
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Erlend Holseker
Arvin Khodabandeh
Erik Bjørnøy
Isak Gamnes Sneltvedt

Sensor Fusion for Position and
Spatial Attitude Estimation of
Offshore Motion Compensated
Gangways

Bachelor’s project in Automation Technology
Supervisor: Aleksander Larsen Skrede
Co-supervisor: Ottar Laurits Osen

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Erlend Holseker
Arvin Khodabandeh
Erik Bjørnøy
Isak Gamnes Sneltvedt

Sensor Fusion for Position and Spatial
Attitude Estimation of Offshore Motion
Compensated Gangways

Bachelor’s project in Automation Technology
Supervisor: Aleksander Larsen Skrede
Co-supervisor: Ottar Laurits Osen
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

Sensor Fusion for Position and Spatial

Attitude Estimation of Offshore Motion

Compensated Gangways

Erik Bjørnøy

Isak Gamnes Sneltvedt

Arvin Khodabandeh

Erlend Holseker

May 2021

PROJECT / BACHELOR THESIS

Department of ICT and Natural Sciences

Norwegian University of Science and Technology

Supervisor 1: Aleksander L. Skrede

Supervisor 2: Ottar L. Osen

i

Preface

This bachelor thesis is written by four Automation Engineering students at NTNU in Ålesund,

and marks the end of three years of engineering studies. The purpose of the project is to study

possible solutions for estimating the position and orientation of a moving object in relation to

another object. Development of sensor data processing software and testing instrumentation

solutions is also central in this project.

In an age where renewable and environmentally friendly energy sources are more important

than ever, wind turbines play a significant role. Wind turbines are large and noisy, and they are

unpopular among many because of this. To avoid building wind turbines on land close to peo-

ple, making excessive interventions in beautiful nature, the number of offshore wind turbines

is increasing. These wind turbines need regular maintenance, and transportation of personnel

to the wind turbines must take place in a safe and secure manner. Finding solutions that can

increase the safety is therefore important.

Our motivation to choose this project was the opportunity to utilize a large part of the knowl-

edge we have acquired throughout three years of studying Automation Engineering, as well as

the need to learn new techniques to conduct the project. The problem statement presented by

Seaonics intrigued us, and we saw it as an opportunity to further increase our knowledge in sen-

sor technologies, and to work with topics that has not been lectured during our studies. We hope

that later projects can utilize experiences from this project in further development of position

and orientation estimation systems.

ii

Acknowledgement

We would like to thank all the contributors who have given us support throughout the project,

and we would especially like to thank:

• Our supervisors Aleksander L. Skrede and Ottar L. Osen for good support, motivating con-

versations and good guidance throughout the project.

• Seaonics, Senior Control System Engineer Daniel Nordal Bjørneseth especially, for advice

and guidance throughout the project. We would also like to thank them for providing us

with office facilities when the local covid-19 regulations has allowed it. They have also

been very helpful in procuring equipment.

• Lab engineer Anders Sætersmoen at NTNU for lending us necessary equipment.

• Associate professor Guoyuan Li at NTNU for lending us IMU sensors.

• Family and friends for being supportive and understanding throughout the project period.

iii

Abstract

This report concerns a bachelor project proposed by Seaonics, a company based in Ålesund that

develops software and hardware solutions for the maritime sector. Seaonics wants to find an ap-

propriate solution for estimating position and orientation of an offshore gangway.

The purpose of this project is to develop a position and orientation estimation system, which

can form the basis for further development in later projects. Important aspects of the develop-

ment are explained in the report. Choice of sensor technologies, sensor fusion algorithms, and

the implementation of stereo-camera for position estimation is explained in detail. Testing of

the developed solutions is explained, and the results from these tests are presented.

The results from the tests shows that estimating orientation with reliable results is possible

using a gyroscope and an accelerometer in combination with sensor fusion algorithms. Includ-

ing a magnetometer in these estimations yields unreliable estimates and is therefore not verified

as a good solution. Using a stereo-camera to estimate position proves to be efficient under the

right conditions. However, it does not give any information that can be used to estimate posi-

tion along the z-axis (up and down). Additional techniques that can be investigated further is

also discussed in the report.

Contents

Preface . i

Acknowledgement . ii

Abstract . iii

Acronyms . ix

Terminology . ix

Notation . ix

Abbreviations . x

List of figures . xi

List of tables . xv

1 Introduction 1

1.1 Background . 1

1.2 Introduction . 1

1.3 Problem Formulation . 2

1.4 Literature Survey . 3

1.5 Limitations . 3

1.6 Structure of the Report . 4

2 Theoretical basis 5

2.1 Kinematics . 5

2.1.1 Reference systems . 5

2.1.2 Rigid-body motions in the plane . 6

2.1.3 Rigid-body motions in three dimensions . 8

2.1.4 Motion variables . 9

iv

CONTENTS v

2.2 Representation of position and orientation . 10

2.2.1 Euler angles . 10

2.2.2 Quaternions . 10

2.2.3 Conversion from quaternions and Euler angles 18

2.2.4 Rotation matrices . 19

2.2.5 Conversion from rotation matrix to Euler angles 20

2.2.6 Homogeneous transformation matrix for representation of position and ori-

entation . 21

2.3 Statistical Theory . 22

2.3.1 Population variance . 22

2.3.2 Covariance . 23

2.3.3 Normal distribution . 23

2.4 Sensors . 24

2.4.1 Gyroscope . 25

2.4.2 Magnetometer . 26

2.4.3 Accelerometer . 26

2.4.4 IMU/MARG . 27

2.4.5 Radar Sensor . 27

2.4.6 Ultrasonic Sensor . 28

2.4.7 Infrared Sensor . 29

2.4.8 Digital Camera . 29

2.4.9 ToF camera . 33

2.4.10 Stereo Camera . 33

2.5 Sensor Fusion . 34

2.5.1 Analog-to-Digital conversion . 34

2.5.2 Gradient Descent . 36

2.5.3 Jacobian matrix and determinant . 37

2.5.4 Kalman Filter . 38

2.5.5 Madgwick Filter . 41

2.6 Image processing . 50

CONTENTS vi

2.6.1 RGB vs HSV . 50

2.6.2 Color filtering . 51

2.6.3 Contours . 52

2.7 KNN (K-nearest neighbor) . 52

3 Materials and methods 53

3.1 Project Organization . 53

3.2 Software . 54

3.3 Hardware . 54

3.3.1 OpenCV AI Kit: OAK-D . 54

3.3.2 Intel RealSense T265 . 55

3.3.3 Adafruit BNO055 . 55

3.3.4 Arduino UNO . 56

3.3.5 Svive Hydra Microphone Arm . 56

3.4 Choosing sensors . 57

3.4.1 Sensors for distance/position . 57

3.4.2 Sensors for orientation . 59

3.5 Sensor calibration . 60

3.5.1 Gyroscope Calibration . 60

3.5.2 Accelerometer Calibration . 61

3.5.3 Magnetic Field Calibration . 62

3.6 Sensor Fusion for Orientation Estimation . 65

3.6.1 Filter Setup 1 . 66

3.6.2 Filter Setup 2 . 68

3.6.3 Filter Setup 3 . 69

3.7 Transforming orientation from sensor to ship . 69

3.8 Creating a stereo camera . 72

3.8.1 Camera calibration . 73

3.8.2 Feature detection . 76

3.8.3 Calculating depth . 78

CONTENTS vii

3.8.4 Camera setup parameters . 80

3.9 Stereo camera for position estimation . 83

3.9.1 Finding a point of reference . 83

3.9.2 Angle Offset . 85

3.9.3 Calculating the position . 85

3.10 Creating the Graphical User Interface . 87

3.11 Testing . 88

3.11.1 Test procedure for Orientation Estimation . 88

3.11.2 Test procedure for Position Estimation . 89

4 Result 95

4.1 Graphical User Interface . 95

4.1.1 The layout . 96

4.1.2 Encoders for boom and slew . 96

4.2 Orientation estimation results . 97

4.2.1 Roll and Pitch results . 97

4.2.2 Yaw results: Filter setup 1 . 99

4.2.3 Yaw results: Filter setup 2, with magnetometer 100

4.2.4 Yaw results: Filter setup 2, without magnetometer 101

4.2.5 Yaw results: Filter setup 3, with magnetometer 102

4.2.6 Yaw results: Filter setup 3, without magnetometer 103

4.3 Position estimation results . 104

4.3.1 Results test 1, Calculating camera angle . 104

4.3.2 Results test 2, IMU integration . 105

4.3.3 Results test 3, Position estimation test . 106

5 Discussion 110

5.1 Test results . 110

5.1.1 Orientation estimation . 110

5.1.2 Position estimation . 112

5.2 Placement of sensors in a real installation . 115

CONTENTS viii

5.3 Future considerations on system integration . 115

5.3.1 Two systems that should be merged together 116

5.3.2 Suggestions for further work . 116

6 Conclusions 119

6.1 Further work . 120

Bibliography 121

Appendices

A Preproject Report

B Gantt Chart

C Progress Reports 1-6

D Meeting Reports 1-7

E Source Code Orientation Application

F Source Code Positioning Application

G Source Code Arduino

H Plots of raw sensor data

CONTENTS ix

Terminology

A posteriori . Latin for From the later

A priori .Latin for From the earlier

atan2 . two-argument arctan function, can give a solution in range (−π,π]

BaselineIn terms of a stereo camera, baseline is the distance between the two cameras

Extrinsic parameters Includes the relative rotation and translation between two cameras

Heave .A linear motion along the vertical z-axis

Intrinsic parameters The parameters necessary to link the pixel coordinates of an image point

with the corresponding coordinates in the camera reference frame.

n-tupleA list of n elements, where each value is an unsigned (positive) integer

Orientation . Angular position of one object in relation to another object

Pitch . A rotation around the traverse axis

Position . Placement of an object in space in relation to another object

Roll . A rotation around the longitudinal axis

Surge . A linear motion along the longitudinal x-axis

Sway . A linear motion along the traverse y-axis

Yaw . A rotation around the vertical axis

Notation

s· . Sine function, sin(·)

c· . Cosine function, cos(·)

CONTENTS x

In×n . Identity matrix with dimensions n ×n

A
B q̂ . Orientation of frame B relative to frame A

A r̂ . Vector described in frame A

ℜ . All real numbers

Abbreviations

ADC . Analog-to-Digital Converter

AFOV . Angular Field of View

AGC . Automatic Gain Control

AMC . Active Motion Compensation

CCD . Charge-coupled Device

CFA . Color filter array

CMOS . Complementary Metal Oxide Semiconductor

CVG . Coriolis Vibratory Gyroscope

DOF . Degrees of Freedom, number of configurations for a object

dps . Degrees per second

GUI . Graphical User Interface

FLANN . Fast Library for Approximate Nearest Neighbors

FMCW . Frequency Modulated Continuous Waves

FOV . Field of View

G . Gravitational acceleration, 1G ≈ 9.81 m/s2

CONTENTS xi

HSV . Hue, saturation, value

I2C . Inter-Integrated Circuit

IDE . Integrated Development Environment

IMU . Inertial Measurement Unit

I/O . Input/Output

IR . Infrared

KNN . K-Nearest Neighbour

LED . Light-Emitting Diode

MARG . Magnetic Angular Rate and Gravity

MCU . Micro Controller Unit

MEMS . Microelectromechanical Systems

MSB/LSB . Most Significant Bit/Least Significant Bit

RGB . Red, Green, Blue

ROI .Region of Interest

SIC . Soft Iron Calibration

SIFT . Scale Invariant Feature Transform

SNAME . Society of Naval Architects and Marine Engineers

Stereo VIO .Stereo Visual Odometry

TDOA .Time Difference of Arrival

ToF . Time of Flight

UWB . Ultra Wide Band

VSLAM . Visual Simultaneous Localization and Mapping

List of Figures

1.1 3D model of ship, gangway and wind turbine 2

2.1 A ship’s body-fixed and earth-fixed coordinate frames [1] 6

2.2 The point p represented in two different ways [2] 6

2.3 Example of a body frame [2] . 7

2.4 The relationship between the cartesian unit vectors represented by i, j and k

[3] . 11

2.5 The vector 2i is rotated 45° [4] . 16

2.6 The vector 2i is rotated 90° to i +
p

2j + k [4] . 18

2.7 (Left) Normal distribution withµ= 0 andσ2 = 1. (Right) A bell curve approx-

imating a data set which is not normalized. [5] 24

2.8 Visualizing the Coriolis force on the vibrating structure inside a CVG [6] . . 26

2.9 MEMS capacitive accelerometer [7] . 27

2.10 Ultrasonic sensor principle [8] . 28

2.11 Infrared sensor principle [9] . 29

2.12 General block diagram of a digital camera . 30

2.13 Figures showing how CCD and CMOS sensors work [10] 31

2.14 Schematics showing the relations between focal length, FOV and AFOV [11] 32

2.15 Common image resolutions [12] . 32

xii

LIST OF FIGURES xiii

2.16 Stereo camera principle [13] . 33

2.17 Gradient descent . 36

2.18 Too high learning rate, overshooting . 37

2.19 Too low learning rate, slow convergence . 37

2.20 Block diagram from Madgwick’s original report, representing a complete ori-

entation filter using a gyroscope and an accelerometer [14] 48

2.21 Block diagram representing a complete orientation filter using a gyroscope,

accelerometer and magnetometer, including magnetic distortion compen-

sation . 49

2.22 Colormap visualizing RGB and HSV color values [15] 51

2.23 RGB image and a yellow color mask . 51

3.1 OpenCV AI Kit: OAK-D [16] . 55

3.2 Intel Realsense T265 [17] . 55

3.3 Adafruit BNO055 [18] . 56

3.4 Arduino UNO [19] . 56

3.5 Svive Hydra Microphone Arm [20] . 56

3.6 Showing uncalibrated and calibrated gyro values 61

3.7 Orientation during data capture . 62

3.8 Display of the hard iron distortion . 63

3.9 Display of the soft iron distortion . 63

3.10 Display of the calibrated result . 65

3.11 Filter Setup 1 . 66

3.12 Filter Setup 2 . 68

3.13 Filter Setup 3 . 69

LIST OF FIGURES xiv

3.14 Showing the relation between ship frame and sensor frame when the gang-

way moves . 70

3.15 Original photos . 72

3.16 Calibration collage . 74

3.17 Rectified Image . 75

3.18 Image before and after undistortion . 76

3.19 Features left and right image . 77

3.20 Matching features withing the images . 78

3.21 Stereo camera setup . 79

3.23 Angle offset after moving in the x- and z-direction 86

3.24 The Qt Designer interface . 87

3.25 Microphone stand equipped with IMU and Arduino 89

3.26 Draft of the test setup . 90

3.27 Screenshots taken during the IMU angle compensation tests 92

3.28 Overview of the test setup . 93

4.1 The GUI Layout . 96

4.2 Pitch estimation while not moving . 97

4.3 Roll estimation while not moving . 97

4.4 Pitch estimation while only yawing . 98

4.5 Roll estimation while only yawing . 98

4.6 Pitch estimation while rolling and pitching . 98

4.7 Roll estimation while rolling and pitching . 99

4.8 Yaw estimation while not moving, Filter 1 . 99

4.9 Yaw estimation while only yawing, Filter 1 . 99

4.10 Yaw estimation while rolling and pitching, Filter 1 100

LIST OF FIGURES xv

4.11 Yaw estimation while not moving, Filter 2 with magnetometer 100

4.12 Yaw estimation while only yawing, Filter 2 with magnetometer 100

4.13 Yaw estimation while rolling and pitching, Filter 2 with magnetometer . . . 101

4.14 Yaw estimation while not moving, Filter 2 without magnetometer 101

4.15 Yaw estimation while only yawing, Filter 2 without magnetometer 101

4.16 Yaw estimation while rolling and pitching, Filter 2 without magnetometer . 102

4.17 Yaw estimation while not moving, Filter 3 with magnetometer 102

4.18 Yaw estimation while only yawing, Filter 3 with magnetometer 102

4.19 Yaw estimation while rolling and pitching, Filter 3 with magnetometer . . . 103

4.20 Yaw estimation while not moving, Filter 3 without magnetometer 103

4.21 Yaw estimation while only yawing, Filter 3 without magnetometer 103

4.22 Yaw estimation while rolling and pitching, Filter 3 without magnetometer . 104

4.23 Screenshots taken at the beginning and the end of the test 105

5.1 Image of how the sensors can be placed . 115

5.2 Illustration showing principles of Ultra Wide Band locating system [21] . . . 118

List of Tables

2.1 The notation of SNAME (1950) for marine vessels [22] 9

4.1 Test data samples from angle compensation testing. 106

4.2 Recorded data at checkpoint A . 107

4.3 Recorded data at checkpoint B . 107

4.4 Recorded data at checkpoint C . 108

4.5 Recorded data at checkpoint D . 108

4.6 Recorded data at checkpoint A to compare to the initial recorded data . . . 109

5.1 Analytical data based on table 4.3 . 114

5.2 Analytical data based on table 4.4 . 114

5.3 Analytical data based on table 4.5 . 114

xvi

Chapter 1

Introduction

1.1 Background

Norway is one of the pioneering nations in offshore technology [23]. The maritime cluster on the

north-western part of Norway has been, and still is a significant contributor to this development.

For decades, the maritime industry has been providing the community with employment, and

this is still the case. A large part of the people living in this area are employed by companies that

are directly or indirectly related to this industry. Even if the world’s nations are slowly working

towards a goal of no oil, there will still be a need to utilize the resources in the ocean. Wind

and waves are great energy sources that will be even more important to utilize in the future. In

addition, the safety of offshore workers will always be important. Developing systems that are

efficient and safe is therefore important for Norway to remain competitive in the industry.

1.2 Introduction

Seaonics delivers systems for active motion compensation (AMC) of offshore gangways and

cranes. The gangways are used to transport equipment and personnel from the ship to wind

turbines in the sea, among other things. Safety is therefore important. Their system utilizes

motion sensors stationed on the ship to detect how the ship is moving. The system uses this

data to counteract the motions to keep the gangway, or the load hanging from a crane, as still

as possible. However, their system currently has no way to monitor the actual movement of the

1

CHAPTER 1. INTRODUCTION 2

load or gangway in relation to the ship. Data like this can be useful to increase the performance

and safety of their system. The aim of this bachelor project is to research possible ways to es-

timate the motion of an offshore gangway in relation to another object. Areas of focus in the

research is choice of sensor technology, how to combine the sensor data using sensor fusion

algorithms, and how to calculate the orientation and position with the provided data. Addi-

tionally, a prototype for testing the orientation estimation system, including a graphical user

interface, is developed. The project is proposed by Seaonics.

Figure 1.1: 3D model of ship, gangway and wind turbine

1.3 Problem Formulation

The problem of this project can be divided into three parts. The first part concerns the research

of different types of sensor technologies applicable for this project. The second part is about

exploring different sensor fusion algorithms to estimate orientation. The third part is concen-

trating on different ways to estimate distance and position in relation to another project.

Problems to be addressed

• Research the advantages and disadvantages of different sensor technologies in the scope

of this project.

• Explore different algorithms to estimate orientation based on sensor data.

CHAPTER 1. INTRODUCTION 3

• Explore different ways to estimate distance and position in relation to another object.

1.4 Literature Survey

Parts of this report is based on Rudolf E. Kálmán’s famous paper describing a recursive solution

to the discrete-data linear filtering problem, known as the Kalman filter, published in 1960 [24].

It is also partly based on Sebastian O.H. Madgwick’s paper describing an efficient way to esti-

mate orientation using inertial and magnetic sensors, known as the Madgwick filter, published

in 2010 [14].

1.5 Limitations

A solution to the problem statement must satisfy the following criteria:

• Sensors can only be placed on the ship and/or the AMC gangway. This is because the

wind turbines are not standardized (yet), and the system can therefore not be dependent

on equipment mounted on the wind turbines.

• Sensors must be placed in a way that does not impede the functionality of the gangway.

• When choosing sensors, it is important to take weather conditions into account.

• If magnetometers are to be used, magnetic field distortion must be taken into account.

CHAPTER 1. INTRODUCTION 4

1.6 Structure of the Report

The rest of the report is structured as follows:

Chapter 2 - Theoretical basis: Contains a summary of the theoretical background necessary

for assessments and choices later in the report.

Chapter 3 - Materials and Methods: Contains a description of materials and methodology used

in the project, and a description of the project’s organization. This chapter explains how differ-

ent sensor fusion algorithms are applied, as well as how a stereo camera is created for distance-

and position estimation. In the end of the chapter, the test procedures are explained.

Chapter 4 - Result: Contains a description of the application that is made for orientation es-

timation. It also presents the results from the testing.

Chapter 5 - Discussion: Contains a critical discussion of the results from Chapter 4. This in-

cludes a discussion of what distinguishes the developed solution from a complete solution.

Chapter 6 - Conclusions: This chapter presents an overall conclusion of the project, and sug-

gests an answer to the problem statement.

Chapter 2

Theoretical basis

This chapter contains the theoretical basis that is important to understand when conducting

the methods of this project. This includes kinematics, reference systems, sensor technologies,

sensor fusion including the statistical theory behind this concept, and image processing.

2.1 Kinematics

Kinematics is the mathematical description of motion [25]. Kinematics is a subfield of physical

dynamics, which only treats the geometrical aspects of motion without considering the forces

that causes the motion.

2.1.1 Reference systems

When calculating and analyzing ship motions, or the motions of any rigid body, it is appropriate

to use several coordinate systems to reference the position and orientation of the body. If a

rigid body is said to have a given orientation and position, this information will be useless if it

is not given what it is positioned and oriented in relation to. Figure 2.1 shows a ship with two

reference frames; a body-fixed frame, and the Earth-fixed frame.

5

CHAPTER 2. THEORETICAL BASIS 6

Figure 2.1: A ship’s body-fixed and earth-fixed coordinate frames [1]

2.1.2 Rigid-body motions in the plane

Figure 2.2: The point p represented in two different ways [2]

As seen in figure 2.2, a point can be represented in many different ways, depending on what it is

referenced in relation to. Let us say that reference frame {a} has unit coordinate axes, x̂a and ŷa .

Then, the point p is represented as pa = (1,2). However, if reference frame {b} is used, which has

a different placement, orientation, and length scale, the point p is represented as pb = (4,−2).

When analyzing the motions of a rigid body, it is convenient to attach a reference frame with

unit axes to the rigid body. This reference frame is called the body frame and is denoted {b}. For

CHAPTER 2. THEORETICAL BASIS 7

simplicity, the body frame is considered to be attached to the moving rigid body, but that is not

the case. In fact, the body frame is the stationary frame that is instantaneously coincident with

the frame moving along with the rigid body, at a specific moment [2].

Figure 2.3: Example of a body frame [2]

The gray shape in figure 2.3 represents a planar body. The reference frame {b} is the body

frame, and {s} is a fixed reference frame. Both frames have unit axes. The position and ori-

entation of the planar body can be described by specifying the position and orientation of the

body frame with respect to the fixed reference frame. The origin of the body frame, p, can be

expressed in terms of the coordinate axes of the fixed reference frame as

p = px x̂s +py ŷs (2.1)

In equation 2.1, x̂s and ŷs indicates that p is defined in respect to the fixed reference frame

{s}. To describe the orientation of the body frame {b}, the directions of the unit axes, x̂b and ŷb ,

should be specified relative to the fixed reference frame {s} on the form

x̂b = cosθ · x̂s + sinθ · ŷs (2.2)

ŷb =−sinθ · x̂s +cosθ · ŷs (2.3)

If everything is expressed in terms of the fixed reference frame {s}, the point p can be repre-

sented as a column vector of the form

CHAPTER 2. THEORETICAL BASIS 8

p =
px

py

 (2.4)

The two vectors of the body frame, x̂b and ŷb , can also be written as column vectors inside a

2 x 2 matrix as follows:

P =
[
x̂b ŷb

]
=

cosθ −sinθ

sinθ cosθ

 (2.5)

The matrix P is a rotation matrix. Each column of P must be a unit vector, and the two

columns must be orthogonal to each other. The last degree of freedom is parameterized by θ.

Now, using equation 2.4 and 2.5, the pair (P, p) describes the orientation and the position of the

body frame {b} in relation to the fixed reference frame {s}.

2.1.3 Rigid-body motions in three dimensions

The concepts above can be generalized to three-dimensional rigid-body motions. Let {s} be the

fixed frame and {b} the body frame. The unit axes of the fixed frame can be denoted {x̂s , ŷs , ẑs},

and the unit axes of the body frame can be denoted {x̂b , ŷb , ẑb}. The vector p is the vector from

the origin of {s} to the origin of {b}. Then, in terms of the coordinates of {s}, p can be expressed

as

p = p1 · x̂s +p2 · ŷs +p3 · ẑs (2.6)

The axes of {b} can be expressed as

x̂b = r11 · x̂s + r21 · ŷs + r31 · ẑs (2.7)

ŷb = r12 · x̂s + r22 · ŷs + r32 · ẑs (2.8)

ẑb = r13 · x̂s + r23 · ŷs + r33 · ẑs (2.9)

CHAPTER 2. THEORETICAL BASIS 9

This yields

p =

p1

p2

p3

 , R =
[
x̂b ŷb ẑb

]
=

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (2.10)

Then, the 12 parameters given by the pair (R, p) provide a description of the position and orien-

tation of a three-dimensional rigid body, relative to the fixed frame.

2.1.4 Motion variables

A ship can move in six degrees of freedom (DOF), which means that six independent variables

are needed to describe the position and orientation of the ship. The first three variables (x, y,

z), and their time derivatives (u, v, w), describe the position and the translational motion along

the x, y and z axes. The last three variables (φ, θ, ψ), and their time derivatives (p, q, r), describe

the orientation and rotational motion about the axes. The notation of SNAME (Society of Naval

Architects and Marine Engineers) for these six different motion components are surge, sway,

heave, roll, pitch and yaw. See figure 2.1 and table 2.1.

Table 2.1: The notation of SNAME (1950) for marine vessels [22]

DOF
Forces and

moments

Linear and

angular velocities

Positions and

Euler angles

1 motions in the x direction (surge) X u x

2 motions in the y direction (sway) Y v y

3 motions in the z direction (heave) Z w z

4 rotation about the x axis (roll, heel) K p φ

5 rotation about the y axis (pitch, trim) M q θ

6 rotation about the z axis (yaw) N r ψ

CHAPTER 2. THEORETICAL BASIS 10

2.2 Representation of position and orientation

2.2.1 Euler angles

The Euler angles are used to describe the orientation of a rigid body in relation to a fixed coordi-

nate system, either by the initial frame or the frame resulting in the most recent rotation (body

fixed frame). By using Euler angles, any rotation can be described by three successive rotations

about linearly independent axes. The Euler angles are commonly denoted asψ, θ andφ for yaw,

pitch and roll respectively [26].

Singularity

Euler angle representation of an objects orientation can suffer from singularity, often called gim-

bal lock. This happens when two rotation axes coincide, e.g. if an object pitches 90°, the x-axis

and z-axis will become parallel. Then theφ andψ angles will describe the same rotations. When

this occurs, one degree of freedom is lost, and an infinite number of solutions exists for the Euler

rotation sequence [27].

2.2.2 Quaternions

The quaternion number system is an extension of the complex numbers. The concept of quater-

nions was discovered by the Irish mathematician Sir William Rowan Hamilton in 1843.

i 2 = j 2 = k2 = i j k =−1 (2.11)

Following equation 2.11, Hamilton defined a set of rules;

i j = k, j k = i , ki = j ,

j i =−k k j =−i , i k =− j ,
(2.12)

and a quaternion q as

q = s + i a + j b +kc s, a,b,c ∈R (2.13)

CHAPTER 2. THEORETICAL BASIS 11

[4]. The relationship between i, j and k is similar to the cross product rules for unit cartesian

vectors:

x × y = z, y × z = x, z ×x = y,

y ×x =−z z × y =−x x,×z =−y
(2.14)

The imaginary numbers i, j, and k can be used to represent three cartesian unit vectors i, j, k

with the same properties as imaginary numbers, meaning i2 = j2 = k2 =−1. See figure 2.4.

Figure 2.4: The relationship between the cartesian unit vectors represented by i, j and k [3]

A quaternion can be presented as an ordered pair:

q = [s, v] = [s, xi+ yj+ zk] s, x, y, z ∈R,v ∈R3 (2.15)

Quaternion calculation rules

A complete derivation of the equations and calculation rules in this subsection can be found in

the book Quaternions for Computer Graphics written by Professor John Vince at Bournemouth

University [4].

CHAPTER 2. THEORETICAL BASIS 12

Adding and subtracting quaternions is done in a similar way as with complex numbers:

qa = [sa , a]

qb = [sb , b]

qa +qb = [sa + sb , a+b]

qa −qb = [sa − sb , a−b]

(2.16)

A quaternion product has the following general equation:

[sa , a][sb , b] = [sa sb −a ·b, sab+ sba+a×b] (2.17)

Multiplying a quaternion by a scalar is done by the following rule:

q = [s, v]

λq =λ[s, v]

= [λs, λv]

(2.18)

A Real quaternion is a quaternion where the vector term is 0, q = [s,0], whereas a Pure

quaternion is a quaternion with zero scalar term; q = [0,v]. An arbitrary vector v can be ex-

pressed in both its scalar magnitude, and its direction:

v = v v̂ where v = |v|, |v̂| = 1 (2.19)

Combining the definition above with the definition of pure quaternions, yields:

q = [0, v]

= [0, v v̂]

= v[0, v̂]

(2.20)

Equation 2.20 yields the description of a unit quaternion that has a zero scalar and a unit vector:

q̂ = [0, v̂] (2.21)

CHAPTER 2. THEORETICAL BASIS 13

The quaternion conjugate can be computed by negating the vector part:

q = [s, v]

q∗ = [s, −v]
(2.22)

The product of a quaternion with its conjugate is:

qq∗ = [s, v][s, −v]

= [s2 −v ·−v, −sv+ sv+v×−v]

= [s2 +v ·v, 0]

= [s2 + v2, 0]

(2.23)

The quaternion norm (magnitude) is defined similar to the norm of complex numbers:

q = [s, v]

|q | =
√

s2 + v2
(2.24)

When |q| =
√

s2 + v2 = 1, it is called unit norm. By comparing equation 2.23 and 2.24, one can

see that

qq∗ = |q|2 (2.25)

Quaternion normalization is done using the quaternion norm:

q ′ = q

|q | =
qp

s2 + v2
(2.26)

The quaternion inverse is computed by taking the conjugate of the quaternion and divide it

by the square of the norm:

q−1 = q∗

|q|2 (2.27)

The dot product between two quaternions can be computed by multiplying the correspond-

CHAPTER 2. THEORETICAL BASIS 14

ing scalar parts and summing the result:

q1 = [s1, x1i+ y1j+ z1k]

q2 = [s2, x2i+ y2j+ z2k]

q1 ·q2 = s1s2 +x1x2 + y1 y2 + z1z2

(2.28)

The quaternion dot product can be used to calculate the angular difference between two quater-

nions:

cosθ = q1 ·q2

|q1||q2|
= s1s2 +x1x2 + y1 y2 + z1z2

|q1||q2|
(2.29)

Rotations

Complex numbers can be used to rotate a point through the 2D complex plane:

q = cosθ+ i sinθ (2.30)

Similarly, it should be possible to express a quaternion to be used to rotate a point in 3D-space:

q = [cosθ, sinθv] (2.31)

This can be tested by computing the product of the quaternion q and the vector p. Let p be the

pure quaternion

p = [0, p] p ∈R3, (2.32)

and q be the unit-norm quaternion

q = [s, λv̂] s,λ ∈R, v̂ ∈R3 (2.33)

Now, the product p ′ = qp can be computed to examine if the vector p has been rotated:

p ′ = qp

= [s, λv̂][0, p]

= [−λv̂ ·p, sp+λv̂×p]

(2.34)

CHAPTER 2. THEORETICAL BASIS 15

The result of equation 2.34 is a general quaternion with both a scalar and a vector component.

Considering the "special" case where the vector p is perpendicular to v̂, where the dot prod-

uct −λv̂ ·p = 0, one can see that the result of equation 2.34 is a Pure quaternion:

p ′ = [0, sp+λv̂×p] (2.35)

To rotate p about v̂ in this case, s and λ is substituted as s = cosθ and λ= sinθ. This yields

p ′ = [0, cosθp+ sinθv̂×p] (2.36)

If, for example p were to be rotated 45° about the z-axis, the quaternion would be:

q = [cosθ, sinθk]

=
[p

2

2
,

p
2

2
k

] (2.37)

Choosing a vector p that belongs to the special case where p is perpendicular to k:

p = [0, 2i] (2.38)

The product of qp is:

p ′ = qp

=
[p

2

2
,

p
2

2
k

]
[0, 2i]

=
[

0, 2

p
2

2
i+2

p
2

2
k× i

]
= [0,

p
2i+p

2j]

(2.39)

The result of equation 2.39 is a pure quaternion that is rotated 45° about the k axis. The magni-

tude of the resulting vector is

|p’| =
√p

2
2 +p

2
2 = 2, (2.40)

which confirms that the magnitude of the vector is the same as before being rotated. The rota-

tions is shown in figure 2.5.

CHAPTER 2. THEORETICAL BASIS 16

Figure 2.5: The vector 2i is rotated 45° [4]

Now, considering a case where the quaternion is not orthogonal to p, for example 45° offset

from p:

v̂ =
p

2

2
i+

p
2

2
k

p = 2i

q = [cosθ, sinθv̂]

p = [0, p]

(2.41)

Multiplying the vector p by q now yields:

p ′ = qp

= [cosθ, sinθv̂][0, p]

= [−sinθv̂ ·p, cosθp+ sinθv̂×p]

(2.42)

Substituting v̂, p and θ = 45°, yields:

p ′ =
[
−
p

2

2

(p
2

2
i+

p
2

2
k

)
· (2i),

p
2

2
2i+

p
2

2

(p
2

2
i+

p
2

2
k

)
×2i

]
= [−1,

p
2i+ j]

(2.43)

The result from equation 2.43 is not a pure quaternion. Also, it has not been rotated 45° and

the norm of the vector has been reduced from 2 to
p

3. However, if the result of qp is post-

multiplied by the inverse of q , q−1, the result will be a pure quaternion where the norm of the

CHAPTER 2. THEORETICAL BASIS 17

vector is maintained [3]. The inverse of q is:

q =
[

cosθ, sinθ

(p
2

2
i+

p
2

2
k

)]

q−1 =
[

cosθ, −sinθ

(p
2

2
i+

p
2

2
k

)] (2.44)

For θ = 45°:

q−1 =
[p

2

2
, −

p
2

2

(p
2

2
i+

p
2

2
k

)]
= 1

2

[p
2, −i−k

] (2.45)

Post-multiplying qp with q−1 now yields:

qp =
[
−1,

p
2i+ j

]
qpq−1 =

[
−1,

p
2i+ j

] 1

2

[p
2, −i−k

]
= 1

2

[
−p2−

(p
2i+ j

)
· (−i−k) , i+k+p

2
(p

2i+ j
)
− i+p

2j+k
]

= 1

2

[
−p2+p

2, i+k+2i+p
2j− i+p

2j+k
]

=
[

0, i+p
2j+k

]
(2.46)

From equation 2.46 it is visible that the result is a pure quaternion, and the norm is

|p ′| =
√

12 +p
2

2 +12 =p
4 = 2, (2.47)

which means that the norm has been maintained. The result is visualized in figure 2.6.

CHAPTER 2. THEORETICAL BASIS 18

Figure 2.6: The vector 2i is rotated 90° to i +
p

2j + k [4]

As seen on figure 2.6, the vector is rotated 90° rather than 45°, i.e. twice as much as intended.

The conclusion is that in order to rotate a vector p by an angle θ about an arbitrary axis v̂, the

quaternion to be used for rotation should consider the half of the desired angle:

q =
[

cos
1

2
θ, sin

1

2
θv̂

]
(2.48)

Equation 2.48 is the general form of a rotation quaternion. Representing rotation using quater-

nions eliminates the possible problem of singularity because a quaternion is not a sequence of

rotations, but only represents one rotation. It therefore requires a complete solution.

2.2.3 Conversion from quaternions and Euler angles

Considering the ZYX rotation sequence, quaternions can be converted to Euler angles. Assum-

ing a normalized quaternion, the discriminant ∆ is defined as:

∆= q1q3 −q2q4 (2.49)

In most situations, |∆| < 1

2
. Then, equation 2.50 can solve for yaw(ψ), pitch(θ) and roll(φ) [28]:

CHAPTER 2. THEORETICAL BASIS 19

φ

θ

ψ

=

t an−1

(
2

q1q2 +q3q4

1−2(q2
2 +q2

3)

)
si n−1(2∆)

t an−1

(
2

q1q4 +q2q3

1−2(q2
3 +q2

4)

)

 (2.50)

However, when |∆| ≈ 1

2
, the solutions are approaching singularities. This happens when

pitch approaches ±90°. These special cases can be solved as in equation 2.51:

∆=−1

2
∆= 1

2
φ= 0 φ= 0

θ =−π
2

θ = π

2
ψ= 2t an−1(

q2

q1
) ψ=−2t an−1(

q2

q1
)

(2.51)

2.2.4 Rotation matrices

There are three uses for a rotation matrix [2]:

• To represent a configuration of a rigid body

• To change the reference frame in which a vector or frame is represented

• To displace a vector or a frame.

The rotation matrices are defined as

Rx(φ) =

1 0 0

0 cφ −sφ

0 sφ cφ

 (2.52)

Ry (θ) =

cθ 0 sθ

0 1 0

−sθ 0 cθ

 (2.53)

CHAPTER 2. THEORETICAL BASIS 20

Rz(ψ) =

cψ −sψ 0

sψ cψ 0

0 0 1

 (2.54)

where Rx , Ry and Rz are the rotations about the x-, y- and z-axis respectively. These rotation

matrices are known as the special orthogonal group (SO(3)). To get the total rotation from one

matrix, these three rotation matrices can be combined by multiplying them:

R(φ,θ,ψ) = Rz(ψ) ·Ry (θ) ·Rx(φ) (2.55)

R(φ,θ,ψ) =

cθcψ cψsθsφ− sψcφ cψsθcφ+ sψsφ

sψcθ sψsθsφ+ cψcφ sψsθcφ− cψsφ

−sθ cθsφ cθcφ

 (2.56)

The order of rotations in the matrix from equation 2.56 is:

1. Roll by φ

2. Pitch by θ

3. Yaw by ψ

2.2.5 Conversion from rotation matrix to Euler angles

Considering an ZYX rotation sequence, and an arbitrary rotation matrix in this form:

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (2.57)

To extract the Euler angles from the rotation matrix, a singularity check must be performed [29]:

s y =
√

r 2
11 + r 2

21 (2.58)

CHAPTER 2. THEORETICAL BASIS 21

If s y ≈ 0 from equation 2.58, the system is close to a singularity (see section 2.2.1). If the system

is not approaching singularity, this equation is used:

φ

θ

ψ

=

at an2(r32, r33)

at an2(−r31, s y)

at an2(r21, r11)

 (2.59)

If the system is approaching singularity, this equation is applicable:

φ

θ

ψ

=

at an2(−r23, r33)

at an2(−r31, s y)

0

 (2.60)

2.2.6 Homogeneous transformation matrix for representation of position and

orientation

The matrices to describe position and orientation, shown in equation 2.10, can be combined to

a single homogeneous transformation matrix. The form of this matrix is:

T =
R p

0 1

=

r11 r12 r13 p1

r21 r22 r23 p2

r31 r32 r33 p3

0 0 0 1

 (2.61)

where R ∈ SO(3) and p ∈ ℜ3 is a column vector. In practical terms, matrix R is the rotation

matrix from equation 2.56 and p is the position in x-, y- and z-axis, represented in relation to the

reference frame [2]. An example with rotation along the z-axis, R = Rz(ψ):

cθ −sθ 0 px

sθ cθ 0 py

0 0 1 pz

0 0 0 1

 (2.62)

CHAPTER 2. THEORETICAL BASIS 22

The Matrix from equation 2.62 can be altered slightly to just rotate or just translate. An example

of pure rotation along z-axis without translation:

Rot (ω̂,θ) =

cθ −sθ 0 0

sθ cθ 0 0

0 0 1 0

0 0 0 1

 (2.63)

where the translation parts are set to 0. ω̂ denotes which axis should be rotated about, and θ

represents the rotation angle. Similarly, pure translation can be achieved by replacing the R

component in equation 2.61 with I3×3. An example of pure translation [2]:

Tr ans(p) =

1 0 0 px

0 1 0 py

0 0 1 pz

0 0 0 1

 (2.64)

2.3 Statistical Theory

This section contains statistical theory that is applied in sensor fusion algorithms later in the

report.

2.3.1 Population variance

Variance is a measure of variation. In probability theory, the variance is the expectation of the

squared deviation of a random variable from its mean value. When the whole population of

observations is known, the variance can be calculated by equation 2.65 [30].

σ2 =
∑

(x −µ2)

n
(2.65)

In equation 2.65, σ2 is the population variance, x1, x2,..., xn are the observations in the pop-

ulation of size n, and µ is the mean value of the observations which has the formula described

in equation 2.66.

CHAPTER 2. THEORETICAL BASIS 23

µ= 1

n

∑
x (2.66)

2.3.2 Covariance

Covariance is a measure of the connected variability of two random variables. The covariance

between the two stochastic variables X and Y is defined in equation 2.67 [30].

cov(X ,Y) =σX Y = E [(X −µx)(Y −µy)] (2.67)

2.3.3 Normal distribution

A normal distribution is a continuous probability distribution for a real-valued random vari-

able. The normal distribution is often called the Gaussian distribution, named after the German

mathematician Carl Friedrich Gauss (1777-1855) [31]. A normal distribution is often written in

short form as N (µ,σ2), where σ2 is the variance and µ is the mean value [5]. Equation 2.68

shows the probability density function of a normally distributed stochastic variable X [30].

p(x) = 1p
2πσ2

e
−

(x −µ)2

2σ2 f or −∞< x <∞, π≈ 3.1416 (2.68)

Figure 2.7 shows a normal distribution. This curve is often referred to as a Gauss curve. The

curve has the following properties:

• It is bell formed and symmetric about a vertical line through µ.

• It has inflection points along the horizontal axis at µ−σ and µ+σ.

CHAPTER 2. THEORETICAL BASIS 24

Figure 2.7: (Left) Normal distribution with µ= 0 and σ2 = 1. (Right) A bell curve approximating
a data set which is not normalized. [5]

2.4 Sensors

A sensor is a device that measures a physical environment (such as heat, light, sound, pressure,

magnetic field, or a particular motion) and transmits a resulting impulse [32]. Likewise, humans

can sense heat, touch/force, visual observations, smell and taste. When an observation is made,

one or multiple electrical impulses are sent to the brain where it is processed. Sensors enable

robots and machines to have a similar ability to sense the environment and process observa-

tions in an MCU or computer. This section describes how a selection of sensor types applicable

for position and orientation estimation work.

Measurement range

The range of a sensor describes the maximum physical value it can accurately measure. A sensor

with a high range will not be able to measure small changes accurately. Conversely, a low range

sensor will not be able to measure high values. For more information, see section 2.5.1.

Sensitivity

The sensitivity of a sensor describes the difference in the physical values based on the change

in output voltage. For example, if a gyroscope sensor has a sensitivity of 10mV /d ps (d ps = °/s),

CHAPTER 2. THEORETICAL BASIS 25

and the measured voltage is 50mV , then the sensor value is

Sensor V alue = 50mV

10mV /d ps
= 5d ps (2.69)

When the sensitivity increases, a higher voltage is required per sensor unit, and the range will

also decrease [33].

Bias

Sensor bias is the steady-state error of a sensor reading. Sensor bias can also be considered an

offset from the actual sensor value. For example, if a gyroscope is kept completely stationary

without any motion, the expected sensor values is 0°/s. If the measured value is 1.5°/s, then the

bias is 1.5°/s.

Integration error (Drift)

If sensor readings are integrated (e.g. accelerometer readings are integrated to get velocity), the

bias of the sensor reading will lead to an accumulation of error. This accumulation of integration

error is often referred to as drift.

2.4.1 Gyroscope

A gyroscope is a sensor which measures angular velocity. A common and inexpensive type of

gyroscope is the Coriolis vibratory gyroscope (CVG). This type of gyroscope measures angular

velocity by measuring the Coriolis force on a vibrating object [34]. During a rotation, the Coriolis

force will change the resonance direction of the vibrating ring inside the gyroscope, see figure

2.8.

Coriolis force

The Coriolis force is a fictitious force that acts on objects in motion within a reference frame that

rotates with respect to an inertial frame [35].

CHAPTER 2. THEORETICAL BASIS 26

Figure 2.8: Visualizing the Coriolis force on the vibrating structure inside a CVG [6]

2.4.2 Magnetometer

A magnetometer is a device that measures the strength and optionally the direction of nearby

magnetic fields. Magnetometers that only measures the total field strength is called scalar mag-

netometers, and the ones measuring direction is called vector magnetometers [36].

2.4.3 Accelerometer

An accelerometer is a device that can measure accelerations. The three main types of accelerom-

eters are piezoelectric, piezoresistive and capacitive accelerometers.

Piezoelectric accelerometers use the piezoelectric effect to measure acceleration. Piezoelec-

tric elements produces electricity when under physical stress.

Piezoresistive accelerometers work in a similar way. Instead of producing electricity when

under physical stress, the electrical resistance increases proportionally to the stress. These ac-

celerometers are less sensitive than its piezoelectric counterparts.

The third kind of accelerometers are capacitive accelerometers. These consist of stationary

capacitor plates and capacitor plates mounted on a spring loaded, movable diaphragm. Dur-

ing movement, this diaphragm moves, and the distance between the capacitor plates changes,

CHAPTER 2. THEORETICAL BASIS 27

resulting in a varying capacitance as seen in figure 2.9 [37].

Figure 2.9: MEMS capacitive accelerometer [7]

2.4.4 IMU/MARG

An IMU (Inertial Measurement Unit) is a system consisting of a gyroscope and an accelerometer.

They can also include a magnetometer. In that case, they are called MARG (Magnetic, Angular

Rate, and Gravity) sensors, or 9-DOF IMUs. The raw measurements can be used to calculate

attitude, linear velocity, angular rates, and position relative to a global frame. IMUs are often

delivered on a MEMS, which includes software that processes the raw sensor data. The output

can be Euler angles, filtered and calibrated acceleration and velocity data, among other things.

An IMU consisting of a 3-axis gyroscope and a 3-axis accelerometer is called a 6-DOF IMU,

because it measures both angular velocities and angular accelerations in three dimensions each.

This means that it measures six independent variables. When a 3-axis magnetometer is in-

cluded, three degrees of freedom is added, which is why they are called 9-DOF IMUs in that

case.

2.4.5 Radar Sensor

Radar sensors are used to detect both moving and stationary objects. They are often used in

cars and other mobile machines for collision avoidance [38]. Radars use Frequency Modulated

Continuous Waves (FMCW) to measure the distance to an object. By comparing the different

frequencies, the velocity of the object can be calculated. A radar is able to detect and distinguish

between small objects close to each other by using a high frequency carrier. The radar works by

emitting a signal on a frequency that changes over time (sweeping time) and reading the signal

that is returned after hitting an object (echoing signal). The frequency is given a minimum and

CHAPTER 2. THEORETICAL BASIS 28

maximum value. This is called the bandwidth. The distance to any object is calculated by:

d = c ·Ts · fb

2 ·Bsweep
(2.70)

where c is the speed of light, fb is the frequency sweep, Ts is the sweep time and Bsweep is the

bandwidth [39].

2.4.6 Ultrasonic Sensor

An ultrasonic sensor measures distance using reflection of sound waves. The sensor consists

of two main parts; emitter and detector. The emitter sends out ultrasonic sound waves, which

cannot be heard by humans. When the sound waves hit an object, they are reflected back to the

sensor and received by the detector. The distance is calculated by measuring the time between

emitting and detecting the sound. The measured time is then divided by two to get the distance.

This is because the measured time is the time the sound travels from the emitter to the object

and then back to the detector. In other words, half of the traveled distance is the actual distance

from the sensor to the object. The time is then multiplied by the speed of sound, giving the

distance:

d = t · v

2
(2.71)

where t is the time from emittance to receival, and v is the speed of sound.

Figure 2.10: Ultrasonic sensor principle [8]

CHAPTER 2. THEORETICAL BASIS 29

2.4.7 Infrared Sensor

An infrared distance sensor (IR sensor) uses light to measure the distance to an object. A beam

of infrared light is emitted from an IR LED and reflected back to the sensor when it hits an object.

The sensor measures the angle of the reflected light, and uses triangulation to calculate the

distance to the object. See figure 2.11.

Figure 2.11: Infrared sensor principle [9]

2.4.8 Digital Camera

A digital camera is a device that utilizes a light-detector (commonly called an image sensor) to

create a picture. It has a housing that protects all internal components as well as prevents light

to reach the image sensor from unwanted directions. The housing has an aperture where the

light is coming in to hit the image sensor. In front of the aperture there is a lens, which can

be controlled to adjust the light coming in to get the desired focus in the picture. Figure 2.12

shows a general block diagram of how a digital camera converts the incoming light to a digital

represented picture.

CHAPTER 2. THEORETICAL BASIS 30

Lens

CFA

Image sensor

AGC ADC Demosaicing

Auto focus

Auto
exposure

Image
processing

Figure 2.12: General block diagram of a digital camera

As seen in figure 2.12, the light travels through the lens and hits the color filter array (CFA).

The color filter array is placed over the image sensor to capture the color information in the light.

In the case of the figure, the CFA is a Bayer filter, which gives information about the intensity of

light in red, green and blue (RGB) wavelength regions [40]. The signal from the image sensor is

then transmitted to an automatic gain control (AGC), which amplifies the signal and transmits

it to the analog-to-digital converter (ADC) (see section 2.5.1). The digital information from the

ADC is then "demosaiced", which is a digital process that renders the image into a viewable

format. From there, the digital picture can be processed further using different image processing

techniques.

Image sensor

The image sensor in a digital camera can be of two types; either a CCD (charge-coupled device),

or a CMOS (complementary metal oxide semiconductor) image sensor [41]. Both of these types

converts light into electric charge an transmits it as electronic signals.

A CCD image sensor consists of an array of capacitors. Each of these capacitors carries an

electric charge that corresponds to the light intensity of a pixel [42]. Each capacitor transfers its

charge to its neighbor in the array, where the last capacitor in the array transmits all the content

into a charge amplifier.

A CMOS image sensor consists of a photodiode and a CMOS transistor for each pixel. This

allows each pixel signal to be amplified individually. An advantage of amplifying each pixel

CHAPTER 2. THEORETICAL BASIS 31

signal individually is that it reduces the noise in the electrical signals that is converted from the

captured light. Figure 2.13 shows a basic introduction of how the CCD and CMOS image sensors

processes the pixels.

Figure 2.13: Figures showing how CCD and CMOS sensors work [10]

Field of view

The field of view (FOV) is defined as the maximum area of a sample that a camera can image

[11]. It is determined by the focal length of the lens and the size of the image sensor. The focal

length is the distance between the optical center of the lens and the image sensor [43]. The

sensor size is determined by the size of the pixels, and the number of pixels. The angular field

of view (AFOV) is the angle between light captured at the horizontal, and light captured at the

edge. See figure 2.14.

CHAPTER 2. THEORETICAL BASIS 32

Figure 2.14: Schematics showing the relations between focal length, FOV and AFOV [11]

Resolution

The resolution of an image is given by the number of pixels in the image. The data in an image is

stored as a matrix with rows and columns (x and y). Each cell in the matrix represents one pixel.

Figure 2.15 shows some of the most common image resolutions.

Figure 2.15: Common image resolutions [12]

Each pixel usually consists of one or three different values. When each pixel consists of one

CHAPTER 2. THEORETICAL BASIS 33

value, the image is a gray scale image. Images with three values in each pixel is known as an RGB

image, or a color image. Each of the values represents the strength of the red, green and blue

components respectively. The combination of the values results in the color in the pixel.

2.4.9 ToF camera

A Time of Flight camera uses IR light to get the depth in an image. The sensor consist of two

main components; an IR light emitting diode and a special photosensitive matrix. A pulse or

FMCW of IR light is emitted from the camera, and the depth is calculated by using the speed of

light and the time between emitting and detecting the light. The technology is quite similar to

infrared sensors, but with the possibility to get the distance in a large area in contrast to a single

point [44].

2.4.10 Stereo Camera

A stereo camera is a combination of two cameras pointed in the same direction. It works sim-

ilarly to the human vision where the distance to an object can be determined by an objects

displacement seen in one image compared to the other [45]. In other words, the same object

will appear in two different locations within the images. To acquire depth from a stereo image,

the displacement of the objects from one image to the next is utilized. Knowledge about camera

resolution and distance between the two cameras are needed. Combined with the disparity in

the images it is possible to know the depth of each pixel in the frame. It is often referred to as

binocular disparity.

Figure 2.16: Stereo camera principle [13]

CHAPTER 2. THEORETICAL BASIS 34

2.5 Sensor Fusion

When using electronic sensors to observe environmental information, there are several chal-

lenges. First of all, it is impossible for an electronic sensor to be completely accurate because

it provides digital information to describe an analogue world. Because a sensor is limited to a

specific physical range, which is mapped to a specific amount of bits, quantification error can

occur (see section 2.5.1).

Electronic sensors are also subject to a phenomenon called white noise. White noise is ran-

dom noise where the frequency and power spectrum is constant and independent of the sensors

sampling frequency [46]. The consequence of this is that even if the physical property the sensor

is measuring is held constant, the sensor will output values that is distorted by the white noise.

To tackle the problem of imperfect sensors, sensor fusion can be applied. Sensor fusion is

a technique where two or several sensor outputs are combined "to produce enhanced data in

form of an internal representation of the process environment [47]". Sensor fusion enables a

more robust sensing system with improved resolution and increased confidence.

2.5.1 Analog-to-Digital conversion

Analog-to-digital converters converts a continuous, analog signal to discrete, digital values.

However, ADCs have limitations. During the discretization of a signal, information can be lost.

An ADC maps analog values to digital, sampled values. The resolution of an ADC determines

how small increments in voltages the ADC manages to perceive as a change [48].

ADC r esol uti on

Sy stem vol t ag e
= ADC r eadi ng

Measur ed vol t ag e
(2.72)

As an example, a micro controller has a 10-bit ADC and a system voltage of 5V. 10-bit reso-

lution translates to 210 −1 = 1023 unique digital values. To find the ADC reading x in this case,

where the analog voltage is for example 3.27V, equation 2.73 would be acquired by substituting

the values in equation 2.72:

CHAPTER 2. THEORETICAL BASIS 35

1023

5.0V
= x

3.27V
1023

5.0V
·3.27V = x

x ≈ 669

(2.73)

Because the sampled values are limited by the resolution of the ADC, continuous analog values

must be limited within a specific range. As an example: A distance sensor measures in the range

from 0-5V.

Q = 5V

1023 LSB
≈ 0.00488V /LSB = 4.88mV /LSB (2.74)

From equation 2.74, the change of 1 LSB (Quantization step) equals a change of 4.88mV. This

exposes one limitation of digital quantization; the quantization error.

Quantization error is the difference between the actual physical value and the digital sam-

pled value (equation 2.75) [49].

Quanti zati on er r or =Quanti zati on val ue − Actual val ue (2.75)

For example, if the actual voltage is 1955mV, inserting in equation 2.72 yields:

1955mV

4.88mV /LSB
= 400.61 LSB ≈ 401 LSB (2.76)

According to equation 2.76, the correct sampled value should be 401.

x = 401 LSB ·4.88mV /LSB = 1956.88mV (2.77)

Quanti zati on er r or = 1956.88mV −1955mV = 1.88mV (2.78)

As seen in equation 2.74, 2.77 and 2.78, the quantization error is almost half a quantization step.

In a case where high accuracy is important, this might be unacceptable. An ADC with higher

resolution will yield a lower quantization error at the same sensor range.

CHAPTER 2. THEORETICAL BASIS 36

2.5.2 Gradient Descent

Gradient descent is an iterative first-order optimization algorithm. It is used to find the local

minimum of a differentiable function by taking repeated steps in the opposite direction of the

gradient at the current point. The general equation for gradient descent is shown in equation

2.79:

xn+1 = xn −γ∇ f (xn) (2.79)

where xn+1 is the next point, xn is the current point, γ is the gain/learning rate and ∇ f (xn) is

the gradient in the current point. The gradient descent will consider the slope of the gradient in

the current point, and then move the next point in the opposite direction of the slope. As seen

in figure 2.17, at point A the gradient is negative and the next point (B) is moved towards the

positive direction of the horizontal axis [50].

Figure 2.17: Gradient descent

CHAPTER 2. THEORETICAL BASIS 37

Learning rate

The learning rate of a gradient descent algorithm determines how much the points should move

in each iteration. Too high learning rate results in overshooting the local minimum (see figure

2.18) and too low learning rate results in a slow convergence (see figure 2.19). The optimal learn-

ing rate results in a fast convergence without overshooting.

Figure 2.18: Too high learning rate, overshoot-
ing

Figure 2.19: Too low learning rate, slow con-
vergence

2.5.3 Jacobian matrix and determinant

The Jacobian matrix is the matrix of all the first-order partial derivatives of a vector function.

Jacobians are used for transformations from one coordinate system to another. This allows for

linear approximations at and near individual points of a non-linear vector function. The general

form of a m ×n Jacobian matrix is shown in equation 2.80 [51]:

J =

∂ f1

∂x1
· · · ∂ f1

∂xn
...

. . .
...

∂ fm

∂x1
· · · ∂ fm

∂xn

 (2.80)

If m = n, the Jacobian matrix is a square matrix. Thus, the Jacobian Determinant (also called

the Jacobian), can be found. Equation 2.82 shows the general equation for a ℜ2 →ℜ2 transfor-

mation.

CHAPTER 2. THEORETICAL BASIS 38

F

x

y

=
 f1(x, y)

f2(x, y)

 (2.81)

J (f1, f2) = ∂(f1, f2)

∂(x, y)
=

∂ f1

∂x

∂ f1

∂y
∂ f2

∂x

∂ f2

∂y

 (2.82)

As an example, f1(x, y) and f2(x, y) is:

 f1(x, y)

f2(x, y)

=
x + si n(y)

y + si n(x)

 (2.83)

Inserting the values for f1 and f2 from equation 2.83 in equation 2.82 yields equation 2.84:

J (f1, f2) =

∂ f1

∂x

∂ f1

∂y
∂ f2

∂x

∂ f2

∂y

=
 1 cos(y)

cos(x) 1

 (2.84)

2.5.4 Kalman Filter

The Kalman filter was invented in 1960 by the Hungarian-American electrical engineer and

mathematician Rudolf Emil Kálmán [24]. The filter has many applications in technology, such

as applications for guidance, navigation, and dynamic positioning on ships.

A Kalman filter is a set of mathematical equations that is used to efficiently compute an

estimation of the state of a process, while minimizing the mean of the squared error [52]. The

filter does this by utilizing a mathematical model of how the physical process behaves. The filter

can estimate both past, present and future states, given that the behavior of the physical process

is modeled accurately enough.

The Kalman filter is a recursive algorithm which essentially consists of two steps; predict

and update. The predict-step estimates the state at time k based on the state at time k-1, along

with values representing how much uncertainty there are in the estimated state. It does this by

utilizing the mathematical model of how the system’s state changes over time. The update-step

updates the state based on the weighted average of the predicted state and the measured state.

The weighting of the states is based on the uncertainty in the state, where higher uncertainty

CHAPTER 2. THEORETICAL BASIS 39

yields lower weight.

The estimated state xk and measured state yk is described in equation 2.85. The random

variables qk−1 and rk represent the process and measurement noise, respectively. These random

variables are assumed to be normally distributed white noise, independent of each other.

xk = Ak−1xk−1 +qk−1, p(q) ∼N (0, Qk−1)

yk = Hk xk + rk , p(r) ∼N (0, Rk)
(2.85)

Q and R represent the process noise covariance matrix and the measurement noise covari-

ance matrix, respectively. These matrices might change with each time step, and they contain

information on how the noise in the variables in the states vary in relation to each other.

The process of estimating the state is as follows:

• Predict

1. x̂k|k−1 = Ak−1x̂k−1|k−1

2. Pk|k−1 = Ak−1Pk−1|k−1 AT
k−1 +Qk−1

• Update

3. vk = yk −H x̂k|k−1

4. Sk = HPk|k−1H T +Rk

5. Kk = Pk|k−1H T S−1
k

6. x̂k|k = x̂k|k−1 +Kk vk

7. Pk|k = Pk|k−1 −Kk Sk K T
k

Following these steps, the Kalman filter will compute the posterior distribution of the state

xk at every time-step. The predict equations are responsible for projecting the current state and

error covariance estimates forward in time to obtain the a priori estimates of the next time step.

The update equations are responsible for the feedback. This means that it incorporates a new

measurement into the a priori estimate to obtain an improved a posteriori estimate [52]. The

equations are described in detail below.

CHAPTER 2. THEORETICAL BASIS 40

1. The predicted mean is acquired by taking the past posterior mean and multiplying it with

the matrix Ak−1. The matrix A is the mathematical description of how the state evolves

over time.

2. The predicted covariance Pk|k−1 is calculated by multiplying the past posterior covariance

Pk−1|k−1 with Ak−1 twice, and adding Qk−1, which describes the uncertainty in the model.

3. vk is called the measurement innovation. This equation can be seen as a representation

of the new information that is gained when comparing the current measurement with the

predicted measurement. The matrix H is used to relate the state to the measurement yk .

If vk is zero, it means that the predicted measurement and the actual measurement are in

complete agreement.

4. Sk represents the predicted measurement covariance. Rk represents the uncertainty (vari-

ance) in the measurement, and Sk combines this uncertainty with the uncertainty of the

predicted state.

5. Kk is called the Kalman gain. The Kalman gain gives information about how much the

predicted state and predicted covariance should be adjusted, using the new information

gained from the measurement covariance.

6. The posterior mean, xk|k , is computed by taking the predicted mean and adjusting it us-

ing the Kalman gain, Kk , and the measurement innovation, vk . As seen in the equation,

the Kalman gain is used as a scaling factor to determine how much of the measurement

innovation should be added.

7. The posterior covariance, Pk|k is calculated by taking the predicted covariance and adjust-

ing it with the new information gained from the measurement. As seen in the equation,

the new information is subtracted from the predicted covariance. This is because the new

information helps to decrease the uncertainty regarding the state.

CHAPTER 2. THEORETICAL BASIS 41

2.5.5 Madgwick Filter

The Madgwick filter was invented by Sebastian O.H. Madgwick and was presented in his report

"An efficient orientation filter for inertial and inertial/magnetic sensor arrays" in 2010 [14]. The

Madgwick filter is a computational inexpensive orientation filter that utilizes the combination

of a tri-axis gyroscope and a tri-axis accelerometer. It can also utilize sensor input from a tri-

axis magnetometer, but that is optional. The Madgwick filter represents orientation as a quater-

nion, which allows data from accelerometers and magnetometers "to be used in an analytically

derived and optimised gradient-descent algorithm to compute the direction of the gyroscope

measurement error as a quaternion derivative [14]".

Orientation from angular rate

The orientation of the Earth frame relative to the sensor frame at time t can be defined as S
E qω,t =

[qw qx qy qz]. The measured angular rates from the gyroscope can be arranged into the

vector Sω = [0 ωx ωy ωz]. The quaternion derivative describing the rate of change of the

orientation of the Earth frame relative to the sensor frame can be calculated as S
E q̇ = 1

2
S
E q̂⊗ Sω.

Using these definitions, the orientation of the Earth frame relative to the sensor frame at time t

can be calculated by equations 2.86 and 2.87. In these equations,∆t is the sampling period, Sωt

is the measured angular rate at time t, and S
E q̂est ,t−1 is the previous estimated orientation. The

subscript ω is used to indicate that the quaternion is calculated from the angular rate.

S
E q̇ω,t = 1

2
S
E q̂est ,t−1 ⊗ Sωt (2.86)

S
E qω,t = S

E q̂est ,t−1 + S
E q̇ω,t∆t (2.87)

Orientation as a solution of gradient descent

If the direction of Earth’s field (magnetic or gravitational) is known in the Earth frame, measur-

ing the respective field in the sensor frame will make it possible to calculate the orientation of

the sensor frame relative to the Earth frame. However, for any given measurement, there will

not be a unique solution to the sensor orientation. Instead, there will be an infinite amount of

solutions represented by all orientations achieved by the rotation of the true orientation around

CHAPTER 2. THEORETICAL BASIS 42

an axis parallel to the field [14]. A quaternion representation requires a complete solution to

the orientation to be found. Madgwick proposes to achieve this by formulating an optimization

problem where an orientation of the sensor, S
E q̂, aligns a predefined reference direction of the

field in the Earth frame,
S

d̂, with the measured direction of the field in the sensor frame, S ŝ. This

is done using quaternion rotation operation and equation 2.88 shows the objective function to

be minimized. In other words, S
E q̂ can be found as the solution to mi n

S
E q̂∈ℜ4

f (S
E q̂,

E
d̂, S ŝ). Equations

2.89, 2.90 and 2.91 defines the components of each vector.

f (S
E q̂,

E
d̂, S ŝ) = S

E q̂∗⊗E
d̂⊗ S

E q̂− S ŝ (2.88)

S
E q̂ =

[
q1 q2 q3 q4

]
(2.89)

E
d̂ =

[
0 dx dy dz

]
(2.90)

S ŝ =
[

0 sx sy sz

]
(2.91)

In his report, Madgwick indicates that several optimization algorithms can be used to solve

the optimization problem, but the gradient descent algorithm is both simple to implement and

to compute. Gradient descent is therefore used to solve the optimization problem in the Madg-

wick filter. Equation 2.92 yields an orientation estimation of S
E q̂n+1 using the gradient descent

algorithm for n iterations, based on an "initial guess" orientation, S
E q̂0, and a step-size, µ. The

gradient of the solution is defined by the objective function (equation 2.94) and its Jacobian

(equation 2.95) as seen in equation 2.93.

S
E qk+1 = S

E q̂k −µ
∇ f (S

E q̂k ,
E

d̂, S ŝ)

‖∇ f (S
E q̂k ,

E
d̂, S ŝ)‖

, k = 0,1,2, ...,n (2.92)

∇ f (S
E q̂k ,

E
d̂, S ŝ) = J T (S

E q̂k ,
E

d̂) f (S
E q̂k ,

E
d̂, S ŝ) (2.93)

CHAPTER 2. THEORETICAL BASIS 43

f (S
E q̂k ,

E
d̂, S ŝ) =

2dx(

1

2
−q2

3 −q2
4)+2dy (q1q4 +q2q3)+2dz(q2q4 −q1q3)− sx

2dx(q2q3 −q1q4)+2dy (
1

2
−q2

2 −q2
4)+2dz(q1q2 +q3q4)− sy

2dx(q1q3 +q2q4)+2dy (q3q4 −q1q2)+2dz(
1

2
−q2

2 −q2
3)− sz

 (2.94)

J (S
E q̂k ,

E
d̂) =

2dy q4 −2dz q3 2dy q3 +2dz q4 −4dx q3 +2dy q2 −2dz q1 −4dx q4 +2dy q1 +2dz q2

−2dx q4 +2dz q2 2dx q3 −4dy q2 +2dz q1 2dx q2 +2dz q4 −2dx q1 −4dy q4 +2dz q3

2dx q3 −2dy q2 2dx q4 −2dy q1 −4dz q2 2dx q1 +2dy q4 −4dz q3 2dx q2 +2dy q3

(2.95)

Equations 2.92 - 2.95 is a description of the general form of the algorithm which can be ap-

plied to a field which is predefined in any direction. However, to simplify the equations, the

direction of the field can be assumed to only have components within one of the principle axes

of the global coordinate frame. This is done by assuming that the direction of gravity defines the

vertical z-axis as shown in equation 2.96. Equation 2.97 defines the components of the normal-

ized accelerometer measurement vector. Substituting E ĝ for
E

d̂ and S â for S ŝ in the equations

above, yields a simplified objective function (equation 2.98) and its Jacobian (equation 2.99).

E ĝ =
[

0 0 0 1
]

(2.96)

S â =
[

0 ax ay az

]
(2.97)

fg (S
E q̂, S â) =

2(q2q4 −q1q3)−ax

2(q1q2 +q3q4)−ay

2(
1

2
−q2

2 −q2
3)−az

 (2.98)

CHAPTER 2. THEORETICAL BASIS 44

Jg (S
E q̂) =

−2q3 2q4 −2q1 2q2

2q2 2q1 2q4 2q3

0 −4q2 −4q3 0

 (2.99)

If Earth’s magnetic field is considered, an assumption can be made regarding the compo-

nents of the magnetic field. The reference magnetic field
E

b̂ = [0 bx by bz] has components

along three axes. However, in his report, Madgwick assumes the east component of this field

is negligible, reducing the vector to only have two components (see equation 2.100). Equation

2.101 defines the components of the normalized magnetometer measurement vector. By sub-

stituting
E

b̂ for
E

d̂ and Sm̂ for S ŝ, a new object function and its Jacobian is formed, as seen in

equations 2.102 and 2.103.

E
b̂ = [0 bx 0 bz] (2.100)

Sm̂ = [0 mx my mx] (2.101)

fb(S
E q̂,

E
b̂, Sm̂) =

2bx(

1

2
−q2

3 −q2
4)+2bz(q2q4 −q1q3)−mx

2bx(q2q3 −q1q4)+2bz(q1q2 +q3q4)−my

2bx(q1q3 +q2q4)+2bz(
1

2
−q2

2 −q2
3)−mz

 (2.102)

Jb(S
E q̂,

E
b̂) =

−2bz q3 2bz q4 −4bx q3 −2bz q1 −4bx q4 +2bz q2

−2bx q4 +2bz q2 2bx q3 +2bz q1 2bx q2 +2bz q4 −2bx q1 +2bz q3

2bx q3 2bx q4 −4bz q2 2bx q1 −4bz q3 2bx q2

 (2.103)

To provide a unique orientation of the sensor, the measurement reference directions of both

fields (gravitational and magnetic) has to be combined. This is shown in equations 2.104 and

2.105. The solution surface of the objective function in equation 2.104 will have a minimum

defined by a single point, provided that bx 6= 0 [14]. In contrast, the solution surface of the

objective functions in equations 2.98 and 2.102 alone, will have a minimum defined by a line,

CHAPTER 2. THEORETICAL BASIS 45

and not a single point.

fg ,b(S
E q̂, S â,

E
b̂, Sm̂) =

 fg (S
E q̂, S â)

fb(S
E q̂,

E
b̂, Sm̂)

 (2.104)

Jg ,b(S
E q̂,

E
b̂) =

 J T
g (S

E q̂)

J T
b (S

E q̂,
E

b̂)

 (2.105)

Normally, an approach to the optimization problem would be to compute multiple itera-

tions of equation 2.92 for each new orientation and corresponding sensor measurement. The

step-size µ would also need to be adjusted to an optimal value for each iteration. However,

this will make the algorithm significantly heavier to compute, and regarding the Madgwick filter

and its field of use, this is not necessary. For the Madgwick filter, one iteration per time sample

can be computed as long as the convergence rate governed by µt is equal to or greater than the

physical rate of change regarding the orientation [14]. This results in equation 2.106, where the

estimated orientation, S
E q∇,t , is calculated at time t based on the previous estimated orientation,

S
E q̂est ,t−1, and the gradient of the objective function, ∇ f . The sub-script ∇ indicates that the gra-

dient descent algorithm is used to calculate the quaternion. As seen in equation 2.107, ∇ f is

chosen according to the sensors used, and can be defined only by the measurements from an

accelerometer (S ât) sampled at time t, or both the measurements from an accelerometer (S ât)

and a magnetometer (Sm̂t).

S
E q∇,t = S

E q̂est ,t−1 −µt
∇ f

‖∇ f ‖ (2.106)

∇ f =
 J T

g (S
E q̂est ,t−1) fg (S

E q̂est ,t−1, S ât)

J T
g ,b(S

E q̂est ,t−1,
E

b̂) fg ,b(S
E q̂est ,t−1, S ât ,

E
b̂, Sm̂t)

(2.107)

Madgwick defines the optimal value of the step-size µt as the value which ensures that the

convergence rate of S
E q∇,t is limited to the physical orientation rate. This avoids overshooting

which can happen if the step-size is too large (see section 2.5.2). Equation 2.108 shows how the

step-size can be calculated. In this equation, ∆t is the sampling period, S
E q̇ω,t is the physical

orientation rate measured by a gyroscope, and α is an augmentation of the step-size to take

CHAPTER 2. THEORETICAL BASIS 46

noise in the accelerometer and/or magnetometer measurements into account.

µt =α‖ S
E q̇ω,t‖∆t , α> 1 (2.108)

Filter fusion algorithm

To estimate the orientation of the sensor frame relative to the Earth frame, S
E qest ,t , the orien-

tation calculations S
E qω,t (from equation 2.87) and S

E q∇,t (from equation 2.106) can be fused to-

gether. This is described in equation 2.109, where γt defines the weighting of the two orientation

calculations.

S
E qest ,t = γt

S
E q∇,t + (1−γt) S

E qω,t , 0 ≤ γt ≤ 1 (2.109)

In Madgwick’s report, the optimal value of γt is defined as the value which ensures the

weighted divergence of S
E qω,t to be equal to the weighted convergence of S

E q∇,t . This is shown in

equation 2.110. Here,
µt

∆t
is the convergence rate of S

E q∇,t and β is the divergence rate of S
E qω,t .

(1−γt)β= γt
µt

∆t

⇓

γt = β
µt
∆t +β

(2.110)

Equations 2.109 and 2.110 ensures the optimal fusion of S
E q∇,t and S

E qω,t . This is based on

the assumption that the convergence rate of S
E q∇,t , which is governed by α as seen in equation

2.108, is equal or greater than the physical rate of change of the orientation. That is why α has

no upper limitation. By assuming that α is very large, the step-size µt will become very large.

Consequently, equation 2.106 can be simplified to equation 2.111 because a large value of µt

will make S
E q̂est ,t negligible.

S
E q∇,t ≈−µt

∇ f

‖∇ f ‖ (2.111)

Equation 2.110 can also be simplified to equation 2.112 since the β in the denominator be-

comes negligible due to the assumption of a large µt . From this, it is also possible to assume

CHAPTER 2. THEORETICAL BASIS 47

that γt ≈ 0 since the denominator will be significantly larger than the numerator.

γt ≈ β∆t

µt
(2.112)

By substituting equations 2.87, 2.111 and 2.112 into equation 2.109, equation 2.109 can be

rewritten as equation 2.113.

S
E qest ,t = β∆t

µt

(
−µt

∇ f

‖∇ f ‖
)
+ (1−0)(S

E q̂est ,t−1 + S
E q̇ω,t∆t) (2.113)

If S
E q̇est ,t is the estimated rate of change of the orientation (see equation 2.114) and

S
E

˙̂qε,t

is the direction of the error of S
E q̇est ,t (see equation 2.115), equation 2.113 can be simplified to

equation 2.116.

S
E q̇est ,t = S

E q̇ω,t −β S
E

˙̂qε,t (2.114)

S
E

˙̂qε,t = ∇ f

‖∇ f ‖ (2.115)

S
E qest ,t = S

E q̂est ,t−1 + S
E q̇est ,t∆t (2.116)

In summary, the Madgwick filter calculates the orientation S
E qest ,t by numerical integration

of the estimated orientation rate S
E q̇est ,t . The estimated orientation rate S

E q̇est ,t is computed as

the rate of change of the orientation measured by the gyroscope, S
E q̇ω,t , with the magnitude

of the gyroscope measurement error, β, removed in the direction of the estimated error,
S
E

˙̂qε,t ,

which is computed from accelerometer and magnetometer measurements. Figure 2.20 shows a

block diagram representation of how the Madgwick filter can utilize gyroscope and accelerom-

eter measurements to estimate orientation.

CHAPTER 2. THEORETICAL BASIS 48

Figure 2.20: Block diagram from Madgwick’s original report, representing a complete orienta-
tion filter using a gyroscope and an accelerometer [14]

Magnetic distortion compensation

When including magnetometer measurements in the Madgwick filter, the measured direction

of Earth’s magnetic field in the Earth frame at time t,
E

ĥt , can be computed as the normalized

magnetometer measurement, Sm̂t , rotated by the orientation of the sensor computed in the

previous estimation, S
E q̂est ,t−1. See equation 2.117.

E
ĥt = [0 hx hy hz] = S

E q̂est ,t−1 ⊗ Sm̂t ⊗ S
E

q̂∗
est ,t−1 (2.117)

Error in the inclination of the measured direction of Earth’s magnetic field (
E

ĥt) can be corrected

if the filter’s reference direction of the geomagnetic field (
E

b̂t) has the same inclination. This

is achieved by computing the direction of the geomagnetic field as the measured direction of

Earth’s magnetic field normalized to only have components in the Earth frame’s x- and z-axes.

See equation 2.118.

E
b̂t =

[
0

√
h2

x +h2
y 0 hz

]
(2.118)

CHAPTER 2. THEORETICAL BASIS 49

According to Madgwick, by substituting equation 2.118 for equation 2.100, magnetic distortions

is compensated for in a way that ensures that these kind of disturbances are limited to only

affect the estimated heading component of orientation. Also, the need of a predefined reference

direction of the Earth’s magnetic field is eliminated [14]. Figure 2.21 shows a block diagram

representation of how the Madgwick filter can estimate orientation utilizing an accelerometer,

a gyroscope and a magnetometer, while compensating for magnetic distortion.

Magnetometer

Accelerometer

+
_

Gyroscope

Magnetic Distortion Compensation

Figure 2.21: Block diagram representing a complete orientation filter using a gyroscope, ac-
celerometer and magnetometer, including magnetic distortion compensation

Filter gain

The filter gain β represents all mean zero gyroscope errors. It is expressed as the magnitude of

a quaternion derivative, and is defined using the angular velocity, as seen in equation 2.119. In

this equation, ω̄β is the estimated mean zero gyroscope measurement error of each axis. It can

CHAPTER 2. THEORETICAL BASIS 50

be computed by logging the measurements from the gyroscope for a chosen amount of time

while the gyroscope is held still, and then calculating the mean of the measurements of each

axis.

β=
√

3

4
ω̄β (2.119)

2.6 Image processing

Image processing is a way to perform enhancement, adjust, resize and filter images. It can also

be used to recognize colors, shapes and even human faces in an image. Image processing is

performed on a single image at a time, but by sequentially processing multiple images, it is

possible to determine displacement or movement of an object by comparing images. In other

words, when it comes to image processing the input is an image and the output may be an

enhanced image, gray scaled image, or characteristics found in the image [53].

2.6.1 RGB vs HSV

RGB (Red, Green, Blue) [54] is one form of color representation. Is it usually described with 8-bit

values in a 3-tuple. Each of the values describes the intensity of the colors red, green and blue.

The combination of these three values, ranging from 0-255 gives a total of 2563 ≈ 16.8mi l l i on

different colors.

HSV/HSB (Hue, Saturation, Value/Brightness) [55] also uses a 3-tuple to describe colors, but

unlike RGB it does not use a combination of primary color intensities in the representation.

Hue is the color value. It ranges from 0-360 degrees. Saturation is the second element and can

be considered as the purity of the color [56]. It ranges from 0-100%, where a low value gives a

gray color. The last element is the Value or Brightness of the color. It also ranges from 0-100%

and describes the intensity of the color. Figure 2.22 gives a visualization of how the values in

both RGB and HSV affects the resulting color.

CHAPTER 2. THEORETICAL BASIS 51

Figure 2.22: Colormap visualizing RGB and HSV color values [15]

2.6.2 Color filtering

Color filtering is a method to filter an image based on a color. One way to perform color filtering

is by defining a lower and upper bound of a color range, either in RGB or HSV format (See section

2.6.1) depending on the image encoding. After the color range is defined, each cell (pixel) in the

image matrix can be compared to the color range. The result can be represented by creating a

matrix with an equal amount of rows and columns as the original image and all values is set to 0,

also known as a mask. In the mask image, all the pixels which is within the specified color range

in the original image is set to white (255 in a grayscale image). The mask gives a representation

of where the specified color is true (greater than 0). Figure 2.23 shows an RGB image and a yellow

color mask.

Figure 2.23: RGB image and a yellow color mask

CHAPTER 2. THEORETICAL BASIS 52

2.6.3 Contours

A contour is a line or a curve which is drawn between points of equal values or attributes [57].

For instance, on a map, contours are often used to describe elevation. It is also commonly used

to find edges in an image based on distance or color. A color mask where the edges of the color

area containing a specified color are clearly visualized, can be used as a good tool to find the

contours of a specified color. The contour can be used to determine the area (often number of

pixels) of each of the contours, as well as the center of each contour. In figure 2.23, a white box

is drawn in the RGB image around the center of the biggest contour in the image.

2.7 KNN (K-nearest neighbor)

KNN (K-nearest-neighbor) is a machine learning algorithm used for classification and regres-

sion. The algorithm is used when there is little or no prior knowledge about how the data is

distributed.

There are two different distinctions: KNN-classification and KNN-regression. In KNN-classification,

the data is segmented into classes according to a popular vote decided by its neighbors. In KNN-

regression the output is the property value of the object, with the value being the average of the

k nearest neighbors. [58]

Chapter 3

Materials and methods

This chapter starts off by describing how the project has been organized. Then, it introduces the

materials that have been used in this project. This is followed by a detailed description of how

the group decided on which sensors to use and the methods used to estimate both orientation

and position. Finally, the test procedures are described.

3.1 Project Organization

The project group has been organized with a project manager, a secretary, and two group mem-

bers. The project manager’s areas of responsibility have been to update the progress of the

project in the Gantt chart and chair meetings with the steering group. The secretary’s tasks have

been to convene meetings, write and distribute meeting reports, as well as write progress reports

before each meeting with the steering group. Although the group has had a project manager, a

flat management structure has been practiced, where decisions have been made together.

Throughout the project, meetings have been held with the steering group every 14 days.

These meetings have been arranged online through Microsoft Teams, due to the Covid-19 pan-

demic. During the meetings, progress for the project has been discussed, the group has pre-

sented its proposals for solutions to problems, and the steering group has provided guidance,

tips and suggestions for solutions. During the pre-project, a project plan was made based on

the given task. A Gantt diagram based on the project plan was made, and this has been guiding

the project implementation. Google Drive has been used to store and share all relevant files and

53

CHAPTER 3. MATERIALS AND METHODS 54

documents throughout the project. Code has been shared on Github.

3.2 Software

Software and programming languages used in this project is described in this section.

• Python: Python has been used with various libraries to run the GUI, filter and fuse the

IMU data, as well as image processing.

• Arduino IDE: Arduino IDE has been used to program the Arduino Uno micro controller.

The Arduino Uno micro controller was programmed using the Arduino programming lan-

guage, which is similar to the C++ programming language.

• Autodesk Fusion 360: Autodesk Fusion 360 is a cloud based software platform. In this

project, Autodesk Fusion 360 has been used to create 3D-modeled representations used

as illustrations in this report.

• Git: Git has been used as code repository, for sharing of code, and for version control.

• Qt Designer: Qt Designer has been used to create the GUI.

• Draw.io: Draw.io is a free online diagram software. It has been used to create flowcharts,

diagrams and illustrations used in this report.

3.3 Hardware

3.3.1 OpenCV AI Kit: OAK-D

The OAK-D is a stereo camera which provides depth from two cameras which is placed on each

end of the housing. It also has a 4K resolution camera in the center which provides color in-

formation. The OAK-D stereo camera has been used in this project to capture RGB and depth

images.

CHAPTER 3. MATERIALS AND METHODS 55

Figure 3.1: OpenCV AI Kit: OAK-D [16]

3.3.2 Intel RealSense T265

The Intel RealSense T265 is a tracking camera with two fisheye lens sensors, an IMU and an Intel

Movidius Myriad 2 VPU [59]. This camera has been used to go through the steps of creating a

stereo camera as explained in section 3.8.

Figure 3.2: Intel Realsense T265 [17]

3.3.3 Adafruit BNO055

Adafruit BNO055 is an 9-DOF IMU sensor. The sensor includes a 3-axis accelerometer, a 3-axis

gyroscope, and a 3-axis magnetometer. It also includes a temperature sensor. The sensor chip

contains software which includes sensor fusion algorithms that calculates absolute and relative

orientation represented by Euler angles and quaternions. In this project, only raw data from the

gyroscope, accelerometer and magnetometer is extracted from the sensor.

CHAPTER 3. MATERIALS AND METHODS 56

Figure 3.3: Adafruit BNO055 [18]

3.3.4 Arduino UNO

Arduino UNO is a microcontroller board equipped with sets of digital and analog input/out-

put (I/O) pins. In this project, the microcontroller is used to read the data from the IMU and

transmit the data to a computer via serial communication.

Figure 3.4: Arduino UNO [19]

3.3.5 Svive Hydra Microphone Arm

Svive Hydra is a microphone arm. This arm is used in the prototype to act as a model of an

offshore gangway.

Figure 3.5: Svive Hydra Microphone Arm [20]

CHAPTER 3. MATERIALS AND METHODS 57

3.4 Choosing sensors

When choosing which sensor types to use for this project, the group started out by listing a num-

ber of different sensors suitable for distance and orientation estimation. Before choosing which

sensors to implement in the solution, the advantages and disadvantages for each sensor (in the

aim of this project) was thoroughly considered. External factors such as influence of weather,

wind and sunlight were taken into account. Below is a description of these considerations.

3.4.1 Sensors for distance/position

Measuring and estimating distance can be done in several ways. Sensor technologies that is

applicable for this project is considered below.

Ultrasonic sensor

Using sound to measure the distance implies that the measurements are not affected by many

external factors such as rain and snow. This gives the ultrasonic sensor an advantage over the

distance sensors that uses light to measure distance. Yet, this makes the measurements slower,

as the speed of sound is slower than the speed of light. In addition, ultrasonic sensors are rela-

tively inexpensive, small in size and have a decent resolution [60][61].

Infrared sensor

One advantage for the IR sensor is that it is not dependent on environmental light. This means

that it can be used in both light and dark conditions. On the other hand, it is affected by envi-

ronmental conditions such as water and snow which can reflect the emitted light, resulting in

the light returning from multiple angles. The IR distance sensors are relatively cheap and have

a varying (commonly short) distance range [61].

Radar sensor

An advantage of the radar is that it is robust and it works under rough weather conditions [62].

It can penetrate clouds, fog and snow. However, large objects that are close to the transmitter

CHAPTER 3. MATERIALS AND METHODS 58

can disturb the receiver [63]. This is unfortunate since the wind turbine will be relatively close

to the sensor during operation.

LiDAR

An advantage of LiDAR is that it creates an accurate map of the scenery. This enables the pos-

sibility to calculate the distance to any point within the point cloud with high accuracy. The

amount of information possible to extract from a point cloud is substantial, this includes differ-

ent angles, distances and so on.

One drawback of LiDAR technology is that it can be difficult to recognize objects. By for

example using camera there are many tools available for image processing, where objects can

be segmented by color and so on, in contrary to point cloud processing. Another downside of

using LiDAR is the cost of the hardware, which is relatively expensive compared to for example

cameras [64].

ToF camera

ToF cameras offer precise and fast measurements over long ranges. Yet, a factor that may affect

the measurements of the sensor is sunlight. Sunlight may make it difficult for the sensor to read

the reflected light. Also, when measuring bright and concave shaped surfaces, the light may

reflect back and forth inside the concave shape, causing the time of flight to be longer than it is

in reality.

Stereo camera

An advantage to using this method is that there are few external disruptions to the depth calcu-

lation, if not considering major or complete obstructions. It also offers a high accuracy on close

objects, and is able to give accurate and reliable measurements over long distances. Addition-

ally, by using image processing, a stereo camera can be used during nighttime, rain and snow.

Stereo cameras are also relatively cheap to develop, as they mainly require two cameras to work.

This also allows customization in order to work optimally under the intended circumstances.

On the other hand, a stereo camera uses feature detection algorithms to estimate depth to

objects. The features in both the images are then compared and matched to each other. The

CHAPTER 3. MATERIALS AND METHODS 59

features that are detected are often corners, edges and highlighted areas depending on which

feature detection algorithm is chosen. This means that in order to find the depth, the cam-

eras must be able to capture these features. In other words, a stereo camera would not be able

to determine the distance to a homogeneous colored surface. Another disadvantage to stereo

cameras is that the features may be mismatched, meaning that one feature is matched to an-

other by the algorithm, but in reality these are not the same features. This causes the distance

to that feature to be miscalculated. Lastly, it requires high resolution cameras to give accurate

measurements over long distances [65].

The chosen solution

Based on the considerations above, the group decided to investigate the possibilities of distance

estimation using a stereo camera. This was because it provided the ability of measuring the

distance to an area, and not only a single point. Additionally, a stereo camera provided an RGB

image which could be processed using various methods to localize the wind turbine. By finding

the center of the wind turbine in the RGB image, the subsequent images could be compared to

the initial image, hence giving information about the displacement of the wind turbine in pixels

in the image. The pixel displacement in combination with the distance to the wind turbine

gave the required information to use trigonometry to calculate the displacement in multiple

directions. This method is described in more detail in section 3.9.

3.4.2 Sensors for orientation

To estimate orientation, it is convenient to combine data from several sensor types. Sensor

technologies that is applicable for this project is considered below.

Gyroscope

A gyroscope sensor can accurately and quickly measure angular velocity. By integrating these

measurements, the current angular position can be estimated. However, due to accumulating

integration errors, the orientation estimates from a gyroscope will drift over time.

CHAPTER 3. MATERIALS AND METHODS 60

Accelerometer

A tri-axis accelerometer can be used to find the absolute roll and pitch angles of an object with

constant velocity. When an object has a constant velocity, the sum of forces should be zero.

In this case, the only acceleration the accelerometer would measure is 1G towards the earths

center. The accelerometer measures in three axes, and the values from these axes can be con-

sidered the decomposition of the gravitational acceleration vector. By using this decomposition,

the pitch and roll angles can be found (see section 3.6.1 for implementation). However, since

the gravitational acceleration vector is perpendicular to the horizontal plane and parallel to the

yaw axis, it is impossible to find the yaw angle with just an accelerometer.

Magnetometer

A tri-axis magnetometer can be used to measure the magnetic field around it. By knowing where

the magnetic north is located, the magnetometer readings can be used to find the angle between

"north" on the magnetometer and the magnetic north. See "Magnetic distortion compensation"

in section 2.5.5. Magnetometers are inherently prone to magnetic interference around the sen-

sor. Magnetic sources in proximity of the magnetometer can reduce the accuracy significantly

(see section 3.5.3).

The chosen solution

Based on the considerations above, it was decided to investigate different combinations of sen-

sor fusion algorithms to fuse measurements from a gyroscope, accelerometer and magnetome-

ter. The different sensor fusion combinations is described in section 3.6.

3.5 Sensor calibration

3.5.1 Gyroscope Calibration

Zero offset error in gyroscopes are the offset shown in gyroscope measurements when it is

standing still. One way to calculate this error is to collect samples with the gyroscope station-

ary, and find the mean value of all the sampled values. Because the gyroscope is standing still,

CHAPTER 3. MATERIALS AND METHODS 61

the value should ideally be zero. By subtracting this calculated offset, the sensor values will be

centered around zero. This will not remove white noise, but will center the values around zero

[66].

Figure 3.6: Showing uncalibrated and calibrated gyro values

3.5.2 Accelerometer Calibration

To calibrate the accelerometer, the gravity acceleration can be used. By aligning the accelerom-

eter axes with the gravity vector, ideally the accelerometer should display acceleration in only

one direction, and this should be equal to ±1G [67].

Data should be gathered in 6 different orientations: Z pointing up, Z pointing down, Y point-

ing up, Y pointing down, X pointing up and X pointing down (see figure 3.7).

CHAPTER 3. MATERIALS AND METHODS 62

Figure 3.7: Orientation during data capture

The zero-G is the measured value from the accelerometer corresponding to zero acceleration

on an axis. To calculate this value, the maximum value (the positive direction measurement)

is added to the minimum value (the negative direction measurement) and divided by 2 (see

equation 3.1).

maxi s = maxaxi s +mi naxi s

2
(3.1)

The scale factor is the value used to scale measurements into G´s. The measured values can

be of any unit, e.g. m/s2, mV etc.. The scale factor is calculated by subtracting the minimum

measured value from the maximum measured value and dividing by 2 (see equation 3.2).

δaxi s = maxaxi s −mi naxi s

2
(3.2)

The calibrated results is then calculated by following equation 3.3:

aaxi s = sensor val ueaxi s −maxi s

δaxi s
(3.3)

To get the values back to m/s2, equation 3.4 can be used:

aaxi s = (sensor val ueaxi s −maxi s) ·9.81

δaxi s
(3.4)

3.5.3 Magnetic Field Calibration

Magnetic field measurements are subject to soft iron and hard iron distortions. These distor-

tions can have a significant impact on the measurement accuracy [68].

Before starting the calibration, raw magnetometer data must be gathered. To gather data,

the magnetometer must be moved freely to capture the magnetic field in all directions. One

CHAPTER 3. MATERIALS AND METHODS 63

way to capture this data is to move the magnetometer in figure eight motions. By plotting the

magnetometer values with X in terms of Y, X in terms of Z and Y in terms of Z, the soft and hard

iron distortions can be visualized. With optimal conditions, the magnetometer plots should

show a perfect uniform circle centered around the origin.

Hard iron distortions will offset the blob of measurements from the origin (see figure 3.8).

These types of distortions are created by objects with a magnetic field, such as permanent mag-

nets in speaker drivers or magnetized iron.

Soft iron distortions will change the shape of the blob of measurements from a circle to an

ellipse (see figure 3.9). This means the soft iron distortions will alter the magnetic field, but not

move it. This type of distortion can be caused from metals, such as nickel and iron. Soft iron

distortions are harder to compensate for compared to hard iron distortions.

Figure 3.8: Display of the hard iron distortion Figure 3.9: Display of the soft iron distortion

To find the offset, half of the mean value of maximum and minimum measurements are used

(equation 3.5). If the measurements are perfectly centered around the origin, this value would

be 0.

o f f set = max +mi n

2
(3.5)

To find the scaling factor, half of the difference between maximum and minimum is calcu-

lated for each axis (equations 3.6, 3.7 and 3.8). The average of these values are then calculated

CHAPTER 3. MATERIALS AND METHODS 64

to find the average difference between maximum and minimum values of all the axes (equation

3.9). Then, the scale factor for each axis is calculated by dividing the average difference by the

difference in the specific axis (equations 3.10, 3.11 and 3.12).

∆x = maxx −mi nx

2
(3.6)

∆y = maxy −mi ny

2
(3.7)

∆z = maxz −mi nz

2
(3.8)

∆= ∆x +∆y +∆z

3
(3.9)

scalex = ∆

∆x
(3.10)

scaley = ∆

∆y
(3.11)

scalez = ∆

∆z
(3.12)

The final result after calibrating for offset and scaling is shown in figure 3.10. The blobs are

centered around the origin, and the shape is more circular. The shape is still slightly elliptical.

To get even more precise results, matrix operations can be performed [69].

CHAPTER 3. MATERIALS AND METHODS 65

Figure 3.10: Display of the calibrated result

3.6 Sensor Fusion for Orientation Estimation

To get reliable estimates of the orientation of the gangway, an Adafruit BNO055 IMU is used.

This IMU consists of a 3 axis raw gyroscope, a 3 axis raw accelerometer, and a 3 axis raw mag-

netometer. The output values from these sensors are subject to white noise, and filtering and

fusing the outputs is therefore necessary to achieve stable and reliable estimates of orientation.

For the aim of this project, different filter setups is developed and tested. This section contains

a description of the alternatives considered for filtering.

The Arduino reads the raw values from the IMU through the I2C protocol. These values are

then calibrated, and transmitted through serial communication to a computer which processes

the signals and visualizes the angle outputs. This is done using a script written in Python.

CHAPTER 3. MATERIALS AND METHODS 66

3.6.1 Filter Setup 1

Figure 3.11: Filter Setup 1

In this filter setup, roll* and pitch* are obtained by using the calibrated accelerometer signals

in equations 3.13 and 3.14. These equations are derived in "Tilt Sensing Using a Three-Axis

Accelerometer" by Mark Pedley [70].

Pi tch = arctan
AccelX√

AccelY
2 + AccelZ

2
(3.13)

Roll = arctan
AccelY√

AccelX
2 + AccelZ

2
(3.14)

The calculated roll* and pitch* are noisy due to the fact that the accelerometer values that are

used in the calculations are subject to white noise. Therefore, the roll* and pitch* calculations is

logged for 5 minutes while the IMU is kept still. The variance of the roll* and pitch* calculations

is then achieved by using the logged calculations.

To get reliable estimates of roll and pitch, two separate Kalman filters are used. Calcu-

lated roll* is combined with the measurement from the gyroscope around the x-axis through

a Kalman filter, and calculated pitch* is combined with the measurement from the gyroscope

around the y-axis through another Kalman filter. Their respective variances are put into the R-

CHAPTER 3. MATERIALS AND METHODS 67

matrices of the two filters, as seen in equations 3.15 and 3.16. The outputs from the Kalman

filters are the estimated roll and pitch rotation where unwanted noise are filtered out.

Rr ol l =
Roll∗V ar i ance 0

0 G yr oX V ar i ance

 (3.15)

Rpi tch =
Pi tch∗V ar i ance 0

0 G yr oY V ar i ance

 (3.16)

To estimate the yaw rotation angle, also called heading, a tilt compensation algorithm is

used. This algorithm utilizes the magnetometer signals in combination with the estimated pitch

and roll. The earth’s magnetic field has a component parallel to the earth’s surface [71], and

while the 3-axis magnetometer is parallel to earth’s surface, it can be able to measure the abso-

lute heading accurately through the direction of earth’s magnetic field [72]. However, when the

magnetometer is tilted and no longer is parallel to earth’s magnetic field, the direction of axial

sensitivity will change. Consequently, different amounts of error will appear, depending on how

much the magnetometer is tilted. To tackle this problem, the tilt compensation algorithm is

made to map the magnetometer data to the horizontal plane (which is parallel to earth’s mag-

netic field), regardless of the orientation of the magnetometer. This way, the algorithm should

provide an accurate yaw estimate.

The algorithm is described by equations 3.17, 3.18 and 3.19. In the equations, mx , my and

mz are the normalized magnetometer outputs, and α, β and γ represent roll, pitch and yaw

respectively. Equations 3.17 and 3.18 maps the magnetometer data to the horizontal plane, and

equation 3.19 calculates the estimated yaw rotation angle.

X H = mx cos(β)+my sin(β)sin(α)+mz sin(β)cos(α) (3.17)

Y H = my cos(α)+mz sin(α) (3.18)

γ= arctan(
−Y H

X H
) (3.19)

CHAPTER 3. MATERIALS AND METHODS 68

3.6.2 Filter Setup 2

Figure 3.12: Filter Setup 2

In this filter setup, roll and pitch are estimated in the same way as in filter setup 1.

To estimate yaw, a Madgwick filter is used. As seen in figure 3.12, the Madgwick filter uses the

calibrated measurements from the gyroscope, the accelerometer and the magnetometer. Using

the magnetometer is optional, and the Madgwick filter works without using the magnetometer

measurements, but it is essential to include the magnetometer if the goal is to achieve absolute

orientation. The output from the Madgwick filter is a quaternion representation of the orienta-

tion. The Euler angles are then calculated from the quaternion, and the yaw estimate is retrieved

from these angles.

CHAPTER 3. MATERIALS AND METHODS 69

3.6.3 Filter Setup 3

Figure 3.13: Filter Setup 3

Filter setup 3 is very similar to filter setup 2. However, in this setup, the difference is that the

estimated yaw rotation angle from the Madgwick filter is combined with the measurement from

the gyroscope around the z-axis through a Kalman filter. The output from the Kalman filter is a

filtered yaw estimate, where noise from the Madgwick filter is reduced.

3.7 Transforming orientation from sensor to ship

The gangway can move in relation to the vessel. It can raise or lower the boom (tilt the gangway

up or down) as well as slew (rotate the gangway around the z-axis of the ship). By having the

IMU mounted on the tip of the gangway, the measured sensor orientation will not necessarily

be the same orientation as the ship. By using rotation matrices (section 2.2.4) with the known

boom angle and slew angle, the sensor orientation can be transformed to match the ship.

CHAPTER 3. MATERIALS AND METHODS 70

Boat frame

Sensor
frame

Boat frame
Sensor
frame

Figure 3.14: Showing the relation between ship frame and sensor frame when the gangway
moves

During transformation from sensor to ship, the ship orientation in relation to the sensor

frame is considered. When the gangway is aligned with the ship (left in figure 3.14), the slew

angle corresponds to yaw, and boom angle corresponds to pitch. Thus, the boom and slew can

be compensated by rotating around pitch and yaw using rotation matrices.

The sensor’s angle values are represented in relation to a stationary world frame. Pitch and

roll angles are absolute (in relation to the horizontal plane), and the yaw is relative from a given

starting position. One suggestion to set the stationary world frame is to set the initial pose when

starting estimation as the world frame.

The following sequence is used to transform sensor angles to boat representation in relation

to the world:

1. Update sensor rotation matrix W
SR with new sensor values

2. Update boat rotation matrix S
B R with new boom and slew values

3. Multiply: W

�S
R �S

B R = W
B R

Consider an example with the following sensor readings:

• ψsensor = 78°

• θsensor = 17°

CHAPTER 3. MATERIALS AND METHODS 71

• φsensor =−6°

• αsl ew = 60°

• αboom = 5°

General rotation matrix with ZYX rotation sequence:

R(φ, θ, ψ) =

cθcψ cψsθsφ− sψcφ cψsθcφ+ sψsφ

sψcθ sψsθsφ+ cψcφ sψsθcφ− cψsφ

−sθ cθsφ cθcφ

 (3.20)

Adding sensor values to equation 3.20 to get the rotation matrix W
SR:

W
SR(−6, 17, 78) =

0.1988269 −0.9791432 −0.0417898

0.9354072 0.1768794 0.3061487

−0.2923717 −0.0999611 0.9510660

 (3.21)

Add boom and slew angles to equation 3.20 to get the rotation matrix S
B R:

S
B R(0, 5, 60) =

0.49809735 −0.8660254 0.04357787

0.86272992 0.5 0.07547909

−0.08715574 0. 0.9961947

 (3.22)

Multiplying the rotation matrices from equation 3.21 and 3.22 will result in the following rota-

tion matrix representation of the ships orientation in relation to the world:

W
B R = W

SR S
B R =

−0.74205877 −0.66176079 −0.10687113

0.59184038 −0.7216467 0.35909749

−0.31475984 0.20322079 0.92716102

 (3.23)

To get the orientation of the ship represented as Euler angles, the rotation matrix must be con-

verted to Euler angles (see section 2.2.5). From equation 2.58, singularities are checked:

s y =
√
−0.742058772 +0.591840382 ≈ 0.949 6= 0 (3.24)

CHAPTER 3. MATERIALS AND METHODS 72

This shows that the current example is not approaching singularity. The Euler angles are then

calculated:
φ

θ

ψ

=

at an2(0.20322079, 0.92716102)

at an2(0.31475984, 0.949)

at an2(0.59184038, −0.74205877)

≈

12.36°

18.35°

141.43°

 (3.25)

3.8 Creating a stereo camera

To create a system that is adaptable to offshore operations a general system for setting up a

stereo camera is proposed. Due to time constraints, the group was not able to implement this

in the final solution. However, the approach is explained thoroughly in this section. For testing

purposes the Intel RealSense T265 tracking camera was used. This section describes the steps

and methods used to create the system. For testing purposes the Intel RealSense T265 tracking

camera was used.

The process of creating the stereo camera started by taking two images simultaneously, with

identical cameras. This gave a left image and a right image (See figure 3.15).

(a) Left image (b) Right image

Figure 3.15: Original photos

CHAPTER 3. MATERIALS AND METHODS 73

3.8.1 Camera calibration

Calibrating the camera pair was done as follows: First, mounting the cameras fixed in place,

and having the lenses aligned correctly. As having the two lenses placed perfectly aligned was

practically impossible in addition to removing the distortion from the lens, the cameras was

calibrated with software as well. OpenCV offered this functionality [73]. If the cameras were

not calibrated correctly there would be an error, which would make it difficult to calculate the

disparity between the frames.

Calibration of the camera pair was performed both on the left and right camera. The process

started by taking pictures of a calibration plate, which was a checker patterned board. Note

that it was important that the checker pattern dimensions was not square, but rectangular. For

example 6x9 squares, not 9x9 squares. In total there were taken 50 images of the calibration plate

with the left and right camera, all from different angles. This returned two matrices K and D. K

which holds the cameras intrinsic parameters like focal length, optical centers and so on. This

is also called the camera matrix. And D which describes the cameras extrinsic parameters. This

corresponds to rotation and translation, in other words the distortion in the image. A selection

of the calibration images can be seen in figure 3.16.

CHAPTER 3. MATERIALS AND METHODS 74

Figure 3.16: Calibration collage

After the calibration matrices K and D got acquired (see equation 3.26), the next step was to

rectify the left and right images. This implied finding the rotation factor between the frames. In

other words, creating a matrix that represented the skew between the frames. By doing so it was

possible to project the left image frame on to the right image frame. This projected both images

onto the same plane (See figure 3.17).

CHAPTER 3. MATERIALS AND METHODS 75

Figure 3.17: Rectified Image

Rectification of the cameras implies that the coordinate of a given object in both images

matches location in the Y-axis. In other words, the lines between the matching features are

perfectly horizontal, and not tilted.

K =

285.62 0.0 419.39

0.0 284.78 402.56

0.0 0.0 1.0

 D =

−0.0064

0.0034

−0.0262

0.0007

 (3.26)

After the images was undistorted, one apparent feature was that the lines of the checkered

board was no longer curved, but became straight as shown in figure 3.18. I.e, the fish eye effect

was gone. Yet, this came at a cost. A portion of the outer edges of the image got lost in the

process and the size of the images got reduced.

CHAPTER 3. MATERIALS AND METHODS 76

(a) Distorted image (fisheye) (b) Undistorted image

Figure 3.18: Image before and after undistortion

3.8.2 Feature detection

One of the main steps towards calculating depth from a stereo camera was to find the differ-

ence in the two images. These differences was found by using a feature detection algorithm that

detected the same features in the two images, which can then be compared. There are several

algorithms available, such as Harris Corner Detection [74], SIFT (Scale-Invariant Feature Trans-

form) [75] and SURF (Speeded Up Robust Features) [76]. Figure 3.19 shows the left and right

images after SIFT feature detection has been applied.

CHAPTER 3. MATERIALS AND METHODS 77

(a) Features left image (b) Features right image

Figure 3.19: Features left and right image

After identifying the features in each of the images, the FLANN [77] feature matching algo-

rithm was used to compare and match the same features in both the images. FLANN is based

on a machine learning technique, KNN [78] and returned the probability of two points match-

ing up. In other words, which feature in one image corresponded with a specific feature in the

other image. This described the correlation between the same feature in the two images. The

features that was matched in both the images got marked with a purple circle and had drawn

lines between them as seen in figure 3.20. The features that was not found in both the images

got marked in red and disregarded.

CHAPTER 3. MATERIALS AND METHODS 78

Figure 3.20: Matching features withing the images

3.8.3 Calculating depth

Calculating the distance within a stereo image is done by looking at the displacement of an

object in both of the images. For this, certain parameters is needed. Figure 3.21 displays the

stereo camera setup with its given parameter.

• B - Baseline, distance between the cameras

• D - Depth to a given object

• AFoV - Angular field of view

• FoV - The distance in meter of the field of view

• Rh - Horizontal resolution

• P xd - Displacement of an object from the left to the right camera

• x - Object in the left image

• x’ - Object in the right image

CHAPTER 3. MATERIALS AND METHODS 79

Figure 3.21: Stereo camera setup

The equations described in this section is derived in "Distance measuring based on stereo-

scopic pictures" by Jernej Mrovlje and Damir Vrančić [79]. Following is an explanation for find-

ing the depth by looking at the relation between P xd and Rh which is equivalent to the relation

between FoV and the Baseline. This can be seen from figure 3.21 by imagining the right cam-

era being shifted to the right, the Baseline would increase equivalently to P xd , resulting in the

following equation:

FoV

B
= Rh

P xd
(3.27)

By solving for FoV we get:

FoV = Rh

P xd
·B (3.28)

The FoV can also be calculated using trigonometry:

CHAPTER 3. MATERIALS AND METHODS 80

t an

(
FoV

2

)
=

FoV
2

D
(3.29)

Solving for FoV yields:

FoV = 2 · t an

(
Fov

2

)
·D (3.30)

Substituting equation 3.30 inside equation 3.28 yields:

Rh

P xd
·B = 2 · t an

(
Fov

2

)
·D (3.31)

Lastly solving for D gives the depth to a given object in the stereo frame:

D = B ·Rh

2 ·P xd · t an
(FoV

2

) (3.32)

Equation 3.32 is a general solution for finding the depth D. From this it is apparent that

all the elements besides from one is known constants. P xd is a variable, which represents the

measured difference from one object in the left image to the right image. P xd is in principal the

same as x - x’ which is the difference in coordinates of the same observed object in both the left

and right image frame.

3.8.4 Camera setup parameters

Different stereo camera setups offers different characteristic. The systems parameters deter-

mines the range and sensitivity of the measurements. When deciding on a setup there are three

main factors taken into consideration; FoV, camera resolution and Baseline.

The FoV helps determine the camera setups depth perception. This can be seen by manipu-

lating equation 3.32 and making B , Rh and P xd constant:

K = B ·Rh

2 ·P xd

D = K · 1

t an
(FoV

2

) (3.33)

In a stereo camera with an FoV = 90◦ the depth would be estimated to:

CHAPTER 3. MATERIALS AND METHODS 81

D = 1 ·K (3.34)

On the other hand, a stereo camera with an FoV = 40◦ the depth would be:

D ≈ 2.75 ·K (3.35)

Likewise, a higher camera resolution will yield a higher accuracy overall.

Lastly, the baseline affects the cameras ability to perceive depth. Firstly, a higher Baseline in-

creases the cameras dead zone, hence limiting the ability to perceive the depth to close objects.

On the other hand, a higher Baseline increases accuracy on the perceived depth on objects that

are far away. This can be seen by evaluating the pixel displacement on an object with different

Baselines as shown in figure 3.22a.

CHAPTER 3. MATERIALS AND METHODS 82

(a) Plot showing x - x’ as a function of the depth using different baselines

(b) Zoomed in at higher depths

The plot was made with a Rh = 2600 and FoV = 65◦. The respective Baselines are shown in

the figure.

CHAPTER 3. MATERIALS AND METHODS 83

3.9 Stereo camera for position estimation

Important note: The coordinates x and z in this section describes the position in relation to

the camera. x represents the linear movement to the left and right, and z represents the linear

movement backwards and forwards. Figure 3.23 shows the directions seen from above.

This section proposes a method to estimate a position by using various image processing

techniques. This method was developed using OAK-D stereo camera (see section 3.3.1). This

method is based on the assumption that the wind turbine is standing on a yellow base.

3.9.1 Finding a point of reference

As mentioned in section 2.4.8, a camera has a specific field of view. Also, an image is built up

by x × y pixels which are distributed evenly in the image. Taking this into consideration, it is a

constant angle between each pixel. This angle can be calculated by dividing the field of view by

the total number of pixels in either x or y direction.

deg r ees

pi xelx
= FoVx

n_pi xel sx
(3.36)

deg r ees

pi xely
= FoVy

n_pi xel sy
(3.37)

In addition to calculating the deg r ees
pi xel , a reference point must be found and stored. Image

processing is used to find that reference point. This is done by filtering out all colors in the

image except for the color yellow as described in section 2.6.2. Afterwards, it is assumed that the

biggest yellow object in the image will be the wind turbine, due to the placement of the camera.

Therefore, the area of all the contours in the image is calculated, and the biggest contour is

found. This is done by the following code using the OpenCV library in Python:

1 def get_biggest_contour(mask, return_area=0):
2 contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
3 biggest_area = 0
4 biggest_contour = 0
5 for contour in contours:
6 area = cv2.contourArea(contour)

CHAPTER 3. MATERIALS AND METHODS 84

7 if area > biggest_area:
8 biggest_area = area
9 biggest_contour = contour

10 if return_area:
11 return biggest_contour, biggest_area
12 return biggest_contour

Source code 3.1: Method for iterating through all contours in an image and return the biggest in
terms of area

The method takes a list of contours and uses a for-loop to iterate over all of the contours and

returns the data of the biggest one.

Next, the center coordinates of the biggest contour is determined by the following function:

1 def get_contour_center(contour):
2 # Get the moments in the contour
3 M = cv2.moments(contour)
4 cx=-1
5 cy=-1
6 # Make sure not to divide by 0
7 if(M['m00']!=0):
8 # Calculate x and y coordinates for the center of the contour
9 cx=int(M['m10']/M['m00'])

10 cy=int(M['m01']/M['m00'])
11 return cx,cy

Source code 3.2: Method for finding the center of a contour

In the first run, the center coordinates are stored in two variables which are used as a refer-

ence of where in the image the center of the biggest contour should be. After the first run has

been completed, the pixel_offset is calculated (See source code 3.4).

1 cx, cy = get_contour_center(biggest_contour)
2 # If this is the first run, the contour center coordinates is stored as a
3 # reference for future images
4 if(first_run):
5 cx_ref = cx
6 cy_ref = cy

Source code 3.3: Storing the pixel coordinates in the center of the biggest contour in the first
image

CHAPTER 3. MATERIALS AND METHODS 85

3.9.2 Angle Offset

After finding the coordinates to the center of the biggest contour and storing them as references,

the following images can be processed and the new coordinates to the center can be compared

to the reference.

1 # Calculate the current offset compared to the reference center point
2 pixel_offset_x = cx_ref - cx
3 pixel_offset_y = cy_ref - cy

Source code 3.4: Calculating the pixel offset using the reference

This gives the number of pixels that the current center is displaced compared to the initial

position. Now, the Angle Offset in both x and y direction can be calculated by multiplying with

the deg r ees
pi xel .

1 # Convert the pixle offset to degrees by multiplying the pixle
2 # offset with degrees per pixle
3 x_angle_offset = pixel_offset_x*deg_per_pix
4 y_angle_offset = pixel_offset_y*deg_per_pix

Source code 3.5: Calculating the angle offset

3.9.3 Calculating the position

After calculating the Angle Offset, the depth to the center of the contour is estimated with the

stereo camera. The current depth, in combination with the angle offset is then used to calculate

the current position in relation to the initial position.

CHAPTER 3. MATERIALS AND METHODS 86

Figure 3.23: Angle offset after moving in the x- and z-direction

Figure 3.23 illustrates the directions and placement of the angle offset and x- and z-direction.

The X-movement is calculated by multiplying the current depth (D) with the tangent to the An-

gle Offset (α):

X-movement = D · tan(α) (3.38)

Z-movement is calculated by first calculating the z position in relation to the wind turbine and

using that position as a reference.

zr e f = D1 (3.39)

Where D1 represents the calculated depth in the first image. In the following iterations the

subsequent depths are subtracted from the reference depth to calculate the displacement in

z-direction from the initial point.

Z-movement = zr e f −Dn (3.40)

CHAPTER 3. MATERIALS AND METHODS 87

3.10 Creating the Graphical User Interface

To create the graphical user interface (GUI), Qt Designer was first used to create the layout.

Buttons, graphs and pages was placed using this software. Figure 3.24 shows the layout of the

Qt Designer software.

Figure 3.24: The Qt Designer interface

When the layout was finished, the application was saved as a .ui-file. The .ui file was then

converted to a Python file. This was done by writing the following statement in the terminal on

the computer:

1 pyuic5 -x GUIApp.ui > GUIApp.py

Source code 3.6: Converting the .ui file to a .py file

The Python file that was generated from this statement contained all code necessary to build

the GUI application. However, the application did not have any functionality at this point. For

example, pressing buttons did not result in any action. Therefore, the functionality of the appli-

cation had to be implemented in this Python file. The code below shows how the menu buttons

was connected to the different pages in the GUI.

CHAPTER 3. MATERIALS AND METHODS 88

1 # Connecting the menu buttons
2 self.ui.RawAccBtn.clicked.connect(lambda : self.ui.WidgetPages.setCurrentIndex(0))
3 self.ui.RawGyroBtn.clicked.connect(lambda : self.ui.WidgetPages.setCurrentIndex(1))
4 self.ui.RawMagBtn.clicked.connect(lambda : self.ui.WidgetPages.setCurrentIndex(2))
5 self.ui.EstValBtn.clicked.connect(lambda : self.ui.WidgetPages.setCurrentIndex(3))

Source code 3.7: Connecting the menu buttons to the different pages

3.11 Testing

This section explains how testing of the different solutions has been conducted.

3.11.1 Test procedure for Orientation Estimation

To test the solutions for orientation estimation, a microphone stand was used. An Arduino UNO

and an Adafruit BNO055 IMU was mounted on the microphone stand (see figure 3.25). The

microphone stand was chosen to test the orientation estimation because it gave the opportunity

to lock the IMU in different known angles. This made it possible to verify the test results against

the actual angles.

CHAPTER 3. MATERIALS AND METHODS 89

Figure 3.25: Microphone stand equipped with IMU and Arduino

The testing was done by recording the data from the IMU sensor on the Arduino, and then

processing the data in the filter setups written in Python after. Three different scenarios was

tested:

• 15 minutes of standing completely still

• 5 minutes standing still, followed by yawing 40°, standing still another 5 minutes, and

yawing back to original position where it stands still for another 5 minutes.

• Pitching and rolling

These scenarios was tested for all three filter setups that is described in section 3.6. The results

from the orientation testing is presented in section 4.2.

3.11.2 Test procedure for Position Estimation

The following sections describes the steps of testing that was performed to establish a proof of

concept for the stereo camera in combination with an IMU to estimate position.

CHAPTER 3. MATERIALS AND METHODS 90

Test 1, Calculating camera angle

The angle measurement testing was performed prior to integrating the stereo camera with the

IMU. This was done as a proof of concept for the theory proposed in section 3.9.1 and 3.9.2.

Because the stereo camera was unable to detect any rotational movement, the stereo camera

was moved along the straight edge of a table, without changing it’s heading, thus removing the

need to eliminate any errors in the calculated angle.

Figure 3.26 is a sketch of the test setup seen from above. The arrow X represents the move-

ment from the starting point to the end point. The two dotted lines is the heading of the camera

at the starting and end point.

Figure 3.26: Draft of the test setup

To verify that the output was correct, an angle of approximately 10◦ was measured using a

protractor. To verify that the angle was accurate, the length of the diagonal line D was carefully

measured to 86cm. The length of distance X was measured to 14.7cm. The drawn angle was

CHAPTER 3. MATERIALS AND METHODS 91

then verified by calculation:

arcsin

(
X

D

)
=

arcsin

(
14.7

86

)
=

arcsin(0.1709) ≈ 9.84°

(3.41)

The results from this testing is presented in section 4.3.1.

Test 2, IMU integration

The intention of this test was to evaluate whether the IMU could be used to eliminate errors

in the Angle Offset caused by rotational movement to the sides (yaw in terms of the gangway).

This was important because the camera was unable to detect rotations with the current software

implementation. The purpose of the IMU was to constantly return the current heading. The

IMU was configured to return a heading with the initial heading as a reference (0°).

The testing was performed by placing the camera and the IMU in front of the simulated

wind turbine. The data from the IMU angle, camera angle and the calculated "true" angle was

recorded while the camera was rotated in a yaw motion, while held in the same position. Figure

3.27a shows the output from when the system first was initialized. Figure 3.27b shows the output

from the reading with the highest offset recorded while the camera was held still.

CHAPTER 3. MATERIALS AND METHODS 92

(a) Screenshot taken at the beginning of the test

(b) Screenshot taken of the highest angle offset

Figure 3.27: Screenshots taken during the IMU angle compensation tests

The camera was rotated back and forth to a random angle multiple times. The goal was

to get an Angle offset ≈ 0.0◦. If the IMU and camera was kept in the same position and the

Angle offset ≈ 0.0, it meant that the IMU had successfully managed to compensate for the rota-

tion. The results from this test is presented in section 4.3.2.

Test 3, Position estimation test

The purpose of this test was to evaluate if the system as a whole was able to give reliable results

consistently. The test setup was measured carefully in order to be able to verify the estimated

CHAPTER 3. MATERIALS AND METHODS 93

outputs and evaluate the system. The test was performed by moving the camera and the IMU

around a surface, facing the simulated wind turbine. Each of the corners in the rectangle were

referred to as checkpoints. The x and z coordinates of each of the checkpoints were measured,

with the reference point (Checkpoint A) in the origin (0, 0).

Figure 3.28 gives an overview of all the checkpoints and the distance between each point.

Figure 3.28: Overview of the test setup

The camera and the IMU was held together manually, to ensure none of them rotated more

CHAPTER 3. MATERIALS AND METHODS 94

than the other, to the best of ability. The IMU and camera started in checkpoint A, moved to

checkpoint B, then C, then D, and lastly back to A to compare the final output to the initial

values. The results from this test is presented in section 4.3.3.

Chapter 4

Result

This chapter presents the results from the project. First, the graphical user interface is described.

This is followed by the test results from the different sensor fusion algorithms for orientation

estimation. Then, the test results from the position estimation is presented. Finally, a sketch

showing a model of how this can be applied on an actual gangway is described.

4.1 Graphical User Interface

The main purpose of the graphical user interface was to visualize the outputs from the orien-

tation estimation algorithms. This made it easier to verify whether or not the estimations were

good or bad, by comparing them to the physical orientation of the IMU sensor.

95

CHAPTER 4. RESULT 96

4.1.1 The layout

Figure 4.1: The GUI Layout

Figure 4.1 shows the layout of the GUI. It consists of four pages; one page for each sensor to

show the raw values that is read from them, and a page showing the estimated angle values. It

contains check-boxes which can be used to control which graphs are currently being shown.

On the right side, there are ’dial-knobs’ which turns according to the angles. The area in the left

upper corner showing the Seaonics logo is meant to show a video stream from the stereo camera

that estimates the position. This has not been implemented due to lack of time.

4.1.2 Encoders for boom and slew

To simulate the impact of the boom- and slew angles of the gangway (explained in section 3.7),

there are two fields in the GUI where the values of these angles can be changed. This is to verify

that the estimated angles of the ship changes according to both the measured angles of the

gangway as well as the angles of the gangway in relation to the ship.

CHAPTER 4. RESULT 97

4.2 Orientation estimation results

When conducting the tests, the encoder values was set to 70° slew, and 10° boom. As seen in

section 3.6, roll and pitch are estimated the same way for all three setups. The results from the

tests are shown below. In the graphs, the y-axis represents the angle in degrees, and the x-axis

represents the time steps. Each time step is 0.05 seconds.

Important Note: Pitch, roll and yaw in this context means the orientation of the gangway. The

green lines shows the estimated angles of the ship, which is based on the estimated angles of the

gangway. Plots of the raw data from the accelerometer, gyroscope and magnetometer can be found

in appendix H.

4.2.1 Roll and Pitch results

15 minutes stationary

Figure 4.2: Pitch estimation while not moving

Figure 4.3: Roll estimation while not moving

CHAPTER 4. RESULT 98

15 minutes with only yaw motion

Figure 4.4: Pitch estimation while only yawing

Figure 4.5: Roll estimation while only yawing

Pitching and rolling

Figure 4.6: Pitch estimation while rolling and pitching

CHAPTER 4. RESULT 99

Figure 4.7: Roll estimation while rolling and pitching

4.2.2 Yaw results: Filter setup 1

15 minutes stationary

Figure 4.8: Yaw estimation while not moving, Filter 1

15 minutes with only yaw motion

Figure 4.9: Yaw estimation while only yawing, Filter 1

CHAPTER 4. RESULT 100

Pitching and rolling

Figure 4.10: Yaw estimation while rolling and pitching, Filter 1

4.2.3 Yaw results: Filter setup 2, with magnetometer

15 minutes stationary

Figure 4.11: Yaw estimation while not moving, Filter 2 with magnetometer

15 minutes with only yaw motion

Figure 4.12: Yaw estimation while only yawing, Filter 2 with magnetometer

CHAPTER 4. RESULT 101

Pitching and rolling

Figure 4.13: Yaw estimation while rolling and pitching, Filter 2 with magnetometer

4.2.4 Yaw results: Filter setup 2, without magnetometer

15 minutes stationary

Figure 4.14: Yaw estimation while not moving, Filter 2 without magnetometer

15 minutes with only yaw motion

Figure 4.15: Yaw estimation while only yawing, Filter 2 without magnetometer

CHAPTER 4. RESULT 102

Pitching and rolling

Figure 4.16: Yaw estimation while rolling and pitching, Filter 2 without magnetometer

4.2.5 Yaw results: Filter setup 3, with magnetometer

15 minutes stationary

Figure 4.17: Yaw estimation while not moving, Filter 3 with magnetometer

15 minutes with only yaw motion

Figure 4.18: Yaw estimation while only yawing, Filter 3 with magnetometer

CHAPTER 4. RESULT 103

Pitching and rolling

Figure 4.19: Yaw estimation while rolling and pitching, Filter 3 with magnetometer

4.2.6 Yaw results: Filter setup 3, without magnetometer

15 minutes stationary

Figure 4.20: Yaw estimation while not moving, Filter 3 without magnetometer

15 minutes with only yaw motion

Figure 4.21: Yaw estimation while only yawing, Filter 3 without magnetometer

CHAPTER 4. RESULT 104

Pitching and rolling

Figure 4.22: Yaw estimation while rolling and pitching, Filter 3 without magnetometer

4.3 Position estimation results

This section presents the results from the tests explained in section 3.11.2.

4.3.1 Results test 1, Calculating camera angle

Figure 4.23a shows an image that was taken at the beginning of the test with the calculated angle

offset to the wind turbine. Figure 4.23b shows an image with the output after moving the camera

along X (see figure 3.26). The output shows an Ang leO f f set ≈ 9.35◦.

CHAPTER 4. RESULT 105

(a) Screenshot taken at the beginning of the test

(b) Screenshot taken at the end of the test

Figure 4.23: Screenshots taken at the beginning and the end of the test

4.3.2 Results test 2, IMU integration

Table 4.1 shows the recorded data from the testing explained in section 3.11.2.

CHAPTER 4. RESULT 106

Test run nr. Camera angle IMU angle Angle offset

Desired values α◦ α◦ 0.00◦

1 0.14◦ 0.06◦ 0.08◦

2 16.77◦ 15.44◦ 1.33◦

3 −26.62◦ −23.50◦ −3.12◦

4 −2.87◦ −1.69◦ −1.18◦

5 12.97◦ 12.88◦ 0.09◦

6 9.25◦ 11.25◦ −2.00◦

7 3.48◦ 5.75◦ −2.27◦

8 13.69◦ 13.56◦ 0.13◦

9 −18.92◦ −15.00◦ −3.92◦

Table 4.1: Test data samples from angle compensation testing.

4.3.3 Results test 3, Position estimation test

The following tables (4.2, 4.3, 4.4, 4.5 and 4.6) contains all the data recorded during the test

explained in section 3.11.2 at each of the checkpoints. There were performed a total of ten tests,

where the Test run nr. corresponds to each of the test runs. The X and Z columns shows the

offset distance from the initial point in cm. The Camera Angle, IMU Angle and Angle Offset are

the calculated angles and heading.

The desired Angle Offset is approximated based on the manually measured distance to each

point from the wind turbine. The desired Angle Offset in checkpoint B, C and D has been cal-

culated to 0.00◦, −20.556◦ and −16.7◦ respectively. The desired Angle Offsets was calculated by

using t an

(
0

100

)
, t an

(−30

80

)
and t an

(−30

100

)
.

CHAPTER 4. RESULT 107

Checkpoint A

Test run nr. X Z Camera Angle IMU Angle Angle offset

Desired values 0.00 0.00 0.00◦ 0.00◦ 0.00◦

1 −0.07 0.00 −0.04◦ 0.00◦ −0.04◦

2 −0.46 −0.40 0.00◦ 0.25◦ −0.25◦

3 −0.39 0.10 −0.04◦ −0.25◦ 0.21◦

4 0.37 −0.10 0.14◦ −0.06◦ 0.20◦

5 0.18 0.00 0.04◦ −0.06◦ 0.10◦

6 0.02 0.40 −0.07◦ −0.06◦ 0.01◦

7 0.64 0.00 0.54◦ 0.19◦ 0.35◦

8 −0.62 0.10 0.04◦ 0.37◦ −0.33◦

9 0.05 −0.20 −0.04◦ −0.06◦ 0.02◦

10 0.29 0.00 0.04◦ −0.12◦ 0.16◦

Table 4.2: Recorded data at checkpoint A

Checkpoint B

Test run nr. X Z Camera Angle IMU Angle Angle offset

Desired values 0.00 20.00 0.00◦ 0.00◦ 0.00◦

1 0.31 20.20 0.90◦ 0.69◦ 0.21◦

2 0.78 20.08 2.22◦ 2.75◦ −0.53◦

3 −0.13 20.70 1.72◦ 1.81◦ 0.09◦

4 −0.48 19.90 1.86◦ 2.19◦ −0.33◦

5 −0.55 19.90 0.75◦ 1.12◦ −0.37◦

6 0.47 20.70 1.76◦ 1.44◦ 0.32◦

7 0.45 21.00 1.86◦ 1.56◦ 0.30◦

8 −0.85 21.10 2.62◦ 3.19◦ −0.57◦

9 −1.27 21.40 1.15◦ 2.00◦ −0.85◦

10 0.62 20.50 0.36◦ −0.06◦ 0.42◦

Table 4.3: Recorded data at checkpoint B

CHAPTER 4. RESULT 108

Checkpoint C

Test run nr. X Z Camera Angle IMU Angle Angle offset

Desired values −30.00 20.00 −20.556◦ 0.00◦ −20.556◦

1 −29.68 20.00 −19.71◦ 0.50◦ −19.21◦

2 −30.15 20.90 −18.13◦ 1.44◦ −19.57◦

3 −30.28 19.10 −18.56◦ 0.75◦ −19.31◦

4 −30.43 19.10 −17.09◦ 2.50◦ −19.59◦

5 −30.78 19.00 −19.42◦ 0.25◦ −19.67◦

6 −29.74 20.00 −19.60◦ −0.44◦ −19.16◦

7 −29.41 19.80 −18.17◦ −0.63◦ −18.80◦

8 −30.78 20.30 −17.59◦ 2.25◦ −19.84◦

9 −30.07 20.20 −17.02◦ 2.19◦ −19.21◦

10 −29.93 20.00 −19.03◦ 0.31◦ −19.34◦

Table 4.4: Recorded data at checkpoint C

Checkpoint D

Test run nr. X Z Camera Angle IMU Angle Angle offset

Desired values −30.00 0.00 −16.7◦ 0.00◦ −16.7◦

1 −29.63 0.40 0.40◦ −17.41◦ −15.79◦

2 −29.78 0.90 −15.55◦ 0.31◦ −15.86◦

3 −29.10 0.08 −16.16◦ −0.63◦ −15.53◦

4 −30.60 0.30 −14.76◦ 1.50◦ −16.26◦

5 −30.75 −0.20 −16.34◦ −0.06◦ −16.28◦

6 −29.19 0.90 −16.70◦ −1.12◦ −15.58◦

7 −30.52 −0.70 −16.05◦ −0.12◦ −15.93◦

8 −30.82 0.50 −15.15◦ 2.19◦ −16.34◦

9 −29.93 0.40 −15.87◦ −0.12◦ −15.75◦

10 −29.54 0.30 −17.77◦ −2.06◦ −15.71◦

Table 4.5: Recorded data at checkpoint D

CHAPTER 4. RESULT 109

Checkpoint A

Test run nr. X Z Camera Angle IMU Angle Angle offset

Desired values 0.00 0.00 0.00◦ 0.00◦ 0.00◦

1 0.13 0.00 −0.18◦ −0.25◦ 0.07◦

2 −0.31 0.30 −0.29◦ −0.12◦ −0.12◦

3 −0.81 0.60 −0.07◦ 0.37◦ −0.44◦

4 −0.82 −0.30 1.61◦ 2.06◦ −0.45◦

5 −0.28 −0.50 1.04◦ 1.19◦ −0.15◦

6 0.26 0.40 −0.11◦ −0.25◦ 0.14◦

7 0.08 1.10 −0.90◦ −0.94◦ 0.04◦

8 −1.98 0.50 0.36◦ 1.44◦ −1.08◦

9 −0.64 0.10 0.47◦ 0.81◦ −0.34◦

10 0.25 0.40 −1.36◦ −1.50◦ 0.14◦

Table 4.6: Recorded data at checkpoint A to compare to the initial recorded data

Chapter 5

Discussion

In this chapter, the results presented in the previous chapter will be discussed and analyzed.

This includes a discussion of how the current solution differs from a complete solution. This

discussion is the basis of the conclusion which is found in the next chapter.

5.1 Test results

5.1.1 Orientation estimation

The test results from orientation estimation using the Adafruit BNO055 9-DOF IMU shows a few

things that is worth to note.

Pitch and Roll

The combination of pre-calculating roll- and pitch-angles and fusing these angles with gyro-

scope measurements about the x- and y-axes trough Kalman filters yields accurate and stable,

non-drifting estimations of pitch and roll. However, the current solution is a bit slow. For ex-

ample, by looking at figures 4.6 and 4.7 on page 98 and 99, it is visible that the Kalman filtered

angles are significantly slower than the pre-calculated angles. From the graphs it seems that

the filtered angles are approximately 1 second slower than the pre-calculated angles. This can

probably be improved by tuning the parameters of the Kalman filters. The process matrix, Q,

which represents the uncertainty in the model, is a parameter which has to be tuned through

110

CHAPTER 5. DISCUSSION 111

experimenting. If this parameter is tuned optimally, the accuracy and filter speed can probably

increase. Another aspect that is worth noting is the sampling time. In the tests, the sampling

time was set to 50ms. By decreasing the sampling time, the Kalman filters would always work

with more "fresh" samples, which in turn would increase the speed of the filtering.

Yaw

The yaw-angle is the most difficult angle to estimate. This is because accelerometers only give

information that can be used to accurately estimate pitch and roll, as explained in section 3.4.2.

Therefore, different combinations of accelerometer, gyroscope, magnetometer and different

sensor fusion algorithms was applied to find the best solution.

In theory, using a magnetometer should provide information that can be used to find the

absolute orientation of the sensor using a Madgwick filter, as explained in section 2.5.5. This

means that it should be possible to find true North using this technique. However, the test re-

sults does not verify this. The test results show that including the magnetometer in any of the

filter setups yields inaccurate estimations of yaw.

In Filter Setup 1, where the yaw angle is estimated by taking the estimated roll- and pitch-

angles and fusing them with magnetometer data in a tilt-compensation algorithm, the esti-

mated yaw angle is completely unreliable. When performing a yaw-rotation on the sensor, the

estimated yaw-angle does not change. However, when performing pitch- and roll-rotations, the

estimated yaw changes accordingly. A reason for this can be that the mathematics behind it is

not correct.

In Filter Setup 2, where the yaw angle is estimated by using a Madgwick filter, the estimated

yaw angle is reliable and stable when the magnetometer is not included. However, when the

magnetometer is included in this setup, the estimates becomes unreliable. By looking at figures

4.11, 4.12 and 4.13 at page 100 - 101, a few things are worth to note. When yawing 40°, the

filter only registers a 10° motion. When only pitching and rolling, without having any significant

motion in yaw rotation, the estimated yaw angle is affected and it seems that the estimate "dips"

each time roll- or pitch-motion is registered. By looking at the results from Filter Setup 2 where

the magnetometer is not included (figures 4.14, 4.15 and 4.16 at page 101 - 102), it is clear that

these results are more accurate and stable. The estimated yaw is accurate and it does not drift.

CHAPTER 5. DISCUSSION 112

The estimate varies slightly when pitching and rolling, but the reason for this could be that when

pitching and rolling the sensor, the sensor was also rotated slightly about the z-axis.

Filter Setup 3 yields the same characteristics as Filter Setup 2. The difference is that the

output from the Madgwick filter is fed through a Kalman filter. The results from this solution

shows that this leads to slower estimates. As the Madgwick filter in itself produces stable and

accurate estimates (when the magnetometer data is not included), running the output through

a Kalman filter seems to be unnecessary. The estimates becomes slightly more stable, but they

are also slower.

It is interesting to see that utilizing magnetometer data in the filter setups actually makes the

estimates more unreliable. The most explaining reason for this may be that the stand on which

the sensor is mounted is made of magnetic metal. This can disturb the magnetic field around

the magnetometer, and thus the estimates. Using this solution in a real industrial installation

would potentially yield the same disturbances, because the offshore gangway can be made out

of steel. Additionally, the IMU sensor would most likely need to be installed inside a water-

tight box. This box has to be made of a material that is not weakened by sunlight and saltwater.

Therefore, the box should be made of aluminum or stainless steel. An advantage of this is that

these types of metal are not magnetic, and will probably not disturb the magnetic field around

the sensor in any significant way.

However, it seems that a solution only dependent on a gyroscope and an accelerometer

would yield accurate estimates of orientation. The current solution does not verify that a mag-

netometer can increase the accuracy. In fact, the results from testing indicates the opposite, but

a theory is that this is because of the magnetic structure the sensor is mounted on.

5.1.2 Position estimation

Test 1, Calculating camera angle

Looking at the results from test 1, we can see that the estimated Angle Offset is approximately

9.35◦. By comparing this to the measured desired Angle Offset from equation 3.41, we get that

the error in the estimation is:

CHAPTER 5. DISCUSSION 113

9.84◦−9.35◦ = 0.49◦ (5.1)

This assumes that the desired Angle Offset was correctly measured and that the camera was

stopped in the correct position. As it was difficult to measure the distances and angles with a

high precision, there are many sources of error.

After looking at the results, it was concluded that this method is valid and gives sufficient

estimations.

Test 2, IMU integration

The goal of this test was to verify that the IMU can be used to correct the cameras angle by

subtracting the IMU angle from the calculated camera angle. In the results, it is seen that the

Angle Offset varies. The least desired Angle Offset recorded is estimated to −3.92◦ in test nr 9,

while the most desired Angle Offset is estimated to 0.08◦ in test run nr 1. The results in general

are inconsistent. One of the two main factors the may affect the results are that the IMU and the

stereo camera was not moved aligned. The other being that the IMU and the stereo camera was

not kept in a fixed location during the testing. In other words, linear movement is likely to have

occurred during the rotation.

Evaluating the test, the group finds the results satisfying. Yet, the method will require further

and more accurate testing in order to give a solid conclusion based on proper data, collected

under a controlled environment. Based on the results, the group considers the IMU as a reliable

way to compensate for errors in the angle offset estimated by the camera.

Test 3, Position estimation test

By comparing the desired values to the estimated values, it is possible to see that the estimated

values are close to the desired output. The results are consistent and accurate.

To illustrate the margin of error when positioning the system in the different checkpoints,

the system was returned to its starting position (checkpoint A) after each test run. In theory,

the values in table 4.2 should be equivalent to table 4.6. However, due to the testing facilities

and the system being maneuvered by hand, returning to the exact position each test run was

CHAPTER 5. DISCUSSION 114

unachievable. This is considered the largest source of error throughout this test.

Table 5.1, 5.2 and 5.3 contains the average, average offset, standard deviation and variance

of the data.

Checkpoint B X Z Angle Offset

Desired value 0.00cm 20.00cm 0.00◦

Average −0.065cm 20.548cm −0.131◦

Average offset 0.065cm 0.548cm 0.131◦

Standard Deviation 0.6599cm 0.4963cm 0.4270◦

Variance 0.4355cm2 0.2463cm2 0.1823◦2

Table 5.1: Analytical data based on table 4.3

Checkpoint C X Z Angle Offset

Desired value −30.00cm 20.00cm −20.556◦

Average −30.125cm 19.84cm −19.37◦

Average offset 0.125cm −0.16cm −1.186◦

Standard Deviation 0.4329cm 0.5783cm 0.2870◦

Variance 0.1874cm2 0.3344cm2 0.0824◦2

Table 5.2: Analytical data based on table 4.4

Checkpoint D X Z Angle Offset

Desired value −30.00cm 0.00cm −16.7◦

Average −29.986cm 0.2880cm −15.903◦

Average offset −0.0139cm 0.2880cm −0.7970◦

Standard Deviation 0.6108cm 0.4557cm 0.2793◦

Variance 0.3731cm2 0.2077cm2 0.0780◦2

Table 5.3: Analytical data based on table 4.5

The analytical data in the tables above shows satisfying results, with a low average offset and

variance and a high consistency. The largest errors is displayed in checkpoint C and D. This may

CHAPTER 5. DISCUSSION 115

be a result of the ROI being inconsistent on the wind turbine, yet, this should be tested further

in a more controlled environment with the stereo camera and IMU fixed to eachother. Addi-

tionally, solutions to ensure that the system is placed in the same position in each run should be

implemented for the testing.

5.2 Placement of sensors in a real installation

In order for the stereo camera to be able to capture the yellow base on the wind turbine, the

stereo camera should be placed close to the tip of the gangway. Additionally, in order to avoid

obstructions from, for instance, people walking in front of the camera view, the stereo camera

should be attached underneath the gangway. The IMU can be placed in the same area. Figure

5.1 illustrates the sensor placement.

Figure 5.1: Image of how the sensors can be placed

Note: The illustration above is not an accurate representation of the reality. The figure is based

on information that was given to the group and assumptions made based on research during the

project.

5.3 Future considerations on system integration

Due to lack of time, there are a few things that has not been implemented in the current solution.

This section explains what should be implemented to achieve a complete solution.

CHAPTER 5. DISCUSSION 116

5.3.1 Two systems that should be merged together

The current solution offers estimates of orientation and position in two separate systems. The

GUI application currently only includes orientation estimation. The plan was to include a video-

stream showing the captured images from the stereo-camera, and also show the estimated po-

sition of the gangway relative to the wind turbine.

The position estimation system should utilize data from the orientation estimation system

to reference the position estimates in relation to the orientation. Also, the current solution only

estimates relative position in x- and y-direction (in relation to the gangway). Motion along the z-

axis is not taken into account, as it is difficult for a stereo-camera to register displacement along

the z-axis when the reference object is a cylinder-shaped wind-turbine base with the current

system.

5.3.2 Suggestions for further work

PID Controlled Servo for Camera Control

One of the biggest limitations to the current position estimation solution is when the ROI (region

of interest) is on the edge of the image. This may cause some of the ROI not to be captured by the

camera, hence the center point will not be in the same location. Even if Seaonics’ AMC system

will constantly work towards keeping the Angle Offset = 0, this is an error that may occur and

cause faulty data.

A suggested solution to this problem is to use a PID regulated servo. By attaching the camera

to the servo, the Angle Offset of the camera can be used as feedback to the PID-regulator, which

always works towards keeping the Angle Offset = 0. This is a quick system which will signifi-

cantly decrease the chances of the ROI falling out of the image. The X and Z position will then

be calculated by the Angle Offset recorded by the encoder in the servo, rather than directly from

the Image Processing.

VSLAM/Stereo VIO

One alternative to improve the position estimation is by using VSLAM or Stereo VIO (visual

odometry) based algorithms [80], or a tailored version of this. It is apparent that the method

CHAPTER 5. DISCUSSION 117

used to visually localize an object can be some what inaccurate and unreliable. Selecting the

ROI (region of interest) based on the center of an object defined by a color can leave room for

error. As an alternative, a form of visual odometry is proposed. VSLAM is based on the same

principles as humans have used for navigation for centuries. "By recognizing special constella-

tions or specific stars, people could find North (i.e. direction) as well as calculate their own lati-

tude and longitude (i.e. location), usually using look-up tables" [81]. The current system selects

one ROI. An alternative approach is to create a system where the visual odometry is based on

several points spread out in the image, which creates a more robust system and eliminates the

"single point of failure". This can be done by utilizing feature detection algorithms [82]. Com-

bining this with the information from a stereo camera or 3D camera, it is possible to derive the

odometry of the observer relative to the observed targets, as well as calculating velocity. This is

due to having the depth measurement to each feature, which can be compared from one image

to the next, and thus get the displacement in the image, which can be used to derive movement.

Similar systems yields high accuracy, as in the case of the Intel RealSense T265 Tracking Camera

with drift as low as under one percent (based on indoor testing) [59]. In other words, a visual

odometry based system which uses multiple points for orientation has the potential to be more

robust. It does not depend on a single color or feature, nor does it only depend on a single point.

Include position estimation in the GUI

As mentioned in section 5.3.1, the position estimation system should be included in the graph-

ical user interface. A video-stream showing the captured images from the stereo camera could

be implemented in the GUI to give the operator a better overview of the situation. The posi-

tion data should also be presented in the GUI. Also, the stereo camera system should utilize the

orientation estimates to account for angular displacement.

Test the solution on an actual offshore gangway

In this project, all tests has been small-scale indoor tests. This has provided useful information

about the solutions, but it has to be tested on an offshore gangway in order to verify that the

solution is good. This has unfortunately not been possible in this project.

CHAPTER 5. DISCUSSION 118

Ultra-wide band for position tracking

For this project, placing any external devices on the actual wind turbine should be avoided. This

is because the wind turbines are not standardized and Seaonics wants a general solution where

they are not dependent on equipment placed on the wind turbine.

Considering a scenario where external devices could be placed on the wind turbines, Ultra

Wide Band (UWB) positioning system could have been used. UWB sensors are high bandwidth

radio frequency sensors. These sensors can provide accurate positioning estimation by utilizing

time difference of arrival (TDOA) between a tag and several anchors [21] (see figure 5.2). When

using TDOA, the tag sends out a signal which three or more anchors receive. By timing the

signal, a precise location estimation can be calculated [83]. According to Dädeby et al., at 20m

between anchor and tag, an average value of 19.88m was recorded with a standard deviation of

15.35cm [84]. A tag in this case would be placed on the wind turbine.

Figure 5.2: Illustration showing principles of Ultra Wide Band locating system [21]

Chapter 6

Conclusions

The problem to be addressed in this project was how to estimate the position and orientation

of an offshore gangway in relation to a ship and an offshore wind turbine. Seaonics delivers

offshore gangways with active motion control (AMC), and their control system can take great

benefit from reliable estimates of position and orientation.

Algorithms for estimating position using stereo-imaging and algorithms for estimating ori-

entation by utilizing a gyroscope, accelerometer and magnetometer have been described and

tested. The work performed in this project has provided a basis for solutions that can contribute

to the further development of an estimation system for position and orientation. Although the

result of the project is not a solution that can be directly integrated in Seaonics’ control system at

this time, it can contribute as a good starting point in the development of an improved motion

compensation system for offshore gangways.

One of the most important experiences is that the use of a magnetometer can lead to un-

reliable estimates of orientation, especially if there are magnetic interference in the proximity

of the sensor. From the results of the filter setups for orientation estimation, the conclusion is

that Filter Setup 2, without magnetometer, is the best solution. The tests of the stereo-camera

shows that it can be useful to estimate linear displacement in the horizontal plane, but linear

motions in the vertical plane is hard to estimate using this method. However, it has potential

of improvement with further development. The solutions are currently working as two inde-

pendent systems, and a complete solution should include both systems as one. That way, the

position estimation system can utilize data from the orientation estimation system to take an-

119

CHAPTER 6. CONCLUSIONS 120

gular displacement into account when estimating position.

The project has provided the group with useful experience in planning and conducting projects.

It has linked many of the various topics through three years of study. Additionally, the project

has provided the group with a lot of new knowledge, not only in the field of automation, but also

knowledge that might not have been gained otherwise. Sensor fusion algorithms and image

processing are disciplines that were quite unknown to the group before this project was carried

out.

6.1 Further work

• Mount the stereo-camera on a PID controlled servo. This can help the camera to always

be aimed towards the region of interest.

• Look into the possibilities of VSLAM/Stereo VIO. This, in combination with the stereo-

camera, can increase the precision. It will also make it possible to estimate vertical mo-

tion.

• Include position estimation in the GUI, as well as utilize the orientation estimates in the

position estimation to take angular displacement into account.

• Test the solution on an actual offshore gangway to verify if the solution works in the real

world.

• Investigate how the ultra-wide band technology could be used for position tracking. This

would require a tag to be placed on the wind turbine, which should be avoided, but the

technology is interesting and could prove to be useful in a case like this.

Bibliography

[1] Sisi Wang, Lijun Wang, Zixuan Qiao, and Fengshan Li. Optimal robust control of path fol-

lowing and rudder roll reduction for a container ship in heavy waves. Applied Sciences, 8(9),

2018.

[2] Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Con-

trol. Cambridge University Press, Cambridge University Press, University Printing House,

Shaftesbury Road, Cambridge, CB2 8BS, United Kingdom, 2017.

[3] Jeremiah van Oosten. Understanding quaternions. https://www.3dgep.com/

understanding-quaternions/. Accessed 16 Feb. 2021.

[4] John Vince. Quaternions for Computer Graphics. Springer-Verlag London, 6 Floor London,

WC1X 8HB, United Kingdom, 2011.

[5] Aidan Lyon. Why are normal distributions normal? https://aidanlyon.com/normal_

distributions.pdf. Accessed 30 Apr. 2021.

[6] Watson Gyro. Vibrating structure gyro (vsg) principles of opera-

tion. https://watson-gyro.com/support-service/legacy-products/

vibrating-structure-gyro-vsg-principles-of-operation/. Accessed 8 May

2021.

[7] Rob O’Reilly, Alex Khenkin, and Kieran Harney. Sonic nirvana: Using mems accelerometers

as acoustic pickups in musical instruments. Accessed 9 May 2021.

[8] Alberto Naranjo. Building a sonar sensor array with ar-

duino and python. https://towardsdatascience.com/

121

https://www.3dgep.com/understanding-quaternions/
https://www.3dgep.com/understanding-quaternions/
https://aidanlyon.com/normal_distributions.pdf
https://aidanlyon.com/normal_distributions.pdf
https://watson-gyro.com/support-service/legacy-products/vibrating-structure-gyro-vsg-principles-of-operation/
https://watson-gyro.com/support-service/legacy-products/vibrating-structure-gyro-vsg-principles-of-operation/
https://towardsdatascience.com/building-a-sonar-sensor-array-with-arduino-and-python-c5b4cf30b945
https://towardsdatascience.com/building-a-sonar-sensor-array-with-arduino-and-python-c5b4cf30b945
https://towardsdatascience.com/building-a-sonar-sensor-array-with-arduino-and-python-c5b4cf30b945

BIBLIOGRAPHY 122

building-a-sonar-sensor-array-with-arduino-and-python-c5b4cf30b945. Ac-

cessed 8 May 2021.

[9] Apogeeweb. Deep analysis of infrared sensor. https://www.apogeeweb.net/electron/

Deep-Analysis-of-Infrared-Sensor.html. Accessed 8 May 2021.

[10] Jon Chouinard. What are the benefits of cmos based machine vision cam-

eras vs ccd? https://www.1stvision.com/machine-vision-solutions/2019/07/

benefits-of-cmos-based-machine-vision-cameras-vs-ccd.html. Accessed 8 May

2021.

[11] Teledyne Princeton Instruments. Field of view and angular field of view.

https://www.princetoninstruments.com/learn/camera-fundamentals/

field-of-view-and-angular-field-of-view. Accessed 8 May 2021.

[12] Alice Matthews. Advances in next-gen camera module circuit design. https:

//www.electronicspecifier.com/products/artificial-intelligence/

advances-in-next-gen-camera-module-circuit-design. Accessed 9 May 2021.

[13] Stefan Winkler. Stereo triangulation from a pair of cameras. https://www.researchgate.

net/figure/Stereo-triangulation-from-a-pair-of-cameras_fig4_215482736.

Accessed 8 May 2021.

[14] Sebastian O.H. Madgwick. An efficient orientation filter for inertial and inertial/magnetic

sensor arrays. https://www.x-io.co.uk/res/doc/madgwick_internal_report.pdf.

Accessed 3 May 2021.

[15] Jim Cahill. Improving oil and gas exploration performance. https:

//www.emersonautomationexperts.com/2018/industry/oil-gas/

improving-oil-gas-exploration-performance/. Accessed 10 May 2021.

[16] Luxonis. Luxonis oak-d depthai stereo camera. https://www.antratek.com/

luxonis-oak-d-depthai-hardware. Downloaded 7 May 2021.

[17] Intel. Intel® realsense™ tracking camera t265. https://www.intelrealsense.com/

tracking-camera-t265/. Downloaded 7 May 2021.

https://towardsdatascience.com/building-a-sonar-sensor-array-with-arduino-and-python-c5b4cf30b945
https://towardsdatascience.com/building-a-sonar-sensor-array-with-arduino-and-python-c5b4cf30b945
https://towardsdatascience.com/building-a-sonar-sensor-array-with-arduino-and-python-c5b4cf30b945
https://www.apogeeweb.net/electron/Deep-Analysis-of-Infrared-Sensor.html
https://www.apogeeweb.net/electron/Deep-Analysis-of-Infrared-Sensor.html
https://www.1stvision.com/machine-vision-solutions/2019/07/benefits-of-cmos-based-machine-vision-cameras-vs-ccd.html
https://www.1stvision.com/machine-vision-solutions/2019/07/benefits-of-cmos-based-machine-vision-cameras-vs-ccd.html
https://www.princetoninstruments.com/learn/camera-fundamentals/field-of-view-and-angular-field-of-view
https://www.princetoninstruments.com/learn/camera-fundamentals/field-of-view-and-angular-field-of-view
https://www.electronicspecifier.com/products/artificial-intelligence/advances-in-next-gen-camera-module-circuit-design
https://www.electronicspecifier.com/products/artificial-intelligence/advances-in-next-gen-camera-module-circuit-design
https://www.electronicspecifier.com/products/artificial-intelligence/advances-in-next-gen-camera-module-circuit-design
https://www.researchgate.net/figure/Stereo-triangulation-from-a-pair-of-cameras_fig4_215482736
https://www.researchgate.net/figure/Stereo-triangulation-from-a-pair-of-cameras_fig4_215482736
https://www.x-io.co.uk/res/doc/madgwick_internal_report.pdf
https://www.emersonautomationexperts.com/2018/industry/oil-gas/improving-oil-gas-exploration-performance/
https://www.emersonautomationexperts.com/2018/industry/oil-gas/improving-oil-gas-exploration-performance/
https://www.emersonautomationexperts.com/2018/industry/oil-gas/improving-oil-gas-exploration-performance/
https://www.antratek.com/luxonis-oak-d-depthai-hardware
https://www.antratek.com/luxonis-oak-d-depthai-hardware
https://www.intelrealsense.com/tracking-camera-t265/
https://www.intelrealsense.com/tracking-camera-t265/

BIBLIOGRAPHY 123

[18] Amazon. Adafruit 9-dof absolute orientation imu fusion breakout - bno055. https://www.

amazon.ca/Adafruit-Absolute-Orientation-Fusion-Breakout/dp/B017PEIGIG.

Downloaded 7 May 2021.

[19] Arduino. Arduino uno rev3. https://store.arduino.cc/arduino-uno-rev3. Down-

loaded 7 May 2021.

[20] Komplett. Svive hydra studioarm. https://www.komplett.no/product/

941659/datautstyr/pc-tilbehoer/streaming/streaming-tilbehoer/

svive-hydra-studioarm?feature=freightwidget. Accessed 9 May 2021.

[21] Krzysztof Cisek, Artur Zolich, Kristian Klausen, and Tor Arne Johansen. Ultra-wide band

real time location systems: Practical implementation and uav performance evaluation.

In 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems

(RED-UAS), pages 204–209, 2017.

[22] Thor I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control. JOHN WI-

LEY and SONS, Ltd., John Wiley and Sons Ltd, The Atrium, Southern Gate, Chichester, West

Sussex, PO19 8SQ, United Kingdom, 2011.

[23] Regjeringen. Norway leading maritime nation. https://www.regjeringen.no/

contentassets/05c0e04689cf4fc895398bf8814ab04c/maritim_strategi_engelsk_

trykk.pdf. Accessed 20 Apr. 2021.

[24] R.E. Kalman. A new approach to linear filtering and prediction problems. https://www.

cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf. Accessed 29 Apr. 2021.

[25] Randall Dewey Knight. Physics for scientists and engineers: a strategic approach with mod-

ern physics, page 54–86. Pearson, 2017.

[26] Dennis S. Bernstein. Geometry, kinematics, statics and dynamics. Princeton Univeristy

Press, 41 William St, Princeton, NJ 08540, USA, 2012.

[27] Marcelo H. Ang and Vassilios D. Tourassis. Singularities of euler and roll-pitch-yaw rep-

resentations. IEEE Transactions on Aerospace and Electronic Systems, AES-23(3):317–324,

1987.

https://www.amazon.ca/Adafruit-Absolute-Orientation-Fusion-Breakout/dp/B017PEIGIG
https://www.amazon.ca/Adafruit-Absolute-Orientation-Fusion-Breakout/dp/B017PEIGIG
https://store.arduino.cc/arduino-uno-rev3
https://www.komplett.no/product/941659/datautstyr/pc-tilbehoer/streaming/streaming-tilbehoer/svive-hydra-studioarm?feature=freightwidget
https://www.komplett.no/product/941659/datautstyr/pc-tilbehoer/streaming/streaming-tilbehoer/svive-hydra-studioarm?feature=freightwidget
https://www.komplett.no/product/941659/datautstyr/pc-tilbehoer/streaming/streaming-tilbehoer/svive-hydra-studioarm?feature=freightwidget
https://www.regjeringen.no/contentassets/05c0e04689cf4fc895398bf8814ab04c/maritim_strategi_engelsk_trykk.pdf
https://www.regjeringen.no/contentassets/05c0e04689cf4fc895398bf8814ab04c/maritim_strategi_engelsk_trykk.pdf
https://www.regjeringen.no/contentassets/05c0e04689cf4fc895398bf8814ab04c/maritim_strategi_engelsk_trykk.pdf
https://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf
https://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf

BIBLIOGRAPHY 124

[28] Jose Luis Blanco. A tutorial on se(3) transformation parameterizations and on-manifold

optimization. 09 2010.

[29] Satya Mallick. Rotation matrix to euler angles. https://learnopencv.com/

rotation-matrix-to-euler-angles/. Accessed 12 May 2021.

[30] Frede Frisvold and Jan Gunnar Moe. Statistikk for ingeniører. Fagbokforlaget, Postboks

6050 Postterminalen, 5892 Bergen, 2004.

[31] Store Norske Leksikon. Normalfordeling. https://snl.no/normalfordeling. Accessed

30 Apr. 2021.

[32] Merriam-Webster.com Dictionary. Sensor. https://www.merriam-webster.com/

dictionary/sensor. Accessed 12 Feb. 2021.

[33] Sparkfun. Gyroscope. https://learn.sparkfun.com/tutorials/gyroscope/all. Ac-

cessed 27 Jan. 2021.

[34] Epson Device Blog Team. Gyro sensors - how they work and what’s ahead. https://www5.

epsondevice.com/en/information/technical_info/gyro/. Accessed 27 Jan. 2021.

[35] Steven C. Frautschi. The mechanical universe: mechanics and heat. Cambridge University

Press, 2008.

[36] Store Norske Leksikon. Magnetometer. https://snl.no/magnetometer. Accessed 8 May

2021.

[37] Fierce Electronics. What is an accelerometer? https://www.fierceelectronics.com/

sensors/what-accelerometer. Accessed 22 Apr. 2021.

[38] Banner Engineering Corp. Radar sensors. https://www.bannerengineering.com/us/

en/products/sensors/radar-sensors.html?pageNum=1&#all. Accessed 27 Jan. 2021.

[39] Baumer A/S. Functionality and technology of radar sensors. https:

//www.baumer.com/dk/en/service-support/function-principle/

functionality-and-technology-of-radar-sensors/a/Know-how_Function_

Radar-sensors. Accessed 27 Jan. 2021.

https://learnopencv.com/rotation-matrix-to-euler-angles/
https://learnopencv.com/rotation-matrix-to-euler-angles/
https://snl.no/normalfordeling
https://www.merriam-webster.com/dictionary/sensor
https://www.merriam-webster.com/dictionary/sensor
https://learn.sparkfun.com/tutorials/gyroscope/all
https://www5.epsondevice.com/en/information/technical_info/gyro/
https://www5.epsondevice.com/en/information/technical_info/gyro/
https://snl.no/magnetometer
https://www.fierceelectronics.com/sensors/what-accelerometer
https://www.fierceelectronics.com/sensors/what-accelerometer
https://www.bannerengineering.com/us/en/products/sensors/radar-sensors.html?pageNum=1&#all
https://www.bannerengineering.com/us/en/products/sensors/radar-sensors.html?pageNum=1&#all
https://www.baumer.com/dk/en/service-support/function-principle/functionality-and-technology-of-radar-sensors/a/Know-how_Function_Radar-sensors
https://www.baumer.com/dk/en/service-support/function-principle/functionality-and-technology-of-radar-sensors/a/Know-how_Function_Radar-sensors
https://www.baumer.com/dk/en/service-support/function-principle/functionality-and-technology-of-radar-sensors/a/Know-how_Function_Radar-sensors
https://www.baumer.com/dk/en/service-support/function-principle/functionality-and-technology-of-radar-sensors/a/Know-how_Function_Radar-sensors

BIBLIOGRAPHY 125

[40] Arrow Electronics. Introduction to bayer filters. https://www.arrow.com/en/

research-and-events/articles/introduction-to-bayer-filters. Accessed 8 May

2021.

[41] Chris Woodford. Digital cameras. https://www.explainthatstuff.com/

digitalcameras.html. Accessed 8 May 2021.

[42] Nanotec Museum. What is a cmos image sensor? https://www.tel.com/museum/

exhibition/principle/cmos.html. Accessed 8 May 2021.

[43] Elisabeth Gray. What is focal length in photography? https://photographylife.com/

what-is-focal-length-in-photography. Accessed 8 May 2021.

[44] Denis Koshelev. What is a tof camera and how modern smartphones use it.

https://root-nation.com/en/articles-en/tech-en/en-what-is-a-tof-camera/

#What_is_ToF. Accessed 10 May 2021.

[45] Vision Team. What is a stereo vision camera? https://www.e-consystems.com/blog/

camera/what-is-a-stereo-vision-camera/. Accessed 8 May 2021.

[46] Texas Instruments. Op amps for everyone. https://web.mit.edu/6.101/www/

reference/op_amps_everyone.pdf. Accessed 29 Apr. 2021.

[47] Wilfried Elmenreich. Sensor fusion in time-triggered systems. https:

//mobile.aau.at/~welmenre/papers/elmenreich_Dissertation_

sensorFusionInTimeTriggeredSystems.pdf. Accessed 29 Apr. 2021.

[48] Sparkfun. Analog-to-digital conversion. https://learn.sparkfun.com/tutorials/

analog-to-digital-conversion/all. Accessed 29 Apr. 2021.

[49] Lonnie C. Ludeman. Fundamentals of digital signal processing, page 44–48. Wiley, 1987.

[50] Daksh Trehan. Gradient descent explained. https://towardsdatascience.com/

gradient-descent-explained-9b953fc0d2c. Accessed 3 May 2021.

[51] Robert Alexander Adams and Christopher Essex. Calculus: a complete course, page

709–743. Pearson, 2014.

https://www.arrow.com/en/research-and-events/articles/introduction-to-bayer-filters
https://www.arrow.com/en/research-and-events/articles/introduction-to-bayer-filters
https://www.explainthatstuff.com/digitalcameras.html
https://www.explainthatstuff.com/digitalcameras.html
https://www.tel.com/museum/exhibition/principle/cmos.html
https://www.tel.com/museum/exhibition/principle/cmos.html
https://photographylife.com/what-is-focal-length-in-photography
https://photographylife.com/what-is-focal-length-in-photography
https://root-nation.com/en/articles-en/tech-en/en-what-is-a-tof-camera/#What_is_ToF
https://root-nation.com/en/articles-en/tech-en/en-what-is-a-tof-camera/#What_is_ToF
https://www.e-consystems.com/blog/camera/what-is-a-stereo-vision-camera/
https://www.e-consystems.com/blog/camera/what-is-a-stereo-vision-camera/
https://web.mit.edu/6.101/www/reference/op_amps_everyone.pdf
https://web.mit.edu/6.101/www/reference/op_amps_everyone.pdf
https://mobile.aau.at/~welmenre/papers/elmenreich_Dissertation_sensorFusionInTimeTriggeredSystems.pdf
https://mobile.aau.at/~welmenre/papers/elmenreich_Dissertation_sensorFusionInTimeTriggeredSystems.pdf
https://mobile.aau.at/~welmenre/papers/elmenreich_Dissertation_sensorFusionInTimeTriggeredSystems.pdf
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion/all
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion/all
https://towardsdatascience.com/gradient-descent-explained-9b953fc0d2c
https://towardsdatascience.com/gradient-descent-explained-9b953fc0d2c

BIBLIOGRAPHY 126

[52] G. Welch and G Bishop. An introduction to the kalman filter. page 1, 2006.

[53] Gholamreza Anbarjafari. Introduction to image processing. https://sisu.ut.ee/

imageprocessing/book/1. Accessed 15 Apr. 2021.

[54] Priya Pedamkar. Rgb color model. https://www.educba.com/rgb-color-model/. Ac-

cessed 03 May 2021.

[55] Li Shuhua and Guo Gaizhi. The application of improved hsv color space model in image

processing. In 2010 2nd International Conference on Future Computer and Communica-

tion, volume 2, pages V2–10–V2–13, 2010.

[56] John Bradley. Rgb & hsv colorspaces. http://www.trilon.com/xv/manual/xv-3.10a/

cover.html#Table%20of%20Contents. Accessed 19 Apr. 2021.

[57] Civil Lead. What is contour? what is contour interval? complete guide. https://www.

civillead.com/what-is-contour/. Accessed 19 Apr. 2021.

[58] L. E. Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009. revision #137311.

[59] Intel. Realsense t265 motion tracker. https://www.intelrealsense.com/

tracking-camera-t265/. Accessed 28 Apr. 2021.

[60] Danny Jost. What is an ultrasonic sensor? https://www.fierceelectronics.com/

sensors/what-ultrasonic-sensor. Accessed 28 Jan. 2021.

[61] Shawn. Types of distance sensor and how to select one? https://www.seeedstudio.

com/blog/2019/12/23/distance-sensors-types-and-selection-guide/. Accessed

28 Jan. 2021.

[62] Giulio Reina, James Patrick Underwood, and Graham Brooker. Short-range radar per-

ception in outdoor environments. https://www.researchgate.net/publication/

220942086_Short-Range_Radar_Perception_in_Outdoor_Environments. Accessed 9

May 2021.

https://sisu.ut.ee/imageprocessing/book/1
https://sisu.ut.ee/imageprocessing/book/1
https://www.educba.com/rgb-color-model/
http://www.trilon.com/xv/manual/xv-3.10a/cover.html#Table%20of%20Contents
http://www.trilon.com/xv/manual/xv-3.10a/cover.html#Table%20of%20Contents
https://www.civillead.com/what-is-contour/
https://www.civillead.com/what-is-contour/
https://www.intelrealsense.com/tracking-camera-t265/
https://www.intelrealsense.com/tracking-camera-t265/
https://www.fierceelectronics.com/sensors/what-ultrasonic-sensor
https://www.fierceelectronics.com/sensors/what-ultrasonic-sensor
https://www.seeedstudio.com/blog/2019/12/23/distance-sensors-types-and-selection-guide/
https://www.seeedstudio.com/blog/2019/12/23/distance-sensors-types-and-selection-guide/
https://www.researchgate.net/publication/220942086_Short-Range_Radar_Perception_in_Outdoor_Environments
https://www.researchgate.net/publication/220942086_Short-Range_Radar_Perception_in_Outdoor_Environments

BIBLIOGRAPHY 127

[63] LiDAR and RADAR Information. Advantages and disadvantages of radar systems. https:

//lidarradar.com/info/advantages-and-disadvantages-of-radar-systems. Ac-

cessed 9 May 2021.

[64] Flyguys. Advantages and disadvantages of lidar. https://flyguys.com/

advantages-disadvantages-lidar-technology/. Accessed 9 May 2021.

[65] ZMP. What is robovision® stereo camera? https://www.zmp.co.jp/en/knowledge/

adas_dev/adas_sensor/adas_camera/adas_stereo. Accessed 9 May 2021.

[66] Adafruit. Gyroscope calibration. https://learn.adafruit.com/

adafruit-sensorlab-gyroscope-calibration. Accessed 22 Apr. 2021.

[67] Rolfe Schmidt. Getting started with accelerometers and micro-controllers: Ar-

duino + adxl335. https://chionophilous.wordpress.com/2011/06/20/

getting-started-with-accelerometers-and-micro-controllers-arduino-adxl335/.

Accessed 28 Apr. 2021.

[68] VectorNav. Magnetometer errors & calibration. https://www.vectornav.com/

resources/magnetometer-errors-calibration. Accessed 21 Apr. 2021.

[69] Kris Winer. Simple and effective mangetometer calibration. https://github.com/

kriswiner/MPU6050/wiki/Simple-and-Effective-Magnetometer-Calibration. Ac-

cessed 22 Apr. 2021.

[70] Mark Pedley. Tilt sensing using a three-axis accelerometer. https://www.nxp.com/

files-static/sensors/doc/app_note/AN3461.pdf. Accessed 28 Apr. 2021.

[71] Michael J. Caruso. Applications of magnetoresistive sensors in navigation systems.

https://d1.amobbs.com/bbs_upload782111/files_50/ourdev_711348H43I5O.pdf.

Accessed 29 Apr. 2021.

[72] Fatemeh Abyarjoo, Armando Barreto, Jonathan Cofino, and Francisco R. Ortega. Imple-

menting a sensor fusion algorithm for 3d orientation detection with inertial/magnetic sen-

sors. https://daimonmicha.bplaced.net/media/raspberrypi/Algo3DFusionsMems.

pdf. Accessed 29 Apr. 2021.

https://lidarradar.com/info/advantages-and-disadvantages-of-radar-systems
https://lidarradar.com/info/advantages-and-disadvantages-of-radar-systems
https://flyguys.com/advantages-disadvantages-lidar-technology/
https://flyguys.com/advantages-disadvantages-lidar-technology/
https://www.zmp.co.jp/en/knowledge/adas_dev/adas_sensor/adas_camera/adas_stereo
https://www.zmp.co.jp/en/knowledge/adas_dev/adas_sensor/adas_camera/adas_stereo
https://learn.adafruit.com/adafruit-sensorlab-gyroscope-calibration
https://learn.adafruit.com/adafruit-sensorlab-gyroscope-calibration
https://chionophilous.wordpress.com/2011/06/20/getting-started-with-accelerometers-and-micro-controllers-arduino-adxl335/
https://chionophilous.wordpress.com/2011/06/20/getting-started-with-accelerometers-and-micro-controllers-arduino-adxl335/
https://www.vectornav.com/resources/magnetometer-errors-calibration
https://www.vectornav.com/resources/magnetometer-errors-calibration
https://github.com/kriswiner/MPU6050/wiki/Simple-and-Effective-Magnetometer-Calibration
https://github.com/kriswiner/MPU6050/wiki/Simple-and-Effective-Magnetometer-Calibration
https://www.nxp.com/files-static/sensors/doc/app_note/AN3461.pdf
https://www.nxp.com/files-static/sensors/doc/app_note/AN3461.pdf
https://d1.amobbs.com/bbs_upload782111/files_50/ourdev_711348H43I5O.pdf
https://daimonmicha.bplaced.net/media/raspberrypi/Algo3DFusionsMems.pdf
https://daimonmicha.bplaced.net/media/raspberrypi/Algo3DFusionsMems.pdf

BIBLIOGRAPHY 128

[73] Kaustubh Sadekar and Satya Mallick. Camera calibration python opencv. https://docs.

opencv.org/master/dc/dbb/tutorial_py_calibration.html. Accessed 26 Apr. 2021.

[74] OpenCV. Harris corner detection. https://docs.opencv.org/3.4/dc/d0d/tutorial_

py_features_harris.html. Accessed 28 Apr. 2021.

[75] Alexander Mordvintsev and Abid K. Sift (scale-invariant feature transform).

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/

py_feature2d/py_sift_intro/py_sift_intro.html. Accessed 28 Apr. 2021.

[76] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In

Aleš Leonardis, Horst Bischof, and Axel Pinz, editors, Computer Vision – ECCV 2006, pages

404–417, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[77] OpenCV. Flann (fast library for approximate nearest neighbours). https://docs.opencv.

org/3.4/d5/d6f/tutorial_feature_flann_matcher.html. Accessed 28 Apr. 2021.

[78] Scikit-Learn. Nearest neighbours). https://scikit-learn.org/stable/modules/

neighbors.html. Accessed 28 Apr. 2021.

[79] Jernej Mrovlje1 and Damir Vrančić. Calculating depth. http://dsc.ijs.si/files/

papers/S101%20Mrovlje.pdf. Accessed 7 May 2021.

[80] Nicolas de Palézieux, Tobias Nägeli, and Otmar Hilliges. Duo-vio: Fast, light-weight, stereo

inertial odometry. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS), pages 2237–2242, 2016.

[81] Anders Grunnet-Jepsen, Michael Harville, Brian Fulkerson, Daniel Piro, Shirit

Brook, and Jim Radford. Intel vslam. https://dev.intelrealsense.com/docs/

intel-realsensetm-visual-slam-and-the-t265-tracking-camera. Accessed 27

Apr. 2021.

[82] Jan Hartmann, Jan Helge Klüssendorff, and Erik Maehle. A comparison of feature descrip-

tors for visual slam. In 2013 European Conference on Mobile Robots, pages 56–61, 2013.

https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/3.4/dc/d0d/tutorial_py_features_harris.html
https://docs.opencv.org/3.4/dc/d0d/tutorial_py_features_harris.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html
https://docs.opencv.org/3.4/d5/d6f/tutorial_feature_flann_matcher.html
https://docs.opencv.org/3.4/d5/d6f/tutorial_feature_flann_matcher.html
https://scikit-learn.org/stable/modules/neighbors.html
https://scikit-learn.org/stable/modules/neighbors.html
http://dsc.ijs.si/files/papers/S101%20Mrovlje.pdf
http://dsc.ijs.si/files/papers/S101%20Mrovlje.pdf
https://dev.intelrealsense.com/docs/intel-realsensetm-visual-slam-and-the-t265-tracking-camera
https://dev.intelrealsense.com/docs/intel-realsensetm-visual-slam-and-the-t265-tracking-camera

BIBLIOGRAPHY 129

[83] Abdulrahman Alarifi, AbdulMalik Al-Salman, Mansour Alsaleh, Ahmad Alnafessah, Suheer

Al-Hadhrami, Mai A Al-Ammar, and Hend S Al-Khalifa. Ultra wideband indoor positioning

technologies: Analysis and recent advances, May 2016.

[84] Sebastian Dädeby and Joakim Hesselgren. A system for indoor positioning using ultra-

wideband technology. Master’s thesis, Chalmers University of Technology, 2017. Accessed

3 May 2021.

Appendices

Appendix A

Preproject Report

PILOT PROJECT - REPORT
FOR BACHELOR THESIS

Post address Visiting address Phone
NTNU i Ålesund Larsgårdsvegen 2 73 59 50 00
6025 Ålesund Website E-mail address
Norway www.ntnu.no postmottak@alesund.ntnu.no

TITLE:
Position Estimation for Heave-Compensated System

CANDIDATES:
Erlend Holseker
Erik Bjørnøy
Arvin Khodabandeh
Isak Gamnes Sneltvedt
DATE: SUBJECT CODE: SUBJECT: DOCUMENT ACCESS:

15.01.2021 IE303612 Bachelor Thesis - Open

STUDY: NO.
PAGES/ATTACHMENTS:

BIBL. NR:

AUTOMATION 10/1 - Not in use -

CLIENT/SUPERVISORS:
Seaonics
Aleksander L. Skrede
Ottar L. Osen

TASK/SUMMARY:
The theme of this report is the pilot project for a bachelor thesis. The thesis is to be
conducted by four third-year automation students. The client is Seaonics. The task is
to develop a sensor-package to improve their system for heave-compensated cranes
and/or gangways.

To solve the problem, the group will make mathematical models of the issue, as well
as develop a simulation. The group will collect information about relevant sensor
types, and assess which sensor technology fits best for the purpose of the project.
The justification for choice of sensor(s) will be properly documented with
advantages and disadvantages.

The group will develop an interface for reading and processing the sensor data. The
data will be used further to control the heave-compensation.

The group will have weekly status meetings, as well as a meeting with the steering
group every other week.

This report contains concepts, project organization, agreements, project description,
documentation, planned meetings and reportation, planned deviation consideration
and equipment needs.

NTNU IN ÅLESUND PAGE 2
PILOT PROJECT REPORT – BACHELOR THESIS

This assignment is an exam submission conducted by student(s) at NTNU in Ålesund.

NTNU IN ÅLESUND PAGE 3
PILOT PROJECT REPORT – BACHELOR THESIS

TABLE OF CONTENTS

INTRODUCTION 4

CONCEPTS 4

PROJECT ORGANIZATION 5
PROJECT GROUP 5

TASKS FOR THE PROJECT GROUP - ORGANIZATION 5
TASKS FOR PROJECT MANAGER 5
TASKS FOR SECRETARY 5
TASKS FOR REMAINING MEMBERS 5

STEERING GROUP(SUPERVISOR AND CLIENT CONTACT) 5

AGREEMENTS 6
AGREEMENT WITH CLIENT 6
WORKPLACE AND RESOURCES 6
GROUP NORMS - COOPERATION TERMS - ATTITUDE 6

PROJECT DESCRIPTION 7
PROBLEM - GOAL - INTENT 7
REQUIREMENTS FOR SOLUTION OR RESULT - SPECIFICATION 7
PLANNED PROCEDURE(S) FOR DEVELOPMENT – METHOD(S) 7
COLLECTION OF INFORMATION – COMPLETED AND PLANNED 8
ASSESSMENT – RISK ANALYSIS 8
MAIN ACTIVITIES IN FURTHER WORK 8
PROGRESS PLAN – PROJECT MANAGEMENT 8

MAIN PLAN 8
STEERING AIDS 9
DEVELOPMENT AIDS 9
INTERNAL CONTROL - EVALUATION 9

DECISIONS – DECISION MAKING PROCESS 9

DOCUMENTATION 9
REPORTS AND TECHNICAL DOCUMENTS 9

PLANNED MEETINGS AND REPORTS 10
MEETINGS 10

MEETINGS WITH THE STEERING GROUP 10
PROJECT MEETINGS 10

PERIODIC REPORTS 10
PROGRESS REPORTS (INCL. MILESTONES) 10

PLANNED DEVIATION CONSIDERATION 10

EQUIPMENT NEEDS/PREREQUISITES FOR IMPLEMENTATION 10

REFERENCES 10

NTNU IN ÅLESUND PAGE 4
PILOT PROJECT REPORT – BACHELOR THESIS

1 INTRODUCTION
The client of this project is Seaonics. Seaonics was founded in 2011, and they deliver load handling
technology to the marine and offshore industry. This includes crane systems and winches, with integrated
control systems.

Seaonics has developed their own system for heave compensated cranes on ships. This system uses an
MRU to measure the impact the waves have on the movement of the ship, in order to control the crane to
hold the load still in relation to a fixed point. This system is used both for free-hanging loads, as well as
gangways that are intended to transport crew from ship to, for example, a wind turbine in the sea. This
system works well for pitch, roll and heave motions, but not so well for surge, sway and yaw motions.
The goal of this project is to develop a sensor-package to improve the system to perform better on these
motions.

The group will look primarily at two different cases; ship motion in relation to a fixed object, and ship
motion in relation to a moving object. The group aims to develop a solution which can be adapted to both
of these scenarios. It is also intended to be adaptable for both hanging load and gangways. To solve the
problem, the group will look at and assess which sensor types are best to use, where the sensors should be
placed, and how the signals from the sensors should be processed and used further.

The group has chosen this project because they think the issue is interesting and challenging, and they
think it will be very educational.

2 CONCEPTS
Heave compensated crane
A heave compensated crane is a crane which uses a technique called AHC (Active heave compensation).
This technique aims to reduce the impact ocean waves have on a ship’s movement, to be able to hold a
load as still as possible. This means that even if the ship is moving, the load will be hanging still at the
same point.

MRU (Motion Reference Unit)
A MRU is a device containing a wide range of motion sensors. This device is used on ships for many
different applications, such as dynamic positioning (DP), wave height monitoring, heave compensation of
cranes, etc.

DOF (Degrees of Freedom)
Degrees of Freedom refers to the freedom of movement of a rigid object in the three-dimensional space
(Wikipedia). More specifically, a rigid object is free to change position by moving in a straight line on the
X, Y or Z-axis, or by rotating around one of these axes. Therefore, a rigid object has six degrees of
freedom (6DOF).

NTNU IN ÅLESUND PAGE 5
PILOT PROJECT REPORT – BACHELOR THESIS

3 PROJECT ORGANIZATION

3.1 Project group

Student number(s)
498356 - Erlend Holseker
485477 - Arvin Khodabandeh
487781 - Isak Gamnes Sneltvedt
494690 - Erik Bjørnøy

Table: Student numbers for all the group members

3.1.1 Tasks for the project group - organization
1) Project manager
2) Secretary
3) Group members

3.1.2 Tasks for project manager
The project manager is responsible for appointing and leading meetings, both internally and with the
steering group. The project manager will ensure that the meetings are relevant and on point. Also, the
project manager is responsible for contacting any group members that do not attend the meetings unless
this has been clarified beforehand. The project manager is also responsible for following up on all
deadlines and ensuring that each group member fulfills their assignments in a timely manner with high
quality.

3.1.3 Tasks for secretary
The secretary is responsible for taking notes during meetings, as well as email communication with the
steering group. The notes should give a short and understandable summary of the meeting. When the
summary is written it should be published for all group members to access.

3.1.4 Tasks for remaining members
Each group member is required to solve all tasks that are assigned to them in a timely manner with high
quality. If a group member is unable to finish their task within the time frame that has been set, the group
member is to inform the project manager as soon as possible or ask any other group member for
assistance. Every group member is responsible for helping other group members to the best of their ability
when necessary.

3.2 Steering group(supervisor and client contact)

Seaonics - 71 39 16 00
Client: Daniel Nordal Bjørneseth
Client: Stig Espeseth
Supervisor: Aleksander L. Skrede
Assistant supervisor: Ottar L. Osen

NTNU IN ÅLESUND PAGE 6
PILOT PROJECT REPORT – BACHELOR THESIS

4 AGREEMENTS

4.1 Agreement with client
The client has given a proposition of a task that the group may conduct. The group is to formulate the
specific assignment within the boundaries of what has been discussed with the client.
The client will provide the group with an office at Seaonics premises on the grounds that the active
restrictions due to Covid-19, provided either by the Norwegian government or Seaonics, allows the group
to stay at the premises.

The group is not required to pay for any equipment during this project. If any equipment is needed to
solve the project, the group may present this to the client which will decide whether or not to buy it.
The client will provide the group with help and consultation if needed.

The group has not discussed any disclosure agreement with the client.
Every group member will sign a standard agreement provided by NTNU for conducting a project
assignment in collaboration with a company. See attachment 2.

4.2 Workplace and resources
Seaonics will provide the group with an office at their premises, unless the active Covid-19 restrictions
does not allow the group to stay at the premises. In such a case, the group is required to work from home
or find another solution.

Any equipment used to solve this project is to be paid for in its full by Seaonics. Seaonics will decide
whether or not to buy the equipment.

Seaonics is to select a number of people which will act as their representatives. Any questions from the
group regarding the project will be directed to the representatives from Seaonics.

The group will have weekly meetings with status updates internally in the group. Every 14th day there
will be a meeting with the supervisor(s). During this meeting, the group will present their progress and get
feedback on their work.

4.3 Group norms - Cooperation terms - Attitude
Every group member is required to aid and assist other group members when requested. Every group
member is also responsible to fulfill their specific assignments within a given timeframe with as high
quality as possible. The group members are required to be at office or available during the hours that have
been agreed by the group, unless the group has been informed of the absence beforehand. In the event of
illness, the group member is required to inform the rest of the group as soon as possible and is required to
follow the current Covid-19 restrictions at that time.

Working hours are 08.00 - 16.00, Monday - Friday. Lunch break 11.30 - 12.00.
In week 3, 5, 9 and 10 the focus on this project will be smaller, since the group has to attend the Industry
4.0 course.

NTNU IN ÅLESUND PAGE 7
PILOT PROJECT REPORT – BACHELOR THESIS

5 PROJECT DESCRIPTION

5.1 Problem - Goal - Intent
The goal of this project is to improve the positional estimation accuracy of the heave-compensated
gangway. Today, the sensor used is an MRU. The existing heave-compensation system is well suited to
compensate for pitch, roll and heave motions, but does not perform well at yaw, sway and surge motions.
Our main goal is to find different sensors that can aid and improve the compensation to increase the
positional accuracy of the system. To reach this goal, we have to set a number of sub-goals.

The first goal will be to find a mathematical model to describe the motions of a ship in relation to earth.
Next goal is to expand the model to describe the motions of the ship in relation to a fixed point.
After this is done, the goal is to mathematically describe the motion of two independent floating objects
(e.g. a ship and a wind turbine) in the ocean, in relation to each other.
Once the group has understood the mathematics and physics behind this, they will create a simulation of
it, in Matlab or Python or Unity. Seaonics uses Unity for their simulations, so the group will try to use
this. The purpose of the simulation will be to gain a better understanding of the physics, and the fact that
making a simulation is instructive in itself.
In parallel with these goals, the group will look at the possibilities of sensors on the market. The plan is to
create a well-descriptive list of sensors that describe the advantages and disadvantages of all types of
sensors.
The group understands that they will most likely need to use Kalman filter in the project. Therefore, the
group will set aside some time to learn the theory behind the Kalman filter.

When the group has chosen one or several sensors to use, they will develop an interface for reading and
processing the input from the sensors. The purpose is to make the information from the sensor(s) easy to
read and utilize for Seaonics’ external system. In addition to this, the group has to figure out where the
sensor(s) should be placed. An option is to create a small prototype with small-scale sensors to see when
the prototype performs best.

If the main goal is reached and the group has extra time, they will try to expand the solution to also fit on
heave-compensated cranes.

The group aims to start writing the bachelor report early, and write it alongside the project.

5.2 Requirements for solution or result - specification
One of the risks in the project is that the system does not work under all conditions. Due to the fact that
the system will be used on a ship in the ocean, there is a possibility that the measurements from the
sensors can be disrupted or interfered by water. Another risk is that the system will perform well for
countering big waves, but not for smaller waves or movements, or vice versa.

One important aspect to succeed is the placement of the sensor(s). The sensor(s) has to be placed in a
location where they are not exposed to the elements or any other factors that may influence the sensor
readings

The result should include a theoretical solution to minimize the error that the MRUs is unable to
counteract. Since the system will be used on the ocean, it should meet the requirements for Seaonics’
current standards. The results should also include a proposition of which sensor(s) to use.

The result that is handed over to the client must contain a thorough justification of the choice of sensor(s)
and their placement, as well as all of the mathematical solutions that form the basis for the choices that
have been made. In addition, the project report must be part of the delivery. If a prototype is made, this
will also be handed over.

5.3 Planned procedure(s) for development – method(s)
In the beginning of the project, the group will focus on the theoretical part of the project. This includes
calculating the mathematical models of a ship's motion in relation to ocean waves. After the first
mathematical model is complete, the group will continue by calculating the mathematical model of a
ship’s motion in relation to a fixed point. The third mathematical model will be a model that describes the

NTNU IN ÅLESUND PAGE 8
PILOT PROJECT REPORT – BACHELOR THESIS

motion of two moving objects in relation to each other. Lastly, the models will be simulated in either
Python or Matlab. While calculating the mathematical models, the group will also be focusing on
comparing different sensors that can be used to solve the project. The group will also learn how to
implement a Kalman Filter.

The second phase of the project is the implementation. In this phase, the group will start off by finding a
few different places where the sensors can be placed. The location must allow the sensor to get good
readings, meaning it will not get blocked by any other objects, for as much time as possible. The sensor
should also be placed in a location where it will not be exposed to rain, waves and other factors that may
disrupt the readings and cause noise. The group will also implement an interface for reading and
processing the input from the chosen sensors.

The last phase is the testing phase. The testing phase will be used to determine how effective the system
is and how good it works under different conditions. The group will try to make it fail by causing “worst
case scenarios”. This may include unplugging one or more of the sensors while running, splash water on
the sensors and different types of waves. During this phase, there may be some changes to the parameters
of the mathematical models, the sensor type, specification or placement of the sensor(s).

5.4 Collection of information – completed and planned
Seaonics has already developed a system that uses MRU’s. This means that they have already calculated
the mathematical models and implemented the system. This may prove useful if the group is struggling or
is unable to solve some of the tasks without the help from the representatives from Seaonics.

5.5 Assessment – risk analysis
One of the greatest risks for this project is the current Covid-19 pandemic. If the Norwegian government
introduces a curfew, the group must work from home. This will make the project more difficult, because
the group can not meet physically, and will not get help as easily from Seaonics.

Another risk is if the group decides to order any equipment, and there’s problems with the delivery. It
could be late delivery, or if the ordered items are lost in transit. By using equipment in local stock to the
greatest extent possible, this risk could be minimized.

5.6 Main activities in further work
The main activities, time frames and responsibilities can be found in Attachment 1, Gantt-chart.

5.7 Progress plan – project management

5.7.1 Main plan
For this project the goal is to locate the position of a given entity in relation to another object, while both
objects are in motion. To achieve this the group must recommend a sensory system that can be fitted to
the equipment delivered by Seaonics.
There can be up to six degrees of freedom for each object which must be accounted for.

Ideally, a general solution would be most efficient, with one sensor-pack that can fit on both the gangway
and a crane, but abstracting and generalizing the sensor-package can be impractical, so there is a
possibility for another solution, with different sensors-packages for each case. The main goal is to create a
solution that fits the gangway.
The group must find the most practical and suitable solution.

In the preliminary stages the aim is to first achieve parts of the overall goal, to reach a milestone.
This is to not tackle the full magnitude of the assignment at once, and rather being able to fragment the
different challenges into smaller pieces, and solve them one at a time.

For the first goal the group will focus on finding a mathematical model that represents and describes a
vessel's movement at sea.

NTNU IN ÅLESUND PAGE 9
PILOT PROJECT REPORT – BACHELOR THESIS

The second goal will be to mathematically describe the movement of two moving objects in relation to
each other.

At some stage, after acquiring enough knowledge around the conditions of the assignment, sensor
equipment must be explored, and be considered for purchase.

After the mathematical models are in place, the focus will be on the compensated gangway delivered by
Seaonics. Mainly, orienting a floating vessel in relation to a stationary target.
In this case there will only be accounted for one set of DOF. This is on the vessel itself, and the object
that the vessel is oriented in relation to is assumed to be stationary, as in the case of a windmill anchored
to the seafloor.

When orienting in relation to a stationary target is achieved, the next focus will be to orient a vessel in
relation to a moving object, as in the case of a windmill or vessel that is floating.

In regards to the timeline and individual responsibilities of each goal, see attachment 1.

5.7.2 Steering aids
The group will be using a Gantt-chart to keep track of sub-goals, milestones, timeframes and
responsibilities. The Gantt-chart will be updated weekly on the weekly status meetings within the group.
The Gantt-chart has been divided into 3 main phases; Theory, Implementation and Testing. Each phase
contains multiple sub-categories which describe each task during the project. The Gantt-chart will be
changed during the project as is it hard to accurately determine the necessary time spent on each task.
Additionally, each task may also be divided into more sub tasks. This will be done to give a more
accurate visualisation of the progress.

5.7.3 Development aids
During the project, the group assumes it will take use of 3D-printers and different software. The 3D-
printers will mainly be used to make prototypes for the solution. The software that will be used will
predominantly be free, but some may require a licence.

5.7.4 Internal control - evaluation
Progress evaluation will be done weekly on the weekly status meeting. A goal is reached after an
evaluation from the group as a whole. A completed goal should be a fully functional/complete part of the
assignment. The project manager is responsible for following up on the progress.

5.8 Decisions – decision making process
During the pilot project, the group has been making decisions in meetings. The group discussed
advantages and disadvantages before settling on a decision. A similar approach will be done during the
main project. An exception is that when it comes to major decisions, the group members will be given a
deadline to prepare arguments. This is done to ensure that the best possible decisions are made and that
the group knows more about each side of the issue. This may prove useful when the group is to decide on
what kind of sensor they want to use and the main approach to solving the assignment.

6 DOCUMENTATION
6.1 Reports and technical documents

To keep track of all the documentation related to the project, the group has created a Google Drive folder
where everything is stored. This includes meeting minutes, weekly progress reports, Gantt charts,
technical documents and datasheets, and references.

NTNU IN ÅLESUND PAGE 10
PILOT PROJECT REPORT – BACHELOR THESIS

7 PLANNED MEETINGS AND REPORTS

7.1 Meetings

7.1.1 Meetings with the steering group
The group will convene a status meeting every other monday. A notice will be sent to every involved part.
At these meetings, the latest status report will be discussed, as well as further work.

7.1.2 Project meetings
The group has planned a weekly summary meeting every friday at 14.00, as well as a kick-off meeting
every monday at 09.00. The purpose of these meetings is to maintain a good continuity in the project, and
keep the progress on schedule.

7.2 Periodic reports

7.2.1 Progress reports (incl. milestones)
The Gantt chart will be updated with completed milestones every friday at the summary meetings. A
status report will also be written on Fridays, in addition to the Gantt chart. The status report will be sent to
the supervisors every week.

8 PLANNED DEVIATION CONSIDERATION
By using the summary reports and the Gantt chart, any progress deviations will be detected quickly. If any
deviations are found, corrective measures could be implemented, e.g. dedicate more time to a specific task
or add an extra person to the task.

Any changes to the project will be determined at meetings, and the changes will be noted in summary
reports and updated Gantt chart.

One specific deviation the group has in mind is that if the Covid-19 situation worsens, the Norwegian
government can introduce a curfew. If this happens, the group will not be able to meet each other
physically, and lab work will therefore not be possible. In this case, the group will continue to work as
best as possible and have all meetings online.

If one of the group members falls ill and is unable to perform his tasks, the group will consider how these
tasks should be distributed during the period the group member is ill.

9 EQUIPMENT NEEDS/PREREQUISITES FOR
IMPLEMENTATION

In the beginning of the project, there is no need for any software or hardware. During this project, the
group assumes that some sensors and/or software licenses are needed, but this will be discussed with the
client when the time comes. The group will most likely use the 3D printers located at NTNU to make
prototypes.

10 REFERENCES
Wikipedia. n.d. “Six degrees of freedom.” Wikipedia.

https://en.wikipedia.org/wiki/Six_degrees_of_freedom.

NTNU IN ÅLESUND PAGE 11
PILOT PROJECT REPORT – BACHELOR THESIS

ATTACHMENTS

Attachment 1 Gantt-diagram

Attachment 2 Standard Agreement Guidance NTNU

Appendix B

Gantt Chart

Project Start: 11.01.21

Arvin Khodabandeh Erlend Holseker Display Week: 1 11.01.2021 18.01.2021 25.01.2021 01.02.2021 08.02.2021 15.02.2021 22.02.2021 01.03.2021 08.03.2021 15.03.2021 22.03.2021 29.03.2021 05.04.2021 12.04.2021 19.04.2021 26.04.2021 03.05.2021 10.05.2021 17.05.2021

Isak Gamnes Sneltvedt Erik Bjørnøy 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.
TASK ASSIGNED TO PROGRESS START DAYS END M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S

Phase 1 - Pilot Project 100% 11.01.21 28.01.21
Divide responsibility All members 100% 11.01.21 1 11.01.21
Project description All members 100% 11.01.21 3 13.01.21
Pre project report Draft All members 100% 14.01.21 7 21.01.21
Pre project report All members 100% 21.01.21 7 28.01.21
Progress plan All members 100% 21.01.21 7 28.01.21
Phase 2 - Preparation phase 100% 20.01.21 25.02.21

Learn about rotation matrices and
transformation matrices Arvin, Erlend 100% 20.01.21 31 19.02.21

Learn about quaternions Arvin, Erlend 100% 31.01.21 20 20.02.21
Learn about Kalman filter All members 100% 05.02.21 20 25.02.21
Sensor research and documentation Erik, Isak 100% 20.01.21 19 08.02.21
Evaluate different types of sensors and
where to place them Erik, Isak 100% 08.02.21 17 25.02.21

Phase 3 - Implementation phase 100% 25.02.21 10.04.21
Develop and test a system for
orientation estimation Arvin, Erlend 100% 25.02.21 45 10.04.21

Implement Kalman filter for sensor
fusion Arvin, Erlend 100% 25.02.21 10 06.03.21

Learn about and implement Madgwick
filter for sensor fusion Arvin, Erlend 100% 06.03.21 7 12.03.21

Create python classes for handling
rotations and sensor processing Arvin, Erlend 100% 25.02.21 45 10.04.21

Develop and test a system for position
estimation Erik, Isak 100% 25.02.21 45 10.04.21

Implement a stereo camera to estimate
position Erik, Isak 100% 01.03.21 40 10.04.21

100%

Write report All members 100% 01.02.21 108 20.05.21
Create video presentation, including
shooting and editing All members 100% 05.05.21 13 18.05.21

Total Progression 100% 11.01.21 129 20.05.21

Days until DEADLINE 99% 19.05.21 1 20.05.21

11.01.2021 18.01.2021 25.01.2021 01.02.2021 08.02.2021 15.02.2021 22.02.2021 01.03.2021 08.03.2021 15.03.2021 22.03.2021 29.03.2021 05.04.2021 12.04.2021 19.04.2021 26.04.2021 03.05.2021 10.05.2021 17.05.2021

11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.
M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S

Milestones D
E
A
D
L
I
N
E

Pre-Poject report Draft
Pre-Project Report

Phase 1 - Pilot project finished
Phase 2 - Preparation finished
Phase 3 - Finalization finished
Scheduled Meetings
Weekly Meetings
Kick-off Meeting
Supervisor meeting

Appendix C

Progress Reports 1-6

IE303612

 Bacheloroppgave
Project
Position Estimation

Firma - Oppdragsgiver
Seaonics

Side
1 av 2

Progress report Period/week(s)
2

Prosjektgruppe (navn)
Erik Bjørnøy, Erlend Holseker, Arvin

Khodabandeh, Isak Gamnes Sneltvedt

Dato
05.02.21

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

Main goal/purpose for this periods work
- Look into different types of sensor technologies
- Familiarize ourselves with the mathematics describing the motions of a ship
- Finish the pilot project report

Planned activities this period
- Find a way to mathematically describe the motions of a ship
- Evaluate different types of sensors
- Start creating a simulation of the mathematical models

Actually conducted activites this period
- We have written seven discussions about seven different sensor technologies:
- Camera
- Gyro
- Infrared
- LiDAR
- Magnetometer
- Radar
- Ultrasonic
These discussions will be used to decide which sensor technology/technologies to use in the
project when the mathematical models are finished.
- We have gained a little more understanding of how to mathematically describe the different
motions of a ship in relation to the earth, but we are not quite done with it yet.

Description of/ justification for potential deviation between planned and real activities
- We have not started to create a simulation of the mathematical models yet. This cannot be
done before we have a clear understanding of the mathematics. In week 5 we have had lectures
and assignments in Industry 4.0, which has slowed down our progress a little bit. We are also
currently writing a scientific report in collaboration with Guoyuan Li. We aim to finish this report
as soon as possible.

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report
- No changes at the moment.

Main experience from this period
- We have learned a lot about different sensor technologies and will use this information
further to decide which technologies to use.
- We have been discussed a lot about the issue the project is concentrating on and gained a
greater understanding of what the issue is.
- We have gained more insight about how to find the mathematical models.

Main purpose/focus next period
- Mathematical models

IE303612

 Bacheloroppgave
Project
Position Estimation

Firma - Oppdragsgiver
Seaonics

Side
2 av 2

Progress report Period/week(s)
2

Prosjektgruppe (navn)
Erik Bjørnøy, Erlend Holseker, Arvin

Khodabandeh, Isak Gamnes Sneltvedt

Dato
05.02.21

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

- Simulation
- Discuss more about different types of sensor technologies

Planned activities next period
- Mathematically describe the motions of a ship.
- Create a simulation of the motions we can mathematically describe in this period.
- Look into the advantages/disadvantages of using a TOF Camera.
- Start the evaluation of which sensors to use.
- Learn about Kalman Filter.

Other
Wish/need for counceling
- Nothing in particular at the moment.

Approval/signature group leader
Erik Bjørnøy

Signature other group participants
Erlend Holseker, Arvin Khodabandeh, Isak
Gamnes Sneltvedt

IE303612

 Bacheloroppgave
Project
Position Estimation

Firma - Oppdragsgiver
Seaonics

Side
1 av 2

Progress report Period/week(s)
2

Prosjektgruppe (navn)
Erik Bjørnøy, Erlend Holseker, Arvin

Khodabandeh, Isak Gamnes Sneltvedt

Dato
19.02.21

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

Main goal/purpose for this periods work
- Mathematical models
- Simulation
- Discuss more about different types of sensor technologies

Planned activities this period
- Mathematically describe the motions of a ship.
- Create a simulation of the motions we can mathematically describe in this period.
- Look into the advantages/disadvantages of using a TOF Camera.
- Start the evaluation of which sensors to use.
- Learn about Kalman Filter.

Actually conducted activites this period
- We have looked into the advantages and disadvantages of using a TOF Camera.
- We have started to look into the concept of quaternions, in order to better understand the
mathematics.
- We have managed to visualize some motions using a 3D cube in Python.
- We have started to evaluate which sensors to use, but we need to be finished with the
mathematical models first.
- We have started to write about the theoretical basis in the Bachelor report.
- Friday 19.02, we had a meeting with Daniel Bjørneseth at Seaonics’ offices, and he showed
us more about their simulator. We want to use this simulator to simulate our solution.
Description of/ justification for potential deviation between planned and real activities
- We have not learned about Kalman Filter yet. We will schedule a lecture with Aleksander
on the next status meeting.

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report
- No changes at the moment.

Main experience from this period

- We have learned about quaternions.
- We have managed to visualize some of the motions in Python.
- We have started to write the Bachelor report.
- We have gained better insight in Seaonics’ simulator.

Main purpose/focus next period

- Simulation in Unity
- Learn Kalman Filter and sensor fusion
- Mathematical modeling

Planned activities next period
- Hopefully, we will get access to Seaonics’ offices so that we can look further into their

simulator and figure out how to test our solution in their simulator.
- Learn about Kalman Filter
- Learn about sensor fusion

IE303612

 Bacheloroppgave
Project
Position Estimation

Firma - Oppdragsgiver
Seaonics

Side
2 av 2

Progress report Period/week(s)
2

Prosjektgruppe (navn)
Erik Bjørnøy, Erlend Holseker, Arvin

Khodabandeh, Isak Gamnes Sneltvedt

Dato
19.02.21

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

- Combine Eular angles, quaternions and reference systems to figure out the best way to
describe the motions of the gangway in relation to the ship

Other
Wish/need for counceling
- Lecture in Kalman Filter (this will be scheduled with Aleksander)

Approval/signature group leader
Erik Bjørnøy

Signature other group participants
Erlend Holseker, Arvin Khodabandeh, Isak
Gamnes Sneltvedt

IE303612

 Bacheloroppgave
Project
Position Estimation

Firma - Oppdragsgiver
Seaonics

Side
1 av 2

Progress report Period/week(s)
2

Prosjektgruppe (navn)
Erik Bjørnøy, Erlend Holseker, Arvin

Khodabandeh, Isak Gamnes Sneltvedt

Dato
05.03.21

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

Main goal/purpose for this periods work

- Simulation in Unity
- Learn Kalman Filter and sensor fusion
- Mathematical modeling

Planned activities this period
- Get access to Seaonics’ offices so that we can look further into their simulator and figure

out how to test our solution in their simulator.
- Learn about Kalman Filter
- Learn about sensor fusion
- Combine Euler angles, quaternions and reference systems to figure out the best way to

describe the motions of the gangway in relation to the ship
Actually conducted activites this period
- We have had a lecture in Kalman Filter and sensor fusion with Aleksander.
- We have been experimenting with euler angles, quaternions and reference systems and
visualized it in Python using a 3D cube. We are currently working on making classes in Python to
create representations of the orientation and position of different points on the ship in relation to
another chosen point.
- We have been experimenting with an IMU and an Arduino. We have been reading data
from the IMU and plotted a live graph showing the position of the IMU.
- We have been working on visualizing and converting measured data.
Description of/ justification for potential deviation between planned and real activities
- The last week has been occupied by the Industry 4.0 course. Therefore, we have only had
one full work week the last two weeks. Next week will be the last module of the Industry 4.0
course.
- We have not started to look into simulation in Unity yet, but we hope to do this in the next
couple of weeks.

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report
- No changes at the moment.

Main experience from this period

- We have learned about Kalman Filter.
- We have learned about sensor fusion.
- We have started to create classes in Python for representing the orientation and position of

different points on the ship.
- We feel that we have gained a clear understanding of how the mathematics should be

represented.
- We have gained access to Seaonics’ offices which has been very beneficial for our

progress.
- We have gained more knowledge on how to process measured sensor data.

Main purpose/focus next period
- Finish the Industry 4.0 course, as well as the exam assignments.
- Figure out how to implement Kalman filter and sensor fusion.
- Look into simulation in Unity.

IE303612

 Bacheloroppgave
Project
Position Estimation

Firma - Oppdragsgiver
Seaonics

Side
2 av 2

Progress report Period/week(s)
2

Prosjektgruppe (navn)
Erik Bjørnøy, Erlend Holseker, Arvin

Khodabandeh, Isak Gamnes Sneltvedt

Dato
05.03.21

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

Planned activities next period
- Finish the Industry 4.0 course and all the assignments related to this.
- Figure out how to implement Kalman filter and sensor fusion, and how to combine it with

our mathematical model.
- Explore the possibilities we have with simulation in Unity.

Other
Wish/need for counceling
- Nothing in particular at the moment.

Approval/signature group leader
Erik Bjørnøy

Signature other group participants
Erlend Holseker, Arvin Khodabandeh, Isak
Gamnes Sneltvedt

IE303612

 Bacheloroppgave
Project
Position Estimation

Firma - Oppdragsgiver
Seaonics

Side
1 av 2

Progress report Period/week(s)
2

Prosjektgruppe (navn)
Erik Bjørnøy, Erlend Holseker, Arvin

Khodabandeh, Isak Gamnes Sneltvedt

Dato
19.03.21

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

Main goal/purpose for this periods work

- Finish the Industry 4.0 course, as well as the exam assignments.
- Figure out how to implement Kalman filter and sensor fusion.
- Look into simulation in Unity.

Planned activities this period
- Finish the Industry 4.0 course and all the assignments related to this.
- Figure out how to implement Kalman filter and sensor fusion, and how to combine it with

our mathematical model.
- Explore the possibilities we have with simulation in Unity.

Actually conducted activites this period
- Finished the Industry 4.0 course and all assignments related to this.
- We have been experimenting with Kalman Filter and combined it with IMU readings on an
Arduino.
- We have bought a microphone stand to use for physically simulating the motions of the
gangway. We will use this to test sensors and programming solutions.
- Seaonics has provided us with a 3D camera
- We have started to experiment with ROS to create a SLAM with the 3D camera
Description of/ justification for potential deviation between planned and real activities
- We have decided to try to physically simulate the motions of the gangway using a
microphone stand, rather than simulating it in Unity as we think it will be too time-consuming.

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report
- No changes at the moment.

Main experience from this period

- We have gained a better understanding of the use of Kalman filter in combination with
sensor readings.

- We have realized that it will be easier to test our solutions physically rather than in a
simulation, because then it is easier to physically measure and observe that our output from
our program is as correct as possible.

- We are currently working on the basis of a theory that combines the use of an IMU and a
3D camera.

Main purpose/focus next period
- Combine IMU measurements, Kalman Filter and orientation/position representation in

different frames.
- Create a SLAM using the 3D camera.
- Look into which other sensor types that can be beneficial to use.

Planned activities next period
- Make a bracket to fasten the different sensors on the tip of the microphone stand.
- Create a Kalman Filter algorithm to “filter” the readings from an IMU.
- Represent the filtered IMU data in relation to different frames.
- Create a SLAM using the 3D camera and ROS.

Other
Wish/need for counceling

IE303612

 Bacheloroppgave
Project
Position Estimation

Firma - Oppdragsgiver
Seaonics

Side
2 av 2

Progress report Period/week(s)
2

Prosjektgruppe (navn)
Erik Bjørnøy, Erlend Holseker, Arvin

Khodabandeh, Isak Gamnes Sneltvedt

Dato
19.03.21

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

- Nothing in particular at the moment.

Approval/signature group leader
Erik Bjørnøy

Signature other group participants
Erlend Holseker, Arvin Khodabandeh, Isak
Gamnes Sneltvedt

IE303612

 Bacheloroppgave
Project
Position Estimation

Firma - Oppdragsgiver
Seaonics

Side
1 av 2

Progress report Period/week(s)
2

Prosjektgruppe (navn)
Erik Bjørnøy, Erlend Holseker, Arvin

Khodabandeh, Isak Gamnes Sneltvedt

Dato
08.04.21

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

Main goal/purpose for this periods work

- Combine IMU measurements, Kalman Filter and orientation/position representation in
different frames.

- Create a SLAM using the 3D camera.
- Look into which other sensor types that can be beneficial to use.

Planned activities this period
- Make a bracket to fasten the different sensors on the tip of the microphone stand.
- Create a Kalman Filter algorithm to “filter” the readings from an IMU.
- Represent the filtered IMU data in relation to different frames.
- Create a SLAM using the 3D camera and ROS.

Actually conducted activites this period
- We have mounted an IMU sensor and an ultrasonic distance sensor on the tip of the
microphone stand. These sensors are connected to an Arduino.
- We have created a Kalman Filter algorithm in Python which reads the serial output from
the Arduino. Using Qt, we are now able to live-plot the sensor readings and the Kalman estimate.
We have tried to use the distance sensor and the accelerometer in the IMU to estimate the distance
and velocity of the microphone tip in relation to a given object. This works until we remove the
distance sensor input; then the accelerometer drifts very fast and the estimate becomes unreliable
until the distance sensor input is back.
- We have been working on recognizing an object using contours and color, to use as a
reference to measure distance/velocity using the stereo camera.
- We have continued writing the project report.
Description of/ justification for potential deviation between planned and real activities
- Due to the covid19-situation, the Norwegian government has decided that everyone should
work from home. That means we can no longer use Seaonics’ offices. Therefore, Arvin and Erlend
are now working together on the Kalman Filtering and microphone stand “prototype”, while Erik
and Isak are working together on using a stereo camera to observe and calculate distances and
velocities in different directions.

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report
- No changes at the moment.

Main experience from this period

- We have realized that using accelerometer and an ultrasonic distance sensor for fusing data
to estimate position and velocity does not work very well when the distance sensor data is
lost.

- We know that it is only a little bit over a month until the deadline of the project, which
means that we soon will have to concentrate about the project report.

Main purpose/focus next period
- Continue to work on orientation estimation using IMU (accelerometer, magnetometer,

gyroscope) and sensor fusion.
- Continue writing the project report.
- Continue to work on the stereo-camera distance measuring. Hopefully we will be able to

combine this work with the orientation estimation using the IMU.

IE303612

 Bacheloroppgave
Project
Position Estimation

Firma - Oppdragsgiver
Seaonics

Side
2 av 2

Progress report Period/week(s)
2

Prosjektgruppe (navn)
Erik Bjørnøy, Erlend Holseker, Arvin

Khodabandeh, Isak Gamnes Sneltvedt

Dato
08.04.21

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

Planned activities next period
- Create a sensor fusion algorithm for estimating orientation using an IMU. Our initial plan

is to use the gyroscope to measure/estimate the orientation, and the accelerometer and
magnetometer for correcting the estimate.

- Write more on the project report.
- Continue to work on the stereo-camera distance measuring solution.

Other
Wish/need for counceling
- Nothing in particular at the moment.

Approval/signature group leader
Erik Bjørnøy

Signature other group participants
Erlend Holseker, Arvin Khodabandeh, Isak
Gamnes Sneltvedt

IE303612

 Bacheloroppgave
Project
Position Estimation

Firma - Oppdragsgiver
Seaonics

Side
1 av 2

Progress report Period/week(s)
2

Prosjektgruppe (navn)
Erik Bjørnøy, Erlend Holseker, Arvin

Khodabandeh, Isak Gamnes Sneltvedt

Dato
30.04.21

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

Main goal/purpose for this periods work

- Continue to work on orientation estimation using IMU (accelerometer, magnetometer,
gyroscope) and sensor fusion.

- Continue writing the project report.
- Continue to work on the stereo-camera distance measuring. Hopefully we will be able to

combine this work with the orientation estimation using the IMU.
Planned activities this period

- Create a sensor fusion algorithm for estimating orientation using an IMU. Our initial plan
is to use the gyroscope to measure/estimate the orientation, and the accelerometer and
magnetometer for correcting the estimate.

- Write more on the project report.
- Continue to work on the stereo-camera distance measuring solution.

Actually conducted activites this period
- We have tested different combinations of filtering and sensor fusion to estimate orientation
using raw data from the IMU, and have concluded with what combination we think is the best,
with the time we have left of the project.
- We have managed to translate the orientation of the gangway to the ship. By estimating the
orientation of the gangway, it is now possible to also calculate the orientation of the ship.
- We have managed to estimate distance and translational movement in surge and sway
directions, using stereo-camera.
- We have created a graphical user interface using Qt. This GUI shows graphs representing
the raw data from the IMU, as well as estimated orientation angles.
- We have been writing more on the project report.
Description of/ justification for potential deviation between planned and real activities
- The covid-19 situation in Ålesund prevents us from being able to be at Seaonics’ offices.
Also, a group member has been quarantined, making it impossible to work together physically.
The group member is now out of quarantine.
Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report
- No changes at the moment.

Main experience from this period

- We have concluded with our opinion on how to estimate orientation.
- Project report is taking form.
- Stereo-camera works well to estimate distance.

Main purpose/focus next period
- Project report.
- Finish the estimation application.

Planned activities next period
- Continue to write the project report.
- Include the distance estimations in the GUI. Also, a camera feed from the stereo-camera is

to be included in the GUI.
Other
Wish/need for counceling

IE303612

 Bacheloroppgave
Project
Position Estimation

Firma - Oppdragsgiver
Seaonics

Side
2 av 2

Progress report Period/week(s)
2

Prosjektgruppe (navn)
Erik Bjørnøy, Erlend Holseker, Arvin

Khodabandeh, Isak Gamnes Sneltvedt

Dato
30.04.21

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

- Aleksander will look at our progress on the project rapport and give feedback. Aleksander
will be invited to the Overleaf document.

Approval/signature group leader
Erik Bjørnøy

Signature other group participants
Erlend Holseker, Arvin Khodabandeh, Isak
Gamnes Sneltvedt

Appendix D

Meeting Reports 1-7

Oppstartsmøte 12.01.2021

Oppgaven går ut på å kunne beregne båtens posisjon i forhold til et objekt ved bruk av
sensorer (og kalman filter)

● Valg av sensor
● Implementasjon (forslag/påbegynnelse av implementasjonen)
● Modell

○ 6 frihetsgrader
○ Hvilke målinger trenger vi?

● Data fra MRU:
○ MRU gir vinkler/posisjon
○ Akselerasjoner
○ Kommer posisjon estimert ut fra MRU

● Prøve å gjøre systemet kompatibelt med både gangbro og kran
● Stort sett standardisert på en type MRU
● Hvilke krav settes til nøyaktighet

To mål:

1. Spesifikk oppgave, hva skal gjøres
1. Gruppen ønsker å kunne estimere posisjonen og orientere seg i forhold til et

objekt.
2. Vise til hva som kan gjøres for å forbedre prosjektet og hvordan

1. Systemet blir plug and play?

Forslag til gangbro:

● LiDAR?
● Radar?
● Kamera (2D/3D)?

Oppgavebeskrivelse:

● Det som ligger på BB er i utgangspunktet forslag. Seaonics ønsker ikke å låse oss til
noe, og vi kan selv formulere oppgaven innenfor det utgangspunktet som har blitt
diskutert. Forprosjektet vil være et utgangspunkt for oppgavebeskrivelsen. Eks:
"Gangvei mot flytende vindmølle". Oppgaven kan gjøres større etter hvert. Tenk
generelt.

● Stegvis kan det være:
1. Bruke et faststående objekt som referanse
2. Et annet bevegelig objekt som referanse

Posisjonsestimering

Møtereferat
25.01.2021

I. Start møtet

Erik Bjørnøy startet møtet med styringsgruppen kl. 11.00 den 25.01.21 på

Teams.

II. Opprop

Følgende personer var til stede:

Erlend Holseker(sekretær), Erik Bjørnøy(prosjektleder), Isak Gamnes

Sneltvedt(gruppemedlem), Arvin Khodabandeh(gruppemedlem), Aleksander

Larsen Skrede(hovedveileder) og Daniel Bjørneseth(oppdragsgiver).

III. Saker

a) Gjennomgang av forprosjektrapport.

Forprosjektrapporten er bra og har bra introduksjon. Før innlevering av

den endelige forprosjektrapporten bør gruppen definere målene bedre. Her

må gruppen ha et klart hovedmål, med eventuelle delmål knyttet til dette

hovedmålet, med prioritet. Det kan også legges til bonusmål som kan

bygge videre på hovedmålet. Problemstillingen bør spisses litt mer inn

slik at gruppens hovedmål blir litt mer spesifikt. Gruppens hovedmål er

posisjonsestimering / avstandsmåling for gangvei.

I tillegg til dette så er det bare nødvendig å ta med navn til medlemmene i

styringsgruppen.

Aleksander sender standardavtale til gruppen slik at dette kan tas med i

forprosjektrapporten.

b) Gjennomgang av Gantt-diagram

Gantt-diagram ser greit ut. Bør nevne i forprosjektrapporten at oppgaven

er delt opp i tre faser slik som det er gitt uttrykk for i Gantt-diagrammet.

Gantt-diagramet vil bli oppdatert til hvert statusmøte, og det vil dermed

bli mer detaljert etter hvert som gruppen får se hvordan prosjektet utvikler

seg. Dette kan også nevnes i forprosjektrapporten.

c) Avtale opplæring i Kalman filter

Aleksander sender et dokument med introduksjon om Kalman filter. Dette

skal gruppen lese og gå gjennom før Aleksander gir gruppen en leksjon i

Kalman filter. Denne leksjonen vil skje mot slutten av februar.

d) Øvrig diskusjon

Seaonics har en simulator. Den skal være grei å kjøre i gang. Vil kanskje

ta en time eller to å sette opp på egen pc. Har tilgang til kildekoden til

Unity så det skal være mulig å sette inn egne sensorer i simuleringen. Kan

være lurt å sjekke ut denne simulatoren.

Daniel tipset også om å sjekke ut Webots. Dette er en open source

simulator.

Aleksander sender lenker til relevante journaler og forskningsrapporter.

Forskningsbasert oppgave er et «kriterie» for toppkarakter.

Når det gjelder grenser rundt værforhold, så ble det nevnt at man kjører

ikke ut gangveien dersom det er mer en 25 m/s vindstyrke. En gangvei er

normalt sett ute i 10-30 minutter før skipet går videre til neste jobb.

Signal Quest 2096 (IMU) blir testet på tuppen av gangveien nå. Den blir

brukt for å måle bevegelsen til tuppen av gangveien i forhold til skipet.

Kongsberg MRU-H blir brukt i dag. Datablad til denne MRU-en finnes på

Kongsberg sine nettsider. Seaonics planlegger å bytte til en MRU med litt

bedre oppløsning.

Seaonics bruker 3D sensorer av typen IFM O3M161 på tuppen av

gangveiene idag. Disse sensorene genererer en punktsky, men har ikke

veldig god oppløsning. Det vurderes å bytte ut disse sensorene med en

sensor som har bedre oppløsning; Basler Blaze-101.

Det er ingen spesifikke krav til oppdateringsfrekvens på sensorer, men

vanligvis kjører komponentene på rundt 100 Hz. Gruppen vil drøfte

eventuelle egendefinerte krav rundt oppdateringsfrekvens i

prosjektrapporten.

IV. Møte hevet

Erik Bjørnøy hevet møtet kl. 11.55.

Referat sendt av: Erlend Holseker

Referat godkjent av: Isak Gamnes Sneltvedt og Arvin Khodabandeh

Posisjonsestimering

Møtereferat
08.02.2021

I. Start møtet

Erik Bjørnøy startet møtet med styringsgruppen kl. 12.00 den 08.02.21 på

Teams.

II. Opprop

Følgende personer var til stede:

Erlend Holseker(sekretær), Erik Bjørnøy(prosjektleder), Isak Gamnes

Sneltvedt(gruppemedlem), Arvin Khodabandeh(gruppemedlem), Aleksander

Larsen Skrede(hovedveileder) og Daniel Bjørneseth(oppdragsgiver).

III. Saker

a) Gjennomgang av fremdriftsrapport

Fremdriftsrapporten fra 05.02 ble gjennomgått. Vi har den tidligere uken

laget sju drøftinger av sju forskjellige sensorteknologier, som skal brukes

til å rettferdiggjøre vårt fremtidige valg av sensorer til oppgaven. I tillegg

har vi jobbet mye med å få kontroll på matematikken som ligger bak

bevegelsene til et skip.

Planen for den neste uken er å skrive en egen forklaring på matematikken

som ligger bak bevegelsene til et skip, og prøve å simulere dette. I tillegg

vil vi se nærmere på fordeler og ulemper ved å bruke TOF kamera. Vi vil

også prøve å lære mer om Kalman filter, da dette er noe som høyst

sannsynlig må brukes i oppgaven vår.

b) Øvrig diskusjon

Gruppen ønsker å kunne benytte seg av Seaonics sine kontor, da vi tror

dette vil føre til økt produktivitet, sammenlignet med å sitte hjemme eller

på NTNU. På NTNU foregår det byggearbeid som kan bli noe

forstyrrende. Daniel tar dette opp med Seaonics og har tro på at vi kan

installere oss på kontorene der snart. Koronasituasjonen avgjør. Daniel

kommer kanskje til Ålesund i slutten av neste uke dersom situasjonen

tilsier det, og vil da ta et møte med oss for å vise oss mer av Seaonics sin

lab.

IV. Møte hevet

Erik Bjørnøy hevet møtet kl. 12.20.

Referat sendt av: Erlend Holseker

Referat godkjent av: Isak Gamnes Sneltvedt og Arvin Khodabandeh

Posisjonsestimering
Møtereferat

22.02.2021

I. Start møtet

Erik Bjørnøy stater møtet med styringsgruppen kl. 11.00 den 22.02.2021 på

Teams.

II. Opprop

Følgende personer var tilstede:

Erik Bjørnøy(prosjektleder), Erlend Holseker(sekretær), Arvin

Khodabandeh(gruppemedlem), Isak Gamnes(gruppemedlem) og Aleksander

Larsen Skrede(hovedveileder).

III. Saker

a) Gjennomgang av Kalman-filter

Vi avtalte passende tidspunkt for gjennomgang av Kalman-filter.

Aleksander foreslo torsdag 25.02.21 kl 09.00 eller kl 12.00 hvis det

skulle gjennomføres på skolen, eller kl. 12.00 hos Seaonics. Gruppen

og Aleksander ble enige om å ta det kl 12.00 hos Seaonics. Alle leser

gjennom PDF-en om Kalman-filter Aleksander sendte på mail før

gjennomgangen.

b) Matematisk modell

Gå mer i dybden på hvordan man kan bruke transformasjonsmatriser

for å representere bevegelsene til gangbrua i forhold til massesenteret

på båten.

c) Øvrig

Gruppen sender en epost til Aleksander snarest mulig med

spesifikasjoner til en IMU-sensor(Benevninger/enheter til målingene).

IV. Møte hevet

 Erik Bjørnøy hevet møtet kl. 11.40.

 Referat sendt av: Arvin Khodabandeh

 Referat godkjent av: Isak Gamnes Sneltvedt og Erlend Holseker

Posisjonsestimering

Møtereferat
22.03.2021

I. Start møtet

Erik Bjørnøy startet møtet med styringsgruppen kl. 12.00 den 22.03.21 på

Teams.

II. Opprop

Følgende personer var til stede:

Erlend Holseker(sekretær), Erik Bjørnøy(prosjektleder), Arvin

Khodabandeh(gruppemedlem), Aleksander Larsen Skrede(hovedveileder), Ottar

L. Osen(assisterende veileder) og Daniel Bjørneseth(oppdragsgiver).

III. Saker

a) Gjennomgang av fremdriftsrapport

Fremdriftsrapporten fra 19.03 ble gjennomgått. Vi har den tidligere uken

jobbet med bruk av 3D kamera i kombinasjon med en SLAM algoritme. I

tillegg har vi kjøpt et mikrofonstativ som vi vil bruke til å prøve å

montere sensorer på og simulere bevegelsen til gangbroa.

Planen for den neste uken er å fortsette med dette. Vi vil bruke

mikrofonstativet og kombinere IMU målinger, Kalman filter og

representere målingene relativt til forskjellige referansepunkt, og deretter

måle fysisk om målingene våre er presise. Vi vil også se videre på andre

sensortyper.

b) Øvrig diskusjon

Koronasituasjonen i Ålesund har forverret seg, noe som har ført til at

kommunen har satt i verk nye restriksjoner. Dette påvirker oss på den

måten at vi ikke lenger kan benytte oss av Seaonics sine lokaler, og bruk

av lab på skolen må gjennomføres ved at vi må spørre labansvarlig først.

Ved bruk av lab bør vi ikke være mer enn to gruppemedlemmer til stede.

Ottar har sendt oss tre tidligere bacheloroppgaver som kan være relevante

i forbindelse med å bruke kamera til å måle relativ posisjon. Daniel har

gitt oss tilgang til Unity, så vi vil se litt på dette også i uken som kommer.

Til neste møte må vi oppdatere fremdriftsplanen (Gantt-diagrammet).

IV. Møte hevet

Erik Bjørnøy hevet møtet kl. 12.55.

Referat sendt av: Erlend Holseker

Referat godkjent av: Isak Gamnes Sneltvedt og Arvin Khodabandeh

Posisjonsestimering

Møtereferat
09.04.2021

I. Start møtet

Erik Bjørnøy startet møtet med styringsgruppen kl. 13.30 den 09.04.21 på

Teams.

II. Opprop

Følgende personer var til stede:

Erlend Holseker(sekretær), Erik Bjørnøy(prosjektleder), Arvin

Khodabandeh(gruppemedlem), Isak Gamnes Sneltvedt(gruppemedlem)

Aleksander Larsen Skrede(hovedveileder) og Daniel Bjørneseth(oppdragsgiver).

III. Saker

a) Gjennomgang av fremdriftsrapport

Fremdriftsrapporten fra 08.04 ble gjennomgått. Vi har den tidligere uken

jobbet med bruk av stereokamera for å måle forflytning i forhold til et

referansepunkt. I tillegg har vi montert en IMU sensor og en

ultralydsensor på et mikrofonstativ der hensikten har vært å bruke

mikrofonstativet til å simulere bevegelsene til en gangbro. Her har vi

primært jobbet med å estimere avstand i en retning, der vi har brukt

akselerometer- og ultralydsensordata til å estimere avstanden ved hjelp av

Kalman filter og sensor fusion. Dette har fungert til en viss grad, men

fortsatt en del å jobbe med her.

Planen for den neste uken er å fortsette på disse to områdene. Vi vil

fokusere mer på å bruke gyroskopet, akselerometeret og magnetometeret i

IMU-en til å estimere orienteringen til gangbroa (mikrofonstativet) ved

hjelp av Kalman filter og sensor fusion. Vi vil også se på hvordan vi kan

kombinere stereokameramålingene med orienteringsestimeringen.

Øvrig diskusjon

Koronasituasjonen er fortsatt slik at vi må jobbe hjemmefra, og det ser ut

som at det vil bli slik for resten av bacheloroppgaven. Gruppen har delt

seg i to, der Erik Bjørnøy og Isak Gamnes Sneltvedt jobber med måling

av posisjon/forflytning ved hjelp av stereokamera, og Erlend Holseker og

Arvin Khodabandeh primært jobber med estimering av orientering ved

hjelp av IMU og sensor fusion ved hjelp av Kalman filter.

Det ble også nevnt på møtet at vi også kan se etter løsninger som går

utenfor de begrensningene som Seaonics har satt for oppgaven.

IV. Møte hevet

Erik Bjørnøy hevet møtet kl. 14.00.

Referat sendt av: Erlend Holseker

Referat godkjent av: Isak Gamnes Sneltvedt og Arvin Khodabandeh

Posisjonsestimering

Møtereferat
03.05.2021

I. Start møtet

Erik Bjørnøy startet møtet med styringsgruppen kl. 12.00 den 03.05.21 på

Teams.

II. Opprop

Følgende personer var til stede:

Erlend Holseker(sekretær), Erik Bjørnøy(prosjektleder), Arvin

Khodabandeh(gruppemedlem), Isak Gamnes Sneltvedt(gruppemedlem)

Aleksander Larsen Skrede(hovedveileder) og Daniel Bjørneseth(oppdragsgiver).

III. Saker

a) Gjennomgang av foreløpig prosjektrapport

Første utkast av bachelorrapporten ble gjennomgått. Hovedveileder ba

gruppen være oppmerksom på følgende punkter:

- Finne en bedre og mer beskrivende tittel til rapporten.

- Være konsekvent på britisk eller amerikansk engelsk.

- Noen plasser i rapporten er det mange små avsnitt som med fordel

kunne blitt samlet til større avsnitt.

- Passe på å ha god setningsbygning. Vær spesifikk, og ikke bruk for

mye komma.

- Prosjektet er objektet vi skriver om, ikke rapporten.

o Eksempel: “The aim of this report is to estimate orientation”,

skal være “The aim of this project is to estimate”.

- Kilde/sitering skal ha mellomrom fra ordet foran.

- Ved referering til figurer, tabeller, seksjoner og likninger skal det

skrives hva det henvises til.

o Eksempel: “As seen in 2.3, x is calculated”, skal være “As seen

in equation 2.3, x is calculated”.

- Gå over bildene i rapporten og pass på at bilder hentet fra nettet har

kildehenvisning. Dette gjelder blandt annet figur 2.3.

- I likninger: Bruk \cdot i stedet for * når det skal multipliseres.

- Bruk bold/italic i stedet for å understreke tekst.

- Setningen “The filter can estimate both past, present, and future states,

even when the precise behaviour of the modeled system is unknown”

må skrives om da den ikke er helt sann.

- Beskrivelse av utstyret vi har brukt skal skrives under materials. For

eksempel Arduino og Software skal flyttes til materials.

- «Choosing Design» flyttes til «Design Choices».

- Kodesnutter som skrives i “minted” skal ha highlighting.

- Vindmølle på engelsk er IKKE wind mill, men wind turbine. Steder i

rapporten der det har blitt skrevet wind mill, må endres.

- Husk på akademisk skrivemåte. Bruk beskrivende temasetninger i

starten av avsnitt. Sign posting.

Øvrig diskusjon

Det vil bli avholdt et nytt møte neste mandag, 10.05, for å gå gjennom

neste utkast av rapporten. Tirsdag og torsdag denne uken vil gruppen

jobbe med å sy sammen de siste delene av prosjektet på labben på skolen.

Resten av tiden vil bli brukt til å skrive rapport.

IV. Møte hevet

Erik Bjørnøy hevet møtet kl. 12.35.

Referat sendt av: Erlend Holseker

Referat godkjent av: Isak Gamnes Sneltvedt og Arvin Khodabandeh

Appendix E

Source Code Orientation Application

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65

 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106

#This is an application made for a bachelor project.
#The application reads IMU data from an Arduino board and filters the data
#using Kalman filters and Madgwick filter to estimate orientation.
#The application also includes a graphical user interface to plot and visualize
#the data, using the Qt framework.
#
#
#Written by Erlend Holseker and Arvin Khodabandeh.

from PyQt5 import QtCore, QtGui, QtWidgets
from threading import Thread
import time
import cv2
import pyqtgraph as pg
import numpy as np
from random import randint
import math
import serial

from kalman import KalmanFilter
from madgwick import MadgwickFilter
import orientation_conversion
import quaternion
import homogeneous_transform as ht
import frame
import mainwindow

class ControlMainWindow(QtWidgets.QMainWindow):
 def __init__(self, parent=None):
 super(ControlMainWindow, self).__init__(parent)
 self.ui = mainwindow.Ui_MainWindow()
 self.ui.setupUi(self)

 self.numberOfPlottingValues = 300

 self.listenThread = Thread(target=self.readSerialInputs, args=())
 self.listenThread.daemon = True

 # Connecting the menu buttons
 self.ui.RawAccBtn.clicked.connect(lambda : self.ui.WidgetPages.setCurrentIndex(0))
 self.ui.RawGyroBtn.clicked.connect(lambda : self.ui.WidgetPages.setCurrentIndex(1))
 self.ui.RawMagBtn.clicked.connect(lambda : self.ui.WidgetPages.setCurrentIndex(2))
 self.ui.EstValBtn.clicked.connect(lambda : self.ui.WidgetPages.setCurrentIndex(3))

 self.ui.StartBtn.clicked.connect(lambda : self.listenThread.start())

 self.ui.SensorFrameXBtn.setChecked(True)
 self.ui.ShipFrameXBtn.setChecked(True)
 self.ui.SensorFrameYBtn.setChecked(True)
 self.ui.ShipFrameYBtn.setChecked(True)
 self.ui.SensorFrameZBtn.setChecked(True)
 self.ui.ShipFrameZBtn.setChecked(True)

 self.capture = cv2.VideoCapture('seaonics.mp4')

 # Create variables for holding the last 200 plotting values
 self.time_stamps = list(range(self.numberOfPlottingValues))
 ## ESTIMATE GRAPHS ##
 ## Roll ##
 self.est_roll_list = [0 for _ in range(self.numberOfPlottingValues)]
 self.meas_roll_list = [0 for _ in range(self.numberOfPlottingValues)]
 self.ship_pitch_list = [0 for _ in range(self.numberOfPlottingValues)]
 self.est_roll_line = self.ui.EstValGraphX.plot(self.time_stamps, self.est_roll_list, name="Kalman Roll angle", pen=pg.mkPen(color='r'))
 self.ship_pitch_line = self.ui.EstValGraphX.plot(self.time_stamps, self.ship_pitch_list, name="Ship Pitch angle", pen=pg.mkPen(color='g'))
 ## Pitch ##

 self.est_pitch_list = [0 for _ in range(self.numberOfPlottingValues)]
 self.meas_pitch_list = [0 for _ in range(self.numberOfPlottingValues)]
 self.ship_roll_list = [0 for _ in range(self.numberOfPlottingValues)]
 self.est_pitch_line = self.ui.EstValGraphY.plot(self.time_stamps, self.est_pitch_list, name="Kalman Pitch angle", pen=pg.mkPen(color='r'))
 self.ship_roll_line = self.ui.EstValGraphY.plot(self.time_stamps, self.ship_roll_list, name="Ship Roll angle", pen=pg.mkPen(color='g'))
 ## Yaw ##
 self.est_yaw_list = [0 for _ in range(self.numberOfPlottingValues)]
 self.meas_yaw_list = [0 for _ in range(self.numberOfPlottingValues)]
 self.ship_yaw_list = [0 for _ in range(self.numberOfPlottingValues)]
 self.meas_yaw_line = self.ui.EstValGraphZ.plot(self.time_stamps, self.meas_yaw_list, name="Madgwick Yaw angle", pen=pg.mkPen(color='b'))
 self.ship_yaw_line = self.ui.EstValGraphZ.plot(self.time_stamps, self.ship_yaw_list, name="Ship Yaw angle", pen=pg.mkPen(color='g'))

 ## ACCELEROMETER GRAPHS ##
 ## X ##
 self.accX_list = [0 for _ in range(self.numberOfPlottingValues)]
 self.accX_line = self.ui.AccValGraphX.plot(self.time_stamps, self.accX_list, name="Acc X", pen=pg.mkPen(color='b'))
 ## Y ##
 self.accY_list = [0 for _ in range(self.numberOfPlottingValues)]
 self.accY_line = self.ui.AccValGraphY.plot(self.time_stamps, self.accY_list, name="Acc Y", pen=pg.mkPen(color='b'))
 ## Z ##
 self.accZ_list = [0 for _ in range(self.numberOfPlottingValues)]
 self.accZ_line = self.ui.AccValGraphZ.plot(self.time_stamps, self.accZ_list, name="Acc Z", pen=pg.mkPen(color='b'))

 ## GYROSCOPE GRAPHS ##
 ## X ##
 self.gyroX_list = [0 for _ in range(self.numberOfPlottingValues)]
 self.gyroX_line = self.ui.GyroValGraphX.plot(self.time_stamps, self.gyroX_list, name="Gyro X", pen=pg.mkPen(color='b'))
 ## Y ##
 self.gyroY_list = [0 for _ in range(self.numberOfPlottingValues)]
 self.gyroY_line = self.ui.GyroValGraphY.plot(self.time_stamps, self.gyroY_list, name="Gyro Y", pen=pg.mkPen(color='b'))
 ## Z ##
 self.gyroZ_list = [0 for _ in range(self.numberOfPlottingValues)]
 self.gyroZ_line = self.ui.GyroValGraphZ.plot(self.time_stamps, self.gyroZ_list, name="Gyro Z", pen=pg.mkPen(color='b'))

 ## MAGNETOMETER GRAPHS ##
 ## X ##
 self.magX_list = [0 for _ in range(self.numberOfPlottingValues)]
 self.magX_line = self.ui.MagValGraphX.plot(self.time_stamps, self.magX_list, name="Mag X", pen=pg.mkPen(color='b'))
 ## Y ##
 self.magY_list = [0 for _ in range(self.numberOfPlottingValues)]
 self.magY_line = self.ui.MagValGraphY.plot(self.time_stamps, self.magY_list, name="Mag Y", pen=pg.mkPen(color='b'))

GUIApplication.py

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

198
199
200
201
202
203
204
205
206
207
208
209
210
211

 self.magY_line = self.ui.MagValGraphY.plot(self.time_stamps, self.magY_list, name="Mag Y", pen=pg.mkPen(color='b'))
 ## Z ##
 self.magZ_list = [0 for _ in range(self.numberOfPlottingValues)]
 self.magZ_line = self.ui.MagValGraphZ.plot(self.time_stamps, self.magZ_list, name="Mag Z", pen=pg.mkPen(color='b'))

 ## KALMAN VARIABLES ##
 self.A = np.array([[0, 0],
 [0, 0]], dtype='float')
 self.H = np.array([[1, 0],
 [0, 1]], dtype='float')
 self.delta_t = 0.05
 ## Kalman Variables Roll ##
 self.x_roll = np.array([[0], #Rotation angle (position)
 [0]], dtype='float') #Angular velocity
 self.Q_roll = 0
 self.s2_roll = 0.2 ** 2
 self.est_state_roll = np.zeros(2)
 self.est_angularVel_roll = 0
 self.est_angle_roll = 0
 self.meas_roll = 0
 accelerometerX_variance = 0.00031141365254884923
 roll_variance = 0.01839461414087105
 gyroscopeX_variance = 0.007197688446362619
 self.R_roll = np.array([[roll_variance, 0],
 [0, gyroscopeX_variance]])
 ## Kalman Variables Pitch ##

 self.x_pitch = np.array([[0], #Rotation angle (position)
 [0]], dtype='float') #Angular velocity
 self.Q_pitch = 0
 self.s2_pitch = 0.2 ** 2
 self.est_state_pitch = np.zeros(2)
 self.est_angularVel_pitch = 0
 self.est_angle_pitch = 0
 self.meas_pitch = 0
 accelerometerY_variance = 0.0005460492817487228
 pitch_variance = 0.010618805958553145
 gyroscopeY_variance = 0.010014742586806145
 self.R_pitch = np.array([[pitch_variance, 0],
 [0, gyroscopeY_variance]])
 ## Kalman Variables Yaw ##
 self.x_yaw = np.array([[0], #Rotation angle (position)
 [0]], dtype='float') #Angular velocity
 self.Q_yaw = 0
 self.s2_yaw = 0.1 ** 2
 self.est_state_yaw = np.zeros(2)
 self.est_angularVel_yaw = 0
 self.est_angle_yaw = 0
 self.meas_yaw = 0
 mad_yaw_variance = 0.2296308583589739
 gyroscopeZ_variance = 0.009201665020393227
 self.R_yaw = np.array([[mad_yaw_variance, 0],
 [0, gyroscopeY_variance]])
 self.yaw_calc = 0
 self.mad_yaw = 0
 self.mad_pitch = 0
 self.mad_roll = 0
 #Madgwick Filter Gain: 0.09114646853830789
 self.beta = 0.041
 #self.madgwick = MadgwickFilter(beta=self.beta)
 self.accel_meas_norm = np.array([[0], [0], [0]])
 self.q = np.array([0, 0, 0, 0]).transpose()
 # Create Kalman filters
 self.kalman_filter_roll= KalmanFilter(self.A, self.H, self.Q_roll, self.R_roll, self.x_roll)
 self.kalman_filter_pitch = KalmanFilter(self.A, self.H, self.Q_pitch, self.R_pitch, self.x_pitch)
 self.kalman_filter_yaw = KalmanFilter(self.A, self.H, self.Q_yaw, self.R_yaw, self.x_yaw)

 ## Variables to hold data from Arduino ##
 self.time_stamp = 0
 self.last_time_stamp = 0
 self.accelX_current = 0
 self.accelY_current = 0
 self.accelZ_current = 0
 self.magX_current = 0
 self.magY_current = 0
 self.magZ_current = 0
 self.gyroX_current = 0
 self.gyroY_current = 0
 self.gyroZ_current = 0

 self.shipRoll = 0
 self.shipPitch = 0
 self.shipYaw = 0

 # Connect a timer to the update GUI function to update the plots at a given interval
 self.timer = QtCore.QTimer()
 self.timer.setInterval(5)
 self.timer.timeout.connect(self.updateGUI)
 self.timer.start()

 # Starting a thread to capture camera video
 self.videoThread = Thread(target=self.showVideo, args=())
 self.videoThread.daemon = True

 self.videoThread.start()

 def readSerialInputs(self):
 # Initial Arduino reading
 self.madgwick = MadgwickFilter(beta=self.beta, initial_slew=self.ui.EncoderYaw.value())

 self.worldFrame = frame.Frame()
 self.sensorFrame = frame.Frame(parentFrame=self.worldFrame)
 self.shipFrame = frame.Frame(orientation=np.array([0, self.ui.EncoderPitch.value(), self.ui.EncoderYaw.value()]), parentFrame=self.sensorFrame)
 self.sensorFrame.set_child_frame(self.shipFrame)

 init_msg = arduino.readline()
 init_msg_vec = init_msg.decode('utf-8').split(',')
 while len(init_msg_vec) != 11: # Wait for serial communication to stabilize

GUIApplication.py

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

 while len(init_msg_vec) != 11: # Wait for serial communication to stabilize
 init_msg = arduino.readline()
 init_msg_vec = init_msg.decode('utf-8').split(',')

 while True:
 msg = arduino.readline() #Read everything in the input buffer
 msgVec = msg.decode('utf-8').split(',')
 if len(msgVec) == 11 and msgVec[0] and msgVec[1] and msgVec[2] and msgVec[3] and msgVec[4] and msgVec[5] and msgVec[6] and msgVec[7] and msgVec[8] and msgVec[9] and msgVec[10
 #self.delta_t = float(msgVec[0])
 self.accelX_current = float(msgVec[1])
 self.accelY_current = float(msgVec[2])
 self.accelZ_current = float(msgVec[3])
 self.magX_current = float(msgVec[4])
 self.magY_current = float(msgVec[5])
 self.magZ_current = float(msgVec[6])
 self.gyroX_current = (float(msgVec[7]) + 0.042910521140609635)
 self.gyroY_current = (float(msgVec[8]) - 0.08874139626352016)
 self.gyroZ_current = (float(msgVec[9]) - 0.08517207472959686)

 arduino.reset_input_buffer()
 self.calculateEstimates()
 time.sleep(0.05)

 def calculateEstimates(self):
 self.meas_roll = orientation_conversion.get_roll(np.array([[self.accelX_current, self.accelY_current, self.accelZ_current]]), degrees=True)
 self.meas_pitch = orientation_conversion.get_pitch(np.array([[self.accelX_current, self.accelY_current, self.accelZ_current]]), degrees=True)

 # Kalman Estimate Roll
 y_roll = np.array([[self.meas_roll],
 [self.gyroX_current]])
 self.kalman_filter_roll.predict()
 self.kalman_filter_roll.update(y_roll)
 (x_r, P_r) = self.kalman_filter_roll.get_state()
 self.est_state_roll = x_r.transpose()
 self.est_angularVel_roll = self.est_state_roll.transpose()[1]
 self.est_angle_roll = self.est_state_roll.transpose()[0]

 # Kalman Estimate Pitch
 y_pitch = np.array([[self.meas_pitch],
 [self.gyroY_current]])
 self.kalman_filter_pitch.predict()
 self.kalman_filter_pitch.update(y_pitch)
 (x_p, P_p) = self.kalman_filter_pitch.get_state()
 self.est_state_pitch = x_p.transpose()
 self.est_angularVel_pitch = self.est_state_pitch.transpose()[1]
 self.est_angle_pitch = self.est_state_pitch.transpose()[0]

 ## MADGWICK ##
 accel_meas = np.array([self.accelX_current, self.accelY_current, self.accelZ_current]).T
 gyro_meas = np.array([(self.gyroX_current*math.pi/180), (self.gyroY_current*math.pi/180), (self.gyroZ_current*math.pi/180)]).T
 mag_meas = np.array([0, self.magX_current, self.magY_current, self.magZ_current]).T

 self.q = self.madgwick.get_estimated_orientation(gyro=gyro_meas, acc=accel_meas, mag=None, delta_t=self.delta_t)

 ###############################

 ## GET EULER ANGLES FROM MADGWICK QUATERNION ##
 self.mad_roll, self.mad_pitch, self.mad_yaw = quaternion.quaternion_to_euler(self.q, as_degrees=True)

 # Kalman Estimate Yaw
 y_yaw = np.array([[self.mad_yaw],
 [self.gyroZ_current]])
 self.kalman_filter_yaw.predict()
 self.kalman_filter_yaw.update(y_yaw)
 (x_y, P_y) = self.kalman_filter_yaw.get_state()
 self.est_state_yaw = x_y.transpose()
 self.est_angularVel_yaw = self.est_state_yaw.transpose()[1]
 self.est_angle_yaw = self.est_state_yaw.transpose()[0]

 # Update parameters
 base_sigma = np.array([[self.delta_t ** 3 / 3, self.delta_t ** 2 / 2],
 [self.delta_t ** 2 / 2, self.delta_t]])

 self.A = np.array([[1, -self.delta_t],
 [0, 1]], dtype='float')
 self.Q_roll = self.s2_roll * base_sigma
 self.Q_pitch = self.s2_pitch * base_sigma
 self.Q_yaw = self.s2_yaw * base_sigma

 self.kalman_filter_roll.updateParameters(A=self.A, Q=self.Q_roll)
 self.kalman_filter_pitch.updateParameters(A=self.A, Q=self.Q_pitch)
 self.kalman_filter_yaw.updateParameters(A=self.A, Q=self.Q_yaw)

 self.sensorFrame.update_orientation([float(self.est_angle_roll), -float(self.est_angle_pitch), float(self.mad_yaw)])
 self.shipFrame.update_orientation([self.ui.EncoderPitch.value(), 0, -self.ui.EncoderYaw.value()])
 self.shipFrame.set_parent_frame(self.sensorFrame)
 self.sensorFrame.set_child_frame(self.shipFrame)

 shipAngles = ht.rot_matrix_to_euler(self.shipFrame.get_grandparent_representation())

 self.shipRoll = shipAngles[0]
 self.shipPitch = shipAngles[1]
 self.shipYaw = shipAngles[2]

 def updateGUI(self):
 self.time_stamps = self.time_stamps[1:] #Remove first element
 self.time_stamps.append(self.time_stamps[-1] + 1)

 self.est_roll_list = self.est_roll_list[1:]
 self.est_roll_list.append(float(self.est_angle_roll))

 self.ship_pitch_list = self.ship_pitch_list[1:]
 self.ship_pitch_list.append(self.shipPitch)

 self.est_pitch_list = self.est_pitch_list[1:]
 self.est_pitch_list.append(float(self.est_angle_pitch))

 self.ship_roll_list = self.ship_roll_list[1:]

GUIApplication.py

317
318
319
320
321
322
323
324
325
326
327
328
329

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

 self.ship_roll_list = self.ship_roll_list[1:]
 self.ship_roll_list.append(self.shipRoll)

 self.meas_yaw_list = self.meas_yaw_list[1:]
 self.meas_yaw_list.append(float(self.mad_yaw))

 self.ship_yaw_list = self.ship_yaw_list[1:]
 self.ship_yaw_list.append(self.shipYaw)

 self.accX_list = self.accX_list[1:]
 self.accX_list.append(float(self.accelX_current))
 self.accY_list = self.accY_list[1:]

 self.accY_list.append(float(self.accelY_current))
 self.accZ_list = self.accZ_list[1:]
 self.accZ_list.append(float(self.accelZ_current))

 self.gyroX_list = self.gyroX_list[1:]
 self.gyroX_list.append(float(self.gyroX_current))
 self.gyroY_list = self.gyroY_list[1:]
 self.gyroY_list.append(float(self.gyroY_current))
 self.gyroZ_list = self.gyroZ_list[1:]
 self.gyroZ_list.append(float(self.gyroZ_current))

 self.magX_list = self.magX_list[1:]
 self.magX_list.append(float(self.magX_current))
 self.magY_list = self.magY_list[1:]
 self.magY_list.append(float(self.magY_current))
 self.magZ_list = self.magZ_list[1:]
 self.magZ_list.append(float(self.magZ_current))

 self.ui.dialX.setValue(int(self.est_angle_roll))
 self.ui.dialY.setValue(int(self.est_angle_pitch))
 self.ui.dialZ.setValue(int(self.mad_yaw))

 roll_text = ('Estimated Roll: ' + "{:.2f}".format(float(self.est_angle_roll)) + '°' + '\n' +
 'Ship Pitch: ' + "{:.2f}".format(float(self.shipPitch)) + '°')

 pitch_text = ('Estimated Pitch: ' + "{:.2f}".format(float(self.est_angle_pitch)) + '°' + '\n' +
 'Ship Roll: ' + "{:.2f}".format(float(self.shipRoll)) + '°')

 yaw_text = ('Estimated Yaw: ' "{:.2f}".format(float(self.mad_yaw)) + '°' + '\n' +
 'Ship Yaw: ' + "{:.2f}".format(float(self.shipYaw)) + '°')

 self.ui.label_7.setText(roll_text)
 self.ui.label_6.setText(pitch_text)
 self.ui.label_5.setText(yaw_text)

 self.est_roll_line.setData(self.time_stamps, self.est_roll_list)
 self.ship_pitch_line.setData(self.time_stamps, self.ship_pitch_list)
 self.est_pitch_line.setData(self.time_stamps, self.est_pitch_list)
 self.ship_roll_line.setData(self.time_stamps, self.ship_roll_list)
 self.meas_yaw_line.setData(self.time_stamps, self.meas_yaw_list)
 self.ship_yaw_line.setData(self.time_stamps, self.ship_yaw_list)

 self.accX_line.setData(self.time_stamps, self.accX_list)
 self.accY_line.setData(self.time_stamps, self.accY_list)
 self.accZ_line.setData(self.time_stamps, self.accZ_list)
 self.gyroX_line.setData(self.time_stamps, self.gyroX_list)
 self.gyroY_line.setData(self.time_stamps, self.gyroY_list)
 self.gyroZ_line.setData(self.time_stamps, self.gyroZ_list)
 self.magX_line.setData(self.time_stamps, self.magX_list)
 self.magY_line.setData(self.time_stamps, self.magY_list)
 self.magZ_line.setData(self.time_stamps, self.magZ_list)

 if self.ui.SensorFrameXBtn.isChecked():
 self.est_roll_line.show()
 else:
 self.est_roll_line.hide()
 if self.ui.ShipFrameXBtn.isChecked():
 self.ship_pitch_line.show()
 else:
 self.ship_pitch_line.hide()

 if self.ui.SensorFrameYBtn.isChecked():
 self.est_pitch_line.show()
 else:
 self.est_pitch_line.hide()
 if self.ui.ShipFrameYBtn.isChecked():

 self.ship_roll_line.show()
 else:
 self.ship_roll_line.hide()

 if self.ui.SensorFrameZBtn.isChecked():
 self.meas_yaw_line.show()
 else:
 self.meas_yaw_line.hide()
 if self.ui.ShipFrameZBtn.isChecked():
 self.ship_yaw_line.show()
 else:
 self.ship_yaw_line.hide()

 def showVideo(self):
 while True:
 self.ret, self.frame = self.capture.read()
 if self.frame is not None:
 self.rgbImage = cv2.cvtColor(self.frame, cv2.COLOR_BGR2RGB)
 self.convertToQtFormat = QtGui.QImage(self.rgbImage.data, self.rgbImage.shape[1], self.rgbImage.shape[0],
 QtGui.QImage.Format_RGB888)
 self.convertToQtFormat = QtGui.QPixmap.fromImage(self.convertToQtFormat)
 self.pixmap = QtGui.QPixmap(self.convertToQtFormat)
 self.resizeImage = self.pixmap.scaled(480,480, QtCore.Qt.KeepAspectRatio)
 QtWidgets.QApplication.processEvents()
 self.ui.CamFeedLabel.setPixmap(self.resizeImage)
 time.sleep(0.025)
 else:

GUIApplication.py

422
423
424
425
426
427
428
429
430
431
432
433
434

 else:
 self.capture = cv2.VideoCapture('seaonics.mp4')
 #self.capture.release()

if __name__ == '__main__':
 arduino = serial.Serial(port='/dev/cu.usbserial-DN041PFR', baudrate=115200, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS, timeout=0)
 import sys
 app = QtWidgets.QApplication(sys.argv)
 mySW = ControlMainWindow()
 mySW.show()

 sys.exit(app.exec_())

GUIApplication.py

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65

#Written by Erlend Holseker and Arvin Khodabandeh

from PyQt5 import QtCore, QtGui, QtWidgets
from pyqtgraph import PlotWidget

"""
A class made for creating the GUI layout in an application made for a
bachelor project.

The class is made using the Qt framework.
"""
class Ui_MainWindow(object):
 def setupUi(self, MainWindow):
 MainWindow.setObjectName("MainWindow")
 MainWindow.resize(1275, 808)
 self.centralwidget = QtWidgets.QWidget(MainWindow)
 self.centralwidget.setStyleSheet("background-color: rgb(127, 127, 127);")
 self.centralwidget.setObjectName("centralwidget")
 self.gridLayout = QtWidgets.QGridLayout(self.centralwidget)
 self.gridLayout.setObjectName("gridLayout")
 self.WidgetContents = QtWidgets.QWidget(self.centralwidget)
 self.WidgetContents.setStyleSheet("background-color:rgb(153, 153, 153)")
 self.WidgetContents.setObjectName("WidgetContents")
 self.horizontalLayout = QtWidgets.QHBoxLayout(self.WidgetContents)
 self.horizontalLayout.setObjectName("horizontalLayout")
 self.WidgetPages = QtWidgets.QStackedWidget(self.WidgetContents)
 self.WidgetPages.setObjectName("WidgetPages")
 self.RawAccPage = QtWidgets.QWidget()
 self.RawAccPage.setObjectName("RawAccPage")
 self.verticalLayout_3 = QtWidgets.QVBoxLayout(self.RawAccPage)
 self.verticalLayout_3.setObjectName("verticalLayout_3")
 self.label_2 = QtWidgets.QLabel(self.RawAccPage)
 self.label_2.setMaximumSize(QtCore.QSize(16777215, 50))
 font = QtGui.QFont()
 font.setFamily("Microsoft Sans Serif")
 font.setPointSize(20)
 self.label_2.setFont(font)
 self.label_2.setAlignment(QtCore.Qt.AlignCenter)
 self.label_2.setObjectName("label_2")
 self.verticalLayout_3.addWidget(self.label_2)
 self.AccValGraphX = PlotWidget(self.RawAccPage)
 self.AccValGraphX.setObjectName("AccValGraphX")
 self.verticalLayout_3.addWidget(self.AccValGraphX)
 self.AccValGraphY = PlotWidget(self.RawAccPage)
 self.AccValGraphY.setObjectName("AccValGraphY")
 self.verticalLayout_3.addWidget(self.AccValGraphY)
 self.AccValGraphZ = PlotWidget(self.RawAccPage)
 self.AccValGraphZ.setObjectName("AccValGraphZ")
 self.verticalLayout_3.addWidget(self.AccValGraphZ)
 self.WidgetPages.addWidget(self.RawAccPage)
 self.RawGyroPage = QtWidgets.QWidget()
 self.RawGyroPage.setObjectName("RawGyroPage")
 self.verticalLayout_4 = QtWidgets.QVBoxLayout(self.RawGyroPage)
 self.verticalLayout_4.setObjectName("verticalLayout_4")
 self.label_3 = QtWidgets.QLabel(self.RawGyroPage)
 self.label_3.setMaximumSize(QtCore.QSize(16777215, 50))
 font = QtGui.QFont()
 font.setFamily("Microsoft Sans Serif")
 font.setPointSize(20)
 self.label_3.setFont(font)
 self.label_3.setAlignment(QtCore.Qt.AlignCenter)
 self.label_3.setObjectName("label_3")
 self.verticalLayout_4.addWidget(self.label_3)
 self.GyroValGraphX = PlotWidget(self.RawGyroPage)
 self.GyroValGraphX.setObjectName("GyroValGraphX")

mainwindow.py

 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

 self.verticalLayout_4.addWidget(self.GyroValGraphX)
 self.GyroValGraphY = PlotWidget(self.RawGyroPage)
 self.GyroValGraphY.setObjectName("GyroValGraphY")
 self.verticalLayout_4.addWidget(self.GyroValGraphY)
 self.GyroValGraphZ = PlotWidget(self.RawGyroPage)
 self.GyroValGraphZ.setObjectName("GyroValGraphZ")
 self.verticalLayout_4.addWidget(self.GyroValGraphZ)
 self.WidgetPages.addWidget(self.RawGyroPage)
 self.RawMagPage = QtWidgets.QWidget()
 self.RawMagPage.setObjectName("RawMagPage")
 self.verticalLayout_5 = QtWidgets.QVBoxLayout(self.RawMagPage)
 self.verticalLayout_5.setObjectName("verticalLayout_5")
 self.label_4 = QtWidgets.QLabel(self.RawMagPage)
 self.label_4.setMaximumSize(QtCore.QSize(16777215, 50))
 font = QtGui.QFont()
 font.setFamily("Microsoft Sans Serif")
 font.setPointSize(20)
 self.label_4.setFont(font)
 self.label_4.setAlignment(QtCore.Qt.AlignCenter)
 self.label_4.setObjectName("label_4")
 self.verticalLayout_5.addWidget(self.label_4)
 self.MagValGraphX = PlotWidget(self.RawMagPage)
 self.MagValGraphX.setObjectName("MagValGraphX")
 self.verticalLayout_5.addWidget(self.MagValGraphX)
 self.MagValGraphY = PlotWidget(self.RawMagPage)
 self.MagValGraphY.setObjectName("MagValGraphY")
 self.verticalLayout_5.addWidget(self.MagValGraphY)
 self.MagValGraphZ = PlotWidget(self.RawMagPage)
 self.MagValGraphZ.setObjectName("MagValGraphZ")
 self.verticalLayout_5.addWidget(self.MagValGraphZ)
 self.WidgetPages.addWidget(self.RawMagPage)
 self.EstValPage = QtWidgets.QWidget()
 self.EstValPage.setObjectName("EstValPage")
 self.verticalLayout_2 = QtWidgets.QVBoxLayout(self.EstValPage)
 self.verticalLayout_2.setObjectName("verticalLayout_2")
 self.label = QtWidgets.QLabel(self.EstValPage)
 self.label.setMaximumSize(QtCore.QSize(16777215, 50))
 font = QtGui.QFont()
 font.setFamily("Microsoft Sans Serif")
 font.setPointSize(20)
 self.label.setFont(font)
 self.label.setAlignment(QtCore.Qt.AlignCenter)
 self.label.setObjectName("label")
 self.verticalLayout_2.addWidget(self.label)
 self.horizontalLayout_2 = QtWidgets.QHBoxLayout()
 self.horizontalLayout_2.setObjectName("horizontalLayout_2")
 self.verticalLayout_9 = QtWidgets.QVBoxLayout()
 self.verticalLayout_9.setObjectName("verticalLayout_9")
 self.label_8 = QtWidgets.QLabel(self.EstValPage)
 self.label_8.setMinimumSize(QtCore.QSize(150, 0))
 self.label_8.setMaximumSize(QtCore.QSize(16777215, 30))
 font = QtGui.QFont()
 font.setFamily("Microsoft Sans Serif")
 self.label_8.setFont(font)
 self.label_8.setAlignment(QtCore.Qt.AlignCenter)
 self.label_8.setObjectName("label_8")
 self.verticalLayout_9.addWidget(self.label_8)

 self.SensorFrameXBtn = QtWidgets.QCheckBox(self.EstValPage)
 self.SensorFrameXBtn.setObjectName("SensorFrameXBtn")
 self.verticalLayout_9.addWidget(self.SensorFrameXBtn)
 self.ShipFrameXBtn = QtWidgets.QCheckBox(self.EstValPage)
 self.ShipFrameXBtn.setObjectName("ShipFrameXBtn")
 self.verticalLayout_9.addWidget(self.ShipFrameXBtn)

 self.horizontalLayout_2.addLayout(self.verticalLayout_9)

mainwindow.py

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

 self.EstValGraphX = PlotWidget(self.EstValPage)
 self.EstValGraphX.setMinimumSize(QtCore.QSize(500, 0))
 self.EstValGraphX.setObjectName("EstValGraphX")
 self.horizontalLayout_2.addWidget(self.EstValGraphX)
 self.verticalLayout_8 = QtWidgets.QVBoxLayout()
 self.verticalLayout_8.setObjectName("verticalLayout_8")
 self.dialX = QtWidgets.QDial(self.EstValPage)
 self.dialX.setStyleSheet("")
 self.dialX.setMinimum(-90)
 self.dialX.setMaximum(90)
 self.dialX.setWrapping(True)
 self.dialX.setNotchesVisible(True)
 self.dialX.setObjectName("dialX")
 self.verticalLayout_8.addWidget(self.dialX)
 self.label_7 = QtWidgets.QLabel(self.EstValPage)
 self.label_7.setMaximumSize(QtCore.QSize(16777215, 50))
 font = QtGui.QFont()
 font.setFamily("Microsoft Sans Serif")
 self.label_7.setFont(font)
 self.label_7.setAlignment(QtCore.Qt.AlignCenter)
 self.label_7.setObjectName("label_7")
 self.verticalLayout_8.addWidget(self.label_7)
 self.horizontalLayout_2.addLayout(self.verticalLayout_8)
 self.verticalLayout_2.addLayout(self.horizontalLayout_2)
 self.horizontalLayout_3 = QtWidgets.QHBoxLayout()
 self.horizontalLayout_3.setObjectName("horizontalLayout_3")
 self.verticalLayout_10 = QtWidgets.QVBoxLayout()
 self.verticalLayout_10.setObjectName("verticalLayout_10")
 self.label_9 = QtWidgets.QLabel(self.EstValPage)
 self.label_9.setMinimumSize(QtCore.QSize(150, 0))
 self.label_9.setMaximumSize(QtCore.QSize(16777215, 30))
 font = QtGui.QFont()
 font.setFamily("Microsoft Sans Serif")
 self.label_9.setFont(font)
 self.label_9.setAlignment(QtCore.Qt.AlignCenter)
 self.label_9.setObjectName("label_9")
 self.verticalLayout_10.addWidget(self.label_9)
 self.SensorFrameYBtn = QtWidgets.QCheckBox(self.EstValPage)
 self.SensorFrameYBtn.setObjectName("SensorFrameYBtn")
 self.verticalLayout_10.addWidget(self.SensorFrameYBtn)
 self.ShipFrameYBtn = QtWidgets.QCheckBox(self.EstValPage)
 self.ShipFrameYBtn.setObjectName("ShipFrameYBtn")
 self.verticalLayout_10.addWidget(self.ShipFrameYBtn)
 self.label_12 = QtWidgets.QLabel(self.EstValPage)
 self.label_12.setMaximumSize(QtCore.QSize(16777215, 20))
 font = QtGui.QFont()
 font.setFamily("Microsoft Sans Serif")
 self.label_12.setFont(font)
 self.label_12.setAlignment(QtCore.Qt.AlignCenter)
 self.label_12.setObjectName("label_12")
 self.verticalLayout_10.addWidget(self.label_12)
 self.EncoderPitch = QtWidgets.QDoubleSpinBox(self.EstValPage)
 self.EncoderPitch.setMaximumSize(QtCore.QSize(200, 16777215))
 self.EncoderPitch.setMinimum(-90)
 self.EncoderPitch.setMaximum(90)
 self.EncoderPitch.setObjectName("EncoderPitch")
 self.verticalLayout_10.addWidget(self.EncoderPitch)
 self.horizontalLayout_3.addLayout(self.verticalLayout_10)
 self.EstValGraphY = PlotWidget(self.EstValPage)
 self.EstValGraphY.setMinimumSize(QtCore.QSize(500, 0))
 self.EstValGraphY.setObjectName("EstValGraphY")
 self.horizontalLayout_3.addWidget(self.EstValGraphY)
 self.verticalLayout_7 = QtWidgets.QVBoxLayout()
 self.verticalLayout_7.setObjectName("verticalLayout_7")
 self.dialY = QtWidgets.QDial(self.EstValPage)
 self.dialY.setMinimum(-180)

mainwindow.py

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

 self.dialY.setMaximum(180)
 self.dialY.setWrapping(True)
 self.dialY.setNotchesVisible(True)
 self.dialY.setObjectName("dialY")
 self.verticalLayout_7.addWidget(self.dialY)
 self.label_6 = QtWidgets.QLabel(self.EstValPage)
 self.label_6.setMaximumSize(QtCore.QSize(16777215, 50))
 font = QtGui.QFont()
 font.setFamily("Microsoft Sans Serif")
 self.label_6.setFont(font)
 self.label_6.setAlignment(QtCore.Qt.AlignCenter)
 self.label_6.setObjectName("label_6")
 self.verticalLayout_7.addWidget(self.label_6)
 self.horizontalLayout_3.addLayout(self.verticalLayout_7)
 self.verticalLayout_2.addLayout(self.horizontalLayout_3)
 self.horizontalLayout_4 = QtWidgets.QHBoxLayout()
 self.horizontalLayout_4.setObjectName("horizontalLayout_4")
 self.verticalLayout_11 = QtWidgets.QVBoxLayout()
 self.verticalLayout_11.setObjectName("verticalLayout_11")
 self.label_10 = QtWidgets.QLabel(self.EstValPage)
 self.label_10.setMinimumSize(QtCore.QSize(150, 0))
 self.label_10.setMaximumSize(QtCore.QSize(16777215, 30))
 self.label_10.setAlignment(QtCore.Qt.AlignCenter)
 self.label_10.setObjectName("label_10")
 self.verticalLayout_11.addWidget(self.label_10)
 self.SensorFrameZBtn = QtWidgets.QCheckBox(self.EstValPage)
 self.SensorFrameZBtn.setObjectName("SensorFrameZBtn")
 self.verticalLayout_11.addWidget(self.SensorFrameZBtn)
 self.ShipFrameZBtn = QtWidgets.QCheckBox(self.EstValPage)
 self.ShipFrameZBtn.setObjectName("ShipFrameZBtn")
 self.verticalLayout_11.addWidget(self.ShipFrameZBtn)
 self.label_11 = QtWidgets.QLabel(self.EstValPage)
 self.label_11.setMaximumSize(QtCore.QSize(16777215, 20))
 font = QtGui.QFont()
 font.setFamily("Microsoft Sans Serif")
 self.label_11.setFont(font)
 self.label_11.setAlignment(QtCore.Qt.AlignCenter)
 self.label_11.setObjectName("label_11")
 self.verticalLayout_11.addWidget(self.label_11)
 self.EncoderYaw = QtWidgets.QDoubleSpinBox(self.EstValPage)
 self.EncoderYaw.setMaximumSize(QtCore.QSize(200, 16777215))
 self.EncoderYaw.setMinimum(0)
 self.EncoderYaw.setMaximum(180)
 self.EncoderYaw.setObjectName("EncoderYaw")
 self.verticalLayout_11.addWidget(self.EncoderYaw)
 self.horizontalLayout_4.addLayout(self.verticalLayout_11)
 self.EstValGraphZ = PlotWidget(self.EstValPage)
 self.EstValGraphZ.setMinimumSize(QtCore.QSize(500, 0))
 self.EstValGraphZ.setObjectName("EstValGraphZ")
 self.horizontalLayout_4.addWidget(self.EstValGraphZ)
 self.verticalLayout_6 = QtWidgets.QVBoxLayout()
 self.verticalLayout_6.setObjectName("verticalLayout_6")
 self.dialZ = QtWidgets.QDial(self.EstValPage)
 self.dialZ.setStyleSheet("")
 self.dialZ.setMinimum(0)
 self.dialZ.setMaximum(360)
 self.dialZ.setWrapping(True)
 self.dialZ.setNotchesVisible(True)
 self.dialZ.setObjectName("dialZ")
 self.verticalLayout_6.addWidget(self.dialZ)
 self.label_5 = QtWidgets.QLabel(self.EstValPage)
 self.label_5.setMaximumSize(QtCore.QSize(16777215, 50))
 font = QtGui.QFont()
 font.setFamily("Microsoft Sans Serif")
 self.label_5.setFont(font)
 self.label_5.setAlignment(QtCore.Qt.AlignCenter)

mainwindow.py

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

 self.label_5.setObjectName("label_5")
 self.verticalLayout_6.addWidget(self.label_5)
 self.horizontalLayout_4.addLayout(self.verticalLayout_6)
 self.verticalLayout_2.addLayout(self.horizontalLayout_4)
 self.WidgetPages.addWidget(self.EstValPage)
 self.horizontalLayout.addWidget(self.WidgetPages)
 self.gridLayout.addWidget(self.WidgetContents, 0, 1, 1, 1)
 self.WidgetMenu = QtWidgets.QWidget(self.centralwidget)
 self.WidgetMenu.setMaximumSize(QtCore.QSize(500, 16777215))
 self.WidgetMenu.setObjectName("WidgetMenu")
 self.gridLayout_2 = QtWidgets.QGridLayout(self.WidgetMenu)
 self.gridLayout_2.setObjectName("gridLayout_2")
 self.FrameJustifier = QtWidgets.QFrame(self.WidgetMenu)
 self.FrameJustifier.setFrameShape(QtWidgets.QFrame.WinPanel)
 self.FrameJustifier.setFrameShadow(QtWidgets.QFrame.Raised)
 self.FrameJustifier.setObjectName("FrameJustifier")
 self.gridLayout_3 = QtWidgets.QGridLayout(self.FrameJustifier)
 self.gridLayout_3.setObjectName("gridLayout_3")
 self.CamFeedJustifier = QtWidgets.QWidget(self.FrameJustifier)
 self.CamFeedJustifier.setObjectName("CamFeedJustifier")
 self.gridLayout_4 = QtWidgets.QGridLayout(self.CamFeedJustifier)
 self.gridLayout_4.setObjectName("gridLayout_4")
 self.CamFeedLabel = QtWidgets.QLabel(self.CamFeedJustifier)
 self.CamFeedLabel.setText("")
 self.CamFeedLabel.setAlignment(QtCore.Qt.AlignCenter)
 self.CamFeedLabel.setObjectName("CamFeedLabel")
 self.gridLayout_4.addWidget(self.CamFeedLabel, 2, 0, 1, 1)
 self.TitleLabel = QtWidgets.QLabel(self.CamFeedJustifier)
 self.TitleLabel.setMaximumSize(QtCore.QSize(16777215, 50))
 font = QtGui.QFont()
 font.setFamily("Microsoft Sans Serif")
 font.setPointSize(22)
 self.TitleLabel.setFont(font)
 self.TitleLabel.setAlignment(QtCore.Qt.AlignCenter)
 self.TitleLabel.setObjectName("TitleLabel")
 self.gridLayout_4.addWidget(self.TitleLabel, 1, 0, 1, 1)
 self.gridLayout_3.addWidget(self.CamFeedJustifier, 0, 0, 1, 1)
 self.PageSelectors = QtWidgets.QFrame(self.FrameJustifier)
 self.PageSelectors.setStyleSheet("background-color:rgb(153, 153, 153);\n"
 "border-style: outset;\n"
 "border-width: 2px;\n"
 "border-radius: 20px;\n"
 "border-color: grey;\n"
 "padding: 4px;")
 self.PageSelectors.setFrameShape(QtWidgets.QFrame.WinPanel)
 self.PageSelectors.setFrameShadow(QtWidgets.QFrame.Sunken)
 self.PageSelectors.setObjectName("PageSelectors")
 self.verticalLayout = QtWidgets.QVBoxLayout(self.PageSelectors)
 self.verticalLayout.setObjectName("verticalLayout")
 self.RawAccBtn = QtWidgets.QPushButton(self.PageSelectors)
 self.RawAccBtn.setMinimumSize(QtCore.QSize(0, 70))
 font = QtGui.QFont()
 font.setFamily("Microsoft Sans Serif")
 font.setPointSize(16)
 self.RawAccBtn.setFont(font)
 self.RawAccBtn.setStyleSheet("background-color: lightgrey;\n"
 "border-style: outset;\n"
 "border-color: grey;\n"
 "border-width: 2px;\n"
 "border-radius: 10px;\n"
 "padding: 4px;\n"
 "\n"
 "QPushbutton::pressed\n"
 "{\n"
 "background-color: grey;\n"
 "border-style: inset;\n"

mainwindow.py

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

 "border-color: grey;\n"
 "border-width: 2px;\n"
 "border-radius: 10px;\n"
 "padding: 4px;\n"
 "}")
 self.RawAccBtn.setCheckable(False)
 self.RawAccBtn.setChecked(False)
 self.RawAccBtn.setFlat(False)
 self.RawAccBtn.setObjectName("RawAccBtn")
 self.verticalLayout.addWidget(self.RawAccBtn)
 self.RawGyroBtn = QtWidgets.QPushButton(self.PageSelectors)
 self.RawGyroBtn.setMinimumSize(QtCore.QSize(0, 70))
 font = QtGui.QFont()
 font.setFamily("Microsoft Sans Serif")
 font.setPointSize(16)
 self.RawGyroBtn.setFont(font)
 self.RawGyroBtn.setStyleSheet("background-color: lightgrey;\n"
 "border-style: outset;\n"
 "border-color: grey;\n"
 "border-width: 2px;\n"
 "border-radius: 10px;\n"
 "padding: 4px;\n"
 "\n"
 "QPushbutton::pressed\n"
 "{\n"
 "background-color: grey;\n"
 "border-style: inset;\n"
 "border-color: grey;\n"
 "border-width: 2px;\n"
 "border-radius: 10px;\n"
 "padding: 4px;\n"
 "}")
 self.RawGyroBtn.setObjectName("RawGyroBtn")
 self.verticalLayout.addWidget(self.RawGyroBtn)
 self.RawMagBtn = QtWidgets.QPushButton(self.PageSelectors)
 self.RawMagBtn.setMinimumSize(QtCore.QSize(0, 70))
 font = QtGui.QFont()
 font.setFamily("Microsoft Sans Serif")
 font.setPointSize(16)
 self.RawMagBtn.setFont(font)
 self.RawMagBtn.setStyleSheet("background-color: lightgrey;\n"
 "border-style: outset;\n"
 "border-color: grey;\n"
 "border-width: 2px;\n"
 "border-radius: 10px;\n"
 "padding: 4px;\n"
 "\n"
 "QPushbutton::pressed\n"
 "{\n"
 "background-color: grey;\n"
 "border-style: inset;\n"
 "border-color: grey;\n"
 "border-width: 2px;\n"
 "border-radius: 10px;\n"
 "padding: 4px;\n"
 "}")
 self.RawMagBtn.setObjectName("RawMagBtn")
 self.verticalLayout.addWidget(self.RawMagBtn)
 self.EstValBtn = QtWidgets.QPushButton(self.PageSelectors)
 self.EstValBtn.setMinimumSize(QtCore.QSize(0, 70))
 font = QtGui.QFont()
 font.setFamily("Microsoft Sans Serif")
 font.setPointSize(16)
 self.EstValBtn.setFont(font)
 self.EstValBtn.setStyleSheet("background-color: lightgrey;\n"
 "border-style: outset;\n"

mainwindow.py

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461

 "border-color: grey;\n"
 "border-width: 2px;\n"
 "border-radius: 10px;\n"
 "padding: 4px;\n"
 "\n"
 "QPushbutton::pressed\n"
 "{\n"
 "background-color: grey;\n"
 "border-style: inset;\n"
 "border-color: grey;\n"
 "border-width: 2px;\n"
 "border-radius: 10px;\n"
 "padding: 4px;\n"
 "}")
 self.EstValBtn.setObjectName("EstValBtn")
 self.verticalLayout.addWidget(self.EstValBtn)
 self.gridLayout_3.addWidget(self.PageSelectors, 2, 0, 1, 1)

 self.StartBtn = QtWidgets.QPushButton(self.FrameJustifier)
 #self.StartBtn.setMinimumSize(QtCore.QSize(0, 70))
 font = QtGui.QFont()
 font.setFamily("Microsoft Sans Serif")
 font.setPointSize(16)
 self.StartBtn.setFont(font)
 self.StartBtn.setStyleSheet("background-color: lightgrey;\n"
 "border-style: outset;\n"
 "border-color: grey;\n"
 "border-width: 2px;\n"
 "border-radius: 10px;\n"
 "padding: 4px;\n"
 "\n"
 "QPushbutton::pressed\n"
 "{\n"
 "background-color: grey;\n"
 "border-style: inset;\n"
 "border-color: grey;\n"
 "border-width: 2px;\n"
 "border-radius: 10px;\n"
 "padding: 4px;\n"
 "}")
 self.StartBtn.setObjectName("StartBtn")
 self.gridLayout_3.addWidget(self.StartBtn)

 self.MenuLabel = QtWidgets.QLabel(self.FrameJustifier)
 self.MenuLabel.setMaximumSize(QtCore.QSize(16777215, 30))
 font = QtGui.QFont()
 font.setFamily("Microsoft Sans Serif")
 font.setPointSize(20)
 self.MenuLabel.setFont(font)
 self.MenuLabel.setFrameShape(QtWidgets.QFrame.NoFrame)
 self.MenuLabel.setFrameShadow(QtWidgets.QFrame.Plain)
 self.MenuLabel.setAlignment(QtCore.Qt.AlignCenter)
 self.MenuLabel.setObjectName("MenuLabel")
 self.gridLayout_3.addWidget(self.MenuLabel, 1, 0, 1, 1)
 self.gridLayout_2.addWidget(self.FrameJustifier, 0, 0, 1, 1)
 self.gridLayout.addWidget(self.WidgetMenu, 0, 0, 1, 1)
 MainWindow.setCentralWidget(self.centralwidget)

 self.retranslateUi(MainWindow)
 self.WidgetPages.setCurrentIndex(3)
 QtCore.QMetaObject.connectSlotsByName(MainWindow)

 def retranslateUi(self, MainWindow):
 _translate = QtCore.QCoreApplication.translate
 MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow"))
 self.label_2.setText(_translate("MainWindow", "Raw Accelerometer Values"))

mainwindow.py

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

 self.label_3.setText(_translate("MainWindow", "Raw Gyroscope Values"))
 self.label_4.setText(_translate("MainWindow", "Raw Magnetometer Values"))
 self.label.setText(_translate("MainWindow", "Estimated Attitude Values For Gangway and Ship"))
 self.label_8.setText(_translate("MainWindow", "Frame Representation"))
 self.SensorFrameXBtn.setText(_translate("MainWindow", "Sensor Roll to World"))
 self.ShipFrameXBtn.setText(_translate("MainWindow", "Ship Pitch to World"))
 self.label_7.setText(_translate("MainWindow", "Estimated Roll:"))
 self.label_9.setText(_translate("MainWindow", "Frame Representation"))
 self.SensorFrameYBtn.setText(_translate("MainWindow", "Sensor Pitch to World"))
 self.ShipFrameYBtn.setText(_translate("MainWindow", "Ship Roll to World"))
 self.label_12.setText(_translate("MainWindow", "Encoder Value Boom"))
 self.label_6.setText(_translate("MainWindow", "Estimated Pitch:"))
 self.label_10.setText(_translate("MainWindow", "Frame Representation"))
 self.SensorFrameZBtn.setText(_translate("MainWindow", "Sensor Yaw to Init Position"))
 self.ShipFrameZBtn.setText(_translate("MainWindow", "Ship Yaw to Init Position"))
 self.label_11.setText(_translate("MainWindow", "Encoder Value Slew"))
 self.label_5.setText(_translate("MainWindow", "Estimated Yaw:"))
 self.TitleLabel.setText(_translate("MainWindow", "Position and Orientation Estimation"))
 self.RawAccBtn.setText(_translate("MainWindow", "Raw Accelerometer Values"))
 self.RawGyroBtn.setText(_translate("MainWindow", "Raw Gyroscope Values"))
 self.RawMagBtn.setText(_translate("MainWindow", "Raw Magnetometer Values"))
 self.EstValBtn.setText(_translate("MainWindow", "Estimated Attitude Values"))
 self.StartBtn.setText(_translate("MainWindow", "Start Measuring"))
 self.MenuLabel.setText(_translate("MainWindow", "Menu"))

 # Graph showing estimated values around X-axis
 self.EstValGraphX.setBackground('w')
 self.EstValGraphX.setTitle("Angle X (Roll) in degrees", color="b", size="15pt")
 styles = {"color": "#f00", "font-size": "15px"}
 self.EstValGraphX.setLabel("left", "Roll Angle", **styles)
 self.EstValGraphX.setLabel("bottom", "Time steps", **styles)
 self.EstValGraphX.addLegend()
 self.EstValGraphX.showGrid(x=True, y=True)
 self.EstValGraphX.setYRange(-180, 180, padding=0)

 # Graph showing estimated values around Y-axis
 self.EstValGraphY.setBackground('w')
 self.EstValGraphY.setTitle("Angle Y (Pitch) in degrees", color="b", size="15pt")
 styles = {"color": "#f00", "font-size": "15px"}
 self.EstValGraphY.setLabel("left", "Pitch Angle", **styles)
 self.EstValGraphY.setLabel("bottom", "Time steps", **styles)
 self.EstValGraphY.addLegend()
 self.EstValGraphY.showGrid(x=True, y=True)
 self.EstValGraphY.setYRange(-90, 90, padding=0)

 # Graph showing estimated values around Z-axis
 self.EstValGraphZ.setBackground('w')
 self.EstValGraphZ.setTitle("Angle Z (Yaw) in degrees", color="b", size="15pt")
 styles = {"color": "#f00", "font-size": "15px"}
 self.EstValGraphZ.setLabel("left", "Yaw Angle", **styles)
 self.EstValGraphZ.setLabel("bottom", "Time steps", **styles)
 self.EstValGraphZ.addLegend()
 self.EstValGraphZ.showGrid(x=True, y=True)
 self.EstValGraphZ.setYRange(-180, 180, padding=0)

 # Graph showing raw accelerometer data X
 self.AccValGraphX.setBackground('w')
 self.AccValGraphX.setTitle("Accelerometer X", color="b", size="15pt")
 styles = {"color": "#f00", "font-size": "15px"}
 self.AccValGraphX.setLabel("left", "m/s²", **styles)
 self.AccValGraphX.setLabel("bottom", "Time steps", **styles)
 self.AccValGraphX.addLegend()
 self.AccValGraphX.showGrid(x=True, y=True)

 # Graph showing raw accelerometer data Y
 self.AccValGraphY.setBackground('w')

mainwindow.py

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

 self.AccValGraphY.setTitle("Accelerometer Y", color="b", size="15pt")
 styles = {"color": "#f00", "font-size": "15px"}
 self.AccValGraphY.setLabel("left", "m/s²", **styles)
 self.AccValGraphY.setLabel("bottom", "Time steps", **styles)
 self.AccValGraphY.addLegend()
 self.AccValGraphY.showGrid(x=True, y=True)

 # Graph showing raw accelerometer data Z
 self.AccValGraphZ.setBackground('w')
 self.AccValGraphZ.setTitle("Accelerometer Z", color="b", size="15pt")
 styles = {"color": "#f00", "font-size": "15px"}
 self.AccValGraphZ.setLabel("left", "m/s²", **styles)
 self.AccValGraphZ.setLabel("bottom", "Time steps", **styles)
 self.AccValGraphZ.addLegend()
 self.AccValGraphZ.showGrid(x=True, y=True)

 # Graph showing raw gyroscope data X
 self.GyroValGraphX.setBackground('w')
 self.GyroValGraphX.setTitle("Gyroscope X", color="b", size="15pt")
 styles = {"color": "#f00", "font-size": "15px"}
 self.GyroValGraphX.setLabel("left", "degrees/second", **styles)
 self.GyroValGraphX.setLabel("bottom", "Time steps", **styles)
 self.GyroValGraphX.addLegend()
 self.GyroValGraphX.showGrid(x=True, y=True)

 # Graph showing raw gyroscope data Y
 self.GyroValGraphY.setBackground('w')
 self.GyroValGraphY.setTitle("Gyroscope Y", color="b", size="15pt")
 styles = {"color": "#f00", "font-size": "15px"}
 self.GyroValGraphY.setLabel("left", "degrees/second", **styles)
 self.GyroValGraphY.setLabel("bottom", "Time steps", **styles)
 self.GyroValGraphY.addLegend()
 self.GyroValGraphY.showGrid(x=True, y=True)

 # Graph showing raw gyroscope data Z
 self.GyroValGraphZ.setBackground('w')
 self.GyroValGraphZ.setTitle("Gyroscope Z", color="b", size="15pt")
 styles = {"color": "#f00", "font-size": "15px"}
 self.GyroValGraphZ.setLabel("left", "degrees/second", **styles)
 self.GyroValGraphZ.setLabel("bottom", "Time steps", **styles)
 self.GyroValGraphZ.addLegend()
 self.GyroValGraphZ.showGrid(x=True, y=True)

 # Graph showing raw magnetometer data X
 self.MagValGraphX.setBackground('w')
 self.MagValGraphX.setTitle("Magnetometer X", color="b", size="15pt")
 styles = {"color": "#f00", "font-size": "15px"}
 self.MagValGraphX.setLabel("left", "Micro Tesla (µT)", **styles)
 self.MagValGraphX.setLabel("bottom", "Time steps", **styles)
 self.MagValGraphX.addLegend()
 self.MagValGraphX.showGrid(x=True, y=True)

 # Graph showing raw magnetometer data Y
 self.MagValGraphY.setBackground('w')
 self.MagValGraphY.setTitle("Magnetometer Y", color="b", size="15pt")
 styles = {"color": "#f00", "font-size": "15px"}
 self.MagValGraphY.setLabel("left", "Micro Tesla (µT)", **styles)
 self.MagValGraphY.setLabel("bottom", "Time steps", **styles)
 self.MagValGraphY.addLegend()
 self.MagValGraphY.showGrid(x=True, y=True)

 # Graph showing raw magnetometer data Z
 self.MagValGraphZ.setBackground('w')
 self.MagValGraphZ.setTitle("Magnetometer Z", color="b", size="15pt")
 styles = {"color": "#f00", "font-size": "15px"}
 self.MagValGraphZ.setLabel("left", "Micro Tesla (µT)", **styles)

mainwindow.py

594
595
596

 self.MagValGraphZ.setLabel("bottom", "Time steps", **styles)
 self.MagValGraphZ.addLegend()
 self.MagValGraphZ.showGrid(x=True, y=True)

mainwindow.py

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65

Written by Erlend Holseker and Arvin Khodabandeh

import numpy as np
import matplotlib.pyplot as plt

class KalmanFilter():
 """
 A class representing a Kalman filter.
 :param A: The A matrix (Representing the state-space model)
 :param H: The H matrix (Used to relate the state to the measurement)
 :param Q: The Q matrix (Process covariance matrix)
 :param R: The R matrix (Measurement noise covariance matrix)
 :param x_0: The initial state
 """
 def __init__(self, A, H, Q, R, x_0):
 # Model parameters
 self.A = A
 self.H = H
 self.Q = Q
 self.R = R

 # Initial state
 self._x = x_0
 self.n = len(self._x)
 self._P = np.zeros((self.n, self.n))

 def predict(self):
 self._x = self.A @ self._x
 self._P = self.A @ self._P @ self.A.transpose() + self.Q

 def update(self, z):
 self.S = self.H @ self._P @ self.H.transpose() + self.R
 self.V = z - self.H @ self._x
 self.K = self._P @ self.H.transpose() @ np.linalg.inv(self.S)

 self._x = self._x + self.K @ self.V
 self._P = self._P - self.K @ self.S @ self.K.transpose()

 def get_state(self):
 return self._x, self._P

 def updateParameters(self, A, Q):
 self.A = A
 self.Q = Q

class MotionModel():
 def __init__(self, A, Q):
 self.A = A
 self.Q = Q

 (m, _) = Q.shape
 self.zero_mean = np.zeros(m)

 def __call__(self, x):
 new_state = self.A @ x + np.random.multivariate_normal(self.zero_mean, self.Q)
 return new_state

class MeasurementModel():
 def __init__(self, H, R):
 self.H = H
 self.R = R

 (n, _) = R.shape
 self.zero_mean = np.zeros(n)

kalman.py

 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

 def __call__(self, x):
 measurement = self.H @ x + np.random.multivariate_normal(self.zero_mean, self.R)
 return measurement

def create_model_parameters(T=1, s2_x=0.1 ** 2, s2_y=0.1 ** 2, lambda2=0.3 ** 2):
 # Motion model parameters
 F = np.array([[1, T],
 [0, 1]])
 base_sigma = np.array([[T ** 3 / 3, T ** 2 / 2],
 [T ** 2 / 2, T]])

 sigma_x = s2_x * base_sigma
 sigma_y = s2_y * base_sigma

 zeros_2 = np.zeros((2, 2))
 A = np.block([[F, zeros_2],
 [zeros_2, F]])
 Q = np.block([[sigma_x, zeros_2],
 [zeros_2, sigma_y]])

 # Measurement model parameters
 H = np.array([[1, 0, 0, 0],
 [0, 0, 1, 0]])
 R = lambda2 * np.eye(2)

 return A, H, Q, R

def simulate_system(K, x0):
 (A, H, Q, R) = create_model_parameters()

 # Create models
 motion_model = MotionModel(A, Q)
 meas_model = MeasurementModel(H, R)

 (m, _) = Q.shape
 (n, _) = R.shape

 state = np.zeros((K, m))
 meas = np.zeros((K, n))

 # Initial state
 x = x0
 for k in range(K):
 x = motion_model(x)
 z = meas_model(x)

 state[k, :] = x
 meas[k, :] = z

 return state, meas

kalman.py

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Written by Erlend Holseker and Arvin Khodabandeh

import numpy as np
import math

import quaternion

class MadgwickFilter():
 """
 A class representing a Madgwick filter.
 :param beta: The filter gain representing all mean zero gyroscope errors,
 expressed as the magnitude of a quaternion derivative. It is defined using the
 angular velocity: beta = sqrt(3/4) * omegab, where omegab is the estimated
 mean zero gyroscope measurement error of each axis.
 """
 def __init__(self, beta, initial_slew):
 self.beta = float(beta)
 self.q = quaternion.euler_to_quaternion([0, 0, initial_slew])
 self.update_term = 0
 self.acc_normalized = np.array([0, 0, 0]).T
 self.mag_normalized = np.array([0, 0, 0, 0]).T

 def get_estimated_orientation(self, delta_t, gyro, acc, mag=None):
 """
 Calculates the estimated quaternion representation of the orientation.
 :param delta_t: The time between each measurement
 :param gyro: Array containing the gyroscope measurement
 :param acc: Array containing the accelerometer measurement
 :param mag: Array containing the magnetometer measurement. This should
 be a 4x1 array where the first element is 0, and the rest is the
 magnetometer measurement.
 """
 qw = self.q[0]
 qx = self.q[1]
 qy = self.q[2]
 qz = self.q[3]

 acc_norm = np.linalg.norm(acc)
 if acc_norm > 0:
 self.acc_normalized = np.divide(acc, acc_norm)

 ##ORIENTATION INCREMENT FROM ACC ##
 f_g = np.array([(2*(qx*qz - qw*qy) - self.acc_normalized[0]),
 (2*(qw*qx - qy*qz) - self.acc_normalized[1]),
 (2*(0.5 - qx**2 - qy**2) - self.acc_normalized[2])])

 j_g = np.array([(-2*qy, 2*qz, -2*qw, 2*qx),
 (2*qx, 2*qw, 2*qz, 2*qy),
 (0, -4*qx, -4*qy, 0)])

 ## ORIENTATION INCREMENT FROM GYRO ##
 q_w_dot = 0.5*quaternion.multiply(self.q, np.array([0, gyro[0], gyro[1], gyro[2]]).transpose())

 if mag is None:
 grad_step = j_g.transpose() @ f_g
 grad_norm = np.linalg.norm(grad_step)

 if grad_norm != 0:
 self.update_term = -self.beta * np.divide(grad_step, grad_norm)
 else:
 ## CORRECT USING MAGNETOMETER ##
 mag_norm = np.linalg.norm(mag)
 if mag_norm > 0:
 self.mag_normalized = np.divide(mag, mag_norm)

madgwick.py

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

 h = quaternion.multiply(quaternion.multiply(self.q, self.mag_normalized), quaternion.conjugate(self.q))

 bx = math.sqrt(h[1]**2 + h[2]**2)
 bz = h[3]

 f_b = np.array([(2*bx*(0.5-qy**2-qz**2) + 2*bz*(qx*qz-qw*qy) - self.mag_normalized[1]),
 (2*bx*(qx*qy-qw*qz) + 2*bz*(qw*qx+qy*qz) - self.mag_normalized[2]),
 (2*bx*(qw*qy+qx*qz) + 2*bz*(0.5-qx**2-qy**2) - self.mag_normalized[3])])

 j_b = np.array([(-2*bz*qy, 2*bz*qz, -4*bx*qy-2*bz*qw, -4*bx*qz+2*bz*qx),
 (-2*bx*qz+2*bz*qx, 2*bx*qy+2*bz*qw, 2*bx*qx+2*bz*qz, -2*bx*qw+2*bz*qy),
 (2*bx*qy, 2*bx*qz-4*bz*qx, 2*bx*qw-4*bz*qy, 2*bx*qx)])

 f_gb = np.block([f_g,
 f_b])

 j_gb = np.block([[j_g],
 [j_b]])

 grad_step = j_gb.T @ f_gb
 grad_norm = np.linalg.norm(grad_step)

 if grad_norm != 0:
 self.update_term = -self.beta * np.divide(grad_step, grad_norm)

 q_est_dot = q_w_dot + self.update_term
 q_est = self.q + (q_est_dot * delta_t)
 self.q = quaternion.normalize(q_est)
 return self.q

madgwick.py

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65

A set of methods for quaternion calculations
#
Written by Erlend Holseker and Arvin Khodabandeh

import numpy as np
import math

def multiply(q0, q1):
 """
 Multiplies two quaternions.
 BE AWARE OF THE ORDER, QUATERNION MULTIPLICATION IS NON-COMMUTATIVE!
 q0*q1 =/= q1*q0!
 :param q0: array containing the first quaternion
 :param q1: array containing the second quaternion
 """
 if q0.shape != (4, 1):
 q0 = q0.T
 if q1.shape != (4, 1):
 q1 = q1.T
 w0, x0, y0, z0 = q0[0], q0[1], q0[2], q0[3]
 w1, x1, y1, z1 = q1[0], q1[1], q1[2], q1[3]
 w = w0*w1 - x0*x1 - y0*y1 - z0*z1
 x = w0*x1 + x0*w1 + y0*z1 - z0*y1
 y = w0*y1 + y0*w1 + z0*x1 - x0*z1
 z = w0*z1 + z0*w1 + x0*y1 - y0*x1
 return np.array([w, x, y, z])

def conjugate(q0):
 """
 Calculates the quaternion conjugate
 :param q0: array containing the quaternion to be conjugated
 """
 if q0.shape != (4, 1):
 q0 = q0.T
 w0, x0, y0, z0 = q0[0], q0[1], q0[2], q0[3]
 x0, y0, z0 = -x0, -y0, -z0
 return np.array([w0, x0, y0, z0])

def euler_to_quaternion(r):
 """
 Converts from Euler angles(degrees) to Quaternions \n
 :param r: array containing Euler angles(degrees): Roll, Pitch and Yaw
 """
 (yaw, pitch, roll) = (r[2], r[1], r[0])
 (yaw, pitch, roll) = (math.radians(yaw), math.radians(pitch), math.radians(roll))
 qx = np.sin(roll/2) * np.cos(pitch/2) * np.cos(yaw/2) - np.cos(roll/2) * np.sin(pitch/2) * np.sin(yaw/2)
 qy = np.cos(roll/2) * np.sin(pitch/2) * np.cos(yaw/2) + np.sin(roll/2) * np.cos(pitch/2) * np.sin(yaw/2)
 qz = np.cos(roll/2) * np.cos(pitch/2) * np.sin(yaw/2) - np.sin(roll/2) * np.sin(pitch/2) * np.cos(yaw/2)
 qw = np.cos(roll/2) * np.cos(pitch/2) * np.cos(yaw/2) + np.sin(roll/2) * np.sin(pitch/2) * np.sin(yaw/2)
 return np.array([qw, qx, qy, qz])

def get_axis_angle(q):
 w, x, y, z = q[0], q[1], q[2], q[3]
 norm = math.sqrt(x**2 + y**2 + z**2)
 a = np.divide(([x, y, z]), norm)
 theta = 2 * math.atan2(norm, w)
 roll, pitch, yaw = a * theta
 return np.array(np.degrees([roll, pitch, yaw]))

def to_axis_angle(a):
 a = np.radians(a)
 x, y, z = a[0], a[1], a[2]
 norm = math.sqrt(x**2 + y**2 + z**2)
 x, y, z = np.divide([x, y, z], norm)
 theta = a[0]/x

quaternion.py

 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

 return np.array([x, y, z, np.degrees(theta)])

def axis_angle_to_quat(a):
 theta = np.radians(a[3])
 s = math.sin(theta/2)
 w = math.cos(theta/2)
 x = a[0] * s
 y = a[1] * s
 z = a[2] * s
 return np.array([w, x, y, z])

def quaternion_to_euler(q, as_degrees=True):
 """
 Converts quaternion to Euler angles \n
 :param q: quaternion as a list: qw, qx, qy, qz
 """
 (w, x, y, z) = (q[0], q[1], q[2], q[3])
 t0 = +2.0 * (w * x + y * z)
 t1 = +1.0 - 2.0 * (x * x + y * y)
 roll = math.atan2(t0, t1)
 t2 = +2.0 * (w * y - z * x)
 t2 = +1.0 if t2 > +1.0 else t2
 t2 = -1.0 if t2 < -1.0 else t2
 pitch = math.asin(t2)
 t3 = +2.0 * (w * z + x * y)
 t4 = +1.0 - 2.0 * (y * y + z * z)
 yaw = math.atan2(t3, t4)
 if as_degrees:
 return [np.degrees(roll), np.degrees(pitch), np.degrees(yaw)]
 else:
 return [roll, pitch, yaw]

def quaternion_to_euler_2(q, as_degrees=True):
 if q.shape != (4, 1):
 q = q.T
 q0, q1, q2, q3 = q[0], q[1], q[2], q[3]
 t0 = 2*(q0*q1 + q2*q3)
 t1 = 1 - 2*(q1**2 + q2**2)
 roll = math.atan2(t0, t1)
 t2 = 2*(q0*q2 - q3*q1)
 pitch = math.asin(t2)
 t3 = 2*(q0*q3 + q1*q2)
 t4 = 1 - 2*(q2**2 + q3**2)
 yaw = math.atan2(t3, t4)
 if as_degrees:
 return [np.degrees(roll), np.degrees(pitch), np.degrees(yaw)]
 else:
 return [roll, pitch, yaw]

def normalize(q):
 norm = np.linalg.norm(q)
 q_norm = 0
 if norm > 0:
 q_norm = np.divide(q, norm)
 return q_norm

quaternion.py

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Written by Arvin Khodabandeh and Erlend Holseker

import numpy as np
import math
import matplotlib.pyplot as plt
import random
import homogeneous_transform as ht
import quaternion
from mpl_toolkits.mplot3d import Axes3D

class Frame(object):

 def __init__(self, position = np.array([0, 0, 0]), orientation = np.array([0, 0, 0]), parentFrame = None, childFrame = None):
 """
 Creates an instance of the Frame class.
 :param position: Position in relation to the parent frame
 :param orientation: Orientation in relation to the parent frame
 """
 self.position = position
 self.orientation = orientation
 self.parentFrame = parentFrame
 self.childFrame = childFrame
 self.representation = None

 def get_position(self):
 return self.position

 def get_orientation(self):
 return self.orientation

 def update_position(self, newPosition):
 """
 Updates the position in relation to the parent frame
 :param newPosition: New position
 """
 self.position = newPosition

 def update_orientation(self, newOrientation):
 """
 Updates the orientation in relation to the parent frame
 """
 self.orientation = newOrientation

 def set_parent_frame(self, parentFrame):
 self.parentFrame = parentFrame

 def set_child_frame(self, childFrame):
 self.childFrame = childFrame

 def get_parent_frame(self):
 return self.parentFrame

 def get_child_frame(self):
 return self.childFrame

 def get_rot_matrix(self):
 return ht.euler_to_rot_matrix(self.orientation)

 def get_trans_matrix(self):
 return ht.pos_to_trans_matrix(self.position)

 def get_representation(self):
 return np.matmul(ht.pos_to_trans_matrix(self.get_position()), ht.euler_to_rot_matrix(self.get_orientation()))

frame.py

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

 def get_quat(self):
 return ht.euler_to_quaternion(self.get_orientation())

 def get_parent_representation(self):
 parent_representation = None
 if self.parentFrame is not None:
 parent_pos = self.parentFrame.get_position()
 parent_orient = self.parentFrame.get_orientation()
 parent_representation = np.matmul(ht.pos_to_trans_matrix(parent_pos), ht.euler_to_rot_matrix(parent_orient))
 return parent_representation

 def get_grandparent_representation(self):
 grandparent_representation = None
 if self.parentFrame.get_parent_frame() is not None:
 parent_representation = self.get_parent_representation()
 self.representation = self.get_representation()
 grandparent_representation = np.matmul(parent_representation, self.representation)
 return grandparent_representation

frame.py

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65

Written by Arvin Khodabandeh and Erlend Holseker

import numpy as np
import math
import matplotlib.pyplot as plt
import pandas as pd
import time

from mpl_toolkits.mplot3d import Axes3D

def euler_to_quaternion(r):
 """
 Converts from Euler angles(degrees) to Quaternions \n
 :param r: array containing Euler angles(degrees): Roll, Pitch and Yaw
 """
 (yaw, pitch, roll) = (r[2], r[1], r[0])
 (yaw, pitch, roll) = (math.radians(yaw), math.radians(pitch), math.radians(roll))
 qx = np.sin(roll/2) * np.cos(pitch/2) * np.cos(yaw/2) - np.cos(roll/2) * np.sin(pitch/2) * np.sin(yaw/2)
 qy = np.cos(roll/2) * np.sin(pitch/2) * np.cos(yaw/2) + np.sin(roll/2) * np.cos(pitch/2) * np.sin(yaw/2)
 qz = np.cos(roll/2) * np.cos(pitch/2) * np.sin(yaw/2) - np.sin(roll/2) * np.sin(pitch/2) * np.cos(yaw/2)
 qw = np.cos(roll/2) * np.cos(pitch/2) * np.cos(yaw/2) + np.sin(roll/2) * np.sin(pitch/2) * np.sin(yaw/2)
 return np.array([qw, qx, qy, qz])

def quaternion_to_euler(q):
 """
 Converts quaternion to Euler angles \n
 :param q: quaternion as a list: qw, qx, qy, qz
 """
 (w, x, y, z) = (q[0], q[1], q[2], q[3])
 t0 = +2.0 * (w * x + y * z)
 t1 = +1.0 - 2.0 * (x * x + y * y)
 roll = math.atan2(t0, t1)
 t2 = +2.0 * (w * y - z * x)
 t2 = +1.0 if t2 > +1.0 else t2
 t2 = -1.0 if t2 < -1.0 else t2
 pitch = math.asin(t2)
 t3 = +2.0 * (w * z + x * y)
 t4 = +1.0 - 2.0 * (y * y + z * z)
 yaw = math.atan2(t3, t4)
 return [roll, pitch, yaw]

def quat_to_rot_matrix(q):
 """
 Converts quaternion to a 4x4 rotation matrix. \n
 :param q: quaternion as a list: qw, qx, qy, qz
 """
 R = np.array([[q[0]**2 + q[1]**2 - q[2]**2 - q[3]**2, 2*(q[1]*q[2]-q[0]*q[3]), 2*(q[0]*q[2] + q[1]*q[3]), 0],
 [2*(q[1]*q[2]+q[0]*q[3]), q[0]**2 - q[1]**2 + q[2]**2 - q[3]**2, 2*(q[2]*q[3]-q[0]*q[1]), 0],
 [2*(q[1]*q[3]-q[0]*q[2]), 2*(q[0]*q[1] + q[2]*q[3]), q[0]**2 - q[1]**2 - q[2]**2 +q[3]**2, 0],
 [0, 0, 0, 1]])
 return R

def euler_to_rot_matrix(r, only_Z = False):
 (psi, theta, phi) = (r[2], r[1], r[0])
 c_phi = math.cos(math.radians(phi))
 s_phi = math.sin(math.radians(phi))
 c_theta = math.cos(math.radians(theta))
 s_theta = math.sin(math.radians(theta))
 c_psi = math.cos(math.radians(psi))
 s_psi = math.sin(math.radians(psi))

 Rx = np.array([[1, 0, 0, 0],
 [0, c_phi, -s_phi, 0],

homogeneous_transform.py

 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

 [0, s_phi, c_phi, 0],
 [0, 0, 0, 1]])
 Ry = np.array([[c_theta, 0, s_theta, 0],
 [0, 1, 0, 0],
 [-s_theta, 0, c_theta, 0],
 [0, 0, 0, 1]])
 Rz = np.array([[c_psi, -s_psi, 0, 0],
 [s_psi, c_psi, 0, 0],
 [0, 0, 1, 0],
 [0, 0, 0, 1]])

 if only_Z:
 return Rz
 else:
 R = Rz @ Ry @ Rx
 return R

def to_3x3_rot_matrix(m):
 """
 Extracts a 3x3 matrix from a larger than 3x3 matrix \n
 :param m: matrix to be converted
 """
 R = np.array([[m[0, 0], m[0, 1], m[0, 2]],
 [m[1, 0], m[1, 1], m[1, 2]],
 [m[2, 0], m[2, 1], m[2, 2]]])
 return R

def get_rot_matrix_list(data):
 """
 Creates a list of rotation matrices. \n
 :param data: dataframe to extract values.
 """
 orientation = data.iloc[:, 1:4].values
 rot_matrices = []
 for i in range (len(orientation)):
 quat = euler_to_quaternion(orientation[i, :])
 rot_matrix_4x4 = quat_to_rot_matrix(quat)
 rot_matrix = to_3x3_rot_matrix(rot_matrix_4x4)
 rot_matrices.append(rot_matrix)
 return rot_matrices

def rot_matrix_to_euler(r):
 """
 Converts a rotation matrix to euler angles(degrees)\n
 :param r: rotation matrix to convert
 """
 sy = math.sqrt(r[0, 0] * r[0, 0]+ r[1, 0] * r[1, 0])
 singular = sy < 1e-6
 if not singular:
 roll = math.atan2(r[2, 1], r[2,2])
 pitch = math.atan2(-r[2, 0], sy)
 yaw = math.atan2(r[1, 0], r[0, 0])
 else:
 roll = math.atan2(-r[1, 2], r[1, 1])
 pitch = math.atan2(-r[2, 0], sy)
 yaw = 0
 return np.array([math.degrees(roll), math.degrees(pitch), math.degrees(yaw)])

def pos_to_trans_matrix(pos):
 """
 Creates a 4x4 translation matrix from given coordinates\n
 :param pos: how far the object should translate in x, y and z direction
 """

homogeneous_transform.py

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

 (new_x, new_y, new_z) = (pos[0], pos[1], pos[2])
 trans = np.array([[1, 0, 0, new_x], [0, 1, 0, new_y], [0, 0, 1, new_z], [0, 0, 0, 1]])
 return trans

def get_pos(representation):
 """
 Get the position from a 4x4 homogeneous transformation matrix representation\n
 :param representation: current representation
 """
 pos = representation[0:3, 3]
 return pos

def get_orientation(representation):
 """
 Get the orientation from a 4x4 homogeneous transformation matrix representation\n
 :param representation: current representation

 """
 rot_matrix = representation[0:3, 0:3]
 orientation = rot_matrix_to_euler(rot_matrix)
 return orientation

homogeneous_transform.py

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

A set of methods to calculate orientation based on IMU data
#
Written by Erlend Holseker and Arvin Khodabandeh

import numpy as np
import math

g_const = 9.80665

def get_pitch(a, degrees=True):
 norm = np.linalg.norm(a)
 phi = 0
 if norm > 0:
 a_norm = -np.divide(a.T, norm)
 phi = math.atan2(a_norm[0], math.sqrt(a_norm[1]**2 + a_norm[2]**2))
 if degrees:
 return math.degrees(phi)
 else:
 return phi

def get_roll(a, degrees=True):
 norm = np.linalg.norm(a)
 theta = 0
 if norm > 0:
 a_norm = np.divide(a.T, norm)
 theta = math.atan2(a_norm[1], math.sqrt(a_norm[0]**2 + a_norm[2]**2))
 if degrees:
 return math.degrees(theta)
 else:
 return theta

def get_yaw(pitch, roll, m, degrees=True):
 phi = pitch
 theta = roll
 c_phi = math.cos(math.radians(phi))
 s_phi = math.sin(math.radians(phi))
 c_theta = math.cos(math.radians(theta))
 s_theta = math.sin(math.radians(theta))
 mag = m.T
 # norm = np.linalg.norm(m)
 norm = math.sqrt((mag[0]**2) + (mag[1]**2) + (mag[2]**2))
 if norm > 0:
 m_norm = np.divide(mag, norm)

 XH = m_norm[0]*math.cos(math.radians(pitch)) + m_norm[1]*math.sin(math.radians(pitch))*math.sin(math.radians(roll)) + m_norm[2]*math.sin(math.radians(pitch))*math.cos(math.radians(roll))

 YH = m_norm[1]*math.cos(math.radians(roll)) + m_norm[2]*math.sin(math.radians(roll))

 psi = math.atan2(-YH, XH)

 if degrees:
 return math.degrees(psi)
 else:
 return psi
 else:
 return 0

orientation_conversion.py

Appendix F

Source Code Positioning Application

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65

 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103

"""
@AUTHORS Erik Bjørnøy, Isak Gamnes

Calibrates, rectifies and undistorts stereo camera images.
Saves cameras intrinsic and extrinsics.
"""

import cv2
assert cv2.__version__[0] >= '3', 'The fisheye module requires opencv version >= 3.0.0'
import numpy as np
import os
import glob
from tqdm import tqdm

Set the path to the images captured by the left and right cameras
pathL = "myPath/left"
pathR = "myPath/rigth"

Termination criteria for refining the detected corners
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

objp = np.zeros((9*6,3), np.float32)
objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2)

img_ptsL = []
img_ptsR = []
obj_pts = []

for i in tqdm(range(1,22)):
 imgL = cv2.imread(pathL+"%s_left.png"%i)
 imgR = cv2.imread(pathR+"%s_right.png"%i)
 imgL_gray = cv2.imread(pathL+"%s_left.png"%i,0)
 imgR_gray = cv2.imread(pathR+"%s_rigth.png"%i,0)

 outputL = imgL.copy()
 outputR = imgR.copy()

 retR, cornersR = cv2.findChessboardCorners(outputR,(9,6),cv2.CALIB_CB_ADAPTIVE_THRESH+cv2.CALIB_CB_FAST_CHECK+cv2.CALIB_CB_NORMALIZE_IMAGE)
 retL, cornersL = cv2.findChessboardCorners(outputL,(9,6),cv2.CALIB_CB_ADAPTIVE_THRESH+cv2.CALIB_CB_FAST_CHECK+cv2.CALIB_CB_NORMALIZE_IMAGE)

 if retR and retL:
 obj_pts.append(objp)
 cv2.cornerSubPix(imgR_gray,cornersR,(11,11),(-1,-1),criteria)
 cv2.cornerSubPix(imgL_gray,cornersL,(11,11),(-1,-1),criteria)
 cv2.drawChessboardCorners(outputR,(9,6),cornersR,retR)
 cv2.drawChessboardCorners(outputL,(9,6),cornersL,retL)
 cv2.imshow('cornersR',outputR)
 cv2.imshow('cornersL',outputL)
 cv2.imwrite("cornersR_%s.png"%i, outputR)
 cv2.imwrite("cornersL_%s.png"%i, outputL)
 cv2.waitKey(0)

 img_ptsL.append(cornersL)
 img_ptsR.append(cornersR)

K_l = np.zeros((3, 3))
D_l = np.zeros((4, 1))
K_r = np.zeros((3, 3))
D_r = np.zeros((4, 1))

Calibrating left camera

retL, mtxL, distL, rvecsL, tvecsL = cv2.calibrateCamera(obj_pts,img_ptsL,imgL_gray.shape[::-1],K_l,D_l)
hL,wL= imgL_gray.shape[:2]
new_mtxL, roiL= cv2.getOptimalNewCameraMatrix(mtxL,distL,(wL,hL),1,(wL,hL))

Calibrating right camera
retR, mtxR, distR, rvecsR, tvecsR = cv2.calibrateCamera(obj_pts,img_ptsR,imgR_gray.shape[::-1],K_r,D_r)
hR,wR= imgR_gray.shape[:2]
new_mtxR, roiR= cv2.getOptimalNewCameraMatrix(mtxR,distR,(wR,hR),1,(wR,hR))

flags = 0
flags |= cv2.CALIB_FIX_INTRINSIC
Here we fix the intrinsic camara matrixes so that only Rot, Trns, Emat and Fmat are calculated.
Hence intrinsic parameters are the same

criteria_stereo= (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

This step is performed to transformation between the two cameras and calculate Essential and Fundamenatl matrix
retS, new_mtxL, distL, new_mtxR, distR, Rot, Trns, Emat, Fmat = cv2.stereoCalibrate(obj_pts, img_ptsL, img_ptsR, new_mtxL, distL, new_mtxR, distR, imgL_gray.shape[::-1], criteria_stereo, flags)

Rectifying
rectify_scale= 1
rect_l, rect_r, proj_mat_l, proj_mat_r, Q, roiL, roiR= cv2.stereoRectify(new_mtxL, distL, new_mtxR, distR, imgL_gray.shape[::-1], Rot, Trns, rectify_scale,(0,0))

#Undistorting

Left_Stereo_Map= cv2.initUndistortRectifyMap(new_mtxL, distL, rect_l, proj_mat_l,
 imgL_gray.shape[::-1], cv2.CV_16SC2)
Right_Stereo_Map= cv2.initUndistortRectifyMap(new_mtxR, distR, rect_r, proj_mat_r,
 imgR_gray.shape[::-1], cv2.CV_16SC2)

#dispaly original image
cv2.imshow("Right bad", imgR)
bad_img = imgR
Right_nice= cv2.remap(imgR, Right_Stereo_Map[0], Right_Stereo_Map[1], cv2.INTER_LANCZOS4, cv2.BORDER_CONSTANT, 0)

calibrate_rectify_undistort.py

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133

Right_nice= cv2.remap(imgR, Right_Stereo_Map[0], Right_Stereo_Map[1], cv2.INTER_LANCZOS4, cv2.BORDER_CONSTANT, 0)
cv2.imshow('Right nice', imgR)
cv2.waitKey(0)

#Save parameters to xml file
print("Saving paraeters")
cv_file = cv2.FileStorage("improved_params4.xml", cv2.FILE_STORAGE_WRITE)
cv_file.write("Left_Stereo_Map_x",Left_Stereo_Map[0])
cv_file.write("Left_Stereo_Map_y",Left_Stereo_Map[1])
cv_file.write("Right_Stereo_Map_x",Right_Stereo_Map[0])
cv_file.write("Right_Stereo_Map_y",Right_Stereo_Map[1])
cv_file.release()

#Rectify images
Left_nice= cv2.remap(imgL,Left_Stereo_Map[0],Left_Stereo_Map[1], cv2.INTER_LANCZOS4, cv2.BORDER_CONSTANT, 0)
Right_nice= cv2.remap(imgR,Right_Stereo_Map[0],Right_Stereo_Map[1], cv2.INTER_LANCZOS4, cv2.BORDER_CONSTANT, 0)

Show rectifyed images
cv2.imshow("Left image after rectification", Left_nice)
cv2.imshow("Right image after rectification", Right_nice)
cv2.waitKey(0)

out = Right_nice.copy()
out[:,:,0] = Right_nice[:,:,0]
out[:,:,1] = Right_nice[:,:,1]
out[:,:,2] = Left_nice[:,:,2]

cv2.imshow("Output image", out)
cv2.waitKey(0)

calibrate_rectify_undistort.py

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65

 66
 67
 68
 69
 70
 71
 72
 73

"""
@AUTHORS Isak Gamnes, Erik Bjornoy

Takes input stream from stereocamera and IMU sensor and processes the data.
"""

import cv2
import numpy as np
import time
import math
import depthai as dai
import open3d as o3d
import SerialCom
from threading import Thread

first_run = True

fov = 68.8
fps = 60

Yellow lower and upper bound in hsv
yellowLower = (15,60,50)
yellowUpper = (45,200,255)

cx_ref = 0
cy_ref = 0
z_depth_ref = 0
ref_radius = 0
current_contour_color = [0,255,0]

def get_contour_center(contour):
 # Get the moments in the contour
 M = cv2.moments(contour)
 cx=-1
 cy=-1
 # Make sure not to divide by 0
 if(M['m00']!=0):
 # Calculate x and y coordinates for the center of the contour
 cx=int(M['m10']/M['m00'])
 cy=int(M['m01']/M['m00'])
 return cx,cy

def convert_2_HSV(frame, show=1):
 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
 if show:
 cv2.imshow('HSV frame', hsv)
 return hsv

def get_mask_from_hsv_frame(hsv_frame, lowerValues, upperValues, normalized_mask=0):
 # Define a mask using the lower and upper bound
 color_mask = cv2.inRange(hsv_frame, lowerValues, upperValues)
 if normalized_mask:
 # Create nparray to multiply with depth image to filter out depth values which are not in the color area
 color_mask_normalized = color_mask/255
 return color_mask, color_mask_normalized
 return color_mask

def get_grey_image_from_frame(frame):
 blurred_frame = cv2.GaussianBlur(frame, (5, 5), 0)
 grey_frame = cv2.cvtColor(blurred_frame, cv2.COLOR_BGR2GRAY)
 return grey_frame

def get_biggest_contour(mask, return_area=0):
 contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

 biggest_area = 0
 biggest_contour = 0
 for contour in contours:
 area = cv2.contourArea(contour)

 if area > biggest_area:
 biggest_area = area
 biggest_contour = contour

image_processer.py

 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

 biggest_contour = contour

 if return_area:
 return biggest_contour, biggest_area
 return biggest_contour

Init serial communication with arduino
ser = SerialCom.SerialCommunication('/dev/ttyUSB0')

Start defining a pipeline
pipeline = dai.Pipeline()

"""
Defining the RGB camera
"""
camRgb = pipeline.createColorCamera()
camRgb.setPreviewSize(1920, 1080)
camRgb.setBoardSocket(dai.CameraBoardSocket.RGB)
camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
camRgb.setInterleaved(False)
camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)

Create output
xoutRgb = pipeline.createXLinkOut()
xoutRgb.setStreamName("rgb")
camRgb.preview.link(xoutRgb.input)

"""
Defining the Stereo camera
"""
Define a source - two mono (grayscale) cameras
monoLeft = pipeline.createMonoCamera()
monoRight = pipeline.createMonoCamera()
stereo = pipeline.createStereoDepth()
spatialLocationCalculator = pipeline.createSpatialLocationCalculator()

xoutDepth = pipeline.createXLinkOut()
xoutSpatialData = pipeline.createXLinkOut()
xinSpatialCalcConfig = pipeline.createXLinkIn()

xoutDepth.setStreamName("depth")
xoutSpatialData.setStreamName("spatialData")
xinSpatialCalcConfig.setStreamName("spatialCalcConfig")

MonoCamera
monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_720_P)
monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_720_P)
monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)

outputDepth = True
outputRectified = False
lrcheck = False
subpixel = False

StereoDepth
stereo.setOutputDepth(outputDepth)
stereo.setOutputRectified(outputRectified)
stereo.setConfidenceThreshold(255)

stereo.setLeftRightCheck(lrcheck)
stereo.setSubpixel(subpixel)

monoLeft.out.link(stereo.left)
monoRight.out.link(stereo.right)

"""
Starting the spatial calculator and defining the ROI
"""
spatialLocationCalculator.passthroughDepth.link(xoutDepth.input)
stereo.depth.link(spatialLocationCalculator.inputDepth)

topLeft = dai.Point2f(0.0, 0.0)
bottomRight = dai.Point2f(0.0, 0.0)

image_processer.py

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

bottomRight = dai.Point2f(0.0, 0.0)

spatialLocationCalculator.setWaitForConfigInput(False)
config = dai.SpatialLocationCalculatorConfigData()
config.depthThresholds.lowerThreshold = 100
config.depthThresholds.upperThreshold = 10000
config.roi = dai.Rect(topLeft, bottomRight)
spatialLocationCalculator.initialConfig.addROI(config)
spatialLocationCalculator.out.link(xoutSpatialData.input)
xinSpatialCalcConfig.out.link(spatialLocationCalculator.inputConfig)

"""
Defining and starting the pipeline
"""
device = dai.Device(pipeline)
device.startPipeline()

"""
Initiating the output queues for both depth frame and RBG frame
"""
depthQueue = device.getOutputQueue(name="depth", maxSize=4, blocking=False)
spatialCalcQueue = device.getOutputQueue(name="spatialData", maxSize=4, blocking=False)
spatialCalcConfigInQueue = device.getInputQueue("spatialCalcConfig")

qRgb = device.getOutputQueue(name="rgb", maxSize=4, blocking=False)

previous_cx = 0
z_ref_noted = False

while True:
 #_, frame = cap.read()
 ser.update_imu_data()
 inDepth = depthQueue.get() # blocking call, will wait until a new data has arrived
 inDepthAvg = spatialCalcQueue.get() # blocking call, will wait until a new data has arrived

 # Get depth and RGB image. Merge images to RGBD image
 depthFrame = inDepth.getFrame()
 spatialData = inDepthAvg.getSpatialLocations()

 inRgb = qRgb.get() # blocking call, will wait until a new data has arrived
 frame = inRgb.getCvFrame()
 frame = cv2.flip(frame, -1)

 if(first_run):
 w = camRgb.getResolutionWidth()
 h = camRgb.getResolutionHeight()
 deg_per_pix = fov/w
 topLeftX = 0.0
 topLeftY = 0.0
 bottomRightX = 1.0
 bottomRightY = 1.0
 imu_euler_x = 0.

 else:
 topLeftX = float((cx/w)-0.025)
 topLeftY = float((cy/h)-0.025)
 if topLeftX < 0.0:
 topLeftX = 0.0
 if topLeftY < 0.0:
 topLeftY = 0.0

 bottomRightX = float((cx/w)+0.025)
 bottomRightY = float((cy/h)+0.025)
 if bottomRightX > 1.0:
 bottomRightX = 1.0
 if bottomRightY > 1.0:
 bottomRightY = 1.0

 imu_euler_x, _, _ = ser.get_euler()
 #imu_euler_x = -1 * imu_euler_x

 topLeft_tuple = [topLeftX, topLeftY]
 bottomRight_tuple = [bottomRightX, bottomRightY]
 topLeft = dai.Point2f(topLeft_tuple[0], topLeft_tuple[1])
 bottomRight = dai.Point2f(bottomRight_tuple[0], bottomRight_tuple[1])

image_processer.py

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

 config.roi = dai.Rect(topLeft, bottomRight)
 cfg = dai.SpatialLocationCalculatorConfig()
 cfg.addROI(config)
 spatialCalcConfigInQueue.send(cfg)

 hsv = convert_2_HSV(frame, 0)
 yellow_mask = get_mask_from_hsv_frame(hsv, yellowLower, yellowUpper)

 # Find the biggest contour and extract the center and radius of the contour
 biggest_contour = get_biggest_contour(yellow_mask)
 try:
 ((x,y), radius) = cv2.minEnclosingCircle(biggest_contour)
 except cv2.error:
 print('Cannot find contour')
 cx, cy = get_contour_center(biggest_contour)
 # If this is the first run, the contour center and radius is stored as a reference for future images
 if(first_run):
 cx_ref = cx
 cy_ref = cy
 ref_radius = radius

 # Calculate the current offset compared to the reference center point
 pixel_offset_x = cx_ref - cx
 pixel_offset_y = cy_ref - cy

 # Convert the pixel offset to degrees by multiplying the pixel offset with degrees per pixel
 camera_angle_offset = pixel_offset_x*deg_per_pix
 x_angle_offset = camera_angle_offset - imu_euler_x
 y_angle_offset = pixel_offset_y*deg_per_pix

 abs_pixel_offset_x = math.sqrt(x_angle_offset**2)

 if(abs_pixel_offset_x < 20):
 current_contour_color = [0,255,0]
 elif(abs_pixel_offset_x >= 20 and abs_pixel_offset_x < 45):
 current_contour_color = [0,128,128]
 else:
 current_contour_color = [0,0,255]

 for depthData in spatialData:
 roi = depthData.config.roi
 roi = roi.denormalize(width=depthFrame.shape[1], height=depthFrame.shape[0])
 pt1 = (int(topLeftX*w), int(topLeftY*h))

 pt2 = (int(bottomRightX*w), int(bottomRightY*h))
 cv2.circle(yellow_mask, (cx,cy), 15, current_contour_color, -1)

 color = (255,255,255)
 cv2.rectangle(frame, pt1=pt1, pt2=pt2, color=color)
 z_depth = int(depthData.spatialCoordinates.z)
 cv2.putText(frame, f"Z: {z_depth} mm", (int(topLeftX) + 10, int(topLeftY) + 50), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (255,255,255))

 if not z_ref_noted and (z_depth > 5 or z_depth < -5):
 z_depth_ref = z_depth
 z_translatoric_offset = 0.
 z_ref_noted = True
 else:
 z_translatoric_offset = z_depth_ref - z_depth

 x_translatoric_offset = z_depth * math.tan(math.radians(x_angle_offset))

 cv2.imshow("Stream", frame)
 print("Translatoric offset in x direction: {0:.2f} cm".format(x_translatoric_offset/10))
 print("Translatoric offset in z direction: {0:.2f} cm".format(z_translatoric_offset/10))
 print('Camera angle offset: {0:.2f} deg'.format(camera_angle_offset))
 print("IMU Euler data: {0:.2f} deg".format(imu_euler_x))
 print("Angle offset: {0:.2f} deg".format(x_angle_offset))

 """if not first_run:
 dt = time.time() - startTime
 cx_dot = (cx - previous_cx)/dt
 else:
 dt = 0
 cx_dot = 0

image_processer.py

293
294
295
296
297
298
299
300
301
302
303
304
305
306

 cx_dot = 0
 first_run = False

 x_ang_dot = cx_dot * deg_per_pix"""

 first_run = False
 startTime = time.time()
 time.sleep((2/fps))

 key = cv2.waitKey(1)
 if key == 27:
 break

cv2.destroyAllWindows()

image_processer.py

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

"""
@AUTHORS Isak Gamnes, Erik Bjornoy

Plots graph of different stereo camera baselines defined by it's parameters.
"""

import matplotlib.pyplot as plt
import numpy as np
import math

D = np.arange(0.5,40,0.1).tolist()
D = [round(num, 1) for num in D]

x_1 = []
x_2 = []
x_3 = []
x_4 = []
fov = 65
h_res = 2600
B_1 = 0.1
B_2 = 0.5
B_3 = 1.0
B_4 = 1.5

for i in range(len(D)):
 delta_x = (B_1 * h_res)/(2*math.tan(fov/2)*D[i])
 x_1.append(round(delta_x))

for i in range(len(D)):
 delta_x = (B_2 * h_res)/(2*math.tan(fov/2)*D[i])
 x_2.append(round(delta_x))

for i in range(len(D)):
 delta_x = (B_3 * h_res)/(2*math.tan(fov/2)*D[i])
 x_3.append(round(delta_x))

for i in range(len(D)):
 delta_x = (B_4 * h_res)/(2*math.tan(fov/2)*D[i])
 x_4.append(round(delta_x))

fig, ax = plt.subplots()
ax.plot(D, x_1)
ax.plot(D, x_2)
ax.plot(D, x_3)
ax.plot(D, x_4)
ax.legend(['Baseline = {}m'.format(B_1), 'Baseline = {}m'.format(B_2), 'Baseline = {}m'.format(B_3), 'Baseline = {}m'.format(B_4)])
ax.set(xlabel='Distance (m)', ylabel='x - x\' (pixels)',
 title='Detection range of stereo camera with varying Baseline')
ax.grid()

fig.savefig("plot-baselines.png")
plt.show()

plot-stereo-camera-graph.py

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65

"""
@AUTHORS Isak Gamnes, Erik Bjornoy

Serial communication
"""

Importing libraries
import serial
import os
from time import sleep
import math

class SerialCommunication(object):
 """
 Serialconnection handler.
 """

 def __init__(self, port, baudrate=115200):
 """
 Establishes a connection to the given port.
 @port : where your device is connected
 @baudrate : the specified connection speed
 (9600, 19200, 28800, 57600, 115200)
 """

 self.port = port
 self.baudrate = baudrate
 try:
 self.connection = serial.Serial(port, baudrate)
 sleep(2)
 except serial.SerialException as se:
 self.connection = None

 self.euler_x = 0.
 self.euler_y = 0.
 self.euler_z = 0.

 def isConnected(self):
 """
 Checks if the connection is established.
 @return False if not connected
 else True
 """

 result = False
 if self.connection is not None:
 result = True
 else:
 print("Not connected")
 return result

 def readInputStream(self):
 """
 Read data sent trough Serial.
 @return decoded message
 """
 if self.isConnected():
 raw = self.connection.readline()
 data = raw.decode('latin-1')
 return data.rstrip('\n')

 def sendOutputStream(self, data):
 """

SerialCom.py

 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104

 Send data trough Serial.
 """
 addEndmaker = data + '\n'
 self.connection.write(addEndmaker.encode())

 def disconnect(self):
 """
 Disconnect the connection
 @return True if sucsessfully disconnected
 """

 self.connection.close()
 return True

 def update_imu_data(self):
 self.connection.flushInput()
 sleep(0.01)
 ser_input = self.readInputStream()
 data_list = None
 if ser_input is not None:
 data_list = ser_input.split(sep=',', maxsplit=-1)
 else:
 print('Serial input = None')
 if data_list is not None:
 if len(data_list) > 0:
 #print('Length of data list: {}'.format(len(data_list)))
 try:
 self.euler_x = float(data_list[0])
 #self.euler_y = float(data_list[1])
 #self.euler_z = float(data_list[2])
 except ValueError as ve:
 print(ve)
 else:
 self.euler_x = 0
 self.euler_y = 0
 self.euler_z = 0

 def get_euler(self):
 return self.euler_x, self.euler_y, self.euler_z

SerialCom.py

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

"""
@AUTHORS Erik Bjørnøy, Isak Gamnes

Draws SIFT keypoints in two images
"""

import numpy as np
import cv2

img1 = cv2.imread('myPath/left.png')
img2 = cv2.imread('myPath/right.png')

gray1 = cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY)

sift = cv2.SIFT_create()

kp1 = sift.detect(gray1,None)
kp2 = sift.detect(gray2,None)

img1 = cv2.drawKeypoints(gray1,kp1,img1)
img2 = cv2.drawKeypoints(gray2,kp2,img2)

cv2.imwrite('left_features.png',img1)
cv2.imwrite('right_features.png',img2)
cv2.imshow("left",img1)
cv2.imshow("right",img2)

cv2.waitKey(0)

sift_keypoints.py

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

"""
@AUTHORS Isak Gamnes, Erik Bjornoy

Calculates standard deviation, avrage offest, avrage and variance.
"""

import math
import sys

continue_calculating = True
n = 0
x_avg = 0
std_dev = 0
MSE = 0

x = []
y = float(input('Enter the expected value \n'))

while continue_calculating:
 usrInput = input('Enter the next number as float, or type \'done\' to calculate the results \n')
 if usrInput == str('done'):
 continue_calculating = False
 else:
 x.append(float(usrInput))
 x_avg += float(usrInput)
 n +=1

if n <= 0:
 print('Please enter more data values')
 print('Exiting...')
 sys.exit(0)

x_avg = x_avg/n

for i in range(len(x)):
 MSE += (x[i] - x_avg)**2

std_dev = math.sqrt(MSE / n)
variance = std_dev**2

print('-'*25)
if n > 1:
 print('Calculating a total of {} inputs'.format(n))
elif n == 1:
 print('Calculating 1 input')

print('Average: {}'.format(x_avg))
print('Average Offset: {}'.format(str(math.sqrt(float(x_avg)**2) - math.sqrt(float(y**2)))))
print('Standard deviation: {}'.format(std_dev))
print('Variance: {}'.format(variance))

stdavgcalc.py

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67

"""
@AUTHORS Erik Bjornoy, Isak Gamnes

Python Module for unistorting a fisheye stero camera image pair.
Does not yet take live input stream.
"""

import cv2
import os

class Undistort:
 def __init__(self, improved_parameters, pathL, pathR):
 """
 Initiates the parameters for camera undistortion

 :param improved_parameters: path to xml file containing undistrortion parameters
 :param pathL: path to left image
 :param pathR: path to right image
 """
 self.values = cv2.FileStorage(improved_parameters, cv2.FILE_STORAGE_READ)
 self.left_x = self.values.getNode("Left_Stereo_Map_x").mat()
 self.left_y = self.values.getNode("Left_Stereo_Map_y").mat()
 self.right_x = self.values.getNode("Right_Stereo_Map_x").mat()
 self.right_y = self.values.getNode("Right_Stereo_Map_y").mat()

 self.imgL = cv2.imread(pathL)
 self.imgR = cv2.imread(pathR)

 def show_image(self):
 """
 View original image
 """
 cv2.imshow("Left image before rectification", self.imgL)
 cv2.imshow("Right image before rectification", self.imgR)
 cv2.waitKey(0)

 def undistort_and_rectify(self, new_name_left_img, new_name_right_img, save_img=False, show_image=True):
 """
 Undistorts, saves and showes images.s

 :param new_name_left_img: path and name to save left image
 :param new_name_right_img: path and name to save right image
 :param save_img (bool): save image as png, by defult False
 :param show_img (bool): show image, by defult True
 """

 Left_nice= cv2.remap(self.imgL, self.left_x, self.left_y, cv2.INTER_LANCZOS4, cv2.BORDER_CONSTANT, 0)
 Right_nice= cv2.remap(self.imgR, self.right_x, self.right_y, cv2.INTER_LANCZOS4, cv2.BORDER_CONSTANT, 0)

 if save_img:
 cv2.imwrite(new_name_left_img, Left_nice)
 cv2.imwrite(new_name_right_img, Right_nice)

 if show_image:
 cv2.imshow("Left image after rectification", Left_nice)
 cv2.imshow("Right image after rectification", Right_nice)
 cv2.waitKey(0)

def main():
 images = Undistort(improved_parameters="improved_params.xml", pathL="myPath/left_img.png", pathR="myPath/right_img")

undistort.py

67
68
69
70
71
72
73

 images = Undistort(improved_parameters="improved_params.xml", pathL="myPath/left_img.png", pathR="myPath/right_img")
 images.undistort_and_rectify(new_name_left_img="undistorted_left.png", new_name_right_img="undistorted_right.png")
 images.show_image()

if __name__ == '__main__':
 #main()

undistort.py

Appendix G

Source Code Arduino

#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_BNO055.h>
#include <utility/imumaths.h>

/* This driver reads raw data from the BNO055

 Connections
 ===========
 Connect SCL to analog 5
 Connect SDA to analog 4
 Connect VDD to 3.3V DC
 Connect GROUND to common ground

 History
 =======
 2015/MAR/03 - First release (KTOWN)
*/

/* Set the delay between fresh samples */
#define BNO055_SAMPLERATE_DELAY_MS (50)
#define NED_AXIS_MAP (0x21)
#define NED_AXIS_SIGN (0x01)

/* Set the values of the configuration registers of the sensors */
#define GYRO_CONFIG0 (0x38)
#define GYRO_CONFIG1 (0x00)
#define ACCEL_CONFIG (0x0F)
#define MAG_CONFIG (0x7D)

const int trigPin = 11; //connects to the trigger pin on the
distance sensor
const int echoPin = 12; //connects to the echo pin on the distance
sensor

float distance = 0; //stores the distance measured by the
distance sensor
float delta_t = 0.05;
float time_stamp = 0;
float last_time_stamp = 0;

boolean magnetometer = false;
boolean gyroscope = false;
boolean linear_acceleration = false;
boolean accelerometer = false;
boolean euler_meas = false;
boolean gravity_meas = false;
boolean acc_mag_gyro = true;

boolean display_offsets = false;

// Check I2C device address and correct line below (by default address is 0x29
or 0x28)
// id, address
Adafruit_BNO055 bno = Adafruit_BNO055(-1, 0x28);

/**/
/*
 Arduino setup function (automatically called at startup)
*/
/**/
void setup(void)
{
 Serial.begin(115200);
 //Serial.println("Orientation Sensor Raw Data Test"); Serial.println("");
 //pinMode(trigPin, OUTPUT); //the trigger pin will output pulses of
electricity
 //pinMode(echoPin, INPUT); //the echo pin will measure the duration of
pulses coming back from the distance sensor
 //pinMode(13, OUTPUT);
 /* Initialise the sensor */
 if(!bno.begin())
 {
 /* There was a problem detecting the BNO055 ... check your connections */
 Serial.print("Ooops, no BNO055 detected ... Check your wiring or I2C ADDR!
");
 while(1);
 }

 /* Update the sensor config registers */
 bno.setMode(0x00);
 delay(100);
 //bno.write8(Adafruit_BNO055::BNO055_UNIT_SEL_ADDR, 0x80);
 bno.setAxisRemap(0x24);
 bno.setAxisSign(0x02);
 //delay(25);
 //Serial.println(bno.read8(Adafruit_BNO055::BNO055_UNIT_SEL_ADDR));
 delay(25);
 bno.write8(Adafruit_BNO055::BNO055_PAGE_ID_ADDR, 0x01);
 delay(100);
 //bno.write8(Adafruit_BNO055::MAG_CONFIG_ADDR, MAG_CONFIG);
 bno.write8(Adafruit_BNO055::ACCEL_CONFIG_ADDR, ACCEL_CONFIG);
 bno.write8(Adafruit_BNO055::GYRO_CONFIG0_ADDR, GYRO_CONFIG0);
 bno.write8(Adafruit_BNO055::GYRO_CONFIG1_ADDR, GYRO_CONFIG1);

 adafruit_bno055_offsets_t calibrationData;
 sensor_t sensor;

 /* Set BNO055 to AMG mode (accel-mag-gyro) */
 bno.setMode(0x07);
 //bno.setMode(0x0C);

 delay(1000);

 /* Display the current temperature */
 int8_t temp = bno.getTemp();
// Serial.print("Current Temperature: ");
// Serial.print(temp);
// Serial.println(" C");
// Serial.println("");

 bno.setExtCrystalUse(false);

// if(magnetometer)
// {
// Serial.println("time, Magnetometer X, Magnetometer Y, Magnetometer Z");
// }
//
// if(gyroscope)
// {
// Serial.println("time, Gyro X, Gyro Y, Gyro Z");
// }
//
// if(accelerometer)
// {
// Serial.println("time, Acceleration X, Acceleration Y, Acceleration Z");
// }
//
// if(linear_acceleration)
// {
// Serial.println("time, LinearAcc X, LinearAcc Y, LinearAcc Z, distance");
// }
//
// if(euler_meas)
// {
// Serial.println("time, Euler X, Euler Y, Euler Z");
// }
//
// if(gravity_meas)
// {
// Serial.println("time, Gravity X, Gravity Y, Gravity Z");
// }
 //Serial.println("Calibration status values: 0=uncalibrated, 3=fully

calibrated");

 //Serial.println("time, Acceleration x, Acceleration y, acceleration z,
distance");
 //Serial.println("time, Acceleration x, Acceleration y, Acceleration z,
Magnetometer x, Magnetometer y, Magnetometer z, Euler x, Euler y, Euler z");

}

/**/
/*
 Arduino loop function, called once 'setup' is complete (your own code
 should go here)
*/
/**/
void loop(void)
{
// time_stamp = millis();
// delta_t = (time_stamp - last_time_stamp)/1000;
 // Possible vector values can be:
 // - VECTOR_ACCELEROMETER - m/s^2
 // - VECTOR_MAGNETOMETER - uT
 // - VECTOR_GYROSCOPE - degrees/s
 // - VECTOR_EULER - degrees
 // - VECTOR_LINEARACCEL - m/s^2
 // - VECTOR_GRAVITY - m/s^2
 imu::Vector<3> euler = bno.getVector(Adafruit_BNO055::VECTOR_EULER);
 imu::Vector<3> acc = bno.getVector(Adafruit_BNO055::VECTOR_ACCELEROMETER);
 imu::Vector<3> acc_lin = bno.getVector(Adafruit_BNO055::VECTOR_LINEARACCEL);
 imu::Vector<3> gyro = bno.getVector(Adafruit_BNO055::VECTOR_GYROSCOPE);
 imu::Vector<3> magneto = bno.getVector(Adafruit_BNO055::VECTOR_MAGNETOMETER);
 imu::Vector<3> gravity = bno.getVector(Adafruit_BNO055::VECTOR_GRAVITY);
 double xm_off, ym_off, zm_off, xm_cal, ym_cal, zm_cal;

 xm_off = magneto.x() - 46.785;
 ym_off = magneto.y() + 98.595;
 zm_off = magneto.z() - 98.75;

 //Scale factor x: 1.0636341343
 //Scale factor y: 1.175314997967755
 //Scale factor z: 0.8271357742181541

 xm_cal = 0.643165*xm_off;
 ym_cal = 1.874837*ym_off;
 zm_cal = 1.096721*zm_off;

 //distance = getDistance(); //variable to store the distance measured by

the sensor

 if(magnetometer)
 {
 Serial.println(millis() + String(",") + (magneto.x()) + String(",") +
(magneto.y()) + String(",") + (magneto.z()) + acc.x() + String(",") + acc.y()
+ String(",") + acc.z());
 }

 if(gyroscope)
 {
 Serial.println(millis() + String(",") + gyro.x() + String(",") + gyro.y()
+ String(",") + gyro.z());
 }

 if(accelerometer)
 {
 Serial.println(millis() + String(",") + acc.x() + String(",") + acc.y() +
String(",") + acc.z());
 }

 if(linear_acceleration)
 {
 Serial.println(millis() + String(",") + acc_lin.x() + String(",") +
acc_lin.y() + String(",") + acc_lin.z() + String(",") + distance);
 }

 if(euler_meas)
 {
 Serial.println(millis() + String(",") + euler.x() + String(",") + euler.
y() + String(",") + euler.z());
 }

 if(gravity_meas)
 {
 Serial.println(millis() + String(",") + gravity.x() + String(",") +
gravity.y() + String(",") + gravity.z());
 }

 if(acc_mag_gyro)
 {
 Serial.println(delta_t + String(",") + (acc.x()) + String(",") + (acc.y())
+ String(",") + (acc.z()) + String(",") + (xm_cal) + String(",") + (ym_cal) +
String(",") + (zm_cal) + String(",") + (gyro.x()) + String(",") + (gyro.y()) +
String(",") + (gyro.z()) + String(",") + 10);
 //Serial.write(delta_t + String(",") + (acc.x()) + String(",") + (acc.y())
+ String(",") + (acc.z()) + String(",") + (xm_cal) + String(",") + (ym_cal) +

String(",") + (zm_cal) + String(",") + (gyro.x()) + String(",") + (gyro.y()) +
String(",") + (gyro.z()) + String(",") + 10);
 }

// if(acc_mag_gyro)
// {
// Serial.println(millis() + String(",") + (acc.x()+0.34) + String(",") +
(acc.y()+0.46) + String(",") + (acc.z()+0.3) + String(",") + (magneto.x()+33.
25) + String(",") + (magneto.y()+2.9375) + String(",") + (magneto.z()+51.6875)
+ String(",") + (gyro.x()+0.125) + String(",") + (gyro.y()+0.125) + String(",
") + (gyro.z()+0.125) + String(",") + euler.z() + String(",") + euler.y() +
String(",") + euler.x());
// }
 //Serial.println(millis() + String(",") + acc.x() + String(",") + acc.y() +
String(",") + acc.z() + String(",") + magneto.x() + String(",") + magneto.y()
+ String(",") + magneto.z() + String(",") + euler.x() + String(",") + euler.
y() + String(",") + euler.z());
 //Serial.println(gyro.x());
 //Linear Acceleration
 //Serial.println(millis() + String(",") + acc_lin.x() + String(",") +
acc_lin.y() + String(",") + acc_lin.z() + String(",") + distance);
 //Gyroscope
 //Serial.println(millis() + String(",") + gyro.x() + String(",") + gyro.y()
+ String(",") + gyro.z());
 //Magnetometer
 //Serial.println(millis() + String(",") + magneto.x() + String(",") +
magneto.y() + String(",") + magneto.z());
 //Gravity
 //Serial.println(millis() + String(",") + gravity.x() + String(",") +
gravity.y() + String(",") + gravity.z());

// Serial.print("Distance: " + String(distance)); //print the distance
that was measured
// Serial.println(" cm"); //print units after the distance

 /* Display the floating point data */
// Serial.print("X: ");
// Serial.print(acc.x());
// Serial.print(" Y: ");
// Serial.print(acc.y());
// Serial.print(" Z: ");
// Serial.print(acc.z());
// Serial.print("\t\t");

 /* Display the floating point data */
// Serial.print("X: ");
// Serial.print(euler.x());
// Serial.print(" Y: ");

// Serial.print(euler.y());
// Serial.print(" Z: ");
// Serial.print(euler.z());
// Serial.print("\t\t");

 /*
 // Quaternion data
 imu::Quaternion quat = bno.getQuat();
 Serial.print("qW: ");
 Serial.print(quat.w(), 4);
 Serial.print(" qX: ");
 Serial.print(quat.x(), 4);
 Serial.print(" qY: ");
 Serial.print(quat.y(), 4);
 Serial.print(" qZ: ");
 Serial.print(quat.z(), 4);
 Serial.print("\t\t");
 */

 /* Display calibration status for each sensor. */
// uint8_t system, gyro, accel, mag = 0;
// bno.getCalibration(&system, &gyro, &accel, &mag);
// Serial.print("CALIBRATION: Sys=");
// Serial.print(system, DEC);
// Serial.print(" Gyro=");
// Serial.print(gyro, DEC);
// Serial.print(" Accel=");
// Serial.print(accel, DEC);
// Serial.print(" Mag=");
// Serial.println(mag, DEC);
// last_time_stamp = time_stamp;
 //Serial.flush();
 delay(BNO055_SAMPLERATE_DELAY_MS);
}

void displaySensorOffsets(const adafruit_bno055_offsets_t &calibData)
{
 Serial.print("Accelerometer: ");
 Serial.print(calibData.accel_offset_x); Serial.print(" ");
 Serial.print(calibData.accel_offset_y); Serial.print(" ");
 Serial.print(calibData.accel_offset_z); Serial.print(" ");

 Serial.print("\nGyro: ");
 Serial.print(calibData.gyro_offset_x); Serial.print(" ");
 Serial.print(calibData.gyro_offset_y); Serial.print(" ");
 Serial.print(calibData.gyro_offset_z); Serial.print(" ");

 Serial.print("\nMag: ");

 Serial.print(calibData.mag_offset_x); Serial.print(" ");
 Serial.print(calibData.mag_offset_y); Serial.print(" ");
 Serial.print(calibData.mag_offset_z); Serial.print(" ");

 Serial.print("\nAccel Radius: ");
 Serial.print(calibData.accel_radius);

 Serial.print("\nMag Radius: ");
 Serial.print(calibData.mag_radius);
}

//RETURNS THE DISTANCE MEASURED BY THE HC-SR04 DISTANCE SENSOR
float getDistance()
{
 float echoTime; //variable to store the time it takes for
a ping to bounce off an object
 float calculatedDistance; //variable to store the distance
calculated from the echo time

 //send out an ultrasonic pulse that's 10ms long
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);

 echoTime = pulseIn(echoPin, HIGH); //use the pulsein command to see how
long it takes for the
 //pulse to bounce back to the sensor

 calculatedDistance = echoTime * 2.54 / 148.0; //calculate the distance of
the object that reflected the pulse (half the bounce time multiplied by the
speed of sound)

 return calculatedDistance; //send back the distance that was
calculated
}

Appendix H

Plots of raw sensor data

Raw sensor values from Stationary test

Raw sensor values from Yaw test

Raw sensor values from Pitch/Roll test

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Erlend Holseker
Arvin Khodabandeh
Erik Bjørnøy
Isak Gamnes Sneltvedt

Sensor Fusion for Position and
Spatial Attitude Estimation of
Offshore Motion Compensated
Gangways

Bachelor’s project in Automation Technology
Supervisor: Aleksander Larsen Skrede
Co-supervisor: Ottar Laurits Osen

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

	Preface
	Acknowledgement
	Abstract
	Acronyms
	Terminology
	Notation
	Abbreviations
	List of figures
	List of tables

	Introduction
	Background
	Introduction
	Problem Formulation
	Literature Survey
	Limitations
	Structure of the Report

	Theoretical basis
	Kinematics
	Reference systems
	Rigid-body motions in the plane
	Rigid-body motions in three dimensions
	Motion variables

	Representation of position and orientation
	Euler angles
	Quaternions
	Conversion from quaternions and Euler angles
	Rotation matrices
	Conversion from rotation matrix to Euler angles
	Homogeneous transformation matrix for representation of position and orientation

	Statistical Theory
	Population variance
	Covariance
	Normal distribution

	Sensors
	Gyroscope
	Magnetometer
	Accelerometer
	IMU/MARG
	Radar Sensor
	Ultrasonic Sensor
	Infrared Sensor
	Digital Camera
	ToF camera
	Stereo Camera

	Sensor Fusion
	Analog-to-Digital conversion
	Gradient Descent
	Jacobian matrix and determinant
	Kalman Filter
	Madgwick Filter

	Image processing
	RGB vs HSV
	Color filtering
	Contours

	KNN (K-nearest neighbor)

	Materials and methods
	Project Organization
	Software
	Hardware
	OpenCV AI Kit: OAK-D
	Intel RealSense T265
	Adafruit BNO055
	Arduino UNO
	Svive Hydra Microphone Arm

	Choosing sensors
	Sensors for distance/position
	Sensors for orientation

	Sensor calibration
	Gyroscope Calibration
	Accelerometer Calibration
	Magnetic Field Calibration

	Sensor Fusion for Orientation Estimation
	Filter Setup 1
	Filter Setup 2
	Filter Setup 3

	Transforming orientation from sensor to ship
	Creating a stereo camera
	Camera calibration
	Feature detection
	Calculating depth
	Camera setup parameters

	Stereo camera for position estimation
	Finding a point of reference
	Angle Offset
	Calculating the position

	Creating the Graphical User Interface
	Testing
	Test procedure for Orientation Estimation
	Test procedure for Position Estimation

	Result
	Graphical User Interface
	The layout
	Encoders for boom and slew

	Orientation estimation results
	Roll and Pitch results
	Yaw results: Filter setup 1
	Yaw results: Filter setup 2, with magnetometer
	Yaw results: Filter setup 2, without magnetometer
	Yaw results: Filter setup 3, with magnetometer
	Yaw results: Filter setup 3, without magnetometer

	Position estimation results
	Results test 1, Calculating camera angle
	Results test 2, IMU integration
	Results test 3, Position estimation test

	Discussion
	Test results
	Orientation estimation
	Position estimation

	Placement of sensors in a real installation
	Future considerations on system integration
	Two systems that should be merged together
	Suggestions for further work

	Conclusions
	Further work

	Bibliography
	Appendices
	Preproject Report
	Gantt Chart
	Progress Reports 1-6
	Meeting Reports 1-7
	Source Code Orientation Application
	Source Code Positioning Application
	Source Code Arduino
	Plots of raw sensor data

