
Ba
ch

el
or

’s
 th

es
is Snake-like robot using LiDAR

December 2020

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

Marcus Olai Grindvik

Bachelor’s thesis
2020

Bachelor’s thesis

Snake-like robot using LiDAR

December 2020

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

Marcus Olai Grindvik

Snake-like robot using LiDAR

Marcus Olai Grindvik

December 2020

PROJECT / BACHELOR THESIS

Department of ICT and Natural Sciences

Norwegian University of Science and Technology

Supervisor 1: Ottar L. Osen

Supervisor 2: Guoyuan Li

i

Preface

This thesis is written by a student at Automatiseringsteknikk at NTNU Ålesund, who has a cer-

tificate of apprenticeship as an electrician with 7 years of experience working in the field as a

ship electrician.

The goal for this project is to make an autonomous snake-like robot that can navigate tight

spaces and be less dependent on a stable environment than the last version. There are several

challenges that will need to be considered when trying to localize and map while moving with

such a robot.

ii

Acknowledgement

I would like to give my thanks:

• My supervisors for all the help and guidance trough the project

• Friends for supporting me through the semester

• Anders Sætersmoen for supplying parts

iii

Summary

This report has taken a robot that was made for a theoretical search and rescue mission and

made it less dependent on a stable environment. To implement mapping and navigation ROS

was used to ease the process. To give the navigation vision and optometry a LiDAR and IMU

was used to help the robot understand its surroundings. This was done to see how it could be

implemented on a robot that has challenges, with such sensors because of its constant move-

ment of different joints of its body. The result shows that the snake could have a LiDAR on it and

use that to navigate even though there were challenges with it. There were issues with having to

few landmarks for the LiDAR to always recognize where it where, but the project showed great

promise and could work very well with some adjustments.

Contents

Preface . i

Acknowledgement . ii

Summary . iii

Terminology . 2

1 Introduction 6

1.1 Background . 6

1.2 Problem formulation . 6

1.3 Limitations . 7

1.4 Requirements . 7

1.5 Structure of the Report . 7

2 Theoretical Basis 9

2.1 SnakeLikeRobot . 9

2.2 Servo Motor . 9

2.3 Lidar . 10

2.4 ROS . 10

2.5 Localizing . 11

2.6 Path Planning . 11

2.7 SLAM . 12

2.8 IMU . 13

3 Method 14

3.1 Project Organization . 14

iv

CONTENTS v

3.2 Software . 14

3.3 Concept Studies . 15

3.4 Design . 15

3.4.1 Concept . 15

3.4.2 3D-Modeling . 16

3.5 Data . 16

3.5.1 Data Acquisition . 16

3.5.2 Processing data . 16

3.6 Sensors . 17

3.7 Servo Controller . 18

3.8 Mapping and Localization . 18

3.9 Navigation . 19

4 Materials 20

4.1 Electrical system . 20

4.1.1 Computer for Processing . 20

4.1.2 Components . 21

4.2 Construction . 23

5 Testing 24

5.1 Design . 24

5.2 Testing of Navigation Stack . 24

5.3 Performance Tests . 24

6 Result 26

6.1 Physical Design . 26

6.2 Electrical Design . 29

6.3 Software . 31

6.3.1 System overview . 31

6.3.2 Communication . 33

6.3.3 Sensors and Sensor Processing . 34

6.3.4 Navigation and SLAM . 35

CONTENTS vi

6.3.5 Movement . 37

6.3.6 Motor Control . 37

6.4 Initial Tests . 37

6.4.1 Mapping Performance . 42

6.4.2 Test with filter . 43

6.4.3 Test without filter . 46

6.5 Navigation Stack Testing . 49

6.6 Performance Test Results . 49

6.6.1 Obstacle Avoidance . 49

6.6.2 TroubleShooting . 50

7 Discussion 52

7.1 Test results . 52

7.2 Software . 52

7.2.1 FilterLidarData . 52

7.2.2 Translator . 52

7.2.3 IMU_NODE . 53

7.2.4 Servo Code . 53

7.2.5 ROS . 53

7.3 Sensors . 53

7.4 Prototype . 54

7.4.1 Improvements . 54

7.5 Personal Experiences . 54

7.5.1 Corona’s impact on the project . 54

7.5.2 Project Organization . 55

7.5.3 Work Flow . 55

8 Conclusions 56

8.1 Further work . 56

Bibliography 58

CONTENTS 1

Appendices 61

A Project Planning 62

A.1 Pre-Project Report . 62

B Bill of Materials (BOM) 73

B.1 BOM . 73

C Arduino Code 74

D Python Code & Config-Files 96

CONTENTS 2

Terminology

Python Programming language

Node A single module unit used by ROS

Rivz Visualization software for ROS

Abbreviations

LiDaR Light Detection and Ranging

SLAM Simultaneous Localization and Mapping

UDP User Datagram Protocol

TCP Transmission Control Protocol

IP Internet Protocol

ROS Robot Operating System

I2C Inter-Integrated Circuit

IMU Inertial Mesurement Unit

GUI Graphical User Interface

PWM Pulse-Width Modulation

List of Figures

2.1 How a LiDAR works[12] . 10

2.2 Picture of a slam map[15] . 12

2.3 6 Deg of freedom[21] . 13

3.1 The snake like robot form a top view . 15

3.2 Rviz GUI layout . 19

4.1 Picture of the IMU.[21] . 22

4.2 Picture of the LiDAR.[14] . 22

4.3 The snake-like robot without its LiDAR and equipment 23

6.1 The snake-like robot without its LiDAR and equipment 27

6.2 The snake-like robot side view with dimensions 27

6.3 The snake-like robot front view with dimensions 28

6.4 The snake-like robot side view with equipment 29

6.5 The power-supply that was used . 30

6.6 Simplified flow chart of the system . 31

6.7 Map without pitch data . 36

6.8 Map with pitch data . 36

6.9 Pitch at forward movement . 38

3

LIST OF FIGURES 4

6.10 Roll at forward movement . 39

6.11 Pitch logged with turn sett to 60° . 40

6.12 Pitch logged while moving clock wise . 41

6.13 Roll logged while moving clock wise . 42

6.14 Pitch test +-10°filter . 43

6.15 Pitch for Lidar test without filter . 43

6.16 Laser max range upwards . 44

6.17 Laser max range downwards . 45

6.18 Map after pitch max downwards and upwards 46

6.19 Laser without filter sees roof. 47

6.20 Laser without filter sees floor. 48

List of Tables

3.1 List of software . 14

4.1 "Specs of computer used" . 20

4.2 SnakeParts . 21

6.1 List of commands that can be send from ESP 34

6.2 List of commands that can be send to ESP . 34

5

Chapter 1

Introduction

This report will step-by-step go through the process of the thesis from the theoretical to the

practical.

1.1 Background

The snake-like robot was originally a project that worked around the theoretical scenario where

it was meant to search through rubble after an earthquake or similar. The project was success-

fully done during an elective course called Mechatronics. There were several challenges still left

when the project was finished, but showed great potential in its state. This project is a continu-

ation of this project and will focus on making it less dependent on stable surroundings as well

as more autonomous with a greater focus on ease of use.

1.2 Problem formulation

The problem present in this project is to upgrade the snake-like robot and make it able to move

more freely and be less dependent on a stable environment. The project will use ROS and im-

plement a LiDAR to map and navigate.

Problems to be solved

• Implement mapping using a LiDAR

6

CHAPTER 1. INTRODUCTION 7

• Make the mapping stable

• Navigate an environment

1.3 Limitations

There are several limitations in this project. One of the big ones is that because the LiDAR in use

is 2 dimensional, the objects need to be visible in the same height as the robot itself. The LiDAR

also has a limited range of 4m as well as 260 °scope.

1.4 Requirements

The project requirements are as follows

• Make the robot move with ROS

• Autonomously navigate rom’s

• Avoid Obstacles

• Object recognition

1.5 Structure of the Report

The structure of the report is as follows

Chapter 2 - Theoretical Basis: Chapter 2 gives an introduction to the theoretical basis for the

system and parts used in the project.

Chapter 3 - Method: Chapter 3 Considers the different methods that can be used to reach the

goal of the project.

Chapter 4 - Materials: Chapter 4 is a review of the materials used in the project.

CHAPTER 1. INTRODUCTION 8

Chapter 5 - Testing: Chapter 5 describes the test that are desired for the project.

Chapter 6 - Result: Chapter 6 presents the result of the project and what solutions was taken.

The result of test is also presented here.

Chapter 7 - Discussion: Chapter 7 includes a discussion of the result in chapter 6. It also dis-

cusses my personal experience.

Chapter 8 - Conclusion: Chapter 8 draw a final conclusion for the project.

Chapter 2

Theoretical Basis

This chapter will present the necessary theoretical information needed to understand the method-

ology in this thesis. The structure of the chapter is to go through the topics in a natural progres-

sion.

2.1 SnakeLikeRobot

This project is a continued version of a mecatronic class project that was made in to a scientific

paper. This robot was made for a theoretical search and rescue mission, it was used a over-

head camera for it to search trough a maze. This was done by using image processing and an

algorithm was used to find a path. The paper can be read at [2].

2.2 Servo Motor

A servo motor is a rotary actuator or linear actuator that allows for precise control of angular

or linear position, velocity and acceleration [22]. Some servos use a signal called a PWM (Puls-

Width modulation) signal that controls the position of the output shaft. The controller line does

no supply power to the motor directly but is used as an input to a controller chip inside the servo.

A servo is a closed-loop servomechanism that uses position feedback to control its motion and

final position [11].

9

CHAPTER 2. THEORETICAL BASIS 10

2.3 Lidar

LIDAR, which stands for Light Detection and Ranging, is a remote sensing method that uses

light from a pulsed laser to measure ranges(variable distances) to the Earth. It uses a laser radar

to transmit light pulse and a receiver with sensitive detectors to measure the reflected light. The

distance to the object or landmark is determined by recording the time between transmitted

and back scattered by using the speed of light to calculate the distance traveled. [20] In figure

2.1 it can be seen a diagram of how a LiDAR can operate.

Figure 2.1: How a LiDAR works[12]

2.4 ROS

ROS is an open-source meta-operating system for your robot. That runs on Unix-based plat-

forms. ROS provides tools and libraries for obtaining, building, writing and running code across

multiple computers[7]. ROS is built to serve as a common platform for people to share code and

ideas more rapidly. It also makes it so that users do not have to spend years writing software

infrastructure before the robot starts moving. ROS makes it easier to make a robot and saves

CHAPTER 2. THEORETICAL BASIS 11

time, all the code that normally would have been written can now be taken in as libraries and be

adjusted by prams and scripts to fit a certain system[19].

ROS uses nodes and streaming topics, one node can for an example be Translater node. This

node will then be responsible for translating information, and then publish it so other nodes

can subscribe and use the data [8]. ROS uses a simplified messages description language for

describing the messages that is published by nodes. This makes it possible to generate source

code message type in several targeted languages. This simplifies the communication because

the nodes have predefined what type of information they want to receive on a given topic[13].

2.5 Localizing

Localizing is an important part in the step to make autonomous mobile robots. To know where

to move the robot it needs to know where it is. When localizing locally it is not needed to have

a relation to a world map its own map is usually enough. Localization locally is often done

together with mapping in an SLAM algorithm. To get the robot to know where it is it needs a

way to understand what the environment around it looks like this is done with sensors, either

on board or external sensors. That can help the robot gather data about its surroundings.

2.6 Path Planning

Path planing is to find a path to walk, drive, fly, roll etc. to an location. This is done by gathering

data about the surroundings, mapping what is around the robot and localizing the robot. When

the robot has knowledge about the environments it can use algorithms to make a way to get to

a certain point. If there is a obstacle in front of the robot it needs to detect that and make a path

that goes around the obstacle, or over the obstacle if the robot is built to handle that better. This

is all decisions that needs to be taken in to account when planning a path.

ROS sends out two paths; One is a Global Plan and the second is a Local Plan. The Global

planer uses a algorithm to plan the path for the robot to walk, this can be done by Dijksta’s

CHAPTER 2. THEORETICAL BASIS 12

algorithm[18]. The Local provides a controller that serves to connect the path to the robot. The

local planers job is to follow the path made by the global plan and check if there is obstacles and

if so it makes a path around that[6].

2.7 SLAM

For robots to navigate it needs some understanding of its surrounding, and its location in posi-

tion of those surroundings. SLAM is used to simultaneously locate and map by gathering sensor

data. This makes it possible for the robot to be able to be put in a new location and still be able to

navigate trough terrain using the map that gets made from SLAM [4]. An Extended Kalman Filter

is often the heart of the SLAM process. It is responsible for updating where the robot thinks it

is based on features. These features are based on landmarks. These landmarks are features that

can be re-observed and can be distinguished from the environment [23]. When a SLAM map

can look like can be seen in figure 2.2.

Figure 2.2: Picture of a slam map[15]

CHAPTER 2. THEORETICAL BASIS 13

2.8 IMU

The robot needs to know its orientation. The most common sensor for this task is to use an

IMU. An IMU is mainly build up of an accelerometer and gyroscope, this gives the data for 6

Degrees of freedom. The 6 axsis as its called is Ax, Ay, Az and Gx, Gy and Gz this make it possible

to get out roll and pitch which helps find the orientation of the robot. If yaw is required the IMU

needs to have a magnetometer. This is used to sense the earths magnetic field and is used with

gyroscope to find absolute heading[21]. The last and the tenth axis is a pressure sensor that will

give altitude. [10] The six degrees of freedom can be seen in picture 2.3

Figure 2.3: 6 Deg of freedom[21]

Chapter 3

Method

This chapter provides an explanation of how the project was organized and handled. It will also

present how the different problems and challenges in the project might be handled.

3.1 Project Organization

This project was organized around the corona pandemic. While talking with the supervisors,

Ottar L. Osen and Guoyuan Li it was recommended that the project was done from home to the

extent that was possible. Because of this the project has been done from home. The project was

set up to have report writing along side making functions for the robot.

3.2 Software

There are several software utilized in this project, listed in table 3.1

Program Description

Arduino IDE Arduino IDE is and IDE used for writing Arduino-code

PyCharm Pycharm is and IDE used for writing Python-code

Table 3.1: List of software

14

CHAPTER 3. METHOD 15

3.3 Concept Studies

The snake-like robot is a concept that has been used for research. NTNU got a breakthrough

in 2016 where they made a snake-like robot that could go underwater and showed the practical

applications of such a robot. A company has now taken this concept to the next stage, and

Equinor is now going to use them in the oil industry. [5] The snake used in this project was

inspired heavily by Houxiang Zhang’s snake-like robot. As it can be seen in figure 3.1.

Figure 3.1: The snake like robot form a top view

The snake-like robot was already made. But the concept of the snake is to have a robot that

can walk around in different terrains. This kind of robot moves its joint in angels in a sinus

movement to walk forwards.

3.4 Design

3.4.1 Concept

The snake-like robot was already made. But the concept of the snake is to have a robot that

can walk around in different terrains. This kind of robot moves its joint in angels in a sinus

movement to walk forwards. The concept makes it possible to make a small robot that can get

trough tight places and move over obstacles.

CHAPTER 3. METHOD 16

3.4.2 3D-Modeling

To design such a robot 3D-modeling is one of the strongest tools available. 3D-modeling has

become one of the best ways to make parts that was just a thought into something real in a fast

and efficient way. This makes it good for fast-prototyping. When this project first was taken

on there was multiple ideas about how the snakelike-robot should be made. There was multiple

revisions that was tried before the final concept which is how the snake is made today. The snake

like robot still has many aspects that could be improved, to make it more reliable and practical.

3.5 Data

3.5.1 Data Acquisition

The acquisition of data can be made possible using a variety of techniques. Data from vision on

the robot can be gathered either by having a cable connection to the computer. The data could

also be taken in to an micro-controller to get calculated to the degree possible, then send to the

PC that needs it. To have everything go trough a micro controller and get send by wireless have

the advantages of not needing cables to the robot, but it can be limited how fast the data could

be send.

3.5.2 Processing data

To process the data some different techniques can be used. It could be done on a micro-controller

to process the data. This has some disadvantages, one of the disadvantages is that they usually

have limited processing power. An esp32-WiFi has a clock frequency of up to 240MHz with

a Xtensa dual-core 32-bit LX6 microprocessor [1] this makes the esp-32 decent for processing

data. The other option for processing data is to get it to a computer and process it there, most

computers has strong CPU to compute data at a high speed. There is also the option on a PC to

use the GPU to process data this is a good option if there is many small process that needs to be

done, like for machine learning where there are multiple small calculations that is needed to be

done.

CHAPTER 3. METHOD 17

3.6 Sensors

There are several sensors that can be useful for a robot of this kind to navigate a given area.

There has to be some kind of vision as well as some detection for orientation and translation.

There are several sensors that can be used to be able to give the robot some sort of visions;

Sonic sensor could have been used. They can be found in all price ranges, and are often

used as proximity sensors in self driving cars for an example [17]. It could be used for the robot

to know the distance to a object.

LiDAR is also a kind of sensor that could be used. A LiDAR could be used to measure dis-

tances in a certain angle around it self, and is would give the robot a good feedback of its sur-

rounding. LiDAR is a valid option for a project like this.

Depth camera could have been used. A depth camera uses a point cloud to extract distances

to objects in its field of view. This can be used to give the robot perception of distance and data

for image processing.

To estimate translation the most common way is to calculate from a wheel encoder or such.

This could not be done with the kind of robot that is in this project because of the lack of wheels.

Translation data can also be calculated from vision sensors such as LiDAR or depth camera.

To measure the robots orientation an IMU can be used. The IMU consist of several different

sensors, witch can be combined in order to calculate the orientation. IMU’s are described in 2.8.

The three axes of the IMU’s accelerometer can be used to calculate roll and pitch, but is affected

by acceleration and will be imprecise when the robot is moving. The gyroscope measures the

rate of change of the orientation and is precise even when the robot is moving. Orientation

can be calculated by integrating the gyroscope data, but as a result suffers from drifting due to

small measurement errors. One can combine the orientation calculated by accelerometer and

CHAPTER 3. METHOD 18

gyroscope data by using a complimentary filter.

θ =α ·θG + (1−α) ·θA (3.1)

Where:

α - Filter Coefficient

θG - Orientation measured by gyro

θA - Orientation measured by accelerometer

This results in the accelerometer orientation being low pass filtered while the gyroscope data

is high pass filtered. This reduces the issues with the individual sensors.

3.7 Servo Controller

To control a servo all that is needed is something that can generate a PWM signal. A PWM signal

can be generated by and micro controller for an example. This could be done with an ESP32

by using its 16 independent channels that can be used to generate PWM signals. Other micro

controllers could also be an option, there are multiple micro-controllers with PWM pins.

3.8 Mapping and Localization

To be able to map the surroundings the robot needs to be able to know what the surrounding

look like and to know the localization of itself relative to the surroundings. The most common

method of doing this is to do it simultaneous with SLAM. You can read more a bout SLAM in

2.7. In ROS hector_slam does the mapping and localization and presents the data in a good way.

Every thing can be represented in a GUI called rviz, with makes it possible to choose what data

is wanted to be represented and to some degree how to display it. The rviz GUI can be seen in

fig 3.2.

CHAPTER 3. METHOD 19

Figure 3.2: Rviz GUI layout

3.9 Navigation

To navigate there are multiple ways to approach; One of the options is to blindly go forwards

until the robot can detect an objects in front of it and then change way. This is a simple but

not very efficient way to navigate. This would be the same as the early generations of roomba’s

worked[16]. To be able to navigate efficiently it helps to map surroundings and localization with

algorithms such as SLAM. Ros has multiple libraries for navigation, in the navigation stack in

ROS there is one called move_base. This gives the option to either set a goal manually on the

map made from SLAM or send in a goal that’s collected from data [9].

Chapter 4

Materials

This chapter presents what materials and components are used for the physical part of the

project. The electrical components will detail what their function is. For the construction parts

themselves it will shortly detail what their use is.

4.1 Electrical system

The electrical system was already built. But there was added cables for connection of a IMU and

a cable to connect the LiDAR to the system.

4.1.1 Computer for Processing

The computer in use consists of the parts that can be seen in table 4.1.

Parts Description

CPU Intel(R) i9-9900K CPU @ 3.60 GHz

GPU NVIDIA GeForce GTX 1060 6GB

Memory 16GB DDR4

Table 4.1: "Specs of computer used"

20

CHAPTER 4. MATERIALS 21

4.1.2 Components

The components can be seen in the table 4.2.

Old or New Object Located Function Quantity

Old Camera In the head of the snake None 1

New Lidar On top of the snakes head Location and mapping 1

New IMU Located on each side of Lidar Used to filter Lidar data 1

Old Esp32-wifi
Located in the third led

counted form the front

Used to move the snake

and send sensor data

to computer

1

Old
Battery

charger

Located in the rear end of the

snake

Used to charge the

batterys
1

Old Battery Located in the rear led’s Not in use 4

Old On/off switch
Located in the forth led counted

from the front.

Used to turn the snake

on and off
1

New Arduino
Located in the second led counted

from the front.

Used for sending

IMU data
1

Table 4.2: SnakeParts

IMU

The IMU’s are LSM9DS1 it can be seen in figure4.1. This is one of SparkFun’s products. This has

as the name suggests 9 axsis of reading data.

CHAPTER 4. MATERIALS 22

Figure 4.1: Picture of the IMU.[21]

LiDAR

The LiDAR is a HOKUYO URG-04LX-UG01 witch can be seen in figure 4.2. The LiDAR has

240°range in front of it. The max range on the LiDAR is 4095mm with an accuracy of +-3% but

on lower ranges as 1000mm and down to 60mm it has an accuracy of +- 30 mm. A scan cycle

takes 100ms.[14]

Figure 4.2: Picture of the LiDAR.[14]

Battery

There are four battery’s on 2200Ah that is connected in parallel inside the snake thees powered

the snake like robot before it was changed to a external power-supply.

CHAPTER 4. MATERIALS 23

4.2 Construction

The construction of the snake-like robot itself was already finished. For this project the proto-

type was mostly done, but was meant to be modified to be able to accomplish the new tasks

given. The modifications that was needed was to put on a sensor for vision on the robot, and

a sensor to know know the translation and orientation of the robot. The LiDAR was decided to

be mounted on the head of the snake this was the most practical place to mount it. There was

also added a IMU that was mounted on top of the LiDAR. How the snake looked like as a 3D

rendering can be seen in fig 4.3.

Figure 4.3: The snake-like robot without its LiDAR and equipment

Chapter 5

Testing

5.1 Design

The design itself did not need any testing for the most part. The testing needed was to see that

the modifications made were robust enough to handle the snakes rough movement and to see if

it was possible to get data from the LiDAR under the rough movement from the snakelike-robot.

The way it was decided to test this was by putting the LiDAR on to the robot and see how the

data points got.

5.2 Testing of Navigation Stack

There are two steps for testing of the navigation stack that is planned, the first one was to test the

navigation stack without the LiDAR attached to the robot see how it worked and how the path

would look, and if it would change if there was put an object in the path. The next step was to

do the same procedure but while the LiDAR was on the head of the robot. These test was done

to understand how the navigation stack was working and how to use it.

5.3 Performance Tests

When choosing a performance test it was decided to do it in multiple steps to see what degree

of impact it would make for the end result. The end goal is to get the best and most stable map

24

CHAPTER 5. TESTING 25

possible. First performance test would be without the LiDAR attached to the robot. The next

step would be to test the robot with the LiDAR on the robot, but without IMU data and filtering.

The last step would be with all data and filtering as well as using this data for odometry. These

test will be done to see the improvement between the different implementations.

Chapter 6

Result

6.1 Physical Design

The final physical design of the robot can be seen in figure 6.1, this is the snake’s rendered cad

file. This was done in the last project. The dimensions of the snake like robot is as seen in 6.2

and the debt can be seen 6.3.

26

CHAPTER 6. RESULT 27

Figure 6.1: The snake-like robot without its LiDAR and equipment

Figure 6.2: The snake-like robot side view with dimensions

CHAPTER 6. RESULT 28

Figure 6.3: The snake-like robot front view with dimensions

The snake ended up looking like 6.4 as it can be seen in the picture the LiDAR is mounted

on the snakes head. This was to make the snake have the ability to see in front of itself and

not see itself while walking. The LiDAR was mounted on with hot glue, this was chosen to not

damage the LiDAR. It could have been chosen to make a 3D printed head with more properly

made attachment unit for the LiDAR. This was not chosen size it was recommended to be at

school at a minimum degree. There was also mounted a IMU on the top of the LiDAR this was

also fastened with hot glue.

CHAPTER 6. RESULT 29

Figure 6.4: The snake-like robot side view with equipment

6.2 Electrical Design

The snake’s electrical design was mostly done in the previous project but there has been chal-

lenges with the prototype. There was something that’s called brownout error that occurred, the

troubleshooting can be read about in section 6.6.2.

The sensors that was added to the electrical system was a IMU and a LiDAR. The IMU was

first put on the side of the LiDAR and connected to the esp32, but after some trouble shooting it

was changed. There was added a arduino to take care of the IMU’s data and sending it forward.

The reason can be read about in section 6.6.2. The IMU was sett on the top of the LiDAR with

the new settup.

The battery’s in the snake was not sufficient enough for power, so they were disconnected.

Instead it was used a external power supply, first it was used a old PC power-supply. This worked

CHAPTER 6. RESULT 30

great for a couple of Weeks until it had some sparks flying out, after it was opened it was found

out that one of the parts was defective. It was then changed to a old laptop charger that gave out

19 volt and 4,86 amps. The voltage was bucked down with a buck converter.

The buck-converter got hot, so it was decided to use the fan from the PC power-supply to

cool it down. Since this fan needed 12 volt it was added one more old laptop charger that gave

out 12 voltage to supply the fan. It can be seen in picture 6.5.

Figure 6.5: The power-supply that was used

CHAPTER 6. RESULT 31

6.3 Software

The robot was built up of different modules that had their own tasks. The arduino program had

the responsibility to send IMU info when asked for it. The Esp32 code had the task to control

the servo’s and send an acknowledge when done. The translaters job was to translate where the

navigation stack said to go. The IMU_node had the task of requesting IMU information when

needed and publish that on a topic for other ROS nodes. The Loggers job was to logg when

doing test’s, and this script was adjusted when different data was needed to be logged. The

logger saved the loggs with a time stamp and the data in a text file. To read this text file and

get the data in a readeble way it was used the logg_viewer which made it possible to view it as

graphs and adjust the data and what data to see in the graph.

6.3.1 System overview

This section will give a brief overview of how the different parts of the program are connected.

Figure 6.6: Simplified flow chart of the system

The system is divided in to five parts and each part with a specific task. The arduino has one

CHAPTER 6. RESULT 32

task and that’s to send IMU data when needed, this is done by sending an request for IMU data

over serial connection to the main computer trough the IMU_Node node. The Esp32 is respon-

sible for moving the robot as specified by the translater, it receives commands for specific types

of movements and translates this in to the servos.

The translater takes the commands from the navigation stack about where to walk, and

translates these commands into something the esp32 can understand. It also checks if the esp32

is finished with its last task before sending a new one.

The navigation stack gets its input data from hector_slam and the LiDAR to determine where

the robot should move to reach its destination. Hector_slam uses LiDAR and odometry data, the

LiDAR data is gathered from the FilterLidarData node while odometry data is published by the

IMU_Node node.

The FilterLidarData takes in LiDAR data from the LiDAR, and takes in IMU data from the

IMU_Node node and uses the IMU data to pass on all scans while the pitch of the LiDAR is

between +10°and -10°to hector_slam. The system is illustrated in figure 6.6.

IMU

The IMU ended up being on its own arduino, the code for this was built up to send data every

time it got an request. This made it possible to make an python script that would ask for data

in a given interval. The data that could be asked for was both raw data and calculated data as

roll, pitch and yaw. The IMU_Node was a script that requested IMU data from the arduino and

published it so it would be available for other nodes in ROS.

LiDAR

The LiDAR data was taken in by ROS, to do this it was implemented a library for the LiDAR called

Urge_node. This was used to take in the LiDAR data and publish it as sensor data with the topic

Scan in ROS. In the early stages of the project this data would be put right in to SLAM. It was

early discovered that this did not work well because of the snakes movement, this was also pre-

CHAPTER 6. RESULT 33

dicted.

To fix this it was made a filter for the LiDAR data. The filters only function is to filter out all

data that is gathered when the snake doesn’t have its head tilted more than +-10°, this is based

on where the laser from the LiDAR would have been parallel with the floor in approximation.

This was done by a script called FilterLidarData, that subscribed on pitch data and the LiDAR

data and publishing the result.

Translator

The translator is built up by parts of the old python script that was used to communicate with the

snake, and a lot of new code. The main point of the translater was to do all the communication

with the esp32. This was how it was done, until it was discovered that the esp couldn’t handle to

send the IMU data while running the servos. This can be read more about in 6.6.2.

6.3.2 Communication

ESP to computer

The communication protocols that was used to send data between esp32 and the computer

was UDP connection over Wifi. The data that needed to be transmitted from the snake was a

character and a float. The characters was something that was used to get the snake to send ac-

knowledgments and done messages in the previous project.

Now it was needed to also send float for pitch data, since the UDP library only supports

sending data as a byte, it was needed to use union to convert a float into a single byte. A float is

four bytes in arduino[3]. The esp32 sends the byte’s as little endian this is something that needs

to be taken in to account when making the script to translate this information.

The script to translate this information is called Translater, This was designed to do all the

talking to the esp32 and give the the information to deliver the information to where ever it is

needed. The translater script reads the hex that gets delivered form the esp32, and translates

CHAPTER 6. RESULT 34

them to chars and floats. If the character is a "p", the script will know what comes next is a float.

The characters that can be sent from the esp32 can be seen in table6.1. The characters that can

be sent to the Esp32 is 6.2.

Character Command

p Float is next

a Acknowledge

d Done

Table 6.1: List of commands that can be send from ESP

Character Command Is implemented in python-script
f Going forward Yes
b Going backwards Yes
v Adjusting left Yes
h Adjusting Right Yes
m Rotating CW Yes
n Rotating CCW Yes
s Stopping movement Not needed
r Adjusting straight No
t Change Turn-angle No
p Change T-parameter No
a Change A-parameter No

Table 6.2: List of commands that can be send to ESP

Inside the computer

The project is build on ROS which implements nodes which can subscribe and publish data,

this is used to send data between scripts and nodes. In each node its needed to subscribe on

data, it gets initiated a subscriber and a publisher.

6.3.3 Sensors and Sensor Processing

The sensor data that is used in this project from a LiDAR and from a IMU. The LiDAR gathers

a point cloud of the environment and sends this data to hector_slam for processing. The IMU

CHAPTER 6. RESULT 35

is used to gather odomotry data. The IMU’s data get processed by the arduino, this is done by

using a formula that takes in the different axes of IMU data to calculate roll, pitch and yaw. This

can be read more about in 3.6. The formula used for pitch is

θ =α ·θG + (1−α) ·θA (6.1)

Where:

α - Filter Coefficient

θG - Pitch measured by gyro

θA - Pitch measured by accelerometer

This creates a complimentary filter. The roll(φ) and yaw(ψ) is calculated the same way. The

value of 0.9 was found to be suitable for the filter coefficient α.

6.3.4 Navigation and SLAM

The navigation and localization was done by sending data into Hector_slam in ROS. Hector_slam

would use the LiDAR data to make a map and localizing itself. This map was used to navigate

trough the room. To make the LiDAR data for navigation and SLAM more stable and have no

problems with seeing the floor when the snake was moving it was added a filter that was based

on the pitch data from the snakes IMU that was on its head. The map that was before the pitch

data would look like 6.7 at this example it got a bad map because it was looking down into the

floor.

CHAPTER 6. RESULT 36

Figure 6.7: Map without pitch data

It could not understand that this data was not representative of the room. After the filter was

added it looked like 6.8, this was a good improvement.

Figure 6.8: Map with pitch data

CHAPTER 6. RESULT 37

6.3.5 Movement

The snakes movement is decided by the navigation stack. The navigation stack sends out an

velocity that the snake should move forward with and the turn rate needed. This is translated by

the python script called translater that makes this into letters, based on how high these values

are and what they are. These letters can be as an example "f" for go forward with no turning for

one cyclus. Since one cyclus goes by incredibly fast the snakes movement seems continues but

is a step by step process in the snakes point of view. The table for the different movements the

snake can take can be seen in table 6.2.

6.3.6 Motor Control

The motor controller used for the servo motors are a ESP32. This controller sends all commands

to all the servo motors, but receives information about what should be done from the PC using

WiFi. To send different commands to the ESP32 a self-made communication protocol was used.

A letter gets sent to the ESP32, which reads the command and uses a switch-case to understand

what needs to be done.

6.4 Initial Tests

When testing the forward movement it was done some IMU logging to see how the movement

would effect the LiDAR. This test was done with forward movement with an amplitude sett to

30. This will say that the servos can turn 30° up and down. The amplitude is sett to 30° because

that’s the amplitude the snake walks best on and its the amplitude used under normal walking

as was found in the previous project.

When doing this test it was found that the IMU data was decently stable and had a max

amplitude of 30°, as can be seen in figure 6.9.

CHAPTER 6. RESULT 38

Figure 6.9: Pitch at forward movement

There is some noise between second one and two in the graph, this is assumed to be when

the snake slams down in the ground.

It was also logged roll in the this same attempt, the roll should not give any reaction when

the snake moves. This is because the snake should not be able to have roll without moving in

terrain that is uneven. As it can be seen in the figure 6.10 the roll has some reaction up to 10°the

high spikes. They seem to be in sync with the pitch’s peaks and is assumed to have correlation

to rapid acceleration and deceleration of the snakes head and also when the head impacts the

ground.

CHAPTER 6. RESULT 39

Figure 6.10: Roll at forward movement

It was also done a test where it was logged pitch and roll while turning, the turn angle was

sett to 60 °. The result of the pitch can be seen in fig 6.11. As can be seen here the pitch is not as

high and there is not as the same amount of jitter as in figure6.9. The increase in roll is probably

because the snake can have the tendency to tilt some while turning and moving forwards at the

same time. This can be a result of the heavy LiDAR at the snakes head.

CHAPTER 6. RESULT 40

Figure 6.11: Pitch logged with turn sett to 60°

There was also done a logg while rotating clockwise the result from the the pitch data can be

seen in fig 6.12. The roll can be seen in fig 6.13. As we can see from these graphs the head tilts.

These test shows the extent of the roll and pitch motion experienced by the LiDAR which can

impact mapping performance.

CHAPTER 6. RESULT 41

Figure 6.12: Pitch logged while moving clock wise

CHAPTER 6. RESULT 42

Figure 6.13: Roll logged while moving clock wise

6.4.1 Mapping Performance

After the initial test showed that the LiDAR moves a lot under movement a LiDAR filter was im-

plemented, and a test to see the effects the LiDAR filter had on the hector_slam maps was done.

There was done two tests, one without the filter and one with. During these tests the robot

was tilted in the pitch direction manually, while IMU data was logged and the map was video

recorded. The IMU data was recorded in order to make sure the test was done on similar terms.

In both tests it was aimed to have a pitch of ±30° as this is the pitch that will come when the

snake walks forwards, as can be seen in 6.9. The first test implemented the LiDAR filter for values

of ±10° meaning that LiDAR data captured while the pitch angle was outside this range would

be discarded. The logged pitch values for this test can be seen in figure 6.14. The second test

CHAPTER 6. RESULT 43

did not implement the LiDAR filter and as such all LiDAR data was transmitted to the mapping

algorithm. The IMU data can be seen in figure 6.15.

Figure 6.14: Pitch test +-10°filter

Figure 6.15: Pitch for Lidar test without filter

6.4.2 Test with filter

This section show the test done with the filter implemented. As can be seen in fig 6.16 this is

now the lasers highest reading, while the lasers lowest reading is displayed in figure 6.17. In fig-

ure 6.17 the laser scan is now below the mapped area and is hard to see. It can be seen in this

figure that the snake is still able to see the ground but as figure 6.18 shows hector_slam does not

lose track of its position. It still moves the base link as can be seen in 6.17, but it goes back to its

CHAPTER 6. RESULT 44

original point when looking back up. This can be seen in figure 6.18.

Figure 6.16: Laser max range upwards

CHAPTER 6. RESULT 45

Figure 6.17: Laser max range downwards

CHAPTER 6. RESULT 46

Figure 6.18: Map after pitch max downwards and upwards

6.4.3 Test without filter

When the filter is not present the pitch was a bit higher but this does not have a big impact since

the first attempt would filter out all data over 10°. While the amplitude of the first test does not

matter above 10° the rate of change does. The graph for the pitch in the attempt without the

filter can be seen 6.15 and the rate of change is relatively similar to the first attempt as seen in

figure 6.14. When the LiDAR filter was not implemented hector_slam could not keep track of

the position of the robot.

CHAPTER 6. RESULT 47

Figure 6.19: Laser without filter sees roof.

As it can be seen in the figure the the laser scan now can be taken at any pitch angle. This

gives the snake the opportunity to see roof, this makes the base_link of the robot move drasti-

cally and make the robot think it is a different place on the map. When the snake looks down-

wards without the filter made it even worse as it can be seen in 6.20.

CHAPTER 6. RESULT 48

Figure 6.20: Laser without filter sees floor.

It can be seen here that hector_slam losses it original map and thinks it has moved drasti-

cally. Hector_slam moves the robot’s position to a clear section of the map, and starts mapping

from this point. A "wall" can be seen right in front of the robot, and this wall corresponds to the

laser scan of the LiDAR seeing the floor.

CHAPTER 6. RESULT 49

6.5 Navigation Stack Testing

When testing the navigation stack it was done by setting a point to walk to in the rivz GUI. When

this set point was putt down it could be seen on the map that there came a green line that the

navigation stack wanted to follow. To see what commands the navigation gave out an what kind

of format it was on it was used a ROS function to echo what was send out by the navigation

stack and display it in the Linux terminal. The navigation stack send out a velocity and an angle

to walk in.

6.6 Performance Test Results

The performance test was set up in to tree different modules. The first was to test the navigation

stack and hector_slam without the Lidar on the snakes head. This worked well, hector_slam

made a good map and the navigation stack sent commands to the snake about where to walk.

The next step was to test whit the LiDAR on the head of the snake. This was not very success

full as the LiDAR would see the ground each time the snake was moving. This made hector_slam

not understand where it was and the map and location of the snake would get ruined.

The third test was with the LiDAR on the head of the robot, and IMU data for odometry. This

was done by feeding the IMU data in to the odometry of Hector_Slam and by filtering the LiDAR

in to readings that would be within +10° and -10°. This made huge improvements for the map,

it was more stable and was able to hold it’s location.

6.6.1 Obstacle Avoidance

Obstacle avoidance was done by the navigation stack in ROS. To sett a point to walk to it was

possible to make a navigation point in rviz in ROS, this shows a map of what the LiDAR on the

snake can see. When setting a destination point the navigation stack would look for the possi-

bility’s of where to go. The navigation stack was given the odometry of the snake and could use

this information to be able to know where it is possible to go. The navigation stack would then

CHAPTER 6. RESULT 50

make a path to walk to get to the destination.

But when having sudden new obstacle apere where the snake had already mapped, the snake

would get problems with understanding where it was and often move where it thought it self’s

location was instead of putting up an obstacle on the map. This was happening because of to

few data points on where the snakes location was and when it was moving.

6.6.2 TroubleShooting

There has occurred something called a brownout error on the Esp32, this is something that

comes when the Esp32 gets a to low voltage. This challenge took sometime to locate. It was

located after a lot of debugging in code that the problem was within the esp32 and that it was

restarting at what seamed random.

It was connected a serial cable to the esp32 to debug internally and it was found that the

Esp32 had brownout errors. This appears when the esp doesn’t get enough power. To locate

more precisely where the fault was it was made a arduino code that tested one and one part of

the robot at the time. It was discovered that servo number tree had a short circuit. This servo

was replaced by a new one. The first servo that was used as a replacement was a servo 360°servo

with an encoder, and could not be used, together with the library that was used for the other

servos. So once again it was replaced with a servo that could be used, this time it was successful.

After this there came a new challenge this time the ESP-32 wouldn’t stay on the network it

was assigned to, it disconnected then reconnect. To start troubleshooting the esp-32 was in-

spected and it was found that there was some potential short circuit’s. The robot was opened

and esp inspected it was discovered some small cords that had the potential to short the esp,

without knowing if this actually had happened. These potential shorts was fixed. It was also

discovered that the WIFI library in some cases could have problems whit pin 28 and 29 on the

esp32 being used. This was the pins that was used for one of the IMU’s, so this IMU was also

soldered of.

CHAPTER 6. RESULT 51

When this was done it was time for a WiFi test, this was done with an test scatch with only

WiFi library. The run whit a test scetch worked well, then the IMU was soldered on to pin 28 and

29 again to test if this was the actual problem. That was not the case, the esp32 connected to the

network again with no problems discovered. The next test was to see if the esp32 would connect

to network when the regular program was loaded on to it. It would now connect and disconnect

again. The next step was to comment out everything that had anything to do with the IMU’s in

the code. This made the regular code work again, it was started to put in one and one step of the

IMU’s code to see when the problem occurred. The result that was ended up with was that the

esp32 had problems when needing to send packages over the network.

What happened was that when the IMU’s was sending packages over the network the servos

would go in slow motion. To try and fix this it was decided to solder over the IMU to the orgini-

nal I2C connections on pin 22 and 21, and solder the servo to 26 and 27. This did not work the

robot still acted the same way. So instead it was added a new micro-controller to be used for

gathering of IMU data and speaking with the computer directly by serial communication.

The reason the IMU and servos wouldn’t work at the same time on the esp32 is believed to

be because of a finite number of internal interrupters for making the I2C communication work

and PWM’s signal but no concrete evidence was found. This was because of what was read on

multiple forum posts. What was done to fixed this problem in the end was to put on a arduino

that handles all IMU data, and sends it to the main computer by serial communication.

Chapter 7

Discussion

7.1 Test results

7.2 Software

7.2.1 FilterLidarData

The filterLidarData script was made for filltering LiDAR data this was done as an attempt to

make hector_slam more stable, this worked as planned and improved the result of the project.

But it could have been done in a more comprehensive way. So this is a function i would say is

important and was successful even tho it was really simply made.

7.2.2 Translator

The tranlator script could have been improved by having a more advanced way of choosing

movement. The final result was originally made just to test if translator could choose movement

in the way i imagined. This worked well, an the reason it was not improved more was because

of time restraint.

52

CHAPTER 7. DISCUSSION 53

7.2.3 IMU_NODE

The IMU_NODE was made to request data from the arduino and publish it to other nodes. This

worked well, and made it so that the result became as good as they did. The node was made last

minute when the other original plan wouldn’t work. This worked well and is implemented in a

good way.

7.2.4 Servo Code

The arduino code for the esp32 was just done small changes to. But should have been refactored,

this was not done because off time restraint. It worked for it purpose but to get better walking

and more in sync with the navigation stacks out put this code and the translater code should

have been completely reworked.

7.2.5 ROS

I think the choice to use ROS is one of the main factors that the project came as far as it did, even

though it didn’t reach the plans that was first sett. ROS took time to understand and learn to use,

but when it first was up and running it worked well for its purpose.

7.3 Sensors

The sensors chosen was a 2D LiDAR and an IMU. It would have been a better option to use a 3D

LiDAR, this would have given the project more stability by having more landmarks to associate

its location to. To make this project work in a less controlled environment it would really help to

have the 3rd dimension. The reason this was not done was a mixture of me being to optimistic

and the school having the 2D LiDAR available. The first plan for this project was to use image

processing and the 2D LiDAR to make a sort of 3D scan.

CHAPTER 7. DISCUSSION 54

7.4 Prototype

The prototype was made in the last project and was not made for changes 2.1. It was sufficient

for the last experiment but was not made to last much longer than for that project’s duration. So

when needing to change the purpose of the snake there was some problems. The ESP32 was not

able to send IMU data and simultaneously control the servos. The battery pack was not able to

send enough power, this was also a challenge. But was fixed by adding a external power supply.

7.4.1 Improvements

There are a bunch of ways i would have improved this project if there was time for it. The proto-

type that was used in this project should be thrown away, and there should be made a new one.

The new one could take inspiration from this one, but it is important to understand its flaws.

There should be 3 micro-controllers inside the snake. One for handling the servos, this could be

a esp32. There also needs to be one for handling IMU data, this could be done with either with a

esp32-camera module or a normal arduino. The last micro-controller should be a raspberry pi,

and can use a camera module for vision. If this is done the esp32-camera would not be needed

and it would be best to use a normal arduino for the IMU’s. The raspberry pi has support for

ROS and could be used as a node, this would make it easy to get data from the robot to a com-

puter. For power-supply i would also recommend that it was made with a charging option that

can charge the battery’s for a bigger amount than the robot use in idle.

7.5 Personal Experiences

7.5.1 Corona’s impact on the project

I was aware that corona would have some impact on how the project would be done. But since

it was a something i was prepared for going in it didn’t have a very big impact. It made it so

that i would work from home, this was the biggest disadvantage. The loss of routines and social

aspect of being at a school and have people to ask question and explain problems, is something

that was missed. But other than that corona has not made this project suffer in any big way.

CHAPTER 7. DISCUSSION 55

7.5.2 Project Organization

The project can be divided in to tree phases, the first one was the research phase. The second

phase was the prototype phase, witch was making code for the concepts and making the robot

as planned. The last phase was testing, these phases was planned to be in order. But as most

project this was did not go as planned and ended up going back and fourth between the phases.

7.5.3 Work Flow

There was a good workflow in the start was good but each time there came a step i got stuck on

it could come a period of time where the workflow would go down drastically. Since i was alone

i didn’t have anyone to discuss ideas and plans with, and that is something i missed trough this

project. Instead i used friends that i discussed solutions with online, which was good help when

stuck.

Chapter 8

Conclusions

The goal of this project was to make the snakelike-Robot less dependent on a controlled envi-

ronment using LiDAR and whatever tools necessary. This goal has been reached in some way,

but is not to the potential it could be at. By making a new and improved snakelike-Robot i think

it would be possible to get some great result that could be really interesting to follow. Improve-

ments that i can suggest are listed in 8.1. In my personal experience with this project is that

the snake like robot is a good robot to use for learning, and have great potential for being an

autonomous search robot.

8.1 Further work

There is a few things to be worked on and improve or changed,

• Make a new prototype with a raspberry pi as a communication node

• Optimize the arduino code in a whole

• Use a 3D LiDAR

• Make a sufficient power-supply

• Rework the translator script

What i would do is setting up an arduino that takes in all the data from the IMU, that would

speak to a inboard raspberry over serial communication. I would also have an ESP32 that would

56

CHAPTER 8. CONCLUSIONS 57

control the servos that also communicated to the raspberry over serial communication. The

LiDAR could also be connected to the raspberry so there would be no cables needed to the

snake. The raspberry would be sett up as a ROS node and communicate with a main computer

to do processing. For image processing it could have been used a raspberry camera module.

Bibliography

[1] Sparkfun thing plus - esp32 wroom. URL https://www.sparkfun.com/products/15663.

Visited 01.12.2020.

[2] Guoyuan Li, Håkon Bjerkgaard Waldum, Marcus Olai Grindvik, Ruben Svedal Jørundland,

Houxiang Zhang. Development of a vision-based target exploration system for snake-like

robots in structured enviorments. URL https://journals.sagepub.com/doi/full/10.

1177/1729881420936141. Visited 10.12.2020.

[3] Arduino. Float. URL https://www.arduino.cc/reference/en/language/variables/

data-types/float/. Visited 04.12.2020.

[4] Tim Bailey. Slam: The essential algorithms. URL https://people.eecs.berkeley.edu/

~pabbeel/cs287-fa09/readings/Durrant-Whyte_Bailey_SLAM-tutorial-I.pdf.

Visited 10.12.2020.

[5] Steinar Brandslet. A giant subsea snake robot, August 2017. URL https://www.sintef.

no/en/latest-news/a-giant-subsea-snake-robot/. Visited 19.11.2020.

[6] Eitan Marder-Eppstein, Eric Perko. local_planner. URL http://wiki.ros.org/base_

local_planner?distro=melodic. Visited 14.12.2020.

[7] Open Source Robotic Foundation. Ros introduction, . URL http://wiki.ros.org/ROS/

Introduction. Visited 02.12.2020.

[8] Open Source Robotic Foundation. Nodes, . URL http://wiki.ros.org/Nodes. Visited

04.12.2020.

58

https://www.sparkfun.com/products/15663
https://journals.sagepub.com/doi/full/10.1177/1729881420936141
https://journals.sagepub.com/doi/full/10.1177/1729881420936141
https://www.arduino.cc/reference/en/language/variables/data-types/float/
https://www.arduino.cc/reference/en/language/variables/data-types/float/
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/Durrant-Whyte_Bailey_SLAM-tutorial-I.pdf
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/Durrant-Whyte_Bailey_SLAM-tutorial-I.pdf
https://www.sintef.no/en/latest-news/a-giant-subsea-snake-robot/
https://www.sintef.no/en/latest-news/a-giant-subsea-snake-robot/
http://wiki.ros.org/base_local_planner?distro=melodic
http://wiki.ros.org/base_local_planner?distro=melodic
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/Nodes

BIBLIOGRAPHY 59

[9] Open Source Robotic Foundation. Movebase, . URL http://wiki.ros.org/move_base?

distro=noetic. Visited 02.12.2020.

[10] Randy Frank. Mems imu. URL https://www.sensortips.com/pressure/

mems-imu-delivers-10-degree-of-freedom-capability. Visited 02.12.2020.

[11] Akshat Goel. Servomotor: types and working princi-

ple explained. URL https://engineering.eckovation.com/

servo-motor-types-working-principle-explained/. Visited 09.12.2020.

[12] hamamatsu.com. Lidar. URL https://www.hamamatsu.com/sp/ssd/application/

LiDAR/LiDAR_TOF_en.jpg. Visited 09.12.2020.

[13] Austin Hendrix. msg. URL http://wiki.ros.org/msg. Visited 12.12.2020.

[14] HOYUKO. Urg-04lx-ug01. URL https://www.hokuyo-aut.jp/search/single.php?

serial=166. Visited 03.12.2020.

[15] https://www.mathworks.com/. Slam with lidar scan. URL https://www.mathworks.com/

help/nav/ug/implement-simultaneous-localization-and-mapping-with-lidar-scans.

html. Visited 19.12.2020.

[16] iRobot Corporation. Irobot. URL https://web.archive.org/web/20130511232754/

http://www.irobot.com/EngineeringAwesome/images/iAdapt%20Fast%20Facts.

pdf. Visited 02.12.2020.

[17] Danny Jost. What is an ultrasonic sensor? URL https://www.fierceelectronics.com/

sensors/what-ultrasonic-sensor. Visited 01.12.2020.

[18] David LU. global_planner. URL http://wiki.ros.org/global_planner?distro=

noetic. Visited 14.12.2020.

[19] William D.Smart Morgan Quigley, Brian Gerkey. Programin robots with ros.

URL https://books.google.no/books?hl=no&lr=&id=Hnz5CgAAQBAJ&oi=

fnd&pg=PR2&dq=What+is+robot+operating+system&ots=-6pgK01BK2+&sig=

http://wiki.ros.org/move_base?distro=noetic
http://wiki.ros.org/move_base?distro=noetic
https://www.sensortips.com/pressure/mems-imu-delivers-10-degree-of-freedom-capability
https://www.sensortips.com/pressure/mems-imu-delivers-10-degree-of-freedom-capability
https://engineering.eckovation.com/servo-motor-types-working-principle-explained/
https://engineering.eckovation.com/servo-motor-types-working-principle-explained/
https://www.hamamatsu.com/sp/ssd/application/LiDAR/LiDAR_TOF_en.jpg
https://www.hamamatsu.com/sp/ssd/application/LiDAR/LiDAR_TOF_en.jpg
http://wiki.ros.org/msg
https://www.hokuyo-aut.jp/search/single.php?serial=166
https://www.hokuyo-aut.jp/search/single.php?serial=166
https://www.mathworks.com/help/nav/ug/implement-simultaneous-localization-and-mapping-with-lidar-scans.html
https://www.mathworks.com/help/nav/ug/implement-simultaneous-localization-and-mapping-with-lidar-scans.html
https://www.mathworks.com/help/nav/ug/implement-simultaneous-localization-and-mapping-with-lidar-scans.html
https://web.archive.org/web/20130511232754/http://www.irobot.com/EngineeringAwesome/images/iAdapt%20Fast%20Facts.pdf
https://web.archive.org/web/20130511232754/http://www.irobot.com/EngineeringAwesome/images/iAdapt%20Fast%20Facts.pdf
https://web.archive.org/web/20130511232754/http://www.irobot.com/EngineeringAwesome/images/iAdapt%20Fast%20Facts.pdf
https://www.fierceelectronics.com/sensors/what-ultrasonic-sensor
https://www.fierceelectronics.com/sensors/what-ultrasonic-sensor
http://wiki.ros.org/global_planner?distro=noetic
http://wiki.ros.org/global_planner?distro=noetic
https://books.google.no/books?hl=no&lr=&id=Hnz5CgAAQBAJ&oi=fnd&pg=PR2&dq=What+is+robot+operating+system&ots=-6pgK01BK2+&sig=Pd3jIuuCf5Jp4El9IRyxKD-DMHY&redir_esc=y#v=onepage&q=What%20is%20robot%20operating%20system&f=false
https://books.google.no/books?hl=no&lr=&id=Hnz5CgAAQBAJ&oi=fnd&pg=PR2&dq=What+is+robot+operating+system&ots=-6pgK01BK2+&sig=Pd3jIuuCf5Jp4El9IRyxKD-DMHY&redir_esc=y#v=onepage&q=What%20is%20robot%20operating%20system&f=false
https://books.google.no/books?hl=no&lr=&id=Hnz5CgAAQBAJ&oi=fnd&pg=PR2&dq=What+is+robot+operating+system&ots=-6pgK01BK2+&sig=Pd3jIuuCf5Jp4El9IRyxKD-DMHY&redir_esc=y#v=onepage&q=What%20is%20robot%20operating%20system&f=false

BIBLIOGRAPHY 60

Pd3jIuuCf5Jp4El9IRyxKD-DMHY&redir_esc=y#v=onepage&q=What%20is%20robot%

20operating%20system&f=false. Visited 02.12.2020.

[20] nasa. Remote sensors. URL https://earthdata.nasa.gov/learn/remote-sensors#

hyperspectral. Visited 02.12.2020.

[21] Charles Pao. What is imu sensor? URL https://www.ceva-dsp.com/ourblog/

what-is-an-imu-sensor. Vistited 02.12.2020.

[22] Darren Sawicz. Hobby servo fundamentals. URL http://www.princeton.edu/~mae412/

TEXT/NTRAK2002/292-302.pdf. Visited 01.12.2020.

[23] Søren Riisgard, Morten Rufus Blas. Slamfordummys. URL https://dspace.mit.edu/

bitstream/handle/1721.1/119149/16-412j-spring-2005/contents/projects/

1aslam_blas_repo.pdf. Visited 14.12.2020.

https://books.google.no/books?hl=no&lr=&id=Hnz5CgAAQBAJ&oi=fnd&pg=PR2&dq=What+is+robot+operating+system&ots=-6pgK01BK2+&sig=Pd3jIuuCf5Jp4El9IRyxKD-DMHY&redir_esc=y#v=onepage&q=What%20is%20robot%20operating%20system&f=false
https://books.google.no/books?hl=no&lr=&id=Hnz5CgAAQBAJ&oi=fnd&pg=PR2&dq=What+is+robot+operating+system&ots=-6pgK01BK2+&sig=Pd3jIuuCf5Jp4El9IRyxKD-DMHY&redir_esc=y#v=onepage&q=What%20is%20robot%20operating%20system&f=false
https://books.google.no/books?hl=no&lr=&id=Hnz5CgAAQBAJ&oi=fnd&pg=PR2&dq=What+is+robot+operating+system&ots=-6pgK01BK2+&sig=Pd3jIuuCf5Jp4El9IRyxKD-DMHY&redir_esc=y#v=onepage&q=What%20is%20robot%20operating%20system&f=false
https://books.google.no/books?hl=no&lr=&id=Hnz5CgAAQBAJ&oi=fnd&pg=PR2&dq=What+is+robot+operating+system&ots=-6pgK01BK2+&sig=Pd3jIuuCf5Jp4El9IRyxKD-DMHY&redir_esc=y#v=onepage&q=What%20is%20robot%20operating%20system&f=false
https://earthdata.nasa.gov/learn/remote-sensors#hyperspectral
https://earthdata.nasa.gov/learn/remote-sensors#hyperspectral
https://www.ceva-dsp.com/ourblog/what-is-an-imu-sensor
https://www.ceva-dsp.com/ourblog/what-is-an-imu-sensor
http://www.princeton.edu/~mae412/TEXT/NTRAK2002/292-302.pdf
http://www.princeton.edu/~mae412/TEXT/NTRAK2002/292-302.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/119149/16-412j-spring-2005/contents/projects/1aslam_blas_repo.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/119149/16-412j-spring-2005/contents/projects/1aslam_blas_repo.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/119149/16-412j-spring-2005/contents/projects/1aslam_blas_repo.pdf

Appendices

61

Appendix A

Project Planning

A.1 Pre-Project Report

62

FORPROSJEKT - RAPPORT
FOR BACHELOROPPGAVE

Postadresse Besøksadresse Telefon Telefax Bankkonto

Høgskolen i Ålesund Larsgårdsvegen 2 70 16 12 00 70 16 13 00 7694 05 00636
N-6025 Ålesund Internett Epostadresse Foretaksregisteret

Norway www.hials.no postmottak@hials.no NO 971 572 140

TITTEL:

Snake like robot V2

KANDIDATNUMMER(E):

Marcus Olai Grindvik

DATO: EMNEKODE: EMNE: DOKUMENT TILGANG:

18.08.20 IE303612 Bacheloroppgave - Åpen

STUDIUM: ANT SIDER/VEDLEGG: BIBL. NR:

BACHELOR I INGENIØRFAG -

AUTOMATISERINGSTEKNIKK
/ - Ikke i bruk -

OPPDRAGSGIVER(E)/VEILEDER(E):

Ottar L. Osen - NTNU
Guoyuan Li - NTNU

OPPGAVE/SAMMENDRAG:

Oppgaven er gitt på grunn av etterspørsel på mere forskning innen slange robot med visuelle

sensorer. Det er tatt et valg om å bruke lidar til å kunne kartlegge og posisjonere roboten i et rom.

Det vil deretter brukes lidar data sammen med bilde for å sette sammen en 3D-visualisering av

rommet.

Det er satt samen en risikovurdering om hva som kan utsette prosjektet og hvilket risikoer som kan

forekomme. Denne forprosjektrapporten tar for seg oppgaven omfang, planlagt fremgangsmetode,

behandling av eventuelle avvik og generell organisering av prosjektet.

NTNU I ÅLESUND SIDE 2

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

NTNU I ÅLESUND SIDE 3

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

INNHOLD

1 INNLEDNING ... 3

2 BEGREPER .. 3

3 PROSJEKTORGANISASJON ... 3

3.1 PROSJEKTGRUPPE .. 3

3.2 STYRINGSGRUPPE (VEILEDER OG KONTAKTPERSON OPPDRAGSGIVER) .. 4

4 AVTALER ... 4

4.1 AVTALE MED OPPDRAGSGIVER ... 4
4.2 ARBEIDSSTED OG RESSURSER ... 4

4.3 GRUPPENORMER – SAMARBEIDSREGLER – HOLDNINGER .. 4

5 PROSJEKTBESKRIVELSE... 4

5.1 PROBLEMSTILLING - MÅLSETTING - HENSIKT... 4

5.2 KRAV TIL LØSNING ELLER PROSJEKTRESULTAT – SPESIFIKASJON ... 4

5.3 PLANLAGT FRAMGANGSMÅTE(R) FOR UTVIKLINGSARBEIDET – METODE(R) .. 4

5.4 INFORMASJONSINNSAMLING – UTFØRT OG PLANLAGT ... 5

5.5 VURDERING – ANALYSE AV RISIKO ... 5

5.6 HOVEDAKTIVITETER I VIDERE ARBEID .. 5

5.7 FRAMDRIFTSPLAN – STYRING AV PROSJEKTET ... 5

5.8 BESLUTNINGER – BESLUTNINGSPROSESS .. 6

6 DOKUMENTASJON .. 6

6.1 RAPPORTER OG TEKNISKE DOKUMENTER .. 6

7 PLANLAGTE MØTER OG RAPPORTER ... 6

7.1 MØTER.. 6

7.2 PERIODISKE RAPPORTER .. 6

8 PLANLAGT AVVIKSBEHANDLING ... 6

9 UTSTYRSBEHOV/FORUTSETNINGER FOR GJENNOMFØRING ... 7

10 REFERANSER .. 7

 VEDLEGG .. 7

NTNU I ÅLESUND SIDE 4

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

1 INNLEDNING

Det ble sett en mangel på kunnskap og løsninger innen «Learning based vision perception

for industrail robots» det var oppgaven jeg fikk interesse for, ved hengivelse fra

Gouyuan.

2 BEGREPER

BEGREP BETYDNING

ROS Robot Operating System

SLAM Simultaneous Localization And Mapping

3 PROSJEKTORGANISASJON

 Styringsgruppe (veileder og kontaktperson oppdragsgiver)

- Ottar L. Osen

- Guoyuan Li

4 AVTALER

 Avtale med oppdragsgiver

Avtale med oppdragsgiver er fritt, kravet er å levere inn ukentlig rapport.

Det ble også avtalt å ha virtuelt møte hver 14 dag, for å ha oppdatering om prosjektet.

 Arbeidssted og ressurser

Det vil være begrenset tilgang på arbeids plass på grunnlag av Covid-19. Dette vil

begrense tilgang til ressurser som 3D printere og andre verktøy. Hovedsakelig vil

arbeids plassen være min egen leilighet, som er begrenset størrelse på, men det skal

være tilstrekkelig til oppgaven.

Tilgang på personer er også begrenset, Men det vil være mulighet for å ha Zoom møter

og noen fysiske møter.

Tilgang til resurser som utstyr og deler har ikke blitt satt restriksjoner på, men det kan ta

tid å få tak i deler på grunn av Covid-19.

NTNU I ÅLESUND SIDE 5

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

Når det gjelder data sikkerhet og lagring av min data, vil jeg bruke Teams og Github

med private miljø som gjør at det holdes sikkert. Rapportering til arbeidsgiver vil være

annen hver uke.

 Gruppenormer – samarbeidsregler – holdninger

Min rolle i samfunnet er å lagre automasjons løsninger som ikke vil være til skade til

mennesker, men som vil øke effektivitet og sikkerhet for produkt produksjon som er

bærekraftig. Det må være produkter som lett kan utvides eller bygges på i framtiden

og lett kan vedlikeholdes.

5 PROSJEKTBESKRIVELSE

 Problemstilling - målsetting - hensikt

Problemet vil være å få laget en autonom robot som klarer å navigere seg gjennom en

labyrint bare ved hjelp av front kamera og LiDAR. Den må også kunne skille mellom

objekter som skal bli funnet og objekter som er irrelevant. Den skal i tillegg bygge opp

en 3D-visualisering av rommet slangen utforsker.

Målet er og få en autonom robot som kan finne fram i et rom ved hjelp av bilde

prosessering og SLAM. Hensikten med dette er å få høyere kunnskap om hvordan man

kan bruke bilde prosessering og 2D LiDAR som eneste sensorer for navigering og 3D-

visualisering. Det kan bli vanskelig å klare å klare å lage en 3D-visualisering ved hjelp

av en 2D LiDAR og et bilde uten IMU eller andre sensorer.

 Krav til løsning eller prosjektresultat – spesifikasjon

Krav til oppgaven er at det skal bli laget en autonom slange som kan bruke bare et

front kamera og LiDAR til å lokalisere seg selv og andre objekter.

Prosjektet skal inneholde;

- Forprosjektrapport

- Fungerende prototype

- Rapport

- Generell dokumentasjon (Bruksanvisning, el-tegninger, kode, budsjett

resultatdata)

 Planlagt framgangsmåte(r) for utviklingsarbeidet – metode(r)

Planen blir å starte med den eksisterende koden av slange roboten, hente ut

grunnlegendes kode som har blitt skrevet for å få bevegelse og kommunikasjon til

Python, resten vil bli skrapet og startet på nytt. Der etter blir det å få LiDAR’en til å

fungere med Slange roboten. Deretter vil det blir brukt iterativ utviklingsprosess får å

prøve å finne fram til en måte å løse oppgaven, på en god og fornuftig måte. Planen er

å finne en måte å bruke en 2D LiDAR til å lage en 3D-visualisering av et rom og helst

NTNU I ÅLESUND SIDE 6

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

uten bruk av RoS. Det kunne ha vært lettere å løse oppgaven ved hjelp av RoS men

har valgt å gjøre oppgaven uten. Vil bruke et kamera fra en ESP-32 til å ta bilder med

som skal forsøkets å sy sammen med bildene fra LiDAR’en.

 Informasjonsinnsamling – utført og planlagt

Det er hentet informasjon om SLAM og informasjon fra slange prosjektet som

eksisterte fra før. Videre vil informasjon om hvilke teknikker som kan brukes og har

blitt brukt før i lignende prosjekter sjekket opp.

Det er også påbegynt research om andre slange robot prosjekt, som er skrevet

vitenskapelige rapporter om.

Det er også gjort en del informasjonsinnsamling om hvordan få rå data fra LiDAR’en,

og dette er blitt løst på en god måte.

Det trengs også informasjon på hvordan man kan benytte LiDAR og kamera for å

bygge en 3D-visualisering.

 Vurdering – analyse av risiko

Denne oppgaven burde kunne realiseres, men det kan bli noen problemer ved å finne

et kamera som kan være i front av slangen som kan håndtere all bevegelsen og slag i

bakken ved bevegelse. Det kan også bli behov for deler som kan ha lang levering tid

på grunn av covid-19.

Det er også fare for ned stenging av barnehage på grunn av covid-19 som vil gjøre at

min tid til å skrive på oppgaven vil bli drastisk redusert.

Det er også brukt LiPO batterier i slange roboten som kan være farlige vist de ikke blir

håndtert riktig.

 Hovedaktiviteter i videre arbeid

Nr Aktivitet Ansvar Kostnad Tidsbruk

A1 Kode M.G 0 150 T

A1.1 Rydde eksisterende
kode

M.G| 0 37,5 T

A1.2 Skrive Kode for

bilde gjenkjenning

av objekt

M.G 0 37,5 T

A1.3 Skrive Kode for

lokalisering av

robot

M.G 0 37,5T

A1.4 Sette sammen Kode M.G 0 37,5 T

A2 Research M.G 0 100T

A2.1 Bilde behandling M.G 0 15T

A2.2 SLAM M.G 0 30T

A2.3 Bevegelse Slange M.G 0 15T

A2.4 Materieller M.G 0 10T

A2.5 3D Visualisering M.G 0 30T

A3 Dokumentasjon M.G 0 50T

A4 Prototype-bygging M.G 10 000 KR 10T

A4.1 Bygging M.G 10 000 KR 5T

A4.2 Testing M.G 0 5T

NTNU I ÅLESUND SIDE 7

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

PROJECT DETAILS

DATE MILESTONE Position

18-Aug Project Start

28-Aug Pre-project report 10

4-Sep Clean up Old Code -10

11-Sep Write SLAM and implement 15

18-Sep Localization from SLAM to snake -5

25-Sep Refactor Code, And picture analytics 15

2-Oct
Improvments and time incase somthing

dosent go as planned
-15

9-Oct Write Code For Logging 15

22-Oct Write Code For GUI -10

29-Oct Finnished Snakke 10

6-Nov Finnished Repport -15

15-Nov Project End

NTNU I ÅLESUND SIDE 8

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

 Framdriftsplan – styring av prosjektet

5.7.1 Hovedplan

Det vil bli fokusert på å gjøre dokumentasjon og rapport gjennom hele prosjektet. De

første ukene vil det holdes fokus på å gjøre reaserch på forskjellige måter å kunne løse

prosjektet på, samt prinsipper som SLAM. Det neste steget vil bli å lage prototypen

ferdig, dette innebærer å sørge for at kamera på slangen fungerer og montere på

LiDAR’en.

Planen er å starte med å få rå data fra LiDAR’en, etterfulgt av å implementere SLAM.

Deretter blir det fokus på få benytte kamera sammen med SLAM data, får også sy

dette sammen til en 3D-visualisering. Til slutt vist det er tid vil objekt gjenkjenning

implementeres.

5.7.2 Styringshjelpemidler

Det vil bli tatt i bruk:

- Timeliste

- Dagbok

Dette blir gjort i størst grad for min egen del slik at det er lett å se om det har blitt

jobbet tilstrekkelig. Samt holde orden på ressurser.

5.7.3 Utviklingshjelpemidler

- PyCharm (Python)

- SLAM

- Matlab

- Arduino

5.7.4 Intern kontroll – evaluering

Internkontroll vil bli gjort samtidig som ukentlig rapport blir skrevet, da kan jeg sjekke

at målene som var tenkt oppnådd er nådd eller om det har blitt feil beregnet i tid. Det

må også tas gjennom gang i eventuelle mangler av ressurser.

 Beslutninger – beslutningsprosess

Beslutning prosessen vil være enkel siden oppgaven skrives aleine, så alle beslutninger

som ikke gjør at det kan ha stor betydning på om oppgaven er riktig utført i forhold til

kravene vil gjøres av meg, vist det er usikkert om beslutningen vil ha store betydning på

om arbeidskravene er forbeholdt vil Ottar og Guoyuan bli tatt med i beslutnings

prosessen.

6 DOKUMENTASJON

 Rapporter og tekniske dokumenter

Dokumentasjon som skal gjøres gjennom prosjektet er:

- Forrapport

NTNU I ÅLESUND SIDE 9

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

- Hovedrapport

- Timeliste

- Ukentlig statusrapport

- Bruksanvisning

Dette er dokumentasjon som blir ansett som krav at skal være med under utlevering av

oppgaven.

Hovedrapport på skrives kontinuerlig på gjennom hele prosjektet, for å klare å holde

kontrollen.

Timeliste og ukentlig status rapport vil bli skrevet samtidig, dette vil bli gjort ukentlig på

samme dag som det vil være møte om statusrapport. Dette gjør at problemer og hva som

har blitt utført denne uken er nylig gjennom gått i eget hode å kan lett formuleres til

veiledere.

Bruksanvisningen vil bli tatt i slutten av prosjektet, denne vil hovedsakelig bli til

eventuelle fortsettelser på prosjektet eller videre forskning på samme emnet.

7 PLANLAGTE MØTER OG RAPPORTER

 Møter

7.1.1 Møter med styringsgruppen

Det er per nå avtalt møte med veiledere hver 14 dag på tirsdag, dette er for å ha

statusrapport og tilbakemeldinger om arbeidet som har blitt utført.

 Periodiske rapporter

7.2.1 Framdriftsrapporter (inkl. milepæl)

Det er planlagt ukentlig rapport og møte med veileder annen hver uke. På denne måten

vil veiledere ha kontroll på framdriften.

8 PLANLAGT AVVIKSBEHANDLING

Ved eventuelle av avvik i prosjektet, vil det bli tatt kontakt med veiledere for et møte,

som kan hjelpe med hvordan oppgaven kan utføres på en ansvarlig måte uten å gå utenfor

kravene for løst oppgave, selv med avvik. Vist det bare er et lite avvik vil det bare bli

skrevet ned i rapport og løst på eget initiativ.

9 UTSTYRSBEHOV/FORUTSETNINGER FOR
GJENNOMFØRING

- Slange robot

- Lidar

- Esp-32 Kamera

NTNU I ÅLESUND SIDE 10

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

10 REFERANSER

VEDLEGG

Project plann.pdf

Risikomatrise.xlsx

Appendix B

Bill of Materials (BOM)

Materials Quantity Description Cost

3D Printed chassi 5
The main part of the snake is 3D printed.

(This was done in the last project)
?

Battery packs 4 2000mAh used to supply the robot with the power required

ESP32 1 ESP 32 Used for the controlling the servos and controlling the snake

ESP32 Camera Module 1 ESP 32 Camera used to take pictures (Is not implimented)

Boost Converter 2 Boost Converter 2V-24V to 5-28V

USB Battery Charger 1 USB Battery Charger so the batterys can be charged easy

Hokuyo Laser Lidar 1 Scannes the roms

B.1 BOM

73

Appendix C

Arduino Code

Esp32 code

#include <ESP32_Servo . h>

#include <WiFi . h>

#include <math . h>

#include <Wire . h>

#include <SPI . h>

//

// WIFI VARIABLES

///

// Information for connecting to WiFi

const char * ssid = "MSI " ;

const char * password = "123456789";

// Information for sending information via UDP

const uint16_t port = 6969;

const char * host = "192.168.137.11";

74

APPENDIX C. ARDUINO CODE 75

// Buffer for packetsize

byte packetBuffer [1 2 8] ;

// Establ ish the UDP−Client

WiFiUDP udpClient ;

///

// MOVEMENT VARIABLES

///

// Number of servos

const i n t numberOfServos = 5 ;

//Homemade timer for movement in cycles

i n t movementTimer = 0 ;

// Establ ish servo array

Servo myServo [numberOfServos] ;

// Amplitude for the servos

i n t A = 30;

// Dif ferent phase s h i f t s for the d i f f e r e n t movement

f l o a t forwardPhi = (120.0 / 180.0) * M_PI ;

f l o a t l a t e r a l P h i = (100.0 / 180.0) * M_PI ;

f l o a t r o l l i n g P h i = (90.0 / 180.0) * M_PI ;

f l o a t rotatePhiV = (120.0 / 180.0) * M_PI ;

f l o a t rotatePhiH = (50.0 / 180.0) * M_PI ;

f l o a t v2RotatePhiV = (50.0 / 180.0) * M_PI ;

f l o a t v2RotatePhiH = (50.0 / 180.0) * M_PI ;

APPENDIX C. ARDUINO CODE 76

// Time constant

i n t T = 6000; //12000

// Variable for speed of servos

i n t servSpeed = 0 ;

// DO NOT USE PINS 12−17, THESE MAKE PARSEPACKET CRASH THE WHOLE FUCKING

SHIT

// SERVO LIBRARIES ARE FUCKING MORONIC

i n t servPins [5] = { 4 , 23 , 26 , 27 , 2 5 } ;

// Zero−point array for servos

i n t servZero [5] = {90 , 93 , 97 , 87 , 9 9 } ;

// Booleans for movement

boolean goingForward = f a l s e ;

boolean goingBackward = f a l s e ;

boolean l a t L e f t = f a l s e ;

boolean l a t R i g h t = f a l s e ;

boolean rotCW = f a l s e ;

boolean rotCCW = f a l s e ;

///

// SETUP

///

void setup ()

{

APPENDIX C. ARDUINO CODE 77

///////////////////////////

// WIFI RELATED

//////////////////////////

// S t a r t i n g w i f i

WiFi . begin (ssid , password) ;

// Trying to connect to WiFi

while (WiFi . status () != WL_CONNECTED) {

delay (500) ;

// S e r i a l . pr int ln (" . . . ") ;

}

// S e r i a l . print (" WiFi connected with IP : ") ;

// S e r i a l . pr int ln (WiFi . l o c a l I P ()) ;

// Begin l i s t e n i n g on port 9696

udpClient . begin (9696) ;

////////////////////////////

// MOVEMENT RELATED

///////////////////////////

// Establishing the servos in an array

for (i n t i = 0 ; i < 0 + numberOfServos ; i ++) {

myServo [i] . attach (servPins [i]) ;

myServo [i] . write (servZero [i]) ;

}

}

void loop ()

APPENDIX C. ARDUINO CODE 78

{

unsigned long t0 = m i l l i s () ;

//Checks for incoming packets

char command = checkPackets () ;

// S e r i a l . print (command) ;

i f (command != ’ z ’) {

// I f packet i s f , move forward

i f (command == ’ f ’) {

// S e r i a l . pr int ln (" Going forward ") ;

goingForward = true ;

goingBackward = f a l s e ;

sendAliveMessage () ;

// I f packet i s b , move backwards

} else i f (command == ’b ’) {

// S e r i a l . pr int ln (" Going backwards ") ;

goingForward = f a l s e ;

goingBackward = true ;

sendAliveMessage () ;

// I f packet i s v , straighten out , l a t e r a l s h i f t l e f t

} e lse i f (command == ’ v ’) {

// S e r i a l . pr int ln (" Adjusting l e f t ") ;

sendAliveMessage () ;

l a t L e f t = true ;

l a t R i g h t = f a l s e ;

goStraight () ;

// I f packet i s h , straighten out , l a t e r a l s h i f t r i g h t

APPENDIX C. ARDUINO CODE 79

} else i f (command == ’h ’) {

// S e r i a l . pr int ln (" Adjusting r i g h t ") ;

sendAliveMessage () ;

l a t R i g h t = true ;

l a t L e f t = f a l s e ;

goStraight () ;

// I f packet i s m, rotate CW

} else i f (command == ’m’) {

// S e r i a l . pr int ln (" Rotating CW") ;

sendAliveMessage () ;

rotCW = true ;

rotCCW = f a l s e ;

// goStraight () ;

// I f packet i s n , rotate CCW

} else i f (command == ’n ’) {

// S e r i a l . pr int ln (" Rotating CCW") ;

sendAliveMessage () ;

rotCCW = true ;

rotCW = f a l s e ;

// goStraight () ;

// I f packet i s s , stop movement

} else i f (command == ’ s ’) {

// S e r i a l . pr int ln (" Stopping movement") ;

goingForward = f a l s e ;

goingBackward = f a l s e ;

l a t R i g h t = f a l s e ;

l a t L e f t = f a l s e ;

APPENDIX C. ARDUINO CODE 80

sendAliveMessage () ;

// I f packet i s r , adjust everything s t r a i g h t

} e lse i f (command == ’ r ’) {

// S e r i a l . pr int ln (" Adjusting s t r a i g h t ") ;

sendAliveMessage () ;

goingForward = f a l s e ;

goingBackward = f a l s e ;

l a t R i g h t = f a l s e ;

l a t L e f t = f a l s e ;

goStraight () ;

sendDoneMessage () ;

// I f packet i s t , change the turn −angle

} e lse i f (command == ’ t ’) {

sendAliveMessage () ;

i n t numb1 = (i n t) packetBuffer [1] − 48;

i n t numb2 = (i n t) packetBuffer [2] − 48;

i n t numb3 = (i n t) packetBuffer [3] − 48;

i n t sum = numb1 * 100 + numb2 * 10 + numb3;

// S e r i a l . pr int ln (sum) ;

turn (sum) ;

sendDoneMessage () ;

// I f packet i s p , change the T−parameter

} e lse i f (command == ’p ’) {

i n t numb1 = (i n t) packetBuffer [1] − 48;

i n t numb2 = (i n t) packetBuffer [2] − 48;

i n t numb3 = (i n t) packetBuffer [3] − 48;

i n t sum = numb1 * 100 + numb2 * 10 + numb3;

APPENDIX C. ARDUINO CODE 81

sum = sum * 1000;

T = sum;

sendAliveMessage () ;

// I f packet i s a , change the A−parameter

} e lse i f (command == ’ a ’) {

i n t numb1 = (i n t) packetBuffer [1] − 48;

i n t numb2 = (i n t) packetBuffer [2] − 48;

i n t sum = numb1 * 10 + numb2;

i f (sum > 80) {

sum = 80;

}

A = sum;

sendAliveMessage () ;

// I f packet i s anything else , send error to UDP server

} e lse {

// S e r i a l . pr int ln ("Unknown command") ;

sendErrorToServer () ;

}

}

// I f boolean goingForward i s high , go forward one cycle

i f (goingForward) {

goForward () ;

movementTimer++;

i f (movementTimer >= T) {

goingForward = f a l s e ;

sendDoneMessage () ;

movementTimer = 0 ;

APPENDIX C. ARDUINO CODE 82

}

// I f boolean goingBackward i s high , go backward one cycle

} e lse i f (goingBackward) {

goBackward () ;

movementTimer++;

i f (movementTimer >= T) {

goingBackward = f a l s e ;

sendDoneMessage () ;

movementTimer = 0 ;

}

// I f boolean l a t L e f t i s high , l a t e r a l s h i f t s l e f t one cycle

} e lse i f (l a t L e f t) {

l a t e r a l L e f t () ;

movementTimer++;

i f (movementTimer >= T) {

l a t L e f t = f a l s e ;

// delay (10) ;

// goStraight () ;

sendDoneMessage () ;

movementTimer = 0 ;

}

// I f boolean l a t R i g h t i s high , l a t e r a l s h i f t s r i g h t one cycle

} e lse i f (l a t R i g h t) {

l a t e r a l R i g h t () ;

movementTimer++;

i f (movementTimer >= T) {

l a t R i g h t = f a l s e ;

// delay (10) ;

// goStraight () ;

APPENDIX C. ARDUINO CODE 83

sendDoneMessage () ;

movementTimer = 0 ;

}

// I f boolean rotCW i s high , rotates clockwise one cycle

} e lse i f (rotCW) {

rotateCW () ;

movementTimer++;

i f (movementTimer >= T) {

rotCW = f a l s e ;

// delay (10) ;

// goStraight () ;

sendDoneMessage () ;

movementTimer = 0 ;

}

// I f boolean rotCCW i s high , rotates counter−clockwise one cycle

} e lse i f (rotCCW) {

rotateCCW () ;

movementTimer++;

i f (movementTimer >= T) {

rotCCW = f a l s e ;

// delay (10) ;

// goStraight () ;

sendDoneMessage () ;

movementTimer = 0 ;

}

}

}

APPENDIX C. ARDUINO CODE 84

////////////////////////////////

// WIFI FUNCTIONS

////////////////////////////////

// Checks for incoming packets , stores in the buffer .

char checkPackets () {

i f (udpClient . parsePacket ()) {

// S e r i a l . pr int ln (" Packet received ") ;

udpClient . read (packetBuffer , 128) ;

// S e r i a l . pr int ln (char (packetBuffer [0])) ;

return packetBuffer [0] ;

} e lse {

return ’ z ’ ;

}

}

// Sends error message to UDP−server

void sendErrorToServer () {

udpClient . beginPacket (host , port) ;

udpClient . write (’ x ’) ;

udpClient . endPacket () ;

}

// Sends message that command i s done to UDP server

void sendDoneMessage () {

udpClient . beginPacket (host , port) ;

udpClient . write (’ d ’) ;

udpClient . endPacket () ;

}

APPENDIX C. ARDUINO CODE 85

// Sends acknowledge−message to UDP−server

void sendAliveMessage () {

udpClient . beginPacket (host , port) ;

udpClient . write (’ a ’) ;

udpClient . endPacket () ;

}

///

// MOVEMENT FUNCTIONS

///

// Go forward

void goForward () {

for (i n t i = 0 ; i < 3 ; i ++) {

myServo [i * 2] . write (servZero [i * 2] + updateAngle (T , i * forwardPhi ,

A)) ;

}

}

// Go backward

void goBackward () {

for (i n t i = 2 ; i >= 0 ; i −−) {

myServo [i * 2] . write (servZero [i * 2] + updateAngle (T , − i * forwardPhi ,

A)) ;

}

}

/*

Sets the turn angle

param deg : the turn angle in degrees

APPENDIX C. ARDUINO CODE 86

*/

void turn (i n t deg) {

i f (deg < 45) {

deg = 45;

} e lse i f (deg > 135) {

deg = 135;

}

for (i n t i = 0 ; i < 2 ; i ++) {

myServo [(i * 2) + 1] . write (deg + servZero [(i * 2) + 1] − 90) ;

}

}

/*

Lateral s h i f t s l e f t

*/

void l a t e r a l L e f t () {

for (i n t i = 0 ; i < 3 ; i ++) {

myServo [i * 2] . write (servZero [i * 2] + updateAngle (T , − i * rotatePhiV ,

A)) ;

i f (i < 2) {

myServo [(i * 2) + 1] . write (servZero [(i * 2) + 1] + updateAngle (T , − i

* rotatePhiH , A)) ;

}

}

}

/*

Lateral s h i f t s r i g h t

*/

void l a t e r a l R i g h t () {

APPENDIX C. ARDUINO CODE 87

for (i n t i = 0 ; i < 3 ; i ++) {

myServo [i * 2] . write (servZero [i * 2] + updateAngle (T , i * rotatePhiV ,

A)) ;

i f (i < 2) {

myServo [(i * 2) + 1] . write (servZero [(i * 2) + 1] + updateAngle (T , i

* rotatePhiH , A)) ;

}

}

}

/*

Rotates Clockwise

*/

void rotateCW () {

for (i n t i = 0 ; i < 3 ; i ++) {

myServo [i * 2] . write (servZero [i * 2] + updateAngle (T , i * rotatePhiV ,

A)) ;

i f (i == 0) {

myServo [(i * 2) + 1] . write (servZero [(i * 2) + 1] + updateAngle (T , i

* rotatePhiH , A)) ;

} e lse i f (i == 1) {

myServo [(i * 2) + 1] . write (servZero [(i * 2) + 1] + updateAngle (T , i

* (rotatePhiH + M_PI) , A)) ;

}

}

}

void rotateCWv2 () {

for (i n t i = 0 ; i < 3 ; i ++) {

APPENDIX C. ARDUINO CODE 88

myServo [i * 2] . write (servZero [i * 2] + updateAngle (T , i * v2RotatePhiV

, A)) ;

i f (i == 0) {

myServo [(i * 2) + 1] . write (servZero [(i * 2) + 1] + updateAngle (T , i

* v2RotatePhiH , A)) ;

} e lse i f (i == 1) {

myServo [(i * 2) + 1] . write (servZero [(i * 2) + 1] + updateAngle (T , i

* (v2RotatePhiH + M_PI) , A)) ;

}

}

}

/*

Rotates Counter−Clockwise

*/

void rotateCCW () {

// Pass

for (i n t i = 0 ; i < 3 ; i ++) {

myServo [i * 2] . write (servZero [i * 2] + updateAngle (T , − i * rotatePhiV ,

A)) ;

i f (i == 0) {

myServo [(i * 2) + 1] . write (servZero [(i * 2) + 1] + updateAngle (T , − i

* rotatePhiH , A)) ;

} e lse i f (i == 1) {

myServo [(i * 2) + 1] . write (servZero [(i * 2) + 1] + updateAngle (T , − i

* (rotatePhiH + M_PI) , A)) ;

}

}

}

APPENDIX C. ARDUINO CODE 89

void rotateCCWv2 () {

// Pass

for (i n t i = 0 ; i < 3 ; i ++) {

myServo [i * 2] . write (servZero [i * 2] + updateAngle (T , − i *

v2RotatePhiV , A)) ;

i f (i == 0) {

myServo [(i * 2) + 1] . write (servZero [(i * 2) + 1] + updateAngle (T , − i

* v2RotatePhiH , A)) ;

} e lse i f (i == 1) {

myServo [(i * 2) + 1] . write (servZero [(i * 2) + 1] + updateAngle (T , − i

* (v2RotatePhiH + M_PI) , A)) ;

}

}

}

/*

Sets every module s t r a i g h t

*/

void goStraight () {

for (i n t i = 0 ; i < 5 ; i ++) {

myServo [i] . write (servZero [i]) ;

}

}

/*

Updates angle of servos

param T : period time for cycle

param phase : o f f s e t for angle

param A : amplitude of movement

*/

APPENDIX C. ARDUINO CODE 90

i n t updateAngle (f l o a t T , f l o a t phase , f l o a t A) {

f l o a t y = A * sin (((2 * M_PI) / T) * movementTimer + phase) ;

return y ;

}

Arduino program for IMU handling

#include <DataRegister . h>

#include < S e r i a l S l a v e . h>

#include <Wire . h>

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// IMU

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

const i n t MPU_ADDR = 0x68 ;

i n t acc_offset [] = { 8 , 17 , 20 8 } ;

i n t gyro_offset [] = { −89 , 196 , 3 4 } ;

i n t mag_offset [] = { 0 , 0 , 0 } ;

i n t acc_scale = 16384;

i n t gyro_scale = 131;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// S e r i a l

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

DataRegister reg ;

S e r i a l S l a v e ser_slave ;

const i n t num_regs = 14;

const i n t num_buffer = 4 + 4 + 4 + 2 + (2 * 9) + 4 ;

i n t s ize_array [] = { 4 , 4 , 4 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 4 } ;

i n t index_array [num_regs] ;

APPENDIX C. ARDUINO CODE 91

byte buffer_array [num_buffer] ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// Registers

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f l o a t * r o l l ;

f l o a t * pitch ;

f l o a t * yaw ;

unsigned i n t * loop_time ;

i n t * rax ;

i n t * ray ;

i n t * raz ;

i n t * rgx ;

i n t * rgy ;

i n t * rgz ;

i n t * rmx ;

i n t * rmy ;

i n t * rmz ;

f l o a t * comp_alpha ; // Complementary f i l t e r alpha

void setup () {

S e r i a l . begin (115200) ;

reg = DataRegister (num_buffer , num_regs , buffer_array , size_array ,

index_array) ;

ser_slave . s e t _ r e g i s t e r (reg) ;

r o l l = (f l o a t *) reg . l i n k (0) ; * r o l l = 0 ;

pitch = (f l o a t *) reg . l i n k (1) ; * pitch = 0 ;

yaw = (f l o a t *) reg . l i n k (2) ; *yaw = 0 ;

loop_time = (unsigned i n t *) reg . l i n k (3) ; * loop_time = 10;

APPENDIX C. ARDUINO CODE 92

rax = (i n t *) reg . l i n k (4) ; * rax = 0 ;

ray = (i n t *) reg . l i n k (5) ; * ray = 0 ;

raz = (i n t *) reg . l i n k (6) ; * raz = 0 ;

rgx = (i n t *) reg . l i n k (7) ; * rgx = 0 ;

rgy = (i n t *) reg . l i n k (8) ; * rgy = 0 ;

rgz = (i n t *) reg . l i n k (9) ; * rgz = 0 ;

rmx = (i n t *) reg . l i n k (10) ; *rmx = 0 ;

rmy = (i n t *) reg . l i n k (11) ; *rmy = 0 ;

rmz = (i n t *) reg . l i n k (12) ; *rmz = 0 ;

comp_alpha = (f l o a t *) reg . l i n k (13) ; *comp_alpha = 0 . 9 ;

Wire . begin () ;

imu_wakeup () ;

}

void loop () {

unsigned long t0 = m i l l i s () ;

// do s t u f f

imu_read () ;

calculate_orientat ion () ;

ser_slave . scan () ;

while (m i l l i s () < t0 + * loop_time) {

ser_slave . scan () ;

}

}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// IMU FUNCTIONS

APPENDIX C. ARDUINO CODE 93

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−

void imu_wakeup () {

Wire . beginTransmission (MPU_ADDR) ;

Wire . write (0x6B) ;

Wire . write (0) ;

Wire . endTransmission () ;

}

void imu_read () {

Wire . beginTransmission (MPU_ADDR) ;

Wire . write (0x3B) ;

Wire . endTransmission (f a l s e) ;

Wire . requestFrom (MPU_ADDR, 3 * 2) ;

* rax = Wire . read () << 8 | Wire . read () ;

* ray = Wire . read () << 8 | Wire . read () ;

* raz = Wire . read () << 8 | Wire . read () ;

Wire . beginTransmission (MPU_ADDR) ;

Wire . write (0 x43) ;

Wire . endTransmission (f a l s e) ;

Wire . requestFrom (MPU_ADDR, 3 * 2) ;

* rgx = Wire . read () << 8 | Wire . read () ;

* rgy = Wire . read () << 8 | Wire . read () ;

* rgz = Wire . read () << 8 | Wire . read () ;

Wire . beginTransmission (MPU_ADDR) ;

Wire . write (0 x03) ;

Wire . endTransmission (f a l s e) ;

Wire . requestFrom (MPU_ADDR, 3 * 2) ;

*rmx = Wire . read () << 8 | Wire . read () ;

APPENDIX C. ARDUINO CODE 94

*rmy = Wire . read () << 8 | Wire . read () ;

*rmz = Wire . read () << 8 | Wire . read () ;

}

void calculate_orientat ion () {

i n t min_scale = −32760;

i n t max_scale = 32760;

f l o a t acc_x = lin_map (* rax , min_scale , max_scale , −2 , 2 ,

acc_offset [0]) ;

f l o a t acc_y = lin_map (* ray , min_scale , max_scale , −2 , 2 ,

acc_offset [1]) ;

f l o a t acc_z = lin_map (* raz , min_scale , max_scale , −2 , 2 ,

acc_offset [2]) ;

f l o a t gyro_x = lin_map (* rgx , min_scale , max_scale , −250, 250 ,

gyro_offset [0]) ;

f l o a t gyro_y = lin_map (* rgy , min_scale , max_scale , −250, 250 ,

gyro_offset [1]) ;

f l o a t gyro_z = lin_map (* rgz , min_scale , max_scale , −250, 250 ,

gyro_offset [2]) ;

f l o a t mag_x = lin_map (* rmx , min_scale , max_scale , −4912, 4912 ,

mag_offset [0]) ;

f l o a t mag_y = lin_map (*rmy , min_scale , max_scale , −4912, 4912 ,

mag_offset [1]) ;

f l o a t mag_z = lin_map (* rmz , min_scale , max_scale , −4912, 4912 ,

mag_offset [2]) ;

f l o a t a c c _ r o l l = atan2 (acc_y , acc_z) * 180.0 / PI ; // Converted to

degrees

f l o a t acc_pitch = atan2 (−acc_x , sqrt (pow(acc_y , 2) + pow(acc_z , 2))) *

180.0 / PI ;

APPENDIX C. ARDUINO CODE 95

f l o a t mag_yaw = atan2 (mag_y , mag_x) * 180.0 / PI ;

f l o a t dt = (f l o a t) * loop_time / 1000;

* r o l l = *comp_alpha * (* r o l l + gyro_x * dt) + (1 − *comp_alpha) *

a c c _ r o l l ;

* pitch = *comp_alpha * (* pitch + gyro_y * dt) + (1 − *comp_alpha) *

acc_pitch ;

*yaw = *comp_alpha * (*yaw + gyro_z * dt) + (1 − *comp_alpha) *

mag_yaw ;

}

f l o a t lin_map (f l o a t x , f l o a t x0 , f l o a t x1 , f l o a t y0 , f l o a t y1) {

return (x − x0) * (y1 − y0) / (x1 − x0) + y0 ;

}

f l o a t lin_map (f l o a t x , f l o a t x0 , f l o a t x1 , f l o a t y0 , f l o a t y1 , f l o a t o f f s)

{

return lin_map (x − offs , x0 , x1 , y0 , y1) ;

}

Appendix D

Python Code & Config-Files

filterLidarData

! / usr /bin/env python3

import rospy

from geometry_msgs . msg import Twist , Vector3

from sensor_msgs . msg import LaserScan

import t f

import math

scan_msgs = None

new_scan = False

r o l l = 0

pitch = 0

yaw = 0

new_pitch_msg = False

br = t f . TransformBroadcaster ()

def handle_pitch (msg) :

global r o l l , pitch , yaw , new_pitch_msg

r o l l = msg . x

pitch = msg . y

96

APPENDIX D. PYTHON CODE & CONFIG-FILES 97

yaw = msg . z

q0 = t f . transformations . quaternion_from_euler (0 , 0 , 0)

yaw_q = t f . transformations . quaternion_from_euler (0 , 0 , yaw/180*math . pi

)

pr_q = t f . transformations . quaternion_from_euler (r o l l /180*math . pi ,

pitch /180*math . pi , 0)

br . sendTransform ((0 , 0 , 0) , yaw_q , rospy . Time .now() , ’ base_footprint ’ ,

’odom’)

br . sendTransform ((0 , 0 , 0) , q0 , rospy . Time .now() , ’ base_stabil ized ’ , ’

base_footprint ’)

br . sendTransform ((0 , 0 , 0) , pr_q , rospy . Time .now() , ’ base_link ’ , ’

base_stabil ized ’)

pub = rospy . Publisher (" scan2 " , LaserScan , queue_size =10)

def handle_laser_scan (msg) :

global scan_msgs , new_scan , pub

i f pitch > −10 and pitch < 10:

pub . publish (msg)

i f __name__ == "__main__ " :

rospy . init_node (" P i t c h F i l t e r " , anonymous=True)

rospy . Subscriber (" Pitch " , Vector3 , handle_pitch)

rospy . Subscriber (" scan " , LaserScan , handle_laser_scan)

rospy . spin ()

Translater

APPENDIX D. PYTHON CODE & CONFIG-FILES 98

! / usr /bin/env python3

import rospy

import math

import socket

import time

from geometry_msgs . msg import Twist , Vector3

from std_msgs . msg import Str ing

forward = 0

turn = 0

def handle_cmd_vel (msg) :

global forward , turn

l i n e a r = msg . l i n e a r

angular = msg . angular

l x = l i n e a r . x

l y = l i n e a r . y

l z = l i n e a r . z

ax = angular . x

ay = angular . y

az = angular . z

forward = l x

turn = i n t (math . degrees (az))

def main () :

global forward , turn

APPENDIX D. PYTHON CODE & CONFIG-FILES 99

snak = Snake ("192.168.137.174")

print (" connected to snake ")

moving = False

turning = False

snak . setAmplitude (30)

time . sleep (5)

while not rospy . is_shutdown () :

i f moving :

done = snak . isCommandDone() # handel time out .

i f done :

moving = False

e l i f turning :

ack = snak . moveForward ()

i f ack :

turning = False

moving = True

e l i f not moving and not turning : # roter

i f forward == 0 and turn != 0 :

i f turn < 0 :

ack = snak . rotateCW ()

else :

ack = snak . rotateCCW ()

i f ack :

moving = True

e l i f forward ! = 0 and turn ! = 0 :

ack = snak . turn (turn)

i f ack :

APPENDIX D. PYTHON CODE & CONFIG-FILES 100

moving = True

turning = True

forward

e l i f forward ! = 0 and turn == 0 :

ack = snak . moveForward ()

i f ack :

moving = True

else :

snak . c o n t r o l l e r . receive ()

i f not moving :

ack = snak . rotateCW ()

i f ack :

moving = True

c l a s s UdpConnection :

def _ _ i n i t _ _ (s e l f , u r l : s t r) :

"""

: param url : The url to communicate with

"""

s e l f . pub = rospy . Publisher (’snake_command’ , String , queue_size =10)

s e l f . timeOutTimer = time . time ()

s e l f . connectionTimedOut = False

s e l f . timeOut = 3

s e l f . ur l = ur l

APPENDIX D. PYTHON CODE & CONFIG-FILES 101

udp_ip = "192.168.137.11"

udp_port = 6969

s e l f . socket = socket . socket (socket . AF_INET , socket .SOCK_DGRAM) #

UDP

s e l f . socket . bind ((udp_ip , udp_port))

s e l f . socket . settimeout (0 . 0 1)

s e l f . pitchData = None

s e l f . newPitchData = False

def send (s e l f , data : s t r) −> None :

"""

Sends a udp diagram \n

: param data : data to send

: return : None

"""

print (" sendingData ")

print (data)

s t r i n g = String ()

s t r i n g . data = data

s e l f . pub . publish (s t r i n g)

s e l f . socket . sendto (data . encode () , (s e l f . url , 9696))

def receive (s e l f) :

"""

Receives data

: return : The body of the data

"""

data = None

APPENDIX D. PYTHON CODE & CONFIG-FILES 102

t r y :

data , addr = s e l f . socket . recvfrom (10024) # buffer s i z e i s

10024 bytes

print (data)

data = data . decode ()

except socket . timeout :

pass

return data

c l a s s Snake :

def _ _ i n i t _ _ (s e l f , co nt r o l l e r I p : s t r) :

s e l f . c o n t r o l l e r = UdpConnection (co n tr o l l e r Ip)

s e l f . timeOutTime = 0.5

s e l f . pitcharray = [0 , 0 , 0 , 0 , 0]

def timeOut (s e l f) :

"""

Checks for acknowledge from the snake . Times out a f t e r a set

amount of time given from s e l f . timeOutTime

: return : True i f acknowledged , False i f timed out

"""

timeOutTime = time . time () + s e l f . timeOutTime

while True :

data = s e l f . c o n t r o l l e r . receive ()

i f data == "a " :

return True

APPENDIX D. PYTHON CODE & CONFIG-FILES 103

i f time . time () > timeOutTime :

return False

def setSpeed (s e l f , speed : i n t) :

"""

Sets the period time of the cycle for the snake

: param speed : the period time in 3 d i g i t s

: return : True i f acknowledged from snake

"""

send = ""

i f speed < 10:

send = "p00" + s t r (speed)

e l i f speed < 100:

send = "p0" + s t r (speed)

else :

send = "p" + s t r (speed)

s e l f . c o n t r o l l e r . send (send)

return s e l f . timeOut ()

def setAmplitude (s e l f , amplitude : i n t) :

"""

Sets the amplitude of the snakes movement

: param amplitude : amplitude in 2 d i g i t s

: return : True i f acknowledged from snake

"""

send = ""

i f amplitude < 10:

send = "a0" + s t r (amplitude)

else :

send = "a" + s t r (amplitude)

APPENDIX D. PYTHON CODE & CONFIG-FILES 104

s e l f . c o n t r o l l e r . send (send)

return s e l f . timeOut ()

def moveForward(s e l f) :

"""

Gives the command to the snake to move forward one cycle

: return : True i f acknowledged

"""

s e l f . c o n t r o l l e r . send (" f ")

print (" sending an F")

return s e l f . timeOut ()

def moveBackward(s e l f) :

"""

Gives the command to the snake to move backward one cycle

: return : True i f acknowledged

"""

s e l f . c o n t r o l l e r . send ("b")

return s e l f . timeOut ()

def turn (s e l f , degrees : i n t) :

"""

Sends a turn command to the snake . \n

p o s i t i v e degrees i s r i g h t and negative i s l e f t \n

: param degrees : turnrate in degrees

: return : True i f acknowledged

"""

send = None

degrees = 90 + degrees

APPENDIX D. PYTHON CODE & CONFIG-FILES 105

i f degrees < 10:

send = " t00 " + s t r (degrees)

e l i f degrees < 100:

send = " t0 " + s t r (degrees)

else :

send = " t " + s t r (degrees)

s e l f . c o n t r o l l e r . send (send)

return s e l f . timeOut ()

def moveLeft (s e l f) :

"""

Sends command to snake to l a t e r a l s h i f t l e f t

: return : True i f acknowledged

"""

s e l f . c o n t r o l l e r . send (" v ")

return s e l f . timeOut ()

def moveRight (s e l f) :

"""

Sends command to snake to l a t e r a l s h i f t r i g h t

: return : True i f acknowledged

"""

s e l f . c o n t r o l l e r . send ("h")

return s e l f . timeOut ()

def rotateCCW (s e l f) :

"""

Sends command to snake to rotate counter−clockwise

: return : True i f acknowledged

"""

APPENDIX D. PYTHON CODE & CONFIG-FILES 106

s e l f . c o n t r o l l e r . send ("n")

return s e l f . timeOut ()

def rotateCW (s e l f) :

"""

Sends command to snake to rotate clockwise

: return : True i f acknowledged

"""

s e l f . c o n t r o l l e r . send ("m")

return s e l f . timeOut ()

def stop (s e l f) :

"""

Sends command to snake to stop movement

: return : True i f acknowledged

"""

s e l f . c o n t r o l l e r . send (" s ")

return s e l f . timeOut ()

def re set (s e l f) :

"""

Sends command to rese t positions to zero point .

: return : True i f acknowledged

"""

s e l f . c o n t r o l l e r . send (" r ")

return s e l f . timeOut ()

def isCommandDone(s e l f) −> bool :

"""

Checks i f the snake i s done with the l a s t command

APPENDIX D. PYTHON CODE & CONFIG-FILES 107

: return : True i f command i s done

"""

data = s e l f . c o n t r o l l e r . receive ()

i f data == "d " :

return True

else :

return False

i f __name__ == "__main__ " :

rospy . init_node (" t r a n s l a t e r " , anonymous=True)

rospy . Subscriber (" cmd_vel " , Twist , handle_cmd_vel)

print (" starting1234 ")

main ()

Logger

! / usr /bin/env python3

import csv

import rospy

from datetime import datetime

from threading import Lock

import time

from geometry_msgs . msg import Twist , Vector3

from std_msgs . msg import Str ing

from pathlib import Path

c l a s s Logger :

def _ _ i n i t _ _ (s e l f , f i e l d s , id) :

APPENDIX D. PYTHON CODE & CONFIG-FILES 108

s e l f . sub = None # rospy topic subscriber

s e l f . handler = None

s e l f . id = id

s e l f . f i e l d s = f i e l d s

s e l f . data = []

s e l f . datalock = Lock ()

def make_log (s e l f , fo lder : s t r) :

i f len (s e l f . data) ! = 0 :

date_obj = datetime .now()

log_name = f ’ { folder } / { s e l f . id } { date_obj . date () } { date_obj .

hour :02d} −{ date_obj . minute :02d} −{ date_obj . second :02d } . txt ’

filename = Path (log_name)

filename . touch (exist_ok=True) # w i l l create f i l e , i f i t

e x i s t s w i l l do nothing

log_name = f ’ { folder } / { s e l f . id } . txt ’

with open(log_name , ’w’ , newline = ’ ’) as c s v _ f i l e :

t r y :

writer = csv . DictWriter (c s v _ f i l e , fieldnames =[’ time ’]

+ s e l f . f i e l d s)

writer . writeheader ()

with s e l f . datalock :

t0 = s e l f . data [0] [’ time ’]

for d in s e l f . data :

d [’ time ’] = d [’ time ’] − t0

writer . writerows (s e l f . data)

s e l f . data = []

print (’ saved log ! ’)

APPENDIX D. PYTHON CODE & CONFIG-FILES 109

except IndexError :

print (f ’ Index error : { log_name } ’)

e lse :

print (’ log no data ’)

def set_handler (s e l f , handler , topic , message_type) :

s e l f . sub = rospy . Subscriber (topic , message_type , handler)

s e l f . handler = handler

def main () :

l o g _ i n t e r v a l = 60 # seconds

fieldnames1 = [’ r o l l ’ , ’ pitch ’ , ’yaw ’]

fieldnames2 = [’cmd’]

logger1 = Logger (fieldnames1 , ’ Orientation ’)

logger2 = Logger (fieldnames2 , ’Commands’)

def handler1 (msg) :

Format the message as a dictionary . Example below

data = { k : random . randint (0 , 100) for k in logger1 . f i e l d s }

data [’ time ’] = time . time ()

data = { ’ r o l l ’ : msg . x , ’ pitch ’ : msg . y , ’yaw ’ : msg . z , ’ time ’ : time .

time () }

with logger1 . datalock :

logger1 . data . append(data)

def handler2 (msg) :

data = { ’cmd’ : msg . data , ’ time ’ : time . time () }

with logger2 . datalock :

APPENDIX D. PYTHON CODE & CONFIG-FILES 110

logger2 . data . append(data)

logger1 . set_handler (handler1 , ’ Pitch ’ , Vector3)

logger2 . set_handler (handler2 , ’snake_command’ , Str ing)

t0 = time . time ()

while not rospy . is_shutdown () :

logger1 . handler (’some_msg ’) # For t e s t i n g

logger2 . handler (’some_msg ’) # For t e s t i n g

#time . sleep (0 . 0 1) # For t e s t i n g

i f time . time () > t0 + l o g _ i n t e r v a l :

logger1 . make_log (’ /home/marcus/Documents/Loggs/ Orientation ’)

logger2 . make_log (’ /home/marcus/Documents/Loggs/Commands’)

t0 = time . time ()

logger2 . make_log (’ logs ’)

logger1 . make_log (’ /home/marcus/Documents/Loggs/ Orientation ’)

logger2 . make_log (’ /home/marcus/Documents/Loggs/Commands’)

i f __name__ == ’ __main__ ’ :

rospy . init_node (" logger " , anonymous=True)

main ()

imu_node

! / usr /bin/env python3

import rospy

import s e r i a l

import s t r u c t

import time

APPENDIX D. PYTHON CODE & CONFIG-FILES 111

from geometry_msgs . msg import Twist , Vector3

def create_read_msg (regs : l i s t , register_map : d i c t) :

header = s t r u c t . pack (’B’ , 0 x f f) + s t r u c t . pack (’B’ , 0xaa) + s t r u c t . pack

(’B’ , len (regs))

msg = b ’ ’

for r in regs :

msg += s t r u c t . pack (’B’ , register_map [r] [’num’])

return header + msg

def create_write_msg (regs : l i s t , register_map : d i c t) :

header = s t r u c t . pack (’B’ , 0 x f f) + s t r u c t . pack (’B’ , 0xbb) + s t r u c t . pack

(’B’ , len (regs))

msg = b ’ ’

for r , v in regs :

msg += s t r u c t . pack (’B’ , register_map [r] [’num’])

msg += s t r u c t . pack (register_map [r] [’ type ’] [0] , v)

return header + msg

def read (regs : l i s t , ser : s e r i a l . S e r i a l , register_map : d i c t) :

data = { }

expected_bytes = sum([register_map [r] [’ type ’] [1] for r in regs])

response = ser . read (expected_bytes)

i0 = 0

for r in regs :

i = i0 + register_map [r] [’ type ’] [1]

part = response [i0 : i]

APPENDIX D. PYTHON CODE & CONFIG-FILES 112

data [r] = s t r u c t . unpack (register_map [r] [’ type ’] [0] , part) [0]

i0 = i

return data

def main () :

pub = rospy . Publisher (" Pitch " , Vector3 , queue_size =10)

port = "/dev/ttyUSB0"

baudrate = 115200

timeout = 2

r e g i s t e r s = {

" r o l l " : {

"num" : 0 ,

" type " : [" f " , 4]

} ,

" pitch " : {

"num" : 1 ,

" type " : [" f " , 4]

} ,

"yaw " : {

"num" : 2 ,

" type " : [" f " , 4]

} ,

" loop_time " : {

"num" : 3 ,

" type " : ["H" , 2]

} ,

" rax " : {

APPENDIX D. PYTHON CODE & CONFIG-FILES 113

"num" : 4 ,

" type " : ["h" , 2]

} ,

" ray " : {

"num" : 5 ,

" type " : ["h" , 2]

} ,

" raz " : {

"num" : 6 ,

" type " : ["h" , 2]

} ,

" rgx " : {

"num" : 7 ,

" type " : ["h" , 2]

} ,

" rgy " : {

"num" : 8 ,

" type " : ["h" , 2]

} ,

" rgz " : {

"num" : 9 ,

" type " : ["h" , 2]

} ,

"rmx " : {

"num" : 10 ,

" type " : ["h" , 2]

} ,

"rmy " : {

"num" : 11 ,

" type " : ["h" , 2]

APPENDIX D. PYTHON CODE & CONFIG-FILES 114

} ,

"rmz " : {

"num" : 12 ,

" type " : ["h" , 2]

} ,

"comp_alpha " : {

"num" : 13 ,

" type " : [" f " , 4]

}

}

while not rospy . is_shutdown () :

with s e r i a l . S e r i a l (port=port , baudrate=baudrate , timeout=timeout)

as ser :

time . sleep (5)

wregs = [’ loop_time ’]

wvalues = [1 0]

msg = create_write_msg (l i s t (zip (wregs , wvalues)) , r e g i s t e r s)

ser . write (msg)

i n i t i a l _ r e s p o n s e = ser . read (1)

print (i n i t i a l _ r e s p o n s e)

r = rospy . Rate (100) # 10hz

while not rospy . is_shutdown () :

regs = [’ r o l l ’ , ’ pitch ’ , ’yaw ’]

msg = create_read_msg (regs , r e g i s t e r s)

ser . write (msg)

i n i t i a l _ r e s p o n s e = ser . read (1)

APPENDIX D. PYTHON CODE & CONFIG-FILES 115

i f i n i t i a l _ r e s p o n s e == b ’ \ xaa ’ :

data = read (regs , ser , r e g i s t e r s)

msg = Vector3 ()

msg . x = data [’ r o l l ’]

msg . y = data [’ pitch ’]

msg . z = data [’ yaw ’]

pub . publish (msg)

else :

break

r . sleep ()

end_time = time . time () + 120

regs = [’ r o l l ’ , ’ pitch ’ , ’yaw ’] # [’ rax ’ , ’ ray ’ , ’ raz ’ , ’

rgx ’ , ’ rgy ’ , ’ rgz ’ , ’rmx ’ , ’rmy ’ , ’rmz ’]

c a l _ l i s t = { r : [] for r in regs }

while time . time () < end_time :

time . sleep (0 . 0 2)

msg = create_read_msg (regs , r e g i s t e r s)

ser . write (msg)

i n i t i a l _ r e s p o n s e = ser . read (1)

data = read (regs , ser , r e g i s t e r s)

print (data)

for r in regs :

a = c a l _ l i s t [r]

a . append(data [r])

c a l _ l i s t [r] = a

rax_avg = sum(c a l _ l i s t [’ rax ’]) / len (c a l _ l i s t [’ rax ’])

ray_avg = sum(c a l _ l i s t [’ ray ’]) / len (c a l _ l i s t [’ ray ’])

raz_avg = sum(c a l _ l i s t [’ raz ’]) / len (c a l _ l i s t [’ raz ’])

APPENDIX D. PYTHON CODE & CONFIG-FILES 116

rgx_avg = sum(c a l _ l i s t [’ rgx ’]) / len (c a l _ l i s t [’ rgx ’])

rgy_avg = sum(c a l _ l i s t [’ rgy ’]) / len (c a l _ l i s t [’ rgy ’])

rgz_avg = sum(c a l _ l i s t [’ rgz ’]) / len (c a l _ l i s t [’ rgz ’])

rmx_avg = sum(c a l _ l i s t [’ rmx ’]) / len (c a l _ l i s t [’ rmx ’])

rmy_avg = sum(c a l _ l i s t [’ rmy ’]) / len (c a l _ l i s t [’ rmy ’])

rmz_avg = sum(c a l _ l i s t [’ rmz ’]) / len (c a l _ l i s t [’ rmz ’])

#

print (rax_avg , ray_avg , raz_avg , rgx_avg , rgy_avg ,

rgz_avg , rmx_avg , rmy_avg , rmz_avg)

t a r g e t = [0 , 0 , i n t (65535/4) , 0 , 0 , 0]

r e a l = [rax_avg , ray_avg , raz_avg , rgx_avg , rgy_avg ,

rgz_avg]

#

for t , r in zip (target , r e a l) :

print (r −t , r , t) # gy_target = gy_real − o f f s e t

i f __name__ == ’ __main__ ’ :

rospy . init_node ("imu_node" , anonymous=True)

main ()

Logg viewer

import numpy as np

import matplotlib . pyplot as p l t

import decorators as deco

import sys , getopt

import os

@deco . d i r _ a c t i v e (_ _ f i l e _ _)

APPENDIX D. PYTHON CODE & CONFIG-FILES 117

def main(log_path : str , plot_names=None, scale_names=None) :

"""

Displays columns from a csv f i l e as a plot . S p e c i f i c columns can be

selected from header names

: param log_path : path to csv f i l e

: param plot_names : l i s t containing header names of columns to plot .

Default a l l

: param scale_names : l i s t containing scale f a c t o r s for each column .

: return : None

"""

with open(log_path , ’ r ’) as l o g _ f i l e :

names = l o g _ f i l e . readline () . s t r i p () . s p l i t (’ , ’)

plot_names = names i f plot_names i s None else plot_names

scale_names = [1 for _ in plot_names] i f scale_names i s None else

scale_names

data = np . genfromtxt (log_path , del imiter = ’ , ’ , names=names , skip_header

=1) # Read CSV f i l e

time0 = data [’ time ’] # Extract time column

names . remove (’ time ’)

t0 = time0 [0] # 0 dersom klokketid

time = [t − t0 for t in time0]

p l t . f i g u r e () # Create f i g u r e

Plot selected variables

plotted_names = []

for name in names :

i f name in plot_names : # Ignore typo in plot_names

APPENDIX D. PYTHON CODE & CONFIG-FILES 118

plotted_names . append(name)

index = plot_names . index (name) # Find index of current name

in plot_names l i s t

scale = scale_names [index] # Extract scale corresponding

to name

y = [d * scale for d in data [name]] # Scale values in column

p l t . plot (time , y) # Add data vs time to plot

p l t . grid ()

p l t . legend (plotted_names)

p l t . x label (’ Time [s] ’)

p l t . y label (’ Angle [deg] ’)

p l t . t i t l e (’ Lidar f i l t e r test , f i l t e r > 1 0 . ’)

p l t . show ()

i f __name__ == ’ __main__ ’ :

path = os . path . dirname (os . path . abspath (_ _ f i l e _ _))

os . chdir (path)

def parse () :

"""

Function for parsing commandline arguments and options

: return : filename , kwargs

"""

kwarguments = { }

def help_func (* help_args) :

print (f "python log −viewer . py <opts> <args >\n"

f " opts : \ n"

f " −n : Str ing with variable names to plot i . e ’

APPENDIX D. PYTHON CODE & CONFIG-FILES 119

var1 , var2 , var3 ’ \ n"

f " −s : Str ing with scales for plotted variables i

. e ’1 , 10 , 2 ’\n"

f " −h : Help\n"

f " args : \ n"

f " filename (i s assumed to be located in ’ logs / ’

r e l a t i v e to s c r i p t) ")

e x i t (0)

def n(names) :

kwarguments [’ plot_names ’] = [t e x t . s t r i p () for t e x t in names .

s t r i p () . s p l i t (’ , ’)]

def s (scales) :

kwarguments [’ scale_names ’] = [f l o a t (t e x t . s t r i p ()) for t e x t in

scales . s t r i p () . s p l i t (’ , ’)]

t r y :

opt_dict = { ’ −h ’ : help_func , ’ −n ’ : n , ’ −s ’ : s }

argv = sys . argv [1 :]

opts , args = getopt . getopt (argv , ’hn : s : ’ , [’ plotnames = ’ , ’

scalenames = ’])

for opt , arg in opts :

opt_dict [opt] (arg)

filename = args [0]

return filename , kwarguments

except IndexError as e :

print (f ’ { e } : Has the filename been supplied ? ’)

help_func ()

except getopt . GetoptError as e :

APPENDIX D. PYTHON CODE & CONFIG-FILES 120

print (f ’ { e } ’)

help_func ()

f i l e , kwargs = parse ()

main(f ’ /home/marcus/Documents/Loggs / { f i l e } ’ , ** kwargs)

