Arild Valderhaug

Karl-Oskar Norheim Molvaer
Magnus Heggdal Sanday
Ola Seeteray

Autonomous Ships: A Velocity
Obstacle Particle Swarm
Optimization Hybrid Algorithm

Bachelor’s project in Bachelor of Science in Engineering -
Automation

Supervisor: Anete Vagale, Aleksander L. Skrede
Co-supervisor: Robin T. Bye, Ottar L. Osen

May 2021

2
4
=
P

°
o
C

c
]

'_

©
C
(8]
[0}
9]
C

o
(&)

(V2]

Y
o

2
(%]
—
[}

2
C

o)
C

ke
Bo
:
o

zZ

(%]
29
=0
T €
v .
c v
goi’
UJE
= 2
O ©
£z
O T
0 C
o ©

l_
20
T
%O

e
g5
o
£E

_
o ©
-
c g
o
=]
©
IS
_
£
£
Y
o
=]
o
S
w

@ NTNU

Norwegian University of
Science and Technology






Arild Valderhaug

Karl-Oskar Norheim Molvaer
Magnus Heggdal Sanday
Ola Seetergy

Autonomous Ships: A Velocity Obstacle
Particle Swarm Optimization Hybrid
Algorithm

Bachelor’s project in Bachelor of Science in Engineering - Automation
Supervisor: Anete Vagale, Aleksander L. Skrede

Co-supervisor: Robin T. Bye, Ottar L. Osen

May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

@ NTNU

Norwegian University of
Science and Technology






@ NTNU

NTNU ALESUND Norwegian University of
BACHELOR THESIS AUTONOMOUS SHIPS: ALGORITHMS science and Technology

Tittel:

Autonomous Ships: A Velocity
Obstacle Particle Swarm
Optimization Hybrid Algorithm

Candidate name (number):

Arild Valderhaug (10036)

Karl-Oskar Norheim Molveer (10069)
Magnus Heggdal Sandgy (10097)
Ola Seetergy (10008)

Date: Sub. Code: Subject Name: Document Access:
19/05/2021 IE303612 Bachelor Thesis

Study Program: Nr. pages/Attachments: | Bibl. nr:

Automation Engineering 103|/ 11

Advisers:

Anete Vagale
Aleksander Skrede
Robin T. Bye
Ottar L. Osen

Summary:

The main goal of this thesis is to design a hybrid collision avoidance algorithm from
components of the Velocity Obstacle and Multi Objective Particle Swarm Optimiza-
tion algorithms. The purpose was to improve the performance in areas that were
weaknesses in the original algorithms. The original and hybrid algorithms were run
to a selection of tests, which found that the hybrid algorithm improved performance
in certain areas compared to the algorithms it was based on.

This assignment is an answer written by students at NTNU in Alesund.



@ NTNU

Norwegian University of
Science and Technology

Preface

This project is the final thesis of a bachelors degree in engineering at Department of
ICT and Natural Sciences (lIR) at the Norwegian University of Science and Technology
(NTNU).

Acknowledgements

We would like to thank our supervisors Anete Vagale (NTNU), Aleksander L. Skrede
(NTNU), Robin T. Bye (NTNU) and Ottar L. Osen (NTNU).

Arild Valderhaug
Karl-Oskar Norheim Molveer
Magnus Heggdal Sandgy
Ola Saetergy

Alesund, May 2021

Page 2 of[103



@ NTNU

Norwegian University of

CONTENTS Science and Technology
Contents

1__Introduction| 11

(1.1 Report Structure| . . . . . . . . .. 12

13

2.1 Autonomous Ship|. . . . . . . . . .. 13

[2.1.1  Requirements to Achieve Autonomy| . . . . . . . .. .. ... .. 13

[2.1.2 Autonomy levels|. . . . . .. ... ... ... L 14

[2.1.3 Autonomy Modes During Voyage| . . . . . . . .. ... ... ... 14

2.2 Algorithms|. . . . . . ... ... ... 15

[2.2.1  Global and Local Path-planning Algorithms| . . . . ... ... .. 15

222 Pathfinding| . . .. ... .. ... .. ... .. 16

[2.2.3 Graph-based Pathfinding| . ... .................. 17

[2.2.4 Dikstra’s Algorithm|. . . . . . ... .. ... oL 17

25 Best-First-Searchl. . . . .. ... ... ... ... .. L. 18

[2.2.6 A" Search Algorithm| . . . . . .. ... ... .. ... L. 19

2.2.7 The Virtual Force Field Method . . . . ... ... ... ...... 21

2.2.8 The Dynamic Window Approach| . . . . ... ........... 21

229 LineOfSightl . . .. ... ... .. . . . ... 22

2.3 Collision Avoidance] . . . . . . . ..o 23

2.3.1 Velocity Obstacle. . . . . ... ... ... .. ... ........ 24

2.3.2 Adaptive Wolf Colony| . . ... .. ................. 24

2.3.3 ulti Objective Particle Swarm Optimization (MOPSQO)|. . . . . . 25

................................... 26

25 Simulation. . . . . . . ... 26

51 Gemini ........ ... .. ... 27

2.5.2 ROS and I'he ASV System Package (ROS package)|. . . . . . . 27

2.5.3 Marine System Simulator (Matlab/ Simulink Module)| . . . . . .. 27

2.5.4 Project Thesis Simulator: Stenersen (Python) . . . . . ... ... 28

2.6 SimulatonMapTnpuf|. . . . .. ... ... ... ... .. .. .. ..... 29

2.6.1 MapData . ... ... ... ... . ... 29

3 Development Process| 32

3.1 Phase 1: Planning and Documentation|. . . . . ... ... ... ..... 32

3.2 ase 2: Implementation and Simulation| . . . . ... ... ... .... 32

Ph : Flnalizationl. . . . . . . . . . 32

4 Requirements| 33

4.1 Imulation Requirements| . . . . .. .. ... ... ... . .. 33

4.2 Algorithms|. . . . . .. .. .. 34

43 TeSTREQUIFEMBNTS) . « « « o o o e e e e e 34

o Technical Design 35

B SImulaion . . . . . oo 35

1.1 hoi fSimulatorl . . ... ... .. 35



@ NTNU

Norwegian University of

CONTENTS Science and Technology
.2 Algorithms|. . . . . .. .. 37
5.2.1 lobal Path Planning| . . ... ... ... ............. 38

5.2.2 s Implementation| . . . ... ... ... ... ... 38
..................................... 38
............................... 38

.32 TestVarables|. . . .. .. .. ... .. ... .. .. ... 39

6 Implementation| 40
6.1 Simulator and Algorithm| . . . . . ... ... ... ... L 40
BT Simulatord . . . . ... ... ... .. 40

6.1.2 Random Moving Vessel . . . .. ... .. ... .. ........ 41

6.1.3 VelocityObstacle]. . . . ... .. ... ... ... ......... 42

6.1.4 Multi Objective PSO| . . . . . . .. .. ... ... ... ...... 45

[6.1.5 Hybrid Algorithm - VOPSO| . . . .. ... ... ... ....... 46

6.2 Testl . . . . . . . e 48
[7_Resulis| 49
71 Simulation TestResults| . . . ... ... ... ... ... ... ...... 49
[7.1.1  Scenario 1: Ship from Starboard Side| . . . . .. ... ... ... 49

[7.1.2 Scenario 2: ShipHead-on|. . . . ... ... ... ......... 50

[7.1.3 Scenario 3: Ship Standstill] . . .. ... ... ... ... ... . 51

8 Discussion| 53
8.1 ProjectChanges| . . .. ... ... ... . .. ... . ... ... 53
8.2 SimulationResults] . . . ... .. .. ... .. . ... . ... ... ... 53
8.3 Further Improvements| . . . . . . .. ... ... L oL 55
8.3.1 Algorithm| . . .. ... ... ... ... 25

8.3.2 Simulatord . . ... ... ... .. ... 56
nclusion 57

AYe]o 0 61
................................... 62

B ProgressPlan| . . . . .. .. . . ... 65
B Progress Plan20.01.2021]. . . . . .. ... ............ 65

. rogress Plan 21.03.2021|. . . . . . .. ... ... ... ... .. 66

B.3  Progress Plan 19.04.2021]. . . . . . . ... ... ... ...... 67

B.4  Progress Plan 19.05.2021]. . . . . . ... ... ... ... .... 68

[C  PreprojectReport] . ... ... ... ... . . . . ... ... 69
D Externallinksl. . . . . .. ... .. ... . . . 84
lE___Source Codel . . . . . . . . .. 85
[E.1 Random Moving Vessel Class| . . .. ............... 85
....................... 87

[E.3 Multi Object Particle Swarm Optimization Class|. . . . . . . . .. 90

[E.4  Velocity Obstacle Particle Swarm Optimization Class|. . . . . . . 97

Page 4 of[103]



@ NTNU

Norwegian University of

LIST OF FIGURES Science and Technology

List of Figures

1 Autonomous ship architecture components| . . . . ... ... ... ... 13
2 Changes in autonomy modes during voyage [21] . . . . . ... ... .. 14
3 stacle Pathfinding [28] . . . .. ... ... ............... 16
4 AMathematical Graph[24] . . ... ... ... ... ... ... .... 17
[o Dijkstra’s Algorithm [28] . . . . . . . ... . ... ... 18
6 Best-First-Search[28] . . ... ... ... ... . .. ... .. ... ... 19
7 A*Algorithm[26] . . . . . . . .. .. 20
8 A"Algorithm Irap 28] . . . . ... ... ... ... ... . ... .. 21
9 [OSguidance[16] . . . . . . oo 22
10 ircle of acceptance and Progress Along Path methods [16] . . . . . . . 23
11 Adaptive Wolf Colony Search Algorithm flowchart [15] . . . ... .. .. 25
12 Simulator structure in hierarchical manner [14] . . . ... ... ... .. 28
M3 GeneralMap [34] . . . . . . .. . 29
M4 Mapwithsymbols[23] . . . .. ... ... .. .. ... .......... 30
15 The difference in water level at high tide and low tide] . . . . . ... ... 31
16 The framework of the Controller superclass] . . . . ... ... ... ... 40
(17 The setup parameters for the standstill scenario|. . . . . ... ... ... 41
18 Obtaining relative distance andangle] . . . . ... ............ 42
19 alculating Velocit stacledata] . . ... .. ... ... . 43
20 alculating collisioncone| . . . .. .. ... ... ... ... . ... ... 43
21 MOPSO dynamic objectavoidance| . . . . . ... ............. 46
22  VOPSO Collision Conel . . . . ... ... ... ... ... . . ..... 47
23 __Pass Starboard TestResultl . . . . . ... .. ... ... ....... 50
24 Head-on lestResults| . . ... ... ... . ... .. ... ... 51
2 ndstill Test Results| . . . . . . ... ... ... ... . .. L. 52

Page 5 of[103]



LIST OF TABLES

@ NTNU

Norwegian University of
Science and Technology

List of Tables

[T General Autonomy Levels [21]

Page 6 of[103]



@ NTNU

Norwegian University of

LIST OF TABLES Science and Technology

Abbreviation

 AIS Automatic ldentification System
« ASV Autonomous Surface Vehicle
« AWSA Adaptive Wolf Colony Search Algorithm

« COLREG Convention on the International Regulations for
Preventing Collision at Sea

» DCPA Distance of Closest Point of Approach

« DWA Dynamic Window Approach

» GNC Guidance, Navigation and Control

« GPF Generalized Potential Field

» GPS Global Position System

« IDE Integrated Development Environment

* IMO International Maritime Organization

 LIDAR Light Detection And Ranging

« LOS Light Of Sight

« MOPSO Multi Object Particle Swarm Optimisation
« MPC Model Predictive Control

* MSS Marine Systems Simulator

* NTNU Norwegian University of Science and Technology
« RADAR Radio Detection And Ranging

* ROS Robot Operative System

« TCPA Time to the Closest Point of Approach

« USV Unmanned Surface Vehicles

* VFF Virtual Force Field

Page 7 of[103



@ NTNU

Norwegian University of

LIST OF TABLES Science and Technology

» VD Voronoi Diagram

« VO Velocity Obstacle

« VOPSO Velocity Obstacle Particle Swarm Optimization
« WSA Wolf Colony Search Algorithm

Page 8 of[103



@ NTNU

Norwegian University of

LIST OF TABLES Science and Technology

Concepts

Algorithms is a finite sequence of well-defined, computer-implementable
instructions, typically to solve a class of problems or to perform a com-
putation.

AIS Radio detection system used for collision avoidance.

ASYV Boats or ships that operate on the surface of water without a crew.
COLREG is the equivalent of traffic rules for boats.

Gazebo is an open-source 3D robotics simulator.

Heuristics is a technique designed for solving a problem more quickly
when classic methods are too slow, or to find an approximate solution
when classical methods fail to find ant exact solution.

Hyper-V Software for Virtual machine servers.

LIDAR A method for determining ranges by targeting an object with a
laser and measuring the time for the reflected light to return to the re-
ceiver. Used to make digital 3-D representations of areas or surround-
ings.

MATLAB A numeric computing environment which allows execution of
complex mathematical operations, including algorithms.

PyCharm An IDE developed by Jetbrains for writing programs in Python.
ReSharper An IDE developed by Jetbrains for writing programs in C++.

ROS An open source collection of frameworks for robot software devel-
opment.

Simulation is an approximate imitation of a process or system repre-
senting its operation over time.

Simulink is a block diagram environment for Model-Based Design.

Ubuntu Linux based PC Operative system.

Page 9 of[103



@ NTNU

Norwegian University of

LIST OF TABLES Science and Technology

Notations

v; - Velocity of the ' particle.

x; - Position of the " particle.

r1 and ro Random numbers.

* Pyt - Personal best of the i particle.
* grest - Global best.

* ¢; and ¢, Acceleration Coefficients.

« W - Inertia weight

Page 10 of [103]



@ NTNU

Norwegian University of
Science and Technology

1 Introduction

Maritime transportation is a large part of the Norwegian economy, seeing as it has the
second longest coastline in the world. An ambitious goal for the future is to implement
a network of autonomous ships transporting goods and people along this coastline.
This switch to autonomy introduces a great many challenges, and requires efficient
algorithms which can respond to a wide array of situations.

One such situation is the interaction between large transport ships and smaller vessels,
which can often act in an unpredictable manner. Even though there exists a set of rules
for collision prevention (COLREGS), there is always the risk of human error that results
in rules being broken or misinterpreted. An interaction between an autonomous ship
and a human operated vessel is a realistic scenario that may happen often in the
near future, and for that reason it is important that autonomous vessels have effective
collision avoidance algorithms.

The project is focused on the simulation of several collision avoidance algorithms. The
subject of interest is the performance of the algorithms themselves, which means an
existing simulator will be used in their implementation. The algorithms in focus are
Velocity Obstacle and Multi Objective Particle Swarm Optimization (MOPSO), and the
hybrid algorithm proposed will be a combination of these. These are local algorithms
with collision avoidance as their primary purpose, and the tests they are run through
will focus on this. The goal is to have produced a hybrid algorithm that performs better
in these tests than the original algorithms it is based on.

Page 11 of [103]



@ NTNU

Norwegian University of
1.1 Report Structure Science and Technology

1.1 Report Structure

Chapter [1] - Introduction contains the background of the assignment, and the project
structure.

Chapter [2)- Theory contains the theoretical basis that is needed for decisions through-
out the project.

Chapter [3)- Development Process contains information on the process that was fol-
lowed to complete the bachelor.

Chapter [4] - Requirements describes the required foundation for the simulator and
algorithms.

Chapter [5 - Technical Design describes the foundation of the chosen solution the
group are to utilize.

Chapter [6) - Implementation contains the more technical details of the solution that
were implemented and its implementation.

Chapter[7]- Results contains the results from the algorithm tests.

Chapter (8| - Discussion contains an evaluation of the groups methods and results,
with limitations, changes, improvements and possibly errors that can occur.

Chapter|[9]- Conclusion contains the final summarize from the findings and discussion
section.

Appendix [A] - COLREGs contains a excerpt of the COLREGs rules relevant to the
thesis.

Appendix [B|- Progress Plans contains several progress plans throughout the project.

Appendix|[C|- Pre-project Report contains the Pre-project report from the start of the
project.

Appendix [E| - Source Code contains the source code of the simulator and the algo-
rithms.

Page 12 of [103]



@ NTNU

Norwegian University of
Science and Technology

2 Theory

This section presents the definition of an autonomous ship and how to a achieve au-
tonomy, as well as path planning and collision avoidance algorithms that have been
researched throughout this thesis. Further on it presents different simulators used for
simulating path planning and collision avoidance algorithms.

2.1 Autonomous Ship

Autonomous ships are based around the concept of a ship utilising different information
to automatically locate, detect and predict the situation around a vessel, to be able to
make a decision about how the ship must orient itself at sea to reach its destination.

2.1.1 Requirements to Achieve Autonomy

Sensors and information

Lidar ‘ ‘ Radar ‘ ‘ GPS ‘ ‘ Camera ‘ ‘ Other:

Map etc.

h 4
Detection and posittion

markings ‘ ‘Objectdetection‘ ‘ Object tracking ‘ ‘ Oown location ‘ ‘ Free sea path

h

| |
| |
| 1

Route planing 1:; ;:mz‘r'z;’c Target behavior Target trajectory

h

Actuator Controll

Speed/Thrusters ajectory/Rudde Others

Figure 1: Autonomous ship architecture components

The first requirement for achieving autonomy is information. A constant stream of
information is gathered by using technologies such as LIDAR, Radar, and GPS, as
shown in Figure [1]

Page 13 of [103]



@ NTNU

Norwegian University of
2.1 Autonomous Ship Science and Technology

The third step is utilizing the information to calculations, predictions and make decision.
This step is highly technical with many algorithms and rules that need to be followed,
and is the reason why there still are no fully automated ship traveling up and down the
Norwegian shoreline.

The last step is actuate the decisions to control the ship by implementing new direc-
tives.

2.1.2 Autonomy Levels

There is no specific method or rule for how to identify a vessel as an autonomous
vessel. But there are a countless number of articles about how to identify different
levels of autonomy. The main points of identifying the level of autonomy a vessel has,
is to know how great of a role the vessel is in the decision-making process, and how
much a human must intervene.

Generally autonomy levels can be categorised as shown in Table[1]

Level | Short description Description

1 Manual operation or Remote control | Operator is in control of gathering information and taking decisions

2 Operator assisted System recommend decisions for the operator

3 Partly autonomous System take decisions, but the operator can override and change decisions
4 Autonomous The system is planing, predicting and taking decisions by itself.

Table 1: General Autonomy Levels [21]

2.1.3 Autonomy Modes During Voyage

In order to make a vessel autonomous, there is a need to understand what environment
the vessel is supposed to travel in. There is a big difference in the information one
needs when operating that ship inside a port, versus out at sea. Figure [2/ shows the
autonomy modes during a voyage.

- L.,
[ I I I I
Leave berth Port depart Sea passage Exception Sea passage

AUT ., RC - CA RC CA
N L) )

LY.
Ca)

Figure 2: Changes in autonomy modes during voyage [21]

Port Arrival/departure: To manoeuvre a ship in a port requires very high situational
awareness, and knowledge about how the ship reacts with limited room to maneuver.

Page 14 of [103]



@ NTNU

Norwegian University of
2.2 Algorithms Science and Technology

There is also a need to know where to dock, and the area to moor the ship to the dock.
This poses great difficulties for autonomous ships without a dedicated port.

Sea passage: Main challenges when the ship is at sea are weather, unpredictable
vessels, and keeping the ship on course. If traveling along the coast it becomes a
higher priority to avoid shallow waters.

At sea exception: Areas with limited area to evade other ships. Artificial waterways.
Drawbridge that is open a limited time. Areas only open when high tide or low tide. Are
some areas where autonomous ships need human intervention.

2.2 Algorithms

An algorithm is a list of instructions and rules designed to perform a specific task [29].
Algorithms are used to process data and perform calculations or actions in various
ways, such as multiplying two numbers, or a complex operation, such as playing a
compressed video.

In computer programming, algorithms are often created as functions to serve larger
programs. For example, a simulator uses an algorithm to run a scenario while the
simulator program displays it.

Since there are multiple ways to perform a specific operation within a software program,
programmers strive to create the most efficient algorithms possible [13]. An algorithm
should be so well defined throughout all aspects that it only leads to one unambiguous
result. The benefit of efficient algorithmsis that program use as little system resources
to quickly and efficiently produce reliable results.

2.2.1 Global and Local Path-planning Algorithms

Path-planning algorithms can be classified into either global path-planning algorithms
[18] or local path-planning algorithms [30]. Global path-planning is often performed
before the actual journey begins. It evaluates the whole set of available information for
a specified area, and based on this information a safe path is generated from the point
of departure and the destination. The generated path must satisfy certain constrains,
such as the dynamic constraints of the vehicle and environment-related constraints.
These constraints can be weather conditions and minimum distance from obstacles
or land. Some known algorithms that are using global path-planning is the Voronoi
Diagram (VD) [7], the Potential Field Method [4], and the A* algorithm [1].

Page 15 of [103]



@ NTNU

Norwegian University of
2.2 Algorithms Science and Technology

The Local path-planning on the other hand is most often performed in real-time, and
it takes the surrounding space around the vessel into account [18]. This leads to local
path-planning algorithms being more fitted for dynamic obstacle detection and other
unpredictable factors. Some known algorithms that are using local path-planning is the
Dynamic Window algorithm [8], the Virtual Force Field algorithm [6], and the Velocity
Obstacle algorithm [9].

2.2.2 Pathfinding

Pathfinding is a complex operation, but there are many reasons for implementing it [28].
Consider a vessel on one end of an area attempting to reach the other end. Without
pathfinding the vessel scans a small area around the vessel to check for obstacles
(shown in pink in Figure [3), afterwards it will continue its scan in small areas while
simultaneously going straight towards the goal until a obstacle is discovered. Once
detected the algorithm will change direction to avoid the obstacle, following the red
path in[8] A path finding algorithm however would scan a larger area(highlighted in
light blue), and with that search discover a shorter path and avoiding getting stuck in
the obstacle (Blue line in Figure [3).

detect obstacle here = 5

Y

ctart ;“‘“nut

Figure 3: Obstacle Pathfinding [28]

Pathfinding has the advantage of letting the vessel plan ahead, rather than reacting
once a obstacle is discovered [28]. There is however a trade-off between pathfinding
and reactionary algorithm in that pathplanning is generally slower, but gives a better
result by not having as high a risk of getting stuck. It is recommended to use pathfinding
algorithms for longer distances, where obstacles are relatively static. On the opposite
end of the scale a reactionary algorithm will generally do better in smaller local areas
like docking or going into harbour where obstacles are more varied and the distance is
shorter.

Page 16 of [103]



@ NTNU

Norwegian University of
2.2 Algorithms Science and Technology

2.2.3 Graph-based Pathfinding

The A* algorithm and its predecessor the Dijkstra’s Algorithm operates and takes de-
cisions based on weighted graphs [24]. The graphs consist of vertices also known as
nodes which are connected by numeric weighted edges. The graph-based search al-
gorithms needs to know the location and which of the nodes that are connected and
how they are weighted.

A mathematical graph consist of a set of nodes and edges, see Figure

Q
O 0—0

0—0 £
Figure 4: A Mathematical Graph [24]

For any graph two things need to be know:
1: Set of nodes in the graph
2: Set of edges from each node

A: A—~BA—DA—-G
B: B—~AB—CB—F
C:. C—-BC—DC—E
D: D—-CD—A

E: E—-CE—F

F: F—~BF—E

G: G—A

2.2.4 Dijkstra’s Algorithm

The graph-based Dijkstra algorithm uses the cost from the graphs to find the shortest
path from starting point of the object to the finishing point [28]. From the starting point
of the object the Dijkstra visits the closest vertices in the graph, and then starts to build
a set of nodes with the shortest distance from the starting point. This search continues
until the algorithm reaches the finishing point, and as long as the edges do not have
any negative cost it will provide the shortest path possible. In the following Figure 5 the
pink square is the starting point and the purple square is the goal. The cyan squares is
where the Dijkstra’s Algorithm performed the scanning. Farther on, the lightest colored
squares is farthest from the starting point while the darker is closest.

Page 17 of [103]



@ NTNU

Norwegian University of
2.2 Algorithms Science and Technology

Figure 5: Dijkstra’s Algorithm

2.2.5 Best-First-Search

The Best-First-Search algorithm is more of a greedy algorithm as it has some estimate
of how far from the goal any vertex is [28]. It works by finding the vertex closest to
the goal instead of the starting point. This algorithm however is not guaranteed to find
the shortest path. Best-First-Search has the advantage of running much quicker than
Dijkstra’s algorithm, this because it takes advantage of heuristic function to create a
path towards the goal. In the following Figure [6] the pink square is the starting point
and the purple one is the goal, while the yellow squares indicates nodes with high
heuristic value and the dark squares represents nodes with low heuristics value.

Page 18 of[103]



@ NTNU

Norwegian University of
2.2 Algorithms Science and Technology

Figure 6: Best-First-Search

As seen in Figure 3] the red path represents a Greedy Best-First-Search path, this can
be seen in that it tries to move towards the goal. This happens because the algorithm
ignores the cost of the path, and instead only focuses on the cost to get to goal. This is
turn means that it could possibly create a path with high cost before reaching its goal.

2.2.6 A* Search Algorithm

The A* search algorithm is a graph traversal and path search algorithm, and it is the
algorithm used for path planning in this project. One if the major drawback of a* is
its memory requirement, as it stores all generated nodes in memory [31}, [1]. The A*
algorithm was first published at Stanford Research institute in 1968 by Peter Hart, Nils
Nilsson, and Bertram Raphael, as a result of a path planning algorithm for the Shakey
project [31]. The algorithm can be considered an extension of Dijkstra’s algorithm,
where A* is using trial-and-error to guide its search.

The A* search algorithm is a best-first search, meaning that it is formulated in terms of
weighted graphs [31],26]. The algorithm starts at a given starting node in a graph, it
attempts to create a path to the goal taking cost of the path into consideration as seen
in Figure[7} A* decides which of it's path to extend by calculating the cost of all existing
paths to the target. It's important to note that A* does not attempt to create the shortest
path to the goal, but rather the least costly path, determined by the cost of each section
of the grid.

Page 19 of[103]



@ NTNU

Norwegian University of
2.2 Algorithms Science and Technology

Figure 7: A* Algorithm [26]

One can say that the A* algorithm is the best of both world from both the Dijkstra’s
algorithm and the Greedy Best-First-Search algorithm. It can be used to find the short-
est path as the Dijkstra, while using the heuristic from the Greedy Best-First-Search
algorithm [28]. In simple cases it can be as fast as the Greedy Best-First-Search algo-
rithm. It uses the information of which vertices that are close to the starting point from
the Dijkstra’s and the information of which vertices that are closes to the goal from the
Greedy Best-First-Search algorithm.

In A* terminology, g(n) represents the exact cost of the path from the point of origin to
a vertex n, and h(n) represents the estimated cost from any vertex n to the pre-defined
goal [28]. In Figure[8] the vertices are more yellow the further they are from the goal (%),
and more teal the further they are from the starting point (¢). Each repetition through
the main loop of the algorithm the A* balances the two as it moves from the starting
point to the goal. It examines the vertex n that has the lowest sum of equation|i]

f(n) = g(n) + h(n) (1)

Page 20 of[103]



@ NTNU

Norwegian University of
2.2 Algorithms Science and Technology

Figure 8: A* Algorithm Trap

2.2.7 The Virtual Force Field Method

The Virtual Force Field Method (VFF) is a combination of using certainty grids for
obstacle representation, and potential fields for navigation [6]. This combination is
especially capable of accounting for inaccurate sensor data, and enables the robot to
move continuously, as opposed to a staggered movement where it stops in front of
obstacles before recalculating its path. Krogh and Thorpe [5] suggested a combined
method for global and local path planning, which uses Krogh’s Generalized Potential
Field (GPF) approach. These methods however assume a know and prescribed world
model of the obstacle. The combination of the potential field method with a certainty
grid creates a reliable control method for autonomous vessels.

2.2.8 The Dynamic Window Approach

In the Dynamic Window Approach (DWA) approach, the algorithm searches for veloci-
ties that are can be reached within the dynamic constraints of the vessel [8]. Addition-
ally the search area is limited with respect to obstacles in the travel path. Defining the
search space by these criteria is done in the first step of the algorithm. In the second
step the optimal velocity is chosen from the velocities considered valid. The vehicle
dynamics are taken further into consideration as the dynamic window is reduced to
velocities which can be reached within a given time interval. All maneuvers outside the
dynamic window are not considered when calculating the obstacle avoidance.

Page 21 of[103]



@ NTNU

Norwegian University of
2.2 Algorithms Science and Technology

2.2.9 Line Of Sight

The simulator contains a simple Line Of Sight (LOS) algorithm. This algorithm is based
on a 2D field of view from the vessel [11]. More complex 3D LOS algorithms uses the
elevation observer points and the points on the terrain of interest as the criterion to
perform visibility analysis. Some of them also takes the distance between the observer
and target point, and the velocity and direction of moving objects into consideration.
The LOS algorithms are still very simple algorithms that can not easily be modified to
consider additional criteria, such as the need to deviate from the original route entirely.

The LOS algorithm steers the vessel onto the line between the waypoints as shown in
Figure [9

4 North . N

Figure 9: LOS guidance [16]

The two criteria used by the LOS algorithm in the simulator is the circle of acceptance
and progress along path criteria [16]. Since the ship is following a path described
by waypoints, it uses one of these two methods to know when to switch to the next
waypoint. The difference between these two methods is that the circle of acceptance
makes sure that all of the waypoints are visited, while the progress along path, also
known as along-track, switches waypoints whenever the vessel crosses the line normal
to the waypoint line as shown in Figure [T0]

Page 22 of [103]



@ NTNU

. . ) Norwegian University of
2.3 Collision Avoidance Science and Technology

4 North e ™ North

- : > Bast : \/ > Bast

(a) Circle of acceptance method (b) Progress along path method

Figure 10: Circle of acceptance and Progress Along Path methods [16]

2.3 Collision Avoidance

There has been a rapid growth in the control methods for ship collision avoidance these
past years. Most of then can be divided into two classes: model-based and model-free
methods [22]. In 2017 Xin Wang, Zhengjiang Liu and Yao Cai [20] proposed a collision
avoidance support system that quantified the distance at the closest point of approach
(DCPA) and the time to the closest point of approach (TCPA) to assess the collision
risk between two encountered vessels, and subsequently employed a proportional-
integral-differential control method to calculate the vessel maneuvering motion. The
simulation indicates that the own vessel can avoid only one target vessel, and the only
maneuvering party is the own vessel while the target vessels remain at the detected
bearing. Therefore, this research was confined to one ship-one ship situation.

He (et al) [19] presented a quantitative analysis system for COLREGs that included a
series of judging models based on the collision risk with encountered target ships. This
method can handle one ship - multiple ships situations where one ship can avoid multi-
ple target ships simultaneously. Zhang (et al) [17] proposed a distributed anti-collision
decision support formulation using a decision tree in multi-ship situations under COL-
REGs. This approach can manage complex scenarios with multiple target ships. Model
predicitive control (MPC), a popular mode-based method, can compute an optimal tra-
jectory based on the target ships motion prediction while considering its uncertainty.
Within this approach it is possible to incorporate models of the target ships motion, the
evolution of the dynamic environment, and different operational constraints [17].

A reliable and robust collision avoidance system is crucial for an Autonomous Surface
Vessel (ASV) [16]. To operate and behave at sea it needs to adhere the International
Regulations for Avoiding Collision at Sea (COLREGs). The Velocity Obstacle method
can be used as the basis for collision avoidance, where it takes on the main COLREGs
scenarios: overtaking, head-on, and crossing.

Page 23 of [103]



@ NTNU

. . ) Norwegian University of
2.3 Collision Avoidance Science and Technology

2.3.1 Velocity Obstacle

The Velocity Obstacle algorithm (VO) creates an approximation of the velocities that
would cause a collision with an obstacle at some point in the future [9]. The Velocity
Obstacle represents the velocities that will eventually cause a collision, and the vessel
can adjust well in advance of the collision by simply selecting a safe velocity. It is one
of the simplest methods for collision detection, but it still requires obstacle velocities
data.

It is possible to use the velocity obstacle algorithm for single and multiple obstacles
[9]. When it is used for multiple obstacles it may be useful to prioritize the obstacles
so that those with imminent collision will take precedence over those with long time to
collision. The algorithm is not fit to predict remote collision as it may be inaccurate if
the obstacle does not move along a straight line.

2.3.2 Adaptive Wolf Colony

The Wolf Colony Search Algorithm (WSA) [15] is based around the hunting tactics
where communication the leading wolf, detective wolves, and fierce wolves is used
to imitate the hunting behavior of a wolf colony. This algorithm searches the solution
space by taking advantage of the moving behavior of detective wolves; the leading wolf
will use his summoning power to move the wolf colony toward promising regions where
the it is most likely to find prey; the combination of detective and fierce wolves gives
WSA a fine search ability among the promising solutions.

The Adaptive Wolf Colony Algorithm (AWSA) [15] is a Search algorithm based on WSA.
AWSA can adjust the step lengths in real-time, based on the current search space and
directions. The AWSA addresses the problems associated with low convergence rate
caused by boundary overstepping of WSA in the encircling process.

Figure[11]is showing the flowchart of how to Adaptive Wolf Colony Algorithm is operat-
ing.

Page 24 of



@ NTNU

. . ) Norwegian University of
2.3 Collision Avoidance Science and Technology

( ]

!

‘ Initialize wolf colony algorithm parameters ‘

!

‘ Initialize position of the wolf colony ‘

!

‘ Run for the leading wolf via adaptivw search ‘
T

v

‘ Move toward the leading wolf ‘

!

No / Whether the distance with the>

leading wolf is smaller than the
moving step length

l Yes

‘Encircle the pray by adaptively adjusting the step Iength‘

h 4
Re-search ‘

‘ Allocate the food and update the wolf colony ‘

!

> Meet the termination
condition or not

lYes

No

‘ Output the optimal solution ‘

!

[ Ending ]

Figure 11: Adaptive Wolf Colony Search Algorithm flowchart [15]

2.3.3 Multi Objective Particle Swarm Optimization (MOPSO)

Particle Swarm Optimization (PSO) proposed by Kennedy & Eberhart [33] is inspired
by the social behavior of some biological organisms, like the choreography of a bird
flock who synchronously often change direction suddenly, scattering and then regroup-
ing. Coello Coello & Lechuga describe it as a distributed behavioral algorithm that
performs multidimensional search [10]. In the simulation, the behavior of each indi-
vidual is affected by either the best local or the best global individual. The PSO also
differs from an evolutionary algorithm in that it allows individuals to benefit from their
past experience. In evolutionary algorithms, on the other hand, data obtained from the
current population is the only past knowledge of the individual.

Coello & Lechuga proposed an idea of using the PSO algorithm with a global repos-
itory in which every particle will deposit its information after each cycle [10]. In this
way the PSO algorithm is capable of handling multiple objectives at the same time, in-
stead of only a singular approach. The MOPSO also implements a geographical-based
approach to maintain diversity.

Page 25 of [103]



@ NTNU

Norwegian University of

24 COLREGs Science and Technology

2.4 COLREGs

COLREGs is the International Regulations for Avoiding Collison at Sea and was estab-
lished by The International Maritime Organization (IMO) in 1972 |2, 13]. The COLREGs
are divided into five parts:

Part A General (Rules 1-3).

Part B Steering and Sailing (Rules 4-19).

Part C Lights and Shapes (Rules 20-31).

Part D Sound and Light Signals (Rules 32-37).

Part E Exemptions (Rule 38).

Part F Verification of compliance with the provision of the Convention (Rules 39-
41).

Since the algorithms that have been used during this thesis do not compile for either
light or sound, the main focus will be around part B of the COLREGs. The rules in Part
B that are relevant to this thesis are rule 8, 13, 14, 15, 16 and 17. The scenarios to be
considered in this thesis are: head-on, overtaking, crossing and avoiding a vessel with
irregular maneuvering. The relevant rules are listed in Appendix [Al

2.5 Simulation

A simulation is an imitation or recreation of a real-world situation, a process, or a course
of events. Simulation are used for performance optimization, safety engineering, test-
ing and training. By utilising a simulator it is possible to simulate what would happen
in a real life scenario without investing in expensive equipment and put materials or
human lives in danger. Simulation can be graded regarding authenticity, which deals
with the simulation’s credibility and accuracy.

Page 26 of [103]



@ NTNU

Norwegian University of
2.5 Simulation Science and Technology

2.5.1 Gemini

The Gemini simulator [38] is a Unity-based visual simulator originally developed by
graduate students at NTNU in Trondheim, Norway. The simulator began as a project
for the Milliampere Autonomous ferry. The purpose was to provide a foundation for
Electromagnetic Radiation (EMR) based sensor, such as optical cameras, LIDAR and
Radar for use in development and testing of autonomous applications. In addition to
providing the simulated sensor data from inside the simulation environment, Gemini will
expose an APl that allows developers to interface and communicate with the simulated
vessel(s) and environment.

2.5.2 ROS and The ASV System Package (ROS package)

The Robot Operating System (ROS) [36] is a flexible framework for writing robot soft-
ware. It is a collection of tools, libraries and conventions that aim to simplify the task of
creating complex and robust robot behavior across a wide variety of robotic platforms.
The ROS was built from the ground and up to encourage collaborative robotics soft-
ware development. It has a wide variety of usage like mapping indoor environments,
and could contribute a world-class system for producing maps. Further on another
group might have experts at using maps to navigate, and yet another group might have
discovered a computer vision approach that works well for recognizing small objects in
clutter.

The Autonomous Surface Vehicle (ASV) system package [39] is a collection of ROS
packets developed by Thomas Stenersen as a part of his master’s thesis. The ASV
system package is mix of C++, Python and CMake.

2.5.3 Marine System Simulator (Matlab/ Simulink Module)

The Marine Systems Simulator (MSS) [12] is a Matlab and Simulink library for marine
systems. It includes models for ships, underwater vehicles, unmanned surface vehi-
cles (USV) and floating structures. The library also contains guidance, navigation and
control (GNC) blocks for real-time simulation.

Page 27 of [103]



@ NTNU

Norwegian University of
2.5 Simulation Science and Technology

2.5.4 Project Thesis Simulator: Stenersen (Python)

This simulator is developed by Thomas Stenersen in 2014 during his project thesis [14,
40]. It makes the foundation in his master’s thesis the following year. The simulator is
a path planning simulator which contains a several path-planning algorithms, including
the A* algorithm used in this project. It is organized in a hierarchical manner as shown
in Figure By implementing core modules as separate classes, it is believed that
through this strict separation the simulator is easily modified.

Simulation
Scenario
World Vessel
Map Vessels Model Controllers
Vessel 1

Figure 12: Simulator structure in hierarchical manner [14]

At the top of the simulator structure lies the Simulation and Scenario classes [14]. The
Scenario class defines the scenario parameters such as starting positions and land-
masses, and the Simulation class performs the mathematical aspects of the simulation.
The Simulation class then updates the World class, which implements these calcula-
tions in the Map and Vessel classes, and checks if any of the vessels have collided.
Information about the path travelled by the vessels is stored in the Simulation class,
which is later used to draw the visual representation of the simulation.

The Map Class implements a map which uses sets of polygons to represent land. The
Vessel Class is an implementation of a surface vessel. It instantiates the VesselModel
class, as well as information required to draw the visual representation of the vessel in
the simulator. The VesselModel class simulates the vessel motion by implementing a
3 degree-of-freedom vessel model.

Finally each algorithm, both local and global, are implemented as their own controller
classes. These are implemented as a subclass of the Controller superclass.

Page 28 of [103]



@ NTNU

. . Norwegian University of
2.6 Simulation Map Input Science and Technology

2.6 Simulation Map Input

Figure 1| is a good indication for requirements for what inputs a ship simulator needs,
and what tasks a complete simulator must know how to process. A big obstacle is
generating the needed data and information needed to run a simulation. There is a
big gap in complexity between different information a simulation utilize. More lifelike
simulations require information with higher degree of complexity.

2.6.1 Map Data

Figure[13|shows how most of the free map applications like Google Maps [32] or Marine
Traffic [39] is displayed. When using these kind of maps in a simulator, it will be easy
to convert data to distinguish what is land and what is sea. If one use these maps to
orient oneself at sea, there will be a major chance that accidents will occur.

Figure 13: General Map [34]

Instead of using a general map in the simulator, implementation of a nautical chart will
significantly increase the quality of the simulation. Further on will the nautical chart
implementation make the simulation more similar to the reality, and therefore increase
the quality and security of a possible implementation of the algorithm in an autonomous
vessel. By adding a map from the Norwegian Mapping Authority as an overlay you can
accomplish a much better insight into how the waters are below the surface.

Page 29 of [103]



@ NTNU

. . Norwegian University of
2.6 Simulation Map Input Science and Technology

A problem at sea is that it is not possible to directly see what is below the surface at
first glance. When leading a boat with a deep draft, it is easy to run the boat aground
when not pay attention. Sea charts contains information on where vessels can traverse
in terms of depth, which are displayed as different icons, like in Figure In reality
these icons can be seen as lighthouses, red/ green lanterns, buoys, beacon etc., and
the captain needs to investigate if his vessel could traverse in these waters.

2 izl 1.4,
+, L1
; 3
i i+ Li o
N 3 Iso R 2s
Y " # + runnflua
+q +2 3 N
< Ko AN ¥ -
1 2 i N 24 P e lso G25
2 . (YA b~ + +/
& 7 \ Y74 Iso'R'2s o e ~
N +2 3 & Kieh 4 24| ¥
N 3% %2Kvema | 5 .
0 S G
Kalgarden ' N/ 6 ’ Sk -
63+ Iso G2s {
+IsoR2s ., ™ Y.+ 4
Lausundflua Iso'G 28" % 4, , ° i
+ 7 + ¢~ 29 Lepspyrevet
VAP QY ¥
Iso.R 2s¥, *
Iso Ge2s "y e y +\> e

Figure 14: Map with symbols [23]

A final issue that arises when traveling by sea is the issue of tides. A map that is static
will not show exactly how deep it is in its area at any given time, as the water level is
determined by the sun and the moon’s location in the sky. This can create problems
when traveling in a ship that is deep in the waters. Even when sailing in an area at high
tide, it may not be possible to when sailing in that area at low tide, like shown in Figure
[15l In a simulator, this will mean that a restriction of traffic should be added for where
autonomous ships should travel, which will help to reduce the chances that any ships
will run aground.

Page 30 of [103]



@ NTNU

) ) Norwegian University of
2.6 Simulation Map Input Science and Technology

& &
&
b

Figure 15: The difference in water level at high tide and low tide

Map data is constantly evolving, but since the ocean covers 71% of the Earth’s surface
[42], it is a challenge to have all sea charts up to date at all times. Through the hundreds
of years humans have mapped the ocean, technology has changed drastically. As a
result, there may be inaccuracies in terms of depth and how accurate the map itself is.

Page 31 of[103]



@ NTNU

Norwegian University of
Science and Technology

3 Development Process

This section describes the procedure in the work regarding the algorithms, and how
the group chose to manage the given time of the thesis.

A progress plan was prepared in form of a Gantt chart to visualize timelines and dead-
lines for all tasks, to easily display when each section of the project should be finished.
A continuous update was performed every two weeks. To get a insight into the progress
of the project process, see Progress Plans [B.1], [B.2], [B.3].

The project was divided into three parts: Phases 1 through 3.

3.1 Phase 1: Planning and Documentation

The group had little to no experience or knowledge regarding autonomous ships and
algorithms prior to the bachelor thesis. Therefor was it important to develop a theoreti-
cal foundation. Work tasks were delegated to systematically review as much theory as
possible, and the relevant knowledge was passed on to each of the group members.

The knowledge and experience acquired in phase 1 made the foundation for phase 2.

3.2 Phase 2: Implementation and Simulation

Phase 2 creates the foundation in implementing the different algorithms in the simula-
tor. One of the more time consuming parts of phase 2 is obtaining an insight into the
workings of the simulator. This is a crucial part in terms of how to implement the differ-
ent algorithms in the simulator, as well as the hybrid algorithm the group will create.

Further on in phase 2, the group decided which algorithms to compare and create
a hybrid from. After the algorithms are selected, the focus was on implementing the
algorithms in the simulator.

3.3 Phase 3: Finalization

Phase 3 is about gathering the results from the simulations and processes them.
Phase 3 will be documented with illustrations, tables, and results before they are sys-
tematically analyzed. The main focus will be to analyze results from each of the algo-
rithms and compare them to each other, by doing this the group will be able to localize
strengths and weaknesses from the different algorithms.

Page 32 of [103]



@ NTNU

Norwegian University of
Science and Technology

4 Requirements

The requirements are based on the following items from the Pre-project Report [C]:

» The project is focused on the simulation of several algorithms for collision avoid-
ance in autonomous ships.

» The subject of interest is the performance of the algorithms themselves, which
means an existing simulator will be used in their implementation.

» There is already a great deal of work done on testing algorithms in simple sim-
ulations and situations, and the goal is to put some of the more promising ones
through a more challenging test.

» The scenario envisioned introduces a chaotic element to the simulation in the
form of a smaller vessel with a random aspect to its path planning.

* A selection of algorithms will be run through this simulation, The results of these
tests would then be used in the selection of algorithms for further use in the
creation of a hybrid algorithm.

» This hybrid will then be run through the same tests and be compared to the
original algorithms.

4.1 Simulation Requirements

A preexisting simulator is to be utilized to reduce development time. It had the following
requirements:

* Licence free software: The simulator needs to be open-source software.

» Coding language: Every group member are experienced in either Java, Python
or both, meaning the ideal simulator would operate on one of these languages.

* lllustration of ship movement: The simulator should preferably have a way to
produce a visual output of ship movement.

 Ability to modify simulator: The ability to implement new algorithms without
remaking the whole simulator, as well as ability to modify the simulator to get test
data information output.

« Complexity: The simulator must not be overly complicated, implementations of
algorithms are the main focus.

Page 33 of [103]



@ NTNU

Norwegian University of
4.2 Algorithms Science and Technology

4.2 Algorithms

Simulation of several algorithms for collision avoidance

» Path-finding with target detection: Algorithms should be able to reach the set
goal while simultaneously avoiding obstacles.

» Global and local search: The algorithms should be within the same scope as to
give better grounds for comparison.

4.3 Test Requirements

e Scenario:

— Random ship implementation.
— Different directions of approach.

« Evasion:

— Natural evasion of landmass and other ships.
— Ships needs to follow the COLREGs.

» Test result:

— Minimum distance from other obstacles.
— CPU usage time.
— Total travel distance and time.

Page 34 of



@ NTNU

Norwegian University of
Science and Technology

5 Technical Design

This section describes the decision process behind selecting a simulator and the algo-
rithms. It explains why the different simulators and algorithms where researched, and
what the main factor for each of the choices made during the thesis.

5.1 Simulator

The simulator will be used to enable a virtual replication instead of testing on a physical
object. A simulator can have a higher throughput of tests and validations compared to
physical testing, with the possibility to recreate scenarios. It is also possible to simulate
edge cases and dangerous scenarios without the danger of destroying equipment.

The simulator will contain information on the position, heading, and velocity of the
vessel. Most large vessels utilize AlS, which sends information containing ship status,
position, speed, course and local weather. This information can be utilised towards
preexisting maps to predict collisions and adapt courses in a simulation environment.

An open source simulator is to be utilized in this thesis. There is a number of simula-
tion tools available towards simulating algorithms. Another important factor for which
simulator will be used is time and knowledge. Since the group only has a few months
to work on the project and with no prior knowledge towards making simulators, the
complexity and coding language of the simulator need to correspond to what the group
members have prior experience with.

5.1.1 Choice of Simulator

Following is some of the most promising simulators that were tested in Phase 1 [3.1]
of the project.

Matlab Toolboxes

There was a limit of simulators the group was able to find that were made for Matlab
[41], the ones the group found were heavy integrated into the algorithms code. This
made it problematic when trying to implement new algorithms into preexisting code.
The second limitation was the time Matlab utilizes when executing code, especially as
the amount of code increases.

Page 35 of [103]



@ NTNU

Norwegian University of
5.1 Simulator Science and Technology

Marine System Simulator

Marine System Simulator [12] were one of the toolbox that were tried in Matlab. This
simulator was focused on measuring changes in actuator and vessel dynamics, while
the group were interested in a more visual approach.

Gemini

Gemini[38] is a simulator produced by students at NTNU Trondheim, Norway, and it is
a simulator for testing and verifying algorithms and systems for autonomous vessels.
The main problem with the simulator are its programming language C# and C++. With
no prior experience with Unity, C++ and C# the learning curve would be too high when
considering the limited time before the deadline.

Gazebo and ROS

A combination of Gazebo [37] and ROS [36] was the first simulator the group tried to
utilize. Gazebo was to be used as the 3D simulator, whilst ROS provides libraries and
tools to develop the software and create the autonomous ship application.

One of the main motivations for utilising ROS was the open source materials that is
available around the ROS framework and its use in robot competitions around the
world. However, it is dependent on an installation of Ubuntu, which provided some
problems during installation. For this reason it was decided to look for an alternative.

Project Thesis Simulator: Stenersen

Finally a simulator created by a former Masters level student at NTNU, Thomas Sten-
ersen, was considered. This Stenersen simulator [14] is one that the group essentially
stumbled over while researching available simulators. However, several aspects made
it seem well suited to meet the needs of the project.

The first thing was that it was a visual simulator that required only Python to run. This
made it especially tempting compared to ROS in that it was during troubleshooting of
Linux installations when the group discovered this alternative. The visual aspect was
also a positive as it produced a simple animated representation of the simulation with
the option to save each animation to a file.

The second appeal of the Stenersen simulator was that it implemented a simple kine-
matic model for a variety of vessels. This would make the course alterations of the
collision avoidance algorithms more realistic, and combined with the visualisation fea-
ture it produced a clear representation of the entire maneuver.

Ultimately it was the modular nature of the simulator that led to the decision to use
it. It was neatly organized, which each type of vessel and vessel controller separated
into their own classes. This meant that adding the algorithms to the simulator was as
simple as creating new controller classes and adding them to the existing structure.

Page 36 of [103]



@ NTNU

Norwegian University of
5.2 Algorithms Science and Technology

The Stenersen simulator had some global path finding algorithms already implemented.
Thanks to the modular design of the simulator the collision avoidance algorithms could
piggyback off these global algorithms and only kick in when there was a potential risk
of collision.

The Stenersen simulator is of course not perfect. For one it does not implement envi-
ronmental disturbances such as wind, current, or waves. Another downside is that it
calculates each step of the simulation before moving on to the next, which means the
simulation is not truly real-time. However, this is not considered to be detrimental to
the aims of this project.

5.2 Algorithms

The simulator came with A* already implemented. This was a definite bonus, as it
served as a global path planning algorithm. The simulator also came equipped with
a Line-of-sight path following algorithm. This meant the only required work was to
implement the local collision-avoidance algorithms.

The first algorithm the group decided upon was Velocity Obstacles. This collision avoid-
ance algorithm was designed with moving robots in mind, and for that reason it was
found to be very well suited for the purposes. In addition, it was intriguing due to its
implementation of simple geometry to produce very positive results.

Adaptive Wolf Colony was originally considered for the second algorithm, but due to it
being both local and global algorithm it would not be a fair comparison against Velocity
Obstacles. Ideally the two implemented algorithms should be as similar as possible,
so the decision was made to scrap Adaptive Wolf Colony in favour of a purely local
algorithm.

Since the project is focused on collision avoidance, it was necessary that all algorithms
were within the local scope. After some research the group decided upon Multi Objec-
tive PSO since it seemed interesting to implement a machine learning based algorithm
for comparison. Another reason for this choice was that the group quickly visualized
how an hybrid algorithm would be made with MOPSO as the second base algorithm.

Both selected algorithms also has the potential of being able to take COLREGs into
consideration while avoiding obstacles. The main difference between Velocity Obsta-
cles and multi objective PSO is the fact that MOPSO does not make changes in the
ships velocity while path planning, and Velocity Obstacles does not make any consid-
eration of the avoidance maneuver beyond avoiding collision.

Page 37 of [103]



@ NTNU

Norwegian University of
5.3 Testing Science and Technology

Finally, the general ideas behind the two algorithms suggested that they might interact
in an efficient manner. For instance, if both were search algorithms there might be
some conflict arising in the different methods for calculating cost values when com-
bining them. It appeared that Velocity Obstacles was well suited to combine with a
search algorithm like MOPSO, as the geometry of VO could be used to influence the
cost function of the MOPSO.

5.2.1 Global Path Planning

With the priorities on implementing local algorithms for collision avoidance, a choice
was made to utilize the existing A* algorithm from the simulator as the global path
planing algorithm. This provides a more stable basis for setting the algorithms at the
same level at start-up. Velocity Obstacle and Multi Objective PSO are to take over from
the waypoint following algorithm when a collision is detected, and return to following
the A* generated path when the collision is avoided.

5.2.2 COLREGSs Implementation

The goal of implementing COLREGSs is to make the vessel in the simulator act as
similar to a real ship in a real situation as possible. Since the COLREGs is a well
defined collision regulation, it would make the simulator more reliable when running
the simulations compared to how the vessel should act in the real world.

5.3 Testing

This section discusses the types of scenarios the algorithms will be tested in, as well
as what data will be extracted from the tests.

5.3.1 Scenario

The scenarios utilize three different approaches of collision avoidance. In all of the
scenarios the ASV starts from a southern starting point and have a northern finishing
point. In one of the scenarios the ASV encounters a vessel passing from starboard. In
the second scenario the ASV encounters a vessel with a head-on course. Finally the
ASV will encounter a stationary vessel in its travel path.

Page 38 of [103]



@ NTNU

Norwegian University of
5.3 Testing Science and Technology

5.3.2 Test Variables

The simulation will produce some data points from the scenarios. These include travel
distance and time, CPU usage time for collision avoidance calculations, and the closest
distance the vessels pass. This data, along with with a visual representation of the
vessel movements, will form the base for comparing the algorithms.

Page 39 of [103]



@ NTNU

Norwegian University of
Science and Technology

6 Implementation

This section describes how to implementation was performed, and the challenges that
occurred throughout the process.

6.1 Simulator and Algorithm

In the initial project design there were plans for implementing COLREGs and land-
masses as part of the test scenarios. As the end of the project period approached, it
was decided to abandon these criteria to focus on successfully implementing the algo-
rithms. In addition, there were some difficulties combining the randomly moving vessel
with the MOPSO algorithm. Because of these issues, there were no landmasses, ran-
domly moving vessels, or adherence to COLREGs in the test scenarios.

6.1.1 Simulator

Due to the modular design of the simulator, creating new controllers was an easy pro-
cess. The motion of the vessel is controlled by algorithm implemented as a subclass
of a Controller superclass. Implementing new algorithms simply required them to be
added as controllers extending this superclass. The structure of which is shown in

Figure[16

Controller(

(
L

update( vobj, world, vesselArray):

axes, N, fcolor, ecolor):

visualize(

Figure 16: The framework of the Controller superclass

Page 40 of[103]



@ NTNU

) ) Norwegian University of
6.1 Simulator and Algorithm Science and Technology

The draw and visualize methods are used in the visualization part of the simulator,
and did not need to be altered for this project. The update method is the one that
impact the performance of the vessel. To make it work, two variables to be passed to
this method: world, which contains information about the map, and vesselArray, which
contains information about the vessels in the simulation. These new algorithms were
added simply by creating new subclasses of this Controller.

The test scenarios were easily implemented in the Scenario class of the simulator.
New scenarios were made simply by copying the existing scenarios, and change the
parameters to suit the design requirements. An example of a scenario setup is show

in Figure[17]

scenname ==
x01 = np.array( np.pi/

np.array([ 1)

np.array( * np.pi /

np.array([ 1)

Figure 17: The setup parameters for the standstill scenario

The start position array contains the x and y coordinates of the vessel, as well as the
initial heading in radians followed by the initial velocities in the x, y, and z directions
relative to the vessel. The goal array contains the coordinates of the goal as well as
the ideal heading of the vessel when reaching the goal.

Beyond creating new controller classes and creating new scenarios in the Scenario
class,only minor adjustments in the simulator code was required.

6.1.2 Random Moving Vessel

A new controller was created to create a seeded sudo-random moving ship, for testing
the performance of the algorithms in terms of collision avoidance, this was done by
altering a pre-existing controller from the simulator made for controlling a pursuing ship
travelling the shortest possible distance towards the main ship. this was used for testing
collision avoidance in a head-on collision scenario. This controller was then altered by
changing the target of the controller to a randomly generate coordinate with a upper
and lower limit, giving it a new coordinate every n steps decided by parameter when
creating the controller object in the code. The controller can be given a seed or if no
seed is given it will create a random seed itself so it’s possible to rerun a scenario.

Page 41 of[103]



@ NTNU

) ) Norwegian University of
6.1 Simulator and Algorithm Science and Technology

This Controller however was not used in a testing scenario due to limitations in the
implementation of the MOPSO algorithm, as detailed in subsection [6.1.4].

6.1.3 Velocity Obstacle

The velocity obstacle algorithm was implemented with only minor alterations to the
program. The main change that was required was to provide the main vessel with
information about the location and heading of the other vessels in the simulation. In
other words it was assumed that the main vessel had sensors capable of obtaining this
information. Since this data is stored in an array in the World class, and the World class
is responsible for running the simulation, it simply had to pass this array to the Velocity
Obstacle controller.

In practical terms the Velocity Obstacle algorithm is implemented almost purely using
geometry and trigonometry. The first step is to obtain the distance and relative angle
between the two vessels, as shown in Figure[1§

distance =

angle = np.arcte

[distance, angle]

Figure 18: Obtaining relative distance and angle

This data is then passed to a function which creates all required Velocity Obstacle data,
represented by Figure[19

Page 42 of[103]



@ NTNU

) ) Norwegian University of
6.1 Simulator and Algorithm Science and Technology

Figure 19: Calculating Velocity Obstacle data

These examples clearly show the trigonometric nature of the Velocity Obstacle imple-
mentation. By the Velocity Obstacle method, the other vessel B is transformed to a
circle with diameter equal to the distance between the two vessels, and the collision
cone is found by two lines with apex in the first vessel and tangential to the circle B.

Figure 20: Calculating collision cone

The algorithm can find the angle of the collision cone by representing vessel B as a
circle as seen in equation [2]

Bradius -

d
2
Page 43 of[103]



@ NTNU

. . Norwegian University of
6.1 Simulator and Algorithm Science and Technology

It could then find the difference in angle by equation 3

0= arctan(dC/ZQ) (3)

The angles in the collision cone relative to vessel A is then found to be a difference of
theta on each side of the line between vessels A and B.

The next step is finding the Reachable Avoidance Velocities. These are the veloc-
ity vectors that are possible for the vessel to reach within a given time limit, and are
defined by the vessels kinematics. The simulator had the values for surge and yaw
acceleration predefined, so to calculate the Reachable Velocities (RV) it simply had
to multiply the max acceleration with the chosen time frame. The idea here is that
acceleration 73 multiplied by time in seconds s produces velocity “*. The Reachable
Avoidance Velocities are then defined as the set of Reachable Velocities that do not
produce a relative velocity within the collision cone.

Unfortunately the Velocity Obstacles method does not contain a method for selecting
the best velocity from the Reachable Avoidance Velocities. A simple selection method
was implemented, where the maximum Reachable Velocity in each direction was eval-
uated in order. The first velocity which was found to be an avoidance velocity would be
implemented for the next time step of the simulation, after which a new collision cone
would be created. The velocities were evaluated in the following order:

1. Maximum ahead starboard
Maximum ahead port
Maximum ahead
Maximum astern starboard

Maximum astern port

o o &~ W N

Maximum astern

If none of these velocities were evaluated as avoidance velocities, the vessel would set
its velocity to 0 and hope for the best.

Page 44 of



@ NTNU

. . Norwegian University of
6.1 Simulator and Algorithm Science and Technology

6.1.4 Multi Objective PSO

The Multi Objective PSO algorithm is used as collision avoidance algorithm along with
A* as path finding algorithm, this means the MOPSO will only run once certain condi-
tions are met, the condition being detection of another vessel within a set radius. Once
another vessel is detected the MOPSO will start it's search and attempt to find a best
possible route for the ship to avoid collision without deviating too far from it’s given path.
Once the ship has passed the other vessel the algorithm will do a new a* search and
create a new set of waypoints towards the goal.

The multi object particle swarm optimization (PSO) algorithm was implemented by find-
ing a PSO code-example [25] as a starting point. The code was then rewritten to fit
the project and implemented into the simulation with all required alterations of the sim-
ulator already done beforehand during the implementation of Velocity Obstacle. The
algorithm is describes as creating a swarm mimicking birds searching for food, each
particle calculates it’'s new position with the use of three variables: personal best, global
best, and a random variable. Once a particle has traveled to a new position a check
will be done to see if the new position is better than the previous personal best as well
as the global best. A new search will then be done with the new variables as explained
in equation [4] and equation [5] the particles will over several iterations converge on the
best coordinate calculated by it’s cost function [27].

vy = Woy + 171 (Presti — i) + car2(Goest — 1) (4)

The cost function was created with three main variables in mind; distance from goal,
avoidance of static objects, and avoidance of dynamic objects. Distance from goal
is the distance of a straight line from the coordinate in question to the goal, the static
object avoidance refers to avoidance of land as to prevent the ship from running ashore,
this was created with a check already implemented in the simulation that checks if a
coordinate is passable or not and assigning a big value to that point if the point is not
passable. The final part of the cost function checks for other vessels, and was created
by giving a big value to a area in front of- and around other vessels as shown in Figure
any point within the front zone will return a big value to the cost function, whereas
the circle around the vessel will return a slight extra cost as to discourage going to
close to the ship but still allowing for manoeuvres behind the ship.

Page 45 of [103]



@ NTNU

) ) Norwegian University of
6.1 Simulator and Algorithm Science and Technology

160

140 A

120 A

100 ~

80 4 L=

North [m]

60 -

40 +

20 4

]
|
|
I
|
|
|
|
|
|
}

0 25 50 75 100 125 150
East [m]

Figure 21: MOPSO dynamic object avoidance

The first version of the cost function used a cone in front of the other vessels, the main
issue with this version was the PSO was able to find good point on the opposite side of
the cone, or would get stuck on the incline of the cone towards the circle which in turn
would lead to collision, hence it was changed to a rectangle.

6.1.5 Hybrid Algorithm - VOPSO

The hybrid algorithm proposed was a combination of the Velocity Obstacle and MOPSO
algorithms, and was given the name Velocity Obstacle Particle Swarm Optimization
(VOPSO). It was found to be a potentially interesting combination, it is believed that the
collision cone created by the Velocity Obstacle could be used as a high cost area for
the MOPSO algorithm, removing the need to implement any other "danger zones”.

Page 46 of [103]



@ NTNU

) ) Norwegian University of
6.1 Simulator and Algorithm Science and Technology

The collision cone creation was a carbon copy of the method created in the Velocity
obstacle algorithm, which creates a cone representing unsafe velocities. The challenge
posed by combining these algorithms was that Velocity Obstacles is a vector-based
algorithm, while MOPSO is coordinate based. To account for this the hybrid algorithm
would have to be altered such that either the MOPSO algorithm calculated velocities,
or the VO algorithm calculated positions. The latter approach was ultimately used. This
allows the swarm created by the MOPSO to search for a new best position while taking
the consideration the movement of other vessels and moment an eventual collision
would happen.

- 160
140 A
120 A

100 A

80 AN

North [m]

60 4

40 -

20 -

0-

N

0 25 50 75 100 125 150
East [m]

Figure 22: VOPSO Collision Cone

By calculating the time to collision, and multiplying the vertices of the collision cone
with this value, the collision cone was transposed as seen in Figure 22l The idea was
that multiplying the collision velocities * by the time to collision s, would return the
position m. The MOPSO part of the hybrid algorithm could then calculate a waypoint
closest to the goal area which was not inside the transposed collision cone.

Page 47 of [103]



@ NTNU

Norwegian University of
6.2 Test Science and Technology

Ideally this would allow all other danger areas to be removed from the MOPSO calcu-
lations. However, the initial tests of the algorithm showed that this caused problems
when the other vessel was not moving, as the relative velocity between the vessels
would be equal only to the velocity of the main vessel. This combined with the angle
of the cone becoming too small as the vessels were very close to each other, led the
algorithm to select a waypoint just outside the cone but still so close to the vessel to
create a risk of collision. It was decided to add a small high value circle around the
other vessel to counteract this tendency.

6.2 Test

When designing the tests the goal was to test the basic collision avoidance functions
of the algorithms. The most important function of the algorithms was to successfully
interact with other moving vessels. To this end it was decided on running one test
where the second vessel was crossing horizontally in front of the main vessel, and
another where the other vessel was moving head on towards the main vessel. Finally,
to assess the algorithms performance when interacting with a stationary object, a third
scenario was created where the other vessel was at a standstill in the path of the main
vessel.

For each test a selection of metrics was extracted. To measure the efficiency of the
algorithms, the CPU time spent on calculating evasive maneuvers would need to be
reviewed. Additionally it would be interesting to see how much longer the travel path
and travel time became. The final metric was to see by how large a margin the two
vessels passed each other. A simulation with only the main vessel was run to get a
baseline value for each of these metrics.

Page 48 of [103]



@ NTNU

Norwegian University of
Science and Technology

7 Results

In this section, the results from the algorithm tests will be presented. The scenarios
have been developed to show the difference between performance and execution from
the various algorithms.

There are three scenarios considered in this thesis:

1. Ship approaching from starboard side
2. Ship approaching head-on
3. Ship standstill

7.1 Simulation Test Results

The simulated scenarios is simulated in assumed ideal conditions, i.e. no external
disturbances such as wind, current or waves. The A* algorithm generates a route from
start to finish without any static obstacles, and displays the ideal distance and travel
time.

7.1.1 Scenario 1: Ship from Starboard Side

In this scenario, the ASV was moving in a straight line from the southern starting point
to the northern finishing point. On the way a vessel was approaching from the starboard
side.

The ASV performed an evasive maneuver to avoid collision with the approaching ves-
sel as illustrated in Figure The Velocity Obstacle performed a predefined evasive
maneuver based on the velocity selection method, which resulted in a starboard turn
once imminent collision is detected. With the lack of COLREGs implemented in both
MOPSO and VOPSO the evasion maneuver is randomly performed, it can either take
a starboard turn or a port turn based on the total cost of the maneuver.

Table 2]shows the given results from each of the algorithms. The three other algorithms
were local, and used the A* algorithm generated route for path finding. If the algorithm
detected an obstacle and the criteria of the local algorithms were met, collision avoid-
ance would be executed. This would generate new waypoints, and thus travel distance
and time would be different from the A* algorithm’s ideal distance and time.

Page 49 of [103]



7.1 Simulation Test Results

@ NTNU

Norwegian University of
Science and Technology

160
| Goal
140 - ’—/v, i“
120 o
R
i 1
100 - i
_ A
= 804 eggyre=-a=- y —:E -€8=----
TS
= 60 - V,’
1
40 -
!
20 4 ' VO
1
7 ¥ VOPSO
0 25 50 75 100 125 150
East [m]
Figure 23: Pass Starboard Test Result
Algorithm Distance | Min ship distance | Avoidance CPU time | Travel time
A* 142.77 N/A N/A 51.05
Velocity Obstacle | 157.99 19.23 0.015625 60.70
MOPSO 152.28 9.21 3.90625 52.50
VOPSO 159.21 14.62 2.015625 59.3

Table 2: Pass Starboard Test Result

7.1.2 Scenario 2: Ship Head-on

In this scenario as in the first one, the ASV is moving in a straight line from the southern
starting point to the northern finishing point. On the way a vessel is approaching from
straight ahead in the direction of travel of the ASV.

The ASV then performed a similar evasion maneuver as in Scenario 1 illustrated
in Figure [24] The only difference was that in Scenario 2 the MOPSO made a
turn to the port side, unlike in scenario 1 where it made a starboard turn. The same
goes for the VOPSO, where the VOPSO made a port side turn in Scenario 1 [7.1.1].

Table [3] shows the given results from each of the algorithms from the Head-on test.

Page 50 of [103]




@ NTNU

Norwegian University of

7.1 Simulation Test Results Science and Technology
160 -
Gpal
140 :
0 yd
|
120 -
0 40
\ ]
100 - ,
B %0 o
— 80+ %M’l
£
(=]
Z 60 m
|
40 [l]
20 - [|] Vo
o B coal VOPSO
0 25 50 75 100 125 150

Figure 24: Head-on Test Results

Algorithm Distance | Min ship distance | Avoidance CPU time | Travel time
A* 142.77 N/A N/A 51.05
Velocity Obstacle | 158.19 14.70 0.015625 60.75
MOPSO 159.77 10.50 3.859375 55.00
VOPSO 153.66 8.83 2.00 55.90

Table 3: Head-on Test Result

7.1.3 Scenario 3: Ship Standstill

In this scenario as in the first and second one, the ASV is moving in a straight line
from the southern starting point to the northern finishing point. On the way the ASV is
approaching a standstill vessel, on a head-on course.

The ASV then performed a similar evasion maneuver as in Scenario 1 illustrated
in Figure 25| The difference was that both VOPSO and MOPSO now performed a
port side turn, while the Velocity Obstacle still performed a starboard turn. They also
performed the evasive maneuver earlier than in both Scenario 1 and Scenario

2[7.1.2).

Page 51 of [103]



@ NTNU

. . Norwegian University of
7.1 Simulation Test Results Science and Technology

Table [3|shows the given results from each of the algorithms from the Head-on standstill
test.

160
¥ Goal
140 ‘
(’?i
! P
120 - M '
4
100 A u.l : \
1
80 4 ¥

North [m]
o [=)1]
o o
@
- - - - ————€= -
\_~"
g

%]
(=]
i

VO

o
1

Goal VOPSO
l[I)O 15_;5 15IO

(=]
M
wun
%, ]
(=]
]
e

East [m]

Figure 25: Standstill Test Results

Algorithm Distance | Min ship distance | Avoidance CPU time | Travel time
A* 142.77 N/A N/A 51.05
Velocity Obstacle | 156.68 8.75 0.03125 64.80
MOPSO 153.48 18.09 4.00 53.35
VOPSO 149.19 14.13 2.296875 53.85

Table 4: Standstill Test Result

Page 52 of [103]



@ NTNU

Norwegian University of
Science and Technology

8 Discussion

This section covers the evaluation of the results and how to further improve upon the
algorithms.

8.1 Project Changes

The project has seen a couple of changes throughout the development process. This
is a result of the group getting more educated on the subject which in turn has led to a
change in perspective on the project as a whole. Better understanding of the subject
led to changes in how the project was approached compared to how it was planned in
the Pre-project [C].

8.2 Simulation Results

The most notable result is how much shorter the CPU time of the Velocity Obstacle
algorithm was compared to the others. This is explained by the fact that the MOPSO,
and by extension the VOPSO, is in its current implementation not running with a con-
vergence value. This means that the algorithm runs through a total of 100 iterations
before returning its best value. This is an obvious shortcoming in the implementation of
the algorithm. However, we believe that this is not detrimental to the overarching goal
of this project, as it still allows us to simulate the behaviour of the algorithm in terms
of collision avoidance. We will have to keep in mind that it is not optimized in terms of
computation speed.

This does not mean that the time measurements of the algorithms are completely
worthless. We are observing that the VOPSO algorithm, which is operating on es-
sentially the same logic as the MOPSO algorithm. This means that VOPSO is also
running max iterations for each collision avoidance calculating. With this in mind, we
find it significant that in each scenario VOPSO is faster than MOPSO by close to 2 sec-
onds. We attribute this to the fact that the VOPSO algorithm is using fewer geometric
checks compared to MOPSO. The most significant of these is the check for the rectan-
gle which represents the forward movement of the vessel, which involves computing 4
triangles in MOPSO compared to the one triangle computed in VOPSO.

The minimum had some varying results which can for the most part be explained by
how the algorithms operate. We see VO has the greatest distance in both scenarios
where the other vessel is moving, and the smallest distance where the other vessel is
standing still. This is directly tied to the method used to select the avoidance velocity. In
all scenarios the VO is selecting the largest possible starboard turn, and consequently
this gives VO the greatest deviation from the original course of all tested algorithms.

Page 53 of [103]



@ NTNU

. . Norwegian University of
8.2 Simulation Results Science and Technology

Considering that this greatest deviation occurs simultaneously as the other vessel con-
tinues its journey, it makes sense that the distance between the two vessels is the
greatest for VO. This maximum turn also explains why the distance is smallest for the
stationary obstacle, and it is perfectly illustrated in Figure 25 As the main vessel be-
gins to return to its original path, its velocity vector once again triggers a VO response.
We see after this second evasive maneuver, the main vessel returns to its path by
passing very close to the obstacle. Since the vessel is not on collision course, this
close proximity is not enough to trigger a third VO response. This can be considered a
drawback to the geometric nature of the VO algorithm. If we were to add disturbances
such as current or wind, the stationary vessel might have enough unpredictable move-
ment to turn this close pass into a potentially dangerous situation. This issue could
have been resolved by adding a minimum radius to the collision cone, which would in
this scenario have forced a third VO response, and we did in fact account for this in the
VOPSO algorithm by adding a high value circle around the second vessel.

Comparing MOPSO and VOPSO, we see that MOPSO has the closest pass proximity
in the starboard pass scenario, and VOPSO the closest in the rest. In order to deter-
mine the "danger zones” created by the passing vessel, we had to create some greatly
approximated zones, but all of them in the direction of travel for the passing vessel. As
we see in the simulation visualization, the main vessel is passing behind the crossing
vessel, where there are the least amount of danger zones. Because the rear of the
crossing vessel has a minimal amount of high-cost areas, it makes sense the algorithm
will choose the closest safe area to the aft of the other vessel. On the other hand, the
VOPSO algorithm does not have as many danger zones, but a greater perception of
the path of the other vessel. This means the VOPSO will choose a path that focuses
on avoidance rather than path fidelity, which explains why VOPSO gives the starboard
passing vessel a wider berth.

For the scenarios where VOPSO has a shorter pass distance than MOPSO, we believe
it is related to the calculation of relative velocities inherited from the VO algorithm. A
common denominator for these two scenarios is that the relative velocity between the
vessels ends up in the travel path of the main vessel. This places the edges of the
collision cone close to the original path. This means the particle swarm will converge
on a safe point close to the original path, with the smallest possible deviation from the
goal. It follows that this minimal deviation will result in a close point of passing, and
this is corroborated by the fact that in both these scenarios VOPSO also produces the
shortest travel path.

Finally we notice some tendencies related to the total travel distance and time. VO
produces the longest travel time in all scenarios, but this makes sense considering that
it also creates the largest deviation. Further, for scenarios 2 and 3 we see VOPSO
produces a shorter travel path, but takes longer to reach the goal. While this difference
is generally small, we believe some explanation can be found in the waypoint placement
of the two algorithms. Because MOPSO has a larger high-value area in the particle
search area, it is forced to make a larger deviation compared to VOPSO. In Figure
and Figure [25 we see that the the VOPSO vessel has a almost constant gradual turn

Page 54 of



@ NTNU

Norwegian University of
8.3 Further Improvements Science and Technology

while MOPSO has a short period of traveling in a straight line before turning towards the
goal. It is possible the MOPSO vessel can attain a higher velocity during this straight
travel, which can account for the slight shorter travel time. However, we believe this
small difference is not significant for our comparisons.

In summary, we found that VOPSO performs faster than MOPSO by reducing the num-
ber of calculations, and plans more efficient routes than VO due to the multi objective
evaluation of the particle swarm that check for both maximum collision avoidance and
minimum deviation from the main path.

8.3 Further Improvements

Starting off the group had little overall experience with path-finding algorithms, and thus
some sub-optimal design decisions were made along the way, this section will cover
what aspects we would have done different or further improve given more time to work
on the project.

8.3.1 Algorithm

The Velocity Obstacle algorithm was implemented using purely geometry. This means
that the avoidance path was decided based on the largest possible turning angle. This
could have been done more elegantly by evaluating a selection of possible velocities in
a greater range, but the fact remains that there is no inherent method in the algorithm
itself to select an optimal course. We found the largest deviation possible would also be
the safest, and any further narrowing it down from here would represent a modification
of the original algorithm.

The MOPSO algorithm has a couple of obvious flaws, first off COLREG is not properly
implemented as the algorithm has equal chance of finding either sides of a oncoming
vessel to be the best point. A quick way for better implementation of COLREG could be
made by expanding the zones of the cost function to either side of the boat depending
on relative angle of the main vessel, this would however have negative impact on the
computing time, Which is the second major flaw. The current MOPSO algorithm has
no way of checking for convergence except for at the goal, when the cost is at 0. If
a convergence check was implemented the algorithm would not need to complete all
iterations every time it did a search, but rather stop once the algorithm has reached
a convergence point. This check would in term significantly reduce search time by
eliminating unnecessary iterations while at the same time retaining the problem solving
ability that comes with a higher number of iterations.

Page 55 of [103]



@ NTNU

Norwegian University of
8.3 Further Improvements Science and Technology

The hybrid MOPSO/VO algorithm has also inherited some of the same issues as the
MOPSO algorithm in that it does not have any check for convergence. This is not
as big a drawback compared to the MOPSO algorithm in that each iteration is faster.
Nevertheless the hybrid would also benefit greatly from a convergence check to reduce
number of unnecessary iterations which in turn would significantly reduce calculation
time.

Another design flaw in the PSO part of the algorithm is that it only searches once when
a vessel is encountered. This may lead to issues if the other vessel changes course
during the avoidance maneuver, which is also why the random moving vehicle scenario
was Sidelined in favor for simpler tests.

8.3.2 Simulator

The kinematic models implemented in the simulator means a correction in course will
take some time for the vessel to actuate. This allowed us to gain a more realistic
representation of the reaction times for our various algorithms. However, there is still
a lot that could be added to make the testing more relevant to real world scenarios.
The obvious candidates here are disturbances in motion caused by wind, waves, and
current. Despite lacking these elements, we find that the capabilities of the simulator
were adequate for the purpose we were employing it.

In the early stages of the project we considered making a digital representation of a
specific part of the Norwegian coast, and using AIS data to recreate the traffic through
this area for a given time frame. We could then disrupt the “real” traffic flow, and
observe how various algorithms would have handled this disruption. While this was
certainly an interesting proposition, it was quickly apparent that this fell outside the
scope of our project.

Page 56 of [103]



@ NTNU

Norwegian University of
Science and Technology

9 Conclusion

We set out to test two collision avoidance algorithms and propose a hybrid algorithm
representing a combination of the two. The two chosen algorithms were Velocity Ob-
stacles and Multiple Objective Particle Swarm Optimization, and the hybrid we created
from them was named Velocity Obstacle Particle Swarm Optimization. These three
algorithms were passed through a series of simple tests to determine the efficiency of
this hybrid.

While we found our MOPSO implementation had some design flaws, we decided that
they were not detrimental to our analysis of its performance in comparison to the hybrid
algorithm. We also wanted to create a seeded random moving ship controller for testing
the algorithms in a more unpredictable environment, which worked as planned but due
to limitations in the algorithms was scrapped from the final results in favor of simpler
scenarios.

Our results showed that by introducing components of Velocity Obstacles to the particle
search method of MOPSO we were able to improve performance in areas that were
weaknesses in the original algorithms. Velocity Obstacles has no inherent method
for selecting a deviation course, and MOPSO requires a large amount of calculation
of coordinate values to determine the optimal travel route. The collision cone from
Velocity Obstacles allowed us to perform fewer calculations to determine the safest
route, which was reflected in the VOPSO requiring less CPU time to calculate the
avoidance maneuver. Further, the multiple objective search of MOPSO allowed us to
select a collision avoidance path that was both safe and efficient in terms of making
the smallest deviation necessary from the original path.

The tests showed that there were some issues in this combination that would warrant
further improvements. We see that Velocity Obstacles can create some very short
pass distances due to the geometric nature of the algorithm, and this tendency also
shows up in the VOPSO tests. The tests also showed positive effects of our algorithm
combination in the data extracted, which demonstrated that VOPSO operated faster
than MOPSO and with a more efficient avoidance path than Velocity Obstacles.

From this we conclude that while there are some challenges and shortcomings in the
results of our project, we still believe that our hybrid algorithm produced some promis-
ing results.

Page 57 of [103]



@ NTNU

Norwegian University of

REFERENCES Science and Technology

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Peter Hart, Nils Nilsson, and Bertram Raphael. “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths”. In: IEEE Transactions on Systems Sci-
ence and Cybernetics 4.2 (1968), pp. 100—107. ISSN: 0536-1567. DOI:(10.1109/
TSSC.1968.300136. URL: http://ieeexplore.ieee.org/document/4082128/.

IMO. “COLREGS - International Regulations for Preventing Collisions at Sea”.
In: Convention on the International Regulations for Preventing Collisions at Sea,
1972 (1972), pp. 1-74.

Introduction The et al. Convention on the International Regulations for Preventing
Collisions at Sea , 1972 ( COLREGs ). 1977. URL: https://www. imo.org/en/
About/Conventions/Pages/COLREG. aspx.

Oussama Khatib. “Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots”. In: Autonomous Robot Vehicles. New York, NY: Springer New York,
1986, pp. 396—404. DOI: [10. 1007 /978~ 1-4613-8997 - 2{\ _}29. URL: http:
//1link.springer.com/10.1007/978-1-4613-8997-2_29.

B. Krogh and C. Thorpe. “Integrated path planning and dynamic steering control
for autonomous vehicles”. In: Proceedings. 1986 IEEE International Conference
on Robotics and Automation. Vol. 3. Institute of Electrical and Electronics En-
gineers, 1986, pp. 1664—1669. ISBN: 0818606959. DOI: 10.1109/R0BOT . 1986 .
1087444. URL: http://ieeexplore.ieee.org/document/1087444/

Johann Borenstein and Yorem Koren. “Real-Time Obstacle Avoidance for Fast
Mobile Robots”. In: IEEE Transactions on Systems, Man and Cybernetics 19.5
(Sept. 1989), pp. 1179-1187. ISSN: 21682909. DOI: 10.1109/21 . 44033, URL:
http://ieeexplore.ieee.org/document/44033/.

Franz; Aurenhammer. “Voronoi diagrams—a survey of a fundamental geometric
data structure”. In: ACM Computing Surveys 23.3 (Sept. 1991), pp. 345-405.
ISSN: 0360-0300. DOI: 10.1145/116873.116880. URL: https://dl.acm.org/
doi/10.1145/116873.116880.

D. Fox, W. Burgard, and S. Thrun. “The dynamic window approach to collision
avoidance”. In: IEEE Robotics & Automation Magazine 4.1 (Mar. 1997), pp. 23—
33. 1ISSN: 10709932. DOI:/10.1109/100.580977. URL: http://ieeexplore.ieee.
org/document/580977/.

Paolo Fiorini and Zvi Shiller. “Motion planning in dynamic environments using
velocity obstacles”. In: International Journal of Robotics Research 17.7 (1998),
pp. 760—772. 1ISSN: 02783649. DOI: 10.1177/027836499801700706.

C.A. Coello Coello and M.S. Lechuga. “MOPSO: a proposal for multiple objective
particle swarm optimization”. In: Proceedings of the 2002 Congress on Evolution-
ary Computation. CEC’02 (Cat. No.02TH8600). Vol. 2. IEEE, 2002, pp. 1051-
1056. ISBN: 0-7803-7282-4. DOI: [10.1109/CEC. 2002 . 1004388. URL: http: //
ieeexplore.ieee.org/document/1004388/.

Page 58 of [103]


https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
http://ieeexplore.ieee.org/document/4082128/
https://www.imo.org/en/About/Conventions/Pages/COLREG.aspx
https://www.imo.org/en/About/Conventions/Pages/COLREG.aspx
https://doi.org/10.1007/978-1-4613-8997-2{\_}29
http://link.springer.com/10.1007/978-1-4613-8997-2_29
http://link.springer.com/10.1007/978-1-4613-8997-2_29
https://doi.org/10.1109/ROBOT.1986.1087444
https://doi.org/10.1109/ROBOT.1986.1087444
http://ieeexplore.ieee.org/document/1087444/
https://doi.org/10.1109/21.44033
http://ieeexplore.ieee.org/document/44033/
https://doi.org/10.1145/116873.116880
https://dl.acm.org/doi/10.1145/116873.116880
https://dl.acm.org/doi/10.1145/116873.116880
https://doi.org/10.1109/100.580977
http://ieeexplore.ieee.org/document/580977/
http://ieeexplore.ieee.org/document/580977/
https://doi.org/10.1177/027836499801700706
https://doi.org/10.1109/CEC.2002.1004388
http://ieeexplore.ieee.org/document/1004388/
http://ieeexplore.ieee.org/document/1004388/

@ NTNU

Norwegian University of

REFERENCES Science and Technology

[11] Tanja Magoc¢, Ari Kassin, and Rodrigo Romero. “A line of sight algorithm using
fuzzy measures”. In: Annual Conference of the North American Fuzzy Informa-
tion Processing Society - NAFIPS (2010). DOI:10.1109/NAFIPS.2010.554829.

[12] T. Perez and T. I. Fossen. “MSS. Marine Systems Simulator”. In: 23/08/2013
(2010). URL: https://github.com/cybergalactic/MSS.

[13] Christensson P. Algorithm Definition. 2013. URL: https : / / techterms . com /
definition/algorithm.

[14] Thomas Stenersen. “Guidance Systems for Autonomous Surface Vehicles”. PhD
thesis. NTNU, 2014, p. 66. DOI:10.1186/1478-4505-7-15

[15] LiuHongdan and Liu Sheng and Yang Zhuo. “Application of Adaptive Wolf Colony
Search Algorithm in Ship Collision Avoidance”. In: (2015), p. 7.

[16] Thomas Stenersen. “Guidance System for Autonomous Surface Vehicles”. In:
123 June (2015), p. 125. 1ISSN: 0025-5610. URL: https://brage . bibsys.no/
xmlui/bitstream/handle/11250/2352498/12747 FULLTEXT.pdf?sequence=1.

[17] Jinfen Zhang et al. “A distributed anti-collision decision support formulation in
multi-ship encounter situations under COLREGSs”. In: Ocean Engineering 105
(July 2015), pp. 336—348. ISSN: 00298018. DOI:|10.1016/j.0oceaneng.2015.06.
054.

[18] Mauro Candeloro, Anastasios M. Lekkas, and Asgeir J. Sgrensen. “A Voronoi-
diagram-based dynamic path-planning system for underactuated marine ves-
sels”. In: Control Engineering Practice 61.November 2016 (2017), pp. 41-54.
ISSN: 09670661. DOI: 10.1016/j . conengprac.2017.01.007. URL: http://dx.
doi.org/10.1016/j.conengprac.2017.01.007.

[19] Yixiong He et al. “Quantitative analysis of COLREG rules and seamanship for
autonomous collision avoidance at open sea”. In: Ocean Engineering 140 (Aug.
2017), pp. 281—-291. 1ISSN: 00298018. DOI: 10.1016/j.0oceaneng.2017.05.029.

[20] Xin Wang, Zhengjiang Liu, and Yao Cai. “The ship maneuverability based colli-
sion avoidance dynamic support system in close-quarters situation”. In: Ocean
Engineering 146 (Dec. 2017), pp. 486—497. ISSN: 00298018. DOI:|10.1016/j .
oceaneng.2017.08.034.

[21] Grnulf Jan Radseth. “Definition of autonomy levels for merchant ships”. In: Au-
gust (2018). DOI: 10.13140/RG.2.2.21069.08163.

[22] Luman Zhao and Myung Il Roh. “COLREGs-compliant multiship collision avoid-
ance based on deep reinforcement learning”. In: Ocean Engineering 191.May
(2019), p. 106436. 1ISSN: 00298018. DOI: 10.1016/ j . oceaneng . 2019 . 106436.
URL: https://doi.org/10.1016/j.oceaneng.2019.106436.

[23] Jakob Pettermarka. “Kart av Lepsayrevet”. In: (2020). URL: https://www.kartverket.
no/globalassets/til-sjos/skolekart/skole_031.pdf.

[24] Red Blog Games. Grids and Graphs. 2020. URL: https://www.redblobgames .
com/pathfinding/grids/graphs.html.

Page 59 of [103]


https://doi.org/10.1109/NAFIPS.2010.554829
https://github.com/cybergalactic/MSS
https://techterms.com/definition/algorithm
https://techterms.com/definition/algorithm
https://doi.org/10.1186/1478-4505-7-15
https://brage.bibsys.no/xmlui/bitstream/handle/11250/2352498/12747_FULLTEXT.pdf?sequence=1
https://brage.bibsys.no/xmlui/bitstream/handle/11250/2352498/12747_FULLTEXT.pdf?sequence=1
https://doi.org/10.1016/j.oceaneng.2015.06.054
https://doi.org/10.1016/j.oceaneng.2015.06.054
https://doi.org/10.1016/j.conengprac.2017.01.007
http://dx.doi.org/10.1016/j.conengprac.2017.01.007
http://dx.doi.org/10.1016/j.conengprac.2017.01.007
https://doi.org/10.1016/j.oceaneng.2017.05.029
https://doi.org/10.1016/j.oceaneng.2017.08.034
https://doi.org/10.1016/j.oceaneng.2017.08.034
https://doi.org/10.13140/RG.2.2.21069.08163
https://doi.org/10.1016/j.oceaneng.2019.106436
https://doi.org/10.1016/j.oceaneng.2019.106436
https://www.kartverket.no/globalassets/til-sjos/skolekart/skole_031.pdf
https://www.kartverket.no/globalassets/til-sjos/skolekart/skole_031.pdf
https://www.redblobgames.com/pathfinding/grids/graphs.html
https://www.redblobgames.com/pathfinding/grids/graphs.html

@ NTNU

Norwegian University of

REFERENCES Science and Technology

[25] Sotiris Tzamaras. “Particle Swarm Optimization”. In: (2020). URL: https : //
github.com/sotostzam/particle-swarm-optimization.

[26] GeeksforGeeks. A* Search Algoritm. 2021. URL: https://www.geeksforgeeks.
org/a-search-algorithm/.

[27] Renu; Khandelwal. “Particle Swarm Optimization”. In: (2021). URL: https: //
medium.com/swlh/particle-swarm-optimization-731d9fbb6923.

[28] Amit Patel. Introduction til Astar. 2021. URL: http: //theory . stanford . edu/
~amitp/GameProgramming/AStarComparison.html.

[29] ThinkAutomation. What is an algorithm? An ’in a nutshell’ explanation. 2021. URL:
https://www.thinkautomation.com/eli5/what-is-an-algorithm-an-in-a-
nutshell-explanation/.

[30] Anete Vagale et al. “Path planning and collision avoidance for autonomous sur-
face vehicles I: a review”. In: Journal of Marine Science and Technology (Japan)
May (2021). ISSN: 09484280. DOI: 10.1007/s00773-020-00787-6.

[81] Wikipedia. A* Search Algorithm. 2021. URL: https://en.wikipedia.org/wiki/
Ax_search_algorithm.

[832] Google. GoogleMaps. URL: https://www.google.no/maps/.

[33] James; Kennedy and Russell Eberhart. “Particle swarm optimization”. In: Pro-
ceedings of ICNN’95 - International Conference on Neural Networks. Vol. 4.
IEEE, pp. 1942—1948. ISBN: 0-7803-2768-3. DOI: 10.1109/ICNN. 1995 . 488968.
URL: http://ieeexplore.ieee.org/document/488968/.

[34] marinefraffic. Lepsoyrevet. URL: https : //www . marinetraffic.com/en/ais/
home/centerx:6.283/centery:62.593/zoom: 14.

[35] MarineTraffic. MarineTraffic. URL: https://www.marinetraffic.com/.

[36] Open Robotics. ROS. URL: https://www.ros.org/about-ros/.

[37] Open Source Robotics Foundation. Gazego. URL: http://gazebosim.org/.

[38] Thomas Skarshaug and Kjetil Vasstein. “Gemini”. In: (). URL: https://github.
com/Gemini-team/Gemini.

[39] Thomas Stenersen. “The ASV System Package”. In: (). URL: https://github.
com/thomsten/ros_asv_system.

[40] Thomas Stenersen. The Thesis Simulator. URL: https://github.com/thomsten/
project-thesis-simulator.

[41] Inc. The MathWorks. “matlab toolboxes”. In: (). URL: https://www.mathworks .
com/..

[42] USGS. How Much Water is There on Earth? URL: https : //www . usgs . gov/

special -topic/water-science-school/science/how-much-water-there-
earth?qt-science_center objects=0#qt-science_center_objects,

Page 60 of [103]


https://github.com/sotostzam/particle-swarm-optimization
https://github.com/sotostzam/particle-swarm-optimization
https://www.geeksforgeeks.org/a-search-algorithm/
https://www.geeksforgeeks.org/a-search-algorithm/
https://medium.com/swlh/particle-swarm-optimization-731d9fbb6923
https://medium.com/swlh/particle-swarm-optimization-731d9fbb6923
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
https://www.thinkautomation.com/eli5/what-is-an-algorithm-an-in-a-nutshell-explanation/
https://www.thinkautomation.com/eli5/what-is-an-algorithm-an-in-a-nutshell-explanation/
https://doi.org/10.1007/s00773-020-00787-6
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://www.google.no/maps/
https://doi.org/10.1109/ICNN.1995.488968
http://ieeexplore.ieee.org/document/488968/
https://www.marinetraffic.com/en/ais/home/centerx:6.283/centery:62.593/zoom:14
https://www.marinetraffic.com/en/ais/home/centerx:6.283/centery:62.593/zoom:14
https://www.marinetraffic.com/
https://www.ros.org/about-ros/
http://gazebosim.org/
https://github.com/Gemini-team/Gemini
https://github.com/Gemini-team/Gemini
https://github.com/thomsten/ros_asv_system
https://github.com/thomsten/ros_asv_system
https://github.com/thomsten/project-thesis-simulator
https://github.com/thomsten/project-thesis-simulator
https://www.mathworks.com/
https://www.mathworks.com/
https://www.usgs.gov/special-topic/water-science-school/science/how-much-water-there-earth?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/special-topic/water-science-school/science/how-much-water-there-earth?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/special-topic/water-science-school/science/how-much-water-there-earth?qt-science_center_objects=0#qt-science_center_objects

@ NTNU

Norwegian University of

REFERENCES Science and Technology
Appendices
COLRE G S .ottt ittt e e
Bl  Progress Plans ...
B.1]  Progress Plan 20.01.2021 ... ...
B.2]  Progress Plan 21.03.2021 ...ttt 66]
B.3] Progress Plan 19.04.2021 ... ... i
B.4  Progress Plan 19.05.2021 ........ ...t
[C]  Pre-project REPOIt ... ...
External LiINKS . ..........ii e e 84l
Bl S0UICE COTE ...ttt ettt ettt e B85
Random Moving Vessel Class ................coiiiiiiiiiiiinaa..n.
Velocity Obstacle Class .........c.ouiiiiiiiiii i
Multi Object Particle Swarm Optimization Class .......................
Velocity Obstacle Particle Swarm Optimization Class .................

Page 61 of [103]



@ NTNU

Norwegian University of

A COLREGs Science and Technology

A COLREGs

This is an excerpt of the COLREG rules that are relevant to the bachelor thesis. The
simulator and algorithms is using these rules when deciding how to avoid collision
throughout a simulation.

Rule 8: Action to Avoid Collision

(@)

(b)

(c)

(d)

(e)

(f)

Any action to avoid collision shall be taken in accordance with the Rules of this
Part and shall, if the circumstances of the case admit, be positive, made in ample
time and with due regard to the observance of good seamanship.

Any alteration of course and/or speed to avoid collision shall, if the circumstances
of the case admit, be large enough to be readily apparent to another vessel ob-
serving visually or by radar; a succession of small alterations of course and/or
speed should be avoided.

If there is sufficient sea-room, alteration of course alone may be the most effective
action to avoid a close-quarters situation provided that it is made in good time, is
substantial and does not result in another close-quarters situation.

Action taken to avoid collision with another vessel shall be such as to result in
passing at a safe distance. The effectiveness of the action shall be carefully
checked until the other vessel is finally past and clear.

If necessary to avoid collision or allow more time to assess the situation, a vessel
shall slacken her speed or take all way off by stopping or reversing her means of
propulsion.

(i) A vessel which, by any of these Rules, is required not to impede the passage
or safe passage of another vessel shall, when required by the circumstances
of the case, take early action to allow sufficient sea-room for the safe pas-
sage of the other vessel.

(i) A vessel required not to impede the passage or safe passage of another
vessel is not relieved of this obligation if approaching the other vessel so as
to involve risk of collision and shall, when taking action, have full regard to
the action which may be required by the Rules of this part.

(iii) A vessel required not to impede the passage or safe passage of another
vessel is not relieved of this obligation if approaching the other vessel so as
to involve risk of collision and shall, when taking action, have full regard to
the action which may be required by the Rules of this part.

Rule 13: Overtaking

Page 62 of [103]



@ NTNU

Norwegian University of

A COLREGs Science and Technology

(a) When two power-driven vessels are meeting on reciprocal or nearly reciprocal
courses so as to involve risk of collision each shall alter her course to starboard
so that each shall pass on the port side of the other.

(b) Such a situation shall be deemed to exist when a vessel sees the other ahead
or nearly ahead and by night she could see the masthead lights of the other
in a line or nearly in a line and/or both sidelights and by day she observes the
corresponding aspect of the other vessel.

(c) When a vessel is in any doubt as to whether such a situation exists she shall
assume that it does exist and act accordingly.

Rule 14: Head-on situation

(a) Notwithstanding anything contained in the Rules of part B, sections | and Il, any
vessel overtaking any other shall keep out of the way of the vessel being over-
taken.

(b) A vessel shall be deemed to be overtaking when coming up with another vessel
from a direction more than 22.5 degrees abaft her beam, that is, in such a position
with reference to the vessel she is overtaking, that at night she would be able to
see only the sternlight of that vessel but neither of her sidelights.

(c) When a vessel is in any doubt as to whether she is overtaking another, she shall
assume that this is the case and act accordingly.

(d) Any subsequent alteration of the bearing between the two vessels shall not make
the overtaking vessel a crossing vessel within the meaning of these Rules or
relieve her of the duty of keeping clear of the overtaken vessel until she is finally
past and clear.

Rule 15: Crossing situation

When two power-driven vessels are crossing so as to involve risk of collision, the vessel
which has the other on her own starboard side shall keep out of the way and shall, if
the circumstances of the case admit, avoid crossing ahead of the other vessel.

Rule 16: Action by give-way vessel
Every vessel which is directed to keep out of the way of another vessel shall, so far as
possible, take early and substantial action to keep well clear.

Rule 17: Action by stand-on vessel

(a) i Where one of two vessels is to keep out of the way the other shall keep her
course and speed.

Page 63 of [103]



@ NTNU

Norwegian University of

A COLREGs Science and Technology

i The latter vessel may however take action to avoid collision by her manoeu-
vre alone, as soon as it becomes apparent to her that the vessel required to
keep out of the way is not taking appropriate action in compliance with these
Rules.

(b) When, from any cause, the vessel required to keep her course and speed finds
herself so close that collision cannot be avoided by the action of the give-way
vessel alone, she shall take such action as will best aid to avoid collision.

(c) A power-driven vessel which takes action in a crossing situation in accordance
with subparagraph (a)(ii) of this Rule to avoid collision with another power-driven
vessel shall, if the circumstances of the case admit, not alter course to port for a
vessel on her own port side.

(d) This Rule does not relieve the give-way vessel of her obligation to keep out of the
way [2].

Page 64 of



@ NTNU

Norwegian University of
B Progress Plan Science and Technology

s
H
H
H
H

B Progress Plan

snwixejy snonenby

B.1 Progress Plan 20.01.2021

poom Avidsia
s 199f0sd

o]

o
oo

wor st

weorzm)

1 €424 O} 60 80]40°90 S0 '¥0 €0 20 0| VE 08 62 82 LT OC S2|¥Z G2 22 V2 (S 6h B[4 Ob S ¥h € Th L)

weaesove|

weaesoee|

walsva

worvs

worswn

016080 £0'90°50 #0'50[20'40 0C 62 82 L2 92[S %2 52 22 12 0T 649 'L+ 91 b '¥h €L b4} 0} 60 802090 S0|¥0'60°20 40 ¢ OF 62|82 L2 9T 52 42 ‘62 T2 |12 02 61 B

o —nmI DO-MIOP® MZ——O>mMO

foF 51 ¥ £h2h

Page 65 of 103



Norwegian University of
Science and Technology

@ NTNU

B Progress Plan

Aquaticus Maximus

g
Heggdal Sandey

Webinar - Loaring from Pilts

.2021

03

B.2 Progress Plan 21

Page 66 of 103



Norwegian University of
Science and Technology

@ NTNU

B Progress Plan

Webinar - Learning from Piots

Project Strt
Display Week:

1

4.1
D
3
A
b}
L
|
N

2021

B.3 Progress Plan 19.04.

N

m

Page 67 of {103



Norwegian University of
Science and Technology

@ NTNU

B Progress Plan

Webinar - Learning from Piots

1

4.1
D
3
A
b}
L
|
N

2021

B.4 Progress Plan 19.05.

N

m

Page 68 of 103



@ NTNU

Norwegian University of
C Pre-project Report Science and Technology

C P

Pre-project Report ®© NTNU

©@NTNU

Norwegian University of
Science and Technology

Autonomous Ships: Algorithms
IE303612 Bachelor thesis

Pre-project Report

Arild Valderhaug

Karl-Oskar Norheim Molveer
Magnus Heggdal Sanday
Ola Seeteray

Total number of pages including the front page: 15
Alesund, 10/05/2021

NTNU i Alesund

Page 69 of [103]




@ NTNU

. Norwegian University of
C Pre-project Report Science and Technology

@ NTNU

NTNU ALESUND Norwegian University of
PRE-PROJECT REPORT Science and Technology
Tittel:

Autonomous Ships: Algorithms

Candidate number (name):
Arild Valderhaug
Karl-Oskar Norheim Molveer

Magnus Heggdal Sanday
Ola Saeteray

Date: Sub. Code: Subject Name: Document Access:
10/05/2021 IE303612 Bachelor thesis

Study Program: Nr. pages/Attachments: | Bibl. nr:

Automatiseringsteknikk 15/

Advisers:

Anete Vagale
Aleksander Skrede
Robin T. Bye
Ottar L. Osen

Summary:

This pre-project report contains information regarding our bachelor thesis on algo-
rithms for autonomous ships. It defines the project structure and description, as
well as the group organization with the area of responsibility for each member. The
goal of the project is to test several algorithms in simulated situations with unpre-
dictable vessels, and to create a hybrid algorithm which aims to perform better in
unpredictable situations than its predecessors. The report will also define scheduled
meetings and agreements within the group.

This assignment is an answer written by students at NTNU in Alesund.

Page 70 of [103]




@ NTNU

Norwegian University of

C Pre-project Report Science and Technology

Norwegian University of

CONTENTS Science and Technology
Contents

1 INTRODUCTION 5

1.1 Reportstructure . . . ... .. .. ... 5

2 CONCEPTS AND ABBREVIATIONS 6

2.1 Concepts . . . . . 6

2.2 Abbreviations . . . . ... 7

3 PROJECT ORGANIZATION 7

3.1 Projectgroup . . . . .. . e 7

3.2 Grouporganization . . . . . ... ... 7

3.2.1 Tasks forprojectgroup . . . . . . ... ... 7

3.2.2 Projectleadertasks . . ... ... ... ... .. 7

3.2.3 Secretarytasks . . . . . ... 8

3.24 Othermembers. ... ... . . ... ... ... ... .. 8

3.3 Supervisors . . ... e 8

4 AGREEMENTS 8

4.1 Workspace and resources . . . . . . v v v v i e e e 8

4.2 Group standards - Cooperation rules - Attitudes . . . . . . ... ... .. 9

5 PROJECT DESCRIPTION 10

5.1 Problem - Objective - Purpose . . . . . . . ... ... ... . ...... 10

5.2 Requirements for solution or project results - Specification . . . . . . .. 10

5.3 Planned procedure for development work - Method . . . . . . . ... .. 10

5.4 Information collection - Performed and planned . . . . . . ... ... .. 11

5.5 Assessment-Riskanalysis . .. ... ... ... .. ... ... . ... 11

5.6 Main activities in furtherwork . . . . . .. . ... ... 12

5.7 Progress plan - Management of the project . . . . . ... ... ... .. 12

5.8 Decisions - Decisionprocess . . . . . . ... ... 13

6 DOCUMENTATION 13

6.1 Reports and technical documents . . . . ... ... ... ........ 13

7 SCHEDULED MEETINGS AND REPORTS 14

7.1 Meetings . . . . 14

7.2 Periodical Reports . . . . .. ... ... 14

8 PLANNED DEVIATION TREATMENT 14

9 EQUIPMENT REQUIREMENTS/ CONDITIONS FOR IMPLEMENTATION 15
10 REFERENCES 15

Page 3 of 15

Page 71 of [103]




@ NTNU

Norwegian University of
C Pre-project Report Science and Technology
Norwegian University of
LIST OF TABLES

Science and Technology

List of Tables
1 Table of group members. . . . . . ..o 7
2 Tableofsupervisors . . . ... ... ... 8

Page 4 of 15

Page 72 of [103]




@ NTNU

. Norwegian University of
C Pre-project Report Science and Technology

@ NTNU

Norwegian University of
Science and Technology

1 INTRODUCTION

Maritime transport is a large part of the Norwegian economy, seeing as it has the
second longest coastline in the world. An ambitious goal for the future is to implement
a network of autonomous ships transporting goods and people along this coastline.
This switch to autonomy introduces a great many challenges, and requires efficient
algorithms which can respond to a wide array of situations.

One such situation is the interaction between large transport ships and smaller vessels,
which can often act in an unpredictable manner. Even though there exists a set of rules
for collision prevention (COLREGS), there is always the risk of human error that results
in rules being broken or misinterpreted. An interaction between an autonomous ship
and a human operated vessel is a realistic scenario that may happen often in the near
future. This means it is important for an algorithm to be able to respond to human error
in the other vessel.

The project is focused on the simulation of several algorithms for collision avoidance
in autonomous ships. The subject of interest is the performance of the algorithms
themselves, which means an existing simulator will be used in their implementation.
There is already a great deal of work done on testing algorithms in simple simulations
and situations, and our goal is to put some of the more promising ones through a more
challenging test. The scenario we have envisioned is to introduce a chaotic element to
the simulation in the form of a smaller vessel with a random aspect to its path planning.
A selection of algorithms will be run through this simulation, The results of these tests
would then be used in the selection of algorithms for further use in the creation of a
hybrid algorithm. This hybrid will then be run through the same tests and be compared
to the original algorithms.

1.1 Report structure

Chapter 1 - Introduction contains the background of the assignment, and the project
requirements.

Chapter 2 - Concepts and Abbreviations contains the definition of key concepts in
the project, and description of the abbreviations throughout the report.

Chapter 3 - Project Organization contains the students names and the student num-
ber, further on it contains the different tasks of each student, the group leader and the
secretary.

Chapter 4 - Agreements contains agreements within the group and information about
resources.

Page 5 of 15

Page 73 of [103]




@ NTNU

. Norwegian University of
C Pre-project Report Science and Technology

@ NTNU

Norwegian University of
Science and Technology

Chapter 5 - Project Description contains the definition of the assignment, require-
ments for the solution, planned approach and the progress plan.

Chapter 6 - Documentation contains the reports and technical documents.

Chapter 7 - Scheduled Meetings and Reports contains scheduled meeting dates,
meeting reports and periodical reports.

Chapter 8 - Planned Deviation Treatment contains the procedures if the assignment
do not go as planned.

Chapter 9 - Equipment Requirements/ Conditions for Implementation contains the
equipment and software we need to complete the bachelor thesis.

2 CONCEPTS AND ABBREVIATIONS

2.1 Concepts

Algorithms is a finite sequence of well-defined, computer-implementable instructions,
typically to solve a class of problems or to perform a computation

Simulation is an approximate imitation of a process or system representing its opera-
tion over time

COLREG is the equivalent of traffic rules for boats
AIS Radio detection system used for collision avoidance
ASV Boats or ships that operate on the surface of water without a crew

MATLAB A numeric computing environment which allows execution of complex math-
ematical operations, including algorithms.

PyCharm An IDE developed by Jetbrains for writing programs in Python.
ReSharper An IDE developed by Jetbrains for writing programs in C++.
Hyper-V Software for Virtual machine servers

Ubuntu Linux based PC Operative system

ROS An open source collection of frameworks for robot software development.

Page 6 of 15

Page 74 of [103]




C Pre-project Report

@ NTNU

Norwegian University of
Science and Technology

2.2 Abbreviations

@ NTNU

Norwegian University of
Science and Technology

2.2 Abbreviations

NTNU Norwegian University of Science and Technology

Sea

AIS Automatic Identification System

ASV Autonomous Surface Vehicle

ROS Robot Operative System

3 PROJECT ORGANIZATION

3.1 Project group

COLREG Convention on the International Regulations for Preventing Collision at

Student name Student number
Arild Valderhaug 509281
Karl-Oskar Norheim Molvaer 485226
Magnus Heggdal Sanday 498742
Ola Saeteray 498776

Table 1: Table of group members.

3.2 Group organization
3.2.1 Tasks for project group

Group leader: Magnus
Secretary: Karl-Oskar
Simulation: Ola
Algorithms: Arild

3.2.2 Project leader tasks

- Ensuring the team stays on track
- Addressing any conflicts or bottlenecks that may occur.

Page 7 of 15

Page 75 of [103]




@ NTNU

. Norwegian University of
C Pre-project Report Science and Technology

@ NTNU

Norwegian University of
3.3 Supervisors Science and Technology

3.2.3 Secretary tasks

- Log and follow up meetings

- Maintain bibliography

- Responsible of scheduling meetings

- Responsible for providing the supervisors with the weekly reports

3.2.4 Other members

-Algorithms: Gain knowledge of existing algorithms and relevant research, responsible
for correct implementation
-Simulation: Ensure simulation program runs with correct parameters, including correct
kinematics and code flow.

3.3 Supervisors

Main Supervisor Anete Vagale
Co-supervisor Aleksander Skrede
Resource persons | Robin T. Bye, Ottar L. Osen

Table 2: Table of supervisors

4 AGREEMENTS

4.1 Workspace and resources

Working from home will be the primary workspace. Labs at NTNU are also available,
provided Covid-19 guidelines are followed, but for now the primary workspace remains
at home.

The group will have access to all NTNU software licenses.

The group will communicate with supervisor(s) primarily through e-mail and Zoom
meetings. Regularly scheduled meetings bi-weekly.

Page 8 of 15

Page 76 of [103]




@ NTNU

. Norwegian University of
C Pre-project Report Science and Technology

@ NTNU

. . Norwegian University of
4.2 Group standards - Cooperation rules - Attitudes Science and Technology

4.2 Group standards - Cooperation rules - Attitudes

Due to the Covid-19 situation, the group intends to primarily work from home. This
brings some challenges, including maintaining standards for communication and coop-
eration.

We will not require common work hours, but allow a more individual approach. To
ensure everyone stays on track, we will have daily meetings verbally to summarize
the progress of the day, and any challenges going forward. The purpose of this loose
structure is to help alleviate some of the pressure associated with working from home,
and allow each member to manage their own workday. The experience from previous
projects together has shown that the group members have a peak productivity period at
different times of the day. If this method should appear to work poorly, we will consider
a more structured approach.

The final product will be a reflection of our common work-ethic and integrity as soon-to-
be engineers. It is therefore important to strive to produce a high-quality product, and
not take shortcuts. Furthermore it is important to acknowledge that we can’t know ev-
erything, and to reach out for assistance within the group before the problems become
insurmountable.

Page 9 of 15

Page 77 of [103]




@ NTNU

. Norwegian University of
C Pre-project Report Science and Technology

@ NTNU

Norwegian University of
Science and Technology

5 PROJECT DESCRIPTION

5.1 Problem - Objective - Purpose

The project is focused on simulating at least two algorithms for path planning and
collision avoidance in autonomous ships. The goal is to test each algorithms reaction to
a randomly moving element in the travel path, and score their performance by a scoring
system to be developed. Based on this data a hybrid algorithm will be created which
will attempt to handle chaotic elements better. Ideally the findings of this project will
be able to contribute to the current research being done on algorithms for autonomous
ships.

5.2 Requirements for solution or project results - Specification

The final product will have a collection of algorithms with their acquired score, which will
be defined during the main project. We will have saved results from each simulation,
as well as visualizations to help illustrate the performance of each algorithm. There will
also be a discussion as to why each algorithm was selected for the project.

The final product will also have a hybrid algorithm with its associated test score. The
design goal for the hybrid algorithm is to respond to the random element in the simulator
better than any individual algorithm, and thus achieve a better score.

5.3 Planned procedure for development work - Method

Identification of problem and information

Systematical gathering of information in relationship to the given task. A basic founda-
tion must be built with information associated with algorithm, legal resources, simula-
tors and simulator criteria.

Goals and objectives

After a basic information foundation is established we will produce a chart with specific
objectives and measurable accomplishments to be achieved within a given time period.
This provides the group a clear goal to work towards.

Monitoring and Evaluation

Continual communication and a good work ethic from every member of the bachelor
group, is a must to reaching the final goal. Regularly progress evaluation to ensure
effective use of time and resources such as personnel, and reduce wasted time.

Page 10 of 15

Page 78 of [103]




@ NTNU

. Norwegian University of
C Pre-project Report Science and Technology

@ NTNU

. . Norwegian University of
5.4 Information collection - Performed and planned Science and Technology

Project management method

The group intend to utilise "Agile” to be able to fast response on changes throughout
the bachelor project. By organising every goals into small tasks with a given time frame,
so the group can respond to changes made by limitations or unpredictable events.

5.4 Information collection - Performed and planned

The project consists of two distinct parts which each require gathering of information
before starting in full; which simulators are available, and which algorithms are candi-
dates to use in the project.

We already have a handful of simulators that we have evaluated. Marine Systems Sim-
ulator is developed by Thor I. Fossen at NTNU Trondheim. Another is Robot Operating
System, which allows for a plethora of plugins. One such that we have found comes
from a master’s thesis from 2015 written for the Cybernetics and Robotics program in
Trondheim [1]. While it implements some algorithms which are still potential candidates
for our own project, or primarily interest in this paper is reusing the simulator with some
minor modifications.

When it comes to algorithms we will be using the article by some members of our own
supervisor team as a starting point [2], and will spend some time gathering supplemen-
tary theory on those we find interesting for our own project. To this end we will include
a period of information collection in our project plan.

5.5 Assessment - Risk analysis

The project depends on mainly two hinges: first that we successfully implement the
simulator of our choice, and second that we successfully integrate the chosen algo-
rithms into the simulator. Both of these elements are depending on our ability to both
manipulate existing code, and to recreate algorithms in our chosen programming lan-
guage. This raises a certain risk that if we become too bogged down in the program-
ming aspect, we will have little to show for many hours of work. We can certainly
attempt to alleviate this risk by reaching out for assistance sooner than later, but in the
beginning we have to at least acknowledge that the risk is there.

There is also the risk of elevated restrictions associated with Covid-19. However, our
primary workspace is from home, and as such any increase in such restrictions will
have minimal impact on our project.

Page 11 of 15

Page 79 of [103]




@ NTNU

. Norwegian University of
C Pre-project Report Science and Technology

@ NTNU

, . , Norwegian University of
5.6 Main activities in further work Science and Technology

5.6 Main activities in further work

The project will be divided into 3 steps.

1. Information gathering
2. Implementation and simulation
3. Finalization

5.7 Progress plan - Management of the project

Phase1: Planning and documentation

Phase 1 - Information gathering

Collect data to build a foundation for the practical work. Working with simulators and
algorithm need a basic understanding to construct a good product. As the group does
not have any prior experience working with simulators and algorithm.

Goal of Phase 1:

- Decide on a simulator for implementing of algorithm.

- Install necessary software to get simulator up and running.

- Produced standardise documentation (minute of meeting, work log etc.)

Phase2: Implementation and simulation

The main focus in phase 2 is implementation of algorithms into a simulator.Write neces-
sary code, testing, run simulations and collect data. Reasons for decisions and result
must be documented trough this phase by all group members.

Goal of Phase 2:

- Have a working simulator

- Implementation of algorithms into the simulator

- Be able to utilise simulator to produce scenarios to push algorithms to its limits

- Documentation of decisions, reasons and result through the process of phase 2.

Phase3: Finalization
The last phase focus is merging all the data and theory we have collected, to finalize
our bachelor report, and reflection of the final product.

Management tools We will be using a Gantt-chart as our primary time management
tool. It allows us to visualize all individual parts of the project along with their deadlines
and the group member responsible for its completion. The Gantt-chart is attached at
the end of this document.

Page 12 of 15

Page 80 of [103]




@ NTNU

. Norwegian University of
C Pre-project Report Science and Technology

@ NTNU

. . L . Norwegian University of
5.8 Decisions - Decision process Science and Technology

Development tools We will be using software licenses available through our NTNU
e-mail addresses to complete the project. A complete list can be found in part 9 of this
report.

As this project is entirely digital, no physical tools will be required for its completion.

Internal control and evaluation

A combination between work log and results will be utilised to evaluate each groups
members work effort. If one of the members are not able to produce any results and
have a lot of wasted time, a reevaluation of the work must be done, to ensure the
project continues in the right direction.

5.8 Decisions - Decision process

All decision that have a big impact towards progression of the bachelor are made trough
a diplomatic possess between every group member. The main reason for this is to get
input and response from every group member to build the best possible final result.

If a group member is assigned to a main task of the project, than that person have
authority to do minor changes without getting input from the other group members, as
long as the decision do not affect other parts of the project. However, it is important to
inform the rest of the group of the change in the following meeting.

6 DOCUMENTATION

6.1 Reports and technical documents

- Gantt: prepared to keep track of basic work tasks and goals
- Minutes of meetings: Documentation of every meeting to retain information and ap-
pointments in case someone is missing from a meeting or becomeill.

Page 13 of 15

Page 81 of [103]




@ NTNU

. Norwegian University of
C Pre-project Report Science and Technology

@ NTNU

Norwegian University of
Science and Technology

7 SCHEDULED MEETINGS AND REPORTS

7.1 Meetings

Group meeting every Monday and Thursday:

-Mainly to give insight of what each member have done and will be going to do
-Adapt weekly goals to stay on track with progress plan.

-Schedule additional meeting with supervisors when necessary.

Supervisor meeting every other week:
-Get guidance from supervisors on topics and progression.

The Secretary is assigned to produce a weekly report an mail it to supervisors, to keep
supervisors up to date with the project. The report shall contain information about the
progress of the project and any questions we want guidance in connection with the
project.

7.2 Periodical Reports

Minutes of meetings:

-Previous week status

-Current status: Software, Hardware, Problems encountered
n-Next steps

Progress plan(updated)

8 PLANNED DEVIATION TREATMENT

The most likely scenario that would impede on the groups efforts would be the risk
of NTNU restricting lab access due to increase in Covid-19 cases in the nearby area.
Alternate channels for intercommunication within the group has been created and is
being maintained throughout the project, as the group sees no specific need to meet
in person to proceed with set tasks.

Should the project deviate from the plan, advisors will be notified through the weekly
report so the issue can be discussed in the next weekly meeting. If the deviation
threatens to compromise the project, a special meeting will be scheduled as soon as
possible.

Page 14 of 15

Page 82 of [103]




@ NTNU

. Norwegian University of
C Pre-project Report Science and Technology

@ NTNU

Norwegian University of
Science and Technology

9 EQUIPMENT REQUIREMENTS/ CONDITIONS FOR IM-
PLEMENTATION

We will be using the following software licenses afforded through registering with our
student e-mail:

+ MATLAB

* PyCharm

» ReSharper

* Hyper-V

+ Unity

We will also be using Robot Operating System, which is an open-source software.

Per our current understanding we believe that the project will not be requiring any
special resources from NTNU.

10 REFERENCES
1. T. Stenersen, "Guidance Systems for Autonomous Surface Vehicles,” M.S. thesis,
Dept. Engineering Cybernetics, NTNU Trondheim, 2015.

2. A. Vagale, R. Oucheikh, R.T. Bye, O.L. Osen, T.l. Fossen, "Path Planning and
Collision Avoidance for Autonomous Surface Vehicles Il: A Comparative Study of
Algorithms”, J. Marine Science and Technology, 2020.

Page 15 of 15

Page 83 of [103]




@ NTNU

Norwegian University of
D External Links Science and Technology

D External Links

This is the complete Source Code of the Bachelor Thesis ASV simulator https://
github.com/Frostmort/Bachelor-ASV-Simulator, which is based on the ASV simu-
lator https://github.com/thomsten/project-thesis-simulator| created by Thomas
Stenersen in 2015 in connection with his master’s thesis.

Following is the video presentation of the project https://drive.google.com/file/d/
1W7£B7CXROWonmzm1uFiIZk-xtX-DZxyH/view7usp=sharing.

Page 84 of


https://github.com/Frostmort/Bachelor-ASV-Simulator
https://github.com/Frostmort/Bachelor-ASV-Simulator
https://github.com/thomsten/project-thesis-simulator
https://drive.google.com/file/d/1W7fB7CXR0Wonmzm1uFiIZk-xtX-DZxyH/view?usp=sharing
https://drive.google.com/file/d/1W7fB7CXR0Wonmzm1uFiIZk-xtX-DZxyH/view?usp=sharing

E Source Code

@ NTNU

Norwegian University of
Science and Technology

E Source Code

E.1

Random Moving Vessel Class

1 #!/usr/bin/env python
2 import numpy as np
3 import random
4
5 from utils import Controller
6
7
8 class Wafi(Controller):
9 def __init__(self, R2=60, mode='wafi', seed='rand', turnfreq=40):
10
11
12 self.cGoal = None # Current Goal
13 self.cWP = 0 # Used if waypoint-navigation
14 self.nWP = 0
15 self.is_initialized = False
16
17 self.goaly = 0
18 self.goalx = 0
19
20 self.seed = seed
21 self.iterator = 1
22 self.rng = random
23 self.R2 = R2
24 self.mode = mode
25 self.stepcounter = 0
26 self.turnfreq = turnfreq
27
28 self.wps = None
29
30 def update(self, vobj, world, vesselArray):
31
32 if not self.is_initialized:
33 # Reference to the vessel object's waypoints
34 self.wps = vobj.waypoints
35
36 #initial setup for wafi, set seed and get starting goal
37 if self.mode == 'wafi':
38 if self.seed == 'rand':
39 self.seed = random.randrange(0, 16000, 1)
40 self.rng.seed(self.seed)
41 print('Seed:', self.seed)
42
43 self.new_goal(vobj)
44 self.is_initialized = True
45
46 X = vobj.x[0]
47 y = vobj.x[1]
48
49 if self.mode == 'waypoint' or self.mode == 'pursuit':
50 vobj.psi_d = np.arctan2(self.cGoal[1] + x,
51 self.cGoall[0] + y)
52
53
54
55
56
57
58 if self.mode == 'wafi':
59 vobj.psi_d = np.arctan2(self.goalx -y,
60 self.goaly - x)
61
62 self.stepcounter = self.stepcounter + 1
63 # print('step:',self.stepcounter)
64 if self.stepcounter >= self.turnfreq:
65 self.new_goal(vobj)
66 self.stepcounter = 0
67
68
69

Page 85 of[103]



E Source Code

@ NTNU

Norwegian University of
Science and Technology

70
71
72
73
74
75
76
77
78
79
80

82
83
84
85
86
87
88
89
90

92
93
94
95
96
97

99
100
101
102
103
104

98 i

def

def

def

def

__name__ == "__main__

draw(self, axes, N, fcolor, ecolor):
axes.plot(self.wps[:, 0], self.wps[:, 1], 'k--')

visvalize(self, fig, axarr, t, n):

if self.mode == 'goal-switcher' or self.mode == 'waypoint':
axarr[0].plot(self.wps[:, 0], self.wps[:, 1], 'k--')
axarr[0].plot(self.cGoal[0], self.cGoalll], 'rx', ms=10)

random_waypoint(self):
x = self.rng.randrange(-50, 50, 1)
y = self.rng.randrange(-50, 50, 1)

print('new random numbers x:',Xx,'y:',y)
return (x, vy)

new_goal(self,vobj):

x1, yl1 = self.random_waypoint()
list = np.copy(vobj.x)

X2, y2 = list[0:2]

self.goalx= x1 + x2

self.goaly= yl + y2

print('set new goal', self.goaly,',',self.goalx)

vessel = Wafi()
vessel.rng.seed(1337)

for

x in range(l, 11):
x1 = vessel.random_waypoint(x1=(0, 0))
print("new waypoints:", x1)

Page 86 of[103]



E Source Code

@ NTNU

Norwegian University of
Science and Technology

E.2 Velocity Obstacle Class

00O 0T DNWN

import copy
import time

import numpy as np

from vessel import Vessel
from utils import Controller, PriorityQueue

from matplotlib2tikz import save as tikz_save

class VO(Controller):
def __init__(self, scanDistance=50):
self.scanDistance = scanDistance
self.tc = 0
self.world = 0
self.newVesselParams = [0, 0]
self.totalTime = 0

def update(self, vobj, world, vesselArray):
self.world = world
tic = time.process_time_ns()
for v in vesselArray:
if not v.is_main_vessel:
scanData = self.scan(vobj, v)
if scanData[0] <= self.scanDistance:
V0array = self.createV0(vobj, v, scanData)
if VOarray[3] > VOarray[8] > VOarray[4]:
print("Collision imminent!")

self.newVesselParams = self.collisionAvoidance(vobj, v, scanData)

vobj.u_d = self.newVesselParams[0]
vobj.psi_d = self.newVesselParams[1]

self.totalTime = self.totalTime + (time.process_time_ns() - tic)

print(self.totalTime)

def scan(self, vessell, vessel2):
xd = (vessel2.x[8] - vessell.x[0])
yd = (vessel2.x[1] - vessell.x[1])
distance = abs(np.sqrt(xd ** 2 + yd *% 2))
angle = np.arctan2(yd, xd)

return [distance, angle]

# Creates the VO array for use in collision detection and
# Array has following contents:

# [0 crossing direction, 1 distance between ships, 2 angle between ships, 3 left

collision cone edge,

# 4 right collision cone edge, 5 velocity of A, 6 velocity of B, 7 relative velocity

magnitude,
# 8 relative velocity angle]
def createVO(self, vessell, vessel2, scanData):
vo = [0, 8, 0, B8, 0, 0, B, 0, 0]

# find which side crossing vessel is coming from

if vessel2.x[0] > vessell.x[0] and (np.pi / 2 < vessel2.x[2] < 3 % np.pi / 2):
vo[e] = 'r'

elif vessel2.x[0] < vessell.x[0] and (vessel2.x[2] < np.pi / 2 or vessel2.x[2] >

3 % np.pi/ 2):

vo[e] = '’

else:
vo[e] = 'n’

# find left and right boundaries of collision cone
VO[1] = scanData[0]

V0[2] = scanData[1]

angle = np.arctan2(scanDatal[0] / 2, scanDatal[0])

VO[3] = vOo[2] + np.arctan2((scanData[@] / 2) + 5, scanData[0])

Page 87 of[103]



@ NTNU

Norwegian University of

E Source Code Science and Technology
67 Vo[4] = VO[2] - np.arctan2((scanDatal[0] / 2) + 5, scanDatal[0])
68
69 # find vector (xab) and angle (lab) of relative velocity
70 VO[5] = [np.cos(vessell.x[2]), np.sin(vessell.x[2])]

71 VO[6] = [(np.cos(vessel2.x[2])), (np.sin(vessel2.x[21))]

72 vo[7] = [vo[5]1[e] - vol[el[el, vo[51[1] - vo[e][1]]

73 Vo[8] = np.arctan2(v0o[7]1[1], vo[7][6])

74

75 return VO

76

77

78

79 def collisionAvoidance(self, v1, v2, scanData):

80

81 xyc = [0, 0]

82 self.tc = self.getCollisionTime(vl, v2, xyc)

83 RV = self.getRV(vl)

84 newParams = self.getRAV(vl, v2, RV, scanData)

85 return newParams

86

87 def getCollisionTime(self, vi1, v2, xyc):

88 rl = ([vl.x[0], v1.x[3] * np.cos(vl.x[2]), v1.x[1], v1.x[3] * np.sin(v1l.x[2
D1) # vessel 1 velocity vector

89 r2 = ([v2.x[0], v2.x[3] % np.cos(v2.x[2]), v2.x[1], v2.x[3] * np.sin(v2.x[2
DI1) # vessel 2 velocity vector

90

91 tx = (r2[0] - r1[0]1) / (r1[1] - r2[1]) # time to intersect in x

92 ty = (r2[2] - r1[2]) / (r2[3] - r2[3]) # time to intersect in y

93

94 return (tx + ty) / 2 # returns average of x and y times

95

96 def getRV(self, vi1):

97 u_max = vl.model.est_u_max # max surge velocity

98 u_min = vl.model.est_u_min # min surge velocity (reverse)

99 r_max = vl.model.est_r_max # max yaw velocity

100

101 du_max = vl.model.est_du_max # max surge acceleration

102 du_min = vl.model.est_du_min # min surge acceleration (reverse)

103 dr_max = vil.model.est_dr_max # max yaw acceleration

104

105 t=1

106

107 rt = dr_max % t

108 ut = du_max % t

109

110 if rt > r_max:

111 rt = r_max

112

113 if ut > u_max:

114 ut = u_max

115

116 maxstraight = ut

117 maxreverse = -ut

118 maxstarboard = [ut * np.cos(rt), ut * np.sin(rt)]

119 maxport = [-1 * maxstarboard[0], maxstarboard[1]]

120

121 return [maxstraight, maxreverse, maxstarboard, maxport]

122

123 def getRAV(self, v1, v2, RV, scanData):

124 testVessel = Vessel(copy.deepcopy(vl.x), np.zeros((1, 6)), vi.h, vi1.dT, vi.N
, [1, False, 'viknes')

125 testVessel.world = copy.deepcopy(self.world)

126

127 testVessel.x = copy.deepcopy(vl.x)

128

129 print('test starboard')

130 testVessel.x[3] = np.sqrt(RV[2]1[0]*%2 + RV[2][1]%*2)

131 testVessel.x[2] = testVessel.x[2] - (np.pi/2 - np.arctan2(RV[2][1], RvV[2][6]))

132 testV0 = self.createVO(testVessel, v2, scanData)

Page 88 of[103]



@ NTNU

Norwegian University of

E Source Code Science and Technology
133 if self.checkNewVO(testV0):
134 newParams = [testVessel.x[3], testVessel.x[2]]
135 return newParams
136
137 print('test port')
138 testVessel.x[3] = np.sqrt(RV[3][0]*%x2 + RV[3][1]%%2)
139 testVessel.x[2] = testVessel.x[2] - (np.pi/2 - np.arctan2(RV[3]1[1],RV[31[0]))
140 testV0 = self.createVO(testVessel, v2, scanData)
141 if self.checkNewVO(testV0):
142 newParams = [testVessel.x[3], testVessel.x[2]]
143 return newParams
144
145 print('test ahead')
146 testVessel.x[3] = RV[0O]
147 testVessel.x[2] = v1.x[2]
148 testV0 = self.createVO(testVessel, v2, scanData)
149 if self.checkNewVO(testV0):
150 newParams = [testVessel.x[3], testVessel.x[2]]
151 return newParams
152
153 print('test reverse starboard')
154 testVessel.x[3] = RV[1]
155 testVessel.x[2] = testVessel.x[2] - (np.pi/2 - np.arctan2(RV[2][1], RV[2][6]))
156 testV0 = self.createVO(testVessel, v2, scanData)
157 if self.checkNewVO(testV0):
158 newParams = [testVessel.x[3], testVessel.x[2]]
159 return newParams
160
161 print('test reverse port')
162 testVessel.x[3] = RV[1]
163 testVessel.x[2] = testVessel.x[2] - (np.pi/2 - np.arctan2(RV[3]1[1],RV[3]1[0]))
164 testV0 = self.createVO(testVessel, v2, scanData)
165 if self.checkNewVO(testV0):
166 newParams = [testVessel.x[3], testVessel.x[2]]
167 return newParams
168
169 print('test reverse')
170 testVessel.x[3] = RV[1]
171 testVessel.x[2] = v1.x[2]
172 testV0 = self.createVO(testVessel, v2, scanData)
173 if self.checkNewVO(testV0):
174 newParams = [testVessel.x[3], testVessel.x[2]]
175 return newParams
176
177 print('No RAV found')
178 return [0, v1.x[2]]
179
180 def checkNewV0(self, V0):
181 if not VO[3] > VvO[8] > vo[4]:
182 return True
183 else:
184 return False
185
186 def checkLand(self, vessell, params):
187 vessell.u_d = params[0]
188 vessell.psi_d = params[1]
189 for x in range(self.world.n, round(self.world.n + (self.tc * 100))):
190 vessell.update_model(x)
191 pO = vessell.model.x[0:2]
192 if self.world._map.is_occupied(pO, safety_region=False):
193 return True
194
195 return False
196

Page 89 of[103]



E Source Code

@ NTNU

Norwegian University of
Science and Technology

E.3 Multi Object Particle Swarm Optimization Class

import sys, time
import heapq

import random
import numpy as np
import matplotlib.pyplot as plt

00O 0T DNWN

from map import Map
9 from utils import Controller
10 from vessel import Vessel

12 DIMENSIONS = 2 # Number of dimensions

13 GLOBAL_BEST = 0 # Global Best of Cost function
14 MIN_RANGE = @ # Lower boundary of search space
15 MAX_RANGE = 50 # Upper boundary of search space
16 POPULATION = 50 # Number of particles in the swarm
17 V_MAX = 1 # Maximum velocity value

18 PERSONAL_C = 2.0 # Personal coefficient factor
19 SOCIAL_C = 2.0 # Social coefficient factor

20 CONVERGENCE = 0 # Convergence value

21 MAX_ITER = 100 # Maximum number of iterations
22 BIGVAL = 10000.

23 MINDIST = 20

24

25

26 class Mopso(Controller):

27 def __init__(self, xB8, xg, the_map, search_radius=50, replan=False):

28 self.start = x0[0:3]

29 self.goal = xg[0:3]

30 self.scanRadius = search_radius

31 self.world = None

32 self.grid_size = the_map.get_dimension

33 self.graph = SearchGrid(the_map, [1.0, 1.0, 25.0/360.0])

34 self.map = the_map

35 self.to_be_updated = True

36 self.replan = replan

37 self.path_found = False

38 self.wpUpdated = False

39 self.currentcWP = 0

40

41 self.totalTime = 0

42

43 self.particles = [] # List of particles in the swarm

44 self.best_pos = None # Best particle of the swarm

45 self.best_pos_z = np.inf # Best particle of the swarm

46

47 def update(self, vobj, world, vesselArray):

48 tic = time.process_time_ns()

49 if len(vesselArray) > 1:

50 v2 = vesselArray[1]

51 scanData = self.scan(vobj.x[0:2], v2.x[0:2])

52 if scanData[0] <= self.scanRadius and not self.wpUpdated:

53 self.currentcWP = vobj.controllers[1].cWP

54 nextWP = self.search(vobj.x[0:2], vesselArray, scanData)

55 print("Vessel 1: ", vobj.x[0:2])

56 print("Vessel 2: ", v2.x[0:2])

57 for x in range(0, 3):

58 print("Waypoint ", self.currentcWP + x, ": ", nextWP)

59 vobj.controllers[1].wp = np.insert(vobj.waypoints, self.currentcWP +
X, nextWP, axis = 0)

60 vobj.waypoints = np.insert(vobj.waypoints, self.currentcWP + X,
nextWP, axis = 0)

61 scanData = self.scan(nextWP, v2.x[0:2])

62 nextWP = self.search(nextWP, vesselArray, scanData)

63 self.wpUpdated = True

64 self.totalTime = self.totalTime + (time.process_time_ns() - tic)

65 print(self.totalTime)

66

67 def search(self, vobjx, vesselArray, scanData):

Page 90 of[103]



@ NTNU

Norwegian University of

E Source Code Science and Technology

68

69 # Initialize swarm

70 x0 = vobjx[0:2]

71 print("Svermd ", x0)

72

73 localMin = [vobjx[0] - MAX_RANGE, vobjx[1] - MAX_RANGE]

74 localMax = [vobjx[0] + MAX_RANGE, vobjx[1] + MAX_RANGE]

75

76 swarm = Swarm(POPULATION, V_MAX, self.goal, x0, vesselArray, scanData)

77 # Initialize inertia weight

78 inertia_weight = 0.5 + (np.random.rand() / 2)

79 curr_iter=0

80 for i in range(MAX_ITER):

81

82 for particle in swarm.particles:

83

84 for i in range(0, DIMENSIONS):

85 rl = np.random.uniform(0, 1)

86 r2 = np.random.uniform(0, 1)

87

88 # Update particle's velocity

89 personal_coefficient = PERSONAL_C * rl x (particle.best_pos[i] -
particle.pos[il)

90 social_coefficient = SOCIAL_C % r2 * (swarm.best_pos[i] - particle.
pos[il])

91 new_velocity = inertia_weight % particle.velocity[i] +
personal_coefficient + social_coefficient

92

93 # Check if velocity is exceeded

94 if new_velocity > V_MAX:

95 particle.velocity[i] = V_MAX

96 elif new_velocity < -V_MAX:

97 particle.velocity[i] = -V_MAX

98 else:

99 particle.velocity[i] = new_velocity

100

101 # Update particle's current position

102 particle.pos += particle.velocity

103

104 particle.pos_z = swarm.cost_function(particle.pos[0], particle.pos[1],
vesselArray)

105

106 # Update particle's best known position

107 if particle.pos_z < swarm.cost_function(particle.best_pos[0], particle.
best_pos[1], vesselArray):

108 particle.best_pos = particle.pos.copy()

109

110 # Update swarm's best known position

111 if particle.pos_z < swarm.best_pos_z:

112 swarm.best_pos = particle.pos.copy()

113 swarm.best_pos_z = particle.pos_z

114

115 # # Check if particle is within boundaries

116 biggest = 0

117 hypeCheck = np.hypot(particle.pos[0] - x0[0], particle.pos[1] - xB8[1])

118 if hypeCheck > biggest:

119 biggest = hypeCheck

120 if np.hypot(particle.pos[0] - xB[0], particle.pos[1] - xB[1]) >
MAX_RANGE :

121 r = np.random.uniform(MIN_RANGE, MAX_RANGE)

122 theta = np.random.uniform(0, 2 % np.pi)

123 particle.pos[8] = (r * np.cos(theta)) + x0[0]

124 particle.pos[1] = (r % np.sin(theta)) + x0[1]

125

126

127 # Check for convergence

128 if abs(swarm.best_pos_z - GLOBAL_BEST) < CONVERGENCE:

129 print("The swarm has met convergence criteria after " + str(curr_iter

) + " iterations.", 'at:', swarm.best_pos)

Page 91 of[103]



@ NTNU

Norwegian University of

E Source Code Science and Technology
130 break
131 curr_iter += 1
132
133 if abs(swarm.best_pos_z - GLOBAL_BEST) > CONVERGENCE:
134 print("The swarm has reached max iterations after " + str(curr_iter) + "
iterations.”, 'at:',
135 swarm.best_pos)
136 print("Swarm: ", swarm.best_pos)
137 print("Biggest: ", biggest)
138 return [swarm.best_pos[0], swarm.best_pos[1]]
139
140
141
142
143 def scan(self, vessell, vessel2):
144 xd = (vessel2[0] - vessell[0])
145 yd = (vessel2[1] - vessell[1])
146 distance = abs(np.sqrt(xd#*2 + yd*%2))
147 angle = np.arctan2(yd, xd)
148
149 return [distance, anglel
150
151
152 AR A A A A A A A
153 class Swarm():
154 def __init__(self, pop, v_max, goal, xB@, vesselArray, scanData):
155 self.particles = [] # List of particles in the swarm
156 self.best_pos = None # Best particle of the swarm
157 self.best_pos_z = np.inf # Best particle of the swarm
158 self.x0 = x0 #ship pos
159 self.goal = goal
160 self.scanData = scanData
161 self.vesselArray = vesselArray
162 for _ in range(pop):
163 r = np.random.uniform(MIN_RANGE, MAX_RANGE)
164 theta = np.random.uniform(MIN_RANGE, MAX_RANGE*np.pi)
165 x = (r % np.cos(theta))+x0[0]
166 y = (r * np.sin(theta))+x0[1]
167
168
169 z = self.cost_function(x, y, goal)
170 velocity = np.random.rand(2) * v_max
171 particle = Particle(x, y, z, velocity)
172 self.particles.append(particle)
173 if self.best_pos != None and particle.pos_z < self.best_pos_z:
174 self.best_pos = particle.pos.copy()
175 self.best_pos_z = particle.pos_z
176 else:
177 self.best_pos = particle.pos.copy()
178 self.best_pos_z = particle.pos_z
179
180
181 def cost_function(self, x1, yl1l, goal):
182 devil = 1
183 statW = 1
184 dynW = 1
185 weighingMatrix = np.array([[devW], [statW], [dynWII1)
186 pos = x1,y1l
187 x2,y2=self.goal[0],self.goal[1]
188
189
190 deviation_cost = (np.sqrt((x2-x1)**2 + (y2-y1)*%2)) #distance from goal
191
192 statitc_obs_cost = 0
193 # if not self.graph.passable(pos): #Check if static obstacle
194 # statitc_obs_cost= BIGVAL
195
196 distance = np.hypot(x1l - self.vesselArray[1].x[0], yl1 - self.vesselArray[1].x[1

Page 92 of[103]



E Source Code

@ NTNU

Norwegian University of
Science and Technology

196 1) #check for dynamic obstacle

197 if distance <= 5:

198 dyn_obs_cost = BIGVAL

199 elif 5 < distance <= 10:

200 dyn_obs_cost = 100

201 # elif 10 < distance <= 20:

202 # dyn_obs_cost = 50

203 else:

204 dyn_obs_cost = 0

205

206 if self.is_inside(self.get_dangercone(self.vesselArray[1]), pos):

207 dyn_obs_cost = BIGVAL

208 if self.is_inside2(self.get_dangercube(self.vesselArray[1]), pos):

209 dyn_obs_cost = BIGVAL

210

211 if dyn_obs_cost < 0:

212 dyn_obs_cost = 0

213

214 cost = np.sum(np.array([[deviation_cost], [statitc_obs_cost], [dyn_obs_cost
11) * weighingMatrix)

215 return cost

216

217 def is_inside(self, triangle, pos): ficheck if point is inside cone

218 x1 = triangle[0]

219 x2 = triangle[1]

220 x3 = triangle[2]

221 Xp = pos

222

223 cl = (x2[0]-x1[0]) * (xp[1]-x1[1]) - (x2[1]-x1[1]) * (xp[B]-x1[61)

224 c2 = (x3[0]-x2[0]) * (xp[1]-x2[1]1) - (x3[1]1-x2[1]1) * (xp[e]l-x2[01)

225 c3 = (x2[0]-x3[0]) * (xp[1]1-x3[1]) - (x1[1]1-x3[1]1) * (xp[BI-x3[0])

226 if (c1 <0 and c2 <0 and ¢3 < 0) or (cl1 >0 and c2 > 0 and c3 > 0):

227 return True

228 else:

229 return False

230

231 def is_inside2(self, square,pos):

232 Xp = pos

233 x1 = square[0]

234 x2 = square[1]

235 x3 = square[2]

236 x4 = square[3]

237

238 #x1,x2 and xp

239 areal = np.abs((x1[0]*x2[1] + x2[0]*xp[1] + xp[0]*x1[1]) - (x1[11*x2[0] + x2[1]*
xp[B] + xp[1]1%x1[0]))*0.5

240

241 #x2,x3 and xp

242 area2 = np.abs((x3[0]*x2[1] + x2[0]*xp[1] + xp[0]*x3[1]) - (x3[11*x2[0] + x2[1]*
xp[0] + xp[1]1*x3[0]))*0.5

243

244 #x3,x4 and xp

245 aread = np.abs((x3[0]*x4[1] + x4[0]*xp[1] + xp[0]*x3[1]) - (x3[11*x4[0] + x4[1]*
xp[0] + xp[1]*x3[0]1))0.5

246

247 #x1,x4 and xp

248 area4d = np.abs((x1[0]*x4[1] + x4[0]*xp[1] + xp[0]*x1[1]) - (x1[11*x4[0] + x4[1]*
xp[8] + xp[1]%xx1[0]))*0.5

249

250 areasquare = np.hypot(x1[0] - x2[0], x1[1] - x2[1]) * np.hypot(x1[0] - x3[06], x1
[1] - x3[1])

251

252 if np.sum([areal,area2,area3,area4]) <= areasquare:

253 return True

254 else:

255 return False

256 def get_dangercone(self, vobj):

257 phi = 2.02

258 1 = BIGVAL

Page 93 of[103]




@ NTNU

Norwegian University of

E Source Code Science and Technology

259
260

261

262
263
264
265
266
267
268
269

270

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

321
322

p0 = [vobj.x[B8],vobj.x[1]]

pl = [((*np.cos(vobj.x[2] - phi/2)) + vobj.x[0]), ((lxnp.sin(vobj.x[2] - phi/2
) + vobj.x[11))1

p2 = [((l*np.cos(vobj.x[2] + phi/2)) + vobj.x[0]), ((lxnp.sin(vobj.x[2] + phi/2
) + vobj.x[11))]

# print("Trakant: ", p@, pl, p2)
return [pB, pl, p2]

def get_dangercube(self, vobj):

1 = 2 x MAX_RANGE

pO® = [MINDIST * np.cos(vobj.x[2] - np.pi/2) + vobj.x[8], MINDIST % np.sin(vobj.x
[2] - np.pi/2) + vobj.x[1]]

pl = [MINDIST * np.cos(vobj.x[2] + np.pi/2) + vobj.x[0], MINDIST * np.sin(vobj.x
[2] + np.pi/2) + vobj.x[1]]

p2 = [1 * np.cos(vobj.x[2]) + pB[O], 1 * np.sin(vobj.x[2]) + pB[1]]

p3 = [1 % np.cos(vobj.x[2]) + p1[0], 1 * np.sin(vobj.x[2]) + p1[1]]

#print("Square: ", pO, pl, p2, p3)
return [p0, pl, p2, p3]

# Particle class
class Particle():
def __init__(self, x, y, z, velocity):
self.pos = [x, vyl
self.pos_z = z
self.velocity = velocity
self.best_pos = self.pos.copy()

class SearchGrid(object):
"""General purpose N-dimentional search grid."""
def __init__(self, the_map, gridsize, N=2, parent=None):

self.N =N
self.grid = the_map.get_discrete_grid()
self.map = the_map

self.gridsize = gridsize

self.gridsize[0] = the_map.get_gridsize()
self.gridsize[1] = the_map.get_gridsize()
dim = the_map.get_dimension()

self.width
self.height

dim[0]
dim[1]

In the discrete map, an obstacle has the value '1'.
We multiply the array by a big number such that the
grid may be used as a costmap.

self.grid *= BIGVAL

def get_grid_id(self, state):
"mrReturns a tuple (x,y,psi) with grid positions.
return (int(state[0]/self.gridsize[0]),
int(state[1]/self.gridsize[1]),
int(state[2]/self.gridsize[2]))

nwun

def in_bounds(self, state):
return 0 <= state[0] < self.width and 0 <= state[1] < self.height

def cost(self, a, b):
#if b[O] > self.width or b[1] > self.height:
# return 0
return np.sqrt((al0]-b[0]1)**2 + (al[1]-b[1]1)*%x2)#self.grid[int(b[0]/self.gridsize
[0]), int(b[1]/self.gridsize[1])]

def passable(self, state):

Page 94 of



@ NTNU

Norwegian University of

E Source Code Science and Technology
323 # TODO Rename or change? Only returns true if object is _inside_ obstacle
324 # Polygons add safety zone by default now.

325

326 if state[0] > self.width or state[1] > self.height:

327 return True

328

329 return self.grid[int(state[0]/self.gridsize[0]),

330 int(state[1]/self.gridsize[1])] < BIGVAL

331

332 def neighbors(self, state, est_r_max):

333 S

334 Applies rudder commands to find the neighbors of the given state.

335

336 For the Viknes 830, the maximum rudder deflection is 15 deg.

337 S

338 step_length = 2.5%self.gridsize[0]

339 avg_u = 3.5

340 Radius = 2.5%avg_u / est_r_max

341 dTheta = step_length / Radius

342 #print(Radius, dTheta*180/np.pi)

343

344 trajectories = np.array([[step_length*np.cos(dTheta), step_length*np.sin(dTheta
), dThetal,

345 [step_length, 0., 0.],

346 [step_length*np.cos(dTheta), -step_length*np.sin(dTheta
), -dThetall)

347

348 #print(trajectories)

349 results = []

350 for traj in trajectories:

351 newpoint = state + np.dot(Rz(state[2]), traj)

352 if self.passable(newpoint):

353 results.append(newpoint)

354

355 #results = filter(self.in_bounds, results)

356

357 return results

358

359

360

361 if __name__ == "__main__":

362 mymap = Map("sl1l", gridsize=1.0, safety_region_length=4.5)

363

364 x0 = np.array([0, 0, np.pi / 2, 3.0, 0.0, 0]

365 xg = np.array([30, 86, np.pi / 4])

366 mopso = Mopso(x@, xg, mymap)

367 myvessel = Vessel(x0, xg, 0.05, 0.5, 1, [mopso], True, 'viknes')

368 vesselArray = [myvessell]

369

370

371 mopso.update(myvessel, vesselArray)

372

373 fig = plt.figure()

374 ax = fig.add_subplot(111, autoscale_on=False)

375 # ax.plot(myvessel.waypoints[:, 0],

376 # myvessel.waypoints[:, 1],

377 # -)

378

379 # ax.plot(x0[0], x0[1], 'bo')

380 ax.plot(xg[e], xg[1], 'ro')

381 myvessel.draw_patch(ax, myvessel.x, fcolor='b")

382

383 # nonpass = np.array(nonpassable)

384 # ax.plot(nonpass[:,0], nonpass[:,1], 'rx')

385

386 ax.axis('equal')

387 ax.axis('scaled')

388 ax.axis([-10, 160, -10, 160])

389 mymap.draw(ax, 'g', 'k")

Page 95 of[103]



@ NTNU

Norwegian University of

E Source Code Science and Technology
390 ax.grid()
391
392 plt.show()
393

Page 96 of [103]



@ NTNU

Norwegian University of
E Source Code Science and Technology

E.4 Velocity Obstacle Particle Swarm Optimization Class

1 import time
2
3 import numpy as np
4 import matplotlib.pyplot as plt
5
6 from map import Map
7 from utils import Controller
8 from vessel import Vessel
9
10 DIMENSIONS = 2 # Number of dimensions
11 GLOBAL_BEST = 0 /# Global Best of Cost function
12 MIN_RANGE = @ # Lower boundary of search space
13 MAX_RANGE = 50 # Upper boundary of search space
14 POPULATION = 50 # Number of particles in the swarm
15 V_MAX = 1 # Maximum velocity value
16 PERSONAL_C = 2.0 # Personal coefficient factor
17 SOCIAL_C = 2.0 # Social coefficient factor
18 CONVERGENCE = 0 # Convergence value
19 MAX_ITER = 100 # Maximum number of iterations
20 BIGVAL = 10000.
21 MINDIST = 20
22
23
24 class Vopso(Controller):
25 def __init__(self, x0, xg, the_map, search_radius=50, replan=False):
26 self.start = x0[0:3]
27 self.goal = xg[0:3]
28 self.scanRadius = search_radius
29 self.world = None
30 self.grid_size = the_map.get_dimension
31 self.graph = SearchGrid(the_map, [1.0, 1.0, 25.0/360.0])
32 self.map = the_map
33 self.to_be_updated = True
34 self.replan = replan
35 self.path_found = False
36 self.wpUpdated = False
37 self.currentcWP = 0
38
39 self.alter = 0
40 self.totalTime = 0
41
42 self.particles = [] # List of particles in the swarm
43 self.best_pos = None # Best particle of the swarm
44 self.best_pos_z = np.inf # Best particle of the swarm
45
46 def update(self, vobj, world, vesselArray):
47 tic = time.process_time_ns()
48 if len(vesselArray) > 1:
49 v2 = vesselArray[1]
50 resetPoint = -1
51 scanData = self.scan(vobj.x[0:2], v2.x[0:2])
52 if scanData[0] <= self.scanRadius and not self.wpUpdated:
53
54 # Create VO
55 VOarray = self.createV0(vobj, v2, scanData)
56 if VOarray[3] > VOarray[8] > VOarray[4]:
57 # Implement MOPSO
58 self.currentcWP = vobj.controllers[1].cWP
59 nextWP = self.search(vobj.x[0:2], vesselArray, scanData, VOarray)
60 print("Vessel 1: ", vobj.x[0:2])
61 print("Vessel 2: ", v2.x[0:2])
62 for x in range(0, 2):
63 print("Waypoint ", self.currentcWP + x, ": ", nextWP)
64 vobj.controllers[1].wp = np.insert(vobj.waypoints, self.
currentcWP + x, nextWP, axis = 0)
65 vobj.waypoints = np.insert(vobj.waypoints, self.currentcWP + X,
nextWP, axis = 0)
66 scanData = self.scan(nextWP, v2.x[0:2])
67 nextWP = self.search(nextWP, vesselArray, scanData, VOarray)

Page 97 of[103]



@ NTNU

Norwegian University of

E Source Code Science and Technology

68 self.wpUpdated = True

69 self.totalTime = self.totalTime + (time.process_time_ns()-tic)

70 print(self.totalTime)

71

72 if vobj.controllers[1].cWP == self.currentcWP + 1:

73 vobj.wp = None

74 vobj.controllers[1].cWP = 0

75 vobj.controllers[0].to_be_updated = True

76 vobj.controllers[1].wp_initialized = False

77 self.wpUpdated = False

78 self.totalTime = self.totalTime + (time.process_time_ns() - tic)

79 print(self.totalTime)

80

81

82 def search(self, vobjx, vesselArray, scanData, VOarray):

83

84 # Initialize swarm

85 x0 = vobjx[0:2]

86 print("Svermd ", x0)

87

88 swarm = Swarm(POPULATION, V_MAX, self.goal, x0, vesselArray, scanData, VOarray)

89 # Initialize inertia weight

90 inertia_weight = 0.5 + (np.random.rand() / 2)

91 curr_iter=0

92 for i in range(MAX_ITER):

93

94 for particle in swarm.particles:

95

96 for i in range(0, DIMENSIONS):

97 rl = np.random.uniform(0, 1)

98 r2 = np.random.uniform(0, 1)

99

100 # Update particle's velocity

101 personal_coefficient = PERSONAL_C * rl x (particle.best_pos[i] -
particle.pos[i])

102 social_coefficient = SOCIAL_C % r2 * (swarm.best_pos[i] - particle.
pos[il)

103 new_velocity = inertia_weight % particle.velocity[i] +
personal_coefficient + social_coefficient

104

105 # Check if velocity is exceeded

106 if new_velocity > V_MAX:

107 particle.velocity[i] = V_MAX

108 elif new_velocity < -V_MAX:

109 particle.velocity[i] = -V_MAX

110 else:

111 particle.velocity[i] = new_velocity

112

113 # Update particle's current position

114 particle.pos += particle.velocity

115

116 particle.pos_z = swarm.cost_function(particle.pos[0], particle.pos[1],
vesselArray)

117

118 # Update particle's best known position

119 if particle.pos_z < swarm.cost_function(particle.best_pos[0], particle.
best_pos[1], vesselArray):

120 particle.best_pos = particle.pos.copy()

121

122 # Update swarm's best known position

123 if particle.pos_z < swarm.best_pos_z:

124 swarm.best_pos = particle.pos.copy()

125 swarm.best_pos_z = particle.pos_z

126

127 # # Check if particle is within boundaries

128 biggest = 0

129 hypeCheck = np.hypot(particle.pos[0] - x0[0], particle.pos[1] - x08[1])

130 if hypeCheck > biggest:

131 biggest = hypeCheck

Page 98 of[103]



@ NTNU

Norwegian University of

E Source Code Science and Technology

132 if np.hypot(particle.pos[0] - x0[0], particle.pos[1] - x0[1]) >
MAX_RANGE :

133 r = np.random.uniform(MIN_RANGE, MAX_RANGE)

134 theta = np.random.uniform(®, 2 * np.pi)

135 particle.pos[B] = (r * np.cos(theta)) + x0[0]

136 particle.pos[1] = (r % np.sin(theta)) + x0[1]

137

138

139 # Check for convergence

140 if abs(swarm.best_pos_z - GLOBAL_BEST) < CONVERGENCE:

141 print("The swarm has met convergence criteria after " + str(curr_iter
) + " iterations.", 'at:', swarm.best_pos)

142 break

143 curr_iter += 1

144

145 if abs(swarm.best_pos_z - GLOBAL_BEST) > CONVERGENCE:

146 print("The swarm has reached max iterations after " + str(curr_iter) + "
iterations.", 'at:',

147 swarm.best_pos)

148 print("Swarm: ", swarm.best_pos)

149 print("Biggest: ", biggest)

150 return [swarm.best_pos[0], swarm.best_pos[1]]

151

152 def scan(self, vessell, vessel2):

153 xd = (vessel2[0] - vessell[0])

154 yd = (vessel2[1] - vessell[1])

155 distance = abs(np.sqrt(xd**2 + yd%%2))

156 angle = np.arctan2(yd, xd)

157

158 return [distance, anglel

159

160 def createV0(self, vessell, vessel2, scanData):

161 vo = [e, 0, 8, 0, 8, 6, 0, 0, O]

162 # find which side crossing vessel is coming from

163 if vessel2.x[0] > vessell.x[0] and (np.pi / 2 < vessel2.x[2] < 3 % np.pi / 2):

164 vo[el = 'r'

165 elif vessel2.x[0] < vessell.x[8] and (vessel2.x[2] < np.pi / 2 or vessel2.x[2
1 >3 %xnp.pi/ 2):

166 vo[e] = 'u

167 else:

168 vo[el = 'n’

169

170 # find left and right boundaries of collision cone

171 VO[1] = scanDatal[0]

172 V0[2] = scanData[1]

173 angle = np.arctan2(scanData[0] / 2, scanData[0])

174

175 VO[3] = vOo[2] + np.arctan2((scanData[0] / 2) + 5, scanData[0])

176 Vo[4] = VO[2] - np.arctan2((scanDatal[0] / 2) + 5, scanData[0])

177

178 # find vector (xab) and angle (lab) of relative velocity

179 VO[5] = [np.cos(vessell.x[2]), np.sin(vessell.x[2])]

180 VO[6] = [(np.cos(vessel2.x[2]1)), (np.sin(vessel2.x[21))]

181 vo[7] = [vo[5]1[e] - vo[el[el, vo[5]1[1] - vo[e][1]]

182 Vo[8] = np.arctan2(v0o[7]1[1], vo[7][6])

183

184 return VO

185

186 class Swarm():

187 def __init__(self, pop, v_max, goal, x0, vesselArray, scanData, VOarray):

188 self.particles = [] # List of particles in the swarm

189 self.best_pos = None # Best particle of the swarm

190 self.best_pos_z = np.inf # Best particle of the swarm

191 self.x0 = x0 #ship pos

192 self.goal = goal

193 self.scanData = scanData

194 self.vesselArray = vesselArray

195 self.VO0array = VOarray

196 for _ in range(pop):

Page 99 of[103]



@ NTNU

Norwegian University of

E Source Code Science and Technology

197 r = np.random.uniform(MIN_RANGE, MAX_RANGE)

198 theta = np.random.uniform(MIN_RANGE, MAX_RANGE*np.pi)

199 x = (r % np.cos(theta))+x0[0]

200 y = (r * np.sin(theta))+x0[1]

201

202 z = self.cost_function(x, y, goal)

203 velocity = np.random.rand(2) * v_max

204 particle = Particle(x, y, z, velocity)

205 self.particles.append(particle)

206 if self.best_pos != None and particle.pos_z < self.best_pos_z:

207 self.best_pos = particle.pos.copy()

208 self.best_pos_z = particle.pos_z

209 else:

210 self.best_pos = particle.pos.copy()

211 self.best_pos_z = particle.pos_z

212

213

214 def cost_function(self, x1, yl, goal):

215 devit = 1

216 statW = 1

217 dynW = 1

218 weighingMatrix = np.array([[devW], [statW], [dynW]])

219 pos = x1,yl

220 x2,y2=self.goal[0],self.goall[1]

221

222 deviation_cost = (np.sqrt((x2-x1)**2 + (y2-y1)*%2)) #distance from goal

223

224 statitc_obs_cost = 0

225

226 distance = np.hypot(x1l - self.vesselArray[1].x[0], y1 - self.vesselArray[1].x[1
D #check for dynamic obstacle

227 if distance <= 5:

228 dyn_obs_cost = BIGVAL

229 elif 5 < distance <= 10:

230 dyn_obs_cost = 100

231 elif 10 < distance <= 15:

232 dyn_obs_cost = 50

233 else:

234 dyn_obs_cost = 0

235

236 if self.is_inside(self.get_dangercone(), pos):

237 dyn_obs_cost = BIGVAL

238

239 if dyn_obs_cost < 0O:

240 dyn_obs_cost = 0

241

242 cost = np.sum(np.array([[deviation_cost], [statitc_obs_cost], [dyn_obs_cost
11) * weighingMatrix)

243 return cost

244

245 def is_inside(self, triangle, pos): ficheck if point is inside cone

246 x1 = triangle[0]

247 X2 = triangle[1]

248 x3 = triangle[2]

249 Xp = pos

250

251 cl = (x2[0]-x1[0]) * (xp[1]1-x1[1]) - (x2[1]-x1[11) * (xp[B]-x1[61)

252 c2 = (x3[0]-x2[0]) * (xp[1]-x2[1]) - (x3[1]-x2[1]) * (xp[B]-x2[6])

253 c3 = (x1[0]-x3[0]) * (xp[1]1-x3[1]) - (x1[1]1-x3[1]1) * (xp[BI-x3[0])

254 if (cl <0 and c2 <0 and c3 <0) or (c1 >0 andc2>0andc3 >0):

255 return True

256 else:

257 return False

258

259 def get_dangercone(self):

260 vl = self.vesselArray[0]

261 v2 = self.vesselArray[1]

262 VO0array = self.V0array

263 tc = self.getCollisionTime(vl, v2)

Page 100 of [103



E Source Code

@ NTNU

Norwegian University of
Science and Technology

283 # Particle class
284 class Particle():

264

265 pO = [v1.x[B] + (v2.x[3] * np.cos(v2.x[2]))*tc, vi.x[1] + (v2.x[3] * np.sin(v2.x
[21))*tc]

266 pl = [((self.scanData[0@] + v2.x[3]*tc) * np.cos(VOarray[3]) + pB[0]), (self.
scanData[0] + v2.x[3]*tc) * np.sin(VOarray[3]) + pO[1]]

267 p2 = [((self.scanData[0] + v2.x[3]*tc) * np.cos(VOarray[4]) + pB[0]), (self.
scanData[0] + v2.x[3]*tc) * np.sin(VOarray[4]) + pB[1]]

268

269 #print("Triangle: ", pO, pl, p2)

270

271 return [pO, pl, p2]

272

273 def getCollisionTime(self, vi1, v2):

274 rl = ([vl.x[0], v1.x[3] % np.cos(vl.x[2]), v1.x[1], v1.x[3] % np.sin(v1l.x[2
D1) # vessel 1 velocity vector

275 r2 = ([v2.x[0], v2.x[3] % np.cos(v2.x[2]), v2.x[1], v2.x[3] % np.sin(v2.x[2
1D1) # vessel 2 velocity vector

276

277 tx = (r2[0] - r1[0]) / (r1[1] - r2[1]) # time to intersect in x

278 ty = (r2[2] - r1[2]1) / (r2[3] - r2[3]) # time to intersect in y

279

280 return (tx + ty) / 2 # returns average of x and y times

281

282

285 def __init__(self, x, y, z, velocity):

286 self.pos = [x, vyl

287 self.pos_z z

288 self.velocity = velocity

289 self.best_pos = self.pos.copy()

290

291

292 class SearchGrid(object):

293 """General purpose N-dimentional search grid."""

294 def __init__(self, the_map, gridsize, N=2, parent=None):
295 self.N =N

296 self.grid = the_map.get_discrete_grid()

297 self.map = the_map

298 self.gridsize = gridsize

299 self.gridsize[0] = the_map.get_gridsize()

300 self.gridsize[1] = the_map.get_gridsize()

301 dim = the_map.get_dimension()

302

303 self.width = dim[0]

304 self.height = dim[1]

305

306 e

307 In the discrete map, an obstacle has the value '1'.
308 We multiply the array by a big number such that the
309 grid may be used as a costmap.

310 R

311 self.grid *= BIGVAL

312

313

314 def get_grid_id(self, state):

315 """Returns a tuple (x,y,psi) with grid positions.
316 return (int(state[0]/self.gridsize[0]),

317 int(state[1]/self.gridsize[1]),

318 int(state[2]/self.gridsize[2]))

319

320 def in_bounds(self, state):

321 return 0 <= state[0] < self.width and 0 <= state[1] < self.height
322

323 def cost(self, a, b):

324 #if b[O] > self.width or b[1] > self.height:

325 # return 0

326 return np.sqrt((al0]-b[01)**2 + (a[1]-b[1])**2)#self.grid[int(b[0]/self.gridsize

[0]), int(b[1]/self.gridsize[1])]

Page 101 of [103



@ NTNU

Norwegian University of

E Source Code Science and Technology

327

328 def passable(self, state):

329 # TODO Rename or change? 0Only returns true if object is _inside_ obstacle

330 # Polygons add safety zone by default now.

331

332 if state[0] > self.width or state[1] > self.height:

333 return True

334

335 return self.grid[int(state[0]/self.gridsize[0]),

336 int(state[1]/self.gridsize[1])] < BIGVAL

337

338 def neighbors(self, state, est_r_max):

339 e

340 Applies rudder commands to find the neighbors of the given state.

341

342 For the Viknes 830, the maximum rudder deflection is 15 deg.

343 e

344 step_length = 2.5xself.gridsize[0]

345 avg_u = 3.5

346 Radius = 2.5%avg_u / est_r_max

347 dTheta = step_length / Radius

348 #print(Radius, dTheta*180/np.pi)

349

350 trajectories = np.array([[step_length*np.cos(dTheta), step_length*np.sin(dTheta
), dThetal,

351 [step_length, 0., 0.],

352 [step_length*np.cos(dTheta), -step_length*np.sin(dTheta
), -dThetall)

353

354 #print(trajectories)

355 results = []

356 for traj in trajectories:

357 newpoint = state + np.dot(Rz(state[2]), traj)

358 if self.passable(newpoint):

359 results.append(newpoint)

360

361 #results = filter(self.in_bounds, results)

362

363 return results

364

365

366 AR R A A A A A A R A A )

367

368

369 if __name__ == "__main__":

370 mymap = Map("sl1", gridsize=1.0, safety_region_length=4.5)

371

372 x0 = np.array([0, 0, np.pi / 2, 3.0, 0.0, 0])

373 xg = np.array([30, 86, np.pi / 41)

374 mopso = Mopso(x0, xg, mymap)

375 myvessel = Vessel(x0, xg, 0.05, 0.5, 1, [mopso], True, 'viknes')

376 vesselArray = [myvessell]

377

378

379 mopso.update(myvessel, vesselArray)

380

381 fig = plt.figure()

382 ax = fig.add_subplot(111, autoscale_on=False)

383 # ax.plot(myvessel.waypoints[:, O],

384 # myvessel.waypoints[:, 1],

385 # -1

386

387 # ax.plot(x0[0], x0[1], 'bo')

388 ax.plot(xg[0], xg[1], 'ro')

389 myvessel.draw_patch(ax, myvessel.x, fcolor='b")

390

391 # nonpass = np.array(nonpassable)

392 # ax.plot(nonpass[:,0], nonpass[:,1], 'rx')

393

Page 102 of [103



@ NTNU

Norwegian University of

E Source Code Science and Technology
394 ax.axis('equal')
395 ax.axis('scaled')
396 ax.axis([-10, 160, -10, 160])
397 mymap.draw(ax, 'g', 'k")
398 ax.grid()
399
400 plt.show()
401

Page 103 of [103



@ NTNU

Norwegian University of
Science and Technology



	Introduction
	Report Structure

	Theory
	Autonomous Ship
	Requirements to Achieve Autonomy
	Autonomy Levels
	Autonomy Modes During Voyage

	Algorithms
	Global and Local Path-planning Algorithms
	Pathfinding
	Graph-based Pathfinding
	Dijkstra’s Algorithm
	Best-First-Search
	A* Search Algorithm
	The Virtual Force Field Method
	The Dynamic Window Approach
	Line Of Sight

	Collision Avoidance
	Velocity Obstacle
	Adaptive Wolf Colony
	Multi Objective Particle Swarm Optimization (MOPSO)

	COLREGs
	Simulation
	Gemini
	ROS and The ASV System Package (ROS package)
	Marine System Simulator (Matlab/ Simulink Module)
	Project Thesis Simulator: Stenersen (Python)

	Simulation Map Input
	Map Data


	Development Process
	Phase 1: Planning and Documentation
	Phase 2: Implementation and Simulation
	Phase 3: Finalization

	Requirements
	Simulation Requirements
	Algorithms
	Test Requirements

	Technical Design
	Simulator
	Choice of Simulator

	Algorithms
	Global Path Planning
	COLREGs Implementation

	Testing
	Scenario
	Test Variables


	Implementation
	Simulator and Algorithm
	Simulator
	Random Moving Vessel
	Velocity Obstacle
	Multi Objective PSO
	Hybrid Algorithm - VOPSO

	Test

	Results
	Simulation Test Results
	Scenario 1: Ship from Starboard Side
	Scenario 2: Ship Head-on
	Scenario 3: Ship Standstill


	Discussion
	Project Changes
	Simulation Results
	Further Improvements
	Algorithm
	Simulator


	Conclusion
	Appendices
	COLREGs
	Progress Plan 
	Progress Plan 20.01.2021
	Progress Plan 21.03.2021
	Progress Plan 19.04.2021
	Progress Plan 19.05.2021

	Pre-project Report
	External Links
	Source Code
	Random Moving Vessel Class
	Velocity Obstacle Class
	Multi Object Particle Swarm Optimization Class
	Velocity Obstacle Particle Swarm Optimization Class



