAMPER and ecFBA
problems employing the RAMPER implementation. All results are pre-
sented in seconds and include execution times for the primary implemen-
tation functions, the Pyomo instance construction, and the Gurobi solver. . 62

v

List of Figures

2.1 Four examples of minimization problems where all except the last one are
restrained to the intervals of the x-axes. The graph in each plot corre-
sponds to the objective function. Top left: This simple quartic objective
function, f(x) = x4 − 5x2 + 4, has exactly two global minima. Top
right: This objective function, f(x) = x sin (1/x), has an infinite number
of local minima yet a unique global minimum. Bottom left: This simple
piece-wise function has an infinite number of global minima in the inter-
val [1, 2]. Bottom right: The objective function, f(x) = 1/x, defined for
positive x admits neither local nor global minima. Although the objective
function is bounded below from zero, no exact decision variable solves the
minimization problem. 7

2.2 Examples of convex and nonconvex sets. Top: Three examples of convex
sets. Any line connecting two points in the sets is part of the sets them-
selves. Bottom: Three examples of nonconvex sets. Lines violating the set
convexity property are illustrated as dashed lines. Figure reprinted from
Schweinzer [48]. 8

2.3 The simplex method iterates through the vertices of the LP solution space.
LP optimality conditions enable us to confirm or disprove optimality at the
vertex of each iterate. Figure reprinted from Niu [50]. 10

2.4 The uncertainty set and the resulting constraints of an SOCP of form (2.6b)
in which ā = [1, 1]T , b = 1 and P is the 2-by-2 identity matrix. Left: The
uncertainty set described by ā and P . The red dot denotes the centre ā.
Right: Here we have added a representative amount of constraints each
derived from points on the boundary of the uncertainty set ellipsoid. The
red line corresponds to the constraint derived from the centre ā. The con-
vex shape in bottom-left corner consists of solutions to the corresponding
second-order cone constraint. 13

vi

2.5 An overview of the process of reconstructing and analyzing GEMs. Metab-
olic reconstructions are created using knowledge drawn from online data-
bases, literature, and annotated genomes. As can be seen here and will
be discussed further in Section 2.2.2, GEMs are often represented math-
ematically by a matrix. Computational analyses include, but are not lim-
ited to, the comparison of metabolic networks across taxa, identification
of essential genes, discovery of novel reporter pathways, and metabolic
engineering. Figure reprinted from Nielsen [62]. 16

2.6 An overview of constraint-based analysis methods of GEMs. Again, we
see the matrix representation of a metabolic network reconstruction in the
center of the figure. Be aware that these methods are not necessarily mu-
tually exclusive and are more interrelated than what this figure might sug-
gest. As is shown, constraint-based analysis methods exist that are de-
veloped for the sole purpose of refining the GEMs themselves. Figure
reprinted from Lewis et al. [73]. 18

2.7 An overview of the reconstruction process of GEMs. The steps, corre-
sponding to the numbered blocks in the figure, are described further in
Section 2.2.2. Figure reprinted from Thiele & Palsson [27]. 19

2.8 An overview of an FBA simulation. By assuming SS and imposing up-
per and lower bounds on fluxes, we define the solution space. The upper
and lower bounds may be used to define the directionality of reactions as
well as defining the nutrient environment. Finally, we identify the optimal
reaction flux vector, which is more often than not optimized for biomass
production. Figure reprinted from Orth et al. [30]. 24

2.9 Comparison of an FBA SS constraint (bold, dashed line) and its corre-
sponding RAMP constraints (light, dashed lines). The gray area enclosed
by the light, dashed lines corresponds to the subspace satisfying the RAMP
constraint, whereas the bold, dashed line corresponds to the subspace solv-
ing the FBA constraint. Figure reprinted from MacGillivray et al. [45]. . . 27

2.10 Comparison of flux vectors closest in distance to experimental flux data
in RAMP and FBA solution spaces for the E. coli GEM iJO1366. The
different subfigures correspond to different environmental conditions. Up-
per left: Aerobic batch growth. Upper right: Anaerobic batch growth.
Lower left: Carbon-limited chemostat with dilution rate 0.1/h. Lower
right: Carbon-limited chemostat with dilution rate 0.4/h. Figure reprinted
from MacGillivray et al. [45]. 29

2.11 The initial reaction rate as a function of substrate concentration given by
the MM equation (2.14). Note how the initial rate grows slower as the
substrate concentration increases, an effect explained by the gradual sat-
uration of the enzyme population. The value [S] = Km is shown on the
horizontal axis, as it—in general—corresponds to V0 = Vmax/2 and is
as such often exploited when determining Km and Vmax experimentally.
Figure reprinted from Motulsky [88]. 32

vii

2.12 A modeling schematic for a reaction that can be catalyzed independently
by two enzymes. 34

3.1 Flowchart illustrating the implementation of the RAMPER formalism. The
diamond-shaped boxes correspond to functions, diamond-shaped arrows
show destinations of imported functions, squares correspond to modules,
and parallelograms correspond to both input and output. On the whole,
GEMs are used to perform FBA/ecFBA/RAMP/RAMPER simulations per
user-set modeling parameter specifications. The user need only specify the
modeling parameters and must not specifically state the constraint-based
method to be utilized. 42

4.1 Left: Log-log plot of inversed TN means against standard deviations of
enzyme-substrate pairs per the BRENDA database [95] together with a
linear regression line. Right: Semi-log plot of the ratio of mean to standard
deviation against standard deviation for the same measurements. 62

4.2 The deviation limit of enzymes in ecYeast8 using the RAMPER method.
The vertical axis is scaled logarithmically in base 10. The iterations of
standard deviation values started at 10 and ended in 1012 increasing by a
factor 10 at each step. Note that enzymes which we could only determine
to have deviation limits below 10 are found at position 0 with regards to
the deviation limit axis. 64

4.3 The mean factor of enzymes in ecYeast8 employing the ecFBA method.
The vertical axis is scaled logarithmically in base 10. The iterations of
mean factors started at 10 and ended in 1010 increasing by a factor 10 in
each step. 65

4.4 The maximum deviation of enzymes in ecYeast8 applying the RAMPER
method with the TN regression model. The vertical axis is scaled loga-
rithmically in base 10. The iteration of deviation scaling factors started at
100 and ended in 1011 increasing by a factor of 10 at each step. Note that
enzymes which we could only determine to have deviation limits below 10
are found at position 0 with regards to the deviation limit axis. 66

viii

Abbreviations

E. coli = Escherichia coli
EC = Enzyme commission
ecFBA = Enzymatically constrained FBA
ET = Effective turnover
FBA = Flux balance analysis
GAM = Growth-associated maintenance
GEM = Genome-scale metabolic model
GPR = Gene-protein-reaction
LP = Linear program
MM = Michaelis-Menten
NGAM = Nongrowth-associated maintenance
QCP = Quadratically constrained program
RAMP = Robust analysis of metabolic pathways
RAMPER = RAMP under enzymatic regulation
rET = Random effective turnover
S. cerevisiae = Saccharomyces cerevisiae
SOCP = Second-order cone program
sRAMPER = Substituted RAMP
SS = Steady state
TN = Turnover number

ix

x

Chapter 1
Introduction

During the last half of the past century, there has been a monumental expansion in our
understanding of the molecular basis of life. An immensely complex and intertwined
biomolecular world has been revealed to be the underpinning of all cellular processes.
We have gotten so far by examining, to greater and greater detail, the constituents of life.
Animals—or at least most of them—are composed of organs, which are composed of tis-
sues, which are composed of cells, which are composed of organelles, which are composed
of molecules. The idea is that if one understands the components of a structure, then one
will gain an understanding of the structure itself. This approach to understanding complex
phenomena, by investigating its smaller constituents, has been dubbed reductionism [1, 2].
As early as the mid-19th century, notable biologist Ludwig Van Bertalanffy argued that re-
ductionism, though utterly essential, is not enough by itself to understand most biological
phenomena [3].

Many biological systems consist of thousands of constituents cross-interacting in re-
markably convoluted yet purposeful patterns. And although an understanding of system
constituents has been successful in predicting system properties of larger phenomena in
other sciences, such as phase transition in statistical mechanics, this has been a challenge
in biology, as constituents are rarely similar and are mixed highly heterogeneously. It has
been argued that it does not suffice to understand each constituent separately; one must
understand how the constituents interact and what emergent properties arise from these
interactions [1, 3–7]. Holism, in contrast to reductionism, is a term used to describe a
research approach in which phenomena are investigated at a system level as opposed to
investigating parts of the phenomena in isolation [2, 4]. A shift from a reductionistic to-
wards a more holistic investigatory approach has historically been limited by our ability to
experimentally measure the characteristics of biological systems [6]. Yet in recent times,
this has changed.

Over the last few decades, the wealth of available biological information has grown im-
mensely upon the emergence of high-throughput measurement technologies. The arrival
of genomics, transcriptomics, translatomics, proteomics, and metabolomics has facilitated
the accumulation of data describing the constituents of diverse biological systems [8].

1

Chapter 1. Introduction

Concurrently, the world of research has witnessed the advent of computer science along
with progressively sophisticated numerical methods for mathematical modeling. The un-
tapped potential in addressing and probing such high-throughput biological data with state-
of-the-art computational methods was a major driving force in the arrival of systems biol-
ogy: the field of study of biological systems [5, 6, 8, 9].

The shift of focus from a reductionistic towards a holistic approach is often attributed
as a defining characteristic of systems biology research; biological systems are to be stud-
ied in their own right and not presumed to be mere sums of their parts [2, 6]. More
specifically, the scientific approaches covered in systems biology research are character-
ized by computational methodologies applied to high-throughput experimental data [5, 9]
and are thus interdisciplinary in nature [10]. The biological systems examined may oper-
ate on disparate time scales [5] and can be as diverse as the Krebs cycle [11] and the global
vegetative ecosystem [12]. Systems biology methodologies include both the formulation
of bottom-up mechanistic mathematical models and bottom-down statistical data analy-
sis [13]. Advancements in the modeling and analysis of complex biological systems have
inspired the use of systems biology approaches in a variety of fields, including synthetic
biology [14–16], cancer biology [17–19], precision medicine [20–23], and ecology [24,
25].

Among the most well-known and widely used models in computational systems biol-
ogy belong to the class of genome-scale metabolic models (GEMs) [26]. Such models aim
to describe cellular metabolism by digitally storing metabolic reactions and their gene-
protein-reaction (GPR) associations. In other words, GEMs provide organism-specific
computational reconstructions of cell metabolism that couple metabolic reactions with
their respective genes [27]. The idea behind their construction is simple. First, genes are
identified by probing the genome of the organism in question. Second, the identified genes
are annotated with their corresponding enzymes alongside the encoding enzymes’ bio-
chemical reactions. Third, the metabolically relevant reactions are compiled together with
their GPR associations effectively establishing the metabolic model [27]. These metabolic
reconstructions do not only provide repositories of organism-specific cell metabolism but
also platforms on which to study metabolism using computational methodologies.

Several methods for analyzing genome-scale metabolic reconstructions have been de-
veloped, such as extreme pathway analysis [28], elementary-mode analysis [29], and the
vastly popular flux balance analysis (FBA) [30]. By employing tools of mathematical opti-
mization, FBA has proved itself to be a particularly fruitful framework for the modeling of
cellular metabolism. Accordingly, FBA has been shown to have numerous applications in
bioengineering and medicine, as evidenced by its usage in lipid production by genetically
engineered photosynthetic bacteria [31], hydrogen production by engineered Escherichia
coli [32], antimicrobial drug target identification [33], and therapeutic target identification
in cancer [34].

Moreover, numerous extensions to the FBA formulation have been published allowing
for additional analytic features in addition to greater predictive power. Examples include
dFBA, which was developed to study change in flux distributions as well as performing
objective function sensitivity analysis [35]; cFBA [36], which extends FBA to microbial
communities; ccFBA [37], which improves model accuracy by imposing mass constraints;
and GECKO [38], MOMENT [39], sMOMENT [40], and FBAwMC [41], which all play

2

on the same theme of incorporating enzyme kinetic data to enhance predictive power.
Additionally, FBA has been integrated into larger mathematical models that describe other
facets of cell biology besides metabolism [42, 43].

Despite its success and promise, the FBA paradigm is based on questionable assump-
tions and is—in certain aspects—severely lacking in predictive power [44]. The FBA ap-
proach imposes the strict assumption of nonchanging metabolite concentrations and read-
ily uses experimentally inferred parameters to which the method is highly sensitive. At-
tempts at ameliorating the strict assumptions made by FBA include the robust analysis of
metabolic pathways (RAMP) formulation, which relaxes the FBA modeling assumptions
and inherently acknowledges parameter uncertainty [45]. RAMP was shown to exhibit
similar, and in some cases, better predictive power than FBA. Additionally, RAMP was
shown to possess desirable mathematical properties absent in FBA. On the other hand,
RAMP was found to suffer from computational instability not seen in FBA.

With a plethora of extensions and applications to the FBA paradigm emerging with
rapid pace, it is imperative that its underlying framework is theoretically sound. The aim
of this thesis is to develop an extension to the RAMP approach that incorporates
enzymatic constraints acknowledging the considerable parametric uncertainty em-
bedded in enzyme kinetic data. We thereby argue that it is quite possible to extend
the RAMP method analogously to the development of FBA-derived methods and that it is
achievable to improve upon the problematic backbone of FBA without losing its versatility
and extensibility.

3

Chapter 1. Introduction

4

Chapter 2
Background and Theory

In this chapter, we will introduce the field of mathematical optimization, the reconstruc-
tion procedure of metabolic models, and the application of optimization to the analysis of
metabolic reconstructions. First, we show that simple optimization problems called linear
programs (LPs) can be generalized into problems handling uncertainty in modeling pa-
rameters called second-order cone programs (SOCPs). Second, we delineate the process
of GEM reconstruction, noting especially the dependence on experimentally inferred pa-
rameters. Third, we introduce FBA—an LP formulation of great use in modeling cellular
metabolism—and show how we may generalize FBA using an SOCP formulation that ac-
knowledges parameter uncertainty. Finally, we describe how extensions made to the FBA
framework increase predictive power but introduce many more uncertain parameters.

2.1 Mathematical optimization
Optimization occurs all around us. Manufacturers optimize operation procedures of pro-
duction processes. Investors seek to maximize their profits carefully weighing in the risks
of their investments. Physical systems aim to minimize potential energy. Light rays follow
paths minimizing their travel time. And over eons, evolution maximizes species’ repro-
duction capability. Often, such optimization processes occur within given restraints. A
manufacturer may be tasked to find an optimal production procedure given a certain bud-
get. Will three effective machines, or five less effective machines be more cost-effective?
During the modeling process, we aim to identify a mathematical formulation that may aid
us in finding the optimal solution to a given problem. But as there is no universal algorithm
for solving optimization problems, we best thread carefully. A simple problem may not
capture reality, whereas a highly descriptive model may prove unsolvable.

The field of mathematical optimization deals with the identification of maxima and
minima—collectively known as extrema—of functions. And although optimization the-
ory has been established for more general settings, we will restrict ourselves to functions
mapping real vectors to real numbers. The search for extrema is formulated as so-called
optimization problems, alternatively called optimization programs. In mathematical op-

5

Chapter 2. Background and Theory

timization we do not only consider algorithms for identifying extrema; we also seek to
discover mathematical theorems concerning the optimization problems themselves. Opti-
mization problems arise in a variety of fields, including finance, physics, chemistry, biol-
ogy, artificial intelligence, and many more [46].

In general, an optimization problem may be described using the following notation

min
x

f(x) (2.1a)

subject to ci(x) = 0, ∀i ∈ E , (2.1b)
ci(x) ≤ 0, ∀i ∈ I, (2.1c)

where x is a real vector, f and ci are functions of x, with E and I being index sets. We refer
to the function over which we are optimizing—in this case f—as the objective function,
whereas the input of the objective function—in this case x—is referred to as the decision
variable, or simply variable. The functions that define the permitted values of the decision
variables—in this case ci for all i in E ∪ I—are referred to as the constraints functions,
or simply constraints. The constraints define the solution space—also called feasible re-
gion—which is the set of decision variables defined by the constraint functions. Hence,
the preceding optimization problem describes the task of identifying a decision variable
in the solution space corresponding to the minimum objective function value permissible
in that same solution space. Note that the corresponding maximization problem is also
captured in our preceding formulation by replacing f by −f [46]. For simplicity’s sake,
we will only refer to minimization problems for the remainder of this section.

As an introductory example, consider the following optimization program,

min
x

2x

s. t. 1 ≤ x ≤ 2,

in which x ∈ R and ”s.t.” is an abbreviation for ”subject to”. The solution to this problem
is clearly found at x = 1 resulting in a minima of value 2. In this example we have
not followed the notation as put forth in problem (2.1), which is in fact rarely followed
in practical applications. This is by no means problematic, as we may reformulate our
problem into the form found in (2.1) quite trivially. It is on the other hand very useful
to agree on an explicit formulation while considering theoretical aspects of optimization
programs.

Points that solve an optimization problem are called globally optimal points. We use
the term global to distinguish such points from locally optimal points. Such points solve
the problem (2.1) should we only consider points sufficiently close to the locally optimal
point in question [47]. The corresponding objective function values of optimality points
are referred to as local and global minima respectively. Optimization problems are by no
means guaranteed to have any solution, and if they do, they may either have a finite or
infinite number of solutions. As is shown in Figure 2.1, optimization problems need not
be contrived to have infinite or no solutions. For some optimization problems it may be
trivial to test whether or not a given decision variable solves the problem at hand, whereas
for others it may even be theoretically impossible. Although certain algorithms exist that
are guaranteed to succeed on specific subclasses of optimization problems, no algorithm

6

2.1 Mathematical optimization

2 0 2

0

5

10

f(x
)

0.0 0.1 0.2 0.3 0.4
0.2

0.1

0.0

0.1

0.2

0.3

0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

f(x
)

0 5 10 15
x

0

1

2

3

Figure 2.1: Four examples of minimization problems where all except the last one are restrained
to the intervals of the x-axes. The graph in each plot corresponds to the objective function. Top
left: This simple quartic objective function, f(x) = x4 − 5x2 + 4, has exactly two global minima.
Top right: This objective function, f(x) = x sin (1/x), has an infinite number of local minima yet
a unique global minimum. Bottom left: This simple piece-wise function has an infinite number of
global minima in the interval [1, 2]. Bottom right: The objective function, f(x) = 1/x, defined for
positive x admits neither local nor global minima. Although the objective function is bounded below
from zero, no exact decision variable solves the minimization problem.

is known to reliably handle general optimization problems [46, 47].
Many state-of-the-art optimization algorithms rely on what is called the dual problem.

The formal dual problem definition may appear contrived and esoteric and is therefore
not presented here. It will suffice to describe the dual of an optimization problem as a
distinct optimization program derived from the original problem that is—under favorable
circumstances—intimately linked to the original optimization program. When speaking of
duality, it is common to refer to the original optimization problem as the primal problem.
If the primal problem is a minimization program, then the dual problem is a maximization
program, and vice versa. Of special importance is the concept of the duality gap. The
duality gap is the difference in value between the primal and dual global solutions. As
a matter of fact, the global minimum of a primal minimization program is always larger
than the global maximum of the dual, and vice versa for primal maximization problems.
This is known as the weak duality theorem and holds for any optimization program. This
is particularly useful in designing algorithms, as any value of the dual objective function
specifies a lower bound on the primal minimization solution.

Different kinds of optimization problems exhibit different properties. Due to the large
variety of optimization problems, they are split into different classes. We will only discuss
the class of convex optimization problems along with two of its subclasses.

7

Chapter 2. Background and Theory

Figure 2.2: Examples of convex and nonconvex sets. Top: Three examples of convex sets. Any
line connecting two points in the sets is part of the sets themselves. Bottom: Three examples of
nonconvex sets. Lines violating the set convexity property are illustrated as dashed lines. Figure
reprinted from Schweinzer [48].

2.1.1 Convex optimization

Convex optimization problems share desirable mathematical properties and are so well-
studied that convex optimization has grown to become a research field in its own right.
Before defining what is meant by convexity in optimization programs, we need to first
define convexity in reference to sets and functions.

The defining feature of a convex set is that any line connecting two points in that set is
itself in the set. Mathematically we say that set S is convex if, for any pair x, y ∈ S, we
have that αx + (1 − α)y ∈ S for all α ∈ [0, 1]. Examples of convex and nonconvex sets
are shown in Figure 2.2

A convex function is a function in which any line drawn between two points on its graph
lies at or above the graph itself. Mathematically speaking a function, f : Ω ⊂ Rn → R, is
said to be convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(x)

for all x, y ∈ Ω and all α ∈ [0, 1]. The two bottom functions in Figure 2.1 are con-
vex, whereas the two upper functions are not. We may now define what it means for an
optimization program to be convex.

A convex optimization problem is an optimization problem with a convex function and
a convex solution space. There is no known mathematical property that fully describes
all convex optimization problems, but we do know some sufficient conditions to ensure
convexity in optimization programs. In order to do present these conditions, we must first
briefly define what it means for a function to be affine. A function, f : Rn → Rm, is said
to be affine if they are of the form f(x) = Ax+b in whichA ∈ Rm×n and b ∈ Rn. Affine
functions happen to be the only kind of function, f , for which both f and −f are convex.

An optimization problem of the form (2.1) with a convex objective, f , convex negative
inequality constraints, −ci(x) for i ∈ I, and affine equality constraints, ci(x) for i ∈ E ,

8

2.1 Mathematical optimization

is itself a convex optimization problem. Although this is not a complete description of
convex problems, it will suffice for our intentions.

Convex optimization problems share desirable mathematical properties of which we
will briefly describe three. First, any locally optimal point in a convex optimization prob-
lem is a globally optimal point. This fundamental property is hugely advantageous in
designing solvers for convex problems, as it is in general not possible to distinguish local
and global minima. Second, the set of optimal points in convex problems is itself a convex
set. Third, the duality gap of most convex problems is zero. This extraordinary fact is
stated by the strong duality theorem and holds whenever Slater’s interiority condition is
satisfied, or in other words, whenever the solution space contains an interior point [46].
Slater’s interiority condition may be replaced by other conditions for certain types of con-
vex problems. When the duality gap is zero, solving the dual problem corresponds to
solving the primal. The strong duality theorem is at the heart of modern convex optimiza-
tion solvers [47]. We will now describe two types of convex optimization problems: the
linear program and the second-order cone program.

Linear programs

The LP is one of the most popular optimization models and is especially well-established
in management, finance, and engineering. This is mostly due to its mathematical simplic-
ity, wide applicability, and in particular the effectiveness of a solving algorithm called the
simplex method [46].

The LP is a convex optimization problem (2.1) with a linear objective function as well
as linear equality constraint functions and linear inequality constraint functions. An LP
will therefore be of the form

min
x

fTx

s.t. aTi x = bi, ∀i ∈ E ,
aTi x ≤ bi, ∀i ∈ I,

where ai, x, f ∈ Rn, bi ∈ R with index sets as in problem (2.1). It can easily be verified
that LPs are convex. By assuming x, y in the solution space and inserting αx+(1−α)y for
x in the constraints, we can easily show that the solution space is convex, which together
with the linearity of the objective shows that LPs are convex programs. We could also
argue that since all the constraints as well as the objective are affine, we have both a
convex objective and solution space, and hence a convex program.

LPs are special, even in the context of convex programming, as strong duality is guar-
anteed by the structure of the program itself. In other words, LPs are exempt from having
to satisfy any type of condition for strong duality to hold. Additionally, the dual programs
of LPs are themselves LPs.

The LP solution space is not only convex but also polyhedral. Bounded polyhedrons—
extending finitely in all directions—are referred to as polytopes. The upper three shapes
in Figure 2.2 are all examples of convex polytopes. LPs which possess a nonempty poly-
tope solution space are guaranteed the existence of an optimal solution. Furthermore, the
fundamental theorem of linear programming states that any LP with a nonempty polytope

9

Chapter 2. Background and Theory

Figure 2.3: The simplex method iterates through the vertices of the LP solution space. LP optimality
conditions enable us to confirm or disprove optimality at the vertex of each iterate. Figure reprinted
from Niu [50].

solution space has at least one optimal point in a vertex of the polytope. It is this theorem
that is the core of the simplex method [49].

As the fundamental theorem of linear programming heavily suggests, the simplex
method searches the vertices of the solution space in order to find an optimum [49] as
illustrated in Figure 2.3. The simplex method is only guaranteed to find an optimum under
very specific circumstances, and the number of iterations needed to find such an optimum
will—in the worst case—grow exponentially with the size of the LP [46]. Nonetheless, the
number of iterations needed in practice seldom exceeds three times the number of equa-
tions in the LP [49], which is excellent when compared to other solving methods. The
simplex method continues to be the fastest and most popular modern solving algorithm for
LPs [46]. Variants of the simplex methods exist, as for example the dual simplex method
which searches the dual solution space for a solution that is feasible in the primal. Should
such a solution exist, it will solve the primal problem due to the strong duality theorem.

The theoretical limitations of the simplex method have prompted the use of more
sophisticated methods primarily developed for nonlinear optimization problems. These
methods typically require the constraints to be satisfied strictly and are hence named
interior-point methods. One such method was the first to show that LPs are in fact solv-
able in polynomial time [46]. As the dual simplex method, many commercial interior-point
methods rely on the dual in identifying a primal solution.

Many modern algorithms iteratively provide estimates of both the primal and dual
solutions. Whenever the difference, or gap, between these iterates’ objective value is suf-
ficiently small, the algorithm identifies a global optimum. A wealth of commercial opti-
mization solver suites exists supporting both simplex and interior-point methods for the
solving of LPs, some examples being Gurobi [51], FICO Xpress [52], and CPLEX [53].

10

2.1 Mathematical optimization

Second-order cone programs

SOCPs are convex optimization problems often used to recapture parametric uncertainty in
LPs [47, 54]. They are solvable by interior-point methods [55, 56] in polynomial time [56],
although some solvers require the user to reformulate SOCPs using quadratic constraints.

SOCPs are of the form

min
x

fTx (2.4a)

s.t. aTi x = di, ∀i ∈ E , (2.4b)

‖Aix+ bi‖ ≤ cTi x+ di, ∀i ∈ I, (2.4c)

where Ai ∈ Rni×n, f, ai, ci, x ∈ Rn, bi ∈ Rni , di ∈ R, ‖ · ‖ refers to the Euclidean norm,
and index sets are defined as for problem (2.1).

The constraints of type (2.4c) are called second-order cone constraints. The name
is derived from the fact that such a constraint restrains the vector (Aix + bi, c

T
i x + di)

to a second-order cone in Rni+1 [47]. In other words, the set {(Aix + bi, c
T
i x + di) :

‖Aix + bi‖ ≤ cTi x + di} is a second-order cone. We note that if Ai equals the zero
matrix for all i ∈ I then the SOCP is equivalent to an LP. Hence, the SOCP generalizes
the LP. This will be of later importance to us in the computational implementation of the
herein-introduced method (see Section 3.3.1).

We may show that SOCPs are convex by, as before, assuming x, y in the SOCP solution
space and then substituting αx+ (1− α)y for x in the SOCP constraints. For the second-
order cone constraints, we will have to make the observation that ‖Ai(αx+ (1− α)y) +
bi‖ = ‖Ai(αx + (1 − α)y) + αbi + (1 − α)bi‖, and subsequently apply the triangle
inequality. As before, we note that the objective is affine and conclude that SOCPs are
indeed convex programs.

SOCPs are convex optimization problems of a form known to be solvable by interior-
point methods [55]. Several mathematical optimization suites provide SOCP solvers, such
as Gurobi [51], MOSEK [57], and FICO Xpress [52].

Additionally, SOCPs have been shown to behave as robust counterparts to LP [47,
54]. Such an interpretation lends an intuitive understanding of SOCPs worthy of ample
discussion.

SOCPs as robust LPs

Consider the following LP-variant, which we will name the robust LP,

min
x

cTx (2.5a)

s.t. aTi x ≤ bi, ∀aTi ∈ Pi, ∀i ∈ {1 . . .m}, (2.5b)

where Pi = {āTi + uTPi : ‖u‖ ≤ 1} with Pi ∈ Rn×n and u ∈ Rn. That is, Pi describes
an ellipsoid centered at āi described by the matrices Pi. For example, with Pi equal to the
identity matrix, Pi is the unit ball centered around the point āi.

Intuitively, this means that the ellipsoids describe an uncertainty around āi that our
decision variable must account for. For example, an ellipsoid flat in one single dimen-

11

Chapter 2. Background and Theory

sion would agree with the interpretation that a single element in āi is free of uncertainty,
whereas an ellipsoid extending greatly in one dimension would infer great uncertainty in
the element of āi corresponding to that dimension. Sets such as Pi are therefore often
referred to as uncertainty sets. Note that these uncertainty sets correspond to sets of con-
straints that must all be satisfied at once. That is, the robustness of the LP-variant (2.5)
stems from the fact that the solutions to the canonical LP constraint, āTi x ≤ bi, must be
robust in the uncertain elements of āi, as x has to satisfy a whole range of similar LP
constraints at once. In other words, small changes to the parameters, āi, will not cause
dramatic changes in the solution space. This is certainly not true for LPs in general. Just
consider an LP with a solution space defined by x1 = x2 in R2. Now consider the solution
space defined by (1 + ε)x1 = x2 for any ε 6= 0. These two solution spaces share only a
single point, x1 = x2 = 0, even though the difference of the constraint functions evaluated
at any point can be made arbitrarily small.

Note that a robust LP constraint of the form (2.5b) is equivalent to

sup{aTi x : aTi ∈ Pi} ≤ bi

and that

sup{aTi x : aTi ∈ Pi} = sup{(āTi + uTPi)x : ‖u‖ ≤ 1}
= āTi x+ sup{uTPix : ‖u‖ ≤ 1}
= āTi x+ sup{‖u‖‖Pix‖ cos θ : ‖u‖ ≤ 1}
= āTi x+ ‖Pix‖,

where θ is the Euclidean angle between u and Pix. We may therefore rewrite problem (2.5)
as

min
x

cTx (2.6a)

s.t. āTi x+ ‖Pix‖ ≤ bi, i ∈ {1 . . .m}, (2.6b)

which we recognize as an SOCP. The added norm term to the constraints are referred to as
regularization terms and act as barriers restraining x from growing indefinitely. We also
see—again—that the Pi transformation determines the allowed deviation for the different
elements of x. We conclude that SOCPs of the form (2.6) are aptly interpreted as robust
counterparts to LPs.

To ease intuition of the SOCP solution space, we have illustrated an uncertainty set
and its resulting constraints in Figure 2.4. Here we see how uncertainty sets describe sets
of constraints that together form convex shapes. Robust LPs have smaller solution spaces
compared to their respective LPs, as we are essentially adding an infinite number of linear
constraints. This fact is also demonstrated in Figure 2.4, where the bisected R2-plane is
transformed into a smaller, distinct convex shape.

Extraordinarily enough, SOCPs have yet another apt interpretation in terms of linear
programming. Specifically, we may derive an SOCP by considering an LP with random
variable parameters [47]. We will at times refer to such an LP as a stochastic LP.

12

2.1 Mathematical optimization

4 2 0 2 4
a1

4

2

0

2

4
a 2

1 0 1
x1

1

0

1

x 2
Figure 2.4: The uncertainty set and the resulting constraints of an SOCP of form (2.6b) in which
ā = [1, 1]T , b = 1 and P is the 2-by-2 identity matrix. Left: The uncertainty set described by ā
and P . The red dot denotes the centre ā. Right: Here we have added a representative amount of
constraints each derived from points on the boundary of the uncertainty set ellipsoid. The red line
corresponds to the constraint derived from the centre ā. The convex shape in bottom-left corner
consists of solutions to the corresponding second-order cone constraint.

SOCPs as stochastic LPs

As LPs formulated using stochastic parameters may have varying structures resulting in
distinct problem formulations, we will not state the stochastic LP in general form but rather
consider two specific types of stochastic LP constraints resulting in SOCP formulations.

Consider the linear constraint, aTx ≤ b, where b ∈ R, x ∈ Rn, and a is a random n-
vector, that is, a vector with at least one entry containing a random variable. Now consider
aTx to be a normally distributed random variable with mean āTx and variance xTQx
with Q being the covariance matrix of the random elements of a. Now say we enforce the
following constraint P (aTx > b) ≤ ε, where ε is an arbitrary positive scalar. Moving on,
we will refer to constraints involving probabilities as probability constraints or stochastic
constraints. With δ1−ε denoting the 1 − ε percentile of the standard normal distribution,
rewriting the preceding stochastic constraint in terms of standard normality gives

P

(
aTx− āTx√

xTQx
≤ b− āTx√

xTQx

)
< 1− ε,

which holds if and only if

δ1−ε ≤
b− āTx√
xTQx

,

and hence

āTx+ δ1−ε
√
xTQx ≤ b.

13

Chapter 2. Background and Theory

Now define R—which we will dub the uncertainty matrix—so that RTR = Q. We then
have xTQx = xTRTRx = ‖Rx‖2. The preceding inequality may thus be expressed by
āTx+ ‖δ1−εRx‖ ≤ b which we recognize as an SOCP constraint.

The reader may call into question the existence of the uncertainty matrix. Are we al-
ways guaranteed that the covariance matrix can be written asRTR? Yes, this is guaranteed
by the fact that all symmetric positive semidefinite matrices, such as the covariance ma-
trix, has a so-called Cholesky decomposition. More specifically, for any real symmetric
positive semidefinite matrix, A, there exists a real lower triangular matrix, L, such that
A = LLT . By setting R = LT , we conclude that it is perfectly fine under any circum-
stances to assume the existence of an uncertainty matrix. The reader should be advised
that the uncertainty matrix used is rarely LT but rather hand-sewn for each application.

Another intriguing question is whether or not the uncertainty matrix is unique. We can
show that diagonal covariance matrices—that is, the covariance matrix for uncorrelated
random parameters, but for which there may be nonrandom variables as well—have an
infinite number of uncertainty matrix representations (see Appendix A.1). This is not
worrying though. As long as RTR = Q, the solution space defined by the corresponding
second-order cone constraint is the same regardless of R.

Returning to the stochastic LP-variant, consider again the linear inequality aTx ≤ b
only this time it is b that is a normal random variable for which we designate mean µ and
variance σ2. We now, as earlier, impose the stochastic constraint P (aTx > b) ≤ ε and
arrive at a deterministic inequality. The stochastic constraint in terms of standard normality
is

P

(
b− µ
σ

<
aTx− µ

σ

)
≤ ε,

which holds if and only if

aTx− µ
σ

< δε,

and hence

aTi x < δεσ + µ.

As it is intended that ε is to be interpreted as a small number, it is reasonable to assume δε
negative; we see that the inequality resulting from such a probability constraint is simply a
stricter linear inequality. We see that we may interpret the parameters of an LP’s constraint
stochastically and arrive at SOCP constraints.

All in all, we can conclude that robust and stochastic LP constraints correspond to
SOCP constraints. It is subsequently reasonable to interpret SOCPs both as stochastic and
robust LP counterparts. Before concluding this section, we will present one final SOCP
formulation.

14

2.2 Genome-scale metabolic models

SOCPs formulation using quadratic constraints

Some optimization solvers accept only certain formulations of SOCPs. For instance, the
Gurobi solver [58] solely accepts SOCPs written as quadratically constrained programs
(QCPs). As the computational implementations described in the methods chapter rely on
the Gurobi solver, we will rewrite the SOCP problem (2.4) as a QCP. The reformulation is
given as

min
x

fTx (2.7a)

s.t. aTi x = di, ∀i ∈ E , (2.7b)

A
(j)
i x+ b

(j)
i = yi,j , ∀i ∈ I, ∀j ∈ Ji, (2.7c)

ni∑
j=1

y2i,j ≤ z2i , ∀i ∈ I, (2.7d)

zi ≤ cTi x+ di, ∀i ∈ I, , (2.7e)
zi ≥ 0, ∀i ∈ I, (2.7f)

where the rows of Ai and bi are denoted by A(j)
i and b(j)i respectively, and we have intro-

duced two new variables yi,j , zi ∈ R alongside index sets Ji containing the row indices
of Ai and bi.

By first substituting A(j)
i x+ b

(j)
i for yi,j into constraint (2.7d), raising it to power 1/2

using the nonnegativity of zi from constraint (2.7f), and then finally extending the inequal-
ity of constraint (2.7e), we see that the constraints (2.7c) through (2.7f) are equivalent to
a second-order cone constraint. The solution space of x in the above problem reformula-
tion is then clearly equivalent to the original SOCP formulation (2.4). This reformulation
also shows us that SOCPs belong to the larger class of QCPs. Note that convex QCPs are
themselves a subclass of SOCPs whereas this is not true for nonconvex QCPs.

2.2 Genome-scale metabolic models
GEMs are digital, organism-specific representations of metabolic biochemical networks
used as the foundation in several computational modeling approaches. Ideally, GEMs are
exhaustive reconstructions of the entirety of reactions, genes, and metabolites participating
in a given organism’s cellular metabolism. For this reason, we often refer to GEMs as
metabolic network reconstructions, or simply metabolic reconstructions. GEMs typically
represent unicellular species, such as E. coli and Saccharomyces cerevisiae, but have in
recent years expanded in scope and increased in granularity with the introduction of strain-
specific prokaryotic GEMs [59, 60] and cell-line specific human GEMs [61].

The reconstruction process is dependent on genome annotation and experimentally ob-
tained metabolic parameters derived from databases and scientific literature. To date there
exists GEMs—either manually or automatically curated—for over 6239 organisms [26].
GEMs are used extensively, with a repertoire of different approaches, to computation-
ally model cellular metabolism and are frequently employed in computational biology
research. As will be evident in Section 2.3.1, mathematical optimization is the crux of

15

Chapter 2. Background and Theory

most computational efforts using metabolic reconstructions. A coarse outline of the re-
construction and applications of GEMs is shown in Figure 2.5. In this section on GEMs,
we will first briefly describe some of its applications before outlining the GEM reconstruc-
tion procedure as described by Thiele & Palsson [27].

Figure 2.5: An overview of the process of reconstructing and analyzing GEMs. Metabolic re-
constructions are created using knowledge drawn from online databases, literature, and annotated
genomes. As can be seen here and will be discussed further in Section 2.2.2, GEMs are often rep-
resented mathematically by a matrix. Computational analyses include, but are not limited to, the
comparison of metabolic networks across taxa, identification of essential genes, discovery of novel
reporter pathways, and metabolic engineering. Figure reprinted from Nielsen [62].

2.2.1 Applications of genome-scale metabolic models
Several methods have been used for analyzing genome-scale metabolic reconstructions,
for example, elementary-mode analysis [63], identification of extreme pathways [64],
Monte Carlo sampling of metabolites states [65], topological analysis [66], FBA [30] and
numerous FBA-derived methods [35, 38, 39, 41, 67, 68].

These approaches commonly impose restrictions on permissible metabolic states to
provide further insights into cellular metabolism. These restrictions, or constraints, are
often based on combinations of genetic, transcriptomic, proteomic, and thermodynamic
data. Such constraints may also impose certain environmental conditions as to simulate
growth under specific culture media. For these reasons, the vast majority of methodolo-
gies used to analyze GEMs fall under the umbrella term of constraint-based analysis. In
fact, the reconstruction and in silico analysis of GEMs are often collectively referred to

16

2.2 Genome-scale metabolic models

as constraint-based metabolic modeling. An overview of constraint-based modeling ap-
proaches is shown in Figure 2.6. In applying these methods, researchers have drawn new
insight into cellular metabolism. We outline a few examples of constraint-based metabolic
modeling applications before continuing on to describe the GEM reconstruction process.

Combining topological analysis and FBA, Almaas et al. [69] found that a small subset
of key biochemical reactions dictates the metabolic changes undergone by E. coli under
different media conditions. Also working on E. coli, Yim et al. [70] engineered a mutant
strain capable of producing the commodity polymer 1,4-butanediol using a genome-scale
metabolic reconstruction. By reconstructing human hepatocyte metabolism and overlay-
ing the subsequent GEM with transcriptomic data, Mardinoglu et al. [71] proposed new
diagnosis techniques for non-alcoholic fatty liver diseases and predicted patients of said
diseases to suffer from serine deficiency. Zelezniak et al. [72] performed a large-scale sur-
vey of bacterial metabolic reconstructions whose results suggested that interacting groups
of bacterial cooperators persist in different conditions due to metabolic interdependencies.
As is evident from the preceding examples, GEMs have proven viable computational tools
for biological research.

2.2.2 Reconstruction process of genome-scale metabolic models

The reconstruction described here compromises four stages: drafting, refinement, conver-
sion to computable format, and validation. Figure 2.7 presents an overview of the process
and illustrates the iterative nature of the reconstruction procedure. GEMs may be refined
several times before they are deemed adequate in quality. First, metabolic reactions are
inferred from an organism-specific genome annotation. Second, the reactions are man-
ually curated, and aspects of the model especially important to its predictive power are
heavily scrutinized. Of paramount importance to the model’s predictive capabilities is the
biomass reaction: an artificial reaction consuming the nutrients required for cell growth.
Its importance stems from its intimate link to the widely used FBA method, which we
describe later in 2.3.1. Third, the model is converted into a standardized computational
format. Fourth, the model is evaluated and verified. Upon inconsistencies and shortcom-
ings, the process loops back to the refinement stage. As GEMs are formed in a bottom-up
fashion and rely extensively on large-scale databases, they are themselves repositories of
biochemical, genetic, and metabolic knowledge.

Draft reconstruction

Initially, a genome annotation of the target organism is retrieved. Metabolic genes are
identified in the annotation along with their gene products—commonly specified by en-
zyme commission (EC) numbers—and associated biochemical reactions. It is not expected
that the initial draft reconstruction will be exhaustive nor free of errors; manual curation of
the draft is necessary to ensure a high-quality GEM. The draft reconstruction is a collec-
tion of candidate metabolic genes and their associated biochemical reactions, or in other
words, a collection of metabolic GPR associations. The collection is corrected, pruned,
and expanded upon during the reconstruction refinement stage.

17

Chapter 2. Background and Theory

Figure 2.6: An overview of constraint-based analysis methods of GEMs. Again, we see the matrix
representation of a metabolic network reconstruction in the center of the figure. Be aware that these
methods are not necessarily mutually exclusive and are more interrelated than what this figure might
suggest. As is shown, constraint-based analysis methods exist that are developed for the sole purpose
of refining the GEMs themselves. Figure reprinted from Lewis et al. [73].

Reconstruction refinement

Refinement is by far the most comprehensive stage of the reconstruction process. The
metabolic functions of annotated genes are verified—using either online databases or
literature—and assigned confidence scores. Reactions related to metabolic functions that
contain generic terms are removed. Organism-specific data are verified whenever possible,
which is especially important for enzymes that catalyze multiple substrates, bind different
cofactors, or catalyze disparate biochemical reactions.

The reactions of the reconstruction are probed for mass and charge balance. As metab-
olite charges are often pH-dependent—a fact at times ignored in biochemical databases—
they may differ from the biochemical environment assumed by the modeler. This often
necessitates the use of software to predict pKa values via the chemical groups of metabo-
lite species. Unbalanced reactions may lead to energetically costless formation of protons

18

2.2 Genome-scale metabolic models

Figure 2.7: An overview of the reconstruction process of GEMs. The steps, corresponding to the
numbered blocks in the figure, are described further in Section 2.2.2. Figure reprinted from Thiele
& Palsson [27].

and ATP which may significantly affect model predictions.
The reaction directionality is also determined using biochemical data, which is unfor-

tunately often lacking. Determining directionality is often done using estimations based
on standard Gibbs free energy, heuristic rules based on network topology, and biochemical
literature. It is often so that reactions to which no directionality can be determined are as-
sumed reversible. Unfortunately, models with too many reversible reactions often include
so-called futile cycles that may underestimate the cost of maintaining proton gradients
across compartments.

Other genetic and biochemical data are included in the model, such as metabolite lo-
calization, metabolite/reaction identifiers, and GPR associations. All of these inclusions
can be automated but are usually manually curated as well in order to ensure high-quality
models. The GPR associations are particularly important to the model’s predictive power,
as they are the pith of computational gene-knockout simulations.

Missing metabolic functions are also filled in the refinement stage. This is referred to
as gap-filling and entails identifying reactions that are missing from knowledge bases but
which must be included to ensure model quality. These gap-fillings must be accompanied
by biological reasoning, as some missing metabolic functions are indeed missing in the

19

Chapter 2. Background and Theory

real-world biochemical network. Done correctly, gap-filling may provide hypotheses for
the existence of metabolic pathways in the target organism.

It is also in the refinement process that artificial reactions, also dubbed pseudoreac-
tions, are created. The biomass reaction is an important pseudoreaction that consumes
known biomass constituents and produces an artificial metabolite, or pseudometabolite,
symbolizing the log phase growth rate. The stoichiometric coefficients of the biomass
pseudoreaction are experimentally determined fractions of the overall biomass and must
be drawn from experiments investigating biomass under log phase. These fractions are
collectively referred to as the biomass composition and compromise the major biomolec-
ular families—protein, carbohydrates, lipids, DNA, and RNA—as well as other soluble
species such as polyamines, vitamins, cofactors, and ions. For biomass composition coef-
ficients that are difficult to determine, there exist estimation methods using genomic data.
For many reconstructions, the unavailability of experimentally determined biomass com-
positions necessitates the use of compositions from phylogenetically similar organisms.
Lipids, and in particular phospholipids, exist in many different chemically similar forms
and experimental methods may not be able to fully map the contribution of each different
chemical species to the average composition of fatty acid chains and head groups. Hence,
GEMs typically only use averages over lipid chains and head groups. The simplified lipid
composition leads to faulty predictions but has been ameliorated by the introduction of
pseudoreactions belonging to a formalism known as SLIMEr [74]. It is has been acknowl-
edged that the accuracy of the biomass composition is a major limiting factor in building
successful GEMs, as reaction flux predictions and growth-limiting nutrient identification
are highly sensitive to changes in the biomass pseudoreaction [75].

Two important additional pseudoreactions are the growth/nongrowth associated ATP
maintenance (GAM/NGAM) reactions. As the names suggest, these reactions simulate the
ATP cost of growth—such as the synthesis of proteins, DNA, and RNA—and nongrowth
processes—such as the maintenance of turgor pressure. These pseudoreactions are usually
inferred from chemostat experiments under oxygen- and glucose-rich conditions or are
in other cases inferred by parameter-fitting procedures. As GAM/NGAM stoichiometric
coefficients are inferred experimentally, they are, strictly speaking, only viable estimations
for the given media condition.

Extensions to the canonical GEM format has introduced many new flavors of pseu-
doreactions and pseudometabolites. One example is the GECKO formalism [38], which
imposes mass constraints on total enzyme mass using enzyme kinetic data. Extensions
such as GECKO and others like it will be described later in Section 2.4.2. Although our
discussion will then focus on the mathematical representation of metabolic models, it is
worthwhile to contemplate that we will in a sense return to the process of reconstruction
refinement.

Conversion to a mathematical model via the stoichiometric matrix

This step is highly automated and centers around instantiating the stoichiometric matrix.
In this matrix, the rows and columns coincide with the model’s metabolites and reac-
tions respectively. Each element in the matrix specifies the stoichiometric coefficient of
a metabolite in a given biochemical reaction. Negative elements correspond to reactant
substrates whereas positive elements correspond to reactant products. We will discuss the

20

2.2 Genome-scale metabolic models

stoichiometric matrix in greater detail in Sections 2.3.1 and 2.4.2.
We will speak of the computational and mathematical GEM formats fleetingly but

will refer to the computational format when focusing on GEMs in their entirety and not
only their corresponding stoichiometric matrices. The computational format of the GEM
typically includes reaction directionality, GPR relations, reaction identifiers, metabolite
identifiers, gene identifiers, relations between reactions and cell compartments, and other
data in addition to the stoichiometric matrix. All this information is conveniently stored
in the systems biology markup language (SBML), which is an open XML-based format
designed to represent biochemical networks [76]. The reconstruction may either be stored
directly in SBML format or may be temporarily stored in other formats, such as Excel, be-
fore being converted into SBML. Designed to be a computational format standard, SBML
is aimed at easing cooperative sharing, evaluation, and development of GEMs. Several
software suites exist for common programming languages that facilitate the conversion
from SBML format to language-specific data objects. Examples of such software suites
are the COBRA [77] (available for MATLAB and Python) and RAVEN [78] (available for
MATLAB) toolboxes. These software suites aim to ease further reconstruction refinement
and offer multi-purpose platforms for in silico analyses.

Model evaluation and validation

During this step, various methods are used to probe the comprehensiveness and predictive
power of the GEM. The types of assessments done will depend on the intended use of the
model, though some are more common than others.

To probe the comprehensiveness of the model, so-called dead-end metabolites are
identified. These metabolites have either no influx or efflux and are thus problematic when
simulating nonchanging conditions. Related to dead-end metabolites are blocked reac-
tions. These are reactions that cannot support flux given nonchanging metabolite concen-
trations. Both blocked reactions and dead-end metabolites are indicators that gap-filling is
necessary to improve model validity.

The quality of the biomass reaction is of utmost importance in model validation. In
order to affirm the quality of the biomass reaction, the GEM must be capable of produc-
ing each single biomass precursor for conditions in which the species is known to grow.
The GEM should also be tested for total biomass production in conditions for which it is
known to not grow. For some organisms it may even be known what nutrient is limiting
under different media conditions. For such organisms, we may test if the model itself is
limiting on that particular nutrient. During this step, growth-related parameters may be
fitted according to experimental data.

Simulatory approaches to GEMs may provide opportunities to test if the model recap-
tures phenotypes properties known in the organism. Inclusion of novel biochemical data
may be necessary to do so successfully as will be exemplified later in Section 2.4.2.

Other tests and quality-reassurance methods exist that may together provide the incen-
tive to reiterate back to the refinement stage of the reconstruction process. If on the other
hand, the assessments of the GEM are congruent to experimental data and are deemed
sufficiently comprehensive, the reconstruction is considered finished. Many metabolic
reconstructions are updated regularly and made available in online depositories such as
BiGG [79] and GitHub repositories.

21

Chapter 2. Background and Theory

2.3 Constraint-based analysis of metabolic models
In this section, we will describe the most common method for constraint-based analysis
of metabolic models: FBA [30]. We will also describe a generalization of FBA, called
RAMP [45], that serves to handle the uncertainty inherent to modeling parameters found
in metabolic reconstructions. As we will see, the deceptively simple FBA formulation
gives rise to a variety of applications in both bioengineering and medicine but is built on
dubious assumptions that are resolved by the RAMP formalism.

2.3.1 Flux balance analysis
In FBA, a biochemical network reconstruction is used in the formulation of an optimization
problem aimed at modeling cellular metabolism. FBA is a versatile and powerful frame-
work for modeling metabolism having proved viable in a diverse range of research fields,
including cell biology [42, 66, 69, 72], bioengineering [31, 32, 70], and medicine [33, 34,
71]. We will now motivate the FBA formulation and then state its complete formulation
as an LP.

Consider an organism whose metabolism is described by m metabolites and r bio-
chemical reactions. Any biochemical reaction, with index j, of the r reactions may be
described by the chemical equation

a1,j [x1] + a2,j [x2] + . . . am,j [xm]
kj
+−−⇀↽−−

kj
−

b1,j [x1] + b2,j [x2] + . . . bm,j [xm],

where [xi] represents the concentration of metabolite i, with kj+ and kj− denoting the re-
action rate constants in forward and reverse direction respectively. If a reaction is irre-
versible, we simply set either rate to zero. Accordingly, if a metabolite is absent in the
reaction we set both both coefficients ai,j and bi,j to zero. Let us denote the reaction rate
from left to right as vj+ and the reaction rate from right to left as vj−. The sum of these
reaction rates, v, is referred to as the flux through reaction j. It is thus clear that the rate of
change in concentration of metabolite i is

d[xi]

dt
=

r∑
j=1

(bi,j − ai,j)(vj+ − v
j
−)

=

r∑
j=1

(bi,j − ai,j)vj

= STi v,

where Si, v ∈ Rr with Si being the vector of the stoichiometric coefficients of metabo-
lite i. We may use the stoichiometric coefficient vectors, Si, as rows in the matrix S.
This matrix is called the stoichiometric matrix and is precisely the stoichiometric matrix
constructed from genome-scale metabolic models (see section 2.2.2).

The basic principles of FBA are the following. First, assume that the rate of change
in concentration of all metabolites is zero. This is called the steady state (SS) assumption

22

2.3 Constraint-based analysis of metabolic models

and is described by the matrix-vector product Sv = 0, where we note that the right-hand
side denotes the zero vector and not the zero scalar. Second, fluxes are constrained as to
confer to reaction directionality and environmental conditions. Reaction directionalities
are extracted from the GEM, and fluxes transporting extracellular metabolites into the cell
should be constrained as to simulate a given environment. For example, if the modeler
wishes to simulate an oxygen-rich culture growing on glucose-rich media, all transport
fluxes except for the oxygen and glucose transport should be constrained to zero. Ad-
ditionally, the limiting nutrient factor transport influx, in this example the glucose influx,
should be constrained by an experimentally determined upper value. If not constrained, the
cell would simply consume the limiting nutrient at a rate higher than what is biologically
possible and hence confer to faulty modeling predictions. Third, we use the preceding
constraints—flux bounds and SS assumption—to formulate an optimization problem in
which the objective is set for maximized biomass production (see section 2.2.2).

The resulting optimization problem is in LP form and is readily solved by commercial
solvers such as the very time-effective simplex method (see section 2.1.1). The rudimen-
tary concept of FBA is thus to extrapolate the stoichiometric matrix from a metabolic
reconstruction, set transport flux bounds, assume SS, and optimize biomass production.
The idea being that the organism in question has itself, through evolution, employed a set
of fluxes that optimize growth and should thus coincide with the solution(s) to the FBA
optimization problem. Hence, the biomass objective function is only tenable to simula-
tions of organisms in stable environments to which they are fully optimized for growth.
Such situations are typically restricted to experimentally controlled monocultures during
exponential growth phase.

The FBA paradigm employing biomass production as optimization objective has been
experimentally proven to be conceptually justifiable [80, 81] and has served as the back-
bone in an abundant number of research endeavors in computational biology [31–34, 66,
69–72] including a multitude of elaborations on the canonical FBA framework [35, 38, 39,
41, 45, 67, 68, 74]. FBA has also been included as a submodule in larger models aiming
to concurrently describe multiple aspects of cellular biology [42, 43]. For an overview of
the procedure of an FBA simulation see Figure 2.8. We will now proceed to formulate the
FBA problem as an optimization program.

The linear program constituting the FBA framework is formulated as

max
v

cT v (2.8a)

s.t. Sv = 0, (2.8b)
L ≤ v ≤ U. (2.8c)

where r andm denote number of reactions and metabolites respectively, c ∈ Rr, L,U, v ∈
Rr, are in units of mmol gDWh-1—that is, millimol per gram dry weight per hour—and
S ∈ Rm×r is the stoichiometric matrix. The objective vector c specifies the flux(es) be-
ing optimized. Typically, the objective vector has only zero-entries except at the entry
corresponding to the biomass reaction, which contains the value one, resulting in an opti-
mization program maximizing the rate of biomass production. The first constraint (2.8b)
disallows changes in concentration of all metabolites and imposes SS. The second con-
straint (2.8c)—for which the inequality sign is meant to be interpreted entry-wise—simply

23

Chapter 2. Background and Theory

asserts upper and lower bounds on the reaction fluxes so that reaction must adhere to their
directionality. In certain cases the upper and lower bounds represent experimentally de-
termined bounds on nutrient uptake rates and cost-associated pseudoreactions such as the
GAM/NGAM reactions.

Figure 2.8: An overview of an FBA simulation. By assuming SS and imposing upper and lower
bounds on fluxes, we define the solution space. The upper and lower bounds may be used to define
the directionality of reactions as well as defining the nutrient environment. Finally, we identify the
optimal reaction flux vector, which is more often than not optimized for biomass production. Figure
reprinted from Orth et al. [30].

2.3.2 Robust analysis of metabolic pathways
In RAMP, we abandon the LP and arrive at a model of cellular metabolism formulated
in SOCP form. Although RAMP is computationally unstable, it provides a method that
acknowledges the inherent uncertainty of modeling parameters found in GEMs. We will
describe the RAMP formalism per MacGillivray et al. [45]. In light of our discussion on
SOCPs in Section 2.1.1, it is worth mentioning that the following derivation of RAMP
follows the stochastic SOCP interpretation. And although the stochastic interpretation
provides a more viable lens from a biological perspective, it is also meaningful to inter-
pret RAMP nonstochastically; these different interpretations will be discussed briefly after
introducing the RAMP method formulation.

Consider a cell culture for which we define C to be the collection of cells inhabiting
that culture. We assume the cells of the culture to be genetically identical and optimized
to their current environment. Let m ∈ R be the number of metabolites in the cell and
[xci] be the concentration of metabolite i in cell c. Hence, the collection of d[xci]/dt is a
random sample of the rate of change of concentration of metabolite i in cell c. Defining
the average rate of change of metabolite i of the cell population as d[xCi]/dt, we have

d[xCi]

dt
=

1

|C|
∑
c∈C

d[xci]

dt
.

As bacterial cultures typically contain hundreds of millions of cells, we may consider

24

2.3 Constraint-based analysis of metabolic models

d[xCi]/dt to be approximately normal by the central limit theorem. Now, let us assume the
following probabilistic constraints

P (d[xCi]/dt > Mi) ≤ ε and P (d[xCi]/dt < −Mi) ≤ ε,

where Mi, ε ∈ R. These constraints combined assert that P (−Mi ≤ d[xCi]/dt ≤ Mi) ≥
1 − 2ε, or in other words, that the average rate of concentration of metabolite i is—to
an arbitrary probability determined by ε—set within the bounds of the absolute value of
parameter Mi. Let µi and σi be the mean and standard deviation of d[xCi]/dt. Since
d[xCi]/dt is normal we have that (d[xCi]/dt − µi)/σi is a standard normal variable. We
may then rewrite the above stochastic constraints as

Mi − µi
σi

≥ δ1−ε and
−Mi − µi

σi
≤ δε, (2.9)

in which δε and δ1−ε are the ε and 1 − ε standard percentiles respectively. Using the fact
that δε = −δ1−ε, we may rearrange the preceding inequalities as

σi ≤ min

{
Mi − µi
δ1−ε

,
Mi + µi
δ1−ε

}
. (2.10)

We would like to exploit this inequality in constructing the second-order cone constraints,
but to do this we will have to find an expression for µi. Consider the stoichiometric matrix
of cell c ∈ C to consist of rows Sci ∈ Rr—where r is the number of reactions—in which
the coefficients are defined, in general, to be random variables. Coefficients to which we
attribute no uncertainty would be modeled as random variables with a single outcome. We
consider the flux vector v ∈ Rr to be common among the inhabitants of the culture C.
From this, we have the following expression

µi = E

(
d[xCi]

dt

)
= E

(
1

|C|
d[xci]

dt

)
= E

(∑
c∈C S

c
i

|C|
v

)
= E (Siv)

= E (Si) v

where Si is the (random) matrix row consisting of the average stoichiometric coefficients
in a sample of the cells in culture C. We think it is worth reminding the reader that there has
been no made no assumptions to the precise value of µi besides the inequalities (2.9). To
continue our development of RAMP, we will have to discuss the probability distribution of
d[xCi]/dt. As MacGillivray et al. [45] assume a general discrete distribution for d[xCi]/dt,
we will follow in this vein for now and will later introduce a simple uniform continuous
distribution in Chapter 4. In the development described above, the stochasticity pertains
to the stoichiometric coefficients and not the flux vector. Hence, a discrete distribution

25

Chapter 2. Background and Theory

of d[xCi]/dt implies there to be a finite number of outcomes q—or so-called scenarios—
for Si. Each of these scenarios corresponds to a nonrandom row which we name Sik for
k ∈ {1 . . . q}. Each scenario has a probability of occurrence pik for k ∈ {1 . . . q} which
we collect in the vector pi ∈ Rq . Finally, we let Pi ∈ Rq×q be the diagonal matrix
composed from pi, and let Ŝi ∈ Rk×r be the matrix in which row k corresponds to Sik.
Then

µi = E (Si) v = pTi Ŝiv.

and

σ2
i = Var(Siv)

=

q∑
k=1

pik(Sikv − E(Sikv))2

= (Ŝiv)T (I − epTi)TPi(I − epTi)Ŝiv,

where e is a vector of ones. By defining Ri = δ1−ε
√
Pi(I − epTi)Ŝi we simplify the

preceding expression to

σi =
||Riv||
δ1−ε

,

that combined with (2.10) gives us

||Riv|| −Mi ≤ pTi Ŝiv ≤Mi − ||Riv||,

which is itself a combination of two second-order cone constraints.
We are now ready to formulate the RAMP optimization program. Defining c, L, U as

in section 2.3.1, the RAMP method is described by

max cT v (2.11a)

s.t. ||Riv|| ≤ pTi Ŝiv +Mi, i ∈ {1, . . . ,m} (2.11b)

||Riv|| ≤ −pTi Ŝiv +Mi, i ∈ {1, . . . ,m} (2.11c)
L ≤ v ≤ U. (2.11d)

It is worth mentioning that uncertainty in upper and lower bounds on fluxes could be
modeled by treating the stoichiometric coefficients relating to that flux as random.

Rewriting the second-order cone constraints of RAMP (2.11) might present the solu-
tion space in more intuitive light. Using the fact that ||Riv|| = max{uTRiv : ||u|| ≤ 1}
we may rewrite constraint (2.11b) as

−pTi Ŝi + ||Riv|| ≤Mi ⇔ max{−pTi Ŝi + uTRiv : ||u|| ≤ 1} ≤Mi

⇔ Siv ≤Mi, ∀Si ∈ {−pTi Ŝi + uTRi : ||u|| ≤ 1},

and similarly for constraint (2.11c), we have

pTi Ŝi + ||Riv|| ≤Mi ⇔ Siv ≤Mi, ∀Si ∈ {pTi Ŝi + uTRi : ||u|| ≤ 1}.

26

2.3 Constraint-based analysis of metabolic models

We see that the solution of the RAMP problem consists of fluxes that satisfy a relaxed SS
assumption for a set of coefficients which are defined by the discrete distribution of the
rows of the stoichiometric matrix. Given our development of the model based off stochas-
tic considerations, it is reasonable to interpret the solution space as the space of fluxes
almost satisfying the SS assumption given uncertainty in the stoichiometric coefficients.
But this is not the only appropriate interpretation, as strictly speaking, the solution space
requires the fluxes to satisfy a set of constraints found in the (higher-dimensional) prox-
imity of the average constraint pTi Ŝi. This could just as easily be interpreted as an infinite
set of qualitatively similar rows being added to the stoichiometric matrix. An illustrative
example of the difference between an FBA SS constraint and the corresponding relaxed
SS constraint is shown in Figure 2.9.

Figure 2.9: Comparison of an FBA SS constraint (bold, dashed line) and its corresponding RAMP
constraints (light, dashed lines). The gray area enclosed by the light, dashed lines corresponds to the
subspace satisfying the RAMP constraint, whereas the bold, dashed line corresponds to the subspace
solving the FBA constraint. Figure reprinted from MacGillivray et al. [45].

When comparing the predictive power of RAMP and FBA with an E. coli reconstruc-
tion, MacGillivray et al. [45] found that RAMP’s solution space inhabits fluxes closer to
experimental flux data than is possible with FBA. The result holds for different conditions
as is shown in Figure 2.10. In addition, RAMP was shown to have similar predictive power
to that of FBA in the identification of essential genes [45]. Moreover, RAMP possesses
key mathematical properties not found in FBA, which we will now go on to discuss.

We briefly state three theorems on RAMP, without proof, as presented by MacGillivray
et al. [45]. The first theorem—stated below—affirms that the RAMP problem is contin-
uous in its probabilistic parameters. More precisely, it shows that for any feasible flux
there will, under sufficiently small changes in its parameters, exist an arbitrarily close
flux that is feasible in a slightly perturbed RAMP program. This is in stark contrast to
the FBA method, as small changes in the stoichiometric coefficients may lead to abruptly
dissimilar solution spaces. An example of such instability in FBA constraints is given
by MacGillivray et al. [45].

27

Chapter 2. Background and Theory

Theorem 1. For a collection of probability vectors pi and scenario matrices Ŝi and for
the lower and upper bounds U and L, let F({(pi, Ŝi) : i = 1, 2, . . . ,m}.L, U) be the
nonempty set of feasible fluxes satisfying the constraints of the RAMP model defined by
equation set (2.11). Assuming that each pi +4pi is a probability vector, we then have for
each

v ∈ F({(pi, Ŝi) : i = 1, 2, . . . ,m}.L, U)

that there is a λ ≥ 0 such that

min
v′
||v − v′|| ≤ λΓ

where

Γ = max
i
{||4pi + ||4Ŝi||+ ||4pi||||4Ŝi||},

v′ ∈ F({(pi +4pi, Ŝi +4Ŝi) : i = 1, 2, . . . ,m}.L− λΓe, U + λΓe),

and λ is independent of all ||4Ŝi||.

The second theorem describes an intimate connection between the RAMP and FBA
methods, stating that RAMP problems converge to FBA problems as stochasticity in mod-
eling parameters diminishes. It effectively shows that RAMP encapsulates FBA, and that
we may rightfully interpret RAMP as a generalization of FBA.

Theorem 2. Let pti, Ŝi
t
, M t

i , be sequences such that for each t the corresponding RAMP
model satisfies Slater’s interiority condition. Let vt be an optimal solution of the RAMP
model corresponding to pti, Ŝi

t
, and M t

i , and assume vt → v as t→∞. Assume likewise
that a corresponding dual sequence of optimal solutions converges. Further assume that
as t→∞ we have (pti)

T Ŝi
t
→ S̄i, Rti → 0 and M t

i → 0. Then v is a solution to the FBA
model

max
v

cT v

s.t. S̄v = 0,

L ≤ v ≤M,

where S̄ is the matrix whose i-th row is S̄i.

The proof of Theorem 2 (not shown) also implies that not all stochastic parameters
need to vanish in order to arrive at an FBA problem. This implication is explored further
in the third theorem. But first, we define a scenario, Ŝi, as biologically possible for a
solution, v̂, of an FBA problem described by stoichiometric matrix of rows pTi Ŝi if there
exists (positive) probability vector pi such that v̂ is still an FBA solution while satisfying
L ≤ v̂ ≤ U and

lim
Mi→0

P (−Mi ≤ pTi Ŝiv̂ ≤Mi) ≤ 1− 2ε, ∀i.

We also partition v̂ into (v̂′, v̂′′) corresponding to the nonzero and zero entries respec-
tively and define S′ to be the submatrix of S whose columns correspond with v̂′. The-

28

2.3 Constraint-based analysis of metabolic models

orem 3—presented below—provides a description of the allowed range of stochasticity
RAMP problems may inhabit whilst converging to the same FBA problem under dimin-
ishing flexibility in the relaxed SS assumption.

Theorem 3. Let v̂ = (v̂′, 0), with v̂′j for all j, be a solution to the FBA problem

max
v

cT v

s.t. pTi Ŝiv = 0, ∀i,
L ≤ v ≤ U.

Then the scenarios of Ŝi are biologically possible for v̂ if and only if for all i we have
Ŝi
′

= αie for some scalar αi 6= 0.

To summarize, the RAMP method generalizes the FBA method by introducing stochas-
ticity in modeling parameters and relaxing the FBA modeling assumptions. RAMP prob-
lems are continuous with regards to their probabilistic modeling parameters and converge
to FBA problems as these probabilistic parameters disappear. Not all probabilistic param-
eters have to disappear to ensure convergence, and Theorem 3 provides a classification of
these parameters. While the predictive power of RAMP is similar to that of FBA, RAMP
is not as computationally stable as FBA and is mathematically more complicated. In the
next section, we will see how the mathematically simpler FBA formulation lends itself to
the integration of enzyme kinetic data.

Figure 2.10: Comparison of flux vectors closest in distance to experimental flux data in RAMP
and FBA solution spaces for the E. coli GEM iJO1366. The different subfigures correspond to
different environmental conditions. Upper left: Aerobic batch growth. Upper right: Anaerobic
batch growth. Lower left: Carbon-limited chemostat with dilution rate 0.1/h. Lower right: Carbon-
limited chemostat with dilution rate 0.4/h. Figure reprinted from MacGillivray et al. [45].

29

Chapter 2. Background and Theory

2.4 Extending beyond canonical flux balance analysis
Numerous extensions to the FBA formulation have been published allowing for additional
analytic features as well as higher accuracy in flux and growth rate prediction. Such exten-
sions include dynamic FBA [35] and LK-DFBA [82], which introduce differential equa-
tions and hence time evolution to the FBA formalism, gx-FBA [68], which employs tran-
scription data to prune the solution space, cFBA [36], which expand the FBA formalism to
microbial communities, SLIMEr [74], which increases the granularity of lipid metabolism
in the biomass pseudoreaction, ccFBA [37], which prunes the solution space using mass
considerations of carbon uptake, and many more [38–41, 83–85]. In this section, we
will only discuss FBA extensions employing enzyme kinetic data and total enzyme mass
constraints. Recent extensions in this direction include GECKO [38], MOMENT [39],
sMOMENT [40], FBAwMC [41], and the AutoPACMEN software toolbox [40]. One of
the key achievements of these extensions is their ability to model overflow metabolism as
protein reallocation strategies [38, 40]. But before we move on to describe the introduc-
tion of enzyme kinetics into the FBA formalism, we will have to introduce the notion of
enzyme turnover numbers (TNs).

2.4.1 Michaelis-Menten kinetics
Enzymes are biological catalysts that lower the activation energy necessary for biochemi-
cal reactions to occur. Catalysts themselves do not affect the reaction equilibrium, which
dictates the reaction direction, but they do affect the reaction rate—that is, the rate of sub-
strate conversion—often referred to as the reaction flux in biochemical settings. Enzymes
may exhibit extraordinary catalytic capabilities. An example being carbonic anhydrase
which increases reaction rates by a factor of 107. Enzymes may furthermore exhibit re-
markable specificity towards the reactions they catalyze. The effect of enzymes on the
reaction rate under different conditions is studied in the field of enzyme kinetics [86, Chap-
ter 6].

In general, the reaction rate, v, of a chemical reaction,

a1 [S1] + a2 [S2] + . . . as [Ss]
k−−→ b1 [P1] + b2 [P2] + . . . bm [Pp],

is given by the rate equation, v = k[S1]n1 [S2]n2 . . . [Ss]
ns , where k is the rate constant

and ni is the partial order of reactant [Si]. As usual, the brackets denote the molar concen-
tration of the reaction species. In simple cases, such as a single-step reaction, the partial
orders equal the stoichiometric coefficients. However, this is not true in general, leaving
the partial orders to be most reliably determined experimentally. The rate constant is a
function of temperature and depends on the reaction’s activation energy. Its units depend
on the rate equation and are defined in each case such that the flux, v, is given in molar
per second [87, Chapter 14]. As enzymes lower the activation energy, they increase the
rate constant. Probing the change imposed on the rate constant using the rate equation
proves exceedingly difficult, as the substrates—the reactants involved in an enzymatically
catalyzed biochemical reaction—change over time. In order to describe the magnitude
of which enzymes change the rate constant, we will have to constrain ourselves to the
description of the initial reaction rate and make several assumptions.

30

2.4 Extending beyond canonical flux balance analysis

The following discussion will borrow heavily from Nelson [86, Chapter 6]. Consider
the biochemical reaction

E + S
k1−−⇀↽−−−
k−1

ES
k2−−⇀↽−−−
k−2

E + P,

where E is the enzyme catalyzing the reaction with substrate S and product P , and ES
denotes the transient enzyme-substrate complex. We imagine that we model an early part
of the reaction in which we have an excess of substrate compared to enzyme. We assume
that the rate of formation and breakdown of the enzyme-substrate complex is in equi-
librium. This is argued by the fact that substrate excess will force the enzyme-substrate
reaction to equilibrium quickly. We also assume that the change in substrate concentra-
tion is negligible due to its surplus. We also assume k−2 to be negligible due to the small
amount of product present. Finally, we assume that the final step in the reaction is rate-
limiting and that determining the rate of product formation—essentially the total flux of
the reaction—is reduced to finding V0 = k2[ES], where we add a subscript of zero to
remind us we are dealing with the initial reaction rate. We should also stress the fact that
we have assumed the partial orders of the reaction equal to their respective stoichiometric
coefficients. In other words, we have assumed the kinetics of the reaction to be that of a
single-step reaction.

The equilibrium assumption for the enzyme-substrate complex results in the following
equation

k1([Et]− [ES])[S] = k−1[ES] + k2[ES],

where Et denotes the total concentration of enzyme. Solving the equation for [ES] and
defining Km = (k−1 + k2)/k1 gives

[ES] =
[Et][S]

Km + [S]
.

Substituting [ES] in the rate equation for product formation gives us

V0 =
k2[Et][S]

Km + [S]
.

Finally, we note that the maximum initial rate is obtained at [ES] = [Et]. Defining
Vmax = k2[Et] per the rate equation of product formation. we arrive at the Michaelis-
Menten (MM) equation,

V0 =
Vmax[S]

Km + [S]
. (2.14)

The constant Km is known as the Michaelis constant, and enzymes adhering to the MM
equation (2.14) are said to follow MM kinetics. Figure 2.11 depicts the initial rate as a
function of substrate concentration. In unchanging conditions, an enzyme-catalyzed re-
action slows down as substrate is consumed. Hence, the MM equation provides a max-
imal reaction rate given an initial substrate concentration under conditions in which the
MM assumptions are warranted. Although we have based our discussion on simple
enzyme-catalyzed two-step reactions with single substrates, many multi-steps reactions
with several substrates still follow MM kinetics. For multi-stepped reactions with single

31

Chapter 2. Background and Theory

Figure 2.11: The initial reaction rate as a function of substrate concentration given by the MM
equation (2.14). Note how the initial rate grows slower as the substrate concentration increases, an
effect explained by the gradual saturation of the enzyme population. The value [S] = Km is shown
on the horizontal axis, as it—in general—corresponds to V0 = Vmax/2 and is as such often exploited
when determining Km and Vmax experimentally. Figure reprinted from Motulsky [88].

rate-limiting constants and multiple substrates, the derivation of the MM equation is anal-
ogous to ours above. But even under instances of reactions for which the MM conditions
are problematic to justify, the enzyme-catalyzed reaction may follow a hyperbolic depen-
dency like that depicted in Figure 2.11. We may thus consider these enzymes to follow
MM kinetics as well. And although regulated enzymes do not adhere to MM kinetics in
general, they still approach a maximum initial rate upon enzyme saturation. This observa-
tion leads to the introduction of the TN denoted by kcat, which describes the limiting-rate
of a reaction at saturation per enzyme concentration. The TN is also at times defined as
the limiting-rate per enzyme concentration per active site. Enzymes possess a vast range
in magnitude of TNs, as illustrated by Table 2.1. We must be careful to stress that TNs are
not related to enzymes per se but rather to substrate-enzyme pairs.

In practice, the determination of TNs for any enzyme, regardless of its kinetics, will
employ the MM equation under in vitro environmental conditions. Several methods for
TN determination exist with varying degrees of accuracy. For example, Uludag-Demirer
et al. [89] compared two methods for determining TNs and showed disparate errors in
TN calculation with 35% and 5% errors respectively. Additionally, as is well-established
in enzymology, enzyme efficiency is highly condition-dependent. Allosteric regulators,
covalent modifications, pH, and temperature are examples of factors that affect enzyme
catalytic efficacy. It is therefore important that TNs are determined in conditions that ac-
curately recapture in vivo environments should they be used to infer meaningful biological
knowledge. Despite the apparent obstacles, Davidi et al. [90] showed, using FBA-reliant
computational analysis, that TNs determined in vitro are reasonable, though far from per-
fect, representations of in vivo TNs.

32

2.4 Extending beyond canonical flux balance analysis

Table 2.1: Examples of TN values for various enzyme-substrate pairs. Table reprinted from Nelson
[86, Chapter 6].

2.4.2 Enzymatically constrained FBA

Several extensions to FBA has been developed aiming to prune the solution space of bio-
logically improbable fluxes using enzyme-related data [38–41]. These extensions typically
introduce constraints to the FBA formulation (2.8) using individual enzyme turnover rates
and total enzyme mass restrictions. We will now describe, in general, an enzymatically
constrained FBA (ecFBA) formulation drawing primarily from the formulation presented
by Sánchez et al. [38].

In order to accommodate enzyme kinetics into the FBA formulation, we will first de-
fine the turnover matrix, T , which is designed to specify the relational and quantitative
dependencies between reaction fluxes and enzyme concentration. We describe three rela-
tional reaction-enzyme dependencies. Each row of T corresponds to an enzyme and each
column to a reaction, hence the enzyme-reaction relationships will determine the inequal-
ities that the rows of the turnover matrix represent.

First, we consider a simple one-to-one relationship between reaction and enzyme.
Such a relationship is modeled as

1

ki,jcat
vj ≤ ei (2.15)

where ki,jcat is the TN of enzyme i in reaction j, and ei is the concentration of enzyme
i. The inequality (2.15) states that the reaction flux vj cannot surpass the limit imposed
by the enzyme concentration available to catalysis. The (i, j)th-entry of T is then 1/ki,jcat,
while the other entries of that row are zeroes. We also note that the time unit of v must
equal the time unit of kcat.

More generally, an enzyme complex—consisting of enzymes i1, i2, . . . , in—may cat-
alyze a single reaction j. In this case, the enzyme flux vj is bounded by the limiting
subunit, which is mathematically equivalent to

vj ≤ min

{
ki

1,j
cat

ρi1,j
ei1 ,

ki
2,j
cat

ρi2,j
ei2 , . . . ,

ki
n,j
cat

ρin,j
ein

}
(2.16)

where ρis,j is the number of subunits of is in one unit of enzyme complex. Note that

33

Chapter 2. Background and Theory

constraint (2.16) encapsulates constraint (2.15) by setting n = 1 and ρi,j = 1. To preserve
the linear nature of the constraints, we state constraint (2.16) as

Tis,jvj ≤ eis ,∀s ∈ {1 . . . n} (2.17)

where we have defined Ti,j := ρi,j/k
i,j
cat to ease notation. Each of these n constraints

correspond to a single row in T , as they represent separate enzymes.
Second, a single enzyme—alone or as part of one or several complexes—may catalyze

several reactions; say enzyme i catalyzes reactions j1, j2, . . . , jn. Let esi be the portion
of enzyme i participating in the catalysis of reaction js such that e1i + · · · + eni = ei.
Simply adding the inequalities arising from these relationships will give us the following
inequality

Ti,j1vj1 + · · ·+Ki,jnvjn ≤ e1i + · · ·+ eni = ei. (2.18)

The preceding inequality will correspond to a single row in T ; the enzyme portion vari-
ables were merely introduced to justify the constraint formulation.

Third, several enzymes—or enzyme complexes even—may independently catalyze a
shared reaction. Such enzymes are often referred to as isozymes. Precaution has to be made
in order to model isozyme relationships that preserve upper and lower reaction flux bounds.
Let reaction j be catalyzed (independently) by enzymes i1, i2, . . . , in. We then introduce
an intermediate pseudometabolite, dubbed x′, as well as n number of pseudoreactions,
named js, each corresponding to an isozyme is. We have illustrated the case of two
isozymes in Figure 2.12. Each pseudoreaction is quantitatively linked to its corresponding
isozyme by one of the inequalities presented above. No link is established between the
original flux j with any enzyme. By not upheaving the lower and upper bound on the
original reaction j, the SS assumption (2.19b) ensures that the sum of the set of fluxes
vj1 , vj2 , . . . , vjn does not exceed the upper bound of the original flux vj . We stress that the
introduction of the T matrix effectively requires the introduction of said pseudometabolites
and pseudoreactions into the S matrix. Additionally, the identification of TNs can be quite
time-expensive and laborious. Consequently, an automated effort has been made to the
construction of GEMs accommodating the ecFBA formalism [40].

Figure 2.12: A modeling schematic for a reaction that can be catalyzed independently by two en-
zymes.

34

2.4 Extending beyond canonical flux balance analysis

The turnover matrix by itself does not impose any restrictions on the flux solution
space. Given available and relevant proteomic data, we may impose upper bounds on
enzyme concentrations. Collecting the enzyme concentrations and their upper bounds in
vectors e and E respectively, we impose the following constraints

Tv ≤ e,
0 ≤ e ≤ E,

setting unknown enzyme bounds to positive infinity. These two constraints will together
constrain the flux solution space. In reality, we may only identify upper bounds on a hand-
ful of enzymes if any; in order to further impose the solution space, we may additionally
limit the total sum of the enzyme mass.

Let w be a vector containing the enzyme weights per concentration. We will refer to
w as the weight vector. Accordingly, we may limit the dot product, wT e, by an upper
bound, W , to impose a maximum weight for the sum of enzyme mass. We will refer to
the constraint

wT e ≤W

as the enzyme pool constraint and the upper bound, W , as the enzyme pool bound. In
contrast, we will refer to constraints defined by the turnover matrix rows as kinetic con-
straints. The turnover matrix, enzyme concentration bounds, and enzyme pool constraint
are the central components of the ecFBA formalism.

Sánchez et al. [38] refer to the vector, e, as the enzyme usage vector. This is due to
the fact that introduced enzyme kinetic constraints are more aptly interpreted when we
consider ei to be the active enzyme concentration. Likewise, the enzyme pool bound, W ,
should then be correspondingly modeled as the maximum mass amount of active enzymes.
Before moving on we would like to stress that the amount of enzyme included need not
be exhaustive for the formalism to be viable. We are now ready to fully state the ecFBA
formulation.

The ecFBA problem—which is indeed an LP—is stated as

max
v

cT v (2.19a)

s.t. Sv = 0, (2.19b)
Tv ≤ e, (2.19c)

wT e ≤W, (2.19d)
L ≤ v ≤ U, (2.19e)
0 ≤ e ≤ E, (2.19f)

where k and r denote the number of enzymes and reactions respectively, T ∈ Rk×r de-
notes the turnover matrix, the enzyme usage and its concentration bounds, e, E ∈ Rk, are
in units mmol gDW-1, the weight vector, w ∈ Rk, is in units g mmol-1, and the enzyme
pool bound, W ∈ R, in units of g gDW-1. The enzyme pool constraint (2.19d) therefore
represents a restriction on the total mass amount of active enzyme in grams per gram dry
weight. The SS constraint (2.19b) and flux bounds (2.19e) are defined as for the FBA
problem.

35

Chapter 2. Background and Theory

Though often requiring extensive manual parameter curation, several studies have
demonstrated the potential of the ecFBA method. Sánchez et al. [38] correctly predicted
the Crabtree effect—an example of overflow metabolism in baker’s yeast not captured by
FBA—and reported significant improvements in growth rate predictions for S. cerevisiae.
In similar fashion, Bekiaris & Klamt [40] were able to simulate overflow metabolism and
improve growth rate predictions in E. coli, while Massaiu et al. [91] found improved flux
and gene-essentiality predictions for Bacillus subtilis. These studies effectively show that
the incorporation of enzyme kinetic data may greatly improve the predictive power of the
FBA formalism.

36

Chapter 3
Material & Methods

In this chapter, we will describe the metabolic reconstruction—as well as the tools and
modules—utilized in our computational efforts. All computational endeavors were writ-
ten in the Python programming language [92] and made extensive use of the Gurobi
solver [51] as well as the Python packages COBRApy [93] and Pyomo [94]. The compu-
tational efforts can be assorted into three main parts. First, we implemented the RAMPER
formalism for general-purpose use. Second, we investigated global TN characteristics
across taxa using a comprehensive enzyme database. Third, we performed sensitivity anal-
ysis of RAMPER’s TN uncertainty modeling parameters using a baker’s yeast metabolic
reconstruction. The scripts and GEM employed in our computational efforts have been
made available at GitHub (https://github.com/tutentaten/RAMPER).

3.1 Genome-scale metabolic models containing enzyme
kinetic data

Due to the computational instability experienced by MacGillivray et al. [45] using E. coli
models with the RAMP method, we chose to focus on S. cerevisiae GEMs [59] for which
there were easily available integrated enzymatic data. Luckily, we experienced these
baker’s yeast models to be more stable than their E. coli counterparts. The enzyme ki-
netic data already integrated into the baker’s yeast reconstruction were extracted from the
enzyme database BRENDA [95]. And as we will make further use of the BRENDA en-
zyme repository, we will describe the database briefly before moving on to the relevant
metabolic reconstruction.

3.1.1 BRENDA
Initiated in 1987, BRENDA is an effort to provide a comprehensive database on func-
tional and molecular knowledge of enzymes [95]. The database contains, as of 2019, a
total of ~4.3 million manually-curated data entries for ~84,000 enzymes collected from

37

https://github.com/tutentaten/RAMPER

Chapter 3. Material & Methods

~140,000 primary literature references with an additional ~1.6 million data entries from
~3.6 million references obtained through text-mining [96]. BRENDA systematizes its
repository based on EC numbers and contains enzyme-specific data on catalyzed reac-
tions, enzyme–ligand interactions, nomenclature, taxonomy, inhibitions, mutants, protein
sequence, protein structure, disease-related data, enzyme kinetic parameters, and much
more [95, 96]. The content of the BRENDA database can be freely downloaded in text
format at https://www.brenda-enzymes.org/download brenda without
registration.php.

3.1.2 The ecYeast8 reconstruction
The Yeast8 is a recently published consensus GEM for S. cerevisiae [59]. It was pub-
lished concurrently with multiple Yeast8-derived model variants in addition to a database
consisting of 3D yeast metabolic protein structures. These derived models include GEMs
tailored for the creation of strain-specific models as well as GEMs accommodated with
enzyme kinetic data. Respective to its predecessor Yeast7, the Yeast8 model has extended
the biomass equation by nine metal ions and eight cofactors, added 37 transport reac-
tions, updated GPR associations, and introduced the SLIMEr formalism [74]. The Yeast8
models showed significant improvement over their predecessors in GEM quality assurance
tests per the MEMOTE software suite [97]. The Yeast8 model and its ecosystem are made
freely available at GitHub (available at https://github.com/SysBioChalmers),
which provides a version control system allowing users to follow and access updates to the
Yeast8 modeling ecosystem. The newest version, Yeast8 v8.3.4, contains 2691 metabo-
lites, 3991 reactions, and 1149 genes.

One of the GEMs equipped with enzyme kinetic data in the Yeast8 ecosystem is de-
signed for ecFBA simulations under oxygen- and glucose-rich batch conditions (available
at https://github.com/SysBioChalmers/ecModels/blob/master/e
cYeastGEM/model/ecYeastGEM batch.xml). It is precisely this reconstruction
we will employ in our computational analyses. In order to ease reference, we will simply
refer to it as the ecYeast8 model. The model contains an enlarged stoichiometric matrix ac-
cording to the GECKO formalism [38]—containing both the stoichiometric and turnover
matrix—and introduces 968 enzymes as well as 521 pseudometabolites to account for
enzyme-reaction relationships. The TNs were automatically curated from BRENDA [95]
and were then fitted to accommodate the experimental growth rate in minimal glucose me-
dia under oxygen-rich batch conditions. The automatic curation picks the highest TN for
each enzyme, whereas the fitting procedure iteratively changes TNs of enzymes found to
heavily affect the predicted growth rate. Finally, the enzyme pool bound is fitted under the
same oxygen- and glucose-rich conditions.

3.2 Computational tools
Extraction of enzymatic data from the BRENDA database [95], implementation of the
RAMPER model, and subsequent computational experiments were all performed using
the Python programming language [92]. Of special importance to these implementations
are the Pyomo [94] and COBRApy [93] packages, where the former is a software suite for

38

https://www.brenda-enzymes.org/download_brenda_without_registration.php
https://www.brenda-enzymes.org/download_brenda_without_registration.php
https://github.com/SysBioChalmers
https://github.com/SysBioChalmers/ecModels/blob/master/ecYeastGEM/model/ecYeastGEM_batch.xml
https://github.com/SysBioChalmers/ecModels/blob/master/ecYeastGEM/model/ecYeastGEM_batch.xml

3.2 Computational tools

constructing and solving optimization problems and the latter is a package for constraint-
based reconstruction and analysis of metabolic reconstructions. As the COBRApy package
is a Python extension of the COBRA toolbox [77] for MATLAB [98], we will briefly
describe the MATLAB toolbox before introducing COBRApy.

3.2.1 Python
Python [92] is a very popular, high-level, multi-paradigm programming language known
for its clear, intuitive syntax. As a general-purpose programming language, Python has
a large set of native data types and classes. Python is a portable programming language
available in Windows (2000 and onwards), Mac, and several Unix variants [99]. It is
open-source and enjoys a large community following. Thus, numerous Python packages
are available and shared readily among its users. Two such packages were used extensively
in the implementation of RAMPER and subsequent computational experiments, namely,
COBRApy and Pyomo.

The COBRA Toolbox and COBRApy

The COBRA Toolbox [77] is a MATLAB software package for the reconstruction and
analysis of GEMs. The Toolbox allows the user to input SBML-formatted models, perform
FBA, gene deletion experiments, network module identification, and much more. The CO-
BRA Toolbox converts the SBML files into MATLAB data types containing the necessary
matrices and vectors needed to define the FBA optimization problem. Additionally, the
user may access GPR associations and metabolite/reaction/gene identifiers as MATLAB
data structures. In general, the COBRA toolbox is a software suite designed for basic
and advanced methods in the quantitative modeling of metabolic networks and is tailored
specifically for GEMs. The COBRA Toolbox is part of the openCOBRA project—which
includes COBRApy—and serves as a repository for genome-scale metabolic modeling
methods.

COBRApy is an object-oriented implementation of the basic COBRA Toolbox utilities
for the Python programming language. The object-oriented implementation was designed
to accommodate the growing incorporation of complex omics data to constraint-based
methodologies. The classes found in COBRApy are Model, Metabolite, Reaction, and
Gene. These classes form a hierarchy and are interconnected by their class methods. CO-
BRApy also reads SBML-formatted GEMs but in a more general-purpose, intuitive-driven
manner per its class hierarchy. COBRApy is part of the openCOBRA project and contains
a module for direct interaction with COBRA Toolbox utilities [93].

Pyomo

Pyomo is an open-source Python package for composing and solving mathematical opti-
mization problems. The key goal of the Pyomo package is to provide a similarly intuitive
tool for writing and solving optimization programs as does algebraic modeling languages,
such as AMPL and GAMS, but having the advantage of being embedded within a general-
purpose, extensible, high-level programming language. One of the key advantages of
algebraic modeling languages is the separation of abstract models and concrete model

39

Chapter 3. Material & Methods

instances. That is to say, classes symbolically representing optimization programs are
defined separately from actual, parameterized optimization problems. Hence in Pyomo,
abstract models are constructed first before instantiating concrete models by supplying
such abstract models with parameter data. Another key aspect of Pyomo is the separa-
tion of model construction and problem solving. Pyomo supports a wide range of both
open-source and commercial optimization solvers, allowing Pyomo models to be solved
using a variety of different solvers. This is in contrast to other optimization program-
ming languages that may only provide an internal optimization solver. Pyomo is among
the most versatile optimization tools available and allows the user to define a wide range
of optimization problems ranging from linear to nonconvex optimization problems. As
Pyomo can be integrated with a repertoire of solvers, the user may identify a solver han-
dling the specific type of optimization problem to be solved. This is important, as several
solvers only handle certain categories of optimization programs. The efficacy of solving
the problems themselves will naturally depend upon the chosen solver [94].

3.2.2 Optimization solvers
A wide range of open-source and commercial optimization solvers are available each spe-
cialized to certain classes of optimization programs. Examples of solvers equipped with
Python APIs include CPLEX [53], FICO EXPRESS [52], MOSEK [57], and Gurobi [51].
Due to its intuitive documentation, free academic license, support of SOCPs, and previous
user experience, we chose to utilize the Gurobi Optimizer in our computational efforts.

Gurobi Optimizer

The Gurobi Optimizer [58] is a popular optimization solver supporting a wide range of pro-
gramming languages, such as Python, C++, Java, C, MATLAB, R, AMPL, and GAMS.
Although the Gurobi Optimizer solves a broad spectrum of optimization problems, such
as LPs, mixed-integer linear programs, quadratic programs, mixed-integer quadratic pro-
gramming, QCPs, and mixed-integer quadratically constrained programs, its most efficient
algorithms are designed for LPs, quadratic programs, and mixed-integer programs. The
Gurobi Optimizer is covered by a free academic license and includes an extensive ref-
erence manual. The Gurobi solver also provides the user with the possibility of tuning
numerous solver algorithm parameters. As the implementation of the RAMPER method
allows the user to specify such solver parameters, we will very briefly describe some of
the Gurobi solver’s parameter settings.

The RAMPER method is formulated as an SOCP but is in practice written as a QCP
(see Section 2.1.1). The FBA and ecFBA problems are, on the other hand, LPs. Our im-
plementation of the RAMPER method handles both deterministic FBA/ecFBA problems
and stochastic RAMP/RAMPER problems. Hence, both LP and QCP solver settings will
be of relevance to us.

Gurobi’s LP and QCP solver algorithms share a few tuning parameters. The Numeric
Focus attribute changes the numerical accuracy in the solver’s calculations and may affect
numerical stability. The Aggregate and Presolve attributes both change the presolve set-
tings and may provide a trade-off between computational time and tractability. For some
programs such as the LP, the user may have a number of solver algorithms to choose from.

40

3.3 Computational implementation

In Gurobi, LPs may be solved either by the primal simplex method, dual simplex method,
or by an interior-point method. The interior-point method may or may not include variants
of so-called crossover methods. The crossover method is used to find a vertex solution,
as is found in the simplex method, from an interior-point solution, which in theory will
not be a vertex itself. If not applied, the interior-point LP method will, strictly speaking,
always find a suboptimal solution. The QCP solver provides an interior-point method. The
interior-point methods of both LPs and QCPs rely on the duality gap (see Section 2.1) to
identify solutions. A solution is identified should the duality gap become zero, and the
user may alter the absolute value tolerance in primal and dual solution difference. Such
tolerances are referred to as convergence tolerances. Other parameters may also tune the
interior-point method. The Barrier Corrections attribute determines the number of com-
putations performed at each iteration step in interior-point methods, whereas the Barrier
Homogeneous attribute may enforce another variant of interior-point methods that in prin-
ciple is better at differentiating between infeasible and unbounded problems but may suffer
from computational instability [51].

3.3 Computational implementation

The RAMPER model was implemented as to be able to convert COBRApy Model ob-
jects into concrete Pyomo models which are then solved using the Gurobi Optimizer. The
code consists primarily of two functions—one parsing metabolic reconstruction data and
another constructing and solving Pyomo model instances—and may perform simulations
with and without parameter uncertainty. Additionally, computation times for the RAM-
PER implementation were calculated for both RAMPER and ecFBA problems. We also
probed the enzyme database BRENDA [95] for TN entries and performed a sensitivity
analysis of stochasticity in kinetic constraints using the RAMPER implementation.

3.3.1 Implementing RAMPER

The scripts we will describe shortly input GEMs and performs simulations of the metabolic
reconstructions modeled either with uncertainty, as SOCPs (RAMP/RAMPER), or with-
out, as LPs (ecFBA/FBA). Hence, our code can perform simulations applying the FBA,
ecFBA, RAMP, and RAMPER methods. We decided to implement our code in Python
using the Pyomo package and used the Gurobi Optimizer as our default solver. Note that
it would not be difficult to implement the option of choosing different solvers due to Py-
omo’s diverse compatibility with optimization solvers. Two primary functions were writ-
ten, called createUncModel() and solveUncModel(), and both rely on functions imported
from the module uncUtils.py. Both functions input a dictionary structure—referred to
as the model settings—containing the tuning parameters for the Gurobi solver (described
above in Section 3.2.2) and parametric uncertainty specifications. The overall process is
illustrated by Figure 3.1. We will now describe the two primary functions and then briefly
describe the functions found in the uncUtils.py module.

41

Chapter 3. Material & Methods

GEM
(.mat, .sbml, COBRApy Model object)

createUncModel() Model settings

Solver options:

- Numerical Focus
- Aggregate and Presolve

- Crossover
- Convergence Tolerane

- Barrier Corrections
- Barrier Homogeneous

and more

Modeling parameters:

- Standard deviations
- Covariances
- M bound(s)

- Automated variants
and more

- Uncertain stoichiometric matrix
- Certain stoichiometric matrix

- Turnover matrix
- Enzyme weights and pool bounds
- Rearranged bounds and objective

- Uncertainty matrices
and more

solveUncModel()

- Solver status
- Optimal growth rate

- Optimal flux and enzyme
vector

uncUtils.py

parseData()

modelKcatUncertainty() modelSUncertainty()

solveModel()

Figure 3.1: Flowchart illustrating the implementation of the RAMPER formalism. The diamond-
shaped boxes correspond to functions, diamond-shaped arrows show destinations of imported func-
tions, squares correspond to modules, and parallelograms correspond to both input and output. On
the whole, GEMs are used to perform FBA/ecFBA/RAMP/RAMPER simulations per user-set mod-
eling parameter specifications. The user need only specify the modeling parameters and must not
specifically state the constraint-based method to be utilized.

42

3.3 Computational implementation

createUncModel()

The createUncModel() function inputs GEMs—either as SBML files, MATLAB structures
per the COBRA Toolbox, or as Model objects per COBRApy—and the model settings.
The precise parametric uncertainty may either be handled automatically by the code or set
specifically by the user.

The user may specify the uncertainty with a matrix—of same dimensions as the en-
larged stoichiometric matrix per the GECKO formulation—denoting the uncertainty in
each coefficient. Additionally, the user may input a list specifying the covariance among
coefficients. The matrix specifying the coefficients’ uncertainty will later be referred to
as the deviation matrix, as its elements correspond to standard deviations (to be discussed
more precisely in Chapter 4).

The automatic uncertainty specification will attempt to identify uncertain stoichiomet-
ric coefficients using simple heuristics and model them uncorrelated with default deviation
magnitude. The default magnitude is different for stoichiometric coefficients and TNs, and
can also be set manually.

The user may also specify TN uncertainty inputting upper and lower percent bounds.
The percent range is then used to assign the uncertainty magnitude for each TN assuming
a linear correlation between turnover magnitude and uncertainty, with the largest TN re-
ceiving the largest percent uncertainty and the lowest TN receiving the lowest. Note that
this is not the same model of uncertainty we will describe in Section 4.4.1 but is rather a
modeling relic.

The uncertainty model of TNs as described in Chapter 4 were rather introduced using
the deviation matrix input, as it is not yet introduced into createUncModel() as an optional,
automatically generated uncertainty setting.

The output is a dictionary containing the extracted data needed to instantiate the con-
crete Pyomo model, which is then either an LP or SOCP dependent on the specified uncer-
tainty parameters. The SBML input is simply read as a COBRApy Model object. Hence,
the script does not ”read” SBML files in the strict sense. A great advantage of using CO-
BRApy objects is that we may use the COBRApy utilities on the metabolic models prior
to creating the corresponding Pyomo model. Changing the Pyomo concrete model can be
done using Pyomo functions, but scripts written with constraint-based analysis in mind
should be implemented as to intuitively perform gene-knockouts, change simulation envi-
ronments, and tune model parameters without having to change the original GEM input
and subsequently rerun createUncModel(). Of the two main functions, createUncModel()
is clearly the most time expensive. This is not surprising as the extraction of necessary data
is indeed somewhat convoluted. We will now briefly describe this process and elaborate
on it later when addressing the uncUtils.py module.

First, the format of the GEM is determined automatically. As mentioned, the SBML
format is converted into a COBRApy Model should that be the case. The first parts of
the data extraction depend on whether we are dealing with a MATLAB data structure or
COBRApy Model, but these are technical differences and will not be discussed. Second,
if TNs are included in the enlarged stoichiometric matrix, it is split into a turnover matrix
and a stoichiometric matrix. Further, if coefficients in the stoichiometric matrix are to be
modeled with uncertainty, then the stoichiometric matrix is further split into certain and
uncertain matrix counterparts. The resulting right-hand side of the constraints—as well

43

Chapter 3. Material & Methods

as the objective and bound vectors—must then be changed accordingly. The enzyme pool
constraint is handled separately by extracting the corresponding row in the enlarged sto-
ichiometric matrix. All these matrices are handled as sparse matrices saving significant
computation time. The matrices and vectors describing the constraints, both SOCP and
LP, are set as output. Third, the specified parametric uncertainty is read and initializes the
construction of uncertainty matrices, which themselves end up part of the output. As the
uncertain stoichiometric and kinetic constraints are handled separately, we create two cor-
responding separate collections of uncertainty matrices. These collections are themselves
large matrices separated by indices stored in separate lists during the matrices’ construc-
tion.

During the whole process a log file is being written. If an error is caught while calling
createUncModel(), a message will be printed to screen and the log file will specify which
function in uncUtils.py caught it. The user may themselves—by configuring the model
settings—decide whether or not a log file will be written at all, the name of the file, and
whether or not messages will be printed to screen.

solveUncModel()

The solveUncModel() inputs both the output of createUncModel() and the model settings
(see Figure 3.1). Initially an abstract Pyomo model is constructed—in QCP form, as ex-
plained in Section 2.1.1—after which input is used to create a concrete Pyomo model.

The concrete Pyomo model is then solved according to input parameters specified
in the model settings, and the solution provided by the Gurobi Optimizer is then used
to extract the resulting output. Note that the Gurobi solver will recognize the QCP to
be equivalent to an LP should that be the case and then subsequently employ the more
efficient LP solving methods instead. The user may themselves set the desired LP solver
algorithm in the model settings should they not desire to apply the default simplex method.

The output of the script can be adjusted by the user but is typically the resulting ob-
jective value and flux solution. Other provided outputs include the certain and uncertain
stoichiometric matrix as generated by createUncModel() and other model data, though
these outputs were originally meant to be used for debugging purposes. A log file is gen-
erated in this function analogously to createUncModel().

uncUtils.py

The script uncUtils.py contains six functions each of which we will now briefly describe.
All functions input the model settings in addition to some function-specific inputs which
will be mentioned whenever necessary.

The functions declareNone() and mesg() are small functions that simply aid us in ini-
tializing function output and updating the log file instantiated by createUncModel() and
solveUncModel(). The two functions are used ubiquitously by createUncModel(), solve-
UncModel(), and the other functions in uncUtils.py.

The function parseData() inputs the metabolic reconstruction and parses the poten-
tially enlarged stoichiometric matrix into its corresponding canonical stoichiometric ma-
trix and turnover matrix. The upper and lower bounds on the enzyme and flux variables
as well as the objective vector must be changed accordingly. Reactions arising from the

44

3.3 Computational implementation

SLIMEr formalism [74] are identified, as well as the enzyme pool constraint row. The
function has different pipelines for handling different metabolic reconstruction formats.
The metabolite GEM identifiers are used to identify the kinetic and enzyme pool con-
straints of the enlarged stoichiometric matrix. It does so by finding relevant keywords
often used to describe these pseudometabolites. The user may, and should, verify that the
reference keywords in fact recognize the correct constraints. Should that not be the case,
the user may reconfigure these reference keywords manually in the model settings. Ad-
ditionally, should the user have submitted a deviance matrix, maps correlating the rows
of the enlarged stoichiometric matrix to the corresponding rows of the deviance matrix
are instantiated. These are mandatory should we be able to assign the deviance matrix
coefficients to the correct parameters of the stoichiometric and kinetic constraints.

The function modelKcatUncertainty() inputs the turnover matrix constructed by parse-
Data() and creates the uncertainty matrices corresponding to the kinetic constraint per the
specified uncertainty parameters. The function is of course skipped should there either
be no turnover matrix produced or should there be no uncertainty specified for any TN.
Due to the different ways in which the user may specify uncertainty in enzyme kinetic
parameters, the function relies on if-else branching based on these specifications.

The function modelSUncertainty() inputs the sparsed stoichiometric matrix and the
corresponding flux bounds and subsequently splits the two into certain and uncertain coun-
terparts. Finally, uncertainty matrices for the uncertain stoichiometric matrix are con-
structed. The very simple heuristic designed to find uncertain coefficients—should the
automatic stoichiometric uncertainty option be selected—locates decimal coefficients, ex-
cept for the common rational 1/2, and skips SLIME pseudoreactions, as these are not
constructed using uncertain data.

The function solveModel() first assembles an abstract Pyomo model corresponding
to the assigned parametric uncertainty. Then, the concrete Pyomo model resulting from
the certain and uncertain stoichiometric matrices, turnover matrix, uncertainty matrices,
weight vector, and enzyme pool bound is finally instantiated. The concrete Pyomo model
is then subsequently solved by the Gurobi Optimizer with the solver parameters specified
by the model settings. Importantly, the solution provided by the Gurobi Optimizer is
identified as optimal, suboptimal, or infeasible/unsolvable. In the case of optimal and
suboptimal solves, the resulting predicted growth rate is printed to screen unless instructed
otherwise by the user.

Note on computational stability

When employing the ecYeast8 model—and other baker’s yeast GEMs for that matter—
we experienced less computational instability than what has been reported previously for
RAMP [45]. We did however suffer similar instability upon using E. coli reconstructions,
but as we focused our efforts on ecYeast8, computational instability did not present itself
as an insurmountable problem. We did nonetheless experience instability performing FVA
(not presented) and TN uncertainty sensitivity analysis. More precisely, we would expe-
rience that the Gurobi solver failed for some problems when solving hundreds of RAM-
PER problems with varying parameters. By enforcing the Homogeneous Barrier solver
attribute, we could often verify that the instability stemmed from either empty solution
spaces or unsolvable problem instances. Yet at other times, we could not determine the

45

Chapter 3. Material & Methods

source of computational instability. For these reasons, the default Gurobi settings as set by
the RAMPER implementation is somewhat more lenient than the original default Gurobi
settings, as we impose the strictest presolve settings and set maximum numerical accuracy.
Additionally, we increased the convergence tolerance to 10−4 from 10−8 when performing
large-scale simulations.

But more importantly, we experienced incompatibility with certain versions of the
Gurobi Optimizer. That is, certain Gurobi versions were not unable to solve any given
RAMPER problem. Whether this is caused by more global problems shared among SOCPs
or is specific to RAMPER problems is not known to us. We did nevertheless identify a
Gurobi version stable enough for our intended use. Therefore, all subsequent analyses and
computations with the RAMPER method were performed with the Gurobi Optimizer ver-
sion 7.5.2 released in 2017. By utilizing said version we did not experience any instability
beyond what has been described in the above paragraph.

3.3.2 Computational speed
The computational speed of the RAMPER implementation was compared between ecFBA
and RAMPER formulations (see Section 4.3) and was performed using the computa-
tion times.py script. Computation times were determined for the createUncModel() and
solveUncModel() functions as well as the Pyomo model instance construction and the
Gurobi solver. The execution times were determined using the Python time module and
were calculated as the average over 100 simulations for RAMPER and ecFBA each. All
computations were performed with the ecYeast8 reconstruction.

3.3.3 Retrieving and investigating turnover numbers
After extracting TNs from the enzyme repository BRENDA [95], we performed regres-
sion analysis on the mean and standard deviation of enzyme-substrate pair TNs, where we
included entries from all taxa represented in the enzyme repository (see Section 4.4.1).
Enzyme data extraction was performed using the function retrieveTN(), whereas the re-
gression analysis and subsequent plotting of the data were done using the plotTN.py script.

retrieveTN()

The function retrieveTN() retrieves enzyme data from the freely available BRENDA text
file [95] and extracts TN entry values along with other pertinent data. The text file sorts
enzymes by their EC number and contains diverse information on each enzyme, includ-
ing kinetic data. Each enzyme entry contains a TN catalog—composed of TNs gathered
from various sets of sources—and each entry of the TN catalogs contains descriptions of
experimental conditions, relevant substrate names, and enzyme-dependent organism refer-
ence codes. The retrieveTN() function sorts the enzyme data by EC numbers and removes
TNs indicated to be determined under impertinent experimental conditions. It does so by
probing the condition descriptions for certain keywords. For instance, the function omits
TNs that do not include ”wild”, ”wild-type”, or ”native” in their description and skips en-
tries containing ”mutation”, ”recombinant”, ”mM”, ”DTT”, ”cleaved”, and other similar
keywords. As entry descriptions are prone to typing errors, we also account for certain

46

3.3 Computational implementation

misspelled keywords. The user may additionally include further restrictions on extracted
TNs such as temperature and pH intervals. If specified, the pH and temperature values are
subsequently identified in the condition description entries. The user may also limit the
search to a particular organism, effectively excluding TNs determined in other species. As
the enzyme entries contain enzyme-specific organism reference codes, these references
must be resolved for every single enzyme. The extracted entries of retrieveTN() are ul-
timately stored in a two-dimensional list, where row entries correspond to enzymes and
column entries specify substrate names, condition descriptions, and TN values. Note that
in the computational analysis presented in Section 4.4.1, we included TN entries from all
taxa determined in pH interval 6–8 and temperature interval 20–30◦C.

plotTN.py

The script plotTN.py plots the mean over the inverse enzyme-substrate TN entries against
their standard deviation and performs linear regression using the Scipy Python package.
The script uses the extracted BRENDA data to sort TN entries according to enzyme-
substrate pairs and excludes pairs with single TN entries. The script also provides two
plots. The first of these plots depicts the mean against standard deviation on log-log axes
and includes a regression line. The second plot depicts the logarithmic ratio of standard
deviation to mean against standard deviation and does not include a regression line. The
second regression line performs very poorly on statistical tests and is as such deemed su-
perfluous.

3.3.4 Probing sensitivity in turnover number uncertainty
The scripts geckoKcat.py, ramperKcat.py, and regRamperKcat.py utilize the RAMPER
implementation to simulate gradually stricter TN modeling parameters (see Section 4.5).
The geckoKcat.py script incrementally increases enzyme TNs applying the ecFBA method,
while ramperKcat.py and regRamperKcat.py gradually increase uncertainty in enzyme
TNs employing the RAMPER method. The ramperKcat.py script selectively imposes un-
certainty on single enzymes one at a time, whereas regRamperKcat.py assumes uncertainty
across all enzymes using the regression analysis performed by plotTN.py (the regression
TN uncertainty model will be described in Section 4.4.1). As these scripts are highly
similar, we will only describe the components of regRamperKcat.py in detail. The minor
differences between the scripts will be summarized briefly afterward.

The regRamperKcat.py script consists of the findMaxStd() function and a main() func-
tion. The former identifies the maximum standard deviation applicable to a given en-
zyme’s TN collection without predicting growth rates below a user-defined cutoff. The
main function instantiates and applies the deviation matrix constructed per the regression
model found using plotTN.py, subsequently runs the findMaxStd() function in parallel, and
concludes by saving the results for later analysis. The script plotKcatStd.py plots the re-
sults produced by regRamperKcat.py, whereas the comprMaxDev.py script compares the
results of distinct regRamperKcat.py experiments. The comprMaxDev.py script orders the
enzymes by their maximum acceptable TN deviation and prints the ordered lists to screen
for manual comparison. The scripts plotKcatStd.py and comprMaxDev.py are trivial in
their implementation and will not be discussed in any more detail.

47

Chapter 3. Material & Methods

findMaxStd()

The function findMaxStd() uses the parameter output from createUncModel(), a growth
rate cutoff, a list of constants, a maximum iteration number, a list of indices corresponding
to the protein pseudometabolite rows of the stoichiometric matrix, and an iteration num-
ber indicating the index of an individual enzyme. The last argument is essential in order
to parallelize the function using the Python multiprocessing package. The findMaxStd()
function uses the protein row indices to map the iteration number unto the deviation matrix
and multiply the TN parameters of that row by the next number in the list of constants.
For each constant the growth rate is computed, and the function returns the first constant
causing the growth rate to drop below the cutoff. The function returns the last constant
computed should no constants make the cutoff or should the maximum number of itera-
tions have been met. It can later be verified whether or not the cutoff was exceeded by
considering the metadata saved by the main() function as described below. We would like
to note that although the implementation of an upper bound on the number of iterations is
useful for general purposes, we did in fact not specify a maximum iteration number in the
computational experiments presented in Section 4.5.

main()

In the main() function the specified metabolic reconstruction is read, and the corresponding
deviation matrix is generated according to the regression analysis performed by plotTN-
.py. During the construction of the deviation matrix, the protein pseudometabolite rows
of the stoichiometric matrix are identified and stored in an index list to be accessed by
findMaxStd(). The script then parallelizes the findMaxStd() function over every enzyme.
Metadata regarding the specific computational experiment are saved separately from the
results obtained from the findMaxStd() parallelization and include the list of constants,
maximum number of iterations, GEM name, and regression model parameters. It is worth
mentioning that due to incompatibilities with the multiprocessing package the metabolic
model must be read by COBRApy each time the findMaxStd() is called. Computation time
could be significantly reduced were we to circumvent this incompatibility, but our efforts
in doing so proved ultimately unsuccessful.

Differences between geckoKcat.py, ramperKcat.py, and regRamperKcat.py

The ramperKcat.py, as opposed to regRamperKcat.py, assumes TN uncertainty for only a
single, given enzyme at a time. Therefore, we instead instantiate the deviation matrix as the
zero matrix and consequently add the iterate constants to the row coefficients as opposed
to multiplying them. On the other hand, geckoKcat.py employs the ecFBA method, and
hence the iterate constant must be added to the enlarged stoichiometric matrix as opposed
to the deviation matrix. In all three scripts, the model settings are reset to default in each
iteration of findMaxStd.py so that the effect of adding, or multiplying, iterate constants not
accumulate.

48

Chapter 4
Results

We begin this chapter motivating the consideration of enzyme kinetic parameter uncer-
tainty before proceeding to introduce RAMPER using three different formulations. We
then briefly describe the issue of interpreting RAMPER solutions in light of these differ-
ent formulations. Furthermore, we prove that RAMP’s continuity and convergence theo-
rems extend into RAMPER, effectively demonstrating that RAMPER in fact generalizes
ecFBA per the RAMP formalism. Next, we briefly compare the computational speed of
the RAMPER implementation under deterministic and stochastic modeling assumptions.
We then probe a comprehensive enzyme data repository and harness its data to establish a
provisional model for TN uncertainty. Thereafter, we perform sensitivity analyses of TN
uncertainty in the RAMPER method, which we conduct both with and without applying
said model of TN uncertainty. Finally, by comparing the sensitivity analysis results with a
similar analysis employing the ecFBA method, we argue that the RAMPER method indeed
does provide a distinct and novel link between proteomics and constraint-based metabolic
modeling.

4.1 Robust analysis of metabolic pathways under enzy-
matic regulation

Naturally, the RAMPER method borrows heavily from RAMP (2.11) differing in its inte-
gration of enzyme kinetic data analogous to the ecFBA method (see Section 2.4.2). But in
contrast to the development of RAMP per MacGillivray et al. [45], we are going to con-
sider continuous rather than discrete probability distributions in modeling parameters. We
will throughout this section follow the notational scheme of the ecFBA formulation (2.19)
as to avoid unnecessary repetitions of definitions.

Before formulating the RAMPER method, we will first motivate the introduction of
continuous stochasticity in modeling parameters. We then go on to discuss interpretations
of the method under parameter stochasticity assumptions. Finally, we will briefly consider
whether available experimental data are amenable to our RAMPER interpretation.

49

Chapter 4. Results

4.1.1 Stochasticity in modeling parameters

Turnover numbers and the enzyme pool bound

Every enzyme-catalyzed biochemical reaction is, as described by the ecFBA method, lim-
ited by maximum enzyme catalytic efficacies and enzyme concentrations. But other bio-
logical factors may in fact constrain reaction fluxes even further. As pointed out by Davidi
et al. [90], factors such as substrate concentration, substrate localization, enzyme localiza-
tion, and post-translational enzyme regulation may impose stricter flux bounds than what
the ecFBA kinetic constraints suggest. Moreover, Zotter et al. [100] found large cell-to-cell
variability when measuring the in vivo catalytic efficiency of TEM1-β-lactamase, effec-
tively showing that enzyme reaction-limiting factors may exhibit intercellular variability
even within homogeneous cell cultures.

Motivated by the apparent intercellular variability of enzyme efficiency, we define the
effective TN of enzymes to represent their in vivo maximum substrate conversion rate.
Correspondingly, we define the effective turnover (ET) matrix analogously to the turnover
matrix having replaced the inverse TN coefficients by inversed effective TNs.

Consider now a homogeneous cell culture optimized to its environment. At any given
point in time, the cell culture possesses a collection of ET matrices in which each ET
matrix belongs to a single cell of the culture. As cell cultures commonly accommodate
millions of cells, we may apply the central-limit theorem and assume the sample mean of
the ET matrix collection to be normally distributed. More precisely, we assume the sample
means of the ET matrix coefficients to be distributed normally.

Define now the random effective turnover (rET) matrix, K, as the sample mean of the
ET matrices. In other words, we define the rET matrix as the matrix whose coefficients
are the corresponding random variable sample means of the ET matrix coefficients. Note
that that for a given flux vector, v, the matrix-vector product Kv represents a vector of en-
zyme concentrations, but as we have established K to be a matrix of normal variables, the
product Kv is, in fact, a vector of enzyme concentration distributions. Due to the linearity
of normal distributions, it follows readily that the predicted concentration distributions are
normal as well. As we now argue, the consideration of enzyme concentration distributions,
as opposed to numerical enzyme concentrations, is more concurring to biological reality.

Fluctuating gene-expression [101] and asymmetric partitioning of molecular species
during cell division [102] are examples of biological mechanisms that introduce stochas-
ticity in the subcellular localization and concentration of enzymes. Soltani et al. [103]
employed a computational approach to investigate mechanisms of protein copy number
stochasticity and indicate approximately normal distributions of protein levels throughout
the cell cycle. Hence, it appears that the introduction of uncertainty into the turnover ma-
trix uncertainty confers to predictions of protein concentrations that are consistent with
our understanding of intercellular protein variability. In contrast, the interpretation of
the enzyme usage vector per Sánchez et al. [38] mandates that the ecFBA method pre-
dicts numerical lower bounds on enzyme concentrations. Following observations made
by MacGillivray et al. [45], the lower enzyme concentration bound is more aptly inter-
preted as the average lower bound over the cell culture. Therefore, the ecFBA method
does not acknowledge the periodic change in protein concentration provoked by cell cycle
progression and fails thus at capturing populational enzyme characteristics.

50

4.1 Robust analysis of metabolic pathways under enzymatic regulation

Extending the above discussion from single enzyme concentrations to the cell pro-
teome, it is clear that the overall enzyme content is prone to intercellular variability as
well. We may additionally consider the total enzyme content to be approximately nor-
mal, as it is represented by the sum over normally distributed enzyme concentrations, and
therefore assume normality in the enzyme pool bound as well. In contrast, the enzyme
molecular weights are calculated summing the amino acid molecular weights of the pro-
tein primary structures and are as such not considered stochastic.

Let us reiterate our motivation for introducing stochasticity into enzyme kinetic pa-
rameters. First, cell-to-cell variations exist implying variance in the upper bounds of
enzyme-substrate conversion rates. Second, by reinterpreting the turnover matrix as the
ET matrix, we note that all cells in any given culture possess their own ET matrix. Third,
by considering the sample mean of TNs across the culture, we shift focus towards the rET
matrix composed by the sample mean of the ET matrix population. Four, having intro-
duced stochasticity in the turnover matrix in terms of the rET matrix, we provide a more
biologically apt interpretation of predicted enzyme concentrations.

Stoichiometric coefficients and flux bounds

It is not unreasonable to assume that the different cells in a culture will possess distinct
biomass precursor needs. At the very least, it would be deemed by most biologists unrea-
sonable to assume the cells to need precisely the same amount of precursors to produce
the exact same amount of biomass. Indeed, biomass precursors consumption changes
during the cell cycle, and at any given point in time the cells of cell cultures exist at dif-
ferent phases of the cell cycle. We therefore argue that biomass precursor coefficients
are reasonably modeled as stochastic modeling parameters in a similar fashion to the en-
zyme kinetic parameters described above. Flux bounds of metabolic reconstructions are
most commonly imposed to limit the maximal uptake rate of nutrients. Stochastically
fluctuating protein concentrations and post-translational regulation may affect membrane
transport proteins and may lead to changes in nutrient uptake rates. Additionally, cell cul-
tures may experience fluctuations in concentration, localization, and diffusion properties
of extracellular nutrients which can cause cells to be subject to different immediate mi-
croenvironments. The upper bound of nutrient uptake may then be prone to intercellular
variability and is perhaps more aptly interpreted stochastically. Moreover, flux bounds
may be imposed for reasons other than the modeling of nutrient uptake. For example, the
GAM/NGAM pseudoreaction fluxes are typically restricted and are in some cases even
fixed to a given numerical value. As we believe it is quite reasonable to presume differ-
ences in ATP-cost across cell cultures, we deem it sensible to confer uncertainty to the
GAM/NGAM flux bounds as well.

Having motivated our introduction of stochasticity into certain categories of canonical
FBA coefficients, we argue that—in a similar vein to the turnover matrix—we may con-
sider a stochastic counterpart to the stoichiometric matrix composed of the sample mean
of stoichiometric coefficients. Again, arguing by the central-limit theorem, we assume the
stochastic sample mean coefficients to be normally distributed. Equivalently, we assume
certain coefficients of the flux bound vectors to be normally distributed as well.

Now that we have advocated the stochastic consideration of stoichiometric and kinetic
modeling parameters, we may proceed to introduce the RAMPER method formulation.

51

Chapter 4. Results

4.1.2 Stochastic formulation

We will now reconsider the ecFBA formulation (2.19) in light of stochastic modeling pa-
rameters. As has been described in the previous section, we would like to instill stochas-
ticity in the experimentally inferred coefficients of the stoichiometric matrix, the enzyme
kinetic data of the turnover matrix, the enzyme pool bound, and eventually a subset of the
flux and enzyme concentration bounds. As we motivated above, the stochastic parameters
are assumed normal and are interpreted as parameter sample means across cell cultures.

We split the stoichiometric matrix into two matrices, Sc and Su, in which the former
consists of rows absent of random variable parameters and the latter containing rows that
do. We additionally replace the turnover matrix by the rET matrix denoted byK. Consider
now the following probabilistic program

max
v

cT v (4.1a)

s.t. Scv = 0, (4.1b)
P (−Mi ≤ Sui v ≤Mi) ≥ 1− 2ε, ∀i ∈ S, (4.1c)
P (Kiv ≤ ei) ≥ 1− ε, ∀i ∈ E , (4.1d)

P (wT e ≤W) ≥ 1− ε, (4.1e)
P (L ≤ v ≤ U) ≥ 1− ε, (4.1f)
P (0 ≤ e ≤ E) ≥ 1− ε, (4.1g)

where E is an index set of enzymes, S is an index set of the rows of the uncertain stoichio-
metric matrix, Ki and Sui denote rows of their respective matrices, and ε ∈ R is a (small)
positive scalar.

These constraints mandate that the cells optimize biomass under metabolic states sat-
isfying the kinetic constraints under SS to high probability. It is important to be fully
aware that is the parameters and not variables that possess stochasticity. In fact, RAM-
PER suggests an optimization in which we decide the coefficients (fluxes and enzyme
concentration) of parameter normal distributions (biomass coefficients, TNs, enzyme pool
bound, and variable bounds). We will come back to this after introducing the RAMPER’s
SOCP formulation. Finally, we would like to point out that the constraint, Scv = 0, is
nonstochastic precisely because neither the parameters nor variables are stochastic.

4.1.3 Deterministic formulations

As we demonstrated in Section 2.1.1, stochastic linear inequalities lead either to second-
order cone constraints or deterministic linear inequalities. We now recast the probabilistic
RAMPER constraints as deterministic constraints and finally formulate RAMPER as an
SOCP.

The rows of Su are modeled to have normal random variable coefficients. As such, we
have Sui v normal with mean S̄ui v and corresponding uncertainty matrixRsi . The equivalent
SOCP constraints are then S̄ui v + ‖δ1−εRsi v‖ ≤ Mi and −S̄ui v + ‖δ1−εRsi v‖ ≤ Mi for
every row i ∈ S. As for the kinetic constraints, we similarly model Ki to be normally
distributed, and hence Kiv is normal with mean K̄iv and uncertainty matrix Rki . The

52

4.1 Robust analysis of metabolic pathways under enzymatic regulation

resulting SOCP constraints are then K̄iv+ ‖δ1−εRki v‖ ≤ ei for all rows i ∈ E . As for the
enzyme pool constraint, we have already shown in Section 2.1.1 that stochastic right-hand
coefficients simply produce stricter linear inequalities. It is therefore not of any use to
recast the enzyme pool constraint stochastically but rather, as the stochastic interpretation
suggests, set the enzyme pool bound one or two standard deviations below the mean. In
a similar vein, we may recast probabilistic variable bound constraints but doing so would
merely lead to stricter bounds and again not truly change the method formulation. The
enzyme pool constraint and variable bounds will therefore remain unchanged from the
ecFBA formulation in the following deterministic RAMPER description. For simplicity’s
sake, we continue using the same notation for the unaltered ecFBA constraints.

The SOCP formulation of RAMPER is given as

max
v

cT v (4.2a)

s.t. Scv = 0, (4.2b)
Sui v + ‖δ1−εRsi v‖ ≤Mi, ∀i ∈ S, (4.2c)
− Sui v + ‖δ1−εRsi v‖ ≤Mi, ∀i ∈ S, (4.2d)

Kiv + ‖δ1−εRki v‖ ≤ ei, ∀i ∈ E , (4.2e)

wT e ≤W, (4.2f)
L ≤ v ≤ U, (4.2g)
0 ≤ e ≤ E. (4.2h)

As was discussed in Section 2.1.1, we may also reformulate the RAMPER SOCP using
uncertainty sets in the following way

max
v

cT v (4.3a)

s.t. Scv = 0, (4.3b)
−Mi ≤ Sui v ≤Mi, ∀Sui ∈ Ui, ∀i ∈ S, (4.3c)
Kiv+ ≤ ei, ∀Ki ∈ Vi, ∀i ∈ E , (4.3d)

wT e ≤W, (4.3e)
L ≤ v ≤ U, (4.3f)
0 ≤ e ≤ E, (4.3g)

where Ui := {S̄ui + δ1−εu
TRui : ‖u‖ ≤ 1} and Vi := {K̄i + δ1−εu

TRki : ‖u‖ ≤ 1}.

4.1.4 Interpreting solutions and parameters
The stochastic interpretation of kinetic RAMPER constraints states that we may only con-
sider metabolic fluxes, given an ET matrix sample, predicting enzyme concentration distri-
butions in accordance with the enzyme pool bound. Another yet equivalent interpretation
is the following. Consider a culture of homogeneous cells in which each cell has its own
distinct array of effective TNs. RAMPER then only allows flux vectors such that, if im-
posed on all the cells, sample means of the corresponding enzyme concentrations have a

53

Chapter 4. Results

probability 1 − ε of being below the enzyme pool bound. This is indeed equivalent since
the flux vector multiplied by the rET matrix sample is precisely a sample of enzyme con-
centrations. Hence each RAMPER flux, together with the rET matrix, provides sample
mean distributions of enzyme concentrations. We may thus bypass the flux vector and
rather state the following: RAMPER only permits the cell culture to possess an enzyme
concentration distribution among its cells so that a sample of the enzyme content is—with
a high degree of probability—below the permitted total enzyme mass.

Correspondingly, the stochastic SS constraints will have similar stochastic interpreta-
tions. RAMPER will only permit fluxes that, if imposed on all cells in the culture, predict
metabolite concentration change distributions across the culture that when sampled has a
high probability of being close to zero.

To summarize, every flux vector corresponds to distributions of enzyme concentrations
and metabolite concentration change across the cell culture. The RAMPER method con-
strains fluxes to distributions that satisfy desired properties relating to the corresponding
sample mean distributions. Specifically, RAMPER constrains the cell culture to metabolic
states under which sample means of enzyme concentrations meet total mass requirements
and sample means of metabolite concentration change are close to zero. Finally, RAM-
PER identifies the flux vector maximizing the mean of the stochastic biomass production.
Note however that the populational predictions stem from the stochasticity of modeling
parameters and not the variables. Hence, we essentially assume all cells of the culture to
adhere to the same flux vector and that intercellular variance arises from differences in
effective TNs and growth requirements.

It is obviously unwarranted to assume equivalent flux vectors across cell cultures. The
assumption is in fact conceptually contradictory to the RAMPER formalism. In contrast
however, MacGillivray et al. [45] argue that the FBA approach implicitly enforces the
same assumption. As such, the RAMPER method is not worse off than the FBA approach.
Nevertheless, considering distributions of flux vectors themselves seems beyond the ca-
pability of optimization program applications. We may wonder however if the RAMPER
solution is aptly interpreted as the sample mean of the metabolic fluxes. To answer this
question, we would have to deal with products of random variables of dependent normal
distributions and is hence outside the scope of our discussion.

We now turn to the question of whether said interpretations of stochastic RAMPER
kinetic constraints are amenable to available experimental data. The TNs provided by
enzyme databases such as BRENDA are typically determined in vitro and intend to capture
the maximum enzyme turnover rate. Hence, these data do not necessarily agree with
our definition of effective TNs. But sets of TN calculations from various experiments
may provide viable approximations to variances of effective TN sample means. This is
argued by the fact that such different experiments provide a glimpse into the variation of
maximum conversion rates, and this variance is hopefully similar for effective conversion
rates. In contrast, we would expect the expected average sample mean of experimentally
inferred TNs to overestimate effective TNs—though underestimation is also possible in
the case of heavily regulated enzymes. Fortunately however, Davidi et al. [90] reported a
decent correlation between traditional and effective TN calculations when comparing the
effective and traditional TN values of 132 metabolic reactions in E. coli. Experimental TN
calculations may thus be helpful in the modeling of effective TN uncertainty after all.

54

4.2 Mathematical properties

4.2 Mathematical properties
We will now show that Theorem 1 and 2 extends from RAMP to RAMPER. These ex-
tended theorems will effectively show that solutions to RAMPER are Lipschitz contin-
uous with regards to change in uncertain parameters and that solutions to ecFBA prob-
lems (2.19) are limiting cases of RAMPER problem (4.2) solutions.

4.2.1 Solution continuity in parametric uncertainty
RAMPER provides continuous flux states with respect to parameter data variation. Such
continuity is congruent to biological reality, as minor parametric perturbations are abun-
dant yet withstood by cellular metabolism. The result is stated mathematically by Theo-
rem 4; the proof of which is provided below.

Theorem 4. Let

R =
{
RSi : i indexes a row of S

}
∪
{
RKi : i indexes a row of K

}
,

and set V(S,K,R, L, U) to be the collection of feasible flux vectors for the RAMPER
problem formulation in (4.2) with parameters (S,K,R) and flux bounds (L,U). Then for
any v ∈ V(S,K,R, L, U), there is a λ > 0 so that

λΓ ≥ min{‖v − v′‖ :

v′ ∈ V((Sc, Su + ∆Su),K + ∆K,R+ ∆R, L− λΓ1, U + λΓ1)},

where

1. R+ ∆R =
{
RSi + ∆RSi : i indexes a row of S

}
∪
{
RKi + ∆RKi : i indexes a row of K

}
;

2. λ is independent of ‖∆Sui ‖, ‖∆Ki‖,
∥∥∆RSi

∥∥, and
∥∥∆RKi

∥∥;

3. Γ = max
{

maxi {‖∆Sui ‖+ ‖∆Rui ‖} , maxi
{
‖∆Ki‖+

∥∥∆RKi
∥∥} ,

‖wT∆K‖+
∑
i

∥∥wi ∆RKi
∥∥}; and

4. 1 is a vector of ones.

The independence of λ from ‖∆Sui ‖, ‖∆Ki‖, ‖∆RSi ‖, and ‖∆RKi ‖ ensure that RAM-
PER solutions are Lipschitz continuous with respect to model parameters. This is a strong
sense of continuity that can often replace bounded differentiability in theoretical argu-
ments, and it guarantees that flux deviations are bounded linearly in the magnitude of
parameter perturbations; the theorem asserts that optimal flux deviations grow at most
linearly as catalytic rates, as well as their models of uncertainty, are perturbed. We may
extend Theorem 4 to include enzyme concentrations by simply setting

ei = max
{

0, Kiv +
∥∥RKi v∥∥} .

Then ei inherits the continuity of v, as maxima of Lipschitz functions are themselves
Lipschitz continuous.

55

Chapter 4. Results

Proof of Theorem 4

We must first establish extensions of Lemma 1 and Corollary 1 as presented for RAMP
by MacGillivray et al. [45] before proceeding to prove Theorem 4 itself.

Lemma 1. Let A be an n-element row vector, b be a strictly positive scalar, and R be a
collection of qj × n matrices, each denoted by Rj , where j = 1 . . . p. Let

F(A,R) =

v : Av +

p∑
j=1

‖Rjv‖ ≤ b

 .

Then for any v ∈ F(A,R) there are λ ≥ 0 and 0 < z ≤ 1 such that

min {‖v − v′‖ : v′ ∈ F(A+ ∆A,R+ ∆R)}

≤ ‖v − zv‖ ≤ λ

‖∆A‖+

p∑
j=1

‖∆Rj‖

 ,

where

• R+ ∆R = {Rj + ∆Rj : j = 1 . . . p},

• z v ∈ F(A+ ∆A,R+ ∆R), and

• λ is independent of ∆A and ∆R = {∆Rj : j = 1, . . . p}.

Proof. Let v ∈ F(A,R). The lemma holds with z = 1 and λ = 0 if v ∈ F(A +
∆A,R + ∆R), so we assume to the contrary that v 6∈ F(A + ∆A,R + ∆R). We then
have (A+ ∆A)v +

∑p
j=1 ‖(Rj + ∆Rj)v‖ > b. And by applying the Intermediate Value

Theorem, there is a γ ∈ R satisfying 0 < γ ≤ 1 such that we also have

0 < (A+ (1− γ)∆A)v +

p∑
j=1

‖(Rj + (1− γ)∆Rj)v‖ = b.

Now let A′ = A+ (1− γ)∆A, R′j = Rj + (1− γ)∆Rj for j = 1 . . . p, and set

z =
b

b+ γ(‖∆A‖+
∑p
j=1 ‖∆Rj‖)‖v‖

.

56

4.2 Mathematical properties

We then have the following,

(A+ ∆A)(zv) +

p∑
j=1

‖(Rj + ∆Rj)(zv)‖ − b

= (A′ + γ∆A)(zv) +

p∑
j=1

‖(Rj ′ + γ∆Rj)(zv)‖ − b

≤ z

A′v + γ∆Av +

p∑
j=1

(
‖Rj ′v‖+ γ‖∆Rjv‖

)− b
≤ z

A′v + γ‖∆A‖‖v‖+

p∑
j=1

(
‖Rj ′v‖+ γ‖∆Rj‖‖v‖

)− b
= z

A′v +

p∑
j=1

‖Rj ′v‖+ γ

‖∆A‖+

p∑
j=1

‖∆Rj‖

 ‖v‖
− b

= z

b+ γ

‖∆A‖+

p∑
j=1

‖∆Rj‖

 ‖v‖
− b

= 0.

Hence z v ∈ F(A+ ∆A,R+ ∆R) and

min {‖v − v′‖ : v′ ∈ F(A+ ∆A,R+ ∆R)} ≤ ‖v − zv‖.

By setting λ = ‖v‖2/b, we have that

‖v − zv‖ =

(
1− b

b+ γ(‖∆A‖+
∑p
j=1 ‖∆Rj‖)‖v‖

)
‖v‖

=
γ ‖v‖2

b+ γ(‖∆A‖+
∑p
j=1 ‖∆Rj‖)‖v‖

‖∆A+

p∑
j=1

‖∆Rjv‖

≤ λ

‖∆A‖+

p∑
j=1

‖∆Rj‖

 ,

and hence

min{‖v− v′‖ : v′ ∈ F(A+ ∆A,R+ ∆R)} ≤ ‖v− zv‖ ≤ λ

‖∆A‖+

p∑
j=1

‖∆Rj‖

 ,

where λ is independent from ∆A and ∆R.

57

Chapter 4. Results

Lemma 1 can be extended to finite collections of constraints per the following corol-
lary.

Corollary 1. For i ∈ {1 . . .m}, let Ai be an n-element row vector, let bi be a strictly
positive scalar, and let Ri be a finite collection of qij × n matrices each denoted by Rij ,
where j = 1 . . . pi. Let

F{(Ai,Ri) : i = 1 . . .m}

=

v : Ai +

pi∑
j=1

‖Rij v‖ ≤ bi, for i = 1 . . .m

 .

Then, for any v ∈ F{(Ai,Ri) : i = 1 . . .m}, there are scalars z and λ satisfying
0 < z ≤ 1 and λ ≥ 0 so that

min {‖v − v′‖ : v′ ∈ F{(Ai + ∆Ai,Ri + ∆Ri) : i = 1 . . .m}}

≤ ‖v − zv‖ ≤ λmax
i

‖∆Ai‖+

pi∑
j=1

‖∆Rij‖

 ,

where

• Ri + ∆Ri := {Rij + ∆Rij : j = 1 . . . pi},

• z v ∈ F{(Ai + ∆Ai,Ri + ∆Ri) : i = 1 . . .m}, and

• λ is independent of ∆Ai and ∆Ri = {∆Rij : j = 1 . . . pi} for i = 1 . . .m.

Proof. The proof follows by defining zi and λi to be the scalars guaranteed by Lemma 1
for each constraint i ∈ {1 . . .m} and setting z = min

i
{zi} and λ = max

i
{λi}.

Having established Lemma 1 and its corollary, we now proceed to prove the RAMPER
continuity theorem.

Proof of Theorem 4. Let V(S,K,R, L, U) be the collection of feasible flux states for the
RAMPER model, meaning that there is a vector e for each v ∈ V(S,K,R, L, U) so that

Sc v = 0, L ≤ v ≤ U,
−Mk +

∥∥RSi v∥∥ ≤ Si v ≤Mk −
∥∥RSi v∥∥ ,

Kiv +
∥∥RKi v∥∥ ≤ ei,

0 ≤ e ≤ E, wT e ≤W.

58

4.2 Mathematical properties

We show that V(S,K,R, L, U) = V′(S,K,R, L, U), where

v ∈ V′(S,K,R, L, U)

satisfies
Sc v = 0, L ≤ v ≤ U,

−Mk +
∥∥RSi v∥∥ ≤ Si v ≤Mk −

∥∥RSi v∥∥ ,
Kiv +

∥∥RKi v∥∥ ≤ Ei
wTKiv +

∑
i

∥∥RKi v∥∥ ≤W.
The fact that V(S,K,R, L, U) ⊆ V′(S,K,R, L, U) holds trivially, and the reverse con-
tainment of V′(S,K,R, L, U) ⊆ V(S,K,R, L, U) follows by defining ei, for each
v ∈ V′(S,K,R, L, U), to be

ei = max
{

0, Kiv +
∥∥RKi v∥∥} .

The SOCP constraints defining V′(S,K,R, L, U) are of the form required by Lemma 1
under the tacit assumption that Mi, Ei, and W are strictly positive. We may thus apply
Corollary 1 to their shared collection and let z′ and λ′ be the scalars from Corollary 1.
Then

v ∈ V(S,K,R, L, U)⇒ Sc (z′v) = z′ (Scv) = 0,

and
v ∈ V(S,K,R, L, U)⇒ L− λ′Γ1 ≤ z v ≤ U + λ′Γ1,

with

Γ = max
{

max i {‖∆Sui ‖+ ‖∆Rui ‖} , max i
{
‖∆Ki‖+

∥∥∆Rki
∥∥} ,∥∥wT∆K

∥∥+
∑

i

∥∥wi∆Rki ∥∥} .
We conclude that

z′v ∈ V((Sc, Su + ∆Su), K + ∆K,R+ ∆R), L− λ′Γ1, U − λ′Γ1),

and hence,

λ′ Γ ≥ ‖v − zv′‖ ≥

min{‖v − v′‖ : v′ ∈ V((Sc, Su + ∆Su),K + ∆K,R+ ∆R),

L− λ′Γ1, U − λ′Γ1)}.

59

Chapter 4. Results

4.2.2 Convergence under diminishing uncertainty

Theorem 5 shows that limiting trajectories of RAMPER solutions terminate at solutions
of corresponding ecFBA problems (2.19) as parameter uncertainty disappear. A proof of
the theorem is provided below.

Theorem 5. Let (S t,K t,Rt,M t) be a sequence of RAMPER modeling parameters so
that

(S t,K t,Rt,MT)→ (S,K,Z, 0) as t→∞,

whereR has the same definition as Theorem 4, Z = R with everyRSi andRKi being zero,
and M is a vector whose i-th component is Mi. Then, any convergent primal and dual
sequence of RAMPER solutions has a limit that solves the linear ecFBA program (2.19).

Proof. The RAMPER SOCP formulation is an instance of the general form convex opti-
mization problem,

max
{
cTx : Aix+ ‖Ri x‖ ≤ bi, for all i

}
, (4.4)

where

AT =

[
(Sc)T −(Sc)T (Su)T −(Su)T I −I K 0 0 0

0 0 0 0 0 0 −I I −I w

]T
,

bT =
(
0, 0, MT , −MT , U, L, 0, E, 0, Tε

)
, and

the Ri matrices for the non-red constraints are zero.

The necessary and sufficient conditions of optimality are

Aix+ ‖Rix‖ ≤ bi, ∀ i

cj +

m∑
i=1

λi v
T
j

(
w +ATi

)
= 0, ∀ j

m∑
i=1

λi (bi − ‖Rix‖ −Aix) = 0, and

λ ≥ 0,

where vj is a vector of zeros except for a 1-element at position j and

w =

 RTi

(
Rix

‖Rix‖

)
, Rix 6= 0

0, Rix = 0.

Suppose that (xt, λt, ρt) is a convergent sequence that satisfies these conditions for the
parameter collection (At,Rt, bt), where the definition of R is analogous to Theorem 4
and all Ri matrices originally zero remain zero for all t. The convergence assumptions

60

4.3 Computational speed

of the modeling parameters in Theorem 5 imply that we have, for all t where Rtix
t not

identically zero, both

0 ≤ ‖Rti xt‖ ≤ ‖Rti‖ ‖xt‖ → 0 as t→∞

and ∥∥∥∥Rti (Rti x
t

‖Rti xt‖

)∥∥∥∥ ≤ ∥∥Rti∥∥ ∥∥∥∥(Rti x
t

‖Rti xt‖

)∥∥∥∥ =
∥∥Rti∥∥→ 0 as t→∞.

The convergence assumptions of Theorem 5 also ensure that

(xt, λt)→ (x̂, λ̂), At → Â, and

bt → b̂ = (0, 0, 0, 0, U, L, 0, E, 0, Tε) as t→∞.

Hence, we conclude that

Âx̂ ≤ b̂,

cT + λ̂T Â = 0,

λ̂T
(
Â x̂− b̂

)
= 0, and

λ̂ ≥ 0.

These necessary and sufficient conditions show that x̂ solves the linear program

max{cTx : Âx ≤ b̂},

which equates the ecFBA problem formulation (2.19).

4.3 Computational speed
The computation times of RAMPER and ecFBA problems as executed by the RAMPER
implementation (see Section 3.3.1) were calculated and compared. The RAMPER im-
plementation consists of two primary functions named createUncModel() and solveUnc-
Model(). The former inputs metabolic reconstructions and parses modeling data, whereas
the latter inputs the parsed reconstruction data, constructs Pyomo model instances (de-
scribed in Section 3.2.1), and solves the resulting optimization problems utilizing the
Gurobi solver (described in Section 3.2.2). We computed the execution times of the two
primary functions, the Pyomo model instance construction, and the Gurobi solver. The
results are summarized in Table 4.1 and show that the model data parsing is by far the
most time-expensive portion of the RAMPER implementation. The time difference seen
in solveUncModel() is solely due to the Gurobi solver, as the instantiating of Pyomo in-
stances is equally time-costly in RAMPER and ecFBA. We conclude that RAMPER prob-
lems do indeed take longer to set up and solve than their ecFBA counterparts, though the
difference should be bearable when solving moderate numbers of problems.

61

Chapter 4. Results

Table 4.1: Computation times for the creation and solving of RAMPER and ecFBA problems em-
ploying the RAMPER implementation. All results are presented in seconds and include execution
times for the primary implementation functions, the Pyomo instance construction, and the Gurobi
solver.

Method createUncModel() solveUncModel() Pyomo instance Gurobi solver

RAMPER 6.52 3.81 1.40 1.92
ecFBA 1.15 2.12 1.40 0.72

4.4 Designing probability distributions of enzyme
kinetic parameters

Whereas a lack of experimental data on biomass composition parameters hinders discus-
sions of their distributional characteristics, this is not the case for TNs. In this section, we
probe an exhaustive enzyme database and subsequently identify a near-linear relationship
between TN mean and standard deviation. Conclusively, we discuss the application of the
near-linear relation in the construction of kinetic uncertainty matrices.

4.4.1 Uncertainty in turnover numbers

Inspecting the BRENDA repository [95], we examined relationships between TN means
and standard deviations. After removing TN entries found in aberrant experimental condi-
tions and ignoring enzyme-substrate pairs related to fewer than two TN measurements, we
sorted the TN values according to their corresponding enzyme-substrate pairs. As the TNs
themselves are inversed in their respective kinetic constraints, we subsequently calculated
the mean and standard deviation of the inversed TN measures per enzyme-substrate pair.
We finally analyzed the results by linear regression as depicted in Figure 4.1.

10 5 10 4 10 3 10 2 10 1 100 101 102 103

Mean

10 5

10 3

10 1

101

103

St
an

da
rd

 d
ev

ia
tio

n

10 5 10 4 10 3 10 2 10 1 100 101 102 103

Mean

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

St
an

da
rd

 d
ev

ia
tio

n
/ m

ea
n

Figure 4.1: Left: Log-log plot of inversed TN means against standard deviations of enzyme-
substrate pairs per the BRENDA database [95] together with a linear regression line. Right: Semi-log
plot of the ratio of mean to standard deviation against standard deviation for the same measurements.

62

4.4 Designing probability distributions of enzyme kinetic parameters

Linear regression on the logarithmic mean against logarithmic standard deviation indi-
cates an almost linear relationship between mean and standard deviation (R-value' 0.94,
slope a ' 1.1, and intercept b ' −0.73). We may use the preceding regression analysis to
postulate an effective model for TN distribution statistics for the RAMPER method. The
resulting approximate relation between TN sample mean and standard deviation is

σ ≈ ebµa, (4.5)

where µ is the mean and σ is the standard deviation. In contrast, the logarithmic ratio of
mean to standard deviation against logarithmic standard deviation does not appear to be as
closely related (R-value ' 0.32, not shown) with similar conclusions drawn for semi-log
and regular linear regression as well.

4.4.2 Composing uncertainty matrices for kinetic parameters

Having assumed normality in the sample mean of effective TNs with corresponding means
and standard deviations coupled by the equation (4.5), we may now proceed to construct
kinetic uncertainty matrices. The covariance matrix Q is related to the uncertainty matrix
by RTR = Q. We note that, since the formulation of the RAMPER SOCP (4.2) includes
the matrix-vector product Rkv, the uncertainty matrices must have column dimensions of
the size of the flux vector, whereas the size of the row dimension is still undecided.

In our subsequent analysis, we will assume the TN sample means to be uncorrelated.
The assumption allows a simple, intuitive composition of the uncertainty matrix. We let
Rki contain as many rows as there are uncertain parameters in Ki. Each row will then
correspond to an uncertain parameter, and we let the first indexed parameter correspond
to the first row, the second indexed uncertain parameter to the second row, and so on.
Each row is constructed as to contain zeros except in all entries except for the column in-
dex corresponding to the row’s uncertain parameter index, which will contain its standard
deviation. It is straightforward to verify that said uncertainty matrix definition results in
RTR becoming the covariance matrix of uncorrelated random variables.

We may additionally motivate our construction of uncertainty matrices by the mathe-
matical discussion in Appendix A.1. We see that our construction is indeed the uncertainty
matrix, of the kind described in Appendix A.1, with the fewest dimensions and the least
nonzero entries. Hence, we are essentially constructing the simplest uncertainty matrix
possible using linearly independent column vectors.

In order to ease our further discussion, we will set ε so that δ1−ε = 1. In other words,
we set 1 − ε ≈ 0.841, as we may then implement our composed uncertainty matrices
directly into the RAMPER SOCP formulation. In the following computational analyses,
the kinetic uncertainty matrices are constructed using the kinetic coefficients found in
the ecYeast8 model (see Section 3.1.2). We set these kinetic coefficients as the expected
average of the TN sample means and subsequently determine the corresponding standard
deviations by applying the regression equation (4.5). Then, we construct the uncertainty
matrices using these standard deviations whilst assuming all stochastic kinetic coefficients
to be uncorrelated. We will refer to the construction of said kinetic uncertainty matrices as
the TN regression model.

63

Chapter 4. Results

4.5 Analyzing the impact of stochasticity in enzyme
kinetic parameters

Probing the significance of increasing uncertainty in kinetic data, we may be able to at-
tribute a degree of importance to individual enzymes. The key idea being that metaboli-
cally essential enzymes will more abruptly affect RAMPER growth rate predictions should
they be assigned greater uncertainty. In deterministic settings, we may similarly determine
the extent of enzymes’ importance by incrementally decreasing TNs. Likewise, we expect
metabolically crucial enzymes to impose greater changes on ecFBA predicted growth rates
under diminishing TN values. In this section, we assess whether or not the RAMPER and
ecFBA methods yield similar predictions of said enzyme importance. In other words, we
are interested in whether or not the consideration of enzyme kinetic uncertainty in fact of-
fers novel modeling premises. At first, we compare ecFBA and RAMPER simulations in
which we introduce stochasticity in individual enzymes one at a time. Afterward, we apply
the TN regression model to the RAMPER method—effectively introducing stochasticity
in all enzymes concurrently—and similarly compare the simulation results with those of
previous experiments.

0 200 400 600 800 1000
Enzymes

100

102

104

106

108

1010

1012

De
vi

at
io

n
lim

it

Figure 4.2: The deviation limit of enzymes in ecYeast8 using the RAMPER method. The vertical
axis is scaled logarithmically in base 10. The iterations of standard deviation values started at 10
and ended in 1012 increasing by a factor 10 at each step. Note that enzymes which we could only
determine to have deviation limits below 10 are found at position 0 with regards to the deviation
limit axis.

Using the ecYeast8 (see Section 3.1.2) imposed under oxygen- and glucose-rich en-
vironments, we gradually increased the magnitude of uncertainty in individual enzyme’s
TNs. More precisely, we iterated through each enzyme and found the greatest term we
could concurrently set as standard deviations in the enzyme’s corresponding kinetic uncer-
tainty matrix without predicting growth rates below half the reference growth rate—which
we computed initially under the assumption of no uncertainty. Keep in mind that enzymes
were modeled stochastically one at a time and that their TN coefficients were assumed
uncorrelated. Fortunately, the stochastic RAMPER description sheds light on how to in-
terpret said computational experiment: As we are increasing the standard deviations of
an enzyme’s uncorrelated TNs by the same factor, we are essentially increasing the stan-

64

4.5 Analyzing the impact of stochasticity in enzyme kinetic parameters

dard deviation of the vector product Kiv by that same factor. We are thus increasing the
standard deviation of the enzyme’s concentration uniformly across the entire flux solution
space. Therefore, we will refer to the maximum standard deviation factor as the enzyme’s
deviation limit.

As mentioned, we would like to perform a similar computational experiment applying
the ecFBA method. In doing so, we analogously iterate through each enzyme and cor-
respondingly divide its TN values by a common factor. We decrease the TN coefficients
by the same factor for a number of iterations stopping whenever the growth rate falls be-
low half the reference growth rate—which we computed initially using the original TN
coefficients. We will refer to the largest such division factor as the enzyme’s mean factor.

0 200 400 600 800 1000
Enzymes

100

102

104

106

108

1010

M
ea

n
fa

ct
or

Figure 4.3: The mean factor of enzymes in ecYeast8 employing the ecFBA method. The vertical
axis is scaled logarithmically in base 10. The iterations of mean factors started at 10 and ended in
1010 increasing by a factor 10 in each step.

We would like to stress the fact that the deviation limit and mean factor cannot be
compared quantitatively. We may, on the other hand, compare the order in which the
deviation limit and mean factor rank the enzymes’ importance.

At each iteration of our experiments, we compute the growth rate after having imposed
a change in either TN mean or standard deviation. The granularity of the analyses will
therefore depend on the differences in these changes. Figures 4.2 and 4.3 illustrate large-
scale, coarse experiments employing the RAMPER and ecFBA method respectively. The
experiments demonstrate considerable spans in deviation limits and mean factors but suffer
clearly from inadequate granularity. Nevertheless, the results may still prove insightful.
Noticing there are 338 enzymes with deviation limits below 10, we do not know the order
of these enzymes among themselves. Yet we do know they are the 338 smallest ones. As
for the mean factor, we see that there are 13 enzymes with mean factors below 103. We
do not know the order of these either, but we do know they are the 13 enzymes with the
smallest mean factors.

Consider now the set of 338 most important enzymes as determined by their deviation
limit and likewise the set of 13 most important enzymes determined by their mean factor.
We identified the set of 13 enzymes not to be a subset of the set of 338 enzymes. More
precisely, exactly 2 of the 13 enzymes with the lowest mean factors were not even among
the 338 enzymes with the lowest deviation limits. That is, relatively among the enzymes,

65

Chapter 4. Results

increasing standard deviation is not equivalent to decreasing the mean. It is implied from
this that RAMPER, even without presumed uncertainties in kinetic coefficients, provides a
formalism that may investigate aspects of enzyme characteristics not possible with ecFBA.
Furthermore, we have shown that RAMPER predicts certain enzymes to be more sensitive
to increases in standard deviation than reductions in mean, at least in comparison to other
enzymes.

We also repeated the analysis for RAMPER mounted with the TN regression model
(introduced in Section 4.4.1). In this computational experiment, the deviation limit was
found by multiplying the already-set standard deviations of the given enzyme’s uncertainty
matrix by a set factor for a number of iterations. At each iteration the growth rate was
computed and compared to a reference growth rate, which was computed initially applying
the TN regression model. Applying the TN regression model amounted to a 15% decrease
in reference growth rate.

0 200 400 600 800 1000
Enzymes

100

102

104

106

108

1010

De
vi

at
io

n
lim

it

Figure 4.4: The maximum deviation of enzymes in ecYeast8 applying the RAMPER method with
the TN regression model. The vertical axis is scaled logarithmically in base 10. The iteration of
deviation scaling factors started at 100 and ended in 1011 increasing by a factor of 10 at each step.
Note that enzymes which we could only determine to have deviation limits below 10 are found at
position 0 with regards to the deviation limit axis.

We see that the results, illustrated in Figure 4.4, appear to reflect, to some degree, the
results of the ecFBA experiment. Nonetheless, an analysis of enzyme importance rankings
again yields differences from the ecFBA method. The 13 smallest mean factor enzymes
found in ecFBA are not a subset of the 16 smallest deviation limits found using RAMPER
with the TN regression model. Indeed, 3 enzymes found using ecFBA are not part of the
16 enzymes identified using RAMPER with the TN regression model. Neither do these
3 enzymes overlap with the 2 aberrant enzymes found comparing ecFBA and RAMPER
lacking the TN regression model. Hence, we see again that some enzymes, at least in
comparison to others, are not affected equally by changes in deviation and mean. Imposing
uncertainty across all enzymes or not, the incorporation of uncertainty in enzyme kinetic
parameters provide RAMPER with distinct enzyme characteristic predictions not possible
using its deterministic counterpart.

66

Chapter 5
Discussion

Having introduced the RAMPER method, we now turn to discuss its potential strengths
and weaknesses. We contemplate the validity of the deterministic RAMPER description,
discuss parameter-related modeling issues, and describe alternative method descriptions
accounting for correlated enzymatic stochasticity. Moreover, we discuss RAMPER’s com-
patibility with the ecYeast8 reconstruction and discuss recent trends in the incorporation
of enzyme kinetic parameters in metabolic modeling. We furthermore consider the infe-
rior computational speed and stability observed in RAMPER, before finally contemplating
conceivable applications of our method.

Although the stochastic RAMPER formulation is arguably well-warranted, the deter-
ministic formulation may appear less so. At first glance, it seems that we simply have
formulated a stricter FBA problem in which each constraint is replaced by a set of con-
straints. One could argue that a cell must not satisfy all these constraints at once but rather
that the cell must satisfy an instance of constraints drawn from the uncertainty set. Hence
applying all these constraints at once is ill-advised, as it would exceedingly constrain the
solution space. Though otherwise a well-reasoned argument, it incorrectly assumes that
RAMPER attempts to recapture the metabolism of an individual cell. As is the case with
the stochastic interpretation, it is only reasonable to interpret the RAMPER formalism in
terms of cell cultures and not single cells. When introducing RAMP, MacGillivray et al.
[45] argued that FBA likewise implicitly models cell cultures and not individual cells, ef-
fectively arguing that these approaches are more aptly interpreted as modeling cultures.
In that sense, FBA is incorrectly assuming nonchanging biological factors across cell cul-
tures, whereas RAMPER does not.

We could have nonetheless considered an alternative approach based on stochastic pro-
gramming. Employing such classes of optimization programs, we could model individual
cells maximizing biomass withstanding the uncertainty inherent to biological processes.
Such an approach would be applicable for species that are evolutionarily adapted to chang-
ing conditions and for which the fluxes are optimized to maximize biomass anticipating
stochasticity in growth-related parameters. Stochastic programming is, on the other hand,
notoriously difficult to formulate and implement. Additionally, we consider RAMPER’s

67

Chapter 5. Discussion

ability to model cultures to be valuable in and of itself. Employing stochastic programming
could potentially lose the populational aspect of RAMPER.

According to our discussion on SOCPs in Section 2.1.1, probabilistic kinetic con-
straints containing but one TN coefficient will simply result in linear constraints accom-
modating the worst-case value of those TNs. This might feel wrong to some readers who
may ask themselves how the stochastic RAMPER interpretation could end up describing
the same ecFBA linear constraints. We remind those readers that the constraints possess-
ing more than two uncertain kinetic parameters will not be reduced to linear constraints but
rather to proper second-order cone constraints. Importantly, the solution space is contin-
gent on the entire collection of constraints and not the individual constraints in isolation.
Hence, it should be clear that the entirety of the RAMPER solution space is not equivalent
to the correspondingly stricter ecFBA solution space. We will return to this discussion
later when describing an alternative RAMPER description.

We have as of yet discussed the importance of modeling parameter ε. Modifying the
ε parameter not only changes simulation outcomes but also their interpretation. Decreas-
ing ε effectively tightens the probabilistic RAMPER constraints and hence narrows the
solution space subsequently decreasing growth rate predictions. MacGillivray et al. [45]
found however that the ε parameter had an insignificant impact on RAMP gene essential-
ity predictions. Exactly how much the ε modeling parameter affects RAMPER method
predictions remains to be examined. It is also problematic to interpret changes in ε. Even
more worrying is the fact that a uniform change in standard deviations across uncertainty
matrices would impose equivalent effects on the RAMPER SOCP formulation as cor-
responding changes in ε. Although causing the same changes to the RAMPER solution
space, modifications to ε and parameter standard deviations are interpreted quite distinctly.

As is mentioned in Section 2.1.1, it is not possible to model correlated random variable
coefficients across separate constraints using SOCP formulations. We only expect corre-
lations in uncertainty between TNs of the same enzyme, and as each row of the ET matrix
corresponds to distinct enzymes, we do not expect this to be an issue. On the other hand,
we do expect the literature of enzymatically constrained metabolic modeling approaches
to grow, and it is not unforeseeable that future GEMs will include turnover matrices con-
taining novel classes of ”pseudo-enzymes” which may in fact necessitate stochastic corre-
lations across constraints. In that case, new modeling approaches are needed. One such
approach is briefly discussed next, which may also potentially circumvent the interpretive
issue of linear kinetic constraints arising from singular TNs as discussed above.

The proof of Theorem 4 presents two equivalent flux solution spaces both described
in terms of SOCP constraints. The differences are based solely on substituting ei for Kiv.
That same substitution applied to an ecFBA problem (2.19) will similarly result in a dis-
tinct model formulation describing an equivalent solution space. As opposed to the canon-
ical ecFBA formulation, the problem formulation resulting from the variable substitution
will have replaced both the enzyme pool constraint and the turnover matrix by a variant
of the pool enzyme mass constraint, wTTv ≤ W . We could—were we to extrapolate a
second-order cone constraint from the pool enzyme mass constraint variant—construct a
single uncertainty matrix for the vector wTT . One possibility, though unorthodox, would
be to create an uncertainty matrix with rows corresponding to each uncertain parameter
in T in which case we would be able to model correlations of any kind. Such a RAM-

68

PER variant would also avoid the issue of having kinetic constraints remodeled as worst-
case linear constraints. We will refer to this alternative approach as substituted RAMPER
(sRAMPER). Interesting questions arise when considering the sRAMPER formulation.
Will sRAMPER and RAMPER be equivalent? If not, are there conditions we may impose
on their uncertainty matrices so that they are? Should the two problems be equivalent under
reasonable restrictions on the uncertainty matrices, we could rest assured that RAMPER
can be reformulated to handle correlations across kinetic constraints. It would also pro-
vide an additional argument that the RAMPER solution space is not justly interpreted as a
further constriction of the ecFBA solution space. In contrast, the more orthodox choice for
the sRAMPER uncertainty matrix would contain rows for each element in wTK though
this is biologically nonsensical. Doing so, we would only be able to model correlations
between all TNs related to one reaction to all TNs related to another.

Moving over to the construction of uncertainty matrices for the RAMPER method (see
Section 4.4.2), we did not cover the issue of correlated random variable coefficients. This
is a pressing issue, as certain biochemical reactions in metabolic reconstructions are split
into similar reactions—catalyzed by the same enzyme—using different substrates. For
some of these reactions, the substrates are expected to be converted with an equal turnover
rate. Consider for example an enzyme catalyzing a reaction with long-chain lipid sub-
strates for which only the head group is chemically active during catalysis. These lipid
substrates may consist of the same head group yet differ in their chain structure. But as the
chain structure is biochemically irrelevant to the catalyzing enzyme, we do not expect the
corresponding TN values to differ either. In GEMs, such reactions are handled by creating
separate reactions for each substrate but for which their TN is the same. These kinetic co-
efficients should therefore be correlated with covariance factors equal to one. In the com-
putational implementation of RAMPER (described in Section 3.3.1), we handle correlated
uncertain parameters by constructing uncertainty matrices in which the rows correspond-
ing to the correlated TNs have the same elements in their corresponding nonzero column
indices. In other words, the rows corresponding to correlated TNs are set equal to each
other. It can be showed by straightforward matrix manipulations that such uncertainty
matrices do indeed result in the desired covariance matrices. The ellipsoid describing the
uncertainty set will then only contain points in which the magnitude of the dimensions
of the correlated variable coefficients are equal. That is to say, uncertainty in one of the
coefficients necessitates the same amount of uncertainty in its correlated coefficients. In
the current implementation of RAMPER, correlated coefficients of other values are im-
plemented similarly, although a more intuitive user interface for modeling correlations is
certainly needed.

The ecYeast8 GEM used in our computational efforts includes TNs that may not be
congruent to the RAMPER modeling formalism. The majority of the TNs are best-case
turnover rates from BRENDA, whereas others are manually curated and fitted to experi-
mental growth rates. Ideally, we would want to have TNs determined as the average over
various experiments. Fortunately, such a pipeline exists—named AutoPACMEN [40]—
-but was inconveniently made available after our computational efforts were concluded.
The AutoPACMEN method produces ecFBA-accommodating GEMs using the averages
over TN entries extracted from both BRENDA [95] and SABIO-RK [104]. The result-
ing enzymatically constrained GEM is not of the form introduced in Section 2.4.2 but has

69

Chapter 5. Discussion

rather substituted ei for Tiv analogously to sRAMPER. Extending RAMPER to GEMs
produced by AutoPACMEN should be straightforward and is integral to the RAMPER
implementation should it be made available to the constraint-based modeling community.

The TN regression model reveals incredibly large standard deviations within enzyme-
substrate pairs even for narrow ranges of experimental conditions. As we intended a large-
scale probing of TN measurements, we did not pursue to scrutinize the individual TN data
entries. Strikingly, it should be noted that previous research [90] has reported inconsistent
units in BRENDA TN entries, which might help explain the large variance observed in
kinetic data. We would also like to point out that including the TN regression model
amounted to a 15% reduction in predicted growth rate for the ecYeast8 reconstruction.
Should we in fact have overestimated the variance in kinetic data, the predicted growth
rate ought to suffer a smaller reduction. In either case, we note that decreases in growth
rate predictions are easily ameliorated by increases in the enzyme pool bound.

As was discussed above, we would ideally use averages over TN determination ex-
periments as coefficients in the ET matrix. Alternatively, we could use the largest TN
entries—which are readily accessible in many ecFBA-accommodating GEMs—to predict
sample standard deviations using the TN regression model and then subsequently set their
differences as ET matrix coefficients. We could also potentially predict effective TNs em-
ploying experimental flux measurements and proteomic data or even tune TN standard
deviations to match protein measurement variances. At any rate, the TN regression is
merely presented as a tool for assessing the RAMPER method under global kinetic un-
certainty and is by no means meant to be interpreted as a rigorous and viable option for
modeling kinetic data statistics—at least not without further scrutiny.

There is no doubt that the RAMPER approach suffers from computational instabil-
ity. As was experienced with RAMP, consensus E. coli models prove highly unstable
when applying the RAMPER method. We cannot tell yet why yeast models—not only
ecYeast8 but other yeast reconstructions as well—appear to be considerably more stable
than their E. coli counterparts. It is tempting to claim that E. coli GEMs are more prone to
over-optimization in modeling parameters than yeast models, though we struggle to find
evidence supporting the supposition. We do not expect E. coli enzymatically constrained
reconstructions produced by AutoPACMEN to be more stable than canonical E. coli mod-
els, as these GEMs are already very unstable.

RAMPER’s computational speed is satisfactory for smaller applications. However, the
small increment in execution time makes RAMPER far more time-expensive than ecFBA
when performing large-scale computational experiments. In probing the sensitivity of
enzyme TN uncertainty, we relied on parallel computing in order to execute the exper-
iment within an acceptable timeframe. We expect that other large-scale computational
experiments using RAMPER will have to rely on parallelization techniques as well. The
construction of Pyomo model instances from metabolic reconstructions usually takes ~8
seconds and is far slower than the actual solving of the instances. Making small changes
in the RAMPER problem formulation is therefore far more time-consuming than solv-
ing the problem itself, as per date these changes must be made to the COBRApy model
object before reinitializing the Pyomo instance construction. It is therefore imperative
that utilities to perform routine modeling modifications are implemented to accommodate
gene-knockout simulations, environment condition changes, and other common modeling

70

adjustments. Such utilities should be easily implemented using existing Pyomo functions
that facilitate alterations of model instance structures.

Despite its inferior stability and speed, the RAMPER method opens a revenue of com-
putational analyses inaccessible by canonical constraint-based approaches. As RAMPER
solutions implicitly solve for expected means and standard deviations of metabolite con-
centration change and enzyme concentration samples, the method effectively predicts pop-
ulational cell culture properties. Such distributional predictions are far stricter than nu-
merical value predictions, making RAMPER far easier to disprove than its deterministic
counterparts. It is also foreseeable that data on enzyme concentration variance can impose
further bounds on the RAMPER solution space, and that enzyme concentrations lacking
such data could be inferred from RAMPER solutions. The predicted standard deviations
could also find their way into the objective function, enabling modelers to probe potential
variations on the biomass objective.

As uncertain RAMPER modeling parameters are assumed to follow normal sample
mean distributions, the biomass objective function is more aptly interpreted as the maxi-
mization of the expected mean of biomass production. We reckon to be able to introduce
the standard deviation of the biomass sample mean into the objective, effectively resulting
in a quadratic objective function. The biological relevance and use of such an objective,
however, is up to debate. At any rate, RAMPER solutions should, in theory, be able to pre-
dict variances in sample means of biomass production. Additionally, RAMPER could be
used to probe the impact of strain-engineering on intercellular variance, hopefully enabling
the optimization of populational cell properties for engineering purposes. The stochastic
interpretation of RAMPER also sheds light on its possible application in the prediction
and engineering of metabolite pooling. Although the viability of the RAMPER formalism
remains to be rigorously established, the scope of its potential applicability and predictive
power is nonetheless intriguing.

71

Chapter 5. Discussion

72

Chapter 6
Outlook

We introduced the RAMPER method to acknowledge the parametric uncertainty found
in enzyme kinetic data utilized in the constraint-based analysis of metabolic models. We
found that the RAMP framework, developed to alleviate the strict modeling assumptions
of FBA, can be extended to include enzyme kinetic constraints similar to ecFBA. Im-
portantly, we showed that RAMPER preserves the essential mathematical properties of
RAMP. We may, therefore, assert that the RAMPER method indeed encapsulates ecFBA
and exhibits continuity under parametric perturbations. Unfortunately, RAMPER suffers
from an unstable and slow computational implementation. Nonetheless, we conclusively
showed that RAMPER predicts distributional enzyme properties unattainable by previous
methods.

Looking ahead, establishing the predictive accuracy of the RAMPER method is of
foremost importance. Not only should we verify RAMPER’s capability for correctly pre-
dicting growth rates under distinct environmental conditions but also its proficiency at
describing phenotypic alterations due to protein allocation—such as the Crabtree effect
observed in baker’s yeast. We should also consider approaches to corroborate modeling
predictions of distributional parameters with experimental measurements. Additionally,
we should further examine the impact of stochastic modeling parameters. An understand-
ing of the parameters’ effect on model accuracy is vital are we to harness RAMPER’s
predictive power. The potential synergy between modeling parameters may, however,
severely complicate sensitivity analyses. Optimizing the RAMPER implementation may
prove necessary, as large-scale computational experiments rely on parallelization to finish
in acceptable timeframes. Another pressing issue is the method’s computational insta-
bility, especially considering the significant differences observed for distinct metabolic
reconstructions. Ideally, we should also clarify the mathematical relations between RAM-
PER and sRAMPER, additionally incorporating AutoPACMEN-generated reconstructions
to our computational implementation.

Finally, we should exercise RAMPER’s capacity for modeling metabolite pooling and
enzyme distribution statistics; we should explore the uncharted modeling premises made
accessible by its application as a framework for constraint-based metabolic modeling.

73

Chapter 6. Outlook

74

Bibliography

1. Regenmortel, M. H. V. V. Reductionism and complexity in molecular biology. EMB-
O Reports 5, 1016–1020. doi:10.1038/sj.embor.7400284 (2004).

2. Trewavas, A. A Brief History of Systems Biology. The Plant Cell 18, 2420–2430.
doi:10.1105/tpc.106.042267 (2006).

3. Von Bertalanffy, L. An Outline of General System Theory. The British Journal for
the Philosophy of Science I, 134–165. doi:10.1093/bjps/I.2.134 (1950).

4. Fang, F. C. & Casadevall, A. Reductionistic and holistic science. Infection and Im-
munity 79, 1401–1404. doi:10.1128/IAI.01343-10 (2011).

5. Kolch, W. et al. Systems biology primer: the basic methods and approaches. Essays
in Biochemistry 62, 487–500. doi:10.1042/EBC20180003 (2018).

6. Kitano, H. Systems Biology: A Brief Overview. Science 295, 1662–1664. doi:10
.1126/science.1069492 (2002).

7. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to
modular cell biology. Nature 402, C47–C52. doi:10.1038/35011540 (1999).

8. Misra, B. B., Langefeld, C., Olivier, M. & Cox, L. A. Integrated omics: tools, ad-
vances and future approaches. Journal of Molecular Endocrinology 62, R21–R45
(2019).

9. Ge, H., Walhout, A. J. M. & Vidal, M. Integrating ’omic’ information: a bridge
between genomics and systems biology. Trends in Genetics 19, 551–560. doi:10
.1016/j.tig.2003.08.009 (2003).

10. Facciotti, M. T. Training Interdisciplinary Scientists for Systems Biology. Journal
of Investigative Medicine 57, 471–473. doi:10.2310/JIM.0b013e31819825
e3 (2009).

11. Oliveira, J. S. et al. A Computational Model for the Identification of Biochemical
Pathways in the Krebs Cycle. Journal of Computational Biology 10, 57–82. doi:10
.1089/106652703763255679 (2003).

12. Purves, D. & Pacala, S. Predictive Models of Forest Dynamics. Science 320, 1452–
1453. doi:10.1126/science.1155359 (2008).

75

http://dx.doi.org/10.1038/sj.embor.7400284
http://dx.doi.org/10.1105/tpc.106.042267
http://dx.doi.org/10.1093/bjps/I.2.134
http://dx.doi.org/10.1128/IAI.01343-10
http://dx.doi.org/10.1042/EBC20180003
http://dx.doi.org/10.1126/science.1069492
http://dx.doi.org/10.1126/science.1069492
http://dx.doi.org/10.1038/35011540
http://dx.doi.org/10.1016/j.tig.2003.08.009
http://dx.doi.org/10.1016/j.tig.2003.08.009
http://dx.doi.org/10.2310/JIM.0b013e31819825e3
http://dx.doi.org/10.2310/JIM.0b013e31819825e3
http://dx.doi.org/10.1089/106652703763255679
http://dx.doi.org/10.1089/106652703763255679
http://dx.doi.org/10.1126/science.1155359

13. Bruggeman, F. J. & Westerhoff, H. V. The nature of systems biology. Trends in
Microbiology 15, 45–50. doi:10.1016/j.tim.2006.11.003 (2007).

14. Das, M., Patra, P. & Ghosh, A. Metabolic engineering for enhancing microbial
biosynthesis of advanced biofuels. Renewable and Sustainable Energy Reviews 119,
109562. doi:10.1016/j.rser.2019.109562 (2020).

15. Garcia, S. & Trinh, C. T. Modular design: Implementing proven engineering prin-
ciples in biotechnology. Biotechnology Advances 37, 107403. doi:10.1016/j.
biotechadv.2019.06.002 (2019).

16. Biz, A. et al. Systems biology based metabolic engineering for non-natural chemi-
cals. Biotechnology Advances 37, 107379. doi:10.1016/j.biotechadv.201
9.04.001 (2019).

17. Wang, E. Understanding genomic alterations in cancer genomes using an integrative
network approach. Cancer Letters 340, 261–269. doi:10.1016/j.canlet.20
12.11.050 (2013).

18. Li, X.-T., Yang, J.-J., Wu, Y.-L. & Hou, J. Toward innovative combinational im-
munotherapy: A systems biology perspective. Cancer Treatment Reviews 68, 1–8.
doi:10.1016/j.ctrv.2018.05.003 (2018).

19. Masoudi-Nejad, A. & Asgari, Y. Metabolic Cancer Biology: Structural-based anal-
ysis of cancer as a metabolic disease, new sights and opportunities for disease treat-
ment. Seminars in Cancer Biology 30, 21–29. doi:10.1016/j.semcancer.2
014.01.007 (2015).

20. Naimo, G. D. et al. A Systems Biology Approach for Personalized Medicine in
Refractory Epilepsy. International Journal of Molecular Sciences 20, 3717. doi:1
0.3390/ijms20153717 (2019).

21. Dovrolis, N. Systems biology in inflammatory bowel diseases: on the way to preci-
sion medicine. Annals of Gastroenterology 32, 233–246. doi:10.20524/aog.2
019.0373 (2019).

22. Mulder, S., Hamidi, H., Kretzler, M. & Ju, W. An integrative systems biology ap-
proach for precision medicine in diabetic kidney disease. Diabetes, Obesity and
Metabolism 20, 6–13. doi:10.1111/dom.13416 (2018).

23. Filipp, F. V. Precision medicine driven by cancer systems biology. Cancer and
Metastasis Reviews 36, 91–108. doi:10.1007/s10555-017-9662-4 (2017).

24. Otwell, A. E., López Garcı́a De Lomana, A., Gibbons, S. M., Orellana, M. V. &
Baliga, N. S. Systems biology approaches towards predictive microbial ecology.
Environmental Microbiology 20, 4197–4209. doi:10.1111/1462-2920.1437
8 (2018).

25. Purdy, K. J. et al. in Integrative Ecology: From Molecules to Ecosystems (ed Wood-
ward, G.) 87–149 (Academic Press, 2010). doi:https://doi.org/10.1016
/B978-0-12-385005-8.00003-4. http://www.sciencedirect.
com/science/article/pii/B9780123850058000034.

76

http://dx.doi.org/10.1016/j.tim.2006.11.003
http://dx.doi.org/10.1016/j.rser.2019.109562
http://dx.doi.org/10.1016/j.biotechadv.2019.06.002
http://dx.doi.org/10.1016/j.biotechadv.2019.06.002
http://dx.doi.org/10.1016/j.biotechadv.2019.04.001
http://dx.doi.org/10.1016/j.biotechadv.2019.04.001
http://dx.doi.org/10.1016/j.canlet.2012.11.050
http://dx.doi.org/10.1016/j.canlet.2012.11.050
http://dx.doi.org/10.1016/j.ctrv.2018.05.003
http://dx.doi.org/10.1016/j.semcancer.2014.01.007
http://dx.doi.org/10.1016/j.semcancer.2014.01.007
http://dx.doi.org/10.3390/ijms20153717
http://dx.doi.org/10.3390/ijms20153717
http://dx.doi.org/10.20524/aog.2019.0373
http://dx.doi.org/10.20524/aog.2019.0373
http://dx.doi.org/10.1111/dom.13416
http://dx.doi.org/10.1007/s10555-017-9662-4
http://dx.doi.org/10.1111/1462-2920.14378
http://dx.doi.org/10.1111/1462-2920.14378
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-385005-8.00003-4
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-385005-8.00003-4
http://www.sciencedirect.com/science/article/pii/B9780123850058000034
http://www.sciencedirect.com/science/article/pii/B9780123850058000034

26. Gu, C., Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Current status and appli-
cations of genome-scale metabolic models. Genome Biology 20, 121. doi:10.118
6/s13059-019-1730-3 (2019).

27. Thiele, I. & Palsson, B. Ø. A protocol for generating a high-quality genome-scale
metabolic reconstruction. Nature Protocols 5, 93–121. doi:10.1038/nprot.20
09.203 (2010).

28. Price, N. D., Reed, J. L., Papin, J. A., Wiback, S. J. & Palsson, B. O. Network-based
analysis of metabolic regulation in the human red blood cell. Journal of Theoretical
Biology 225, 185–194. doi:https://doi.org/10.1016/S0022-5193(0
3)00237-6 (2003).

29. Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S. & Gilles, E. D. Metabolic net-
work structure determines key aspects of functionality and regulation. Nature 420,
190–193. doi:10.1038/nature01166 (2002).

30. Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis? Nature
Biotechnology 28, 245–248. doi:10.1038/nbt.1614 (2010).

31. Wang, X., Xiong, X., Sa, N., Roje, S. & Chen, S. Metabolic engineering of en-
hanced glycerol-3-phosphate synthesis to increase lipid production in Synechocys-
tis sp. PCC 6803. Applied Microbiology and Biotechnology 100, 6091–6101. doi:1
0.1007/s00253-016-7521-9 (2016).

32. J. Seppälä, J. et al. Prospecting hydrogen production of Escherichia coli by meta-
bolic network modeling. International Journal of Hydrogen Energy 38, 11780–
11789. doi:10.1016/j.ijhydene.2013.07.002 (2013).

33. Lee, D.-S. et al. Comparative Genome-Scale Metabolic Reconstruction and Flux
Balance Analysis of Multiple Staphylococcus aureus Genomes Identify Novel An-
timicrobial Drug Targets. Journal of Bacteriology 191, 4015–4024. doi:10.1128
/JB.01743-08 (2009).

34. Tobalina, L., Pey, J., Rezola, A. & Planes, F. J. Assessment of FBA Based Gene
Essentiality Analysis in Cancer with a Fast Context-Specific Network Reconstruc-
tion Method. PLOS One 11, 1–17. doi:10.1371/journal.pone.0154583
(2016).

35. Mahadevan, R., Edwards, J. S. & Doyle, F. J. Dynamic flux balance analysis of
diauxic growth in Escherichia coli. Biophysical Journal 83 3, 1331–40 (2002).

36. Khandelwal, R. A., Olivier, B. G., Röling, W. F. M., Teusink, B. & Bruggeman, F. J.
Community Flux Balance Analysis for Microbial Consortia at Balanced Growth.
PLOS One 8, 1–10. doi:10.1371/journal.pone.0064567 (2013).

37. Lularevic, M., Racher, A. J., Jaques, C. & Kiparissides, A. Improving the accuracy
of flux balance analysis through the implementation of carbon availability con-
straints for intracellular reactions. Biotechnology and Bioengineering 116, 2339–
2352. doi:10.1002/bit.27025 (2019).

38. Sánchez, B. J. et al. Improving the phenotype predictions of a yeast genome-scale
metabolic model by incorporating enzymatic constraints. Molecular Systems Biol-
ogy 13, 935. doi:10.15252/msb.20167411 (2017).

77

http://dx.doi.org/10.1186/s13059-019-1730-3
http://dx.doi.org/10.1186/s13059-019-1730-3
http://dx.doi.org/10.1038/nprot.2009.203
http://dx.doi.org/10.1038/nprot.2009.203
http://dx.doi.org/https://doi.org/10.1016/S0022-5193(03)00237-6
http://dx.doi.org/https://doi.org/10.1016/S0022-5193(03)00237-6
http://dx.doi.org/10.1038/nature01166
http://dx.doi.org/10.1038/nbt.1614
http://dx.doi.org/10.1007/s00253-016-7521-9
http://dx.doi.org/10.1007/s00253-016-7521-9
http://dx.doi.org/10.1016/j.ijhydene.2013.07.002
http://dx.doi.org/10.1128/JB.01743-08
http://dx.doi.org/10.1128/JB.01743-08
http://dx.doi.org/10.1371/journal.pone.0154583
http://dx.doi.org/10.1371/journal.pone.0064567
http://dx.doi.org/10.1002/bit.27025
http://dx.doi.org/10.15252/msb.20167411

39. Adadi, R., Volkmer, B., Milo, R., Heinemann, M. & Shlomi, T. Prediction of Micro-
bial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Pa-
rameters. PLOS Computational Biology 8, 1–9. doi:10.1371/journal.pcbi.
1002575 (2012).

40. Bekiaris, P. S. & Klamt, S. Automatic construction of metabolic models with en-
zyme constraints. BMC Bioinformatics 21, 19. doi:10.1186/s12859-019-33
29-9 (2020).

41. Beg, Q. K. et al. Intracellular crowding defines the mode and sequence of substrate
uptake by Escherichia coli and constrains its metabolic activity. Proceedings of the
National Academy of Sciences 104, 12663–12668. doi:10.1073/pnas.06098
45104 (2007).

42. Karr, J. R. et al. A Whole-Cell Computational Model Predicts Phenotype from
Genotype. Cell 150, 389–401. doi:10.1016/j.cell.2012.05.044 (2012).

43. O’Brien, E. J., Lerman, J. A., Chang, R. L., Hyduke, D. R. & Palsson, B. Ø.
Genome-scale models of metabolism and gene expression extend and refine growth
phenotype prediction. Molecular Systems Biology 9, 693–693. doi:10.1038/
msb.2013.52 (2013).

44. Alzoubi, D., Desouki, A. A. & Lercher, M. J. Flux balance analysis with or without
molecular crowding fails to predict two thirds of experimentally observed epistasis
in yeast. Scientific Reports 9, 11837. doi:10.1038/s41598-019-47935-6
(2019).

45. MacGillivray, M. et al. Robust Analysis of Fluxes in Genome-Scale Metabolic
Pathways. Scientific Reports 7, 268–268. doi:10.1038/s41598-017-0017
0-3 (2017).

46. Nocedal, J. & Wright, S. J. Numerical Optimization 2nd edition (Springer, New
York, NY, 2006).

47. Boyd, S. P. & Vandenberghe, L. Convex Optimization (Cambridge University Press,
Cambridge, England, 2004).

48. Schweinzer, P. Mathematical Methods for Economic Analysis https://pdfs.
semanticscholar.org/c90d/acecc1c968cfc32cdfd01a039190d0
afd52d.pdf (2011).

49. Lundgren, J., Ronnqvist, M. & Varbrand, P. Optimization (Studentlitteratur, Lund,
Sweden, 2010).

50. Niu, S.-C. The simplex method https://personal.utdallas.edu/˜scn
iu/OPRE-6201/documents/LP4-Simplex.html.

51. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual http://www.
gurobi.com (2020).

52. Xpress Optimization, FICO. Xpress-Optimizer Reference Manual 27.01 https:
//www.msi-jp.com/xpress/learning/square/optimizer-2015
.pdf (2015).

78

http://dx.doi.org/10.1371/journal.pcbi.1002575
http://dx.doi.org/10.1371/journal.pcbi.1002575
http://dx.doi.org/10.1186/s12859-019-3329-9
http://dx.doi.org/10.1186/s12859-019-3329-9
http://dx.doi.org/10.1073/pnas.0609845104
http://dx.doi.org/10.1073/pnas.0609845104
http://dx.doi.org/10.1016/j.cell.2012.05.044
http://dx.doi.org/10.1038/msb.2013.52
http://dx.doi.org/10.1038/msb.2013.52
http://dx.doi.org/10.1038/s41598-019-47935-6
http://dx.doi.org/10.1038/s41598-017-00170-3
http://dx.doi.org/10.1038/s41598-017-00170-3
https://pdfs.semanticscholar.org/c90d/acecc1c968cfc32cdfd01a039190d0afd52d.pdf
https://pdfs.semanticscholar.org/c90d/acecc1c968cfc32cdfd01a039190d0afd52d.pdf
https://pdfs.semanticscholar.org/c90d/acecc1c968cfc32cdfd01a039190d0afd52d.pdf
https://personal.utdallas.edu/~scniu/OPRE-6201/documents/LP4-Simplex.html
https://personal.utdallas.edu/~scniu/OPRE-6201/documents/LP4-Simplex.html
http://www.gurobi.com
http://www.gurobi.com
https://www.msi-jp.com/xpress/learning/square/optimizer-2015.pdf
https://www.msi-jp.com/xpress/learning/square/optimizer-2015.pdf
https://www.msi-jp.com/xpress/learning/square/optimizer-2015.pdf

53. IBM Corporation. IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual
12.7 https://www.ibm.com/support/knowledgecenter/SSSA5
P_12.7.0/ilog.odms.studio.help/pdf/usrcplex.pdf (2016).

54. Ben-Tal, A. & Nemirovski, A. Robust solutions of uncertain linear programs. Op-
erations Research Letters 25, 1–13. doi:https://doi.org/10.1016/S016
7-6377(99)00016-4 (1999).

55. Potra, F. A. & Wright, S. J. Interior-point methods. Journal of Computational and
Applied Mathematics 124, 281–302. doi:10.1016/s0377-0427(00)00433
-7 (2000).

56. Ben-Tal, A. & Nemirovski, A. Robust Solutions of Uncertain Linear Programs.
Operations Research Letters 25, 1–13. doi:10.1016/S0167-6377(99)0001
6-4 (1999).

57. MOSEK ApS. MOSEK Modeling Cookbook 3.2.1 https://docs.mosek.
com/modeling-cookbook/index.html (2019).

58. Gurobi Optimization, LLC. Gurobi Optimizer Webpage https://www.gurob
i.com/products/gurobi-optimizer/ (2020).

59. Lu, H. et al. A consensus S. cerevisiae metabolic model Yeast8 and its ecosys-
tem for comprehensively probing cellular metabolism. Nature Communications 10,
3586 (2019).

60. Norsigian, C. J. et al. BiGG Models 2020: multi-strain genome-scale models and
expansion across the phylogenetic tree. Nucleic Acids Research 48, D402–D406.
doi:10.1093/nar/gkz1054 (2019).

61. Angione, C. Human Systems Biology and Metabolic Modelling: A Review–From
Disease Metabolism to Precision Medicine. BioMed Research International 2019,
1–16. doi:10.1155/2019/8304260 (2019).

62. Nielsen, J. Systems Biology of Metabolism. Annual Review of Biochemistry 86,
245–275. doi:10.1146/annurev-biochem-061516-044757 (2017).

63. Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S. & Gilles, E. D. Metabolic net-
work structure determines key aspects of functionality and regulation. Nature 420,
190–193. doi:10.1038/nature01166 (2002).

64. Schilling, C. H., Letscher, D. & Palsson, B. Ø. Theory for the Systemic Definition
of Metabolic Pathways and their use in Interpreting Metabolic Function from a
Pathway-Oriented Perspective. Journal of Theoretical Biology 203, 229–248. doi:1
0.1006/jtbi.2000.1073 (2000).

65. Barrett, C. L., Herrgard, M. J. & Palsson, B. Decomposing complex reaction net-
works using random sampling, principal component analysis and basis rotation.
BMC Systems Biology 3, 30. doi:10.1186/1752-0509-3-30 (2009).

66. Li, G., Cao, H. & Xu, Y. Structural and functional analyses of microbial metabolic
networks reveal novel insights into genome-scale metabolic fluxes. Briefings in
Bioinformatics 20, 1590–1603. doi:10.1093/bib/bby022 (2019).

79

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.studio.help/pdf/usrcplex.pdf
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.studio.help/pdf/usrcplex.pdf
http://dx.doi.org/https://doi.org/10.1016/S0167-6377(99)00016-4
http://dx.doi.org/https://doi.org/10.1016/S0167-6377(99)00016-4
http://dx.doi.org/10.1016/s0377-0427(00)00433-7
http://dx.doi.org/10.1016/s0377-0427(00)00433-7
http://dx.doi.org/10.1016/S0167-6377(99)00016-4
http://dx.doi.org/10.1016/S0167-6377(99)00016-4
https://docs.mosek.com/modeling-cookbook/index.html
https://docs.mosek.com/modeling-cookbook/index.html
https://www.gurobi.com/products/gurobi-optimizer/
https://www.gurobi.com/products/gurobi-optimizer/
http://dx.doi.org/10.1093/nar/gkz1054
http://dx.doi.org/10.1155/2019/8304260
http://dx.doi.org/10.1146/annurev-biochem-061516-044757
http://dx.doi.org/10.1038/nature01166
http://dx.doi.org/10.1006/jtbi.2000.1073
http://dx.doi.org/10.1006/jtbi.2000.1073
http://dx.doi.org/10.1186/1752-0509-3-30
http://dx.doi.org/10.1093/bib/bby022

67. Segrè, D., Vitkup, D. & Church, G. M. Analysis of optimality in natural and per-
turbed metabolic networks. Proceedings of the National Academy of Sciences 99,
15112–15117. doi:10.1073/pnas.232349399 (2002).

68. Navid, A. & Almaas, E. Genome-level transcription data of Yersinia pestis analyzed
with a new metabolic constraint-based approach. BMC Systems Biology 6, 150–150.
doi:10.1186/1752-0509-6-150 (2012).

69. Almaas, E., Kovács, B., Vicsek, T., Oltvai, Z. N. & Barabási, A.-L. Global organi-
zation of metabolic fluxes in the bacterium Escherichia coli. Nature 427, 839–843.
doi:10.1038/nature02289 (2004).

70. Yim, H. et al. Metabolic engineering of Escherichia coli for direct production of
1,4-butanediol. Nature Chemical Biology 7, 445–452. doi:10.1038/nchembio
.580 (2011).

71. Mardinoglu, A. et al. Genome-scale metabolic modelling of hepatocytes reveals
serine deficiency in patients with non-alcoholic fatty liver disease. Nature Commu-
nications 5. doi:10.1038/ncomms4083 (2014).

72. Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse
microbial communities. Proceedings of the National Academy of Sciences 112,
6449–6454. doi:10.1073/pnas.1421834112 (2015).

73. Lewis, N., Nagarajan, H. & Palsson, B. Constraining the metabolic genotype-pheno-
type relationship using a phylogeny of in silico methods. Nature Reviews Microbi-
ology 10, 291–305. doi:10.1038/nrmicro2737 (2012).

74. Sánchez, B. J., Li, F., Kerkhoven, E. J. & Nielsen, J. SLIMEr: probing flexibility of
lipid metabolism in yeast with an improved constraint-based modeling framework.
BMC Systems Biology 13, 4. doi:10.1186/s12918-018-0673-8 (2019).

75. Dikicioglu, D., Kirdar, B. & Oliver, S. G. Biomass composition: the ”elephant in
the room” of metabolic modelling. Metabolomics 11, 1690–1701. doi:10.1007
/s11306-015-0819-2 (2015).

76. Hucka, M. et al. The systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models. Bioinformatics 19,
524–531. doi:10.1093/bioinformatics/btg015 (2003).

77. Becker, S. A. et al. Quantitative prediction of cellular metabolism with constraint-
based models: the COBRA Toolbox. Nature Protocols 2, 727–738. doi:10.1038
/nprot.2007.99 (2007).

78. Agren, R. et al. The RAVEN Toolbox and Its Use for Generating a Genome-scale
Metabolic Model for Penicillium chrysogenum. PLOS Computational Biology 9,
1–16. doi:10.1371/journal.pcbi.1002980 (2013).

79. King, Z. A. et al. BiGG Models: A platform for integrating, standardizing and shar-
ing genome-scale models. Nucleic Acids Research 44, D515–D522. doi:10.1093
/nar/gkv1049 (2016).

80. Fong, S. S. & Palsson, B. Ø. Metabolic gene-deletion strains of Escherichia coli
evolve to computationally predicted growth phenotypes. Nature Genetics 36, 1056–
1058. doi:10.1038/ng1432 (2004).

80

http://dx.doi.org/10.1073/pnas.232349399
http://dx.doi.org/10.1186/1752-0509-6-150
http://dx.doi.org/10.1038/nature02289
http://dx.doi.org/10.1038/nchembio.580
http://dx.doi.org/10.1038/nchembio.580
http://dx.doi.org/10.1038/ncomms4083
http://dx.doi.org/10.1073/pnas.1421834112
http://dx.doi.org/10.1038/nrmicro2737
http://dx.doi.org/10.1186/s12918-018-0673-8
http://dx.doi.org/10.1007/s11306-015-0819-2
http://dx.doi.org/10.1007/s11306-015-0819-2
http://dx.doi.org/10.1093/bioinformatics/btg015
http://dx.doi.org/10.1038/nprot.2007.99
http://dx.doi.org/10.1038/nprot.2007.99
http://dx.doi.org/10.1371/journal.pcbi.1002980
http://dx.doi.org/10.1093/nar/gkv1049
http://dx.doi.org/10.1093/nar/gkv1049
http://dx.doi.org/10.1038/ng1432

81. Ibarra, R. U., Edwards, J. S. & Palsson, B. O. Escherichia coli K-12 undergoes
adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–
189. doi:10.1038/nature01149 (2002).

82. Dromms, R. A., Lee, J. Y. & Styczynski, M. P. LK-DFBA: a linear programming-
based modeling strategy for capturing dynamics and metabolite-dependent regula-
tion in metabolism. BMC Bioinformatics 21. doi:10.1186/s12859-020-342
2-0 (2020).

83. Motamedian, E., Mohammadi, M., Shojaosadati, S. A. & Heydari, M. TRFBA: an
algorithm to integrate genome-scale metabolic and transcriptional regulatory net-
works with incorporation of expression data. Bioinformatics 33, 1057–1063. doi:1
0.1093/bioinformatics/btw772 (2016).

84. Marmiesse, L., Peyraud, R. & Cottret, L. FlexFlux: combining metabolic flux and
regulatory network analyses. BMC Systems Biology 9, 93. doi:10.1186/s1291
8-015-0238-z (2015).

85. Birch, E. W., Udell, M. & Covert, M. W. Incorporation of flexible objectives and
time-linked simulation with flux balance analysis. Journal of Theoretical Biology
345, 12–21. doi:https://doi.org/10.1016/j.jtbi.2013.12.009
(2014).

86. Nelson, D. L. Principles of Biochemistry 6th edition (W.H. Freeman and Company,
New York, NY, 2013).

87. Chang, R. & Goldsby, K. General Chemistry: The Essential Concepts 7th edition
(McGraw-Hill, New York, NY, 2014).

88. Motulsky, H. Equation: Michaelis-Menten Model https://www.graphpad.
com/guides/prism/7/curve-fitting/reg_michaelis_menten_
enzyme.htm.

89. Uludag-Demirer, S., Duran, J. & Tanner, R. D. Estimating the turnover number in
enzyme kinetic reactions using transient and stationary state data. Brazilian Journal
of Pharmaceutical Sciences 45, 635–642 (2009).

90. Davidi, D. et al. Global characterization of in vivo enzyme catalytic rates and
their correspondence to in vitro kcat measurements. Proceedings of the National
Academy of Sciences 113, 3401–3406. doi:10 . 1073 / pnas . 1514240113
(2016).

91. Massaiu, I. et al. Integration of enzymatic data in Bacillus subtilis genome-scale
metabolic model improves phenotype predictions and enables in silico design of
poly-γ-glutamic acid production strains. Microbial Cell Factories 18, 3. doi:10.1
186/s12934-018-1052-2 (2019).

92. Python. Python programming language—official website https://www.pytho
n.org/ (2019).

93. Ebrahim, A., Lerman, J. A., Palsson, B. O. & Hyduke, D. R. COBRApy: COnstraint-
Based Reconstruction and Analysis for Python. BMC Systems Biology 7, 74. doi:1
0.1186/1752-0509-7-74 (2013).

81

http://dx.doi.org/10.1038/nature01149
http://dx.doi.org/10.1186/s12859-020-3422-0
http://dx.doi.org/10.1186/s12859-020-3422-0
http://dx.doi.org/10.1093/bioinformatics/btw772
http://dx.doi.org/10.1093/bioinformatics/btw772
http://dx.doi.org/10.1186/s12918-015-0238-z
http://dx.doi.org/10.1186/s12918-015-0238-z
http://dx.doi.org/https://doi.org/10.1016/j.jtbi.2013.12.009
https://www.graphpad.com/guides/prism/7/curve-fitting/reg_michaelis_menten_enzyme.htm
https://www.graphpad.com/guides/prism/7/curve-fitting/reg_michaelis_menten_enzyme.htm
https://www.graphpad.com/guides/prism/7/curve-fitting/reg_michaelis_menten_enzyme.htm
http://dx.doi.org/10.1073/pnas.1514240113
http://dx.doi.org/10.1186/s12934-018-1052-2
http://dx.doi.org/10.1186/s12934-018-1052-2
https://www.python.org/
https://www.python.org/
http://dx.doi.org/10.1186/1752-0509-7-74
http://dx.doi.org/10.1186/1752-0509-7-74

94. Hart, W., Watson, J.-P., Woodruff, D. & Watson, J.-P. Pyomo: Modeling and solv-
ing mathematical programs in Python. Mathematical Programming Computation 3,
219–260. doi:10.1007/s12532-011-0026-8 (2011).

95. Schomburg, I. et al. The BRENDA enzyme information system–From a database
to an expert system. Journal of Biotechnology 261, 194–206. doi:https://doi.
org/10.1016/j.jbiotec.2017.04.020 (2017).

96. Jeske, L., Placzek, S., Schomburg, I., Chang, A. & Schomburg, D. BRENDA in
2019: a European ELIXIR core data resource. Nucleic Acids Research 47, D542–
D549. doi:10.1093/nar/gky1048 (2018).

97. Lieven, C. et al. MEMOTE for standardized genome-scale metabolic model testing.
Nature Biotechnology 38, 272–276. doi:10.1038/s41587- 020- 0446- y
(2020).

98. MathWorks. MATLAB programming language—official website https://se.
mathworks.com/products/matlab.html (2019).

99. Python Software Foundation. What is Python? https://docs.python.org/
3/faq/general.html#what-is-python (2020).

100. Zotter, A., Bäuerle, F., Dey, D., Kiss, V. & Schreiber, G. Quantifying enzyme activ-
ity in living cells. The Journal of Biological Chemistry 292, 15838–15848. doi:10
.1074/jbc.M117.792119 (2017).

101. Raser, J. M. & O’Shea, E. K. Noise in Gene Expression: Origins, Consequences,
and Control. Science 309, 2010–2013. doi:10 . 1126 / science . 1105891
(2005).

102. Huh, D. & Paulsson, J. Random partitioning of molecules at cell division. Pro-
ceedings of the National Academy of Sciences 108, 15004–15009. doi:10.1073
/pnas.1013171108 (2011).

103. Soltani, M., Vargas-Garcia, C. A., Antunes, D. & Singh, A. Intercellular Variabil-
ity in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes.
PLOS Computational Biology 12, 1–23. doi:10.1371/journal.pcbi.1004
972 (2016).

104. Wittig, U. et al. SABIO-RK—database for biochemical reaction kinetics. Nucleic
Acids Research 40, D790–D796. doi:10.1093/nar/gkr1046 (2011).

82

http://dx.doi.org/10.1007/s12532-011-0026-8
http://dx.doi.org/https://doi.org/10.1016/j.jbiotec.2017.04.020
http://dx.doi.org/https://doi.org/10.1016/j.jbiotec.2017.04.020
http://dx.doi.org/10.1093/nar/gky1048
http://dx.doi.org/10.1038/s41587-020-0446-y
https://se.mathworks.com/products/matlab.html
https://se.mathworks.com/products/matlab.html
https://docs.python.org/3/faq/general.html#what-is-python
https://docs.python.org/3/faq/general.html#what-is-python
http://dx.doi.org/10.1074/jbc.M117.792119
http://dx.doi.org/10.1074/jbc.M117.792119
http://dx.doi.org/10.1126/science.1105891
http://dx.doi.org/10.1073/pnas.1013171108
http://dx.doi.org/10.1073/pnas.1013171108
http://dx.doi.org/10.1371/journal.pcbi.1004972
http://dx.doi.org/10.1371/journal.pcbi.1004972
http://dx.doi.org/10.1093/nar/gkr1046

Appendix A
A.1 Nonuniqueness of uncertainty matrices
We will here show that diagonal covariance matrices, Qdiag ∈ Rn×n, can be factorized by
an infinite number of matrices, R, such that Qdiag = RTR.

First, we denote the index set of nonzero diagonal entries of Qdiag as I. That is, we
define I = {i : the (i, i)th entry of Qdiag is nonzero}. As |I| ≤ n, we are guaranteed the
existence of a set of linearly independent vectors, {vi}i∈I , in Rn. Now perform Gram-
Schmidt orthogonalization on that set to obtain a set of orthonormal vectors {ei}i∈I . Now
define, for i = 1 . . . n, the following vectors

ri =

{
σiei if i ∈ I
0 if i /∈ I,

where σi is the (i, i)th element of Qdiag and 0 is the zero vector. Now define R to be the
n-by-n matrix with ri as its ith column. Let A = RTR and denote the (i, j)th entry of A
by aij . We then have

aij = rTi rj =

{
σ2
i if i = j

0 if i 6= j,

hence A = Qdiag, and consequently Qdiag = RTR. Our uncertainty matrix may thus
contain any collection of column vectors corresponding to an orthogonal set of |I| vectors
of lengths equaling the random variable variances. For any dimension |I|, we clearly have
an infinite number of such sets, and hence an infinite number of distinct R matrices that
satisfy RTR = Qdiag.

83

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f B
io

te
ch

no
lo

gy
 a

nd
 F

oo
d

Sc
ie

nc
e

M
as

te
r’s

 th
es

is

Christoffer Gretarsson Alexandersen

Acknowledging the uncertainty of
enzyme kinetic parameters in
constraint-based metabolic modeling

Master’s thesis in Biotechnology (5 year)

Supervisor: Eivind Almaas

May 2020

	Sammendrag
	Summary
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background and Theory
	Mathematical optimization
	Genome-scale metabolic models
	Constraint-based analysis of metabolic models
	Extending beyond canonical flux balance analysis

	Material & Methods
	Genome-scale metabolic models containing enzyme kinetic data
	Computational tools
	Computational implementation

	Results
	Robust analysis of metabolic pathways under enzymatic regulation
	Mathematical properties
	Computational speed
	Designing probability distributions of enzyme kinetic parameters
	Analyzing the impact of stochasticity in enzyme kinetic parameters

	Discussion
	Outlook
	Bibliography
	Appendix
	
	Nonuniqueness of uncertainty matrices

