
Ba
ch

el
or

’s
 th

es
is Active control of an ankle using linear

actuators and load cells

May 2021

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

Erlend Lillevik
Andreas Nonslid Håvardsen

Bachelor’s thesis
2021

Bachelor’s thesis

Active control of an ankle using linear
actuators and load cells

May 2021

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

Erlend Lillevik
Andreas Nonslid Håvardsen

Active control of an ankle using linear

actuators and load cells

Erlend Lillevik

Andreas Nonslid Håvardsen

May 2021

PROJECT / BACHELOR THESIS

Supervisor 1: Øystein Bjelland

Supervisor 2: Aleksander Larsen Skrede

i

Preface

This bachelor thesis is written by two students from Automatiseringsteknikk at NTNU Ålesund.

The group consists of members with a varying degree of practical experience in the field, as well

as varying fields of interest.

The goal of this project is to see how one can use actuators and load cells to actively control

an ankle and get useful data from the testing. This type of technology is quite interesting be-

cause it can be used to get objective data about a ankle joint and for determining the efficiency

of different surgical procedures. Because of this, there are large potential pitfalls when creating

such a system.

All of this combined made the thesis quite intriguing, and made working on the project an

interesting endeavor for the project members.

ii

Acknowledgement

We would like to thank all contributors who have helped us during this project, and especially:

• Our supervisors for all the help and guidance through the project

• Family and friends for supporting us through the semester

• Ålesund Biomechanical Laboratory for equipment and expertise

• Andreas Fagerhaug Dalen for medical knowledge and guidance through the project

• Anders Sætersmoen for ordering and supplying the parts needed for the project

iii

Summary

This report concerns the development of a prototype system to perform stability tests on an an-

kle. The purpose of this project is to investigate how to implement such a system, and to make a

simulation and visualization of an ankle. The prototype uses four linear actuators and four load

cells to pull and measure the load on a tendon. For this, an ankle model with simulated tendons

was made. The results from testing the prototype show that the system is capable of moving the

ankle in a realistic movement pattern and accurately measure the load. It would however ben-

efit from better software and controller integration. The simulation and the visualization gives

a good approximation to a real ankle. It does however use a simplified mathematical model

and could benefit from more optimization. Even still, the prototype shows great promise and

worked well as a proof of concept.

Contents

Preface . i

Acknowledgement . ii

Summary and Conclusions . iii

Acronyms . 2

1 Introductions 8

1.1 Background . 8

1.2 Problem Formulation . 9

1.3 Limitations . 10

1.4 Requirements . 10

1.5 Structure of the Report . 11

2 Theoretical basis 12

2.1 Joint . 12

2.1.1 Ankle . 12

2.1.2 Ankle tendons . 14

2.1.3 Ankle joint stability . 14

2.1.4 Testing joint stability . 15

2.2 Linear actuator . 16

2.2.1 Belt driven actuators . 16

2.2.2 Ball screw actuators . 17

2.2.3 Rack and pinion actuators . 18

2.2.4 Controlling the linear actuator . 19

2.2.5 Voltage clamp . 19

iv

CONTENTS v

2.3 Load cell . 19

2.3.1 Strain gauge . 19

2.3.2 Strain gauge based load cells . 20

2.3.3 Load Cell Accuracy Classes . 21

2.3.4 Load cell amplifier . 22

2.4 Micro controller . 22

2.5 Serial communication . 23

2.6 State-space . 23

2.6.1 System identification . 24

2.6.2 Basic control theory terminology . 25

2.6.3 PID regulators . 25

2.7 Kinematics . 28

2.8 Mass-spring-damper systems . 29

3 Method 31

3.1 Method . 31

3.1.1 Project Organisation . 31

3.1.2 Ankle testing rig . 32

3.1.3 Ankle model . 33

3.1.4 Simulation . 34

3.1.5 Visualization . 35

3.2 Materials . 37

3.2.1 Data collection . 37

3.2.2 Construction . 37

3.2.3 Ankle model . 38

3.2.4 Linear motion . 39

3.2.5 Linear actuator controller . 40

3.2.6 Load cell . 41

3.2.7 Load cell amplifier . 42

3.2.8 System controller . 43

CONTENTS vi

3.2.9 Communication protocol . 44

3.2.10 Power supply . 44

3.2.11 Cable and pulley . 46

3.2.12 End switches . 47

3.2.13 Software and libraries . 47

4 Result 49

4.1 Design . 49

4.1.1 Main frame . 50

4.1.2 Linear actuators . 51

4.1.3 Load cells . 52

4.1.4 Cable and pulley . 53

4.1.5 Complete Design . 54

4.1.6 Electrical layout . 55

4.2 Build . 57

4.2.1 Main frame demo . 57

4.2.2 Linear actuators . 57

4.2.3 Load cells . 58

4.2.4 Cable and pulley . 59

4.2.5 Ankle model . 60

4.2.6 Electrical . 61

4.2.7 Completed build . 62

4.3 Implementation . 64

4.3.1 Arduino code . 64

4.4 Simulation . 69

4.4.1 Model . 69

4.4.2 Code . 74

4.5 Visualization . 76

4.5.1 Code . 76

CONTENTS 1

5 Discussion 79

5.1 Rig . 79

5.1.1 Design and materials . 79

5.1.2 Hardware . 80

5.1.3 Software . 80

5.1.4 Testing . 80

5.2 Simulation . 81

5.2.1 Different stages throughout the project . 81

5.2.2 Deciding on level of complexity in the model 82

5.3 Visualization . 83

5.3.1 Different available solutions for visualizing the data 83

5.4 Personal Experiences . 84

5.4.1 Planning . 84

5.4.2 Division of labor . 84

5.4.3 Data collection . 85

5.4.4 Covid-19 . 85

6 Conclusions 86

6.1 Further work . 87

7 Appendices 88

Appendices 88

A Code . 88

B Data-sheets . 108

C Preproject report . 150

D Gantt diagram . 161

E Meeting reports . 163

F Electrical drawings . 172

Bibliography 174

CONTENTS 2

Terminology

PID Proportional integral derivative controller

UI User Interface, makes it possible to interact with a computer

CAD Computer aided design, technology for 3D-design and modelling.

Notation

Kp Proportional term of a PID controller

Ki Integral term of a PID controller

Kd Derivative term of a PID controller

Kg System International unit for Kilogram

Ω Ohm, system International unit for electrical resistance,.

W Watts, system International unit for power.

V Volts, system International unit for electric potential.

A Ampere, system International unit for electric current.

k Spring constant used in mass-spring-damper system.

c Damping constant used in mass-spring-damper system.

m Mass constant used in mass-spring-damper system.

u Input(s) to system.

CONTENTS 3

Abbreviations

IEEE Institute of Electronical and Electronic Engineers

Gnd Ground in electronical circuits

DOF Degrees of Freedom, number of configurations for a object

DC Direct current

SISO Single input single output

MIMO Multi input multi output

List of Figures

2.1 Healthy ankle, seen from above and from the side. 13

2.2 The most important tendons in the ankle. 14

2.3 Kuka robot performing tests on a sholder joint. 15

2.4 Belt driven actuator. 16

2.5 Ball screw actuator. 17

2.6 Rack and pinion actuator. 18

2.7 Compression load cell. 20

2.8 Tension load cell. 21

2.9 Beam load cell. 21

2.10 State-space in a block figure representation 24

2.11 A example of a PID regulator used to regulate a basic 2nd order system, made

in Matlab . 26

2.12 The PID regulated plant response at t = 10 . 27

2.13 The PID regulated plant response at t = 300 28

2.14 Force-velocity, force-displacement, and impedance translational relation-

ships for springs, viscous dampers, and mass 30

3.1 Example of aluminium profiles. 38

3.2 Ankle model. 38

4

LIST OF FIGURES 5

3.3 RS Pro Electric Linear Actuator ID10, 24V DC. 40

3.4 RoboClaw 2x15A. 41

3.5 RS PRO Alloy Steel S Beam Load Cell. 42

3.6 Seed hx711 load cell amplifier. 42

3.7 Arduino Mega and Seeed Shield. 43

3.8 Cosel 1500W power supply. 45

3.9 VClamp and resistor . 45

3.10 Petzl Aluminium Pulley . 46

4.1 Current lab. 49

4.2 Main frame CAD model. 50

4.3 Actuators CAD model. 51

4.4 Load cells CAD model. 52

4.5 Cable and pulley CAD. 53

4.6 Complete design CAD. 54

4.7 Wiring diagram control circuit. 55

4.8 Wiring diagram main circuit. 56

4.9 Main frame demo. 57

4.10 Actuators build. 58

4.11 Load cells build. 58

4.12 Cable and pulley build. 59

4.13 Modified ankle model. 60

4.14 Modified ankle model . 61

4.15 Electrical connections. 62

4.16 Ankle model during testing . 62

LIST OF FIGURES 6

4.17 Completed build . 63

4.18 Function from Arduino code in prototype without comments and compressed,

function: PID() . 66

4.19 Function from Arduino code in prototype without comments and compressed,

function: roboclawMovement() . 67

4.20 A typical two boned joint . 69

4.21 A lateral view of a elbow . 70

4.22 Kinematic model of ankle with two degrees of freedom 70

4.23 Kinematic model of ankle limited to one degree of freedom 71

4.24 Mass-spring-damper representation of the simplified ankle 72

4.25 The input and ankle height generation code from the simulation, compressed

and without comments . 74

4.26 The state-space model generation in Matlab, compressed and without com-

ments . 75

4.27 The code the simulation is run, "Y" stores the simulation results, "sys" is the

state-space model, "u" is the input and "t" is the simulation time references,

without comments . 75

4.28 The line bundles being generated, each line generates a line bundle with it’s

own color and points array, without comments 76

4.29 The way the a1 point array is filled, without comments 76

4.30 The geometric logic used to find all points for visualization, where every cor-

ner of the two rectangle’s angles are
π

2
rad . 77

4.31 The code used to calculate the geometric points to "draw" for the visualiza-

tion, without comments . 78

List of Tables

3.1 Arduino models . 43

4.1 Tendons resistance . 61

7

Chapter 1

Introduction

This report will review all the different stages of development for the project. All principles that

have been considered will be drawn out, as well as what was chosen as the final implementation

and the theory behind this.

1.1 Background

Hospitals are becoming increasingly more technological, and medical procedures and opera-

tions are becoming increasingly higher in quality. By combining engineering and medical ex-

pertise using modern technology, researchers and doctors can do experiments together that

further improves the quality of these procedures. One medical field that is implementing new

technology to increase the knowledge and quality offered is the field of orthopedics.

Orthopaedic surgery or orthopaedics, is the branch of surgery concerned with conditions

involving the musculoskeletal system. Orthopaedic surgeons use both surgical and nonsurgical

means to treat musculoskeletal trauma, spine diseases, sports injuries, degenerative diseases,

infections, tumors, and congenital disorders. [15]

To achive this the orthopedic department of the hospital in Ålesund (Ålesund Sjukehus) and

NTNU have created a collaborative project called Ålesund Biomechanical Laboratory. The goal

of this project is for engineers and researchers from NTNU and orthopedic surgeons from Åle-

8

CHAPTER 1. INTRODUCTIONS 9

sund Hospital to use robots in researching better surgical methods. This kind of robot lab is the

first of its kind in Scandinavia.

The medical research currently conducted is based on testing new orthopedic surgical meth-

ods on corpse samples. To test the results of the new operating methods, for example joint sta-

bility, a Kuka KR-6 industrial robot with a 6DOF load cell is used. The next step is to also include

active muscle management in stability tests.

This project will therefore aim to create a system to be able to actively control a ankle joint

for usage in stability tests using linear actuator and load cells. The focus will lie in making a

robust and modular system.

1.2 Problem Formulation

The basic problem for this project is to create a system that is able to actively control a ankle

joint and make the ankle have a realistic movement pattern. This should be done by pulling

on the tendons located in the ankle joint. The system should also be able to measure the load

being applied to the specific tendon. Furthermore, the system should be powerful and modular

enough so that it can later be used for testing other types of joints.

Additionally there should be a simulation that can be run separately from the prototype, and

a visualization of the simulation results.

Problems to be addressed

• Designing a rig

• Design and implement a controller for the linear actuators

• Implement a system for reading the load cell data

• Creating a ankle model to be used for testing

• Create a simulation and visualization for testing without the prototype

CHAPTER 1. INTRODUCTIONS 10

1.3 Limitations

In this particular project the limitations mainly derives from the group members limited knowl-

edge of the medical aspects related to the task.

Another limitation is the current Covid-19 pandemic. Since the laboratory is located at a

hospital, the regulations are strict and changes rapidly based on the current infection rate. This

adds a lot of uncertainties and means that the group can lose access to the lab overnight. There-

fore the group will try to do the majority of the work on the project at NTNU, even though this

can have a impact on the result. Another effect of the pandemic is the availability and delivery

times of parts needed for the project.

No matter what the effects of the pandemic, the main focus of the group will always be that

of safety.

1.4 Requirements

The requirements for the project is as follows;

• Design a modular system

• Create a functioning prototype

• Make the ankle have a realistic movement pattern

• Design a appropriate model for the simulation with regards to ankle testing

• Have a visualization that clearly highlight the simulation results

CHAPTER 1. INTRODUCTIONS 11

1.5 Structure of the Report

The rest of the report is structured as follows.

Chapter 2 - Theoretical basis: Chapter two gives an introduction to the theoretical background

needed in this report, with proper references to each literature reference used. Theoretical ba-

sis may involve concepts, definitions, methods, standards and theory to explain specific system

behavior.

Chapter 3 - Method: Contains a description of the methodology and materials that were con-

sidered throughout the project. It also contains important information of what needs to be con-

sidered for building rig for active ankle control. In the end of the chapter there is a description

of how the tests will be executed.

Chapter 4 - Result: Contains a description of the finished prototype, the material for building

it and the software developed for the project. In addition to this it contains results from the tests.

Chapter 5 - Discussion: An assessment of the chosen methods and achieved results. As well

as limitations, changes done and sources of error.

Chapter 6 - Conclusions: This chapter present an overall conclusion and the experiences gath-

ered trough out the project.

Chapter 2

Theoretical basis

This chapter contains the theoretical basis needed for making decisions throughout the project.

2.1 Joint

Joints are the areas where 2 or more bones meet. Most joints are mobile, allowing the bones to

move. Joints consist mainly of the following: [1]

• Cartilage. This is a type of tissue that covers the surface of a bone at a joint. Cartilage helps

reduce the friction of movement within a joint.

• Ligaments. Strong ligaments (tough, elastic bands of connective tissue) surround the joint

to give support and limit the joint’s movement. Ligaments connect bones together.

• Tendons. Tendons (another type of tough connective tissue) on each side of a joint attach

to muscles that control movement of the joint. Tendons connect muscles to bones.

2.1.1 Ankle

In medicine, the ankle is defined as the joint that connects the bones in the lower leg to the foot

bones. It can be divided into two parts: the upper and lower ankle. [21]

The upper ankle allows us to move our feet upwards, downwards, and a little to the side. It is

made up of three bones:

12

CHAPTER 2. THEORETICAL BASIS 13

• The tibia (shinbone): the main bone in the lower leg.

• The fibula (calf bone): a second, thinner bone on the outer side of the lower leg.

• The talus (anklebone): the foot bone that connects to the shinbone and calf bone.

Figure 2.1: Healthy ankle, seen from above and from the side.

Source: www.ncbi.nlm.nih.gov

The lower ankle connects the anklebone to the bones in the tarsus (the midfoot and hind-

foot) and the heel bone. It does not move as much as the upper ankle. The lower ankle allows

the foot to tilt to the side a bit and also turn inwards and outwards. Turning your foot outwards

is known as pronation, and turning it inwards is called supination. [21]

CHAPTER 2. THEORETICAL BASIS 14

2.1.2 Ankle tendons

Figure 2.2: The most important ten-
dons in the ankle.

Source: www.eorthopod.com

The ankle joint is also supported by nearby tendons.

The large Achilles tendon is the most important ten-

don for walking, running, and jumping. It attaches

the calf muscles to the calcaneus (heelbone) and is

used for raising the heel. The posterior tibial ten-

don attaches one of the smaller muscles of the calf

to the underside of the foot. This tendon helps sup-

port the arch and allows us to turn the foot inward.

The anterior tibial tendon allows us to raise the foot.

Two tendons run behind the outer bump of the an-

kle. These two tendons, called peroneus brevis and

peroneus longus, help turn the foot down and out.

[18]

In summary:

• Achilles, raises the heel.

• Posterior tibial, turns the foot inward.

• Anterior tibial, raises the foot.

• Peroneus brevis, turns the foot down and out.

2.1.3 Ankle joint stability

The ankle is not as mobile as some other joints, how-

ever due to the need for the foot and ankle to move both up and down but also inwards and

outwards, there is an innate tradeoff for stability. The primary stabilizers of the ankle are the lig-

aments around the ankle, however the secondary stabilizers are the tendons that cross the ankle

joint. This means that when the ligaments are injured, the tendons often have to work harder to

CHAPTER 2. THEORETICAL BASIS 15

maintain stability, thereby putting them at risk for injury as well. [2]

2.1.4 Testing joint stability

At Ålesund Biomechanical Laboratory the current system for testing joint stability is performed

using a robot to determine the biomechanical stability. As of now, the tests are run on a shoulder

joint. The tests are performed by applying a force along two axes, horizontally and vertically,

and at the same time measuring how far the joint ball moves. These tests are performed four

times. The first test is performed on a intact and "healthy" carcass to determine a base mea-

surement, later the test is performed on the carcass after the surgeons have inflicted it with an

injury. The remaining tests are performed after the surgeons have corrected the injury by two

different surgical methods. This kind of testing provides data that is used to evaluate new and

existing surgical methods.

Figure 2.3: Kuka robot performing tests on a sholder joint.

Source: www.tu.no - Jørn-Arne Tomasgard

CHAPTER 2. THEORETICAL BASIS 16

2.2 Linear actuator

Linear actuators are a type of actuator that convert rotational motion in motors into linear or

straight push/pull movements. There are several ways of achieving this conversion. The most

commonly used techniques are either by belt-driven actuators, ball screw driven actuators or

rack and pinion driven actuators. These three different actuator implementations all apply lin-

ear motion by rotary motors, but they differ in strengths and limitations. [7]

2.2.1 Belt driven actuators

A belt-driven actuator converts rotary motion to linear motion by means of a timing belt con-

nected between two pulleys at either end of the drive. The belt contains teeth that mesh with

the pulleys to efficiently transfer torque and prevent slipping. A belt drive is normally enclosed

within a body with the load carrying carriage riding on top along rails. [14]

Figure 2.4: Belt driven actuator.

Source: www.isotechinc.com

Pros:

• High speeds and acceleration

• High duty cycle

CHAPTER 2. THEORETICAL BASIS 17

• Low noise levels

Cons:

• Not as accurate as other types

• Low load carrying capability

2.2.2 Ball screw actuators

A ball screw actuator consists of a ball screw and ball nut with recirculating bearings that roll in

the grooves formed by the screw and nut. [7] Rotating the screw will move the nut up and down

the length of the screw.

Figure 2.5: Ball screw actuator.

Source: www.thomsonlinear.com

Pros:

• High load carrying capability

• High levels of accuracy

• High mechanical efficiency

• Reduced power requirement

Cons:

CHAPTER 2. THEORETICAL BASIS 18

• More expensive than other types

• Prone to be noisy

• Slower than other types

2.2.3 Rack and pinion actuators

Rack and pinion gear sets consist of a circular gear called a pinion that engages the teeth of a

linear gear called a rack. [7] Rotating the pinion will it move it up and down the rack.

Figure 2.6: Rack and pinion actuator.

Source: www.rk-rose-krieger.com

Pros:

• High speeds

• High accuracy over long travel lengths

• Few components

Cons:

• Need active lubrication

• High friction

• Need clearance, therefore backlash is a possibility

CHAPTER 2. THEORETICAL BASIS 19

2.2.4 Controlling the linear actuator

To control a linear actuator, a DC-motor driver is used. A motor driver controls the torque,

speed, and direction of rotary and linear electric motors. They function by taking a low-current

control signal and turning it into a higher-current signal that drives the motor. These can either

be a stand-alone unit or part of the linear actuator itself. [3]

2.2.5 Voltage clamp

A voltage clamp is a circuit used with a motor controller to divert excess energy away from the

control circuitry and power supply to prevent damage. The primary purpose of a voltage clamp

is to protect a motor controller’s power supply from the regenerative power created when a mo-

tor is stopped or slowed down quickly. A motor spins when power is applied to it, however it also

acts as a generator when slowing down or suddenly stopped. This energy opposes the flow of

current to the motor and is directed back to the motor controller and power source. Switching

power supplies are not designed to handle this power surge. A voltage clamp detects this power

surge as a rise in voltage and sends the excess current to a resistor where it’s turned in to heat.

[16]

2.3 Load cell

A load cell is a sensor or a transducer that converts a load or force acting on it into an electronic

signal. This electronic signal can be a voltage change, current change or frequency change de-

pending on the type of load cell and circuitry used.[13] The inner working of a load cell differs

based on the load cell that you choose. There are hydraulic load cells, pneumatic load cells, and

strain gauge load cells. Strain gauge load sensors are the most commonly used among the three.

[5]

2.3.1 Strain gauge

A strain gauge is a device that measures electrical resistance changes in response to and pro-

portional of the strain applied to the device. The most common strain gauge is made up of very

CHAPTER 2. THEORETICAL BASIS 20

fine wire, or foil, set up in a grid pattern in such a way that there is a linear change in electrical

resistance when strain is applied in one specific direction, most commonly found with a base

resistance of 120Ω, 350Ω, and 1,000Ω.[4] This change in resistance then leads to a change in

output voltage when a input voltage is applied.[5]

2.3.2 Strain gauge based load cells

Compression Load Cells

Compression load cells measure the pushing or squashing force, and are typically installed un-

derneath what is to be measured or weighed. Compression load cells are unidirectional, only

designed to measure the downward compression. They do this with strain gauges attached

to the body of the load cell. When under compressive load, the body of the load cell deforms

slightly. [12] The strain gauges, which are bonded to the load cell body also distort, giving a

change in resistance.

Figure 2.7: Compression load cell.

Source: www.eilersen.com

Tension Load Cells

Tension load cells (also known as S-beam load cells) are predominantly used for measuring ten-

sion or pulling force. Many can also measure compression, which makes them very versatile

due to having bi-directional sensitivity. When experiencing a load, the main body of the load

cell deforms slightly. [9] The strain gauges, which are bonded to the load cell body also distort,

giving a change in resistance.

CHAPTER 2. THEORETICAL BASIS 21

Figure 2.8: Tension load cell.

Source: www.synectic.co.uk

Beam Load Cell

Beam load cells operate as simple cantilevers that flex slightly when subjected to a force or

weight. They are typically fixed at one end and free at the other, behaving much like a diving

board. When a load is applied, the body of the load cell will flex due to the elastic properties of

the metal material that it is made from. [8] The strain gauges, which are bonded to the load cell

body also distort, giving a change in resistance.

Figure 2.9: Beam load cell.

Source: www.pavonesistemi.com

2.3.3 Load Cell Accuracy Classes

Load cells are highly accurate devices but have different accuracy classes, these classes can give

more information on precisely how accurate the load cell is which in turn can help with selec-

CHAPTER 2. THEORETICAL BASIS 22

tion for certain applications. [6]

D1 – C2: This load cell accuracy class is relatively low. It is sufficient for example applica-

tions in simple building materials scales which are used to weigh cement, sand or water as well

as non-trade applications.

C3: The accuracy class C3 offers an accuracy of 0.0230% and is the most common accuracy

class. Typical applications include; belt scales, platform scales and other industrial weighing

devices.

C4 – C5: The accuracy class C4-C5 offers an accuracy of 0.0174% - 0.0140%. This accuracy class

is higher and is usually used for shop counter scales.

2.3.4 Load cell amplifier

A load cell amplifier is a device that can increase the strength of the signals coming from a load

cell. Sometimes the signals produced by the load cell can be to weak to read directly. A load cell

amplifier resolves this issue by taking the signal and amplifying it, resulting in a higher strength

output signal that can be read directly. [10]

2.4 Micro controller

A microcontroller is an integrated circuit (IC) device used for controlling other portions of an

electronic system, usually via a microprocessor unit, memory, and some peripherals. These

devices are optimized for embedded applications that require both processing functionality and

agile, responsive interaction with digital, analog, or electromechanical components. [11]

CHAPTER 2. THEORETICAL BASIS 23

2.5 Serial communication

Serial communication is a simple means of sending data to long distances quickly and reliably.

The most commonly used serial communication method is based on the RS232 standard. In

this standard, data are sent over a single line from a transmitting device to a receiving device in

bit serial format at a prespecified speed, also known as the Baud rate, or the number of bits sent

each second. Typical Baud rates are 4800, 9600, 19200, 38400. [20]

Serial communication is a form of asynchronous data transmission where data are sent char-

acter by character. Each character is preceded with a start bit, seven or eight data bits, an op-

tional parity bit, and one or more stop bits. The most commonly used format is eight data bits,

no parity bit, and one stop bit. The least significant data bit is transmitted first, and the most

significant bit is transmitted last. [24] For this a minimum of three lines are used: transmit (TX),

receive (RX), and ground (GND). Some high-speed serial communication systems use additional

control signals for synchronization. [20]

2.6 State-space

The folllowing was found in Norman S. Nise’s book, "Control systems engineering, 7th edition"[25].

A state-space model is a model that uses state variables to describe a system through a set

of first-order differential equations, instead of a higher order differential equation. The typical

state-space representation of a linear system is written as:

ẋ = Ax +Bu (2.1)

y =C x +D y (2.2)

Where A is a n matrix where n is the number of states. B is the n input matrix where p is the num-

ber of inputs. C is the q output matrix where q is the number of outputs. D is the feedthrough

matrix and is a q matrix. In system models without feedthrough, D is the zero matrix. All these

CHAPTER 2. THEORETICAL BASIS 24

matrices and/or values can vary with time. A block figure representation of the state-space

model can be shown in the figure below:

Figure 2.10: State-space in a block figure representation

Source: https://en.wikipedia.org/wiki/State-space_representation

2.6.1 System identification

The folllowing was found in Norman S. Nise’s book, "Control systems engineering, 7th edition"[25].

System identification is a general way to gain a model through experimental means. There

are many ways to identify a system experimentally, but the general rule is that it always includes

monitoring the systems response to inputs. The step response is typically used and can for

example see if the system is a close match to a first-order or second-order system. From ob-

servation one can then measure specific parts of the response to reverse engineer the system

approximately. This is often used on systems that are not in ideal circumstances or generally

complex systems to find a practical model instead of an overly complex and computationally

impossible solution.

Different system identification cases can generally be categorized into three groups, the

white box, grey box and black box models. The white box cases are where you have complete

information and could build it based on first principles, for example Newton equations. These

are the cases were usually the models can become overly complex and even impossible to ef-

CHAPTER 2. THEORETICAL BASIS 25

fectively use. The black box cases are the systems where we have no information between input

and output. The grey box model is a middle-ground between these two cases.

2.6.2 Basic control theory terminology

The following was found in Britannica’s definition of control systems[17].

In control theory there are many ways to control a system. Generally these can be catego-

rized into two main groups, the open-loop and closed-loop systems. The system is the whole

process with it’s controllers, inputs and so on. The process to be controlled is called the plant.

The actuator is the input into the plant. The actuator isn’t the input, but rather the response of

a error through a regulator, where the error is the difference between the output and the input

(desired value).

Another way to categorize different types of systems is by splitting into SISO (Single input

single output) and MIMO(Multi input multi output) systems. The difference is obviously the

amount of inputs and outputs, but also the ramifications of multiple inputs and outputs are sig-

nificantly more difficult equations for solving, especially by hand.

The two main ways of representing systems in control theory is in the frequency domain with

transfer functions, and in state-space. A transfer function is a function describing the relation

between it’s input and the output. The use-cases vary, and there are different strengths to using

either representation, but a important limitation of the transfer functions is that they are only

usable with SISO systems.

2.6.3 PID regulators

The following was found in National Instrument’s page on PID-Control[22].

PID (Proportional Integral Derivative) regulators are a type of control regulators that sub-

tracts the feedback from the input creating a error value as the input to the proportional gain,

CHAPTER 2. THEORETICAL BASIS 26

integrator and derivative and using the responses into as input to the actual plant (system being

regulated). A PID controller can contain any combination of the three control elements, for ex-

ample a PD controller with a proportional and derivative part, but without a integral part. This

would simply mean setting the integral gain equal to 0. A example of a PID regulated plant is

shown in fig. 2.11.

Figure 2.11: A example of a PID regulator used to regulate a basic 2nd order system, made in
Matlab

The way we would expect the response to be here would be a summation of the responses

from the different parts of the PID regulator.

1. Proportional feedback corrects the input proportionally by the output. With only this type

of control the output will never reach the exact desired value since the applied correction

approaches 0 as the output reaches the desired value. In this example, the expected output

from the proportional controller would be a increase of 5, which will decrease quickly

when reaching the desired value, but still overshooting since the initial speed will be quite

large, and also therefore oscillate.

2. Integral feedback accumulates the error and grows bigger when there is continuous er-

ror. This removes steady-state (value at t =∞) error since if there is a error, the integral

feedback will gradually grow bigger to reduce the error until it is exactly 0. The expected

response from the integrator would be a small value, constantly increasing for a quite long

time until finally the error is equal to 0.

3. Derivative feedback depends on the error’s rate of change. If the error is quickly reach-

ing zero, the derivative feedback will slow it down, reducing the overshoot. The expected

CHAPTER 2. THEORETICAL BASIS 27

response in this example would then be a large initial value comparatively to the rest of

the response, but still small in comparison to the proportional response. Therefore there

will still be overshoot, but it will be somewhat reduced and continuously work against the

overshoots the proportional response will have.

The resulting figures at t = 10 and t = 300 is shown in figures 2.12 and 2.13.

Figure 2.12: The PID regulated plant response at t = 10

In figure 2.12 the proportional and derivative responses are highlighted as the response

quickly grows towards the desired value, and overshoots less and less until finally settling at

somewhere just above 0.85 which is not too far off, but still not the desired value. It is also very

clear that the proportional and derivative responses cancel each other out since the integrator

has not yet been able to grow very large, and the response is settling on a more or less constant

value.

CHAPTER 2. THEORETICAL BASIS 28

Figure 2.13: The PID regulated plant response at t = 300

In figure 2.13 the integral response is highlighted, since at around t = 10 the derivative and

proportional responses started cancelling each other out leaving a steady-state error for the in-

tegrator to get rid off. Slowly the constant error makes the integral response grow and reduce

the error towards 0.

2.7 Kinematics

Kinematics is the study of the motion of points, objects, and groups of objects without consider-

ing the causes of its motion [23]. This branch of physics is used to then understand the motion

of a object or set of objects, and be able to use this understanding afterwards to control it or

predict it using forces and applying other fields of physics on the model or representation. The

understanding of the motion of a object also means understanding it’s limits, and being able

to then use these limits to further simplify or reevaluate a given system. A limit in how many

directions a object can move independently is called the degree of freedom of said object.

CHAPTER 2. THEORETICAL BASIS 29

A example that would be relevant to this project could be a elbow joint that can only rotate in

one direction, albeit with positive or negative velocity, which means it has one degree of freedom

[27]. It has a circular motion, meaning that it will have a velocity that changes in two axis, but

they are co-dependant. This therefore mean that the system only has one degree of freedom.

Other kinematic analysis that could be done would be how far the elbow would have to rotate

to end in a specific angle.

2.8 Mass-spring-damper systems

The following was found in a article written by Prof. Larry Francis Obando called "Mass-Spring-

Damper System Dynamics"[26].

A mass-spring-damper system is a system that consists of a combination of masses, springs

and dampers.

These components each have specific properties. These properties are defined as follows:

• Mass is the object or elements innate ability to resist change in motion

• Springs are a elastic type system component able to deflect under load, and store up en-

ergy.

• Dampers are components that is restraining of vibratory motion, such as mechanical os-

cillations, noise, and alternating electric currents, by dissipation of energy.

Mathematically speaking the way these components function in a system is as shown in

figure 2.14

CHAPTER 2. THEORETICAL BASIS 30

Figure 2.14: Force-velocity, force-displacement, and impedance translational relationships for
springs, viscous dampers, and mass

Source: https://dademuch.com/2018/12/28/mass-spring-damper-system-dynamics/

Therefore when analyzing a system consisting of all three, the system will work with regards

to both position, velocity and acceleration. The mass resists acceleration, the damper resists

velocity and the spring resists displacement.

Chapter 3

Methods and materials

3.1 Method

3.1.1 Project Organisation

The group will have one project leader and one secretary. As the team only consists of two mem-

bers, these are the only two roles in the group. Once a week the project leader and the secretary

will book a meeting and write a summary of the previous week. Even though the group has a

leader, the group will work as a flat organization where decisions and agreements are taken in

unison. Each team member will be responsible for one or more main tasks, this to evenly dis-

tribute the work.

Every other week the group will have meeting with the supervisors. During these meetings,

the group will discuss the progress, solutions to possible challenges, and suggestions for possi-

ble improvements. In the early stages of the project, the group will establish a plan based on the

task provided by the employer. To ensure a good result and efficient approach a project plan has

been made. This plan contains information about when subtasks will start and be completed. A

short version of the plan is listed below. The thesis will be written in parallel to the tasks.

• Make a detailed concept drawing of the total system. This drawing will contain the mea-

surements and basic design. This will give the team members an overview of the tasks

needed to be done and a idea of what the result should be in the end. The concept draw-

31

CHAPTER 3. METHOD 32

ing will be made as a 3D-CAD model.

• Select the needed components for the project.

• Test the individual components before configuring and assembling the system.

• Perform a complete system check.

• Develop the necessary control software to control the actuators.

• Design and calibrate control software specifically for ankle testing.

• Design a mathematical ankle model, and use it for simulating a walking motion.

• Create visualization for the simulation results.

3.1.2 Ankle testing rig

To design and build a testing rig for ankle joint stability, several elements need to be taken into

consideration. The general specifications are explained beneath.

Rig design

The rig needs to be designed in a way suited for the facilities found at Ålesund Biomechanics

Laboratory. The laboratory has a limited amount of space, this means that the rig needs to be as

compact and modular as possible. As the laboratory is also being used to perform other tests,

the rig needs to be designed in a way that its not a nuisance to the personnel performing these

tests.

The rig needs to be able to handle heavy loads. It must be capable of withstanding the loads

that are exerted on the large tendons in the body, i.e. the Achilles tendon that can bear loads in

excess of 3500N. [19]

Linear motion

For controlling the tendons, a method for providing motion is needed. A tendon only has one

degree of freedom, thus the only movement needed is extending and retracting. When choosing

CHAPTER 3. METHOD 33

the method for creating the linear motion there are two main criteria that needs to be met. First

criteria being accuracy in operation. The second criteria is being able to handle heavy loads. For

controlling the tendons, the accuracy needs to be high enough to be able to make small adjust-

ments, at the same time the maximum load abilities needs to be in the region of 3500N. [19]

For generating this motion, some kind of actuator is required. To find a suitable actuator, it is

important that it is capable of meeting the requirements for accuracy and force needed. When

a suitable actuator has been selected, a compatible motor driver is necessary for operation.

Measuring the load

For measuring the load that is applied to the tendons, some sort of load cell is required. Since

the tendons behave like a rope, the load cell only needs to be able to measure pulling force.

When choosing the type of load cell, there are two main criteria that needs to be met. First

criteria being accuracy, the second criteria is being able to handle high loads. For measuring the

load on the tendons, the accuracy needs to be high enough measure small differences in pulling

force, at the same time the maximum load capabilities needs to be the same or higher than the

chosen actuator.

System controller

For controlling the system, some kind of microcontroller is needed. The suitable controller

would need to be able to read and write to all the components in the rig, these signals may

be both analog, digital and serial communication. The controller would therefore need to have

enough inputs and outputs to match the other chosen components. It would also be beneficial

if the controller used a well-established programming language, and preferably something with

supported libraries for the chosen components.

3.1.3 Ankle model

To be able to test if the rig is able to perform ankle tests, a model of an ankle is needed. This

model needs to be as similar as possible in form and function to a real ankle. The model would

CHAPTER 3. METHOD 34

also need to be equipped with some form of tendons. The model used for testing purposes

should also be affordable and easily modifiable. It would also be beneficial if the model was not

easily broken or distorted if problems with the rig were to arise during testing.

3.1.4 Simulation

The simulation of a ankle is initially a highly complex task. To simulate a system one first needs

to approximate a ankle as a physical system for analysis. To do this, the separate parts of the

ankle need to be defined into the model or ignored for simplification. Both the specific skeletal

structure of the ankle and the general complexity from nerves, muscle and other anatomical fac-

tors complicates the system dramatically. Reducing the number of factors simplifies the system

down to a system that is possible to analyze using fundamental laws of physics and generate

models from.

Creating a model

There were five steps to create the model used in the simulations in this project.

1. Simplify the anatomical complexities.

2. Create a kinematic model.

3. Transform the kinematic model into a analyzable physical system.

4. Find the equation(s) that describes the physical system.

5. Translating the equation(s) into a state-space model representation of the system.

The complete ankle system was first simplified anatomically. The complexities of the nerves,

muscle etc. were evaluated at this stage. The primary goal of the simplification was to have min-

imal effect on the kinematics of the system, while still simplifying it as much as possible.

The next goal is to make a kinematic model from the anatomic one and simplify it as much

as we can without losing the qualities necessary for the overall goal of the model’s predictions.

CHAPTER 3. METHOD 35

Then the kinematic model is transformed or rather physically represented through a ap-

proximately equivalent system using analyzable components. These analyzable components

could’ve been any standard component that has real-world properties like mass, dampers, springs

etc.

From analyzing the physical system, we then find the equation(s) that describes the system.

This is done with the fundamental laws of physics, like Newton’s laws or Kirchhoff’s laws.

When the system’s equation(s) are found, the last step is to translate the equation(s) into

a form that can be simulated. To do this the equation(s) are algebraically put into state-space

form with, ẋ = Ax +Bu and, y =C x +D y .

Implementing the simulation with Matlab

Implementing the simulation with Matlab is simply inserting the model and using the built-in

lsim() function with the system, time range of the simulation and the inputs at all times in the

simulation. Of course there is no need to use the built-in function, but the quality and flexibility

of it makes the added benefit of a custom-function negligible.

3.1.5 Visualization

The goal of the visualization is to show the results from the simulation in a meaningful way.

To do this, the simulation data need to be translated and then put into figures that updates to

become a video-like representation.

Translating the results into figures

The translation from the simulation results into a visualization figure is completely dependent

on the simulation output. The output needs to be understood and then logically reconstructed

in the figures. Using this project as an example, the logical visualization of the simulation would

be to visualize a ankle movement, which then means to draw a ankle, and change it’s position

or angle to accurately represent the simulation results. Therefore the simulation was first made,

CHAPTER 3. METHOD 36

then the visualization was designed afterwards to satisfy any need for data translation.

Creating the moving image of the simulated ankle

To create a moving image (video) of the simulated ankle the figures need to be simulated and vi-

sualized in many "frames" that can be cycled through to create the illusion of movement. There

are many programming languages available that can do this, and all that is necessary is to either

save and replay the visualization frames, or to live-play them while simulating. After deciding

on a programming language and whether to replay or do a live visualization the geometric logic

in the visualization shapes needs to be implemented.

Implementing the visualization with Matlab

Implementing this in Matlab requires the use of a figure and clearing it before generating the

next figure and either storing them to replay after the complete simulation and visualization

data is generated, or updating them in real-time with the simulation. Dependent on the func-

tion used for creating the figures, and the quality of the figures that are generated, the speed of

the updates may vary greatly. With very high quality comes more data and more calculations

for the generation onto the figure. The choice between real-time and replays are therefore com-

pletely dependent on the specific situation.

CHAPTER 3. METHOD 37

3.2 Materials

This chapter gives insight and explanation of the materials in the project. it will also elaborate

on the choices made and the components that were selected. Since the project is a proof of

concept, all of the components are chosen based on combination of availability and price, while

still meeting the requirements specified in the previous section.

3.2.1 Data collection

Since the provider for this project is Ålesund Biomechanical Laboratory, the group had access

to resources that would otherwise be difficult to obtain. At the laboratory the group had an

orthopedist to help with the challenges regarding the medical field. The lab also had a selection

of literature and scientific papers covering the relevant subjects. The engineers at the laboratory

also shared their experience and knowledge.

3.2.2 Construction

When choosing material for the main construction there were some options. The two main al-

ternatives were stainless steel or aluminum. Stainless steel would need to be cut and welded.

This, in comparison to aluminum, which can be bought as finished profiles, and therefore do

not require any fabrication.

The group decided that the best material for constructing the rig would be to make it out

of aluminium profiles. These types of profiles are strong, lightweight and very modular. Alu-

minium profiles are also available in a huge variety of dimensions and lengths. The aforemen-

tioned points are all highly desired attributes for this kind of rig, and the reason why aluminium

profiles would be ideal for this application.

CHAPTER 3. METHOD 38

Figure 3.1: Example of aluminium profiles.

Source: www.industry-plaza.com

3.2.3 Ankle model

When choosing what type of ankle model to be used for testing, the group consulted a ortho-

pedic surgeon at the laboratory. Together it was decided that the "Fot med ankelledd, fleksibel,

model 6056" (Foot with ankle joint, flexible) would be ideal. This is a model normally used for

medical education. In this model the skeletal parts are made of plastic, and are connected with

elastic strings.

(a) Front. (b) Side.

Figure 3.2: Ankle model.

Source: www.gymo.no

CHAPTER 3. METHOD 39

3.2.4 Linear motion

For creating the linear motion to pull on the tendons the group considered using ball screw

driven actuators, belt driven actuators or rack and pinion driven actuators.

Belt drive actuators are best suited for moving lightweight objects over long distances at var-

ious speeds. A drawback to belt drive is the stretching effect of the belt making for imprecise

movements under heavy loads. The next alternative was rack and pinion actuators. These can

move heavy weighted objects over long distances with high accuracy. The main drawbacks are

the excessive need for lubrication and the complicated mounting method, which would make

it challenging to fit in the space available. The last alternative are ball screw actuators. By using

ball screw actuators it is possible to move heavy loads with high accuracy. Some other advan-

tages is the low need for maintenance and the compact dimensions. The main disadvantage of

ball screw actuators are the high price and relative low operating speeds.

By considering the limitation set by the available space, and the need for precise movements

under potentially heavy loads, the group’s choice for linear motion were ball screw actuators.

When selecting the specific actuators for the task, there were many factors that needed to be ad-

dressed. Firstly the actuators needed to be able to move loads in the area of 3500N, and prefer-

ably at at reasonably fast speed. Secondly the project needed four actuators, one for each of the

tendons to be controlled. This was of course a big factor when considering cost, because any

potential price difference between different actuators would effectively be increased fourfold.

When considering our available suppliers and available budget the choice finally fell on the

"RS Pro Electric Linear Actuator ID10, 24V DC" from RS Components. This is a ball screw actu-

ator with a travel range of 305mm, a force capacity of 2500N and a speed of 47.2 mm/s at full

load. There were several other actuators available within the price range, but no other actuator

had the satisfactory combinations of the desired specifications.

CHAPTER 3. METHOD 40

Figure 3.3: RS Pro Electric Linear Actuator ID10, 24V DC.

Source: www.rs-online.com

3.2.5 Linear actuator controller

For controlling the actuator the the group chose to use the "RoboClaw Motor Controller". These

were chosen because of their high performance and their excellent selection of compatible li-

braries. Since the linear actuator of choice has a power draw of 13.2A at 24V DC, the 2x15A model

of the RoboClaw was selected. As an added bonus each motor controller can run two actuators,

so only two RoboClaws were needed for the project.

CHAPTER 3. METHOD 41

Figure 3.4: RoboClaw 2x15A.

Source: www.basicmicro.com

3.2.6 Load cell

When selecting the type of load cell to use in the system the group considered compression load

cells, beam load cells and tension load cells.

Since the task of the load cell is to measure the pulling force on the tendons, the compres-

sion load cell is unusable, as it only measures compression forces. The beam load cell can be

used for measuring tension and is by far the most affordable alternative. However, using a beam

type load cell to measure tension requires a very specific way of mounting, and that can be a big

issue in this type of application. Tension load cells are made for measuring tension, and is often

formed in an S-shape, making it ideal for in-line load measuring. The drawbacks of the tension

load cell is the somewhat higher price compared to beam load cells. The group therefore de-

cided to go with a tension load cell.

When considering our available suppliers and available budget the choice finally fell on the

"RS PRO Alloy Steel S Beam Load Cell" from RS Components. This is a tension load cell with a

load capacity of 300Kg and a C3 accuracy class. There were a few other load cells available within

the price range, but no other load cell had the desired accuracy and a 300kg weight capacity.

CHAPTER 3. METHOD 42

Figure 3.5: RS PRO Alloy Steel S Beam Load Cell.

Source: www.rs-online.com

3.2.7 Load cell amplifier

For a load cell amplifier the group chose to go for the Seeed HX711 24-bit. The HX711 is an af-

fordable yet accurate 24-bit analog to digital converter made for strain gauge based load cells. It

has a plethora of libraries and examples, and works with just about any load cell and controllers.

Figure 3.6: Seed hx711 load cell amplifier.

Source: www.elfadistrelec.no

CHAPTER 3. METHOD 43

3.2.8 System controller

For handling input and output interaction it was necessary to run a microcontroller . This in-

teraction was needed to control both the load cells and the actuators. All group members were

familiar with the Arduino series of microcontrollers, this was therfore the obvious choice.

Arduino

Model Digital I/O Analog I/O Processor

Arduino Mega DI/O 54 AI 16 / AO 15 ATmega2560

Arduino Uno DI/O 14 AI 6 / AO 6 ATmega328P

Arduino Nano DI/O 14 AI 8 / AO 4 ATmega328V

Arduino Micro DI/O 20 AO7 / AI14 ATmega32U4

Table 3.1: Arduino models

The selected Arduino must have enough I/O for controlling the complete system. To ensure

compatibility with potential future expansion of the system, the group decided to go with the

Arduino Mega. To make the connection to the load cells as hassle free as possible, a shield made

by Seeed studios was also selected.

(a) Arduino Mega. (b) Seeed shield.

Figure 3.7: Arduino Mega and Seeed Shield.

Source: www.crazypi.com & www.distrelec.biz

CHAPTER 3. METHOD 44

3.2.9 Communication protocol

The group chose to use serial using TTL for the communication between the controllers. This

was chosen because its supported by all our controllers. With serial there is no need for a bus,

and a point to point connection is easy to maintain and handle. Both the Arduino and the Robo-

Claw have libraries for serial communication, making the process easier. For communicating

with the Arduino and for the initial configuration of the RoboClaws the group uses a USB con-

nection and the manufacturers software.

3.2.10 Power supply

For powering the system, a power supply was needed. When choosing the power supply, calcu-

lations were made based on the specifications for already selected the components.

Firstly the the linear actuator is 24V DC, meaning the a 24V power supply is needed. Each

actuator is also rated at 13.4A at full load and the controllers are rated at 15A per channel. Some

calculations then show that the minimum rating for the power supply would be 1440 Watts.

(15A∗4)∗24V = 1440W

The closest power rating is 1500W. After considering availability and price the group chose to

go for the "Cosel 1.5kW Embedded Switch Mode Power Supply, 24V DC". This is a compact and

with a high efficiency of 88%, and a low idle powerdraw of only 1.5 Watts at idle.

CHAPTER 3. METHOD 45

Figure 3.8: Cosel 1500W power supply.

Source: www.rs-online.com

To protect the power supply from the regenerative power that occurs when braking the ac-

tuator, the Basicmicro VClamp board was chosen. From reading the VClamp documentation it

was recomended using a 50W 2Ω resistor.

(a) Basicmicro VClamp. (b) 50W Resistor.

Figure 3.9: VClamp and resistor

Source: www.robotshop.com & www.elfadistrelec.no

A fuse for the 230V input on the power supply was needed to protect against any shorts or

potential overloads. Some calculations then show that the required rating for the fuse.

1500W /230V = 6.5A

CHAPTER 3. METHOD 46

A 6A circuit breaker was selected.

3.2.11 Cable and pulley

For connecting the actuators to the ankle model, some sort of cable was needed. The group

decided that for the purpose of testing it would be beneficial to use a cable with a specified

break strength. This would help ensure that in case of failure, the cable would be the weak link,

and not damage the rest of the system. It was decided that the natural choice would be to use

braided fishing line. This type of line is soft and easy to work with, yet is strong and has virtually

no stretch. The line selected had a diameter of 0.40mm and a break strength of 26.4KG.

To be able to run the cable from the actuator to the ankle, some pulleys were needed. As

the cable would change directions two times between the connected points, two pulleys were

needed per actuator, for a total of eight pulleys. The group chose the Petzl P05W Aluminium

Pulley because of its affordable price and high strength of 5KN.

Figure 3.10: Petzl Aluminium Pulley .

Source: www.rs-online.com

CHAPTER 3. METHOD 47

3.2.12 End switches

Since the selected linear actuator did not have built-in end switches, external switches were

needed. It was initially desirable to use optical sensors since they do not have any wear. On the

other hand the need for extra wiring made them less attractive for use with a moving actuator.

The other alternative were mechanical end stop switches. These are easy to install, only requir-

ing two wires. This and the compact size made these the easy choice for detecting the outermost

retracted position of the actuator.

3.2.13 Software and libraries

The following software and libraries has been used throughout this project

Software

• Arduino IDE - Free environment for programming and interacting with the arduino mi-

cro controllers. Released and made by the arduino corporation. All arduinos has been

programmed using this IDE

• Fusion 360 - 3D designing software from Autodesk.

• Overleaf - A free web-based tool for writing in LaTeX. Some of included features are spell

checking and cloud-based storing. The cloud-based storage makes real-time editing pos-

sible and therefore it is possible to cooperate in the same files.

• MATLAB - A proprietary programming language and numeric computing environment

developed by MathWorks.

• Basic Micro Motion Studio - Software used to configure and monitor Roboclaw-units.

• Onenote - Digital note-taking app made by Microsoft.

• www.circuit-diagram.org - Online based software for making circuit diagrams.

CHAPTER 3. METHOD 48

Libraries

• HX711 - Arduino library for HX711 24 bit ADC used for load cells and scales.

• RoboClaw - Arduino library provided by BasicMicro for controlling RoboClaw.

• SoftwareSerial - Arduino library to allow serial communication on digital pins of the Ar-

duino.

Chapter 4

Result

4.1 Design

This section explains how the rig is designed. All 3D-models are made using Autodesk Fu-

sion360.

(a) Image. (b) CAD model.

Figure 4.1: Current lab.

By analyzing the environment where the final product will operate, the group made a rig

49

CHAPTER 4. RESULT 50

design to fit within these parameters. In the room where the rig would be localized, it is 110

centimeters of clearance between the current testing rig and the wall. The group therefore made

a CAD model of the room, to make further design choices an easier task.

4.1.1 Main frame

Figure 4.2: Main frame CAD model.

The main frame is the bearing construction and the shell of the rig. The material chosen for

the main frame is aluminum profiles, as decided in chapter 3.2.3. The frame is constructed

by 80x160 millimeter profiles using aluminum L-connectors for the purpose of connecting the

profiles at a 90 degree angle. When designing the main frame, it is desirable to use as much

vertical space as possible, so that it minimizes floor area used. It is also desirable that all moving

parts are kept within the circumference of the frame. As a result of these conditions the main

CHAPTER 4. RESULT 51

frame is 1070mm wide, 170mm deep and 2400mm high.

4.1.2 Linear actuators

Figure 4.3: Actuators CAD model.

The actuators are mounted vertically to make the best use of the available space. In this con-

figuration the actuators have a clearance of 1385mm from the top of the actuator to the top of

the frame when retracted, and a clearance of 1080mm when fully extended. This large clearance

allows for greater flexibility when configuring the load cells and pulleys.

This configuration also ensures that the actuators are mounted well within the perimeter of

the frame, and do not extend out in the room. They are mounted to the rig using two 90 degree

angle brackets per actuator. With each of the actuators being 77mm wide and the clearance

between them being 102mm, there is adequate room for at least 5 more actuators in case of

future expansion.

CHAPTER 4. RESULT 52

4.1.3 Load cells

Figure 4.4: Load cells CAD model.

The load cells are mounted directly on top of the actuators using a 90 degree bracket and 12mm

bolts. This makes for a solid and stable mount, ensuring good stability and repeatability when

measuring loads.

CHAPTER 4. RESULT 53

4.1.4 Cable and pulley

(a) Pulleys. (b) Cables.

Figure 4.5: Cable and pulley CAD.

To ensure a linear and accurate connection between the linear actuators and the ankle, the pul-

leys are positioned directly over the connections on each part. This helps prevent any of the

cables form pulling at a skewed angle. The distancing ensures that no cables or pulleys touch or

overlap.

CHAPTER 4. RESULT 54

4.1.5 Complete Design

(a) Room. (b) Rig.

Figure 4.6: Complete design CAD.

Figure 4.6 shows the completed rig design placed in the current laboratory.

CHAPTER 4. RESULT 55

4.1.6 Electrical layout

Figure 4.7: Wiring diagram control circuit.

The control circuit schematic as part of the electrical layout is as shown in figure 4.7.

CHAPTER 4. RESULT 56

Figure 4.8: Wiring diagram main circuit.

The control circuit schematic as part of the electrical layout is as shown in figure 4.8.

CHAPTER 4. RESULT 57

4.2 Build

This section explains how the rig was built.

Because of limited access to the lab at Ålesund Biomechanical Laboratory, the group decided

together with the supervisors to build the frame out of wood as a proof of concept, instead of

the aluminium design. The build was therefore performed by the group members in the FabLab

at NTNU Ålesund.

4.2.1 Main frame demo

Figure 4.9: Main frame demo.

The main frame demonstration was constructed using

48x48mm timber with a 24x144mm plank as a base. The

corners were strengthened using 90 degree steel brack-

ets. This frame was made to replicate the aluminium

frame design, and was meant for demonstration and

testing purposes. The dimensions are therefore true to

the original CAD design, only without the lower feet.

4.2.2 Linear actuators

The linear actuator were mounted to the base of

the frame using two modified 90 degree steel brack-

ets per actuator. The brackets have a dimension

of 60x60mm and originally had a 10mm mount-

ing hole. The 10mm hole was drilled out to

12mm to fit the mounting bolt for the actuator.

The brackets were fastened to the wood base us-

ing 20mm long wood screws, and to the actua-

tors using a 12mm diameter bolt and a locking

nut.

CHAPTER 4. RESULT 58

(a) Actuators. (b) Brackets.

Figure 4.10: Actuators build.

4.2.3 Load cells

The load cells were mounted on the arm of the linear actuators using a modified 90 degree steel

bracket. The brackets were originally 40x80mm but was shortened to 40x40mm. The brackets

originally had 8mm mounting holes, these were drilled out to 12mm. The bracket were mounted

to the actuator using a 12mm diameter bolt and a locking nut. The load cell was mounted to the

bracket using a 12mm bolt. This ensures a tight and stable mount.

(a) Load cells. (b) Brackets.

Figure 4.11: Load cells build.

CHAPTER 4. RESULT 59

4.2.4 Cable and pulley

The pulleys were mounted to the top of the frame using braided fishing line. The cables running

to the ankle were connected to a eye bolt on the top of the load cells using a pin, making for easy

adjustment and unhooking of the cable.

(a) Pulley. (b) Eye bolt.

Figure 4.12: Cable and pulley build.

CHAPTER 4. RESULT 60

4.2.5 Ankle model

Figure 4.13: Modified ankle model.

The plastic ankle model needed modifications to be able to be used for testing purposes. Firstly

holes were drilled in the location where the four tendons: Achilles, Peroneus brevis, Posterior

and Anterior tibial attach to the bone. A 2.5mm screw hook was fitted in each of these holes. To

simulate the retinaculum that holds the tendons in place, a 6mm inner diameter fuel hose was

cut in 10mm lengths and held in place by cable clamps. To act as the tendons, clear fishing line

was tied to the hooks and guided through the simulated retinaculum. The model is mounted to

the frame using a single screw. This makes it possible to orient the ankle at a specified angle. As

seen in figure 4.12, the tendons are clear of the frame and have full range of motion.

CHAPTER 4. RESULT 61

(a) Inner. (b) Rear.

Figure 4.14: Modified ankle model

The finished ankle model has a negligible internal resistance and a full range of motion.

The only restrictions of movement is the physical shape of the ankle model. When pulling on

the simulated tendons, the end point in the range of motion makes for a notable increase in

resistance, as seen in table 4.1 This is helpful for defining end points in the control software.

Tendons Resistance - in grams

Tendon Low Neutral High

Achilles 50 50 400

Posterior tibial 50 150 230

Anterior tibial 50 150 280

Peroneus brevis 50 400 1200

Table 4.1: Tendons resistance

4.2.6 Electrical

The electrical system was connected as shown in the electrical schematics in 4.1.6. As this was

a temporary build, the control circuit was mainly connected via a breadboard.

CHAPTER 4. RESULT 62

All the electrical components functioned as intended. The Serial communication between

the Arduino and the RoboClaws worked without any issues. The voltage clamps kicked in as

intended when the actuators had any sudden stops or retardation, therefore the power supply

never had any issues. The load cells were accurate and had a fluctuation of only ± 6 grams at a

1% load, i.e. a 3 kg load.

Figure 4.15: Electrical connections.

4.2.7 Completed build

(a) Foot pointing up. (b) Foot pointing down

Figure 4.16: Ankle model during testing

CHAPTER 4. RESULT 63

Figure 4.16 shows the ankle in the 2 end positions during the initial testing. The ankle moves

steadily to each position before moving to the next position in a controlled manner. The ankle

model has little to no distortion or stretch while the values are within those measured in table

4.1. However when the values exceed those values, the elastic bands in the ankle begin to stretch

and the model starts to deform.

(a) Front. (b) Rear.

Figure 4.17: Completed build

The completed proof of concept build under load as showed in figure 4.17.

CHAPTER 4. RESULT 64

4.3 Implementation

4.3.1 Arduino code

The arduino code is the code used in the prototype, it controls the actuators, reads the load-cell

values and uses them for determining the direction to drive the actuators to reach the correct

ankle positions. There is also implemented a text-based user interface (UI) that gives control

over each actuator manually, and the option to use several automatic features like automatic

walking and automatic neutral foot etc. These automatic features base their movement be-

haviour on a PID control loop where the output sign from the PID determines the direction of

movement, and in contrast to typical PID control it does not change the speed of the actuators.

This is largely due to the fact that small speeds wouldn’t actually move the actuators, and so set

speeds were used instead.

setup()

In the setup function as in all Arduino’s the communication protocols are initiated. Then the

load-cells are calibrated with calibration factors that was gathered experimentally, making cal-

ibration upon every startup automatic. The desired load-cell readings for the ankle model’s

different positions are loaded in the setup; these load-cell readings were also collected experi-

mentally.

loop()

The Arduino loop consisted of a large switch statement where, if the loop is available, the person

operating the rig can input different characters to change the states of the system.

There are fourteen different inputs that are implemented currently. Those can be catego-

rized into three main categories, the automatic, manual and "other" commands. The "other"

commands are the commands that control whether the system is in automatic or manual mode,

and the fail-safe command that stops all motors completely disregarding any other system states

or variables.

The controls that aren’t mode specific are listed below:

CHAPTER 4. RESULT 65

• x : Stop all

• m : Manual mode

• a : Automatic mode

And inputs that are exclusively functional for manual mode:

• 1 : Select motor 1

• 2 : Select motor 2

• 3 : Select motor 3

• 4 : Select motor 4

• s : Stand-still

• f : Forward / Actuator up / Loosen

• r : Reverse / Actuator down / Pull

The inputs that decide actions like forward or reverse, will be applied to the selected motor only,

which by default is motor one, but with the use of the "Select motor X" commands 1-4 all motor

can be manually controlled.

And finally the inputs exclusively functional for automatic mode:

• u : Automatic upward (Drives the ankle to it’s highest angle)

• d : Automatic downward (Drives the ankle to it’s lowest angle)

• n : Automatic neutral (Puts the ankle in a neutral angle)

• w : Automatic walking

Automatic upward, downward and neutral are all simply using PID() with static desired load cell

reading values that the system continuously tries to achieve. The walking mode will simply cycle

through the other modes. The specifics will be described in more detail later this section.

CHAPTER 4. RESULT 66

PID()

The code for this function is shown in figure 4.18. The input is which motor it will read informa-

tion from and the time the load cell related to that motor was gathered, then set the directional

value for. First the function needs to establish a "sense" of time, to do both the integration and

derivation for the integral and derivative terms respectively. This is done by comparing the pre-

vious time of reading the load cells values and the current time of reading the load cells value.

Then it gets the error value for the load cell of the given motor, by comparing the reading with

the desired value that relates to the current motor and the current "position". The positions

are for example having the ankle in a neutral position. The error is then used in a typical PID

calculation and the output is returned.

float PID(int motor, unsigned long currentTime){

elapsedTime[motor] = currentTime - previousTime[motor];

error[motor] = desiredVal[currentAutoMotion][motor] -

Load_Cell_Value[motor];,→

cumError[motor] += error[motor] * elapsedTime[motor];

rateError[motor] = (error[motor] - lastError[motor])/elapsedTime[motor];

previousTime[motor] = currentTime;

lastError[motor] = error[motor];

float pid_out = Kp * error[motor] + Ki * cumError[motor] + Kd *

rateError[motor];,→

return pid_out;

}

Figure 4.18: Function from Arduino code in prototype without comments and compressed,
function: PID()

roboclawMovement()

The function roboclawMovement() was used to be able to give instant instructions to the actu-

ators while in a iteration. The reason why this is not so simple otherwise, is because the Robo-

CHAPTER 4. RESULT 67

Claw function that gives the instructions to the actuators uses two separate function names for

the two different motors in each address. The address is what identifies which RoboClaw motor

controller to communicate with. The alternative would be to use several if-else statements to

check which motor’s PID output is currently being calculated to use the correct RoboClaw func-

tion. Instead this function uses two inputs. First, the motor is identified with the first input, and

then the second input decides the actuator speed. This is also useful for improvements in the

future when potentially a varying actuator speed is implemented. In that case the speed can be

a variable that is simply put into this function.

The cases uses numbers starting from 0, because of the nature of arrays starting at index= 0.

void roboclawMovement(int motor, float velocity){

switch(motor)

{ case 0: roboclaw.ForwardBackwardM1(address1,velocity);break;

case 1: roboclaw.ForwardBackwardM2(address1,velocity);break;

case 2: roboclaw.ForwardBackwardM1(address2,velocity);break;

case 3: roboclaw.ForwardBackwardM2(address2,velocity);break;}}

Figure 4.19: Function from Arduino code in prototype without comments and compressed,
function: roboclawMovement()

actuatorControl()

In the function "actuatorControl()" the functionality of the other functions and the current

states determined by the operator through the serial in the loop() is brought together. Firstly

the function is divided into two parts, the manual and the automatic modes.

The manual part of actuatorControl() iterates four times, where the same sequence is re-

peated, but with a different motor each iteration. First it checks which state the current motor

is in, which would be stand-still, forward and reverse. For stand-still and forward the motor is

simply set to the speed that represents that state. In reverse, it first checks whether the current

motor’s end switch is pressed. That sets the speed to stand-still.

CHAPTER 4. RESULT 68

The automatic part of actuatorControl() does several separate tasks. It checks current status

with load cell readings. It uses those readings with PID control to decide which way to move

the actuators, if at all. Then checks if the current position of the ankle is sufficiently close to the

desired position to be considered a correct position. If this is the case then in walking mode it

will switch where it’s desired position is to the next one in the motion of walking. If in any of the

other automatic modes, the ankle will try to remain stable in that position. If the position is not

correct then it will keep trying to achieve the correct values, within a ±30 gram load cell reading.

The order of all these tasks are in the following order. First it resets the array that through

iterations holds the correct values information. This is so that a correct value from previous runs

won’t interfere in future ones. Then it reads the values of all load cells. The reason why this is

done every iteration, is since then the time between the reading of a load cell and the time of

the iteration it is used is reduced by at most 4 times. This is then used in the PID to calculate the

direction to move to get closer to the desired position. For the upwards and downwards posi-

tions of the angle of the ankle, the primary pull is in the front and back tendons, therefore these

primary tendons are the only ones being checked for being correct in order to confirm correct

position. Meanwhile the sides will also be pulled to try and achieve stability at their desired

positions, but these will not be necessary to confirm the position of the ankle. Then the exact

same method to apply the desired speeds on the motors are used as in the manual mode. After

the speeds are applied, the automatic mode will check one last state, which is whether the au-

tomatic mode is set to "Walking" or any of the other automatic motions. If it is specifically set to

"Walking", then it will cycle through the other motions by doing either upwards, or downwards

position then neutral, and then the one not directly previous to the current neutral.

CHAPTER 4. RESULT 69

4.4 Simulation

4.4.1 Model

To simplify the ankle, first the tension of flesh, nerves and muscle were disregarded. The skeletal

structure was also simplified, from the initial three boned ankle with a Tibia, Fibula and Talus

into a typical two boned joint as shown in figure 4.20, connecting the leg and the foot.

Figure 4.20: A typical two boned joint

Source: https://en.wikipedia.org/wiki/Synovial_joint

The new complexity introduced by replacing the ankle joint was reduced to only being a

point of rotation. This would make the joint a hinge joint similar to a elbow joint.

CHAPTER 4. RESULT 70

Figure 4.21: A lateral view of a elbow

Source: https://radiopaedia.org/cases/elbow-effusion-the-fat-pads

From the simplified ankle with only two bones, the kinematic modelling starts with defining

the ankle’s degree of freedom. This ankle has two degrees of freedom as shown in the figure 4.22.

Figure 4.22: Kinematic model of ankle with two degrees of freedom

Source: https://www.shutterstock.com/nb/image-vector/normal-synovial-joint-anatomy-
healthy-detailed-217315702

CHAPTER 4. RESULT 71

To simplify the kinematic model further, the rotation to the left or right was locked, and only

forward and backwards rotation remains. This means that the new kinematic model has only

one degree of freedom, very similar to a elbow joint. Therefore a elbow is used to show the

kinematics of the ankle when it is limited to one degree of freedom in figure 4.23.

Figure 4.23: Kinematic model of ankle limited to one degree of freedom

Source: https://radiopaedia.org/cases/elbow-effusion-the-fat-pads

In this case the transformation from a kinematic model to an analyzable physical one was re-

solved through re-representing the properties of the system with a mass-spring-damper system.

Since the system to be transformed had only one degree of freedom, the mass-spring-damper

system’s degree of freedom also had to be one. The mass-spring-damper system configuration

used is shown in figure 4.24. The effect of having the spring and damper connected to the mass

in parallel is that both are acting specifically in response to the mass’s change in position.

CHAPTER 4. RESULT 72

Figure 4.24: Mass-spring-damper representation of the simplified ankle

The connection between this model and the initial ankle is that the angle of the ankle is the

position of the mass, and the spring force represents tension, and the damping represents all

the friction inside the ankle complex. The mass simply represents the foot’s mass. This model

therefore includes the tension, friction, and mass of the ankle, when the skeletal structure of it

is assumed to be replaced by a hinge joint similar to an elbow joint.

From this the equation(s) to describe the system can be found analytically. The following

equations uses:

• x = Position of the mass in regard to x0 which is the position defined to have no spring

force

• k = Spring coefficient

• c = Damping coefficient

• m = Mass

• u = Input force / Pulling force

CHAPTER 4. RESULT 73

Finding the sum of forces acting upon the system and :

∑
F = u −Damping force−Spring force (4.1)

∑
F = mẍ (4.2)

Damping force = cẋ (4.3)

Spring force = kx (4.4)

mẍ + cẋ +kx = u (4.5)

This equation is of second-order and must be split into first-order equations to be used in

state-space, therefore some new definitions are made:

• x1 = x, which is the position

• x2 = ẋ = ẋ1, which is the rate of change of position

The first-order equations then become:

From definition:

ẋ1 = x2 (4.6)

Inserting the new definitions into the sum of forces equations gives:

mẋ2 + cx2 +kx1 = u (4.7)

ẋ2 = u

m
− cx2

m
− kx1

m
(4.8)

Which is the final system equations.

Finally the equations need to be translated into a state-space representation. The output of

the system is the position of the system, therefore:

y = x1 (4.9)

And with this and the found first order equations the state-space representation ends up looking

CHAPTER 4. RESULT 74

as shown in equations 4.10 and 4.11.

ẋ =
x1

x2

=

 0 1
−k

m

−c

m


x1

x2

+

 0
1

m

u (4.10)

y =
[

1 0
]x1

x2

 (4.11)

Which is the final state-space representation of the model.

4.4.2 Code

The code used in the simulation consists of five actions. The mathematical model of the ankle,

which now is a mathematical model of a mass-spring-damper system, is loaded into Matlab’s

workspace. The input over time is generated, the ankle’s height which represents how far into

the air the foot is lifted is generated, the simulation is executed, the results are stored and the

results are transformed into a angle.

The input and ankle height over time are created by creating a linear decrease, linear in-

crease or constant value throughout several stages. These stages translate to specific actions or

as described in the code for the prototype, motions. The motion going from upwards angle and

max height in the air, to then a neutral angle and min heigth which would be on the ground, is a

stage. These are completely separately made, but are equally linear, and was manually created

to fit each other. This is shwon in figure 4.25.

u = [0:stepsize:max max*ones(1,max/stepsize) flip(0:stepsize:max)

flip(-max:stepsize:0) -max*ones(1,max/stepsize) -max:stepsize:0];,→

ankle_height = [flip(max/2:stepsize/2:max) flip(0:stepsize/2:max/2)

zeros(1, max/stepsize) 0:stepsize/2:max/2 max/2:stepsize/2:max

max*ones(1,max/stepsize)];

,→

,→

Figure 4.25: The input and ankle height generation code from the simulation, compressed and
without comments

CHAPTER 4. RESULT 75

The state-space representation is loaded into Matlab’s workspace by inserting the state-

space matrices, A, B, C and D and using the built-in Matlab function ss() to generate the state-

space instance. This is shown in the code in figure 4.26.

A = [0 1;-k/m -c/m];

B = [0 1/m]';

C = [1 0];

D = 0;

sys = ss(A,B,C,D,'StateName',{'Position' 'Velocity'}, 'InputName','Force');

Figure 4.26: The state-space model generation in Matlab, compressed and without comments

The arguments after the matrices in the function ss(), are to give names to inputs and out-

puts, so that the clarity of the system is improved. Otherwise the names of the inputs would be

x1, x2... etc.

The actual simulation is then done by using the built-in Matlab function lsim(). This func-

tion takes the model, inputs and the time the simulation is "taking place", and outputs the

model’s output over time. This is shown in figure 4.27.

Y = lsim(sys,u,t);

Figure 4.27: The code the simulation is run, "Y" stores the simulation results, "sys" is the state-
space model, "u" is the input and "t" is the simulation time references, without comments

And finally the results are translated into a angle, since it up to this point representing a

point on a 1-dimensional line corresponding to the position of the mass from the mass-spring-

damper system. This is done with a function consisting of a single line of code, posToRad(),

which simply divides the input by 2*pi and returns it.

CHAPTER 4. RESULT 76

4.5 Visualization

The visualization is as stated in section 3.1.5 primarily created to show the results from the sim-

ulation in a meaningful way. Therefore the goal in the visualization design process is to make

the end-result as intuitive and clear as possible.

4.5.1 Code

The primary ways to visualize anything in Matlab is through plots and figures. Images can be

used as well, but only one image at a time since when a second image is put into a figure, the

first one is removed. Matlab has several other solutions for visualizing data, and the one used

in the visualization of the simulation in this project is the draw() function. This function draws

lines between points put into arrays that correspond to each "bundle" of lines. These bundles

are generated as shown in figure 4.28.

a1 = animatedline('Color', [0,1,0]);

a2 = animatedline('Color', [102/255,51/255,0]);

a3 = animatedline('Color', [1,0,0]);

a4 = animatedline('Color', [0,0,1]);

Figure 4.28: The line bundles being generated, each line generates a line bundle with it’s own
color and points array, without comments

These bundles are filled with points in a order to "draw" the lines from one point to the next,

then ending up with a shape. How "a1’s point array is filled is shown in figure 4.29.

addpoints(a1,A(1,i),A(2,i))

addpoints(a1,B(1,i),B(2,i))

addpoints(a1,C(1,i),C(2,i))

addpoints(a1,D(1,i),D(2,i))

addpoints(a1,A(1,i),A(2,i))

Figure 4.29: The way the a1 point array is filled, without comments

CHAPTER 4. RESULT 77

The points put into the a1 point array are A, B, C, D and then again A, and in that specific

order. This draws a line from A to B, then B to C and so on, until it ends back at A and the shape

is completed.

The way the points were decided was through basic geometric equations and using the sim-

ulation results for the angle of the ankle, and the ankle height. From these two variables, the

A point is decided to be at the x-coordinate= 0, while having a y-coordinate=The ankle height.

This provides the A point for all points in time. The next step is to find B, meaning the tip of the

foot, which is decided by the length of the foot and the angle of the ankle. Then when this point

is found, the displacement from this point and to C is simply the ankle’s current angle +π
2

mul-

tiplied with the foot’s height. Then the point and displacement to next point is added together

to find the next point. This pattern is then repeated and the same pattern is applied to the leg,

except the A point is shifted to make the leg and foot overlap, and that the leg doesnt depend on

the ankle’s angle. The geometric logic is shown in figure 4.30 and the code implementing this

geometric logic on figure 4.31.

Figure 4.30: The geometric logic used to find all points for visualization, where every corner of

the two rectangle’s angles are
π

2
rad

CHAPTER 4. RESULT 78

AB_displacement = [foot_length*cos(ankle_angle');

foot_length*sin(ankle_angle')];,→

B = A + AB_displacement;

BC_displacement = [foot_height*cos(pi/2 + ankle_angle');

foot_height*sin(pi/2 + ankle_angle')];,→

C = B + BC_displacement;

CD_displacement = [foot_length*cos(pi + ankle_angle'); foot_length*sin(pi +

ankle_angle')];,→

D = C + CD_displacement;

Figure 4.31: The code used to calculate the geometric points to "draw" for the visualization,
without comments

Chapter 5

Discussion

In this chapter we will discuss the process of this project as well as all choices we have made.

We will discuss what we think of the choices now and if it might have been done differently and

in so what could have been changed. We will also discuss how the process went and what we

learned from it.

5.1 Rig

5.1.1 Design and materials

Although the design of the main frame is a good solution, it still has room for improvement. No

dedicated cable management solution was implemented during the design phase and therefore

had to be done during the building phase, this was far from ideal and should have been planned

better. The design had more than adequate room for expansion. The cable and pulley design

worked as intended with no obtrusion. As the frame was designed to be located at Ålesund

Biomechanical Laboratory, the design was very specific and tailored to the dimensions of that

room. If we were to make a more universal design it would probably be quite different.

Because of the Covid-19 pandemic, we were not allowed to work at the lab, and were there-

fore not able to implement the aluminium frame solution. We would of course have preferred

to be able to build the originally thought-out design. However, the wooden frame worked nicely

79

CHAPTER 5. DISCUSSION 80

as a proof of concept with the low loads during the initial testing, but the natural flex that comes

with using wood as material would make it unusable for heavy loads or for accurate testing.

5.1.2 Hardware

The actuators and RoboClaws were strong and accurate, however in retrospect for this task the

actuator did not need to be as fast, and a slower and more affordable actuator could have been

used instead. Another feature we should have prioritized was to choose a actuator with a built in

positioning sensor, that would help with the initial positioning when testing and would remove

the need for end switches. Considering the loads used in testing, the 300kg capacity of the load

cells was excessive, and a more accurate result could be achieved with a lower weight rated load

cell, but at the cost of versatility. The fishing line used for the testing proved capable and had

no stretch, but for a more permanent solution something like a steel wire rope would be more

appropriate.

5.1.3 Software

When coding the software for the Arduino controller, we decided on using a a system of states,

so that we could have complete control over the actuators, and at any time "reset" the system

to stand-still if ever necessary. This also complimented the switching between manual control

and using automatic features.

The choice to use set speeds though, were not our ideal solution, but since there was tech-

nical issues with running too low speeds on the actuators, and system control instability issues

with too high speeds, we decided on choosing set speeds to make the system stable and func-

tional even with disturbance.

5.1.4 Testing

The rig was able to move the ankle in a realistic movement pattern. As revealed in section 4

Result, the load cells were accurate and only had a fluctuation ± 6 grams at a 3 kg load. These

CHAPTER 5. DISCUSSION 81

are good results, especially considering that is at only 1% of the load cells rated capabilities. The

modified ankle model had ha low internal resistance and a very realistic range of motion. The

model held its shape while under the low loads during testing, but would start to stretch when

the load became to high, stronger elastic bands could help to prevent this.

5.2 Simulation

5.2.1 Different stages throughout the project

The first simulations simply created values that would be nice outputs to have from a model,

but didn’t actually simulate a system other than if the system is considered to be a completely

unrealistic and arbitrarily moving one. In this simulation version, the simulation results were

simply generated, and these generated results were linear, either increasing, decreasing or con-

stant. Therefore every movement had a perfectly linear motion or exact speed. This was still

quite resembling of a ankle movement, just more robotic.

Then it became a rotating with a certain speed simulation, where there was close to a 1:1

ratio from input to angular speed in the ankle. Still not really a model of a realistic system at all,

but at least it was responsive to inputs instead of arbitrarily generated. In this version the model

was simplified to a one-dimensional circular motion, with no regards to physical attributes or

laws of physics. At this point, the simulation could be run with different inputs, showing differ-

ent ankle motions.

Lastly and finally, the simulation uses a state-space model with inputs and outputs to simu-

late an ankle, where the model is derived from a simplified ankle. In this version a actual model

is used, which clearly differentiates this version from the rest. Because of this, different inputs

can be used to get different results just like in the second version, but in contrast to the last

version it is restrained to the models specifications.

CHAPTER 5. DISCUSSION 82

5.2.2 Deciding on level of complexity in the model

In creating our model we did many simplifications, which had us end up with a one-dimensional

mass-spring-damper system that was mathematically translated to state-space. The primary

simplifications were anatomical and were because of our lack of medical and/or anatomical

knowledge and experience.

Were we to use a more realistic model starting-point the resulting model would if correctly

implemented, be a more accurate model. The only two reasons why we didn’t decide to this was

because of the amount of time we were given to learn and implement such a complex model,

and the potentially overly complex model that could make the simulations slow or impossible

to compute.

Specifically the skeletal simplification, the choice to make the simulation model one-dimensional

was made because the goal of this simulation primarily was to simulate walking, where the front

and back tendons were the dominant pullers, and the pulls on the sides were small and equal,

simply keeping the foot balanced. This ended up being a quite accurate assumption since we

ended up having a very similar situation in the actual prototype, where the side-pulls are quite

balanced and weak in comparison to the front and back tendons which are clearly dominant.

After deciding on having a one-dimensional ankle model, the choice to use a mass-spring-

damper representation of the system was both for clarity in the mathematical model, since a

circular motion is trickier to track than a linear one, but also because of more experience with

mass-spring-damper systems and their translations into state-space.

Instead of changing into a mass-spring-damper system, we could have implemented the

same attributes to the system, calling them friction, torque etc. It would simply be a different

type of physics applied to analyze the system.

CHAPTER 5. DISCUSSION 83

5.3 Visualization

5.3.1 Different available solutions for visualizing the data

There were several options that could’ve been implemented. As previously mentioned, the vi-

sualization tools in Matlab are primarily focused on using figures. These figures can contain

several types of input. Using the draw() function is a very simple and logical choice for creating

geometric shapes, because usually when dealing with geometric shapes, it needs to be confined

or defined as being a series of points with lines connecting them. The other primary choices

were to use plot() or images.

The method we could’ve used where we use plot() instead requires finding the slopes, start-

ing heights and x-limits for every line used to create the geometric figures. These would then

be plotted with "hold on" which would make all the plots stack in the same figure window, and

be created with color of the shape they belong to. The main issues with this method is both the

added complexity from having to calculate a slope which could possibly slow down the visual-

ization making it less usable with future implementation in live-view. Also the plotting would

depending on the point-style chosen need many or few points, but either way still need at least

two points per line which is almost double what is used with draw(). Lastly plot(), requires to

create more variables, like the x-limits, which again, adds to complexity and slows the visualiza-

tion down.

Using images of course was also a very interesting option, since it could end up having a

much more intuitive image. The problem was implementing it through Matlab. Matlab did not

allow two images to be used at the same time, and also each image used in the figures got its own

axis that was visually unpleasing and distracting. This method was quickly scrapped because of

the fact to rotate a ankle with images, needs two images, which couldn’t be implemented in

Matlab. The reason why two images would be necessary is that the leg and the foot would have

to be able to move independently. Otherwise the ankle would just be at the same angle dur-

ing the whole simulation. The only other option would be to simply have the leg or the foot in

conjunction with one of the other solutions doing the other part. The primary reason why this

CHAPTER 5. DISCUSSION 84

was scrapped as well was that the combination would be only as good or less good than simply

having a clear version using only one of the other methods.

The second part of the visualization was the actual methodology of using trigonometry and

displacement between points. Initially this was thought of as a solution using vectors, where

these lines between points were vectors, and that through vector rotation, we could rotate the

visualization of the foot. The primary difference between these solutions are that using vector

rotation is more complex and require more specialized code to work in comparison to using

geometric formulas directly calculating the points and displacements, at least for our use since

we specifically wanted to draw simple geometric shapes.

5.4 Personal Experiences

5.4.1 Planning

During the start of the project, a lot of time was used for planning the development of the pro-

totype. Especially the construction design and placement was 3D-modelled before the building

and implementation started. This would have payed off if we would have been able to construct

the planned rig.

5.4.2 Division of labor

The two group members have quite different previous job and field experience. The different in-

terests and backgrounds have been taken into consideration when when distributing the work

to take advantage of each members expertise. This ended up in dividing the project into two

main parts, one was the design and building of the rig, the other the simulation and visualiza-

tion. Each member got the main responsibility for one of the parts. This ended up being a good

solution.

CHAPTER 5. DISCUSSION 85

5.4.3 Data collection

As both the group members had no previous experience withing the field of medicine, the learn-

ing cure was steep. We interviewed the orthopedic surgeon at the lab when we needed guidance

with anatomy. The use of this type of technology for medical research is very limited, therefore

the available literature on the related topics are also limited. The medical aspects of the project

is therefore mostly based on the interviews of the surgeon.

5.4.4 Covid-19

Because of the Covid-19 pandemic, many of the initial plans for the project changed, most no-

tably the fact that we were not allowed in to the lab towards the end of the project. This forced

us to think outside of the box, and create a proof of concept instead. This proof of concept was

less stable and somewhat harder to control, but it still worked accurately enough to satisfy our

goal of making realistic walking motion.

Chapter 6

Conclusions

The project aimed to develop a prototype rig for performing ankle stability tests. By using new

automated technologies to perform testing on human joints, new types of orthopedic surgical

methods can be tested and validated. Requirements for the prototype was to be able to control

a ankle to move in a realistic movement pattern, and to measure the load on the tendons dur-

ing this process. The project also aims to make a digital simulation and visualisation of a ankle

joint. This needed a model that was a mathematical approximation of the actual ankle complex,

within reason in regards to the goal of being able to simulate walking.

The prototype accomplished the required task of controlling the ankle and measuring the

load. Using linear actuators and load cells to move and measure the tendons, the results are a

realistic movement and accurate load readings. The prototype that was built during this project

is not a finished product. However, the solutions and ideas that was used, proved to be effective

for this type of project.

Our simulation was modelled with a lot of simplifications, still it ended up having a good

resemblance to the behaviour of a real foot. The system and the inputs could also have been op-

timized to make the model an even more realistic approximation. The visualization also worked

as intended, however it could have been more complex to improve the visual clarity.

Even though the final solution did not work flawlessly and has a lot of possible improve-

86

CHAPTER 6. CONCLUSIONS 87

ments, the group considers the project to be a success. We started from scratch when develop-

ing and building a rig for these kinds of tests. As none of the group members have any previous

experience within the field of medicine, the learning curve was steep. Still, at the end of the

project we are left with a lot of valuable experience regarding the technical aspects, but also

regarding project management.

6.1 Further work

The following points are suggestions for further development of the ankle testing rig.

• Build and assemble a more permanent aluminium main frame.

• Implement positioning sensors for the actuators. Either internal or external encoders.

This would also add tendon movement length data along with the load data.

• Optimize the Arduino code.

• Add the integral part of the PID controller to improve steady-state errors.

• Implement better automatic sideways motion, and in general add more automatic control

to the system.

• Improve or replace the simulation model with a more accurate and complex one.

• Improve the visualization by replacing the rectangular shapes with more realistic or intu-

itive shapes.

Chapter 7

Appendices

A Code

Main(), for simulation and visualization

clear all;

foot_length = 5;

foot_height = 1;

stepsize = 0.04;

run("Simulation_Final.m");

run("Visualization_Final.m");

Simulation

% Simulation

% Mass spring damper

k = 1.5; % spring constant

m = 2; % mass constant

c = 0.5; % damper constant

max = 3; % Max heigth lift and force pull

% u is the input during the simulation, and the array elements are force

applied at individual points in time throughout the simulation,→

88

CHAPTER 7. APPENDICES 89

u = [0:stepsize:max max*ones(1,max/stepsize) flip(0:stepsize:max)

flip(-max:stepsize:0) -max*ones(1,max/stepsize) -max:stepsize:0]; %

input (force (F))

,→

,→

frames = numel(u); % Number of frames of the simulation

% ankle_height is the ankle's heigth during the simulation, and the array

elements are the heigth at individual points in time throughout the

simulation

,→

,→

ankle_height = [flip(max/2:stepsize/2:max) flip(0:stepsize/2:max/2)

zeros(1, max/stepsize) 0:stepsize/2:max/2 max/2:stepsize/2:max

max*ones(1,max/stepsize)];

,→

,→

% System

A = [0 1;

-k/m -c/m];

B = [0 1/m]';

C = [1 0];

D = 0;

sys = ss(A,B,C,D,'StateName',{'Position' 'Velocity'}, 'InputName','Force');

% defining the state-space system,→

% Simulation

t = 0:60/numel(u):60-(60/numel(u)); % Points in time

Y = lsim(sys,u,t); % The actual simulation being run with the model, inputs

with regards to time, and time,→

ankle_angle = PosToRad(Y); % Translating the position result from the

mass-spring-damper simulation into a rotary format,→

Visualization

% Coordinate center

A = [zeros(1,frames);

ankle_height];

CHAPTER 7. APPENDICES 90

% Foot geometry

AB_displacement = [foot_length*cos(ankle_angle');

foot_length*sin(ankle_angle')];

B = A + AB_displacement;

BC_displacement = [foot_height*cos(pi/2 + ankle_angle');

foot_height*sin(pi/2 + ankle_angle')];

C = B + BC_displacement;

CD_displacement = [foot_length*cos(pi + ankle_angle');

foot_length*sin(pi + ankle_angle')];

D = C + CD_displacement;

% DA_displacement = [foot_length*cos(3*pi/2 + ankle_angle');

% foot_length*sin(3*pi/2 + ankle_angle')];

% Leg geometry

leg_height = 1.2*foot_length;

leg_width = 0.6*foot_height;

A_shifted = A + 0.7*leg_width*[ones(1,frames); zeros(1,frames)];

AE_displacement = [leg_height*cos(pi/2);

leg_height*sin(pi/2)];

E = A_shifted + AE_displacement;

EF_displacement = [leg_width*cos(pi);

leg_width*sin(pi)];

F = E + EF_displacement;

FG_displacement = [leg_height*cos(3*pi/2);

leg_height*sin(3*pi/2)];

G = F + FG_displacement;

% GA_displacement = [leg_width*cos(0);

% leg_width*sin(0)];

CHAPTER 7. APPENDICES 91

% Forces

j_vector = [zeros(1,frames);

ones(1,frames)];

% Lines and figure specs

a1 = animatedline('Color', [0,1,0]); % Green line

a2 = animatedline('Color', [102/255,51/255,0]); % Brown line

a3 = animatedline('Color', [1,0,0]); % Red line

a4 = animatedline('Color', [0,0,1]); % Blue line

figure(1)

grid on

hold on

axis([-1 7 -4 11])

legend('The foot','The leg','Pull on top of foot','Pull on back of foot')

title('Simulation of walking')

for i=1:frames

% Clears the points from the last iteration / frame

clearpoints(a1)

clearpoints(a2)

clearpoints(a3)

clearpoints(a4)

% Foot

addpoints(a1,A(1,i),A(2,i)) % A

addpoints(a1,B(1,i),B(2,i)) % B

addpoints(a1,C(1,i),C(2,i)) % C

addpoints(a1,D(1,i),D(2,i)) % D

addpoints(a1,A(1,i),A(2,i)) % A

% Leg

CHAPTER 7. APPENDICES 92

addpoints(a2,A_shifted(1,i),A_shifted(2,i)) % Shifted A

addpoints(a2,E(1,i),E(2,i)) % E

addpoints(a2,F(1,i),F(2,i)) % F

addpoints(a2,G(1,i),G(2,i)) % G

addpoints(a2,A_shifted(1,i),A_shifted(2,i)) % Shifted A

% Forces

if(u(i)<0)

addpoints(a3, [-0.5 -0.5], -3.5+[0 abs(u(i))]) % Force pulled from

behind leg,→

else

addpoints(a4, [0.5 0.5], -3.5+[0 abs(u(i))]) % Force pulled from in

front of leg,→

end

drawnow

end

PosToRad()

function [angle] = PosToRad(positions)

%PosToRad Translates a position in relation to a spring starting point to a

angle,→

% Takes points of position and translates them to a angle using the

formula: angle=x/(2pi),→

angle = positions/(2*pi);

end

Arduino, main()

// Libraries

#include <HX711.h>

#include <RoboClaw.h>

CHAPTER 7. APPENDICES 93

#include <SoftwareSerial.h>

// Pins to the load cell amp

#define CLK1 2 // clock pin to the first load cell amp

#define CLK2 4 // clock pin to the second load cell amp

#define CLK3 6 // clock pin to the third load cell amp

#define CLK4 8 // clock pin to the fourth load cell amp

#define DOUT1 3 // data pin to the first lca

#define DOUT2 5 // data pin to the second lca

#define DOUT3 7 // data pin to the third lca

#define DOUT4 9 // data pin to the fourth lca

// Roboclaw

SoftwareSerial serial(10,11); // Communication with RoboClaw controllers

RoboClaw roboclaw(&serial,10000); // Communication with RoboClaw controllers

#define address1 0x80 // Address to RoboClaw controller

#define address2 0x81 // Address to RoboClaw controller

// Load cell readings

HX711 scale1, scale2, scale3, scale4;

int Load_Cell_Value[4];

int offset[4]; // Offsets instead of tare()

// PID Control

// The PID control gains

float Kp = 0.4;

float Kd = 0.2;

float Ki = 0;

// Defining necessary values for PID calculations

CHAPTER 7. APPENDICES 94

float elapsedTime[4], error[4], lastError[4], cumError[4], rateError[4],

out[4], desiredVal[3][4];,→

unsigned long Load_Cell_Read_Time[4], previousTime[4];

// For autoswitching between different motions / up, down, etc.

bool correctValues[4] = {false, false, false, false};

int currentAutoMotion = 0; // Automatic motion towards max angle = 0 and

towards min angle = 1 and towards neutral angle = 2,→

int previousMotion = 2; // Previous direction of movement in order to vary

correctly between,→

// Motion controls

bool stop_all = false; // Enable or disable actuators - false=motion enabled

and true=motion disabled,→

bool walking = false; // Automatic mode - true=simulated walking and

false=not simulated walking,→

int currentMotor; // Currentmotor, for manual motor control

bool manual = true; // Manual control override

int manual_control[4]={0, 0, 0, 0}; // Motion statuses for each motor during

manual mode,→

const int END_SWITCH[4]={14, 15, 16, 17}; // End switches

void setup() {

Serial.begin(115200); // Start serial communication at 115200 baudrate

//Open roboclaw serial ports

roboclaw.begin(38400);

CHAPTER 7. APPENDICES 95

// End-switches for each actuator

pinMode(END_SWITCH[0], INPUT); // Actuator 1

pinMode(END_SWITCH[1], INPUT); // Actuator 2

pinMode(END_SWITCH[2], INPUT); // Actuator 3

pinMode(END_SWITCH[3], INPUT); // Actuator 4

scale1.begin(DOUT1, CLK1); // Front

scale2.begin(DOUT2, CLK2); // Outside-side

scale3.begin(DOUT3, CLK3); // Inside-side

scale4.begin(DOUT4, CLK4); // Back

// Setting calibration factors

scale1.set_scale(14); // Front

scale2.set_scale(14); // Outside-side

scale3.set_scale(14); // Inside-side

scale4.set_scale(14); // Back

// DESIRED VALUES for [0][x] moving up to max and [1][x] moving down to

min,→

// Max angle

desiredVal[0][0]=1200; // Front

desiredVal[0][1]=150; // Outside-side

desiredVal[0][2]=150; // Inside-side

desiredVal[0][3]=50; // Back

// Min angle

desiredVal[1][0]=50; // Front

desiredVal[1][1]=150; // Outside-side

desiredVal[1][2]=150; // Inside-side

desiredVal[1][3]=400; // Back

CHAPTER 7. APPENDICES 96

// Neutral angle

desiredVal[2][0]=400; // Front

desiredVal[2][1]=150; // Outside-side

desiredVal[2][2]=150; // Inside-side

desiredVal[2][3]=50; // Back

// Desired value offset // Instead of taring

offset[0]=1015; // Front

offset[1]=1935; // Outside-side

offset[2]=1810; // Inside-side

offset[3]=2380; // Back

}

void loop()

{

// Serial commands

if (Serial.available()) // Checks to see if the Serial is in use

{

char msg = Serial.read(); // Reads user inputs

switch(msg)

{

// SAFETY LOCK, sets all motors to standstill

case 'x': // STOP ALL

for(int i=0;i<=3;i++){ // Sets current motion of controllers to

standstill,→

manual_control[i]=0;

}

stop_all = true;

break;

// Choosing the motor to manually control

CHAPTER 7. APPENDICES 97

case '1': // Motor 1

currentMotor=0; // Sets current motor to 1

stop_all = false;

break;

case '2': // Motor 2

currentMotor=1; // Sets current motor to 2

stop_all = false;

break;

case '3': // Motor 3

currentMotor=2; // Sets current motor to 3

stop_all = false;

break;

case '4': // Motor 4

currentMotor=3; // Sets current motor to 4

stop_all = false;

break;

// Chaning the state of current motor (Default is motor 1)

case 's': //Standing still

manual_control[currentMotor] = 0; // Sets current manual motion of

current motor to standstill,→

stop_all = false;

break;

case 'f': //Forward

manual_control[currentMotor] = 1; // Sets current manual motion of

current motor to forward/up,→

stop_all = false;

break;

case 'r': //Reverse

CHAPTER 7. APPENDICES 98

manual_control[currentMotor] = 2; // Sets current manual motion of

current motor to reverse/down,→

stop_all = false;

break;

// Manual and automatic switching

case 'm': // MANUAL

manual = true;

stop_all = false;

break;

case 'a': // AUTOMATIC

manual = false;

stop_all = false;

break;

// Specific movements/Motion patterns

case 'u': // Upwards

walking = false;

currentAutoMotion = 0; // Sets current automatic motion to

upwards/max angle,→

stop_all = false;

break;

case 'd': // Downwards

walking = false;

currentAutoMotion = 1; // Sets current automatic motion to

downwards/min angle,→

stop_all = false;

break;

case 'n': // Neutral

walking = false;

CHAPTER 7. APPENDICES 99

currentAutoMotion = 2; // Sets current automatic motion to

neutral/neutral angle,→

stop_all = false;

break;

case 'w': // Walking

walking = true; // Enables autoswitch between motions, and starts

walking simulation,→

stop_all = false;

break;

}

}

// Update the controller with current load cell values and control mode

actuatorControl(manual);

}

// Functions

// Actuator control

void actuatorControl(bool manual){

/*

* This function takes in one parameter, which decides whether the actuator

uses inputs directly chosen,→

* by the user through Serial or uses inputs calculated with a PID in

accordance to current and previous,→

* load cell readings. The motors have three speeds, 39 which is

reverse/down/tightening,,→

* 64 which is neutral/standstill and 89 which is forward/up/loosening.

* @params bool manual

*/

if (manual) // Manual mode

CHAPTER 7. APPENDICES 100

{

for(int i=0;i<=3;i++)

{

if (manual_control[i] == 0)

{

roboclawMovement(i,64); // Motor #(current iteration) is put at 64

speed,→

// Prints to serial for observation/problemshooting

Serial.print("Motor: ");

Serial.print(i);

Serial.print("is set to: ");

Serial.println("Standing still");

Serial.println(scale1.get_units()+offset[0]); // Prints value of

load cell 1 after adjusting for offset,→

Serial.println(scale2.get_units()+offset[1]); // Prints value of

load cell 2 after adjusting for offset,→

Serial.println(scale3.get_units()+offset[2]); // Prints value of

load cell 3 after adjusting for offset,→

Serial.println(scale4.get_units()+offset[3]); // Prints value of

load cell 4 after adjusting for offset,→

}

else if (manual_control[i] == 1)

{

roboclawMovement(i,89); // Motor #(current iteration) is put at 89

speed,→

// Prints to serial for observation/problemshooting

Serial.print("Motor: ");

Serial.print(i);

Serial.print(" is set to: ");

Serial.println("Forward");

CHAPTER 7. APPENDICES 101

}

else if (manual_control[i] == 2)

{

if(digitalRead(END_SWITCH[i]) == 1)

{

roboclawMovement(i,39); // Motor #(current iteration) is put at 39

speed,→

// Prints to serial for observation/problemshooting

Serial.print("Motor: ");

Serial.print(i);

Serial.print(" is set to: ");

Serial.println("Reverse");

}

else

{

roboclawMovement(i,64); // Motor #(current iteration) is put at 64

speed,→

// Prints to serial for observation/problemshooting

Serial.print("Motor: ");

Serial.print(i); // Prints which motor's end switch is being

pressed and therefore is restrained from moving in

reverse/down/tighten

,→

,→

Serial.print(" is set to: ");

Serial.println("End switch");

}

}

}

}

else if (!manual) // Automatic mode

CHAPTER 7. APPENDICES 102

{

// Prints to serial for observation/problemshooting

Serial.println(scale1.get_units()+offset[0]); // Prints value of load

cell 1 after adjusting for offset,→

Serial.println(scale2.get_units()+offset[1]); // Prints value of load

cell 2 after adjusting for offset,→

Serial.println(scale3.get_units()+offset[2]); // Prints value of load

cell 3 after adjusting for offset,→

Serial.println(scale4.get_units()+offset[3]); // Prints value of load

cell 4 after adjusting for offset,→

// Reset correct values from last iteration

for(int j=0;j<=3;j++)

{

correctValues[j]=0;

}

// The control loop with the PID and desired value achieved check

for(int i=0;i<=3;i++)

{

// Update load cell values

Load_Cell_Value[0] = scale1.get_units()+offset[0]; // Value of

load cell 1 after adjusting for offset,→

Load_Cell_Read_Time[0] = millis(); // Time of reading

Load_Cell_Value[1] = scale2.get_units()+offset[1]; // Value of

load cell 2 after adjusting for offset,→

Load_Cell_Read_Time[1] = millis(); // Time of reading

Load_Cell_Value[2] = scale3.get_units()+offset[2]; // Value of

load cell 3 after adjusting for offset,→

Load_Cell_Read_Time[2] = millis(); // Time of reading

CHAPTER 7. APPENDICES 103

Load_Cell_Value[3] = scale4.get_units()+offset[3]; // Value of

load cell 4 after adjusting for offset,→

Load_Cell_Read_Time[3] = millis(); // Time of reading

out[i] = PID(i, Load_Cell_Read_Time[i]);

// Checks with tresholds at -30 grams and 30 grams

if((currentAutoMotion==1 && i==3 &&

out[3]<0)||(currentAutoMotion==0 && i==0 &&

out[0]<0)||(out[i]<=30 && out[i]>=-30))

,→

,→

{

out[i]=0;

}

// Prints to serial for observation/problemshooting

Serial.print(i);

Serial.print(" has pid output ");

Serial.println(out[i]); // 64 is neutral AKA 0 speed

if(out[i]>0) // Checks if the force error is positive and tightens

to get smaller force error,→

{

if(digitalRead(END_SWITCH[i]) == 1) // Checks the end switch of

actuator #(current iteration), if switch is pressed then

actuators are stopped and digitalRead=0

,→

,→

{

if (stop_all) // Checks if stop all is true and put actuator

#(current iteration) in standstill if that is the case,→

{

roboclawMovement(i,64); // Motor #(current iteration) is

put at 64 speed,→

}

else

{

CHAPTER 7. APPENDICES 104

roboclawMovement(i,39); // Motor #(current iteration) is put

at 39 speed,→

}

}

else

{

roboclawMovement(i,64); // Motor #(current iteration) is put

at 64 speed,→

// Prints to serial for observation/problemshooting

Serial.print("Motor: ");

Serial.print(i); // Prints which motor's end switch is being

pressed and therefore is restrained from moving in

reverse/down/tighten

,→

,→

Serial.println(" End switch");

}

}

else if(out[i]<0) // Checks if the force error is negative and

loosens to get smaller force error,→

{

if (stop_all) // Checks if stop all is true and put actuator

#(current iteration) in standstill if that is the case,→

{

roboclawMovement(i,64); // Motor #(current iteration) is put

at 64 speed,→

}

else

{

roboclawMovement(i,89); // Motor #(current iteration) is put

at 89 speed,→

}

CHAPTER 7. APPENDICES 105

}

else

{

roboclawMovement(i,64); // Motor #(current iteration) is put at

64 speed,→

correctValues[i]=true;

if(walking)

{

if(correctValues[0] && correctValues[1] && correctValues[2] &&

correctValues[3]),→

{

if(currentAutoMotion == 0) // Checks if currently the

automatic motion is set to max angle,→

{

currentAutoMotion = 2; // Go from max angle to neutral

previousMotion = 0; // Set previous direction

}

else if (currentAutoMotion == 1) // Checks if currently the

automatic motion is set to min angle,→

{

currentAutoMotion = 2; // Go from min angle to neutral

previousMotion = 1; // Set previous direction

}

else if (currentAutoMotion == 2) // Checks if currently the

automatic motion is set to neutral angle,→

{

if (previousMotion == 0)

{

currentAutoMotion = 1; // Go from neutral to max

}

CHAPTER 7. APPENDICES 106

else if(previousMotion == 1)

{

currentAutoMotion = 0; // Go from neutral to min

}

}

}

}

}

}

}

else

{

// Prints to serial for observation/problemshooting

Serial.println("NOT IN AUTOMATIC NOR MANUAL CONTROL ERROR");

delay(60000); // Pauses code for 1 minute

}

}

// PID Control

float PID(int motor, unsigned long currentTime){

/*

* This function takes in two parameters, (int motor, unsinged long

currentTime),→

* which uses the current time and

* decides which motors load-cell value to read

* and then outputs the correction value

* @params int motor, unsigned long currentTime

*/

// Time values

elapsedTime[motor] = currentTime - previousTime[motor];

CHAPTER 7. APPENDICES 107

// ERROR VALUE

error[motor] = desiredVal[currentAutoMotion][motor] -

Load_Cell_Value[motor];,→

// Cumulative error AKA Integral control

cumError[motor] += error[motor] * elapsedTime[motor];

// Rate of change AKA Derivative control

rateError[motor] = (error[motor] - lastError[motor])/elapsedTime[motor];

// Retaining information for next iteration

previousTime[motor] = currentTime;

lastError[motor] = error[motor];

// The controller formula for output

float pid_out = Kp * error[motor] + Ki * cumError[motor] + Kd *

rateError[motor];,→

return pid_out;

}

// Roboclaw movement

void roboclawMovement(int motor, float velocity){

/*

* This function takes in two parameters, (int motor, float velocity) and

uses those to decide a speed to,→

* set a motor on, and which motor. The first parameter is the input into

a switch case where each case,→

* to use the secound parameter as speed to set the motor speed of the

motor that is connected to that,→

* case. Case 0 = Motor 1, Case 1 = Motor 2...

CHAPTER 7. APPENDICES 108

* @params int motor, float velocity

*/

switch(motor)

{

case 0: // Motor 1

roboclaw.ForwardBackwardM1(address1,velocity);

break;

case 1: // Motor 2

roboclaw.ForwardBackwardM2(address1,velocity);

break;

case 2: // Motor 3

roboclaw.ForwardBackwardM1(address2,velocity);

break;

case 3: // Motor 4

roboclaw.ForwardBackwardM2(address2,velocity);

break;

}

}

B Data-sheets

Datasheet
RS PRO
Stock numbers:
1774499
1774504
1774505
1774509

rspro.com

EN

◆ ID10 features its heavy load capability and high speed design, which is suitable for

various industrial applications requiring rapid movement.
◆ Input voltage：24V DC

◆ Max. rated load：7,000N (Ball screw)

◆ Max. static load : 13,600N (Ball screw)

◆ Max. current：13.2A @ 24V DC
◆ Max. speed：67.1 mm/sec @ no load

◆ Stroke：102~610 mm

◆ Duty cycle：25%, max 2 min continuous operation in 8 min.

◆ IP protection level：IP54

◆ Colour：Black

◆ Certified：CE marking, EMC Directive 2014/30/EU

◆ Overload protection by clutch

◆ Power wire length：250mm (with tinned wires)

◆ Operating temperature：-25℃~+65℃

◆ Extension tube material：Stainless steel (Ball screw)

RS Number
No load Full load

ID10-24-20-B-305 1774499

1774504

1774505

Push/Pull

Max. (N)
Voltage

(DC)
Stroke
(mm)

Speed (mm/s)

Vendor Part Number

1774509

4500 305

102

305

102

67.1

16.84500

2500

2500

14.3

47.2

24

24

24

24

ID10-24-20-B-102

ID10-24-05-B-305

ID10-24-05-B-102 67.1

47.2

14.316.8

2

4” 6” 8” 10” 12” 18” 24”

Stroke (±2.5mm) 102 153 203 254 305 457 610

Retracted Length

 (A±3.8mm)
262 313 364 414 465 668 821

Model No.
Push/Pull

Max. (N)

Speed (mm/s) Current (A)

No load Full load
No load Full load

12V 24V 12V 24V

ID10-XX-05-B-XXX 2500 67.1 47.2 3.4 2.2 26.4 13.2

ID10-XX-10-B-XXX 3500 33.5 26.7 3.4 2.2 17.6 8.8

ID10-XX-20-B-XXX 4500 16.8 14.3 3.4 2.2 13.2 6.6

ID10-XX-30-B-XXX 6000 11.2 9.8 3.4 2.2 12.1 6.1

ID10-XX-40-B-XXX 7000 8.4 7.4 3.4 2.2 11.0 5.5

◆ Front connector

Unit: mm

◆ Rear connector and the orientation of clevis

Unit: mm

Unit: mm

3

ID10—□□—□□—□—□□□—□□

Input Voltage

24： 24V DC

Gear Ratio

05：
10：
20：

30：
40：

5:1 (Ball screw only)
10:1
20:1

30:1 (Ball screw only)
40:1

Spindle Type

B： Ball Screw

Stroke

102： 102mm

153： 153mm
203： 203mm
254： 254mm

305： 305mm
457： 457mm
610： 610mm

Rear Clevis Orientation

0° Standard (keep it blank)

(view from rear connector)

C0：

C1：
C2：
C3：

C4：
C5：

30° CCW
60° CCW
90° CCW

30° CW
60° CW

Ordering Key

4

The Arduino Mega 2560 is a
microcontroller board based on
the ATmega2560 (datasheet). It
has 54 digital input/output pins
(of which 14 can be used as
PWM outputs), 16 analog
inputs, 4 UARTs (hardware
serial ports), a 16 MHz crystal
oscillator, a USB connection, a
power jack, an ICSP header,
and a reset button. It contains
everything needed to support
the microcontroller; simply
connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to
get started. The Mega is compatible with most shields designed for the Arduino Duemilanove
or Diecimila.
The Mega 2560 is an update to the Arduino Mega, which it replaces.
The Mega2560 differs from all preceding boards in that it does not use the FTDI USB-to-
serial driver chip. Instead, it features the ATmega16U2 (ATmega8U2 in the revision 1 and
revision 2 boards) programmed as a USB-to-serial converter.
Revision 3 of the board has the following new features:

 1.0 pinout: added SDA and SCL pins that are near to the AREF pin and two other new pins
placed near to the RESET pin, the IOREF that allow the shields to adapt to the voltage
provided from the board. In future, shields will be compatible both with the board that use
the AVR, which operate with 5V and with the Arduino Due that operate with 3.3V. The
second one is a not connected pin, that is reserved for future purposes.

 Stronger RESET circuit.
 Atmega 16U2 replace the 8U2.

Microcontroller ATmega2560

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 54 (of which 15 provide PWM output)

Analog Input Pins 16

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 256 KB of which 8 KB used by bootloader

SRAM 8 KB

EEPROM 4 KB

Clock Speed 16 MHz

The Arduino Mega can be powered via the USB connection or with an external power supply.
The power source is selected automatically.
External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery.
The adapter can be connected by plugging a 2.1mm center-positive plug into the board's

power jack. Leads from a battery can be inserted in the Gnd and Vin pin headers of the
POWER connector.
The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V,
however, the 5V pin may supply less than five volts and the board may be unstable. If using
more than 12V, the voltage regulator may overheat and damage the board. The recommended
range is 7 to 12 volts.
The power pins are as follows:

 VIN. The input voltage to the Arduino board when it's using an external power source (as
opposed to 5 volts from the USB connection or other regulated power source). You can supply
voltage through this pin, or, if supplying voltage via the power jack, access it through this pin.

 5V. This pin outputs a regulated 5V from the regulator on the board. The board can be
supplied with power either from the DC power jack (7 - 12V), the USB connector (5V), or the
VIN pin of the board (7-12V). Supplying voltage via the 5V or 3.3V pins bypasses the
regulator, and can damage your board. We don't advise it.

 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50
mA.

 GND. Ground pins.
 IOREF. This pin on the Arduino board provides the voltage reference with which the

microcontroller operates. A properly configured shield can read the IOREF pin voltage and
select the appropriate power source or enable voltage translators on the outputs for working
with the 5V or 3.3V.

The ATmega2560 has 256 KB of flash memory for storing code (of which 8 KB is used for the
bootloader), 8 KB of SRAM and 4 KB of EEPROM (which can be read and written with the
EEPROM library).

Each of the 54 digital pins on the Mega can be used as an input or output, using pinMode(),
digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or
receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default)
of 20-50 kOhms. In addition, some pins have specialized functions:

 Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX) and 16
(TX); Serial 3: 15 (RX) and 14 (TX). Used to receive (RX) and transmit (TX) TTL serial
data. Pins 0 and 1 are also connected to the corresponding pins of the ATmega16U2 USB-to-
TTL Serial chip.

 External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5), 19
(interrupt 4), 20 (interrupt 3), and 21 (interrupt 2). These pins can be configured to
trigger an interrupt on a low value, a rising or falling edge, or a change in value. See the
attachInterrupt() function for details.

 PWM: 2 to 13 and 44 to 46. Provide 8-bit PWM output with the analogWrite() function.
 SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI communication

using the SPI library. The SPI pins are also broken out on the ICSP header, which is
physically compatible with the Uno, Duemilanove and Diecimila.

 LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value,
the LED is on, when the pin is LOW, it's off.

 TWI: 20 (SDA) and 21 (SCL). Support TWI communication using the Wire library. Note
that these pins are not in the same location as the TWI pins on the Duemilanove or Diecimila.

The Mega2560 has 16 analog inputs, each of which provide 10 bits of resolution (i.e. 1024
different values). By default they measure from ground to 5 volts, though is it possible to
change the upper end of their range using the AREF pin and analogReference() function.

There are a couple of other pins on the board:

 AREF. Reference voltage for the analog inputs. Used with analogReference().
 Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button

to shields which block the one on the board.

The Arduino Mega2560 has a number of facilities for communicating with a computer,
another Arduino, or other microcontrollers. The ATmega2560 provides four hardware
UARTs for TTL (5V) serial communication. An ATmega16U2 (ATmega 8U2 on the revision 1
and revision 2 boards) on the board channels one of these over USB and provides a virtual
com port to software on the computer (Windows machines will need a .inf file, but OSX and
Linux machines will recognize the board as a COM port automatically. The Arduino software
includes a serial monitor which allows simple textual data to be sent to and from the board.
The RX and TX LEDs on the board will flash when data is being transmitted via the
ATmega8U2/ATmega16U2 chip and USB connection to the computer (but not for serial
communication on pins 0 and 1).
A SoftwareSerial library allows for serial communication on any of the Mega2560's digital
pins.
The ATmega2560 also supports TWI and SPI communication. The Arduino software includes
a Wire library to simplify use of the TWI bus; see the documentation for details. For SPI
communication, use the SPI library.

The Arduino Mega can be programmed with the Arduino software (download). For details,
see the reference and tutorials.
The ATmega2560 on the Arduino Mega comes preburned with a bootloader that allows you
to upload new code to it without the use of an external hardware programmer. It
communicates using the original STK500 protocol (reference, C header files).
You can also bypass the bootloader and program the microcontroller through the ICSP (In-
Circuit Serial Programming) header; see these instructions for details.
The ATmega16U2 (or 8U2 in the rev1 and rev2 boards) firmware source code is available in
the Arduino repository. The ATmega16U2/8U2 is loaded with a DFU bootloader, which can
be activated by:

 On Rev1 boards: connecting the solder jumper on the back of the board (near the map of
Italy) and then resetting the 8U2.

 On Rev2 or later boards: there is a resistor that pulling the 8U2/16U2 HWB line to ground,
making it easier to put into DFU mode. You can then use Atmel's FLIP software (Windows)
or the DFU programmer (Mac OS X and Linux) to load a new firmware. Or you can use the
ISP header with an external programmer (overwriting the DFU bootloader). See this user-
contributed tutorial for more information.

Rather then requiring a physical press of the reset button before an upload, the Arduino
Mega2560 is designed in a way that allows it to be reset by software running on a connected
computer. One of the hardware flow control lines (DTR) of the ATmega8U2 is connected to
the reset line of the ATmega2560 via a 100 nanofarad capacitor. When this line is asserted
(taken low), the reset line drops long enough to reset the chip. The Arduino software uses this
capability to allow you to upload code by simply pressing the upload button in the Arduino
environment. This means that the bootloader can have a shorter timeout, as the lowering of
DTR can be well-coordinated with the start of the upload.
This setup has other implications. When the Mega2560 is connected to either a computer
running Mac OS X or Linux, it resets each time a connection is made to it from software (via

USB). For the following half-second or so, the bootloader is running on the Mega2560. While
it is programmed to ignore malformed data (i.e. anything besides an upload of new code), it
will intercept the first few bytes of data sent to the board after a connection is opened. If a
sketch running on the board receives one-time configuration or other data when it first starts,
make sure that the software with which it communicates waits a second after opening the
connection and before sending this data.
The Mega2560 contains a trace that can be cut to disable the auto-reset. The pads on either
side of the trace can be soldered together to re-enable it. It's labeled "RESET-EN". You may
also be able to disable the auto-reset by connecting a 110 ohm resistor from 5V to the reset
line; see this forum thread for details.

The Arduino Mega2560 has a resettable polyfuse that protects your computer's USB ports
from shorts and overcurrent. Although most computers provide their own internal
protection, the fuse provides an extra layer of protection. If more than 500 mA is applied to
the USB port, the fuse will automatically break the connection until the short or overload is
removed.

The maximum length and width of the Mega2560 PCB are 4 and 2.1 inches respectively, with
the USB connector and power jack extending beyond the former dimension. Three screw
holes allow the board to be attached to a surface or case. Note that the distance between
digital pins 7 and 8 is 160 mil (0.16"), not an even multiple of the 100 mil spacing of the other
pins.
The Mega2560 is designed to be compatible with most shields designed for the Uno,
Diecimila or Duemilanove. Digital pins 0 to 13 (and the adjacent AREF and GND pins),
analog inputs 0 to 5, the power header, and ICSP header are all in equivalent locations.
Further the main UART (serial port) is located on the same pins (0 and 1), as are external
interrupts 0 and 1 (pins 2 and 3 respectively). SPI is available through the ICSP header on
both the Mega2560 and Duemilanove / Diecimila. Please note that I2C is not located on the
same pins on the Mega (20 and 21) as the Duemilanove / Diecimila (analog inputs 4 and 5).

 Load Cells

Page 1 of 3 RS Components – Buy this product from https://uk.rs-online.com/

Internal

RS PRO Alloy Steel S Beam

Tension Load Cell
RS Stock No.: 204-2768

RS Professionally Approved Products bring to you professional
quality parts across all product categories. Our product range has
been tested by engineers and provides a comparable quality to the
leading brands without paying a premium price.

• Low profile

• Alloy steel
construction
with nickel
plated
treatment

• Capacity:
300kg

• Easy to
install, stable
& reliable

FEATURES

 Load Cells

Page 2 of 3 RS Components – Buy this product from https://uk.rs-online.com/

Internal

S Beam Load Cell 614 offers a compact design for platforms, silos, or scales. The tension Load Cell has a wide
range of capacities from 50kg to 1000kg, comes in steel alloy construction.
Capacities: 300kg
Material: Alloy Steel
Dimension: 62.1*18*80mm
Rated Output: 2.0mV/V
Protection Class: IP66

Hopper scales, Crane scales, Tension control and machine testing Batching systems, blending & mixing
systems, belt scales, etc.

Rated Capacities 300kg

Accuracy Class C3

Rated Output 2.0±0.002 mV/V

Zero Balance ±0.0200 mV/V

Non-linearity 0.03%R.O.

Hysteresis 0.03%R.O.

Repeatability 0.03%R.O.

30mins Creep 0.03%R.O.

30mins Return 0.03%R.O.

Safe Overload 120 %R.O.

Ultimate Overload 200 %R.O.

Temperature Effect on Output 0.002 %R.O./℃

Temperature Effect on Zero 0.003 %R.O./℃

Input Impedance 400±20 Ω

Output Impedance 350±3 Ω

Product Description

Electrical Specifications

Applications

 Load Cells

Page 3 of 3 RS Components – Buy this product from https://uk.rs-online.com/

Internal

Insulation Impedance ≥5000 MΩ/(50VDC)

Recommended Excitation 4~12 VDC

Maximum Excitation 15 VDC

Operating Temperature Range -20~60 ℃

Construction Steel Alloy

Cable φ5×3m

Mode of Connection Red（EXC+）, Black（EXC-）, Green（SIG+）, White（ SIG-)

Waterproof class IP66

eCl@ss (Version) C3

Declarations ROHS, OIML

Custom Tariff Number 84239000

Protection Category

Classification

Approvals

Additional Information

PJA-12

PJA1500F
AC-DC Power Supplies Enclosed Type

 PJ A 1500 F -O

Ordering information

R

1 2 3 4 5

SPECIFICATIONS
MODEL PJA1500F-24 PJA1500F-48

INPUT

VOLTAGE[V] AC85 - 264 1f (Output derating is required at AC85V - 115V. See 1.1 and 3.2 in Instruction Manual)

CURRENT[A]

ACIN 100V 18typ (Io=90%)

ACIN 115V 16typ (Io=100%)

ACIN 230V 8typ (Io=100%)

FREQUENCY[Hz] 50 / 60 (47 - 63)

EFFICIENCY[%]

ACIN 100V 84typ (Io=90%) 84typ (Io=90%)

ACIN 115V 85typ (Io=100%) 84typ (Io=100%)

ACIN 230V 88typ (Io=100%) 87typ (Io=100%)

POWER FACTOR

ACIN 100V 0.98typ (Io=90%)

ACIN 115V 0.98typ (Io=100%)

ACIN 230V 0.95typ (Io=100%)

INRUSH CURRENT[A]

ACIN 100V 15/30typ (Io=90%) (Primary inrush current /Secondary inrush current) (More than 10sec to re-start)

ACIN 115V 15/30typ (Io=100%) (Primary inrush current /Secondary inrush current) (More than 10sec to re-start)

ACIN 230V 30/30typ (Io=100%) (Primary inrush current /Secondary inrush current) (More than 10sec to re-start)

LEAKAGE CURRENT[mA] 1.5max (ACIN 240V, 60Hz, Io=100%, According to IEC62368-1 and DEN-AN)

OUTPUT

VOLTAGE[V] 24 48

CURRENT[A]
ACIN 85-115V Output derating is required at ACIN 115V or less (refer to instruction manual 3.2)

ACIN 115V-264V 64 32

WATTAGE[W]
ACIN 85-115V Output derating is required at ACIN 115V or less (refer to instruction manual 3.2)

ACIN 115V-264V 1536 1536

LINE REGULATION[mV] *2 96max 192max

LOAD REGULATION[mV] *2 150max 300max

RIPPLE[mVp-p]
*1

0 to +50C 120max 200max

-20 to 0C 160max 500max

RIPPLE NOISE[mVp-p]
*1

0 to +50C 150max 300max

-20 to 0C 270max 600max

TEMPERATURE REGULATION[mV]
0 to +50C 240max 480max

-20 to +50C 290max 600max

DRIFT[mV] *3 96max 192max

START-UP TIME[ms] 800typ (ACIN 115V, Io=100%)

HOLD-UP TIME[ms] 20typ (ACIN 115V, Io=100%)

OUTPUT VOLTAGE ADJUSTMENT RANGE[V] 20.40 to 28.50 40.80 to 55.20

OUTPUT VOLTAGE SETTING[V] 24.00 to 24.96 48.00 to 49.92

PROTECTION

CIRCUIT AND

OTHERS

OVERCURRENT PROTECTION Works over 105% of rating and recovers automatically

OVERVOLTAGE PROTECTION[V] 28.80 to 34.80 57.00 to 67.20

OPERATING INDICATION LED (Green)

ISOLATION

INPUT-OUTPUT AC3,000V 1minute, Cutoff current = 25mA, DC500V 50MW min (At room temperature)

INPUT-FG AC2,000V 1minute, Cutoff current = 25mA, DC500V 50MW min (At room temperature)

OUTPUT-FG AC500V 1minute, Cutoff current = 100mA, DC500V 50MW min (At room temperature)

ENVIRONMENT

OPERATING TEMP.,HUMID.AND ALTITUDE *4 -20 to +70C (Output derating is required), 20 - 90%RH (Non condensing), 3,000m (10,000 feet) max

STORAGE TEMP.,HUMID.AND ALTITUDE -20 to +75C, 20 - 90%RH (Non condensing), 9,000m (30,000 feet) max

VIBRATION 10 - 55Hz, 19.6m/s2 (2G), 3minutes period, 60minutes each along X, Y and Z axes

IMPACT 196.1m/s2 (20G), 11ms, once each X, Y and Z axes

SAFETY AND

NOISE

REGULATIONS

AGENCY APPROVALS UL62368-1, C-UL (CSA62368-1), EN62368-1, Complies with DEN-AN

CONDUCTED NOISE Complies with FCC-A, VCCI-A, CISPR22-A, EN55011-A, EN55022-A, additional EMI/EMC Filter required for meeting class B

HARMONIC ATTENUATOR *5 Complies with IEC61000-3-2 class A

1 Series name
2 Single output
3 Output wattage
4 Universal input
5 Output voltage

Example recommended EMI/EMC filter
NAC-20-472

*Make sure necessary tests will be carried out on your end equipment with the power supply installed in accordance with any required EMC/EMI regulations.

High voltage pulse noise type : NAP series

Low leakage current type : NAM series

PJA-13

PJA1500F

Features

*1 This is the result of measurement of the testing board with capacitors of

22mF and 0.1mF placed at 150 mm from the output terminals by a 20

MHz oscilloscope or a ripple-noise meter equivalent to Keisoku-Giken

RM103.

 See 1.6 of Instruction Manual for more details.

*2 Consult us about dynamic load and input response.

*3 Drift is the change in DC output for an eight hour period after a half-hour

warm-up at 25C.

*4 Output power derating is required. See 3.2 in Instruction Manual.

*5 Consult us about other classes.

*6 The fan speed slows down or stops at no load.

*7 See 3.3 in Instruction Manual for more details.

External view

Block diagram

CONTROL FAN

AC IN 85 - 264V

FG

RECTIFIER

OVER VOLTAGE

PROTECTION

CURRENT

SENSING

THERMAL

PROTECTION

NOISE

FILTER

INRUSH

CURRENT

LIMIT

RECTIFIER
AND

FILTER
DC OUT

FUSE

250V 30A

INVERTER

CONTROL

CONTROL

CONTROL

INVERTER

CURRENT

SENSING

RECTIFIER
AND

FILTER

BOOSTER

INDUCTOR

* Do not use the power supply in overcurrent conditions or in unspecified

input voltage ranges. Otherwise the internal components may be damaged.

* Parallel operation is not possible with this mode.

* Sound noise may be heard from the power supply when used for pulse load.

OTHERS
CASE SIZE/WEIGHT 178X61X268mm [7.01X2.40X10.55 inches] (Excluding terminal block and screw) (WXHXD) / 3.5kg max

COOLING METHOD *6 Forced cooling (internal fan)

WARRANTY WARRANTY *7 5 years (subject to the operating conditions)

SPECIFICATIONS

- Cost-effective

- Longer life (see Instruction Manual)

- Low profile (meets 2U height = 61 mm or 2.4 inches)

- Wide operating temperature range (-20 to +70 see

instruction manual)

- Stop or slow fan speed at no load

Name plate

+
V

-V

V
.A

D
J

M4

AC(L)

AC(N)

FG()

(L
)

(N
)

A
C

A
C

F
G

LED

Output terminal(+)

Output terminal(-)

Output voltage
adjustable potentiometer

Input terminal cover

Mounting hole
(Bottom side)

4-M4

AIR FLOW

8-M4
Mounting hole
(Both sides)

2-f9

4-M4

2
3
.5

±
2

.5

8
1
3

1
0

[4
.7

6
]

[0
.3

1
]

[0
.5

1
]

[0
.3

9
]

16±1.5

7
9
.5

±
1

.5

11.7±1.5 (potentiometer)
[0.46]

[3
.1

3
]

[0.63]

4max26838max

2
.5

[10.55] [0.16max]

[7
.0

1
]

[0
.1

]

[0.91max]
23max

2
.5

[0
.1

]

1
7
8

[1.5max]

7
1
.5

±
1

.5

[0.62]

15.8±1.5 (LED)

[2
.8

1
]

1
0

4
0

±
2

1
0

1
5

±
2

[1
.7

7
]

4
5

±
2

[0.28] [0.51]

[0
.7

9
]

2
0

±
2

7 13

2
0

2
0

[0
.5

9
]

[0
.3

9
]

[1
.5

7
]

[0
.3

9
]

[0
.7

9
]

[0
.7

9
]

[2
.4

]

30
[1.18]

6
1

1
2
1

±
1

.5

2
4

±
2

.5

[0
.9

4
]

[0
.9

3
]

215±0.5

[8.46]

11
.5

3
8

±
0

.5

[0
.4

5
]

[1
.5

]

[1.18] [8.46] 8
.5

1
6
1

±
0

.5

[0
.3

3
]

[6
.3

4
]

30 215±0.5

¶ Tolerance : ±1 [±0.04]

¶ Weight : 3.5kg max

¶ PCB Material/thickness : FR-4 / 1.6mm [0.06inches]

¶ Chassis material : Electric galvanizing steel board

¶ Case material : Electric galvanizing steel board

¶ Dimensions in mm, []=inches

¶ Mounting torque : 1.5N-m max

¶ Screw tightening torque : 1.6N-m max

¶ Output terminal M4 tightening torque : 1.2N-m max

¶ Connect the input FG to safety earth ground.

Page 1 of 2

The information contained herein does not form part of a

contract and is subject to change without notice. ARCOL

operate a policy of continual product development, therefore,

specifications may change.

It is the responsibility of the customer to ensure that the

component selected from our range is suitable for the intended

application. If in doubt please ask ARCOL.

ARCOL UK Limited,

Threemilestone Ind. Estate,

Truro, Cornwall, TR4 9LG, UK.

T  +44 (0) 1872 277431 

F  +44 (0) 1872 222002 

E  sales@arcolresistors.com

www.arcolresistors.com

12/14.08

HS Aluminium Housed Resistors
Manufactured in line with the requirements of MIL 18546 and

IEC 115, designed for direct heatsink mounting with thermal

compound to achieve maximum performance.

•	 High Power to volume

•	 Wound to maximise High Pulse Capability

•	 Values from R005 to 100K

•	 Custom designs welcome

•	 RoHS Compliant

Characteristics
Tolerance (Code):	

Tolerance for low Ω values:

Temperature coefficients:

Insulation resistance (Dry):

Power dissipation:

Ohmic values:

Low inductive (NHS):

NHS ohmic value:

NHS working volts:

Standard ±5% (J) and ±10% (K). Also available ±1% (F), ±2% (G) and ±3% (H)

Typically ≥ R05 ±5% ≤ R047 ±10%

Typical values < 1K 100ppm Std. > 1K 25ppm Std. For lower TCR’s please contact Arcol

10,000 MΩ minimum

At high ambient temperature dissipation derates linearly to zero at 200°C

From R005 to 100K depending on wattage size

Specify by adding N before HS Series code, e.g. NHS50

Divide standard HS maximum value by 4

Divide standard HS maximum working voltage by 1.414

Ordering Procedure
Standard Resistor. To specify standard: Series, Watts, Ohmic

Value, Tolerance Code, e.g.: HS25 2R2 J

Non Inductive Resistor. To specify add N, e.g.: NHS100 10R J

Heat Dissipation
Heat dissipation: Whilst the use of proprietary heat sinks

with lower thermal resistances is acceptable, uprating is not

recommended. For maximum heat transfer it is recommended

that a heat sink compound be applied between the resistor

base and heat sink chassis mounting surface. It is essential that

the maximum hot spot temperature of 200°C is not exceeded,

therefore, the resistor must be mounted on a heat sink of

correct thermal resistance for the power being dissipated.

Temp. Rise & Power Dissipation
Surface temperature of resistor related to power dissipation.

The resistor is standard heatsink mounted using a proprietary

heatsink compound.

HS300

HS250
HS200HS150HS50

HS75

HS25

HS15

HS10

HS100

0 20 50 75 100 150 200 250 300
POWER DISSIPATION (WATTS)

200

100

5

SU
R

FA
C

E
TE

M
P

ER
A

TU
R

E
R

IS
E(

˚C
)

Page 2 of 2 12/14.08

HS Aluminium Housed Resistors

Electrical Specifications

Size
Style
MIL-R
18546

Power
rating

on std.
heatsink
@25°C

Watts
with no
heatsink
@25°C

Resis-
tance
range

Limiting
element
voltage

Voltage
proof AC

Peak

Voltage
proof AC

rms.

Approx
weight
gms

Typical
surface
rise HS

mounted

Standard heatsink

cm2 Thickness
mm

HS10 RE 60 10 5 R005-10K 160 1400 1000 4 5.8 415 1

HS15 RE 65 15 7 R005-10K 265 1400 1000 7 5.1 415 1

HS25 RE 70 25 9 R005-36K 550 3500 2500 14 4.2 535 1

HS50 RE 75 50 14 R01-86K 1250 3500 2500 32 3.0 535 1

HS75 75 24 R01-50K 1400 6363 4500 85 1.1 995 3

HS100 100 30 R01-70K 1900 6363 4500 115 1.0 995 3

HS150 150 45 R01-100K 2500 6363 4500 175 1.0 995 3

HS200 200 50 R01-50K 1900 7070 5000 475 0.7 3750 3

HS250 250 55 R01-50K 2200 7070 5000 600 0.6 4765 3

HS300 300 60 R01-68K 2500 7070 5000 700 0.6 5780 3

HS10-HS300 Standard Resistor

HS 200, 250, 300

6mm

AG

JL

F

B

Ø 2.0
± 0.25

2.1 ± 0.1

HS 10, 15, 25, 50

D

H
K

C

HS 75, 100, 150

=

Ø 3.2
max.

3.0 ± 0.1

*
=

Centre hole in

150 Watts only

E

B

F

JL

A

= =

B

F
EE
M

JL

A

D

H
K

C

D

H
K

C

G G

Dimensions (mm)
Size A Max B Max C Max D Max E Max F±0.3 G±0.3 H Max J Max K Max L ±0.25* M Max

HS10 16.5 30.0 8.8 8.5 15.9 11.3 12.4 4.5 2.4 1.8 2.4

HS15 21.0 36.5 11.0 11.2 19.9 14.3 15.9 5.5 2.8 1.8 2.4

HS25 28.0 51.0 14.8 14.2 27.3 18.3 19.8 7.7 5.2 2.6 3.2

HS50 28.0 72.5 14.8 14.2 49.1 39.7 21.4 8.4 5.2 2.6 3.2

HS75 47.5 72.0 24.1 27.3 48.7 29.0 37.0 11.8 10.4 3.7 4.4

HS100 47.5 88.0 24.1 27.3 65.2 35.0 37.0 11.8 15.4 3.7 4.4

HS150 47.5 121.0 24.1 27.3 97.7 58.0 37.0 11.8 20.4 3.7 4.4

HS200 72.5 145.7 41.8 45.5 89.7 70.0 57.2 20.5 10.4 5.5 5.1 103.4

HS250 72.5 167.0 41.8 45.5 109.7 89.0 57.2 20.5 10.4 5.5 5.1 122.4

HS300 72.5 184.4 41.8 45.5 127.7 104.0 59.0 20.5 12.4 5.5 6.6 141.4

* HS200-HS300 Watts is ± 0.45

RoboClaw 2x15A Dual Channel Motor Controller	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

RoboClaw 2x15A, 34VDC Dual Channel
Brushed DC Motor Controller

Data Sheet Version 2.4

RoboClaw 2x15A Dual Channel Motor Controller	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

Feature Overview:

•	 15 Amps Continuous Per Channel
•	 30 Amps Peak Per Channel
•	 Dual Quadrature Decoding
•	 9.8 million PPS Decoding
•	 Multimode Interface
•	 TTL Serial
•	 USB Port
•	 Analog Interface
•	 R/C Input Control
•	 Limit, Home and E-Stops	
•	 Up to 34VDC Operation
•	 Cooling Fan With Automatic Control
•	 3.3v Compliant Control Outputs
•	 5v Tolerant Control Inputs
•	 Programmable Current Limiting
•	 Programmable Voltage Clamping
•	 Closed and Open Loop Operation
•	 Auto Tuning PID Feature
•	 Mixed Control Modes
•	 Data Logging
•	 Diagnostic LEDs
•	 Field Firmware Updates
•	 Regulated 5VDC, 3A User Available Output
•	 Over Voltage and Under Voltage Protection
•	 Easy Tuning, Monitor and Setup with PC utility

Device Overview
The RoboClaw is an intelligent, high performance motor controller designed to control dual brushed DC motors. It can be
controlled from USB, RC radio, PWM, TTL serial, analog and microcontrollers such as an Arduino or Raspberry Pi.

RoboClaw automatically supports 3.3V or 5V logic levels, travel limit switches, home switches, emergency stop switches,
power supplies, braking systems and contactors. A built-in switching mode BEC supplies 5VDC at up to 3 Amps for
powering user devices. In addition power supplies can be utilized by enabling the built in voltage clamping control
feature.

A wide variety of feedback sensors are supported. This includes quadrature encoders, potentiometers and absolute
encoders which can be easily configured using the available auto tune function. With sensors, two brushed DC
motors can be controlled in closed loop mode allowing precise control over position and speed. With the ability to use
potentiometers, servo systems can be created and controlled from any of RoboClaw’s interface modes.

For greater control, built-in commands are available for controlling acceleration, deceleration, distance, speed, current
sense, voltage limits and more. In addition, RC and analog modes can be configured by user defined settings to control
acceleration and deceleration rates.

RoboClaw incorporates multiple protection features including temperature, current, over voltage and under voltage limits.
The protection features are self monitoring and protect RoboClaw from damage in any operating condition. User definable
settings such as maximum current limit, maximum and minimum battery voltages are provided for more refined control.

RoboClaw’s regenerative capabilities will charge a supply battery during slow down or breaking. It’s advance circuitry can
change direction during full throttle without damage! RoboClaw also incorporates a LiPo cutoff mode to prevent battery
damage.

Multimode Interface
RoboClaw’s I/O are voltage protected and can handle up to 5VDC. The I/O only output a high of 3.3V. This allows
RoboClaw to be interfaced to 5V or 3V logic easily with no translation circuits required. RoboClaw can be connected
directly to a Raspberry Pi or Arduino. All of RoboClaw’s inputs are internally pulled-up to prevent false triggers. Inputs
can also be configured using the Motion Studio application.

RoboClaw 2x15A Dual Channel Motor Controller	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

User Regulated Power Output
RoboClaw provides regulated power (BEC) for user devices. A high efficiency switching regulator supplies 5VDC at up to
3 Amps. This voltage can be used to power external sensors, encoders, MCUs and other electronics. The regulated user
power is automatically current limited and thermally protected.

Main Battery
The peak operational input voltage depending on the model can be up to 34VDC, 60VDC or 80VDC. The models
maximum input voltage can not be exceeded. If the maximum voltage is exceed the motors will be disabled. Fully
charged batteries maximum voltage must be taken into account when in use. RoboClaw is a regenerative motor
controller. During regeneration, voltages can peak over the maximum rated voltage in which RoboClaw is designed to
handle these over voltage spikes by braking the motors.

Logic Battery
RoboClaw accepts a logic battery. The logic battery is also known as a backup battery. The user regulated power output
(BEC) is by default powered from the main battery, unless a logic battery is detected. The logic battery source is coupled
to the main battery through an on board automatic switch. If the main battery voltage drops below the logic battery
input level, the logic circuit and user regulated power output will be drawn from the logic battery.

Software
RoboClaw can be easily configured using the Motion Studio software tool. The Windows based application enables users
to quickly configure RoboClaw. The software can be used during run time to monitor and control several operational
parameters. Motion studio is available from the Basicmicro.com website. It can also be found in the Downloads section of
the Basicmicro website or listed under the Download tabs on the production page.

User Manual
This data sheet only covers model specific information and basic wiring. To properly setup and use RoboClaw refer to the
RoboClaw User Manual available for download from http://www.basicmicro.com.

Cooling
RoboClaw will generate heat. The maximum current ratings can only be achieved and maintained with adequate heat
dissipation. The motor controller should be mounted so that sufficient airflow is provided. Which will dissipate the heat
away from the motor controller during operation. Some models of RoboClaw include a built-in automatic cooling fan
controller, which can be used to help maintain continuous currents under extreme conditions.

Emergency Stop
The motor controller should be wired using an external contactor, relay or high amperage mechanical switch to control
the main power input. A second power source should be used to power the logic section in situations where the main
power will be under heavy load. Voltage drops can occur from constant full load or high speed direction changes. Voltage
drop can cause logic brown outs if only a main battery is used without a logic battery.

USB
The motor controllers USB port should be used for configuration and debugging. The USB protocol is not designed for
electrically noisy environments. The USB port will likely disconnect and not automatically recover during operation
in electrically noisy environments. To recover from a dropped USB port, the motor controllers USB cable may require
being unplugged and re-plugged in. The TTL serial control should be the preferred method of control in electrically noisy
environments.

Firmware Updates
Firmware updates will be made available to add new features or resolve any technical issue. Before using RoboClaw
for the first time it is recommended to update to the latest firmware. Download and install Motion Studio. Refer to the
RoboClaw User Manual or Application Notes for additional information on updating the RoboClaw firmware.

RoboClaw 2x15A Dual Channel Motor Controller	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

STAT1
STAT2

ERR

Hardware Overview:

ID Function DESCRIPTION

A Status LEDs Provides RoboClaw status information.

B USB Port Communicate with RoboClaw via USB.

C Control Inputs S1,S2,S3,S4 and S5 control inputs.

D Encoder Inputs Dual encoder input and power pins.

E Logic Battery Logic battery jumper setup and logic battery power input.

F Motor Channel 1 Motor driver output screw terminals for channel 1.

G Main Battery Main battery screw terminal input.

H Motor Channel 2 Motor driver output screw terminals for channel 2.

I Setup Buttons Configure RoboClaw. Can bypass and use IonMotion PC setup utility.

J Fan Control Automatic fan control. 5VDC Fan. On at 45°C and off at 35°C

A

B
C

DE

F G H

I

J

RoboClaw 2x15A Dual Channel Motor Controller	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

Control Interface
The RoboClaw uses standard male pin headers with 0.100” (2.54mm) spacing. The pin headers are ideal for use with
standard servo cables and other popular interface connectors. The table below list the pins and their respective functions.
All pins are 5V tolerant and output 3.3V for compatibility with processor such as Raspberry Pi and Arduino. R/C pulse
input, Analog and TTL can be generated from any microcontroller such as a Arduino or Raspberry Pi. The R/C Pulse input
pins can also be driven by any standard R/C radio receiver. There are several user configurable options available. To
configure RoboClaw, install Motion Studio and connect it to an available USB port.

NAME UART TTL ANALOG R/C PULSE FLIP
SWITCH E-STOP HOME LIMIT V-CLAMP Encoder

S1 RX Motor 1 Motor 1

S2 TX Motor 2 Motor 2

S3 X X X

S4 X Motor 1 Motor 1 X

S5 X Motor 2 Motor 2 X

EN1 Motor 1

EN2 Motor 2

+5V

FAN

STA
T1

STA
T2

ERR

I/
O

 -

P
W

R
 -

G

N
D

 -

S1

S2

S3

S4

S5

+ -
LB IN

+ -

+ -

EN1

EN2

A
 -

B
 -

+5V
FAN

RoboClaw 2x15A Dual Channel Motor Controller	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

Logic Battery (LB IN)
The logic circuit of RoboClaw can be powered from a secondary battery wired to LB IN. A logic battery will prevent
brownouts when the main battery is low or under heavy load. The positive (+) terminal is located at the board edge and
ground (-) is the inside pin closest to the heatsink.

Encoder Power (+ / -)
The pins labeled + and - are the source power pins for encoders. The positive (+) is located at the board edge and
supplies +5VDC. The ground (-) pin is near the heatsink. On RoboClaws with screw terminals, power for the encoders
can be supplied by the 5VDC and GND on the main screw terminal.

Encoder Inputs (1A / 1B / 2A / 2B)
The encoders inputs are labeled EN1 and EN2. EN1 is for encoder 1 and EN2 is for encoder 2 which also correspond
to motor channel 1 and motor channel 2. Quadrature encoder inputs are typically labeled 1A, 1B, 2A and 2B. Channel
A of both EN1 and EN2 are located at the board edge on the pin header. Channel B pins are located near the heatsink
on the pin header. Quadrature encoders are directional. When connecting encoders make sure the leading channel for
the direction of rotation is connected to A. If one encoder is backwards to the other you will have one internal counter
counting up and the other counting down. Use Motion Studio to determine the encoders direction relative to the motors
rotation. Encoder channels A and B can be swapped in software using Motion Studio to avoid re-wiring the encoder or
motor.

Control Inputs (S1 / S2 / S3 / S4 /S5)
S1, S2, S3, S4 and S5 are configured for standard servo style headers I/O (except on ST models), +5V and GND. S1 and
S2 are the control inputs for serial, analog and RC modes. S3 can be used as a flip switch input, when in RC or Analog
modes. In serial mode S3, S4 and S5 can be used as emergency stops inputs or as voltage clamping control outputs.
When configured as E-Stop inputs, they are active when pulled low. All I/O have internal pull-ups to prevent accidental
triggers when left floating. S4 and S5 can be configured as home switch and limit switch inputs. The pins closest to the
board edge are the I/0s, center pin is the +5V and the inside pins are ground. Some RC receivers have their own supply
and will conflict with the RoboClaw’s 5v logic supply. It may be necessary to remove the +5V pin from the RC receivers
cable in those situations.

Cooling Fan Control
The cooling fan control will automatically turn on and off a fan based on RoboClaws temperature. The fan will turn on
when the board temperature reaches 45°C and will automatically turn off when the board temperature falls below 35°C.
The fan control circuit can power a 5VDC fan at up to 230mA. A wide range of fans can be used. The CFM rating of the
fan will determine how effective the fan is at cooling. A tested fan is available from DigiKey under part number:
259-1577-ND. However any fan can be used provided it meets the electrical specifications outlined above.

RoboClaw 2x15A Dual Channel Motor Controller	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

Main Battery Screw Terminals
The main power input can be from 6VDC to 34VDC on a standard RoboClaw and 10.5VDC to 60VDC or 80VDC on an HV
(High Voltage) RoboClaw. The connections are marked + and - on the main screw terminal. The plus (+) symbol marks
the positive terminal and the negative (-) marks the negative terminal. The main battery wires should be as short as
possible.

		 Do not reverse main battery wires or damage will occur.

Disconnect
The main battery should include a quick disconnect in case of a run away situation and power needs to be cut. The switch
must be rated to handle the maximum current and voltage from the battery. Total current will vary depending on the
type of motors used. A common solution would be an inexpensive contactor which can be sourced from sites like Ebay.
A power diode rated for approximately 2 to 10 Amps should be placed across the switch/contactor to provide a return to
the battery when power is disconnected. The diode will provide the regenerative power a place to go even if the switch is
open.

Motor Screw Terminals
The motor screw terminals are marked with M1A / M1B for channel 1 and M2A / M2B for channel 2. For a typical
differential drive robot the wiring of one motor should be reversed from the other. The motor and battery wires should be
as short as possible. Long wires can increase the inductance and therefore increase potentially harmful voltage spikes.

!

RoboClaw 2x15A Dual Channel Motor Controller	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

Control Modes
RoboClaw has 4 main functional control modes explained below. Each mode has several configuration options. The modes
can be configured using Motion Studio or the built-in buttons. Refer to the RoboClaw User Manual for installation and
setup instructions.

RC
Using RC mode RoboClaw can be controlled from any hobby RC radio system. RC input mode also allows low powered
microcontrollers such as a Basic Stamp to control RoboClaw. Servo pulse inputs are used to control the direction and
speed. Very similar to how a regular servo is controlled. Encoders are supported in RC mode, refer to the RoboClaw user
manual for setup instructions.

Analog
Analog mode uses an analog signal from 0V to 2V to control the speed and direction of each motor. RoboClaw can be
controlled using a potentiometer or filtered PWM from a microcontroller. Analog mode is ideal for interfacing RoboClaw
with joystick positioning systems or other non microcontroller interfacing hardware. Encoders are supported in Analog
mode, refer to the RoboClaw user manual for setup instructions.

Simple Serial
In simple serial mode RoboClaw expects TTL level RS-232 serial data to control direction and speed of each motor.
Simple serial is typically used to control RoboClaw from a microcontroller or PC. If using a PC, a MAX232 or an equivalent
level converter circuit must be used since RoboClaw only works with TTL level inputs. Simple serial includes a slave select
mode which allows multiple RoboClaws to be controlled from a signal RS-232 port (PC or microcontroller). Simple serial
is a one way format, RoboClaw can only receive data. Encoders are not supported in Simple Serial mode.

Packet Serial
In packet serial mode RoboClaw expects TTL level RS-232 serial data to control direction and speed of each motor. Packet
serial is typically used to control RoboClaw from a microcontroller or PC. If using a PC a MAX232 or an equivalent level
converter circuit must be used since RoboClaw only works with TTL level input. In packet serial mode each RoboClaw is
assigned a unique address. There are 8 addresses available. This means up to 8 RoboClaws can be on the same serial
port. Encoders are supported in Packet Serial mode, refer to the RoboClaw user manual for setup instructions.

USB Control
USB can be used in any mode. When RoboClaw is in packet serial mode and another device, such as an Arduino, is
connected commands from the USB and Arduino will be executed and can potentially override one another. However if
RoboClaw is not in packet serial mode, motor movement commands will be overiden by Analog or RC pulse input. USB
packet serial commands can then only be used to read status information and set configuration settings.

RoboClaw 2x15A Dual Channel Motor Controller	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

Wiring Basics
There are several wiring configurations for RoboClaw. Each configuration will have unique wiring requirements to ensure
safe and reliable operation. The diagram below illustrates a very basic wiring configuration used in a small motor system
where safety concerns are minimal. This is the most basic wiring configuration possible. All uses of RoboClaw should
include some kind of main battery shut off switch, even when safety concerns are minimal. Never underestimate a
system with movement when an uncontrolled situation arises.

In addition, RoboClaw is a regenerative motor controller. If the motors are moved when the system is off, it could cause
potential erratic behavior due to the regenerative voltages powering the system. The regenerative voltages can cause
problems if a power supply is used for main power. A voltage clamping circuit is recommended to dump the excessive
voltages. See the RoboClaw user manual or Application Notes for voltage clamping setup and wiring diagrams.

R/C Mode
The below wiring diagram is very basic and for use with R/C mode. R/C mode can be used when pairing RoboClaw with a
standard R/C receiver. R/C mode can also be used with a microcontroller and using servo pulses to control RoboClaw. The
RoboClaw supplies power to the R/C system. If the R/C receiver used, has its own power the 5V pin on the 3 pin header
must be remove otherwise it will interfere with RoboClaw’s BEC.

M1A

M1B

M2B

M2A

B-

B+

+-

Battery

S2

ROBOCLAW

Motor 1

Motor 2

Channel 1

Channel 2

R/C
Receiver

S1

RoboClaw 2x15A Dual Channel Motor Controller	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

Wiring Safety
In all system with movement, safety is a concern. This concern is amplified when dealing with higher voltages. The wiring
diagram below illustrates a properly wired system. An external main power cut off is required (SW1). The external cut off
can consist of a high amperage mechanical switch or a contactor.

When the RoboClaw is switched off or a fuse is blown, a high current diode (D1) is required to create a return path to the
battery for potential regenerative voltages. In addition a pre-charge resistor (R1) is required to reduce the high inrush
currents to charge the on board capacitors. A pre-charge resistor (R1) should be around 1K, 1/2Watt for a 60VDC motor
controller which will give a pre-charge time of about 15 seconds. A lower resistances can be used with lower voltages to
decrease the pre-charge time.

Closed Loop Mode
A wide range of sensors are supported for closed loop operation. RoboClaw supports dual quadrature encoders (up to
9.8 million PPS), absolute encoders, potentiometers and hall effect sensors. The wiring diagram below is an example
of closed loop mode using quadrature encoders. Quadrature encoders are directional. RoboClaw’s internal counters will
increment for clockwise rotation (CW) and decrement for counter clockwise rotation (CCW). When wiring encoders A and
B channels it is important they are wired to match the direction of the motor. If the encoder is wired in reverse it can
cause a run away condition. All motor and encoder combinations will need to be tuned (see the RoboClaw user manual).

Encoder 1

A
B

GND
+5V

EN1 A
EN1 B

5VDC
GROUND

Encoder 2

A
B

GND
+5V

EN2 A
EN2 B

5VDC
GROUND

M1A

M1B

M2B

M2A

B-

B+

+-

Battery

RX0

TX0

+5V

GROUND

ROBOCLAW

Motor 1

Motor 2

UART TX

UART RX

5VDC

GROUND

MCU
R1

F1

D1
SW1

RoboClaw 2x15A Dual Channel Motor Controller	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

Logic Battery
An optional logic battery is supported. Under heavy loads the main power can suffer voltage drops, causing potential
logic brown outs which may result in uncontrolled behavior. A separate power source for the motor controllers logic
circuit, will remedy potential problems from main power voltage drops. The logic battery maximum input voltage is
34VDC with a minimum input voltage of 6VDC. The 5V regulated user output is supplied by the secondary logic battery
if supplied. The mAh of the logic battery should be determined based on the load of attached devices powered by the
regulated 5V user output.

Logic Battery Jumper
The configuration below utilizes a logic battery. Older models of RoboClaw have a logic battery jumper. On models where
the LB-MB header is present the jumper must be removed when using a separate logic battery. If the header for LB-MB is
not present, then the RoboClaw will automatically set the logic battery power source.

+-

Battery

Motor 1

Motor 2

R1

F1 D1

M1A

M1B

M2B

M2A

B-

B+

ROBOCLAW

F2

+-

Logic
Battery

SW1

SW2

GND

LB+

RoboClaw 2x15A Dual Channel Motor Controller	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

RC Control Setup

1. Wire the RoboClaw Solo, power supply, motor and RC hardware as show in the RC wiring diagram in this datasheet.

2. Additionally, it is recommened to wire safety hardware as show in the Safety Wiring section of this datasheet.

2. Connect a micro USB cable between the RoboClaw Solo and a computer with Motion Studio installed. The USB
connection does not power the RoboClaw, a power supply must be connected. Open Motion Studio and click “Connect
Selected Unit” to connect to the motor controller.

3. Click on PWM Settings on the left-hand side of the application. Use the slider for motor 1 in the Control section of the
application. The motor should move in the forward direction when the slider is moved up and in the reverse direction
when moved down. If the motor does not move the proper direction power down the controller and reverse the motor
wiring.

3. Next, click on General Setting on the left-hand side of the application. This is where the RC settings are set.

4. In the panel labeled Setup set the Control Mode to RC.

5. Next, RC options can be set in the panel labeled RC/Analog Options.

6. If the ability to reverse controls for the motor channel with an additional RC channel is desired check the RC Flip/Mode
Switch checkbox. The RC channel that will be used as a flip switch should be wired to the S3 header on the Solo.

7. If dampening for the RC input is desired check the checkbox labeled Exponential. This setting makes control of the
motor channel less sensitive.

8. If a custom amount of deadband should be applied to the RC input set the boxes labeled Max and Min Deadband to the
desired amount. Deadband allows the stick of the RC transmitter to travel a small amount without a response from the
motor channel.

9. If the motor being used has an encoder and has been wired to the Solo check the checkbox labeled Enable Encoder
1in RC/Analog Mode. This setting will provide velocity control for the motor which helps it maintain a constant speed
regardless of load.

RoboClaw 2x15A Dual Channel Motor Controller	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

10. To complete the setup for RC mode click Device in the menu at the top of the application and then click on Write
Settings. The settings are now saved to the Solo.

11. Disconnect the Solo from Motion Studio by clicking Disconnect Selected Unit in the upper left-hand side of the
application. The USB connection can then be removed from the Solo.

12. The robot or other system can now be operated remotely with the RC transmitter.

Additional Control Modes and Documentation

The RoboClaw Solo also features other control modes such as packet serial, simple serial and analog. Documentation for
these mode’s wiring and software configuration can be found in the User Manual as well as our Application Notes.

The User Manual can be found here: https://www.basicmicro.com/downloads
Application Notes can be found on our website: https://resources.basicmicro.com/

RoboClaw 2x15A Dual Channel Motor Controller	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

Mechanical Specifications
Characteristic Model Min Typ Max Rating

Weight 2X15A 2.2 (62) Oz (g)

Dimensions

2.06” (52.32mm)

1.8” (45.72mm)

2.
9”

 (7
3.

66
m

m
)

2.
63

” (
66

.6
8m

m
)

0.125” (3.175mm)

0.
70

” (
17

.7
8m

m
)

RoboClaw 2x15A Dual Channel Motor Controller	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

Electrical Specifications
Characteristic Min Typ Max Rating

Main Battery 6 34 VDC

Logic Battery 6 12 34 VDC

Maximum External Current Draw (BEC) 3 A

Motor Current Per Channel 15(2) 30(1,2) A

Motor Current Bridged 30(2) 60(1,2)

On Resistance 4.3 mOhm

Logic Circuit Current Draw 30mA mA

Input Impedance 100 Ω

Input 0 5 VDC

Input Low -0.3 0.8 VDC

Input High 2 5 VDC

I/O Output Voltage 0 3.3 VDC

Digital and Analog Input Voltage 5 VDC

Analog Useful Range 0 2 VDC

Analog Resolution 1 mV

Pulse Width 1 2 mS

Encoder Counters 32 Bits

Encoder Frequency 9,800,000 PPS

RS232 Baud Rate (Note 3) 460,800 Bits/s

RS232 Time Out (Note 3) 10 ms

Temperature Range -40 40 100 °C

Temperature Protection Range 85 100 °C

Humidity Range 100 (4) %

Notes:
1.	Peak current is automatically reduced to the typical current limit as temperature approaches 85°C.
2.	Current is limited by maximum temperature. Starting at 85°C, the current limit is reduced on a slope with a maximum

temperature of 100°C, which will reduce the current to 0 amps. Current ratings are based on ambient temperature of 25°C.
3.	RS232 format is 8Bit, No Parity and 1 Stop bit.
4.	Condensing humidity will damage the motor controller.

RoboClaw 2x15A Dual Channel Motor Controller	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

Warranty
Basicmicro warranties its products against defects in material and workmanship for a period of 1 year. If a defect is
discovered, Basicmicro will, at our sole discretion, repair, replace, or refund the purchase price of the product in question.
Contact us at sales@basicmicro.com. No returns will be accepted without the proper authorization.

Copyrights and Trademarks
Copyright© 2020 by Basicmicro, Inc. All rights reserved. All referenced trademarks mentioned are registered trademarks
of their respective holders.

Liability Statement
By purchasing and using Basicmicro’s products you acknowledge and agree to the following: Basicmicro has no liabilities
(and, to the Basicmicro’s knowledge, there is no basis for any present or future action against the company giving rise to
any liability) arising out of any injury to individuals or property as a result of ownership, possession or use of any product
designed or sold by Basicmicro. No product from Basicmicro should be used in any medical devices and/or medical
situations. No product should be used in any life support situations.

Contacts
	 Email: sales@basicmicro.com
	 Tech support: support@basicmicro.com
	 Web: http://www.basicmicro.com

Discussion List
A web based discussion board is maintained at http://www.basicmicro.com

Technical Support
Technical support is available by sending an email to support@basicmicro.com, by opening a support ticket on the
Basicmicro website or by calling 800-535-9161 during normal operating hours. All email will be answered within 48
hours.

VClamp Voltage Clamp	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

VClamp - Voltage Clamp

Data Sheet Version 1.1

VClamp Voltage Clamp	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

Feature Overview:

•	 60 Amps Peak Clamping
•	 60VDC Peak Operation
•	 TTL Control
•	 Air and Conduction Cooling
•	 3.3v Compliant Control Outputs
•	 5v Tolerant Control Inputs
•	 Status LED

Device Overview
The VClamp adapter will allows a switching power supply to be with either RoboClaw or MCP motor controllers. During
coasting or slow down excessive voltages can be generated at the power input. The excess voltages can cause certain
power supplies to shut down due to over voltage. The VClamp can dissipates the excess energy through a braking
resistor.

The VClamp can be controlled by RoboClaw or MCP and is activated when the maximum set voltage of the RoboClaw
or MCP is exceeded. VClamp is also ideal in battery system where the regenerative voltages need to be controlled to
prevent over charging.

Control Interface
VClamp is controlled by a simple ON/OFF interface. A low signal on its control input will activate it, turning on the
MOSFET. When the VClamp is active the excess voltage will be sent through a connected power resistor which will then
be bled off as heat.

Limits
VClamp can dissipate up to 60 amps at 60VDC. This is limited by the type of braking resistor used and if the resistor has
a heat sink.

Function
During a regeneration period, when the maximum set voltage is exceed by 1V RoboClaw or MCP will automatically turn
on the VClamp. It will stay active until the voltage settles to the maximum voltage that was previously set.

VClamp Voltage Clamp	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

Hardware Overview:

ID Function Description

A Resistor Terminals Braking resistor used for power dissipation.

B Main Power Main power connection. Positive and GND connections.

C Control Inputs Control input.

D MOSFET Part Number: BUK965R8-100E,118

E Status LED Status LED indicates when clamping MOSFET is active.

A B

D C

E

VClamp Voltage Clamp	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

Functional Overview
The R1-A and R1-B screws terminals are used to connect the braking resistor. The B+ and GND connections on the main
screw terminal are tied to the main power source. The control interface screw terminals provide a connection for control
signal (CTRL), signal ground and 5VDC to power VClamp. CTRL is an active LOW and is internally pulled-up with a 10K
resistor to keep it off when no signal is applied. A low input on CTRL will turn the MOSFET (BUK965R8-100E,118) on.

When VClamp is active and the MOSFET is on the led marked ACTIVE will be lit. Any excess voltage will be bled off as
heat via the attached braking resistor to ground.

Name Function

GND Main supply voltage ground terminal.

B+ Main supply voltage positive terminal.

R1-A Dissipation braking resistor terminal.

R1-B Dissipation braking resistor terminal.

CTRL Active LOW to turn on VClamp.

5+ 5VDC required to operate VClamp.

GND Signal ground.

ACTIVE Status LED. On when VClamp is active.

GND B+ R1-A R1-B

C
TR

L
 5

+

G
N

D

ACTIVE

VClamp Voltage Clamp	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

Resistor Selection
The resistor needs to be sized based on the running voltage and potential current that will need to be dissipated. Below is
an example chart of potential resistor values and wattages. The resistors can be sourced from suppliers such as DigiKey.
The excess energy will be turned into heat. The recommended resistors below have an aluminum shell for mounting to
help dissipate the excess heat.

Designator Part Resistance 12VDC 24VDC 36VDC 48VDC 60VDC

R1 KAL50FB1R00 1 Ohm 12A 24A 36A 48A 60A

R1 KAL50FB2R00 2 Ohm 6A 12A 18A 24A 30A

R1 KAL50FB3R00 3 Ohm X 6A 9A 12A 15A

R1 KAL50FB5R00 5 Ohm X X 7.2A 9.6A 12A

RoboClaw and MCP Software Setup
Each of the auxiliary pins on RoboClaw or MCP have a drop down option in Motion Studio. One of these options will be
VClamp. Set the desired auxiliary pin to VClamp and select the invert option for the pin. Then set the battery maximum
voltage to at least 1 to 2 volts above. Refer to the VClamp application note for more information.

Wiring
The wiring schematic below illustrates how to properly wire the VClamp. R1 is the braking resistor. R1 will turn the
excess energy into heat. The VClamp can be controlled directly by the motor controller or separate control system such
as an external microcontroller. B+ and GND from the main screw terminal connect directly to the motor controller power
source.

The below schematic outlines the basic setup for VClamp. It does not take into account proper safety such as a fuse or
contactor in the system. Refer to the motor controller’s data sheet, manual and application notes.

GND

A
C

TIV
E

PSU /
BATTERY

GND

B+

MOTOR
CONTROLLERCTRL

5+

R1-A

R1-B R1

VClamp Voltage Clamp	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

Mechanical Specifications
Characteristic Model Min Typ Max Rating

Weight VClamp 0.8 (22) Oz (g)

Dimensions

 0
.0

60

 0
.5

60

 1.885
 1.455
 1.200

 1.635

0.125(4x)

VClamp Voltage Clamp	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

Electrical Specifications
Characteristic Min Typ Max Rating

Battery 6 60 VDC

Current 60 A

On Resistance 5.8 mOhm

Logic Circuit Current Draw 10mA mA

Input Low -0.3 0.8 VDC

Input High 2 5 VDC

Temperature Range -55 150 °C

Humidity Range 100 (1) %

Notes:
1.	Condensing humidity will damage the device.

VClamp Voltage Clamp	 Data Sheet

(c) 2020 Basicmicro. All Rights Reserved.

Warranty
Basicmicro warranties it’s products against defects in material and workmanship for a period of 1 year. If a defect is
discovered, Basicmicro will, at our sole discretion, repair, replace, or refund the purchase price of the product in question.
Contact us at sales@basicmicro.com. No returns will be accepted without the proper authorization.

Copyrights and Trademarks
Copyright© 2020 by Basicmicro, Inc. All rights reserved. All referenced trademarks mentioned are registered trademarks
of their respective holders.

Liability Statement
By purchasing and using Basicmicro’s products you acknowledge and agree to the following: Basicmicro has no liabilities
(and, to the Basicmicro’s knowledge, there is no basis for any present or future action against the company giving rise to
any liability) arising out of any injury to individuals or property as a result of ownership, possession or use of any product
designed or sold by Basicmicro. No product from Basicmicro should be used in any medical devices and/or medical
situations. No product should be used in any life support situations.

Contacts
	 Email: sales@basicmicro.com
	 Tech support: support@basicmicro.com
	 Web: http://www.basicmicro.com

Discussion List
A web based discussion board is maintained at http://www.basicmicro.com

Technical Support
Technical support is available by sending an email to support@basicmicro.com, by opening a support ticket on the
Basicmicro website or by calling 800-535-9161 during normal operating hours. All email will be answered within 48
hours.

CHAPTER 7. APPENDICES 150

C Preproject report

FORPROSJEKT - RAPPORT
FOR BACHELOROPPGAVE

Postadresse Besøksadresse Telefon Telefax Bankkonto

Høgskolen i Ålesund Larsgårdsvegen 2 70 16 12 00 70 16 13 00 7694 05 00636

N-6025 Ålesund Internett Epostadresse Foretaksregisteret

Norway www.hials.no postmottak@hials.no NO 971 572 140

TITTEL:

CHAOS: Aktiv muskelstyring til biomekanisk testing

KANDIDATNUMMER(E):

509362 & 487537

DATO: EMNEKODE: EMNE: DOKUMENT TILGANG:

20.01.2020 IE303612 Bacheloroppgave - Åpen

STUDIUM: ANT SIDER/VEDLEGG: BIBL. NR:

AUTOMATISERINGSTEKNIKK 10/1 - Ikke i bruk -

OPPDRAGSGIVER(E)/VEILEDER(E):

Andreas Dalen

Øystein Bjelland

Aleksander Larsen Skrede

OPPGAVE/SAMMENDRAG:

Ålesund Biomekaniske Lab er forskningslab der ortopedi og ingeniørkunst møtes. Den

medisinske forskningen går ut på å teste nye ortopediske operasjonsmetoder på
kadaverprøver. For å teste resultat av nye operasjonsmetoder, f.eks. leddstabilitet, benyttes

en Kuka KR-6 industriell robot med 6DOF lastscelle. Det neste steget er å også inkludere aktiv

muskelstyring i stabilitetstester. Dette kan f.eks. gjøres med elektriske lineær-aktuatorer med

tilhørende styringssystem. Oppgaven er å utvikle et slikt system for aktuelt ledd.

NTNU I ÅLESUND SIDE 2
FORPROSJEKTRAPPORT – BACHELOROPPGAVE

INNHOLD

INNHOLD ... 2

1 INNLEDNING .. 4

2 BEGREPER .. 4

3 PROSJEKTORGANISASJON ... 4

 PROSJEKTGRUPPE .. 4
3.1.1 Oppgaver for prosjektgruppen – organisering .. 4
3.1.2 Oppgaver for prosjektleder .. 5
3.1.3 Oppgaver for sekretær ... 5
3.1.4 Oppgaver for øvrige medlemmer ... 5

 STYRINGSGRUPPE (VEILEDER OG KONTAKTPERSON OPPDRAGSGIVER) ... 5

4 AVTALER .. 5

 AVTALE MED OPPDRAGSGIVER ... 5
 ARBEIDSSTED OG RESSURSER ... 5
 GRUPPENORMER – SAMARBEIDSREGLER – HOLDNINGER .. 5

5 PROSJEKTBESKRIVELSE... 6

 PROBLEMSTILLING - MÅLSETTING - HENSIKT .. 6
 KRAV TIL LØSNING ELLER PROSJEKTRESULTAT – SPESIFIKASJON ... 6
 PLANLAGT FRAMGANGSMÅTE(R) FOR UTVIKLINGSARBEIDET – METODE(R) ... 7
 INFORMASJONSINNSAMLING – UTFØRT OG PLANLAGT .. 7
 VURDERING – ANALYSE AV RISIKO ... 7
 HOVEDAKTIVITETER I VIDERE ARBEID .. 7

5.6.1 Ansvarsfordeling og ressursestimat ... 7
 FRAMDRIFTSPLAN – STYRING AV PROSJEKTET .. 8

5.7.1 Hovedplan .. 8
5.7.1.1 Styringshjelpemidler ... 8

5.7.2 Utviklingshjelpemidler ... 9
5.7.3 Intern kontroll – evaluering ... 9

 BESLUTNINGER – BESLUTNINGSPROSESS .. 9

6 DOKUMENTASJON ... 9

 RAPPORTER OG TEKNISKE DOKUMENTER .. 9

7 PLANLAGTE MØTER OG RAPPORTER .. 9

 MØTER .. 9
7.1.1 Møter med styringsgruppen ... 9
7.1.2 Prosjektmøter ... 9

 PERIODISKE RAPPORTER ... 9
7.2.1 Framdriftsrapporter (inkl. milepæl) ... 9

8 PLANLAGT AVVIKSBEHANDLING .. 10

9 UTSTYRSBEHOV/FORUTSETNINGER FOR GJENNOMFØRING ... 10

10 REFERANSER ... 10

VEDLEGG .. 10

NTNU I ÅLESUND SIDE 3
FORPROSJEKTRAPPORT – BACHELOROPPGAVE

NTNU I ÅLESUND SIDE 4
FORPROSJEKTRAPPORT – BACHELOROPPGAVE

1 INNLEDNING

Denne oppgaven ble valgt hovedsakelig på grunn av en interesse for kombinasjonen av elektroniske og

biomekaniske systemer. Oppgaven består av en rekke varierte utfordringer og problemstillinger. Disse

fremstår som svært relevante med tanke på den opparbeidede kompetansen fra tidligere fag/emner.

Det biomekaniske robotlaboratoriet ved Ålesund sjukehus er unikt i Skandinavia, og det finnes svært få

liknende laboratorium i Europa. Ortopedene ved sjukehuset samarbeider med ingeniører fra NTNU for å få

det til.

Oppgaven går ut på å utvikle en rigg som skal brukes til å simulere aktiv muskelstyring av et ledd. For å

gjøre dette er det planlagt å bruke lineære aktuatorer til å aktivere senene i et ledd. Dette simulerer måten en

muskel virker i et levende vesen. I første omgang skal riggen brukes til et ankelledd, men det er et

underliggende ønske om at riggen skal bli så modulær som mulig og kunne brukes til flere ledd.

2 BEGREPER

- Definisjon av sentrale begreper i prosjektet.

- Aktiv muskelstyring
o Styring av ledd/kroppsdeler gjennom aktivering av muskler

- Biomekanikk
o Mekanikken til biologi, altså de fysiske egenskapene til menneskekroppen

- Ortopedi
o Er en del av kirurgien som omhandler medfødte misdannelser, deformiteter, sykdommer og

skader i bevegelsesapparatet

- Leddstabilitet
o Leddets evne til å håndtere forventede stress situasjoner

- Elektriske lineære aktuatorer
o Elektriske svitsjer som påfører strøm på hva enn som er tilkoblet på lineært vis

- Ledd simulasjon
o Simulering av ledd og bevegelsene til leddet

- Kontrollsystem
o Kontrollapparat som styrer en eller flere prosesser som sammen kalles ett system

3 PROSJEKTORGANISASJON

 Prosjektgruppe

Studentnummer(e)

509362

487537

Tabell: Studentnummer(e) for alle i gruppen som leverer oppgaven for bedømmelse i faget ID 302906

3.1.1 Oppgaver for prosjektgruppen – organisering
Erlend Lillevik- Prosjektleder

NTNU I ÅLESUND SIDE 5
FORPROSJEKTRAPPORT – BACHELOROPPGAVE

Andreas Nonslid Håvardsen- Sekretær

3.1.2 Oppgaver for prosjektleder
Lederansvar er innkalling til møte, plan for gjennomgang i møte og øvrig planlegging for gruppekontakt

med veiledere eller andre ressurspersoner.

3.1.3 Oppgaver for sekretær
Sekretærens ansvar er notering av tanker og forsøk i løpet av møter, samt notering av fremgang.

Sekretæren må passe på at det som blir gjennomgått på møtet er mulig å lese og forstå både for de som

hadde mulighet til å delta, samt de som ikke deltok.

3.1.4 Oppgaver for øvrige medlemmer
Alle medlemmer har ansvar for å møte på møter for å holde flyt med gruppen, og å sende inn grunn for

mangel av deltakelse samt sin fremgang og arbeid på prosjektet uavhengig av oppmøte. Alle

medlemmer har også ansvar for å yte sitt beste for å oppnå sine delegerte oppgaver. I tilfelle der de ikke

klarer å utføre en oppgave, er de også ansvarlige for å si ifra til gruppen om dette, slik at gruppen

sammen kan løse problemet sammen på best mulig vis.

 Styringsgruppe (veileder og kontaktperson oppdragsgiver)
Oppdragsgiver for prosjektet er Andreas Dalen

Veiledere er Øystein Bjelland & Aleksander Larsen Skrede

Kontaktperson er Øystein Bjelland

4 AVTALER

 Avtale med oppdragsgiver

 Arbeidssted og ressurser
- Laben ved Ålesund biomekaniske lab er til disposisjon mens medlemmer av styringsgruppen er til

stede. Laben ved NTNU er til disposisjon døgnet rundt. *

- Ålesund biomekaniske lab har det meste av ressurser man trenger for å gjennomføre oppgaven. Om det

skulle være noe som mangler så har NTNU også mye ressurser tilgjengelig.

- Det er god tilgang til ressurspersoner da Ålesund biomekaniske lab vanligvis er bemannet under

normale arbeidstider. Skulle det være nødvendig å ha tilgang til ressurser utenfor disse tidene blir det

kommunikasjon via E-post eller Microsoft Teams.

- Det er ingen konfidensialitet tilknyttet denne oppgaven. Men skal det tas hensyn på grunn av oppgavens

nære tilknytning til sykehuset.

- Det er avtalt møter med styringsgruppen annenhver uke, mandag klokken 13:00.

* Forbeholdt at Covid-19 restriksjonene ikke forverres.

 Gruppenormer – samarbeidsregler – holdninger

Når det jobbes i grupper, er man avhengig av god kommunikasjon. Dette innebærer å informere de

andre i gruppen om problemer eller utfordringer som kan påvirke gruppen sin fremgang. Man skal også

NTNU I ÅLESUND SIDE 6
FORPROSJEKTRAPPORT – BACHELOROPPGAVE

respektere andre sin tid med å møte til avtalt tid og gjennomføre sine arbeidsoppgaver innen de fastsatte

fristene. Om dette ikke er gjennomførbart skal man snarest informere resten av gruppen slik man kan

komme frem til en løsning. Man skal alltid høre og respektere andre sin mening og eventuelle

uenigheter skal løses ved med saklig argumentasjon.

Uavhengig av yrke og stilling er det visse holdninger man bør inneha. Det skal vises respekt

for kolleger og samarbeidspartnere uavhengig av kjønn, livssituasjon, kultur, livssyn, legning

og etnisk opprinnelse. Man skal også opprettholde sin faglige integritet, vedkjenne seg sitt

faglige ansvar og utføre sitt arbeid i henhold til anerkjente kvalitetsnormer.

Som ingeniør er man i stor grad utsatt for å kunne havne i situasjoner med etiske

problemstillinger. Derfor bør man reflektere over sine egne mål og etiske prinsipper. Slike

etiske refleksjoner hjelper deg å tenke systematisk gjennom problemstillinger og vurdere ulike

løsnings og handlingsalternativer.

Som ingeniør har man også et samfunnsansvar, derfor skal man vise respekt for samspillet

mellom teknologi og menneskelige verdier, samt bidra til åpenhet om konsekvenser av

teknologiske løsninger.

5 PROSJEKTBESKRIVELSE

 Problemstilling - målsetting - hensikt

Målet med denne oppgaven er å lage en rigg som skal styre et ledd. I utgangspunktet vinkles riggen mot

styring av ankel, men det er som mål å gjøre riggen mer fleksibel til bruk for andre ledd.

Det første delmålet er å lage en fysisk rigg, senere skal ledd-styringen reguleres for å kunne utføre

naturlige bevegelser. Oppgavemålet er derfor bestående av to hoveddeler. Disse to delene er den fysiske

riggen og ledd-simulering gjennom system kontroll. Gruppen skal først lage riggen, deretter gjennom

systemgjenkjenning finne en approksimert modell for systemet som deretter kan kontrolleres for

simulering av naturlige bevegelser. Selve systemgjenkjenninga kan ikke bli gjort mot en generell

løsning for alle ledd siden de oppfører seg for ulikt, og vil derfor heller bli siktet mot kun ankelen, men

metoden vil være brukbar for andre ledd også.

I tillegg må gruppen velge ut hva riggen skal være laget av og lage den. Det økonomiske og praktiske

valget, samt fysiske sammensettingen av riggen blir også essensielle deler av oppgaven.

Som resultat vil gruppen da ha som mål å klare å ha laga en rigg som er fleksibel angående hvilket ledd

det skal bli koblet opp mot, og som i hvert fall i utgangspunktet også er i stand til å kontrollere en hvert

fall noenlunde naturlig leddbevegelse av en ankel.

Effekten gruppen har som mål å ha er at det er en god start til ledd-styring som studenter i ettertid kan

jobbe videre på for å gjøre mer presise ledd-simulasjoner og faktisk ende opp med å kunne bli brukt av

ortopeder eller andre som vil benytte seg av ledd-styring.

I løpet av prosessen er målet å være fleksible for muligheten til at arbeidssteder blir låst ned på grunn av

Covid-19 og være klare for å måtte fortsette oppgaven til en god løsning via for eksempel simulasjon,

og underveis klare å holde ett godt tempo likevel.

 Krav til løsning eller prosjektresultat – spesifikasjon
Gruppen kommer til å følge NTNU sine krav til kvalitet ved gjennomføring av Bacheloroppgave.

Prosjektet har i utgangspunkter få spesifikke krav til spesifikasjoner. Dette åpner for mer frihet til

hvordan gruppen velger å gjennomføre oppgaven. Men denne økte friheten legger også mer ansvar på

planleggingen av oppgaven. På grunn av prosjektets tilknytning til medisinsk forskning så er det visse

NTNU I ÅLESUND SIDE 7
FORPROSJEKTRAPPORT – BACHELOROPPGAVE

krav til spesifikasjoner som bør møtes. Det mest fremtredende er at riggen skal kunne brukes på kadaver

(menneskelige kroppsdeler). Dette stiller krav til renslighet og desinfisering, det bør derfor være et mål

å lage en løsning som tilrettelegger for dette.

Prosjektet har gode økonomiske rammer og vil i utgangspunktet ha mulighet til å anskaffe de

komponenter som er nødvendige. Ved prosjektets fullførelse siktes det på å levere en funksjonell

prototype som utfyller de kravene vi fastsetter under planleggingen. Det skal også legges ved

dokumentasjon og bruksanvisning, dette for å tilrettelegge bruk og videreutvikling av riggen.

 Planlagt framgangsmåte(r) for utviklingsarbeidet – metode(r)
Prosjektstyring betyr å bruke en prosess eller metodologi til å fullføre en midlertidig oppgave med et

definert mål. Til denne oppgaven har vi planlagt å bruke metoden “kritisk bane” (på engelsk: “Critical

Path Method”)

Metoden “kritisk bane” er en type trinnvis prosjekttidslinje. Den kommer best til sin rett når minst én av

oppgavene som kreves for å fullføre et prosjekt, avhenger av en annen oppgave.

Når man bruker kritisk bane, lister man først opp oppgavene, og deretter fastslås det hvilke oppgaver

som avhenger av hverandre samt hvilke oppgaver som kan bli forsinket uten at hele prosjektet stopper.

Med denne metoden er man hovedsakelig på jakt etter den raskeste måten å fullføre et prosjekt på med

minst mulig nedetid mellom oppgavene. Den kronologiske sekvenseringen av oppgaver blir dermed

svært viktig, ettersom det er den estimerte varigheten for hver oppgave.

 Informasjonsinnsamling – utført og planlagt
Informasjonsinnsamling for dette prosjektet vil være en kombinasjon av faglitteratur, nettbaserte

databaser og kontakt med fagpersonell.

Den informasjonen som omhandler biomekanikk og anatomi vil hovedsakelig bli hentet fra medisinsk

faglitteratur. Denne typen litteratur er det godt utvalg av ved den Ålesund biomekaniske lab. Det vil

også bli brukt rapporter fra andre liknende prosjekter som er utført ved laboratorier i utlandet.

Nettbaserte ressurser som Oria og Google Scholar bil også bli brukt. Gruppen har også god tilgang til

fagpersonell, både innen ortopedi og det ingeniørfaglige.

 Vurdering – analyse av risiko
Prosjektet har stor mulighet for å kunne realiseres innenfor den gitte rammen. Design og konstruksjon

av riggen bør gjennomføres så raskt som mulig for å forsikre at man har nok tid for testing og justering.

Om fremgangen her blir for treg kan dette føre til at den reguleringstekniske delen av oppgaven blir

lammet.

For å lykkes med denne oppgaven er det særlig viktig med god koordinasjon internt i gruppen. Man er

også avhengig av god kommunikasjon med oppdragsgiver og resurspersoner. Dette forsikrer at

fremgangen holder seg jevn og innenfor prosjektets rammer. Skulle dette feile kan det føre til

misforståelser som gjør at prosjektet ikke møter kravene som er satt.

Den pågående COVID-19 pandemien er også et stort risikoelement, særlig på grunn av labens nære

tilknytning til sykehuset. Skulle den nåværende smittesituasjonen forverre seg kan man bli tvunget til å

måtte gjøre alt arbeid på prosjektet “off site”, og i verste fall måtte gjøre mye av arbeidet via

simulasjoner.

 Hovedaktiviteter i videre arbeid

5.6.1 Ansvarsfordeling og ressursestimat
ANH = Andreas Nonslid Håvardsen - EL = Erlend Lillevik

Nr Hovedaktivitet Ansvar Kostnad Tid/omfang

NTNU I ÅLESUND SIDE 8
FORPROSJEKTRAPPORT – BACHELOROPPGAVE

 (uker)

A1 Design av rigg ANH & EL 4.0

A2 Valg av deler EL 3.0

A3 Konstruksjon av rigg EL 8.0

A4 Oppkobling EL 2.0

A5 Systemgjenkjenning ANH 4.0

A6 Systemkontroll ANH 6.0

A7 Simulasjon ANH 3.0

Den totale kostnaden ligger på 5000, og tiden krevd er 37 uker som blir overlappa til å bli gjort i løpet av

semesteret.

 Framdriftsplan – styring av prosjektet

5.7.1 Hovedplan
Hovedtrekka i oppgaven er som tidligere nevnt design og gjennomføring av rigg og system kontroll for

simulering av naturlig bevegelse av ledd.

A1 – Design av rigg – Plantegninger av rigg, og utkast for hvordan

 den endelige riggen blir

A2 – Valg av deler – Valg av material med tanke på økonomisk
 effekt og fremtidig bærekraft

A3 – Konstruksjon av rigg – Konstruksjon av rigg etter plantegninger
 og/eller eventuelle oppdateringer av planene

A4 – Oppkobling – Oppkobling av styringsmekanismen og test-
 ankel som skal kalibreres og systemet skal
 kontrollere

A5 – Systemgjenkjenning – Sending av ulike signal til system for å se
 hvilke responser systemet gir fra seg i respons
 til de forskjellige, og deretter ut ifra dette
 gjenkjenne systemets funksjoner

A6 – Systemkontroll – Kontroll av det estimerte systemet ut ifra
 punkt A5. Dette innebærer å lage en regulator
 som gjør at posisjonene i leddet kan bli styrt

A7 – Simulasjon – Tilkobling av selve styringsmekanismen til
 testleddet og systemregulatoren der det prøves
 å utføre en så naturlig ledd bevegelse som
 mulig

5.7.1.1 Styringshjelpemidler
Gruppen bruker Microsoft Teams for organisering med veiledere, og til skylagring av innsamlede data

eller andre diverse prosjektressurser. Dette er derfor plassen oppdateringene for prosjektframgangen vil

bli organisert.

Angående selve planleggingen vil gruppen siden det kun er to gruppemedlem ta alle valg etter

diskusjoner der det blir nådd en enighet om beste framgangsmåte, men veiledere og andre

ressurspersoner vil også bli kontaktet om viktige valg til å kunne påvirke. Dette vil sannsynligvis være

gjennom Zoom videomøter spesielt med tanke på Covid-19, men kan potensielt være gjennom fysiske

møter eller andre løsninger i tilfelle Zoom er utilgjengelig.

Fremgangsoversikten vil være utført i form av store og generelle milepæler som gruppen setter opp at

skal bli oppnådd i løpet av prosjektet.

NTNU I ÅLESUND SIDE 9
FORPROSJEKTRAPPORT – BACHELOROPPGAVE

Innkjøp av komponenter og deler til riggen vil være gjennom veiledere eller den labbansvarlige ved

NTNU Ålesund.

5.7.2 Utviklingshjelpemidler
Gruppen har god tilgang til utviklingshjelpemidler. På Ålesund biomekaniske lab er det verksted med

nødvendig utstyr. Det er også tilgang til 3D-printer. På NTNU er det tilgang til alt av verktøy man kan få bruk

for.

5.7.3 Intern kontroll – evaluering
Gruppen har planlagt møter annenhver mandag gjennom hele prosjektperioden. På disse møtene blir det

gjennomgang av fremdrift og fremtidige planer. Når prosjektet har nådd delmål kan det være aktuelt

med ekstraordinære møter for evaluering.

 Beslutninger – beslutningsprosess
Siden gruppen bare har 2 medlemmer, er man avhengig av en ryddig beslutningsprosess. Derfor skal

alle sentrale beslutninger og presiseringer tas i felleskap. Om det skulle oppstå en situasjon der gruppen

ikke blir enige, bør det tas opp i plenum med styringsgruppen for å få tilførsel av andre meninger. Alle

valg og beslutninger gruppen tar skal noteres av sekretær.

6 DOKUMENTASJON

 Rapporter og tekniske dokumenter
Gruppen skal utarbeide framdriftsrapporter som skal presenteres annenhver uke under møtet med

styringsgruppen. Disse framdriftsrapportene skal inneholde all relevant informasjon for fremdriften på

prosjektet. I tillegg skal det også utarbeides delmålsrapporter når visse delmål er nådd. Alle rapporter blir

fortløpende levert for godkjenning fra styringsgruppen. Alle dokumenter og rapporter skal lagres på

Microsoft Teams eller i OneDrive for å forsikre mot tap av dokumenter.

7 PLANLAGTE MØTER OG RAPPORTER

 Møter

7.1.1 Møter med styringsgruppen

− Det er planlagt møter med styringsgruppen annenhver mandag klokken 13:00, gjennomgang av

framdriftsrapport.

7.1.2 Prosjektmøter

− Hver mandag klokken 12:00, gjennomgang av forrige ukes fremdrift og planlegging av neste ukes

fremdriftsplan.

 Periodiske rapporter
− Leveres fortløpende.

7.2.1 Framdriftsrapporter (inkl. milepæl)

− Framdriftsrapporter, annenhver mandag.

− Delmålsrapport, ved fullførelse av milepæl.

NTNU I ÅLESUND SIDE 10
FORPROSJEKTRAPPORT – BACHELOROPPGAVE

8 PLANLAGT AVVIKSBEHANDLING

Om prosjektet ikke skulle gå som planlagt skal det meldes fra til styringsgruppen, dette kan tas opp

fortløpende eller på møter. Sammen med styringsgruppen skal man prøve finne en løsning på

utfordringene. Her er det også viktig at alle på gruppen tar på seg ansvar og jobber best mulig for å

minimere eventuelle problemer

9 UTSTYRSBEHOV/FORUTSETNINGER FOR
GJENNOMFØRING

For å gjennomføre denne oppgaven etter den nåværende plan trenger gruppen tilgang til Ålesund

biomekaniske lab og NTNU. Av programvare vil det være bruk for program for 3D CAD og program for

koblingsskjema. Det meste av nødvendig programvare er tilgjengelig fra NTNU.

Det kreves også en del utstyr til konstrueringen av riggen. For selve konstruksjonen er det planlagt å bruke

Bosch Rexroth aluminiumsprofiler. Det trengs også aktuatorer m/kontrollere for den aktive styringen. I den

sammenhengen trenger man også strekksensorer for å måle lasten på vaierne/senene.

10 REFERANSER

VEDLEGG

Vedlegg 1 – Prosjektplanlegging Gantt Diagram

CHAPTER 7. APPENDICES 161

D Gantt diagram

CHAPTER 7. APPENDICES 163

E Meeting reports

Veiledningsmøte 8. Februar

Generelle notat underveis:

• RS - Forskjellige prisklasser

• Ledd tåler 2-3x egen vekt

• Veiersystem/modell

• Lastceller integrert er veldig dyrt

• Lastceller 200/300 kg

• Excel - Pris - Merke/Spesifikt element - Anders - NTNU Rammeverk

• Aktuatorer må ha innfesting i Rexroth

• Skrive i rapport at vi vurderte andre muligheter

• Hydraulikk altfor tungvint for eksempel…

• Festene i ankelen, ta utgangspunkt i 4 sener

• Er en drøss av sener, velger 4:

▪ Tibilias posterios

▪ Achilles

▪ Fibularis brevis

▪ Tibialis anterior

Biomekanikk bøker

Anatomi

Summary e-poster

High level

Veiledningsmøte 22. Februar

Generelle notat underveis:

• Vurderer å endre typen rigg-fundament / struktur

• Ekstra sterk strømforsyning gir mulighet for ekstra aktuatorer i

framtida

• Kontroll -> Arduino, Kommunikasjon -> Raspberry pi

• Innkjøpsliste OK

• Legge inn billigere alternativ og ta bort strukturdelene

• Grey box

• Kinematisk modell - fjærer dempere osv

• Begynne på styring med arduino og raspberry pi

• Programmeringsspråk og arbeidsfordeling mellom de

• Kinematikk solvers er tilgjengelig

• Plassere tilknyttingspunkt på foten

• Øystein snakke med Andreas Dahlen om innkjøp

• Profilene kommer fort, kan utsettes for videre utvikling av design i

forkant

Veiledningsmøte 22. Mars

Generelle notater:

Velge billigkrok

Treng ikkje løfte noe

Biltema, Clas Ohlson etc

Bruke ordentlige materialer for selve riggen

"Gjort skikkelig når det først blir gjort"

Hvordan feste aktuatorene

Bolter - Enkel løsning

Låne deler for testing til våre kommer

Bruke Raspberry til komplisert styring

Enkel styring / IO modul

Python i Raspberry pi

Rapportskriving

Overleaf

30-50 sider standard

Innhold er viktigst

Bakgrunn, formål, grunn til formål, metoder, teknologier, beskrivelser av løsninger (Rigg

& Simulering), diskusjon bra dårlig kunne blitt gjort annerledes, konklusjon (final

remarks / ettertanker)

Skrive på ingeniørnivå / ikkje forklare grunnleggende konsept, men heller nevn brukte

verktøy

Teorikrav / Forventa teori av leser, ikkje forklare for eksempel matriseregning, men

kanskje forklare kinematikk, bruk av bibliotek for å utføre løsning på kinematikk krever

forklaring på løsing av kinematisk oppgave, men ikkje implementeringa.

Ta med grunnleggende ankel anatomi og hvorfor modellen som blir brukt blir brukt,

kinematikken blir naturlig her

Utforming av rigg er også en naturlig del

Utgangspunkt for rigg og hvorfor endte den som den gjorde

Kinematikk kan bli forklart med ord, men burde ha masse figurer som kan vise mest

mulig

Innhenting av figurer er lov, bare vis til kilder

Kan bruke photoshop etc, og deretter skrive figure adapted from "source"

Diskusjonsdel kan inneholde hvorfor metoder ble brukt som for eksempel at grunnen

var lockdown

Ingen subjektivitet frem til diskusjonsdel, alt objektivt

Treng ikkje skrive oppgaveteksten siden vi har vært tro til den

Frank H. Netter - Illustrasjoner til ankel - Gi credit

Dele zotero bibliotek og direkte input til Overleaf

Veiledningsmøte 6. April

Generelle notater:

Venter på polulu spenningsvern - kan bruke batteri

Koder i matlab - konvertere til C

Venter på fot - ukjent ventetid

10-12 april åpnes lab - kan bli forlenget nedstenging

Knagger til rapport

Veiledningsmøte 19. April

Generelle notater:

• Matlab - Visu & simu

• Kraft vektorer

• Punkter på sidene av grønne linje

• Epost til Andreas Labb for å hente ankel

• Polulu - Har komt

• Masse-fjær-damper system

• 1 frihetsgrad

• Styre fra oppå bak og sidene helt forenklet

• Fiskesene klar til testing av modell på fot

Rapport

• Introduksjon

• Kontekst sykehus etc

• Teori

• Anatomi

• Matrialer metode

• Deler løsningsmetode

• Simulering

• Fysisk prototype

• Hardware

• Software

• Diskusjon / Drøfting

• Ka som ble tatt med og vekk

• Innkjøp av resterende deler / Selve rigg skjelett

• Lav sendingstid for å rekke bachelorfrist

Veiledningsmøte 3. Mai

Generelle notater:
Simu/Visu:

• Legge på bilder

• Legge bokser om bilder ikkje går

Prototyp:
• Setter opp på campus

• Legger inn limits i drag

Rapport:
• Kinematikk

• Grunnleggende

• Koblingskjema

• Feedbackskjema

• Teoridel

• Kan skrive mye ekstra som heller kan skippes

Veiledningsmøte 10. Mai

Generelle notat:

Resultat del med forklaring av matematikk

Chapter 6 headline i appendix

Si visu ferdig og fokusere på rapport og prototyp

Legge data collection i background

Vanlig bruk av reference

Reference per uttalelse i høyere grad

Referere til tekstboken på en mer moderat måte

Tydeliggjøre hvor "content" kommer fra

Alltid greit å ha full sources i referanseliste, og tittel under bilde

CHAPTER 7. APPENDICES 172

F Electrical drawings

CHAPTER 7. APPENDICES 173

Bibliography

[1] Anatomy of a Joint - Health Encyclopedia - University of Rochester Medical Center, . URL

https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=

85&contentid=P00044.

[2] Ankle Mobility, Ankle Instability, and Exercises to Strengthen Your Ankle,

. URL https://www.hoagorthopedicinstitute.com/blog/2018/july/

ankle-mobility-ankle-instability-and-exercises-t/.

[3] Controlling the Speed of Linear Actuator, . URL https://www.

progressiveautomations.com/blogs/how-to/connect-dc-speed-controller-linear-actuator.

[4] Getting Started with Load Cells - learn.sparkfun.com, . URL https://learn.sparkfun.

com/tutorials/getting-started-with-load-cells/all.

[5] Load Cells & Force Sensors, . URL https://www.omega.com/en-us/resources/

load-cells.

[6] Load Cell Accuracy, . URL https://www.variohm.com/news-media/

technical-blog-archive/load-cell-accuracy.

[7] Picking the Right Linear Positioning Device, . URL https://www.design-engineering.

com/features/linear-positioning-device/.

[8] What are the working principles of a beam, or shear beam, load cell. . . , . URL https:

//www.flintec.com/weight-sensors/load-cells/how-does-a-beam-load-cell.

174

https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=85&contentid=P00044
https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=85&contentid=P00044
https://www.hoagorthopedicinstitute.com/blog/2018/july/ankle-mobility-ankle-instability-and-exercises-t/
https://www.hoagorthopedicinstitute.com/blog/2018/july/ankle-mobility-ankle-instability-and-exercises-t/
https://www.progressiveautomations.com/blogs/how-to/connect-dc-speed-controller-linear-actuator
https://www.progressiveautomations.com/blogs/how-to/connect-dc-speed-controller-linear-actuator
https://learn.sparkfun.com/tutorials/getting-started-with-load-cells/all
https://learn.sparkfun.com/tutorials/getting-started-with-load-cells/all
https://www.omega.com/en-us/resources/load-cells
https://www.omega.com/en-us/resources/load-cells
https://www.variohm.com/news-media/technical-blog-archive/load-cell-accuracy
https://www.variohm.com/news-media/technical-blog-archive/load-cell-accuracy
https://www.design-engineering.com/features/linear-positioning-device/
https://www.design-engineering.com/features/linear-positioning-device/
https://www.flintec.com/weight-sensors/load-cells/how-does-a-beam-load-cell
https://www.flintec.com/weight-sensors/load-cells/how-does-a-beam-load-cell

BIBLIOGRAPHY 175

[9] What are the working principles of tension and s -type load cells,

. URL https://www.flintec.com/weight-sensors/load-cells/

how-does-a-tension-load-cell-and-how-does-it-work.

[10] What is a Load Cell Amplifier?, . URL https://www.omega.com/en-us/resources/

load-cell-amplifier.

[11] What Is a Microcontroller? The Defining Characteristics and Ar-

chitecture of a Common Component - Technical Articles, .

URL https://www.allaboutcircuits.com/technical-articles/

what-is-a-microcontroller-introduction-component-characteristics-component/.

[12] The working principles of a compression load cell manufactured by. . . ,

. URL https://www.flintec.com/weight-sensors/load-cells/

how-does-a-compression-load-cell.

[13] Load Cell Working Principle, May 2016. URL https://instrumentationtools.com/

load-cell-working-principle/.

[14] Belt-Driven Versus Ball Screw Actuator: Which Is the Best Choice for

Your Application?, November 2019. URL https://www.isotechinc.com/

belt-driven-versus-ball-screw-actuators/.

[15] Orthopedic surgery, April 2021. URL https://en.wikipedia.org/w/index.php?title=

Orthopedic_surgery&oldid=1018961702. Page Version ID: 1018961702.

[16] Admin. Using a Voltage Clamp with RoboClaw, July 2019. URL https://resources.

basicmicro.com/using-a-voltage-clamp-with-roboclaw/.

[17] Britannica. Control system. URL https://www.britannica.com/technology/

control-system.

[18] by. Ankle Anatomy, July 2015. URL https://eorthopod.com/ankle-anatomy/.

https://www.flintec.com/weight-sensors/load-cells/how-does-a-tension-load-cell-and-how-does-it-work
https://www.flintec.com/weight-sensors/load-cells/how-does-a-tension-load-cell-and-how-does-it-work
https://www.omega.com/en-us/resources/load-cell-amplifier
https://www.omega.com/en-us/resources/load-cell-amplifier
https://www.allaboutcircuits.com/technical-articles/what-is-a-microcontroller-introduction-component-characteristics-component/
https://www.allaboutcircuits.com/technical-articles/what-is-a-microcontroller-introduction-component-characteristics-component/
https://www.flintec.com/weight-sensors/load-cells/how-does-a-compression-load-cell
https://www.flintec.com/weight-sensors/load-cells/how-does-a-compression-load-cell
https://instrumentationtools.com/load-cell-working-principle/
https://instrumentationtools.com/load-cell-working-principle/
https://www.isotechinc.com/belt-driven-versus-ball-screw-actuators/
https://www.isotechinc.com/belt-driven-versus-ball-screw-actuators/
https://en.wikipedia.org/w/index.php?title=Orthopedic_surgery&oldid=1018961702
https://en.wikipedia.org/w/index.php?title=Orthopedic_surgery&oldid=1018961702
https://resources.basicmicro.com/using-a-voltage-clamp-with-roboclaw/
https://resources.basicmicro.com/using-a-voltage-clamp-with-roboclaw/
https://www.britannica.com/technology/control-system
https://www.britannica.com/technology/control-system
https://eorthopod.com/ankle-anatomy/

BIBLIOGRAPHY 176

[19] Benjamin R. Freedman, Joshua A. Gordon, and Louis J. Soslowsky. The Achilles tendon:

fundamental properties and mechanisms governing healing. Muscles, Ligaments and Ten-

dons Journal, 4(2):245–255, July 2014. ISSN 2240-4554. URL https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC4187594/.

[20] Dogan Ibrahim. Chapter 6 - Intermediate PIC18 Projects. In Dogan Ibrahim, editor,

PIC Microcontroller Projects in C (Second Edition), pages 173–325. Newnes, Oxford, Jan-

uary 2014. ISBN 978-0-08-099924-1. doi: 10.1016/B978-0-08-099924-1.00006-X. URL

https://www.sciencedirect.com/science/article/pii/B978008099924100006X.

[21] National Center for Biotechnology Information, U. S. National Library of Medicine

8600 Rockville Pike, Bethesda MD, and 20894 Usa. How does the ankle work? Insti-

tute for Quality and Efficiency in Health Care (IQWiG), December 2017. URL https:

//www.ncbi.nlm.nih.gov/books/NBK279301/. Publication Title: InformedHealth.org

[Internet].

[22] National Instruments. Pid theory explained. URL https://www.ni.com/en-no/

innovations/white-papers/06/pid-theory-explained.html.

[23] Lumen. Basics of kinematics. URL https://courses.lumenlearning.com/

boundless-physics/chapter/basics-of-kinematics/.

[24] B. R. Mehta and Y. J. Reddy. Chapter 9 - Serial communications. In B. R.

Mehta and Y. J. Reddy, editors, Industrial Process Automation Systems, pages 307–339.

Butterworth-Heinemann, Oxford, January 2015. ISBN 978-0-12-800939-0. doi: 10.

1016/B978-0-12-800939-0.00009-7. URL https://www.sciencedirect.com/science/

article/pii/B9780128009390000097.

[25] Norman S. Nise. Control systems engineering, 7th edition. Wiley, 2015.

[26] Prof. Larry Francis Obando. Mass-spring-damper system dynamics. URL https://

dademuch.com/2018/12/28/mass-spring-damper-system-dynamics/.

[27] Wikipedia. Degrees of freedom (mechanics). URL https://en.wikipedia.org/wiki/

Degrees_of_freedom_(mechanics).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187594/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187594/
https://www.sciencedirect.com/science/article/pii/B978008099924100006X
https://www.ncbi.nlm.nih.gov/books/NBK279301/
https://www.ncbi.nlm.nih.gov/books/NBK279301/
https://www.ni.com/en-no/innovations/white-papers/06/pid-theory-explained.html
https://www.ni.com/en-no/innovations/white-papers/06/pid-theory-explained.html
https://courses.lumenlearning.com/boundless-physics/chapter/basics-of-kinematics/
https://courses.lumenlearning.com/boundless-physics/chapter/basics-of-kinematics/
https://www.sciencedirect.com/science/article/pii/B9780128009390000097
https://www.sciencedirect.com/science/article/pii/B9780128009390000097
https://dademuch.com/2018/12/28/mass-spring-damper-system-dynamics/
https://dademuch.com/2018/12/28/mass-spring-damper-system-dynamics/
https://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)
https://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)

