
Ba
ch

el
or

’s
 th

es
is Mcon Thruster Simulator

IE303612 Bachelor thesis

May 2021

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

Emilie Skalstad Skarbø
Linda Helen Sperre
Maria Osa Furmyr
Nicklas Høines Mellum

Bachelor’s thesis
2021

Bachelor’s thesis

Mcon Thruster Simulator

IE303612 Bachelor thesis

May 2021

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

Emilie Skalstad Skarbø
Linda Helen Sperre
Maria Osa Furmyr
Nicklas Høines Mellum

NTNU i Ålesund

Report 2021

Mcon Thruster Simulator
IE303612 Bachelor thesis

Report 2021

Emilie Skalstad Skarbø
Linda Sperre
Maria Furmyr
Nicklas Mellum

Total number of pages including the front page: 311
Ålesund, 20th May 2021

Title:

Mcon Thruster Simulator

Emilie Skalstad Skarbø

Linda Sperre

Maria Furmyr

Nicklas Mellum

Date: Subject code: Subject: Document access:

20th May 2021 IE303612 Bachelor thesis

Study: Number of pages/ attachments: Bibl. nr:

Automation Engineering 311 / 154

Adviser:

Anete Vagale

Co-supervisors:

Ottar L. Osen & Robin T. Bye

Page i

Preface

What intrigued us about this project was the relevance to the industry and the coverage of sev-

eral fields in automation. Creating semi-automatic FAT and thruster simulations of the Mcon

Thruster Control includes several elements learned during this degree, and opportunities for

innovation and new learning. The project touches on different areas within automation, such

as computer technology, engineering, coupling, and cybernetics, which benefited our diverse

choices of courses and interests.

This work is the result of our bachelor thesis written for Kongsberg Maritime at the Norwegian

University of Science and Technology (NTNU) in Ålesund during spring 2021. The thesis is the

final part for getting the degree of bachelor in Automation engineering. We want to inform the

reader that a general understanding of engineering, computer technology, and automation is

required to understand the content of this report fully.

Page ii

Acknowledgment

We want to express our gratitude towards Kongsberg Maritime for allowing us to complete our

degree with a thesis connected to the industry. Also, we want to thank all contributors who have

helped us during this project, and we would especially like to thank:

• Our supervisor Anete Vagale at NTNU for guidance.

• Our co-supervisors Ottar L. Osen and Robin T. Bye at NTNU for guidance throughout the

project.

• Håkon Lunheim from Kongsberg Maritime, for guidance through the project.

• Chaney Wang Sætre from Kongsberg Maritime, for guidance with physical equipment.

• Thor I. Fossen from NTNU, for guidance with thruster model

• Henrik Daniel Christensen, support from B&R Automation for communications guidance.

• Support from Kongsberg Maritime.

• Family and friends who have supported us throughout this period.

Page iii

Summary

The project concerns the development of a system for easy assembly of Mcon Thruster Control

at Automation Longva facility. The main goal is to create a semi-automatic test system for the

thrusters and create realistic thruster feedback to the control system. To be able to achieve this,

the physical test equipment will need to be replaced by software. The software should consist

of logic, modeling, simulation, testing, printing of test results, and a GUI to aid the inspection

missions.

The results prove that the system is successful in its tasks. All the parts are communicating with

each other, minimizing time used on testing and verification. The testing has also become more

accurate by automating the existing test system. The solution is made expandable for further

task addition and improvements.

Sammendrag

Formålet med prosjektet er å utvikle et system for å enklere kunne teste montering av Mcon mo-

torkontroll hos Automation Longva. Hovedmålet er å utvikle et semi-automatisk testsystem for

motorene, og simulere realistiske motor-tilbakemeldinger til kontrollsystemet. For å kunne løse

disse delene, må den fysiske oppkoblingen byttes ut med digital programvare. Programvaren

skal støtte opp inspeksjoner ved å kunne håndtere logikk, modellering, simulering, testing, ut-

skrift av testresultat og et brukergrensesnitt.

Resultatene viser at systemet er vellykket. Alle delene kommuniserer med hverandre, og vil re-

dusere tidsbruk ved testing og verifisering. Automatiseringen av det eksisterende testsystemet

har i tillegg gjort testingen mer nøyaktig. Løsningen er utvidbar for videre implementering av

funksjonalitet og forbedringer.

Page iv

Contents

Preface . ii

Acknowledgment . iii

Summary . iv

Acronyms . xxiv

1 Introduction 1

1.1 Background . 1

1.1.1 Lean Manufacturing . 1

1.2 Project Introduction . 2

1.3 Aim and Objectives . 2

1.4 Limitations . 3

1.5 Structure of the Report . 3

2 Theoretical Basis 5

2.1 Mcon Thruster Control . 5

2.2 Normally Open vs Normally Closed . 6

v

2.3 Thruster . 6

2.3.1 Tunnel Thruster . 6

2.4 Modelling . 8

2.4.1 Control system . 8

2.4.2 Transfer Function . 9

2.4.3 PID Controller . 9

2.5 Propeller and motor dynamics . 11

2.5.1 Propeller . 11

2.5.2 DC motor . 14

2.6 FAT . 17

2.7 Communication . 17

2.7.1 Communication Architecture . 17

2.7.2 Communication Protocol . 18

2.8 Programming Concept . 23

2.8.1 Cyclic . 23

2.8.2 Object Oriented Programming Paradigm . 23

2.8.3 Interface . 24

2.8.4 Serialization . 24

2.8.5 Maven . 24

2.8.6 Version Control . 25

Page vi

2.9 Programming Language . 25

2.9.1 Java . 25

2.9.2 Structured text . 26

2.9.3 C . 26

2.9.4 LaTeX . 26

2.9.5 MATLAB® . 26

3 Material 27

3.1 Screens . 27

3.2 Levers . 28

3.3 Testjigg . 28

3.4 CPU . 29

3.5 I/O Modules . 29

3.6 Ethernet cable . 30

3.7 I/O signal cables . 30

3.8 Multimeter . 30

3.9 Software . 31

3.9.1 B&R Automation Studio . 31

3.9.2 MATLAB® . 31

3.9.3 Simulink® . 31

3.9.4 IntelliJ IDEA CE . 32

Page vii

3.9.5 Github . 32

3.9.6 VNC Viewer . 33

3.9.7 UaExpert . 33

3.9.8 Overleaf . 34

3.9.9 Draw.io . 34

3.10 Libraries . 34

3.10.1 Library in B&R Automation Studio . 34

3.10.2 Libraries in Java . 35

4 Method 37

4.1 Approach . 37

4.1.1 Project Approach . 37

4.1.2 Approach due to Covid-19 . 38

4.2 Physical Assembly . 38

4.3 Programming the Logic in B&R Automation Studio 44

4.3.1 RPM Logic . 44

4.3.2 Pump Logic . 47

4.3.3 Thruster Logic . 47

4.3.4 Drive Reset Logic . 48

4.3.5 DP and Joystick Logic . 48

4.3.6 I/O Mapping . 49

Page viii

4.3.7 Simulation Mode . 50

4.4 GUI in B&R Automation Studio . 50

4.4.1 Approach . 51

4.5 Modelling FPP . 54

4.5.1 DC Motor . 55

4.5.2 Gear Ratio . 59

4.5.3 Propeller . 59

4.5.4 PID . 60

4.5.5 Modelling CPP . 62

4.6 Software Development in Java . 66

4.6.1 Files . 67

4.6.2 Tests . 68

4.6.3 Print PDF . 76

4.7 Communication . 87

4.7.1 Ethernet/IP . 88

4.7.2 Automation Studio Target for Simulink . 90

4.7.3 OPC UA . 94

5 Results 103

5.1 Reviews . 103

5.1.1 Electrical testing . 103

Page ix

5.1.2 Logic testing . 103

5.1.3 Semi-automatic FAT . 105

5.1.4 Model testing . 107

5.1.5 FPP simulation mode testing . 111

5.1.6 Logic of the FAT . 115

5.1.7 Communication protocol . 120

5.2 Final results . 125

5.2.1 Project . 125

5.2.2 Logic . 126

5.2.3 FFP Model . 127

5.2.4 Mcon Thruster Control with Thruster Simulator for FPP 128

5.2.5 FAT . 130

5.3 Class Diagram . 132

6 Discussion 134

6.1 Project . 134

6.2 B&R Automation Studio . 135

6.3 FFP Model . 135

6.4 FFP testing . 136

6.5 Design for FAT . 136

6.5.1 Result of FAT . 136

Page x

6.5.2 Continuous Reading of Values . 137

6.5.3 Threads . 137

6.5.4 Implementation of tests . 137

6.6 Communication . 137

6.6.1 Automation Studio Target . 138

6.6.2 OPC UA . 138

6.7 Further Work . 142

6.7.1 Variables in B&R Automation Studio . 142

6.7.2 Propeller types . 142

6.7.3 Modelling . 143

6.7.4 CPP model . 143

6.7.5 Components . 145

6.7.6 Testing of Mcon Thruster Control with Thruster Simulator 145

6.7.7 Tests in Java . 145

6.7.8 Communication . 145

6.8 Experiences . 146

6.8.1 Group Dynamics . 146

6.8.2 Progress based on Gantt-diagram . 146

6.8.3 Progress based on Analysis of Risk . 146

6.8.4 Learning Outcome . 147

Page xi

7 Conclusions 148

Bibliography 150

Appendices 158

A Lean Manufacturing Diagram . 158

B Wageningen B-series . 161

C Data sheet thruster . 163

D FPP test data Mcon simulation . 166

E Factory Acceptance Test . 171

F Preliminary Report . 184

G Gantt-scheme . 209

H I/O List . 212

I Progress Report . 214

J Minutes of Meeting . 249

K Analysis of Risk . 263

L Source Code B&R Automation studio . 271

L.1 B&R Source Code . 272

M Source Code Matlab . 274

M.1 Source Code FPP model Matlab . 275

M.2 Source Code FPP model Matlab . 276

N Source Code Java . 278

Page xii

N.1 Interface ClientExample . 279

N.2 Interface Connection . 280

N.3 Class CreatePDF . 282

N.4 Class KeyStoreLoader . 288

N.5 Class MiloClient . 291

N.6 Class RunTestsMilo . 297

N.7 Class RunTestsVirtual . 298

N.8 Class TestRunner . 299

N.9 Class VirtualConnection . 307

N.10 Maven-file Pom . 310

Page xiii

List of Figures

2.1 Fixed Pitch Propeller [29] . 6

2.2 Fixed Pitch Propeller [60] . 7

2.3 Controllable Pitch Propeller [59] . 7

2.4 Structure of a PID controller [21] . 10

2.5 Characteristics of the proportional, integral, and derivative parts that make up the

PID controller [21] . 10

2.6 Four quadrants of ship speed and propeller operations [87] 13

2.7 Components of a DC Motor [32] . 15

2.8 Gear ratio [72] . 15

2.9 Concept of Automation Studio Target for Simulink [13] 19

2.10 Automation Studio Target for Simulink library [46]. 20

2.11 Illustration of a three-way handshake between a server and a client [96] 21

2.12 Illustration of a retransmission due to lost data [74] 22

2.13 The four operations [49] . 23

3.1 Mcon GUI [65] . 27

xiv

3.2 Mcon thruster RPM display [46]. 27

3.3 Mcon Thruster Lever[65] . 28

3.4 Physical testjigg [46]. 28

3.5 CPU X20CP3583 [14] . 29

3.6 I/O modules [46]. 29

3.7 Ethernet Cable [7] . 30

3.8 I/O wires [46]. 30

3.9 Multimeter [107] . 30

3.10 Setting the Datapoint of the button. [51] . 35

4.1 Wiring unfinished [46]. 40

4.2 Wiring complete, with CPU and I/O modules attached and coupled [46]. 40

4.3 Panel testjigg [46]. 41

4.4 Wiring on the side of the testjigg [46]. 41

4.5 Underside of the screen [46]. 42

4.6 Levers [46]. 43

4.7 Setup for levers [46]. 43

4.8 Complete setup at start of project [46]. 44

4.9 Complete setup at end of project [46]. 44

4.10 Logic for RPM. [46]. 45

4.11 Logic for pump [46]. 47

Page xv

4.12 Setting the Datapoint of the button [46]. 48

4.13 Logic for DP and Joystick. [46]. 49

4.14 Mapping I/O [46]. 49

4.15 Configuring AI module [46]. 50

4.16 Inverting a signal [46]. 50

4.17 Activate Simulation [46]. 50

4.18 Making the GUI accessible [46]. 51

4.19 Select Datapoint entered from Datapoint [46]. 52

4.20 Datapoint added [46]. 52

4.21 Setting the Datapoint of the button [46]. 52

4.22 Adding numerics [46]. 53

4.23 Set the VNC Server to the CPU’s IP address [46]. 54

4.24 Set the Picture Quality to High [46]. 54

4.25 Model of FPP [46]. 55

4.26 Transfer function for DC motor [46]. 56

4.27 Code used to find the optimal step response of simplified DC motor model [46]. . . 56

4.28 Step response for simplified DC motor [46]. 57

4.29 Bode plot of the transfer function displaying the magnitude and phase of the DC

motor [46]. 58

4.30 overview of DC motor and gears in Simulink® model [46]. 59

Page xvi

4.31 Simulink® blocks representing the propeller dynamics with output in the form of

RPS [46]. 60

4.32 Conversion from propeller RPS to RPM and percentage of RPM [46]. 61

4.33 Feedback signal is connected to a block that subtracts the feedback from the ori-

ginal signal [46]. 61

4.34 Overview of CPP model created in Simulink® [46]. 63

4.35 Overview of subsystem PROPELLER DYNAMICS in CPP model [46]. 63

4.36 Switch that limits the working area of the pitch value to 0.4-1.4 [46]. 64

4.37 Pitch control system [46]. 65

4.38 Pitch input of the PROPELLER DYNAMICS subsystem [46]. 66

4.39 While loop in class "TestRunner" for reading variables continually [46]. 69

4.40 Code needed in interface "Connection" for implementing tests [46]. 70

4.41 Code needed in class "MiloClient" for implementing tests [46]. 70

4.42 Code needed in class "VirtualConnection" for implementing tests [46]. 71

4.43 Code needed in class "TestRunner" for implementing tests [46]. 72

4.44 Code needed in class "TestRunner" for creating rpmControl test [46]. 73

4.45 Code needed in class "TestRunner" for creating thrusterMotor test part 1 [46]. . . . 74

4.46 Code needed in class "TestRunner" for creating thrusterMotor test part 2 [46]. . . . 75

4.47 Code needed in class "TestRunner" for creating ninth test [46]. 75

4.48 Steps for implementing JAR files [46]. 77

4.49 First steps for turning the Java project into Maven [46]. 78

Page xvii

4.50 Required code in file "pom.xml" [46]. 78

4.51 Dependencies for adding libraries from Apache PDFBox [46]. 79

4.52 Install the JAR files [46]. 79

4.53 Create a PDF-file [46]. 80

4.54 Add pages to the PDF-file [46]. 81

4.55 Add content to PDF-file part 1 [46]. 82

4.56 Add content to PDF-file part 2 [46]. 83

4.57 The PDF-file after adding some content [46]. 84

4.58 Removing pages from PDF-file [46]. 85

4.59 Name and value of test is divided into two strings [46]. 85

4.60 Changing the color of the result value [46]. 86

4.61 Change text color back to original [46]. 86

4.62 Color indication of test results [46]. 87

4.63 ETH Configuration [46]. 88

4.64 Configuring IP address [46]. 88

4.65 Online -> Settings... [46]. 89

4.66 New Connection or Refresh, then IP Parameter and later Connect [46]. 89

4.67 The IP Address and Subnet Mask must match [46]. 90

4.68 Successful connection [46]. 90

4.69 Illustrates how the B&R input block and conversion block used to convert datatype

was connected to the system [46]. 91

Page xviii

4.70 B&R Config block Model Configuration [46]. 92

4.71 B&R Config block Automation Studio Setting [46]. 92

4.72 B&R Config block Advance Settings [46]. 93

4.73 Automation Studio Target for Simulink: The B&R IN block [46]. 94

4.74 Automation Studio Target for Simulink: The B&R OUT block [46]. 94

4.75 Simulink® coder [46]. 94

4.76 Open the configuration menu [46]. 95

4.77 Add the OPC UA Default View File to the OpcUA folder [46]. 96

4.78 Set the enable to true for all variables [46]. 96

4.79 Transfer the program to CPU [46]. 97

4.80 A dependency for adding Eclipse Milo as a library [46]. 98

4.81 Class "RunTestsMilo" controls all other classes [46]. 98

4.82 Function for creating a client, and connecting to a server [46]. 99

4.83 Interface for specifying port number and security policy [46]. 100

4.84 Function for disconnecting the connection with the server [46]. 101

4.85 Function for converting value of variable to boolean [46]. 101

4.86 Function for reading value of variables [46]. 102

5.1 Testing the logic’s correspondence to starting pump and thruster [46]. 104

5.2 Testing the logic’s correspondence to an A_IN order [46]. 104

5.3 Checking similarities [46]. 105

Page xix

5.4 Function for starting the virtual connection [46]. 106

5.5 Function for reading the RpmControl variable with a virtual connection [46]. . . . 106

5.6 Overview of the progress of the FAT [46]. 107

5.7 System response to a step input of 100% without any PID controller [46]. 107

5.8 System response to a step input of 100% with a tuned PID controller [46]. 107

5.9 open-loop System response to a step input of 100% [46]. 108

5.10 System response to a step input of 100% without any PID controller [46]. 109

5.11 System response to a step input of 100% with a tuned PID controller [46]. 109

5.12 System response: No PID tuning and minimum pitch [46]. 110

5.13 System response: No PID tuning and maximum pitch [46]. 110

5.14 System response: PID tuned and minimum pitch [46]. 110

5.15 System response: PID tuned and maximum pitch [46]. 110

5.16 RPM response: Maximum value to idle [46]. 112

5.17 RPM response: Mainimum value to idle [46]. 112

5.18 RPM response: Idle to maximum value [46]. 112

5.19 RPM response: Idle to minimum value [46]. 112

5.20 RPM response: Maximum value to minimum value [46]. 113

5.21 RPM response: minimum value to maximum value [46]. 113

5.22 RPM response: Idle to 50% [46]. 113

5.23 RPM response: Idle to 25% [46]. 113

Page xx

5.24 RPM response: Different input values [46]. 114

5.25 RPM response: Idle to maximum, using STEP function in Simulink® [46]. 115

5.26 Overview of Rpm Control test logic [46]. 116

5.27 Overview of Remote Start/Stop of thruster motor test logic [46]. 117

5.28 Overview of Remote Start/Stop of thruster servo pumps test logic [46]. 118

5.29 Overview of Reset Drive test logic [46]. 119

5.30 Overview of DP Interface test logic [46]. 119

5.31 Overview of Joystick Interface test logic [46]. 120

5.32 Overview of the old setup [46]. 121

5.33 Overview of the improved setup [46]. 122

5.34 Overview of the OPC UA communication for establishing a connection [46]. 123

5.35 Overview of the OPC UA communication [46]. 124

5.36 Desired setup [72] . 126

5.37 VNCViewerSimu [46]. 127

5.38 Overview of FPP model in Simulink® [46]. 127

5.39 RPM from Mcon: Maximum value to idle [46]. 128

5.40 RPM from Mcon: Minimum value to idle [46]. 128

5.41 RPM from Mcon: Idle to maximum value [46]. 129

5.42 RPM from Mcon: Idle to minimum value [46]. 129

5.43 RPM from Mcon: maximum value to minimum value [46]. 129

Page xxi

5.44 RPM from Mcon: minimum value to maximum value [46]. 129

5.45 RPM from Mcon: Idle to 50%[46]. 130

5.46 RPM from Mcon: Idle to 25% [46]. 130

5.47 The printed PDF-file containing the FAT results [46]. 131

5.48 Overview of the classes and methods of the FAT in Java [46]. 133

Page xxii

List of Tables

5.1 List of PID values . 109

5.2 List of PID values for CPP model . 111

5.3 Input orders . 114

5.4 Tests implemented in the semi-automatic FAT . 132

Page xxiii

Terminology

Binary A number expressed in the base 2 numeral system, using only two numbers, normally

consisting of 0 and 1.

Branch Diverge from main line of development, to continue work without messing with the

main line

C++ Early developed general purpose programming language

Commit Operation sending the latest changes of the source code to the repository, making

these changes part of the repository

Corrupt data Errors in computer data, occurring during writing, reading, storage, transmission

or processing, which introduces unintended changes to the original data

Covid-19 Worldwide ongoing pandemic

Deserialization Process of converting data back into it’s original form

File tree One level of information, referring to a hierarchy of files and directories

GUI Graphical User Interface, makes it possible to interact with a computer

Human-readable-text Text that is readable for humans, in contrast to machine-readable-text

Interface An abstract type implemented by classes for specifying behaviour

LaTex Document preparation system

MATLAB® Multi-paradigm programming language and numeric computing environment in a

unique programming language

Modbus Communication protocol used for PLC

Objects Abstract data type, which integrates code and data as behavior and state

Object Oriented Programming paradigm based on "objects", which can contain data and code.

Data in form of fields or properties, and code in form of procedures or methods

Page xxiv

OPC UA Open Platform Communication Unified Architecture, used for communication from

machine to machine

Open Source A license which grants everyone the right to use, study, change and share a soft-

ware

Programming Language Allows giving instructions to a computer in a language the computers

can understand

Packet Small amount of data sent over a network

Parameter Values to be passed into a function

Pull request Lets the developer tell others about changes pushed to a branch in a repository

Repository Storage location for software packages

Serialization Process of converting data into a format that can be transmitted or stored

Simulink® MATLAB-based graphical programming environment

Software packages Software collection of individual files or resources

TCP/IP Transmission Control Protocol / Internet Protocol, used for communication between a

server and a client

Thread The smallest sequence of programmed instructions managed by a scheduler, schedul-

ing what threads to be run. Normally used in real time programming

Variable Used to store information to be referenced and manipulated

Notation

ACK Acknowledgement message from receiver

Page xxv

Abbreviations

AI Analog Input

AO Analog Output

BC Back-up Control

B&R Company for simulating and creating automation and process control solutions

CIP Common Industrial Protocol

CP Controllable Pitch

CPP Controllable Pitch Propeller

CPU Central Processing Unit

DI Digital Input

DO Digital Output

FAT Factory Acceptance Test

FBD Function block diagram

FGL Functioning Group Leader

FP Fixed Pitch

FPP Fixed Pitch Propeller

FHI Norwegian Institute of Public Health

GUI Graphical user interface

HIL Hardware In-The-Loop

HW Hardware

IP Internet Protocol

Page xxvi

I/O Input / output

IMO International Maritime Organization

JVM Java Virtual Machine

LAN Local Area Network

LTI Linear Time-Invariant

Mcon Maneuvering Control

MSS Marine Systems Simulator

NC Normal Control

NTNU Norwegian University of Science and Technology

OID Operator Input Device

OPC UA Open Platform Communications Unified Architecture

PID Proportional-integral-derivative

PLC Programmable Logic Controller

POM Project object model

RPM Rotations per Minute

RPS Rotations per Second

SIL Software In-The-Loop

ST Structured text

TCP Transmission Control Protocol

Page xxvii

Nomenclature

AE /AO Blade area ratio [m2]

Bm Viscous friction [m2/s]

C (s) Output of transfer function

D Diameter of the propeller [m]

e Error signal

G(s) Transfer function based on output and input

hp Pitch ratio

J Advance coefficient

Jm Rotational inertia [kg −m2]

Jp The moment of inertia of propeller [kg −m2]

Km Motor constant

Kt Thrust coefficient [N]

Kq Torque coefficient [N]

N Number of teeth on the gear dial

n Shaft speed [RPS]

P/D Pitch-diameter ratio

Qp Propeller torque [N m]

Qm Motor torque [N m]

r Radius of drive gear [m]

Re Reynolds number

Page xxviii

rp Propeller radius [m]

rR P M Reference signal on RPM order [%]

rR e f e r e n s e Reference signal

R(s) Input/reference

T Gear torque [N m]

Tm Motor torque [N m]

Tp Propeller thrust [N]

u n|n|, where n = RPS [RPS2]

Vm Voltage value in percent -100 to 100 [%]

yO u t p u t Output signal

yR P M Output signal for RPM feedback [%]

z Number of blades

Greek symbols

ω Angular velocity of the propeller [r ad/s]

dω

d t
Angular acceleration of the propeller [r ad/s2]

ρ Water density [kg /m3]

ωm Angular velocity of motor [r ad/s]

θ Angular displacement of drive gear [Radi an]

θp Pitch angle [Radi an]

Page xxix

Chapter 1: Introduction

Chapter 1

Introduction

1.1 Background

Testing of Mcon Thruster Control at Longva Automation Facility is time consuming using the

present solution. The present solution is a physical setup system containing wiring for each

signal, where all the signal handling has to be performed manually. The thruster response is

therefore incorrect due to no automatic simulated feedback of the thruster system.

The topic of this thesis is to investigate better solutions for testing with the Mcon Thruster Con-

trol. Automation of prior manual tasks is essential for staying competitive.

1.1.1 Lean Manufacturing

The Lean principles appraise how the value for the customer and the society may increase by

optimizing the product and streamline the production process and how the streamlining of the

process can help reduce waste.

The five Lean Fundamentals:

1. Customer value

2. Value stream

Page 1 of 311

Chapter 1: Introduction

3. Flow

4. Push and pull

5. Perfection

Developing software that can test and verify the Mcon Thruster Control will avail Kongsberg

Maritimes production and positively influence the value stream. A value stream is about gain-

ing control of the production process. Examining each link can increase the quality of a given

product and streamline the individual links in the value stream. It is essential to deliver quality

products effectively.

In this case, it is appropriate to look at the production time, and more specifically the time used

building the test setup and performing the factory acceptance test at Automation Longva Fa-

cility. By using a simulator instead of a physical setup for testing, time used and cost would

decrease. A diagram showing the process with today’s solution, and our solution, can be found

in Appendix A.

1.2 Project Introduction

This thesis aims to create a better solution for the testing of thrusters by minimizing time use

and creating more realistic thruster behavior. Creating a software solution for the test setup

and thruster behavior provides a better and faster solution. A graphical user interface with logic

handling all the signals will give a better overview and control during testing. Semi-automatic

handling of the test will reduce the time spent on testing. Thruster simulation will create a more

realistic behavior when performing the test.

1.3 Aim and Objectives

This bachelor thesis functions as a proof of concept in terms of creating a functionally automatic

software solution that covers all the requirements. The main task will be to create commu-

nication between all the software while keeping the functional quality required for the testing.

Whereas the core objectives to fulfill Kongsberg Maritimes requirements are listed below.

Page 2 of 311

Chapter 1: Introduction

• Simulate a set of chosen I/O signals from Mcon

• Simulate thruster

• Create semi-automatic factory acceptance test, with printing of test results

1.4 Limitations

In this project certain limitations has been considered. These limitations are chosen to restrict

the project from being too large or too vague. These limitations make the project solvable in

the limited time available, and some could be removed or adjusted if the project were to be

continued over an extended time period. The chosen limitations for this project are:

• A one quadrant model for the thruster model is used, instead of a four-quadrant model.

• Some information on parameters that could have made the thruster model more realistic

were not available.

• Not all tests in FAT can be digitized, and some must therefore be handled manually.

• Signals used outside of the FAT were not implemented.

Some limitations have an impact on the solution presented in this report and would have lead

to other results.

1.5 Structure of the Report

The report is structured as follows:

Chapter 1 - Introduction - This chapter is about the background for the project, as well as what

the goals and limitations were with this thesis.

Chapter 2 - Theory - This chapter presents the theoretical basis behind all decisions and solu-

tions used during this thesis.

Page 3 of 311

Chapter 1: Introduction

Chapter 3 - Materials - This chapter contains the materials used in the project.

Chapter 4 - Method - This chapter describes the development of the software and contains all

the information needed to recreate this project.

Chapter 4 - Results - This chapter contains the presentation of all the results and solutions.

Chapter 6 - Discussion - This chapter presents a discussion regarding the different solutions,

test results and the thesis as a whole.

Chapter 7 - Conclusion - This chapter concludes the thesis work.

Page 4 of 311

Chapter 2: Theoretical Basis

Chapter 2

Theoretical basis

The following sections will explain the theoretical basis behind all the decisions and solutions

for this project. First, an explanation of Mcon will be given, then the theory of the logic and

modelling is presented, followed by an explanation of the FAT. The chapter also includes a de-

scription of the communication theory and necessary programming concepts and languages.

2.1 Mcon Thruster Control

Mcon is the latest generation of Kongsberg Maritimes remote control systems designed for con-

trol for a wide range of propulsion and thruster products. The key benefits of Mcon is [65]:

• Better control of propulsion and thruster units.

• Touch-screen GUI for user-friendly and intuitive operations.

• Integrated force feedback notifying the operator when the bridge is not in command.

• No change in thrust when transferring command between bridge stations, all input devices

being in the same position at all times.

• Remote start/stop of thruster motor/servo pumps.

Page 5 of 311

Chapter 2: Theoretical Basis

2.2 Normally Open vs Normally Closed

Normally open (NO) and Normally closed (NC) are terms used to define the states of switches,

sensors or relay contacts under when its coil is not connected [30], illustrated in Figure 2.1.

An NO contact remains open until a certain condition is satisfied, for example a light switch.

A light switch will stay off until the button is pressed, closing the circuit allowing power to go

through.

An NC contact remains closed until a certain condition is satisfied. For example an emergency

stop. The switch in the circuit is closed when it is not pressed, and opening it will cause the

circuit to break and power to be cut [30].

Figure 2.1: Fixed Pitch Propeller [29]

2.3 Thruster

2.3.1 Tunnel Thruster

Tunnel thrusters are designed to provide side force to the ship to enhance maneuvering cap-

ability in port or additional station keeping power during dynamic positioning, and tailored to

match the vessel application. They are available with Controllable Pitch (CP) or Fixed Pitch (FP)

propeller [61].

2.3.1.1 Fixed Pitch Propeller (FPP)

A FPP can only be controlled by controlling the RPM, (see Figure 2.2). The fixed pitch type

propellers are casted and the position of the blades and hence the position of the pitch is per-

manently fixed and cannot be changed during the operation [101].

Page 6 of 311

Chapter 2: Theoretical Basis

Figure 2.2: Fixed Pitch Propeller [60]

2.3.1.2 Controllable Pitch Propeller (CPP)

A CPP can be controlled by both the propeller speed and the angle of the propeller blades (pitch)

(see Figure 2.3). Control of the pitch gives a significant increase in efficiency and a blade foot

with decreased exposure to cavitation [59].

Figure 2.3: Controllable Pitch Propeller [59]

Page 7 of 311

Chapter 2: Theoretical Basis

2.4 Modelling

2.4.1 Control system

"A control system consists of subsystems and processes (or plants) assembled to obtain the desired

output with desired performance, given a specific input" [72].

A control system can simulate the behavior of real-world objects such as engines and gears.

Control systems can also be used to describe complex systems such as aeroplanes, cars and

vessels. A mathematical model must be created for the system desired to model or simulate. The

mathematical model of control systems often take form in either of the three following shapes

[24]:

1. An nth order differential equation representing the system.

2. A transfer function, which can be described as a Laplace transform of the differential

equation, is put in the form of output divided by input.

3. A state space model which can be described as an nth order differential equation as n

simultaneous first-order differential equations.

The process of designing a control system can be broken down into the following steps [72]:

1. Determine physical system and specifications from requirements.

2. Draw function block diagram.

3. Represent the physical system as schematic.

4. Use the schematic to obtain the mathematical model of the given system.

5. Reduce the block diagram.

6. Analyze and design system to meet specified performance for stability and transient re-

sponse, steady-state performance.

Page 8 of 311

Chapter 2: Theoretical Basis

2.4.2 Transfer Function

A transfer function is defined as a linear, time-invariant (LTI) differential equation system. The

ratio between the Laplace transform of the output and the Laplace transform of the input de-

scribes the system [25]. Initial conditions must always be assumed to be zero in a transfer func-

tion. A transfer function G(s) is given by the input R(s) and the output C (s) of the system (See

equation 2.4.1).

G(s) = C (s)

R(s)
(2.4.1)

One of the great benefits of utilizing the transform function is its simplicity. All needs for integra-

tion and derivation are removed. Making it dependent on basic algebraic mathematics to solve

the mathematical equation by taking the Laplace transform of the output and input. In order

to find the complete system of multiple transfer functions connected in cascade, the transfer

functions are multiplied to obtain the overall transfer function of the complete system [25]. If

the transfer function is connected in parallel, they can be summed to find the overall system.

These simple algebraic operations make the transfer functions very simple and efficient to work

with if there are zero initial conditions for the system.

2.4.3 PID Controller

PID controller is short for proportional-integral-derivative controller, and can be described as a

controller used to stabilize a system with the help of proportional, integral, and derivative gains

[22]. PID controllers are the most popular option for regulating a closed-loop system. It is as-

sumed that approximately 95 % of all controllers used are PID controllers [81]. The structure

of a PID controller can be seen in 2.4, where C(s) represents the PID controller and P(s) repres-

ents the system being controlled. A feedback signal is coupled back to the controller, where the

actual value yO u t p u t of the system is subtracted from the desired value rR e f e r e n s e . This cre-

ates the signal e, which is fed through the PID controller again. This is an iterative process that

Page 9 of 311

Chapter 2: Theoretical Basis

will eventually drive the error signal to zero and stabilize the system if the PID controllers are

correctly tuned.

Figure 2.4: Structure of a PID controller [21]

The Output of the PID controller can be calculated using equation 2.4.2[22].

u(t) = Kp e(t)+Ki

∫
e(t)d t +Kd

de

d t
(2.4.2)

Kp represents the proportional part, Ki represents the integral part, and Kd represents the de-

rivative part of the PID controller. e is the difference between the desired and actual output, and

can be seen in Figure 2.4 as the input of the controller.

The proportional, integral, and derivative gains that comprise the PID controller affect the char-

acteristics of the model in different ways. Figure 2.5 provides an overview of the different ways

each part can affect the performance and characteristics of a system [22].

Figure 2.5: Characteristics of the proportional, integral, and derivative parts that make up the
PID controller [21]

Page 10 of 311

Chapter 2: Theoretical Basis

2.5 Propeller and motor dynamics

When creating a propeller and motor model, the relation between the two is taken into the equa-

tion. In addition, some simplifications were necessary since a propeller and motor can be com-

plex.

In order to simplify the dynamics of the model, some of the vessel’s dynamics are neglected. It

was assumed that the propeller is in water, but the foundation of the propeller does not move

forward as the vessel normally would. This assumption provides a basis for a simplified task,

namely a physical model, comprised by the dynamics of the propeller and the electrical motor.

The dynamic equation for the model can be written as [105]:

Jp
dω

d t
=Qm −Qp (2.5.1)

Jp represents the moment of inertia of the propeller,
dω

d t
is the angular acceleration of the pro-

peller, Qm represent the torque of the electric motor and Qp represent the propeller torque. The

calculations of the Qp can be found in the sections 2.5.1.

2.5.1 Propeller

Two of the most common propellers for vessels are fixed-pitch propellers (FPP) and controllable-

pitch propellers (CPP). These two variations of a propeller are widely used as prime mover thrust

device [39]. When designing a mathematical model of a marine propeller, two equations stand

as a central aspect of propeller modeling.

Tp = ρD4n|n|Kt

Qp = ρD5n|n|Kq

(2.5.2)

Page 11 of 311

Chapter 2: Theoretical Basis

These equations represent propeller thrust (Tp) and propeller torque (Qp). ρ represents the

water density, D represent the diameter of the propeller, n describes shaft speed, while Kt and

Kq represents thrust- and torque coefficients, respectively. The thrust is neglected based on

assumptions of the propeller being in the water with no motion to the foundation. Calculations

that support these assumptions can be found in section 2.5.

2.5.1.1 Finding Kq and Kt coefficient

In order to find the torque and thrust produced by a propeller, the torque and thrust coefficient

must be found first. The Wageningen B-series propeller is used as a basis for finding the Qp

coefficients. The B-series’ open-water characteristics of 120 propeller models were tested and

analyzed with multiple polynomial regression analysis. The derived polynomials with multiple

regression analysis express Tp and Qp in terms of the number of blades, the blade area ratio, the

pitch-diameter ratio, and the advanced coefficient. The polynomial coefficients provided in this

work are valid for Re = 2∗106.

The series consists of propellers ranging from 2 to 7 blades, with blade area ratios from 0.30 to

1.05 and pitch to diameter ratios from 0.5 to 1.4 [71]. The coefficients C T
s , t ,u, v and CQ

s , t ,u, v

and terms s, t ,u, v are given in Appendix B.

Kq = ∑
s,t ,u,v

CQ
s,t ,u,v (J)s(P/D)t (AE /AO)u(z)v

(2.5.3)

Kt =
∑

s,t ,u,v
C T

s,t ,u,v (J)s(P/D)t (AE /AO)u(z)v
(2.5.4)

2.5.1.2 Four-quadrant model

Forward and reverse shaft revolution speeds and inflow speeds produce four operation quad-

rants for a propeller. Figure 2.6 shows the propeller definition of the 4-quadrant operating con-

Page 12 of 311

Chapter 2: Theoretical Basis

ditions of a propeller-rotor [57].

Figure 2.6: Four quadrants of ship speed and propeller operations [87]

The four quadrants defined can also be divided into two modes, propulsion mode, and turbine

mode. Below is a summary of the four-quadrant operations:

1st quadrant Normal forward propulsion mode

2nd quadrant Normal turbine power generation mode

3rd quadrant Reserve/astern propulsion mode

4th quadrant Reverse inflow turbine power generation mode

2.5.1.3 Pitch dynamics

CPP uses the variable pitch rate of the propellers, which makes this an essential characteristic

for this kind of propeller. A variable-pitch propeller is a propeller that can rotate its blade ori-

entation around its longitudinal axis (see Figure 2.3) [104].

By changing the pitch of the blades, the propeller will be able to regulate the thrust and speed

Page 13 of 311

Chapter 2: Theoretical Basis

of the boat without changing the rotational speed of the propeller. The equation for propeller

pitch can be seen in equation 2.5.5 [45].

θp = arctan

(
hp

πrp

)
(2.5.5)

Where θp represents the angle of the pitch, hp is the pitch ratio, and rp is the radius of the

propeller.

2.5.2 DC motor

A direct Current motor (DC motor) is defined as an electrical motor, which converts direct cur-

rent electrical energy into mechanical energy. The most common type of DC motor relies on

electromagnetic fields to convert electrical energy into mechanical translational/rotational en-

ergy [103].

A simple model of a DC motor consist of the following main components [32]:

Armature Also called a rotor. The armature is made of electrical windings around the rotor

arm. These windings produce a magnetic field when subjected to a current. The magnetic

poles generated are then attracted to the opposite poles generated by a permanent magnet

called the stator.

Stator A magnet or electromagnetic windings that generate a magnetic field around the arma-

ture/rotor.

Commutator A DC motor does not use any external current switching device; instead, it uses a

mechanical connector. this connector is called a commutator.

Brushes As the motor turns, the brushes slide over the commutator/connector to create a mag-

netic field. When voltage is applied across the brushes, a dynamic magnetic field is gen-

erated.

Page 14 of 311

Chapter 2: Theoretical Basis

Figure 2.7: Components of a DC Motor [32]

2.5.2.1 Gear Ratio

Gears are leverage to either increase rotational speed or increase the amount of torque pro-

duced. The gear ratio describes the relationship between the gear-input and -output in terms of

speed or torque produced. The effect a pair of gears has on the rotational speed or torque can

be found by obtaining this ratio. Figure 2.8 describe the gear ratio of a system of gears [26].

Figure 2.8: Gear ratio [72]

The distance traveled along the circumference of the gears is the same and is represented in

equation 2.5.6. Subscript 1 represents the input gear, and subscript 2 represents the output gear

Page 15 of 311

Chapter 2: Theoretical Basis

(see Figure 2.8).

r1θ1 = r2θ2 (2.5.6)

The number of teeth on a geared dial is proportional to the radius of the gear. Rearranging

equation 2.5.6, with this knowledge, gives the relationship shown in equation 2.5.7.

θ2

θ1
= r1

r2
= N1

N2
(2.5.7)

θ is the angular displacement, r represents the radius, and N is equal to the number of teeth on

the gear dial. The same logic is followed for torque and obtain equation 2.5.8.

T1θ1 = T2θ2 (2.5.8)

Which also can be rewritten as:

T2

T1
= θ1

θ2
= N2

N1
(2.5.9)

By taking advantage of these formulas, both angular displacement- and torque-relationships

can be obtained by dividing the number of teeth on the gears. This relationship obtains a ratio

for torque or angular displacement. Multiplying this ratio with a system will obtain either de-

sired speed or torque in the system. For multiple gears, simply multiply the ratios to obtain the

total gear ratio of the system.

Page 16 of 311

Chapter 2: Theoretical Basis

2.6 FAT

International Maritime Organization (IMO) is a specialized agency responsible for the safety

and security of shipping and the prevention of marine and atmospheric pollution by ships [53].

IMO standard is required before delivery and is certificated through a Factory Acceptance Test

(FAT). The FAT checks and verify systems and equipment and will discover faults before deliv-

ery. Quality assurance and risk management companies, such as DNV, RINA, and others, are

present when Kongsberg Maritime performs the FAT and verifies that the result follows given

class requirements.

A FAT is unique for each system and must be sequenced thoroughly without a rush to prevent a

faulty system and consists of a wide variety of inspection points and tests. The process evaluates

the equipment after the assembly process by verifying that it is built and operating by design

specifications [27] [70].

Having done a FAT on the equipment is also a great reassurance for both the producer and the

customer. The producer can fix problems while the system is still at the factory and make sure

that the system they are selling is functioning as expected. It also prevents faults from occurring

while equipment is mounted on the vessel, saving the cost and time of returning the equipment

or sending a maintenance specialist and preserving security [27] [70] [66].

The FAT used for the Mcon Thruster system consists of "Functional tests" and "Faults and Con-

sequences" for the tunnel thrusters. These tests include tests for general functions, Rpm Con-

trol, Start/stop/reset functions, interfaces to external systems, and alarms. The complete FAT is

attached as Appendix E [64].

2.7 Communication

2.7.1 Communication Architecture

A server is an always-on host in a server-client architecture which clients request services or

functionality from [63]. A server is a machine with large memory and a lot of storage. It has a

Page 17 of 311

Chapter 2: Theoretical Basis

fixed, accessible IP address for clients to connect. The server is responsible for sharing data, pro-

cess calculations, or regulating internet traffic between clients since the clients do not directly

communicate with each other [84].

A client is a data program located at a user, such as a computer, mobile, or a browser. All clients

connected to a server will get the same data, and the clients will therefore showcase the same

information to all the users [85]. The calculations will therefore only need to be handled in

the server. This solution makes the program faster, and the probability of data errors, such as

missing or changed data, is minimized [3].

One server can connect to multiple clients, and a client can use multiple servers [88]. If a server

has multiple clients, the server needs to regulate the internet traffic, so as all the clients can

access the content at the server [3]. The server and client can be located on the same device

or connect over a network from different devices. The server and client usually are connected

using the request and response model, where a client requests a service from the server, which

then performs the service and sends back a response in the form of an acknowledgment be-

fore cutting the connection [95]. Communication protocol get used when such connections are

performed [2].

2.7.2 Communication Protocol

Communication protocols describe digital message formats and rules and are used to exchange

data in or between computing systems. They ensure that data are transmitted and received

properly and provide consistency and universality for sending and receiving messages between

different end parts [91] [94].

2.7.2.1 Ethernet/IP

Ethernet/IP stands for Ethernet/Industrial Protocol and is a protocol that adapts the Common

Industrial Protocol (CIP) to standard Ethernet. Ethernet/IP uses the Ethernet standards, internet

protocol and IEEE 802.3, to define the features and function for its transport, network, datalink,

and physical layers [106].

Page 18 of 311

Chapter 2: Theoretical Basis

2.7.2.2 Automation Studio Target for Simulink

Automation Studio Target for Simulink is a toolbox for extending Simulink® and serves as an in-

terface between MATLAB®/Simulink® and B&R Automation Studio. The code in MATLAB®/Simulink®

is automatically generated to the language C and integrated into the B&R Automation Studio

project, using Simulink® coder together with Automation Studio Target for Simulink [13].

Figure 2.9: Concept of Automation Studio Target for Simulink [13]

The toolbox adds a B&R library into the Simulink® library. It provides blocks that allow a con-

nection to B&R Automation Studio and seamless integration of the generated program code. In

addition to B&R-specific blocks, Automation Studio Target for Simulink also supports all stand-

ard input/output blocks from Simulink® [13].

Page 19 of 311

Chapter 2: Theoretical Basis

Figure 2.10: Automation Studio Target for Simulink library [46].

B&R Automation Studio Target for Simulink blocks [13]:

B&R Config block Required to configure the Automation Studio connection and to select the

coder and programming language.

The B&R IN block / B&R OUT block creates a process variable in Automation Studio that can

be linked to inputs or outputs.

B&R PARAMETER block creates a process variable in Automation Studio to make an internal

parameter visible externally.

B&R WORKSPACE_VAR block enables variables created in MATLAB®/Simulink® to be used in

the Simulink® model and generated as process variables in the Automation Studio pro-

ject.

B&R EXT_IN block / B&R EXT_OUT block creates process variables in Automation Studio to

adapt Simulink® variables to the hardware inputs and outputs.

B&R STRUCT_IN block / B&R STRUCT_OUT block allows existing Automation Studio structures

to be used in the Simulink® model. The structures are read from a specified .typ file.

B&R BUS IN / B&R BUS OUT block generates a corresponding structure in the Automation Stu-

dio .typ file from a Simulink® bus variable as well as a corresponding process variable of

type "structure".

Page 20 of 311

Chapter 2: Theoretical Basis

2.7.2.3 TCP/IP

TCP/IP is the most commonly used protocol for clients to communication with servers, and is

consisting of two individual protocols, Transmission Control Protocol (TCP) and Internet Pro-

tocol (IP). TCP is a connection-oriented protocol, and ensures a secure transportation of data

between the connected users [38]. TCP establishes and maintains a connection until all mes-

sages is exchanged [1]. The exchange is performed using a three-way handshake, illustrated in

Figure 2.11. The sender sends a request to the receiver, which answers by sending back data,

before the sender confirms that the data is received [84].

Figure 2.11: Illustration of a three-way handshake between a server and a client [96]

If the data becomes lost and therefore not received, the data will be retransmitted until the

sender receives a confirmation from the receiver, as illustrated in Figure 2.12 [84].

Page 21 of 311

Chapter 2: Theoretical Basis

Figure 2.12: Illustration of a retransmission due to lost data [74]

IP is a connectionless protocol, and there are no continuous connection between the users com-

municating with each other. By using IP, the data is broken into small packets, before sending

over the internet. Each packet is travelling as a independent unit of data, before being put to-

gether at the destination. The packets needs to be put together in the correct order to extract

the same data as before sending. This process is accomplished by TCP, by giving all the packets

different sequence- and acknowledgement-numbers, as in Figure 2.12 [1]. IP is responsible for

directing each packet to the correct destination [6] [84].

2.7.2.4 OPC UA

The most common communication protocol in automation is Open Platform Communications

(OPC), which has evolved from the classical standards to OPC Unified Architecture (UA). This

new version of OPC is platform independent, more secure, makes communication over network

easier and integrates all the functionality of the earlier individual OPC classic versions into one

Page 22 of 311

Chapter 2: Theoretical Basis

extensible framework [41] [73].

The OPC protocol uses the server-client architecture, described in section 2.7.1, for communic-

ating. OPC standardizes the access to machines, devices and other systems in industrial envir-

onment and enables the data exchange to be similar and manufacturer-independent. Because

of the standardization, each OPC client can communicate with any OPC server. The OPC UA

standard was built based on basic web technologies, TCP/IP and http/SOAP, and has therefore

TCP/IP integrated, which is necessary for communicating over the network [86].

2.8 Programming Concept

2.8.1 Cyclic

In a CPU, there are four operations, illustrated in Figure

2.13, being repeated continuously. Each operation’s

execution is called a scan, and the time it takes for the

system to perform a scan is called a cycle time/cyclic.

The cycle time can vary from one cycle to another [49].

B&R Automation Studio is based on a cyclic time, which

is based on a fixed interval.

Figure 2.13: The
four operations
[49]

2.8.2 Object Oriented Programming Paradigm

The object-oriented programming paradigm relies on concepts such as classes and objects.

Classes are simple reusable pieces of code blueprints used to create individual instances of ob-

jects. The classes contain what attributes an instance of this type will have, but not the value

Page 23 of 311

Chapter 2: Theoretical Basis

of those attributes for a specific object type. A class called "Car" will, for example, contain at-

tributes such as color, brand, year model and so on. The classes normally contain methods or

functions as well, which are used for performing helpful actions, like reading or changing the

values of an attribute for a specific object [35].

2.8.3 Interface

An interface is an entirely abstract class consisting of static constants and a collection of abstract

methods without a method body. It is used to group related methods, archive abstraction, and

multiple inheritance [54]. For accessing the interface methods, a class needs to implement or

inherit the interface, using the implements keyword [99].

An interface is similar to a class. However, instead of describing the attributes and behaviors of

an object, the interface contains behaviors that a class implements. If the class implementing

the interface is not abstract, all the methods in the interface need to be defined in the class [97].

2.8.4 Serialization

Serialization is a process to store data in files on disk, save program’s states on disk or send data

over a network as objects. Serialization is where an object serializes with sending and deseri-

alizes with reception. The object is converted into a sequence of bytes containing data, object

type, and type data written into one file. The receiver then reconverts this file into the original

content [5]. Usually, the Java Virtual Machine (JVM) is responsible for reading and writing seri-

alized objects [48]. JVM is included in all machines, which enable serialization of objects at

one platform, and deserialized at another [4] [56]. Another advantage with serialization is that

multiple data can be sent at once, like multiple parameters [9].

2.8.5 Maven

Maven is a software project management and comprehension tool provided by Apache Soft-

ware Foundation. This tool is based on the project object model (POM) concept and can be

used for building and managing any Java-based project [83] [11]. It is a standard for building

projects, provides a clear definition of what the project consists of, and enables sharing of JAR

Page 24 of 311

Chapter 2: Theoretical Basis

across several projects. The primary goal of this tool is to allow a developer to comprehend the

complete state of a development effort in the shortest amount of time. Once the developer gets

familiarized with one Maven project, the building of all Maven projects becomes known [10].

2.8.6 Version Control

Version control is a system for managing changes in files over time. The system enables the re-

calling of specific versions. This function can be used for almost any type of file but is commonly

used for code files. Version control allows to revert files or the whole project to a previous ver-

sion, compare changes over time, see who last modified the files, and makes it easy to recover

from lost or faulty files [42].

When working in teams, version control is essential. The project consists typically of multiple

developers working simultaneously, and the project, therefore, needs to be organized as a "file

tree." It also allows developers to work on different parts of the file tree simultaneously without

overwriting each other’s code [12].

2.9 Programming Language

Programming languages are languages that computers can understand. These languages vary

between many different functions, but the standard for all is to be translated into binary through

compilation. In binary code, the computer reads the language as only zeroes and ones, enabling

information quickly and efficiently. Different languages perform different tasks, and this project

consists of several different programming languages [89]. All the programming languages used

in this thesis are listed below.

2.9.1 Java

Java is a free and open-source object-oriented programming language developed for use in the

distributed environment of the internet. One of the main advantages of using Java is that it can

run on almost any platform [93] [100].

Page 25 of 311

Chapter 2: Theoretical Basis

2.9.2 Structured text

Structured text (ST) is one of the five languages of the IEC-61131-3 standard used for PLC pro-

gramming. This standard deals with PLC communication and allows PLCs to exchange data by

a communication network [8] [92].

2.9.3 C

C is a general-purpose, procedural computer programming language supporting structured

programming, lexical variable scope, and recursion, with a static type system [102].

2.9.4 LaTeX

LaTeX is a free typesetting system and is developed for creating high-quality technical and sci-

entific documents. LaTeX enables total control over the look of the document, where the writer

can change every aspect if desired [80] [77].

2.9.5 MATLAB®

MATLAB® is a high-level matrix/array language with control flow statements, functions, data

structures, input/output, and object-oriented programming features [28].

Page 26 of 311

Chapter 3: Materials

Chapter 3

Materials

This section includes a review of all the materials used in the completion of this project.

3.1 Screens

The GUI for the Mcon Control system is visualized on

two screens. Mcon GUI is designed to enable intuitive

operations through its touch-enabled display providing

direct access to all underlying functions [65]. Two

screens are used in this project, shown in Figure 3.1

Figure 3.1: Mcon GUI [65]

Mcon thruster RPM display is an additional screen to the

GUI, but it is only a visualiser. Two screens are used in

this project, shown in Figure 3.2

Figure 3.2: Mcon thruster
RPM display [46].

Page 27 of 311

Chapter 3: Materials

3.2 Levers

The levers for the Mcon Control System are

high-precision levers with integrated push buttons and

dual electronics for normal and back functions. The

levers are also motorized [65]. Two levers (see Figure 3.3)

are used in this project.

Figure 3.3: Mcon Thruster
Lever[65]

3.3 Testjigg

The testjigg (see Figure 3.4) is the present test equipment

used during FAT. It contains buttons and dials in order to

handle the signals.

Figure 3.4: Physical testjigg
[46].

Page 28 of 311

Chapter 3: Materials

3.4 CPU

The CPU used is the model X20CP3583 (see Figure 3.5)

and is delivered by B&R Automation. The X20CP3583 is

the entry-level Atom-based X20 CPU. USB, Ethernet,

POWERLINK, and removable CompactFlash are all

included as standard features. The standard Ethernet

interface is capable of handling communication in the

gigabit range [14].

Figure 3.5: CPU X20CP3583
[14]

3.5 I/O Modules

The I/O modules needed for this project were two digital

inputs, two digital outputs, one analog input, and one

analog output. The I/O modules used in this project can

be seen in Figure 3.6 and are as follows:

• X20AI4322 [15]

• X20AO4622 [16]

• X20DI6371 [17]

• X20DO6639 [18] Figure 3.6: I/O modules [46].

Page 29 of 311

Chapter 3: Materials

3.6 Ethernet cable

The Ethernet cable is used to connect the CPU to the

computer, shown in Figure 3.7.

Figure 3.7: Ethernet Cable
[7]

3.7 I/O signal cables

The cables used for connecting I/O signals, is shown in

Figure 3.8. Approximately 36 wires are needed between

the CPUs I/O modules and Mcons I/O modules.

Figure 3.8: I/O wires [46].

3.8 Multimeter

A multimeter is a measuring instrument that can

measure multiple electrical properties [107]. The

multimeter, shown in Figure 3.9, was used to control and

verify the wiring during assembly.

Figure 3.9: Multimeter [107]

Page 30 of 311

Chapter 3: Materials

3.9 Software

3.9.1 B&R Automation Studio

B&R Automation Studio is an integrated software development environment and allows the user

to configure the controller, drive, communication, and visualization in one environment. The

software has integrated IEC 61131-3 languages, consisting of the three graphical programming

languages ladder diagram, function block diagram, sequential function chart, and the two tex-

tual programming languages structured text and instruction list [19].

B&R Automation Studio is used for writing the logic code for the signals in this project and mak-

ing the GUI.

3.9.2 MATLAB®

MATLAB® is a programming and numeric computing platform used to analyze data, develop

algorithms, and create models. MATLAB® combines a desktop environment tuned for iterative

analysis and design processes with a programming language that directly expresses matrix and

array mathematics [68].

In this project, MATLAB® is used as a init containing the constants used in the Simulink® model

3.9.3.

3.9.3 Simulink®

Simulink® is a block diagram environment for multidomain simulation and Model-Based Design.

It supports system-level design, simulation, automatic code generation, and continuous test

and verification of embedded systems. Simulink® also provides a graphical editor, customiz-

able block libraries, and solvers for modeling and simulating dynamic systems. Simulink® is

integrated with MATLAB®, enabling MATLAB® algorithms into models and exporting simula-

tion results back into MATLAB® for further analysis [69].

Simulink® is, in this project, used to simulate the thruster and propeller, making the RPM feed-

back more realistic.

Page 31 of 311

Chapter 3: Materials

MSS

The Marine Systems Simulator (MSS) is a MATLAB® and Simulink® library for marine systems.

It includes hydrodynamic models for ships, underwater vehicles, and floating structures [40].

For this project, the Wageningen.m file is used for the propeller calculations.

B&R Automation Studio Toolbox

B&R Automation Studio Toolbox is automatically installed during the setup of Automation Stu-

dio Target for Simulink [13]. It is used to create a connection between Simulink® and B&R Auto-

mation Studio.

Simulink Coder

Simulink Coder generates and executes C and C++ code from Simulink® models [67]. The coder

is used during the transfer of software from Simulink® to B&R Automation Studio.

3.9.4 IntelliJ IDEA CE

IntelliJ IDEA is a program for writing code. It makes coding efficient and enjoyable by using an

ergonomic design and intelligent coding assistance. It has integrated version control systems,

supported languages and frameworks. IntelliJ is initially developed for the programming lan-

guage Java and is also the most used program for Java developers [55].

IntelliJ has been used in this project for writing the Java code, which handles the semi-automatic

FAT and printing of test results.

3.9.5 Github

Github is a collaboration platform using the Git system, made for sharing code projects between

developers. It enables collaborators to work on the same project from anywhere and offers ver-

sion control. The Git system can handle both small and large projects, and at the same time,

provide speed and efficiency. The projects consist of repositories, branches, commits, and pull

requests, making it clear who has made which changes in the code. Github also ensures that

all the developers has access to both the newest version, as well as all the earlier versions of the

code, which reduces the risk of losing any data. [43] [44] [47].

Github has been used for version control as well as for continuous sharing of the developed Java

Page 32 of 311

Chapter 3: Materials

code.

3.9.5.1 Github Desktop

Github Desktop is a program designed to simplify Github workflow and simplifies working with

git. The program is an extension of the Github platform. It makes it easy and fast to contrib-

ute projects between the different OS X and Windows platforms. It also makes it easy to up-

and download the code to the computer for applying changes, and it highlights the committed

changes so that other developers easy can see what is new [33] [23].

In this project Github Desktop has been used as an extension of Github, for a simplified work-

flow and fast contribution of the Java code.

3.9.6 VNC Viewer

VNC stands for Virtual Network Computing and is a visual desktop-sharing system. VNC Viewer

allows users to control another computer remotely. It is connected through IP address, and does

not need internet to work [82].

For this project, it was crucial to choose a VNC without a server, as that may interfere with the

B&R Automation Studio server. The VNC in this project will be a Graphical User Interface (GUI)

where buttons can be pressed, and values can be read and sent from.

3.9.7 UaExpert

UaExpert is a cross-platform OPC UA test client programmed in C++. It is designed as a client

for testing the connection to servers. The program is free and available for both Windows and

Linux [20].

UaExpert is used in this project for testing if the B&R Automation Studio OPC UA server has been

set up correctly and if it is possible to connect to it. UaExpert also provides the NodeId for the

variables, which is necessary in the Java client for reading the values in B&R Automation Studio.

Page 33 of 311

Chapter 3: Materials

3.9.8 Overleaf

Overleaf is an online text editor using Latex. The program requires no installations to use and

allows collaboration in real-time. This function means that changes can be viewed immediately

by others, and multiple people can edit simultaneously. It also provides version control and

templates to be used [76].

Overleaf has been used for writing the bachelor thesis.

3.9.9 Draw.io

Draw.io is a free application for easy creation of charts and diagrams. It is secure to use and

provides an opportunity to create visual communication. The application also provides options

for sharing and collaborating in a single diagram and enables the diagram to be interactive.

Draw.io contains templates, and it allows the movement of boxes, arrows, and other functions,

to the exact desired position. It is also easy to convert the diagrams to PDF files [36] [34].

In this project, Draw.io is used to draw diagrams to provide a better description and overview i

the report.

3.10 Libraries

Libraries in programming are premade classes made for reusable executing of a task. Libraries

enables programmers to expand their code, with a code file that is already tested for their desired

need [31].

3.10.1 Library in B&R Automation Studio

3.10.1.1 Standard

The standard library in B&R Automation Studio contains the standard function blocks and func-

tions for IEC 61131-3 [50].

TON

Within the library Standard the function TON is used. A description of this function is written

Page 34 of 311

Chapter 3: Materials

below.

If IN is FALSE, then the Q output is FALSE and the ET output is 0. As soon as IN is TRUE, time in

ET begins counting in milliseconds until the value is equal to the value in PT. It then remains at

that value. Q is TRUE if IN is TRUE and ET equals PT. Otherwise, it is FALSE. As a result, Q has a

rising edge if the time (specified in milliseconds) in PT has elapsed [51].

• IN = Input

signal, BOOL

type

• PT = Delay

Time, , TIME

type

• Q = output

signal

• ET = Elapsed

time, TIME

type Figure 3.10: Setting the Datapoint of the button. [51]

3.10.2 Libraries in Java

Libraries are easy to implement, using JAR files in Maven. Many thousands of libraries are avail-

able, because of open source software, allowing to use, study and change others source code

[90] [75].

3.10.2.1 Eclipse Milo

Milo is an open source implementation of OPC UA provided by Eclipse. It provides all the tools

needed to implement OPC UA client and server functionality in a JVM-based project. Milo

provides a high-performance stack used for serialization and security, among other things. It

Page 35 of 311

Chapter 3: Materials

also provides an SDK built on top of the stack for developing compliant UA client and server

applications [58] [37].

• Eclipse Milo

3.10.2.2 Apache PDFBox

Apache PDFBox is an open-source Java library tool for working with PDF documents provided

by Apache Software Foundation. This tool allows for the creation of new PDF documents, ma-

nipulation of existing documents, and the ability to extract content from documents [62] [78].

• pdfbox-2.0.1.jar

• fontbox-2.0.1.jar

• preflight-2.0.1.jar

• xmpbox-2.0.1.jar

• pdfbox-tools-2.0.1.jar

• pdfbox-debbugger-2.0.22.jar

Page 36 of 311

Chapter 4: Method

Chapter 4

Method

This section contains a closer description of how to fulfill this project and contains all the in-

formation needed to recreate this project. First an executive description is provided of the pro-

ject and the physical assembly of the Mcon rack. Followed by B&R Automation Studio, model-

ing, FAT, and lastly, the communication between the different parts.

4.1 Approach

4.1.1 Project Approach

During this project, the group has been rotating the roles of leader and secretary. The reasoning

is to distribute the work equally and let everyone try the different positions. The leader’s tasks

have been to organize a meeting for the steering group and update the Gantt diagram. The

secretary’s tasks have been to write minutes of meetings and write the progress report for every

week.

Meetings with the steering group were held every even week, depending on the availability of

the steering group. During these meetings, the group has discussed the progress of the project

and received guidance and tips from the steering group on different issues the group has faced.

Analysis of risks are performed in order to be prepared for worst case scenarios, and can be

found in Appendix K. To ensure a good result and efficient approach a detailed project plan

Page 37 of 311

Chapter 4: Method

was made, containing detail information on tasks and strategy. The full plan can be found in

Appendix F, while a short summary of the plan is listed below.

• Gather information and knowledge about the specifications and equipment used in the

project. Moreover, create an overview for the project group. The overview would prepare

the whole group on what tasks to perform and how to execute them.

• Early start on software development. All the different tasks within this area will be started

at once, divided amongst the group.

• Testing will be performed in two ways. Firstly testing during development will be ex-

ecuted, both separate and with test programs made for communication. When all the

software components are finished, tests will be performed on the whole system.

4.1.2 Approach due to Covid-19

The lockdown rules stated that the schools (NTNU and Fagskolen) had to close, except for any-

one needing lab equipment. Since the project entails testing with the setup equipment, the

group could meet. Regarding the group member’s health concerns and the severity of Covid-19,

some chose to stay home during this lockdown period.

As Norway is on high alert since March 2020, meetings and guidance with supervisors, clients

from Kongsberg Maritime, and support were conducted online.

The project was minorly affected by the pandemic. A few problems arose due to not meeting

every day and discussing the project with group members in quarantine, which resulted in on-

line meetings in this time-period.

4.2 Physical Assembly

Most of the equipment provided by Kongsberg Maritime came pre-assembled. However, some

assembly was required to finish the Mcon rack. Found on the backside of the rack is the electrical

panel that came semi-assembled. See Figure 4.1 for a visual representation of the electrical

Page 38 of 311

Chapter 4: Method

panel when arriving. Standard I/O modules, power supplies, fuses, and marine controllers were

mounted.

Mcon Rack

To complete the assembly (see Figure 4.2) it was required to connect the wires from the testjigg

to the correct inputs and outputs at the Mcon rack. The coupling was done according to the I/O

list. The testjigg was first connected to be able to run the FAT and knowing what had to be done

in order for the thesis to be done.

When attaching the CPU and I/O modules, the testjigg wiring had to be disconnected for the

new wiring from the CPU to be connected. When wiring the I/O modules from the external

system, an I/O list (see Appendix H) was created to keep the connection points in order. The I/O

modules were also wired in accordance with their data sheet as cited in section 3.5.

Page 39 of 311

Chapter 4: Method

Figure 4.1: Wiring unfinished [46].

Figure 4.2: Wiring complete, with CPU and I/O
modules attached and coupled [46].

Selection of I/O Modules

Based on limited experience with I/O module selection, and the various types of I/O modules

B&R Automation offers, the selection of I/O modules are based on what seemed to fit the best

for the project.

The signals required from Kongsberg Maritime set the base for how many channels was needed.

The signals required from Kongsberg Maritime was as followed: Pump running (digital output

(DO)), stop/start pump (digital input (DI)), thruster running (DO), stop/start thruster(DI), RPM

order (analog input (AI)) and RPM feedback (analog output (AO)). It was originally chosen one

DI and one DO for each function, i.e. one module for stop/start pump and one for stop/start

thruster. This would also give enough channels per I/O module to add more functions as the

Page 40 of 311

Chapter 4: Method

project went further along. Therefore, each I/O module had to have more than two channels,

and the DI module had to have the most. The AI and AO modules also had to be configurable to

be able to receive 4-20 mA.

Testjigg PU102

A testjigg PU102 unit was provided and came fully assembled from Kongsberg Maritime (see

Figure 4.3 and Figure 4.4). This test unit would act as a simulation of the propeller until the fi-

nal product was done. The testjigg unit consisted of numerous switches and dials that simulate

certain actions performed by the propeller and its systems. The testjigg switches were used to

simulate discrete signals such as pump running, thruster running, DP enabled etc. Dials were

used to simulate continuous signals such as RPM, DP RPM, and Joystick RPM. Numbers and

stickers marked the various signals to make the assembly of the electrical panel easier. In addi-

tion to the markings on the testjigg unit, an I/O list was provided to assist in the coupling of the

electrical panel.

Figure 4.3: Panel testjigg [46].
Figure 4.4: Wiring on the side of the testjigg
[46].

Page 41 of 311

Chapter 4: Method

Screens

After the coupling of the electrical panel and the testjigg were complete, the screens were moun-

ted. The screens were two touch capacitive screens mounted on two separate brackets. The

screens were connected to the rest of the equipment by an Ethernet port found under each

screen (see Figure 4.5).

Figure 4.5: Underside of the screen [46].

Levers

The levers were inserted on the tabletop of the testjigg and screwed in place by four screws, as

shown in Figure 4.6. Usually, the levers should be turned 90 degrees (horizontal) to be in the

correct position because each lever is typically placed on each side of the person operating the

levers. However, because of the nature of the project setup, a decision was made to mount the

levers in a vertical position.

For connecting the levers to the rest of the system, some connectors marked with NC and BC

were used. Each lever (see Figure 4.6) was equipped with one NC and one BC connector at the

underside of the levers. These have been coupled according to the labeling on both the levers

and the connectors and can be seen in Figure 4.7.

Page 42 of 311

Chapter 4: Method

Figure 4.6: Levers [46].
Figure 4.7: Setup for levers [46].

Complete setup

The complete Mcon system at the beginning of the project can be seen in Image 4.8. The testjigg

was replaced by a computer with digital buttons during the project, as seen in Image 4.9. Two

more screens have as well been provided for use during testing of the system.

Page 43 of 311

Chapter 4: Method

Figure 4.8: Complete setup at start of project
[46].

Figure 4.9: Complete setup at end of project
[46].

4.3 Programming the Logic in B&R Automation Studio

B&R Automation Studio was chosen for this project as it efficiently connects and reads/sends

signals from/to the B&R Automation I/O modules, and it has everything needed for handling

the logic and the GUI. B&R Automation Studio is also used by Kongsberg Maritime, which meant

assistance could be provided from this resource.

B&R Automation Studio supports the IEC 61131-3 language. As the group members have mostly

been programming software developments in Java/Python, the most appropriate language was

Structured Text.

The logic programming in B&R Automation Studio was made for handling inputs and outputs

from Mcon, and the signals were based upon what was required to run the semi-automatic FAT.

The program was based on the order of the FAT, which would be the order of execution.

4.3.1 RPM Logic

The RPM signal handling had to be scaled correctly for the MATLAB®/Simulink® program. The

value was scaled from INT to percent, since the MATLAB®/Simulink® model is based on values

between -100 and 100. In order to get both negative and positive values a step scaling the value

to 4-20 mA was added.

The RPM signal coming back into the logic had to be scaled back from percent to INT, as the

Page 44 of 311

Chapter 4: Method

analog I/O modules are based on INT values. Figure 4.10 showcase the handling of RPM signals.

4.10

Figure 4.10: Logic for RPM. [46].

Firstly, the signal is scaled from INT (16 bit signed) to REAL (32-bit floating-point number); this

was done by using a converter on the A_IN signal divided by 32767 called INT_TO_REAL. As seen

in Eq. 4.3.1, the analog in signal, A_IN, is divided by the max INT value. The sum of the division

will give a number between 0 and 1, which will then be multiplied by 16; 16 is the steps between

4-20 mA. The multiplication will give a number between 0-16; since the mA is 4-20, 4 is added

to the equation to get the correct value.

STA_IN = A_IN

32767
∗16+4 (4.3.1)

The second step was to calculate the RPM order from mA to the percentage. As seen in Eq. 4.3.2,

12 is subtracted from the STA_IN value, giving a value between -8 and 8. This value was then

divided by 8, giving a new value between -1 and 1, then multiplied by 100 to get the percent.

This value was then fed into the MATLAB®/Simulink® model.

RPM_Order = STA_IN−12

8
∗100 (4.3.2)

The third step was to calculate the value, RPM_Feedback, back to mA. RPM_Feedback is given

in percent, and dividing this by 100 will give a value between -1 and 1. Multiplying by 8, then

adding 8+4 will give a value between 4-20, as shown in Equation 4.3.3

STA_OUT = RPM_Feedback

100
∗8+8+4 (4.3.3)

Page 45 of 311

Chapter 4: Method

The fourth step was to calculate the value sent out to the analog output module and then to

Mcon. Using the STA_OUT value from the last equation and subtracting 4, then dividing by

16, giving a value between 0 and 1. This value was then multiplied by 32767 to get the INT. In

equation 4.3.4, REAL_TO_INT has to be used on the whole Eq. 4.3.4 to convert it back to the

original value type.

A_OUT = STA_OUT−4

16
∗32767 (4.3.4)

Adding and subtracting 4 in Eq. 4.3.3 and 4.3.4 was done to make the values more apparent in

regards to watching them in B&R Automation Studio.

Page 46 of 311

Chapter 4: Method

4.3.2 Pump Logic

The logic program for pump running is based on two

input signals, start and stop, and one output signal,

pump running. The input signals were connected to

TON functions to get a realistic delay when starting and

stopping the pump.

When the start signal was received, the TON function

was triggered, and the output from the TON triggered the

pump running function, as illustrated in Figure 4.11. The

same function applies to stopping the pump.

The timer has been set to 5 seconds, as this gives it

enough time to see when it is triggered and turning

on/off the pump, making it easier to troubleshoot if

errors occur.

Figure 4.11: Logic for pump
[46].

4.3.3 Thruster Logic

For the thruster to start, the pump has to be running. It is important to note that this is only a

requirement for starting, not stopping the thruster.

As illustrated in Figure 4.12, the thruster logic consists of 4 cases (0-3). Case 0 will check if the

pump is running and move to case 1 if it is. In case 1, there are two if-statements. The first if-

statement states that if a start signal is received and the timer is elapsed, it will move onto case

2. The second if-statement will move the case back to case 0 if the pump has been turned off.

Page 47 of 311

Chapter 4: Method

Case 2 will keep the thruster running until the elapsed time of a stop signal is received. When

the thruster is off, the case will go to case 3 before going back to case 0, if the pump is off, or 1, if

the pump is still on.

Figure 4.12: Setting the Datapoint of the button [46].

4.3.4 Drive Reset Logic

The Drive Reset signal is a pulse sent as an output from Mcon to an input to the CPU/B&R

Automation Studio. In the FAT it is stated that it should only be verified that the digital contact

is sent to Drive, as specified in Appendix E.

4.3.5 DP and Joystick Logic

The DP and Joystick signals are both sent from an external source, in this case, B&R Automation

Studio, as illustrated in Figure 4.13.

As the signal is sent from B&R Automation Studio as an output, it should register in Mcon and

trigger the DP Ready. This will set Mcon into DP mode, where the external source will control

the RPM.

Page 48 of 311

Chapter 4: Method

Figure 4.13: Logic for DP and Joystick. [46].

DP enable, DP ready and DP RPM order and feedback is displayed in the GUI. The feedback has

no function in the GUI, but it is added as an extra control function.

4.3.6 I/O Mapping

The mapping of I/O modules had to be done in Physical View before opening the I/O modules

and entering the variables, seen in Figure 4.15. The I/O list and an overview of which variable is

being mapped to which I/O module can be found in Appendix H.

Figure 4.14: Mapping I/O [46].

The I/O modules also needed to be configured to the correct input values according to the I/O

list provided by Kongsberg Maritime, see Figure 4.15. This needed to be done for both the AI

and AO modules.

Page 49 of 311

Chapter 4: Method

Figure 4.15: Configuring AI module [46].

Since stop pump is a NC loop, the signal had to be inverted for the logic to work, see Figure 4.16,

this was done under Physical View , and entering I/O Mapping for the digital input I/O module.

Figure 4.16: Inverting a signal [46].

4.3.7 Simulation Mode

Simulation mode was activated by pressing the traffic light button or going to Online and Activ-

ate Simulation, as seen in Figure 4.17

Figure 4.17: Activate Simulation [46].

When the simulation is running, it is possible to open the watch window, marked in blue in

Figure 4.17. This window will show all the values in real-time.

The simulation mode has been actively used to test logic, GUI and the MATLAB®/Simulink®

program.

4.4 GUI in B&R Automation Studio

For execution of the following steps, the VNC Viewer has to be downloaded beforehand, and

B&R Automation Studio needs to be connected to the CPU or the simulation. The external

Page 50 of 311

Chapter 4: Method

device will in testing be the computer/software program.

The visualization also needed to be made accessible. This was done under ETH, Configuration

and then adding the Visu under VC Mapping, as illustrated in Figure 4.18

Figure 4.18: Making the GUI accessible [46].

4.4.1 Approach

The first step for making a visualization in B&R Automation Studio was adding a Visual Compon-

ent while in Logical View. It was chosen VC4, then proceeded to choose the wanted resolution,

640x480 (VGA), and lastly, the Basic format was chosen.

The next step was to add buttons. After adding the buttons, they had to be connected to the

variables in the program. For doing so it was necessary to go to Keys, then Actions and change the

type to ToggleDatapoint, and lastly, adding the Datapoint to the wanted variable, as illustrated

in Figure 4.19 and Figure 4.20.

Page 51 of 311

Chapter 4: Method

Figure 4.19: Select Datapoint entered from
Datapoint [46].

Figure 4.20: Datapoint added [46].

After the buttons had been connected to the variables in the program, a description was added

to make them more apparent when the variables change. This was done under Format, chan-

ging the TextSource to Single Text and then adding the wanted text for the button under Text.

The same was done under the tab Pressed, which would show what state it is when pressed (see

Figure 4.21).

Figure 4.21: Setting the Datapoint of the button [46].

For adding the numerics, entering the datapoint was done under Value. The StyleClass also had

to be changed, depending on if it was an output or input. Output numerics were made for DP

and Joystick mode since these are controlled through an external device sending orders to the

Page 52 of 311

Chapter 4: Method

Mcon system.

Figure 4.22: Adding numerics [46].

To be able to connect the VNC Viewer to the B&R Automation Studio GUI, a connection between

the two had to be made. This was done in the VNC Viewer app, under File and New Connection,

then adding the IP Address (see section 4.7.1.1) and name in the General tab (see Figure 4.23.)

In the Options tab, the picture quality had to be set to High, as seen in Figure 4.24.

Page 53 of 311

Chapter 4: Method

Figure 4.23: Set the VNC Server to the CPU’s IP
address [46].

Figure 4.24: Set the Picture Quality to High [46].

4.5 Modelling FPP

Digital models of a DC motor and propellers were created in Simulink®, using MATLAB® as an

init holding all the variables. The model created a natural response of the RPM build-up when

operating the levers of the test station. Using the theoretical knowledge provided in the theory

section, the following model (see Figure 4.25) demonstrates the block diagram of the FFP with a

DC motor, gears and a PID regulator.

Page 54 of 311

Chapter 4: Method

Figure 4.25: Model of FPP [46].

The reference signal is a value between -100 and 100, which represents the RPM order in per-

centage. The process of the model gives the actual RPM value, considering the moments of iner-

tia. The DC motor converts the signal into a current, which is amplified by the motor constant.

The output of the DC motor, with the constant, changes the value to motor torque. Then, the

gear ratio is added. By using the output of the motor and gear ratio, the propeller calculates the

n|n|. Taking the square root of the value gives RPS (n) in both negative and positive direction,

multiplying with 60 to get the RPM. The final box changes the value into a percentage between

-100 to 100. The PID regulator regulates the process and will eventually drive the error signal to

zero and stabilize the system. Further information about the blocks and the plant is elaborated

in the following sub-chapters.

4.5.1 DC Motor

A simplified model of the DC motor was created in MATLAB®, consisting of a torque constant,

Km , and a time constant, τm . Due to the speed of the electric DC motor, assumptions were made

to simplify the modeling of the DC motor. The transfer function for the DC motor can be seen

in Figure 4.26.

Page 55 of 311

Chapter 4: Method

Figure 4.26: Transfer function for DC motor [46].

A DC motor was chosen to simulate the motor; even though, in reality, an AC motor is used.

Since the principal purpose of this model was to simulate RPM feedback realistically, it was

agreed between the group and Kongsberg Maritime that the focus should be on creating a simple

DC motor. This motor is much less complex to model than an AC motor.

Regarding the choice of the complexity of the motor, a 1. order transfer function was chosen.

Firstly, the constant option was eliminated, as it would not create the desired result of the motor.

Both 1. order and 2. order transfer function options could have been chosen since both give

similar results in the working area of the engine, which is within the bandwidth. Also, the two

options give relatively similar results in low frequencies but different results on high frequencies.

The 1. order was therefore chosen as it would give the desired results with minimum complexity.

4.5.1.1 Finding KM and τm

Figure 4.27 shows the code used in MATLAB® to inspect the transfer function.

Figure 4.27: Code used to find the optimal step response of simplified DC motor model [46].

Page 56 of 311

Chapter 4: Method

A step signal was used to perturb the system to check if the transfer function behaved as a sim-

plified version of a DC motor.

Figure 4.28: Step response for simplified DC motor [46].

After the DC motor was tested, the proper magnitude of the transfer function was set. The mag-

nitude of the system was decided based on a data sheet from Kongsberg Maritime (see TTC

80 CP in Appendix C). The only deciding parameters were thruster force measured at 243 kilo-

newton meter or 243 000 newton meter, and settling time of the system. Given an input range of

-100 % to 100 %, the following calculations were made to decide the magnitude of the DC motor.

Max engine torque

Max input
= 243000Nm

100%
= 2430 (4.5.1)

The calculations in equation 4.5.1 shows that the transfer function needed to produce 2430 Nm

for each percent of input from the levers. A Bode plot of the transfer function was used to control

that the right gain was obtained. The magnitude in a Bode plot is represented in decibel (dB),

so the magnitude found in equation 4.5.1 would therefore have to be transformed into dB first.

dB = 20∗ log(2430) = 67.71dB (4.5.2)

After the gain was converted into dB, the Bode function was used in MATLAB® to inspect the

Page 57 of 311

Chapter 4: Method

magnitude of the transfer function.

Figure 4.29: Bode plot of the transfer function displaying the magnitude and phase of the DC
motor [46].

After the magnitude of the Bode diagram was confirmed to be at the correct level, the time con-

stant, τm , needed to be calculated. For first order transfer functions, one time constant equals

63% of the final value. Settling time is equal to 4 time constants. The following calculations was

therefore used to decide the time constant for the transfer function.

τm = Settling time

4
= 8 second s

4
= 2 second s (4.5.3)

The calculated magnitude and time constant resulted in the following transfer function for the

DC motor.

mag ni tude

ti me const ant +1
= Km

τm s +1
= 2430

2s +1
(4.5.4)

The tests to verify if the DC motor values were correct can be found in section 5.1.4.1 of results.

Page 58 of 311

Chapter 4: Method

4.5.2 Gear Ratio

In addition to the DC motor, a gearbox was needed as the max RPM rating of the DC motor and

engine did not match. By introducing a gearbox with a gear ratio, both the Torque and the RPM

of the propeller can be controlled relative to the DC motors torque- and RPM output. For the

sake of simplicity, factors such as frictional loss and backlash are excluded from the gear ratio.

Figure 4.30: overview of DC motor and gears in Simulink® model [46].

Formula 4.5.5 is used calculate the gear ratio.

Gear r ati o = M ax pr opel l er RP M

M ax motor RP M
(4.5.5)

4.5.3 Propeller

A simplified model of a propeller was made by using the Wageningen B-series propeller. The

calculated thrust- and torque coefficients were retrieved from a code made by Thor I. Fossen.

The table for the Wageningen B-series propeller can be found in Appendix B.

For simplification and assuming that the propeller is in water but is not moving forward, only

the first quadrant is modeled in both positive and negative direction. Factors such as ventilation,

cavitation and slippage were not considered when designing this model.

Page 59 of 311

Chapter 4: Method

Figure 4.31: Simulink® blocks representing the propeller dynamics with output in the form of
RPS [46].

For the propeller transfer function rho represents the water density of salt water, D represents

the propeller diameter, and KQ represents the torque coefficient. Theory about the KQ is presen-

ted in section 2.5.1. D was decided to be 2.4m as it is obtained from a data sheet of tunnel

thrusters from Kongsberg Maritime (see Appendix C). The transfer function for the propeller

in Figure 4.31 can be described by solving equation 2.5.3 for torque produced with respect to

n, which represents the angular velocity of the propeller in RPS. By solving the equation with

respect to n, the following equation was obtained.

n =
√

Qp

ρD5Kq
(4.5.6)

Where n represents the angular velocity in RPS. By multiplying n with 60, the RPM will be the

output. The equation for the propeller RPM can therefore be written as

Propeller RPM = (

√
Qp

ρD5 Kq
)∗60 (4.5.7)

4.5.4 PID

The block PERCENTAGE in Figure 4.32 convert RPM into percentage in order for the B&R Auto-

mation Studio software to process the signal and the PID regulation.

Page 60 of 311

Chapter 4: Method

Figure 4.32: Conversion from propeller RPS to RPM and percentage of RPM [46].

The blue highlighted line in Figure 4.32 represents the signal that was fed back into the PID

controller. The feedback signal was then subtracted from the original signal in order to regulate

the system. Figure 4.33 shows how the feedback signal is connected to form a feedback-loop.

Figure 4.33: Feedback signal is connected to a block that subtracts the feedback from the original
signal [46].

4.5.4.1 Finding PID parameters

Different approaches for tuning of the PID controller was tested out, such as Ziegler-Nichols and

the auto-tune function implemented in Simulink®. None of these approaches gave a desirable

Page 61 of 311

Chapter 4: Method

outcome. Therefore, so the PID controller had to be tuned manually. The disadvantage with this

technique is that it takes a lot of time. No saturation of the PID or DC motor transfer functions

were used when tuning the system. The testing and tuning of the PID controller and the system

can be seen in section 5.1.4.

After the PID parameters were tuned to the desired values, tests were performed. The tests were

performed both in simulation mode on the B&R software, and real life testing with the physical

equipment. Results of the simulation testing can be seen in section 5.1.5. Results from the real

life tests can be seen in section 5.2.4.

4.5.5 Modelling CPP

In addition to the FPP model, a model for controllable pitch was created. This is a simplified

model of a controllable pitch propeller. It is not mathematically accurate, however the model

simulates the behavior of a controllable pitch propeller. The purpose of this model was to simu-

late how RPM build-up, resistance, and thrust produced would vary based on the pitch angle of

the propeller. The model was created in Simulink®, and is ready to be implemented in the B&R

software. This model was only tested in simulation with Simulink®, and was not connected to

the B&R software or the Mcon controller.

The CPP is a continuation of the FPP model, and therefore the system responsible for the RPM

output was largely unchanged, except for some small additions. The CPP model is a more com-

plex model with more components involved, therefore the structure of the model was a bit more

complicated. In Figure 4.34, an overview of the CPP model can be seen. Figure 4.35 represents

the subsystem PROPELLER DYNAMICS in the CPP model.

Page 62 of 311

Chapter 4: Method

Figure 4.34: Overview of CPP model created in Simulink® [46].

Figure 4.35: Overview of subsystem PROPELLER DYNAMICS in CPP model [46].

As seen from Figure 4.35, some minor changes was applied to the RPM loop. The only difference

made between the FPP and CPP model in regards to the RPM was the implementation of the

Page 63 of 311

Chapter 4: Method

inverse value of the pitch. The inverse value of the pitch was merged with the propeller RPS

block in order to simulate more resistance with a greater pitch value. The inverse value was

connected to a switch, as shown in Figure 4.36. The switch was introduced in order to regulate

the minimum and maximum values allowed for the pitch.

Figure 4.36: Switch that limits the working area of the pitch value to 0.4-1.4 [46].

Output 2 of the subsystem represents the propeller RPS(n), and was fed back into input 1 of

the subsystem. The reason for the feedback of the RPS was because the values were needed in

order to calculate the value of the thrust produced, as can be seen in equation 4.5.8 for thrust

produced.

Tp = ρD4n|n|Kt (4.5.8)

Page 64 of 311

Chapter 4: Method

Figure 4.37: Pitch control system [46].

The pitch control system consisted of a simplified transfer function with a time constant tau_PD,

in order to simulate the pitch actuator. A feedback loop with a PID controller was also imple-

mented. The output of the pitch was fed into the PROPELLER DYNAMICS subsystem, as can be

seen from the blue line in 4.37.

Figure 4.38 (blue highlighted line) illustrates how the pitch input was used as an inverse value

in the propeller RPS block to simulate resistance for the propeller. The original pitch value was

used to simultaneously increase thrust produced by the propeller thrust block, as the propeller

resistance increased.

Page 65 of 311

Chapter 4: Method

Figure 4.38: Pitch input of the PROPELLER DYNAMICS subsystem [46].

After the CPP model was built, the PID controllers for the DC motor and pitch actuator had to

be tuned in order for the system to behave as intended.

4.6 Software Development in Java

Multiple programming languages are suitable for creating the FAT. When choosing a language,

it was desired to choose a well-known language that the user was experienced in.

The Java code consists of one coding project and contains the client-side for communication

with B&R Automation Studio. The code also contains read-functions, the FAT, as well as a func-

tion for printing the test results. The project has been created in GitHub for version control and

Page 66 of 311

Chapter 4: Method

sharing the code between the group members.

4.6.1 Files

The Java project consists of multiple files:

• Interface ClientExample

Interface for establishing a connection between the OPC UA server and OPC UA client.

The port number of the server and the security policy are defined here.

• Interface Connection

This file is an interface, and the purpose of this file is to make sure that the file "TestRun-

ner" can run, likewise for both the files "RunTestsMilo" and "RunTestsVirtual". The "Con-

nection" file must contain the get-methods for all the tests in the code project.

• Class CreatePDF

This class creates and updates a PDF file. It receives the test result parameters from "TestRun-

ner" and creates a PDF file containing these results. The results will be shown as text in

different colors based on the result of the test.

• KeyStoreLoader

Class responsible for enabling security and certificates by default, used for establishing an

OPC UA connection.

• Class MiloClient

"MiloClient" is a class accompanying the class "RunTestsMilo". It is responsible for read-

ing data between Java and B&R Automation Studio. Therefore, this class contains get-

methods for each of the tests.

• Class RunTestsMilo

This class is connecting the Java code with B&R Automation Studio. It connects using an

endpoint, which consists a port number for connection. After the connection, the class

"TestRunner" is called.

Page 67 of 311

Chapter 4: Method

• Class RunTestsVirtual

This class is used for running the code virtually. This means that the code can be run

without connection to B&R Automation Studio. This is necessary for testing the code.

After the virtual connection is established, the class "TestRunner" is called.

• Class TestRunner

"TestRunner" is the class for running all the FAT and checking if they are passed.

• Class VirtualConnection

This class is accompanying the class "RunTestsVirtual" and contains get-methods for each

of the tests.

• pom.xml

File created by turning the project into a Maven project, used for implementing libraries.

• PDF file Fat-test.pdf

PDF file used as a template for printing out the test results.

• PDF file Fat-test-result.pdf

PDF file updated with the test results, using the template "Fat-test.pdf".

4.6.2 Tests

The tests are created in the class "TestRunner", where the requirements to pass a test are located.

In order to read values as they change in B&R Automation Studio, a while loop is created in this

class, running through all the tests continually. When the requirements for a test are fulfilled,

the test is completed, and the while loop will continue to check for the remaining tests. The

while loop is shown in Image 4.39.

Page 68 of 311

Chapter 4: Method

Figure 4.39: While loop in class "TestRunner" for reading variables continually [46].

For implementing the tests, one interface and four classes needed to be updated. Below is the

implementation of rpmControl test explained.

Interface "Connection" needs to create get-methods for each test as shown in Image 4.40. This

interface is needed for both the actual connection and the virtual connection to run the code

equally.

Page 69 of 311

Chapter 4: Method

Figure 4.40: Code needed in interface "Connection" for implementing tests [46].

Class "MiloClient" also needs to create get-methods for each test, as illustrated in 4.41. The

NodeId, retrieved from UaExpert, needed to be specified before being sent to function getVari-

able illustrated in Image 4.7.3.2.1. After that, the variable’s value is turned into an int or boolean

and sent back to class "TestRunner".

Figure 4.41: Code needed in class "MiloClient" for implementing tests [46].

Class "VirtualConnection" needs to initialize a variable representing the value of the represent-

ative variable to be tested. This is where the value of a variable is saved when B&R Automation

Studio is not connected. It also needs get-methods for all of the individual tests.

Page 70 of 311

Chapter 4: Method

Figure 4.42: Code needed in class "VirtualConnection" for implementing tests [46].

For each test to be run, the class "TestRunner" needs to initialize the variables to be tested.

Variable rpmControlTestResult represents the result of the test and rpmControlTestIsFinished

advises if a test has been completed.

Page 71 of 311

Chapter 4: Method

Figure 4.43: Code needed in class "TestRunner" for implementing tests [46].

4.6.2.1 Explanation of the Individual Tests

Before printing the results, the class "TestRunner" needs to run the tests itself. These tests are

based on the FAT Appendix E. Each test is retrieving values of variables from either class "Milo-

Client" or class "VirtualConnection."

4.6.2.1.1 RPM Control, DP Interface and Joystick Interface

For the rpmControl (shown in Image 4.44), dpInterface and the joystickInterface tests, the

structure of the code is the same. All the tests are using int RPM values, ranging from 0 to 32767,

and the last two tests also use buttons. The tests start by reading the value of all the relevant

variables. When pushing the relevant button at B&R Automation Studio GUI, a short pause

gives the RPM values time to change. If the RPM value has changed more than a range of 100,

the test is passed and finished. The small number range ensures that the test does not pass by

Page 72 of 311

Chapter 4: Method

any disposition of the levers.

Figure 4.44: Code needed in class "TestRunner" for creating rpmControl test [46].

4.6.2.1.2 Remote Start/Stop of Thruster Motor and Servo Pumps

The test thrusterMotor and test thrusterPumps are also similar to each other. Both tests re-

quire three variables from B&R Automation Studio and consist of two parts. Part one, seen in

Image 4.45, is to check if thrusterMotor/thrusterPumps can be turned on successfully. This is

done by setting a variable start to true if pushing the corresponding start button at Mcon. If

thrusterMotor/thrusterPumps after an intermission is on, the part test is completed.

The second part, seen in Image 4.46, is to check if thrusterMotor/thrusterPumps can be turned

off. Here the same principle occurs, setting the variable stop to true if pushing the corresponding

stop button at Mcon. This part is completed if thrusterMotor/thrusterPumps is turned off after

an intermission. When both the part tests have been completed, the test is passed and finished.

Page 73 of 311

Chapter 4: Method

Figure 4.45: Code needed in class "TestRunner" for creating thrusterMotor test part 1 [46].

Page 74 of 311

Chapter 4: Method

Figure 4.46: Code needed in class "TestRunner" for creating thrusterMotor test part 2 [46].

4.6.2.1.3 Drive Reset For resetDrive test, the value of the resetDrive variable is being gathered

and checked. If this value is on, the test is passed and finished, as seen in Image 4.47.

Figure 4.47: Code needed in class "TestRunner" for creating ninth test [46].

Page 75 of 311

Chapter 4: Method

4.6.3 Print PDF

To present the FAT results, a PDF file is created and printed for showcasing all of the individual

test results. The automatic printing of the PDF ensures that the results of the FAT are both clear

and detailed. By writing the results onto a PDF file, no coding experience is required to perform

this test or read the results. Saving and storing is also enabled of each test result for easy logging

of the test result history.

The creation of the PDF file is inspired by the Apache PDFBox library [79]. This open-source

Java tool is used to create PDF files and manipulate existing PDF files. Six files from the library

collection were required and downloaded. For keeping the code project clean, a lib folder was

created for storing the libraries.

4.6.3.1 Setting up the Initial PDF

It was necessary to implement some JAR files for creating the PDF file (see Figure 4.48).

• Open File from the toolbar in IntelliJ

• Click on Project Structure

• Select Modules at the left panel

• Click on Dependencies tab

• Click on the "+", and select JARs or directories

• Mark the six libraries and click Open

Page 76 of 311

Chapter 4: Method

Figure 4.48: Steps for implementing JAR files [46].

After this, the project needed to be converted into Maven.

• Right click the main folder for the Java project

• Click on Add Framework Support (see Figure 4.49)

• Click on Maven

• Add required code in "pom.xml" from tutorialspoint [98], and specify groupId in file "pom.xml"

(see Figure 4.50)

• Add dependencies for the six libraries in "pom.xml" (see Figure 4.51)

• Click the Maven-tab to the right in IntelliJ

Page 77 of 311

Chapter 4: Method

• Click on lifecycle

• Double click install to generate the JAR files (see Figure 4.52)

Figure 4.49: First steps for turning the Java project into Maven [46].

Figure 4.50: Required code in file "pom.xml" [46].

Page 78 of 311

Chapter 4: Method

Figure 4.51: Dependencies for adding libraries from Apache PDFBox [46].

Figure 4.52: Install the JAR files [46].

Page 79 of 311

Chapter 4: Method

The class "CreatePDF" is called from the class "TestRunner", containing the FAT, when all tests

are finished. The results are then sent as parameters to the "CreatePDF" class.

For creating the PDF, some inspiration was taken from a tutorial made by Tutorialspoint [98].

The first main part of the code is to create an instance of a PDDocument, save the document

with a name like "FAT.pdf" as in Image 4.53, and close the document. When running this code,

a PDF file with the specified filename will be created in the same folder as the code project is

located.

Figure 4.53: Create a PDF-file [46].

This file is currently empty and, therefore, not possible to open yet. For doing so, some blank

pages will have to be created. This is done by creating an instance of a PDPage and adding this

blank page to the document. As shown in Image 4.54, 10 blank pages are created to the existing

document, by using a for-loop. Now the PDF file is possible to open and consists of 10 blank

pages.

Page 80 of 311

Chapter 4: Method

Figure 4.54: Add pages to the PDF-file [46].

4.6.3.2 Updating the PDF

Content from the FAT can be loaded into the PDF file and be used as a template. The PDF file

can be manipulated as required by choosing the font, text size, content, and more. As shown

in the two following Images 4.55 and 4.56, an instance of PDPageContentStream is created to

add content, as seen in Image 4.57. The content consists of text strings containing letters and

values sent as parameters from the "TestRunner" class. Lastly, the instance of the PDPageCon-

tentStream has to be closed, and the duplicated version of the document has to be saved as a

new file.

Page 81 of 311

Chapter 4: Method

Figure 4.55: Add content to PDF-file part 1 [46].

Page 82 of 311

Chapter 4: Method

Figure 4.56: Add content to PDF-file part 2 [46].

Page 83 of 311

Chapter 4: Method

Figure 4.57: The PDF-file after adding some content [46].

Specific page numbers can be removed by loading the PDF template, specifying which pages

to remove, and save the document as a new PDF file. Image 4.58 showcase removal of excess

pages.

Page 84 of 311

Chapter 4: Method

Figure 4.58: Removing pages from PDF-file [46].

4.6.3.3 Improving Readability of PDF

For better representation of results, color is displayed beside the test name. The color change

between each test name and test result. The name of the test and the result of the test is divided

into two separate strings, as displayed in Image 4.59, for setting different characteristics to each

of them.

Figure 4.59: Name and value of test is divided into two strings [46].

For deciding on the color of the test result, the result is checked. If the test is passed, the text

color is set to green, if the test is not passed, the color is set to red. The function is shown in

Page 85 of 311

Chapter 4: Method

Image 4.60.

Figure 4.60: Changing the color of the result value [46].

For setting the text color back to default, the color is set to black, as shown in Image 4.61. The

black text is used for displaying the test names.

Figure 4.61: Change text color back to original [46].

See Image4.62 for an example of the use of coloring for indicating if a test does pass or not. The

first test has passed, and the second one has failed.

Page 86 of 311

Chapter 4: Method

Figure 4.62: Color indication of test results [46].

4.6.3.4 Set Up for Using Multiple Computers

The first time the Java code runs on a new computer, some steps illustrated earlier in this section

are required. First, the JAR files needed to be installed into Maven by following these steps:

• Click the Maven-tab to the right in IntelliJ

• Click on lifecycle

• Double click install to generate the JAR files

Secondly, a PDF template has to be created with the file name used earlier in this section,

"Fat.pdf", and with some blank added pages. After this, the Java code can be run at the cor-

responding computer. However, no extra setup is required if all the files, including the PDF files,

are transferred over to the other computer.

4.7 Communication

For the following sections, the IP address remains the same throughout, except when transfer-

ring the Simulink® project to B&R Automation Studio.

Page 87 of 311

Chapter 4: Method

4.7.1 Ethernet/IP

For the B&R Automation Studio software to connect to the CPU, an Ethernet/IP protocol has to

be used. This protocol requires the IP address of the CPU and computer to be in the same range,

such as 192.168.1.xxx.

4.7.1.1 Approach

The first step to making a new connection is to open Physical view -> ETH -> Configuration and

enter the wanted CPU IP address and subnet mask, see Figure 4.63 and Figure 4.64.

Figure 4.63: ETH Configuration [46].

Figure 4.64: Configuring IP address [46].

For the second step of making a new connection, go to Online -> Settings..., as illustrated in

Figure 4.65.

Page 88 of 311

Chapter 4: Method

Figure 4.65: Online -> Settings... [46].

When the Settings... tab had been opened, either New Connection to enter a connection manu-

ally or Refresh to find an existing connection was chosen (see Figure 4.66). Opening the CPU’s

IP Parameter tab, the IP parameters had to be changed to the wanted address (see Figure 4.67).

Figure 4.66: New Connection or Refresh, then IP Parameter and later Connect [46].

Page 89 of 311

Chapter 4: Method

Figure 4.67: The IP Address and Subnet Mask must match [46].

After the previous steps, the CPU could now be connected to the B&R Automation Studio, pre-

viously shown in Figure 4.66, and a successful connection is established, shown in Figure 4.68.

Figure 4.68: Successful connection [46].

The connection is now complete, and the project can now be built and transferred onto the

CPU.

4.7.2 Automation Studio Target for Simulink

For the communication between B&R Automation Studio and MATLAB®/Simulink®, the tool-

box Automation Studio Target for Simulink was used together with a Simulink® coder.

B&R Automation Studio sends values in datatype REAL while the thruster model use DOUBLE.

Page 90 of 311

Chapter 4: Method

Therefore, a conversion block was added at both ends of the thruster model. Figure 4.69 shows

how the B&R input block was connected to the system.

Figure 4.69: Illustrates how the B&R input block and conversion block used to convert datatype
was connected to the system [46].

The B&R config block seen in the upper left corner of Figure 4.69 was used to establish a con-

nection between the B&R software and Simulink®.

4.7.2.1 Approach for transfer

B&R Config block

The B&R Config block is required to configure the B&R Automation Studio connection. Only

one of these blocks can be inserted in the Simulink® project and should not be connected to

the plant.

1. Insert B&R Config Block, from the Simulink Library Browser, in Simulink®.

2. Set the right configurations in the B&R Config Block

The configurations in the B&R Config Block have to be specified to connect correctly with

the project target. In the section model configurations, the desired language and the coder

need to be chosen. The Fixed- step size also needs to match the cycle time in the target

[13]. Figure 4.70 displays the configurations used.

Page 91 of 311

Chapter 4: Method

Figure 4.70: B&R Config block Model Configuration [46].

In section Automation Studio Settings the path to the Automation Studio project needs to

be specified. A task name is created and added to hardware.

Figure 4.71: B&R Config block Automation Studio Setting [46].

Page 92 of 311

Chapter 4: Method

In Advanced Settings, the external mode can be chosen in order to connect with the tar-

get project. The Simulink® model contains blocks that are not a part of the B&R- specific

blocks. When enabling "create Simulink I/O as variable," the code generation will com-

plete successfully with the Simulink® blocks.

Figure 4.72: B&R Config block Advance Settings [46].

The B&R IN block / B&R OUT block

The B&R IN block / B&R OUT block is used to create input and output variables that can be

controlled from B&R Automation Studio.

The settings in the block can be configured. The variables are set to GLOBAL in order for the

B&R Automation Studio project to use the model when connected to the Mcon Control System.

The data type is set to REAL to match the data type in the target system (See Figure 4.73 and

4.74).

Page 93 of 311

Chapter 4: Method

Figure 4.73: Automation Studio Target for Sim-
ulink: The B&R IN block [46].

Figure 4.74: Automation Studio Target for Sim-
ulink: The B&R OUT block [46].

Transfer to target
The transfer to target is done using the Simulink® coder,

seen in Figure 4.75. When building the project, using the

coder, the Simulink® project is automatically generated

to C code and transferred into the B&R Automation

Studio. The input value can be set, and the output value

can now be viewed from the B&R Automation Studio

project.

Figure 4.75: Simulink®
coder [46].

4.7.3 OPC UA

When starting with this project, Kongsberg Maritime had only been using Modbus as a com-

munication protocol in their systems. This protocol ensures a safe and fast transition of data,

but it uses physical wires for transmission. Kongsberg Maritime wanted the communication

protocol for the system to be upgraded and suggested Canbus as a suitable communication

protocol between B&R Automation Studio and Java. Multiple communication protocols were

Page 94 of 311

Chapter 4: Method

considered, such as Canbus and TCP/IP.

Some research discovered that B&R Automation Studio is commonly using OPC UA as com-

munication protocol. Using Canbus could have made the communication easier to implement

from the Java side. OPC UA is, however, more optimal for B&R Automation Studio. Since the

group had more experience with Java than with B&R Automation Studio, it was decided to

choose the protocol that was easiest for implementing into B&R Automation Studio. It was as

well discovered that OPC UA has TCP/IP implemented as the default communication method.

B&R Automation Studio would be responsible for keeping the variables needed for the system

to work. Java would then get the variables in B&R before running the tests and print out the

results. Java is an OPC UA client, and B&R Automation Studio is an OPC UA server.

4.7.3.1 B&R Automation Studio Server

Any controller that supports the minimum Automation Runtime supports the OPC UA protocol,

meaning that OPC UA only has to be activated before use.

In Physical View, Configuration had to be opened to access the tab where the OPC UA System

could be set to on, as illustrated in Figure 4.76. Activating the OPC UA created a port for the

connection.

Figure 4.76: Open the configuration menu [46].

In the next step, the Connectivity and then OpcUA folders had to be opened in the Configuration

Page 95 of 311

Chapter 4: Method

View, to be able to add the OPC UA Default Viewer under the map OpcUA, shown in Figure 4.77.

Figure 4.77: Add the OPC UA Default View File to the OpcUA folder [46].

The OPC UA Default View File contains all the project variables. These variables needed to be

enabled, as seen in Figure 4.78 to be able to expose the data from the the controller to the OPC

UA server.

Figure 4.78: Set the enable to true for all variables [46].

When opening Tools -> Offline Install the popup, showed in Figure 4.79, was loaded. Here the

Path in local file system had be chosen, and a path needed to be assigned. Here a new folder

created in the B&R project folder has to be referenced. The folder was then installed.

Page 96 of 311

Chapter 4: Method

Figure 4.79: Transfer the program to CPU [46].

After these configurations, the B&R server part of the program is complete. An OPC UA server

will be opened at the CPU, ready for connection requests from clients.

4.7.3.2 Java Client

The OPC UA Java client is inspired by Eclipse Milo [58]. The inspiration is used towards es-

tablishing a connection, found in Eclipse Milo interface "ClientExample" and classes "Clien-

tExampleRunner" and "KeyStoreLoader". Classes "ReadExample" and "ReadWriteCustomData-

TypeNodeExample" are used for making read functions, for sending parameters.

For taking advantage of the open source implementation of OPC UA from Eclipse Milo, a library

was needed. To import the library, a dependency was added in the file "pom.xml", illustrated in

Image4.80. For making the rest of the code accept the library in IntelliJ, it was necessary to go

to file -> settings -> build.execution, deployment -> build tools -> maven -> importing -> import

maven projects automatically, as well as file -> settings -> build.execution, deployment -> build

tools -> maven -> always update snapshots.

Page 97 of 311

Chapter 4: Method

Figure 4.80: A dependency for adding Eclipse Milo as a library [46].

For creating the Java client, four classes are made. The class "RunTestsMilo" in Image 4.81 con-

trols the start of all other necessary classes for connecting the server and client, running the

tests, and disconnecting the server and client.

Figure 4.81: Class "RunTestsMilo" controls all other classes [46].

Class "MiloClient" shown in Image 4.82 connects and disconnects to the server, using port num-

ber and security policy from interface "ClientExample" in Image 4.83, and certificates from class

"KeyStoreLoader". In "MiloClient" a client is created before connecting with the B&R Automa-

tion Studio server using the IP address for the CPU, as explained in section 4.7.1.1, as well as the

port number. In class "ClientExample" the securityPolicy has to be set to None.

Page 98 of 311

Chapter 4: Method

Figure 4.82: Function for creating a client, and connecting to a server [46].

Page 99 of 311

Chapter 4: Method

Figure 4.83: Interface for specifying port number and security policy [46].

For disconnecting with the server, the function stop is called. The stop function disconnects the

client from the connected server, as illustrated in Image 4.84.

Page 100 of 311

Chapter 4: Method

Figure 4.84: Function for disconnecting the connection with the server [46].

4.7.3.2.1 Sending Parameters For enabling Java to read the value of a variable in B&R, a get-

function is created in class "MiloClient". Image 4.85 shows how a boolean variable is collected.

The NodeId of the variable needs to be specified. The value of the NodeId was copied from the

UaExpert program since this program connects in the same way as in the Java code. This NodeId

is then sent as a parameter to the standardized read function getVariable, as in Image 4.86. The

requested variable will then be fetched, allowing Java to read the value of this variable, using

serialization before getting decoded into human-readable text. After that, the variable’s value is

sent back to the get-function as an Object and converted into an int or a boolean.

Figure 4.85: Function for converting value of variable to boolean [46].

Page 101 of 311

Chapter 4: Method

Figure 4.86: Function for reading value of variables [46].

Page 102 of 311

Chapter 5: Results

Chapter 5

Results

The following sub-chapters show the results for the entire project. First included are the results

of the reviews before showcasing the final results.

5.1 Reviews

This chapter elaborates the tests and reviews performed during the project, and how they af-

fected the final result.

5.1.1 Electrical testing

Before powering up the CPU, all the wiring of the I/O modules was controlled. This ensured the

wiring had been done correctly, minimizing the risk of short circuits happening, which could

potentially damage the electrical components. All connection points and wires, both on the

CPU and the Mcon rack, were measure with a multimeter to further control if the I/O modules

were working after powering up.

5.1.2 Logic testing

The logic has been tested in two ways, in simulation mode and connected to the CPU. When

running the logic in simulation mode, the troubleshooting would be easier as the hardware were

Page 103 of 311

Chapter 5: Results

eliminated from the equation, meaning more focus on the software.

When testing the software in simulation mode, the inputs had to be manually set to TRUE to

check if the logic would behave the way it was intended to behave.

As seen in Figure 5.1, it was tested that the TON function worked as intended and the CASE-

statement, named thrusterCtrl, followed the instructions.

Illustrated in Figure 5.2, the test shows the logic is given a INT value of 0, making RPM order and

STA_IN the correct values at the same time, and then seeing if RPM feedback, STA_OUT and

A_OUT would go to the same values as the inputs with a delay.

Figure 5.1: Testing the logic’s correspondence
to starting pump and thruster [46].

Figure 5.2: Testing the logic’s correspondence
to an A_IN order [46].

If the logic did not behave as intended, a check was done to see if the software had been success-

Page 104 of 311

Chapter 5: Results

fully transferred. This was done under Online -> Compare -> Software. If the software had been

uploaded to the target, the compare window did not show any red lines, as illustrated in Figure

5.3. This comparison was made both in simulation mode and when connected to the CPU.

Figure 5.3: Checking similarities [46].

The GUI was also tested in simulation mode before connecting to the Mcon system.

When everything has been working in simulation mode, hardware is added to the equation.

Adding the hardware, had to provide the same results as in simulation mode, except for the stop

pump signal, which had to be inverted. The stop pump signal was then tested by pulling out

either the stop pump wire or the 24V wire from the I/O module.

5.1.3 Semi-automatic FAT

5.1.3.1 Virtual Connection

For testing the Java code without being connected to the B&R Automation Studio, a virtual con-

nection is created. The interface "Connection" is required in order to run the Java code likewise

for both the virtual connection in class "VirtualConnection" and the connection with B&R Auto-

mation Studio in class "MiloClient".

Page 105 of 311

Chapter 5: Results

For making the virtual connection, the "RunTestsVirtual" and "VirtualConnection" classes are

created. The first one, illustrated in Image 5.4, starts the code and runs the tests with a virtual

connection. The second one handles the reading of variables requested by the class "TestRun-

ner".

Figure 5.4: Function for starting the virtual connection [46].

For reading the value of a variable, a get-function is created. When the "TestRunner" asks for the

value of a variable, "VirtualConnection" sends back the current value of this variable. The tests

in "TestRunner" only have to specify which variable to read, like the variable rpmControl, in the

function getRpmControlValue, in Image 5.5. Each variable to be read has its own get-function.

Figure 5.5: Function for reading the RpmControl variable with a virtual connection [46].

5.1.3.2 Results during testing

To keep an eye on the progress of the FAT, an update on the test results is printed continually

during the testing. This update can be seen in the system window in Java, as illustrated in Image

5.6.

Page 106 of 311

Chapter 5: Results

Figure 5.6: Overview of the progress of the FAT [46].

5.1.4 Model testing

5.1.4.1 DC motor

Figures 5.7 and 5.8 shows the magnitude, phase response, and step response of the DC motor

without load. The magnitude of the Bode plot was used to ensure that the transfer function of

the DC motor had the correct gain.

Figure 5.7: System response to a step input of
100% without any PID controller [46].

Figure 5.8: System response to a step input of
100% with a tuned PID controller [46].

Page 107 of 311

Chapter 5: Results

The results from the Bode plot in Figure 5.7 and the step plot in Figure 5.8 indicate a magnitude

that is right below 70 and the amplitude right below 2500. The plotted magnitude agrees with

the previously calculated magnitude of 67.7 dB and the amplitude of 2430 (see section 4.5.1 for

the calculations). The settling time can be seen to be about 8 seconds, which is also correct for

our system, with the time constant of 2. These results indicate that the values for the gain and

time constant of the DC motor transfer function was chosen correctly.

Figure 5.9: open-loop System response to a step input of 100% [46].

The phase margin is found by using the magnitude curve. At the point where the magnitude

curve crosses 0dB, a line can be drawn down until the line crosses the phase curve [72]. In Figure

5.9 the point on the phase curve is marked, containing information about the plot results. The

phase margin is at 90 degrees, which means it is stable.

Page 108 of 311

Chapter 5: Results

5.1.4.2 Tuning of FPP model

The FPP model illustrated in Figure 4.25 represents the system used for simulation of a FPP sys-

tem. For testing purposes, the B&R input- and output-blocks were disconnected and replaced

with a step input and a scope.

The system response without a PID controller with a step input of 100 can be seen in Figure 5.10.

The results of the same system after the PID is tuned to the desired values, with the step input

of 100, is shown in Figure 5.11

Figure 5.10: System response to a step input of
100% without any PID controller [46].

Figure 5.11: System response to a step input of
100% with a tuned PID controller [46].

Table 5.1 displays the values used for the PID controller when testing the FPP model in Sim-

ulink®. These values are also used for further testing in simulation mode and real-time testing

of the FPP model.

P I D

2 0.89 1.1

Table 5.1: List of PID values

5.1.4.3 Tuning of CPP model

For the CPP model, a step input test of a 100 for the RPM was done with the minimum and

maximum pitch of 0.4 and 1.4 respectively. These tests were performed both with and without a

Page 109 of 311

Chapter 5: Results

tuned PID controller. Figure 5.12 shows the response without a tuned PID, and a pitch value of

0.4. Figure 5.13 shows the system response without a tuned PID and a pitch of 1.4.

Figure 5.12: System response: No PID tuning
and minimum pitch [46].

Figure 5.13: System response: No PID tuning
and maximum pitch [46].

As seen in Figures 5.12 and 5.13, the system could not reach maximum RPM, as requested by

the input. The test also shows that the RPM with minimum pitch is lower than the RPM with

maximum pitch. In contrast, the thrust is higher than the test with maximum pitch. The settling

time also increased when pitch was set to maximum.

Figure 5.14: System response: PID tuned and
minimum pitch [46].

Figure 5.15: System response: PID tuned and
maximum pitch [46].

After the PID controller was tuned, shown in Figure 15.14 and Figure 5.15, the RPM reached

the desired values. With the minimum input of pitch, the rise time is low. Also, the system

Page 110 of 311

Chapter 5: Results

produces an overshoot due to the low resistance given by the pitch value. In comparison, the

thrust produced with maximum pitch is higher. "The rise time" and "settling time" of the system

increases, resulting from the added resistance from the pitch.

Table 5.2 displays the values used for the PID controllers when testing the CPP model in Sim-

ulink®.

Controller P I D

RPM 0.9 0.727 0.3

Pitch 0.1222 0.1244 0.0026

Table 5.2: List of PID values for CPP model

5.1.5 FPP simulation mode testing

The graphical representation of the models, with specific input orders, shows similarities in the

characteristics of the curves. The curves with the same behavior are concave and convex, pro-

ducing opposite directions and fluctuation. Since only the first quadrant is modeled in both

positive and negative directions, the curves for similar inputs were expected to be equal in the

opposite direction and curvature.

Figures 5.16, 5.17, 5.18 and 5.19, 5.20 and 5.21 represent tests performed connected to B&R

Automation Studio.

The RPM response shown in Figures 5.16 and 5.17 showcase the system response when going

from maximum thrust to idle in both directions, with a settling time of approximately 5 seconds

and no overshoot.

Page 111 of 311

Chapter 5: Results

Figure 5.16: RPM response: Maximum value to
idle [46].

Figure 5.17: RPM response: Mainimum value
to idle [46].

The RPM response shown in Figures 5.18 and 5.19 showcase. the system response from idle to

maximum RPM in both directions with a settling time of 10 seconds and no overshoot.

Figure 5.18: RPM response: Idle to maximum
value [46].

Figure 5.19: RPM response: Idle to minimum
value [46].

The curves in Figures 5.20 and 5.21 shows an uneven fluctuation, as the curve is vertically cross-

ing idle. This was expected since the solution used for the model does not operate in all four

quadrants, and does not account for advance speed and the mass of the vessel as the propeller

changes direction.

Page 112 of 311

Chapter 5: Results

Figure 5.20: RPM response: Maximum value to
minimum value [46].

Figure 5.21: RPM response: minimum value to
maximum value [46].

The graphs in Figures 5.22 and 5.23 shows input orders at 50% and 25% with settling times of

approximately 6 and 5 seconds respectively. These two tests were performed to evaluate the

feedback with smaller input values.

Figure 5.22: RPM response: Idle to 50% [46]. Figure 5.23: RPM response: Idle to 25% [46].

In addition to the pure input tests, tests containing several input orders to compare and evaluate

the results with expected behavior were performed. Figure 5.24 showcases the result of the input

orders in table 5.3. The change of input order was effected when the prior reached its order. The

table also shows at what time the new input was ordered and the time used to reach the value.

Page 113 of 311

Chapter 5: Results

No. Input order Time to target

1 100% 11.84

2 0% 7.72

3 50% 5.64

4 -100% 6.32

5 100% 16.72

Table 5.3: Input orders

Figure 5.24: RPM response: Different input values [46].

In the following Figure 5.25, a step function is used to simulate the response in Simulink®. Com-

pared to Figure 5.18, which has an identical input type, it results in the same curve. The settling

time is close, which is expected.

Page 114 of 311

Chapter 5: Results

Figure 5.25: RPM response: Idle to maximum, using STEP function in Simulink® [46].

5.1.6 Logic of the FAT

For understanding the logic of the Java code, some diagrams are made to give an overview of the

tests, shown in Figures 5.26 - 5.31. These diagrams are supplemented by the diagrams in 5.1.7.1,

which shows an overview of the complete communication between B&R Automation Studio and

Java. The yellow boxes symbolize the tests, the read ones are for communication, and the purple

ones symbolize the logic of the FAT.

The yellow boxes from these diagrams can replace the yellow ones in the diagrams at 5.1.7.1, to

give a complete overview of how the FAT and OPC UA communication is cooperating.

Page 115 of 311

Chapter 5: Results

Figure 5.26: Overview of Rpm Control test logic [46].

Page 116 of 311

Chapter 5: Results

Figure 5.27: Overview of Remote Start/Stop of thruster motor test logic [46].

Page 117 of 311

Chapter 5: Results

Figure 5.28: Overview of Remote Start/Stop of thruster servo pumps test logic [46].

Page 118 of 311

Chapter 5: Results

Figure 5.29: Overview of Reset Drive test logic [46].

Figure 5.30: Overview of DP Interface test logic [46].

Page 119 of 311

Chapter 5: Results

Figure 5.31: Overview of Joystick Interface test logic [46].

5.1.7 Communication protocol

Figure 5.32 showcases the system’s setup when received, and Figure 5.33 shows the system’s

setup at the end of this project. As seen in the figures, the setup changed a lot. A more complex

and improved version has replaced the old one.

The digitized buttons, simulations and the FAT are connected to the CPU using Ethernet/IP,

Automation Studio Target for Simulink, and OPC UA. The MATLAB®/Simulink® program is up-

loaded into B&R Automation Studio using Automation Studio Target for Simulink, which con-

nects to the CPU with Ethernet. FAT in Java is connected using OPC UA.

Page 120 of 311

Chapter 5: Results

Figure 5.32: Overview of the old setup [46].

Page 121 of 311

Chapter 5: Results

Figure 5.33: Overview of the improved setup [46].

5.1.7.1 OPC UA

In Figure 5.34 and 5.35 is an overview of the complete communication between B&R Automa-

tion Studio and Java. The figures are continuous and should be read from top to bottom. First,

the OPC UA connection is established between the Java client and B&R server before Java ex-

ecutes the tests from the FAT, by reading the values of variables stores at B&R Automation Stu-

dio. The result of these tests are stored in Java and will be printed into a PDF at the end of the

program. This is done by using the wireless connection, OPC UA. Because of this, the tests can

Page 122 of 311

Chapter 5: Results

be performed easily and fast from anywhere close to the system.

Here the same principles occur as in 5.1.6, where the boxes in yellow symbolize the tests, which

are closer described in section 5.1.6. The red boxes correlate to the communication, and the

purple ones control the logic of which tests to be checked.

All the tests are reading the value of variables located at B&R Automation Studio for checking

the tests. Some are as well reading multiple times to check if a value has changed. When all the

tests have been checked once, the ones not yet passed are checked again by reading updated

values from B&R Automation Studio until passed.

Figure 5.34: Overview of the OPC UA communication for establishing a connection [46].

Page 123 of 311

Chapter 5: Results

Figure 5.35: Overview of the OPC UA communication [46].

Page 124 of 311

Chapter 5: Results

5.2 Final results

This section elaborates on results of the project as a whole containing all the different compon-

ents.

5.2.1 Project

All the I/O signals and logic are handled in B&R Automation Studio, utilizing MATLAB®/Simulink®

to model thruster systems and Java to create the semi-automatic FAT. The new version connects

to the Mcon system using an Ethernet/IP cable, which significantly reduces time consumption

in coupling. The old push-buttons are now automatically handled because of the logic in B&R

Automation Studio, which reduces workload during the FAT. This solution also makes the test

system more portable and reliable.

Figure 5.36 showcases the result of the whole project. The Mcon rack System is displayed in the

left box, containing the essential parts for this project. The CPU box, in the middle, showcases all

I/O signals needed to perform the FAT. The software used for performing the FAT and simulating

the thrusters is shown in the box to the right.

Page 125 of 311

Chapter 5: Results

Figure 5.36: Desired setup [72]

5.2.2 Logic

The program developed in B&R Automation Studio contains a digitized system for saving the

current values of buttons based on user input from the Mcon system and the B&R Automation

Studio GUI. This system has replaced the testjigg delivered at the start of the project for simpli-

fying testing. The signals chosen to digitize are based on the importance of the specific signal.

Therefore not all the buttons on the testjigg have been digitized. The program is created based

on the easy implementation of new buttons for a later possibility to expand this solution.

The GUI created in this program, as seen in Figure 5.37, enables the changing of the output

values. The GUI also provides a clear overview of the current values of the different signals.

Page 126 of 311

Chapter 5: Results

Figure 5.37: VNCViewerSimu [46].

5.2.3 FFP Model

The complete setup for testing of the FFP model can be seen in Figure 5.38, containing the

communications blocks from Automation Studio Target for Simulink and the propeller model.

Figure 5.38: Overview of FPP model in Simulink® [46].

Page 127 of 311

Chapter 5: Results

5.2.4 Mcon Thruster Control with Thruster Simulator for FPP

The graphical representation of the thruster response with Mcon as reference input is repres-

ented below. Plotting the data through Simulink® was not possible due to the program being

uploaded to the CPU. A video monitoring the values in the B&R software was recorded during

the tests. The results were plotted manually from the video, with a 1-second interval between

each value recorded.

The input signal is an INT value, which represents values between 0 - 32767. A difference error

of 685 is detected, which affects the results. When the input order is supposed to be 0, the actual

value coming in is -685. This error value corresponds approximately to 4%.

The blue curve represent the reference signal and the orange curve represents the actual thruster

feedback. Because the levers are manually operated, the results are affected and contain some

uneven curves. The data sheet used for the graph plotting can be found in Appendix D.

In Figures 5.39 and 5.40, the settling time is low as expected, using little time to reach idle. Com-

pared to the simulated results in Figures 5.16 and 5.17, the form of the curves and time to reach

reference is approximately identical.

Figure 5.39: RPM from Mcon: Maximum value
to idle [46].

Figure 5.40: RPM from Mcon: Minimum value
to idle [46].

As expected, the RPM build-up from idle takes longer than the RPM build down to idle. Figures

Page 128 of 311

Chapter 5: Results

5.41 and 5.42 visualizes the build-up from idle to 100% and -100%. Compared to Figures 5.18

and 5.19, the results are here as well approximately identical.

Figure 5.41: RPM from Mcon: Idle to maximum
value [46].

Figure 5.42: RPM from Mcon: Idle to minimum
value [46].

Figures 5.43 and 5.44 visualize the RPM going from minimum to maximum and the opposite.

Compared to Figures 5.20 and 5.21, the curve is not affected by the vertical linearization over

idle. Other than that, the curve shape and settling time are similar.

Figure 5.43: RPM from Mcon: maximum value
to minimum value [46].

Figure 5.44: RPM from Mcon: minimum value
to maximum value [46].

In Figure 5.45 and 5.46 the feedback of a reference signal of 50% and 25% is showcased. The

Page 129 of 311

Chapter 5: Results

settling time and curve shape is as expected.

Figure 5.45: RPM from Mcon: Idle to 50%[46]. Figure 5.46: RPM from Mcon: Idle to 25% [46].

5.2.5 FAT

In Figure 5.47 the complete PDF-file of the FAT is showcased. Most of the tests were implemen-

ted, except for tests that require manual driving. The test results are colored red for faults and

green for approval, making the results clear to see. Only one button must be clicked for running

the FAT, and the rest will happen automatically, as user input is provided at the Mcon rack. The

tests not implemented will still need to be checked manually, but the code provides a straight-

forward implementation of more tests if desired.

The Fat is automatically executed when all the tests have been completed. This can also be done

by pressing enter on the keyboard along the way if desired. When the FAT execution is complete,

a PDF file with the test results is printed, making the testing of the system easy and consistent,

saving time, and avoiding possible critical errors.

Page 130 of 311

Chapter 5: Results

Figure 5.47: The printed PDF-file containing the FAT results [46].

5.2.5.1 Functional tests

Table 5.4 shows which tests has been implemented from section 2.1 Functional tests in the FAT.

The buttons for the tests not included have not been automatized in B&R Automation Studio,

and the values of these are therefore not possible to extract. However, the number of tests im-

plemented is more than anticipated at the start of the project and is considered a success.

Page 131 of 311

Chapter 5: Results

FAT Implemented

2.1.1.1 Power-up test x

2.1.1.2 Dimmer x

2.1.1.3 Command Transfer x

2.1.1.4 Motorized Lever x

2.1.2.1 Rpm Control implemented

2.1.2.2 Backup Control x

2.1.3.1 Remote Start/Stop of thruster motor implemented

2.1.3.2 Remote Start/Stop of thruster servo pumps implemented

2.1.3.3 Reset Drive implemented

2.1.4.1 DP Interface implemented

2.1.4.2 Joystick Interface implemented

Table 5.4: Tests implemented in the semi-automatic FAT

5.2.5.2 Faults and consequences

Section 3.1 Faults and consequences in the FAT contains several tests that need manual execu-

tion. Running these tests, B&R CPU has to stay connected at all times in order to stay in control

even when faults occur. During all the tests, the project program worked as desired and is there-

fore considered a success.

5.3 Class Diagram

Figure 5.48 is a class diagram of the code project of the FAT in Java. This diagram is showing

how the classes communicate with each other and what methods each of them contains. It

is possible to run either the class "RunTestsVirtual" or the class "RunTestsMilo" for executing

the program. Either way, the class "TestRunner" will be called, as well as "VirtualConnection"

or "MiloClient". The last-mentioned option will as well run the classes "KeyStoreLoader" and

"ClientExample". At last, "CreatePDF" and "Connection" will be used.

Page 132 of 311

Chapter 5: Results

Figure 5.48: Overview of the classes and methods of the FAT in Java [46].

The code project is executed with low coupling and high cohesion by dividing the tasks and

methods into different classes. Classes know the least amount of information about other classes,

and each class is responsible for solving one task. Only the needed code must be run by follow-

ing these terms, making the project fast and well structured, and easy to reuse.

Page 133 of 311

Chapter 6: Discussion

Chapter 6

Discussion

This section consists of a discussion of the project, the results and possible ideas for further

work.

6.1 Project

Technology and automation are playing an increasingly bigger part in the industry. Automa-

tion and digitization is replacing heavier and slower physical solutions. Companies are taking

advantage of these technologies to become more efficient and improve their productivity. This

is highly relevant in an industry where automation, cost-saving, and efficiency are important

factors.

This way of using automation can be tied back to Lean manufacturing, which we have discussed

in section 1.1.1 of our introduction. The solution provided in this thesis can help Kongsberg

Maritime cut down on waste, as fewer materials are needed to test the system. Fewer materials

will also reduce material cost during testing. The solution of this project has created a system

that use less time, thus making the testing more efficient. The testing will also be made more

consequent by reducing the change of human error.

Page 134 of 311

Chapter 6: Discussion

6.2 B&R Automation Studio

As a result of a lack of knowledge about B&R Automation Studio, a lot of time was spent learning

the basics of the application. After having done that, however, the design process improved

considerably and rapidly.

As the variables start/stop in B&R Automation Studio are inputs that had to change manually in

simulation mode, some confusion occurred as to how to set them back to FALSE automatically.

This confusion resulted in unnecessary time spent on figuring out a way to do so. After asking

for clarification, it was cleared that this was not necessary to think about, as it will be a pulse

that is high for a few seconds.

After this delay, the rest of the variables were added, and logic was made based on this know-

ledge.

All the necessary functions holding the variables needed in the semi-automatic FAT and mod-

eling of the propellers were created regarding the project, as well as a GUI for overview and

external control.

6.3 FFP Model

A model of a motor and propeller is, in reality, complicated and needs many parameters that

were not accessible. In addition, the main goal for the project was to create a simple model that

will simulate more realistic feedback and the possibility to expand later on. Therefore, some

simplifications were made such that the modeling would match the competence level, time

limit, and requirements of this project. In order to create a more realistic model, these para-

meters should be included.

Gear ratio

The gear ratio can be found as a constant in the data sheet for a specific vessel. This constant

could replace the solution used in this project, using max propeller RP M and the max motor

RP M to calculate the gear ratio. A constant is more appropriate to use if a specific gear is de-

sired. The model characteristics would become more accurate.

Page 135 of 311

Chapter 6: Discussion

6.4 FFP testing

The tests performed in simulation mode and the tests performed with the Mcon system as a

reference displays similar curves and approximately the same settling time for the same input

order and origin. One of the desired model results was to get approximately 8 - 10 seconds from

idle to maximum speed for the DC motor. The system uses approximately 12 seconds, which

is slower than the settling time of the DC motor. This decrease in settling time is caused by the

increased resistance from the propellers. This is also something that could be tuned faster with

the PID controller or choosing different values for the time constant of the DC motor.

Mcon Thruster Control with Thruster Simulator

All the graphical representations of the thruster response gave the expected and desired results,

especially regarding the curve shape and settling time, which was the main focus. In compas-

sion to the simulated tests, the response was approximately equal. The success of getting sim-

ilar results means that changes in the model can be developed using only the simulation in both

Simulink® and connected to B&R Automation Studio in Simulation mode.

The graphs can contain inaccuracies because of imprecise movement levers and human error

in logging and plotting.

6.5 Design for FAT

6.5.1 Result of FAT

All the test results in the FAT has been passed. If all the tests are passed during testing of an

actual Mcon thruster Control, it would mean that no problems has been uncovered for the

thruster, making it ready for installation on a vessel. In our case it means that there are no

problems with the testing or with the Mcon rack.

Page 136 of 311

Chapter 6: Discussion

6.5.2 Continuous Reading of Values

At first, the FAT would be running each test once, reading and writing values of corresponding

variables in B&R Automation Studio. It was, however, discovered that B&R Automation Studio

could not send variables to the Mcon system. The Java code, therefore, had to be changed for

responding to changes of values for the variables at B&R Automation Studio, based on user input

from the Mcon system. A while loop created around the tests would allow all the tests to read

values of their corresponding variables. When a test becomes complete, it is not included in the

while loop anymore. When all tests are complete, the while loop becomes terminated, and the

rest of the code can continue, printing out the result of the tests into the PDF.

6.5.3 Threads

We considered using threads in this project, but since the FAT does not need to be run in real-

time or perform multiple tasks simultaneously, there was no need for this implementation. The

code should not be more complex than necessary if there are no real advantages. Threads also

provide secure sending of data and ensure that the data does not become corrupt, which TCP/IP

also can ensure.

6.5.4 Implementation of tests

The FAT consists of more tests than the ones implemented in this project. Some of the tests

are hard to automate and are therefore not created. It has as well not been enough time to

implement them all. Since we expected this at the start of the project, it has not caused any

unseen problems or delays. The ones implemented have been prioritized based on importance,

the toughness of implementation, and the necessity for the complete solution.

6.6 Communication

One of the main obstacles was the communication between the Java and B&R Automation Stu-

dio due to a lack of knowledge and experience. Communication between the other components

was easier to implement as there are adequate communication tools for these parts.

Page 137 of 311

Chapter 6: Discussion

6.6.1 Automation Studio Target

For communications between MATLAB®/Simulink® and B&R Automation Studio, the choice

was relatively easy and worked well. B&R Automation Studio Target for Simulink supports both

B&R Automation Studio and Simulink® and is integrated to make communication better and

more straightforward.

There were some issues in the beginning which resulted in rejected connection. After some

troubleshooting, it was discovered that the B&R Automation Studio needed upgrading. After

upgrading Automation Runtime and B&R Automation Studio, the connection worked perfectly.

6.6.2 OPC UA

6.6.2.1 Choosing Method for Sending Multiple Parameters

TCP/IP usually only allows the sending of one parameter at once. The encountering of possibil-

ities for sending multiple parameters uncovered three possible options:

• Serialization

• XML

• JSON

At first sight, the group believed that serialization would only be possible to use if the server and

the client would be running on the same computer. Using serialization was, therefore, undesir-

able since the B&R server would be running at a CPU. JSON was then the second choice since

some group members had some experience with JavaScript’s programming language, used for

JSON. Before testing this, the discovery of serialization inside Eclipse Milo uncovered itself. Ec-

lipse Milo, used for creating an OPC UA client, has serialization implemented as the default

method for sending and receiving data, even though the server and client are running on dif-

ferent computers. Serialization is, however, implemented in a part of the Eclipse Milo code, not

being used for this project.

Page 138 of 311

Chapter 6: Discussion

This project never needs to read more than one variable at once, and the implementation of seri-

alization needs a lot more complicated code. This would only make the code slower and more

complex than necessary, leading to the decision to exclude the possibility of sending multiple

parameters.

6.6.2.2 Problems Connecting B&R Automation Studio and Java

There were problems when trying to connect the Java client with the B&R server. The displaying

of the error message "connection refused" resulted in the trial of multiple solution options.

From the client-side, the following methods were attempted for connecting to the B&R server:

• Connect with Eclipse Milo client created in Java

Eclipse Milo is the client created in Java to communicate with B&R Automation Studio.

• Connect to both IP address and port number.

Since it was unsure if the connection required connection to IP address or a port number,

both connections were tested, with IP-address 127.0.0.1 for the simulation, 192.168.1.110

for the CPU with port number 4840.

• Connect with Telnet

Used the command window and wrote "telnet 127.0.0.1 4840."

• Connect with localhost in browser

Opened a browser and searched for "localhost:4840".

• Turn off the firewall

It was thought that the firewall was causing some problems for the communication and

was, therefore, turned off.

From the server-side, the following was attempted:

• Activate OPC UA System in B&R Automation Studio

The OPC UA System would have to be activated in B&R Automation Studio to create an

OPC UA server.

Page 139 of 311

Chapter 6: Discussion

• Use both alternates for Automation Runtime type: AR Simulation and AR Windows

It was unsure which of the Automation Runtime types to use and tested both.

• Turn simulation on and off

It was thought that the server would open when the simulation got turned on.

All the options mentioned above were combined until every combination had been tested. None

of them worked, and it was considered to make an OPC UA server in Java to test, but this was

much more complicated than anticipated.

After some research, it was discovered that maybe some other steps were necessary. The con-

sidered ones were:

• Add library "AsOPCUac" for OPC UA in B&R Automation Studio

This library was found to be pre-installed in all B&R programs.

• Add an "X20BC008U" bus controller to B&R Automation Studio

This bus controller is for remote I/Os. Since the I/Os are physically connected, with Eth-

ernet, to the PLC, containing the B&R program, this was not needed.

• Run the B&R program from a CPU

The connection was still not available after connecting the program to a CPU.

When none of the previous options solved the problem, the B&R support in Denmark was con-

tacted. They suggested trying many of the options above, as well as using the program UaExpert.

We downloaded and used this program as an OPC UA client for connecting to the OPC UA server

at B&R Automation Studio. The connection was still refused, creating error messages in UaEx-

pert. After that, the whole B&R program was sent to support. There the connection between

UaExpert and B&R Automation Studio worked at once, using the same settings and IP addresses

as we did. They had four possible reasons for why the connection worked with them and not

with us:

• They used B&R Automation Studio version 4.9, and we used 4.2

Page 140 of 311

Chapter 6: Discussion

We, therefore, asked to get a time-limited trial for this version to check if this would solve

the problem.

• Could be an anti-virus issue

The anti-virus was turned off, without any change of result.

• Could be a firewall issue

The whole firewall was turned off, without any change of result.

• Could happen if windows were running on a virtual machine

This was not the case since the program was running on a windows machine.

After that, a lecturer at NTNU was contacted and gave the following advice:

• Run the connection from a different computer

This was already tested out, using a computer at the NTNU network and one at the home

network.

• Run as administrator

The connection could be refused if the administrator user were not the one in use. This

user was, however, the one in use already.

• Could be firewall or anti-virus issues

These issues were again tested but without any change of result.

• Connect with "netstat -a"

Opened the command window and wrote "netstat -a".This command shows a list of all

open ports, where the connection 127.0.0.1:4840 was listed, with the state "TIME_WAIT".

B&R support was again contacted, and a meeting was arranged. There the last piece of the

puzzle was provided, clicking on Tools -> offline install, as explained in the last part of section

4.7.3.1. Now the server-side of the connection could be accessed and used.

Page 141 of 311

Chapter 6: Discussion

6.7 Further Work

Closing up to the end of this project, the lack of time limits how much prevalence could be

achieved. Some additional improvements are proposed for further work, whereas these im-

provements are not essential for the project.

6.7.1 Variables in B&R Automation Studio

As the logic in B&R Automation Studio has been based on the testjigg functions and the FAT,

some considerations were not taken into account. Such a consideration is that the RPM has not

been limited as optimized. For creating the system more realistic, the RPM should not be able

to steer without starting the pumps and thruster. This limitation is already implemented for the

thruster but remains to be implemented for the RPM and reset drive.

More buttons can be added for further work, broadening the possibilities for the Mcon Control

System testing. Test simulations could also benefit from this, as the system can be tested as it

would be when installed on a vessel. Developing and updating the system can be easily tested,

providing a better understanding for the developer.

The logic is created for easy expansion and implementation of new buttons or other logic. The

GUI is also possible to expand, implementing more functionality regarding more buttons and

an improved layout.

6.7.2 Propeller types

Beginning this project, one of the desired functions was the ability to choose the propeller type

to simulate. In Simulink®, there are therefore made two different propellers, FP and CP pro-

pellers, which are the most common propellers. For further work, other propeller types could

be modeled such that the system could be tested on the propeller that it is going to control when

implemented on a vessel.

Page 142 of 311

Chapter 6: Discussion

6.7.3 Modelling

Simplifications and assumptions done when making the models in Simulink® mean that the

result will not be accurate. The model will need to be modified in order to be more accurate in

relation to reality. Some ideas on how to do this are described in the following sub-sections.

6.7.4 CPP model

The CPP model used in this thesis was used to mimic the behavior of an actual CPP system.

The CPP model is, however, not mathematically accurate. In our model of the CPP system, the

pitch value was multiplied into the equation for thrust produced, and the inverse value of the

pitch was merged with the propeller block responsible for the RPM calculations. While this

solution may give us a system that responds similarly to a CPP system, the values will not be

correct. In order to get a mathematically correct value for this system, KT and Kq (thrust- and

torque coefficient) has to be calculated for each value of the pitch, as the thrust- and torque

coefficient is the function of the advance speed, pitch ratio, RPS, and water density. Changing

the pitch would alter the pitch ratio, which in turn would alter the Kt and Kq . In our model,

the torque coefficient is a constant and does not change when the pitch changes. This results

in an inaccurate thrust, and RPM response since our model multiplies the pitch value with the

thrust/RPM equation on top of the already existing thrust- and torque coefficients.

Due to time constraints and the requirements of this thesis, the group determined that the solu-

tion provided in this thesis would be a good enough estimation of a CPP, as our primary concern

with the thruster simulation was to prove that MATLAB®/Simulink® could be used in conjunc-

tion with B&R Automation Studio and Mcon to simulate a model of a thruster. A better and more

realistic model should be implemented for use in development or testing aimed at propeller/-

thruster performance.

The model of the pitch actuator is also something that could be improved upon, as it is a sim-

plified version of a realistic pitch actuator. In Figure 5.15 of the result section, a sharp break can

be seen in the RPM graph. The reason for this sharp change of direction is because of the nature

of the pitch actuator model.

Page 143 of 311

Chapter 6: Discussion

The pitch model is a 1. order system and produces a steep, almost linear graph in its starting

phase, much like the simplified DC motor seen in Figure 4.28. This response kicks in slightly

after the RPM and causes a big increase in the pitch value over a short period. In Figure 4.38 we

can see that the pitch is merged with the RPM transfer function to increase the resistance as the

pitch increases. When the large increase in pitch occurs over a very short period, the resistance

of the propeller increases significantly in a short period. This sudden change in resistance will

make the RPM dip slightly before being corrected by the PID controller. A more realistic model

with a more natural starting phase would probably resolve this issue. The same applies to the DC

motor and propeller model, as this system also has a rather aggressive and fast starting phase.

6.7.4.1 Modification of FPP and CPP model

The models of the FFP and CPP were simplified and are therefore missing some parameters that

would make the models work even more realistic. Such parameters could be the size and weight

of the vessel or current in the water.

6.7.4.2 Modification of motor model

A simple DC motor was modeled when in reality, an AC motor is used. An AC motor is more

complicated than a DC motor but will give a more accurate result. In addition, implementing a

drive would also increase the quality of the model.

For this thesis, a first order transfer function was chosen for our DC motor. While this solution

may have given a good estimation of the behaviour of a real DC motor, some benefits could be

seen from switching to a system of higher order. One of the main benefits of using a DC motor

with higher order is a more realistic response in the starting phase of the system due to the

inertia of the system. This would make the FPP model behave more accurately in the starting

phases of the system response. A higher order system would take into account the mass of the

motor, shaft and propeller. This would likely also resolve the issue with the sharp break in the

graph of the CPP model as explained in subsection 6.7.4.

Page 144 of 311

Chapter 6: Discussion

6.7.5 Components

By simulating more components, such as different motors, the components could be put to-

gether for a complete simulation for a vessel. This allows putting together a specific pre-made

motor and propeller to simulate a good and realistic behavior.

6.7.6 Testing of Mcon Thruster Control with Thruster Simulator

All the tests performed on the thruster model controlled by the Mcon Thruster Control was plot-

ted manually. This solution for a graphical representation is not ideal. For better and more

accurate presentation of the curves, a digital system should handle the plotting.

6.7.7 Tests in Java

Many of the tests from the FAT has been made semi-automatic in Java. It is, however, possible

to implement more by adding variables for these tests in B&R Automation Studio. The imple-

mentation of more tests is made easy for this purpose.

6.7.7.1 Weakness in FAT levers

The tests regarding the input from levers, such as Rpm Control will pass if the values change

some. However, these tests do not check if the value corresponds to the correct tuning. Checking

the tuning could therefore be a possible improvement in further work.

6.7.8 Communication

In continued work, the OPC UA communication protocol can be replaced by another protocol

if desired. The advantage of this change is unknown but possibly not significant since OPC UA

already is fulfilling the communication between B&R Automation Studio and Java as desired.

Page 145 of 311

Chapter 6: Discussion

6.8 Experiences

6.8.1 Group Dynamics

Our diverse backgrounds in electives have facilitated good dynamics and a broad knowledge

area, which has come in handy during the project. All the participants in the group have worked

steadily and well with the project along the way. Some lack of communication within the group

and across the different tasks resulted in some minor misunderstandings, but they were relat-

ively quickly set straight. Overall there has been good cooperation between everyone, which has

resulted in a neat and nice progress.

6.8.2 Progress based on Gantt-diagram

Appendix F contains a Gantt-diagram created at the start of the project, and Appendix G shows

how the Gantt-diagram was followed during the project. The versions vary, showing that the

planned activities took a lot longer than anticipated. Most of the activities were, however, almost

complete, long before the completion date. This is because some activities were put on hold

while waiting for other parts to be completed.

Because of this waiting, the group worked with the activities more in parallel than sequential. A

disadvantage of executing the activities in parallel is that the first results are created later in the

project. The group tackled this well and was given a better understanding of the project earlier

in the project.

6.8.3 Progress based on Analysis of Risk

Appendix K reviews different scenarios facing a thread to the progress for the project. Scenario

1, "shutdown duo to COVID 19", has affected the project the most since Ålesund was shut down

in three weeks in March/April. This was because of a high number of infected during this period.

The group was skeptical to meeting during this period, and some, therefore, worked from home.

The different workspaces made it harder to collaborate and test the solutions, making the work

less effective than for the rest of the project. This scenario was, however, planned for, and the

Page 146 of 311

Chapter 6: Discussion

experienced difficulty was handled efficiently and well.

6.8.4 Learning Outcome

This project provided the group members with new and valuable knowledge about testing and

production and how to use our knowledge, acquired from the bachelor degree, in a project. A lot

of the knowledge that was necessary to complete each task was acquired underway. While being

a complex and large assignment, the team felt that breaking the problems into pieces, assigning

dedicated personnel to each task, and being open to help each other was a success.

Page 147 of 311

Chapter 7: Conclusions

Chapter 7

Conclusions

To conclude the project, the task was given by Kongsberg Maritime for creating digitized but-

tons and an automated testing system used for testing Mcon systems before being installed on

vessels. The result of this task would make the testing of Kongsberg Maritimes systems faster

and easier. Because of the size of the group, we agreed to expand this task by adding a simula-

tion of the thruster system to make the testing easier to understand by seeing how the thrusters

operate.

The system consists of levers and screens used for simulating the actual controls on a vessel. By

controlling these systems, the corresponding values for the Mcon system should change.

These values are saved in digitized buttons created in B&R Automation Studio, as requested by

Kongsberg Maritime. The digitized solution will replace the existing system, consisting of actual

buttons and much wiring. The digitized buttons will be uploaded into a CPU at the Mcon system

and will only need to be connected by an Ethernet cable, making the testing faster.

The simulation of the thrusters is made in MATLAB®/Simulink® and shows a visualization of

the thrusters based on the user input from the Mcon system. This solution is uploaded into B&R

Automation Studio, and the simulation is based on the value of variables collected, using the

communication protocol "Automation Studio Target for Simulink". This solution will make the

testing easier to understand and follow for the testers, reducing the possibility of making critical

Page 148 of 311

Chapter 7: Conclusions

errors during testing.

The Mcon systems have to go through the Factory Acceptance Test to be approved for deliver-

ing. This testing is semi-automated in Java, using inputs from the Mcon system stored at B&R

automation Studio. The values are made accessible at Java by using an OPC UA communication

protocol, with B&R Automation Studio as a server and Java as a client. When performing the

tests at the Mcon system, the semi-automatic test will automatically check if the requirements

to pass a test are fulfilled. When all the tests have been complete, a PDF file containing the result

of the tests is printed. This makes the testing more accurate since the chance of human error is

reduced, and the testing is performed more effortless and faster.

Every main part of the project is complete, and all the different parts are communicating with

each other as desired. Every group member has contributed the best they can, and the collab-

oration has been good. The complete project is therefore considered a success.

Page 149 of 311

Bibliography

[1] Client-server model (client-server architecture). Techtarget. URL: https:

//searchnetworking.techtarget.com/definition/client-server.

[2] client/server protocol. PCmag. URL: https://www.pcmag.com/encyclopedia/term/

clientserver-protocol.

[3] Hva er en server. Datamaskin. URL: http://www.datamaskin.biz/Hardware/servers/

62368.html.

[4] Java - serialization. TutorialsPoint. URL: https://www.tutorialspoint.com/java/

java_serialization.htm.

[5] Serializable Objects. Oracle. URL: https://docs.oracle.com/javase/tutorial/

jndi/objects/serial.html.

[6] Web TCP/IP. w3schools. URL: http://www-db.deis.unibo.it/courses/TW/DOCS/

w3schools/website/web_tcpip.asp.html.

[7] 6ft cat 5e rj45 lan cable - grey, 2021.

[8] PLC Academy. Structured text tutorial to expand your plc programming skills. URL:

https://www.plcacademy.com/structured-text-tutorial/.

[9] Jalai Ali. Java - Sockets and Serialization. Code Project, 2015. URL: https://www.

codeproject.com/Tips/991180/Java-Sockets-and-Serialization.

[10] Maven Apache. Introduction. URL: https://maven.apache.org/what-is-maven.

html.

150

https://searchnetworking.techtarget.com/definition/client-server
https://searchnetworking.techtarget.com/definition/client-server
https://www.pcmag.com/encyclopedia/term/clientserver-protocol
https://www.pcmag.com/encyclopedia/term/clientserver-protocol
http://www.datamaskin.biz/Hardware/servers/62368.html
http://www.datamaskin.biz/Hardware/servers/62368.html
https://www.tutorialspoint.com/java/java_serialization.htm
https://www.tutorialspoint.com/java/java_serialization.htm
https://docs.oracle.com/javase/tutorial/jndi/objects/serial.html
https://docs.oracle.com/javase/tutorial/jndi/objects/serial.html
http://www-db.deis.unibo.it/courses/TW/DOCS/w3schools/website/web_tcpip.asp.html
http://www-db.deis.unibo.it/courses/TW/DOCS/w3schools/website/web_tcpip.asp.html
https://www.plcacademy.com/structured-text-tutorial/
https://www.codeproject.com/Tips/991180/Java-Sockets-and-Serialization
https://www.codeproject.com/Tips/991180/Java-Sockets-and-Serialization
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html

Bibliography

[11] Maven Apache. Welcome to apache maven. URL: https://maven.apache.org/.

[12] Atlassian. What is version control? URL: https://www.atlassian.com/git/

tutorials/what-is-version-control.

[13] B&R Automation. Tm140 b&r automation studio target for simulink, 2020.

[14] B&R Automation. X20cp3583, 2020.

[15] B&R Automation. Data sheet x20ai4322, April 2019.

[16] B&R Automation. Data sheet x20(c)ao4622, April 2020.

[17] B&R Automation. Datasheet x20(c)di6371, March 2020.

[18] B&R Automation. Data sheet x20(c)do6639, September 2019.

[19] Real Time Automation. Control iec 61131-3. URL: https://www.rtautomation.com/

technologies/control-iec-61131-3/.

[20] Unified Automation. Uaexpert—a full-featured opc ua client. URL: https://www.

unified-automation.com/products/development-tools/uaexpert.html.

[21] Mathworks B. messner, D . Tilbury. introduction: Pid controller design. URL:

https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&

section=ControlPID.

[22] Mathworks B. messner, D . Tilbury. introduction: Pid controller design. URL:

https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&

section=ControlPID.

[23] The Github Blog. Github desktop is now available. URL: https://github.blog/

2015-08-12-github-desktop-is-now-available/.

[24] Robin T. Bye. Lecture 1 - Basic control system concepts Transfer functions. NTNU, 2020.

[25] Robin T. Bye. Lecture 1 - Basic control system concepts Transfer functions. NTNU, 2020.

Page 151 of 311

https://maven.apache.org/
https://www.atlassian.com/git/tutorials/what-is-version-control
https://www.atlassian.com/git/tutorials/what-is-version-control
https://www.rtautomation.com/technologies/control-iec-61131-3/
https://www.rtautomation.com/technologies/control-iec-61131-3/
https://www.unified-automation.com/products/development-tools/uaexpert.html
https://www.unified-automation.com/products/development-tools/uaexpert.html
https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID
https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID
https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID
https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID
https://github.blog/2015-08-12-github-desktop-is-now-available/
https://github.blog/2015-08-12-github-desktop-is-now-available/

Bibliography

[26] Robin T. Bye. Lecture 3 - Modelling in the frequency domain Nonlinearities and lineariza-

tion. NTNU, 2020.

[27] CareLabz. What is factory acceptance testing, and how is fat done. URL: https://

carelabz.com/what-factory-acceptance-testing-how-fat-done/.

[28] CIMSS. What is matlab? URL: https://cimss.ssec.wisc.edu/wxwise/class/

aos340/spr00/whatismatlab.htm.

[29] Electrical Classrooom. Difference between no and nc, 2021. URL: https://www.

electricalclassroom.com/difference-between-no-and-nc/.

[30] Electrical Classrooom. Difference between no and nc, 2021. URL: https://www.herga.

com/pressrelease/detail.php?aid=164&did=What-is-a-Normally-Open-Switch?

[31] Happy Coding. Libraries. URL: https://happycoding.io/tutorials/java/

libraries.

[32] CVEL. Brushed dc motors. URL: https://cecas.clemson.edu/cvel/auto/

actuators/motors-dc-brushed.html.

[33] Github Desktop. Github desktop. URL: https://desktop.github.com.

[34] Diagrams. The offical blog of the diagrams.net project. URL: https://www.diagrams.

net/blog.

[35] Erin Doherty. What is object oriented programming? oop explained in depth. URL:

https://www.educative.io/blog/object-oriented-programming.

[36] Draw.io. The easiest way for confluence teams to collaborate using diagrams. URL:

https://drawio-app.com.

[37] Eclipse. Eclipse milo. URL: https://projects.eclipse.org/projects/iot.milo/

governance.

[38] Estudie. Tcp/ip. URL: https://estudie.no/tcp-ip/.

Page 152 of 311

https://carelabz.com/what-factory-acceptance-testing-how-fat-done/
https://carelabz.com/what-factory-acceptance-testing-how-fat-done/
https://cimss.ssec.wisc.edu/wxwise/class/aos340/spr00/whatismatlab.htm
https://cimss.ssec.wisc.edu/wxwise/class/aos340/spr00/whatismatlab.htm
https://www.electricalclassroom.com/difference-between-no-and-nc/
https://www.electricalclassroom.com/difference-between-no-and-nc/
https://www.herga.com/pressrelease/detail.php?aid=164&did=What-is-a-Normally-Open-Switch?
https://www.herga.com/pressrelease/detail.php?aid=164&did=What-is-a-Normally-Open-Switch?
https://happycoding.io/tutorials/java/libraries
https://happycoding.io/tutorials/java/libraries
https://cecas.clemson.edu/cvel/auto/actuators/motors-dc-brushed.html
https://cecas.clemson.edu/cvel/auto/actuators/motors-dc-brushed.html
https://desktop.github.com
https://www.diagrams.net/blog
https://www.diagrams.net/blog
https://www.educative.io/blog/object-oriented-programming
https://drawio-app.com
https://projects.eclipse.org/projects/iot.milo/governance
https://projects.eclipse.org/projects/iot.milo/governance
https://estudie.no/tcp-ip/

Bibliography

[39] Thor I. Fossen. Guidance and Control of Ocean Vehicles. Wiley, 1994.

[40] Thor I. Fossen. Marine systems simulator (mss), 2021.

[41] OPC Foundation. Unified architecture. URL: https://opcfoundation.org/about/

opc-technologies/opc-ua/.

[42] Git. Getting started - about version control. URL: https://git-scm.com/book/en/v2/

Getting-Started-About-Version-Control.

[43] Git. Git –local-branching-on-the-cheap. URL: https://git-scm.com.

[44] Github. Diversity, inclusion, and belonging at github. URL: https://github.com/

about/diversity/report.

[45] "DNV GL".

[46] Bachelor Group. Image taken by group, 2021.

[47] Github Guides. Hello world. URL: https://guides.github.com/activities/

hello-world/.

[48] Nam ha Minh. Why Do We Need Serialization in Java? Code Java, 2019. URL: https://

www.codejava.net/java-se/file-io/why-do-we-need-serialization-in-java.

[49] Dag Håkon Hanssen. Programmerbare Logiske Styringer. Fagbokforlaget, 4. edition, 2015,

page 19-21.

[50] B&R Help Explorer Automation Help. Standard, 2021.

[51] B&R Help Explorer Automation Help. Standard - ton(), 2021.

[52] Hilite.me. Hilite.me. URL: http://hilite.me.

[53] IMO. Introduction to imo. URL: https://www.imo.org/en/About/Pages/Default.

aspx.

[54] JavaTPoint. Interface in java. URL: https://www.javatpoint.com/

interface-in-java.

Page 153 of 311

https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com
https://github.com/about/diversity/report
https://github.com/about/diversity/report
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://www.codejava.net/java-se/file-io/why-do-we-need-serialization-in-java
https://www.codejava.net/java-se/file-io/why-do-we-need-serialization-in-java
http://hilite.me
https://www.imo.org/en/About/Pages/Default.aspx
https://www.imo.org/en/About/Pages/Default.aspx
https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/interface-in-java

Bibliography

[55] Jetbrains. Why intellij idea. URL: https://www.jetbrains.com/idea/.

[56] Naresh Joshi. Everything You Need to Know About Java Serializa-

tion Explained. DZone, 2019. URL: https://dzone.com/articles/

what-is-serialization-everything-about-java-serial.

[57] Soteris Kalogirou. Renewable Energy. ScienceDirect, 2021. URL: https://www.

sciencedirect.com/science/article/pii/S0960148117312454#fig1.

[58] kevinherron. Eclipse milo. URL: https://github.com/eclipse/milo.

[59] KONGSBERG. Controllable pitch propeller. URL: https://www.kongsberg.

com/maritime/products/propulsors-and-propulsion-systems/propellers/

controllable-pitch-propeller/.

[60] KONGSBERG. Fixed pitch propeller. URL: https://www.kongsberg.com/

no/maritime/products/propulsors-and-propulsion-systems/propellers/

fixed-pitch-propeller/.

[61] Kongsberg. Tunnel thrusters. URL: https://www.kongsberg.com/no/maritime/

products/propulsors-and-propulsion-systems/thrusters/tunnel-thrusters/.

[62] Lehmi. Apache pdfbox. URL: https://github.com/apache/pdfbox.

[63] Ivar M. Liseter. Server. Store norske leksikon, 2020. URL: https://snl.no/server.

[64] Kongsberg Maritime. Factory Acceptance Test (Appendix E). Kongsberg Maritime.

[65] Kongsberg Maritime. Mcon –one maneuvering control.

[66] DXP Marketing. Factory acceptance testing – what is fat, and how does it work? URL:

https://www.dxpe.com/what-is-factory-acceptance-test-protocol-purpose/.

[67] MathWorks. Simulink coder, 2021.

[68] MATLAB. Math. graphics. programming. URL: https://se.mathworks.com/products/

matlab.html.

Page 154 of 311

https://www.jetbrains.com/idea/
https://dzone.com/articles/what-is-serialization-everything-about-java-serial
https://dzone.com/articles/what-is-serialization-everything-about-java-serial
https://www.sciencedirect.com/science/article/pii/S0960148117312454#fig1
https://www.sciencedirect.com/science/article/pii/S0960148117312454#fig1
https://github.com/eclipse/milo
https://www.kongsberg.com/maritime/products/propulsors-and-propulsion-systems/propellers/controllable-pitch-propeller/
https://www.kongsberg.com/maritime/products/propulsors-and-propulsion-systems/propellers/controllable-pitch-propeller/
https://www.kongsberg.com/maritime/products/propulsors-and-propulsion-systems/propellers/controllable-pitch-propeller/
https://www.kongsberg.com/no/maritime/products/propulsors-and-propulsion-systems/propellers/fixed-pitch-propeller/
https://www.kongsberg.com/no/maritime/products/propulsors-and-propulsion-systems/propellers/fixed-pitch-propeller/
https://www.kongsberg.com/no/maritime/products/propulsors-and-propulsion-systems/propellers/fixed-pitch-propeller/
https://www.kongsberg.com/no/maritime/products/propulsors-and-propulsion-systems/thrusters/tunnel-thrusters/
https://www.kongsberg.com/no/maritime/products/propulsors-and-propulsion-systems/thrusters/tunnel-thrusters/
https://github.com/apache/pdfbox
https://snl.no/server
https://www.dxpe.com/what-is-factory-acceptance-test-protocol-purpose/
https://se.mathworks.com/products/matlab.html
https://se.mathworks.com/products/matlab.html

Bibliography

[69] MATLAB. Simulink. URL: https://se.mathworks.com/help/simulink/.

[70] Jennifer Mayo. Factory acceptance tests: What they are and

why they’re important. URL: https://www.ddpsinc.com/blog-0/

factory-acceptance-tests-what-they-are-and-why-theyre-important.

[71] P. Kinley M.M. Bernitsas, D. Ray. Kt, kq and effeniency curves for the wageningen b-series

propellers. URL: http://kashti.ir/files/ENBOOKS/B-series%20propeller.pdf.

[72] Norman S. Nise. Control Systems Engineering. Wiley, 2008.

[73] Novotek. Opc og opc ua. URL: https://www.novotek.com/no/l-sninger/

kepware-opc-kommunikasjonsplattform/opc-og-opc-ua/.

[74] Birkbech University of London. 10. transport layer. URL: https://www.dcs.bbk.ac.uk/

~ptw/teaching/IWT/transport-layer/notes.html.

[75] Oracle. Best practices for designing and implementing a library in java. URL: https://

www.oracle.com/corporate/features/library-in-java-best-practices.html.

[76] Overleaf. About us. URL: https://www.overleaf.com/about#who-we-are.

[77] Overleaf. Learn latex in 30 minutes. URL: https://www.overleaf.com/learn/latex/

Learn_LaTeX_in_30_minutes.

[78] PDFBox. Apache pdfbox - a java pdf library. URL: https://pdfbox.apache.org/.

[79] PDFBox. Download. URL: https://pdfbox.apache.org/download.html.

[80] The Latex Project. Latex – a document preparation system. URL: https://www.

latex-project.org.

[81] Rajani K RamaKoteswara Rao. A, Lekyasri N. Pid control designs for second order systems.

URL: http://www.mecs-press.org/ijem/ijem-v9-n4/IJEM-V9-N4-4.pdf.

[82] REALVNC. Secure remore access and support, 2021.

[83] rfscholte. Apache maven. URL: https://github.com/apache/maven.

Page 155 of 311

https://se.mathworks.com/help/simulink/
https://www.ddpsinc.com/blog-0/factory-acceptance-tests-what-they-are-and-why-theyre-important
https://www.ddpsinc.com/blog-0/factory-acceptance-tests-what-they-are-and-why-theyre-important
http://kashti.ir/files/ENBOOKS/B-series%20propeller.pdf
https://www.novotek.com/no/l-sninger/kepware-opc-kommunikasjonsplattform/opc-og-opc-ua/
https://www.novotek.com/no/l-sninger/kepware-opc-kommunikasjonsplattform/opc-og-opc-ua/
https://www.dcs.bbk.ac.uk/~ptw/teaching/IWT/transport-layer/notes.html
https://www.dcs.bbk.ac.uk/~ptw/teaching/IWT/transport-layer/notes.html
https://www.oracle.com/corporate/features/library-in-java-best-practices.html
https://www.oracle.com/corporate/features/library-in-java-best-practices.html
https://www.overleaf.com/about#who-we-are
https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://pdfbox.apache.org/
https://pdfbox.apache.org/download.html
https://www.latex-project.org
https://www.latex-project.org
http://www.mecs-press.org/ijem/ijem-v9-n4/IJEM-V9-N4-4.pdf
https://github.com/apache/maven

Bibliography

[84] James F. Kurose & Keith W. Ross. Computer Networking. Pearson, 6. edition, 2012, page

112.

[85] Eirik Rossen. klient/tjener-teknologi - IT. Store norske leksikon, 2019. URL: https://snl.

no/klient/tjener-teknologi_-_IT.

[86] OPC Router. What is opc ua? a practical introduction. URL: https://www.opc-router.

com/what-is-opc-ua/#OPC-Server.

[87] Sunarsih S. A chebyshev polynomial on torque and thrust coefficients of math-

ematical propeller properties for a lng manoeuvring simulation. URL: https:

//www.researchgate.net/publication/277708818_A_Chebyshev_Polynomial_

on_Torque_and_Thrust_Coefficients_of_Mathematical_Propeller_Properties_

for_a_LNG_Manoeuvring_Simulation.

[88] Kjetil Sander. Nettverksserver (Server, også kalt tjener). eStudie, 2019. URL: https://

estudie.no/nettverksserver/.

[89] Computer Science. Computer programming languages. URL: https://www.

computerscience.org/resources/computer-programming-languages/.

[90] Towards Data Science. Top 10 libraries every java de-

veloper should know. URL: https://towardsdatascience.com/

top-10-libraries-every-java-developer-should-know-37dd136dff54.

[91] ScienceDirect. Communication protocol. URL: https://www.sciencedirect.com/

topics/engineering/communication-protocol.

[92] ScienceDirect. Structured text. URL: https://www.sciencedirect.com/topics/

computer-science/structured-text.

[93] The Server Side. Java. URL: https://www.theserverside.com/definition/Java.

[94] Techopedia. Communication protocol. URL: https://www.techopedia.com/

definition/25705/communication-protocol.

Page 156 of 311

https://snl.no/klient/tjener-teknologi_-_IT
https://snl.no/klient/tjener-teknologi_-_IT
https://www.opc-router.com/what-is-opc-ua/#OPC-Server
https://www.opc-router.com/what-is-opc-ua/#OPC-Server
https://www.researchgate.net/publication/277708818_A_Chebyshev_Polynomial_on_Torque_and_Thrust_Coefficients_of_Mathematical_Propeller_Properties_for_a_LNG_Manoeuvring_Simulation
https://www.researchgate.net/publication/277708818_A_Chebyshev_Polynomial_on_Torque_and_Thrust_Coefficients_of_Mathematical_Propeller_Properties_for_a_LNG_Manoeuvring_Simulation
https://www.researchgate.net/publication/277708818_A_Chebyshev_Polynomial_on_Torque_and_Thrust_Coefficients_of_Mathematical_Propeller_Properties_for_a_LNG_Manoeuvring_Simulation
https://www.researchgate.net/publication/277708818_A_Chebyshev_Polynomial_on_Torque_and_Thrust_Coefficients_of_Mathematical_Propeller_Properties_for_a_LNG_Manoeuvring_Simulation
https://estudie.no/nettverksserver/
https://estudie.no/nettverksserver/
https://www.computerscience.org/resources/computer-programming-languages/
https://www.computerscience.org/resources/computer-programming-languages/
https://towardsdatascience.com/top-10-libraries-every-java-developer-should-know-37dd136dff54
https://towardsdatascience.com/top-10-libraries-every-java-developer-should-know-37dd136dff54
https://www.sciencedirect.com/topics/engineering/communication-protocol
https://www.sciencedirect.com/topics/engineering/communication-protocol
https://www.sciencedirect.com/topics/computer-science/structured-text
https://www.sciencedirect.com/topics/computer-science/structured-text
https://www.theserverside.com/definition/Java
https://www.techopedia.com/definition/25705/communication-protocol
https://www.techopedia.com/definition/25705/communication-protocol

Appendix

[95] TechTarget. client-server model (client-server architecture). URL: https://

searchnetworking.techtarget.com/definition/client-server.

[96] Catalin Tudose. Building Java Client/Server Applications with TCP.

Luxoft-training. URL: https://www.luxoft-training.com/news/

building-java-client-server-applications-with-tcp/.

[97] Tutorialspoint. Java - interfaces. URL: https://www.tutorialspoint.com/java/java_

interfaces.htm.

[98] Tutorialspoint. Pdfbox - environment. URL: https://www.tutorialspoint.com/

pdfbox/pdfbox_environment.htm.

[99] W3Schools. Java interface. URL: https://www.w3schools.com/java/java_

interface.asp.

[100] w3schools. Java introduction. URL: https://www.w3schools.com/java/java_intro.

asp.

[101] Anish Wankhede. Propeller, types of propellers and construction of propellers, 2021.

[102] Wikipedia. C (programming language). URL: https://en.wikipedia.org/wiki/C_

(programming_language).

[103] Wikipedia. Dc motor. URL: https://en.wikipedia.org/wiki/DC_motor.

[104] Wikipedia. Variable-pitch propeller. URL: https://en.wikipedia.org/wiki/

Variable-pitch_propeller.

[105] Wikipedia. Modeling of basic propeller thrust test system and thrust control using pid

method, 2016.

[106] Wikipedia. Ethernet/ip, 2021.

[107] Wikipedia. Multimeter, 2021.

Page 157 of 311

https://searchnetworking.techtarget.com/definition/client-server
https://searchnetworking.techtarget.com/definition/client-server
https://www.luxoft-training.com/news/building-java-client-server-applications-with-tcp/
https://www.luxoft-training.com/news/building-java-client-server-applications-with-tcp/
https://www.tutorialspoint.com/java/java_interfaces.htm
https://www.tutorialspoint.com/java/java_interfaces.htm
https://www.tutorialspoint.com/pdfbox/pdfbox_environment.htm
https://www.tutorialspoint.com/pdfbox/pdfbox_environment.htm
https://www.w3schools.com/java/java_interface.asp
https://www.w3schools.com/java/java_interface.asp
https://www.w3schools.com/java/java_intro.asp
https://www.w3schools.com/java/java_intro.asp
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/DC_motor
https://en.wikipedia.org/wiki/Variable-pitch_propeller
https://en.wikipedia.org/wiki/Variable-pitch_propeller

Appendixes

A Lean Manufacturing Diagram

158

In
s
ta

ll
 o

n
 v

e
s
s
e

l

O
rd

e
r

e
q

u
ip

m
e

n
t

T
e

s
t
s
y
s
te

m
 a

t

A
u

to
m

a
ti
o

n
 L

o
n

g
v
a

F
a

c
il
it
y

(F
A

T
)

B
u

il
d

b
u

il
d

 t
e

s
t
s
e

tu
p

 a
t

A
to

m
a

ti
o

n
 L

o
n

g
v
a

F
a

c
il
it
y

No

E
q

u
ip

e
m

n
t
n

e
e

d
e

d

fo
r

te
s
in

g
 i
n

 s
to

c
k
?

No

in
v
e

n
to

ry

Yes

Current Situation

E
q

u
ip

m
e

n
t
n

e
e

d
e

d

u
p

g
ra

d
in

g
 h

a
rd

w
a

re
 i
n

s
to

c
k
?

Yes

C
le

a
n

 u
p

N
e

e
d

 o
rd

e
r

in
 h

a
rd

w
a

re
?

Yes

Yes

S
to

p

A
d

d
 t
o

 s
h

o
p

p
in

g
 l
is

t

F
ix

Y
e

sP
re

fo
rm

 S
A

T
 t
o

m
a

k
e

 s
u

re

s
y
s
te

m
 i
s

w
o

rk
in

g

Yes

N
o

n
-v

a
lu

e
-a

d
d

in
g

 o
p

e
ra

ti
o

n
s

O
p

e
ra

ti
o

n
s
 t
h

a
t
a

re
 n

e
c
e

s
s
a

ry
 b

u
t

d
o

 n
o

t
c
o

n
tr

ib
u

te
 t
o

 v
a

lu
e

 c
re

a
ti
o

n

V
a

lu
e

-a
d

d
in

g
 o

p
ra

ti
o

n
s

L
o

s
s

C
a

n
 i
t
b

e
 f
ix

e
d

?
E

v
e

ry
 t
e

s
t
A

p
ro

v
e

d
?

C
u

s
to

m
e

r
N

e
e

d
 a

d
d

it
io

n
a

l
h

a
rd

w
a

re

u
p

g
ra

d
e

 o
n

 v
e

s
s
e

l?

Yes

No

D
e

li
v
e

r
Y

e
s

N
o

N
o

M
c
o

n
 T

h
ru

s
te

r

S
y
s
te

m

o

rd
e

r

Desired future Situation

In
s
ta

ll
 o

n
 v

e
s
s
e

l

O
rd

e
r

e
q

u
ip

m
e

n
t

T
e

s
t
s
y
s
te

m
 a

t

A
u

to
m

a
ti
o

n
 L

o
n

g
v
a

F
a

c
il
it
y

(F
A

T
)

B
u

il
d

No

E
q

u
ip

e
m

n
t
n

e
e

d
e

d

fo
r

te
s
in

g
 i
n

 s
to

c
k
?

No

in
v
e

n
to

ry

Yes

E
q

u
ip

m
e

n
t
n

e
e

d
e

d

u
p

g
ra

d
in

g
 h

a
rd

w
a

re
 i
n

s
to

c
k
?

Yes

C
le

a
n

 u
p

N
e

e
d

 o
rd

e
r

in
 h

a
rd

w
a

re
?

Yes

Yes

S
to

p

A
d

d
 t
o

 s
h

o
p

p
in

g
 l
is

t

F
ix

Y
e

sP
re

fo
rm

 S
A

T
 t
o

m
a

k
e

 s
u

re

s
y
s
te

m
 i
s

w
o

rk
in

g

Yes

N
o

n
-v

a
lu

e
-a

d
d

in
g

 o
p

e
ra

ti
o

n
s

O
p

e
ra

ti
o

n
s
 t
h

a
t
a

re
 n

e
c
e

s
s
a

ry
 b

u
t

d
o

 n
o

t
c
o

n
tr

ib
u

te
 t
o

 v
a

lu
e

 c
re

a
ti
o

n

V
a

lu
e

-a
d

d
in

g
 o

p
ra

ti
o

n
s

L
o

s
s

C
a

n
 i
t
b

e
 f
ix

e
d

?
E

v
e

ry
 t
e

s
t
A

p
ro

v
e

d
?

C
u

s
to

m
e

r
N

e
e

d
 a

d
d

it
io

n
a

l
h

a
rd

w
a

re

u
p

g
ra

d
e

 o
n

 v
e

s
s
e

l?

Yes

No

D
e

li
v
e

r
Y

e
s

N
o

N
o

M
c
o

n
 T

h
ru

s
te

r

S
y
s
te

m

o

rd
e

r

Appendix

B Wageningen B-series

Page 161 of 311

Appendix

C Data sheet thruster

Page 163 of 311

KONGSBERG MARITIME TUNNEL THRUSTERS

Type TTC CP

Key facts
The tunnel thruster is designed for giving max. sideforce to the ship in
manoeuvering condition.

Application
Auxiliary use – limited hours/year lifetime

The system normally contains of thruster unit with tunnel, hydraulic
equipment, remote control and electrical drivemotor with starter.

• Skew blades.
• Easy installation
• Less adjustment during installation (compared to standard TT-thruster).
• Interchange with TT-thruster
• Increased clearance between propeller blade tip and tunnel plating.
• Reduced noise and vibration.
• TT-tunnel can be delivered by yard according to our drawing
• Interchange with TT-thruster
• Simplified hydraulic.
• Less external piping for the yard during installation.
• Less complexity during commissioning and maintenance.

FUNCTIONAL FEATURES

• Propeller hub design
based upon well proven
TT-standard propeller
hub.

• Hydraulically balanced
propeller hub design.

• Propeller blade bolted
from outside for easy
blade seal change.

• Well proven blade seal
solution.

• No need to remove
intermediate shaft
and drive motor for
overhauling of thruster.
All drive modules can be
changed with access from
tunnel side.

• Thruster available in
“Thruster Support Pool”
(TSP).

• Worldwide service
network.

• Approved for use of EAL-
oil.

TU
N

N
EL TH

RU
STER

TYPE TTC
 C

P

kongsberg.com 07.Tunnel-1 of 2-29.05.19

Tunnel thruster
illustrated with
drive motor

Switchboard: +47 815 73 700
Global support 24/7: +47 33 03 24 07
E-mail sales: km.sales@km.kongsberg.com
E-mail support: km.support@kongsberg.com

Kongsberg Maritime
P.O.Box 483, NO-3601
Kongsberg, Norway

07.Tunnel-2 of 2-29.05.19

AVA I L A B L E G E A R- R AT I O O N T TC
Design data

TIP SPEED MOTOR PROPELLER POWER PRIME MOVER TUNNEL DIA THRUSTER/
SIDE FORCE

TTC-SIZE m/s RPM RPM (KW) TYPE HZ NOMINAL MAX KN(*)

TTC 65 CP 34.6 1200 318 1500 El. motor 60 2200 2230 196

TTC 65 CP 35.2 1500 324 1500 El. motor 50 2200 2230 196

TTC 80 CP 35.0 1200 295 1900 El. motor 60 2400 2430 243

TTC 80 CP 32.2 1000 271 1900 El. motor 50 2400 2430 243

TTC 83 CP 31.9 900 244 2160 El. motor 60 2650 2680 285

TTC 83 CP 32.2 1000 246 2160 El. motor 50 2650 2680 285

TTC 85 CP 33.8 900 244 2500 El. motor 60 2800 2836 324

TTC 85 CP 34.1 1000 246 2500 El. motor 50 2800 2836 324

NOTES

*1) A steady force generated without operation of a nearby TT and ideally integrated with the hull with
optimum inlet geometry, no grid and without any degradation effects from current and waves (ventilation).

TTC RANGE

VARIANTS TTC 65 TTC 80 TTC 83 TTC 85

Power (kW) 1500 1900 2200 2500

øA 2230 2453 2680 2896

øB 2274 2480 2730 2836

A 2145 2482 2492 2631

B 1498 1665.5 1811 1879

C 90 75 75 105

D 20 20 20 20

E 50 50 50 50

F 1702 2620 2620 2620

G 865 1082 1082 1082

H 837 1075 1075 1075

I 1955 2090 2283 2425

J 1708 1888 2032 2110

K 65 94 94 94

L 317 341 375 398

M 242 246 276 293

X 206 232 0 265

Y 270 341 0 382

Weight of standard tunnel and propeller
unit, excl. oil.

NOTES

All data is subject to change without
prior notice.

Appendix

D FPP test data Mcon simulation

Page 166 of 311

seconds RPM_order RPM_feedback

MIN-MAX

1 -104.25428 -104.199448

2 -41.1175842 -96.23384

3 48.3871 -58.17028

4 94.87898 36.7642136

5 94.87898 57.73763

6 94.87898 68.03717

7 94.87898 75.43226

8 94.87898 80.80474

9 94.87898 84.3414841

10 94.87898 87.6693039

11 94.87898 89.76986

12 94.87898 91.14681

13 94.87898 92.35294

14 94.87898 93.14081

15 94.87898 93.7021942

16 94.87898 94.15052

17 94.87898 94.3391342

18 94.87898 94.55014

19 94.87898 94.6795654

20 94.87898 94.74855

21 94.87898 94.80109

22 94.87898 94.84115

23 94.87898 94.8718262

24 94.87898 94.87896

25 94.87898 94.8844147

26 94.87898 94.89125

27 94.87898 94.89516

MAX-MIN

1 94.87898 94.88012

2 94.94004 94.8838

3 94.87898 94.8848648

4 94.87898 94.88414

5 94.81795 94.88292

6 4.01318073 74.74541

7 -85.43046 5.05802965

8 -104.181038 -57.9937363

9 -104.119995 -70.30955

10 -104.119995 -78.51479

11 -104.181038 -85.04067

12 -104.25428 -89.85645

13 -104.18403 -93.3032

14 -104.181038 -96.39902

15 -104.181038 -98.10898

16 -104.25995 -98.7083359

17 -104.181028 -101.1148

18 -104.119995 -101.962875

19 -104.25428 -102.654961

20 -104.119995 -103.096169

21 -104.119995 -103.372665

22 -104.25428 -103.612305

23 -104.119995 -103.784378

24 -104.181038 -103.920723

25 -104.25428 -103.998282

26 -104.181038 -104.066238

27 -104.25428 -104.106552

28 -104.25428 -104.141693

29 -104.181038 -104.159073

MIN-IDLE

1 -104.119995 -104.196053

2 -104.181038 -104.196831

3 -94.09162 -103.94136

4 -4.776144 -74.42611

5 -4.89822626 -49.2403564

6 -4.89822626 -28.0964851

7 -4.776144 -17.9538231

8 -4.837179 -10.3745394

9 -4.89822626 -6.818443

10 -4.837179 -4.972011

11 -4.776144 -3.966474

12 -4.837179 -3.75827479

13 -4.89822626 -3.92338777

14 -4.837179 -4.08486557

15 -4.776144 -4.277877

16 -4.776144 -4.46177

17 -4.89822626 -4.67163563

18 -4.776144 -4.68631554

19 -4.776144 -4.71429729

20 -4.776144 -4.791469

IDLE-MAX

1 -4.776144 -4.80007124

2 -4.776144 -4.799315

3 54.05743 30.838974

4 94.87898 61.43797

5 94.87898 71.95902

6 94.94004 78.53007

7 94.94004 82.583725

8 94.87898 85.6563

9 94.87898 87.87058

10 94.87898 89.72004

11 94.87898 91.1753159

12 94.94004 91.13227

13 94.87898 92.9044952

14 94.87898 93.50289

15 94.87898 93.88788

16 94.94004 94.20287

17 94.87898 94.440094

18 94.94004 94.5676346

19 94.87898 94.66889

20 94.87898 94.7234

21 94.87898 94.7809753

22 94.87898 94.87898

23 94.94004 94.84756

24 94.87898 94.86211

25 94.87898 94.87121

MAX-IDLE

1 94.87898 94.88321

2 93.70098 94.87342

3 26.7555714 85.1609

4 -4.5259 49.34366

5 -4.5259 26.73314

6 -4.5259 8.716376

7 -4.59303856 -0.3394618

8 -4.59303856 -3.359396

9 -4.59303856 -4.769736

10 -4.5259 -5.453189

11 -4.59303856 -5.5985455

12 -4.59303856 -5.419911

13 -4.464853 -5.16858

14 -4.59303856 -5.08442354

15 -4.59303856 -4.870197

16 -4.5259 -4.755985

17 -4.5259 -4.63035

18 -4.5259 -4.50429

19 -4.5259 -4.53675365

20 -4.5259 -4.509827

21 -4.59303856 -4.568879

22 -4.464853 -4.47395849

23 -4.5259 -4.561048

24 -4.464853 -4.53628826

IDLE_MIN

1 -4.59303856 -4.51286173

2 -4.59303856 -4.53603

3 -4.59303856 -4.56467772

4 -4.464853 -4.53552961

5 -32.2000732 -14.4651

6 -104.25428 -57.9530373

7 -104.25428 -74.0755

8 -104.181038 -82.87079

9 -104.181038 -87.54089

10 -104.181038 -90.52071

11 -104.119095 -94.15338

12 -104.181038 -96.9795456

13 -104.181038 -98.70324

14 -104.19995 -100.098091

15 -104.25428 -101.15802

16 -104.181038 -101.892616

17 -104.25438 -102.551849

18 -104.25428 -103.003227

19 -104.119995 -103.299286

20 -104.181038 -103.513222

21 -104.181038 -103.674454

22 -104.25428 -103.86739

23 -104.181038 -103.964462

24 -104.181038 -104.031517

25 -104.181038 -104.083328

26 -104.181038 -104.113762

27 -104.181038 -104.145378

28 -104.181038 -104.165985

29 -104.25428 -104.171822

IDLE-50

1 -5 -4.160493

2 -4.98622626 -4.351392

3 -4.715109 -4.53316975

4 -4.837179 -4.6801815

5 -4.776144 -4.706339

6 -4.69303856 -4.63601637

7 44.39528 30.48127

8 44.3342323 37.932372

9 44.3342323 40.5216675

10 44.2731972 41.89232

11 44.3342323 42.7657623

12 44.2371972 43.40334

13 44.3342323 43.662056

14 44.3342323 44.0636

15 44.3342323 44.2395668

16 44.2731972 44.33226

17 44.3342323 44.3682365

18 44.3342323 44.38282

19 44.2731972 44.37939

20 44.2731972 44.37564

Idle_25

1 -4.15357351 -4.379888

2 -4.15357351 -4.41226673

3 -4.220712 -4.36220263

4 -4.28174734 -4.3375597

5 -4.220712 -4.30992365

6 19.1564674 15.1981106

7 19.1564674 17.83905

8 19.0954323 18.4301662

9 19.0282936 18.6812534

10 19.0954323 18.9502

11 19.0954323 19.078783

12 18.9672585 19.1089325

13 19.0954323 19.1166762

14 19.0954323 19.1148376

15 19.0282936 19.1009426

Appendix

E Factory Acceptance Test

Page 171 of 311

PUBLIC

KONGSBERG PROPRIETARY. This document and its accompanying elements contain

KONGSBERG information which is proprietary and confidential. Any disclosure, copying, distribution

or use is prohibited if not otherwise explicitly agreed with KONGSBERG in writing. Any authorized

reproduction, in whole or in part, must include this legend. ©2020 KONGSBERG - All rights reserved.

Factory Acceptance Test

Doc No: EAC-117765-01TF

Revision: B

Project: 20S000408 ELEKTRON

Status: This document is under configuration control at Kongsberg Maritime.

 Kongsberg Maritime AS PUBLIC

KONGSBERG PROPRIETARY – see Statement of Proprietary Information

EAC-117765-01TF / B / 2020-09-26 / Page 2 of 12

Document history

Revision Description of Change

A First Issue

B
(10.11.2020)

3 – Faults and consequences:
Changed test for +CU01-F001 and F101

Disclaimer

Kongsberg Maritime AS endeavours to ensure that all information in this document is
correct and fairly stated, but does not accept liability for any errors or omissions.

 Kongsberg Maritime AS PUBLIC

KONGSBERG PROPRIETARY – see Statement of Proprietary Information

EAC-117765-01TF / B / 2020-09-26 / Page 3 of 12

Table of contents

1 Foreword ... 4

1.1 General ... 4

2 Functional tests. .. 5

2.1 Tunnel thrusters .. 5

2.1.1 General functions ... 5

2.1.2 Rpm Control... 6

2.1.3 Start/ stop and reset functions .. 7

2.1.4 Interfaces to external systems .. 8

3 Faults and Consequences. .. 9

3.1 Faults and consequences table. .. 10

3.1.1 Tunnel thrusters ... 10

 Kongsberg Maritime AS PUBLIC

KONGSBERG PROPRIETARY – see Statement of Proprietary Information

EAC-117765-01TF / B / 2020-09-26 / Page 4 of 12

 PROJECT

Project/ installation no. 20S000408

Vessel ELEKTRON

System Mcon

1 Foreword

This document describes two tests: A “functional” and a “consequences of a fault” test
for the Mcon remote control system.

This test procedure will be performed after the production of the system is completed
and initially tested. The test report covers the requirements stated in the Det Norske
Veritas Rules “Instrumentation and Automation, Computer based Systems”.

1.1 General

Prior to the two tests all units and components have been checked for proper
workmanship and that correct procedures have been used during the manufacturing
operations.

All units supplied by Kongsberg Maritime CM AS Automation & Control are
connected and tested according to the cable diagram, and during the tests external
equipment are simulated.

 Kongsberg Maritime AS PUBLIC

KONGSBERG PROPRIETARY – see Statement of Proprietary Information

EAC-117765-01TF / B / 2020-09-26 / Page 5 of 12

2 Functional tests.
2.1 Tunnel thrusters

2.1.1 General functions

Functional test: Verification: Checked:

2.1.1.1 Power-up test Checked:

Comment:
With the power turned off, engage:

+CU01-F001, +CU01-F101

The control systems should boot
and come up with command
request.

2.1.1.2 Dimmer Checked:

Comment:
Turn the dimming up and down on each
control panel

The illumination in all panels,
levers and indicators at the control
station should be illuminated
according to the dimmer position.

2.1.1.3 Command
transfer.

 Checked:

Comment:

Activate backup control for all other
systems than the one on test.

Activate the “IN COMMAND” button
on a bridge control panel which is not
“IN command”

The command should be
transferred to the selected panel
without any restrictions

2.1.1.4 Motorized Lever

On the station in command, move the
pitch/rpm –lever to various positions.

The levers on all the other
command stations should move to
the same position as the one in
command.

Checked:

Comment:

 Kongsberg Maritime AS PUBLIC

KONGSBERG PROPRIETARY – see Statement of Proprietary Information

EAC-117765-01TF / B / 2020-09-26 / Page 6 of 12

2.1.2 Rpm Control

Functional test: Verification: Checked:

2.1.2.1 Rpm Control Checked:

Comment:
Move the Pitch/rpm lever in stbd. /port
direction.

The rpm order output(s) should
fluctuate between the idle and
maximum setting according to the
lever pos.

2.1.2.2 Backup Control Checked:

Comment:
From the control lever in command,
activate the backup control system with
the “EMERG. ON” switch, and
increase/decrease RPM with the lever.

The RPM feedback shown on the
indicator should move smoothly
towards the position
corresponding to the lever

 Kongsberg Maritime AS PUBLIC

KONGSBERG PROPRIETARY – see Statement of Proprietary Information

EAC-117765-01TF / B / 2020-09-26 / Page 7 of 12

2.1.3 Start/ stop and reset functions

Functional test: Verification: Checked:

2.1.3.1 Remote
Start/Stop of
thruster motor.

 Checked:

Comment:

Activate the “Start/stop thruster” button
in the control panel.

The start/stop thruster motor
indication will flash on the
corresponding activated button,
until the requested run/stop
feedback is obtained, then the
indicator remains steady ON.

2.1.3.2 Remote
Start/Stop of
thruster servo
pumps.

 Checked:

Comment:

Activate the “Start/stop servo pump”
button in the control panel.

The start/stop thruster servo pump
indicator will flash on the
corresponding activated button,
until the requested servo pump
run/stop feedback is obtained,
then the indicator remains steady
ON.

2.1.3.3 Reset Drive Checked:

Comment:
Activate the “Reset Drive” button in
the control panel.

Verify that digital contact is sent
to Drive.

 Kongsberg Maritime AS PUBLIC

KONGSBERG PROPRIETARY – see Statement of Proprietary Information

EAC-117765-01TF / B / 2020-09-26 / Page 8 of 12

2.1.4 Interfaces to external systems

Functional test: Verification: Checked:

2.1.4.1 DP Interface Checked:

Comment:
Activate the “DP request signal” and
simulate various pitch/rpm order
signals from the DP-system into the
Mcon system.

The “acknowledge DP” signal
should be activated after receiving
the “AM request” signal.

The Mcon rpm feedback should
move corresponding to the given
orders from the DP-system.

2.1.4.2 Joystick
Interface

 Checked:

Comment:

Activate the “JS request signal” and
simulate various pitch/rpm order
signals from the JS-system into the
Mcon system.

The “acknowledge JS” signal
should be activated after receiving
the “AM request” signal.

The Mcon rpm feedback should
move corresponding to the given
orders from the JS-system.

 Kongsberg Maritime AS PUBLIC

KONGSBERG PROPRIETARY – see Statement of Proprietary Information

EAC-117765-01TF / B / 2020-09-26 / Page 9 of 12

3 Faults and Consequences.

This section describes which consequences a failure in the power supply circuits,
external signals or computer cards will have on the remote control system. One failure
at the time is described.

When a failure occurs this is indicated with means of:
• A common alarm contact to the alarm plant.
• Visible and audible failure indication in control panels alarm manager.
• System failure indication in the control levers, panels and automatically change over

to backup control

(note, only when serious faults).

Note: Watchdog detected failure, A/D failure and checksum failure can not be
simulated, a failure on these will result in backup control.

The following tables will describe which of the above fault actions/indications that
appear at different faults in the system.

 Kongsberg Maritime AS PUBLIC

KONGSBERG PROPRIETARY – see Statement of Proprietary Information

EAC-117765-01TF / B / 2020-09-26 / Page 10 of 12

3.1 Faults and consequences table.

3.1.1 Tunnel thrusters

Failure

System
affected/Consequences:

Failure indication: Checked:

Broken main fuse:

+CU01 –F001

Loss of 230V Main
supply

Automatic change-over to 24V
DC backup supply.

The system will continue to
work normally.

Visible and audible
failure indication in
control panels

Warning signal to
alarm plant.

Checked:

Comment:

Broken fuses:

+CU01-F002 to
Controller, Main I/O
and fan

Loss of 24VDC
internal normal
supplies

Loss of 24VDC
supply to cabinet
cooling fan

Not possible to operate normal
control.

Activation of backup buzzer.

Fan will stop and temperature
inside cabinet will increase.

Visible and audible
failure indication in
control panels

Warning signal to
alarm plant.

Checked:

Comment:

Broken fuse:

+CU01-F003 to NC
levers.

Loss of 24VDC NC
supply to levers on
Bridge

Not possible to operate normal
control from levers on bridge.

If operating in Normal control
on manual levers backup
buzzer activates.

Visible and audible
failure indication in
control panels

Warning signal to
alarm plant.

Checked:

Comment:

 Kongsberg Maritime AS PUBLIC

KONGSBERG PROPRIETARY – see Statement of Proprietary Information

EAC-117765-01TF / B / 2020-09-26 / Page 11 of 12

Failure

System
affected/Consequences:

Failure indication: Checked:

Broken main fuse:

 +CU01-F101

Loss of 24VDC
backup supply

The system will continue to
work normally, using normal
supply.

Visible and audible
failure indication in
control panels

Warning signal to
alarm plant.

Checked:

Comment:

Broken fuses:

+CU01-F102 to
Controller and I/O.

Loss of 24VDC
internal backup
supplies

Not possible to operate backup
control.

The system will continue
working normally.

Visible and audible
failure indication in
control panels

Warning signal to
alarm plant.

Checked:

Comment:

Broken fuses:

+CU01-F103 to
operator devices

Loss of 24VDC NC
supply to levers and
indicators on Bridge

Not possible to operate backup
control from levers on bridge.

Feedback indicators not
working.

The system will continue
working normally.

Visible and audible
failure indication in
control panels

Warning signal to
alarm plant.

Checked:

Comment:

Broken CAN line to
lever unit (Normal
control)

If this operator position is In
Command, Backup buzzer
activates.

Visible and audible
failure indication in
control panels

Warning signal to
alarm plant.

Checked:

Comment:

 Kongsberg Maritime AS PUBLIC

KONGSBERG PROPRIETARY – see Statement of Proprietary Information

EAC-117765-01TF / B / 2020-09-26 / Page 12 of 12

Failure

System
affected/Consequences:

Failure indication: Checked:

Broken CAN line to
lever unit (Backup
control)

Warning signal to alarm plant

Visible and audible
failure indication in
the control panels
and levers.

Alarm in the alarm
manager and on the
control lever in
command

Checked:

Comment:

Broken wire in rpm
feedback signal
from Drive (Normal
control)

Rpm Indication not working.

Rpm feeback signal to external
systems (DP/JS) not working.

The system will continue
working normally without a
visual feedback

Visible and audible
failure indication in
control panels

Warning signal to
alarm plant.

Checked:

Comment:

Broken Ethernet
switch in ECR

(disconnect power to
switch)

Communication to thrusters
interface units connected to
switch in question not working.
(only used for
commissioning/service
purpose)

System operate as before fail.

Local indication on
switch.

Checked:

Comment:

Appendix

F Preliminary Report

Page 184 of 311

Preliminary Project
MCON Thruster Simulator

Technical Report
NTNU students
Ålesund, Spring 2021

Preliminary Project Spring 2020

Candidates (Surname, Name):
Skarbø, Emilie Skalstad
Sperre, Linda Helen
Furmyr, Maria
Mellum, Nicklas
DATE: SUBJECT CODE: GROUP (name/nr): Pages BIBL. NR:
17/05/2021 IE303612 Mcon Thruster Simulator 24 N/A
CLIENT / SUPERVISOR(S):
Kongsberg Maritime AS
Anete Vagale
Ottar L. Osen
Robin T. Bye
TITLE:
MCON Thruster Simulator
SUMMARY:
Kongsberg Maritime wants to develop a simulator that can be used to test and verify
Mcon thruster control system during assembly and test at Automation Longva facility.
This task is given as a bachelor thesis to students at the department of engineering
and science, automation technology. This pre-project report is a project description of
the bachelor thesis.

The bachelor thesis will study a concept of a Software-In-the-Loop (SIL) setup.
The complete setup consists only of software, and can be viewed as a digital twin
component, containing both the physics models of the equipment and the control
system running it. Important design criteria will be to simulate the measurements, as
the actuators, the dynamics and the sensors correctly.

In addition, a semi-automatic test system, interface thrust-simulator and a visualisation
of the thrust-simulator is developed.

2

Contents

Contents

List of Tables 5

1 Introduction 6

2 Terminology 7

3 Project organization 8
3.1 Project group . 8

3.1.1 Tasks for the project group - organization 8
3.1.2 Tasks for project leader . 8
3.1.3 Tasks for secretary . 9
3.1.4 Tasks for other members . 9

3.2 Steering group (supervisor, contact person and client) 9

4 Agreements 10
4.1 Agreement with the client . 10
4.2 Workplace and resources . 10
4.3 Group norms - cooperation rules - attitudes 10

5 Project description 11
5.1 Problem statement - objective - purpose 11

5.1.1 Problem formulation . 11
5.1.2 Effect goals . 11
5.1.3 Performance target . 11

5.2 Requirements for solution or project result - specification 11
5.3 Planned procedure(s) for the development work - method(s) 12
5.4 Information gathering - performed and planned 12
5.5 Assessment - analysis of risk . 12
5.6 Main activities in further work . 13
5.7 Progress plan - management of the project 14

5.7.1 Master plan . 14
5.7.2 Steering aids . 14
5.7.3 Development aids . 14
5.7.4 Internal control - evaluation . 14

5.8 Decisions - decision process . 15

6 Documentation 16
6.1 Reports and technical documents . 16

7 Planned Meetings and Reports 17
7.1 Meetings . 17

7.1.1 Meetings with Steering Group . 17
7.1.2 Project Meetings . 17

7.2 Periodic Reports . 18
7.2.1 Progress Reports (incl. milestone) 18

3

Contents

8 Planned deviation treatment 19

9 Equipment requirements / Requirements for implementation 20

10 Attachments 21
10.1 Gantt-scheme . 22

4

List of Tables

List of Tables

1 Student number . 8

2 Leader and secretary . 8

5

Introduction

1 Introduction

Our group came together through a common interest in the task Mcon Thruster Simulator,
which is about developing a SIL simulator that will be used for test and verification of the
Mcon Thruster control system during assembly and test at Automation Longva facility.

Kongsberg Maritime is currently using a testing rig to test thrusters. This testing rig
consists of psychically connected components, which makes testing unreliable and time
consuming. By automating the testing rig, and making it consist of only software, not
hardware, this process can be improved.

The physical equipment (hardware) becomes replaced with a simulator that models the
real actuators, dynamics and sensors of the physical system. The control system sends
control signals to the simulated equipment and receives simulated measurements. MAT-
LAB will be used to create a realistic model of the thruster. Readings such as pitch
and RPM will be measured from the MATLAB/Simulink model created. The simulation
should be able to simulate different thruster types based on the different config files that
are being read. B & R Automation studio will be used to build and import the com-
ponents for the thrusters and all other necessary parts to simulate the thruster system.
The IO will be simulated through CAN bus, and the IO should be able to be changed or
adjusted through a GUI.

The software/simulator should work the same way as the hardware would have, so that
the control system does not notice whether it is connected to Hardware or Software.
Finally, the operating system hardware must be visualized. In addition a semi-automatic
test system, following the Factory Acceptance Test requirements is to be developed. This
FAT test is semi-automatic, and will go through spesific checkpoints to test the simulated
system.

The task is given by Kongsberg Maritime.

6

Terminology

2 Terminology

- Definition of key concepts in the project
NTNU - Norwegian University of Science and Technology
KM - Kongsberg Maritime
B&R - Company for simulating and creating automation and process control solutions
Mcon thruster - Thruster system for a boat
FAT - Factory Acceptence Test
I/O - Input / output
HW - Hardware
SW - Software
SIL - Software In-The-Loop
HIL - Hardware In-The-Loop
CANbus - Controller Area Network bus
MATLAB - Multi-paradigm programming language and numeric computing environ-
ment in a unique programming language
Simulink - MATLAB-based graphical programming environment
MapleSim - Advanced system-level modeling tool
LaTeX - Document preparation system
OneDrive - File hosting service and synchronization service
Google Docs - Word processor
FHI - Norwegian Institute of Public Health
Covid-19 - Worldwide ongoing pandemic
FGL - Functioning Group Leader

7

Project organization

3 Project organization

3.1 Project group

Name Student number
Emilie Skalstad Skarbø 509369
Linda Helen Sperre 509365

Maria Furmyr 494663
Nicklas Mellum 498740

Table 1: Student number

3.1.1 Tasks for the project group - organization

We have decided to rotate the positions of leader and secretary in this project, to divide
the tasks and responsibility likewise. Here is an overview of the current assigned leader
and secretary.

Date Leader Secretary
20/01 - 20/02 Emilie Maria
20/02 - 20/03 Maria Nicklas
20/03 - 20/04 Nicklas Linda
20/04 - 20/05 Linda Emilie

Table 2: Leader and secretary

3.1.2 Tasks for project leader

The project leader will be responsible for

• setting up meetings

• make sure the desired progress is followed

• update the Gantt-scheme

8

Project organization

3.1.3 Tasks for secretary

The secretary will have the responsibility for

• writing notes during meetings.

• sending weekly reports to group leader

3.1.4 Tasks for other members

The rest of the members will be

• assisting the leader and secretary

3.2 Steering group (supervisor, contact person and client)

Our client is Kongsberg Maritime, with Håkon Lunheim as our contact person, and
Bjørnar Vik, Erlend Rangnes and Thomas Haraldsen will be assisting. Chaney W. Sætre
will be assisting when needed.
As from NTNU Anete Vagale will be our main supervisor, Ottar L. Osen will be co-
supervisor and Robin T. Bye will be a resource person we can rely on.

9

Agreements

4 Agreements

4.1 Agreement with the client

The task is to develop a simulator that can be used to test and verify Mcon thruster
control system during assembly and testing at Longva. The focus is to develop a scalable
program that later can be expanded upon. Therefore, the communication and software
that will be used have to be in line with what Kongsberg Maritime utilize. Since the goal
of this project is to minimize the time use, it also has to implement the FAT test faster
then the current method.

4.2 Workplace and resources

The project is to be carried out at NTNU in Ålesund, at the lab setup.

All of the supervisors work at NTNU in Ålesund. The thesis is given by Geir Olav
Otterlei in Kongsberg Maritime, but our contact person during the project will be Håkon
Lunheim, who work within walking distance from the school. Under normal circumstances
this would mean that the supervisors will be available in a relatively short time, on request.
Due to the COVID-19 situation our supervisors may not be as easy to meet up with at
the workplace, and in that case communication will be carried out digitally.

Due to COVID-19, the group will be following the recommendations from FHI and the
government. Guidelines may include shutdown of schools and workplaces. If this is the
case, the group will be working from home. Working from home will also be done if
members of the group are feeling ill or are in quarantine.

Our contact person for the lab setup, works av Automation Longva facility. Requests
regarding the lab setup will there therefore have to be scheduled.

4.3 Group norms - cooperation rules - attitudes

The group have agreed to meet every weekday where the testing rig is, from 08.00 -
15.00/16.00 during this bachelor project. This is to ensure good and continuous work
throughout this project period, and ensure good collaboration within the group.

The group is to be helpful to each other, encourage each other and be patient. Everyone
in the group should be able to voice their opinions and treat each vision with respect.
Everyone should be honest and precise with their work, and be on time for meetings and
events.

10

Project description

5 Project description

5.1 Problem statement - objective - purpose

The problem statement can be divided into two parts. The first is to develop a SIL setup
and system that allows for further expansion, regarding implementation of more thruster
models. The other part of the problem statement is to make the semi-automatic test
system, following the FAT-test requirements.

5.1.1 Problem formulation

Working through the initial phases of the project, it was scoped out a set of unknowns
that had to be solved prior to starting, or during the progress of the project. It was known
that CANbus and B&R simulation for the IO, were to be used for the communication.
It was also known that mathematical calculation, such as thrust calculations where to be
executed in MATLAB®/Simulink® and MapleSim. The remainder of the variables were
unknowns that had to be solved. Therefore a range of cases were noted and is listed below

• How to develop a SIL setup that allow for further expansion?

• Which program is best suited for making the semi-automatic FAT-test?

5.1.2 Effect goals

• Create a project that can be further expanded and implemented with ease.

5.1.3 Performance target

• Simplify testing and create less connection time. (Reduce time spent on switching
which further reduces costs?)

5.2 Requirements for solution or project result - specification

Run a successful FAT test without using physical components and successfully model the
thruster control systems, so that the software cannot distinguish between simulation and
physical testing.

11

Project description

5.3 Planned procedure(s) for the development work - method(s)

The group will work towards the deadlines in the Gantt chart. The tasks with the shortest
timeline will be prioritized. The group will work on several activities at the same time,
where the activities at any given time will have different priorities according to which
must be completed first.

The group leader has the overall responsibility, considering working relation, time use
and schedule meeting if necessary. The group member who is responsible for an activity
has full responsibility for completing this activity on time. If possible, each activity will
also have a co-manager. The starting point is that these two should collaborate on the
activity so that two and two work together with each activity. This is to prevent any
delays caused by problems such as being stuck on a problem, or the workload being to
large for a single person.

If there are problems with completing an activity, the functioning group leader must be
informed. The problem will first be discussed within the project group. In cases where
important changes has to be made, the functional leader must schedule a meeting with
the steering group to discuss the next step. The agenda for this meeting should be how
to solve the issue, and what resources are needed so that the problem can be solved.

It is difficult to estimate how long and how much resources each activity will take. Activ-
ities can take more or less time resources than planned. Therefore, a dynamic approach
is used, that facilitates the opportunity to update the plan continuously. A time buffer
should therefore be included to accommodate for any potential adjustments or deviations
from the original timeline/schedule.

5.4 Information gathering - performed and planned

During the preliminary project the group has acquired relevant literature on the topic of
Mcon and thrusters. There is a lot of different thruster types which will give a different
degree of difficulty. An important part of the project will be to find the best way to
simulate and model the thrusters, as well as choosing the most fitting thruster. As regard
to thrusters the group had little or zero prior knowledge.

5.5 Assessment - analysis of risk

Covid-19 could pose a large threat to the completion of this project, as we are relying
on equipment which is located in a facility which could possibly be closed down due to
a national (or regional) lockdown. Due to the risk of lockdown caused by Covid-19, the
group should prioritize the modelling of the control system as a preventative measure.
Completing the modelling of the thruster systems would dramatically decrease the risk of

12

Project description

a shutdown halting the progress of our project, since the group would not need the physical
components to confirm test results. By completing the modelling aspect of the project,
the group would be able to work remotely without depending on physical equipment or
facilities to complete the project.

Other aspects in the event of the Covid-19 situation getting better is listed below.

Success factors:

• Realistic goals

• Updated plan

• Good communication and cooperation within the group

• Good communication and cooperation between the project group and the steering
group

failure factors:

• Unrealistic goals

• Poor task distribution

• Lack of communication and bad cooperation within the group

• Lack communication and guidance from the steering group

5.6 Main activities in further work

• Literature study, maritime thruster systems.

• Simulate IO via CANbus

• Communication HIL

• Tunnel thrust calculations

• Simulation HIL - B&R Sim. Studio

• Visualization SIL

• Semi-automatic FAT

• Azimuth thrust calculations

• Test of systems

13

Project description

• Finish bachelor thesis report

For a detailed activity plan with a time frame and responsible person, please refer to the
attached Gantt chart.

5.7 Progress plan - management of the project

5.7.1 Master plan

The project’s main activities will be carried out, based on the Gantt chart. The diagram
shows a full overview on estimated start date and end date for each activity, as well as
who is responsible for the activity to be completed. The activities are divided into a main
levels and a sub-levels since activities often with advantage can be divided into several
sub-activities. Completed main activity is a milestone in the project.

5.7.2 Steering aids

The aid used for steering the project is Excel. This software is logical and clear, which
makes it easy to keep a good overview of the project regarding activities to be preformed,
person in charge, time management and milestones.

The project report is written in LaTeX, which is a professional text editor running in the
browser. Everyone with access can modify and compile the report simultaneous. It also
divide the chapters, which make it easier to work at the same time.

5.7.3 Development aids

A lab setup for Mcon thruster control is needed, for testing and verification for the simu-
lated setup. Automation Studio simulation tool from B&R will be used to create models
using tools such as MATLAB® /Simulink® and MapleSim for dynamic modeling of ma-
chines and machine components. For the thruster calculations MATLAB will be needed.
For the semi-automatic Factory Acceptance Test, Java will be used.

5.7.4 Internal control - evaluation

The functional leader has the superior responsibility in regard to updating the Gantt
chart, at least once a week. This will give a better work structure and overview.

The group will be working together from 08:00 to 15:00/16:00 in the weekdays. Doing
this the communication and decisions during the project can be made fast and effectively.

14

Project description

A sub-goals is reached or completed when the results are good enough to be used in the
later sub-goals.

5.8 Decisions - decision process

Important decisions on delimitation and clarification of the task and other key decisions
made during the preliminary project, has and will be determined in our meetings with
the steering group or with Kongsberg Maritime. These meeting was held 12.01.2021 and
21.01.2021. Minutes of meetings can be found the appendix.

Significant changes that has an impact on the project will be presented for the steering
group, where a decision are to be made with everyone present.

15

Documentation

6 Documentation

6.1 Reports and technical documents

The project leader will send out meeting notices to the steering group. This notice should
include an agenda for the meeting, progress report (written by secretary) and planned
events for the next period.
The minutes of meeting are to be written the same day as the meeting took place. It
should include the key points discussed in the meeting. The minutes of meeting will be
written by the secretary.

Every document will be stored in Google drive. This includes data sheets, progress reports,
minutes of meetings, component lists and documentation from KM.

16

Planned Meetings and Reports

7 Planned Meetings and Reports

To validate that the progress is kept at a steady pace, and on the right track, the group
will be having continuous meetings during the whole project.

7.1 Meetings

There will be a meeting with the supervisors at NTNU every other week, to get follow-up
and feedback for the current provided work. Planned meetings:

• 12/01 - 14.30-14.55 Meeting with Kongsberg and NTNU to discuss the project

During this meeting, it was decided to have a meeting with supervisors at NTNU every
other week to give updates on the progress of the project.

7.1.1 Meetings with Steering Group

Meetings with the steering group is primarily for providing relevant information, resources
and equipment for executing the project. This is very important in the beginning of the
project, to help us get started, but we will as well be having this meetings throughout the
project. Planned meetings:

• 12/01 - 14.30-14.55 Meeting with Kongsberg and NTNU to discuss the project

• 21/01 - 10.00-11.00 Meeting with Kongsberg to discuss workplace, distributed files,
software and equipment, starting goal and writing of contract

7.1.2 Project Meetings

There will as well be held meetings inside the group during the project to discuss any
changes or uncertainty any of the members would carry, to help each other find the best
solutions. Planned meetings:

• 14/01 - 09.00-10.30 Meeting about the formation and contents of the preliminary
project report.

17

Planned Meetings and Reports

7.2 Periodic Reports

By writing periodic reports the work will be continuous throughout the project, and we
will be provided with a bigger overview of the whole project.

7.2.1 Progress Reports (incl. milestone)

We will be writing a progress report each week, to see the progress of the current week.
This will be sent to our supervisors at NTNU, which makes it easy for them to give
feedback at the project meetings. The gantt-scheme will as well be updated each week to
follow the progress of the planned work.

18

Planned deviation treatment

8 Planned deviation treatment

In the events of a deviation from the process of the project, the group member responsible
for the task is to give notice to the group leader. The group leader will convene a meeting
with the group, and together the group will consider the following questions:

• Can the deviation be solved with more resources?

• Can the deviation be avoided?

• Can the deviation be solved with external help?

• Can the task be replaced so the deviation can be avoided?

The steering group is to be informed after the group has evaluated.

19

Equipment requirements / Requirements for implementation

9 Equipment requirements / Requirements for im-
plementation

This project is a collaboration between students at NTNU and Kongsberg Maritime.
Kongsberg Maritime will provide for everything the students needs in terms of equipment
during this project period.

• B&R Automation Studio, KM/NTNU license

• Testing equipment delivered by KM.

• MATLAB®/Simulink®, NTNU licence.

• Windows computers

20

Attachments

10 Attachments

1. Gantt-scheme

21

16
16

5

5

12

21 21

10.1 Gantt-scheme

17
17
17
17

29
29 29

Appendix

G Gantt-scheme

Page 209 of 311

Appendix

H I/O List

Page 212 of 311

Cable/signal From To
Signal Term Con Pot Term Con POT POT

Pump Running (Closed = Running) -NGE3 21 Di X20DO6639 (1) 11 NO NO1
Pump Running -NGE3 24 24V X20DO6639 (1) 21 C COM1

Stop System Pump (Open = stop) -X214 3 NC X20DI6371 (2) 11 Di DI1

Common -X214 4 X20DI6371 (2) 14 24V

Common -X214 2 C X20DI6371 (2) 24 24V 24V/ 24V
Start System Pump (Closed = Start) -X214 1 NO X20DI6371 (2) 21 Di DI2

RPM Order 4-20 mA -X212 1 Ao X20AI4322 11 Ai AI +1 I
RPM Order 4-20 mA -X212 2 ref X20AI4322 13 Ref AI -1 I

Drive RPM Feedback 4-20 mA -NGE5 11 Ai X20AO4622 11 Ao AO +1 I
Drive RPM Feedback 4-20 mA -NGE5 13 0V X20AO4622 13 Ref AO -1 U/I

Thruster Start (Closed = Start) -KNGE2.1 14 NO X20DI6371 (1) 11 Di DI1

Thruster Start -KNGE2.1 11 C X20DI6371 (1) 14 24V 24V

Thruster Stop (Closed = Stop) -KNGE2.2 14 NO X20DI6371 (1) 21 Di DI2
Thruster Stop -KNGE2.2 11 C X20DI6371 (1) 24 24V 24V

Thruster Running (Closed = Running) -NGE3 22 Di X20DO6639 (2) 11 NO NO1
Thruster Running -NGE3 25 24V X20DO6639 (2) 21 C COM1

Drive Reset (Closed = reset) -KNGE2.3 14 NO X20DI6371 (2) 12 Di DI3
Drive Reset -KNGE2.3 11 C X20DI6371 (2) 15 24V 24V

DP enable (Closed = enable) -NCS2 12 Di X20DO6639 (2) 12 NO NO2

DP enable -NCS2 15 24V X20DO6639 (2) 22 C COM2

DP ready (Closed = ready) -NDP1 11 NO X20DI6371 (1) 12 Di DI3

DP ready -NDP1 12 C X20DI6371 (1) 15 24V 24V

DP rpm order 4-20 mA -NDP4 21 Ai X20AO4622 21 Ao AO +2 I

DP rpm order -NDP4 23 0V X20AO4622 23 Ref AO -2 U/I

Dp rpm feedback 4-20 mA -NDP2 23 Ao X20AI4322 21 Ai AI +2 I
Dp rpm feedback -NDP2 24 Ref X20AI4322 23 Ref AI -2 I

Joystick enable (Closed = enable) -NCS2 21 Di X20DO6639 (1) 12 NO NO2

Joystick enable -NCS2 24 24V X20DO6639 (1) 22 C COM2

Joystick ready (Closed = ready) -NJS1 11 NO X20DI6371 (1) 22 Di DI4

Joystick ready -NJS1 12 C X20DI6371 (1) 25 24V 24V

Joystick rpm order 4-20 mA -NJS4 21 Ai X20AO4622 14 Ao AO +3 I

Joystick rpm order -NJS4 23 0V X20AO4622 16 Ref AO -3 U/I

RPM feedback to Joystick 4-20 mA -NJS2 23 Ao X20AI4322 14 Ai AI +3 I
RPM feedback to Joystick -NJS2 24 Ref X20AI4322 16 Ref AI -3 I

Appendix

I Progress Report

Page 214 of 311

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

3

Company - Client

Kongsberg
Maritime

Page

1 of 2

Report for
process
Progress report

Period/ week(s)

12.01.21 -
29.01.21

Project group

Date

29.01.2021

Main purpose/ focus for the work during this period

This period has been the first project period after the start-up meeting on 12.01.2021. Focus
for the work during this period has been to work with the pre-project report, as well as get an
overview of the task to be performed.

Planned activities during this period

Planned activities for this period were:
1. Getting started/ finish the pre-project report.
2. Draft progress plan (Gantt chart).
3. Refine and specify the task.
4. Create a project report template in LaTex.
5. Obtain relevant literature to be able to solve the problem.
6. Obtain relevant equipment to be able to execute the project.
7. Get the lab setup at NTNU in Ålesund.

Actually completed activities during this period

1. The pre-project report was finished on 28.01.2021.
2. Draft for the Gantt chart is made, with suggestions for activities, as well as duration of

activity and person in charge of the activity.
3. During the meetings 21.01.2021 and 28.01.2021 refining and specifying the task has

been of discussion. This has helped specify the task more than the original, but it may
need more discussion later.

4. Report template is created in Latex and all team members have editing rights in the
document.

5. The group has provided some relevant literature of the different thruster systems, from
the internet and directly from Kongsberg Maritime. From this an agreement to start with a
tunnel thruster. The group this thruster will be a good thruster to start with.

6. The windows computers will be provided by Kongsberg Maritime during week 5. The
licenses for B&R Simulation Studio will be provided as fast as possible.

7. The lab setup was delivered to NTNU in Ålesund on 29.01.2021, but not put together.

Description of/ justification for any discrepancies between planned and actual activities

A small deviation in planned activity number 3. The task has been specified, but the group feels
that the thesis may be more specified. This will be discussed within the group when the
necessary equipment has been looked at and tried out, in order to get a better overview. Any
changes will be discussed and determined with the steering group.

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

3

Company - Client

Kongsberg
Maritime

Page

2 of 2

Report for
process
Progress report

Period/ week(s)

12.01.21 -
29.01.21

Project group

Date

29.01.2021

Description of/ justification for changes that are now desired in the content of the project itself or in the further procedure - or the
progress plan

-

Main experience from this period

Gained an overview of the thesis and the time required.

Main purpose/ focus next period

The focus for the next period will be to put together the lab setup, as well as get started with the
program B&R Simulation Studio. There will also be focus on looking over the Gannt chart after
having tested some of the programs and equipment to see if anything should be changed.

Planned activities next period

A2: Literature study and equipment (set up testing equipment) - Everyone
A2: Literature study and equipment (Test B&R sim. studio) - Everyone

Other

-

Desire for/ need for guidance, topic in the teaching - discussion otherwise

-

Approval/ signature functional group leader

Emilie Skalstad Skarbø - Signature

Signature of other group participants

 Linda Helen Sperre - Signature

Maria Osa Furmyr - Signature

Nicklas Mellum - Signature

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

1 of 2

Report for
process
Progress report

Period/ week(s)

29.01.21 -
05.02.21

Project group

Date

05.02.2021

Main purpose/ focus for the work during this period

Focus during this period has been to get all the necessary equipment/ software and build the lab
setup, as well as looking into how we should execute the communication.

Planned activities during this period

Planned activities for this period were:
1. Setting up the lab setup, and test it/getting to “know” it.
2. Test B&R Automation Studio

Actually completed activities during this period

1. The lab setup is ready for use and is tested.
2. The B&R Simulation Studio is not yet tested.

Description of/ justification for any discrepancies between planned and actual activities

A deviation can be found in section 2. The reason for this deviation is because we were missing
the licenses for accessing the software.

Description of/ justification for changes that are now desired in the content of the project itself or in the further procedure - or the
progress plan

- Removed NC/BC: Dynamic System (model)/Sensor model (Mcon system handles this
internally)

- Added: Visualize panel for buttons (GUI), Simulate requested signals from KM, Simulate
additional signals.

Main experience from this period

Came to understand better the lab setup and the FAT requirements.

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

2 of 2

Report for
process
Progress report

Period/ week(s)

29.01.21 -
05.02.21

Project group

Date

05.02.2021

Main purpose/ focus next period

The focus for the next period will be to work out a good plan for communication between B&R
Simulation Studio and the Mcon system/ lab setup, as well as learning the program B&R
Simulation Studio. Communication between the other parts will also be prioritized when this is
done.

Planned activities next period

A2: Literature study and equipment (Test B&R sim. studio) - Everyone

A3: Communication
A3.1 Can-bus - Linda H.S.
A3.2: Ethernet (LAN) - Maria O.F.
A3.3: Serial Line - Nicklas M.
A3.4 Semi- Automatic FAT (Java) - Emilie S.S.

Other

-

Desire for/ need for guidance, topic in the teaching - discussion otherwise

-

Approval/ signature functional group leader

Emilie Skalstad Skarbø - Signature

Signature of other group participants

 Linda Helen Sperre - Signature

Maria Osa Furmyr - Signature

Nicklas Mellum - Signature

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

2

Company - Client

Kongsberg
Maritime

Page

1 of 3

Report for
process
Progress report

Period/ week(s)

05.02.21 -
12.02.21

Project group

Date

12.02.2021

Main purpose/ focus for the work during this period
Focus during this period has been to get the communication to work.

Planned activities during this period

 Planned activities for this period were:

1. Test B&R Simulation Studio
2. Start working on the communication between the softwares in the project.

Actually completed activities during this period

1. Two of the group members with Microsoft computers have started getting to know B&R
Simulation Studio.

Description of/ justification for any discrepancies between planned and actual activities
There is a small deviation in number 1, concerning the training in B&R Simulation Studio. We
have decided that only two of the group members will use time to learn the program, in order to
save valuable time.

Description of/ justification for changes that are now desired in the content of the project itself or in the further procedure - or the
progress plan

The communication is to be done a little different than we first thought/ expected. After some
discussion with Håkon Lunheim in the meeting 28.01.2021, we found out and gained a better
understanding of how the communication should take place. Therefore we have decided, after
an internal group meeting, that the communication section in the Gantt chart will be changed
accordingly.

The section A3: Communication Software the new topics are listed below:

- Create/ Visualize a diagram chart of communication
- Write I/O list
- Communication between software

- Communication between B&R and Mcon system (CPU)
----- Couple wiring for I/O modules
- Communication between B&R and Matlab/ Simulink (PLC)
- Communication between B&R and IntelliJ (TCP/IP)

In addition the group decided to go through the Gannt chart and update several parts, as the
group has gained a better understanding on how to complete the task. Since these changes will
not change the end result, only how it's accomplished, the group has been given free rein to

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

2

Company - Client

Kongsberg
Maritime

Page

2 of 3

Report for
process
Progress report

Period/ week(s)

05.02.21 -
12.02.21

Project group

Date

12.02.2021

make the changes without approval of the steering group. All these changes are listed below.

Deleted tasks:

- Delete all tasks involving programming of encoder, since this is unnecessary.
- Delete all task about NC and BC for actuators

In the section A4: Tunnel Thruster calculations

- Fixed Pitch Propeller (FPP)
- Controllable Pitch Propeller (CPP)

Main experience from this period

Getting to know the test lab better and the software communication.

Main purpose/ focus next period

Keep working on the communication.

Planned activities next period

A3: Communication Software
A3.1: Create/ Visualize a diagram chart of communication
A3.2: Write I/O list for
A3.3: Communication between software

Other

-

Desire for/ need for guidance, topic in the teaching - discussion otherwise

-

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

2

Company - Client

Kongsberg
Maritime

Page

3 of 3

Report for
process
Progress report

Period/ week(s)

05.02.21 -
12.02.21

Project group

Date

12.02.2021

Approval/ signature functional group leader

Emilie Skalstad Skarbø - Signature

Signature of other group participants

 Linda Helen Sperre - Signature

Maria Osa Furmyr - Signature

Nicklas Mellum - Signature

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

1 of 2

Report for
process
Progress report

Period/ week(s)

12.02.21 -
19.02.21

Project group

Date

19.02.2021

Main purpose/ focus for the work during this period

Focus this period has been communication.

Planned activities during this period

Planned activities for this period were:
1. Create/ Visualize a diagram chart of communication
2. Write I/O list for CPU
3. Communication between software

Actually completed activities during this period

1. The group has created a diagram chart for communication. This chart will be extended
with time.

2. I/O list has been started.

Description of/ justification for any discrepancies between planned and actual activities

The I/O list is not fully done. Therefore the group has decided to expand the time limit until
26.02.2021.

The group has a plan for the communication, but have not gotten the software to communicate
yet. In addition, we are missing some I/O modules that have to be ordered in regard to the I/O
list.

Description of/ justification for changes that are now desired in the content of the project itself or in the further procedure - or the
progress plan

The communication section in the Gantt chart will have an extended time limit, and other tasks
were started earlier than planned.

The task started earlier was:
A6: Semi- automatic FAT (Digitize checklist)
A4.1: Fixed pitch propeller (FPP)

Main experience from this period

- B&R Mapp technology

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

2 of 2

Report for
process
Progress report

Period/ week(s)

12.02.21 -
19.02.21

Project group

Date

19.02.2021

Main purpose/ focus next period

The main focus for the next period is to keep working on the B&R Simulation Studio, get the
tunnel thruster calculations done and finish the digitized checklist. In addition, finish the I/O list
and order the necessary I/O modules.

Planned activities next period

A4: Tunnel thruster calculations
A4.1: Fixed Pitch Propeller (FPP)

A5: Simulation HIL (Simulate panel buttons)

A6: Semi- automatic FAT (Digitize checklist)

Other

-

Desire for/ need for guidance, topic in the teaching - discussion otherwise

-

Approval/ signature functional group leader

Emilie Skalstad Skarbø - Signature

Signature of other group participants

 Linda Helen Sperre - Signature

Maria Osa Furmyr - Signature

Nicklas Mellum - Signature

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

1

Company - Client

Kongsberg
Maritime

Page

1 of 2

Report for
process
Progress report

Period/ week(s)

22.02.21 -
26.02.21

Project group

Date

26.02.2021

Main purpose/ focus for the work during this period

Focus this period has been on learning B&R automation studio, and modelling of a fixed pitch
propeller.

Planned activities during this period

Planned activities for this period were:
1. FPP modelling
2. HIL - Simulate panel buttons
3. Digitize FAT checklist

Actually completed activities during this period

1. The group has started working on creating the mathematical model for the fixed pitch
propeller. The group has started programming the mathematical model into MATLAB.
Expect to finish up the first model of FPP next week.

2. The IO list is completed, and have had meetings regarding B&R automation studio to
learn more about the software. Have not started to simulate panel buttons yet.

3. Worked on thesis as the group is still waiting on getting the communication up and
running

Description of/ justification for any discrepancies between planned and actual activities

The group is still waiting on getting the communication up and running, therefore we have not yet
started working on the simulation of panel buttons and the digitization of the FAT checklist. The
group members focused on writing up the theory section of the bachelor thesis in the meantime.

Description of/ justification for changes that are now desired in the content of the project itself or in the further procedure - or the
progress plan

No changes in plan. The tasks that were started earlier than planned will be continued on, as
both of these are not yet completed.

The task started earlier last week was:
A6: Semi- automatic FAT (Digitize checklist)
A4.1: Fixed pitch propeller (FPP)

Main experience from this period

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

1

Company - Client

Kongsberg
Maritime

Page

2 of 2

Report for
process
Progress report

Period/ week(s)

22.02.21 -
26.02.21

Project group

Date

26.02.2021

- Physics, mathematics and understanding of propeller dynamics in regards to control
theory

- IO mapping on B&R, and communication between B&R and Java

Main purpose/ focus next period

The main focus for the next period is to keep working on the B&R Simulation Studio, get the
tunnel thruster calculations done and finish the digitized checklist.

Planned activities next period

- Tunnel thruster calculations
- B&R communication

The group will continue working on the same activities as last week as they are not completed
yet, and also because the group will be occupied with Industri 4.0 most of next week.

Other

-

Desire for/ need for guidance, topic in the teaching - discussion otherwise

- How to implement thruster handles in B&R (not mapped on IO list)

Approval/ signature functional group leader

 Maria Osa Furmyr - Signature

Signature of other group participants

 Linda Helen Sperre - Signature

Emilie Skalstad Skarbø - Signature

Nicklas Mellum - Signature

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

1 of 2

Report for
process
Progress report

Period/ week(s)

01.03.21 -
05.03.21

Project group

Date

05.03.2021

Main purpose/ focus for the work during this period

The main focus for this period is to keep working on the B&R Simulation Studio, get the tunnel
thruster calculations done and finish the digitized checklist.

Planned activities during this period

Planned activities for this period were:
1. FPP modelling
2. HIL - Simulate panel buttons
3. Digitize FAT checklist

Actually completed activities during this period

1. The group has finished the mathematical model for the propeller, and programmed this
into MATLAB.

2. The group started to work on simulating the buttons of the test jigg on B&R automation.
3. Started working on communication, and finished the digitized checklist for FAT checklist

(except communication part)

Description of/ justification for any discrepancies between planned and actual activities

some delays due to issues on how to solve the MATLAB/simulink model of propeller. Half the
week was spent on industri 4.0, so the group did not work as much on the project this week

Description of/ justification for changes that are now desired in the content of the project itself or in the further procedure - or the
progress plan

continue to work on the FPP model for MATLAB. The deadline for the FPP model might be
delayed since all of next will consist of lectures from 9-14 in industri 4.0.
The deadline for A5: simulation HIL will have to be delayed by 2 weeks (to 19.3) because of
Industri 4.0.

Main experience from this period

- Physics, mathematics and understanding of propeller dynamics in regards to control
theory

- IO mapping on B&R, and communication between B&R and Java

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

2 of 2

Report for
process
Progress report

Period/ week(s)

01.03.21 -
05.03.21

Project group

Date

05.03.2021

Main purpose/ focus next period

The main focus for the next period is to keep working on the B&R Simulation Studio, connect the
tunnel thruster model to a model of a DC motor, and keep working on the communication
between java and B&R.

Planned activities next period

- Tunnel thruster calculations/DC motor calculation
- B&R communication
- IO modules for B&R automation studio

The group will continue working on mostly the same activities as last week as they are not
completed yet, and also because the group will be occupied with Industri 4.0 all of next week.

Other

Desire for/ need for guidance, topic in the teaching - discussion otherwise

Approval/ signature functional group leader

 Maria Osa Furmyr - Signature

Signature of other group participants

 Linda Helen Sperre - Signature

Emilie Skalstad Skarbø - Signature

Nicklas Mellum - Signature

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

1 of 2

Report for
process
Progress report

Period/ week(s)

08.03.21 -
12.03.21

Project group

Date

12.03.2021

Main purpose/ focus for the work during this period

The main focus for this period is to keep working on the B&R Simulation Studio, and connect the
DC motor model to the transfer function for the propeller.

Planned activities during this period

Planned activities for this period were:
1. Finish FPP model (including DC motor)
2. HIL - Simulate panel buttons
3. communication between B&R and java

Actually completed activities during this period

1. The group has finished the mathematical model for the DC motor.

Description of/ justification for any discrepancies between planned and actual activities

The group did not get a lot of time to work on the project, as every group member had industri
4.0 lectures from 9-14 mon-fri.

Description of/ justification for changes that are now desired in the content of the project itself or in the further procedure - or the
progress plan

FPP model activity will be delayed. Because of industri 4.0. because of this delay, the next
planned activity for the involved group members will also be pushed back. (A3.3 communication
software delayed to 26.3)

It is also decided to remove Azimuth thrust calculations. Since this was an additional task added
by the group, this will have no interfering with the result of the project. The tasks removed are:

A7: Azimuth thrust calculations
Modelling: Azimuth
Modelling: Clutch
Modelling: Pitch
Modelling: Load
Visualize load and RPM fpr thruster

Main experience from this period

- Physics, mathematics and understanding of DC motors for modelling.

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

2 of 2

Report for
process
Progress report

Period/ week(s)

08.03.21 -
12.03.21

Project group

Date

12.03.2021

- IO mapping on B&R
- Communication between B&R and Java

Main purpose/ focus next period
The main focus for the next period is to keep working on the B&R Simulation Studio, connect the
tunnel thruster model to a model of a DC motor, and keep working on the communication
between java and B&R.

Planned activities next period

- finish programming tunnel thruster calculations/DC motor calculation and implement the
model in simulink.

- B&R communication between java and B&R

Other

Desire for/ need for guidance, topic in the teaching - discussion otherwise

Approval/ signature functional group leader

 Maria Osa Furmyr - Signature

Signature of other group participants

 Linda Helen Sperre - Signature

Emilie Skalstad Skarbø - Signature

Nicklas Mellum - Signature

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

1

Company - Client

Kongsberg
Maritime

Page

1 of 2

Report for
process
Progress report

Period/ week(s)

15.03.21 -
19.03.21

Project group

Date

19.03.2021

Main purpose/ focus for the work during this period
Focus during this period has been to get the communication to work.

Planned activities during this period

- finish programming tunnel thruster calculations/DC motor calculation and implement the
model in simulink.

- B&R communication between java and B&R

Actually completed activities during this period

1. Have not completed any of the assigned tasks for this week. Waiting on feedback
regarding MATLAB/simulink program for thruster calculations. B&R communication
between Java and B&R is almost finished, just need to test connections.

Description of/ justification for any discrepancies between planned and actual activities
Have had some issues with the implementation of the thruster calculations in MATLAB/simulink.
Sent a zip file with necessary information to Robin for feedback. Currently waiting for feedback.
Group members have decided to start focusing on MATLAB-B&R communication and lab report
in the meantime.

Group is falling more and more behind schedule for the past few weeks. Need to have an
internal meeting where we go over the plan, and evaluate what can be done to solve the issues
and get back on track.

Description of/ justification for changes that are now desired in the content of the project itself or in the further procedure - or the
progress plan

The virtual connection in Java is now completed, a little earlier than anticipated.

Main experience from this period

Getting familiar with MATLAB-B&R communication and working on the lab report.

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

1

Company - Client

Kongsberg
Maritime

Page

2 of 2

Report for
process
Progress report

Period/ week(s)

15.03.21 -
19.03.21

Project group

Date

19.03.2021

Main purpose/ focus next period

Keep working on the communication. Continue working on the report while waiting for feedback
regarding thruster calculations. Have a meeting regarding the progress of the project and make
changes necessary to get back on time according to schedule.

Planned activities next period

- Communication Software
- Write report
- Meeting regarding schedule
- Fix matlab/simulink implementation when receiving feedback from Robin.

Other

-

Desire for/ need for guidance, topic in the teaching - discussion otherwise

-

Approval/ signature functional group leader

 Maria Osa Furmyr - Signature

Signature of other group participants

 Linda Helen Sperre - Signature

Emilie Skalstad Skarbø - Signature

Nicklas Mellum - Signature

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

1 of 2

Report for
process
Progress report

Period/ week(s)

22.03.21 -
26.03.21

Project group

Date

26.03.2021

Main purpose/ focus for the work during this period
Focus during this period has been to get the communication to work and write lab report.

Planned activities during this period

- Communication Software
- Write report
- Meeting regarding schedule
- Fix matlab/simulink implementation when receiving feedback from Robin.

Actually completed activities during this period

1. Have been working on the communication between B&R and matlab/simulink and
downloaded necessary resources. The report writing is well underway, with theory and
methods. The desired meeting has been held loosely when all the team members have
been together physically.

Description of/ justification for any discrepancies between planned and actual activities

The communication was due to this week, but this requires a little bit more time. The
matlab/simulink and B&R communication is thought to be finished soon, probably next week, or
the week after. Between java and B&R the communication is thought to be complete, but is not
tested since the PLC is not ready.

Description of/ justification for changes that are now desired in the content of the project itself or in the further procedure - or the
progress plan

The group soon needs to put together the different parts of the project, and check that everything
is working. The printing of test results in Java is completed, before the plan.

Main experience from this period

Getting familiar with matlab/simulink and B&R communication and working on the lab report.

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

2 of 2

Report for
process
Progress report

Period/ week(s)

22.03.21 -
26.03.21

Project group

Date

26.03.2021

Main purpose/ focus next period

Keep working on the communication and the report. Modelling the azimuth thrust calculations.

Planned activities next period

- Communication Software
- Write report
- Modelling azimuth thrust calculations

Other

-

Desire for/ need for guidance, topic in the teaching - discussion otherwise

-

Approval/ signature functional group leader

 Linda Helen Sperre - Signature

Signature of other group participants

Maria Osa Furmyr - Signature

Emilie Skalstad Skarbø - Signature

Nicklas Mellum - Signature

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

1 of 2

Report for
process
Progress report

Period/ week(s)

29.03.21 -
02.04.21

Project group

Date

02.04.2021

Main purpose/ focus for the work during this period
Focus during this period has been to get the communication to work and write lab report.

Planned activities during this period

- Communication Software
- Write report
- Modelling azimuth thrust calculations

Actually completed activities during this period

1. Have been working on the communication between B&R and matlab/simulink and have
uploaded the matlab file into B&R. A lot of the report has been written, with focus on the
theory and method parts. Have been looking at the pitch for the propeller.

Description of/ justification for any discrepancies between planned and actual activities

The matlab file is uploaded into B&R, but has not yet been tested. The modelling of azimuth
thrust calculations has not been done, because the group has been working on communication
and report writing.

Description of/ justification for changes that are now desired in the content of the project itself or in the further procedure - or the
progress plan

The group has started putting together the different parts of the project and needs to be tested.
The azimuth thrust calculation needs to be started on, as fast as the communication is tested
and is working.

Main experience from this period

Getting familiar with matlab/simulink uploading to B&R and working on the lab report.

Main purpose/ focus next period

Test that the uploaded matlab file into B&R are working, and keep working on the report. Begin
working with the azimuth thrust calculations after finished testing of matlab file into B&R.

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

2 of 2

Report for
process
Progress report

Period/ week(s)

29.03.21 -
02.04.21

Project group

Date

02.04.2021

Planned activities next period

- Test that the uploaded matlab file into B&R is working
- Write report
- Modelling azimuth thrust calculations
- Continue working with pitch for propeller

Other

-

Desire for/ need for guidance, topic in the teaching - discussion otherwise

-

Approval/ signature functional group leader

 Linda Helen Sperre - Signature

Signature of other group participants

Maria Osa Furmyr - Signature

Emilie Skalstad Skarbø - Signature

Nicklas Mellum - Signature

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

1 of 2

Report for
process
Progress report

Period/ week(s)

05.04.21 -
09.04.21

Project group

Date

09.04.2021

Main purpose/ focus for the work during this period
Focus during this period has been to get the communication to work, fix the buttons in B&R and
write report.

Planned activities during this period

- Test that the uploaded matlab file into B&R is working
- Write report
- Modelling azimuth thrust calculations
- Continue working with pitch for propeller

Actually completed activities during this period

1. Have been working on the communication between B&R and matlab/simulink
2. Tried to fix the buttons in B&R
3. Started working on rpm
4. Written a lot of theory and method in the report.

Description of/ justification for any discrepancies between planned and actual activities

The modelling of azimuth thrust calculations has not yet been started working on, since the
communication is not completed. Creation of the buttons in B&R has taken more time than
planned, since this still isn't working as required. The communication between Java and B&R will
need some more time.

Description of/ justification for changes that are now desired in the content of the project itself or in the further procedure - or the
progress plan

The Gantt chart is updated in order to get better names and overview. The section updatet is A4:
Tunnel Thrust calculations. This section now contains:

A4: Modelling
A4.1: Fixed Pitch Propeller (FPP)
A4.1.1: Propeller
Proeller dynamics
Torque coefficients
Model propeller plant
A4.2.2: Motor
Motor dynamics
Model motor plant
A4.3: Controllable Pitch Propeller (CPP)
Modeling: pitch

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

2 of 2

Report for
process
Progress report

Period/ week(s)

05.04.21 -
09.04.21

Project group

Date

09.04.2021

Thrust coefficient
Modelling: thrust

The finish date for this section is also moved to 01.05.

Main experience from this period

Learned a lot more about the tasks for the buttons in B&R, as well as the communication. Have
also gotten familiar with the theory and method for the lab report.

Main purpose/ focus next period

Create the buttons in B&R, and get them to work properly. Continue working on rpm,
communication and lab report. Begin working with the azimuth thrust calculations after finished
communication.

Planned activities next period

- Create and fix buttons in B&R
- Work on rpm
- Fix communication
- Write report
- Modelling azimuth thrust calculations

Other

-

Desire for/ need for guidance, topic in the teaching - discussion otherwise

- Would be nice if the supervisor wants to read the report so far, for feedback.

Approval/ signature functional group leader

 Linda Helen Sperre - Signature

Signature of other group participants

Maria Osa Furmyr - Signature

Emilie Skalstad Skarbø - Signature

Nicklas Mellum - Signature

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

3 of 2

Report for
process
Progress report

Period/ week(s)

05.04.21 -
09.04.21

Project group

Date

09.04.2021

IE303612
Bachelor Thesis

Project:

Mcon Thruster
Simulator

Number of meetings this periode

1

Company - Client

Kongsberg
Maritime

Page

1 of 2

Report for
process
Progress report

Period/ week(s)

12.04.21 -
16.04.21

Project group

Date

16.04.2021

Main purpose/ focus for the work during this period
Main focus during this period has been to write report, try to fix the communication between B&R
and simulink, and try to fix the buttons in B&R.

Planned activities during this period

- Create and fix buttons in B&R
- Work on rpm
- Fix communication
- Write report
- Modelling azimuth thrust calculations

Actually completed activities during this period

1. Tried to fix the communication between B&R and matlab/simulink
2. Tried to fix the buttons in B&R
3. Written a lot of theory and method in the report.

Description of/ justification for any discrepancies between planned and actual activities

The communication and buttons in B&R has been prioritised since this is necessary for the
complete solution. The report has also been prioritised between the other activities, since this
anyway is required at some point, and important to finish before the final deadline.

Description of/ justification for changes that are now desired in the content of the project itself or in the further procedure - or the
progress plan

The buttons in B&R have to be fixed as fast as possible, since both the matlab file and the java
FAT-test depend on this to work. Have been getting feedback from support regarding the
communication between B&R and matlab/simulink, and have asked supervisors for help. The
report will be continued on, and have been sent to supervisor as preliminary for feedback.

Main experience from this period

Have received a lot of feedback on the communication between B&R and simulink from support
as well as the buttons in B&R from supervisors. Have also gotten familiar with some more of the
theory and method for the lab report.

IE303612
Bachelor Thesis

Project:

Mcon Thruster
Simulator

Number of meetings this periode

1

Company - Client

Kongsberg
Maritime

Page

2 of 2

Report for
process
Progress report

Period/ week(s)

12.04.21 -
16.04.21

Project group

Date

16.04.2021

Main purpose/ focus next period

Since the whole project was scheduled to be finished now, except for the report, all the
remaining activities will be delayed some.

The main focus for the next period will be to fix the communication between B&R and simulink,
fix the buttons in B&R, decide what variables to be represented in B&R, finish rpm and write
report.

Planned activities next period

- Fix communication between B&R and simulink
- Fix buttons in B&R, and create more
- Decide what variables to be in B&R
- Finish work on rpm
- Write some more tests in java
- Write report

Other

-

Desire for/ need for guidance, topic in the teaching - discussion otherwise

Approval/ signature functional group leader

 Linda Helen Sperre - Signature

Signature of other group participants

Maria Osa Furmyr - Signature

Emilie Skalstad Skarbø - Signature

Nicklas Mellum - Signature

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

1 of 2

Report for
process
Progress report

Period/ week(s)

19.04.21 -
23.04.21

Project group

Date

23.04.2021

Main purpose/ focus for the work during this period
Main focus during this period has been to write the report, fix the communication between B&R
and simulink and try to finish the B&R program.

Planned activities during this period

- Finish the B&R program
- Work on rpm
- Fix communication
- Write report

Actually completed activities during this period

1. Fixed the communication between simulink/matlab & B&R automation studio
2. Tried to fix the program in B&R Automation Studio
3. Written a lot of theory and method in the report.

Description of/ justification for any discrepancies between planned and actual activities

The communication and buttons in B&R have been prioritised since this is necessary for the
complete solution. The report has also been prioritised between the other activities, since this
anyway is required at some point, and important to finish before the final deadline.

Description of/ justification for changes that are now desired in the content of the project itself or in the further procedure - or the
progress plan

The program in B&R has to be fixed as fast as possible, since both the matlab file and the java
FAT-test depend on this to work.

Main experience from this period

The communication between simulink/matlab and B&R automation studio have been resolved.
The issue believed to cause this problem was an outdated B&R automation studio version, but
this was possible to update.
Reviewing the mathematics behind the simulation in matlab.
Made some more FAT tests in Java.

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

2 of 2

Report for
process
Progress report

Period/ week(s)

19.04.21 -
23.04.21

Project group

Date

23.04.2021

Main purpose/ focus next period

Finish the RPM work.

The main focus for the next period will be testing all the programs (matlab/simulink, java and
B&R as a whole) connected to the Mcon rack.

Planned activities next period

- Finish the last details on RPM work.
- Test the system as a whole
- Write report
- Review the mathematics

Other

-

Desire for/ need for guidance, topic in the teaching - discussion otherwise

Approval/ signature functional group leader

 Linda Helen Sperre - Signature

Signature of other group participants

Maria Osa Furmyr - Signature

Emilie Skalstad Skarbø - Signature

Nicklas Mellum - Signature

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

1 of 2

Report for
process
Progress report

Period/ week(s)

26.04.21 -
30.04.21

Project group

Date

30.04.2021

Main purpose/ focus for the work during this period
Main focus during this period has been to write the report, fix the communication between B&R
and simulink and try to finish the B&R program.

Planned activities during this period

- Finish the B&R program
- Work on rpm
- Review the mathematics
- Test the communication between all the systems together
- Write report

Actually completed activities during this period

1. Finished the necessary signals in B&R Automation Studio, can add more if needed.
2. Fixed RPM
3. Written report
4. 95% up and running on the system

Description of/ justification for any discrepancies between planned and actual activities

The communication and buttons in B&R has been prioritised since this is necessary for the
complete solution. The report has also been prioritised between the other activities, since this
anyway is required at some point, and important to finish before the final deadline.

Description of/ justification for changes that are now desired in the content of the project itself or in the further procedure - or the
progress plan

The communication between Java and B&R are starting to work some.

Main experience from this period

The B&R program is finished (can add more functions if needed).
Reviewing the mathematics behind the simulation in matlab.

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

2 of 2

Report for
process
Progress report

Period/ week(s)

26.04.21 -
30.04.21

Project group

Date

30.04.2021

Main purpose/ focus next period

Finish the RPM work.

The main focus for the next period will be testing all the programs (matlab/simulink, java and
B&R as a whole) connected to the Mcon rack.

Planned activities next period

- Test the system as a whole
- Write report
- (Fix errors (if some occur))
- (Add more functions to the programs)

Other

-

Desire for/ need for guidance, topic in the teaching - discussion otherwise

Approval/ signature functional group leader

Emilie Skalstad Skarbø - Signature

Signature of other group participants

Maria Osa Furmyr - Signature

Linda Helen Sperre - Signature

Nicklas Mellum - Signature

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

1

Company - Client

Kongsberg
Maritime

Page

1 of 2

Report for
process
Progress report

Period/ week(s)

03.05.21 -
07.05.21

Project group

Date

07.05.2021

Main purpose/ focus for the work during this period
Main focus during this period has been to write the report, fix the communication between B&R
and simulink and Java.

Planned activities during this period

- Test the system as a whole
- Write report
- (Fix errors (if some occur))
- (Add more functions to the programs)

Actually completed activities during this period

1. Tested the system (with MatLab/SimuLink)
2. Have added Drive Reset (not connected to Mcon yet)
3. Fixed errors, as they occurred.

Description of/ justification for any discrepancies between planned and actual activities

Having some problems with the communication between B&R and Java (OPC UA). This is
believed is caused by having an outdated version, waiting for B&R.
Some problems with the signals from the I/O and B&R AS.

Description of/ justification for changes that are now desired in the content of the project itself or in the further procedure - or the
progress plan

Main experience from this period

B&R and MatLab/SimuLink are working well together.
The signals are working fine in simulation mode, but not when connected to the CPU.

Main purpose/ focus next period

Get to test the whole system (with Java)
Finish the report

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

1

Company - Client

Kongsberg
Maritime

Page

2 of 2

Report for
process
Progress report

Period/ week(s)

03.05.21 -
07.05.21

Project group

Date

07.05.2021

Planned activities next period

- Test the system as a whole
- Write report
- (Fix errors (if some occur))

Other

-

Desire for/ need for guidance, topic in the teaching - discussion otherwise
Could use some help regarding the signals.

Approval/ signature functional group leader

 Linda Helen Sperre - Signature

Signature of other group participants

Maria Osa Furmyr - Signature

Emilie Skalstad Skarbø - Signature

Nicklas Mellum - Signature

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

1 of 2

Report for
process
Progress report

Period/ week(s)

03.05.21 -
07.05.21

Project group

Date

07.05.2021

Main purpose/ focus for the work during this period
Main focus during this period has been to write the report, fix the communication between B&R
and simulink and Java.

Planned activities during this period

- Write report
- Run final tests
- (Fix errors (if some occur))

Actually completed activities during this period

1. Write report
2. Run final tests
3. Fixed errors, as they occurred.

Description of/ justification for any discrepancies between planned and actual activities

Description of/ justification for changes that are now desired in the content of the project itself or in the further procedure - or the
progress plan

Main experience from this period

Everything is working as it should.

Main purpose/ focus next period

Finish the report

IE303612
Bachelor Thesis

Project:

Mcon
Thruster
Simulator

Number of meetings this periode

0

Company - Client

Kongsberg
Maritime

Page

2 of 2

Report for
process
Progress report

Period/ week(s)

03.05.21 -
07.05.21

Project group

Date

07.05.2021

Planned activities next period

- Write report

Other

-

Desire for/ need for guidance, topic in the teaching - discussion otherwise

Approval/ signature functional group leader

 Linda Helen Sperre - Signature

Signature of other group participants

Maria Osa Furmyr - Signature

Emilie Skalstad Skarbø - Signature

Nicklas Mellum - Signature

Appendix

J Minutes of Meeting

Page 249 of 311

Minutes of meeting
Date: 12.01.2021
Location: Digitally
Participants: Emilie Skalstad Skarbø, Linda Sperre, Maria Osa Furmyr,

Nicklas Mellum, Håkon Lunheim, Geir Olav Otterlei, Robin T.
Bye, Anete Vågal, Ottar L. Osen

Purpose of meeting: Start-up meeting main project

Start- up meeting for the main project Mcon Thruster Simulator was held Tuesday 12
of January 2021, digitally. The meeting started with every part presenting their vision
of the project, and potential for expansion and reduction.

Since the project difficulty level can be regulated with ease, it was suggested to start
with one thruster type, and if time allows, implement more. This was also something
the group desired to focus on in the starting face. It was also brought up that this is
a task that can be worked on further after our bachelor project is finished.

Maria Osa Furmyr, Secretary

Minutes of meetings

Date: 21.01.2021
Location: Digitally
Participants: Emilie Skalstad Skarbø, Linda Sperre, Maria Osa Furmyr,

Nicklas Mellum, Håkon Lunheim
Purpose of meeting: Start-up meeting wIth Kongsberg Maritime

The start- up meeting for the main project and the preliminary project Mcon Truster
Simulator was held Thursday 21 of January 2021, digitally. The group had some
questions about the parts that were a little defused in the thesis and about necessary
equipment.

After some discussion on how to best attack our task we came up with the following
conclusion. We will start with the IO together, then split into two and two. One group
will work in the semi-automatic test program and one group will work on the
simulation and with the cybernetic part.

Håkon Lunheim gave a short introduction on thruster, mainly the difference between
solid pitch and variable pitch.

Solid pitch: Only the speed of the propeller can be adjusted.
Variable pitch: The angel of the blades on the propeller kan by adjusted, and by

that adjust the speed.

We got to an agreement to start with solid pitch, and work on that until nearly
finished. Then, if time allows, implement for variable pitch.

Håkon informed us that:
- The lab upset is nearly ready for transport to NTNU.
- The B and R simulation studio software licenses were good to go and were

sent after the meeting.
- Loan of microsoft computers is approved, and will be handed out as fast as

possible.
- A NDA (non disclosure agreement) must be signed, in order for us to get the

information and some of the equipment needed.

In the time leading up to the next status meeting, the group will work on the
pre-project report, investigate the possibilities within the software B and R simulation
studio, and get to know and use the lab setup. In the future we will have status
meetings every second week with Håkon Lunheim.

Maria Osa Furmyr, Secretary

Minutes of meetings

Date: 28.01.2021
Location: Digitally
Participants: Emilie Skalstad Skarbø, Linda Sperre, Maria Osa Furmyr,

Nicklas Mellum, Håkon Lunheim
Purpose of meeting: Update on necessary equipment and feedback on plan

Case list:
1. Go through gantt-chart

The template that the group has created is good, but a few things could be removed
and some changes were added. This gave the group a better insight into how best to
solve the discovery and which parts to focus on the most.

- When NC is disconnected, BC is to be turned on
- Which IO is in need to simulate
- Remove focus on encoder
- Remove focus on CANbus

2. Necessary equipment
Our test lab setup will be delivered to NTNU in Ålesund 29.01.2021. The group will
have to set the lab together, with guidance from Chaney Wang Sætre digitally if
needed.
Windows computers will be available within week 5.
B&R simulation Studio is to be downloaded, and licenses will be provided from
Kongsberg Maritime.

3. Other
Until the next meeting, the group will focus on the different possibilities and what the
group envisions.

Maria Osa Furmyr, Secretary

Minutes of meetings

Date: 10.02.2021
Location: Digitally
Participants: Emilie Skalstad Skarbø, Linda Sperre, Maria Osa Furmyr,

Nicklas Mellum, Håkon Lunheim, Geir Olav Otterlei, Robin T.
Bye, Anete Vågal, Ottar L. Osen, Chaney Sætre

Purpose of meeting: Methods for communication and update on progress

Case list:
1. Update on progress

The group shared info on what has been done since the previous meeting.
The lab setup is mounted and the FAT has been completed. B&R simulation
Studio is downloaded and has been gradually testet. The group has started
working on the communication, but has not yet figured out how to do it.

2. Communication between B&R simulation Studio and Mcon System/ lab

Håkon Lunheim will meet up at the lab at NTNU on 11.02.21 at 13:00 in order
to show us and discuss how to best make the communication work. The plan
is to prepare a chart for the IO flow, in order to create a better vision. The
group will write a summary from the meeting, which will be shared with the
steering group.

We also got informed that a CPU is ordered, and will arrive at 09.03.21. Since
this is a little late in the process, Geir Olav Otterlei will try to hurry the delivery.
In the meanwhile, we talked about finding another CPU we could use while
we wait for the main CPU. The application can be downloaded into the CPU.
It's important when choosing the CPU, that there is enough force. CPU is the
counterparty to the Mcon system we already possess.

3. Necessary equipment
The computers are ready. The group will receive one computer on 11.02.21,
when Håkon Lunheim will come visit the lab at NTNU. The other computer is
located at the Automation facility Longva, and will be delivered as soon as
possible.

4. Other
FAT:
There was some difficulty with the implementation of the FAT, in regard to if it
was done the right way. Therefore we requested that a representative from

Maria Osa Furmyr, Secretary

Kongsberg would come and show us. It was determined that Håkon Lunheim
will show us on 11.02.21.

Information from Kongsberg:
Geir Olav Otterlei shared that Per Magne Dalseth, an employee at
Kongsberg, is working in a similar task as we do. Even though he uses
another method, he is working at NMK which is within walking distance.
Therefore he can be of good help, and can show up at relatively short time if
the group is stuck on something.

Geir Olav Otterlei has shared a Mcon presentation which contains more
information on principle and how the system can be used on different vessels.

It was also shared that Kongsberg has great competence on the B&R
Automation Studio, that we can use if any trouble comes up.

Information from NTNU:
Ottar Osen shared some thoughts on how to best attack the project in order to
get the best report at the end, and the best results. It is important to take a
step back and discuss why the programs, equipment etc. is the best to use in
our situation. The decisions should be well-considered, and given a proper
explanation as to why it is chosen, such as future upgrades to the project may
choose another solution than we did.

Maria Osa Furmyr, Secretary

Minutes of meetings

Date: 11.02.2021
Location: 033 Gnisten, NTNU
Participants: Emilie Skalstad Skarbø, Linda Sperre, Maria Osa Furmyr,

Nicklas Mellum, Håkon Lunheim
Purpose of meeting: Methods for communication and FAT review.

Case list:
1. Communication between B&R simulation Studio and Mcon System/ lab

The CPU is going to be placed with the I/O modules and is to replace the button
setup. It will communicate with B&R Simulation Studio. The group will receive the
CPU as fast as possible, as it is located at Automation Longva Facility at the
moment.

2. FAT
The part the group had trouble with during the FAT is not possible to implement.

3. Calculation of thrusters
The group wanted to focus on a fixed pitch propeller in the beginning, to then
develop a system for more advanced thrusters, such as controllable pitch propeller
and Azimuth propeller. The group was unsure on how high difficulty the calculations
should have. After some discussion, it was determined to keep it to only the
necessary calculations, which at a later time can be implemented if time allows.

4. Other
An I/O signal chart has to be created, using information on the I/O in the cabinet.
Håkon Lunheim will be providing a signal list for the cabinet.

Until next time the group will focus on getting the I/O signal list finished and learning
to use B&R Simulation Studio.

Maria Osa Furmyr, Secretary

Minutes of meetings

Date: 24.02.2021
Location: Digitally
Participants: Emilie Skalstad Skarbø, Linda Sperre, Maria Osa Furmyr,

Nicklas Mellum, Håkon Lunheim, Geir Olav Otterlei, Anete
Vagale, Ottar L. Osen, Chaney Sætre

Purpose of meeting: Update on progress and figure out goal for the next 2 weeks

Case list:
1. Update on progress

Tunnel Thruster Fixed Pitch Propeller Calculations (Matlab/ Simulink)
Group has worked on figuring out the mathematical model for propeller

B&R Automation Studio
Learned software and done tutorials. Will be having a meeting with Yngve
from Kongsberg who will teach us more about B&R automation studio.

FAT digitized checklist
Have looked into making a FAT test with java but uncertain about how to
connect B&R to java. Usual way of doing it has been by running Java on
different PCs with Canbus modules connecting to B&R automation. Ask
Yngve about alternative methods of connecting java to B&R (TCP) when we
have a meeting with him regarding B&R automation studio.

2. Update on further plan
Make a blueprint of the project to get an overview of how the actual project
will be in its final state and present it in the next meeting. This will be reviewed
during the next steering meeting.

3. I/O modules - order
Emilie has sent I/O modules that we want ordered. Ottar Osen stated that it is
important to justify choices and write it in the report as well. After justification
for IO modules, håkon will order/get the parts needed.

4. Bachelor Thesis structure
Keep structure given by supervisor, however subheadings can be divided up
into different categories.

The theory section:
Should contain all formulas necessary. If the group knows formulas by hand,
there is no need to write it in theory. If the group has to look it up, write it down
in the theory section. The formulas should be general.

Nicklas Mellum, Secretary

The method section:
There should be no new information with citations. Application of formulas to
fit our problem.

The result section:
Using the formulas with numbers in to show the result of the project. Most of
the citations should be in theory.

The group was advised not to use much time on dividing into correct parts,
rather to focus on content. It is also important to make good figures and
illustrations to improve readability of the report.

software for making figures:
-draw.io
-inDesign

5. Other
System Identification Toolbox
The group found some information on system identification Toolbox, which
could come in handy if the input/output data was available and Kongsberg can
provide it. Håkon Lunheim deliberated that he did not think such data was
available, but is going to ask some co-workers, just in case.

Information on input regarding I/O data:
input data will always be in time domain. Can do a fft.

Nicklas Mellum, Secretary

Minutes of meetings

Date: 17.03.2021
Location: Digital teams meeting
Participants: Emilie Skalstad Skarbø, Linda Sperre, Maria Osa Furmyr,

Nicklas Mellum, Håkon Lunheim, Anete Vagale, Ottar L.
Osen, Chaney Sætre, Robin T Bye.

Purpose of meeting: Update on progress

Case list:
1. Update on progress

Tunnel Thruster Fixed Pitch Propeller Calculations (Matlab/ Simulink)
- The group has figured out how to solve the FPP and the motor

mathematics, and is working on the model in Simulink.

B&R Automation Studio
- Problem with definition of variable

- Mail sent to Anete to help with B&R

FAT digitized checklist

- The test in Java is almost done. only need to establish connection to server

2. Update on further plan
Have been busy with industri 4.0 for the past two weeks, so will provide an
update on progress in the next meeting.

Nicklas Mellum, Secretary

3. Communication using OPC UA

The FAT test is almost done. need to establish connection with the server in
order to check if the FAT test is successful.

suggestions for solving the problem:

- will test the client with another server and also check if the port number
is closed on the PLC (closed by default due to security reasons).

- Check if the group needs to upload the B&R program to hardware in
order to get the server to work.

- Check if the group can establish connection with another OPC UA
server first (can be found online).

4. Propeller modelling/MATLAB/simulink
The group has figured out the mathematical equation for the DC motor and
propeller, and is working on implementing this in MATLAB/simulink.

The group is having some issues getting the matlab/Simulink code to work.
Will send files to Robin for feedback.

5. other

Nicklas Mellum, Secretary

Minutes of meetings

Date: 15.04.2021
Location: Digital teams meeting
Participants: Emilie Skalstad Skarbø, Linda Sperre, Nicklas Mellum,

Håkon Lunheim, Anete Vagale, Ottar L. Osen, Robin T Bye.

Purpose of meeting: Update on progress

Case list:
1. Update on progress

Communication
- Problems with communication between B&R and simulink (have contacted

B&R for help)

B&R Automation Studio
- Problems with variables in B&R. Can't set variables to false after being true.

Other
- General update on progress according to Gantt.

2. Update on further plan
Everything should be finished now, for connecting the systems for testing. We
are a little behind schedule, but have premade a buffer for this.

Linda Helen Sperre, Secretary

3. Communication with B&R and simulink
Problems with communication between simulink and B&R. Works with B&R
support, but not on our system. Wonder if this is because of an old version of
the B&R program. The computers delivered by kongsberg should have no
security limits. Can send the project to B&R support, and gets a lot of help.
Can also try to uninstall the program and download it at new.

4. Problem with B&R variables
If variables have been set to true, the variables will not go back to being false.
Been looking at the B&R code during this meeting. Can try to test the program
using buttons. Can't connect the variables to the buttons. Possible the start
variable needs to be set to false when stop is set to true. The group and
supervisors will continue to look at this after the meeting.

5. Needs variables from B&R to make the FAT-test
Can decide what variables to be used in B&R so that the tests can be created.
Should also decide variable names for these variables.

6. Other
Will send the report to Anete for reading the report so far, for feedback.

Linda Helen Sperre, Secretary

Minutes of meetings

Date: 07.05.2021
Location: Digital teams meeting
Participants: Emilie Skalstad Skarbø, Maria O. Furmyr, Linda Sperre,
Nicklas Mellum, Håkon Lunheim, Anete Vagale, Ottar L. Osen, Robin T. Bye,
Chaney W. Sætre, Erlend Rangnes

Purpose of meeting: Update on progress

Case list:
1. Update on progress

- Date for presentation of bachelor
20th of May

- Update regarding testing
B&R Automation Studio and Simulink are now working as they should, also
when connected to Mcon. Having some problems with connecting Java to
OPC UA and B&R Automation Studio.

- For problems regarding Java and OPC UA different solutions have
been discussed and tried. Ex. UaExpert, Modicon, set up server and
test with a testclient.

Some fixing regarding the MATLAB/Simulink model is ongoing-
- Add a PID regulator, some constants will be difficult to find and the

output will be different since the model is not 100% realistic.

Other
- General update on progress according to Gantt.

2. Update on further plan
Everything should be finished now, for connecting the systems for testing. We
are a little behind schedule, but have premade a buffer for this.

Other talking points:
1. How to cite PDF sources.

- It's ok to cite title, author and year.
2. Create a “red thread” that can be followed throughout the report.
3. The beginning and end should everyone be able to read and understand.

Emilie Skalstad Skarbø, Secretary

Appendix

K Analysis of Risk

Page 263 of 311

Report: Analysis of risk
Risk document:

Risk log

Terminology

S Sum, of risk consequence and probability

C Consequence, for the risk to occur

P Probability, for the risk to occur

Emilie Skalstad Skarbø ESS

Linda Helen Sperre LHS

Maria Osa Furmyr MOF

Nicklas Mellum NM

Functional group leader FGL

Risk and uncertainty log: Mcon Thruster Simulator

Risk area Possible consequence Propalsas for risk reduction measures

Nr.
date identified:
Risk
description:

S C P Data
analysis:
Impact
assessment

Risk
type

Date
may
occur

Date action
assessed:
Action
description

Detail
plan

Follow-up

Part Deadline
date

Responsibility Date:
State:
Comment

State

1 26.01.2021
Shutdown due
to COVID 19

9 5 4 26.01.2021 Project 26.01.
2021 -

26.01.2021
Work
longer
days at det
lab setup
when
available

Bigger
plan
includ
ed at
the
botto
m

ESS
LHS
MOF
NM

Not
finish
ed

2 26.01.2021
Too short time
frame for the
project

1 1 1 26.01.2021
Project not
completed
according
to
agreement

Project 26.01.2021
Work
longer
days
Reduce
the scope
of activities
in
consultatio
n with the
steering
group if the
problem
arises

Bigger
plan
includ
ed at
the
botto
m

FGL Not
finish
ed

3 26.01.2021
Unclear project
plan

1 1 1 26.01.2021
Activities
are

Project 26.01.2021
Prepare a
thorough

Bigger
plan
includ

ESS
LHS
MOF

Not
finish
ed

1

overlooked,
forgotten or
not
completed

project
plan

ed at
the
botto
m

NM

4 26.01.2021
Project stop or
unpredictable
events occur

5 3 2 Project may
stop due to
unpredictab
le reasons.
These
reasons
may be lack
of
information,
equipment
or
resources.

Project
and
syste
m

26.01.2021
Asking for
help from
supervisor
s and
persons at
KM, or
others.

Bigger
plan
includ
ed at
the
botto
m

ESS
LHS
MOF
NM

Not
finish
ed

5 26.01.2021
Loss of data

6 4 2 Loss of
data such
as code, or
other
relevant
information
could cause
small to
moderate
delays.

Project
and
syste
m

26.01
.2021
-

Prevent
data loss
by
uploading
all
information
to google
drive, and
all code to
github

Bigger
plan
includ
ed at
the
botto
m

ESS
LHS
MOF
NM

Not
finish
ed

6

2

Report: Analysis of risk

Explanation: The meaning of “Consequences”

Value Description

1 Insignificant - No significant delay
- No additional financial costs
- Insignificant damage that can be repaired quickly
- Traces of dissatisfaction among some people
- No disturbance due to COVID 19

2 Low - Minor delays
- Low additional financial costs
- Small damage that can be repaired quickly
- Dissatisfaction arises in som groups
- Low disturbance due to COVID 19

3 Moderate - Moderate delays
- Moderate additional financial costs within budget
- Moderate damage that can be repaired within an

acceptable time
- Moderate dissatisfaction leads to some absence in

use / participation
- jModerate disturbance due to COVID 19

4 High - Longer delays
- High financial additional cost that goes beyond

budget
- Long-term damage that requires a long time to repair
- Large degree of dissatisfaction which leads to a small

degree of application/ participation
- High disturbance due to COVID 19

5 Very high - Very long delay or full stopp
- Very high additional financial costs
- Large damage that is difficult to repair
- Very high dissatisfaction and no application/

participation
- Very high disturbance due to COVID 19

3

Risk document:
Risk matrix

Risk Matrix for Mcon Thruster Simulator - 26.01.2020
Matrix selection: All

Selection total:
Number of active displayed:
Number of eliminated:

1

4 5

2,3

4

Risk document:
Risk matrix

Risk Matrix for Mcon Thruster Simulator - 26.01.2020
Matrix selection: Project

Selection total:
Number of active displayed:
Number of eliminated:

1

4 5

2,3

5

Risk document:
Risk matrix

Risk Matrix for Mcon Thruster Simulator - 26.01.2020
Matrix selection: System

Selection total:
Number of active displayed:
Number of eliminated:

4 5

6

Bigger detail plan for reducing risk

Project Risk Explanation Measures Action

1. Shutdown
due to
Covid-19

Due to the ongoing
pandemic, the
schools and
companies may
have to close down
to prevent further
contamination of the
Covid-19 virus.

Work longer days at
det lab setup when
available.

Work longer days at
det lab setup when
available.

2. Too short
time frame
for the
project

The project may turn
out to be too big for
a few months' work.

Don’t over do the
tasks. Keep them
simple and then add
if needed.

Work longer days.
Reduce the scope of
activities in
consultation with the
steering group if the
problem arises.

3. Unclear
project plan

May stray far from
the project plan
(Gantt) if
misinterpreted
project or the group
went in a different
direction.

Set up meetings
with the
supervisor(s) and
make sure every
member of the
group understands
the project goal.
Clarify any issues or
uncertainties as
early as possible.

Prepare a thorough
project plan.

4. Project stop
or
unpredictabl
e events
occur

The project may
stop due to
unpredictable
events.

Make a general plan
for measures to be
taken if any
unpredictable
events occur. Work
location, change
priorities/order of
tasks.

Ask for help from
supervisors and
persons at KM, or
others.

5. Loss of data Gathered
data/documentation
and code can be
lost if not saved or
uploaded to google
drive and github.

If things are written
in a word file, save
often.
Upload information
and code so it is
saved.

Prevent data loss by
uploading all
information to
google drive and all
code to github.
Save as well
versions locally on
harddrive.

7

Appendix

L Source Code B&R Automation studio

For converting the source code into PDF-files, the website Hilite.me [52] was used.

Page 271 of 311

PROGRAM _INIT

 (* Insert code here *)

END_PROGRAM

PROGRAM _CYCLIC

 (* This code is a part of a bachelor thesis regarding the Mcon

Thruster Control System for Kongsberg Maritime.

 The signal handling is handled here, as well as the GUI.*)

 STA_IN := (INT_TO_REAL(A_IN)/32767) * 16 + 4; // INT to 4-20mA

 RPM_order := ((STA_IN-12)/8)*100; //RPM order in percent

 STA_OUT := ((RPM_feedback)/100)*8+8+4; // 4-20mA

 A_OUT := REAL_TO_INT(((STA_OUT-4)/16) * 32767); // 4-20mA to INT

 // Setting variables for pump inputs

 TON_startPump.IN := startPump;

 TON_stopPump.IN := stopPump;

 // Setting timer for pump

 TON_startPump(PT := T#5s200ms);

 TON_stopPump(PT := T#5s200ms);

 // Logic for pump running (output)(Stop Pump: open = stop (NC))

 pumpRunning := (pumpRunning OR TON_startPump.Q) AND NOT

(TON_stopPump.Q);

 // Setting variables for Thruster inputs

 TON_startThruster.IN := startThruster;

 TON_stopThruster.IN := stopThruster;

 // Setting timer for thruster

 TON_startThruster(PT := T#5s200ms);

 TON_stopThruster(PT := T#5s200ms);

 // Case for Thruster control. Thruster will only run when/if pump is

running.

 CASE thrusterCtrl OF

 0: //Stopped, not ready.

 IF pumpRunning THEN

 thrusterCtrl := 1;

 END_IF

 1: // Stopped, ready

 IF TON_startThruster.Q THEN (* Go to Runnig state when

timer for start signal is elapsed.*)

 thrusterCtrl := 2;

 END_IF

 IF NOT pumpRunning THEN (* Go back to not ready state

if pump is stopped.*)

 thrusterCtrl := 0;

L.1 B&R Source Code

 END_IF

 2: // Running

 thrusterRunning := TRUE;

 IF TON_stopThruster.Q THEN (* Go to Stopping state when

timer for stop signal is elapsed.*)

 thrusterCtrl := 3;

 END_IF

 3: // Stopping

 thrusterRunning := FALSE;

 IF NOT thrusterRunning THEN (* Go to case 0 or 1

depending on if the pump is running or not.*)

 thrusterCtrl := 0;

 END_IF

 4: // Tripped

 stopThruster := TRUE;

 END_CASE

 // Drive Reset

 driveReset;

 // DP enabled, send RPM order, receive RPM Feedback.

 IF DPEnable THEN

 DP_RPM_Order;

 DP_RPM_Feedback;

 DPReady := TRUE;

 ELSE

 DPReady := FALSE;

 END_IF

 // Joystick Enables, send RPM order, receive RPM Feedback.

 IF JoystickEnable THEN

 Joystick_RPM_Order;

 Joystick_RPM_Feedback;

 JoystickReady := TRUE;

 ELSE

 JoystickReady := FALSE;

 END_IF

END_PROGRAM

PROGRAM _EXIT

 (* Insert code here *)

END_PROGRAM

Appendix

M Source Code Matlab

For converting the source code into PDF-files, the website Hilite.me [52] was used.

Page 274 of 311

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

 %% DC MOTOR---

 %1.st order system used to simulate/approximate a DC motor.

 Km = 2430; % Torque constant, based of torque produced from

datasheet.

 Tm = 2; % Time constant, based off of settling time of 8 sec.

 TF_motor = tf(Km, [Tm 1]);

 %To check magnitude and time constant.

 stepplot(TF_motor) %test to see if system behaves as intended

 bode(TF_motor);

 %% PROPELLER DYNAMICS---

 %calculates the torque and thrust coefficients based on the

parameters

 %given.

 %Max rpm of motor and propeller. Used to calculate gear ratio.

 max_RPM_motor = 1200; % max RPM of motor

 max_RPM_propeller = 199; % max RPM of propeller

 gear_ratio = max_RPM_propeller/max_RPM_motor;

 %creates a torque and thrust coefficient based on the values

 %from the Wagening B screw series propeller table

 %The propeller characteristics

 D = 2.4; % diameter of propeller in meters

 z = 4; % number of blades on propeller

 rho = 1025; % average density of surface seawater

(1020-2019)

 AEAO = 0.7; % blade area ratio. The area of the

propeller blade divided by the circular area of the propeller rotation

 PD = 1; % Pitch diameter ratio

 Ja = 0; % Avdvanced velocity

 [KT, KQ] = wageningen(Ja,PD,AEAO,z); % Function call on

wageningen.m made by Thor I. Fossen

M.1 Source Code FPP model Matlab

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

 %% DC MOTOR---

 %1.st order system used to simulate/approximate a DC motor.

 Km = 2430; % Torque constant, based of torque produced from

datasheet.

 Tm = 2; % Time constant, based off of settling time of 8 sec.

 TF_motor = tf(Km, [Tm 1]);

 %To check magnitude and time constant.

 stepplot(TF_motor) %test to see if system behaves as intended

 bode(TF_motor);

 %% PROPELLER DYNAMICS---

 %calculates the torque and thrust coefficients based on the

parameters

 %given.

 %Max rpm of motor and propeller. Used to calculate gear ratio.

 max_RPM_motor = 1200; % max RPM of motor

 max_RPM_propeller = 199; % max RPM of propeller

 gear_ratio = max_RPM_propeller/max_RPM_motor;

 %Maximum thrust produced. Used to convert thrust into percentage in

 %MATLAB. Aquired experimentally by setting RPM and pitch to max

during

 %Simulink simulation.

 max_thrust = 238156.81785138;

 %creates a torque and thrust coefficient based on the values

 %from the Wagening B screw series propeller table

 %The propeller characteristics

 D = 2.4; % diameter of propeller in meters

 z = 4; % number of blades on propeller

 rho = 1025; % average density of surface seawater

(1020-2019)

 AEAO = 0.7; % blade area ratio. The area of the

propeller blade divided by the circular area of the propeller rotation

 PD = 1; % Pitch diameter ratio

 Ja = 0; % Avdvanced velocity

 [KT, KQ] = wageningen(Ja,PD,AEAO,z); % Function call on

wageningen.m made by Thor I. Fossen

 %% PITCH DYNAMICS

 %Pitch calculated based on values given below.

 h = 1; % Pitch ratio

M.2 Source Code FPP model Matlab

 considered_radius = 1; % considered radius based on

the angel of attack

 R = D/2; % Radius [m]

 r = (considered_radius / R); % relative radius

 max_pitch = 1.4;

 %Variables used to create simplified pich actuator transfer

function

 pitch = atan(h/ pi* r); % calculate pitch angel

 tau_PD = 1; % Pitch dynamics time constant

Appendix

N Source Code Java

For converting the source code into PDF-files, the website Hilite.me [52] was used.

Page 278 of 311

package main.java;

import java.util.function.Predicate;
import org.eclipse.milo.opcua.sdk.client.api.identity.AnonymousProvider;
import org.eclipse.milo.opcua.sdk.client.api.identity.IdentityProvider;
import org.eclipse.milo.opcua.stack.core.security.SecurityPolicy;
import
org.eclipse.milo.opcua.stack.core.types.structured.EndpointDescription;

/**
 * interface for establishing a connection
 */
public interface ClientExample {

 /**
 * getting the endpoint
 * @return the connection endpoint containing IP-address and port
number
 */
 static String getEndpointUrl() {
 return "opc.tcp://192.168.1.110:4840";
 }

 /**
 * filter for endpoint
 * @return the filtered endpoint
 */
 static Predicate<EndpointDescription> endpointFilter() {
 return e ->
getSecurityPolicy().getUri().equals(e.getSecurityPolicyUri());
 }

 /**
 * getting the security policy
 * @return the security policy
 */
 static SecurityPolicy getSecurityPolicy() {
 return SecurityPolicy.None;
 }

 /**
 * getting the identity provider
 * @return the identity provider
 */
 static IdentityProvider getIdentityProvider() {
 return new AnonymousProvider();
 }
}

N.1 Interface ClientExample

package main.java;

/**
 * interface for making two options for connection
 */
public interface Connection {

 /**
 * getting the value of rpmControl
 * @return the value of rpmControl
 */
 int getRpmControlValue();

 /**
 * getting the state of thrusterMotor
 * @return the state of thrusterMotor
 */
 boolean getThrusterMotorValue();

 /**
 * getting the state of thrusterMotorStart
 * @return the state of thrusterMotorStart
 */
 boolean getThrusterMotorStartValue();

 /**
 * getting the state of thrusterMotorStop
 * @return the state of thrusterMotorStop
 */
 boolean getThrusterMotorStopValue();

 /**
 * getting the state of thrusterPumps
 * @return the state of thrusterPumps
 */
 boolean getThrusterPumpsValue();

 /**
 * getting the state of thrusterPumpsStart
 * @return the state of thrusterPumpsStart
 */
 boolean getThrusterPumpsStartValue();

 /**
 * getting the state of thrusterPumpsStop
 * @return the state of thrusterPumpsStop
 */
 boolean getThrusterPumpsStopValue();

 /**
 * getting the state of reset drive
 * @return the state of reset drive
 */
 boolean getResetDriveValue();

 /**
 * getting the value of dpInterface

N.2 Interface Connection

 * @return the value of dpInterface
 */
 int getDpInterfaceValue();

 /**
 * getting the state of dpInterfaceStart
 * @return the state of dpInterfaceStart
 */
 boolean getDpInterfaceStartValue();

 /**
 * getting the value of joystick
 * @return the value of joystick
 */
 int getJoystickValue();

 /**
 * getting the state of joystickStart
 * @return the state of joystickStart
 */
 boolean getJoystickStartValue();
}

package main.java;

import org.apache.pdfbox.pdmodel.PDDocument;
import org.apache.pdfbox.pdmodel.PDPage;
import org.apache.pdfbox.pdmodel.PDPageContentStream;
import org.apache.pdfbox.pdmodel.font.PDType1Font;

import java.awt.*;
import java.io.File;
import java.io.IOException;

/**
 * class for creating a PDF-file
 */
public class CreatePDF {

 /**
 * creating a PDF based on test results
 * @param rpmControlTestResult rpmControlTestResult result of rpm test
 * @param remoteStartStopThrusterMotorTestResult result of thruster
motor test
 * @param remoteStartStopThrusterServoPumpsTestResult result of
thruster pumps test
 * @param resetDriveTestResult result of reset drive test
 * @param dpInterfaceTestResult result of dp interface test
 * @param joystickTestResult result of joystick interface test
 * @throws IOException throw if something goes wrong
 */
 public static void createPDF(boolean rpmControlTestResult, boolean
remoteStartStopThrusterMotorTestResult, boolean
remoteStartStopThrusterServoPumpsTestResult, boolean resetDriveTestResult,
boolean dpInterfaceTestResult, boolean joystickTestResult) throws
IOException {

 File file = new File("Fat-test.pdf");
//saving the path to an existing template document
 PDDocument doc = PDDocument.load(file);
//loading an existing template document

 PDPage page = doc.getPage(0);
//creating a PDF Document
 PDPageContentStream contentStream = new PDPageContentStream(doc,
page); //creates an instance of a PDPageContentStream

 contentStream.beginText();
//beginning the content stream
 contentStream.setFont(PDType1Font.TIMES_ROMAN, 24);
//setting the font of the content stream
 contentStream.setLeading(14.5f);
//setting the leading
 contentStream.newLineAtOffset(25, 725);
//setting the position for the line

 String textHeadline = "Factory Acceptance Test";
//headline for document
 String textUnderHeadline = "2 Functional Tests";
//under headline

N.3 Class CreatePDF

 String textUnderUnderHeadline = "2.1 Tunnel thrusters";
//under under headline
 String textUnderUnderUnderHeadline1 = "2.1.1 General functions";
//under under under headline 1
 String textUnderUnderUnderHeadline2 = "2.1.2 Rpm Control";
//under under under headline 2
 String textUnderUnderUnderHeadline3 = "2.1.3 Start / stop and reset
functions"; //under under under headline 3
 String textUnderUnderUnderHeadline4 = "2.1.4 Interfaces to external
systems"; //under under under headline 4

 String text1 = " 1. test: 2.1.1.1 Power-up test: ";
//the name of test one
 //String result1 = "" + powerUpResult;
//the result of test one
 String text2 = " 2. test: 2.1.1.2 Dimmer: ";
//the name of test two
 //String result2 = "" + dimmerTestResult;
//the result of test two
 String text3 = " 3. test: 2.1.1.3 Command Transfer: ";
//the name of test three
 //String result3 = "" + commandTransferTestResult;
//the result of test three
 String text4 = " 4. test: 2.1.1.4 Motorized Lever: ";
//the name of test four
 //String result4 = "" + motorizedLeverTestResult;
//the result of test four
 String text5 = " 5. test: 2.1.2.1 Rpm Control: ";
//the name of test five
 String result5 = "" + rpmControlTestResult;
//the result of test five
 String text6 = " 6. test: 2.1.2.2 Backup Control: ";
//the name of test six
 //String result6 = "" + backupControlTestResult;
//the result of test six
 String text7 = " 7. test: 2.1.3.1 Remote Start/Stop of Thruster
Motor: "; //the name of test seven
 String result7 = "" + remoteStartStopThrusterMotorTestResult;
//the result of test seven
 String text8 = " 8. test: 2.1.3.2 Remote Start/Stop of Thruster
Servo Pumps: "; //the name of test eight
 String result8 = "" + remoteStartStopThrusterServoPumpsTestResult;
//the result of test eight
 String text9 = " 9. test: 2.1.3.3 Reset Drive: ";
//the name of test nine
 String result9 = "" + resetDriveTestResult;
//the result of test nine
 String text10 = "10. test: 2.1.4.1 DP Interface: ";
//the name of test ten
 String result10 = "" + dpInterfaceTestResult;
//the result of test ten
 String text11 = "11. test: 2.1.4.2 Joystick Interface: ";
//the name of test eleven
 String result11 = "" + joystickTestResult;
//the result of test eleven

 contentStream.showText(textHeadline);
//add a headline
 contentStream.newLine();
//add a new line
 contentStream.setFont(PDType1Font.TIMES_ROMAN, 16);
//setting the font of the content stream

 contentStream.newLine();
//add a new line
 contentStream.showText(textUnderHeadline);
//add a under headline
 contentStream.newLine();
//add a new line
 contentStream.showText(textUnderUnderHeadline);
//add a under under headline
 contentStream.newLine();
//add a new line

 contentStream.showText(textUnderUnderUnderHeadline1);
//add a under under under headline
 contentStream.newLine();
//add a new line
 contentStream.showText(text1);
//adding the name of test one
 //setResultColor(contentStream, powerUpResult);
//set color of text based on result of test
 //contentStream.showText(result1);
//adding the result of test one
 resetResultColor(contentStream);
//reset color of text to black

 contentStream.showText(text2);
//adding the name of test two
 //setResultColor(contentStream, dimmerTestResult);
//set color of text based on result of test
 //contentStream.showText(result2);
//adding the result of test two
 resetResultColor(contentStream);
//reset color of text to black

 contentStream.showText(text3);
//adding the name of test three
 //setResultColor(contentStream, CommandTransferTestResult);
//set color of text based on result of test
 //contentStream.showText(result3);
//adding the result of test three
 resetResultColor(contentStream);
//reset color of text to black

 contentStream.showText(text4);
//adding the name of test four
 //setResultColor(contentStream, motorizedLeverTestResult);
//set color of text based on result of test
 //contentStream.showText(result4);
//adding the result of test four
 resetResultColor(contentStream);
//reset color of text to black

 contentStream.newLine();
//add a new line
 contentStream.showText(textUnderUnderUnderHeadline2);
//add a under under under headline
 contentStream.newLine();
//add a new line
 contentStream.showText(text5);
//adding the name of test five
 setResultColor(contentStream, rpmControlTestResult);
//set color of text based on result of test
 contentStream.showText(result5);
//adding the result of test five
 resetResultColor(contentStream);
//reset color of text to black

 contentStream.showText(text6);
//adding the name of test six
 //setResultColor(contentStream, backupControlTestResult);
//set color of text based on result of test
 //contentStream.showText(result6);
//adding the result of test six
 resetResultColor(contentStream);
//reset color of text to black

 contentStream.newLine();
//add a new line
 contentStream.showText(textUnderUnderUnderHeadline3);
//add a under under under headline
 contentStream.newLine();
//add a new line
 contentStream.showText(text7);
//adding the name of test seven
 setResultColor(contentStream,
remoteStartStopThrusterMotorTestResult); //set color of text
based on result of test
 contentStream.showText(result7);
//adding the result of test seven
 resetResultColor(contentStream);
//reset color of text to black

 contentStream.showText(text8);
//adding the name of test eight
 setResultColor(contentStream,
remoteStartStopThrusterServoPumpsTestResult); //set color of text
based on result of test
 contentStream.showText(result8);
//adding the result of test eight
 resetResultColor(contentStream);
//reset color of text to black

 contentStream.showText(text9);
//adding the name of test nine
 setResultColor(contentStream, resetDriveTestResult);
//set color of text based on result of test
 contentStream.showText(result9);
//adding the result of test nine

 resetResultColor(contentStream);
//reset color of text to black

 contentStream.newLine();
//add a new line
 contentStream.showText(textUnderUnderUnderHeadline4);
//add a under under under headline
 contentStream.newLine();
//add a new line
 contentStream.showText(text10);
//adding the name of test seven
 setResultColor(contentStream, dpInterfaceTestResult);
//set color of text based on result of test
 contentStream.showText(result10);
//adding the result of test seven
 resetResultColor(contentStream);
//reset color of text to black

 contentStream.showText(text11);
//adding the name of test seven
 setResultColor(contentStream, joystickTestResult);
//set color of text based on result of test
 contentStream.showText(result11);
//adding the result of test seven
 resetResultColor(contentStream);
//reset color of text to black

 contentStream.endText();
//ending the content stream

 System.out.println("Content added");
//prints out message to terminal

 contentStream.close();
//closing the content stream

 doc.save(new File("Fat-test-result.pdf"));
//saving the document as a new file

 doc.close();
//closing the document
 }

 /**
 * setting the color of a result of a test
 * @param contentStream instance of PDPageContentStream
 * @param value boolean value of true or false
 * @throws IOException throw if something goes wrong
 */
 public static void setResultColor(PDPageContentStream contentStream,
boolean value) throws IOException {
 if (value) {
//checks if the test is OK
 contentStream.setNonStrokingColor(new Color(0, 255, 0));
//if test is OK, color is set to green
 }
 else {

 contentStream.setNonStrokingColor(new Color(255, 0, 0));
//if test is not OK, color is set to red
 }
 }

 /**
 * resetting the color of text
 * @param contentStream instance of PDPageContentStream
 * @throws IOException throw if something goes wrong
 */
 public static void resetResultColor(PDPageContentStream contentStream)
throws IOException {
 contentStream.setNonStrokingColor(new Color(0, 0, 0));
//resets the color of text to black
 contentStream.newLine();
//add a new line
 }
}

package main.java;

import java.io.InputStream;
import java.io.OutputStream;
import java.nio.file.Files;
import java.nio.file.Path;
import java.security.Key;
import java.security.KeyPair;
import java.security.KeyStore;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.cert.X509Certificate;
import java.util.Arrays;
import java.util.regex.Pattern;
import org.eclipse.milo.opcua.stack.core.util.SelfSignedCertificateBuilder;
import
org.eclipse.milo.opcua.stack.core.util.SelfSignedCertificateGenerator;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * class for getting security and certificates for connection
 */
class KeyStoreLoader {

 private static final Pattern IP_ADDR_PATTERN = Pattern.compile(
 "^(([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\.){3}([01]?\\d\\d?|2[0-
4]\\d|25[0-5])$");

 private static final String CLIENT_ALIAS = "client-ai";
 private static final char[] PASSWORD = "password".toCharArray();

 private final Logger logger = LoggerFactory.getLogger(getClass());

 private X509Certificate[] clientCertificateChain;
 private X509Certificate clientCertificate;
 private KeyPair clientKeyPair;

 /**
 * getting the security for the connection
 * @param baseDir security temporary directory
 * @return security for the connection
 * @throws Exception throw if something goes wrong
 */
 KeyStoreLoader load(Path baseDir) throws Exception {
 KeyStore keyStore = KeyStore.getInstance("PKCS12");

 Path serverKeyStore = baseDir.resolve("example-client.pfx");

 logger.info("Loading KeyStore at {}", serverKeyStore);

 if (!Files.exists(serverKeyStore)) {
 keyStore.load(null, PASSWORD);

 KeyPair keyPair =
SelfSignedCertificateGenerator.generateRsaKeyPair(2048);

N.4 Class KeyStoreLoader

 SelfSignedCertificateBuilder builder = new
SelfSignedCertificateBuilder(keyPair)
 .setCommonName("Eclipse Milo Client")
 .setOrganization("digitalpetri")
 .setOrganizationalUnit("dev")
 .setLocalityName("Folsom")
 .setStateName("CA")
 .setCountryCode("US")
 .setApplicationUri("urn:eclipse:milo:examples:client")
 .addDnsName("br-automation")
 .addIpAddress("192.168.1.110");

 X509Certificate certificate = builder.build();

 keyStore.setKeyEntry(CLIENT_ALIAS, keyPair.getPrivate(),
PASSWORD, new X509Certificate[]{certificate});
 try (OutputStream out = Files.newOutputStream(serverKeyStore))
{
 keyStore.store(out, PASSWORD);
 }
 } else {
 try (InputStream in = Files.newInputStream(serverKeyStore)) {
 keyStore.load(in, PASSWORD);
 }
 }

 Key clientPrivateKey = keyStore.getKey(CLIENT_ALIAS, PASSWORD);
 if (clientPrivateKey instanceof PrivateKey) {
 clientCertificate = (X509Certificate)
keyStore.getCertificate(CLIENT_ALIAS);

 clientCertificateChain =
Arrays.stream(keyStore.getCertificateChain(CLIENT_ALIAS))
 .map(X509Certificate.class::cast)
 .toArray(X509Certificate[]::new);

 PublicKey serverPublicKey = clientCertificate.getPublicKey();
 clientKeyPair = new KeyPair(serverPublicKey, (PrivateKey)
clientPrivateKey);
 }

 return this;
 }

 /**
 * getting certificate
 * @return certificate
 */
 X509Certificate getClientCertificate() {
 return clientCertificate;
 }

 /**
 * getting certificate chain
 * @return the certificate chain
 */
 public X509Certificate[] getClientCertificateChain() {

 return clientCertificateChain;
 }

 /**
 * getting key pair
 * @return key pair
 */
 KeyPair getClientKeyPair() {
 return clientKeyPair;
 }
}

package main.java;

import org.bouncycastle.jce.provider.BouncyCastleProvider;
import org.eclipse.milo.opcua.sdk.client.OpcUaClient;
import org.eclipse.milo.opcua.sdk.client.nodes.UaVariableNode;
import
org.eclipse.milo.opcua.stack.client.security.DefaultClientCertificateValida
tor;
import org.eclipse.milo.opcua.stack.core.UaException;
import org.eclipse.milo.opcua.stack.core.security.DefaultTrustListManager;
import org.eclipse.milo.opcua.stack.core.types.builtin.*;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.security.Security;
import java.util.concurrent.ExecutionException;

import static
org.eclipse.milo.opcua.stack.core.types.builtin.unsigned.Unsigned.uint;

/**
 * class for creating a client of milo
 */
public class MiloClient implements Connection {

 static {
 Security.addProvider(new BouncyCastleProvider());
//required for SecurityPolicy.Aes256_Sha256_RsaPss
 }

 public String endpoint;
//creates a endpoint for connection to server
 private OpcUaClient client;
//creates a client of OpcUaClient
 Object decoded = null;
 Variant variant = null;
 private DefaultTrustListManager trustListManager;

 /**
 * creating a client of milo
 */
 public MiloClient() {

 try {
 Path securityTempDir =
Paths.get(System.getProperty("java.io.tmpdir"), "client", "security");
 Files.createDirectories(securityTempDir);
 if (!Files.exists(securityTempDir)) {
 throw new Exception("unable to create security dir: " +
securityTempDir);
 }

 File pkiDir = securityTempDir.resolve("pki").toFile();
 trustListManager = new DefaultTrustListManager(pkiDir);
 DefaultClientCertificateValidator certificateValidator = new
DefaultClientCertificateValidator(trustListManager);

N.5 Class MiloClient

 KeyStoreLoader loader = new
KeyStoreLoader().load(securityTempDir);

 client = OpcUaClient.create(
//creates a client
 ClientExample.getEndpointUrl(),
 endpoints ->
 endpoints.stream()
 .filter(ClientExample.endpointFilter())
 .findFirst(),
 configBuilder ->
 configBuilder

.setApplicationName(LocalizedText.english("eclipse milo opc-ua client"))

.setApplicationUri("urn:eclipse:milo:examples:client")
 .setKeyPair(loader.getClientKeyPair())

.setCertificate(loader.getClientCertificate())

.setCertificateChain(loader.getClientCertificateChain())

.setCertificateValidator(certificateValidator)

.setIdentityProvider(ClientExample.getIdentityProvider())
 .setRequestTimeout(uint(5000))
 .build());

 client.connect().get();
//connects the client and server
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 /**
 * stopping the connection
 */
 public void stop() {
 try {
 client.disconnect().get();
//disconnects the client from the server
 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (ExecutionException e) {
 e.printStackTrace();
 }
 }

 /**
 * getting the value of a variable
 * @param nodeId the variable to collect value of
 * @return the value of the requested variable
 */
 public Object getVariable(NodeId nodeId) {
 try {

 DataValue value = null;
//creating a value of DataValue
 UaVariableNode node =
client.getAddressSpace().getVariableNode(nodeId); //gets the variable to be
read
 value = node.readValue();
//reads the variable
 variant = value.getValue();
//gets the value of the read variable
 decoded = (Object) variant.getValue();
//converts the value to an Object
 } catch (UaException e) {
 e.printStackTrace();
 }
 return decoded;
 }

 /**
 * getting value of rpmControl
 * @return the value of rpmControl
 */
 public int getRpmControlValue() {
 NodeId objectId = NodeId.parse("ns=6;s=::Program:A_IN");
//node ID copied via UaExpert
 Object value = getVariable(objectId);
//read value of variable
 int calculatedValue = ((Short) value).intValue();
//convert value of variable to int
 System.out.println("RPM: " + calculatedValue);
//print out value of variable
 return calculatedValue;
//value of the variable to be read
 }

 /**
 * getting state of thrusterMotor
 * @return the state of thrusterMotor
 */
 public boolean getThrusterMotorValue() {
 NodeId objectId = NodeId.parse("ns=6;s=::Program:thrusterRunning");
//node ID copied via UaExpert
 Object value = getVariable(objectId);
//read value of variable
 boolean calculatedValue = ((Boolean) value).booleanValue();
//convert value of variable to boolean
 System.out.println("ThrusterRunning: " + calculatedValue);
//print out value of variable
 return calculatedValue;
//the variable to be read
 }

 /**
 * getting state of thrusterMotorStart
 * @return the state of thrusterMotorStart
 */
 public boolean getThrusterMotorStartValue() {

 NodeId objectId = NodeId.parse("ns=6;s=::Program:startThruster");
//node ID copied via UaExpert
 Object value = getVariable(objectId);
//read value of variable
 boolean calculatedValue = ((Boolean) value).booleanValue();
//convert value of variable to boolean
 System.out.println("StartThruster: " + calculatedValue);
//print out value of variable
 return calculatedValue;
//the variable to be read
 }

 /**
 * getting state of thrusterMotorStop
 * @return the state of thrusterMotorStop
 */
 public boolean getThrusterMotorStopValue() {
 NodeId objectId = NodeId.parse("ns=6;s=::Program:stopThruster");
//Node ID copied via UaExpert
 Object value = getVariable(objectId);
//read value of variable
 boolean calculatedValue = ((Boolean) value).booleanValue();
//convert value of variable to boolean
 System.out.println("StopThruster: " + calculatedValue);
//print out value of variable
 return calculatedValue;
//the variable to be read
 }

 /**
 * getting state of thrusterPumps
 * @return the state of thrusterPumps
 */
 public boolean getThrusterPumpsValue() {
 NodeId objectId = NodeId.parse("ns=6;s=::Program:pumpRunning");
//node ID copied via UaExpert
 Object value = getVariable(objectId);
//read value of variable
 boolean calculatedValue = ((Boolean) value).booleanValue();
//convert value of variable to boolean
 System.out.println("PumpRunning: " + calculatedValue);
//print out value of variable
 return calculatedValue;
//the variable to be read
 }

 /**
 * getting state of thrusterPumpsStart
 * @return the state of thrusterPumpsStart
 */
 public boolean getThrusterPumpsStartValue() {
 NodeId objectId = NodeId.parse("ns=6;s=::Program:startPump");
//node ID copied via UaExpert
 Object value = getVariable(objectId);
//read value of variable
 boolean calculatedValue = ((Boolean) value).booleanValue();
//convert value of variable to boolean

 System.out.println("StartPump: " + calculatedValue);
//print out value of variable
 return calculatedValue;
//the variable to be read
 }

 /**
 * getting state of thrusterPumpsStop
 * @return the state of thrusterPumpsStop
 */
 public boolean getThrusterPumpsStopValue() {
 NodeId objectId = NodeId.parse("ns=6;s=::Program:stopPump");
//node ID copied via UaExpert
 Object value = getVariable(objectId);
//read value of variable
 boolean calculatedValue = ((Boolean) value).booleanValue();
//convert value of variable to boolean
 System.out.println("StopPump: " + calculatedValue);
//print out value of variable
 return calculatedValue;
//the variable to be read
 }

 /**
 * getting state of resetDrive
 * @return the state of resetDrive
 */
 public boolean getResetDriveValue() {
 NodeId objectId = NodeId.parse("ns=6;s=::Program:driveReset");
//node ID copied via UaExpert
 Object value = getVariable(objectId);
//read value of variable
 boolean calculatedValue = ((Boolean) value).booleanValue();
//convert value of variable to boolean
 System.out.println("DriveReset: " + calculatedValue);
//print out value of variable
 return calculatedValue;
//the variable to be read
 }

 /**
 * getting value of dpInterface
 * @return the value of dpInterface
 */
 public int getDpInterfaceValue() {
 NodeId objectId = NodeId.parse("ns=6;s=::Program:DP_RPM_Feedback");
//node ID copied via UaExpert
 Object value = getVariable(objectId);
//read value of variable
 int calculatedValue = ((Short) value).intValue();
//convert value of variable to int
 System.out.println("DpInterface: " + calculatedValue);
//print out value of variable
 return calculatedValue;
//value of the variable to be read
 }

 /**
 * getting state of dpInterfaceStart
 * @return the state of dpInterfaceStart
 */
 public boolean getDpInterfaceStartValue() {
 NodeId objectId = NodeId.parse("ns=6;s=::Program:DPReady");
//node ID copied via UaExpert
 Object value = getVariable(objectId);
//read value of variable
 boolean calculatedValue = ((Boolean) value).booleanValue();
//convert value of variable to boolean
 System.out.println("StartDpInterface: " + calculatedValue);
//print out value of variable
 return calculatedValue;
//the variable to be read
 }

 /**
 * getting value of joystick
 * @return the value of joystick
 */
 public int getJoystickValue() {
 NodeId objectId =
NodeId.parse("ns=6;s=::Program:Joystick_RPM_Feedback");//node ID copied via
UaExpert
 Object value = getVariable(objectId);
//read value of variable
 int calculatedValue = ((Short) value).intValue();
//convert value of variable to int
 System.out.println("Joystick: " + calculatedValue);
//print out value of variable
 return calculatedValue;
//value of the variable to be read
 }

 /**
 * getting state of joystickStart
 * @return the state of joystickStart
 */
 public boolean getJoystickStartValue() {
 NodeId objectId = NodeId.parse("ns=6;s=::Program:JoystickReady");
//node ID copied via UaExpert
 Object value = getVariable(objectId);
//read value of variable
 boolean calculatedValue = ((Boolean) value).booleanValue();
//convert value of variable to boolean
 System.out.println("StartJoystick: " + calculatedValue);
//print out value of variable
 return calculatedValue;
//the variable to be read
 }
}

package main.java;

/**
 * class for creating a connection between client milo and B&R server
 */
public class RunTestsMilo {

 /**
 * starting the code
 * @param args contains the supplied command-line arguments as an array
of String objects
 */
 public static void main(String[] args) {
 runTestsMilo();
 }

 /**
 * running tests using milo
 */
 public static void runTestsMilo() {
 MiloClient miloClient = new MiloClient(); //creates an
instance of MiloClient

 TestRunner testRunner = new TestRunner(miloClient); //creates an
instance of TestRunner
 testRunner.runTests(); //runs tests
with milo connection

 miloClient.stop(); //stops the
milo client
 }
}

N.6 Class RunTestsMilo

package main.java;

/**
 * class for creating a virtual connection
 */
public class RunTestsVirtual {

 /**
 * running tests using a virtual connection
 * @param args contains the supplied command-line arguments as an array
of String objects
 */
 public static void main(String[] args) {
 TestRunner testRunner = new TestRunner(new VirtualConnection());
//creates an instance of TestRunner
 testRunner.runTests();
//runs tests with a virtual connection
 }
}

N.7 Class RunTestsVirtual

package main.java;

import java.io.IOException;

/**
 * class for running tests
 */
public class TestRunner {
 public boolean thrusterMotorStartIsFinished;
//variable for first part of thruster motor test
 public boolean thrusterMotorStopIsFinished;
//variable for second part of thruster motor test
 public boolean thrusterPumpsStartIsFinished;
//variable for first part of thruster pumps test
 public boolean thrusterPumpsStopIsFinished;
//variable for second part of thruster pumps test

 public boolean rpmControlTestIsFinished;
//variable for checking if test five is finished
 public boolean remoteStartStopThrusterMotorTestIsFinished;
//variable for checking if test seven is finished
 public boolean remoteStartStopThrusterServoPumpsTestIsFinished;
//variable for checking if test eight is finished
 public boolean resetDriveTestIsFinished;
//variable for checking if test nine is finished
 public boolean dpInterfaceTestIsFinished;
//variable for checking if test ten is finished
 public boolean joystickTestIsFinished;
//variable for checking if test eleven is finished

 public boolean rpmControlTestResult; //saves
variable as result of the fifth test
 public boolean remoteStartStopThrusterMotorTestResult; //saves
variable as result of the seventh test
 public boolean remoteStartStopThrusterServoPumpsTestResult; //saves
variable as result of the eighth test
 public boolean resetDriveTestResult; //saves
variable as result of the ninth test
 public boolean dpInterfaceTestResult; //saves
variable as result of the tenth test
 public boolean joystickTestResult; //saves
variable as result of the eleventh test

 public int numberOfTestsFinished = 0;
//variable for number of tests finished
 public Connection client;
//creates an instance of Connection

 public TestRunner(Connection client) {
 this.client = client;
 }

 /**
 * running of the tests
 */
 public void runTests() {

N.8 Class TestRunner

 CreatePDF createPDF = new CreatePDF();
//creates an instance of class CreatePDF
 java.io.InputStreamReader reader = new
java.io.InputStreamReader(System.in);
//creates an instance of a InputStreamReader
 boolean keepRunning = true;
//variable for keep running the code

 while (keepRunning) {
//loop for running the tests continually
 try {
 Thread.sleep(100);
//wait for 100 milliseconds
 System.out.println("Press enter to quit");
 } catch (InterruptedException ex) {
 System.out.println("InterruptedException...");
 }
 try {
 if (reader.ready()) {
 int readKey = reader.read();
//read the keyboard input
 if (readKey == 10) {
//checks if enter is pressed
 keepRunning = false;
//if enter is pressed, the loop will stop
 System.out.println("Quitting..");
 }
 } else if (numberOfTestsFinished == 6) {
//checks if number of finished tests is 3
 keepRunning = false;
//if 3 tests are finished, the loop will stop
 System.out.println("Quitting..");
 }
 if (!rpmControlTestIsFinished) {
//check if test five is finished
 rpmControlTestResult = rpmControlTest();
//saves variable as result of the fifth test
 }
 if (!remoteStartStopThrusterMotorTestIsFinished) {
//check if test seven is finished
 remoteStartStopThrusterMotorTestResult =
remoteStartStopThrusterMotorTest(); //saves variable
as result of the seventh test
 }
 if (!remoteStartStopThrusterServoPumpsTestIsFinished) {
//check if test eight is finished
 remoteStartStopThrusterServoPumpsTestResult =
remoteStartStopThrusterServoPumpsTest(); //saves variable as
result of the eighth test
 }
 if (!resetDriveTestIsFinished) {
//check if test nine is finished
 resetDriveTestResult = resetDriveTest();
//saves variable as result of the ninth test
 }
 if (!dpInterfaceTestIsFinished) {
//check if test ten is finished

 dpInterfaceTestResult = dpInterfaceTest();
//saves variable as result of the tenth test
 }
 if (!joystickTestIsFinished) {
//check if test eleven is finished
 joystickTestResult = joyStickTest();
//saves variable as result of the eleventh test
 }
 testsFinished();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 try {
 createPDF.createPDF(rpmControlTestResult,
remoteStartStopThrusterMotorTestResult,
remoteStartStopThrusterServoPumpsTestResult, resetDriveTestResult,
dpInterfaceTestResult, joystickTestResult); //calls the method createPDF in
class CreatePDF with results of tests
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 /**
 * test five
 * @return the result of the test
 */
 public boolean rpmControlTest() {
 int rpmControlValue = client.getRpmControlValue();
//get the current value of rpmControl in B&R
 boolean testOK = false;
//Create a variable for checking test

 int highestValue = rpmControlValue + 100;
//make variable for high rpmControl value
 int lowestValue = rpmControlValue - 100;
//make variable for low rpmControl value

 try {
 Thread.sleep(100);
//wait for 100 milliseconds
 } catch (InterruptedException ex) {
 System.out.println("InterruptedException...");
 }

 if (client.getRpmControlValue() < lowestValue ||
client.getRpmControlValue() > highestValue) { //check if value has changed
to less than the low value or more than the high value
 testOK = true;
//if value has changed, test is correct
 numberOfTestsFinished++;
//if value has changed, number of finished tests is increased
 rpmControlTestIsFinished = true;
//if value has changed, this test is finished
 }

 return testOK;
 }

 /**
 * test seven
 * @return the result of the test
 */
 public boolean remoteStartStopThrusterMotorTest() {
 boolean thrusterMotorIsOn = client.getThrusterMotorValue();
//get the current state of thrusterMotor in B&R
 boolean thrusterMotorStartIsOn =
client.getThrusterMotorStartValue(); //get the current state of
thrusterMotorStart in B&R
 boolean thrusterMotorStopIsOn = client.getThrusterMotorStopValue();
//get the current state of thrusterMotorStop in B&R
 boolean testOK = false;
//create a variable for checking test
 boolean start = false;
//create a variable for checking thrusterMotorStart
 boolean stop = false;
//create a variable for checking thrusterMotorStop

 if (thrusterMotorStartIsOn) {
//checks if thrusterMotorStart is on
 start = true;
//if thrusterMotorStart is on, start is set to true
 }
 try {
 Thread.sleep(100);
//wait for 100 milliseconds
 } catch (InterruptedException ex) {
 System.out.println("InterruptedException...");
 }
 if (start && !thrusterMotorStartIsFinished) {
//check if start is on and part test is not finished
 if (thrusterMotorIsOn) {
//check if thrusterMotor is on
 thrusterMotorStartIsFinished = true;
//if thrusterMotor is on, part test is finished
 }
 }

 if (thrusterMotorStopIsOn) {
//checks if thrusterMotorStop is on
 stop = true;
//if thrusterMotorStop is on, stop is set to true
 }
 try {
 Thread.sleep(100);
//wait for 100 milliseconds
 } catch (InterruptedException ex) {
 System.out.println("InterruptedException...");
 }
 if (stop && !thrusterMotorStopIsFinished) {
//check if stop is on and part test is not finished
 if (!thrusterMotorIsOn) {
//check if thrusterMotor is on

 thrusterMotorStopIsFinished = true;
//if thrusterMotor is on, part test is finished
 }
 }

 if (thrusterMotorStartIsFinished && thrusterMotorStopIsFinished) {
//checks if both part tests are finished
 testOK = true;
//if both tests are finished, test is correct
 numberOfTestsFinished++;
//if both tests are finished, number of finished tests is increased
 remoteStartStopThrusterMotorTestIsFinished = true;
//if both tests are finished, this test is finished

 }
 return testOK;
 }

 /**
 * test eight
 * @return the result of the test
 */
 public boolean remoteStartStopThrusterServoPumpsTest() {
 boolean thrusterPumpsIsOn = client.getThrusterPumpsValue();
//get the current state of thrusterPumps in B&R
 boolean thrusterPumpsStartIsOn =
client.getThrusterPumpsStartValue(); //get the current state of
thrusterPumpsStart in B&R
 boolean thrusterPumpsStopIsOn = client.getThrusterPumpsStopValue();
//get the current state of thrusterPumpsStop in B&R
 boolean testOK = false;
//create a variable for checking test
 boolean start = false;
//create a variable for checking thrusterPumpsStart
 boolean stop = false;
//create a variable for checking thrusterPumpsStop

 if (thrusterPumpsStartIsOn) {
//checks if thrusterPumpsStart is on
 start = true;
//if thrusterPumpsStart is on, start is set to true
 }
 try {
 Thread.sleep(100);
//wait for 100 milliseconds
 } catch (InterruptedException ex) {
 System.out.println("InterruptedException...");
 }
 if (start && !thrusterPumpsStartIsFinished) {
//check if start is on and part test is not finished
 if (thrusterPumpsIsOn) {
//check if thrusterPumps is on
 thrusterPumpsStartIsFinished = true;
//if thrusterPumps is on, part test is finished
 }
 }

 if (thrusterPumpsStopIsOn) {
//checks if pumpsStop is on
 stop = true;
//if pumpsStop is on, stop is set to true
 }
 try {
 Thread.sleep(100);
//wait for 100 milliseconds
 } catch (InterruptedException ex) {
 System.out.println("InterruptedException...");
 }
 if (stop && !thrusterPumpsStopIsFinished) {
//check if stop is on and part test is not finished
 if (!thrusterPumpsIsOn) {
//check if thrusterPumps is on
 thrusterPumpsStopIsFinished = true;
//if thrusterPumps is on, part test is finished
 }
 }

 if (thrusterPumpsStartIsFinished && thrusterPumpsStopIsFinished) {
//checks if both part tests are finished
 testOK = true;
//if both tests are finished, test is correct
 numberOfTestsFinished++;
//if both tests are finished, number of finished tests is increased
 remoteStartStopThrusterServoPumpsTestIsFinished = true;
//if both tests are finished, this test is finished

 }
 return testOK;
 }

 /**
 * test nine
 * @return the result of the test
 */
 public boolean resetDriveTest() {
 boolean resetDriveIsOn = client.getResetDriveValue();
//get the current state of driveReset in B&R
 boolean testOK = false;
//create a variable for checking test

 if (resetDriveIsOn) {
//check if resetDrive is on
 testOK = true;
//if resetDrive is on, test is correct
 numberOfTestsFinished++;
//if resetDrive is on, number of finished tests is increased
 resetDriveTestIsFinished = true;
//if resetDrive is on, this test is finished
 }
 return testOK;
 }

 /**
 * test ten

 * @return the result of the test
 */
 public boolean dpInterfaceTest() {
 int dpInterfaceValue = client.getDpInterfaceValue();
//get the current value of dpInterface in B&R
 boolean dpInterfaceIsOn = client.getDpInterfaceStartValue();
//get the current state of dpInterfaceStart in B&R
 boolean start = false;
//create a variable for checking dpInterfaceStart
 boolean testOK = false;
//create a variable for checking test

 if (dpInterfaceIsOn) {
//check if dpInterface is on
 start = true;
//if dpInterface is on, start is set to true
 }
 if (start) {
 int highestValue = dpInterfaceValue + 100;
//if dpInterface is on, make variable for high dpInterface value
 int lowestValue = dpInterfaceValue - 100;
//if dpInterface is on, make variable for low dpInterface value

 try {
 Thread.sleep(100);
//wait for 100 milliseconds
 } catch (InterruptedException ex) {
 System.out.println("InterruptedException...");
 }

 if (client.getDpInterfaceValue() < lowestValue ||
client.getDpInterfaceValue() > highestValue) { //check if value has changed
to less than the low value or more than the high value
 testOK = true;
//if value has changed, test is correct
 numberOfTestsFinished++;
//if value has changed, number of finished tests is increased
 dpInterfaceTestIsFinished = true;
//if value has changed, this test is finished
 }
 }
 return testOK;
 }

 /**
 * test eleven
 * @return the result of the test
 */
 public boolean joyStickTest() {
 int joystickValue = client.getJoystickValue();
//get the current value of joystick in B&R
 boolean joystickIsOn = client.getJoystickStartValue();
//get the current state of joystickStart in B&R
 boolean start = false;
//create a variable for checking joystickStart
 boolean testOK = false;
//create a variable for checking test

 if (joystickIsOn) {
//check if joystick is on
 start = true;
//if joystick is on, start is set to true
 }
 if (start) {
 int highestValue = joystickValue + 100;
//if joystick is on, make variable for high joystick value
 int lowestValue = joystickValue - 100;
//if joystick is on, make variable for low joystick value

 try {
 Thread.sleep(100);
//wait for 100 milliseconds
 } catch (InterruptedException ex) {
 System.out.println("InterruptedException...");
 }

 if (client.getJoystickValue() < lowestValue ||
client.getJoystickValue() > highestValue) { //check if value has
changed to less than the low value or more than the high value
 testOK = true;
//if value has changed, test is correct
 numberOfTestsFinished++;
//if value has changed, number of finished tests is increased
 joystickTestIsFinished = true;
//if value has changed, this test is finished
 }
 }
 return testOK;
 }

 /**
 * printing result of tests to system panel
 */
 public void testsFinished() {
 System.out.println("RPM Control Test: " +
rpmControlTestIsFinished);
//print out test finished for rpmControl
 System.out.println("Remote Start/Stop Thruster Motor Test: " +
remoteStartStopThrusterMotorTestIsFinished); //print out test
finished for thruster motor
 System.out.println("Remote Start/Stop Thruster Servo Pumps Test: "
+ remoteStartStopThrusterServoPumpsTestIsFinished); //print out test
finished for thruster pumps
 System.out.println("Reset Drive Test: " +
resetDriveTestIsFinished);
//print out test finished for reset drive
 System.out.println("DpInterface Test: " +
dpInterfaceTestIsFinished);
//print out test finished for dpInterface
 System.out.println("Joystick Test: " + joystickTestIsFinished);
//print out test finished for joystick
 }
}

package main.java;

/**
 * class for creating a virtual connection
 */
public class VirtualConnection implements Connection {
 public int rpmControlValue; //creates a variable for test five
 public boolean thrusterMotorOn; //creates a variable for test
seven
 public boolean thrusterMotorStartOn; //creates a variable for test
seven
 public boolean thrusterMotorStopOn; //creates a variable for test
seven
 public boolean thrusterPumpsOn; //creates a variable for test
eight
 public boolean thrusterPumpsStartOn; //creates a variable for test
eight
 public boolean thrusterPumpsStopOn; //creates a variable for test
eight
 public boolean resetDriveOn; //creates a variable for test nine
 public int dpInterfaceValue; //creates a variable for test ten
 public boolean dpInterfaceOn; //creates a variable for test ten
 public int joystickValue; //creates a variable for test
eleven
 public boolean joystickOn; //creates a variable for test
eleven

 /**
 * getting value of rpmControl
 * @return the value of rpmControl
 */
 public int getRpmControlValue() {
 return rpmControlValue;
 }

 /**
 * getting state of thrusterMotor
 * @return the state of thrusterMotor
 */
 public boolean getThrusterMotorValue() {
 return thrusterMotorOn;
 }

 /**
 * getting state of thrusterMotorStop
 * @return the state of thrusterMotorStop
 */
 public boolean getThrusterMotorStartValue() {
 return thrusterMotorStartOn;
 }

 /**
 * getting state of thrusterMotorStop
 * @return the state of thrusterMotorStop
 */
 public boolean getThrusterMotorStopValue() {
 return thrusterMotorStopOn;

N.9 Class VirtualConnection

 }

 /**
 * getting state of thrusterPumps
 * @return the state of thrusterPumps
 */
 public boolean getThrusterPumpsValue() {
 return thrusterPumpsOn;
 }

 /**
 * getting state of thrusterPumpsStart
 * @return the state of thrusterPumpsStart
 */
 public boolean getThrusterPumpsStartValue() {
 return thrusterPumpsStartOn;
 }

 /**
 * getting state of thrusterPumpsStop
 * @return the state of thrusterPumpsStop
 */
 public boolean getThrusterPumpsStopValue() {
 return thrusterPumpsStopOn;
 }

 /**
 * getting state of reset drive
 * @return the state of reset drive
 */
 public boolean getResetDriveValue() {
 return resetDriveOn;
 }

 /**
 * getting value of dpInterface
 * @return the value of dpInterface
 */
 public int getDpInterfaceValue() {
 return dpInterfaceValue;
 }

 /**
 * getting state of dpInterfaceStart
 * @return the state of dpInterfaceStart
 */
 public boolean getDpInterfaceStartValue() {
 return dpInterfaceOn;
 }

 /**
 * getting value of joystick
 * @return the value of joystick
 */
 public int getJoystickValue() {
 return joystickValue;
 }

 /**
 * getting state of joystickStart
 * @return the state of joystickStart
 */
 public boolean getJoystickStartValue() {
 return joystickOn;
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>FAT-test-report</groupId>
 <artifactId>BachelorThesis</artifactId>
 <version>1.0-SNAPSHOT</version>

 <build>
 <sourceDirectory>src</sourceDirectory>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.3</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 </plugins>
 </build>

 <dependencies>
 <dependency>
 <groupId>org.eclipse.milo</groupId>
 <artifactId>sdk-client</artifactId>
 <version>0.5.4</version>
 </dependency>

 <dependency>
 <groupId>org.apache.pdfbox</groupId>
 <artifactId>pdfbox</artifactId>
 <version>2.0.1</version>
 </dependency>

 <dependency>
 <groupId>org.apache.pdfbox</groupId>
 <artifactId>fontbox</artifactId>
 <version>2.0.0</version>
 </dependency>

 <dependency>
 <groupId>org.apache.pdfbox</groupId>
 <artifactId>jempbox</artifactId>
 <version>1.8.11</version>
 </dependency>

 <dependency>
 <groupId>org.apache.pdfbox</groupId>
 <artifactId>xmpbox</artifactId>
 <version>2.0.0</version>
 </dependency>

 <dependency>

N.10 Maven-file Pom

 <groupId>org.apache.pdfbox</groupId>
 <artifactId>preflight</artifactId>
 <version>2.0.0</version>
 </dependency>

 <dependency>
 <groupId>org.apache.pdfbox</groupId>
 <artifactId>pdfbox-tools</artifactId>
 <version>2.0.0</version>
 </dependency>
 </dependencies>
</project>

