
Ba
ch

el
or

’s
 th

es
is Anovote

Bachelor's thesis Computer Engineer
Supervisor: Arne Styve

May 2021

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

Emil Elton Nilsen
Sander Hurlen Olsen
Steffen Holanger
Christoffer Andersen Træen

Bachelor’s thesis
2021

Bachelor’s thesis

Anovote

Bachelor's thesis Computer Engineer
Supervisor: Arne Styve

May 2021

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

Emil Elton Nilsen
Sander Hurlen Olsen
Steffen Holanger
Christoffer Andersen Træen

Anovote
BACHELOR THESIS

IE303612 Bachelor thesis computer engineer

Emil Elton Nilsen, Sander Hurlen Olsen,

Steffen Holanger, and Christoffer Andersen Træen

Ålesund, May 2021

Total pages: 187

Supervisor: Arne Styve

i

Acknowledgements

We would like to dedicate this bachelor thesis to Arne Styve for his fantastic work as our bachelor

thesis supervisor. Arne was always a great help with any questions we asked him, and he was

never afraid to encourage our group and guide us forward.

We would also like to dedicate this bachelor thesis to Girts Strazdins for his work as the bach-

elor thesis coordinator for the computer science program at NTNU Ålesund. In the process of

choosing our bachelor thesis and working on it, there was never any issue with management of

the bachelor thesis.

We also express our special thanks to:

• Anders Søbakken who assisted us with configuring our hosting server

• All the professors at NTNU Ålesund who have shared with us their knowledge, nudging us

in the direction of greatness

• Patricia Larsen and Start Ålesund for having the idea and entrusting us with the task

Thank you

ii

Preface

About

The following document is a bachelor thesis written as part of Computer Engeneering at NTNU

Ålesund. It has been conducted by Emil Elton Nilsen, Sander Hurlen Olsen, Christoffer Ander-

sen Træen and Steffen Holanger as their final assignment.

The idea for this bachelor thesis was based on a request from Start Ålesund, who wanted a dig-

ital voting system to use at their general assembly. The assignment describes the process of

developing such a digital voting applications.

What intrigued us with this bachelor project was the chance to develop a production-ready ap-

plication with real-world applicability. There has been a learning curve throughout the bachelor

thesis and something we are certain will benefit from when approaching a professional career.

iii

Summary

In 2019, Start Ålesund wanted a digital solution to perform their elections at their annual gen-

eral assembly, up until then all counting were done manually, which were prone to errors. In

the subject ID102012 - webteknologi, a Proof-of-Concept (PoC) was developed. The solution

worked during demonstration, but due to time constraint had many faults. Based on this PoC,

we have created a production ready system to perform digital elections.

The application is developed as a Single-page Application (SPA) running in conjunction with a

Node server that utilizes a combination of REST API and WebSockets for communication. The

project has been applying agile methodology principles by using the SCRUM framework.

The end result is a production-ready application, with a full CI/CD pipeline, hosted in a con-

tainerized network.

We have found that working with the agile methodology has enabled us to create a product

which can be enhanced incrementally. Working with modern JavaScript technology for a full

stack solution has proven sufficient for the task.

Contents

Acknowledgement . i

Preface . ii

Summary . iii

Acronyms . 2

Glossary . 4

1 Introductions 11

1.1 Background . 11

1.2 Problem Formulation . 11

1.3 Objectives . 12

1.4 Literature Survey . 12

1.5 Limitations . 13

1.6 Structure of the Report . 13

2 Theoretical Basis 14

2.1 Voting . 14

iv

CONTENTS v

2.1.1 Electoral System . 15

2.1.2 Elections . 16

2.1.3 Ballot . 16

2.1.4 Electronic voting algorithms . 16

2.1.5 Blockchain . 18

2.2 Security . 19

2.2.1 SQL Injection . 20

2.2.2 Cross Site Scripting . 20

2.2.3 Cross-origin Resource Sharing . 20

2.2.4 Brute Force Attacks . 21

2.3 Web Application . 21

2.3.1 Single Page App . 21

2.3.2 Progressive Web Application . 22

2.3.3 Universal Design for Web . 22

2.4 Design Patterns . 22

2.4.1 Singleton . 22

2.4.2 Module Pattern . 23

2.4.3 Observer pattern . 23

2.5 Client-Server Communication . 23

2.5.1 HTTP . 23

CONTENTS vi

2.5.2 REST API . 25

2.5.3 WebSocket . 26

2.5.4 Token . 26

2.6 Frameworks and Technologies . 27

2.6.1 JavaScript . 27

2.6.2 TypeScript . 27

2.6.3 HTML . 27

2.6.4 CSS . 28

2.6.5 SQL . 28

2.6.6 Runtime Environment . 28

2.6.7 Virtual Machines . 28

2.6.8 Third Party Libraries . 29

2.6.9 Localization . 29

2.7 Continuous Integration, Delivery, and Deployment 30

2.7.1 Continuous Integration . 30

2.7.2 Continuous Delivery . 30

2.7.3 Continuous Deployment . 30

2.8 Tests . 32

2.8.1 Unit Testing . 32

2.8.2 Integration Testing . 32

CONTENTS vii

2.8.3 Test-driven Development . 32

2.8.4 User Interface Testing . 32

2.8.5 Prototype Testing . 33

2.8.6 Usability Tests . 33

2.9 Software Project Methodologies . 35

2.9.1 The History of SCRUM . 36

2.9.2 The SCRUM Team . 36

2.9.3 Activities in SCRUM . 37

2.9.4 SCRUM Artifacts . 39

2.9.5 Estimating work . 40

2.10 Version Control and Code Management . 40

2.10.1 Version Control . 40

2.10.2 Semantic Versioning . 43

2.11 Development Environment . 43

2.11.1 Integrated development environment . 43

2.11.2 Source-code Editor . 43

2.11.3 Linter . 43

2.11.4 Code Formatter . 44

2.12 Graphical Design Principles . 44

2.12.1 Don Norman’s Design Principles of Interaction Design 44

CONTENTS viii

2.12.2 Mobile-first Approach . 45

3 Method 46

3.1 Organization . 46

3.1.1 Project Group . 46

3.1.2 Supervisor . 47

3.1.3 Former client . 47

3.2 Project planning . 47

3.2.1 Preliminary report . 47

3.2.2 Gantt Chart . 47

3.2.3 Risks . 48

3.2.4 Requirement Specification . 48

3.3 Project Methodology . 48

3.3.1 Roles . 48

3.3.2 Sprints . 49

3.3.3 Stand-ups . 49

3.3.4 Product Backlog . 50

3.3.5 Story Points . 50

3.4 Version Control and Code Management . 50

3.4.1 GitHub . 51

3.4.2 Issue Tracking . 51

CONTENTS ix

3.4.3 Pull Requests . 52

3.4.4 Labels . 52

3.4.5 Semantic Versioning . 52

3.5 Development Tools and Applications . 52

3.5.1 Visual Studio Code . 52

3.5.2 Nginx . 53

3.5.3 DataGrip . 53

3.5.4 Postman . 54

3.5.5 Adobe XD . 54

3.5.6 Adobe illustrator . 54

3.5.7 Visual paradigm . 54

3.5.8 Discord . 55

3.5.9 Overleaf . 55

3.5.10 Zotero . 55

3.5.11 Typora . 55

3.5.12 Docksify . 55

3.5.13 Framework and libraries . 56

3.5.14 Runtime Environments . 59

3.5.15 Docker . 60

3.5.16 Database . 60

CONTENTS x

3.5.17 Preprocessors and Transpilers . 60

3.6 Programming, Markup and Scripting Languages . 62

3.6.1 TypeScript and JavaScript . 62

3.6.2 HTML . 62

3.6.3 SCSS . 62

3.6.4 PostgreSQL . 63

3.6.5 Yaml . 63

3.6.6 JSON . 63

3.6.7 Markdown . 63

3.7 Quality Assurance . 64

3.7.1 Jest . 64

3.7.2 Prototype Testing . 64

3.7.3 Usability Testing . 64

3.7.4 Large-scale User Testing . 65

3.7.5 Unit Testing . 65

3.7.6 Integration Testing . 65

3.7.7 GitHub Actions . 65

3.7.8 ESLint and Prettier . 66

3.8 Environment . 66

3.9 Product Design . 67

CONTENTS xi

3.9.1 Wireframing . 67

3.9.2 UI Design . 67

3.9.3 Mobile-first . 67

3.9.4 Diagram and Model Documentation . 67

3.10 Hardware . 68

3.10.1 Personal Equipment . 68

3.10.2 Server . 68

4 Result 69

4.1 General results . 69

4.2 Use-Cases of the Application . 70

4.3 Functionality of the system . 71

4.3.1 Election Organizer . 71

4.3.2 Eligible Voter . 75

4.4 PWA . 77

4.5 Client-Server Communication . 77

4.5.1 Basic Communication . 78

4.5.2 Request to the REST API . 78

4.5.3 Real-time Communication . 79

4.5.4 Event Handling . 80

4.6 Developing a Voting System . 81

CONTENTS xii

4.6.1 Election Lifecycle . 81

4.6.2 Anomyzation with Algorithms . 82

4.6.3 Verifying Participants when Joining an Election 83

4.6.4 Socket Room Service and Initilizing WebSocket Channels 88

4.6.5 Creating the Election Room . 88

4.6.6 Initializing socket room . 91

4.6.7 Pushing a Ballot . 91

4.6.8 Vote Handling . 93

4.6.9 Validation of election organizer . 94

4.7 Frontend architecture and technologies . 96

4.7.1 React . 96

4.7.2 Ant Design as a React helper . 96

4.8 Backend architecture . 97

4.8.1 Node server . 97

4.8.2 Database . 98

4.8.3 TypeORM, Class-Transformer and Class-Validator 98

4.9 Using third-party library . 103

4.10 Localizing the application . 103

4.10.1 Providing meaningful error messages . 104

4.11 Continuous Integration and Delivery . 106

CONTENTS xiii

4.11.1 CI/CD process overview . 107

4.12 Environment files . 107

4.13 Tests and Quality Assurance . 109

4.13.1 Unit, UI and integration tests . 109

4.13.2 Usability testing . 110

4.13.3 Large-scale User Test . 110

4.13.4 Code formating and linting . 112

4.14 SCRUM . 112

4.14.1 Work estimation . 112

4.14.2 Distribution of work . 113

4.14.3 Sprint . 113

4.14.4 Stand ups . 113

4.15 Version control and code collaboration . 114

4.15.1 Git, GitFlow and GitHub . 114

4.15.2 GitHub Issues . 114

4.15.3 Pull Request . 115

4.15.4 Semantic versioning . 115

4.16 Project developed tools . 116

4.16.1 GitHub SCRUM chrome extension . 116

4.16.2 Environment setup . 117

CONTENTS xiv

4.16.3 Document generator . 119

4.16.4 Docsify sidebar generator . 120

4.17 Design . 121

4.17.1 Wireframing . 121

5 Discussion 125

5.1 General result . 125

5.2 Functionality . 126

5.2.1 Election . 126

5.2.2 Election Life cycle . 126

5.3 Voting Implementation . 127

5.3.1 Blockchain as an Election Mechanism . 128

5.4 Client-server communication . 129

5.5 Framework decision . 130

5.5.1 Database handling . 130

5.6 Third-party Library . 131

5.7 Localizing our application . 132

5.8 Code Style Aiding . 132

5.9 Version Control and Code Management . 133

5.9.1 Semantic versioning . 133

5.10 Self Developed Tools . 134

CONTENTS xv

5.10.1 GitHub Scrum Master . 134

5.10.2 Anovote CLI . 135

5.10.3 start-production script . 135

5.10.4 Document generator . 136

5.11 Testing . 136

5.11.1 Usability Tests . 137

5.11.2 Large-scale User Test . 137

5.12 Modifying the design . 138

5.13 SCRUM . 138

5.13.1 Work estimation . 139

5.13.2 Motivation, psychology, and team work . 140

5.13.3 Remote vs on-location work . 140

6 Conclusions 142

6.1 Problem solving . 142

6.2 Recommendations . 143

6.3 Our Contribution . 143

6.4 Further Work . 143

Appendices 145

A Wireframes and UI Design . 145

B UML Diagram . 145

CONTENTS xvi

C Requirement Specification . 145

D Large-scale user test & Usability test documents 145

A Wireframes and UI design 146

A.1 Voter wireframe . 146

A.2 Organizer wireframe . 147

A.3 UI design organizer panel . 148

A.4 Landing page wireframe . 149

A.5 Landing page design . 150

B UML diagrams 151

B.1 Sequence diagrams . 151

C Requirement Specification 155

A Voter features . 155

B Election administration panel features . 155

C Ballot features . 156

D Election features . 157

E System features . 157

D Test Documents 158

D.1 Usability Test Documents . 158

D.2 Large-scale User Test Document . 172

CONTENTS 1

Bibliography 177

Acronyms 2

Acronyms

API Application package interface. , 22, 23, 25, 57

CDel Continuous delivery. , 30, 106

CDep Continuous deployment.

CI Continuous Integration. , 30, 106, 133

CLI Command Line Interface. , 135

CORS Cross-origin resource sharing. , 20

CRA Create React App. , 56

CRUD Create Read Update Delete. , 71, 98

CSS Cascading Style Sheet. , 28, 62

DOM Document Object Model. , 64

DRY Don’t repeat yourself. , 62, Glossary: Don’t repeat yourself

ER Entity Relation. , 98

ERD Entity Relationship Diagrams. , 54

EVM Etherum virtual machine. , 19

GHA GitHub Actions. , 65, 106, 115, 135

GUI Graphical User Interface. , 44

HTML HyperText Markup Language. , 27, 62

Acronyms 3

HTTP Hyper-Text Transfer Protocol. , 23, 25, 57

HTTPS Hyper-Text Transfer Protocol Secure. , 25, 53, 82

ICT Information and Communications technology. , 22

IDE Integrated development environment. , 43

JS JavaScript. , 20, 21, 27

JWT JSON web token. , 58, 87, 88

NPM Node package manager. , 59

OOP Object-Oriented Programming. , 23, 27, 62

ORM Object-relation mapping. , 20, 28, 57

ORMD Object Relational Mapping Diagrams. , 54

PoC Proof-of-Concept. iii, 11

PR Pull Request. , 65, 106, 114

PWA Progressive web application. , 12, 22, 69, 77

SPA Single-page Application. iii, 21

SQL Structured query language. , 28

TCP Transmission control protocol. , 26

TLS Transport Layer Security. , 25, 53, 118

TS TypeScript. , 27

tsc TypeScript Compiler. , 61

UI User interface. , 53, 54, 64, 67, 138

Glossary 4

UML Unified Modeling Language. , 54, 67

UX User Experience. , 33

VoIP Voice over IP. , 55

Glossary

activity diagram diagram which is used to show how a system operate. , 54

agile Is a continuous development and testing of a software system process. , 5

backend Part of a software system that lies close to the data layer. , 57

backlog A list of work tasks which needs to be solved to reach a bigger strategic plan. , 36

ballot A series of candidates which can be chosen by a voter. , 56, 156

candidate One of several possible choices given during a ballot. , 14

docker container technology for lightweight isolated virtualization. , 117

Don’t repeat yourself A software principle to avoid code duplication. , 62

election A series of ballots, structured and organized by a election organizer. , 56, 157

election organizer A person or organization which can create, manage, and hold an election. ,

50, 71, 156

eligible voter A person that is eligible to vote in an particular election. , 50

framework a supporting structure around which something can be built. , 56

frontend Part of a software system that lies close to the user. , 57

GitHub Cloud service for GIT. , 30

Glossary 5

HTTP Polling A technique where a client asks a server for changes in data by sending regular

requests to retrive possible changes. This technique comes with additional overhead as

the server must handle the request no matter if there is any changes to the data or not

[120]. , 129

Minimum viable product A product state with the least amount of functionality to make the

product usable [49] . , 113

Object relation mapping Object–relational mapping (ORM, O/RM, and O/R mapping tool) in

computer science is a programming technique for converting data between incompatible

type systems using object-oriented programming languages[53]..

SCRUM Is an Agile process where the focus is to deliver business value in the shortest time.. ,

36

universal design idea to design the society in a way so that anybody can participate actively,

regardless of functional activity. , 22

use case diagram Diagram which shows a system from the user point of view.

user interface design of what is shown to the user. , 67

vote A complete and user chosen list of candidate(s) belonging to a ballot.

voter A person which can participate in an election. , 155, 157

websocket a data communication protocol which allows simultaneous communication chan-

nels in both directions over a TCP-connection.

Windows Subsystem for Linux WSL is a compatibility layer enabling Linux commands to be

ran inside Windows 10 [97]. , 68

wireframe used to establish a structure of a page before visual elements and content is added.

, 67

List of Figures

2.1 CI/CD Pipeline. Image downloaded from: https://miro.medium.com/max/4000/

1*TNJ7Rpr5G1OJHtKH-IBEFw.png . 31

2.2 Usability Test Flow [Illustration] by Norman Nielsen Group. Image downloaded

from https://media.nngroup.com/media/editor/2019/11/11/usabilitytesting101_

final6-copy.png . 34

2.3 An illustration of all phases in SCRUM. Illustration is downloaded from[72] 38

2.4 GitFlow release cycle. Image taken from: https://leanpub.com/site_images/

git-flow/git-workflow-release-cycle-3release.png 42

4.1 Use-case diagram of the system . 70

4.2 The "Create election" page with ballots . 72

4.3 The "Create ballot" modal with candidates . 73

4.4 The elections view displays all the elections an organizer has created 74

4.5 An election in progress with the end election confirmation dialog 75

6

https://miro.medium.com/max/4000/1*TNJ7Rpr5G1OJHtKH-IBEFw.png
https://miro.medium.com/max/4000/1*TNJ7Rpr5G1OJHtKH-IBEFw.png
https://media.nngroup.com/media/editor/2019/11/11/usabilitytesting101_final6-copy.png
https://media.nngroup.com/media/editor/2019/11/11/usabilitytesting101_final6-copy.png
https://leanpub.com/site_images/git-flow/git-workflow-release-cycle-3release.png
https://leanpub.com/site_images/git-flow/git-workflow-release-cycle-3release.png

LIST OF FIGURES 7

4.6 Information shown to a voter when joining an election. From the top left, (1) the

voter is accepted to the election, waiting to be verified, (2) verification happening,

(3) upgrading the current window, (4) could not join because of missing verifica-

tion code, (5) waiting for a ballot, (6) the election is closed, (7) election does not

exist, and (8) verification code is invalid . 76

4.7 Voting screen where a voter has the possibility to vote on a specific candidate. . . . 77

4.8 Network and communication infrastructure diagram 78

4.9 Simple illustration of join and verify . 84

4.10 The join-election page. A voter needs to provide his/her email and an election

code to join . 84

4.11 Panel for an election in progress. From here, the election organizer can push the

selected ballot. 91

4.12 Simple voting sequence . 93

4.13 Container architecture . 97

4.14 Entity relation diagram . 98

4.15 Continuous integration routine for development . 108

4.16 Continuous delivery routine for new releases . 109

4.17 Autogenerated release . 115

4.18 Scrum master work board preview . 117

4.19 Scrum master issue/pull request preview . 118

4.20 Generated sprint documets . 120

4.21 Generated meeting documents . 121

LIST OF FIGURES 8

4.22 Output from navigation generation . 121

4.23 The main flow for a voter, designed with wireframes. 122

4.24 Variants proposed for choosing how candidates should be displayed. "Row de-

sign" to the left. 123

4.25 All cases of displaying information of the ballot . 123

4.26 Wireframes of all use cases for the organizer . 124

A.1 All cases of displaying information of the ballot . 146

A.2 Wireframes of all use cases for the organizer . 147

A.3 UI design for Anovote organizer panel . 148

A.4 Wireframes for landing and about page . 149

A.5 Landing page design for https://anovote.app . 150

B.1 Join and verification sequence diagram . 153

B.2 Vote sequence diagram . 154

https://anovote.app

List of Listings

4.1 The event handler implemented on frontend . 80

4.2 Showcase of acknowledgement on the backend. This event will be acknowledged

with a NotFoundError . 81

4.3 Example verification URL . 86

4.4 Code snippet to initialize an socket room entity in ElectionService.ts 89

4.5 Creation of socket room for election . 90

4.6 Push ballot logic from pushBallot.ts . 92

4.7 Event registration for submission of votes . 93

4.8 Error handling for vote submission . 94

4.9 Simplified version of verifyToken method . 95

4.10 Example definition of typeORM entity. The code does not include all fields and

annotations . 99

4.11 Querying information with typeORM . 100

4.12 Definition of validation constraint for a unique election organizer 101

4.13 A field with both custom and predefined restriction annotations 101

4.14 Example of how we have stripped data that does not need to be exposed by API . . 102

4.15 Class-transformer decorators used in election organizer 102

4.16 A localized string in home/index.ts . 103

4.17 Full ErrorCodeResolver-class implementation . 105

4.18 Starting of development environment . 117

4.19 Re-building of development environment . 118

4.20 Start and build production with certificates . 118

9

LIST OF LISTINGS 10

4.21 Start and build production . 119

4.22 Restart production . 119

4.23 Generate documents for sprint . 120

4.24 Generate documents for meetings . 120

Chapter 1

Introduction

This chapter will introduce the background and problem formulation for this project. It will

present the objectives for this thesis, and later share how we have structured this report.

1.1 Background

In 2019, Start Ålesund wanted a digital solution to perform their elections at their annual gen-

eral assembly. Up until then the counting and registration of votes were done manually, which

was prone to errors, and time and labour intensive. As a part of the thesis in the subject Webte-

knologi - ID102012, a PoC was developed. The solution worked during the demonstration, how-

ever, due to time limitations, the prototype had faults and missing functionality. This PoC gave

a foundation for the project that we have chosen as our bachelor thesis.

1.2 Problem Formulation

Arranging an election requires the organizer(s) to print ballots, collect and count votes, and

present the result. Doing these tasks analogue can be time consuming, labor intensive and

prone to errors. It often requires repetitive tasks to be preformed by personnel. All these pro-

11

CHAPTER 1. INTRODUCTIONS 12

cesses can be simplified and enhanced by digitization. Our thesis aims to develop a digital vot-

ing solution that makes the process of holding an election easier, guaranteeing the integrity of

votes and securing the anonymity of the voters.

1.3 Objectives

The objectives are as follows:

• Deliver a website for anonymous voting which support Progressive web application (PWA)

• The product satisfies the requirements for universal design.

• Develop and deploy a server and database architecture to support the application.

• An election organizer shall be able to create and organize an election

• An election organizer shall be able to add eligible voters

• Ballots could be received only by eligible voters

• Election organizers should be able to manage elections in real-time.

• Votes can be only be cast by eligible voters.

• A eligible voter should only be allowed to vote once

• Deliver a solution that is easy to maintain and is well documented.

1.4 Literature Survey

There has been done an extensive amount of research regarding electronic voting, voting schemas,

algorithms and protocols. The International Association for Cryptologic Research (IACR) has

made a list of all cryptography related articles dating from 1996 up until now [19]. This list con-

sists of over 100 articles with the word "voting" in the title and over 240 articles with the word

CHAPTER 1. INTRODUCTIONS 13

"anonymous". We have simply not been able to read through all these articles. We have focused

our attention on articles published within the last 5 years.

1.5 Limitations

Some limiting factors for this project is time constraints and the ongoing COVID-19 pandemic.

The first and main limitation is time, as there is a great number of features to be implemented.

The second limitation is the COVID-19 pandemic. The pandemic has forced the team to work

in different environment and has made it harder to perform usability tests.

1.6 Structure of the Report

The rest of the report is structured as follows.

Chapter 2 - Theoretical basis: Describes the theoretical basis needed for this thesis

Chapter 3 - Method: Contains a description of the methodology and materials that are nec-

essary for this project.

Chapter 4 - Result: Delivers the result from this thesis.

Chapter 5 - Discussion: Contains a discussion of the results we collected, an why we got them.

This chapter will also describe some of our mistakes, and things we would have done differently.

Chapter 6 - Conclusions: This chapter will conclude the findings in this thesis.

Chapter 2

Theoretical Basis

This chapter will present the theoretical basis for this project.

2.1 Voting

Voting is a method for a group, meeting, or electorate (2.1.2) to make a collective decision or

express an opinion [85]. Voting can occur in different ways, but it usually involves filling out

a ballot (2.1.3) and casting the ballot via a voting system. There exist different voting methods

[85]:

• Paper-based methods - Voters fill out their own selections/preferences on paper ballots.

Either on a preprinted ballot or if possible, write out the name of their candidate (see

2.1.3).

• Machine voting - Electronic machines a voter can cast their vote with [86]

• Online voting - Voting performed via internet

• Postal voting - Voters are sent a ballot, which they can fill out and return by post

• Open ballot - Public voting. A method in which voters vote openly [55].

14

CHAPTER 2. THEORETICAL BASIS 15

• In person - Votes can be carried in person if all eligible voters are present.

2.1.1 Electoral System

An electoral system or voting system is a set of methods and rules that determines how elections

are organized and results calculated. When organizing political systems, governments are the

organizers. Non-political elections may be organized by businesses, non-profit organizations,

or informal organizations [29]. The rules for an electoral system regard when elections occur,

who can stand as candidates, who is eligible to vote and how the vote can be cast, how the vote

translates into an outcome, and other factors that can affect the result.

The electoral systems currently in use in representative democracies can be divided into two

basic kinds [30]:

A Majoritarian Systems - In a majoritarian election, the candidate that attract the majority of

most votes wins.

B Proportional Representation Systems (PR Systems) - The proportional Representation sys-

tem are designed to allocate seats in proportion to the votes. The goal of using this system

is to reflect the preference of the electorate. PR systems are not the most frequently used

electoral systems in western democracies [30].

2.1.1.1 Plurality System

The simplest type of electoral system is the plurality system. Plurality voting is a system in which

the candidate(s) with the highest number of votes wins and no majority is required. Plurality

system is mostly known and referred to as first-past-the-post [29].

CHAPTER 2. THEORETICAL BASIS 16

2.1.2 Elections

An election is a formal collective decision process for a population to select a person for a role or

responsibility. Elections can also be in the form of accepting or rejecting a political proposition

by voting [28]. An election can have the following characteristics [27]:

• Suffrage - The question of who may vote from the entire population.

• Electorate - Eligible voters for an election

• Nomination of candidate - A representative democracy requires nomination for a polit-

ical office that is governed and very often mediated through a preselection processes by

organized political parties.

• Electoral system - The system that converts a vote into a political decision. The primary

goal is to tally the votes. Then determine the result on the basis of the tally.

• Scheduling - Fixed interval between elections for the elected to return to their voters and

seek their mandate to continue in office.

2.1.3 Ballot

A ballot is an action or system of secret voting [22]. Each voter uses one ballot. In the simplest

elections, a ballot can be a sheet of paper. The ballot should deliver which candidate the voter

wants to vote on [8]. Usually governmental elections have the ballots preprinted, otherwise the

voter must fill out the desired candidate itself.

2.1.4 Electronic voting algorithms

Sfîrnaciuc, Vasilescu and Simion [109] describes the following characteristics of an electronic

voting system:

CHAPTER 2. THEORETICAL BASIS 17

• Eligibility - just legitimate voters can vote and only be able to vote once

• Fairness - results should not be published early to avoid influencing the remaining voters

• Vote-Privacy - ballots and all events during the voting process should remain secret

• Receipt-freeness - a voter does not gain any information (receipt) which can be used to

prove to a coercer that she/he voted in a certain way.

• Coercion-resistance - a voter cannot cooperate with a coercer to prove to him that she

voted in a certain way

• Integrity of the vote - both voter verification; “I can check that my vote was submitted

correctly” and public verification; “anyone can check that all recorded votes were counted

correctly”

• Correctness of counting - the final tally should be an accurate count of the ballots that

have been cast.

Different voting schemes have been proposed to comply with these characteristics. Mix nets,

blind signatures, cryptographic counters, and central authority-based protocols are just a few

examples. As described by Haines and Roenne [114], even the simplest of the algorithms are

prone to bugs, and any attempts at implementation are prone to security vulnerabilities. Having

time to implement and test the proposed solutions is therefor a technical, difficult and time-

consuming task [114, 115].

2.1.4.1 Mix Nets as an Example of Electronic Voting Algorithms

In this algorithm, each voter encrypts their vote with a public key given by a decryption authority

connected to the voting system. Only the decryption authority is able to decrypt the votes. The

votes are then given to an organization that mixes all votes, often called a mixing authority. The

purpose of mixing is to avoid the votes being traceable. The mixed votes and verification can

then be passed to a sequence of additional mixers for added security. At the end of the mixing

stage, the votes are passed back to the decryption authority to be decrypted and tallied [18].

CHAPTER 2. THEORETICAL BASIS 18

This approach only needs one mixing authority to be trusted to work. Finding organizations

that have the technical insight and resources to have appropriate uptime can be a demanding

task [123].

2.1.5 Blockchain

Blockchain is a decentralized shared memory network that consists of a linked list of records.

The records are what defines the blocks, and the linked list combining the records creates the

chain [11]. Transactions in the network trigger the creation of new blocks, where every computer

in the network are used to validate and agree upon the transaction before it is permanently

stored on the chain.

Blockchains require a consensus mechanism to perform the distributed agreement process.

Proof-of-work is the most adopted consensus algorithm [104]. The proof-of-work consensus

algorithm enforces any one to add new blocks to solve a computation heavy puzzle. This com-

putational task is what is called mining, and by solving the puzzle, the node has proven it has

spent the computational resources required to add a new block. Solved puzzle are rewarded

with cryptocurrency.

Cryptocurrency is a digital asset persisted in the blockchain. The currency is a decentralized dig-

ital asset which fuels the blockchain. The currency is only created through the consensus mech-

anism and is not created by any central authority [17]. The currency can be transferred inside

the network to other nodes, at the cost of a network fee. Bitcoin is the most known blockchain,

and the currency is also called Bitcoin.

Each block in the chain consists of a timestamp, transaction data and a cryptographic hash from

the previous block [10]. Blockchain is created in such a way that data modification is almost

impossible, as all subsequent blocks in the chain have to be modified [11]. All transaction data

in the chain is publicly available.

CHAPTER 2. THEORETICAL BASIS 19

2.1.5.1 Etherum

Etherum is a blockchain implementation that also contains a virtual machine. The virtual ma-

chine is called Etherum virtual machine (EVM) and is capable of executing arbitrary computa-

tion. Each node in the Etherum network holds a copy of the EVM state. Any node of the network

can broadcast a request to execute a computation on the EVM. The state update of the machine

is done through the proof-of-work consensus mechanism [42].

2.1.5.2 Etherum Smart Contracts

Etherum smart contracts are programs uploaded on the Etherum blockchain. Smart contracts

are the building blocks of the evm, and any one can upload them to the network. Smart con-

tracts is publicly available once uploaded, and procedures can be called on it when it is submit-

ted on the network. A fee has to be paid to the network to execute and upload smart contracts

[42].

2.1.5.3 DApps

DApps are decentralized application that has no central place of execution or authority. DApps

can be created on the etherum blockchain using smart contracts. Applications created on the

blockchain are accessible by every one [44].

2.2 Security

A fullstack software solution is vulnerable to several security exploits and attacks. We will de-

scribe some of them below.

CHAPTER 2. THEORETICAL BASIS 20

2.2.1 SQL Injection

SQL injection is the most common attack on the internet [119]. It is done by exploiting weak-

nesses in SQL statements to gain access to SQL databases. The attack is easily prevented with

prepared SQL statements. Prepared SQL statement is a technique where variables in the SQL

statements are not passed in directly but are parsed first. Prepared statements are easy to under-

stand, fast to write, and make the SQL database run faster than regular SQL expressions when

using the same statement for different values in a query [121, 71]. Many ORM’s use prepared

statements by default when interacting with the database.

2.2.2 Cross Site Scripting

Cross site scripting is one of the most common attacks on the internet. It can occur if a mali-

cious user is able to insert JavaScript into a form and upload it to the server, without validation

or encoding happening first. The uploaded JavaScript can then be executed if the content is

displayed on the HTML page without sanitizing the content first [16].

2.2.3 Cross-origin Resource Sharing

Cross-origin resource sharing (CORS) is a browser implemented security feature, where a web-

site is by default not allowed to make requests to resources other than its origin. E.g., a website at

domain-a.com cannot make a request to domain-b.com. This can be bypassed if domain-b.com

adds a HTTP header specifying which websites are allowed to get content. This is implemented

to protect the server from malicious third-party websites being able to access content and func-

tionality which they are not suppose to [15].

CHAPTER 2. THEORETICAL BASIS 21

2.2.4 Brute Force Attacks

Brute fore attacks is an act of performing trial and error attacks on login credentials, routes or

security keys. This is done by issuing attacks with every possible combinations. A login form

may be brute forced by inserting a known username, and programmatically submitting the form

with a new password combination until it succeeds [138, 107].

2.3 Web Application

Web applications are software that runs on a web server. From the web server, a client device can

access the software by requesting content from the server. A web browser is used for requesting

content from the server and displaying it. Therefore, a web application can be reached from

any device with an active network connection [87]. In this section, web application theory is

discussed in detail.

2.3.1 Single Page App

A Single-page Application (SPA) is a form of a Web application that loads all the content it needs

from a single web document load, i.e. the document is never reloaded and control is never

passed between documents. To enable a single document to stay in control, while still allowing

users to navigate with URLs, the SPA handles navigation between pages. Any state and other

web application patterns is also handled by the SPA to give the user a functional and dynamic

web page [69]. The most common approach for adopting SPA principles are using JavaScript

frameworks. The most used frameworks are [73]:

• React.js

• Vue.js

• AngularJS

CHAPTER 2. THEORETICAL BASIS 22

2.3.2 Progressive Web Application

Progressive web application (PWA) are web applications that use modern web browser API’s and

features to create a native app-like experience to web applications. Progressive web application

are a useful design pattern for the web, and allow web developers to easily create an app-like

experience for all devices without developing native applications for a specific device [60].

2.3.3 Universal Design for Web

Universal design is the design of buildings, products, or environments to make them accessible

to all people. Regardless of age, disability, or other factors [80]. Universal design is required by

regulations on universal design of ICT-solutions. Internet solutions must be designed in accor-

dance with the success criteria in "Guidelines for accessible web content (WCAG)" [68, 32].

Universal design for web pages ensures a good, simple and accessible solutions for users with

disabilities, promoting equal democratic rights, access to information and opportunity for ev-

eryone.

2.4 Design Patterns

Design patterns are established best practices for solving certain tasks in software development.

We will describe some relevant patterns for this project.

2.4.1 Singleton

The singleton pattern is a creational design pattern, where you ensure that an object only has

one instance and provides a global access point to the one instance. The singleton pattern aims

to ensure that there is only one instance of an object, this is usually to control who has access to

a shared resource. The singleton pattern also aims to have a global access point to the instance

CHAPTER 2. THEORETICAL BASIS 23

that controls a resource, this is because it is very handy to be able to access the resource safely

from everywhere in a system [74].

2.4.2 Module Pattern

The module pattern is defined as a way to both private and public encapsulation for classes. The

goal of the pattern is to provide a wrapper for both public and private methods and variables,

and protect these from leaking into the global scope. When using the module pattern, only a

API is returned for the encapsulation, keeping everything private [50]. The module pattern is

used as a key principal in Object-Oriented Programming.

2.4.3 Observer pattern

The observer pattern is a behavioral pattern, which facilitates for passing events in an applica-

tion. The pattern aims to avoid unnecessary work by providing subscribers the ability to sub-

scribe to a publisher. The subscriber will silently wait for and message from the publisher and

then act accordingly. The publisher does not need to know anything about the subscribers other

than that they want to receive notice when an event is fired. [54] [113].

2.5 Client-Server Communication

To make the client/server communication possible, some form of transmission protocol has to

be established. Some relevant protocols will be discussed here.

2.5.1 HTTP

HTTP is a request/response protocol that requires a client to send a request for a document to

a server which will reply with data as a response, usually in the form of a document. HTTP is a

CHAPTER 2. THEORETICAL BASIS 24

stateless protocol [38, 122], thus the server is not required to hold any status or information of

any client during the duration of a request[39].

The protocol has a set of request methods that indicates what action the server should take on

the request. Common methods are:

• GET - Used to retrieve a resource from the server and should not have any side effects.

• POST - Used to upload or insert a new resource to the server.

• PUT - Used to update an existing resource, or create it if do not exist

• PATCH - Used to partially modify an existing resource.

• DELETE - Used to delete a resource.

The server response message contains information about the request. A response is required to

have the following fields:

• Status code and reason

Describes the result of a request. A status code of 400 BAD REQUEST would imply that the

client sent a request for a valid resource, but invalid or malformed data. A "200 OK" status

code would imply that the request was successful.

• Response headers

Headers are additional information of the response. The required fields are Content-type

and length of the response. Content type tells the client what type of resource the server

has returned (examples: text/html, application/JSON, application/xml) Length is the total

size of the content body

• Optional message body

The message body is optional, but required if the server returns a resource to the client.

CHAPTER 2. THEORETICAL BASIS 25

2.5.1.1 HTTPS

HTTPS is an extension of the HTTP protocol by including security. It protects the communi-

cation between client and server, which ensures integrity and confidentiality. Transport Layer

Security (TLS) is used as the protocol used in HTTPS and provides encryption, data integrity,

and authentication[76].

2.5.2 REST API

A REST API, also known as RESTful, is an API that adheres to a set of defined constraints. For an

API to be RESTful, it must satisfy all constraints[94]. The definition of a REST API is:

• Client-Server

Messaging exchange must be a client/server architecture.

• Stateless

All client requests must contain the required information for the server to understand the

request.

• Cacheable

Resources returned from the server must specify the cachability of the resource.

• Uniform interface

The API should follow the principles of generality and provide a uniform interface.

– Resources must be identifiable in the request - A HTTP REST API can use a URI to

identify a resource.

– Must provide an interface for manipulating resources - In HTTP, a HTTP method with

a URI can be used to describe the action.

– The messages must be self-descriptive - MIME types can be used to describe the type

of resource

CHAPTER 2. THEORETICAL BASIS 26

• Layered

REST allows the system architecture to be layered. The API interface can be deployed on

one server and storage on another. [62]

2.5.3 WebSocket

WebSocket is a communication protocol, which enables two-way communication over a single

TCP connection. WebSockets is compatible with the HTTP protocol, which means that it works

on ports 80 and 443. WebSockets can be used for interaction between two computer systems in

real-time and provide less overhead than HTTP polling, by preventing asking the server for new

data. WebSockets achieve this by having a standardized way for the server to send data to the

client without the data being requested, and keeping the connection between the server and the

client open [88].

2.5.4 Token

Since HTTP is a stateless protocol, the client needs to verify its identity on each request. This

can be done by using tokens. A token is an object which represents the right to perform some

action in a computer system.

Access token An access token is a token that contains the security credentials for a user, which

is used by the computer system to keep track of who and which part of the computer system the

user has access to [2].

CHAPTER 2. THEORETICAL BASIS 27

2.6 Frameworks and Technologies

2.6.1 JavaScript

JavaScript (JS) is a high-level programming language that is used as a core technology for the

World Wide Web. JavaScript is mainly used for client-side web page functionality, where it is

popular to incorporate third party libraries. JavaScript uses the ECMAScript specification and

most modern browsers have a dedicated JavaScript engine to execute the code in the user’s de-

vice [46].

JavaScript is a dynamically typed language, meaning a variable can change datatype during run-

time. Both Object-Oriented Programming (OOP) and functional programming is supported by

JavaScript

2.6.2 TypeScript

TypeScript (TS) is a super set of JavaScript that adds support for static type definitions. The type

definitions are only for development and are removed when the code is transpiled. TypeScript

code is transformed into JavaScript via a transpiler, which transforms the TypeScript code into

JavaScript, which is what browsers understands [77].

2.6.3 HTML

HyperText Markup Language (HTML) is a markup language used to define the semantics of a

web document and is supported by all modern internet browsers. HTML has a range of tags

along with attributes that define the semantics of a web page. HTML tags and specific attributes

can be interpreted by screen readers to present the structure of the website [128].

CHAPTER 2. THEORETICAL BASIS 28

2.6.4 CSS

Cascading Style Sheet (CSS) is used to create visual modifications to a HTML page in the form

of styling. Together with JavaScript and HTML it forms the backbone of the World Wide Web.

2.6.5 SQL

Structured query language (SQL) is a programming language used for designing and maintain-

ing data held in an database management system. SQL is especially powerful in regard to han-

dling relational data [70, 106].

2.6.5.1 ORM

Object-relation mapping (ORM) is a technique for converting data between incompatible sys-

tems by using object-oriented programming languages. In an ORM, a "virtual object database"

is created, which can be accessed directly by the object-oriented programming language [52].

2.6.6 Runtime Environment

A runtime environment is where the code of a program is being executed, and when the code is

being executed, it is in a runtime state. In the runtime state, the code can send instructions to

the CPU and access the computers memory and storage [63].

2.6.7 Virtual Machines

Virtual machine is the technique of virtualization or emulating of a computer system. Virtual

machines provide the functionality to run multiple operating systems simultaneously on a phys-

ical machine. This reduces the need of running multiple machines to provide multiple systems.

Virtual machines shares the resources of their host machine on which they run [83, 134].

CHAPTER 2. THEORETICAL BASIS 29

2.6.8 Third Party Libraries

Third party libraries are used in almost all software projects. According to Papadopoulos [130]

there are some great pro’s to use third party libraries, but there are also some drawbacks that

one needs to be aware of.

The main reason to use third party libraries is to utilize pretested and modular code, and to

avoid reinventing the wheel. Others might already have solved the problem that you are facing.

If the solution is already available and thoroughly tested, there is no need to do it all over again.

Modular code makes it less coupled and easier to reuse.

According to Papadopoulos, the main drawbacks are dependency, risk of lacking support, de-

pendency conflicts, and security issues. When using software that someone else wrote, the

product becomes dependent on that software. If this software is not maintained, the software

might not be able to run on new hardware or operating systems.

Using many different third party libraries might also cause conflicts between libraries, resulting

in bugs that might be hard to resolve.

Any software, including third party libraries, are vulnerable to security issues. To mitigate this

problem one have to choose libraries with care.

2.6.9 Localization

Localization (or language localization) is a process of adapting a translation to a specific country

or region. Localization is most used in the adaption of translation in websites, video games and

technical communication [100].

CHAPTER 2. THEORETICAL BASIS 30

2.7 Continuous Integration, Delivery, and Deployment

To have software projects that have consistent code quality, fewer errors, and an automatic re-

lease system. Some common practices/philosophies in the software industry can be integrated

in the development workflow to perform these actions automatically.

2.7.1 Continuous Integration

Continuous integration is an automated process that performs building and testing of software.

It is a software development practice integrated into the workflow of a software project to con-

tinuously verify the code. The automated setup runs, tests, and builds the software continuously

as developers submit code into a central repository, like GitHub. CI helps to detect bugs, main-

tain code quality, and validate the software throughout the project [92].

2.7.2 Continuous Delivery

Continuous delivery prepare the software project for release deployment. The currently sub-

mitted code for the project is deployed to a testing/staging environment before it is deployed

to production. Deployment to production is a manual approval process. CDel extends CI by

also performing load and integration testing, as well as UI testing. The goal is to always have a

production ready release candidate[91].

2.7.3 Continuous Deployment

Continuous deployment is similar to continuously delivery except that the release to production

is also automated.

CHAPTER 2. THEORETICAL BASIS 31

Figure 2.1: CI/CD Pipeline. Image downloaded from:
https://miro.medium.com/max/4000/1*TNJ7Rpr5G1OJHtKH-IBEFw.png

https://miro.medium.com/max/4000/1*TNJ7Rpr5G1OJHtKH-IBEFw.png

CHAPTER 2. THEORETICAL BASIS 32

2.8 Tests

When doing engineering projects, tests are used to verify that the result will perform as expected.

In software projects, tests can be classified into different subclasses, each with their unique fea-

tures and use cases. We will describe some of the different types of tests. We will also briefly

discuss a development methodology used in software projects that utilizes the potential in tests.

2.8.1 Unit Testing

Unit testing are tests performed on a specific unit. A unit is a function of a class or a stand-alone

function. Unit testing ensures that a procedure outputs the desired results for a given input or

handles false/wrong values without crashing.

2.8.2 Integration Testing

Integration tests are tests that test the implementation of software modules as a whole. Integra-

tion test has the purpose of ensuring that multiple modules interact with desired results [99].

2.8.3 Test-driven Development

Test-driven development is a method of writing software where tests are written before the im-

plementation. Implementation should only be written once the test is covering the expected

behavior of the implementation [45].

2.8.4 User Interface Testing

User interface testing are tests that test the visual presentation of an application. The tests en-

sure that the UI reacts or displays the information or components that it is supposed to do for a

given action.

CHAPTER 2. THEORETICAL BASIS 33

2.8.5 Prototype Testing

Prototype testing is a test method to analyze the prototype’s quality, features, and other compo-

nents. A prototype test should occur before a release or further development, so the team can

determine the quality or get feedback. The feedback gathered from these sessions will point out

deviance’s in the product or software being tested [61]. Prototype testing can be performed at all

stages of a product development, from wireframes, to design or new release. Prototype testing

is a form of usability testing.

2.8.6 Usability Tests

Usability testing is a UX research methodology. The goal of usability testing is to identity prob-

lems in the design of a product or service, uncover opportunities to improve or learn about the

target user’s behaviour and preferences.

In a usability testing session, a researcher (called a “facilitator” or a “moderator”)

asks a participant to perform tasks, usually using one or more specific user inter-

faces. While the participant completes each task, the researcher observes the par-

ticipant’s behavior and listens for feedback [111].

Facilitator The facilitator or moderator administrates the usability test and tasks for the partic-

ipant. As the participants are performing the tasks, the facilitator observers the behavior of the

participant and listens for feedback. The facilitator should ensure the test result is high-quality,

valid data, without accidentally influencing the participant[111].

Participant The participant of a usability test should be a realistic user of the product or ser-

vice being studied. The participant might also have a similar background to the target user

group, or might have the same needs. The participants are encouraged to think out loud dur-

ing the testing. The goal of this approach is to understand the participants behaviors, goals,

CHAPTER 2. THEORETICAL BASIS 34

Figure 2.2: Usability Test Flow [Illustration] by Norman Nielsen Group. Image downloaded
from https://media.nngroup.com/media/editor/2019/11/11/usabilitytesting101_
final6-copy.png

thoughts, and motivations [111].

2.8.6.1 Tasks

The tasks in a usability test program should be very specific and something a realistic user of

the product often will perform or more open for the user to explore. Defining which elements

to test for by importance and prioritization can be done by using the 7 steps model [110]:

1. Determine the most important user tasks.

https://media.nngroup.com/media/editor/2019/11/11/usabilitytesting101_final6-copy.png
https://media.nngroup.com/media/editor/2019/11/11/usabilitytesting101_final6-copy.png

CHAPTER 2. THEORETICAL BASIS 35

2. Discover which system aspects are of most concern

3. Group items from 1 & 2, then sort issues by importance to users and organiza-

tion.

4. For each top issue, condense the information into a problem statement.

5. For each problem statement, list research goals.

6. For each research goal, list participant activities and behaviors.

7. For each group of goals, write user scenarios.

2.8.6.2 Qualitative vs. Quantitative

Usability testing can be either qualitative or quantitative. Qualitative testing is best for discover-

ing problems in the user experience. Quantitative testing is preferred for collecting benchmarks.

2.8.6.3 Feedback

Information collected during a usability test session is called feedback. The information is ex-

pressed by the participant when interacting with the product or solution and is highly valuable.

The two most valuable parts of feedback regard the understanding of why a participant thinks,

does, or misunderstands the task of interacting with the product. Another feedback can be from

observing what a participant is doing in real time [129].

2.9 Software Project Methodologies

Software projects are often organized differently than other engineering projects. One of the

main methodologies of today to organize a software project is SCRUM.

CHAPTER 2. THEORETICAL BASIS 36

2.9.1 The History of SCRUM

SCRUM and the agile methodology started to surface in the late 80’s and early 90’s, as a reaction

to the way software project was organized at the time [136]. Projects would usually follow the

waterfall approach, which tried to identify all problems and solutions in the early stage of the

project. By the end of the project, the solution would be delivered as its entirety [125].

This approach had some serious drawbacks. Making the necessary documents to comply with

the waterfall model would often take a lot of time. Meanwhile, the needs of the client could have

changed, resulting in documentation being outdated even before any actual software develop-

ment had started.

SCRUM tries to solve these drawbacks by restructuring the way a project is developed. This

is done by clearly redefining and structuring how teams should work. Responsibility is split

between roles, work is organized in predefined activities, and meetings, and teams are given

tools in form of artefacts to aid the process of delivering an incremental product to the customer

or client [133].

2.9.2 The SCRUM Team

SCRUM consists of a SCRUM team. The recommended size of the team has changed over the

years and the recommended size today is between three and ten people [124]. The SCRUM team

is divided into clearly defined roles, each with their own responsibilities.

2.9.2.1 Product Owner

The Product owner is responsible for the product backlog. The work of the Product owner may

be delighted, but the responsibility remains with the Product owner. The product owner is one

person and can not be a committee [133].

CHAPTER 2. THEORETICAL BASIS 37

2.9.2.2 Development Team

The development team consists of everyone that contributes to resolving sprint tasks. The de-

velopment team decides on how to split up tasks and organize them to deliver the product. The

team should not be subdivided and tasks should be split among all members. Even though some

members might have special skills, the responsibility of fulfilling tasks lies within the team as a

whole [133].

2.9.2.3 SCRUM Master

The SCRUM master is responsible for promoting and supporting the scrum process. This is

done by informing everybody, both the team and within the organization about the SCRUM

process and ensuring that the team complies with SCRUM values and ideology. The SCRUM

master also helps the team follow the practices and processes that they have agreed on [95].

2.9.3 Activities in SCRUM

2.9.3.1 Sprint

Sprints are the period where the development team conducts their work. In this period of time, a

sprint goal should be set and a subset of issues from the backlog is added to the sprint backlog.

Additional work should not be added during a sprint and the quality of the goals should not

decrease. The scope may be clarified and renegotiated between the Product Owner and the

development team as new insight is gained. According to the Scrum Guide 2017 [133], sprints

should have a duration limit of no more than four weeks.

2.9.3.2 Stand-up

Stand-ups is a daily routine in SCRUM. The goal is for the teams to inform each other about the

progress of the sprint and possible uncertainties or hinders that might block or otherwise slow

CHAPTER 2. THEORETICAL BASIS 38

Figure 2.3: An illustration of all phases in SCRUM. Illustration is downloaded from[72]

down progress. The time frame for the stand-up should be no more than 15 minutes and is only

an informative meeting. Findings during the meeting might lead to new meetings where parts

of the team can discuss and solve the problems disclosed during the stand-up.

2.9.3.3 Sprint Planning

Sprint planning is the process of finding out what can be delivered within the upcoming sprint

and what work needs to be delivered for the goal to be achieved. The planning is performed

by the entire scrum team. The planning is time boxed. A sprint of four-week time span should

not use more than eight hours for planning. Shorter sprints should have a smaller time box for

planing.

2.9.3.4 Sprint Review

During the sprint review, the team inspects what has been done to increment the product since

the last sprint review. The product backlog can be adapted to the findings during this meeting.

The sprint review is supposed to be an informative meeting and not a status meeting.

CHAPTER 2. THEORETICAL BASIS 39

2.9.3.5 Sprint Retrospective

The Retrospective is a chance for the scrum team to inspect itself and find possible improve-

ments that can be done to further elevate the team. The team discusses the actions and behav-

ior that has helped the team, and what has contradicted or decreased the team effort. Findings

can be concluded into actions that the team can plan to implement or focus on. The purpose of

the Sprint Retrospective is to: [133]

• Inspect how the last Sprint went regarding people, relationships, process, and tools;

• Identify and order the major items that went well and potential improvements; and,

• Create a plan for implementing improvements to the way the Scrum Team does its work.

2.9.4 SCRUM Artifacts

Scrum consists of several artifacts. Artifacts are concepts and tools that aim to guide the SCRUM

team in reaching their goals. Below we discuss some relevant artifacts.

2.9.4.1 Product Backlog

The backlog consists of all features, enhancements, tasks, bug fixes, or other work that needs to

be accomplished or resolved to increment the product. The product owner is in charge of orga-

nizing and keeping the product backlog up to date [90] [117]. Tasks that are not accomplished

during a sprint can be moved back into the product backlog.

2.9.4.2 Sprint Backlog

The sprint backlog consists of all tasks for a given sprint. The content of the sprint backlog is

chosen by the development team in cooperation with the product owner. Chosen tasks are then

subdivided into smaller sprint items that the team can take action upon. [117]

CHAPTER 2. THEORETICAL BASIS 40

2.9.5 Estimating work

To plan a software project, the workload of each task has to be estimated. Traditionally, esti-

mates have been given in a time format; days, week, and months. Agile teams have transitioned

into using story points as an alternative to aid the process. Story points shall indicate the com-

plexity, amount of work, and risk or uncertainties of solving the task. Points can be given, e.g.,

by the Fibonacci numbers (1, 2, 3, 5, 8, 13, 21). The team decides on a baseline task which other

tasks are measured against. If a task exceeds a certain point threshold, splitting up the task into

more manageable pieces should be discussed [132].

During the process of deciding story points, the development team can play planning poker.

The task at hand is briefly discussed while each team member makes an individual estimate.

Then all team members present their estimates, usually in the form of a card with a number. If

all agree, the score is settled. If the span of the presented scores is large, it can lead to further

discussion before the team plays a new round or decide on an appropriate score.

The number of story points a team is able to conclude at the end of a sprint is called the team

velocity and is unique for each development team and each project.

2.10 Version Control and Code Management

2.10.1 Version Control

In software development, version control is the act of managing changes to the code base or

documents. It is also known as revision control, source control, or source code management.

[82]. There exists different systems to handle version control. Some popular alternatives are

Subversion, BitKeeper, and Git.

CHAPTER 2. THEORETICAL BASIS 41

2.10.1.1 git

Git is the most popular version control system used today. Development was started by Linus

Thorvald, but quickly grew in popularity, primarily because it was used in combination with the

development of the Linux kernel. Today, git is developed by a community of developers and are

distributed as open source. [33, 34].

Code is organized in repositories, which again can be split up into branches where individual

features or fixes can be developed in parallel. A repository can be uploaded to a git server

for backup and ease of collaboration. Popular git server providers are GitLab, Bitbucket, and

GitHub.

CHAPTER 2. THEORETICAL BASIS 42

2.10.1.2 Git flow

Git flow is a branching strategy model for Git, created by Vincent Driessen [108]. The key benefit

of using Git flow is that it enables parallel development. The collaborators on a project can

isolate new development from finished work by using different branches. New development is

done in feature branches and is only merged back into the main branch when the developer(s)

agree that the code is ready for release [43].

Figure 2.4: GitFlow release cycle. Image taken from: https://leanpub.com/site_images/
git-flow/git-workflow-release-cycle-3release.png

https://leanpub.com/site_images/git-flow/git-workflow-release-cycle-3release.png
https://leanpub.com/site_images/git-flow/git-workflow-release-cycle-3release.png

CHAPTER 2. THEORETICAL BASIS 43

2.10.2 Semantic Versioning

Semantic versioning is a way of organizing the versioning of an application. Semantic vision-

ing is a proposed rule of how and when to increment an application version. Versions are

indicated by MAJOR.MINOR.PATCH (e.g. 1.0.3) where MAJOR updates are breaking changes

that are not backwards compatible with earlier releases, MINOR changes indicates feature up-

dates that are backwards compatible with release and PATCH indicates fixes that are backwards

compatible.[131]

2.11 Development Environment

2.11.1 Integrated development environment

An Integrated development environment (IDE), is a tool in software development that usually

facilitates a complex source code editor, automated building of code, and an advanced debug-

ger. Modern IDE’s also include compilers, interpreters, and intelligent code completion, which

help speed up the process of software development [41] [40].

2.11.2 Source-code Editor

A source code editor is a text editor, which is designed for the editing of source code. The source

code editor can either be a standalone application, or integrated in an IDE [75].

2.11.3 Linter

A linter is a tool used for code analysis, which flags code errors, bugs, style errors, and code that

do not follow a specified rule-set [48].

CHAPTER 2. THEORETICAL BASIS 44

2.11.4 Code Formatter

A code formatter is a tool used in software development that updates how source code is dis-

played in a source-code editor. A code formatter is not a functional need for the source code to

execute properly, but a tool which makes the source code more readable and consistent [13].

2.12 Graphical Design Principles

To create a functional and useful Graphical User Interface (GUI), there has been established

different design principles. We will describe some of the principles relevant to this project.

2.12.1 Don Norman’s Design Principles of Interaction Design

Regarding web and interaction design, Donald Norman provides six key principles to abide by

[25, 23]:

• Visibility - The functionality of an object needs to be visible to the user.

• Feedback - Every action needs a reaction. The user must receive some feedback on the

status of the users action.

• Constraints - Restrain the users allowed actions.

• Mapping - There should be a relationship between controls and their effect.

• Consistency - Similar actions should have similar design.

• Affordance - The object should signal what kind of action it represents

CHAPTER 2. THEORETICAL BASIS 45

2.12.2 Mobile-first Approach

Mobile-first approach refers to designing and developing application and software that is fully

compatible, and designed to work with smaller screen sizes. This approach ensures that the

design is flexible and effective on smaller screens [93].

Chapter 3

Materials and methods

This chapter describes all materials, i.e., software and hardware, and methods that were used

while conducting the project thesis. We will also describe how the project was structured and

developed. It concerns everything from the organizational to the development environment.

This chapter will also include what languages and utilities that have been used.

3.1 Organization

There are two separate organizational parties for this thesis. In this section, we will describe

their roles.

3.1.1 Project Group

The project group consists of students from NTNU in Aalesund, Emil Elton Nilsen,

Sander Hurlen Olsen, Christoffer Andersen Traeen and Steffen Holanger. The students act as

both the client and contractor in the project, driving the interests of the project forward.

46

CHAPTER 3. METHOD 47

3.1.2 Supervisor

During the thesis, we have had bi-weekly scheduled meetings with our supervisor from NTNU

in Aalesund. The role of the supervisor is to supervise the progress and assist in technical dis-

cussions.

3.1.3 Former client

In 2019, Start Aalesund was the client and test group for developing this application. They are

no longer a part of the thesis.

3.2 Project planning

3.2.1 Preliminary report

In parallel with the course IF300114 - Engineering systems and systems development, a prelim-

inary report was written as an obligatory assignments. The goal of the preliminary report was to

plan the project and was written during the planning phase of the project

3.2.2 Gantt Chart

In the planning phase of the project, a gantt chart was created to organize where in our timeline

the different phases of the project should take place. This includes when planning, software

development, and finalizing of the project should occur. The different sprint was also planned

in the gantt chart.

CHAPTER 3. METHOD 48

3.2.3 Risks

A risk assessment matrix was used to analyze what sorts of risks that could occur during the

project, and how severe their impact would be.

3.2.4 Requirement Specification

A requirement specification was created as a description of the system (see appendix C), and

includes:

• Voter features.

• Election administration panel features.

• Election features.

• Ballot features.

• System features.

3.3 Project Methodology

During every stage regarding our bachelor thesis, we have followed the SCRUM working princi-

ples. We have made the following adaptions of SCRUM to fit our project.

3.3.1 Roles

Since the project did not have an external customer or client, the product owner role was vaguely

defined. This role has been blended in as part of the development team, and therefore the prod-

uct owner responsibility has been a constant discussion within the team. One of the team mem-

CHAPTER 3. METHOD 49

bers was assigned to keep the product backlog updated, but all team members contributed to

adding tasks throughout the project.

Due to the limitations of the project resources, we have not had an explicit SCRUM master. This

role has also been blended in as part of the development team’s responsibilities. No one was

given and explicit delegation of the SCRUM masters responsibility. We handled this role as a

community effort, where we as a team took responsibility for the weekly actions and manage-

ment of the team.

3.3.2 Sprints

By recommendation by our supervisor, we decided to run sprints lasting one week. The decision

was made due to the short development period of the project (five months), and the inexperi-

ence of the team. By having shorter sprints and thereby a higher meeting frequency, the project

could adapt quicker. It was believed that finding and stabilizing the teams velocity would hap-

pen quicker with shorter sprints. Appropriate time boxing at sprint meetings was believed to be

better.

Review, retrospective and planning meetings have all been held on Fridays. The combined time

frame for all meetings has been from 08.00 - 12.00. Meeting with our supervisor every second

week, has also been part of this time frame and has usually come as an addition to other meet-

ings, blending in with the retrospective and planning.

3.3.3 Stand-ups

Stand-ups were held daily, after lunch. After lunch was chosen for a few reasons. First of, having

the stand up after lunch would allow the team to start the day with their current task, get an

insight in their task(s) and helping to prepare them for the stand up. Having the stand-up later

in the day would also ensure that all members were present. Lunch, just like the stand up, is

an interrupting event during the day. Chaining these interruptions could increase productivity

CHAPTER 3. METHOD 50

[135].

3.3.4 Product Backlog

Any features, bugs, or refactoring tasks have been reported as issues on GitHub. All issues have

been connected to a common project board and appropriate labels (3.4.4) to categorize the tasks

have been applied; e.g., bug, feature, chore. The tasks have also been labeled with a priority

ranging from high to low. Later in the project we also introduced a "nice to have" label. All

issues were put in a backlog column on the project board.

3.3.5 Story Points

Even though SCRUM does not imply any specific technique for estimating work [126], we have

chosen to use story points.

We choose this method as it is considered an industry standard and a widely adopted practice.

All team members had prior experience using story point estimation. We have used two differ-

ent techniques for estimating points; brief discussion and planning poker.

At the start of the project we would discuss the task and give an estimate on what score the task

should have. Later in the project we transferred to use SCRUM planning poker for estimating

the task. The estimation strategy is discussed in section 5.13.1.

3.4 Version Control and Code Management

We have used Git and GitHub as our system for keeping track of code changes. We have primarily

divided our project into three repositories; one for the frontend implementation, one for the

backend implementation and last one for organizational documents. The frontend repository

consists of any code that is ran directly by the user (eligible voter or election organizer), while the

CHAPTER 3. METHOD 51

backend consists of code that is closely related to data handling. The organizational repository

has held meeting notes, diagrams and planning documents.

We have implemented the GitFlow branching strategy for our development repositories. Any

new features or fixes had to be reviewed through a pull request. Necessary changes had to be

made before the changes could be merged into the project and branches related to the work was

deleted.

3.4.1 GitHub

GitHub is a code hosting platform for version control and collaboration [36]. It enables us to

collaborate on projects, and provides essentials like repositories, branches, commits, issues and

Pull Requests. GitHub have support for organization features to have a single organization were

all our repositories can be stored.

Workboard By using GitHub, we could utilize their project board feature. GitHub’s project

board made it possible to track all issues and pull request’s from our three main repositories:

frontend, backend and org. By using this feature, we could easily keep track of sprints and and

the overall project development. The project board supports well-known agile development

methods and SCRUM. As our main repositories were linked to the work board, we could utilize

GitHub’s work board automation. New issues and pull requests would automatically be added

to the board. Automation between columns was configured to move issues and pull requests to

certain columns based on state. A Google Chrome extension was also developed to enhance the

SCRUM experience using GitHub project boards, see 4.16.1.

3.4.2 Issue Tracking

For creating user stories, reporting bugs, features, or other tasks, we used the issue functionality

built into GitHub. Issues are connected to the repository it was created for.

CHAPTER 3. METHOD 52

3.4.3 Pull Requests

Opening pull requests, let us review and comment suggestions to others code before merging

the branch into the proposed branch. Pull requests need to be reviewed and tested before merg-

ing, forcing us to review changes.

3.4.4 Labels

Labels is a feature provided by GitHub to be able to annotate pull requests and issues. We used

labels to organize and give additional meaning to a pull request or issue. It is possible to create

and modify labels to your needs. Some of the labels we used was be Bug, Feature, Refactor,

(Story) points:[Fibonacci sequence til 21] and priority:[high, medium, low].

3.4.5 Semantic Versioning

We have used recommended standards of labeling our versioning in accordance with Preston-

Werner [131] and in conjunction with the GitFlow toolkit. This was done by creating release

branches that then were tested before merging into the main branch.

3.5 Development Tools and Applications

We have used different software programs and tools during development. Below we will de-

scribe the most important and how they were used.

3.5.1 Visual Studio Code

Visual Studio Code is a free source code editor developed by Microsoft for Windows, Linux, and

MacOS [84]. Visual Studio Code has support for debugging, syntax highlighting, intelligent code

CHAPTER 3. METHOD 53

completion, snippets, code refactoring and embedded Git. It also lets you install extensions to

create a better development environment suited for your you or your team. All team members

have used Visual Studio Code for developing our application.

3.5.1.1 ESLint

ESlint is a tool that identifies and delivers reports on patterns in JavaScript/TypeScript code. It

can be configured to either show warnings on linting rule sets not followed, or even compilation

errors when linting rule sets are not followed. ESLint also automatically fixes most errors on

save [26].

3.5.1.2 Prettier

Prettier is a tool that automatically formats source code after a specific ruleset and program-

ming language. Prettier supports formatting for most web-related programming languages like

JavaScript, HTML, and CSS, as well as JSON and YAML [59].

3.5.2 Nginx

Nginx is an HTTP server with reverse proxy, mail proxy, and generic UDP/TCP proxy support

[51]. We have used Nginx to serve our static website documents (HTML, CSS, and JavaScript)

as well as a reverse proxy for our backend API and WebSocket server. It was also responsible for

serving the TLS certificates for HTTPS.

3.5.3 DataGrip

Data Grip is a database management IDE developed by JetBrains. It allow for managing multiple

databases through a graphical User interface. Data grip has been used to view and edit data

stored in our Postgres database while developing [20].

CHAPTER 3. METHOD 54

3.5.4 Postman

Postman is an HTTP API testing application that enables developers to create collections of API

endpoints. It includes support for managing, executing, and testing API endpoints. Postman

also has support for collaboration where a team can manage and collaborate on a collection of

API endpoint’s for an application. Postman can be used as a CLI tool as well for testing endpoints

in a server environment without a graphical user interface [1]. We used Postman in collabora-

tion to test our REST API during development, without the need of a frontend implementation.

3.5.5 Adobe XD

Adobe XD is a vector-based user experience and interface design tool for web applications and

mobile apps. The software is developed by Adobe Inc [3]. Since some of our group members

were confident with using Adobe XD it was a natural decision to use it for designing various

parts of UI. It supports wireframing and easy to create click-through prototypes.

3.5.6 Adobe illustrator

Adobe Illustrator is a vector-based application which is used to create and edit vector graphics

and is developed by Adobe Inc [98]. Adobe illustrator was used to create the Anovote logo.

3.5.7 Visual paradigm

Visual paradigm is a UML utility for creating various diagrams and providing modeling support.

Visual Paradigm supports both Entity Relationship Diagrams (ERD) and Object Relational Map-

ping Diagrams (ORMD). ERD is used to model the relational database. Visual paradigm also

supports the creation of sequence, use-case, class and activity diagrams.

CHAPTER 3. METHOD 55

3.5.8 Discord

Discord is an free Voice over IP (VoIP) application and digital distribution platform designed for

communication between users in channels by using text, media, video, or sound [24]. Discord

also supports code snippets for easy sharing of a code-related question. The team has used

Discord mainly for communication through chat and voice calls.

3.5.9 Overleaf

Overleaf is a cloud-based LaTeX editor which supports real-time collaboration [101] and editing

of LaTeX documents on the web. Overleaf was used to write the thesis for the project.

3.5.10 Zotero

Zotero is a reference management tool used to manage literature references and bibliography.

Zotero can be used as a browser extension and/or as astandalone software. Zotero was used to

manage all references for the project and thesis.

3.5.11 Typora

Typora is a free markdown editor for editing and creation of markdown files. Typora has been

used to create and edit our documentation files.

3.5.12 Docksify

Docsify is a JavaScript application running on a website that creates documentation websites

from markdown files. We have used Docsify to make our organizational documents in our or-

ganization repository available on https://docs.anovote.app. Navigation bars can be dis-

played by creating _sidebar.md files in directories where navigation is wanted. We have created

https://docs.anovote.app

CHAPTER 3. METHOD 56

a tool that auto-generates these for us (see 4.16.4). The page content is served using GitHub

pages.

3.5.13 Framework and libraries

To be able to build our application, we have used a range of third-party libraries and frameworks.

Below we describe some of the most important.

3.5.13.1 React

For the UI of the system, we decided on using react as the UI framework of choice. React is a

well-established UI framework and has extensive support for TypeScript. React also makes it

very easy to reuse UI components and control the state of the UI components [64].

Create React App is a program to initialize a React project with the recommended settings for

developing and building a web application. Create React App (CRA) is developed by Facebook

and can be started with different templates to fit individual project needs, e.g., TypeScript tem-

plate [14].

Ant Design For helping us create a more robust UI, we have used the react component library

Ant Design. Ant Design provides a range of basic React components, which is the basis of all

web sites. Using ant design meant we saved time on creating components, which we spent on

more complex problems [4].

React Beautiful Drag-n-Drop A component library for creating drag and drop logic. Used to

reorganize ballots and elections [5].

React Router A controller that is used to control which view the user can see based on the

browser URL [66].

CHAPTER 3. METHOD 57

react-i18next A internationalization framework that makes it possible to implement several

language packages to a react app [65].

3.5.13.2 Internet Access and Communication

expressJS Express is a web framework for server-side applications that provides a set of fea-

tures to create web applications and craft web APIs. Express is unopinionated and leverages

middleware to create web applications [31]. Middlewares in express is a thin layer that handles

an incoming HTTP request. A middleware can either terminate an Hyper-Text Transfer Protocol

(HTTP) request or pass it to the next middleware layer. By utilizing middlwares, we can create

reuseable code that can be plugged into a collection of/or a single endpoint to run on every http

request.

axios Axios is a HTTP request handler for the browser and nodeJS [7]. It is used to send HTTP

requests from frontend to backend.

HTTP status codes A library with enums for all HTTP response codes [127].

Socket IO Provides functionality for bidirectional real-time communication between a client

and a server. The protocol enables client-server communication over web sockets,but can fall-

back to http polling if necessary [102]. It makes use of the observer pattern (2.4.3) and utilizes

events which the client and server subscribe to. Events emitted from a client can also provide an

acknowledgment callback to get notification from the server. The acknowledgment mechanism

can be used to ensure the sender that the receiver has received the event.

3.5.13.3 Data Handling

TypeORM TypeORM is as an ORM for TypeScript and JavaScript. It is responsible for mapping

JavaScript classes to relational entities and vice versa. Entity columns are managed with anno-

CHAPTER 3. METHOD 58

tations on a given entity class. TypeORM is also responsible for generating database tables with

appropriate types, constraints, and relations.

class-validator A framework to validate fields on a class instance. Field criteria(s) are set using

annotations. A range of predefined annotations are provided by the library and the ability to

create custom ones [79].

class-transformer A transformer library is used to convert and transform class/object instances

from class instances to standard JavaScript objects and vice versa. Used to exclude fields from

objects before passing them along. Class fields that need transformation are annotated [78] or

can be mapped to another class/object by their property names.

All libraries used for data handling are developed by TypeStack.

3.5.13.4 Security and Authentication

bcrypt A hashing library [9]. It was used to hash passwords.

jsonwebtoken A library for creating and validate JSON web token (JWT) [6]. JWT is a from of

access token that can be used to authenticate users of a system (2.5.4. All authorization on the

server was using JWT.

helmet A middleware library for changing http headers aiming to make the application more

secure [37].

3.5.13.5 Other

html2canvas A library for creating a canvas out of an HTML page. It is used to create the image

output for the result report PDF [137].

https://github.com/typestack

CHAPTER 3. METHOD 59

papaparse A library for parsing CSV files [56]. It has been used to parse CSV files uploaded

when adding eligible voters to an election by CSV.

date-fns A date formatting library for handling dates in JavaScript applications [21]. Handles

the date objects on the backend and frontend, it makes use of JavaScript’s date object but pro-

vides additional features for manipulating dates.

pdfobject Enables PDF embedding into a HTML object with JavaScript [118].

jspdf Library for client-side generation of PDF’s [116]. Has been used to generate the PDF for

the election results PDF. The described libraries and frameworks in this section were chosen

to be used in our project due to their popularity, reliability, good documentation, and team

members previous experience.

3.5.14 Runtime Environments

3.5.14.1 NodeJS

NodeJS is a JavaScript runtime that allows us to run JavaScript outside the browser. This makes

it possible to run JavaScript in a server environment. The node standard library contains the

necessary libraries to develop an asynchronous HTTP server. NodeJS also supports the use of

packages from NPM registry to be able use open source third party libraries.

Yarn Yarn is a package manager for NodeJS and consumes packages from the NPM registry.

NPM is the default package manager that comes with NodeJS, but was replaced in favor of Yarn

due to its parallel handling of packages and caching mechanism. Yarn is responsible for all

dependencies in our project, both frontend and backend.

CHAPTER 3. METHOD 60

3.5.14.2 Deno

Deno is a new JavaScript runtime for running JavaScript outside the browser. It is created by the

same person that created NodeJS and had its first stable release in 2020. It was created to fix

some core issues with NodeJS and provide native support for TypeScript. Deno runs as a single

executable and incorporates its own code formatter, package handler, typescript compiler and

bundler. Deno was chosen as our JavaScript runtime because of its new take on server side

JavaScript with the built-in tooling and the benefit of a built-in TypeScript compiler.

3.5.15 Docker

Docker and docker-compose was used to containerize our application. By using docker we

eliminating the need built-in for installing special software on a physical server (apart from

docker). Each component of the application was divided into its own container. Using docker

ensured that all of the members worked on the same environment, mitigating any environment

dependency issues.

3.5.16 Database

For storing data in our system we choose PostgreSQL, as we wanted a feature rich and reliable

relation database. PostgreSQL is a free and open source relational database manager [58]. The

database was ran in its own container using docker. Setting up the database was done within

a docker-compose file and the database tables management and CRUD operation was done by

TypeORM (3.5.13.3).

3.5.17 Preprocessors and Transpilers

Preprocessors and transpilers are tools used in software development to transform or alter code.

Preprocessors are software that processes a given input data to produce an output used by an-

CHAPTER 3. METHOD 61

other program. A transpiler is a software used to transform one language to another.

3.5.17.1 TypeScript Compiler

TypeScript Compiler (tsc) is an executable that lints and/or transpiles TypeScript to JavaScript

that the browser or NodeJS understands.

3.5.17.2 JSX

JSX is a syntax extension of JavaScript. JSX is a template language with full support for JavaScript.

It is the preferred syntax for defining React elements. JSX allows us to write rendering logic inside

the UI components as they are tightly coupled. This includes data preparation for display, event

handling of user actions, and state changes.

3.5.17.3 SCSS

SCSS is a preprocessor scripting language that is compiled to CSS. It adds more functionality

to CSS development by including support for variables, mixins, functions, nesting, and seper-

ation of files. SCSS was used to create CSS for our frontend. SCSS allowed us to create a more

structured CSS code base.

3.5.17.4 TruffleSuite

TruffleSuite is a collection of application and utilities to create and test blockchain application

on Etherum. It provides a framework to develop, test and deploy smart contract to a etherum

blockchain. It also includes a application to host a etherum development blockchain for testing

on your local machine. Network fees, initial accounts with ether and mining can be configured

for the particular chain before setup.

CHAPTER 3. METHOD 62

3.6 Programming, Markup and Scripting Languages

We have used a variety of different languages to develop the product. We will describe some of

the languages and how they where used.

3.6.1 TypeScript and JavaScript

We used TypeScript as the primary programming language for both the frontend and backend

of the system. TypeScript enabled us to create a web page, while keeping control and quality of

the code high.

We have used both OOP and functional programming techniques when developing. For the

most part we would use OOP as it utilizes the module pattern (2.4.2) and provides structure to

the code. Functional programming were used to create simpler helper functions and to make

React Components (3.5.13.1), as this is recommended by the developers of React.

3.6.2 HTML

HTML has been used to create the markup for our web frontend.

3.6.3 SCSS

SCSS is a superset of Cascading Style Sheet (CSS) and provides additional functionality. See

section 3.5.17.3 for more details on SCSS.

By using classes and element selectors in CSS, we can target specific elements to alter the visual

look, position and scale. CSS classes are reusable which lets us keep the code DRY .

Animations are also supported in CSS and we have used it to enhance user feedback on certain

elements. A responsive website is created with CSS by altering the style depending on the screen

size. This makes it possible to deliver a product for all devices and screen resolutions.

CHAPTER 3. METHOD 63

3.6.4 PostgreSQL

We have used PostgreSQL which is a dialect of the SQL language. PostgreSQL was mainly chosen

because it was well known to the team, and it integrates well with other technologies we are

using.

3.6.5 Yaml

Yaml is a data-serialization language, with focus on human-readability. Yaml was used to write

the docker-compose and GitHub workflow instruction files.

3.6.6 JSON

JSON was used to write most config files, i.e., ESlint configuration. It has also been used for

data import and export. It was chosen because it is the standard for most config files and data

handling in JavaScript/TypeScript.

3.6.7 Markdown

Markdown is a markup language used to create formatted text. Markdown was used to write

sprint report and meeting reports. Markdown was also used to create any text related on GitHub.

CHAPTER 3. METHOD 64

3.7 Quality Assurance

3.7.1 Jest

Jest is a JavaScript testing framework maintained by Facebook. The framework focuses on sim-

plicity and support for large web applications [47]. We chose to use Jest on both frontend and

backend, as Jest is already configured in Create React App. Some of our group members had also

previous experience with working with Jest.

React Testing Library Testing the frontend code requires a testing library for testing UI com-

ponents. React testing library provides light utility functions and encourages better testing prac-

tices. The utilities this library provides facilitate querying the DOM in the same way the user

would [67]. We chose this testing library over others because of its simplicity.

3.7.2 Prototype Testing

We used prototype testing to get an early indication on the first design/wire-frame draft. Adobe

XD was used to create the prototype tests. The tests were used to get an indication on how our

initial design was received by users of the application.

3.7.3 Usability Testing

As described in 2.8.6, usability tests are used to see how a user interacts with the application.

We utilized this testing method with a qualitative approach, focusing on getting feedback from

one to one session. We focused on the qualitative approach to gain information on how users

interact with the application.

CHAPTER 3. METHOD 65

3.7.4 Large-scale User Testing

We performed large-scale user testing to see how a user group worked with the application. A

large-scale user test is a formal process of letting inexperienced users act on the application.

The goal of the test is to spot difficulties for the contestants and see if the system is capable of

handling the traffic.

3.7.5 Unit Testing

Unit tests were written for both frontend and backend. The would test functional requirements

for the unit a test was written for. Unit tests were run on the developer’s machine and on pull

requests.

3.7.6 Integration Testing

We used Postman for integration testing on the API endpoints. These were run on a develop-

ment server on pull requests to develop/main. The tests were written in the postman applica-

tion for different HTTP endpoints.

3.7.7 GitHub Actions

GitHub Actions (GHA) is an automation CI/CD tool provided by GitHub that enables workflows

to be run on predefined events [35]. We had different workflows that are automatically run when

creating a PR. The workflows was configured with yaml (3.6.5) files in the respective repository

under a .github folder, which is automatically parsed by GitHub.

CHAPTER 3. METHOD 66

3.7.8 ESLint and Prettier

On the local development environment we would have two tools that would support our pro-

cess. ESlint (3.5.1.1) was set up to catch typical errors and code style violations. Prettier (3.5.1.2)

would help format the code to a common rule-set. All members of the development team was

using the same IDE, with shared settings, ensuring that formatting and linting was always ran

on file save.

3.8 Environment

The environment configuration for our application changes depending on the state it is running

in and its environment. e.g. locally or on a server. The states can be testing, development, or

production. To manage these different states, we have used configuration files to quickly and

easily allow the change of state variables.

3.8.0.1 Environment Variable Files

Environment variable files have been used in our environment setup to provide configuration

options for our application without hard coding values in the source code. Environment files

can contain information about ports, security keys, credentials, paths, etc. Environment files

are named by a .env.

3.8.0.2 Tools

Some group developed tools have been created to streamline the management of any given

environment and simplify the process of doing so. These tools are discussed at 4.16.2.

CHAPTER 3. METHOD 67

3.9 Product Design

3.9.1 Wireframing

We used wireframing for designing the website at a structural level. A website wireframe is a

page schematic and a visual structural guide of a website [89]. By designing with wireframes

early in the development process, we could focus on the structure of the page before visual

elements and content was added. The use of Adobe XD (3.5.5) enabled us to create prototypes

of the wireframes to test the structure.

3.9.2 UI Design

After creating wireframes, we could create mock-ups for the User interface (UI) design. UI is the

design of user interfaces for software. The focus is to maximize usability and user experience

[81]. We created mock-ups of the UI design in Adobe XD and utilized the possibility of creating

prototypes to test.

3.9.3 Mobile-first

For creating the voter screens we used a mobile-first approach (see 2.12.2).

3.9.4 Diagram and Model Documentation

We have used Visual paradigm (see 3.5.7) to create UML diagrams for this application. UML

diagrams is a way to visually represent the architecture, design, and implementation of com-

plex software systems [96, 112]. We created UML diagrams when modeling difficult situations,

scenarios or architectural choices.

CHAPTER 3. METHOD 68

3.10 Hardware

The following section describes what hardware was used to host and develop the product.

3.10.1 Personal Equipment

Development was done on Linux/Ubuntu, Mac and Windows in Windows Subsystem for Linux.

PWA was installed on Windows, Android, Linux, iOS and MacOS.

3.10.2 Server

The server used for running our services is a virtual machine provided by NTNU Ålesund Au-

toDeploy, with the operating system Ubuntu 20.04.1 running on it.

The server has the following hardware specifications:

• 6 cores of an Intel Xeon E5-268Zw CPU running at 3.00GHZ

• 16gb of RAM

• 40gb of storage on a Harddisk

Chapter 4

Result

In this chapter, we will describe the results that we were able to find and construct during the

project. This chapter will describe in detail the results of the different subsystems that make up

the application and the results of our project methodology.

4.1 General results

As part of this project, we have been able to develop, test, and deploy a production ready ap-

plication. The application is available at https://anovote.app. The web application is devel-

oped using React.js (3.5.13.1) and can be downloaded as a PWA (2.3.2). All core functionality

that is being described in 1.3, has been implemented. The finished result is a fullstack web ap-

plication running in a Docker container network behind a reverse proxy. The documentation of

our project development is hosted via https://docs.anovote.app.

We have conducted usability tests and large-scale user tests. The test results will be examined

in section 4.13.2 and 4.13.3.

69

https://anovote.app
https://docs.anovote.app

CHAPTER 4. RESULT 70

4.2 Use-Cases of the Application

Early in the project we defined the use-cases of the system. Figure 4.1 displays the different

actors. A voter is a user only when an election organizer organizes an election. The voter can

join an election. An election organizer cannot join as a voter for its own election, but can be a

voter for any other election. The organizers have organizational rights to administer elections,

add eligible voters, and organize it. For the rest of the chapter, we will refer to two perspectives;

election organizer and voter.

Figure 4.1: Use-case diagram of the system

CHAPTER 4. RESULT 71

4.3 Functionality of the system

This section focuses on the functionality of the system, from the perspective of the election

organizer and the voter.

4.3.1 Election Organizer

The election organizer create and organize digital voting system (see Online Voting 2.1), where

the election organizer can organize an election. The election organizer is responsible for select-

ing the electorate (see 2.1.2) and can create ballots (see 2.1.3) for an election.

4.3.1.1 Election management

Election management by an election organizer is the core of the systems functionality. The elec-

tion organizer can CRUD an election as well as start, hold, and end an election.

Creating a Election When creating an election, the election organizer must provide a title and

description. An election must have a unique title. This is implemented to avoid confusing the

election organizer by having several elections with possible duplicate titles. The election orga-

nizer can add eligible voters to the election by two different approaches; manually, or by upload-

ing a CSV or JSON file. Elections can be scheduled with open and close dates (see Scheduling

2.1.2) as any ordinary election. Ballots that eligible voters can vote on can be created and edited.

There is no limitation to how many elections an election organizer can create.

For each ballot, a title and description can be added. Currently, the voting system only supports

plurality system elections (see 2.1.1.1). The election organizer needs to add at least one candi-

date to the ballot. It is possible to edit or remove the candidate from the ballot. The order of the

candidates can also be edited by simple drag and drop in the UI. All ballots will automatically

have a default blank candidate, enabling voters to vote blank. See Figure 4.3.

CHAPTER 4. RESULT 72

Figure 4.2: The "Create election" page with ballots

After the ballot has been created, the election organizer can choose to edit or remove the ballot

from the election.

View all Elections The election organizer can view all their elections (see Figure 4.4). All elec-

tions will be categorized based on the election state (see 4.6.1 for more details on state).

Updating an Election From the election homepage, an election organizer can edit an already

existing election. The edit dialog is the same as the create election, and should be familiar to the

organizer. After editing the election, the updated state is saved to the database and the related

views are updated. An election can be edited until the election is started.

CHAPTER 4. RESULT 73

Figure 4.3: The "Create ballot" modal with candidates

Delete an Election To delete an election, the organizer must choose the relevant election and

press the "delete election" button. The organizer will be prompted for conformation before

delete. Deletion is not possible if the election is in the Started state (see 4.6.1).

Start an Election An election can be started in two possible scenarios; forced or automatic. An

election can be configured with automatic open and close dates. These dates will automatically

change the state of the election. An organizer can also force a state change, ie. trigger an election

to start and end. This will overwrite the relevant dates and set them to the time of state change.

Hold an Election When an election is Started, the election organizer can manually push ballots

to the voters. The push mechanism is described in more detail in 4.6.7. While an election is

CHAPTER 4. RESULT 74

Figure 4.4: The elections view displays all the elections an organizer has created

running, the organizer can view how many voters that are connected, how many have voted on

each ballot, and see the distribution of the votes. During this state, all communication between

the server and the client is handled by Socket.io, through its event driven design (2.4.3).

Ending an Election When an election is ended, either automatically or by force, all connected

voters are being logged out, no more votes are registered.

CHAPTER 4. RESULT 75

Figure 4.5: An election in progress with the end election confirmation dialog

4.3.2 Eligible Voter

4.3.2.1 Joining an election

The eligible voter joins an election by using the "join election" page. Joining is done by pre-

senting an email address and an election code provided by the election organizer. The joining

mechanism is described in details in 4.6.3

Voters are only able to join an election that is Started. If the election is Not Started, the voters are

presented with a screen telling them to wait for the election to start. If the election is Finished,

voters that try to join will be informed that the election is finished. If voters try to join an election

that does not exist, either because it was never created or it has been deleted, they are informed

that the election does not exist. The different views are depicted in figure 4.6.

CHAPTER 4. RESULT 76

Figure 4.6: Information shown to a voter when joining an election. From the top left, (1) the
voter is accepted to the election, waiting to be verified, (2) verification happening, (3) upgrading
the current window, (4) could not join because of missing verification code, (5) waiting for a
ballot, (6) the election is closed, (7) election does not exist, and (8) verification code is invalid

4.3.2.2 Voting in an Election

When a voter receives a pushed ballot from the election organizer, the ballot will get displayed

on all connected voter’s screens. The voter will be displayed the title of the ballot, and a list of all

candidates on the ballot and a "vote blank" option. The voter then can choose a candidate from

the list of candidates to vote on, or choose the vote blank option. After choosing how eligible

voters want to vote, he/she can press the "submit vote" button to cast their vote. After voting the

eligible voters will be placed back into the waiting state of the election. A full sequence diagram

can be be seen here: B.2

CHAPTER 4. RESULT 77

Figure 4.7: Voting screen where a voter has the possibility to vote on a specific candidate.

4.4 PWA

The application is able to be installed as a PWA on supporting device. It works as expected on

most devices, except under Ubuntu (Linux). This is a known bug on Ubuntu, and is therefor

outside our realm [12].

4.5 Client-Server Communication

In order for the client-server to interact with one another, we have used different forms of com-

munication protocols. We will describe how this communication is resolved during the different

stages of an election.

CHAPTER 4. RESULT 78

The following diagram describes how the network and communication infrastructure is orga-

nized.

Figure 4.8: Network and communication infrastructure diagram

4.5.1 Basic Communication

To be able to use the system, a user first must download the frontend application. This is done

by enabling the server to serve the application documents. These documents are static files that

are served through nginx (3.5.2) and can be accessed by going to https://anovote.app. When

the documents are loaded by the client browser, the user can start to use the application.

4.5.2 Request to the REST API

For most of the functionality, the user will have to fill out forms in the application and submit

them to the server. When a user submits a form, the frontend application will make a HTTP

https://anovote.app

CHAPTER 4. RESULT 79

request to the server’s REST API. These request is made by using axios library and requests are

sent to anovote.app/api/. Any request to the server is then handled by express. The commu-

nication with the REST API is the backbone for all creation and deletion of entities in the system,

e.g., registration, login, and creation of elections. Fetching of data is also handled by the REST

API. The API is also guarded with rate-limiters to prevent miss-use of the API, and hinder brute

force attacks (2.2.4) on authentication endpoints.

4.5.2.1 Express

To create the REST API 2.5.2 we have utilized express (3.5.13.2). Express will handle all incom-

ing HTTP requests and map them to the appropriate service class. E.g., when a new elec-

tion organizer would get registered on the frontend, an HTTP POST request would be sent to

anovote.app/api/election-organizer/. Express will then look at the endpoint address and

unpack the request and send it to the election organizer service class for validation and stor-

ing in the database (4.8.3). Based on the results from the service class, the express REST API

responds with a HTTP response code and relevant data.

4.5.3 Real-time Communication

When an election is in progress, data will be sent back and forth between the backend and sev-

eral different clients. Because we would like all voters to be updated immediately after a ballot

has been pushed, clients have to be notified in real-time. For handling this, communication

is happening in real-time through the use of socket.io web-socket server. When a websocket

event arrives at the websocket server, the websocket server reads the event name and sends the

websocket event to its corresponding event handler. The event handler would then unpack the

websocket event and handle it. The implementation of event handling can be found in 4.5.4.

anovote.app/api/
anovote.app/api/election-organizer/

CHAPTER 4. RESULT 80

4.5.3.1 Socket.io Websocket Events

Instead of having to tell the server that some data is coming, the data is just sent and you hope

that the server has a way to handle it. Socket.io implements the observer pattern and is event

driven (2.4.3). Each websocket emittion has an event name that the server or client can sub-

scribe to. When an event is fired, the server will read the event name and if it recognizes the

event name it will know how to handle the incoming data. E.g., when a voter presses the "vote"

button, a websocket event with the voters ballot will get sent to the server with the event name

push-ballot. The server will then know how to handle the ballot by reading the event name. An

event sent to the server can trigger the event handler to submit new events to the clients, where

appropriate.

4.5.4 Event Handling

To accomplish the communication between client-server with websockets in a reliable way,

we expanded the structure around the Socket.io (3.5.13.2) implementation. Socket.io provides

methods to pass events with acknowledgments. Since events can be any data type, we wanted

to control how the events were received and handled on the client side.

export function WebsocketEvent<T>({
dataHandler,
errorHandler

}: IWebsocketEventHandler<T> = {}): EventExecutor<T> {
return function executor(payload: IEventResponse<T> | undefined): void {

if (dataHandler) {
if (payload?.data) dataHandler(payload.data)
// Handles data that is undefined, or has a payload that is not
// wrapped in {data, error} object
else if (!payload?.error) dataHandler(payload as T)

}
if (errorHandler && payload?.error) errorHandler(payload.error)

}
}

Listing 4.1: The event handler implemented on frontend

CHAPTER 4. RESULT 81

Listing 4.1 shows the function for assigning an incoming event to separate data- and errorhan-

dlers.

4.5.4.1 Responding with Event Message or Error

To directly respond to an event, known as acknowledgement, we can use the EventResponse.

export const join: EventHandlerAcknowledges<{ email: string; electionCode: string }>
= async (event) => {

// ...

return event.acknowledgement(
EventErrorMessage(new NotFoundError({ message:
ServerErrorMessage.notFound(entity), code }))

)
}

Listing 4.2: Showcase of acknowledgement on the backend. This event will be acknowledged
with a NotFoundError

For Listing 4.1 the WebSocketEvent<T> on Listing 4.2 will now propagate the acknowledgement

as an error to the errorhandler.

4.6 Developing a Voting System

4.6.1 Election Lifecycle

An election can have the following three states.

• Not Started

• Started

• Finished

CHAPTER 4. RESULT 82

These states are defined in the election entity class. An Election can also be deleted. This will

remove the entity from the database, triggering a cascade delete, removing all related data.

In the two other states, Not Started and Finished, the communication between the client and

server is happening through the REST API (2.5.2) over HTTPS.

To render appropriate information to the election organizer, each life cycle state has its own

component that is rendered based on the election state. The election organizer can use the

same URL, regardless of the election state, to get to the election.

4.6.1.1 Automatic Opening and Closing of Elections

To check if any election should be started or stopped regarding their open and close dates, Node

CRON job is used. Every minute the CRON job checks if the current date and time is the same

as the open and close dates for all elections. If it is, the CRON job will either open or close the

election.

4.6.2 Anomyzation with Algorithms

As described in 2.1.4, implementing a proper anonymous, secure and tamperproof digital voting

system is a time-consuming and difficult task. Due to time constrains, and by recommendations

from our supervisor, we choose to simplify our implementation to reach our primary goals.

To ensure that only eligible voters should be able to vote, there is a need to verify the identity

of all voters. We have implemented a two-factor authentication system for this purpose. The

implementation will be disclosed in 4.6.3. The election organizer will provide a list of emails for

voters that are allowed to participate. These voters can then join the election with their email

(something they own/have) and an election ID (something they know).

When a voter requests to join an election with the email submitted by the organizer, a verifi-

cation email is sent to the particular address. The email consists of a verification link, which

includes an encrypted token as a query parameter. The link directs the voter to a verification

CHAPTER 4. RESULT 83

page that sends the token to the server for validation. On successful verification, the voter is

automatically allowed in to the voting view on the page that was used to join the election. The

system implementation is described in more details here 4.6.3.

4.6.2.1 Blockchain as Voting Mechanism

Blockchain technology was considered as a solution for providing an anonymous and decen-

tralized solution to hold an election. Research and testing the ability to use etherum blockchain

was conducted early in the project.

We deployed a development blockchain using TruffleSuite (3.5.17.4) on a local machine for test-

ing smart contracts through a web interface. For testing, we used open source election/voting

smart contracts found on GitHub. Submitting a smart contract - which would represent an elec-

tion to the network required the submitter to spend some of its etherum as a fee on the network.

A fee was also required to be paid by any node – i.e., a voter that would want to execute a com-

putation (vote) on these election smart contracts, as a network fee.

4.6.3 Verifying Participants when Joining an Election

To enable voters to participate in an election, voters need to join and then verify their identity.

For this, we have created an algorithm that we will try to explain in the following section. A full

system sequence diagram can be seen in Appendix B.1.

4.6.3.1 Joining

When a voter enters the Join election page, a web socket connection is established with the back-

end server. This web socket connection is used throughout the joining process as a real-time

event emitter and listener. The socket is initialized with three event listeners on the server, join,

verification and token, and a voterVerified event on the client side. The join event is emitted to

the server when a voter submits the join form (see figure 4.10).

CHAPTER 4. RESULT 84

Figure 4.9: Simple illustration of join and verify

Figure 4.10: The join-election page. A voter needs to provide his/her email and an election code
to join

CHAPTER 4. RESULT 85

In order for the server to notify the client that the join event is received, the emitted join event

has an acknowledgment callback that the server can reply to. The server can reply with either

success or error (see 4.5.4).

A state change occurs and the voter is immediately presented with a loading state and a rec-

ommendation to not close the browser window. User feedback is implemented in all stages to

enhance user experience and comply with the design principles discussed in 2.12.1.

A series of validation routines are performed on the submitted voter credentials and the election

which the voter is trying to join. The validation steps are:

• Verify that valid data is passed

• Check if election exists

• Check if the election is not finished or closed

• Check if the email exists in the list of eligible voters for the given election

• Check if the email has already been verified for the election

If any of the validation steps fails, an error is returned to the client through the acknowledgment

callback (see 4.5.4). The error response is handled on the frontend with user feedback (see 4.17)

and aborts the joining sequence.

4.6.3.2 Generating Verification Code

When all verification steps have passed, a verification code is generated. This verification code

is an encrypted string containing the first part of the email, the voter id, the election id, and

the socket id for the current websocket connection. To ensure that the code is not able to be

generated outside our system, it makes use of a stored secret for performing the encryption.

This secret is also used to decrypt the message later. This code is added to a verification URL

(see Listing 4.3).

CHAPTER 4. RESULT 86

https://anovote.app/join/verify?code=U2FsdGVkX19RTZ%2Foz2xhEnavmYm
%2FBIIdO3PPAF2l5iJai1KS4lU1DsWv7nULGq6m7DgJS47BNEyP5ViqnvKssA%3D%3D

Listing 4.3: Example verification URL

A MailService is used to generate and send an email to the voters email address. We use Google’s

SMTP server for email transport. This email body contains a short description and the verifica-

tion URL. The voter needs to click the verification URL to show that he/she is the owner of that

particular email address.

When all steps have successfully completed, an OK acknowledgement is emitted back to the

client. This will display a message that a verification link is sent to the particular email, and an

instruction to not close the browser window, see illustration 4.6. The server side also subscribes

to a new single event, voterVerifiedReceived. This event is used later in the verification step to

perform notifications.

The browser window is instructed to stay open as part of the verification process, but it is not

required, as fallback mechanisms are implemented to tackle this. This will be explained in more

detail in the following section.

4.6.3.3 Verifying

When a voter opens the verification link, they are presented with a verification page that initial-

izes a connection to the websocket server. The client side is subscribed to a joinVerified event,

and the server is subscribed to the verify event. A verification timer is started on the frontend,

which is part of the fallback mechanism in case of a closed join page. The verification code is

gathered from the "code" query params. In case of a missing verification code, we abort the ver-

ification and a missing code message is displayed to the user, see 4.6. The verify event is emitted

to the server with the verification code and an acknowledgment callback for success/error.

Once the server has received the verify event with the verification code, it decodes the verifica-

tion code and gathers the data inside it. The verification process uses the same verification steps

as described in 4.6.3.1, but also a code verification step. The data gathered from the verification

CHAPTER 4. RESULT 87

code is used in the verification process. In case of a missing code or failed decoding, we throw a

BadRequestError with a message and error code. Any error is emitted back to the client via the

acknowledgement callback.

Once the verification steps are successful, a JWT token is generated on the server, and the voter

is marked as verified. The socket id for the join page in the verification code is then used to emit

an event to the join page socket that the verification was successful. It includes a data payload

with the verification socket’s id and the JWT token. The server side of the verification socket will

also subscribe to an upgradeVerificationToJoin event, which is part of the fallback mechanism.

When the join page receives the joinVerified event, a voterVerifiedReceived event is emitted from

the join page back to the server, with a data payload of the verification page’s socket id in the

received event payload. The frontend will then store the JWT token, set the application state to

be logged in as a voter, and redirect to the voting view page.

The voterVerifiedReceived event received by the server uses the passed verification page’s socket

id to emit a joinVerified event to the verification socket frontend to notify the page that the

joining was successful. The server stores the election ID and voter ID on the join socket for later

reference. The join-socket is also joining the socket room for the given election and is subscribed

to the vote event. The verification page disables the upgrade timer when the joinVerified event

is received to prevent an upgrade.

In case of a voter closes the join page or there are issues with the acknowledmgents between

the two sockets (join/verify). Then the fallback mechanism will be applied. The fallback mech-

anism uses the timer started on the verification page as an expected time to respond. If the

voterVerifiedReceived event is not received on the verification page before the timer has expired,

it will emit an upgradeVerifyToJoin event that signals the server that the verification page is to

receive the JWT token. In the event of upgrading, the user will be notified with different state

messages indicating this.

CHAPTER 4. RESULT 88

4.6.3.4 Re-join

The browser used to join has a stored JWT token. This token ensures that the voter can rejoin

the election when he/she refreshes or closes the browser and opens the join page. Before they

are able to rejoin, we fetch the election by the id stored in the JWT token. If the election is not

Closed/Finished, they are able to return to the election. When they are redirected to the election

page, a joinWithToken event is emitted to the server. This will perform validation steps and

subscribe the voter to the election room and vote event.

4.6.4 Socket Room Service and Initilizing WebSocket Channels

As there can be multiple ongoing elections at any time, we need a way of controlling what voters

should get what ballots. Socket.io (3.5.13.2) provides a way of creating "rooms" or channels that

can filter events to clients assigned to the room. To keep track of the different users in each elec-

tion, each election would get an assigned room. To keep track of what rooms are open, we have

implemented a SocketRoomService-class. The service is responsible for managing the state of

the socket rooms and adding voters to the correct room when they join. The SocketRoomService

is a singleton (see 2.4.1) and therefore only one instance can exist to ensure the integrity of the

elections.

4.6.5 Creating the Election Room

Upon the creation of an election, a socket room entity is automatically initiated together with

an election (see Listing 4.4).

CHAPTER 4. RESULT 89

private async createElection(electionDTO: IElection): Promise<Election | undefined> {

...

if (!election.socketRoom) {

election.socketRoom = new SocketRoomEntity()

}

...

return await this.manager.save(election)

}

Listing 4.4: Code snippet to initialize an socket room entity in ElectionService.ts

The SocketRoomEntity stores information about the room state (Open/Close) and belongs to an

election.

As Listing 4.5 shows, the SocketRoom will associate the election room with an ElectionRoom

instance for a specific election. This ElectionRoom stores information about the total eligible

voters count as well as the vote information for each ballot.

CHAPTER 4. RESULT 90

// routes/election/index.ts

router.post('/', async (request, response, next) => {

try {

const socketRoomService = SocketRoomService.getInstance()

// ... election created

if (election) {

socketRoomService.createRoom(election)

}

response.status(StatusCodes.CREATED).json(election)

} catch (error) {

// error handling

}

})

// SocketRoomService.ts

createRoom(election: Election) {

const room = this._electionRooms.get(election.id)

if (!room) {

const ballotVoteInformation: BallotVoteInformation = new Map()

for (const ballot of election.ballots) {

ballotVoteInformation.set(ballot.id, {

stats: new BallotVoteStats(ballot),

voters: new Set()

})

}

this._electionRooms.set(

election.id,

new ElectionRoom({

totalEligibleVoters: election.eligibleVoters.length,

ballotVoteInformation: ballotVoteInformation

})

)

}

}

Listing 4.5: Creation of socket room for election

CHAPTER 4. RESULT 91

4.6.6 Initializing socket room

When the SocketRoom entity is initialized, the server will now generate a websocket room upon

first joining socket. The joining socket will be associated with an election as described in 4.6.3.3.

The SocketRoomService are then able to affiliate the socket with the correct electionRoom. This

room/channel is where the election events, i.e., pushBallot (4.6.7), submitVote (4.6.8), and oth-

ers are broadcasted.

4.6.7 Pushing a Ballot

A ballot can have three different states, In Queue, In Progress and Archived. The first state, In

Queue, indicates that the ballot has not yet been pushed.

Figure 4.11: Panel for an election in progress. From here, the election organizer can push the
selected ballot.

Once an organizer pushes a ballot to its eligible voters, an event is emitted from the administra-

tor panel to the server. As described in 4.6.4, the socket room service is responsible for handling

all elections that exist on the server. In order for an ballot to exist, an organizer must have an

election stored on this service. If no room exists for the election, pushing a ballot is impossible.

CHAPTER 4. RESULT 92

A fundamental part of a voting system (2.1.4) is to ensure voters can only cast one vote for a

given ballot. To ensure this, a ballot can only be pushed once to the voter. By utilizing the socket

room service, we are able to get information about who has voted on the ballot. When a ballot

is pushed for the first time, the ballot is indeed pushed to all voters. However, if a voter did not

get the pushed ballot, the organizer could push the ballot again. The conditional on Listing 4.6

would ensure that other already voted voters would not get a ballot multiple times. This solution

helps to ensure the integrity of the votes as it is more difficult to cast multiples votes on a ballot.

// Get voters on the ballot
const ballotVoters = room.getBallotVoters(ballotId)
if (ballotVoters.size == 0) {

// Send to all as no one has voted on the ballot
roomSocket.emit(Events.server.ballot.push, ballot)

} else {
emitBallotToNotVotedSockets(event.server, roomId, ballotVoters, ballot)

}

Listing 4.6: Push ballot logic from pushBallot.ts

Only one ballot can be displayed to the voter at any time, i.e., if an organizer pushes multiple

ballots before the voter has cast their vote, only the latest pushed ballot will get displayed. Since

a voter only is allowed to cast one vote per ballot, the organizers do not have to worry about

pushing the same ballot multiple times. If a voter has voted, the ballot will not be sent to that

voter again, and if the voter has not voted, the ballot is sent, enabling the voter to cast a vote.

Once the organizer has pushed the ballot, the ballot state is changed to In Progress, and the voter

will get the ballot displayed. From here, the voter can choose between the candidates or vote

blank.

If all voters have voted on a ballot, the state is automatically changed to Archived, indicating to

the organizer that there is no need to push the ballot again. If an organizer tries to push a ballot

that is archived, the organizer is notified immediately, and the ballots are not sent to any voters.

CHAPTER 4. RESULT 93

4.6.8 Vote Handling

Figure 4.12: Simple voting sequence

When a vote gets submitted by an eligible voter, the WebSocket on their device will send the

submitted vote to the WebSocket server on the backend. At the WebSocket server, a submit vote

event is registered, which includes a submitVote method which is responsible for handling the

backend side of the vote submission.

export const eventRegistration = ({ client, server}:
{ client: VoterSocket; server: Server}) => {

client.on(Events.client.vote.submit, (data, acknowledgement) =>
submitVote({ client, server, data, acknowledgement })

)
}

Listing 4.7: Event registration for submission of votes

From here, the vote will go through a series of validation steps:

1. The ballot being voted on exists in the database

2. The election being voted in exists in the database

3. If the election being voted in is ongoing

4. The candidate voted on exists and is connected to the ballot being voted on

5. That their is not an already existing vote for the ballot being voted on by the voter

If any of these validation steps fail, an error will be thrown and therefore the sequence of sub-

mitting a vote will be stopped. The thrown error will then be catched by the submitVote method,

and the error will be responded to the client in the form of a WebSocket acknowledgment.

CHAPTER 4. RESULT 94

} catch (error) {
if (error instanceof BaseError) {

event.acknowledgement(EventErrorMessage(error))
}

// {...}
}

Listing 4.8: Error handling for vote submission

If all of these validation steps succeed, the vote submission sequence will continue. The sub-

mitted vote will then be sent to the VoteService-class which is responsible for working with the

database regarding votes. Here, the vote data will be converted into Vote entity instance used by

TypeORM.

TypeORM will then try to insert the Vote entity to the database on the backend, here there are

also some validations being made:

• The voter id is a positive number.

• Their is a relation to the ballot being voted on.

• Their is a relation to the candidate being voted on.

If any of these validations fail, TypeORM will throw an error and it will be handled by the sub-

mitVote method described in listing 4.8.

4.6.9 Validation of election organizer

The validation of election organizers is done with the use of tokens, whenever an organizer is

logged into the system, the organizer will carry an access token. When an election organizer

wants to enter an election as an election organizer, the tokenJoin-method will send the token to

the verifyToken-method for verification. If the token is invalid, I.E. the election organizer is not

the owner of the election, the verifyToken method will throw an error. If the token is valid, the

verifyToken method will return the decoded token to be used further by the tokenJoin method.

CHAPTER 4. RESULT 95

verifyToken(authorizationSchema: string | undefined): DecodedTokenValue {
const token = this.getBearerToken(authorizationSchema)

try {
const decoded = verify(token, config.secret!) as DecodedTokenValue

if (!decoded) {
throw new UnauthorizedError()

}

return decoded
} catch (error) {

if (error instanceof JsonWebTokenError) {
throw new UnauthorizedError()

}
throw error

}
}

Listing 4.9: Simplified version of verifyToken method

CHAPTER 4. RESULT 96

The tokenJoin method will then tell the organizerJoin method to register all election organizer

WebSocket events connected to the election organizer. The election organizer is now fully veri-

fied to control their owned elections.

4.7 Frontend architecture and technologies

The overall frontend architecture consists of three parts. React for UI, Ant Design for a range of

base UI components, and Axios and Socket.io for backend communication.

4.7.1 React

The application structure is a component tree, with an App component at its stem. The app

component encapsulates the core components for the entire application. It includes an appli-

cation state component which holds the global application state, a router component that is

responsible for switching the different views based on the URL path, and a websocket manager

that exposes a socket.io provider to components that need a socket.io connection.

From the router component and down, the tree is switched out depending on the URL route.

The router component is divided into public and private routes. Public routes are routes that do

not require any form of authorization, e.g., home page, login, register. Protected routes require

authorization and are also controlled by an authorization level. An authenticated voter can not

access a protected route for an organiser, and vice versa. This is a frontend protection to prevent

users from accessing routes which would not give them any data or functionality.

4.7.2 Ant Design as a React helper

Ant Design is used as a way to quickly create a robust, user-friendly, and universally uniform

react UI. The biggest advantage of using Ant Design is how all components are uniformly de-

signed and all components communicate with ease. In the register election organizer form, you

CHAPTER 4. RESULT 97

only need to define what rules each form input field should have, there is no need to implement

the validation functionality since Ant Design provides this.

4.8 Backend architecture

The overall architecture of the backend consists of four parts, NodeJS as the web server, Post-

greSQL as the database, TypeORM to communicate with the database, express to provide the

HTTP endpoints, and Socket.io to enable web-socket communication. The database and web

server were encapsulated in their own docker containers.

Figure 4.13: Container architecture

4.8.1 Node server

For running the backend server we used Node since we needed a runtime environment that

builds scalable network applications. The node server sows together the express/socket.io com-

munication layer with the TypeORM and PostgreSQL data layer. Node also lets us write the

server in TypeScript, which enables us to only need one programming language for the whole

voting system.

CHAPTER 4. RESULT 98

4.8.2 Database

Our system consists of different entities that are stored in a database. The Entity Relation (ER)

diagram in figure 4.14 describes the relationships between the different entities. An election can

have an one-to-many relationship with ballots, a ballot can have an one-to-many relationship

with candidates. Each candidate can have many votes, but one vote can only have one candi-

date. An election organizer can have many elections and an election can have many eligible

voters. Each voter can also participate in many elections. The relationship between an election

and eligible voter is therefore many-to-many. Each election will also have their own socket room

with a one-to-one relationship.

Figure 4.14: Entity relation diagram

4.8.3 TypeORM, Class-Transformer and Class-Validator

By utilizing TypeORM, we have been able to create entity classes that map to tables in the

database. TypeORM uses annotations for specifying database column types. An example of

an entity can be found in Listing 4.10.

For the application to work, it frequently Create Read Update Delete (CRUD) entities in the

database. TypeORM provided an interface with intuitive CRUD commands. An example crud

command can be seen in Listing 4.11.

CHAPTER 4. RESULT 99

/**

* Represents the organizer of an election. An election organizer can organize many elections.

* An election organizer has a name, email, and password.

*/

@Entity()

export class ElectionOrganizer {

@PrimaryGeneratedColumn()

id!: number

@Column({ type: 'varchar' })

firstName!: string

@Column({ type: 'varchar' })

lastName!: string

@Column({ type: 'varchar', length: 255 })

email!: string

@Column({ type: 'varchar', length: 255 })

password!: string

@CreateDateColumn()

createdAt!: Date

@UpdateDateColumn()

updatedAt!: Date

@OneToMany(() => Election, (election) => election.electionOrganizer)

elections!: Election[]

}

Listing 4.10: Example definition of typeORM entity. The code does not include all fields and
annotations

CHAPTER 4. RESULT 100

// getAllElections() in electionService.ts

// ...

return await this.manager.find({

where: {

electionOrganizer: this.owner

}

})

// ...

Listing 4.11: Querying information with typeORM

Validations on entities To validate the data before storing it to the database, we have used the

class-validator library. The validator works by annotation the entity with the right restrictions.

A data object can then be run through a validator that will throw an error if any of the fields

does not comply with their restrictions. For instance, validating the firstName for the election

organizer can be done easily with class-validator using an annotation:

// ...

@Column({ type: 'varchar' })

@IsString()

firstName!: string

// ...

Adding more complicated validations were required in some cases. For instance, when creating

a new election organizer, we had to make sure the election organizer was unique. To do this, we

created our own validation annotation. The implementation and use can be seen in Listing 4.12

and Listing 4.13 respectively.

CHAPTER 4. RESULT 101

@ValidatorConstraint({ async: true })

export class IsElectionOrganizerUniqueConstraint implements ValidatorConstraintInterface {

async validate(email: string, args: ValidationArguments) {

const [relatedPropertyName] = args.constraints

const ownerId: number = (args.object as any)[relatedPropertyName]

const electionOrganizer = await getRepository(ElectionOrganizer).findOne({ email: email })

// if an election organizer is found, and the owner is not this organizer, return false

if (electionOrganizer && electionOrganizer.id != ownerId) return false

return true

}

defaultMessage() {

return ValidationErrorMessage.alreadyExists('Email')

}

}

Listing 4.12: Definition of validation constraint for a unique election organizer

// using the constraint in ElectionOrganizerEntity.ts

@Column({ type: 'varchar', length: 255 })

@IsEmail()

@IsElectionOrganizerUnique('id')

email!: string

Listing 4.13: A field with both custom and predefined restriction annotations

As seen in Listing 4.12, the annotation can be used anywhere were an email is supplied. This

type of validation can now be performed at every validation of an entity (see Listing 4.13). To

CHAPTER 4. RESULT 102

trigger the validation of an entity, the following code would run:

await validateEntity(organizer)

Class-transformer Some of the data stored is either sensitive (e.g., passwords) or not relevant

to the user (e.g., creation date), and therefore should not be sent from the server. To strip fields

from entities that we do not want to expose, we have used class-transformer (3.5.13.3). By an-

notating fields with the @Exclude and running it through the classToClass transformer, we can

strip away all unwanted fields.

async getById(id: number): Promise<ElectionOrganizer | undefined> {

return classToClass(await this.getElectionOrganizerById(id))

}

Listing 4.14: Example of how we have stripped data that does not need to be exposed by API

For instance, the election organizer would have @Exclude-decorators for createdAt and update-

dAt:

@Entity()

export class ElectionOrganizer {

// ...

@Exclude()

@CreateDateColumn()

createdAt!: Date

@Exclude()

@UpdateDateColumn()

updatedAt!: Date

}

Listing 4.15: Class-transformer decorators used in election organizer

CHAPTER 4. RESULT 103

4.9 Using third-party library

Throughout the project we chose to use third-party libraries where we could. This has enabled

us to create a more functional, more powerful, prettier and more secure application. We only

had minor issues with some of the libraries. This was mostly fixed by tweeking the configura-

tions of that particular library. E.g. both typeorm, eslint and prettier all have default settings that

they will use if no override is found. For typeorm we had to provide details about the database

in order for the connection to be established. Some of the default settings did not work and had

to be changed to fit the project’s needs.

4.10 Localizing the application

To localize the application, we used react-i18next (3.5.13.1). Every text string used in the web ap-

plication has been prepared for localization. The default language for the application is English.

A localized string looks like this:

export default function Home(): React.ReactElement {
const [t] = useTranslation(['site'])
// ...

return (
// ...
<Title level={1}>{t('site:How Anovote works')}</Title>
// ...

)
}

Listing 4.16: A localized string in home/index.ts

The "site"-namespace refers to a locale file where all translation used for "site" is stored. This is

a JSON (3.6.6) file with key-value pairs. Translating these files would allow localization to other

languages.

CHAPTER 4. RESULT 104

4.10.1 Providing meaningful error messages

To communicate meaningful and localized error messages to the user, we created an error-code

resolver:

CHAPTER 4. RESULT 105

/**

* Error code resolver is a helper class resolving error codes to

human readable error messages

* translated current language using i18next translation as resolver.

*/

export class ErrorCodeResolver {

private _translator: TFunction<string[]>

private _codeMappings: CodeMapping = [

{ code: ErrorCode.alreadyVerified,

message: (t) => t('error:Already verified') },

// code mappings...

{ code: ErrorCode.alreadyVotedOnBallot,

message: (t) => t('error:Already voted on ballot') },

{ code: ErrorCode.ballotArchived,

message: (t) => t('error:Ballot is archived') },

]

constructor(t: TFunction<string[]>) {

this._translator = t

}

/**

* Returns the error message for the provided code, if the code cant be

* resolved to a message, a default unexpected error message is returned.

* @param code error code to get error message for

* @returns return error message for code, or default message

*/

resolve(code: string): string {

const codeMessage = this._codeMappings.find((e) => e.code === code)

return codeMessage ? codeMessage.message(this._translator)

: this._translator('error.Unexpected')

}

}

Listing 4.17: Full ErrorCodeResolver-class implementation

CHAPTER 4. RESULT 106

The ErrorCodeResolver in Listing 4.17 use the error code from a response to get the correct lo-

calized string. For instance, the error code ALREADY VERIFIED would be mapped to

t('error:Already verified')

which react-i18next would resolve to a localized string "You are already verified with a device"

(see key-value pair in public/locales/en/error.json).

4.11 Continuous Integration and Delivery

We have incorporated Continuous Integration/Continuous delivery into out project by utilizing

GitHub Actions (3.7.7). The frontend and backend repositories are configured with their own

workflows which are run on pull requests, merges to the main branch, and on new tag releases.

Both repositories had quality assurance and building workflows, our backend repository also

contains a workflow for deployment. PRs would not get approved unless all GHA checks were

completed and successful.

4.11.0.1 Workflows

Spellchecker workflow ran a spellchecker on the source code to find spelling mistakes in our

code. The spellchecker understands variable and method names written with, e.g., camelCase

or PascalCase. This workflow ran on both repositories.

Backend testing and building workflow was performing linting, building, compilation error

checks, and running unit tests, as well as integration tests. The workflow also initializes a Post-

gres container to run implementation tests with a live database to ensure data integrity.

Frontend testing and building workflow was performing linting, building, compilation error

checks, and running unit tests and UI tests (3.7.1).

CHAPTER 4. RESULT 107

Change log generation workflow was run when a new release tag was pushed to GitHub (in

the event of a new release). This workflow generates a change log file in markdown (3.6.7) based

on the latest pull requests since the last release (see 4.15.4).

Production Deployment workflow was run when a release with a new version is merged into

the main branch. It performs an SSH login to the production server and executes our production

start script described in (4.16.2.2) to automatically deploy new versions of the application.

4.11.1 CI/CD process overview

The diagram below illustrates the steps of the continuous integration cycle for our development

branch. Pull requests for the develop branch will trigger this routine. The team receives notifi-

cations via Discord (3.5.8) during the process, and members must participate in the final step

by performing a code review to approve the changes.

The diagram below illustrates the steps of the delivery routine to production. The developer

uses the Git flow CLI to start a new release and publish this on GitHub. The release branch can

then receive hot fixes (via a pull request which runs the CI steps shown in diagram 4.15) before

the release is completed and merged into the main branch.

4.12 Environment files

As described in 3.8.0.1, we have used environment files to configure our different environment

setups.

Environment files are not tracked by git as a security measure on our backend and are config-

ured for the individual user/system. An example file is tracked by git to provide the necessary

variables that are required. Our backend makes use of two .env files (.env.test, .env).

Environment files on the frontend are tracked by git as these contain no security-related con-

CHAPTER 4. RESULT 108

Figure 4.15: Continuous integration routine for development

figurations and are embedded into the output of a build to provide the data on the website.

The frontend has three env files (.env.test, .env.development, .env.production). In local de-

velopment, a developer can override these env files by creating a non-tracked version with a

.evn.local.<test,development,production> file.

An env file is injected into the docker containers or red from file for the desired environment

(testing, development, or production) which are used by the application to configure itself. For

local development without docker, the file would be read from the source directory. When using

docker the file is injected into the container configured in the docker-compose file.

CHAPTER 4. RESULT 109

Figure 4.16: Continuous delivery routine for new releases

4.13 Tests and Quality Assurance

During the development of this project, we have practiced Test-Driven development. This sec-

tion will examine the different results for tests.

4.13.1 Unit, UI and integration tests

A total of 180+ tests have been been written for the frontend and backend parts of the system.

Writing tests led us to discover logical faults within our system early on. For instance, some tests

made us discover that a voter was able to cast multiple votes on the same ballot and were able to

modify the vote after it had been cast. The tests have also been a safeguard when refactoring the

core components of the system. Most of the tests on the backend are unit (3.7.5) and integration

(3.7.6) tests. For the frontend, UI tests (3.7.1) were written together with unit tests. Integration

tests for our backend included both API testing and integration with the database.

Automating tests All test suites have been possible to run locally, but for ensuring the quality

of the code, the test suites are run on every opened pull request with GitHub Actions (3.7.7), see

section 4.11.

CHAPTER 4. RESULT 110

4.13.2 Usability testing

Two qualitative usability tests were performed during the project. The tests were performed on

two different versions of the application. The usability test plan can be seen in Appendix D.1.

The usability test plan had tasks (2.8.6.1) the participant (2.8.6) should perform. A summary of

the feedback is given here:

• Participants were in two separate age group

• Most tasks were performed within expected time

• Not easy to see the ballot form, since it was at the right side.

• Difficult to remember/understand that you need to click OK after picking s. Did not un-

derstand eligible voter input. Bad spacing in election form.

• Knowing what "push ballot" does and is. What it means. Is not that intuitive. Maybe use a

simpler language

4.13.3 Large-scale User Test

When the application was up and running on anovote.app, we wanted to perform a large-scale

user test (3.7.4). The test occurred with 8 contestants. Out of this group, one inexperienced was

selected as an election organizer. The rest (3 inexperienced, 4 experienced) were registered as

eligible voters. The rest of this subsection will present some of the results from performing the

large-scale user test.

4.13.3.1 Quantitative data

• 10/10 tasks by the election organizer performed within the expected time.

• 6/7 eligible voters were able to vote in the election, giving a success rate of ∼ 86%.

anovote.app

CHAPTER 4. RESULT 111

4.13.3.2 Qualitative data

A summary of the qualitative data was gathered from answers from the large-scale user test

questionnaire, see Appendix D.

Election organizer

• Design was easy and simple, Nice looking

• Easy to start election.

• Easy to push ballot.

• Did not notice tooltip/tips indicators

• Difficult to understand some form fields. "What are they there for?"

• Small title/inseparable title for ballot creation.

• Missed overview over all eligible voters for an election in progress. "I wish there was a

count showing 6/7 connected eligible voters".

• Missed onboarding on pushing ballots.

Voter

• One eligible voter were not able to participate because of an unexpected problem.

• Design was small with larger screens.

4.13.3.3 Reported issue

One contestant had a "_" in his personal email address. This resulted in his autogenerated en-

crypted verification code (4.6.3.2) sent via mail failing.

CHAPTER 4. RESULT 112

4.13.4 Code formating and linting

We have used a formater and linter, that has been configured to run when files are saved. This

has resulted in clean and nicely formated code base.

4.14 SCRUM

By using SCRUM we have been able to have a structure yet agile development cycle through-

out the project. By following the framework, we have had regular meetings for discussing the

progress. The tools that the framework provides, e.g., product backlog, have proven useful and

effective when trying to organize work. We will continue by discussion some results of using

SCRUM.

4.14.1 Work estimation

Work estimation was done in plenum during the SCRUM planning meeting. Story points pro-

vided a flexible and predictable approach for estimating workload. At the start of the project, we

struggled with estimating tasks. This has changed during the project and we have been able to

sharpen our ability to make estimations.

We have also been more able to predict our work velocity with higher accuracy as the project

went on. At this point, we are able to have about 50 points at the beginning of each sprint, and

still manage to finish all our tasks.

As described earlier (3.3.5) we have used two different approaches for estimating the story points.

At the beginning of the project, task estimation would be given often before the task was even

described or right after the description. Usually this was done by the person that had submitted

the issue. This resulted in a lack of discussion regarding the task and the team would often move

fast forward in this process. We will discuss some drawbacks of this approach in 5.13.1.

CHAPTER 4. RESULT 113

During a period of the pandemic outbreak, the team had to resolve to home office and internet

calls during planning meetings. To make sure that all opinions were counted for, we introduced

planning poker. This "forced" all team members to have an opinion on the topic. We have found

this method to be the most effective and accurate.

4.14.2 Distribution of work

Throughout the whole project, we have distributed all work evenly between the members. For

the most part all members have been able to solve tasks as assigned. Only occasionally, when

some members where not able to fulfill all their tasks on time, have tasks been reassigned. There

has also been a strong sense of collaboration and a culture of both asking for help when neces-

sary, and giving support when needed or asked for.

4.14.3 Sprint

Sprints were run for one week, resulting in a high frequency of SCRUM meetings. Due to the

short sprint’s we have been able to calibrate our work load frequently. By calibrating often we

have been able to quickly get a good estimate for our velocity. We have also been able to priori-

tize tasks more often, helping us reach a Minimum Viable Product (MVP) earlier.

4.14.4 Stand ups

Stand ups have been held standing. Each team member described what he had been working

on, what may hinder further development and the continued work until the next sprint. We have

managed to have these meetings every day. Due to COVID restrictions, these meetings have

sometimes been held online. We have managed to keep to the time-boxing of 15 minutes. When

the meeting has happened online, there has been a tendency for the meeting to also include

socializing, which otherwise happens naturally in an office environment.

CHAPTER 4. RESULT 114

4.15 Version control and code collaboration

Below we present the results of using version control and associated technologies, and how it

has enabled us to collaborate on a common code base.

4.15.1 Git, GitFlow and GitHub

By using git and GitHub we have been able to keep control of our code base and have a reliable

platform for storing and managing the code. The GitFlow extension has provided a clean and

predictable branching strategy that was easy to learn and follow.

For keeping control over the git branches, we have used the following branch model:

• Main - Holds the latest release.

• Develop - The branch that holds the recent changes and fixes.

• Release - Created for every new release, deleted when merged into main.

• Feature - Created for every feature that is being worked on, deleted when merged into

develop.

• Bugfix - Created for every bug which is being fixed, deleted when merged into develop.

4.15.2 GitHub Issues

GitHub issues was used as the primary method for describing tasks and linking these to a repos-

itory. Some issues were related to several repositories. These issues were either split, with du-

plicate titles and descriptions, or associated PR where linked across repositories to the relevant

issue.

CHAPTER 4. RESULT 115

4.15.3 Pull Request

Pull requests have provided a clean and controlled environment to give and receive feedback on

code changes. GitHub has provided all the necessary features to do code review in a productive

manor.

4.15.4 Semantic versioning

We have added versioning to our application by using the GitFlow release feature. When finish-

ing a release branch, a new git tag is added to the project and pushed to GitHub. This in turn will

trigger a GHA workflow that generates a release on GitHub, consisting of the source code and a

change log, describing all changes between releases.

Figure 4.17: Autogenerated release

CHAPTER 4. RESULT 116

4.16 Project developed tools

As our project evolved, we saw that some aspects of the organizational work were repetitive,

error prone and could be improved. This led us to develop a set of tools and scripts to make our

organizational requirements easier and unify common tasks.

4.16.1 GitHub SCRUM chrome extension

We developed a Google Chrome extension for GitHub to provide extra functionality that GitHub

Project does not provide and add some issue/pull request helpers. As GitHub Project does not

provide any tool to have story points, we used GitHub’s label system to provide labels for story

points. These labels were attached to an issue/use story. As this is a creative way of providing

story points for issues/user stories, we would lose control of distributed points. Thus, we de-

veloped an extension that parses the work board columns for story points (Sprint backlog, In

progress and ready for review). Columns to parse is configurable in the extension menu. It in-

serts a total story points counter for all tasks in the sprint backlog(Marker 2 in Figure 4.18) along

with the number of issues. It also creates cards for all persons that have an issue assigned to

them in any of the columns, and displays how many points each person has in each of them

(Marker 1 in Figure 4.18). As cards are moved to other columns, all points are recalculated auto-

matically and each persons story point count and sprint backlog total count are updated.

Our extension will also provide reminder functionality when submitting a new pull or issue. For

an issue or pull request to be added automatically to our workboard, we have to assign it to a

project. We saw that we forgot this sometimes, so we implemented a large text warning when

creating an issue, and disabled create issue/pull request button and keyboard enter button until

a project is selected. The select project popup menu is automatically opened on these pages.

When a project is selected, the create button and enter key are re-enabled 4.19.

CHAPTER 4. RESULT 117

Figure 4.18: Scrum master work board preview

4.16.2 Environment setup

Our project uses Docker extensively in testing, development, and production. We therefore saw

the need for creating a utility script that would let us start, stop, and rebuild these environments

without having to remember the required commands, arguments, and options for each.

4.16.2.1 Anovote CLI

anovote is a shell script that provides commands to start, stop, and build our frontend or back-

end environment. It combines docker-compose commands with a set of arguments and links

different docker-compose.yml files for a given environments. Development environment is

started with:

anovote dev

Listing 4.18: Starting of development environment

CHAPTER 4. RESULT 118

Figure 4.19: Scrum master issue/pull request preview

Development environment is re built with:

anovote dev --build

Listing 4.19: Re-building of development environment

4.16.2.2 start-production

start-production is a shell script that is responsible for starting the whole production setup on

a production server. It generates SSL certificates through LetsEncrypt for our reverse proxy,

creates all necessary folders, moves config files, clones the frontend and builds it, pulls and

builds the backend and starts all docker services. The tool also comes with some argument

options.

To start production from scratch with new TLS certificates generation and building:

start-production.sh --cert --build

Listing 4.20: Start and build production with certificates

To rebuild only backend and frontend:

To restart production:

CHAPTER 4. RESULT 119

start-production.sh --build

Listing 4.21: Start and build production

start-production.sh

Listing 4.22: Restart production

4.16.3 Document generator

For our weekly sprint planning, review and retrospective meetings, we were using the same doc-

ument templates for documenting the meetings. We therefore created a JavaScript utility to

generate these files for us for a given sprint, and organize them in a folder structure. It produces

markdown files for the respective sprint and populates each document with a template. This

script can also generate meeting agenda and summary documents with week and date named

documents with a fixed template.

CHAPTER 4. RESULT 120

To create documents for a new sprint 4.20

ano -s

Listing 4.23: Generate documents for sprint

To create documents for a general meeting 4.21

ano -m

Listing 4.24: Generate documents for meetings

Figure 4.20: Generated sprint documets

4.16.4 Docsify sidebar generator

Our organizational documentation is hosted on GitHub page docs.anovote.app and makes

use of a tool called Docsify to generate a presentable website from markdown files. It has sup-

port for navigation display through files called _sidebar.md in folders where this is wanted,

which must be linked to through a sidebar.md file in the root directory. We developed a JavaScript

utility to generate and populate these sidebar files for our documentation tree of markdown

files. Folders that do not contain markdown documentation are ignored by having a _ignore file

inside them, which ignores the content of that folder and sub-folders.

To generate files (organization repository) 4.22

node navgen.js

docs.anovote.app

CHAPTER 4. RESULT 121

Figure 4.21: Generated meeting documents

Figure 4.22: Output from navigation generation

4.17 Design

At the core of the problem definition of Anovote, lies the definition of being able to organize

elections with a simple and elegant user interface. Early in the development process, sketches

of how the user interface for organizing and participating in elections were created.

4.17.1 Wireframing

After brainstorming ideas, we could start by creating wireframes for the different stakeholders

(see 4.2) of Anovote.

4.17.1.1 Voter perspective

We developed wireframes from the voter perspective first. The main flow of a voter’s perspective

includes; joining, authenticating, waiting, voting, results/logout. As figure 4.23 displays, this flow

CHAPTER 4. RESULT 122

is the starting point for developing the experience for the voter. The voter perspective was devel-

oped with a "mobile first" mentality (2.12.2), as we predicted that most voters would participate

from their smartphones.

Figure 4.23: The main flow for a voter, designed with wireframes.

Alternatives An important part of designing wireframes is the ability to quickly generate struc-

tural elements that suggests how the design is working. As a part of this, different wireframe de-

signs and alternatives were considered and developed. Figure 4.23 showcases all the alternatives

that were created for the voter.

Candidate list A major consideration for the wireframes went into finding out how the can-

didates should be displayed in such a way that it (1) suggests to the voter that you may not see

all candidates, (2) the order of the candidates should not influence the voters consideration (3)

the order of the candidates are equally worth. As a part of this, two main designs for displaying

candidates were presented:

CHAPTER 4. RESULT 123

Figure 4.24: Variants proposed for choosing how candidates should be displayed. "Row design"
to the left.

After considering both alternatives, we decided to go forward with the row alternative.

Ballot information Getting all information for a ballot is essential. Knowing what you are cast-

ing your vote on is vital, hence the title should be very visible for the voter. Initially, ballots could

have a title, description, and image at maximum. With description and image being optional.

We created wireframe mockups for some of the cases, to display how it would look for the voter

in different scenarios.

Figure 4.25: All cases of displaying information of the ballot

CHAPTER 4. RESULT 124

4.17.1.2 Organizer perspective

Figure 4.26: Wireframes of all use cases for the organizer

Wireframe was also developed for the organizer panel. UI design mockups have been created for

the organizer panel. A full view of the UI design of the organizer panel can be seen in Appendix

A.3. The design of the organizer panel have been crafted to comply with Don Normans Design

Principles (see 2.12.1.

4.17.1.3 Landing and about page

Wireframes and UI design mockups were produced for the landing and about page, see Ap-

pendix A.

Chapter 5

Discussion

In this chapter we will examine the work and decisions that has been done during the project.

We will look at how the project have been developed, the results we have made and the compli-

cations we have met along the way. We will also point out how the ongoing COVID-19 pandemic

has affected our work, and the adaptations we have had to make as a part of this.

5.1 General result

Through a methodical and structured approach, applied knowledge and hard work, we have

been able to deliver on the goals of our application (1.3). In our preliminary project plan we

made a list of features for our application (C). Some of these features we have not been able

to implement (see 5.2). This has mostly been due to time constrains. We had agreed to spend

about six hours a day, five days a week working on the project, excluding holidays and exam

preparation. Early on in the project we expanded the working hours in order to meet our project

exceptions. On average we have been working on the project eight hours a day. We clearly

overestimated the amount of work we would be able to in order to complete the project. Still,

we have manage to create an application that is production ready and available to the public.

125

CHAPTER 5. DISCUSSION 126

5.2 Functionality

While we already have implemented a lot of core logic, there are still features we have started

work on but not finished. Below we discuss some of these missing features. We will also briefly

discuss some benefits of the logic we have implemented.

5.2.1 Election

We wanted ballots to have options both for how they could be voted on and how the results

should be displayed.

We had plans to implement "select multiple" and "ranked" voting options. "Select multiple"

would allow voters to vote on more than one candidate, "ranked" would allow the voter to rank

all candidates. As "result display"-options we wanted the organizer to be able to display "none"

or "ranked". The "none" option would not display who won, and "ranked" would show the top

three candidates. As of now, only a single candidate is activated, and the ballot results can only

be displayed with a single winner. Only the organizer can view the results. We had plans to

enable publishing the results to all voters.

Automatic push ballot It is possible to set a start date for an election. This would change the

state of the election automatically from Not Started to Started. In reality this feature has no real

benefit to the organizer as he/she would still need to manually push ballots to the voters. We

have plans to elevate this functionality where ballots would be pushed automatically to voters.

5.2.2 Election Life cycle

The election life cycle states provide an intuitive state management for each election. The states

make it easy to validate if voters can enter an election or not, what components should be ren-

dered by the organizer and what can be edited.

CHAPTER 5. DISCUSSION 127

There are still some edge cases that we have not addressed. E.g., it is possible for an election to

be started without any voters or ballots. This does not make any sense in the real world as there

is no use in voting if there are no ballots, and no use in holding an election if there are no voters.

5.2.2.1 CRON jobs

We used CRON jobs to check if an election was supposed to be open or closed. The CRON jobs

check each election every minute, which lead to only one job running at a time and was fast due

to a minimal amount of SQL queries, the only cost being elections not opening or closing on

time. We could also implement the CRON job to only run when needed, which would lead to

elections opening or closing on time. However, this could lead to the possibility of many CRON

jobs waiting to do work, allocating unnecessary resources. Since the open and closing times of

an election are not time-sensitive, we kept using the first approach.

5.3 Voting Implementation

As Haines et. al [114] have concluded several times, developing a secure and bug-free imple-

mentation of an electronic voting system is a difficult and time-consuming task. There are also

wide varieties of possible algorithms and protocols that are viable candidates for such a system.

Choosing an established and mature solution is also a time-consuming task. With recommen-

dations from our supervisor, we were advised to move forward with the project and make the

basic application work without a proper secure and anonymous protocol implemented.

We had from the very start looked at different design patterns to be able to easily swap out the

voting protocol if we needed to. Since the protocols work in different ways, easily swapping one

for another has proven difficult. We decided that it would be easiest and possibly wisest to only

rely on one voting protocol and build the solution around this decision.

To make sure that there is only one vote per voter, the system needs to keep track of who has

voted. The way the system works today it is possible to determine who cast what vote. This

CHAPTER 5. DISCUSSION 128

would take some effort, but the system is not truly anonymous. There had to be made additional

work to make sure that the votes would not be traceable but at the same time make sure only

one vote per voter and still make the voters able to verify that their vote was cast.

There is also a security hole in the system that we will briefly discuss. Lets say that a person

A is eligible to vote in an election. If person B enters the credentials of person A into the "join

election"-form, an email will be sent to person A. If person A is not cautious and clicks the ver-

ification link, person B will be able to join the election with the identity of person A. This will

happen if and only if A has not joined the election already.

The system can not be said to be truly anonymous with the current implemented solution. A

vote can be traced back to the server side by cross-linking votes to election ballots. This is only

possible if you have full control of the system, i.e., the database and server logs. This requires the

voters to trust the platform. A vote is however protected during transmitting since all commu-

nication happen over secure connections. Thus, any vote sent to the server can not be altered

or eavesdropped during transmission. The election organizer has no access or authority to view

any submitted vote data, except for the candidate vote count for a given ballot. Vote counts are

only accessible by the owner of the ballot, i.e., the election organizer.

Another issue is that a voter has no option to verify or validate that their vote was submitted

correctly or even part of the tally.

5.3.1 Blockchain as an Election Mechanism

Blockchain would be a viable option to hold immutable and anonymous elections. The require-

ments of running applications on the etherum blockchain proved to be too high. The main

issues are due to network fees, but also processing speed. Voters and election organizers would

be required to own Etherum and spend portions of it for any action on the platform. Processing

speed could vary on the network, which could provide issues when using the public ethermum

chain. The etherum network can only perform 15-30 transactions each second, which can result

in large delays for our real-time needs.

CHAPTER 5. DISCUSSION 129

5.4 Client-server communication

As described in section 4.5, we have implemented two different modes of communication be-

tween the clients and the server. While it would be possible to run all communication through

just one of these two modes, both have their drawbacks. HTTP requests to a Rest API is really

good when the result of a request only affects two parties, the client and the server. When there

is a need to notify several clients of a change, the Rest API cannot handle this, as it has no way

of reaching out to clients. Through basic http requests the server is only ever able to respond to

incoming request.

Web Socket on the other hand is able to conduct bi-directional communication, were both the

server and the client can initiate data transfer. WebSockets are also able to communicate with

multiple clients at ones, making updating data across all clients in real time. To get the same

functionality using HTTP request the client has to resolve to HTTP Polling. There are signifi-

cantly less overhead when communication over a WebSocket compared to HTTP request. One

issue with websockets is that it is hard to scale them horizontally [105]. If there would be a lot of

users using the system simultaneously, a WebSocket server might struggle to deliver. Spinning

up an extra WebSocket server means that the developer has to syncronize the events across mul-

tiple servers in order to reach all clients. In the same scenario adding an additional HTTP server

is easy, and comes at very little additional cost to the developer.

In our application, we probably would suffice with using just WebSockets as our mode of com-

munication. We knew from the get go that we had to use WebSockets in order to get the immedi-

ate response callback functionality that we wanted. Our choice to use both HTTP and WebSock-

ets, came as less thought out process. Implementing the HTTP request endpoints has probably

added some extra overhead to our application. On the other hand, HTTP calls are easy to test,

build and manage. With the added benefit of being able to scale well, we don’t see the added

work as a waste, but rather as a possibility to learn common technology and an investment in

future redundancy for the application.

CHAPTER 5. DISCUSSION 130

5.5 Framework decision

We started by using Deno as the runtime environment for both frontend and backend as it im-

proved upon Node and were developed by the same person. However, when using Deno, we

kept running into issues with third party libraries that were premature for professional devel-

opment. The main issue was the Deno port of TypeORM, as it did not have full support for a

PostgreSQL database. This led us to discuss the choice of runtime environment.

To stay with Deno, we would have to switch from PostgreSQL to MySQL for the database, which

might lead to further issues. Porting to Node would take a full sprint to perform, taking time

away from implementing new features.

As we had already met issues with third-party libraries being poorly ported, we did not have

confidence in the Deno eco-system being ready for professional adoption. We decided to port

from Deno to Node, as the time spent porting would be gained by the time spent dealing with

third party issues [57].

When it came to frameworks and libraries that ran on the runtime environment, we felt like we

made the right decision. React and Ant Design let us build a solid and good looking web UI with-

out much hassle. On the server, we also felt like we had made the right decision, TypeORM made

the management of data effortless, Node, express, and Socket.io made the communication with

the frontend easy.

5.5.1 Database handling

Deciding to use an ORM has proven to be invaluable. The alternative would have been to setup

the database by writing and running all SQL statements manually. This means writing all table

creation and crud queries from scratch. Writing complicated SQL statements is both time con-

suming and prone to errors, possibly resulting in bugs. When any of our entity classes would

change, all relevant queries would have needed to be updated, adding additional work to any

refactoring, possibly introducing new bugs. By using an ORM, we could simply forget about this

CHAPTER 5. DISCUSSION 131

problem and let the ORM handle all SQL statements.

Another key benefit of using an ORM is that it uses prepared statements by default, mitigating

any SQL injection attacks on our system.

5.6 Third-party Library

As described earlier, by using third-party libraries, we were able to create a richer and more

secure application in less time. Other libraries we would not have been able to create with our

current knowledge, and the application would have been impossible to create without these

libraries. Especially Socket.io [102] was crucial for the application. This library has taken years

to develop and requires knowledge of internet protocols that we do not possess.

Bcrypt (3.5.13.4) [9] was used for hashing passwords before saving them to the database. Even

though we understand the basics of the hashing algorithm and with enough time and effort

would have been able to write code with similar functionality, there is a high probability that we

would have implemented bugs and errors during development. We therefore found it wisest to

use tested and approved third-party libraries when doing operations that revolve around secur-

ing the applications. Another example of this is helmet [37]. It’s a simple library that changes

the http headers of server responses. While we could have set all these manually, and thus did

not depend on yet another library, having a middleware that is already tested and widely used,

made us more confident that the settings would be appropriate. By using such libraries, it en-

abled us to move ahead quicker and focus our attention on other key mechanics that could not

be solved by external libraries.

While using external libraries, there are some potential drawbacks that we needed to consider.

These drawbacks have been described in 2.6.8. While in early development, we tried to use

Deno as our main runtime environment on the backend. A lot of third-party libraries for Deno,

i.e., typeORM, were not properly developed and had several bugs or missing features. This de-

pendency therefore made our development halt.

CHAPTER 5. DISCUSSION 132

This kind of dependency block is not sustainable for a project like ours, where the limited time

for development is critical. We could simply not wait for the library to be patched and fixed

sometime in the future. After moving away from Deno and over to Node, we had not experienced

any of the drawbacks described earlier. We see this is one of the main advantages of working on

established, well supported and widely used frameworks and technologies.

5.7 Localizing our application

Currently, the application does not support other languages than English. In our requirement

specification (see Appendix C), we wanted to localize our application to a minimum of two lan-

guages, English and Norwegian. This requirement has not been fulfilled. Localizing an applica-

tion takes time to implement and has sometimes been a pain to take into consideration. We do

however, believe that the time and effort of localizing the application from the start, prove to be

a better option than possibly refactoring all text at a later point. At the state the application is in

now, adding additional languages just requires us to add JSON files with translations for all keys

in the application. This task can also be outsourced on different platforms online, and requires

very little technical skills to resolve.

5.8 Code Style Aiding

Early in the project, we decided to use a common code style and linting to aid our coding. Agree-

ing on a common code style can be a root of discussion and argument within software teams.

We also had minor discussions of how we wanted to format our files. This dispute was settled

by majority rule. Making prettier enforce these rules on save has helped us to comply.

The linter will show information in the IDE according to the rules applied. The warnings has for

the most part been of great help. We have, however, experienced that some warnings has not

been relevant, or unfixable. E.g., we have had a rule saying that we can not declare a variable as

the any type. When working with third-party libraries this has sometimes been avoidable, as we

CHAPTER 5. DISCUSSION 133

could not predict what datatype it would receive and use. In these cases we have had to disable

the linter for that specific part of the code.

5.9 Version Control and Code Management

Version control has proven to be a crucial tool for software development as a team. Git has pro-

vided the necessary functionality to provide a secure way of merging work from several sources.

With the framework that git flow has provided, managing and controlling different branches has

made the process a lot smoother.

The integration between GitHub and git has also made working with the project from different

places easier. We have been able to develop on our computers, create pull requests on GitHub,

and then review the changes on our phone. All this has been a simple solution.

5.9.1 Semantic versioning

We chose to use the GitFlow toolkit, as it gave us a structured strategy for creating and deleting

branches while building out the application. When the GitFlow commands were run correctly,

they made working on multiple branches elegant and easy.

By adding the versioning to our application, we have made a foundation for keeping track of

releases. We found the workflow to be simple to follow and easy to execute. Combined with

GitHub Actions that produce changelog statements, versioning has become a quite powerful

tool.

The author and designer of the GitFlow workflow does not recommend to use the release fea-

ture for building web apps, as web apps should be CI. He recommends using the GitHub flow

method. The GitHub flow method is a simplified version of the GitFlow workflow [108].

We found that by using the release workflow, it could mark clear milestones. When combined

with auto-generated changelog, it gives a quick indication of the changes that have been made

CHAPTER 5. DISCUSSION 134

since the last release.

We have found that, even when developing a web app, using GitFlow can organize branching

in a structured and predictable way. Adding GitFlow does not really add any drawbacks, it only

adds tools that might not be used as often, or used for other purposes than intended, e.g., trigger

changelog workflows.

5.10 Self Developed Tools

During our work, we developed a few tools and scripts primarily to automate tasks. We will

discuss the reasoning for this extra work and if the effort was worth it.

5.10.1 GitHub Scrum Master

While GitHub has several built-in tools to help aid agile development processes, it has not been

developed specifically to facilitate the SCRUM approach. There are other platforms that are

better suited for SCRUM, like Atlassian Jira [103].

GitHub was chosen as we liked how code, issues, comments, pull-requests, and workboards

could coexist in the same ecosystem. We did not know of any other (free) platform that made

this possible. Because we had chosen to use the SCRUM, we saw the need to adapt GitHub to

our needs.

The adaption was done through a creative use of the label feature in GitHub, and building an ex-

tension for the Chrome Browser (4.16.1). This has made our GitHub project board more SCRUM

friendly and management easier. In sprint planning, and throughout the sprint, it provided a

good overview of how many story points had been estimated and points distributed. We feel that

the extra work developing the extension was well worth it, since it has resulted in less overhead

when conducting sprint planning, and have provided an overview of how each team member

was doing story point wise.

CHAPTER 5. DISCUSSION 135

5.10.2 Anovote CLI

During development, we used Docker containers to run the different parts of the application

(see section 3.5.15 for more details). Controlling containers can be done through a CLI. The

commands can often become long and complicated, with several parameters that have to be set

in order for the containers to start with the right configuration. These commands can also vary

based on the environment they are run in (development, production, testing), what they should

do (starting, stopping, cleaning, building), and are often run multiple times a day. To mitigate

the possibility of error and to provide an easier way of starting and stopping containers, a simple

bash script was written.

The team would use this script to a varying degree. Some might only use the script in certain

situations, e.g., when starting services on the server, while some use the CLI extensively. We

found the script to be useful and a skill that is good to master. However, the Node package file

also comes with the ability to create custom commands, leaving the anovote cli redundant.

5.10.3 start-production script

To automate our deployment on the server, we utilized GHA workflows to log onto the server

over ssh and run commands. Putting commands into a workflow file and then testing them can

be quite cumbersome and difficult. To avoid this, we wrote a simple script that the workflow

could run when it got onto the server. This script could then be tested on its own, making it

easier to see if the results were what we expected. The tool for starting a full production en-

vironment makes it very easy to setup a production environment on a new server, as well as

providing continuous delivery to an already running system. The start-production script has

proven very effective and has made our CI/CD workflow easy and reliable.

CHAPTER 5. DISCUSSION 136

5.10.4 Document generator

During all meetings we have made meeting summaries. To make documents have the same

structure, we have written a document generation script. This script has been used every week

and has made sure that all documents uses the same layout, inserting the correct dates and

naming convention for files.

Overall, we found that the extra tools we have created have made our day simpler and repetitive

tasks automated. While these tools take time to develop, the time saved by the tools quickly

adds up, leaving more time to focus on resolving sprint goals. We think that the additional time

spent on developing these tools has come to good use for all members in the project, in the form

of providing uniformity, error prevention, and reducing time spent on wrongly used commands

or configurations.

5.11 Testing

During the development, spending time on writing tests was without a good time investment.

The time spent on writing tests was gained in time that would have been spent on fixing bugs

that spiraled out of control since they were not spotted early enough. When writing tests, the

team would also be able to develop the features more confidently, as we felt that any new fea-

tures added would be added safely and without breaking the whole system.

However, there were also a few times we assumed we had good test coverage, which could lead

to the team feeling a false sense of security. If we worked on a new feature, we were under the

impression that it was safe to implement since the test coverage was good and none of the tests

failed. This could result in us forgetting to write tests for the feature, and the faults and/or bugs

of that feature would be spotted later than we wanted.

CHAPTER 5. DISCUSSION 137

5.11.1 Usability Tests

Due to the restrictions to combat the COVID-19 pandemic, we found it difficult to perform a

series of qualitative usability tests. There were only a few times during the project that we had

the opportunity to perform one-to-one usability tests. Most of the time, the questionnaire and

test plan was not finalized. When we got the chance to complete a qualitative usability test, we

found it to be helpful. Some of the feedback we gathered has already been fixed or reworked.

In an ideal situation, we would have arranged more usability tests to get an even better under-

standing of what we should have improved, and how realistic users use the application.

5.11.2 Large-scale User Test

In the one large-scale user test we performed, the most notable feedback was on the graphical

design of the application. Some of the titles were small, no onboarding and/or in the form of

hints, no overview over all eligible voters, voters in a started election and a lack of intuition on

what some form fields are for. This led to changing the graphical design of the solution based on

the feedback that was received (see 5.12). The fact that we got a large amount of feedback on the

graphical design might indicate that more usability tests should have been performed earlier in

the project, before actually implementing the graphical design.

The large-scale user test discovered one critical issue with our implementation of the verifica-

tion code generation (see 4.6.3.2). We would not be able to discover this issue so fast, if it would

not have been for arranging a large-scale user test. The implementation of our verification code

generation that is sent via mail used a "_" underscore as a delimiter for the code before it gets

encrypted. Since this is an acceptable character for use in mail, the verification of the decoded

code would fail because it would delimit the wrong parts of the code. Luckily, this critical issue

was fixed shortly after performing the user test.

CHAPTER 5. DISCUSSION 138

5.12 Modifying the design

The original design of the Anovote website does not differ drastically from what has been im-

plemented. There are some adjustments that have been made as a part of using Ant Design UI

components (see 4.7.2), however such adjustments are to be expected. For designing the voter

perspective, a mobile first approach was used. This is because mobile phones are a widespread

device and more accessible. When designing the organizer panel, we did not follow the mo-

bile first approach. This led to a lot of unnecessary refactoring of the UI later in the project. As

we improved the support for mobile devices, we experienced the overall design and flow of the

webpage to improve.

After performing usability tests and large-scale user testing, we got a better understanding of

how a realistic user of our product used it. The feedback from these usability tests were espe-

cially important. A common pattern in the feedback was that form elements were difficult to

understand, and generally that the domain-specific words (election, ballot, eligible voter) were

difficult to understand for a Norwegian speaker. This feedback has been added as issues on the

workboard. From then have we tried to improve the layout and design of the web site.

5.13 SCRUM

Scrum is a clearly structured and well-defined framework for developing software. During our

development, we had to deviate a bit from the core model to make it work for our needs. Still,

the framework was adaptable enough to be constructive to our process.

During the whole project, we were missing two key roles in the model, the product owner and

the scrum master. The lack of a product owner caused the product to move forward in a less

organized manner. The team would agree on what they wanted to work on, even though this

might not help the project move forward in an incremental way. As an example, we have built

the frontend logic for having several different ballot display options, long before we were even

able to display a ballot at all. It is hard to say that the lack of missing roles would prevent this

CHAPTER 5. DISCUSSION 139

development from happening. On the other hand, we have experienced that it is easy to lose

track of what is essential when only focusing on the end goal and not on the incremental process.

The SCRUM masters main objective is to make the team follow the agile workflow and guide the

SCRUM process. During the development of the project, the teamwork has never halted or had

any major difficulties, even though we were missing a SCRUM master. There has been times

where our focus has drifted during meetings etc, where a SCRUM master might have been help-

ful to keep the work structured. However, for the most part we are happy that we could manage

without this role involved in the team. We can only speculate, but part of this success might be

related to our experience working with SCRUM, and our knowledge of the SCRUM masters re-

sponsibilities. Because of this knowledge, the team has managed to adapt these responsibilities

and use them when necessary.

5.13.1 Work estimation

As already described (see 3.3.5), we have used two different approaches when trying to estimate

work. After moving to planning poker, we have experienced that task description and discus-

sion has been deeper and more meaningful. The team members have thereby gained a deeper

understanding of the task prior to estimating.

Planning poker is effective at showing how different members evaluate a task. If the team dis-

agreed when presenting their estimation, new questions and discussions about the task could

be had. This would often further deepen our understanding of the task and the team would be

more able to agree on an estimation.

Using a baseline task as a reference has often helped us being able to predict more accurately.

But estimations are always based on the teams collective knowledge. When task are distributed

to team members with higher or lower knowledge of the task, estimations might be inaccurate.

As said by Radigan: ‘Agile estimation is just that: an estimate. Not a blood-oath [132].‘ When

we have not been able to complete tasks they have for the most part been planned for the next

sprint, and in some cases been moved to the product backlog.

CHAPTER 5. DISCUSSION 140

5.13.2 Motivation, psychology, and team work

The team started the semester with a high expectation and motivation for the project. We es-

tablished a good group dynamic and openness very early on. This made grounds for us to have

open discussions and statements regarding our well-being and acceptance of explaining con-

cerns, and do private errands without any issues. As the project progressed, we felt that time

was our biggest hurdle. The time pressure to complete issues within a sprint and the constantly

growing backlog of planned features and reported bugs. This led to longer work days week after

week, which resulted in strain on some of the team members. One member was starting to feel

burnt out midway through the project. The consequence was feeling less motivated and slight

irritation. This was communicated and brought up during sprint retrospectives, and the work-

load was adjusted accordingly to ensure that we could reestablish motivation and engagement.

5.13.3 Remote vs on-location work

Due to current COVID-19 pandemic restrictions, we were working from both the school and

remote/home. The effects this had on each team member varied, some team members already

enjoyed working from home and had no problems, while others had a strong need to work in an

office environment in order to work efficiently.

Stand-up meetings were also effected by this change in the work environment. By recommen-

dation from our supervisor, we performed stand-up meetings standing. This resulted in the

meetings being efficient and short. Performing the stand-up from different locations meant do-

ing it online and sitting instead of standing. This made the stand-ups longer, less efficient, and

imprecise.

This effect might have a two-part explanation. When standing, the team would finish more

quickly since it was uncomfortable to stand, and less likely to be distracted by the computer.

When sitting, the team was more comfortable and therefore did not have the urge to finish

quickly, leading to discussions lasting longer and sometimes getting distracted. The other rea-

son is that stand-ups where less effective can be related to the need for social interaction. During

CHAPTER 5. DISCUSSION 141

work at school, we would often have conversations while developing. When working in isola-

tion from home, stand-up would be a natural time to discuss topics not related to the sprint,

sometimes resulting in occupying some of the allocated time.

Chapter 6

Conclusions

This project’s goal has been to develop and implement a full-stack digital voting system that

allows election organizers to arrange digital elections which evade the need for manual counting

and registration of voters. In this report, we have aimed to describe how we went about solving

this task.

The process has been demanding, but our work has proven that it is possible to build such an

application using TypeScript and Node as the primary technology stack. At the same time, we

have experience that relying heavily on cutting edge technology might cause problems. Being

able to find alternatives early and replacing the stack when needed is a key take away from the

process.

6.1 Problem solving

To resolve all project goals, we have adapted an agile process with the SCRUM framework. We

have been working on established frameworks and technologies based on TypeScript and Node.

The development team has used the same software for doing work with coordinated linter and

formatter. We have used Git and GitHub to manage our code base and we have elevated GitHub

to arrange, report, discuss, and plan the upcoming task.

142

CHAPTER 6. CONCLUSIONS 143

6.2 Recommendations

SCRUM provides a clear and structured framework for developing a software product. Even

when deviating from the model, the framework has proven flexible enough to be helpful in mov-

ing the project forward. The SCRUM agile approach has been very useful to the team and is

recommended for anyone wishing to conduct similar projects.

Git and GitHub have been of great help for organizing code and making collaboration easy.

GitHub has also worked great for organizing work. We would recommend the platform for any-

one seeking to develop an application.

GitHub has not proven so useful when working with SCRUM, but by exploiting some platform

features and developing our own extension, we have been able to make it work for our needs.

6.3 Our Contribution

By the end of the project period, we have been able to deliver a product ready application, which

now is available to the greater public.

We have also developed a chrome extension that can make GitHub seem like a SCRUM man-

agement tool. The extension is open for anyone to use.

6.4 Further Work

The application still has unimplemented functionality. The most critical part is to make the

voting system comply with the criterion described in 2.1.4, and make the voting actually anony-

mous. There are also several features remaining that we would have liked to be added. Some

of them are password protected elections, the possibility to choose more than one candidate

and ranking candidates when voting, have different forms of displaying the results, export the

results as CSV or other data format, and implement a search bar.

CHAPTER 6. CONCLUSIONS 144

We would also like to upgrade some dependencies to the latest version, especially Socket.io v4

has added new functionality that would benefit the application. The upgrade has not been done

as it could break the application.

The application could also use more testing and auditing to reveal bugs and edge cases which

we have yet to find and fix.

Appendices

A Wireframes and UI Design

B UML Diagram

C Requirement Specification

D Large-scale user test & Usability test documents

145

Appendix A

Wireframes and UI design

A.1 Voter wireframe

Figure A.1: All cases of displaying information of the ballot

146

APPENDIX A. WIREFRAMES AND UI DESIGN 147

A.2 Organizer wireframe

Figure A.2: Wireframes of all use cases for the organizer

APPENDIX A. WIREFRAMES AND UI DESIGN 148

A.3 UI design organizer panel

Figure A.3: UI design for Anovote organizer panel

APPENDIX A. WIREFRAMES AND UI DESIGN 149

A.4 Landing page wireframe

Figure A.4: Wireframes for landing and about page

APPENDIX A. WIREFRAMES AND UI DESIGN 150

A.5 Landing page design

Figure A.5: Landing page design for https://anovote.app

https://anovote.app

Appendix B

UML diagrams

B.1 Sequence diagrams

151

APPENDIX B. UML DIAGRAMS 152

The following diagram illustrates the join/verification mechanism. It shows the events, deci-

sions, and calls that are executed down the application chain from when a voter submits the join

button until they are verified. A full scale image can be seen in (/attachments/figures/uml/join-

sequence.png)

APPENDIX B. UML DIAGRAMS 153

Figure B.1: Join and verification sequence diagram

APPENDIX B. UML DIAGRAMS 154

The following diagram illustrates the vote sequence from when an election organizer pushes

a ballot to a tallied ballot. A full scale image can be seen in (/attachments/figures/uml/vote-

sequence.png)

Figure B.2: Vote sequence diagram

Appendix C

Requirement Specification

A Voter features

Speci f i c at i on Impor t ance

A voter must be able to vote Must have

A voter must be able to login Must have

A voter should be able to view the result of each vote if enabled by the vote caster Nice to have

A voter must be able to close and open the voting service and persist sessions Must have

A voter must be able to logout Must have

A voter should be able to change language Nice to have

B Election administration panel features

155

APPENDIX C. REQUIREMENT SPECIFICATION 156

Speci f i c at i on Impor t ance

An election organizer must be able to login Must have

An election organizer must be able to logout Must have

An election organizer must be able to register Must have

An election organizer must be able to create a new election Must have

An election organizer must be able to invite users to an election Must have

An election organizer must be able to see casted vote results Must have

An election organizer must be able to create an election template Must have

An election organizer should be able to change email and password Nice to have

An election organizer should be able to export election results Should have

An election organizer should be able to see the current ballot results in real time Should have

An election organizer should be able to delete an election Should have

An election organizer should be able to change the theme of an election Should have

An election organizer should be able to change the language Should have

C Ballot features

Speci f i c at i on Impor t ance

A ballot must have a title Must have

A ballot should have a description Should have

A ballot can have an image Nice to have

A ballot could be cast as blank Must have

A ballot can be of different types Must have

A ballot must be easy to understand what is being voted on Must have

APPENDIX C. REQUIREMENT SPECIFICATION 157

D Election features

Speci f i c at i on Impor t ance

An election must have a title Must have

An election should have a description Should have

An election must have a list of ballots Must have

An election should have a progress bar Should have

An election must be able to push ballots to voters Must have

An election should have a due time Should have

E System features

Speci f i c at i on Impor t ance

The votes must be untraceable Must have

The voter must be validated Must have

The system should support multiple login options Should have

Appendix D

Test Documents

D.1 Usability Test Documents

158

19/05/2021 Useability testing

https://docs.google.com/forms/d/13re0hFzqyyJqRaVctfmBjfXi0T7a-lVQWRxqQy9K_Ek/viewanalytics 1/13

FOR TESTER: How are you recording time?

2 responses

Screening

Which age group do you belong to?

2 responses

Useability testing
2 responses

Publish analytics

Screen recording
Stopwatch

100%

0 - 18
18 - 25
25 - 35
35 - 45
45 - 55
65 ->

50%

50%

19/05/2021 Useability testing

https://docs.google.com/forms/d/13re0hFzqyyJqRaVctfmBjfXi0T7a-lVQWRxqQy9K_Ek/viewanalytics 2/13

Have you ever arranged a digital election or a quiz of any kind before? (by
using menti, strawpoll or kahoot for instance?)

2 responses

Testing

Information for tester

Starting point for test: http://anovote.uials.no:3001/login

2 responses

#1 Register account - Exp. time: 2 min

Yes
No
On paper only

100%

Starting point is set

100%

19/05/2021 Useability testing

https://docs.google.com/forms/d/13re0hFzqyyJqRaVctfmBjfXi0T7a-lVQWRxqQy9K_Ek/viewanalytics 3/13

#1 Register account (2 min)

2 responses

#1 - If signup errors occured, what did you think of the form input feedback

2 responses

Did get "must be equal..". Thought it was precise and fixed it quickly

Too strict rules on password

#2 Show elections - Exp. time: 20 sec

#2 Show elections (20 sec)

2 responses

#3 Create new election - Exp. time: 4 min

Success
Failed to signup within expected
time

100%

Success
Failed to display elections
within expected time

100%

19/05/2021 Useability testing

https://docs.google.com/forms/d/13re0hFzqyyJqRaVctfmBjfXi0T7a-lVQWRxqQy9K_Ek/viewanalytics 4/13

FOR TEST PERSON: Did any error occur? (fill in if something unexpected
happend)

2 responses

Difficult to remember/understand that you need to click OK after dates. Did not
understand Eligible voters input. Bad spacing in election form.

none

What did you think of the form input feedback?

2 responses

If not precise, why do you could improve?

1 response

Dato skapte problemer

Precise
Ok
Not precise

100%

19/05/2021 Useability testing

https://docs.google.com/forms/d/13re0hFzqyyJqRaVctfmBjfXi0T7a-lVQWRxqQy9K_Ek/viewanalytics 5/13

Did you notice whether there was any other way to get to the create
election screen?

2 responses

#3.5 Create Ballot - Exp. time: 3 min

FOR TEST PERSON: Did any error occur? (fill in if something unexpected
happend)

1 response

none

What did you think of the form input feedback?

2 responses

Yes
No
Maybe

50%

50%

Precise
Ok
Not precise

100%

19/05/2021 Useability testing

https://docs.google.com/forms/d/13re0hFzqyyJqRaVctfmBjfXi0T7a-lVQWRxqQy9K_Ek/viewanalytics 6/13

If not precise, why do you could improve?

1 response

Ønske om at feltene kom opp automatisk, ikke "Add" per gang. Har mest lyst til å
fortsette å skrive... Enter integrasjon var veldig bra

Try to summarize the steps: 3. and 3.5:

#3 Create election and #3.5 add ballots (7 min)

2 responses

What did you think of the layout and process of creating an election with
ballots?

2 responses

Testing Cont.

#4 Display newly created election - Exp. time: 10 sec

Success
Did add many ballots, took
extra time
Failed to create election with
ballot(s) within expected time

50%

50%

1 2 3 4 5 6 7 8 9 10
0.00

0.25

0.50

0.75

1.00

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

1 (50%)1 (50%)1 (50%)

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

1 (50%)1 (50%)1 (50%)

0 (0%)0 (0%)0 (0%)

19/05/2021 Useability testing

https://docs.google.com/forms/d/13re0hFzqyyJqRaVctfmBjfXi0T7a-lVQWRxqQy9K_Ek/viewanalytics 7/13

#4 Display the newly created election in its election view (10 sec)

2 responses

FOR TESTER: any remarks?

0 responses

No responses yet for this question.

#5 Start the election - Exp. time: 20 sec

#5 Start the election (20 sec)

2 responses

#6 Push a ballot - Exp. time: 20 sec

Success
Failed to display the election
within expected time

100%

Success
Failed to start election within
expected time

100%

19/05/2021 Useability testing

https://docs.google.com/forms/d/13re0hFzqyyJqRaVctfmBjfXi0T7a-lVQWRxqQy9K_Ek/viewanalytics 8/13

#6 Push ballot (20 sec)

2 responses

#6.5 See result of ballot - Exp. time: 10 sec

#6.5 See result of ballot (10 sec)

2 responses

What happend if he/she did not manage

0 responses

No responses yet for this question.

I noticed you did click on –––. Can you tell me why? Follow up on any interesting
behavior you observe during the test to get a better idea of the thought process
behind the user's actions.

0 responses

No responses yet for this question.

Success
Failed to push ballot within
expected time

50%

50%

Success
Failed to see result within
expected time

100%

19/05/2021 Useability testing

https://docs.google.com/forms/d/13re0hFzqyyJqRaVctfmBjfXi0T7a-lVQWRxqQy9K_Ek/viewanalytics 9/13

#7 Log out - Exp. time: 10 sec

#7 Log out (10 sec)

2 responses

Post test

General questions

How did you rate the experience of using the website to complete the
tasks?

2 responses

Success
Failed to log out within
expected time

100%

1 2 3 4 5
0.00

0.25

0.50

0.75

1.00

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

1 (50%) 1 (50%)

0 (0%)0 (0%)0 (0%)

19/05/2021 Useability testing

https://docs.google.com/forms/d/13re0hFzqyyJqRaVctfmBjfXi0T7a-lVQWRxqQy9K_Ek/viewanalytics 10/13

Was it easy to navigate around the site?

2 responses

Was it easy to read the text on the site?

2 responses

Any other comments?

0 responses

No responses yet for this question.

What was your overall impression of ___?

1 2 3 4 5
0

1

2

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

2 (100%)

1 2 3 4 5
0

1

2

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

2 (100%)

19/05/2021 Useability testing

https://docs.google.com/forms/d/13re0hFzqyyJqRaVctfmBjfXi0T7a-lVQWRxqQy9K_Ek/viewanalytics 11/13

What was your overall impression of creating an election?

2 responses

What could improve?

1 response

Under create election:
Det var ikke iøyenfallende at man burde fylle inn ballots. Siden denne var på høyre side
og ikke ville gitt noen varsel.

For å skrive inn passord til election: Den lå for tett opp til tabellen

What was your overall impression of registering an account?

2 responses

1 2 3 4 5
0.00

0.25

0.50

0.75

1.00

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

1 (50%) 1 (50%)

1 2 3 4 5
0

1

2

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

2 (100%)

19/05/2021 Useability testing

https://docs.google.com/forms/d/13re0hFzqyyJqRaVctfmBjfXi0T7a-lVQWRxqQy9K_Ek/viewanalytics 12/13

What was your overall impression of the navigation?

2 responses

How would you improve it?

0 responses

No responses yet for this question.

What was your overall impression of pushing a ballot?

2 responses

1 2 3 4 5
0.00

0.25

0.50

0.75

1.00

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

1 (50%) 1 (50%)

1 2 3 4 5
0.00

0.25

0.50

0.75

1.00

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

1 (50%)

0 (0%)0 (0%)0 (0%)

1 (50%)

19/05/2021 Useability testing

https://docs.google.com/forms/d/13re0hFzqyyJqRaVctfmBjfXi0T7a-lVQWRxqQy9K_Ek/viewanalytics 13/13

How would improve it?

2 responses

Knowing what "push ballot" does is and does, is not that intuitive. Maybe use a simpler
language

"Push"

Other questions

If you have used Kahoot/Menti/Strawpoll to create a quiz: How would you
compare Anovote to Kahoot/Menti/Strawpoll?

2 responses

OTHER (Have the tester noted down something unexpected?)

0 responses

No responses yet for this question.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Better
Equally good
Worse
Have not used Kahoot/Menti/
Strawpoll

50%

50%

 Forms

APPENDIX D. TEST DOCUMENTS 172

D.2 Large-scale User Test Document

Answers for large scale user test
Who should participate

4 unexperienced

3 experienced users with prior knowledge. These are going to be voters

Screening & pre-test

1. Which age group do you belong to? Students
2. Have you ever arranged a election or quiz of any kind? For ex, by using menti, strawpoll or kahoot? Yes

Test

Plan

Task Description
Expected
time

Success

0 Go to page
Should find its way to the
landing page

20sec X

1
Register
account

Allows the user to arrange an
election

2 min X

2
Show
elections

Display the elections view. It
should be empty

20 sec X

3
Create new
election

Create an election to be able
to arrange it later

4 min
X
Litt uklarhet om election/ballot

3.5
Add
ballot(s)

Create a ballot for an election 3 min

X
Burde vært lettere å kunne
trykke den lilla knappen for å
adde, istedenfor kun add

4

Display
newly
created
election

See the newly created
election

10 sec X

5
Start an
election

Arrange an election for the
newly created election

20 sec X

6 Push ballot
The election org should push
a ballot out

20 sec

X
Oversiktlig å se stats
kanskje ikke increment. Heller
vertikal visning?

6.5 See result
The election org should
display the results of the
ballot in graph view

10 sec X

7 Log out Log out of application 10 sec X

Arrange an election for:

Styremøte 2021

With description

Valg av representanter til styret 2021

Eligible voters

All in the room

Should include 3 ballots:

Valg av leder

Kandidater

Steffen
Sander
Christoffer

Valg av nestleder

Kandidater

Ole Thomas
Vilde

Valg av styremedlem

Kandidater

Per
Pål

bemerkninger

"Passord vil man ha, fordi man ikke vil at alle skal kunne stemme"
"Åpningsdato er kjekt å ha"
Kan ikke bla nedover på election siden når voters tar mye plass
Election finished or closed on test. Probably because of

Questions to ask AFTER completing a task

I noticed you did . Can you tell me why? Follow up on any interesting behavior you observe during
the test to get a better idea of the thought process behind the user's actions.
Did you notice whether there was any other way to ___? You are trying to determine why the user
did one thing instead of another.
Which of these two approaches/options do you find best? Why? This is useful if you're trying to
determine the more appealing of multiple options.
What did you think of the layout of the content?
What did you think of the form input feedback? (Not precise/Ok/Precise)

Post test

General questions

How did you find the experience of using the website to complete this task? Happy

God oversikt over hvor mange som var inne

Fin oversikt over valget live

What do you think of the look of the design?

Enkelt og fint

Greit å bruke. Lett å starte et valg. Lett å velge ballots

Was it easy to navigate around the site? Gikk fint

Was it easy to read the text on the site? Gikk fint

other comments? Savnet hint og onboarding Savnet oversikt over antall stemmeberettige. I dette
tilfellet 6 som stemte som skulle vært 7.

What was your overall impression of [x]?

Creating an election

What could improve?

Liten tittel for ballot

Banskelig å forstå seg på noen av feltene: Open, close, passord. Hva er de for?

Registering

Gikk fint
The navigation

How would you improve it? Good
Pushing a ballot

How would you improve it? manglet en onboarding.

If you have used kahoot to create a quiz: How would you compare Anovote to Kahoot/Menti/Strawpoll?

Hvordan gikk det å delta?

Bare fint. Ingen problemer.

Hvordan gikk det å avgi stemme

Intuitivt. Ingenting man lurte på.

Design

Litt "smått" på diger/større skjermer

Informasjonsflyt mellom avstemningene La ikke merke til noe spesielt.

Utlogging

Blir kasta ut automatisk. Det gikk fint!

Bibliography

[1] API Platform: API Tools & Solutions. URL https://www.postman.com/api-platform/.

[2] Access token. URL https://en.wikipedia.org/wiki/Access_token.

[3] Adobe XD. URL https://en.wikipedia.org/w/index.php?title=Adobe_XD&oldid=

1018677082.

[4] Ant Design. URL https://ant.design/.

[5] Atlassian/react-beautiful-dnd. URL https://github.com/atlassian/

react-beautiful-dnd.

[6] Auth0/node-jsonwebtoken. URL https://github.com/auth0/node-jsonwebtoken.

[7] Axios. URL https://axios-http.com/.

[8] Ballot. URL https://en.wikipedia.org/w/index.php?title=Ballot&oldid=

1018926883.

[9] Bcrypt.js. URL https://github.com/kelektiv/node.bcrypt.js.

[10] Blockchain, . URL https://en.wikipedia.org/w/index.php?title=Blockchain&

oldid=1019805422.

[11] Blockchain Definition, . URL https://techterms.com/definition/blockchain.

[12] Bug #1732482 “[snap] doesn’t properly save desktop files for “cr...” : Bugs : Chromium-

browser package : Ubuntu. URL https://bugs.launchpad.net/bugs/1732482.

177

https://www.postman.com/api-platform/
https://en.wikipedia.org/wiki/Access_token
https://en.wikipedia.org/w/index.php?title=Adobe_XD&oldid=1018677082
https://en.wikipedia.org/w/index.php?title=Adobe_XD&oldid=1018677082
https://ant.design/
https://github.com/atlassian/react-beautiful-dnd
https://github.com/atlassian/react-beautiful-dnd
https://github.com/auth0/node-jsonwebtoken
https://axios-http.com/
https://en.wikipedia.org/w/index.php?title=Ballot&oldid=1018926883
https://en.wikipedia.org/w/index.php?title=Ballot&oldid=1018926883
https://github.com/kelektiv/node.bcrypt.js
https://en.wikipedia.org/w/index.php?title=Blockchain&oldid=1019805422
https://en.wikipedia.org/w/index.php?title=Blockchain&oldid=1019805422
https://techterms.com/definition/blockchain
https://bugs.launchpad.net/bugs/1732482

BIBLIOGRAPHY 178

[13] Code formatting. URL https://torquemag.io/2019/07/code-formatting-guide/.

[14] Create-react-app. URL https://github.com/facebook/create-react-app.

[15] Cross-Origin Resource Sharing (CORS) - HTTP | MDN, . URL https://developer.

mozilla.org/en-US/docs/Web/HTTP/CORS.

[16] Cross-site scripting - MDN Web Docs Glossary: Definitions of Web-related terms |

MDN, . URL https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_

scripting.

[17] Cryptocurrency, . URL https://en.wikipedia.org/w/index.php?title=

Cryptocurrency&oldid=1020227186.

[18] Cryptography - Electronic Voting, . URL https://crypto.stanford.edu/pbc/notes/

crypto/voting.html.

[19] Cryptology ePrint Archive, . URL https://eprint.iacr.org/complete/.

[20] DataGrip: The Cross-Platform IDE for Databases & SQL by JetBrains, . URL https://

www.jetbrains.com/datagrip/.

[21] Date-fns, . URL https://date-fns.org/.

[22] Definition of BALLOT. URL https://www.merriam-webster.com/dictionary/ballot.

[23] Design principles. URL https://folk.ntnu.no/baldurk/skolearbeid/MMI/

Forelesninger%20MMI/30-Designprinsipper.pdf.

[24] Discord (software). URL https://en.wikipedia.org/w/index.php?title=Discord_

(software)&oldid=1021245834.

[25] Don normans design principles. URL http://www.csun.edu/science/courses/671/

bibliography/preece.html.

[26] ESLint. URL https://eslint.org/.

https://torquemag.io/2019/07/code-formatting-guide/
https://github.com/facebook/create-react-app
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://en.wikipedia.org/w/index.php?title=Cryptocurrency&oldid=1020227186
https://en.wikipedia.org/w/index.php?title=Cryptocurrency&oldid=1020227186
https://crypto.stanford.edu/pbc/notes/crypto/voting.html
https://crypto.stanford.edu/pbc/notes/crypto/voting.html
https://eprint.iacr.org/complete/
https://www.jetbrains.com/datagrip/
https://www.jetbrains.com/datagrip/
https://date-fns.org/
https://www.merriam-webster.com/dictionary/ballot
https://folk.ntnu.no/baldurk/skolearbeid/MMI/Forelesninger%20MMI/30-Designprinsipper.pdf
https://folk.ntnu.no/baldurk/skolearbeid/MMI/Forelesninger%20MMI/30-Designprinsipper.pdf
https://en.wikipedia.org/w/index.php?title=Discord_(software)&oldid=1021245834
https://en.wikipedia.org/w/index.php?title=Discord_(software)&oldid=1021245834
http://www.csun.edu/science/courses/671/bibliography/preece.html
http://www.csun.edu/science/courses/671/bibliography/preece.html
https://eslint.org/

BIBLIOGRAPHY 179

[27] Election, . URL https://en.wikipedia.org/w/index.php?title=Election&oldid=

1016660308.

[28] Election | History, Polls, Results, Date, & Facts, . URL https://www.britannica.com/

topic/election-political-science.

[29] Electoral system, . URL https://en.wikipedia.org/w/index.php?title=

Electoral_system&oldid=1017267926.

[30] Electoral systems (BP-334E), . URL http://publications.gc.ca/Collection-R/

LoPBdP/BP/bp334-e.htm#INTRODUCTIONtxt.

[31] Express - Node.js web application framework. URL https://expressjs.com/.

[32] Forskrift om universell utforming av informasjons- og kommunikasjonsteknologiske

(IKT)-løsninger - Lovdata. URL https://lovdata.no/dokument/SF/forskrift/

2013-06-21-732?q=forskrift%20om%20universell%20utforming.

[33] Git, . URL https://git-scm.com/.

[34] Git, . URL https://en.wikipedia.org/w/index.php?title=Git&oldid=1021092067.

[35] GitHub Actions, . URL https://github.com/features/actions.

[36] Hello World · GitHub Guides, . URL https://guides.github.com/activities/

hello-world/.

[37] Helmetjs/helmet, . URL https://github.com/helmetjs/helmet.

[38] Hypertext Transfer Protocol – HTTP/1.1, . URL https://www.w3.org/Protocols/

rfc2616/rfc2616.html.

[39] Hypertext Transfer Protocol, . URL https://en.wikipedia.org/w/index.php?title=

Hypertext_Transfer_Protocol&oldid=1021103766.

[40] Integrated development environment, . URL https://en.wikipedia.org/wiki/

Integrated_development_environment.

https://en.wikipedia.org/w/index.php?title=Election&oldid=1016660308
https://en.wikipedia.org/w/index.php?title=Election&oldid=1016660308
https://www.britannica.com/topic/election-political-science
https://www.britannica.com/topic/election-political-science
https://en.wikipedia.org/w/index.php?title=Electoral_system&oldid=1017267926
https://en.wikipedia.org/w/index.php?title=Electoral_system&oldid=1017267926
http://publications.gc.ca/Collection-R/LoPBdP/BP/bp334-e.htm#INTRODUCTIONtxt
http://publications.gc.ca/Collection-R/LoPBdP/BP/bp334-e.htm#INTRODUCTIONtxt
https://expressjs.com/
https://lovdata.no/dokument/SF/forskrift/2013-06-21-732?q=forskrift%20om%20universell%20utforming
https://lovdata.no/dokument/SF/forskrift/2013-06-21-732?q=forskrift%20om%20universell%20utforming
https://git-scm.com/
https://en.wikipedia.org/w/index.php?title=Git&oldid=1021092067
https://github.com/features/actions
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://github.com/helmetjs/helmet
https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://en.wikipedia.org/w/index.php?title=Hypertext_Transfer_Protocol&oldid=1021103766
https://en.wikipedia.org/w/index.php?title=Hypertext_Transfer_Protocol&oldid=1021103766
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment

BIBLIOGRAPHY 180

[41] Intelligent code completion, . URL https://en.wikipedia.org/wiki/Intelligent_

code_completion.

[42] Intro to Ethereum, . URL https://ethereum.org.

[43] Introducing GitFlow, . URL https://datasift.github.io/gitflow/

IntroducingGitFlow.html.

[44] Introduction to dapps, . URL https://ethereum.org.

[45] Introduction to Test Driven Development (TDD), . URL http://agiledata.org/

essays/tdd.html.

[46] JavaScript. URL https://en.wikipedia.org/wiki/JavaScript.

[47] Jest (JavaScript framework). URL https://en.wikipedia.org/w/index.php?title=

Jest_(JavaScript_framework)&oldid=1002056817.

[48] Linter. URL https://en.wikipedia.org/wiki/Lint_(software).

[49] Minimum viable product. URL https://en.wikipedia.org/w/index.php?title=

Minimum_viable_product&oldid=1023320733.

[50] Module pattern. URL https://addyosmani.com/resources/

essentialjsdesignpatterns/book/#modulepatternjavascript.

[51] Nginx. URL https://nginx.org/en/.

[52] ORM. URL https://en.wikipedia.org/wiki/Object%E2%80%93relational_

mapping.

[53] Object–relational mapping. URL https://en.wikipedia.org/w/index.php?title=

Object%E2%80%93relational_mapping&oldid=1021719270.

[54] Observer. URL https://refactoring.guru/design-patterns/observer.

[55] Open ballot system. URL https://en.wikipedia.org/w/index.php?title=Open_

ballot_system&oldid=1001325053.

https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://ethereum.org
https://datasift.github.io/gitflow/IntroducingGitFlow.html
https://datasift.github.io/gitflow/IntroducingGitFlow.html
https://ethereum.org
http://agiledata.org/essays/tdd.html
http://agiledata.org/essays/tdd.html
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/w/index.php?title=Jest_(JavaScript_framework)&oldid=1002056817
https://en.wikipedia.org/w/index.php?title=Jest_(JavaScript_framework)&oldid=1002056817
https://en.wikipedia.org/wiki/Lint_(software)
https://en.wikipedia.org/w/index.php?title=Minimum_viable_product&oldid=1023320733
https://en.wikipedia.org/w/index.php?title=Minimum_viable_product&oldid=1023320733
https://addyosmani.com/resources/essentialjsdesignpatterns/book/#modulepatternjavascript
https://addyosmani.com/resources/essentialjsdesignpatterns/book/#modulepatternjavascript
https://nginx.org/en/
https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping
https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping
https://en.wikipedia.org/w/index.php?title=Object%E2%80%93relational_mapping&oldid=1021719270
https://en.wikipedia.org/w/index.php?title=Object%E2%80%93relational_mapping&oldid=1021719270
https://refactoring.guru/design-patterns/observer
https://en.wikipedia.org/w/index.php?title=Open_ballot_system&oldid=1001325053
https://en.wikipedia.org/w/index.php?title=Open_ballot_system&oldid=1001325053

BIBLIOGRAPHY 181

[56] Papa Parse - Powerful CSV Parser for JavaScript. URL https://www.papaparse.com/.

[57] Port from deno to node. URL https://github.com/anovote/org/blob/main/

decisions/port-from-deno-to-node.md.

[58] PostgreSQL. URL https://en.wikipedia.org/w/index.php?title=PostgreSQL&

oldid=1023021237.

[59] Prettier. URL https://prettier.io/.

[60] Progressive web apps (PWAs) | MDN, . URL https://developer.mozilla.org/en-US/

docs/Web/Progressive_web_apps.

[61] Prototype Testing / Wireframe Testing|Professionalqa.com, . URL https://www.

professionalqa.com/wireframe-testing-or-prototype-testing.

[62] REST Principles and Architectural Constraints. URL https://restfulapi.net/

rest-architectural-constraints/.

[63] RTE (Runtime Environment) Definition. URL https://techterms.com/definition/

rte.

[64] React, . URL https://reactjs.org/.

[65] React i18next, . URL https://react.i18next.com/.

[66] React Router: Declarative Routing for React, . URL https://reacttraining.com/

react-router.

[67] React Testing Library | Testing Library, . URL https://testing-library.com/docs/

react-testing-library/intro.

[68] Retningslinjer for tilgjengelig webinnhold (WCAG) 2.0. URL https://www.w3.org/

Translations/WCAG20-no/.

[69] SPA (Single-page application) - MDN Web Docs Glossary: Definitions of Web-related

terms | MDN. URL https://developer.mozilla.org/en-US/docs/Glossary/SPA.

https://www.papaparse.com/
https://github.com/anovote/org/blob/main/decisions/port-from-deno-to-node.md
https://github.com/anovote/org/blob/main/decisions/port-from-deno-to-node.md
https://en.wikipedia.org/w/index.php?title=PostgreSQL&oldid=1023021237
https://en.wikipedia.org/w/index.php?title=PostgreSQL&oldid=1023021237
https://prettier.io/
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://www.professionalqa.com/wireframe-testing-or-prototype-testing
https://www.professionalqa.com/wireframe-testing-or-prototype-testing
https://restfulapi.net/rest-architectural-constraints/
https://restfulapi.net/rest-architectural-constraints/
https://techterms.com/definition/rte
https://techterms.com/definition/rte
https://reactjs.org/
https://react.i18next.com/
https://reacttraining.com/react-router
https://reacttraining.com/react-router
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://www.w3.org/Translations/WCAG20-no/
https://www.w3.org/Translations/WCAG20-no/
https://developer.mozilla.org/en-US/docs/Glossary/SPA

BIBLIOGRAPHY 182

[70] SQL, . URL https://en.wikipedia.org/wiki/SQL.

[71] SQL Injection Prevention - OWASP Cheat Sheet Series, . URL https://

cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_

Sheet.html.

[72] Scrum. URL https://felixgrayson.wordpress.com/tag/scrum/.

[73] Single-page application, . URL https://en.wikipedia.org/w/index.php?title=

Single-page_application&oldid=1017843157.

[74] Singleton, . URL https://refactoring.guru/design-patterns/singleton.

[75] Source-code editor. URL https://en.wikipedia.org/wiki/Source-code_editor.

[76] Transport Layer Security. URL https://en.wikipedia.org/w/index.php?title=

Transport_Layer_Security&oldid=1021012606.

[77] TypeScript, . URL https://www.typescriptlang.org/.

[78] Typestack/class-transformer, . URL https://github.com/typestack/

class-transformer.

[79] Typestack/class-validator, . URL https://github.com/typestack/class-validator.

[80] Universal design. URL https://en.wikipedia.org/w/index.php?title=Universal_

design&oldid=1017733026.

[81] User interface design. URL https://en.wikipedia.org/w/index.php?title=User_

interface_design&oldid=1020653595.

[82] Version control. URL https://en.wikipedia.org/w/index.php?title=Version_

control&oldid=1020382212.

[83] Virtual machine. URL https://en.wikipedia.org/wiki/Virtual_machine.

[84] Visual Studio Code. URL https://en.wikipedia.org/w/index.php?title=Visual_

Studio_Code&oldid=1020885576.

https://en.wikipedia.org/wiki/SQL
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://felixgrayson.wordpress.com/tag/scrum/
https://en.wikipedia.org/w/index.php?title=Single-page_application&oldid=1017843157
https://en.wikipedia.org/w/index.php?title=Single-page_application&oldid=1017843157
https://refactoring.guru/design-patterns/singleton
https://en.wikipedia.org/wiki/Source-code_editor
https://en.wikipedia.org/w/index.php?title=Transport_Layer_Security&oldid=1021012606
https://en.wikipedia.org/w/index.php?title=Transport_Layer_Security&oldid=1021012606
https://www.typescriptlang.org/
https://github.com/typestack/class-transformer
https://github.com/typestack/class-transformer
https://github.com/typestack/class-validator
https://en.wikipedia.org/w/index.php?title=Universal_design&oldid=1017733026
https://en.wikipedia.org/w/index.php?title=Universal_design&oldid=1017733026
https://en.wikipedia.org/w/index.php?title=User_interface_design&oldid=1020653595
https://en.wikipedia.org/w/index.php?title=User_interface_design&oldid=1020653595
https://en.wikipedia.org/w/index.php?title=Version_control&oldid=1020382212
https://en.wikipedia.org/w/index.php?title=Version_control&oldid=1020382212
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/w/index.php?title=Visual_Studio_Code&oldid=1020885576
https://en.wikipedia.org/w/index.php?title=Visual_Studio_Code&oldid=1020885576

BIBLIOGRAPHY 183

[85] Voting, . URL https://en.wikipedia.org/w/index.php?title=Voting&oldid=

1020953943.

[86] Voting machine, . URL https://en.wikipedia.org/w/index.php?title=Voting_

machine&oldid=1016435078.

[87] Web application, . URL https://en.wikipedia.org/w/index.php?title=Web_

application&oldid=1018709214.

[88] WebSocket, . URL https://en.wikipedia.org/wiki/WebSocket.

[89] Website wireframe, . URL https://en.wikipedia.org/w/index.php?title=Website_

wireframe&oldid=1019435291.

[90] What are Scrum Artifacts?, . URL https://www.visual-paradigm.com/scrum/

what-are-scrum-artifacts/.

[91] What is Continuous Delivery? – Amazon Web Services, . URL https://aws.amazon.com/

devops/continuous-delivery/.

[92] What is Continuous Integration? – Amazon Web Services, . URL https://aws.amazon.

com/devops/continuous-integration/.

[93] What is Mobile First?, . URL https://smartbear.com/learn/

performance-monitoring/what-is-mobile-first/.

[94] What is REST, . URL https://restfulapi.net/.

[95] What is a Scrum Master?, . URL https://www.agilealliance.org/glossary/

scrum-master/.

[96] What is Unified Modeling Language, . URL https://www.lucidchart.com/pages/

what-is-UML-unified-modeling-language.

[97] Windows Subsystem for Linux. URL https://en.wikipedia.org/w/index.php?

title=Windows_Subsystem_for_Linux&oldid=1022616864.

https://en.wikipedia.org/w/index.php?title=Voting&oldid=1020953943
https://en.wikipedia.org/w/index.php?title=Voting&oldid=1020953943
https://en.wikipedia.org/w/index.php?title=Voting_machine&oldid=1016435078
https://en.wikipedia.org/w/index.php?title=Voting_machine&oldid=1016435078
https://en.wikipedia.org/w/index.php?title=Web_application&oldid=1018709214
https://en.wikipedia.org/w/index.php?title=Web_application&oldid=1018709214
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/w/index.php?title=Website_wireframe&oldid=1019435291
https://en.wikipedia.org/w/index.php?title=Website_wireframe&oldid=1019435291
https://www.visual-paradigm.com/scrum/what-are-scrum-artifacts/
https://www.visual-paradigm.com/scrum/what-are-scrum-artifacts/
https://aws.amazon.com/devops/continuous-delivery/
https://aws.amazon.com/devops/continuous-delivery/
https://aws.amazon.com/devops/continuous-integration/
https://aws.amazon.com/devops/continuous-integration/
https://smartbear.com/learn/performance-monitoring/what-is-mobile-first/
https://smartbear.com/learn/performance-monitoring/what-is-mobile-first/
https://restfulapi.net/
https://www.agilealliance.org/glossary/scrum-master/
https://www.agilealliance.org/glossary/scrum-master/
https://www.lucidchart.com/pages/what-is-UML-unified-modeling-language
https://www.lucidchart.com/pages/what-is-UML-unified-modeling-language
https://en.wikipedia.org/w/index.php?title=Windows_Subsystem_for_Linux&oldid=1022616864
https://en.wikipedia.org/w/index.php?title=Windows_Subsystem_for_Linux&oldid=1022616864

BIBLIOGRAPHY 184

[98] Adobe Illustrator. URL https://en.wikipedia.org/wiki/Adobe_Illustrator.

[99] Integration Testing: What is, Types, Top Down & Bottom Up Example. URL https://www.

guru99.com/integration-testing.html.

[100] Localization. URL https://en.wikipedia.org/wiki/Language_localisation.

[101] Overleaf. URL https://github.com/overleaf/overleaf.

[102] Damien Arrachequesne. Socket.IO. URL https://socket.io/index.html.

[103] Atlassian. Jira. URL https://www.atlassian.com/software/jira.

[104] L. M. Bach, B. Mihaljevic, and M. Zagar. Comparative analysis of blockchain consensus

algorithms. In 2018 41st International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO), pages 1545–1550. doi: 10.23919/

MIPRO.2018.8400278.

[105] Kumar Ch and rakant. REST vs WebSockets | Baeldung. URL https://www.baeldung.

com/rest-vs-websockets.

[106] Thomas M. Connolly and Carolyn E. Begg. Database Systems: A Practical Approach to

Design, Implementation, and Management. Always Learning. Pearson, 6. ed., global ed

edition. ISBN 978-1-292-06118-4 978-0-13-294326-0.

[107] Torgeir Daler, Roar Gulbrandse, Tore Audun Høie, and Torbjørn Sjølstad. Håndbok i

datasikkerhet informasjonsteknologi og risikostyring. Tapir akademisk. ISBN 978-82-519-

2538-9.

[108] Vincent Driessen. A successful Git branching model. URL http://nvie.com/posts/

a-successful-git-branching-model/.

[109] Sfirnaciuc Emilia, Vasilescu Miruna-Elena, and Simion Emil. E-voting protocols in con-

text of COVID19. URL http://eprint.iacr.org/2021/027.

https://en.wikipedia.org/wiki/Adobe_Illustrator
https://www.guru99.com/integration-testing.html
https://www.guru99.com/integration-testing.html
https://en.wikipedia.org/wiki/Language_localisation
https://github.com/overleaf/overleaf
https://socket.io/index.html
https://www.atlassian.com/software/jira
https://www.baeldung.com/rest-vs-websockets
https://www.baeldung.com/rest-vs-websockets
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
http://eprint.iacr.org/2021/027

BIBLIOGRAPHY 185

[110] World Leaders in Research-Based User Experience. From Research Goals to Usability-

Testing Scenarios: A 7-Step Method, . URL https://www.nngroup.com/articles/

ux-research-goals-to-scenarios/.

[111] World Leaders in Research-Based User Experience. Usability Testing 101, . URL https:

//www.nngroup.com/articles/usability-testing-101/.

[112] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language.

Addison-Wesley, 3rd ed edition. ISBN 978-0-321-19368-1.

[113] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, editors. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley Professional Computing

Series. Addison-Wesley. ISBN 978-0-201-63361-0.

[114] Thomas Haines and Peter Roenne. New Standards for E-Voting Systems: Reflections on

Source Code Examinations. URL http://eprint.iacr.org/2021/391.

[115] Thomas Haines, Rajeev Gore, and Bhavesh Sharma. Did you mix me? Formally Verifying

Verifiable Mix Nets in Electronic Voting. URL http://eprint.iacr.org/2020/1114.

[116] James Hall. MrRio/jsPDF. URL https://github.com/MrRio/jsPDF.

[117] Chandler Harris. Agile scrum artifacts. URL https://www.atlassian.com/agile/

scrum/artifacts.

[118] Philip Hutchison. PDFObject: A JavaScript utility for embedding PDFs. URL https://

pdfobject.com/.

[119] Gergely Kalman. 10 Web Security Vulnerabilities You Can Prevent. URL https://www.

toptal.com/security/10-most-common-web-security-vulnerabilities.

[120] Kieran Kilbride-Singh. WebSockets vs Long Polling. URL https://ghost.ably.com/

blog/websockets-vs-long-polling/.

[121] kingthorin. SQL Injection. URL https://owasp.org/www-community/attacks/SQL_

Injection.

https://www.nngroup.com/articles/ux-research-goals-to-scenarios/
https://www.nngroup.com/articles/ux-research-goals-to-scenarios/
https://www.nngroup.com/articles/usability-testing-101/
https://www.nngroup.com/articles/usability-testing-101/
http://eprint.iacr.org/2021/391
http://eprint.iacr.org/2020/1114
https://github.com/MrRio/jsPDF
https://www.atlassian.com/agile/scrum/artifacts
https://www.atlassian.com/agile/scrum/artifacts
https://pdfobject.com/
https://pdfobject.com/
https://www.toptal.com/security/10-most-common-web-security-vulnerabilities
https://www.toptal.com/security/10-most-common-web-security-vulnerabilities
https://ghost.ably.com/blog/websockets-vs-long-polling/
https://ghost.ably.com/blog/websockets-vs-long-polling/
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/SQL_Injection

BIBLIOGRAPHY 186

[122] James Kurose and Keith Ross. Computer Networking. Pearson Education Lim-

ited. ISBN 978-1-292-15360-5. URL https://public.ebookcentral.proquest.com/

choice/publicfullrecord.aspx?p=5573712.

[123] Anders Smedstuen Lund and Martin Strand. Decryption phase in Norwegian electronic

voting. URL http://eprint.iacr.org/2016/1002.

[124] Warren Lynch. The Brief of History of Scrum. URL https://warren2lynch.medium.

com/the-brief-of-history-of-scrum-15efb73b4701.

[125] Rachaelle Lynn. History of agile | planview leankit. URL https://www.

planview.com/no/resources/guide/agile-methodologies-a-beginners-guide/

history-of-agile/.

[126] Slava Moskalenko. What Scrum Says About Estimates. URL https://www.scrum.org/

resources/blog/what-scrum-says-about-estimates.

[127] Bryce Neal. Prettymuchbryce/http-status-codes. URL https://github.com/

prettymuchbryce/http-status-codes.

[128] Jennifer Niederst Robbins. Learning Web Design: A Beginner’s Guide to HTML, CSS,

Javascript, and Web Graphics. O’Reilly, fifth edition edition. ISBN 978-1-4919-6020-2.

[129] Steven Telio of Build on Purpose 02/23/2016. Customer Feedback Best Prac-

tices: Usability Testing. URL https://community.uservoice.com/blog/

usability-testing-best-practices/.

[130] Aris Papadopoulos. Should Developers Use Third-Party Libraries? URL https://www.

scalablepath.com/blog/third-party-libraries/.

[131] Tom Preston-Werner. Semantic Versioning 2.0.0. URL https://semver.org/.

[132] Dan Radigan. What are story points and how do you estimate them? URL https://www.

atlassian.com/agile/project-management/estimation.

[133] Ken Schwaber and Jeff Sutherland. Scrum Guide. URL https://scrumguides.org/

docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf#zoom=100.

https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=5573712
https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=5573712
http://eprint.iacr.org/2016/1002
https://warren2lynch.medium.com/the-brief-of-history-of-scrum-15efb73b4701
https://warren2lynch.medium.com/the-brief-of-history-of-scrum-15efb73b4701
https://www.planview.com/no/resources/guide/agile-methodologies-a-beginners-guide/history-of-agile/
https://www.planview.com/no/resources/guide/agile-methodologies-a-beginners-guide/history-of-agile/
https://www.planview.com/no/resources/guide/agile-methodologies-a-beginners-guide/history-of-agile/
https://www.scrum.org/resources/blog/what-scrum-says-about-estimates
https://www.scrum.org/resources/blog/what-scrum-says-about-estimates
https://github.com/prettymuchbryce/http-status-codes
https://github.com/prettymuchbryce/http-status-codes
https://community.uservoice.com/blog/usability-testing-best-practices/
https://community.uservoice.com/blog/usability-testing-best-practices/
https://www.scalablepath.com/blog/third-party-libraries/
https://www.scalablepath.com/blog/third-party-libraries/
https://semver.org/
https://www.atlassian.com/agile/project-management/estimation
https://www.atlassian.com/agile/project-management/estimation
https://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf#zoom=100
https://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf#zoom=100

BIBLIOGRAPHY 187

[134] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating System Concepts. Wiley,

9. ed., internat. student version edition. ISBN 978-1-118-09375-7.

[135] Viktoria Stray, Nils Brede Moe, and Dag I.K. Sjoberg. Daily Stand-Up Meetings: Start

Breaking the Rules. 37(3):70–77. ISSN 0740-7459, 1937-4194. doi: 10.1109/MS.2018.

2875988. URL https://ieeexplore.ieee.org/document/8501962/.

[136] Peter Varhol. The complete history of agile software devel-

opment. URL https://techbeacon.com/app-dev-testing/

agility-beyond-history-legacy-agile-development.

[137] Niklas von Hertzen. Html2canvas - Screenshots with JavaScript. URL https://

html2canvas.hertzen.com/.

[138] Michael E. Whitman and Herbert J. Mattord. Principles of Information Security. Cengage

Learning, sixth edition edition. ISBN 978-1-337-10206-3.

https://ieeexplore.ieee.org/document/8501962/
https://techbeacon.com/app-dev-testing/agility-beyond-history-legacy-agile-development
https://techbeacon.com/app-dev-testing/agility-beyond-history-legacy-agile-development
https://html2canvas.hertzen.com/
https://html2canvas.hertzen.com/

