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ABSTRACT  
 
Coastal areas are important habitats for anadromous brown trout (sea trout, Salmo trutta), but 

vulnerable to anthropogenic activities, such as aquaculture, due to the free movement of 

pathogens between the net pen and the surrounding water masses. The Norwegian government 

has designated 29 fjords for protection of important Atlantic salmon populations. Fish residing 

in these protected areas, known as “national salmon fjords” are expected to have lower levels 

of salmon lice and thus be less affected by the negative effects by lice infestations. Investigating 

the sea trout´s migration in relation to a national salmon fjord is important to evaluate to what 

extent the sea trout utilizes the protected habitats. The aim of this thesis was to investigate 

individual sea trout migratory behavior in relation to the location and coverage of Beiarfjorden 

national salmon fjord. The study was conducted over a two-year period, and acoustic telemetry 

was used to examine how the sea trout originating from river Beiarelva utilized the fjord system.  

 
Tagged sea trout were recorded in all parts of the fjord system. More time was spent in the 

protected area (63%) compared to the non-protected areas. Two different migratory behavioral 

traits were observed: sea trout either stayed in Beiarfjorden (medium-distance migrants, < 17 

km) or migrated out of Beiarfjorden (long-distance migrants, > 17 km). Of the fish entering the 

fjord, 84% were classified as long-distance migrants. No individuals remained close to the river 

where they were tagged (< 4 km) throughout the summer. Individuals of a greater body length 

were more likely to leave Beiarfjorden to more open sea habitats and stayed a lower proportion 

of time in the protected area compared to smaller individuals. Body condition, sex, and age had 

limited influence on the decision on whether to stay in Beiarfjorden, and also limited effect on 

the proportion of time spent within versus the non-protected areas. Sea trout tended to use 

greater proportions of their time at sea within the protected area in 2020 than in 2019. 

 
The results indicates that Beiarfjorden national salmon fjord includes habitats that are important 

for sea trout, although there was variation among individuals in the proportion of time resided 

within the protected area. The degree of protection given did not seem random, but depended 

on the length of the fish, where larger individuals appeared to be less protected than smaller 

individuals. Beiarfjorden national salmon fjord is one of the smallest national salmon fjords in 

Norway, but is a fjord with many long-distance migrating sea trout. Hence, to protect the entire 

sea trout population, the protected area should be of a larger size. Knowledge of how well 

national salmon fjords protects sea trout from potential negative impact from aquaculture will 

be important when evaluating the function of these marine protected areas.  
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SAMMENDRAG  
 
Kystområder er viktige leveområder for anadrom brun ørret (sjøørret, Salmo trutta), men også 

sårbare for menneskeskapte påvirkninger, slik som oppdrettsanlegg, på grunn av den frie 

bevegelsen av patogener mellom oppdrettsmær og vannmassene rundt. Regjeringen har utpekt 

29 fjorder for spesiell beskyttelse av viktige laksebestander. Fisk som oppholder seg i slike 

beskyttede områder, kjent som "nasjonale laksefjorder", forventes å ha lavere nivåer av lakselus 

og dermed være mindre påvirket av de negative effektene forbundet med påslag av selus. Det 

å undersøke sjøørretens vandringer i relasjon en nasjonal laksefjord er viktig for å evaluere i 

hvilken grad sjøørret bruker habitatene som er beskyttet. Målet med denne oppgaven var å 

undersøke sjøørretens atferd i forhold til plasseringen og dekningen av Beiarfjorden nasjonale 

laksefjord. Studien ble utført over en toårsperiode, hvor akustisk telemetri ble brukt til å 

undersøke hvordan sjøørret fra Beiarelva benyttet fjordsystemet. 

 
Merket sjøørret ble registrert i alle deler i fjordsystemet. Totalt brukte sjøørreten mer tid i det 

beskyttet området (63%) sammenlignet med det ikke-beskyttede fjordområdet utenfor. To 

forskjellige vandringsatferder ble observert: sjøørret som oppholdt seg kun i Beiarfjorden 

(mellomdistansevandrere) og sjøørret som forlot Beiarfjorden (langdistansevandrere). Av fisk 

som ble registrert i fjorden, gjennomførte 84% lang-distansevandringer (> 17 km). Ingen 

individer holdt seg kun i nærhet til Beiarelva (< 4 km) gjennom hele sommeren. Individer med 

en lengre kroppslengde forlot Beiarfjorden til mer åpen sjø og oppholdt seg en kortere tid i det 

beskyttede området sammenlignet med mindre individer. Kondisjonsfaktor, kjønn og alder 

hadde en begrenset påvirkning i beslutningen på å bli i Beiarfjorden, og i forhold til tiden brukt 

i det beskyttede området versus det ubeskyttede området. Sjøørret hadde en tendens til å bruke 

en høyere andel tid i det beskyttede området i 2020, enn i 2019. 

 
Resultatene viser at den nasjonale laksefjorden Beiarfjorden inkluderer viktige habitat for 

sjøørreten, selv om det er variasjon blant individer i andelen tid de oppholder seg i det 

beskyttede området. Graden beskyttelse gitt av den nasjonale laksefjorden virker ikke tilfeldig, 

men å avhenge av lengden på fisken, hvor lengre individer ser ut til å være dårligere beskyttet 

enn kortere og mindre individer. Beiarfjorden nasjonale laksefjord er en av de minste nasjonale 

laksefjordene i Norge, men har mange langdistansevandrere. Derfor, for å beskytte hele 

bestanden, bør det beskyttede området være større. Kunnskap om hvor godt nasjonale 

laksefjorder beskytter sjøørret mot potensielle negative påvirkning fra opprett, vil være viktig 

når man skal vurdere funksjonen til disse marine verneområdene. 
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1. INTRODUCTION 

Atlantic salmon (Salmo salar L.) farming in Norway has had a large growth since the 

production started in the 1970s (Statistics Norway, 2020). Norway is the largest 

production country, with a production share of 55% of the global production (Iversen et al., 

2020). In 2019, more than 1.3 million tons of Atlantic salmon were produced in Norway, 

distributed in approximately 1000 fish farms along the coastline (Norwegian Directorate of 

Fisheries, 2020b; a). Open caged farming is the most widespread production form in Norway, 

a production method with challenges regarding free movement of pathogens between the net 

pen and the surrounding water masses (Grefsrud, 2021). This free movement can have negative 

effects on wild salmonids, in regards to lice and other diseases (Grefsrud, 2021).  

 
Open cage salmon farming is known to considerably increase the number of salmon lice 

(Lepeophtheirus salmonis K.) infecting wild salmonids in sea areas with salmon farming (Bjørn 

et al., 2001; Costello, 2009; Jansen et al., 2012; Thorstad et al., 2015). When farming of 

Atlantic salmon was established, salmon lice quickly developed as a concern (Heuch et al., 

2005). During the last decades, the marine parasite has become one of the most serious 

pathogens on migrating wild salmonids (Thorstad et al., 2015; Grefsrud et al., 2018; Grefsrud, 

2021), and is considered the greatest threat to wild anadromous brown trout (Salmo trutta L., 

hereafter referred to as sea trout) along the coastline in Norway (Anon, 2019). Salmon lice feed 

on host mucus, skin and underlying tissue (Costello, 2006; Thorstad et al., 2015). As a result, 

the host may experience physiological stress or death due to disturbances in osmoregulation, in 

addition to sub lethal effects, such as reduced feeding and growth (Costello, 2006; Thorstad et 

al., 2015). Moreover, increased susceptibility to secondary infections, and therefore a reduced 

disease resistance is also a risk, leading to a higher mortality in heavily infected hosts (Bjørn et 

al., 2001; Wells et al., 2007; Thorstad et al., 2015). 

Sea trout are especially vulnerable to salmon lice, because most individuals stay in fjords and 

coastal waters where salmon farms are situated during their marine migration (Thorstad et al., 

2015). In Norway, sea trout are usually not observed far from their native river (Thorstad et al., 

2016), and only occasionally found in the open ocean (Birnie-Gauvin et al., 2019). Some sea 

trout prefer the innermost parts of the fjords and stay close to the river mouth year-round, while 

others spend more time further out in the fjord (Jensen et al., 2014; Eldøy et al., 2015). Studies 

on sea trout have previously demonstrated a large individual variation in behavior regarding 
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migration timing (Berg & Berg, 1987; Jonsson & Jonsson, 2002) and migration distance (Berg 

& Berg, 1987; Eldøy et al., 2015). Such variation may be due to different biological 

characteristics among individuals, such as body length, age, sex and body condition (Eldøy et 

al., 2015; Bordeleau et al., 2018; Eldøy et al., 2021). Furthermore, the time spent at sea varies 

from only a few weeks, during the summer only, to two or more years at sea before returning 

to their origin river to spawn (Klemetsen et al., 2003; Thorstad et al., 2016). 

 
The ultimate goal of the marine migration among salmonids is most likely to improve fitness, 

such as through increased growth, and avoidance of unfavorable environmental conditions 

(Jonsson, 1985; Gross et al., 1988). Good feeding opportunities at sea results in a larger body 

size and gonadal production, and the reproductive success is therefore increased (Jonsson, 

1985). However, the life history strategy that provides the opportunity for increased fitness may 

also involve disadvantages, such as higher energetic cost due to smoltification, osmoregulation 

and swimming (Klemetsen et al., 2003). In addition, marine migration also increases risks of 

predation, diseases and parasites (Bjørn et al., 2001; Klemetsen et al., 2003).  

 
Studies have demonstrated that sea trout tend to return to brackish or fresh water if heavily 

infected with salmon lice (Birkeland, 1996; Bjørn et al., 2001; Halttunen et al., 2018). Salmon 

lice have a low tolerance for low levels of salinity and die or shed if their host remains in 

brackish or fresh water for a longer period (Hahnenkamp & Fyhn, 1985; McLean et al., 1990). 

However, compared to the individuals spending a longer growth season at sea, the returned fish 

will have a reduced growth, which may result in a reduced fecundity and reproductive success 

(Birkeland, 1996; Wells et al., 2007). A recent report classifying the status of sea trout in 430 

Norwegian rivers concluded that almost half of the stocks were in poor or very poor state (48%), 

with declines in population abundance. The reasons included hydropower, agriculture, 

overexploitation, habitat changes, and salmon lice, where salmon lice had by far the most 

negative impact on sea trout (Anon, 2019).  

 
The Norwegian authorities have implemented several measures in order to reduce the infection 

pressure of salmon lice to wild salmonids. One of these measures was the establishment of 

"national salmon fjords" (NOU, 1999:9; DKMD, 2002; 2006). In 2007, 52 rivers and 29 fjords 

were designated as national salmon rivers and national salmon fjords (Aasetre & Vik, 2013). 

The aim of the protection regime, is to rebuild the Atlantic salmon stocks to a size and 

composition that ensures diversity within the species (DKMD, 2006). In a national salmon 

fjord, no new fish farms are allowed to be established. In addition, existing fish farms will have 
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stricter requirements for escape prevention and control of salmon lice (NOU, 1999:9; DKMD, 

2002; 2006). Thus, wild salmonids in a national salmon fjord are expected to have lower levels 

of salmon lice and consequently be less affected by them, than fish outside a protected area 

(Bjørn et al., 2011). The national salmon fjords were established to protect important Atlantic 

salmon stocks (NOU, 1999:9; DKMD, 2002; 2006), but they will also affect sea trout 

populations.  

 
As of today, only salmon are included in some management measures, such as the traffic light 

system and national salmon fjords (DKMD, 2006; Nilsen et al., 2019a). Due to the sea trout’s 

unique use of fjord system as habitat, these management measures may be different if sea trout 

were included (Nilsen et al., 2019b). One of the challenges when establishing a protection 

regime for sea trout is the spatial conflict with aquaculture. Even so, it is important to aim 

towards a sustainable coexistence between aquaculture and other interests, (NFD, 2015) such 

as sea trout. Thus, it is essential to investigate how the sea trout utilize the fjord system to be 

able to preserve them. Information regarding the movements and residency of sea trout within 

and outside a national salmon fjord may be of importance to see if, or to what extent, the sea 

trout’s behavior allows them to be protected by these national salmon fjords. This information 

can further be used when assessing the functions of these national salmon fjords. Furthermore, 

gaining a greater knowledge of habitat used by sea trout in relation to aquaculture is needed to 

achieve efficient management of populations and to evaluate how implemented management 

measures may be improved.  

 
The main aim of this thesis was to investigate individual sea trout migratory behavior in relation 

to the location and coverage of a national salmon fjord. The objectives were to investigate 

migration patterns inside and outside the protected fjord area in terms of: (1) timing of sea entry 

and freshwater return, and return rate, (2) migration distance from the river mouth, (3) potential 

differences in marine residence time between protected and non-protected areas, and (4) 

individual repeatability in marine migration behavior between two years of tracking. This was 

done by using acoustic telemetry with individually coded transmitters. Sea trout were captured 

in Beiarelva national salmon river and were tracked within, and outside Beiarfjorden national 

salmon fjord in Northern Norway. 

 

 

 



 4 

2. MATERIALS AND METHODS  

2.1 Study area 
 
The present study was conducted in a fjord system within the three municipalities Beiarn, 

Gildeskål and Bodø in Nordland county in Northern Norway (figure 1). The innermost fjord 

Beiarfjorden proceeds into the fjord system consisting of the Holmsundfjorden, 

Morsdalsfjorden and Nordfjorden. The Beiarelva watercourse (67.0693°N 14.5328°E) flows 

northward from the mountain area Saltfjellet, and river Beiarelva drains to the innermost part 

of Beiarfjorden. The watercourse has several tributaries and streams, but no anadromous stretch 

connecting to a lake. The catchment area is about 1065 km2, and the watercourse is the fifth 

largest in Nordland with an average water flow of 33 m3/s (Sjursen et al., 2018). The river 

Beiarelva is affected by glaciers, causing cold water temperatures in the river and estuary, and 

snow melt influences much of the water flow in spring and early summer (Hellen et al., 2016). 

 
In 2007, parts of the present study area was designated as a national salmon fjord, with an area 

of approximately 38 km2, to protect the Atlantic salmon population in river Beiarelva. 

Beiarfjorden national salmon fjord includes areas in the municipalities of Gildeskål and Beiarn, 

and consists of Beiarfjorden and Holmsundsfjorden (DKMD, 2006). Within the fjord system, 

but outside the protected area, seven open caged Atlantic salmon fish farms (figure 1) were 

operated during the study period. During the study period, May 2019-October 2020, the number 

of salmon lice per fish was above the legal lice per salmon limit at two of the aquaculture 

facilities (https://www.barentswatch.no/fiskehelse/, table 1). Furthermore, the fish disease ISA 

(infectious salmon anaemia) was suspected, but later disproved, at the localities Mulnesodden 

and Mulnesodden S (figure 1), between 23.01.2020-23.01.2021 and 21.08.2020-23.01.2021 

respectively (https://www.barentswatch.no/fiskehelse/,).  

 
TABLE 1: Overview of aquaculture facilities and week numbers when the mean number of salmon lice per 
fish counted at the facilities in the study area was above the lice limit (0.5 adult female lice per fish). Mean 
number of lice in moving stages and attached lice per fish is also given. Lice in moving stages move freely 
over the host skin to feed, while attached lice feed on the host skin around their point of attachment (Costello, 
2006). 

Week Year Facilities 
Adult  Lice in Attached lice 

(n) 

Sea  
female lice 

(n) 
 moving stages 

(n) 
Temperature 

(°C) 
43 2019 Hammarvika 1.00 0.25 0.0 9.5 
44 2019 Hammarvika 0.75 0.55 0.0 9.5 
43 2020 Kjervika 0.92 1.00 0.1 9.5 
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 FIGURE 1: Map of the study area. The upper panel shows Beiarfjorden national salmon fjord, names 
and location of operating fish farms, location of the river Beiarelva and names of fjords in the fjord 
system. The lower panel indicate the position of deployed acoustic receivers, distribution of transect 
lines (T1-T9) with receivers and division of the zones (A-H). The locations of temperature and salinity 
loggers, as well as fish farms with acoustic receivers, are also included. 
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2.2 Collection of data with use of telemetry 
2.2.1 Fish capture and tagging 
 
Fish were tagged in the spring of 2019 and 2020 (table 2). In total, 59 sea trout were caught, 

and an acoustic transmitter was implanted in the abdominal cavity. All fish were caught by 

using fishing rod and line in the lower part of river Beiarelva. Hooks used were barbless to 

ensure minimal damage to the fish. After capture, the fish were kept in keep nets located in 

parts of the river with relatively low current until tagging (< 4 hours).  

 
The fish were placed in a tarpaulin-covered tub containing a solution of Benzoak (15-20 mL 

per 100 L water) for approximately four minutes. When anesthetized, the total body length (LT) 

and weight of the fish were measured. A 1.5-2.0 cm incision was made on the side of the linea 

alba and a sterilized acoustic transmitter was inserted into the body cavity. The incision was 

closed with two or three independent sutures (Resolon 3/0). In 2019, but not in 2020, a Carlin 

tag was attached to the fish with steel wires just below the dorsal fin using two cannulas, to 

recognize the fish in the event of recapture. Lastly, approximately 15-20 scales were sampled 

from each fish for age determination and a small piece of the adipose fin was clipped for DNA 

sex determination and to verify the specie.  

 
Throughout the operation, water was poured over the gills to keep them wet. After tagging, fish 

were kept in holding tanks for recovery until normal behavior was regained (approximately 3-

5 minutes). The fish were then released back into the river close to the capture site. The 

experimental procedures were approved by the Norwegian National Animal Research 

Authority (permission number 19/23443). 

 
TABLE 2: Dates and year of tagging, number of sea trout tagged, sex, and mean, standard deviation (SD) 
and range for total body length and body mass are given for each tagging group.  

Tagging  Date 
tagged n Male:Female  Total lenght (mm) Body mass (g) 

group (n) Mean ± SD Range Mean ± SD Range 

2019 
30.04-
06.05 34 25:9 516 ± 110 340-730 1261 ± 829 240-3320 

2020 
20.04-
22.04 25 15:10 600 ± 124 380-840 1948 ± 1130 420-5240 

 
 
Fish tagged in 2020 had a had a longer LT (Welch two-sample t-test, n = 59, P < 0.05) and 

larger body mass (Wilcoxon rank sum test, n = 59, P < 0.05), than fish tagged in 2019. 
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2.2.2 Acoustic transmitters  
 
The fish were, depending on total body length, tagged with one of two sizes of cylindric 69 kHz 

acoustic transmitters from Thelma Biotel AS (Trondheim, Norway). Model ID-MP9L (29.4 x 

9.0 mm, 5.2 g in air, 0.2-2.2% of fish total body mass; estimated battery life of ~13 months; 

output 146 dB re 1uPa @1m) was used for fish LT > 340 mm and model ID-MP13 (12.7 x 33.3 

mm, 11.5 g in air, 0.2-2.7% of fish total body mass; estimated battery life of ~26 months; output 

153 dB re 1uPa @1m) was used for fish with LT > 380 mm. Each tag had a unique ID-code. 

The tags transmitted an acoustic signal with a random delay between consecutive signals of 30-

90 seconds to minimize the risk of signal collision if two or more tagged fish were within the 

receiver range at the same time. 

 

2.2.3 Tracking of tagged fish  
 
The fish were tracked by using 40 automatic receivers (Vemco Inc., Halifax, Canada, model 

VR2W and VR2W-AR). Of these, 38 were deployed in the fjord system and two in the river. 

The receivers were either attached to land, moored to buoys, submerged to the seabed with an 

acoustic release system (Sub sea sonic model AR60, Sub Sea Sonic inc., San Diego, USA or 

Vemco Ascent Acoustic Release, Vemco inc., Halifax, Canada), or chained to existing 

infrastructure at different fish farms located in the fjord system. The depth of the receivers in 

the river were approximately two meters, while most of the receivers in the fjord system were 

moored five meters below sea surface. The exception was the acoustic release stations, where 

the receivers were placed 15-150 meters below surface, depending on the depth in the fjord 

where they were placed and which acoustic release system used. The receivers attached to the 

moored ropes on buoys were attached to 40-80 kg anchors at the bottom, preventing them from 

drifting. Fish passing receivers were registered and the data were automatically stored. 

Receivers were regularly inspected throughout the study period to check battery and download 

data. The receivers in the river were removed in late autumn and deployed back in the river in 

spring due to ice formation in the river during the winter.  

 

2.2.4 Receiver performance  
 
To ensure reliability of the receiver lines, the receiver performance was checked. Firstly, the 

ID-codes of tagged fish registered at the outermost line of receivers (in the north, line T9, and 

in the south, line T7) were compared to the ID-codes of fish recorded at all transects in route 
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from T2 to the outermost receiver (figure 1). All fish that were detected at the outermost 

receiver line were also detected when passing the transects further in the fjord system. 

Secondly, receiver performance was investigated at T1 in the river by checking if fish tagged 

were registered at T1 before being registered in the fjord system. In 2019, 21% of tagged 

individuals were registered in the fjord without being registered at T1. Fish tagged in 2020 were 

not included in this analysis as they were tagged before the receiver at T1 was deployed in the 

river after the winter. In addition, 21 of the acoustic receivers in the fjord system had built-in 

pinger tags (Vemco model VR2W-AR), which were programmed to transmit signals similar to 

those of the tagged fish once every ten minutes. When analyzing the pinger tag signals, overlap 

between signals from adjacent receivers was found, indicating that fish passing through the 

transect lines would have been recorded by a receiver. However, two of the receivers on line 

T8 (station 9 and station 13) were out of service during summer and fall of 2019, hence the 

receiver performance has likely been reduced in this period.  

 

2.3 Age determination by scale analysis  
 
The scales collected from the fish during tagging were taken past the dorsal fin and above the 

lateral line with use of forceps. The scales were stored in paper envelopes until analysis in the 

laboratory and was examined at the NTNU University Museum by using a light microscope. 

Favorable scales for age analysis were selected and imprinted onto a 1 mm Lexan plate using a 

pressing iron. The Lexan plate was pictured and analyzed with a computer-controlled 

stereoscope (Leica M165C with camera Leica MC170 HD, Sankt Gallan, Switzerland) and its 

connected software, LAS V4.5. Scale readings were completed by using the method described 

by Dahl (1910) and Lea (1910). To avoid subjective results, the results were discussed, and 

quality checked by an experienced scale reader.  

2.4 Genetic sex and species determination  
 
To determine the sex and verify specie of the tagged fish, a small sample of the adipose fin of 

each individual was genetically analyzed at the NTNU University Museum DNA lab as 

described in Eldøy et al. (2021). In addition to sex determination, the method described in Eldøy 

et al. (2021) also verifies the specie.  
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2.5 Environmental parameters  
 
Salinity and water temperature were measured every sixth hour with temperature and salinity 

data loggers (Star Oddi model DST centi-CT, Reykjavik, Iceland) placed at the location of two 

of the receivers in the fjord and one in the estuary. One data logger was attached to the rope 

with the acoustic receivers, at approximately 5 meters depth (receiver line T7, figure 1). The 

two other loggers were attached to two different docks (by receiver line T2 and receiver 39) at 

between 2-4 meters depth, depending on the tide. When analyzing these data, a measurement 

error was observed. Therefore, no salinity data from station 39 during the period 10.06.2019 to 

02.10.2019 was available. Furthermore, mean temperatures and salinities for 2020 are not 

calculated and compared due to technical problems with the equipment.   

 

2.6 Data analyses  
2.6.1 Calculation of condition factor  
 
Individual condition factor (Fulton´s K) was calculated using the formula (Ricker, 1975):  

 
! = 100	 × 	'	 ×	()* 

 
Where W is the body mass (g) of the fish, and L is the total body length (cm).  

 

2.6.2 Filtration of telemetry data and removal of registrations  
 
Registrations of tagged fish spanned a period of one and a half year (two migration seasons, 

02.05.2019-12.09.2020). Registrations were last downloaded 14.10.2020. The initial number 

of registrations from individuals tagged on the 40 receivers during this period was 1 043 937 

(not including pinger tags from VR2W-AR receivers). All data was stored and managed in VUE 

[version 2.6.0, VEMCO, 02.2019]. 

 
There are two main sources of error by means of registrations when using acoustic telemetry: 

sound pollution and tag collision. Sound pollution occurs when sound from other sources, such 

as wind and waves, are interpreted as a tag signal by a receiver. Since these signals seldom 

match any of the fish ID-codes, they are often negligible when filtering the data. Tag collision 

occurs when signals from different acoustic tags reaches the receivers simultaneously, creating 

a separate signal. Tag collision have a higher risk of being identical to another fish ID-code, as 

they derive from similar codes. Although use of data filtration and removal of registrations will 
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reduce some of these false registrations, it is not possible to eliminate all registration errors 

(Pincock, 2012). However, they are reduced by filtering the data. The filter used in the present 

study required at least two registrations from a fish unique ID-code within a time span of 30 

minutes to accept the registrations as true. The registrations defined as false were excluded from 

further analyses. During visual inspection of the data, four registrations (all at line T8) that were 

filtered out by the time filter were kept for the analyses. These registrations were considered 

realistic due to the overall tracks of the fish and were of importance for the residence time 

analyses. The final data set used in the analysis consisted of 1 038 084 (99.4% of the initial 

number) registrations.  

 

2.6.3 Timing and duration of marine migration 
 
The following procedures were used to calculate the duration of marine migrations of the fish. 

The beginning of the marine migration phase was set at the first registration of the fish in the 

innermost line in the fjord (T2). When the last registration of a fish occurred at line T2, the fish 

was assumed to have returned from the marine migration.  

 
In some cases (n = 15), fish moved back and forth between the estuary and the river after 

tagging. In such cases, the first registration at T2 after the shifting between habitats, was used 

as the start of the marine migration to reduce risk of including adverse behavior caused by 

tagging and handling. In a few cases (n = 5), sea trout were recorded in the estuary after 

residency in the river. In these cases, the last registration at T2 before the residency in the river 

was used as the end of migration.   

 

2.6.4 Defining short-, medium- and long-distance migrants  
 
Each individual fish registered in the fjord was classified as either a short-, medium- or long-

distance migrant, depending on which transect lines they were registered at during the study 

period. The distances each fish was measured (from Kartverket) to travel should be considered 

a minimum estimate of the true marine migration distance, as the distance was measured as the 

shortest possible swimming distance.  

 
• Fish that were recorded at, but never beyond, the closest line to the river (line T2, figure 

1) were classified as short-distance migrants (< 4 km). 
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• Fish recorded at line T4, but never beyond, were classified as medium-distance migrants 

(< 17 km). 

• Fish that were recorded past line T4 were classified as long-distance migrants (> 17 

km). 

 
Fish classified as short- or medium-distance migrants that did not return from migration, were 

excluded from the analysis if the number of days they had been tracked in the fjord did not 

exceed a set minimum threshold. The exclusion of fish disappearing was done to ensure that 

fish were not classified as short- or medium-distance migrants only because they disappeared 

from the study before they had time to perform a potential long-distance migration. The 

minimum threshold was defined as the average time long-distance migrating fish from the same 

year and tracking group (see chapter 2.2.6), spent from their first day of migration until they 

fulfilled the criteria for long-distance migration, added to the standard deviation (SD). The 

minimum threshold for fish tagged in 2019 to be included was 39 days (n = 26, mean = 20 + 

SD = 19 days) in 2019 and 13 days in 2020 (n = 12, mean = 7 + SD = 6 days). For fish tagged 

in 2020, the minimum threshold was 25 days (n = 20, mean = 13 + SD = 12 days).  

 

2.6.5 Geographic use of the fjord system 
 
The number of individual fish registered at each line in the fjord was summarized to get an 

overview of the individuals’ use of the fjord system. To evaluate the time spent in the different 

parts of the fjord, residence times in eight zones were calculated based on the receiver’s 

geographic location (figure 1). The eight zones were the estuary (A), central Beiarfjorden (B 

and C), the central fjord (D), Holmsundfjorden (E), Morsdalsfjorden (F), Nordfjorden (G) and 

the open sea (H). To estimate the residence times in each zone, the sum of all timespans between 

subsequent registrations in each zone was calculated for each fish. The following criteria were 

used to assign the timespans when fish transitioned between zones: 
 
• For transitions between zone A and B, the time span between the registrations were assigned to zone B. 

• For transitions between zone B and C, the time span between the registrations were assigned to zone C. 

• For transitions between zone C and D, the time span between the registrations were assigned to zone D. 

• For transitions between zone D and E, the time span between the registrations were assigned to zone E. 

• For transitions between zone E and F, the time span between the registrations were assigned to zone F. 

• For transitions between zone F and E, the time span between the registrations were assigned to zone E. 

• For transitions between zone E and D, the time span between the registrations were assigned to zone D. 

• For transitions between zone D and G, the time span between the registrations were assigned to zone G. 
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• For transitions between zone G and D, the time span between the registrations were assigned to zone D. 

• For transitions between zone D and C, the time span between the registrations were assigned to zone C. 

• For transitions between zone C and B, the time span between the registrations were assigned to zone B. 

• For transitions between zone B and A, the time span between the registrations were assigned to zone A. 

• The fish were considered to reside in the outermost fjord zone (zone H) if the fish were registered at 

receiver 49. The residency in this zone was calculated from the previous registration in any fjord zone 

until the next registration in any fjord zone. Fish were also considered to reside in zone H if the fish had 

subsequent recordings on receiver array T7 or T9 with time spans between registrations of > 7 days. Fish 

were also considered to reside in zone H if the fish transitioned from receiver line T7 to T9 or vice versa.  

• In six cases, fish passed transect line T8 without being detected. In those cases, the residence time was 

split and shared equally between zone D and G.  

• Time spent in zone A was calculated by subtracting time spent in all other zones from the total duration 

of marine migration 

 
To investigate the trout's use of the national salmon fjord, the zones were divided into four 

sections, the protected area (A, B, C and E), mixed zone (D), non-protected fjord area (G and 

F) and open sea (H). Furthermore, the non-protected fjord area and sea were combined to non-

protected area (G, F and H) for statistical analyses. The proportion of time spent for each 

individual in the protected area was calculated. This was done by dividing the number of days 

spent in the protected area by the number of total days spent at sea, except for number of days 

spent in mixed zone (D), as it was unknown whether the individuals were residing in the 

protected area or not.  

 
2.6.6 Tracking groups 
 
In addition to tagging group 2019 and tagging group 2020, some of the fish tagged in 2019 that 

migrated to the fjord and returned to the river in the fall, were also tracked during the marine 

migration in 2020. The behavior of these individuals could be compared between two marine 

migration seasons. Thus, to separate the different tracking groups from the tagging groups, 

individuals tracked for two seasons were named the following:  

 
• Fish tagged in 2019 and tracked during 2019: 2019A 

• Fish tagged in 2019 and tracked during 2020: 2019B 
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2.6.7 Statistical analyses   
 
RStudio (Rstudio Team, 2018) with R version 3.6.3 (R Core Team, 2018) was used for all 

statistical analyses. The statistical significance level was set to P < 0.05. The two tagging groups 

were not merged, except in the two models where year of tagging was included as an 

independent variable, because different environmental variables between the two years could 

affect migratory behavior. When comparing fish tagged in 2019 and 2020, Welch two-sample 

t-test was used if the assumption of normality was met, and the Wilcoxon rank sum test was 

used if the assumption of normality was not met. For fish tagged in 2020, comparison between 

medium- and long-distance migrants was not conducted due to a low sample size of medium 

distance migrants (n = 2). Normality was tested for with functions shapiro.test and ggqqplot, 

required package ggpubr (Kassambara, 2018). Paired Welch two-sample t-test and Wilcoxon 

signed-rank test were conducted to compare data from the same individuals tracked during two 

seasons. To test for differences in the proportion of medium- and long-distance migrants, 

proportion of fish staying only within Beiarfjorden and return rates between the two tagging 

groups, a χ2-contingency test was conducted with the function chisq.test. 

 
To test for possible differences in biological characteristics between sea trout that stayed in 

Beiarfjorden during the marine migration (medium-distance migrants) and the sea trout that left 

Beiarfjorden (long-distance migrants), a binomial regression model was used. To compare the 

variables with each other, all variables were standardised prior to modelling using the ‘scale’ 

function in the R ‘base’ package. Because the increase in weight and length of an individual is 

not linear (Le Cren, 1951), the body condition factor for individuals used in this analysis were 

adjusted using the regression coefficient of the mass-length relationship for the included fish 

(3.105776). Hence, the adjusted body condition was calculated using the formula K = 100 × 

mass (g) × total length (cm)-3.105776. Adjusted condition factor was used to avoid collinearity 

with body length and condition factor, as these variables were used to calculate the condition 

factor. Collinearity within the model was checked using the ‘check_collinearity’ function in the 

‘performance’ R package (Lüdecke et al., 2020), and collinearity was found to be low (VIF ≤ 

1.81). The binomial regression model included a binomial response variable (stayed or did not 

stay) and the predefined independent variables body length, adjusted body condition, age, sex 

and year of tagging. Akaike’s information criterion (AIC) was used to identify the best fitting 

model(s) with the ‘dredge’ function in the ‘MuMIn’ R package (Barton, 2018). The model 

selection gave support for multiple alternative models (Δ AIC < 2, Anderson et al. 2001). 
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Conditional model averaging was therefore applied to calculate model parameter estimates for 

these models.   

 
For analyses of biological characteristics possibly influencing the proportion of time spent in 

the protected area, a generalized linear model (GLM) was used. The generalized linear model 

was done by using the ‘GLM’ function from the ‘base’ package in R with a gaussian 

distribution. To compare the variables with each other, all variables were standardised prior to 

modelling using the ‘scale’ function in the R ‘base’ package. Only individuals utilizing both 

the protected area and the non-protected area were included in this analysis. The body condition 

factor was therefore adjusted again, using the regression coefficient of the mass-length 

relationship for the included fish (3.207948). Hence, the adjusted body condition was calculated 

using the formula K = 100 × mass (g) × total length (cm)- 3.207948. Collinearity within the model 

was checked using the ‘check_collinearity’ function in the ‘performance’ R package (Lüdecke 

et al., 2020), and collinearity was found to be low (VIF ≤ 2.37). The model included proportion 

of time at sea spent in the protected area as the response variable. The predefined independent 

variables in the model were body length, sex, year of tagging, age and adjusted condition factor. 

Akaike’s information criterion (AIC) was used to identify the best fitting model(s) with the 

‘dredge’ function in the ‘MuMIn’ R package (Barton, 2018). The model selection gave support 

for multiple alternative models (Δ AIC < 2, Anderson et al. 2001). Conditional model averaging 

was therefore applied to calculate model parameter estimates for these models.   
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3. RESULTS 

3.1 Environmental parameters 
 
During the summer of 2019, the mean daily water temperature in the inner part of the fjord 

system, T2, (estuary in Beiarfjorden, figure 1) was 9.2 °C (SD = 1.6 °C, range: 5.5-11.5 °C) 

based on data from the temperature and salinity data logger (figure 2). The mean daily 

temperature in the outer part was 12.3 °C at T7 (SD = 1. 7 °C, range: 8.4-14.7 °C), and 9.7 °C 

at station 39 (SD = 1.7 °C, range: 7.1-12.6 °C), respectively. The salinity in the inner fjord (T2) 

fluctuated considerably during the summer months, with a mean daily salinity of 18.9‰ (SD = 

7.3‰, range: 0.0-25.5‰). The salinity in the outer part of the fjord system (station 39 in 2020 

and T7 in 2019) fluctuated also, but were generally higher (T7; mean = 28.2‰, SD = 1.8‰, 

range: 22.8-31.8‰). 

 

 
 
FIGURE 2. Mean daily water temperature (upper panel) and mean salinity (lower panel) at ~3 m depth at 
three receivers (T2, T7 and station 39) placed in fjord system, during the period 15.04.2019 to 21.09.2020. 
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3.2 Study population  
 
Individuals in tagging group 2019 and 2020 did not differ in age at the time of tagging 

(Wilcoxon rank sum test, n = 59, P > 0.05, table 3) or in number of previous marine migration 

seasons (Wilcoxon rank sum test, n = 59, P > 0.05, table 3).  

 
TABLE 3: Sample size (n) for each tagging group, mean and standard deviation (SD) for age at tracking (in 
years), and mean and SD for number of previous marine seasons of individuals tagged in 2019 and 2020.  

  Tagging group 2019 2020 Total 
  n 34 25 59 

Age at tracking Mean 8.4 8.5 8.4 
SD 1.8 1.3 1.6 

Previous number of 
marine seasons 

Mean 3.8 4.5 4.2 
SD 1.9 1.6 1.8 

 

 

Mean Fulton’s body condition factor at capture for all tagged individuals was 0.8 (SD = 0.1). 

The condition factor did not differ between the fish tagged in 2019 and 2020 (Wilcoxon rank 

sum test, n = 59, P > 0.05, figure 3). 

 

 
 

FIGURE 3. Fulton´s condition factor at capture for fish tagged in 2019 and 2020. The box-and-whisker plots 
show median values (bold lines), the interquartile ranges (boxes) and the 5th and 95th percentiles (whiskers). 
Circles indicates outliers. Numbers above each plot gives sample size (n) of each tagging group.  
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3.3 Migratory behavior 
3.3.1 Overview of telemetry results  
 
Of the total 59 tagged fish, 57 individuals (97%) were recorded by receivers in the fjord during 

the study (table 4). Of the two remaining fish, one fish was never recorded and one fish was 

only recorded in the river. In total, 34 individuals were recorded in the fjord in 2019 (tagging 

group 2019), while 24 individuals were recorded in the fjord in 2020 (tagging group 2020). 

Among those recorded in the fjord, two fish tagged in 2020 (two of 57 fish, 4%) were excluded 

from further analysis because they disappeared before estimated threshold time (see chapter 

2.6.4, one and three days after first recording at T2). In addition, 13 individuals tagged in 2019 

were also recorded in the fjord in 2020 (tracking group 2019A, tracked in 2019 and 2019B, 

tracked in 2020).  
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TABLE 4: Overview of telemetry data, including aspects of the marine migration phase for the individuals that were recorded in the fjord (number of 
individuals, return rates, timing of migration, duration of marine migration for returnees, migration distance and residence time in the protected area). Individuals 
that disappeared from the study within the calculated minimum threshold after entering the fjord were excluded from classification as short-, medium- and long-
distance-migrants.  

Residence time (days)
      Short       Medium       Long Protected area

Tagging group
2019 − 7 26 58 (±30)
2020 − 2 20 69 (±26)

Tracking group
2019A − 1 12 47 (±21)
2019B − 1 12 45 (±27)

Migration distance in fjord  (n )
to fjord (n ) watercourse (n ) Outward migration Return migration  phase  (days)

13 9 (69%) 21.04-22.05 12.07–18.09 109 (±19)

33 24 (73%) 04.05-08.06 09.07–12.11 95 (±28)
24 16 (67%) 22.04-23.05 21.08-23.09 121 (±13)

13 13 (100%)

 Group

89 (±20)11.05–08.06 17.07–09.10

Migrating Returning to Timing of migration  (dates) Duration of marine
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3.3.2 Migration timing and duration 
 
Typically, the tagged sea trout entered the fjord in May (n = 47), but some entered in late April 

(n = 6) and early June (n = 4, table 5). The time span between first and last migrating sea trout 

stretched across approximately one month for both tagging groups (2019 and 2020). 

Furthermore, the time span for returning sea trout stretched across more than four months 

during the two years. Some fish returned in July (n = 4), October (n = 1) and November (n = 

1), while the majority of fish returned in August (n = 16) and September (n = 18). 

 
TABLE 5: Tagging groups and tracking groups, number of individuals, mean, range and standard deviation 
(SD) date for outward and return migration.  

Group 
Outward migration Return migration 

n Mean Range SD n Mean Range SD 
Tagging group         
2019 33 20.05.2019 04.05-08.06 9 24 23.08.2019 09.07–12.11 27 
2020 24 06.05.2020 22.04-23-05 9 16 06.09.2020 21.08-23.09 10 
                  
Tracking group         
2019A 13 23.05.2019 11.05–08.06 9 9 19.08.2019 17.07–09.10 26 
2019B 13 06.05.2020 21.04-22.05 9 9 23.08.2020 12.07–18.09 22 

 

For individuals tracked during two seasons, the average timing between the first and second 

year of tracking for marine entry was 15 days (n = 13, SD = 9, range: 1–39 days). The average 

difference in the timing of return to river between the consecutive years was 6 days (n = 9, SD 

= 21, range: 6–45 days). The timing of marine entry was earlier the second year of tracking 

than the first year of tracking. (Wilcoxon signed-rank test, n = 13, P < 0.01). However, the 

timing of return to river did not differ (Wilcoxon signed-rank test, n = 9, P > 0.05).  

 
The overall return rate to the river for fish entering the fjord was 70% (2019; 73%, 2020; 67%), 

and there was no difference between the years (c2 contingency test, c2 = 0.244, df = 1, P > 0.05). 

Duration of marine migration could be assessed for the 40 individuals that returned after the 

marine migration. The mean total migration duration was 105 days (n = 40, SD = 27, range: 

39-183 days). Duration of marine migration was longer for fish tagged in 2020, than in 2019 

(Wilcoxon rank sum test, n = 40, P < 0.001). Sea trout tagged in 2019 spent an average of 95 

days in the fjord (n = 24, SD = 28, range: 39-183 days) while sea trout tagged in 2020 spent 

121 days in the fjord (2020, n = 16, SD = 13, range: 94-144 days).  
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For individuals tracked during two consecutive seasons, mean duration of the marine migration 

was 89 days (n = 9, SD = 20, range: 55–125 days) the first year and 109 days (n = 9, SD = 19, 

range: 72–134 days) the second year. Migration duration was longer the second year of tracking 

compared to the first year of tracking (Wilcoxon signed-rank test, n = 9, P > 0.05).  

 

3.3.3 Migration distance 
 
Of the 55 individuals included for classification of distance migrated, 46 (84%) were classified 

as long-distance migrants, nine (16%) as medium-distance migrants, and none as short-distance 

migrants (figure 4). Of the 33 fish migrating into the fjord in 2019, 26 (79%) qualified as long-

distance migrants and seven (21%) as medium-distance migrants. Of the 22 fish in 2020, 20 

(91%) qualified as long-distance migrants and the remaining two (9%) as medium-distance 

migrant. The proportion of medium- and long-distance migrants did not differ between 2019 

and 2020 (c2 contingency test, c2 = 1.417, df = 1, P > 0.05). 

 
Of the 13 fish tagged in 2019 that migrated out in the fjord again in 2020, all except one fish 

(92%) qualified as long-distance migrants the second year. The last one qualified as a medium-

distance migrant (8%) the second year. All 13 fish tracked during two seasons maintained their 

same classification as medium- and long-distance migrants in the second year as the first year. 

 
The Fulton´s condition factor did not differ between medium and long-distance migrants 

(Wilcoxon rank sum test, 2019; n = 33, P > 0.05, figure 4) However, long-distance migrants 

were longer than medium-distance migrants (Wilcoxon rank sum test, 2019; n = 33, P < 0.01) 
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FIGURE 4: Fulton’s condition factor (A) and total body length (B) in spring of 2019 and 2020 prior to 
migration for medium- and long-distance migrants. The box-and-whisker plots show median values (black 
lines), the interquartile ranges (boxes) and the 5th and 95th percentiles (whiskers). Circles indicate outliners. 
Numbers above each plot gives sample size (n) of each group. 

 

3.3.3.1 Regression models for staying or leaving Beiarfjorden  

 
There were seven equally well fitted regression models exploring the decision to stay or leave 

Beiarfjorden. These models indicated that the decision was influenced by a combination of 

body condition, body length, age, sex and year of tagging (Δ AIC < 2, table 6). Total body 

length was found to be the best indicator for staying only in the protected area, being included 

in all of the best alternative models. Model conditional averaging showed that smaller 

individuals were more likely to remain in Beiarfjorden, and thus, being fully protected by the 

nation salmon fjord (table 7). Further, the model conditional averaging indicated that year of 

tagging, sex, age and condition factor were less important variables for the choice of staying or 

leaving Beiarfjorden.  

 

 

 
(A) 

 
(B) 
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Table 6: Model selection for estimating the determinants of residence only in Beiarfjorden versus leaving 
Beiarfjorden. The models estimated the relative contributions to residency of the parameters adjusted 
condition factor (C), total body length (L), sex (S), age (A) and year of tagging (Y). AIC is the score based 
on Akaike’s information criterion.  

Model AIC  ∆ AIC AIC weights  d.f. 
[L]  39.9 0.00 0.155 2 
[L, C, S]  40.5 0.62 0.145 4 
[L, C]  40.6 0.76 0.099 3 
[L, S]  40.0 0.97 0.080 3 
[L, A]  41.1 1.22 0.076 3 
[L, Y]  41.7 1.84 0.070 3 
[L, C, A]  41.8 1.95 0.063 4 

Table 7: Summary of intercept and independent variables from model conditional averaging from binomial 
regression models on determinates for residence only in Beiarfjorden versus leaving Beiarfjorden (n = 55). 
The asterisk mark show significant values 

Effect Estimate Std. Error z value     P 
(Intercept) -2.2508 0.8485 2.602 < 0.01 * 
Total length -2.0843 0.7196 2.832 < 0.01 * 
Sex (Male) -1.2250 1.0246 1.169 > 0.05  
Condition factor adjusted 0.5740 0.5011 1.120 > 0.05 
Age 0.5843 0.6460 0.883 > 0.05  
Tagging group (2020) -0.3846 0.9732 0.386 > 0.05 

 

3.3.4 Residence time in different parts of the fjord system  
 
Utilization and residency of the different parts of the fjord system during marine migration 

could be determined for 40 individuals (figure 5). All fish tagged were registered in the estuary 

(T2) and further out in Beiarfjorden (T3). For tagging groups 2019 and 2020, a small number 

of fish were registered on lines T5, T6 and T7, meaning few fish used Morsdalsfjorden and 

Holmsundfjorden in the south-western part of the fjord system. There was a large number of 

fish registered in the outer fjord system at line T8, meaning most fish migrated in a northward 

direction. In total, there were twice as many individuals registered at line T8 (n = 32) compared 

to T5 (n = 16), indicating that most fish moved north and thus out of the national salmon fjord 

when they exited Beiarfjorden. In addition, all but one fish in tagging group 2019 and 2020, 

were registered at line T9 (n = 30) if they were registered at line T8.  
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For individuals tracked during two marine migration seasons, there was only some differences 

in the number of individuals registered in southward direction between the years, with a slightly 

fewer registrations the second year compared to the first year.  

 

 

 
 

 
 
FIGURE 5: Number of individuals detected at each transect line during marine migration among fish that 
returned from marine migration for tagging groups (A) and tracking groups (B). 
 

In total, six (12%) individuals stayed only within the protected area of the fjord, while 34 (88%) 

migrated further, to the outer, non-protected area (figure 6). The proportion of fish staying only 

within protected area did not differ between 2019 and 2020 (15% vs 8%, c2 contingency test, 

c2 = 1.601, df = 1, P > 0.05). 

 
Among all individuals included in residency analysis, more time was spent in the protected area 

than the non-protected area (Wilcoxon rank sum test, 2019; n = 24, P < 0.01, 2020; n = 16, P < 

0.01). Fish tagged in 2019 and 2020 spent on average 63% of total marine migration time in 

the protected area. Individual residence time in the protected area varied widely, ranging from 

7 days to 121 days for fish tagged in 2019 (mean = 58, SD = 30, figure 6), and from 16 days to 

119 days for fish tagged in 2020 (mean = 69, SD = 26).  

 

 

 
(A) 

 
(B) 
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FIGURE 6. Residence time in fjord zones (figure A and B) and fjord section (figure C and D) during marine 
migration for returning individuals for tagging group 2019 (figure A and C) and 2020 (figure B and D). The 
box-and-whisker plots show median values (bold lines), the interquartile ranges (boxes) and the 5th and 95th 
percentiles (whiskers). Circles indicate outliners. Numbers above each plot gives sample size (n) of 
individuals resided in the fjord zones and fjord sections. 
 

For individuals tracked for two seasons, mean residency in the protected area was 47 days (n = 

9, SD = 21, range: 7-84 days) for the first year of tracking and 45 days (n = 9, SD = 27, range: 

8-94 days) for the second year of tracking. The number of days spent in the protected area did 

not differ between the two years (Wilcoxon signed-rank test, n = 9, P > 0.05). Furthermore, the 

proportion of time spent in the protected area between the two years of tracking did not differ 

(Paired Welch two-sample t-test, n = 9, P > 0.05).  
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(B) 
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(D) 
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3.3.4.1 Generalized linear models of time spent in the protected area 

 
There were four equally well fitted generalized linear models exploring the proportion of time 

spent in the protected area. The models indicated that the time spent in the protected area was 

influenced by body condition, body length, age, sex and year of tagging (Δ AIC < 2, table 8). 

Total body length and year of tagging was the best indicator for proportion of time spent in the 

protected area, and was included in all of the best models (table 8). The estimates from the 

conditional model averaging (table 9) indicated that smaller individuals spent a higher 

proportion of time in the protected area compared to longer individuals, that the fish tagged in 

2020 tended to spend higher proportions of their time inside the protected area and that fish in 

good body condition tended to spend less time in the protected area. The sex and age of the fish 

seemed to have limited effect on the proportion of the time used in the protected area, as the 

estimated standard errors exceeded the estimates in the conditional model averaging (table 9).  

 
Table 8: Model selection for estimating the determinants on the proportion of time spent in the protected 
area. The models estimated the relative contributions to residency of the parameters adjusted condition factor 
(C), total body length (L), sex (S), age (A) and year of tagging (Y). AIC is the score based on Akaike’s 
information criterion.  

Model AIC  ∆ AIC AIC weights  d.f. 
[L, Y, C]  96.3 0.00 0.177 5 
[L, Y]  98.0 1.74 0.074 4 
[L, Y, C, S]  98.2 1.88 0.069 6 
[L, Y, C, A]  98.2 1.90 0.068 6 

 

Table 9: Summary of intercept and independent variables from model conditional averaging from generalized 
linear model on the proportion of time spent in the protected area during summer (n = 34). The asterisk mark 
show significant values 

Effect Estimate Std. Error z value      P 
(Intercept)  -0.26520 0.25255 1.034 > 0.05 
Total length -0.40094 0.18836 2.043 < 0.05 * 
Sex (Male) -0.12491 0.39501 0.303 > 0.05 
Condition factor adjusted -0.29910 0.16367 1.753 > 0.05 
Age 0.06883 0.23207 0.284 > 0.05 
Tagging group (2020) 0.65515 0.34646 1.815 > 0.05 
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4. DISCUSSION 
Coastal areas are important habitats for sea trout, and the results from the present study 

supplement knowledge of how this species utilizes marine areas within and outside a national 

salmon fjord during the summer. Relatively few (12%) of the individuals tagged remained only 

in the protected area throughout the migration season. Although some individual variation, 

approximately 63% of the duration of the total marine migration time was spent inside the 

marine protected area. Longer fish stayed shorter times in the protected area compared to 

smaller fish, and were more likely to leave Beiarfjorden and migrate further out in the fjord 

system.  

 
The time span between marine entry of first and last sea trout was about one month while the 

timespan of freshwater return stretched across several months. Generally, from May until 

September, Beiarfjorden national salmon fjord may have importance for protection of sea trout, 

because it was during this time period sea trout from river Beiarelva generally were found at 

sea. Thus, there is seasonal variation in its importance.  

 
The average duration of marine migrations both years (2019; 95 days, 2020; 121 days), was 

longer than recorded in previous studies in Northern Norway, which have found a duration 

between 45 and 70 days to be common (Berg & Berg, 1989; Klemetsen et al., 2003; Davidsen 

et al., 2018; Davidsen et al., 2019). In contrast to the present study, studies in Tosenfjorden and 

Skjerstadfjorden (Davidsen et al., 2018; Davidsen et al., 2019) found an average marine 

migration to be only 52 and 63 days, respectively. However, the individuals studied in these 

two fjords had rivers accessing lakes, while individuals in river Beiarelva had no access to 

lakes. Jensen and Rikardsen (2008) suggested that individuals may exploit different migratory 

strategies in rivers with and without access to lakes. If stable lake environments are absent, 

advantages of residing in freshwater compared to residing at sea might be reduced. A longer 

marine duration may therefore be an advantageous behavioral strategy for individuals from 

rivers without access to lakes (Davidsen et al., 2014b; Aldvén & Davidsen, 2017). Hence, the 

lack of stable lake environment in river Beiarelva may partly explain the relatively long 

duration of marine migration in this fjord system. The duration of marine migration differed 

between fish tagged in 2019 and 2020. Several factors influence the duration of migration in 

individual fish, such as body condition, body length, sex, maturity and age (Jonsson, 1985; Berg 

& Berg, 1989; Eldøy et al., 2015; Thorstad et al., 2016). In addition, external factors such as 
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temperature (Berg & Berg, 1989) and salmon lice infestation (Birkeland, 1996), may affect time 

spent at sea. Hence, differences between years may occur (Berg & Berg, 1989).  

 
The return rate, i.e., the number of tagged fish returning from the marine migration, was 70%, 

and did not differ between fish tagged in 2019 and 2020. The return rates are within the range 

of what other tagging studies in Northern Norway have found (50%-86%) (Berg & Jonsson, 

1990; Jensen et al., 2014; Bordeleau et al., 2018). The reasons why the remaining individuals 

did not return were in most cases not known. Two fish were reported recaptured and killed by 

fishers (Davidsen et al. unpublished data). No tagging mortality was detected during tagging, 

but it is possible that some tagged fish died later due to tag effects. Other reasons why fish were 

not registered to return to the river could include unreported recaptures, tag malfunctioning, tag 

expulsion, restricted battery life on tags, or death due to natural causes. Furthermore, tagged 

fish could have returned to the river after the last data were downloaded from the receivers in 

mid-October 2020. In 2019, one fish returned in October and one fish returned in November, 

indicating that some, but not many fish may have returned after the data were last downloaded 

in 2020. In addition, fish may have strayed into other rivers (Berg & Berg, 1987) or stayed at 

sea during the winter (Jensen & Rikardsen, 2012).   

 
The probability of migrating to the outer fjord (long distance migration) increased with total 

body length. Other studies have also found larger fish to be more likely to migrate to sea and 

migrate a greater distance at sea than smaller fish (Jensen et al., 2014; Eldøy et al., 2021). 

Furthermore, among the individuals utilizing both protected and unprotected areas, longer fish 

spent a lower proportion of time in the inner, protected area compared to smaller individuals. 

This may be explained by the ability of larger fish to exploit prey of a larger size (L'Abée-Lund 

et al., 1992; Davidsen et al., 2017). Migration further out in the fjord may increase the 

opportunities for more energy efficient feeding (Davidsen et al., 2017). A previous study found 

differences in feeding strategies in the marine environment depending on the size of the fish, 

where smaller individuals fed on a mixture of invertebrate and fish in estuaries, and larger 

individuals mainly fed on marine pelagic fish (Davidsen et al., 2017). Larger individuals might 

therefore be more likely to perform long-distance migrations.  

 
Although longer fish were more likely to leave Beiarfjorden, some of the smaller fish (< 340 

mm) were also found to be long-distance migrants. Since 84% of the fish migrated further out 

in the fjord system, the results may indicate that the inner fjord area is not the only favored 
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habitat, and that conditions may be better further out in the fjord system. Telemetry studies 

conducted in other fjords have found different results regarding proportion of long-distance 

migrants. Eldøy et al. (2015) found that 42% of sea trout tracked in Hemnfjord and Snillfjord 

(Trøndelag, Norway) were long-distance migrants (> 13 km), while Bordeleau et al. (2018) 

found that 52% of sea trout tracked in Tosenfjorden and Bindalsfjorden (Nordland, Norway) 

were long-distance migrants (> 21 km). Different migratory distance among populations can be 

found, due to both genetic and environmental differences (Klemetsen et al., 2003; Ferguson et 

al., 2019).  

 
In the present study, the condition factor had little importance for the sea trout being medium- 

or long-distance migrants. In comparison, it has previously been reported that individuals 

completing a long-distance migration, often have a poorer body condition at the beginning of 

migration than individuals preforming a short-distance migration (Eldøy et al., 2015; Bordeleau 

et al., 2018). Lower body condition in long-distance migrants is likely reflected by a greater 

need to maximize feeding compared to individuals with a better body condition (Davidsen et 

al., 2014a; Eldøy et al., 2021). The possibility to investigate the importance of condition factor 

between medium- and long-distance migration in the present study was restricted, since almost 

all fish were classified as long-distance migrants. Even so, fish in good body condition tended 

to spend less time in the protected area compared to fish with poorer body condition. This is 

contradictory to arguments that fish with poorer body condition may have a riskier migration 

behavior, such as migrating longer distances, and staying longer at sea, due to increased feeding 

opportunities (Eldøy et al., 2021). The reason for the finding in the present study is not known, 

but may be explained by good feeding opportunities in the protected area, making it a suitable 

habitat for both fish in poor and good initial body condition. 

 
In the present study, sex had limited influence on distance migrated and on the proportion of 

time spent in the protected area. This result differs somewhat with previous studies, which have 

found that females are more likely to migrate than males, instead of remaining in freshwater 

and the estuary (Jonsson, 1985; Bordeleau et al., 2018; Eldøy et al., 2021). Females’ tendency 

to migrate is likely caused by a greater reproductive success with increased body size compared 

to males, and therefore a greater benefit of increased feeding opportunities (Elliott, 1995). The 

result in the present study may be influenced by a low sample size, skewed distribution between 

the sexes and all individuals had performed previous marine migrations. In addition, age had 

limited effect on migration distance and the proportion of time spent in the protected area, which 
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might illustrate that body length was more important than age. Body length being more 

determining than age has previously been shown in terms of timing of smolt migration (Bohlin 

et al., 1996). However, a previous study from Hemnfjord and Snillfjord found that long-

distance migrants were older than short- and medium-distance migrants (Eldøy et al., 2015). 

 
Fish tagged in 2020 tended to spend higher proportions of their time inside the protected area 

than fish tagged in 2019. However, year of tagging had little importance on distance migrated. 

Differences in environmental conditions, such as temperature and food availability, can affect 

migration behavior (Dill, 1983; Jensen et al., 2014). However, this information was not 

available in the present study.  

 
As a poikilothermic animal, the metabolism of sea trout is highly affected by the water 

temperature surrounding the fish (Angilletta et al., 2002). Previous studies have demonstrated 

that the optimal temperature for growth in trout is 12-17 °C (Elliott & Hurley, 2000a; b; 

Larsson, 2005). The distribution of the tagged sea trout might therefore be influenced by the 

seawater temperature (Rikardsen et al., 2007; Jensen et al., 2014). Rikardsen et al. (2007) found 

that sea trout mostly resided in inner and warmer parts of the fjord, likely because of the more 

optimal temperature for growth in the inner parts of the fjord compared to further out in the 

fjord system (Rikardsen et al., 2007). Jensen et al. (2014) found that with large temperature 

differences within the fjord system, the probability of finding sea trout was higher in the inner, 

warmer parts of the fjord. The estuary in Beiarfjorden is highly affected by glacial runoff, 

making the estuary cold for large parts of the summer, and probably colder than the study area 

of Rikardsen et al. (2007) and Jensen et al. (2014). Thus, the low temperatures in the estuary 

may lead to slow growth rates, prompting sea trout from river Beiarelva to seek warmer areas 

further out in the fjord system. However, in the present study, sea trout resided a long period in 

the inner, protected area, especially in the inner part of Beiarfjorden. The water temperatures in 

the estuary in Beiarfjorden and further out in the fjord correlated considerably during summer 

months. The mean temperature between the areas during these months did not differ much. 

Jensen et al. (2014) found that with minimal temperature differences in adjacent fjord sections 

the probability of finding sea tout in these areas were the same. Thus, the approximately similar 

temperatures in the neighboring areas in the present study may partly explain why the observed 

residence time in the inner area was high, as in the study of Jensen et al. (2014).  
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One main route was preferred for individuals leaving Beiarfjorden, even though the fjord 

system has two different migration routes out of the fjord system. The reason why sea trout 

mainly used this route is unknown, but it could be due to better habitat or conditions in the 

northern Nordfjorden compared to the southwestern Holmsundfjorden and Morsdalsfjorden. 

 
Beiarfjorden national salmon fjord covers only Beiarfjorden and Holmsundfjorden, while sea 

trout tagged utilized all parts of the fjord system. Although fish resided in all fjord parts during 

the marine migration season, approximately 63% of the time was spent in areas protected by 

the national salmon fjord. However, there are some limitations with the setup of the receivers 

for this fjord system. With only one transect line, one can tell when a fish was present within 

the receiver range, but not in which direction the fish was swimming or whether it was crossing 

the transect line or not. For instance, much time in the present study was spent in the estuary. 

A long time spent in the inner parts of fjords are common for sea trout (Eldøy et al., 2015; 

Davidsen et al., 2018), but because of poor coverage in the lower part of the river, this time 

could be overestimated as fish might be residing in the river instead. One can therefore not rule 

out the possibility that fish in periods reside in other zones than assumed, affecting the result of 

residence time in the zones and in the protected area. Hence, the calculations are only an 

estimation of time spent in each zone.   

 
All individuals tracked during two marine migration seasons (n = 9) maintained their same 

medium- and long- distance migrants’ classification. The number of days and proportion of 

time spent in the protected area did not differ between the two marine migration seasons, which 

may indicate consistency in area use between the two marine migration seasons. This 

interpretation is supported by Eldøy et al. (2019), who found a strong and significant individual 

consistency in marine area use between marine migration seasons. Individual sea trout tracked 

during two migration seasons demonstrated no difference in the timing of freshwater return 

between the years. Consistency in the migration timing of freshwater return was also observed 

by Jensen et al. (2020) and Eldøy et al. (2019). However, there was a difference between the 

years in the timing of marine entry and in the total duration of marine migration. Differences in 

timing of marine entry and in the total duration of marine migration was also found by Eldøy 

et al. (2019), and could be explained by differences in environmental conditions between the 

years. Increased water temperatures, timing of ice melting, and increased discharge have all 

been found to influence the timing of migration (Thorstad et al., 2016).  
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Evaluating management actions is vital to determine the effects of the actions taken and to use 

the knowledge for future decisions (Pullin et al., 2013). One of the main purposes of 

establishing national salmon fjords was to protect wild Atlantic salmon populations against 

negative influences from salmon fish farms (NOU, 1999:9; DKMD, 2002; 2006). Initially, 

these protected areas were not intended to protect sea trout (DKMD, 2006). However, it is 

argued that national salmon fjords might benefit and protect the more costal dwelling sea trout 

populations against salmon lice (Bjørn et al., 2011; Serra-Llinares et al., 2014). The protection 

of the national salmon fjords is expected to depend on the size and design of the protected area 

(Serra-Llinares et al., 2014), the production from aquaculture outside the protective area (Serra-

Llinares et al., 2014; Karlsen et al., 2018), and environmental influence (Jansen et al., 2016), 

such as temperature and currents, which affect salmon lice and other pathogens dispersal (Serra-

Llinares et al., 2014; Jansen et al., 2016; Grefsrud et al., 2018).  

 
Sea trout residing inside a national salmon fjord are likely to receive protection against salmon 

lice, viruses and other diseases from salmon farms because of a generally lower infection 

pressure than in areas where the salmon farms are located (Bjørn et al., 2011). The situation is 

not necessarily the same for sea trout utilizing outer, non-protected fjord areas, or sea trout 

which have to pass farmed areas to reach the open sea (Bjørn et al., 2011). Consequently, if a 

national salmon fjord, such as Beiarfjorden national salmon fjord, only covers parts of the fjord 

system that sea trout utilizes, it may reduce the overall protection of sea trout (Karlsen et al., 

2018). Since fish with longer body lengths were more likely to spend less time and more often 

left the protected area, they may receive less protection from the protection regime than smaller 

fish. Thus, the Beiarfjorden national salmon fjord may to a lower degree protect large 

individuals compared to smaller individuals. A similar result was found in a different protected 

regime, a marine protected area (MPA) in Tvedestrandfjorden (Southern Norway), where large 

fish was found to receive less protection from the no-take zone compared to smaller fish 

(Nordgård, 2016). Large individuals are regarded as important due to their high reproductive 

success (Jonsson, 1985). Preferably, protected areas should include all individuals, regardless 

of biologic characteristics, to prevent altered population behavior. Hence, to protect the entire 

population, including the valuable large individuals, the protected area should be of a large size. 

 
Beiarfjorden national salmon fjord is one of the smallest national salmon fjords in Norway with 

its approximately 38 km2 protected area (Karlsen et al., 2018). In addition, the distance to the 

closest fish farm from the border of the national salmon fjord is less than 3 kilometers (shortest 
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distance at sea, measured from Kartverket). The highest infection levels of salmon lice are often 

found close to fish farms, especially within 30 km of the nearest farms (Bjørn et al., 2011; 

Middlemas et al., 2013; Serra-Llinares et al., 2014; Thorstad et al., 2015), minimizing the effect 

of the protective zone as salmon lice can disperse to areas inside the protective area. Hence, the 

impact of aquaculture close to a national salmon fjord will be greater in smaller protected areas 

compared to larger-farm free fjords (Bjørn et al., 2011; Serra-Llinares et al., 2014). Regardless 

of which route sea trout left the fjord system through, they must pass areas with farming. 

Moreover, most fish were registered leaving through Nordfjorden, the fjord with a higher 

number of salmon farms compared to Morsdalsfjorden. By including Morsdalsfjorden and 

Nordfjorden in the protected area, the entire fjord system from river Beiarelva to the open sea 

would be protected. Both of these fjord areas were investigated in relation to the establishment 

of Beiarfjorden national salmon fjord, but were not proposed to be included (DKMD, 2006).  

 
A salmon lice count on a small sample of wild sea trout (n = 25) in Nordfjorden during the 

weeks 24-25 in 2017 illustrated a low risk (0%) of salmon lice related mortality in this period 

(Grefsrud et al., 2018). However, in a recent comprehensive report, salmon lice were estimated 

to have a moderate effect on sea trout (10-30% mortality) from river Beiarelva during the weeks 

26-33 in years 2012 to 2017 (Anon, 2019). The estimate in the report by Anon (2019) included 

salinity data, lice counts from salmon farms, and a lice dispersal model from the farms. All data 

in this report were collected during the same weeks as the marine migration period of fish 

tagged in the present study. Based on the report, salmon lice are likely to have a negative impact 

on the sea trout population from river Beiarelva.  

 
In the present study, a high freshwater influence in the estuary of Beiarfjorden was found, with 

a mean salinity of 18‰ during the summer months. Finstad et al. (2021) argued that sea trout 

populations from rivers in inner parts of fjords were somewhat protected from salmon lice by 

freshwater influence, because of the salmon lice low tolerance for freshwater (>25%) (Johnson 

& Albright, 1991; Bricknell et al., 2006). National salmon fjords including areas with brackish 

water, such as in inner Beiarfjorden, can therefore act as refuges where sea trout can retreat if 

there are high levels of salmon lice outside the protected area. This might be a better alternative 

than migrating to the river, which can reduce growth opportunities (Birkeland, 1996).  

 
Two of the salmon farms located in Nordfjorden were under surveillance due to suspicion of 

ISA (infectious salmon anemia) and treatment of ISA in nearby areas outside the study area. 

ISA was disproved at both salmon farms. However, tagged fish visiting this fjord section during 
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the summer of 2019 and 2020 (71% and 88% of individuals migrating to fjord, respectively) 

were in proximity to fish farms with suspected ISA. The occurrence of pathogens on fish farms 

can spread to wild fish and lead to higher numbers of disease outbreaks in nature. It is probable 

that significant amounts of pathogens are spread to the environment from infected fish in 

aquaculture, and that wild fish in the proximity of the farms are exposed to these pathogens 

(Grefsrud et al., 2018). Sea trout can be infected by the ISA virus, but they do not develop 

symptoms (Nylund & Jakobsen, 1995; Snow et al., 2001). The risk of population-reducing 

effects of ISA on sea trout is therefore considered low (Grefsrud et al., 2018). However, sea 

trout can function as a host for the ISA virus and possibly transfer the virus to salmon (Nylund 

& Jakobsen, 1995). Infectious diseases are a serious problem in fish farming in Norway, with 

300-500 outbreaks of disease along the coast annually (Svåsand et al., 2016; Sommerset et al., 

2019). Although diseases can be spread over long distances (Aldrin et al., 2010; Kristoffersen 

et al., 2013), the concentration is generally diluted with the distance from fish farms (Grefsrud 

et al., 2018). Thus, farm-free areas such as national salmon fjords can reduce disease 

transmission to wild fish (DKMD, 2006).  

 
Sea trout management is in many countries viewed as a by-product of Atlantic salmon 

management (Nevoux et al., 2019). To manage and protect sea trout populations as its own 

specie, it is essential to have knowledge of where they are residing in the fjord system (Nilsen 

et al., 2019a) and if the behavior is repetitive. However, such information is scarce (Eldøy et 

al., 2019; Jensen et al., 2020), but can be important for implementing management measures. 

If it is possible to determine consistency in area use between consecutive years, protected areas 

could be customized and provide better protection for wild sea trout. However, it is also 

important to remember that behavior can change with environmental conditions and 

anthropogenic factors (Berg & Berg, 1989; Birkeland, 1996). Furthermore, knowledge 

regarding the biological traits influencing migration distance and habitat use may increase the 

understanding about which traits contributes to protection by a national salmon fjord. Despite 

the small size of Beiarfjorden national salmon fjord, the results from the present study 

demonstrate that sea trout to a large extent reside in habitats that are covered by the protected 

area. In addition, low temperatures in the fjord system, low salinities in the inner Beiarfjorden, 

few cases of lice counts above lice limit from salmon farms and previous low salmon lice counts 

on wild fish have been found. Combined, these results may indicate that Beiarfjorden national 

salmon fjord also benefits the sea trout.  
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5. CONCLUSION 
The present study indicates that Beiarfjorden national salmon fjord contains important coastal 

habitats for sea trout. Although sea trout migrated further out in the fjord system, individuals 

originating from river Beiarelva resided most of their time within the protected area of the fjord. 

Longer individuals spent less time in the protected area and were more likely to leave 

Beiarfjorden compared to smaller individuals, meaning smaller fish are likely more protected 

by the national salmon fjord compared to larger fish. Furthermore, the observed consistency 

regarding behavior and duration of marine migration between fish tagged and tracked in 

consecutive years supports the conclusion about the sea trout´s use of Beiarfjorden national 

salmon fjord. The task of reducing negative human impact, especially from fish farming, must 

be strengthened to ensure having sea trout in Norway in the future. National salmon fjords can 

protect sea trout that live within the protected area to a certain extent. Nevertheless, the degree 

of protection will also strongly depend on the size of the protected area, the infection pressure, 

environmental factors, and time used in unprotected areas during migration. Including sea trout 

in existing management actions may be an efficient approach to mitigate salmon lice threats to 

the specie. Knowledge of how well national salmon fjords protects sea trout from potential 

negative impact from aquaculture will be important when evaluating the function of these 

marine protected areas. Since it is difficult to transfer results from field studies between 

different areas, carrying out similar studies in other national salmon fjords should be a focus in 

future studies. The Norwegian authorities have chosen national salmon fjords and national 

salmon rivers as one of the main measures to preserve wild Atlantic salmon. Hence, knowledge 

on possible inclusion of sea trout in national salmon fjords should be of interest for future 

management decisions. 
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