NTNU

Norwegian University of Science and Technology

Master’s thesis

Faculty of Information Technology and Electrical

Engineering

Department of ICT and Natural Sciences

Jgrgen André Sperre

Segmentation of Knee Joint Using 3D
Convolutional Neural Networks

Master’s thesis in Simulation and Visualization

Supervisor: Kjell-Inge Gjesdal, Robin Trulssen Bye

June 2020

@ NTNU

Norwegian University of
Science and Technology

Jergen André Sperre

Segmentation of Knee Joint Using 3D
Convolutional Neural Networks

Master’s thesis in Simulation and Visualization

Supervisor: Kjell-inge Gjesdal, Robin Trulssen Bye
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

@ NTNU

Norwegian University of
Science and Technology

Abstract

Deep learning techniques have become increasingly popular for medical image segmen-
tation tasks in recent years. This study utilises a 3D convolutional neural network (CNN)
called nnU-Net, for the task of automatic semantic segmentation of 13 classes in magnetic
resonance (MR) images of the knee joint. Experimentation of various hyper-parameters
are used to improve the accuracy of the models, and in the process generate a comparison
of the impact from the various hyper-parameters. Models were trained and evaluated on a
training dataset consisting of 20 subjects and a validation dataset consisting of 5 subjects,
with three different image modalities for each subject. Evaluation of the models found that
the nnU-Net architecture was able to accurately segment the knee joint. Hyper-parameter
experimentation found that the only improvement was a minor increase in accuracy when
adding data augmentation to the model.

Sammendrag

Dyp lering teknikker har hatt gkende popularitet for medisin-relaterte segmenterings opp-
gaver de siste arene. Denne studien bruker ett 3D konvolusjonelt nevralt nettverk (CNN)
kalt nnU-Net, for & automatisk semantisk segmentere 13 klasser fra magnetisk resonans
(MR) bilder av kneledd. Eksperimentering av forskjellige hyper-parametere er brukt for
a forbedre ngyaktigheten til de opptrente modellene, og i prosessen lage en sammenlign-
ing av effekten av disse parametrene. Modeller var trent og evaluert pa et treningsdatasett
som bestod av 20 pasienter, og et valideringsdatasett som bestod av 5 pasienter, med tre
forskjellige bilde-modaliteter for hver pasient. Evaluering av modellene fant at nnU-Net
arkitekturen var i stand til & lage ngyaktige segmenteringer av kneleddet. Hyper-parameter
eksperimenteringen fant at den eneste forbedringen var en liten gkning i ngyaktighet, der-
som “data augmentering” ble tatt i bruk.

ii

Preface

This Master’s thesis is submitted as a final deliverable work of the Simulation and Visu-
alization Master’s program at the Department of ICT and Engineering at Norwegian Uni-
versity of Science and Technology (NTNU) in Alesund. The work presented in this thesis
was carried out in the final semester throughout the spring semester of 2020. The thesis
was performed in collaboration with Sunnmgre MR-Klinikk, who supplied the necessary
datasets.

The thesis concerns the automatic semantic segmentation of magnetic resonance im-
ages of the knee joint. The motivation for choosing this thesis was personal interest in the
related field of machine learning and computer vision, and a desire to continue exploring
the research field that I was introduced to during the fall semester of 2019.

I would like to thank Sunnmgre MR-Klinikk for providing the data for this thesis,
and also further thank Carl Petter Skaar Kulseng for his valuable guidance and support
in carrying out the work throughout this thesis. I would also like to thank both Kjell-
Inge Gjesdal and Robin Trulssen Bye for their guidance and feedback for writing this
thesis. Lastly, I would also like to thank my family for all their continued support and
encouragement throughout my studies.

iii

iv

Table of Contents

arag

[Abstract
[Prefacel

(Iable of Contents
[List of Tables|

I —TIntroduction|

1.1 Background & motivation| .

(1.2 Thesis scope|.
[T.3™ Goals and objectives|

2 Theory
2.1 Anatomy of the knee|

[2.2 Magnetic resonance imaging|
21 Tmage types|.

[2.2.2 Image formats| . . .
2.3 Segmentation|

ii

iii

vii

xii

xiii

XV

W W N —

[cBEN lo SNV, |

244 Gradientdescent| oo 16

2.45 Backpropagation| L 16
246 Overfiting] v v 16
2.477 Learningrate| 17

18

18

18

18

19

5.4 Fully connected layer{. 20

[2.5.5 Sharedweights| 20
[25.6 Localreceptivefield, 20
257 Paich-basedanalysis 21

[2.6 Semantic segmentation loss functions| 21
ROT _DICeToss - - o v vt 22
2.6.2 Crossentropy|.o 22
.63 DicePlusXEnf. v vt 22
[2.7Data augmentation| 23
D71 Elasticdeformafion]« v v o ovie 23

28 Evaluaion metrics]o i e 23
[2.8.1 Machine learning evaluation metrics| 23
[2.8.2 Evaluation metrics for medical imaging| 24

3 Related work 27
[3.1 Traditional rule-based segmentation techniques for medical image seg- |
[mentation] e e e e e e e e e e e 27
13.2 Deep learning applications in medical image segmentation| 28
321 U-Netvarantsl 29

[3.3 Convolutional neural networks for segmentation of knee joint anatomy|. . 30
4 Methodology| 33
4.1 Hardware & Softwarel oL o 33
411 Hardwarel 33
4.1.2 Software] 33
B27Datd . . oo 34
{4.3 Convolutional neural network implementation| 36
4 Hyper-parameter opimization] 36
4.5 Baseline model configuration|o 00, 37
5 Xperiments 39
5.1 Resolution (pixel dimension)| 39
5.2 Spatial window S1Ze| 40
............................... 40
B22 Toferencel o oo v v i 40
[5.2.3 Additional hypothests|, 40
.................................. 41

vi

[5.5 Learning rate|

[B.6 Data Augmentation]
6__Results

[63 Toss type .

6.1 Resolution (pixel dimension)|

§Z Sﬁana! ngow 51ze|

[63 T Dicelosstype]. o v o v v

[6.3.2 DicePlusXEntlosstype|

[6.4.3 DicePlusXEnt with 0.001 learning rate and normalisation|.

6.5 Learning rate|

6.5.1 Learning rate 0.00001

§§Z Eearmné rate M)UH
§§§ !;earnmg rate ()()||

|6.6 Data Kugmentatloﬂ

[7_Discussion|

/.1 Resolution (pixel dimension)|,

|Z.2 Spatlal window 51ze|

|Z.3 Loss type| .

[7.5 Learning rate|

|7.6 Data Kugmentatloﬁ|

43
43
48
51
51
56
61
62
66

72
73
76
79
85

91
91
91
93
93
94
94

97
98
98

929

vii

viii

List of Tables

[6.1 spatial window size (224,224,224)o 50
6.2 spatial window size (240,224,224)o oL 51
6.3 Dice baseline at 10000 iterations| 52
6.4 Dice baseline at 20000 iterations| 53
6.5 Dice baseline at 30000 iterations| 54
6.6 Dice baseline at 40000 iterations| 55
[6.7 Dice baseline at 50000 iterations] 56
[6.8 DicePlusXEnt baseline at 10000 iferations| 57
[6.9 DicePlusXEnt baseline at 20000 iterations| 58
16.10 DicePlusXEnt baseline at 30000 iterations| 59
16.11 DicePlusXEnt baseline at 40000 iterations| 60
16.12 DicePlusXEnt baseline at 50000 iterations| 61
[6.13 Dice baseline with normalisation at 5000 iterationsl 63
16.14 Dice baseline with normalisation at 7500 iterations| 64
[6.15 Dice baseline with normalisation at 12500 iterations]. 65
[6.16 Dice baseline with normalisation at 17500 iterations]. 66
16.17 DicePlusXEnt baseline with normalisation at 5000 iterations| 67
16.18 DicePlusXEnt baseline with normalisation at 10000 iterations| 68
16.19 DicePlusXEnt baseline with normalisation at 15000 iterations| 69
16.20 DicePlus XEnt baseline with 0.001 learning rate and normalisation at 10000 |
[iterations| Lo 70
16.21 DicePlusXEnt baseline with 0.001 learning rate and normalisation at 15000 |
[iterations| L. 71
16.22 DicePlusXEnt baseline with 0.00001 learning rate at 10000 iterations| 73
16.23 DicePlusXEnt baseline with 0.00001 learning rate at 20000 1terations| 74
16.24 DicePlusXEnt baseline with 0.00001 learning rate at 30000 1terations| 75
16.25 DicePlusXEnt baseline with 0.00001 learning rate at 40000 iterations| . . 76
16.26 DicePlusXEnt baseline with 0.001 learning rate at 15000 iterations| 77
16.27 DicePlusXEnt baseline with 0.001 learning rate at 30000 iterations| 78
16.28 DicePlusXEnt baseline with 0.001 learning rate at 45000 iterations| 79

iX

16.29 DicePlusXEnt baseline with 0.001 learning rate at 10000 iterations|

[6.30 DicePlusXEnt baseline with 0.001 learning rate at 20000 iterations|
[6. 1cePlusXEnt baseline with 0. earning rate at iterations|
16. 1cePlusXEnt baseline with 0. earning rate at iterations|

: . 1cePlus X Ent baseline with 0. earning rate at 1terations|
[6.34 DicePlusXEnt baseline with 0.001 |earn1ng rate at 60000 iterations|

[6.35 DicePlusXEnt baseline with augmentation at 5000 iterations|

[6. 1cePlusXEnt baseline with augmentation at 1terat10ns:
. 1cePlus XEnt baseline wit augmentatlon at 1terat10ns:

6.38 DicePlusXEnt baseline with augmentation at 20000 iterations|

80
81
82
83
84
85
86
87
88
89

List of Figures

1.1~ Venn diagram of thesisscope| 2
2T Anatomyoftheknee I 6
2.2 Example of an[I'l|weighted image| 7
2.3 Example of an|proton density (PD)|weighted image| 8
2.4 Example of an|fat saturation (FS)|weighted image| 8
2.5 Structure of a neural network ﬂﬂ_[l 11
2.6 Sigmoid activation function|. L. 13
[2.7THyperbolic tangent (TanH)[activation function [3] 13
[2:8 [Rectified Tinear unit (ReLU)[activation function [4] 14
2.9 Leaky[ReLUlactivation function| 15
[2.10 |Convolutional neural network (CNN)[architecture with alternating convo- |
| Tution and pooling Tayers [3]] 18
[2.11 Example of max pooling with filter size (2x2) and stride of [2,2] @l ... 19
[2.12 Neurons 1n a convolutional layer (blue), and the corresponding receptive |
| fleld(red) 70 - - - - - v o e e 21
[2.13 Patch-based analysis, as presented in Niftynet documentation [8]] 21
P14 Confusion matrix [O . .« . - ¢ v v v e 24
[2.15 Visual representation of the Jaccard index ToU) [I0]] 25
6.1 Worst example of the "false positive volume™ 1ssue| 44
6.2 Normal example of the "false positive volume” 1ssue| 44
6.3 Best example of the "false positive volume” 1ssue| 45
[6.4 Pixeldimension O.5mml| 46
6.5 Pixeldimension 0.6mml . « . .« . ..o a e 46
[6.6 Pixel[dimension 0.7mml 47
[6.7 Pixeldimension I.Omml| 47
6.8 spatial window size (256,256,256) on[central processing unit (CPU)| . . . 48
16.9 spatial window size (192,192,192) on|graphics processing unit (GPU)| . . 49
[6.10 spatial window size (208,208,208) on|GPU| 49

X1

6.29 Dice baseline with 0.001 learning rate and normalisation at 10000 1terations

16. 1ce baseline with 0. earning rate and normalisation at 1terations

6.31 DicePlusXEnt baseline with 0.00001 learmng rate at 10000 iterations|
6.32 DicePlusXEnt baseline with 0.00001 learmng rate at 20000 iterations|

[6.33 DicePlusXEnt baseline with 0.00001 learning rate at 30000 iterations
[6:34 DicePlusXEnt baseline with 0.00001 Iearning rate at 40000 iterations|

:6.35 DicePlusXEnt baseline with 0.001 |earn1ng rate at 15000 iterations|
[6. 1cePlusXEnt baseline with 0. earning rate at iterations|

6.37 DicePlusXEnt baseline with 0.001 learmng rate at 45000 iterations|

[6.39 DicePlusXEnt baseline with 0.01 learning rate at iterations|
: . icePlusXEnt baseline with 0.01 learning rate at 1terations
[6. 1cePlusXEnt baseline with 0. earning rate at 1terations

10. 1Cerius nt baseline wit . carning rate at 1terations
[6.43 DicePlusXEnt baseline with 0.01 [earmng rate at 60000 iterations,

6.38 DicePlusXEnt baseline with 0.01 learning rate at 10000 iterations

[6.44 DicePlusXEnt baseline with augmentation at 5000 iterations|
: . icePlusXEnt baseline with augmentation at 1terat10ns:
[6. 1cePlusXEnt baseline with augmentation at 1terat10ns:

6.47 DicePlusXEnt baseline with augmentation at 20000 iterations].

Xii

Acronyms

ACL anterior cruciate ligament 5} 30| 31] B3]
AT artificial intelligence [xvil [T} [T0] Glossary: [artificial intelligence]

ANN artificial neural network [xv] [xvil [5} [TOHT2] [T3] [T6} [T8] 20| B3| &1} Glossary:
[neural networkl

API application programming interface[33} Glossary: [application programming interface]

AR augmented reality 2]

BGD batch gradient descent[16]

CE cross entropy [30]
CNN convolutional neural network [xi] [3] [5] 28 [O8 Glossary:

nvolutional neural n I

CPU central processing unit|xi} [33] [40] 48] 02] Glossary: [central processing unif]
CRF conditional random field 30l

DL deep learning[I8] Glossary:
DSP digital signal processing [I8] Glossary: [digital signal processing|

FCN fully connected neural network 28]
FN false negative 24]

FP false positive 24]

FS fat saturation [xi} [7} [8] 34} Glossary:

Xiii

GPU graphics processing unit [33] 0} 48130}, P2] Glossary:

k-NN k-nearest neighbours Glossary: [k-nearest neighbours|

LCL lateral collateral ligament 3]

MCL medial collateral ligament[3]

ML machine learning [xv] [xvil [TH3] [5l [Pl IOl [1€] [18] 34} P4l Glossary:
MR magnetic resonance [3] [8] B} 28] [30] 31] 33]
MRI magnetic resonance imaging 2131 5HoL 28] 301 34 Glossary:

[netic resonance 1maging|

MSE mean square error [xvi}[I3} Glossary: [mean square error|

NTNU Norges teknisk-naturvitenskapelige universitet 2]

OA osteoarthritis 30} 31} Glossary:
OOM out of memory 0] #8] [50} 0T} 02

PCL posterior cruciate ligament[5] 30] 31} [33]
PD proton density [xil [7} [8] B4] Glossary:

PReLU parametric rectified linear unit[T3]

RAM random access memory [xvii} 33} B0 Glossary: [random access memory]
ReLU rectified linear unit[xi} [T4} [T3]

RF radio wave frequency [6] [7]
ROI region of interest [T} [31]

SGD stochastic gradient descent[T6]

TanH hyperbolic tangent [xi} [13] [T4]
TN true negative [24]

TP true positive [24]

VR virtual reality 2] [33]

VRAM video random access memory 33| A0} Glossary: [video random access memory]

Xiv

Glossary

application programming interface An API is a set of definitions and protocols that
allows a software to access services and resources provided by another software that

implements the same API.

artificial intelligence Computer systems that attempts to imitate human behaviour in or-
der to perform tasks that would normally require human intelligence 1

artificial neural network ”Artificial neural networks (ANNSs) are statistical models where
the mathematical structure reproduces the biological organisation of neural cells
simulating the learning dynamics of the brain” [11]].

central processing unit The CPU is the primary component of a computer that processes
instructions. It runs the operating system and applications, constantly receiving
input from the user or active software programs. It processes the data and produces
output, which may stored by an application or displayed on the screen [12]].

convolutional neural network Convolutional neural network (CNN) is a specific type of
[ANN] that includes convolutional layers and pooling layers occuring in alternating
fashion. CNNs are well suited for image recognition tasks due to sparse connec-
tivity, parameter sharing, subsampling, and local receptive fields rendering them
invariant to shifting, scaling, and distortions of input data [13].

deep learning Deep learning is a subtopic within [ML] consisting of [artificial neural net-|

with a high number of layers, resulting in a deep network. [xiii} [T8]

digital signal processing Digital signal processing (DSP) is the process of analyzing and
modifying a signal to optimize or improve its efficiency or performance. It involves
applying various mathematical and computational algorithms to analog and digital
signals to produce a signal that’s of higher quality than the original signal [14].

(T8,

fat saturation Fat saturation (FS) images is a technique used to suppress the signal
from adipose tissue (fat).

XV

graphics processing unit A GPU is a processor designed to handle graphics operations.
The primary purpose of a GPU is to render 3D graphics. GPUs are effective when
performing the same mathematical operations on a large number of data, making

them very efficient for [Al] applications such as training [ANN.

k-nearest neighbours K-nearest neighbours (k-NN) is a classification algorithm based
on similarity measures. An object is classified based on a plurality vote of its neigh-
bours, in which the object is assigned to the class that is most common amongst its

neighbours. [30

machine learning “"Machine learning (ML) is an application of [Al|that provides systems
the ability to automatically learn and improve from experience without being ex-

plicitly programmed” [L5]). [T}

magnetic resonance imaging Magnetic resonance imaging (MRI) is a non-invasive med-
ical imaging method that uses a strong magnetic field and radio waves to generate

images of the body [16].. [xiv] 2}

mean square error Mean square error is a commonly used loss function for regression

problems, the exact formula for[MSE]is shown in equation 2.6}

osteoarthritis Osteoarthritis (OA) is the most common form of arthritis, and is casued by
the protective cartilage cushions on the ends of bones getting worn down. [xiv] [30}

overfitting Overfitting is a problem in categorised by the model adjusting itself too
closely to the training data [17].

proton density Proton density (PD) images produce contrast by minimizing the im-
pact of |and | differences [18].

radiology Radiology is a medical field that uses various imaging technologies to diagnose
and treat patients. [6]

random access memory RAM is the amount of memory available to the operating sys-
tem and applications on a device. RAM is a memory type that has high access speed.

segmentation Segmentation is a big subfield within digital image processing. It is the
process of dividing an image into regions with similar properties, such as colour and

texture [17]. [N

semantic segmentation Semantic segmentation is a specific type of where
each pixel (or voxel for 3D images) is given a class label. [I0]

software agent In computer science, a software agent is a computer program that acts for
a user or another program in a relationship of agency. Agents may be embodied, as
when paired with a robot body, or simply as software [19]. [I0]

XVi

T1 T1 relaxation is the time taken for the magnetic vector to return to its resting state.

bvil 71 BT} B4

T2 T2 relaxation is the time needed for the axial spin to return to its resting state.

BT

video random access memory VRAM is a specific type of [RAM] that is used to store
image and video data. The [GPU]is able to read data from VRAM at significantly
higher speeds than standard [RAM] [xiv} [33]

Xvii

Xviii

Chapter

Introduction

This chapter will present the background and motivation for this thesis in section [I.1]
Additionally, the scope and objectives of the thesis are described in section [I.2] and
And lastly, the structure of the thesis will be detailed in section[I.4]

1.1 Background & motivation

Medical imaging is one of the most central and important elements in medical practice in
this day and age [20]]. One of the main applications of medical imaging is to aid in making
a diagnosis or to confirm a suspected diagnosis. Medical imaging has also assumed an
increasingly important role in surgery, such as by allowing examination of the surgery area
beforehand [21]]. The rapid increase in both hardware and software capabilities in the last
decade has led to an increasing interest in the application of computer vision algorithms in
these medical imaging tasks.

One of the most interesting and challenging tasks related to computer vision is seg-
mentation. Segmentation is the process of dividing an image into regions with similar
properties. “Image segmentation is considered the most essential medical imaging process
as it extracts the [region of interest (ROI)| through a semiautomatic or automatic process”
[22]. At the moment, most segmentation is performed manually by radiologists. This is
a tedious and time-consuming task, which is both mentally and physically straining. This
has popularised the adaptation of artificial intelligence (AI)| solutions, leading to an ever-
increasing trend for[machine learning (ML)|to be the dominant technique in medical image
segmentation [23]].

methods for segmentation tasks have been utilised for a range of various anatom-
ical datasets, including the brain [24], lungs [25] [26]], liver [27], and more. Moreover, a
systematic review published in September 2019 [28] compared the performance of deep
learning approaches to that of health-care professionals on the detection of disease from
medical imaging, and concluded with “deep learning algorithms to have equivalent sensi-
tivity and specificity to health-care professionals.”

[Norges teknisk-naturvitenskapelige universitet (NINU), Sunnmgre MR-Klinikk, and
Alesund Sjukehus are cooperating on a collaboration project, with a final goal of creating
a training simulator for surgeons. This goal includes automatic 3D segmented models,
with the ability to interact with these models in [virtual reality (VR)|and augmented reality|
[(AR)] with physical and virtual tools. This thesis focuses on the automatic segmentation
part of this larger project. This part of the project is a critical component of the project,
due to providing the models required for the rest of the project. This segmentation part
of the project, and by extension this thesis, will primarily be a collaborative effort with
Sunnmgre MR-Klinikk.

1.2 Thesis scope

The scope of this thesis is to automatically segment anatomical regions of interest from
[magnetic resonance imaging (MRI)|images, through the use of techniques. The scope
is further limited to the training and validation of neural networks for this purpose. The
network utilised in this thesis will be the nnU-Net module within Niftynet, and the segmen-
tation will focus on the knee joint. The training aspect of this thesis will include attempts
to optimise the hyper-parameters for the neural network, as well as generate comparable
results from the various hyper-parameters.

Machine learning Image segmentation

Research
Area

Magnetic resonance imaging

Figure 1.1: Venn diagram of thesis scope

1.3 Goals and objectives

The main goal of this thesis is to train a neural network model that is able to accurately
segment new unknown jmagnetic resonance (MR)|images of knees, with sufficiently high
accuracy. Furthermore, the experimentation of various hyper-parameters, and their effect
on the training and inference processes, will play an important role in the thesis. The thesis
is therefore divided into the following two research questions:

Research question 1: Do the trained neural networks generate a segmentation output
of sufficient accuracy?

The accuracy of the models is determined by a combination of visual inspection and
evaluation metrics. Evaluation metrics are usually based on a comparison between the
segmented output and a “ground truth”. This ”ground truth” is generated manually by a
human expert, and is therefore subject to both errors and subjectivity. This is why visual
inspection in addition to evaluation metrics are essential to evaluate the accuracy.

Research question 2: What impact do the hyper-parameters have on the training pro-
cess and inferred segmentation output?

In the process of achieving sufficiently high accuracy, various hyper-parameters will be
subject to experimentation. In order to choose the best parameters, their effect on the
network must be both evaluated and understood. Therefore, in an effort to understand
the functionality and impact of each hyper-parameter, an overview and comparison of the
various experimentation carried out during this thesis will be presented.

1.4 Thesis structure
The thesis is structured as follows:

Chapter 1 - Introduction: Presents the motivation, scope, and objectives of this the-
sis.

Chapter 2 - Theory: Describes the relevant theory for this thesis. This includes the-
ory about knee anatomy, [MRI} segmentation, and [ML]

Chapter 3 - Related work: Explores works that are relevant to this thesis. This chap-
ter gives a summary of the state of approaches in the medical image segmentation
field.

Chapter 4 - Methodology: Presents the methodology used in this thesis. This includes the
utilised hardware and software, datasets, and [CNN] This chapter also introduces the hyper-
parameter optimisation process and describes the baseline configuration of the hyper-
parameters.

Chapter 5 - Experiments: Describes the hyper-parameter experimentation that is carried
out in this thesis, including reasoning and hypotheses for the performed experimentation.

Chapter 6 - Results: Presents the results of the hyper-parameter experimentation. Re-
sults are presented both as visual segmentation masks and evaluation metrics.

Chapter 7 - Discussion: Discusses the results and methodology of the thesis.
Chapter 8 - Conclusion: Contains the conclusion of this thesis. The conclusion an-

swers the previously stated research questions, states the contributions of this thesis, and
presents ideas for future work.

Chapter

Theory

This chapter presents background theory related to the work carried out in the thesis. First,
the anatomy of a knee and[MRT|are briefly explained. Then the topics of segmentation and
deep learning are explored more in-depth.

Section2.I|briefly explains the anatomy of the knee joint. Section[2.2]looks into imag-
ing techniques and different image types for[MRI|as well as file formats for[MRI|images.
Section [2.3] explores a variety of segmentation methods and explains the specifics of se-
mantic segmentation. Section [2.4] Gives an introduction to including structure and
important features. Section[2.5]explains how function, and details why they are ef-
fective for semantic segmentation. Section[2.6|explores different loss functions commonly
used in semantic segmentation tasks. Section [2.7]explains how data augmentation is done,
and what purpose it serves. And lastly, section[2.8] will look into different evaluation met-
rics for[ML]and medical imaging tasks.

2.1 Anatomy of the knee

The knee joint connects the thigh and the shin and is one of the largest and most complex
joints in the human body. The knee is often viewed as two joints that collectively function
as a hinge joint, allowing both flexion and extension as well as small amounts of rotation.
The knee consists of four main bones namely the femur (thigh bone), tibia (shin bone),
fibula (calf bone), and patella (knee cap).

The leg muscles are connected to the bones with tendons to allow for movement, while
ligaments join the bones together while also providing stability to the knee. The
[cruciate ligament (ACL)| and [posterior cruciate ligament (PCL)| prevents the femur and
tibia from sliding backwards or forwards, while the [medial collateral ligament (MCL)|and
[lateral collateral ligament (LCL)|prevents the femur from sliding side to side. In addition
to this, there are also two C-shaped pieces of cartilage called the medial and lateral menisci
that act as shock absorbers between the femur and tibia. [29]

In addition to the above-mentioned bones and ligaments which are shown in figure 2.1}
the knee and its surrounding region also consist of veins, arteries, muscles, and fat.

Femur Tendon of

o “/ quadriceps femoris
A

Articular S llar bi
\ <\ ___— Suprapatellar bursa
capsule
F’oZterior 3) \\ Patella
cruciate : / / Prepatellar bursa
ligament —/ Synovial cavity
;ﬁetﬁi’saéus i % Lateral meniscus
_ h / Infrapatellar
Anterior e fat pad
H t »‘l\v':\
cruciate Infrapatellar
ligament { bursa
Tibia Patellar ligament

(a) Sagittal section through the right knee joint

Anterior cruciate X
ligament Anterior
, Articular
s \ e cartilage on
Articular cartilage~ (V4 \ lateral tibial
on medial V A \K \ condyle
tibial condyle '
[‘
Medial meniscus / 3
) Lateral
meniscus

Posterior cruciate
ligament

(b) Superior view of the right tibia in the knee joint, showing

the menisci and cruciate ligaments

Quadriceps
femoris muscle

Tendon of

quadriceps
femoris muscle

\ ,/\

I/ /|
Lateral patellar AN /
retinaculum N t / /',, ‘w

Patella

Medial patellar
retinaculum

1\ F— Tivi
Fibular collateral { /({ | / / Fblal collateral
) Wt | / igament
ligament \ //
A 7 Patellar ligament

Fibula — 1 T Tibia

(c) Anterior view of right knee

Figure 2.1: Anatomy of the knee [[1]

2.2 Magnetic resonance imaging

[MRI] is one of the most widely used imaging techniques within The theory
behind [MR1]is well documented in various sources. This section provides a summary of

the information presented in [30], which has also been briefly summarised in [17]]. A more
detailed and illustrated explanation for[MRI]is presented in [31].

[MRT|uses the natural magnetic properties of the body to produce images. The hydrogen
nucleus (a single proton) is used for imaging purposes because it is found in abundance in
water and fat. These hydrogen nuclei have an axial spin, with their axes randomly aligned.
When the body is placed in a strong magnetic field, such as an[MRI] scanner, the protons’
axes all align. This uniform alignment creates a magnetic vector oriented along the axis of
the [MRI| scanner.

This magnetic vector is then deflected by adding additional energy (in the form of a
radio wave) to the magnetic field. The [radio wave frequency (RF)|is determined by the
sought element (usually hydrogen) and the strength of the magnetic field generated by the
[MRI|scanner. The strength of the magnetic field can be altered electronically from head to
toe using a series of gradient electric coils. Thus, by altering the local magnetic field by
these small increments, different slices of the body will resonate as different frequencies
are applied.

6

When the [RF| source is switched off, the magnetic vector returns to its resting state.
This causes a signal (in the form of a radio wave) to be emitted from the affected nuclei. It
is this resulting radio wave signal which is used to create[MRI|images. Receiver coils are
placed around the body part that is imaged to improve the detection of the emitted signal.
The intensity of the received signal is then plotted on a grey scale, and cross-sectional
images are generated.

Additionally, there is a difference in how quickly different tissue relax once the [RF
pulse is switched off. These times are measured in the following two ways. [TT]relaxation
is the time taken for the magnetic vector to return to its resting state. And[T2]relaxation is
the time needed for the axial spin to return to its resting state.

”There are no known biological hazards of because, unlike x-ray and computed
tomography, [MRI uses radiation in the radiofrequency range which is found all around us
and does not damage tissue as it passes through.” [30]]

2.2.1 Image types

[MRI] can produce different images depending on the weighting of [TT] and [T2] relaxation
times. Because different tissues have different relaxation times, the weighing can be used
to create differences in signal intensities and by extension tissue grey levels. The datasets
used in this thesis has three differently weighted images for each patient. These are [T}

and [FS] weighted images.

T1 images

[TT)images present the difference in [TT] relaxation times. [TT]images are useful for identi-
fying fluid filled spaces in the body. Fat appears very bright in these images, while fluid is
dark.

Figure 2.2: Example of an|[T'1|weighted image

PD images

In a[PD]weightedMR]image, it is the tissues with a higher concentration/density of protons
(hydrogen nuclei) which produce the strongest signals, and thus appears the brightest. [18]]

Figure 2.3: Example of an @lweighted image

FS images

[FS|images are used to suppress the signal from normal adipose tissue. The result is that
adipose tissue appears darker, while any other tissue appears brighter by contrast.

Figure 2.4: Example of an|FS|weighted image

2.2.2 Image formats

There are a lot of different[MRI] file formats. The four most commonly used are Analyze,
Nifti, Minc, and Dicom. Dicom is designed to standardize the generated images by diag-

nostic modalities. While the other 3 aim at facilitating and strengthening post-processing
analysis. [33]

Nifti

In this thesis, the datasets were supplied as Nifti files. This format can be seen as a revised
Analyze format. The notable improvements include updated header information such as
rotation and orientation. Nifti also includes support for additional data types, such as
unsigned 16-bit. [33]

2.3 Segmentation

[Segmentation|is a large subfield within digital image processing. is a task

that aims to divide an image into regions with similar properties, such as colour or texture
[34]. techniques range from the simple threshold method to the more ad-
vanced edge detection and clustering techniques, and also includes various[ML]algorithms.

Conventional algorithms often rely on a critical selection of parameters,
for instance, to derive an accurate membership function in the case of clustering. This
requires a considerable amount of user expertise [35]. These aspects are simply not prac-
tical when it comes to more advanced tasks such as segmenting multiple
structures, especially when dealing with complex 3-dimensional structures such as those
created by [MRI| [36] [17].

There are three main difficulties when it comes to tasks:

o Noise: Noise during the data generation process can potentially alter the intensity of
either a singular pixel or a group of pixels, resulting in the classification becoming
uncertain.

o Low variety of pixel intensity between classes: When segmenting multiple classes
within the same image, the different classes need to be distinguished somehow. If
the variety of pixel intensity between different classes is very low, then they become
almost indistinguishable.

e Class imbalance: When an image contains classes of varying sizes, the smaller
classes are easily ignored during training due to the low impact they have on the

overall accuracy of the task.

The first two of these difficulties are related to the data generation. Some amount of noise
is always going to be present during an [MRI]scan.

The intensity of pixels can have increased variety by utilizing different weightings
for the image generation. However, if multiple classes are made up of the same or
similar tissue, such as tendons and ligaments, then this problem becomes unavoidable.
This problem can then only be solved by considering the spatial information of the image,
as opposed to strictly the image intensity. This is something that are especially
well suited for, due to their local receptive field which will be discussed more in detail in

section 2.3.6]

The class imbalance is also unavoidable during data generation, but can be handled by
[ANNS]| through the choice of the loss function, which is briefly mentioned in section [2.4.2]
and discussed in detail in section[2.6]

[Semantic segmentation|is the main focus for this thesis, and it is a specific type of
[segmentation| where each pixel (or voxel for 3D images) is given a class label. This task is
also often called dense prediction or dense semantic segmentation.

2.4 Artificial neural networks

is a subfield of [Al]and [ML]that is inspired by neuroscience. The goal of is to
replicate the way neurons work in the human brain. and other [ML] algorithms are

often categorised into four different categories, based on the way they learn:

e Supervised learning: Supervised learning is used when we have a dataset of la-
belled data. Labelled data means that each sample of the dataset also has a corre-
sponding answer that we would like the algorithm to come up with. The algorithm
is then able to compare the solution it finds with the label for each data sample, and
in that way evaluate how good its solution is.

e Unsupervised learning: For unsupervised learning the dataset does not include la-
bels. This means that the algorithm does not know the correct answer for its training
data. This approach is most useful for clustering (finding similarities in the data), or
anomaly detection.

e Semi-supervised learning: This approach is a combination of both supervised and
unsupervised learning. This is especially useful for difficult data, when the labelling
of a dataset is a very time-consuming task for experts. Another potential benefit
is that this allows the algorithm to reach its own conclusions, without introducing
potential bias or inaccuracies through manually labelling the data.

¢ Reinforcement learning: Reinforcement learning does not use a training dataset.
Instead, the algorithm uses a reward system. The algorithm is trained by an itera-
tive process in which it tries to maximise its camulative reward. This approach is
often used for[software agent] for tasks such as path planning, robot motion control,
business management, and more.

This thesis will focus on supervised learning algorithms. The dataset that has been sup-
plied for this thesis work consists solely of labelled data, and there is not any unlabelled
data available to facilitate semi-supervised learning. This is because the samples in this
dataset are unique and generated specifically to be used for training neural networks. What
this entails is discussed in more detail in section 4.2

2.4.1 Structure

consists of nodes and links, where the nodes act like neurons to propagate values
forward to linked nodes when activated. Each node consists of weighted inputs and com-
putes its value as a weighted sum of all its inputs when activated. Additionally, each node

10

typically has a bias that adds a static value to it’s propagated value. consists of an
input and an output layer, with any number of hidden layers in between. The input for
each layer is the output of the previous layer, where the first layer is directly connected to
the input data [[17]] [137] [38].

Hidden

Input

Output

Figure 2.5: Structure of a neural network [2]

As mentioned in [37], the neural network structure with notation and formulas are pre-
sented in [39] as the following:

The neural network is composed of neurons connected by directed links. A link from
neuron ¢ to neuron j is connected to propagate activation a; from ¢ to 5. Each neuron has
an input a; with an associated weight w;,;. The weights are numeric values that determine
the strength of the connection between neurons. It is also common to add a bias to each
node denoted as b.

Equation [2.T] shows the calculation for the weighted input for each node, while equation
[2.2] shows the equation with the added bias. Equation [2.3]shows how the output of a node

is derived by applying a function to this weighted sum. This applied function is called the
activation function, and is discussed more in detail in section[2.4.2}

inj = Zwi,j a; (21)
=0

inj =Y wia;+b 2.2)
=0

11

a; = f(in;) Z Wy,5 ;) 2.3)

The learning process for an [ANN]is achieved by updating the weights throughout the
network. The following sections will give a brief overview of the most important aspects

of [ANNg!

2.4.2 Activation function

As mentioned previously, the activation function is the function that computes an output
for a node based on its weighted input sum. While activation functions could be a binary
step or linear, these are not suited for Most common activation functions are non-
linear, and their main purpose is to provide non-linear properties to the Without a
non-linear activation function, an would function equivalent to a linear regression
model. Some of the most commonly used non-linear activation functions are discussed in
detail below.

Sigmoid

The sigmoid function, as shown in figure has an output between 0 and 1. The main
advantage of the sigmoid function is that it normalises the output between 0 and 1. This
solves the problem of exploding gradient, which is a problem that might occur with linear
activation functions. The sigmoid function also gives very clear predictions due to its steep
slope between -2 and 2, which results in a tendency for output values to move towards
either end of the curve.

There are however some drawbacks to the sigmoid as well. The main problem is the
so-called vanishing gradient. This problem occurs when reaching very high or low input
values. Because of the way the sigmoid flattens out at 0 and 1 quite quickly, we reach a
point where changes in the input result in almost no change for the output (For instance,
both 10 and 20 as input values would give an output roughly equal to 1). The result of
this is that the network could be unable to learn, or simply end up being extremely slow.
Another drawback is that it is centered around 0.5.

12

gt

— sig(t) = 7 1o | 8@
0.8
0.6
0.
0.2

¢
-8 -6 -4 -2 2 1 6 8

Figure 2.6: Sigmoid activation function

Hyperbolic tangent

The [hyperbolic tangent] (TanH)) activation function, shown in figure[2.7 is also technically
a sigmoid function, although it does differ slightly from the standard sigmoid. The only
difference is that gives an output ranging from -1 to 1. The benefits of over
sigmoid is that it has stronger gradients, as well as being centred around zero. Being
centred around zero is beneficial for the same reason that normalising inputs around zero
is beneficial. Using a zero-centred activation function results in centring the input for
hidden layers throughout the neural network, which makes learning much easier.

The does however still suffer from the same vanishing gradient problem as was
mentioned for the sigmoid function above. is however still considered to be an
improved version of the standard sigmoid function.

tanh(x)

Figure 2.7: activation function [3]]

13

Rectified linear unit

The [rectified Tinear unif] (ReLU) activation function, as shown in figure 2.8] generates a
linear output for positive input values, while negative values results in zero as the output
value. This does make the function non-linear, although it has a range of 0 to co. This
function is vulnerable to the previously mentioned exploding gradient problem, although
this is more commonly dealt with by proper learning rates or regularization.

One of the advantages of is that it converges on a solution faster than sigmoid
variants, due to its linearity keeping the slope from plateauing. It also does not have the
vanishing gradient which both sigmoid and suffers from. There is also a level of
sparsity when using [ReLU] This is due to each node having the possibility of not activat-
ing. This is often considered beneficial because we only want meaningful information to
be processed as opposed to noise, which results in less The calculation for
[ReLU]is also computationally cheap, which together with the sparsity makes it compute
significantly faster than the sigmoid variants mentioned above.

The downside of all negative values resulting in zero output, however, is a problem
called dying [ReLU] This problem is categorised by nodes being considered “dead”
once it gets stuck on the negative side of the function and will always output 0. The reason
this happens is because the gradient of the [ReLU] function becomes zero for the negative
range of the function. This makes it unlikely for a node to recover once it falls into the
negative side. The problem can often be avoided by using a low learning rate, but there
are also some variations of the [Re[_Ul function that combats this issue.

ReLU(z) £ max(0, z)
"

» L

Figure 2.8: activation function [4]

[ReLU] variants

As mentioned above, the main drawback to[ReLUJis the “dead” nodes caused by the zero
output for negative input values. There are two popular alternative variants for [ReLU] that
aims to solve this issue.

The first variant, shown in figure 2.9] is the so-called leaky This variant has a
small slope for negative values, as opposed to the flat line present in the standard [ReLU}

14

f(m):{m ifx >0,

0.01x otherwise.

Figure 2.9: Leaky activation function

The second variant is the parametric rectified linear unit| (PReLU) function. This func-
tion is almost identical to the leaky with the only difference being that the slope

coefficient for negative values is represented as a parameter, as opposed to a constant. This
parameter is then learned along with all other [ANN] parameters. Equation [2.4] shows the
calculation for the leaky [ReLU| with a slope coefficient of 0.01, while equation [2.5] shows
the calculation for the [parametric rectified linear unit (PReLU)|where the slope coefficient

is denoted as a parameter a.

f(x) = max(0.01z, x) (2.4)
f(x) = mazx(azx, x) (2.5)

2.4.3 Loss function

Another important part of an is the loss function. The purpose of the loss function
is to evaluate the output of the network, to measure the accuracy of the model. This is
achieved by comparing the output of the model with the ground truth. The exact method or
function for this comparison has a lot of different variations, but they all return a measure
indicating how incorrect the output of the network is. It is therefore important to choose
a loss function that properly correlates with a successful output, as the network will only
focus on improving the calculated loss. A commonly used loss function for regression is
the [mean _square error (MSE)] The calculation for MSE]is shown in equation [2.6] where
E(w) is the calculated loss, NN is the number of outputs, y; is the desired output, and y; is
the actual output.

1 N
MSE = B(w) =+ > (s —) (2.6)
=1

15

Loss functions that are especially useful for semantic segmentation, and as a result have
been explored in this thesis, are discussed in more detail in section

2.4.4 Gradient descent

Once the network has calculated its output error through its loss function as mentioned
above, the goal is to minimise this error which is often referred to as minimising the loss
function. The way an learns and improves is by updating its weights, which is done
through a process called backpropagation which is explained in the next section. Gradi-
ent descent is used to figure out exactly how the weights should be updated during this
backpropagation process, in order to minimise the loss function. Gradient descent uses the
derivative of the loss function to find the direction of steepest descent, which determines in
which direction weights are updated. How much the weights are updated in the direction
determined by gradient descent is decided by a parameter called the learning rate, which is
mentioned in more detail in section The updated weight is then calculated as shown
in equation where wWyey, 18 the new weight, w4 is the old weight, 7 is the learning
rate, and E(w) is the calculated loss.

Wnew = Wold + nE(’LU) 2.7

Several different implementations of gradient descent are used for optimising training. The
following list briefly mentions the most commonly used approaches:

e [Batch gradient descent (BGD)k [BGD} also often referred to as vanilla gradient
descent, is the most basic variation of gradient descent. In the gradient is
calculated based on the entire training dataset. The disadvantage of this implemen-
tation is that calculating gradients for the entire dataset for every single update is
very slow and inefficient.

e [Stochastic gradient descent (SGD); [SGD] in contrast to[BGD] updates the weights
for each sample of the training data. This eliminates a lot of redundant computa-
tion that is present in resulting in the network learning at a faster rate. The
drawback with this, however, is that weight updates will have a high variance [40].

e Mini-batch gradient descent: This approach is a combination of both and
[SGD] in which weights are updated in batches of n training samples. This reduces
the variance of the weight updates, leading to a more stable convergence.

2.4.5 Backpropagation

Backpropagation is a technique for propagating the error backwards from the output and
through the network, towards the input layer. This allows the gradient of the error to be
calculated in each layer and thus adjust the weight and bias subsequently [41] [42].

2.4.6 Overfitting

Overfitting is a common problem in [ML] applications and is characterised by the model
adjusting itself too closely to the training data, leading to lacking generalisation for the

16

model. This lack of generalisation results in a model that performs very well on the training
data and data that happens to be similar to it, while simultaneously performing much worse
for any other data.

Two main factors leading to an overfitted model is having more parameters than nec-
essary, and a sparse training dataset. A model with too many parameters is prone to over-
fitting due to being able to learn too much irrelevant information, such as noise, from the
training data. A lacking training dataset can lead to an overfit model by not providing the
model with enough information. If the training dataset does not present the model with a
variety of data, it will be unable to differentiate between the important and unimportant
(e.g. noise) information in the dataset.

It is also worth noting that the opposite of this problem, underfitting, is characterised
by a model unable to adjust itself to the training data. This is caused by a model having too
few parameters to learn the important information, or a poor training dataset containing
too much unimportant information (such as noise) for the model to learn. This is however
not as common as overfitting.

The most common technique to avoid overfitting is to discourage the model from be-
coming too complex, and is called regularization. One of the most common regularization
techniques is early stopping, in which a validation dataset is used to test the model during
training. If the model starts performing worse for the validation dataset while improving
on the training dataset, it is a sign of overfitting.

Another common regularization method is dropout. This functions by disabling some
random neurons during each training iteration, while updating the model normally for the
remaining neurons. This forces the model to learn a different representation of the data
and prevents overfitting.

Lastly, overfitting can be combated by improving the training dataset. A good training
dataset is essential for both an accurate model, as well as to avoid overfitting. It is however
not always feasible to generate additional training data the normal way, in which case
data augmentation is worth considering. Data augmentation can prevent overfitting and
improve generalisation of the model and will be discussed more in detail in section

2.4.7 Learning rate

The learning rate is briefly mentioned in equation in section [2.4.4] This is a variable
that determines how large the change in weights should be when they are updated. This is
often referred to as the step size, such that for a weight update the gradient determines the
direction and the learning rate determines the size of the step in said direction.

The difficulties related to the learning rate comes from a learning rate that is either too
low or too high. If a model has a learning rate that is too low, the model will improve
slowly or not at all. The likelihood of the model getting stuck in a local optimum solution
increases when using a low learning rate, and learning will overall be very slow. With a
high learning rate however, the model runs into opposite problems. A high learning rate
makes it more difficult for the model to converge on the global optimum, and learning can
be more sporadic.

The important part of the learning rate is that it should neither be too low or too high.
The exact value, however, is not easily determined, and usually requires some level of trial
and error. The learning rate can also be adaptive, in which it varies throughout the training

17

process. This can be beneficial due to a high learning rate quickly converges on the global
optimum, without getting stuck in local optimums, while a lower learning rate will allow
the model to more accurately fine-tune the weights towards the final solution.

2.4.8 Deep learning

[Deep Iearning (DL)|is a subtopic within[ML] The unique aspect of [DL]is that[DL]empha-
sises learning through successive layers [43]. [DL]is typically seen as consisting of
a high number of layers with non-linear activation functions. This layout makes the neural
networks more capable of learning complex patterns in data. While the idea of is not
new, the recent advances in computational technologies, especially in[GPUs| has given|[DL]
a lot of popularity [44].

2.5 Convolutional Neural Networks

[CNNs|are inspired by the visual cortex in the brain, and are usually applied to the analysis
of visual imagery [45]]. The popularity of comes from their ability to automatically
extract important features from images. Additionally, they also have a reduced computa-
tional requirement due to their shared weights [46]], which is mentioned in more detail in
section

2.5.1 Structure

The structure of is based on the structure of and similarly contain one input
layer, any number of hidden layers, and one output layer. In the hidden layers
contain at least one convolution layer, and usually multiple. The typical architecture of
[CNNS|consists of alternating convolution and pooling layers, as shown in figure 2.10]

Pooling Convolution

Figure 2.10: architecture with alternating convolution and pooling layers [3]]

2.5.2 Convolution layer

The convolutional layers can be considered the feature detection of the[CNN] Convolution
is a common operation in [digital signal processing (DSP)| although this is not the same
approach utilised in convolution layers. In convolution layers the input data is convoluted
with a filter, also referred to as a feature detector. The convolution process of a@] isa
sliding dot product, or cross-correlation, as is explained very elegantly in [47].

18

The mathematical equation for this operation is presented in equation Where f is
the input, g is the filter/feature detector, ¢ and j are the indices, m and n are the number of
elements in each dimension of the array, and G is the output feature map.

Gli,j) = (f * 9)[i, 4] = ZZfzfmJ*n] [m,] 2.8)

This equation can also be extended for three dimensions, by adding a third dimension
o and third index k, as shown in equation [2.9] below.

Gli,j, k] = (f *9)[i, 7,k ZZZfz—m]—nk—o] [m,n, o] (2.9)

2.5.3 Pooling

A pooling layer is a form of non-linear down-sampling that is used to reduce the spatial
dimensions of a resulting in reduced data size and fewer parameters. A common
approach to is to include a pooling layer after a series of successive convolution
layers, in order to reduce the size of the feature map. As seen in figure 2.10} the pooling
reduces the size of the input by calculating a single value from a matrix of the input data.
The mathematical operation to calculate this single value usually varies between average
and max. The average pooling will calculate the average value of the input matrix, while
the max pooling will keep the maximum value present in the matrix. In addition to the size
of the pooling filter, the stride determines how far the filter is moved each time. Figure
[2.11] shows an example of max pooling with a stride of [2,2].

- W A -
N = O O
N = O N
B O 00 W

W

Y

Figure 2.11: Example of max pooling with filter size (2x2) and stride of [2,2] [6]

19

2.5.4 Fully connected layer

Another common inclusion in a[CNN]is the fully-connected layer(s). These are typically
included to make classification or regression decisions [43]. After the convolution and
pooling layers of a[CNN] the output is flattened into a single vector before being fed into
a fully connected neural network. Any type of neural network can be used for this part of
the process, although feed-forward networks are typically used.

2.5.5 Shared weights

Whereas fully connected layers have a unique weight and bias for each of its neurons, the
convolutional layers have a feature called shared weights. This comes from the fact that
the weights and biases in the convolution layer are shared as a vector, also known as a
kernel. These kernels then represent the values of the filter that is used for the convolution
operation discussed in section [2.5.2]

Because the convolution process is performed with the same filter over the entire input
field, features are detected with indifference to their location in the input. The main benefit
of shared weights is, therefore, the fact that the becomes invariant to a translation
of the features in the input data. This also has an additional effect of reducing overfitting.
Another benefit with shared weights is that the training process of the is faster, due
to having fewer parameters to optimise.

2.5.6 Local receptive field

Another drawback of fully connected comes from the exponentially increasing
number of connections when adding additional neurons. This consequently leads to an
increase in the number of parameters, resulting in a slower training process. Coupled with
the fact that input data in the form of images tend to have large dimensions, in order to
conserve as much of the features as possible, the approach with fully connected layers
ends up being extremely poor.

There is however no need for layers to be fully connected when the input data is in the
form of images. This is because images tend to have a high correlation between adjacent
pixels/voxels compared to distant ones. This is taken advantage of in by having
neurons connect to a local region in the previous layer [37]. This local region for the input
section of the neuron is referred to as the receptive field of the neuron.

The size of the receptive field of neurons can be increased by stacking multiple con-
volution layers or by sub-sampling (pooling) [48]. Increasing the size of the receptive
field lets the network learn increasingly abstract features. The feature detection of a[CNN]
is therefore relatively basic in the first layers, while later layers are able to detect more
complex features.

20

—=0 0000

X

Figure 2.12: Neurons in a convolutional layer (blue), and the corresponding receptive field (red) [7]]

2.5.7 Patch-based analysis

As mentioned earlier, input data in the form of images tend to have large dimensions to
preserve as much information as possible. Because of this, and the fact that are
relatively computationally costly, are not applicable for high-resolution images.
This is especially true when dealing with three-dimensional images. This is where patch-
based analysis is useful.

This approach takes advantage of the shared weights feature of which lets them
detect features while being invariant to translations. This makes it possible to input the
image in the form of smaller patches, which essentially treats the input as a series of
smaller images that are pieced back together after the segmentation masks are generated.

Convolutional
Network

Figure 2.13: Patch-based analysis, as presented in Niftynet documentation [§]]

2.6 Semantic segmentation loss functions

The two most common loss functions for semantic segmentation tasks is the pixel-wise
[cross entropy (CE)| and the Dice loss. The Dice loss is first described in section [2.6.1}
Next, the [CE]loss function is detailed in section[2.6.2] And lastly, section [2.6.3] will detail
a loss function that combines Dice and [CE]into a new loss function called DicePlusXEnt,
which was proposed in the published paper for nnU-Net [49].

21

2.6.1 Dice loss

The Dice loss function is based on the Sgrensen-Dice coefficient, which is further detailed
in section The Dice loss function was introduced as a novel objective function
by Milletari et al. in 2016 for 3D medical image segmentation [50]. The proposed loss
function calculates a value between 0 and 1, with the goal of maximising this value. The
equation for this Dice loss function is presented in equation [2.10] below, where the sums
run over the N voxels, of the predicted binary segmentation volume p; € P and the ground
truth binary volume g; € G.

2 va DiGi
i i+ g

Dice loss is a measure of the overlap between the prediction and the ground truth.
The main advantage of this approach is that the total size of a class is irrelevant, and only
the percentage of correctly predicted pixels is of importance. This works well for class-
imbalanced problems. The one drawback of this loss type, however, is that it has a high
variance. This is because missing a few pixels in a small object can have the same effect
as missing almost the entirety of a large object.

Another important thing to note is that it is generally a good idea to train models by
minimising the loss that will be used to evaluate the performance after training. This is an-
other reason that Dice loss is commonly used, due to the popularity of the Dice coefficient
evaluation metric discussed later in section[2.8.2]

(2.10)

2.6.2 Cross entropy

[CE is another common approach, and is calculated on individual pixels, in contrast to the
aforementioned Dice loss. In tasks with multiple classes, the is calculated for each
class separately and summed together. The equation for calculating the for multiple
classes is presented in equation [2.11] where y is the ground truth value, ¥ is the predicted
value, and ¢, j is the current pixel location.

CE = —y; ;- log(§i;) @2.11)

While avoids the problem that Dice loss faces with regards to disproportional im-
portance of smaller classes, it, in turn, has to deal with the opposite problem of easily
ignoring smaller classes in favour of the larger ones.

2.6.3 DicePlusXEnt

An attempt at combining the benefits from both the Dice and loss types is to simply
combine them, as shown in equation[2.12]

Ltotal = Ldice + LCE (212)

This the loss type that was the most promising for the original nnU-Net [49]. One
other difference is that for the implementation of this loss type in Niftynet, the Dice loss is
calculated slightly different than presented in section [2.6.1] The Niftynet implementation

22

uses the Dice loss calculation presented in equation [2.13] below, where u is the softmax
output of the network and v is a one-hot encoding of the ground truth segmentation map.
Both u and v have shape I x K with ¢ € I being the number of pixels in the training
patch/batch and k£ € K being the classes.

2 _ukok
Ldice = T Z ZZEI“Z s (213)

|k ek Dier uf + Dier vf

2.7 Data augmentation

Data augmentation is, as mentioned previously, one of the methods used to combat over-
fitting. The idea behind data augmentation is to artificially increase the size of a training
dataset. This is achieved by creating new training samples by augmenting samples from
the original dataset. The reason this can be beneficial is that the training dataset is ex-
panded to include a variety of conditions that can be expected to appear during testing
or validation. These augmentation options can include small changes in scaling, rotation,
brightness, and contrast to name a few. The goal is that these additions to the training
dataset will result in the model being invariant with regards to these conditions, such that a
small rotation as a result of imprecise data generation does not negatively affect the model
accuracy.

Data augmentation is however not a straightforward procedure, and it requires some
level of expertise to be able to choose the best augmentation options. It is important to not
increase the amount of irrelevant data. For the case of supervised learning, the augmented
data samples will retain the same label as the original data sample we augmented. If for
example a model is trained to determine which direction a car is facing, then it would be a
bad idea to include rotation in our data augmentation as we would suddenly have samples
with wrong labels. It is therefore essential to understand the dataset well to be able to
choose augmentation options that are able to generate samples with plausible conditions.

2.7.1 Elastic deformation

Elastic deformation is a data augmentation technique that warps the original image using
a displacement field. The utilised approach to generate this warping varies, but the elastic
deformation within Niftynet is based on the approach by Milletari et al. in [S0]. This
approach is described as: ”During every training iteration, we fed as input to the network
randomly deformed versions of the training images by using a dense deformation field
obtained through a 2 x 2 x 2 grid of control-points and B-spline interpolation.”

2.8 Evaluation metrics

2.8.1 Machine learning evaluation metrics

A very common way to represent prediction results from a classification problem is by
using a confusion matrix, as shown in figure 2.14 The confusion matrix is a summary
of the number of correct and incorrect predictions. The terms of the confusion matrix are

23

often used as the foundation for more advanced evaluation metrics, which are discussed in
more detail further below.

Predicted class

Positive Megative

Positive TP FN
Actual

class
Megative FP TN

Figure 2.14: Confusion matrix [9]

The confusion matrix terms are defined in the following list:

e [True positive (TP)} Actual class is positive, and is correctly predicted to be positive.

e [True negative (TN)t Actual class is negative, and is correctly predicted to be nega-
tive.

o [False positive (FP): Actual class is negative, and is incorrectly predicted to be pos-
itive.

o [False negative (FN)i Actual class is positive, and is incorrectly predicted to be
negative.

Pixel accuracy

One of the simplest ways to evaluate a model is by using the pixel accuracy. This is
a simple metric for the percentage of correctly predicted pixels. It is an especially bad
indication of performance when dealing with class imbalance, due to only considering the
number of correctly predicted pixels. The calculation for this metric is shown in equation

214 below.

[P +[N]
[P+ [N|+[FP|+[FN]

accuracy = (2.14)

2.8.2 Evaluation metrics for medical imaging

When it comes to medical image segmentation tasks, two main evaluation metrics are
commonly used, called the Dice coefficient and the Jaccard index [51l]. These are both
metrics that evaluate the overlap (union) between two samples. These are therefore used
in situations where a ground truth is available to compare against the predicted output.

24

Jaccard index

The Jaccard index [52]], also known as “intersection over union”, is a combined measure
of the similarity as well as the diversity of sample sets. The Jaccard index is defined as the
size of the intersection divided by the size of the union of the sample sets, as presented in

equation [2.15]
(AnB) (AN B)
AUB |A|+|B|-|ANB]

Figure |T_13| below shows a visual indication of the Jaccard index, as the area of overlap
divided by the area of union between two samples.

J(A,B) =

(2.15)

Area of Overlap
loU =

Area of Union

Figure 2.15: Visual representation of the Jaccard index (IoU) [10]

Dice coefficient

The (Sgrensen-)Dice coefficient [33][54]], often referred to as the “similarity coefficient”
or F1 score is one of the commonly used evaluation metrics for comparing two samples.
The calculation of the Dice coefficient is presented in equation [2.16| below, where A and
B are the two sets being compared, and | A| and | B| is the number of elements in each set.

_ 2(ANB)
| Al +|B|

Due to the Dice coefficient and Jaccard index being very similar, they can easily be used
to represent each other, as shown in equationm

D(4, B) (2.16)

2(D) 2J
e D=-"- 2.1
J) and 711 (2.17)

25

26

Chapter

Related work

This chapter will look into some of the previously published works that relate to this
project. Section [3.1] presents traditional rule-based techniques for medical image segmen-
tation. Section [3.2] will discuss the current state of deep learning applications in the med-
ical imaging field. And section [3.3]1ooks into attempts at segmenting knee joint anatomy

through the use of

3.1 Traditional rule-based segmentation techniques for med-
ical image segmentation

Medical images are one of the most complex images to segment. Not only are anatomical
structures typically variable in appearance, but they also have a high level of complexity.
Coupled with varying sizes for objects of interest and diverse image modalities, the re-
sulting task is not easily solved. There are simply no general segmentation technique or
universal feature set that can accurately segment any medical image. There are however
some popular segmentation techniques, as is well explained in [S5], which are outlined
below.

The basis for rule-based segmentation techniques is an assumption that image features
over a specific region follow a set of heuristic rules. The most simple and straightforward
approach for this is the thresholding, in which features are defined only based on pixel
intensity. The benefits of thresholding are its fast computation speed, although the results
are rarely sufficient. The simplest thresholding method only divides the image into two
regions, the object of interest and the background, and accomplishes this by labelling a
pixel as the object of interest if the pixel intensity exceeds a set value, otherwise, it is
labelled as the background. The threshold can be either fixed to a value, or adaptive.
Common ways to set the value are mostly statistical analysis of either the entire image or
local areas around the currently evaluated pixel.

The main downside of thresholding, however, lies in its simple nature. Any overlap
in intensity between the object of interest and the background will result in an inaccurate

27

segmentation. Furthermore, a common requirement for medical image segmentation is
that objects should be connected to a region. One approach that solves this is the region-
growing approach, also called region merging. This approach first selects a few initial
seeds, then the seeds grow by including any neighbouring pixels that comply with a set of
criterion. These criteria are predefined to specify the required properties of the regions. As
a result, these segmentation results rely heavily on these criteria and the initial selection of
seeds. [56] [57]]

Another region-based approach is the region split-and-merge. In this approach, the
image is initialised as a set of regions, and subsequently split and merged according to a
set of rules. Just as with the region-growing, the split-and-merge is also highly dependant
on the initialisation. Split-and-merge has however been successfully applied to several
problems, including large brain lesions [38], cavity deletion [S9], retinal blood vessels
[60], and pulmonary nodules [61]. Region-based approaches are also often used as semi-
automatic segmentation tools to serve as a foundation for manual segmentations [62].

3.2 Deep learning applications in medical image segmen-
tation

In 2014, Mengqiao et. al [63] introduced one of the first 3D models to segment
brain tumor images. This model was a 22-layer deep This idea was followed
by Kamnitsas et. al [64] in 2015, where an 11-layer deep, double pathway, 3D
was developed for segmenting brain lesions in images. The resulting improvements
were well explained by Hesamian et. al [65]] as the following: “There were two parallel
pathways with the same size of the receptive field, and the second pathway received the
patches from a subsampled representation of the image. This allowed processing of greater
areas around the voxel, which benefited the entire system with multi-scale context. This
modification along with using a smaller kernel size of 3 x 3 has produced better accuracy
(an average Dice coefficient of 0.66). On top of that, a lower processing time (3 min for a
3D scan with four modalities) compared to its original design has been achieved.”

In 2015, Ronneberger et. al [66] proposed a[CNN]architecture for segmenting biomed-
ical images, called U-Net. This architecture built on the [fully connected neural network]|
(FCN)| architecture that was proposed by Long et. al [67] in 2014. The architecture con-
sisted of a contracting path to capture context and a symmetric expanding path that enabled
precise localisation. This proposed method won the "ISBI cell tracking challenge 2015,
for segmentation of neuronal structures in electron microscopic stacks.

Also in 2015, Zhang et. al [68]] proved that the performance of [MRI|image segmenta-
tion was significantly improved when using multi-modality input images for 2D

In 2016, Milletari et. al [S0]] proposed an approach to 3D image segmentation based
on a volumetric with a similar architecture to the U-Net mentioned above. The
proposed solution, named V-Net, was developed for segmenting images depicting
prostate. The model was evaluated on the "PROMISE 2012” dataset, in which it achieved
a Dice score of 0.869. This score was just shy of the best-reported score of 0.879, which
was achieved by Vincent et. al [69]], by a method based on active appearance models.

28

3.2.1 U-Net variants

Due to the versatility and performance of the U-Net architecture proposed by Ronneberger
et. al [66] for segmenting biomedical images, multiple improvements have been built as
extensions of this architecture.

The 3D U-Net was proposed by Cicek et. al [/0] in 2016. This proposed network took
the 2D convolution, 2D up-convolution, and 2D pooling layers that were present in the
original 2D U-Net architecture, and replaced them with their 3D equivalents, namely 3D
convolutions, 3D transposed convolutions, and 3D pooling layers. Another improvement
included doubling the number of kernels before max pooling in both the contracting path
and the expanding path. This change eliminated the bottleneck as suggested by Szegedy
et. al in [71]. The proposed network was able to achieve a Jaccard index of 0.863 in
segmentation of the Xenopus kidney, in which a 2D U-Net (which segmented the data
slice by slice) had a Jaccard index of 0.796.

In 2018, Oktay et. al [72] proposed an attention gate U-Net model, similar to the
approach proposed by Jetley et. al [73]]. The functionality of these attention gates was to
act as filters, filtering out noise and irrelevant information from skip connections. When
compared to the standard U-Net model, the performance saw an increase of 2-3%.

In 2018, Zhou et. al [74] proposed a nested U-Net variant, called "UNet++". This
proposed variant redesigned the skip pathways of the original U-Net, and as a result,
transformed the connectivity of the encoder and decoder parts. When compared to the
standard U-Net, this proposed variant achieved an average increase in the Jaccard index of
3.9, when applied to nuclei segmentation in the microscopy images, liver segmentation in
abdominal CT scans, and polyp segmentation in colonoscopy videos.

Also in 2018, the U-Net variant utilised in this thesis, called nnU-Net ("no-new-Net”),
was proposed by Isensee et. al [49]. The idea behind this variant was that the original
U-Net “comprises several degrees of freedom regarding the exact architecture, preprocess-
ing, training and inference”. nnU-Net was therefore designed as a self-adapting network,
such that the design of the network was dependant on the input data. “’For each task, the
nnU-Net automatically runs a five-fold cross-validation for three different automatically
configures[sic] U-Net models and the model (or ensemble) with the highest mean fore-
ground dice score is chosen for final submission”. The proposed network was submitted
to the "Medical Segmentation Decathlon” in 2018 [[75], in which it received first place
when tested on 10 different segmentation tasks.

In 2019, Ibtehaz et. al [[76]] proposed a variant where the standard convolutional
layers of the U-Net architecture was replaced by a customised block called "Multires
block”. This "Multires block” was inspired by the “Inception block™ previously proposed
by Szegedy et. al [[77]] in 2014. This proposed architecture was tested on five different
datasets and saw improvements of 0.62%, 1.14%, 2.63%, 5.07%, and 10.15% over the
standard U-Net.

29

3.3 Convolutional neural networks for segmentation of
knee joint anatomy

In 2007, Folkesson et. al [78] presented a multi-class classification method, that com-
bined two binary [k-nearest neighbours (k-NN)| classifiers. The binary classifiers were
divided such that one was used to find the tibial medial cartilage, whilst the other found
the femoral medial cartilage. This resulted in the segmentation of three classes, the two
aforementioned ones and the background. This method was tested on 114 unseen scans
and achieved a mean Dice score of 0.8135 for the tibial, and 0.77 for the femoral.

In 2013, Prasoon et. al [79] proposed a voxel classification system based on integrating
three 2D each having a one-to-one association with the xy, yz and zx planes of
a 3D image, respectively. This approach was applied to the segmentation of the tibial
cartilage in low field knee scans. This method was a binary classification to segment
the tibial cartilage, and was tested on the same 114 unseen scans as Folkesson et. al [78]
as mentioned above. The achieved mean Dice coefficient was reported as 0.8249 for the
tibial cartilage.

In 2017, Antony et. al [80] utilised a[FCN|to quantify the severity of
This approach used a weighted ratio of categorical and mean-squared loss as
its loss function. This approach was trained and tested both separately and combined
on both the OAI dataset containing 3146 training images and 1300 test images and the
MOST dataset containing 2,020 training images and 900 test images. The resulting Jaccard
indexes were 0.83, 0.81, and 0.83 respectively.

In 2018, Zhou et. al [81]] proposed an extensive segmentation pipeline by combining a
semantic segmentation[CNN] 3D fully-connected [conditional random field (CRF)] and 3D
simplex deformable modelling. The method was evaluated on 3D fast spin-echo (3D-FSE)
[MR]|image datasets, consisting of 20 subjects. The samples consisted of 13 unique classes,
namely the background, femur, femoral cartilage, tibia, tibial cartilage, patella, patellar
cartilage, meniscus, tendons, muscle, joint effusion, fat pad, and other non-specified tis-
sues. All musculoskeletal tissues after the full process had a mean Dice coefficient above
0.7.

In February 2019, Ambellan et. al [|82] presented a method for automatic segmentation
of knee bones and cartilage from [MRI| images. This approach combined 3D Statistical
Shape Models and 2D as well as 3D This approach was trained and tested on three
different datasets, namely the SKI10, OAI Imorphics, and OAI ZIB datasets, containing
150, 88, and 507 images respectively. The results were summarised for the OAI ZIB
dataset, in which the model achieved a Dice coefficients of 98.5, 98.5, 89.9, and 85.6, for
the femoral bone, tibial bone, femoral cartilage, and tibial cartilage respectively.

In June 2019, Homlong [37/]] utilised a U-Net for the semantic segmentation of
the bones, the and the of the knee joint. That project was also performed in
collaboration with Sunnmgre MR-Klinikk. In that project, the dataset consisted of samples
from 17 difference knees (with 10 being used for training), with three image modalities for
each, and the dimensions of the images were 275 x 400 x 400. The resulting performance
for segmenting these 4 classes was reported with a Dice score of 0.99314 4+ 0.00173, and
a Jaccard index of 0.98638 £ 0.00341.

This current thesis can thereby be seen as a continuation of the work presented by

30

Homlong [37], seeing as the main differences are increased image dimensions to 400 x
400 x 400, training dataset doubled from 10 to 20 subjects, the number of classes increased
from 4 to 13, and the utilised [CNN]is different.

In September 2019, Byra et. al [83]] developed a deep learning-based method for knee
menisci segmentation in 3D ultrashort echo time (UTE) cones [MR|imaging, and to auto-
matically determine [MR]relaxation times, namely the [TT] [TTp , and [T2] parameters. This
approach was utilised for assessing knee The dataset consisted of 61 samples man-
ually segmented by radiologists. Transfer learning was applied to develop 2D attention
U-Net for the menisci segmentation based on each radiologist’s separately.
This method was a binary segmentation with the menisci as the sole The two models
that were developed achieved Dice scores of 0.860 and 0.833.

In October 2019, Pettersen [|84] utilised a U-Net inspired called "MartiNet”, to
segment the bones, thdACL] and the of the knee joint. This project was carried out
alongside the work by Homlong [37] mentioned earlier. They were both a collaboration
with Sunnmgre MR-Klinikk, and they both utilised the same datasets as a result. The
resulting segmentations were of similar accuracy to those achieved by Homlong, with a
pixel accuracy (not Dice score) reported as 99.60%. ”As further work, this CNN could
detect more labels. The rate of learning in this CNN was fast and it had an accuracy
of better than 95 % after only a few iterations. This shows that there is space for more
complex problems and it is possible to add more labels to the segmentation”. Thus, this
current thesis performs this task of further work that was suggested by Pettersen.

In February 2020, Chen [85] proposed a deep 3D to segment the knee bone in
a resampled image volume to enlarge the contextual information and incorporating prior
shape constraint. Additionally, in order to restore the bone segmentation back to the orig-
inal resolution, a restoration network was also proposed. The cartilage was segmented
using a conventional U-Net-like network. The ultimate results were the combination of
the bone and cartilage outcomes through post-processing. The solution was assessed by
using the dataset from ”Grand Challenge SKI110”. The proposed method achieved a Dice
score of 0.98, 0.98, 0.89, and 0.88, for the femur bone, tibia bone, femur cartilage, and
tibia cartilage respectively.

31

32

Chapter

Methodology

This chapter will describe the methodology for this thesis. The utilised hardware and
software is presented in sectiond.1] Section4.2]details the dataset for this thesis, including
the generation and formats of the data. The specifics of the applied are detailed
in section 4.3] And lastly, the methodology related to hyper-parameter optimisation is
presented in section .4}

4.1 Hardware & Software

4.1.1 Hardware

The hardware consisted of a single computer with two identical[GPUs| where one of those
was reserved for this thesis. Thus, the computer components utilised in this thesis,
are presented in the following list:

e [GPU: NVIDIA GeForce RTX 2080 Ti, 11 GB|video random access memory (VRAM)]

e [CPU: AMD Ryzen Threadripper 2950X 16-core Processor, 3.50GHz.

e random access memory (RAM): 64GB, 2667 MHz.

4.1.2 Software

The software utilised as a part of this thesis is provided in the following list, including a
short description for their function:

o Niftynet: [86] [87] Niftynet is an open-source platform implemented based on Ten-
sorFlow [application programming interface (API)| for deep learning in the medical
imaging domain. Niftynet was used to create, customise, train, and evaluate neural
networks during this thesis.

o six: [88] Compatibility library for Python 2 and 3. Prerequisite for Niftynet.

33

e NiBabel: [89] NiBabel is a Python library used to read and write some common
neuroimaging file formats. Prerequisite for Niftynet.

e SciPy: [90] SciPy is a collection of open-source Python-based software for mathe-
matics, science, and engineering. Prerequisite for Niftynet.

e NumPy: [91] NumPy is the fundamental package for scientific computing with
Python. It adds support for multi-dimensional arrays and efficient computation of
these arrays. Prerequisite for Niftynet.

e Pandas: [92] [93] Pandas is an open-source Python library that adds functionality
for data analysis and manipulation. Prerequisite for Niftynet.

e Pillow: [94] Pillow is a Python imaging library, that adds image processing capa-
bilities. Prerequisite for Niftynet.

e Blinker: [95] Blinker is a Python library that provides object-to-object and broad-
cast signalling for Python objects. Prerequisite for Niftynet.

e TensorFlow: [96] TensorFlow is an end-to-end open source platform for[ML] Ten-
sorFlow is the [ML] platform that Niftynet is built upon. Prerequisite for Niftynet.

e CUDA: [97] "CUDA Toolkit provides a development environment for creating high
performance GPU-accelerated applications”. Prerequisite for Niftynet.

o ITK-SNAP: [98] ITK-SNAP is a software application used to segment structures in
3D medical images. This software was also used to view and export segmentation
results in this thesis.

e Excel: [99] Excel was used to import evaluation score csv files and visualise them
as tables.

4.2 Data

The data for this thesis was provided by Sunnmgre MR-Klinikk. The data was generated
by scanning volunteers. The sampling of human (knee) data did not contain any iden-
tifying or sensitive information about the volunteers, and was approved by the Regional
Committee for Medical and Health Research Ethics (REK nr. 61225). Because this thesis
was only a part of a larger ongoing project, the data was provided incrementally through-
out the thesis work. More specifically, the validation dataset was not available until later
parts of the thesis, leading to an inability to properly test/evaluate the trained models at the
earlier stages of the thesis. This was somewhat alleviated by training models during the
earlier parts of the thesis, and delaying the evaluation until a dataset was available.

The data was generated by [MRI| which is explained in more detail in section[2.2] The
data was generated in three different image weightings for each patient, namely as
[PD| and [FS| weighted images. The images were all aligned to the same axis orientations
and with identical dimensions. The dimensions of the images were 400 x400x 400,
resulting in a total of 64 million voxels per image. The voxel dimensions were [0.4mm,

34

0.4mm, 0.4mm]. These voxel dimensions are much smaller than standard @] images,
resulting in a higher resolution. The reason the images were generated with a higher than
normal resolution was that they were generated specifically for the task of an automated
segmentation, in which the segmented output would be used for simulation and [AR{VR]
purposes.

The training dataset consisted of 20 patients, with 3 differently weighted images for
each, whilst the validation dataset contained 5 patients, also with 3 differently weighted
images for each. The segmented ground truth masks for both the training and validation
datasets were manually segmented by Sunnmgre MR-Klinikk. The segmented classes are
presented in the following list:

1. Bone (medulla)
2. [PCL

3. [ACT

4. Muscle

5. Cartilage

6. Bone (cortex)
7. Arteries

8. Collateral ligaments
9. Tendons

10. Meniscus

11. Fat

12. Veins

The segmented ground truth was generated similarly, but with some differences due to
the state of the on-going project when they were generated. When the validation dataset
was generated, the ground truth had been updated to include more detailed segmentation
of the tendons and veins (class 9 and 12). Due to models already being trained on the
older training dataset, in which these classes were labelled differently in the ground truth,
the evaluation score is not accurate for these two classes. The evaluation score for class
9 is still included in this thesis, as the differences for this class were not too large, whilst
class 12 has been ignored in the evaluation scores due to this large difference rendering it
obsolete.

The total amount of data utilised for this thesis is then summarised to 3 differently
weighted images and one ground truth segmentation mask, for each patient. This adds up
to 25x4 = 100 Nifti files.

35

4.3 Convolutional neural network implementation

This thesis focused on optimising the nnU-Net implementation of a 3D U-Net, as described
in [49]. This choice was largely because the network achieved good results in medical
decathlon 2018 (which is a somewhat similar dataset) [[75]]. The main difference from the
standard 3D U-Net is that the input size is equal to the output size, due to using padded
convolutions. Furthermore, the leaky ReLu activation functions offer non-linearity. The
number of filters before upsampling is reduced. Normalisation is implemented as instance
normalisation as opposed to batch. Fits a spatial window 128x128x128 with a batch size
of 2 on one TitanX GPU for training. And lastly, no learned upsampling, resulting in linear
resizing. [100]

4.4 Hyper-parameter optimization

One major drawback when using Niftynet is that it does not include support for hyper-
parameter optimization. At the same time, however, it is worth noting that hyper-parameter
optimization does increase the computational requirement in the short term. It is therefore
not necessarily feasible for the current task presented in this thesis due to the sheer size
of the data, which already pushes the training time to multiple days at a minimum for a
single model. Thus, any optimization methods (which has to train models for each desir-
able parameter combination, and then evaluate it) would extend an already long training
process.

Furthermore, the validation dataset was generated gradually throughout the thesis.
This would have led to either inconsistency between models caused by different valida-
tion datasets, or a lacking validation dataset if the provisional dataset available at the start
of the thesis would be kept for the entire duration. A final alternative would be for the
training dataset to have been reduced in order to increase the size of the validation dataset.
Neither of these 3 options would have been ideal.

The conclusion is then that hyper-parameters had to be optimized manually, where the
training of multiple parameter combinations would be training throughout the thesis, and
the evaluation of the models would be delayed until the validation dataset was completed.

One last thing to mention is that the choice of parameter changes was an iterative pro-
cess. Some changes were chosen almost at random to simply test the impact of a parameter.
Other changes were chosen after evaluating trained models on the partial validation dataset
to determine the best parameters for continued training. As a quick example, two models
would be trained with similar parameters except for one of them including data normalisa-
tion. Then the trained models would be evaluated. If the model without normalisation had
a significantly better evaluation score, then the subsequent models would also be trained
without normalisation. Evaluation of trained models on the partially complete validation
set was therefore used to determine which hyper-parameters to train subsequent models
with.

One caveat, however, is that certain parameters can potentially work well together with
certain other parameters. There is also the clear uncertainties and potentially inaccurate
evaluations when using a small or only partially complete validation dataset. Therefore,
no parameter was simply discarded or set to a fixed value for all subsequent models. The

36

evaluation of the partial validation dataset was only used as a rough indication of the
impact from a given parameter.

The specific choice of hyper-parameters experimented with for the training is detailed
in the following chapter.

4.5

Baseline model configuration

The following list presents the parameter configuration that was used as a baseline. Any
parameter that is not mentioned to be a specific value for a certain experiment, is thereby
kept at this baseline value. The loss type is not included in this baseline, but rather specified
for each model (e.g. "Dice baseline” or "DicePlusXEnt baseline” model).

Resolution (pixel dimension): (0.4,0.4,0.4)

Spatial window size: (128,128,128) for all training, (224,224,224) for inference
results presented after sections[6.1]and

Normalisation: False
Learning rate: 0.0001
Data augmentation False
Window sampler: Uniform
Batch size: 1

Queue length: 5

Samples per volume: 1

Activation function: Leakyrelu

37

38

Chapter

Experiments

This chapter will present the various hyper-parameters that were experimented with within
this thesis. The chapter will detail the functionality of the hyper-parameters, as well as
establish the reasoning and hypotheses behind the conducted experimentation.

5.1 Resolution (pixel dimension)

To change the resolution of the input data, the data can be resampled. In Niftynet, this
option is set by the parameter pixdim”. This parameter sets the desired voxel dimensions
for the input image, such that input data is resampled to the desired voxel dimensions
before being fed into the network. As mentioned in section 4.2} the data for this thesis
was generated with voxel sizes of 0.4mm. Therefore, if the resolution of the image were
to be halved along each axis (resampled from [400,400,400] to [200,200,200]), then the
’pixdim” parameter would be set to 0.8mm.

The hypothesis around experimentation with this parameter was based around an issue
referred to as “false positive volume”. This volume initially appeared on all attempts
to train a nnU-Net model, and changes to various other parameters had minimal impact.
The shape of this volume seemed to be constrained to a cube with similar size to the
spatial window size, leading to a suspicion that this parameter was related to the issue.
But because of the memory limitations for the spatial window size mentioned in the next
section, the only alternative was to decrease the size of the input data.

Thus, experimentation with this parameter was used to investigate the correlation be-
tween the size of the input data and the spatial window. More specifically, the experimen-
tation aimed to check whether or not the difference between these two sizes was the cause
of this "false positive volume”. This issue is explained in more detail in section [.1]

39

5.2 Spatial window size

The spatial window size defines the spatial size of the input of a convolutional network
[8]. The spatial window size is an array of three integers [X,y,z], that specify the size of
the input window used in the patch-based analysis, as detailed in section There is
therefore a hard requirement for this parameter to not exceed the size of the images in the
dataset. Furthermore, it is generally desirable to keep this parameter as large as possible
within hardware limitations. This is because there is usually a lot of global information
that can be learned over the abstraction of multiple layers that can be lost with smaller
patches.

The only requirement for this parameter is, as mentioned above, that it can not exceed
the size of the data samples in the dataset (including padding size). But in addition to this,
there are also constraints depending on which network module is used. For the no_new_net
module in Niftynet, the window size is required to be divisible on 16 due to the network
having max-pooling 4 times.

The maximum value for the spatial window size also depends on the available hard-
ware. More specifically, the memory consumption is heavily impacted by this parameter,
and the available memory is therefore likely the deciding factor for this parameter. It is
also worth noting that this available memory depends on where the training is performed.
When training is set to run on the [GPU] the associated[VRAM]| will be utilised. And simi-
larly, by running the training on the [CPU] the installed[RAM]will be used. This means that
models trained on the can use a higher spatial window size if the available amount
of is sufficient. However, using the is in almost all cases preferred due to a
significant difference in computational time.

5.2.1 Training

The original idea for this parameter was that it should be as high as possible for best re-
sults, practically meaning as high as possible without experiencing[out of memory (OOM)|
errors. The reasoning behind this is that one would ideally input the entire image into the
model in order to preserve the most information possible, but the hardware would limit the
possible size of the input. This then led to the assumption that a larger input size for the
model would carry more information, leading to a potentially more accurate model.

5.2.2 Inference

As mentioned above this was originally set to the same value as the one used for training.
This was with the assumption that any maximum value for training would also be the
maximum value for inference due to both operations using the exact same model and
input data size.

5.2.3 Additional hypothesis

A secondary hypothesis was developed at a later point when resuming nnU-Net exper-
imentation, after a brief period of investigating different network modules. Due to the
“false positive volume” issue mentioned above having a cubed size seemingly equal to

40

the spatial window size, it was assumed to be correlated in some way. The goal of this
experimentation was then to investigate whether or not this issue was correlated to this
parameter, and if so for which values of the parameter it occurs.

5.3 Loss type

Loss type is the name used in Niftynet configuration files for the type of loss functions.
The loss function was discussed generally in section [2.4.3] and in detail for segmentation
tasks in section [2.6] but is briefly summarised as the function responsible for estimating
the accuracy of a model during its training process.

The hypothesis for experimentation with this parameter was that DicePlusXEnt would
perform the best, based on results published in the original paper for nnU-Net [49]. It is
however worth noting that the reported results were found by using a completely different
dataset, both in terms of entities, image modality, image geometry, and dataset size.

As detailed in section 2.6 experimentation with loss types was mainly limited to Dice
and DicePlusXEnt.

5.4 Normalisation

Input data normalisation is often considered to be strictly beneficial and an important ad-
dition to include when training The importance and benefits achieved through
normalisation have been shown for a large variety of applications [101] [102] [103].

Some of the reasons normalisation is important is that when transforming the data such
that the mean value is close to zero, any data which is exclusively positive or negative will
end up with both positive and negative values after normalisation. Another benefit is from
scaling the data down to a standard range, which prevents issues caused by varying in-
put value scales. Both of these aspects are important for the training process, especially
when considering the activation function designs discussed in section The cumu-
lative result of this is in theory to make the data much easier for the to learn from.
Normalisation in Niftynet is applied in the form of histogram standardisation, as described
in [[104].

The hypothesis for this parameter was that it would speed up the training time, due to
making the data more computationally efficient. Secondly, it was assumed that normalisa-
tion would increase the accuracy of a model, as seen in other applications in the medical
image segmentation field such as in [[1035].

5.5 Learning rate

The learning rate is explained in more detail in section[2.4.7]but can be summarised as the
step size used to update the model weights.

The hypothesis for the learning rate was that it would mainly impact training time.
The learning rate was assumed to not directly impact the performance of the final trained
model, but rather have an impact on the time taken to reach said, final model. For this

41

reason, the learning rate was not tested extensively, and experimentation was in essence a
process of finding a good learning rate value, that was used for training subsequent models
throughout the thesis. The initial learning rate value applied for the nnU-Net models sim-
ply followed the one used in the original paper presented in [49], being a value of 0.0001.
This learning rate was considered to be on the low side of commonly used values, and
most attempts, therefore, included increasing the value, although some attempts were also
made with a lower learning rate.

5.6 Data Augmentation

Data augmentation is explained in more detail in section[2.7] The specific options available
in a Niftynet configuration is detailed in [[LO6]]. When testing the potential benefits for data
augmentation in this thesis, the following options were applied:

o Rotation angle: This randomly rotates each axis a random number of degrees based
on the provided interval, and was set to [-10, 10].

e Scaling percentage: This randomly scales each axis based on the provided range,
and was also set to [-10, 10].

e Elastic deformation: This parameter is discussed in detail in section At-
tempts at data augmentation in this thesis did include this parameter as it has been
shown to increase accuracy in similar problems previously, such as in [107] [LOS]
[LO9].

Due to the choice of augmentation parameters being a vital part of the success when it
comes to data augmentation, and the fact that each attempt would require a significant
amount of training time, the amount of data augmentation experimentation was limited.

The hypothesis for this parameter was that due to the low number of samples in the
training dataset, the addition of data augmentation would improve the generalisation of the
model. At the same time, the training time will increase by quite a lot, and may therefore
not be worth adding as it would reduce the overall number of trainable models, and thus
limit the amount of experimentation for other parameters.

42

Chapter

Results

This chapter will present the results from the experimentation detailed in the previous
chapter. The evaluation metrics used to compare and evaluate the results are explained
in section [2.8.2] 3D images of the segmented outputs are set to hide the fat (label 11) to
avoid obscuring all other labels from view, except for sections[6.1]and [6.2]as the segmented
output is not interesting for these sections. The evaluation scores also do not include label
12, due to the large difference between the ground truth segmentation of this class in the
training and validation datasets. Label 9 also suffers a slightly lower score due to this, but
not enough to invalidate it.

The evaluation metrics used to present the accuracy of the models, detailed in section
[2:82] are the dice coefficient and Jaccard index as well as the standard deviation for each of
them. At the beginning of this chapter, the evaluation scores are not relevant, and therefore
not shown. This is because this chapter will first focus on figuring out a solution to an issue
referred to as the “’false positive volume”, which is detailed and shown in section

6.1 Resolution (pixel dimension)

The “false positive volume” issue can be described as a volume of false-positive predic-
tions, contained within a cubed area. This problem initially occurred for all models of
nnU-Net that were trained, regardless of changes to other parameters. For a visual exam-
ple, the following three figures will showcase different occurrences of this issue. Figure
[6.1) shows the worst occurrence of the issue, figure [6.2] shows a normal occurrence of the
issue, and figure [6.3|shows the best occurrence of the issue.

43

Figure 6.1: Worst example of the “false positive volume” issue

Figure 6.2: Normal example of the “false positive volume” issue

44

Figure 6.3: Best example of the "false positive volume” issue

When attempting to resolve this issue by changing the resolution, it was the configu-
ration for the best example that was used as a baseline. The pixel dimension was tested in
the following order 1.0, 0.5, 0.7, and 0.6. Figure @] shows the result for the unchanged
pixel dimension of 0.4. The following series of figures shows the result from the various
tested pixel dimensions, sorted in ascending order.

45

Figure 6.4: Pixel dimension 0.5mm

Figure 6.5: Pixel dimension 0.6mm

46

Figure 6.6: Pixel dimension 0.7mm

Figure 6.7: Pixel dimension 1.0mm

47

6.2 Spatial window size

The output inference for models with varying spatial window sizes is presented below. The
first attempt at increasing this parameter was to set it to the maximum possible value of
(400,400,400). This resulted in[OOM]errors for attempts at using both[GPU]and[CPU]| The
next attempts were made at spatial window size (256,256,256). This once again resulted
in an[OOM]|error message when running on the It did however manage to run on the
The downside of running on the was very apparent, as the inference required
hours as opposed to minutes to complete. It did however complete the inference, resulting
in the output shown in figure

Figure 6.8: spatial window size (256,256,256) on

The next part was to figure out if the would be able to run an inference with
a high enough spatial window to achieve similar results. The next attempt for the
inference was set to use a spatial window size of (192,192,192). Subsequent test increased
the spatial window size by 16, as that is the constraint for this parameter in nnU-Net. The
following figures present the results from this incremental increase in the spatial window
size.

48

Figure 6.9: spatial window size (192,192,192) on

Figure 6.10: spatial window size (208,208,208) on

49

Figure 6.11: spatial window size (224,224,224) on

Attempts to increase the parameter even further ran into[OOM]|errors. The only possi-
ble increase was that one of the three axes could be increased, resulting in a spatial win-
dow size of (240,224,224). The evaluation score for spatial window size (224,224,224)
is shown in figure [6.2] below, while figure [6.1] shows the score for spatial window size
(240,224,224).

- - - -

4

1 0,992134462 0,984394751 0,001251066 0,002463896
2 0,891109337 0,803951959 0,015477375 0,024907763
3 0,810747267 0,683346081 0,03670023 0,052442242
4 0,96534388 0,933013576 0,001850146 0,003456855
5 0,895075274 0,810202954 0,009148438 0,015085137
6 0,893626602 0,807767746 0,006357014 0,01037937
7 0,711286733 0,55653049 0,069412308 0,085325783
8 0,721352113 0,569581724 0,076217165 0,091107761
9 0,762198159 0,616372457 0,0236957 0,03160301
10 0,880322138 0,786284215 0,006262081 0,010043206
11 0,948343812 0,901917163 0,009524401 0,017109783
Average: 0,861049079 0,768487738 0,023263317 0,031265892

Table 6.1: spatial window size (224,224,224)

50

label Hmean_dice nmea _jaccard - n tdev_

p stdev_jaccard

1 0,992135461 0,984396378 0,0011?9826i 0,002323502
2 0,893292449 0,807445153 0,013896293! 0,022539536
3 0,813092398 0,686557618 0,0353?294?i 0,050566868
4 0,965398456 0,93311715 0,001790228! 0,003345214
5 0,894666128 0,809507255 0,0031?01235 0,013422645
6 0,892267845 0,805554712 0,006601529! 0,010757082
7 0,715226337 0,560955272 0,055515939! 0,082195243
3 0,722146863 0,570575633 0,076289206! 0,091320849
9 0,76031435 0,613912863 0,023?002195 0,031420623
10 0,87989887 0,78560894 0,006250705! 0,010013604
11 0,948580374 0,902348463 o,oosszsazi 0,017298976
|
Average: 0,86154723 0,76508904 0,022681262 0,03047314

Table 6.2: spatial window size (240,224,224)

6.3 Loss type

While different loss types were used when comparing the parameters in the remaining
section of this chapter, those are presented in the corresponding sections later in this chap-
ter. This section will cover the results from where the learning rate is the only deviation
from the baseline configuration detailed in section[4.3] The results for each loss type are
displayed at various iteration counts because the number of iterations required to reach a
satisfactory evaluation score is also relevant.

6.3.1 Dice loss type

Figures [6.12] - [6.16] and tables [6.3] - [6.7) shows the segmented output and evaluation score

for the baseline model with Dice loss type, at intervals of 10000 iterations.

51

[F- RN T SR R |

=
=

11
Average:

Figure 6.12: Dice baseline at 10000 iterations

-

0,991100165
0,461127142
0,798677822
0,966485955
0,891818142
0,874822657
0,681575163
0,718330671
0,789702245
0,887602618

0,94691876
0,818923758

-

0,982360348
0,321636586
0,665826344
0,935170298
0,804791673
0,777558292
0,520576838
0,566614457
0,652869298
0,798113978
0,899338157
0,720441484

-

0,001241724
0,205834921
0,029791399
0,003710716
0,004787657
0,006571678
0,064635233

0,08120705
0,018414797
0,011521515
0,009353286
0,039733634

Table 6.3: Dice baseline at 10000 iterations

-

0,002438804
0,165521352

0,04008734
0,006921427
0,0078039425
0,010395811
0,073815941
0,097185673
0,025200376
0,018859133
0,016827173

0,04227845

52

Wt s o b w o

=
=

11
Average:

Figure 6.13: Dice baseline at 20000 iterations

-

0,991100165
0,461127142
0,798677822
0,966485955
0,891818142
0,874822657
0,681575163
0,718330671
0,789702245
0,887602618

0,94691876
0,818923758

-

0,982360348
0,321636586
0,665826344
0,935170298
0,804791673
0,777558292
0,520576388
0,566614457
0,652869298
0,798113978
0,899338157
0,720441484

-

0,001241724
0,205834921
0,029791399
0,003710716
0,004787657
0,006571678
0,064635233

0,08120705
0,018414797
0,011521515
0,009353286
0,039733634

Table 6.4: Dice baseline at 20000 iterations

v

0,002433804
0,165521352

0,04008734
0,006921427
0,007809425
0,010395811
0,073815941
0,097185673
0,025200376
0018859133
0,016827173

0,04227845

53

W~ b s w e

=
=

11
Average

Figure 6.14: Dice baseline at 30000 iterations

.

0,992531786
0,892955413
0,828443969
0,970679179
0,899020023
0,895826962
0,731973512
0,733667964
0,794650006
0,903218283
0,954398669
0,872491979

-

0,985175519
0,806823695
0,707868755
0,943033942
0,816713907
0,811351361
0,582031472
0,585571444
0,659747119
0,823809715
0,912911129

0,78500346

.

0,000791293
0,012025414
0,024281304
0,001673803
0,009991441

0,00525023

0,06943964
0,079103334
0,019108836
0,013830644
0,008859065
0,022220091

Table 6.5: Dice baseline at 30000 iterations

-

0,001559743
0,019485357
0,035588109
0,003162206
0,016578099
0,008634817
0,087080757
0,099510597
0,026679835
0,023221847
0,016077027
0,030688945,

54

W o~ o s w e

=
=

11
Average

Figure 6.15: Dice baseline at 40000 iterations

-

0,992809825
0,907833616
0,800731232
0,970123162
0,897223088
0,893482175

0,77983912
0,740100817
0,758961247
0,894426401
0,950631253
0,871469812

-

0,985723898
0,831343111
0,669684159

0,94198284
0,813774347
0,807528318
0,6419518901
0,591880395
0,611905283
0,809155967
0,906085042
0,782816569

-

0,000900476
0,008856096
0,041631285
0,001291869
0,010384107
0,006168936

0,05027044

0,06642551
0,018252227
0,009688238

0,01016377
0,020366632

Table 6.6: Dice baseline at 40000 iterations

-

0,001777317
0,014835562

0,0576771
0,002435712
0,017102855
0,010099548
0,067764269
0,084507427
0,023939373
0,016006656
0,018308187
0,028580728,

55

O - - Y I o e e

=
=]

11
Average

Figure 6.16: Dice baseline at 50000 iterations

v
0,992135461
0,893292449
0,813092398
0,965398456
0,894666128
0,892267345
0,715226337
0,722146863

0,76031435

0,87989887
0,948580374

0,86154723

=
0,984396378
0,807445153
0,686557618

0,93311715
0,809507255
0,805554712
0,560955272
0,570575633
0,613912863

0,78560894
0,902348463

0,76908904

v
0,001179826
0,013896293
0,035372947
0,001790228
0,008170123
0,006601529
0,066616989
0,076289206
0,023700219
0,006250705

0,00962582
0,022681262

Table 6.7: Dice baseline at 50000 iterations

6.3.2 DicePlusXEnt loss type

Figures -[6.21) and tables[6.8]-[6.12] shows the segmented output and evaluation score
for the baseline model with DicePlusXEnt loss type, at intervals of 10000 iterations.

v
0,002323902
0,022539536
0,050566868
0,003345214
0,013422645
0,010757082
0,082195243
0,091320849
0,031420623
0,010013604
0,017298976
0,03047314,

56

(- - RN - T R R TR S

=
=]

11
Average:

Figure 6.17: DicePlusXEnt baseline at 10000 iterations

v

0,992846416
0,884973565

0,82500275

0,97178397
0,894572787
0,888816634
0,710743087
0,714882438
0,772885765
0,883359362
0,953819939
0,863062428

Table 6.8: DicePlusXEnt baseline at 10000 iterations

-

0,985796003
0,793844514
0,702676808
0,945120313
0,809513702
0,799924519
0,5530602707

0,56028135
0,630257648
0,791254435
0,911916104
0,771240737

v

0,000889372
0,010713981
0,020993875
0,001433932
0,013229025
0,005337292
0,044540209
0,066510789
0,019454285
0,010798843
0,010742962
0,018604051

-

0,001754749
0,017178975

0,03051426
0,002709998
0,021596549
0,008653399
0,051580676
0,077435023
0,026338276
0,017363387
0,019409268
0,024957687,

57

W o~ o s w e

=
=

11
Average

Figure 6.18: DicePlusXEnt baseline at 20000 iterations

-

0,993335129

0,90036368
0,762067592
0,971088685
0,902342519
0,904329698
0,695070907
0,724254912
0,760674253
0,882499453
0,954135151
0,859105634

Table 6.9: DicePlusXEnt baseline at 20000 iterations

-

0,986760621
0,819007988
0,617323627
0,943800651
0,822157697
0,825475058
0,536272209
0,576725402
0,614132049
0,790081051
0,912496147
0,767658409

-

0,001037589
0,012273605
0,039946109
0,001569463
0,0073306
0,008441057
0,063748798
0,098002091
0,018248081
0,0160114582
0,010837795
0,02527697

-

0,002047544
0,020145951
0,053533854
0,002966903
0,013243527
0,014075578
0,074207698
0,117605839
0,023862614
0,026018002
0,019607469
0,033392274,

58

W o~ o s w e

=
=

11
Average

Figure 6.19: DicePlusXEnt baseline at 30000 iterations

0,993219509
0,891929371
0,803926249
0,967843347
0,912668445
0,902009321
0,704697074
0,731897586

0,74834475
0,869278271
0,948771731
0,861325987

Table 6.10: DicePlusXEnt baseline at 30000 iterations

-

0,986531823
0,805134098
0,673306985

0,93769446
0,839459049
0,821582101
0,546924591
0,585757182
0,598483234
0,768914718
0,902665571
0,769677619

0,000866839
0,011572418
0,031507972
0,001423882
0,007723203

0,00694561
0,056147999
0,004877897
0,024093155

0,00979734
0,008665479
0,023093436

-

0,001711515
0,018672007
0,043847836
0,002685728
0,013189915
0,011542379
0,066578258
0,115166647
0,031132485
0,015342331
0,015676027
0,030504102,

59

W | o s wmop e

=
=]

11
Average

Figure 6.20: DicePlusXEnt baseline at 40000 iterations

0,993412468
0,912080309
0,783202575

0,97326072
0,907888336
0,902833928
0,723038345
0,748276467
0,742177307

0,86922302
0,954920585
0,864574006

Table 6.11: DicePlusXEnt baseline at 40000 iterations

-

0,986913252
0,838543726
0,644992485
0,947318154
0,831403099
0,822972216
0,570373352
0,606352555
0,590541344
0, 7683809054
0,913863641
0,774789353

-

0,001033071
0,010561086
0,034563374
0,001466734
0,007559156
0,007892461
0,065614957
0,003227906
0,022073874
0,009078148
0,008744098
0,023801357

-

0,002038624
0,017794773
0,046969249
0,002782614
0,012790637

0,01308425
0,080934685
0,115005844
0,028045364
0,014162041
0,015953681
0,031778342,

60

Figure 6.21: DicePlusXEnt baseline at 50000 iterations

4

- - - -

1 0,993383528 0,986855307 0,00080309 0,001589882
2 0,887042301 0,797355511 0,015473054 0,024602219
3 0,759153326 0,613505767 0,040144001 0,052663461
4 0,973288204 0,947369825 0,001377104 0,002611852
5 0,911797522 0,837954069 0,008027413 0,013665942
6 0,897877447 0,81474967 0,006806662 0,011244815
7 0,748972569 0,601917495 0,056118876 0,07208372
8 0,753670152 0,609360233 0,067779299 0,085531472
9 0,765114421 0,620101526 0,021911749 0,029210883
10 0,885727238 0,794978379 0,00768314 0,012432269
11 0,954545073 0,91328434 0,011824771 0,02135755
Average 0,866415617 0,776188375 0,021631924 0,029726733,

Table 6.12: DicePlusXEnt baseline at 50000 iterations

6.4 Normalisation

This section provides the results for models with normalisation. These are split into cat-
egories based on which model configuration was used in addition to the normalisation.
Also worth noting was that the iteration time was reduced to around 28% after adding

61

normalisation (400 vs 1400 iterations in the same time frame). Because of this, the total
number of iterations is lower for the models shown in this section.

6.4.1 Dice baseline with normalisation

Figures[6.22]-[6.25]and tables [6.13]-[6.16]shows the segmented output and evaluation score
for the model with normalisation and Dice loss type, first at 5000 iterations, and then every
5000 iterations starting at 7500.

Figure 6.22: Dice baseline with normalisation at 5000 iterations

62

[F- -G - ST RS U R]

=
=]

11
Average

-

0,978973909

0,86529134
0,638694681
0,948825686
0,840774731

0,81212932
0,797020829

0,70008787
0,784206213
0,877865694
0,934381391
0,834386515

Table 6.13: Dice baseline with normalisation at 5000 iterations

Figure 6.23: Dice baseline with normalisation at 7500 iterations

-

0,958824871
0,763053074
0,497038332
0,902720576

0,72537489
0,683836479
0,663504616

0,54260373

0,64521461
0,782449427
0,877508355
0,731102633

-

0,002426447
0,018930405
0,204010949

0,00710318
0,008126051
0,011299198
0,029258062
0,065769537
0,013390691
0,009599828
0,020307237

0,03547469

-

0,00465756
0,0291411
0,186258872
0,012810786
0,012081362
0,015929049
0,039701067
0,079854452
0,018051444
0,015380841
0,034857811
0,040796762

63

[F- - T RS]

=
=]

11
Average

-

0,982288669
0,885921254
0,834907496
0,948371427
0,871014438

0,83108437
0,735518025
0,754552562
0,774157923
0,887624161
0,939662809
0,858645739

Table 6.14: Dice baseline with normalisation at 7500 iterations

Figure 6.24: Dice baseline with normalisation at 12500 iterations

-

0,965203399
0,795510757
0,716961486
0,901990174
0,771742911
0,711089596
0,585023821
0,608810661
0,631741197
0,798426338
0,886608352
0,761191699

-

0,002249741
0,014614249
0,016908704
0,010224676
0,013167512
0,008989126
0,059202019
0,053494635
0,013859125
0,018084724

0,0158786
0,020606646

-

0,004341635
0,023291596
0,024773599
0,018310371
0,0206703584

0,01327997
0,071569603
0,069050999
0,018546501
0,029088457
0,027775145
0,029154978

64

W~ e s e |

=
=]

11
Average

-

0,984342134
0,896761162
0,834219973
0,939314447
0,871787295
0,847663963

0,71148048

0,73229511
0,780751482
0,869532461
0,934604774
0,854795753

Table 6.15: Dice baseline with normalisation at 12500 iterations

Figure 6.25: Dice baseline with normalisation at 17500 iterations

.

0,969180101
0,812889145
0,716085511
0,885780024
0,772846199
0,735864808

0,55682142

0,58028866
0,640691866
0,769300174
0,877631159

0,75612537

-

0,002615561
0,005484479
0,019765485
0,011130158
0,0096746581
0,014109111
0,070240152
0,050998061
0,017470152
0,009305472
0,015580738
0,020579463

-

0,005069683

0,00906459
0,029254201
0,019733017
0,015257363
0,021233535
0,085510365
0,085544601
0,023533076
0,014659762
0,026910101
0,028706573,

65

(RN R Y- T R S TR

=
=

11
Average:

.

0,982165644
0,906865966
0,799331471
0,954106904

0,86588158
0,835153931
0,777961682
0,747623991

0,756650432
0,879577281
0,942616488
0,858903569

Table 6.16: Dice baseline with normalisation at 17500 iterations

-

0,964975676
0,829870817
0,666127104
0,912318401
0,763588209
0,717096162
0,638688328
0,600226537
0,608974091
0,785073614
0,891781014
0,761701814

.

0,003201259
0,013334366
0,018416719
0,006665467
0,0087084
0,010163003
0,04400225
0,056273623
0,019767094
0,004818929
0,013850723
0,018109258

6.4.2 DicePlusXEnt baseline with normalisation

v

0,006170098
0,022054667
0,025325791
0,012094092
0,013535775
0,015026836
0,0577546
0,072675254
0,02585214
0007684911
0,024407988
0,02568929,

Figures[6.26]-[6.28]and tables -[6.19]shows the segmented output and evaluation score
for the model with normalisation and DicePlusXEnt loss type every 5000 iterations.

Figure 6.26: Dice baseline with normalisation at 5000 iterations

66

[F--C - ST RS U R]

=
=]

11
Average

v

0,977806266
0,868471955
0,835300254
0,9357656060

0,85690564
0,827191354
0,741985182
0,734355318
0,765730293
0,894664622
0,928510237
0,851516982

Table 6.17: DicePlusXEnt baseline with normalisation at 5000 iterations

Figure 6.27: Dice baseline with normalisation at 10000 iterations

-

0,9566449582
0,768277392
0,718114087

0,87958097
0,750016235
0,705324354
0,592503931
0,582341505
0,620654154
0,809611222
0,867033348
0,750009289

-

0,006068407
0,02369083
0,026974024
0,013377836
0,016912946
0,003620307
0,05161775
0,047327184
0,01570726
0,011772605
0,017258462
0,02130251

-

0,011574806
0,036112523
0,040301012
0,023525565
0,025644644
0,005269798

0,06579067
0,056684801
0,020643409
0,019308416
0,029384017
0,030385968,

67

[F--C - ST RS U R]

=
=]

11
Average

v

0,986750983
0,883150216
0,828421162
0,346386455
0,864852688
0,844494285
0,750837815
0,697964742
0,782059467
0,890878067
0,937688036

0,85577672

Table 6.18: DicePlusXEnt baseline with normalisation at 10000 iterations

Figure 6.28: Dice baseline with normalisation at 15000 iterations

-

0,973853071
0,730992601
0,707248432
0,898343135
0,762154377
0,730871905
0,605302834
0,538989087
0,642333648
0,803320106
0,883132531
0,757867708

-

0,001551114
0,012941315

0,01107116
0,008184665
0,014040554
0,004647073

0,06450016

0,05745205
0,013950344
0,007911434
0,016591191
0,019349187

-

0,003020452
0,020842041
0,015909356
0,01467436
0,021710414
0,006967303
0,08047861
0,066534786
0,01897663
0,012878104
0,028775086
0,02643338

68

4

-

1 0,985735616
2 0,899280012
3 0,834072294
4 0,951838159
3 0,87497573
] 0,85708358
7 0,774700015
8 0,759817209
9 0,789800306
10 0,89753476
11 0,942518366
Average 0,869760186

0,971877751
0,817568425
0,717095787
0,9081562
0,77735766
0,750016561
0,63419033
0,616184363
0,652997697
0,81441384
0,891627523
0,777462376

-

0,001663037
0,019799803
0,037613997
0,005577776
0,012434318
0,008570543
0,042406219
0,058410204
0,018157229
0,014205144
0,014342023
0,021198208

-

0,003230665
0,032017429
0,053441618
0,010132462
0,019745917
0,013087227
0,055976798
0,074809556
0,025187328
0,023104897
0,025196828
0,030539157,

Table 6.19: DicePlusXEnt baseline with normalisation at 15000 iterations

6.4.3 DicePlusXEnt with 0.001 learning rate and normalisation

Figures and|[6.30] and tables and shows the segmented output and evaluation
score for the model with normalisation, DicePlusXEnt loss type, and learning rate of 0.001,

at 10000 and 15000 iterations respectively.

Figure 6.29: Dice baseline with 0.001 learning rate and normalisation at 10000 iterations

69

4

-

1 0,988644892
2 0,90767042
3 0,801899616
4 0,959114982
5 0,8783831591
6 0,866809059
7 0,717142887
8 0,658525127
9 0,802713921
10 0,887808698
11 0,945235933
Average 0,855854284

-

0,977561235
0,831015011
0,669907412
0,921512817
0,784085199
0,765114721
0,563216405

0,49426247
0,670722915
0,798732046
0,896900971
0,761184655

-

0,002919728
0,006543341
0,022587604
0,006351267
0,012778773
0,011625101
0,067539439
0,064320557
0,01540428
0,0182237
0,021155738
0,02267723

-

0,00570435
0,010981859
0,031733039
0,011636013
0,020344088
0,018238167
0,079794627

0,07029525
0,021637966
0,029313004

0,03701153
0,030608172,

Table 6.20: DicePlusXEnt baseline with 0.001 learning rate and normalisation at 10000 iterations

Figure 6.30: Dice baseline with 0.001 learning rate and normalisation at 15000 iterations

70

label B mean_dice B2 mean_jaccard B3 stdev_dice
1 0,991782546 0,9837083
2 0,891354108 0,804105007
3 0,777630173 0,638501414
4 0,967840617 0,937709707
3 0,88363132 0,7917843%4
5] 0,873449675 0,784899818
7 0,706981218 0,55167808
8 0,728267163 0,577409182
9 0,722493044 0,566669003
10 0,878491376 0,783333376
11 0,946570738 0,898825309
Average 0,85223018 0,756238872

- | stdev_jaccard [~ |

0,002180839
0,005303303
0,046590432
0,003669342

0,01346038
0,006629113
0,072807685
0,071692246
0,033505058
0,003862782
0,012505067
0,024746077

0,004278499
0,008649478
0,061287609
0,006882776
0,021692624
0,010570246
0,087272369
0,084353372
0,042698165
0,006150988
0,022243433
0,032370868,

Table 6.21: DicePlusXEnt baseline with 0.001 learning rate and normalisation at 15000 iterations

71

6.5 Learning rate

When experimenting with the learning rate, the spatial window size parameter had not
been increased for inference as detailed in section And because of this, the Dice-
PlusXEnt loss type was seen as superior to the normal Dice loss, because of the severity
of the “false positive volume”. This can be seen in figure [6.1] and figure[6.2] showing the
results of Dice and DicePlusXEnt respectively. This is the reason for the following section
regarding learning rate experimentation were performed with the DicePlusXEnt loss type.

The baseline learning rate for DicePlusXEnt has already been presented in section
[6:3.2] and will therefore not be reiterated in this section. The following sections will
present the results from varying learning rates in ascending order, starting at 0.00001 in
section[6.5.1] then 0.001 in section[6.5.2] and lastly 0.01 in section[6.5.3]

72

6.5.1 Learning rate 0.00001

Figures [6.31] - [6.34] and tables [6.22] - [6.25] shows the segmented output and evaluation
score for the model with DicePlusXEnt loss type and 0.00001 learning rate, every 10000

iterations.

Figure 6.31: DicePlusXEnt baseline with 0.00001 learning rate at 10000 iterations

4

-

1 0,988093472
2 0,85167957
3 0,539135699
4 0,965830921
5 0,854367626
6 0,851458247
7 0,615270675
3 0,350537283
9 0,730556605
10 0,843853727
11 0,945305381
Average 0,77600811

Table 6.22: DicePlusXEnt baseline with 0.00001 learning rate at 10000 iterations

-

0,976475381
0,74134768
0,376346528
0,93393439
0,74576435
0,74152146
0,447214338
0,214713556
0,575835889
0,730113695
0,896561478
0,670948113

-

0,002129842
0,014411374
0,110226614
0,002845956
0,001651256
0,011815935
0,061582662
0,068192887
0,018560564
0,013350254
0,012824095
0,028871949

-

0,00415347
0,021797319
0,096889916
0,005322389
0,00251732
0,01778272
0,064968997
0,05316594
0,023408859
0,019813801
0,022863931
0,03024406,

73

Figure 6.32: DicePlusXEnt baseline with 0.00001 learning rate at 20000 iterations

WO = L e b= Y

=
=]

11
Average

v

0,991423549
0,893823316
0,862259338
0,969352311
0,888669742
0,883572267
0,707069846
0,752169305
0,750285977
0,875231529
0,950543236
0,865855129

v

0,982995325
0,808346951
0,758107044
0,940534568
0,799692345
0,791570375

0,55135703
0,606426125
0,600961155
0,778255201
0,905908718
0,774923167

v

0,001101347

0,01450776
0,013218447
0,001992392
0,005691592
0,009942051
0,070428798

0,05919045
0,023869876
0,008933403
0,0096535273

0,01986649

*

0,002166536
0,023463734
0,020416878
0,003747354
0,009234455
0,015978383
0,082385576
0,076833489
0,031155884
0,014035607
0,017483306
0,026996533,

Table 6.23: DicePlusXEnt baseline with 0.00001 learning rate at 20000 iterations

74

Figure 6.33: DicePlusXEnt baseline with 0.00001 learning rate at 30000 iterations

4

.

1 0,992005312
2 0,895267743
3 0,794953758
4 0,971655824
5 0,897500187
6 0,887615452
7 0,694591012
8 0,748352586
9 0,737565165
10 0,875272919
11 0,952998972
Average 0,858888004

.

0,984139913
0,810646233
0,661907431

0,94488222
0,814149087
0,798084173
0,536741308
0,601914752
0,584501273
0,778288946

0,91038672
0,766003823

-

0,001125239
0,013100503
0,043862729
0,002097412
0,007752917
0,009984022
0,072646917
0,002910399
0,025592795
0,007565604
0,009876215
0,023319523

-

0,002214939
0,021321256
0,061003076
0,003958764

0,01277343
0,016131139
0,083723281
0,080044934
0,032615072
0,011861011
0,017908417
0,031232302

Table 6.24: DicePlusXEnt baseline with 0.00001 learning rate at 30000 iterations

75

Figure 6.34: DicePlusXEnt baseline with 0.00001 learning rate at 40000 iterations

[F- RN T RS TR]

=
=

11
Average

6.5.2 Learning rate 0.001

-

0,992477076
0,899834442

0,8195661
0,971051006
0,901716155
0,854031921
0,694660806
0,764898461
0,765697587
0,872013883
0,952553053
0,866227499

-

0,98506821
0,818222078
0,695459436
0,943736228
0,821096288
0,308488986
0,536360235
0,623153503
0,620889991
0,773184623
0,909610714
0,775933663

-

0,000936516
0,014439154
0,030752385
0,001697626

0,00695421

0,00854598
0,069032425

0,06022208
0,022410731
0,009022308
0,010844521
0,021387085

*

0,001845574
0,023916192
0,044811742
0,003202452
0,011595133
0,014653743
0,079337992
0,079099071
0,029828411
0,014146962
0,019558313
0,029272326,

Table 6.25: DicePlusXEnt baseline with 0.00001 learning rate at 40000 iterations

Figures[6.35]- and tables[6.26]-[6.28|shows the segmented output and evaluation score
for the model with DicePlusXEnt loss type and 0.001 learning rate, every 15000 iterations.

76

[F-R- . ST R SR R]

=
=]

11
Average:

Figure 6.35: DicePlusXEnt baseline with 0.001 learning rate at 15000 iterations

-

0,991118605
0,879549791
0,783360394
0,971975721
0,883505653

0,88287781
0,757278683

0,73260047
0,743004661
0,885584561

0,95384312
0,860427224

-

0,982401657
0,783380771
0,644973735
0,945485582
0,791493024
0,790430059
0,612111742
0,584048932
0,591879085
0,794783012
0,911948739

0,76681294

-

0,002035195
0,016381903
0,031961247
0,001840827
0,010938568
0,008971679
0,052047234
0,080046831
0,027557446
0,009102389
0,010463694
0,022849728

0,004003819
0,026264356

0,04216891
0,003484294
0,017538521
0,014395619
0,065474275
0,095300526
0,035732481
0,014710743

0,01895479
0,030729849,

Table 6.26: DicePlusXEnt baseline with 0.001 learning rate at 15000 iterations

77

[C- - - T N S TC R R |

=
=]

11
Average

Figure 6.36: DicePlusXEnt baseline with 0.001 learning rate at 30000 iterations

-

0,993280096
0,834896561
0,747083896
0,971984954
0,900358861
0,901095641
0,719755949

0,75157874
0,780609627
0877167564
0,956461979
0,857661261

-

0,986651372
0,716840597
0,598254618

0,94550329
0,818851545
0,820064303
0,566077646

0,60847917

0,64057754
0,781361035
0,916689614
0,763577339

-

0,000865836
0,014163547
0,043878828
0,001873522
0,007107554

0,00679295
0,063460127

0,08089172
0,019247084
0,010327211
0,008711439
0,023392711

-

0,001707504
0,020961435
0,056525065
0,003551192
0,011816386
0,011276211
0,078212992
0,099741675
0,026211075
0,016457099
0,015897686
0,031123484

Table 6.27: DicePlusXEnt baseline with 0.001 learning rate at 30000 iterations

78

Figure 6.37: DicePlusXEnt baseline with 0.001 learning rate at 45000 iterations

4

-

1 0,993404537
2 0,831495613
3 0,806002319
4 0,973602791
5 0,90991884
6 0,902082072
7 0,713209703
8 0,697275024
9 0,744232651
10 0,881606245
11 0,953341715
Average 0,855106501

-

0,986897042
0,712383232
0,676355273
0,948567719
0,834833953
0,821683965
0,560023677

0,53887353
0,593213735
0,788493793
0,910984865
0,761119162

-

0,00088596
0,025300184
0,033145925
0,001534712
0,008341597
0,005989813
0,079247711
0,063387582
0,023427754
0,012214159
0,009028689
0,023864008

.

0,00174856
0,036657377
0,047203904
0,002911787
0,014137073
0,009930973
0,093799098
0,074672204
0,030128939
0,019673969

0,01640863
0,031570229

Table 6.28: DicePlusXEnt baseline with 0.001 learning rate at 45000 iterations

6.5.3 Learning rate 0.01

Figures[6.38]-[6.43]and tables [6.29]-[6.34]shows the segmented output and evaluation score
for the model with DicePlusXEnt loss type and 0.01 learning rate, every 10000 iterations.

79

[F--C - ST R S TCI R]

=
=]

11
Average

Figure 6.38: DicePlusXEnt baseline with 0.01 learning rate at 10000 iterations

v

0,991214879
0,870804085
0,814892754
0,970427514
0,885837987
0,883514257
0,601703308
0,637827561
0,735854774
0,848819281
0,949284217
0,835470965

-

0,982585889
0,772854665

0,68773327
0,942566072
0,795479193
0,791401385
0,435270455
0,473788195
0,582737193

0,73761579
0,903591269
0,736880307

-

0,001264293
0,034380474
0,012300345

0,00258331
0,016892217
0,006797534
0,083111501
0,085973172
0,025292504
0,014332299
0,008572787
0,026555145

-

0,002487712
0,054341526
0,017555321
0,004369413
0,026920253
0,010902146
0,083599035
0,087976025

0,03201744
0,021616059
0,015560441
0,032531397

Table 6.29: DicePlusXEnt baseline with 0.001 learning rate at 10000 iterations

80

[F- RN T N SR R |

=
=

11
Average

Figure 6.39: DicePlusXEnt baseline with 0.01 learning rate at 20000 iterations

-

0,991813866
0,910213735
0,777698949
0,969807356
0,878448504
0,887058292
0,697330021
0,737630379
0, 717764791
0,883498671
0,948260653
0,854547747

-

0,983762224
0,835493123
0,637740572
0,941387517
0,783530627
0,797085467
0,538984534
0,588790898
0,560306887
0,791571166
0,901765901
0,760038083

-

0,000852039
0,013179226
0,036682634
0,001291066
0,014150174
0,005644381
0,058967002
0,068692116
0,023535967
0,013388432
0,009451688
0,022354975

-

0,001756336
0,022400388
0,049412033
0,002431742
0,022717963
0,009100882

0,0682177
0,082197283
0,028913884
0,021779747
0,017085443
0,029637946,

Table 6.30: DicePlusXEnt baseline with 0.001 learning rate at 20000 iterations

81

WO = L e b= Y

=
=]

11
Average

Figure 6.40: DicePlusXEnt baseline with 0.01 learning rate at 30000 iterations

v

0,992100643
0,810523341
0,674852594
0,968014426
0,892847096
0,877937447

0,69646369
0,735081947
0,709657712
0,895828993
0,949960334
0,836661566

v

0,984327719
0,682344632
0,510807263
0,938028045
0,806585492
0,782503782
0,537450618
0,588369275
0,550625702
0,811605806
0,904823868
0,736134382

v

0,001155999

0,02823098
0,041957299
0,003003339
0,010086197
0,007129959
0,059496553

0,08665284
0,026239164
0,013990906
0,009023705
0,026093908

*

0,002277953

0,03887074
0,048582406
0,005655091
0,016435693
0,011324774
0,069360868
0,105977604
0,031938342
0,023058491
0,016271252
0,033619383,

Table 6.31: DicePlusXEnt baseline with 0.001 learning rate at 30000 iterations

82

[F--C - ST R S TCI R]

=
=]

11
Average

Figure 6.41: DicePlusXEnt baseline with 0.01 learning rate at 40000 iterations

v

0,993422275
0,922993913
0,773933678
0,970760698
0,902317832
0,899549834
0,724291588
0,747608946
0,732172919
0,896760924
0,952456044
0,865115332

-

0,986931514
0,85711154
0,632367748
0,943186967
0,822225439
0,817457396
0,56983681
0,601689098
0,577975379
0,81310981
0,909371152
0,77556939

-

0,000712841
0,0083653508
0,031775695

0,00152577
0,011581865
0,003589581
0,047029306
0,069709812
0,021905198
0,013262134
0,009102691
0,019869127

-

0,001406493
0,014447324
0,043784589
0,002882975
0,019373636
0,005931924
0,056461667
0,085333426
0,027390038
0,022138083

0,01650716
0,026877992

Table 6.32: DicePlusXEnt baseline with 0.001 learning rate at 40000 iterations

83

[C- - - T N S TC R R |

=
=]

11
Average

Figure 6.42: DicePlusXEnt baseline with 0.01 learning rate at 50000 iterations

-

0,989252526
0,900970854
0,729636736
0,973124436
0,909447666
0,871642454
0,718093318
0,734916886
0,735425035
0,885948475
0,953670784
0,854739385

-

0,978742999
0,820011428
0,575767822
0,947660215

0,83403758
0,772583165
0,562466809
0,588698036
0,582438618
0,795728359

0,91158263
0,760883424

-

0,002203181
0,012189696
0,038067105
0,001570228
0,008223142
0,008288181
0,049189241
0,090295349
0,029440674

0,0179852
0,008928643
0,024216422

-

0,004306555
0,020148945
0,047242949
0,002982091
0,013859281
0,012981222
0,059738331
0,109185154

0,03756894
0,029686819

0,01621298
0,032173933

Table 6.33: DicePlusXEnt baseline with 0.001 learning rate at 50000 iterations

84

Figure 6.43: DicePlusXEnt baseline with 0.01 learning rate at 60000 iterations

4

-

1 0,993366366
2 0,899899781
3 0,734435943
4 0,973768642
5 0,910734886
6 0,893197724
7 0,747571082
8 0,740249247
9 0,761786951
10 0,891556035
11 0,955740154
Average 0,263850665

.

0,986821878
0,818055846
0,583339425
0,948880429
0,836281006
0,807027214
0,598951416
0,594523972
0,615655295
0,804660866
0,915353005
0,773595487

-

0,000609672
0,005142961
0,055894503
0,001078686
0,007881765
0,003649723
0,045343588
0,085656091
0,019947993
0,014343664
0,008320076
0,022578975

-

0,001203997
0,008484442
0,068331742
0,002048776
0,013325535
0,005982395
0,056769853
0,101692032
0,026344362
0,024620127
0,015172599
0,029452351

Table 6.34: DicePlusXEnt baseline with 0.001 learning rate at 60000 iterations

6.6 Data Augmentation

Figures[6.44]- and tables[6.33]-[6.38|shows the segmented output and evaluation score
for the baseline DicePlusXEnt model with data augmentation as specified in section [5.6]

85

every 5000 iterations.

W | o s wmop e

=
=

11
Average

Figure 6.44: DicePlusXEnt baseline with augmentation at 5000 iterations

-

0,991733559
0,886898674
0,754919971

0,968873
0,892517952
0,890954922
0,797033048
0,731654142
0,773409152
0,888584725

0,95436045
0,866449239

Table 6.35: DicePlusXEnt baseline with augmentation at 5000 iterations

-

0,983611553
0,798088718
0,607264976
0,939640843
0,806045171
0,803408273
0,664184039

0,58243523
0,631192431
0,799643026
0,9129524902
0,775312651

0,001582941
0,030277771
0,030451216
0,002925213
0,009545006
0,006117546
0,037916204
0,077601877
0,024314017
0,009615191
0,011280911
0,022002899

-

0,003115461
0,048068167
0,038548736
0,0054546584
0,016344337

0,009938268
0,051664461
0,091265411
0,033140209

0,01567873
0,020383285
0,030334196,

86

[F--C - ST R S TCI R]

=
=]

11
Average

Figure 6.45: DicePlusXEnt baseline with augmentation at 10000 iterations

-

0,99159548
0,901225986
0,835011285
0,968321725
0,896623019
0,877332858
0,725827939
0,748768663
0,751094611
0,897075096
0,952366442
0,867749373

Table 6.36: DicePlusXEnt baseline with augmentation at 10000 iterations

-

0,983333796
0,820618949
0,7170435473
0,938601341
0,812759293
0,781582811
0,571119875

0,6032712
0,601959743
0,813464824
0,909234852
0,777544741

-

0,001185991
0,016412452
0,015287021
0,002619334
0,009753407

0,00885206

0,03954222
0,070116906
0,023135674
0,008378485
0,009950088
0,018657649

-

0,002330692
0,027344722
0,022150037
0,004518921
0,016034148
0,014062856

0,04748527
0,086572289
0,030094454
0,013787633
0,017940065
0,025706462,

87

(V.- . T, I TR T]

=
=

11
Average

Figure 6.46: DicePlusXEnt baseline with augmentation at 15000 iterations

v

0,99123387
0,897995351
0,757464665
0,971138584
0,892887474
0,888752513
0,726015841

0,72468144
0,746665198
0,892700723
0,953609327
0,858467726

Table 6.37: DicePlusXEnt baseline with augmentation at 15000 iterations

-

0,982623251
0,815264097
0,610569795
0,943902326
0,806557332
0,799823198
0,575723433
0,573024329
0,596611713
0,806460631
0,911459416
0,765638684

v

0,001272506

0,01615564
0,030388479
0,001796101
0,006168839
0,005504956
0,079157584
0,072050123
0,028923082
0,013276771
0,008566052
0,023932739

-

0,002502406
0,026584999
0,039166758
0,003396035
0,010091411
0,008902033
0,094304893
0,084859384
0,037657111
0,022034977
0,015562523
0,031369321

88

(- RN W T R TR e]

=
=]

11
Average

Figure 6.47: DicePlusXEnt baseline with augmentation at 20000 iterations

v
0,992835571
0,880474033
0,809458443
0,973828161
0,908067041
0,8990060065
0,767954525
0,740119072
0,780135537
0,888229761
0,956490769
0,872418089

v
0,985774729
0,786869704
0,681172172
0,949000101

0,83165212
0,8165932525
0,626174984
0,594209873
0,639943395
0,799030945
0,916735231
0,784287162

v

0,00092026
0,016701274

0,03230317
0,002181471
0,004958904
0,006062059
0,052697262
0,083939092
0,019309414
0,008189786
0,008471696
0,021430581

v
0,001816151
0,026768091
0,046606495
0,004133743
0,008332338
0,010005602
0,006862927
0,101627394
0,026344891
0,013317345
0,015452801
0,029206162,

Table 6.38: DicePlusXEnt baseline with augmentation at 20000 iterations

89

90

Chapter

Discussion

This chapter contains a discussion and evaluation of the results and methodology presented
in the previous chapters.

7.1 Resolution (pixel dimension)

As mentioned in section the goal with resolution experimentation was to combat the
"false positive volume” detailed in section[6.1} As shown in the results presented in section
[6.1] the issue was initially present with the original pixel dimension of 0.4mm. When
resampling the image with a pixel dimension of 0.5mm, this issue improved but remained
visible. Similarly, when increasing the pixel dimension to 0.6mm, the issue was reduced
even further, while remaining slightly visible. Once the pixel dimension was increased
to 0.7mm, the problem was completely resolved. The issue was also not visible for the
1.0mm pixel dimension model.

These results confirm the hypothesis presented in section[5.1] by proving that the "false
positive volume” issue can be resolved by resampling the image to a lower resolution. The
conclusion of these results, however, are not completely clear. These results only show
that downsampling the resolution of the input image resolved this issue. It is not clear
whether this is a result of reducing the size difference between the spatial window and the
input image, or if it is simply due to the reduced input image size alone. Having that said,
however, this experimentation did serve its purpose by proving that the large size of the
input data was in some way correlated to this “false positive volume” issue, and thereby
facilitated the spatial window size experimentation discussed in the following section.

7.2 Spatial window size
As mentioned in section@ the baseline value for this parameter was set to (128,128,128)

when training the models. Attempts to increase this resulted in [OOM] errors, effectively
establishing this value as the maximum size with the available hardware. Attempts to

91

lower this size were not carried out, both due to time constraints as well as a lack of belief
in good results. And as mentioned in section the original assumption was that this
would also be the maximum spatial window size for inference. But due to the results found
in section [/.1]above, further experimentation with increasing this parameter for inference
was carried out.

The initial test for this hypothesis, as shown in figure[6.8] was to run inference on the
[CLU] with a spatial window size of (256,256,256). As seen in the result, this completely
resolved the "false positive volume” issue. This attempt was however extremely slow, tak-
ing hours as opposed to minutes, making it unfeasible to perform for all of the remaining
trained models. This led to attempts to increase the spatial window size while running
inference on the [GPUL

As shown in section [6.2] the “false positive volume” is still present with a spatial
window size of (192,192,192). It does however only appear as a thin slice, much less
prominent than when the size was set to (128,128,128). The next attempt increased the
spatial window size to the next supported cubed value of (208,208,208), and, as shown
in figure [6.10] this almost manages to get rid of the issue. It does appear as if the “false
positive volume” is, in fact, the exact same as the previous figure, and that increasing the
spatial window size only results in less of the volume showing up. And then finally as seen
in figure with a spatial window size of (224,224,224), the “false positive volume”
issue is completely gone. Attempts to increase this parameter even further resulted in
[OOM|errors when running on the[GPU] Thus, the highest possible spatial window size for
inference with the available hardware coincidentally ended up being the lowest required
spatial window size to avoid the false positive volume” issue.

This “false positive volume” issue appeared in the inference output for every single
model with lower spatial window size, regardless of any variations in other parameters.
And after increasing the spatial window size for inference to (224,224,224), the issue
disappeared completely from all the models. Therefore, this issue was found not to be
related to the training of the models but only correlated to the inference part.

Based on results from resolution and spatial window size experiments, it is safe to
conclude that the cause of the “false positive volume” issue was the size difference between
the spatial window and input image. This is based on the fact that both decreasing the
input image size, and increasing the spatial window size, resolved the issue. It is also
worth noting that the issue is also only present for the inference, and the training does not
seem to have a significant impact on the issue.

This “false positive volume” issue appears to be unique, as no other instances have
been found online. One possible reason could be the high resolution of the dataset images,
being 400 x 400 x 400. It seems likely that the problem appears due to a high difference
between the original size of the dataset and the spatial window size used in inference.
This would mean that the requirement for the spatial window size to avoid this problem is
correlated to the size of input images. This is however just a hypothesis and has not been
investigated in this thesis.

92

7.3 Loss type

The first loss type considered is the standard Dice Coefficient. As seen in figures[6.12]and
[6.13] the “false positive volume” still appears initially, but is completely gone in figure
[6.T4] at 30000 iterations. Furthermore, by comparing the evaluation scores in table [6.5] at
30000 iterations, with tables [6.6] and at 40000 and 50000 iterations respectively, the
accuracy of the model decreases with a higher number of iterations. The best model for
the Dice baseline is therefore reached after only 30000 iterations.

On the other hand, the DicePlusXEnt model does not have the “’false positive volume”
issue present after 10000 iterations. It also starts of with a similar trend to the standard
Dice, in which table @] at 10000 iterations performs better than both 20000 iterations in
table[6.9] and 30000 iterations in table[6.9] This trend does, however, turn around, and the
evaluation scores for both 40000 and 50000 iterations, in tables and are better
than the score achieved at 10000 iterations. The best model for the DicePlusXEnt baseline
is therefore reached after 50000 iterations and performs slightly worse than the standard
Dice loss type.

These results show that with a baseline configuration of the network, as presented
in section [4.5] the dice loss results in a slightly higher evaluation score, represented as
both the Dice Coefficient and the Jaccard Index. This is in contrast to the results from
the originally published nnU-Net paper [49], in which the DicePlusXEnt loss type was
superior. The difference between the two loss types were however minimal. It is also
possible that this difference is only due to the specific choice of baseline parameters, and
the loss type will therefore also need to be considered for the remaining sections of this
chapter.

7.4 Normalisation

As seen in figure [6.22] the false positive volume” was also initially for the Dice loss
type when including normalisation. But this did once again resolve with an increase in
iterations. As seen in tables [6.23] [6.24] and [6.23] the evaluation score for normalisation
remains stable around 0.85-0.86.

In contrast, the DicePlusXEnt loss type model with normalisation shown had a slow
and steady increase in evaluation score from 5000 to 15000 iterations, as shown in tables
[6.17] [6.18] and [6.19] This model was performed slightly worse than the baseline Dice
model. Additionally, an attempt at increasing the learning rate for this model from 0.0001
to 0.001, presented in tables [6.29]and [6.30] did not achieve a comparable score.

These findings are similar to those presented in the original nnU-Net paper [49]], show-
ing that the DicePlusXEnt loss type performs better than the standard Dice when normali-
sation is enabled. However, the evaluation score for this model did not surpass the baseline
Dice model discussed in the previous section. While this could happen if given enough
iterations of the normalisation model, this was not attempted in this thesis due to the in-
creased iteration time experienced when adding normalisation.

While normalisation supposedly speeds up learning, this was not found to be the case
in this thesis. The time for each iteration increased by over 300%, and models did not
perform better when trained for the same amount of time with normalisation as the models

93

without. Some possible reasons would be the specific normalisation configuration, such
as foreground normalisation. It is also possible that since normalisation increases the
sampling time for each iteration, it would benefit from increasing the number of samples
per volume. These are however only speculations and has not been tested in this thesis.

7.5 Learning rate

When looking at the learning rate, the decreased learning rate of 0.00001 presented in fig-
ure [6.31]to[6.34] shows promising results. As expected with a low learning rate, the model
takes a while to reach a good solution, having large jumps in accuracy every 10000 itera-
tions. Surprisingly, the model performance did not gradually increase, but rather decreased
for 30000 iterations before improving again at 40000 iterations. Both models at 20000 and
40000 iterations had similar evaluation scores, but neither succeeded the baseline learning
rate of 0.0001 that was discussed earlier in section [Z.3]

The increased learning rate of 0.001, did as expected reach a moderately good score
of 0.86 after only 15000 iterations as shown in table It did however not manage to
improve on this, and the evaluation score only went downhill after this as presented in
tables and

When increasing the learning rate even further to 0.01, the model also approached a
good score quite quickly. One thing to note, however, is that the evaluation score keeps
going up and down in the range of 0.836-0.865. This is expected with such a high learning
rate, as the model keeps overstepping the optimum. The best model which was reached
after 40000 iterations, shown in table is almost identical to the one achieved by the
baseline learning rate.

Based on these results, it appears that the learning rate does not have a significant
impact on the best-achieved score for a model, but rather on the number of iterations to
achieve it. A high learning rate also results in a somewhat unstable final model, in which
the accuracy of the final model is to a certain degree randomly decided by when the model
is stopped. This is a common problem for tasks, and is combated by early stopping.
This is however not a function that is included in Niftynet, and could not be utilised for
this thesis. These results do however emphasize the importance of early stopping when it
comes to [MIL] tasks.

7.6 Data Augmentation

While the DicePlusXEnt model with data augmentation did not quite outperform the base-
line Dice model, it was extremely close to it. Moreover, it managed to outperform the
baseline DicePlusXEnt model slightly. Similar to normalisation, however, it did have the
drawback increasing the iteration time by quite a lot. So while the augmentation did im-
prove results slightly, it did require extensive computation time to do so, and the resulting
improvement was very slight.

One potential reason for the low level of improvement could be the high quality of the
data generation. The data is generated in precisely the same manner in an effort to reduce
the variance of the data. This would reduce the importance of data augmentation, due to

94

the low level of variance between the training and test datasets. Another aspect is that
the data generation only focuses on healthy knees, which would also contribute to overall
reduced variance. Another potential reason for these results could be due to the chosen
augmentation options. While the options were carefully considered, as detailed in section
[5.6] it is still possible that these options resulted in unrealistic augmentations.

95

96

Chapter

Conclusion

This thesis aimed to utilise for semantic segmentation of images of the knee
joint. More specifically, the experimentation in this thesis was performed using the nnU-
Net module within Niftynet. Based on the experiments and corresponding results pre-
sented in this thesis, it can be concluded that this approach has a large potential to provide
accurate segmentation masks.

Several experiments with various hyper-parameters have been carried out, and their
resulting segmentation masks compared. This has provided insight and a better under-
standing of the role that hyper-parameters have in the training process, and their impact on
the resulting segmentation accuracy for medical image segmentation tasks.

Next, the two research questions presented in the beginning of the thesis are reiterated
and answered below.

Research question 1: Do the trained neural networks generate a segmentation output
of sufficient accuracy?

The segmentation masks generated by the trained neural networks were found to be suf-
ficiently accurate. The accuracy varies between the different segmented classes, although
this is to be expected. Overall, the results achieved a sufficiently high accuracy, both in
terms of evaluation metrics and visual inspection, and thereby establish the potential of
[CNNG| for the automatic semantic segmentation of knee joint.

Research question 2: What impact do the hyper-parameters have on the training pro-
cess and inferred segmentation output?

The experiments carried out in this thesis consisted of a range of varying hyper-parameters.
The impact from these hyper-parameters were discussed in detail in the previous chapter.
The baseline model was found to provide the best results. One addition that improved
results was the data augmentation. While this did not in fact end up being the best model,
it did perform better than a completely equal model without augmentation. This is likely

97

because of the low size of the training dataset, such that artificially increasing this size, by
adding variance to the data, results in an improved generalisation for the model.

8.1 Contribution

The contributions of this thesis comes from establishing the potential for to auto-
matically segment 13 classes from high-resolution 3D[MRI|images. More specifically, this
thesis proved the efficacy of the nnU-Net architecture for this specific task. This thesis also
presented comparable results from various trained models, and a discussion regarding the
impact each hyper-parameter had on the model.

8.2 Future work

The work in this thesis has further established the potential for the application of’ for
automatic segmentation of medical images, specifically the nnU-Net for knee joint [MRI|
images. There is, however, room for improvements. The following list contains some
possible ideas and aspects of this thesis that can be improved as future work:

e Improving the choice of hyper-parameters: The parameters experimented with in
this thesis was not a full list of all available hyper-parameters. It is quite possible
that any parameter that was not tested in this thesis, such as the window sampler and
activation function, would have the potential of improving the model substantially.
Furthermore, it would be interesting to see whether or not the model would improve
even further with a higher spatial window size, as this was not possible to test with
the available hardware.

¢ Different[CNNlarchitectures: This thesis was confined to the nnU-Net architecture
provided by Niftynet. It would be interesting to see how different{CNN]architectures
would compare to the results in this thesis.

¢ Different anatomical structures: The work in this thesis was limited to the knee
joint. The plan for the collaboration project is however to expand the efforts to dif-
ferent anatomical structures, such as the shoulder joint. It would be interesting to
see if the best choice of hyper-parameters would remain the same when segment-
ing different anatomical structures and whether the observed impact of the various
hyper-parameters would differ.

e Transfer learning: As an addition to the previous point, it would be interesting to
see whether or not transfer learning would be a good approach when transitioning
to different anatomical structures. Due to most tissues having similar composition
regardless of its location, it is very plausible that transfer learning would return good
results, especially if the new anatomical structure is another joint.

98

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

College O. 7917 Knee Joint”. Illustration from Anatomy Physiology, Con-
nexions Web site. https://creativecommons.org/licenses/by/3.
0/legalcode; 2013. Visited on 2020-05-09. Available from: https://
commons.wikimedia.org/wiki/File:917_Knee_Joint. jpgl

ca G. Colored neural network, https://creativecommons.org/licenses/by-
sa/3.0/legalcode;. Visited on 2020-05-10. Available from: https://commons.
wikimedia.org/wiki/File:Colored_neural_network.svag.

Geek3. Hyperbolic Tangent, https://creativecommons.org/licenses/by-
sa/3.0/legalcode;. Visited on 2020-05-11. Available from: https://commons.
wikimedia.org/wiki/File:Hyperbolic_Tangent.svg.

Renanar2. ReLU and Nonnegative Soft Thresholding Functions,
https://creativecommons.org/licenses/by-sa/4.0/legalcode;. Visited on 2020-05-
11. Available from: https://commons.wikimedia.org/wiki/File:
ReLU_and_Nonnegative_Soft_Thresholding_ Functions.svg.

Maier A. ”ConvolutionAndPooling”, https://creativecommons.
org/licenses/by/3.0/legalcode; 2019. Visited on 2020-05-26.
Available from: https://commons.wikimedia.org/wiki/File:

ConvolutionAndPooling.svg.

Aphex34. "Max pooling”, https://creativecommons.org/licenses/
by-sa/4.0/legalcode; 2015. Visited on 2020-05-26. Avail-
able from: https://commons.wikimedia.org/wiki/File:
Max_pooling.pnag.

Aphex34. ”Conv layer”, https://creativecommons.org/licenses/
by-sa/4.0/legalcode; 2015. Visited on 2020-05-28. Available from:
https://commons.wikimedia.org/wiki/File:Conv_layer.png.

99

https://creativecommons.org/licenses/by/3.0/legalcode
https://creativecommons.org/licenses/by/3.0/legalcode
https://commons.wikimedia.org/wiki/File:917_Knee_Joint.jpg
https://commons.wikimedia.org/wiki/File:917_Knee_Joint.jpg
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
https://commons.wikimedia.org/wiki/File:Hyperbolic_Tangent.svg
https://commons.wikimedia.org/wiki/File:Hyperbolic_Tangent.svg
https://commons.wikimedia.org/wiki/File:ReLU_and_Nonnegative_Soft_Thresholding_Functions.svg
https://commons.wikimedia.org/wiki/File:ReLU_and_Nonnegative_Soft_Thresholding_Functions.svg
https://creativecommons.org/licenses/by/3.0/legalcode
https://creativecommons.org/licenses/by/3.0/legalcode
https://commons.wikimedia.org/wiki/File:ConvolutionAndPooling.svg
https://commons.wikimedia.org/wiki/File:ConvolutionAndPooling.svg
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://commons.wikimedia.org/wiki/File:Max_pooling.png
https://commons.wikimedia.org/wiki/File:Max_pooling.png
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://commons.wikimedia.org/wiki/File:Conv_layer.png

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Niftynet-documentation. Patch-based analysis;. Visited on 2020-05-14. Avail-
able from: https://niftynet.readthedocs.io/en/dev/window_
sizes.htmll

Errachete. ”Binary confusion matrix”, https://creativecommons.org/
licenses/by-sa/4.0/legalcode; 2019. Visited on 2020-05-28. Avail-
able from: https://commons.wikimedia.org/wiki/File:Binary_
confusion_matrix. jpg.

Rosebrock A. “Intersection over Union - visual equation”, |https:
//creativecommons.org/licenses/by-sa/4.0/legalcode;
2016. Visited on 2020-05-28. Available from: https://commons.
wikimedia.org/wiki/File:Intersection_over_Union_—_
visual_equation.png.

Bertolaccini L, Solli P, Pardolesi A, Pasini A. An overview of the use of artificial
neural networks in lung cancer research. Journal of Thoracic Disease. 2017 04;9.

Per Christensson T. CPU Definition; 2014. Visited on 2020-05-14. Available from:
https://techterms.com/definition/cpu.

Mahmood A, Bennamoun M, An S, Sohel F, Boussaid F, Hovey R, et al. Chap-
ter 21 - Deep Learning for Coral Classification. In: Samui P, Sekhar S, Balas
VE, editors. Handbook of Neural Computation. Academic Press; 2017. p. 383
— 401. Available from: http://www.sciencedirect.com/science/
article/pi1i/B9780128113189000211.

Techopedia. Digital Signal Processing (DSP); 2013. Visited on 2020-05-26.
Available from: https://www.techopedia.com/definition/2360/
digital-signal-processing-dsp.

Expert System Team. What is Machine Learning? A definition; 2017. Vis-
ited on 2020-03-18. Available from: |https://expertsystem.com/
machine—learning—definition/.

Lewis T. What is an MRI (Magnetic Resonance Imaging)?;. Visited
on 2020-05-09. Available from: |https://www.livescience.com/
39074-what-is—an-mri.htmll

Sperre J. A Review of Deep Learning Approaches for Medical Image Segmentation.
Unpublished. 2019;.

R George, J Dela Cruz, R Singh, Rajapandian Ilangovan. Proton density (PD) image
characteristics;. Visited on 2020-05-10. Available from: https://mrimaster.
com/characterise%$20image%20pd.html.

Nwana HS. Software agents: an overview. The Knowledge Engineering Review.
1996;11(3):205-244.

100

https://niftynet.readthedocs.io/en/dev/window_sizes.html
https://niftynet.readthedocs.io/en/dev/window_sizes.html
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://commons.wikimedia.org/wiki/File:Binary_confusion_matrix.jpg
https://commons.wikimedia.org/wiki/File:Binary_confusion_matrix.jpg
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://commons.wikimedia.org/wiki/File:Intersection_over_Union_-_visual_equation.png
https://commons.wikimedia.org/wiki/File:Intersection_over_Union_-_visual_equation.png
https://commons.wikimedia.org/wiki/File:Intersection_over_Union_-_visual_equation.png
https://techterms.com/definition/cpu
http://www.sciencedirect.com/science/article/pii/B9780128113189000211
http://www.sciencedirect.com/science/article/pii/B9780128113189000211
https://www.techopedia.com/definition/2360/digital-signal-processing-dsp
https://www.techopedia.com/definition/2360/digital-signal-processing-dsp
https://expertsystem.com/machine-learning-definition/
https://expertsystem.com/machine-learning-definition/
https://www.livescience.com/39074-what-is-an-mri.html
https://www.livescience.com/39074-what-is-an-mri.html
https://mrimaster.com/characterise%20image%20pd.html
https://mrimaster.com/characterise%20image%20pd.html

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

Kitchener P. Importance of Medical Imaging;. Visited on 2020-
05-18. Available from: https://www.xray.com.au/
importance-of-medical-imaging/.

Elson D, Yang GZ. In: Athanasiou T, Debas H, Darzi A, editors. The Principles
and Role of Medical Imaging in Surgery. Berlin, Heidelberg: Springer Berlin Hei-
delberg; 2010. p. 529-543. Available from: https://doi.org/10.1007/
978-3-540-71915-1_39.

Guo Y, Ashour AS. 11 - Neutrosophic sets in dermoscopic medical im-
age segmentation. In: Guo Y, Ashour AS, editors. Neutrosophic Set in
Medical Image Analysis. Academic Press; 2019. p. 229 - 243. Avail-
able from: |http://www.sciencedirect.com/science/article/
pii/B9780128181485000114\

Cai H, Verma R, Ou Y, Lee S, Melhem ER, Davatzikos C. PROBABILISTIC SEG-
MENTATION OF BRAIN TUMORS BASED ON MULTI-MODALITY MAG-
NETIC RESONANCE IMAGES. In: 2007 4th IEEE International Symposium
on Biomedical Imaging: From Nano to Macro; 2007. p. 600-603.

Fiaz M, Ali K, Rehman A, Gul MJ, Jung SK. Brain MRI Segmentation using Rule-
Based Hybrid Approach; 2019.

El-Baz A, Elnakib A, Abou-El-Ghar M, Gimel’farb G, Falk R, Farag A. Automatic
Detection of 2D and 3D Lung Nodules in Chest Spiral CT Scans. International
journal of biomedical imaging. 2013 02;2013:517632.

Mansoor A, Bagci U, Foster B, Xu Z, Papadakis G, Folio L, et al. Segmentation and
Image Analysis of Abnormal Lungs at CT: Current Approaches, Challenges, and
Future Trends. Radiographics : a review publication of the Radiological Society of
North America, Inc. 2015 07;35:1056-76.

Zheng Z, Zhang X, Xu H, Liang W, Zheng S, Shi Y. A Unified Level Set Frame-
work Combining Hybrid Algorithms for Liver and Liver Tumor Segmentation in
CT Images. BioMed Research International. 2018 08;2018:1-26.

Liu X, Faes L, Kale A, Wagner S, Fu D, Bruynseels A, et al. A comparison of
deep learning performance against health-care professionals in detecting diseases
from medical imaging: a systematic review and meta-analysis. The Lancet Digital
Health. 2019 09;1.

Hoffman M. Picture of the Knee, Human Anatomy;. Visited on 2020-05-
09. Available from: https://www.webmd.com/pain—-management/
knee—-pain/picture-of-the-knee#ll

Berger A. Magnetic resonance imaging. BMJ. 2002;324(7328):35. Available from:
https://www.bmj.com/content/324/7328/35.

101

https://www.xray.com.au/importance-of-medical-imaging/
https://www.xray.com.au/importance-of-medical-imaging/
https://doi.org/10.1007/978-3-540-71915-1_39
https://doi.org/10.1007/978-3-540-71915-1_39
http://www.sciencedirect.com/science/article/pii/B9780128181485000114
http://www.sciencedirect.com/science/article/pii/B9780128181485000114
https://www.webmd.com/pain-management/knee-pain/picture-of-the-knee#1
https://www.webmd.com/pain-management/knee-pain/picture-of-the-knee#1
https://www.bmj.com/content/324/7328/35

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Tilakaratna P. How Magnetic Resonance Imaging works explained simply.;. Vis-
ited on 2020-05-10. Available from: https://www.howequipmentworks.
com/mri_basics/l

R George, J Dela Cruz, R Singh, Rajapandian Ilangovan. T1 SE/T1 TSE/T1 FSE
Fat saturated;. Visited on 2020-05-10. Available from: https://mrimaster.
com/characterise%$20image%20t1%20fat$20sat.html.

Larobina M, Murino L. Medical Image File Formats. Journal of digital imaging.
2013 12;.

Sharma N, Aggarwal L. Automated medical image segmentation techniques. Jour-
nal of medical physics / Association of Medical Physicists of India. 2010 04;35:3—
14.

Lakare S. 3D Segmentation Techniques for Medical Volumes. 2000 01;.
Kaur D, Kaur Y. Various Image Segmentation Techniques: A Review; 2014. .

Homlong EG. Computer-Aided Diagnostics: Segmentation of Knee Joint Anatomy
Using Deep Learning Techniques;. Visited on 2020-05-10. Available from: http:
//hdl.handle.net/11250/2621247.

Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, et al. Recent Advances in
Convolutional Neural Networks. Pattern Recognition. 2015 12;.

Brewka G. Artificial intelligence—a modern approach by Stuart Russell and Peter
Norvig, Prentice Hall. Series in Artificial Intelligence, Englewood Cliffs, NJ. The
Knowledge Engineering Review. 1996;11(1):728.

Ruder S. An overview of gradient descent optimization algo-
rithms;. Visited on 2020-05-12. Available from: https://
ruder.io/optimizing—-gradient—-descent/index.htmli#
gradientdescentvariants.

Marsland S. Machine Learning: An Algorithmic Perspective, Second Edition. 2nd
ed. Chapman Hall/CRC; 2014.

Gribbestad M. Prognostics and Health Management for Air Compressors Based
on Deep Learning Techniques;. Visited on 2020-05-12. Available from: http:
//hdl.handle.net/11250/2621757.

Chollet F. Deep Learning with Python. Ist ed. USA: Manning Publications Co.;
2017.

Chen X, Lin X. Big Data Deep Learning: Challenges and Perspectives. IEEE
Access. 2014;2:514-525.

102

https://www.howequipmentworks.com/mri_basics/
https://www.howequipmentworks.com/mri_basics/
https://mrimaster.com/characterise%20image%20t1%20fat%20sat.html
https://mrimaster.com/characterise%20image%20t1%20fat%20sat.html
http://hdl.handle.net/11250/2621247
http://hdl.handle.net/11250/2621247
https://ruder.io/optimizing-gradient-descent/index.html#gradientdescentvariants
https://ruder.io/optimizing-gradient-descent/index.html#gradientdescentvariants
https://ruder.io/optimizing-gradient-descent/index.html#gradientdescentvariants
http://hdl.handle.net/11250/2621757
http://hdl.handle.net/11250/2621757

[45] Valueva MV, Nagornov NN, Lyakhov PA, Valuev GV, Chervyakov NI. Appli-
cation of the residue number system to reduce hardware costs of the convolu-
tional neural network implementation. Mathematics and Computers in Simulation.
2020;177:232 — 243. Available from: http://www.sciencedirect.com/
science/article/pi11/S0378475420301580.

[46] LeCun Y, Bengio Y, Hinton G. Deep Learning. Nature. 2015 05;521:436-44.

[47] IceCream Labs. 3x3 convolution filters — A popular choice; 2018. Visited on
2020-05-26. Available from: https://medium.com/@icecreamlabs/
3x3-convolution-filters—a-popular—-choice-"75ablc8b4das.

[48] Luo W, Li Y, Urtasun R, Zemel R. Understanding the Effective Receptive Field in
Deep Convolutional Neural Networks; 2017.

[49] Isensee F, Petersen J, Klein A, Zimmerer D, Jaeger P, Kohl S, et al. nnU-Net: Self-
adapting Framework for U-Net-Based Medical Image Segmentation. 2018 09;.

[50] Milletari F, Navab N, Ahmadi SA. V-Net: Fully Convolutional Neural Networks for
Volumetric Medical Image Segmentation; 2016.

[51] Bertels J, Eelbode T, Berman M, Vandermeulen D, Maes F, Bisschops R, et al..
Optimizing the Dice Score and Jaccard Index for Medical Image Segmentation:
Theory Practice; 2019.

[52] Jaccard P. ”Etude comparative de la distribution florale dans une portion des Alpes
et des Jura”. Bulletin de la Société vaudoise des sciences naturelles; 1901.

[53] Sgrensen T.” A method of establishing groups of equal amplitude in plant sociology
based on similarity of species and its application to analyses of the vegetation on
Danish commons”. Kongelige Danske Videnskabernes Selskab; 1948.

[54] Dice LR. Measures of the Amount of Ecologic Association Between Species.
Ecology. 1945;26(3):297-302. Available from: http://www.jstor.org/
stable/1932400.

[55] Elnakib A, Gimel’farb G, Suri J, El-Baz A. In: Medical Image Segmentation: A
Brief Survey; 2011. p. 1-39.

[56] Robert M Haralick LGS. Image segmentation techniques; 1984.

[57] Zucker SW. Region growing: Childhood and adolescence. Com-
puter Graphics and Image Processing. 1976;5(3):382 — 399. Available
from: |http://www.sciencedirect.com/science/article/pii/
S50146664X76800147.

[58] Hojjatoleslami SA, Kruggel F. Segmentation of large brain lesions. IEEE Transac-
tions on Medical Imaging. 2001;20(7):666—669.

103

http://www.sciencedirect.com/science/article/pii/S0378475420301580
http://www.sciencedirect.com/science/article/pii/S0378475420301580
https://medium.com/@icecreamlabs/3x3-convolution-filters-a-popular-choice-75ab1c8b4da8
https://medium.com/@icecreamlabs/3x3-convolution-filters-a-popular-choice-75ab1c8b4da8
http://www.jstor.org/stable/1932409
http://www.jstor.org/stable/1932409
http://www.sciencedirect.com/science/article/pii/S0146664X76800147
http://www.sciencedirect.com/science/article/pii/S0146664X76800147

[59] Wan SY, Higgins W. Symmetric region growing. IEEE transactions on image
processing : a publication of the IEEE Signal Processing Society. 2003 02;12:1007-
15.

[60] Mendonca AM, Campilho AJC. Segmentation of retinal blood vessels by combin-
ing the detection of centerlines and morphological reconstruction. IEEE Transac-
tions on Medical Imaging. 2006;25:1200-1213.

[61] Mukhopadhyay S. A Segmentation Framework of Pulmonary Nodules in Lung CT
Images. Journal of digital imaging. 2015 06;29.

[62] Justice RK, Stokely EM, Strobel JS, D REIM, Smith WM. Medical image segmen-
tation using 3D seeded region growing. In: Hanson KM, editor. Medical Imaging
1997: Image Processing. vol. 3034. International Society for Optics and Photonics.
SPIE; 1997. p. 900 — 910. Available from: https://doi.org/10.1117/12.
2774179,

[63] Menggiao W, Jie Y, Yilei C, Hao W. The multimodal brain tumor image segmenta-
tion based on convolutional neural networks. In: 2017 2nd IEEE International Con-
ference on Computational Intelligence and Applications (ICCIA); 2017. p. 336—
339.

[64] Kamnitsas K, Chen L, Ledig C, Rueckert D, Glocker B. Multiscale 3d convolutional
neural networks for lesion segmentation in brain MRI. Proc MICCALI Ischemic
Stroke Lesion Segmentation Challenge. 2015 01;.

[65] Hesamian MH, Jia W, He X, Kennedy P. Deep Learning Techniques for Medical
Image Segmentation: Achievements and Challenges. Journal of Digital Imaging.
2019 05;32.

[66] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical
Image Segmentation; 2015.

[67] Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for Semantic Seg-
mentation; 2014.

[68] Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, et al. Deep convolutional neural net-
works for multi-modality isointense infant brain image segmentation. Neurolmage.
2015;108:214 — 224. Available from: http://www.sciencedirect.com/
science/article/p11/S1053811914010660.

[69] Vincent G, Guillard G, Bowes M. Fully Automatic Segmentation of the Prostate
using Active Appearance Models; 2012. .

[70] Ozgiin Cicek, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net:
Learning Dense Volumetric Segmentation from Sparse Annotation; 2016.

[71] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception
Architecture for Computer Vision; 2015.

104

https://doi.org/10.1117/12.274179
https://doi.org/10.1117/12.274179
http://www.sciencedirect.com/science/article/pii/S1053811914010660
http://www.sciencedirect.com/science/article/pii/S1053811914010660

[72] Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, et al.. Attention
U-Net: Learning Where to Look for the Pancreas; 2018.

[73] Jetley S, Lord NA, Lee N, Torr PHS. Learn To Pay Attention; 2018.

[74] Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. UNet++: A Nested U-Net Archi-
tecture for Medical Image Segmentation; 2018.

[75] Decathlon MS. Generalisable 3D Semantic Segmentation;. Visited on 2020-05-16.
Available from: http://medicaldecathlon.com/results.htmll

[76] Ibtehaz N, Rahman MS. MultiResUNet: Rethinking the U-Net architecture for mul-
timodal biomedical image segmentation. Neural Networks. 2020 Jan;121:74-87.
Available from: http://dx.doi.org/10.1016/j.neunet.2019.08.
025.

[77] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al.. Going Deeper
with Convolutions; 2014.

[78] Folkesson J, Dam E, Olsen O, Pettersen P, Christiansen C. Segmenting Articular
Cartilage Automatically Using a Voxel Classification Approach. Medical Imaging,
IEEE Transactions on. 2007 02;26:106 — 115.

[79] Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M. Deep Feature Learning
for Knee Cartilage Segmentation Using a Triplanar Convolutional Neural Network.
vol. 16; 2013. p. 246-53.

[80] Antony J, McGuinness K, Moran K, O’Connor NE. Automatic Detection of Knee
Joints and Quantification of Knee Osteoarthritis Severity using Convolutional Neu-
ral Networks; 2017.

[81] Zhou Z, Zhao G, Kijowski R, Liu F. Deep Convolutional Neural Network for Seg-
mentation of Knee Joint Anatomy. Magnetic Resonance in Medicine. 2018 03;80.

[82] Ambellan F, Tack A, Ehlke M, Zachow S. Automated segmentation of knee
bone and cartilage combining statistical shape knowledge and convolutional neu-
ral networks: Data from the Osteoarthritis Initiative. Medical Image Analysis.
2019;52:109 — 118. Available from: http://www.sciencedirect.com/
science/article/pi11/S1361841518304882.

[83] ByraM, Wu M, Zhang X, Jang H, Ma Y, Chang E, et al. Knee menisci segmentation
and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-
Net with transfer learning. Magnetic Resonance in Medicine. 2019 09;83.

[84] Pettersen M. Segmentation of MR Images Using CNN;. Visited on 2020-05-30.
Available from: https://hdl.handle.net/11250/2650400.

[85] Chen H. Automatic segmentation and motion analysis of the knee joint based on
MRI and 4DCT images. University of Twente. Netherlands; 2020.

105

http://medicaldecathlon.com/results.html
http://dx.doi.org/10.1016/j.neunet.2019.08.025
http://dx.doi.org/10.1016/j.neunet.2019.08.025
http://www.sciencedirect.com/science/article/pii/S1361841518304882
http://www.sciencedirect.com/science/article/pii/S1361841518304882
https://hdl.handle.net/11250/2650400

[86] Gibson E, Li W, Sudre C, Fidon L, Shakir DI, Wang G, et al. NiftyNet:
a deep-learning platform for medical imaging; 2018. Available from:
https://www.sciencedirect.com/science/article/pii/
S50169260717311823\

[87] Eli Gibson WL, et al.. Niftynet;. Visited on 2020-05-16. Available from: https:
//niftynet.io/.

[88] Peterson B. Six: Python 2 and 3 Compatibility Library;. Visited on 2020-05-16.
Available from: https://six.readthedocs.io/.

[89] Matthew Brett MHMACBCPM Chris Markiewicz, Cheng C. NiBabel Access a ca-
cophony of neuro-imaging file formats;. Visited on 2020-05-16. Available from:
https://nipy.org/nibabel/.

[90] Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods. 2020;17:261-272.

[91] van der Walt S, Colbert SC, Varoquaux G. The NumPy Array: A Structure for Effi-
cient Numerical Computation. Computing in Science Engineering. 2011;13(2):22—
30.

[92] pandas development team T. pandas-dev/pandas: Pandas. Zenodo; 2020. Available
from: https://doi.org/10.5281/zenodo.3509134.

[93] Wes McKinney. Data Structures for Statistical Computing in Python. In: Stéfan
van der Walt, Jarrod Millman, editors. Proceedings of the 9th Python in Science
Conference; 2010. p. 56 — 61.

[94] Clark A, et al.. Python Imaging Library;. Visited on 2020-05-16. Available from:
https://python-pillow.org/#.

[95] Kirtand J. Fast, simple object-to-object and broadcast signaling;. Visited on 2020-
05-16. Available from: https://pythonhosted.org/blinker/.

[96] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al.. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems; 2015. Software avail-
able from tensorflow.org. Available from: https://www.tensorflow.org/|

[97] NVIDIA. CUDA Toolkit;. Visited on 2020-05-16. Available from: https://
developer.nvidia.com/cuda-toolkit.

[98] Yushkevich PA, Piven J, Cody Hazlett H, Gimpel Smith R, Ho S, Gee JC, et al.
User-Guided 3D Active Contour Segmentation of Anatomical Structures: Signifi-
cantly Improved Efficiency and Reliability. Neuroimage. 2006;31(3):1116-1128.

[99] Microsoft Corporation. Microsoft Excel;. Available from: https://office.
microsoft.com/excell

106

https://www.sciencedirect.com/science/article/pii/S0169260717311823
https://www.sciencedirect.com/science/article/pii/S0169260717311823
https://niftynet.io/
https://niftynet.io/
https://six.readthedocs.io/
https://nipy.org/nibabel/
https://doi.org/10.5281/zenodo.3509134
https://python-pillow.org/#
https://pythonhosted.org/blinker/
https://www.tensorflow.org/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://office.microsoft.com/excel
https://office.microsoft.com/excel

[100] Niftynet-documentation. niftynet.network.no_new_net module;. Visited on 2020-
05-16. Available from: https://niftynet.readthedocs.io/en/dev/
niftynet.network.no_new_net.htmll

[101] Solal, SevillaJ. Importance of input data normalization for the application of neural
networks to complex industrial problems. Nuclear Science, IEEE Transactions on.
1997 07;44:1464 — 1468.

[102] Solal, SevillaJ. Importance of input data normalization for the application of neural
networks to complex industrial problems. IEEE Transactions on Nuclear Science.
1997;44(3):1464-1468.

[103] Hoffer E, Banner R, Golan I, Soudry D. Norm matters: efficient and accurate nor-
malization schemes in deep networks; 2018.

[104] Nyul LG, Udupa JK, Xuan Zhang. New variants of a method of MRI scale stan-
dardization. IEEE Transactions on Medical Imaging. 2000;19(2):143-150.

[105] Zhou XY, Yang GZ. Normalization in Training U-Net for 2D Biomedical Semantic
Segmentation; 2018.

[106] Niftynet-documentation. Data augmentation during training;. Visited on 2020-
05-15. Available from: https://niftynet.readthedocs.io/en/dev/
config_spec.html#data-augmentation-during-training.

[107] Simard PY, Steinkraus D, Platt JC. Best practices for convolutional neural networks
applied to visual document analysis. In: Seventh International Conference on Doc-
ument Analysis and Recognition, 2003. Proceedings.; 2003. p. 958-963.

[108] Andersson E, Berglund R. Evaluation of Data Augmentation of MR Images for
Deep Learning; 2018. .

[109] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical
Image Segmentation; 2015.

107

https://niftynet.readthedocs.io/en/dev/niftynet.network.no_new_net.html
https://niftynet.readthedocs.io/en/dev/niftynet.network.no_new_net.html
https://niftynet.readthedocs.io/en/dev/config_spec.html#data-augmentation-during-training
https://niftynet.readthedocs.io/en/dev/config_spec.html#data-augmentation-during-training

Segmentation of Knee Joint Using 3D Convolutional Neural Networks

Norwegian University of
Science and Technology

@ NTNU

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acronyms
	Glossary
	Introduction
	Background & motivation
	Thesis scope
	Goals and objectives
	Thesis structure

	Theory
	Anatomy of the knee
	Magnetic resonance imaging
	Image types
	Image formats

	Segmentation
	Artificial neural networks
	Structure
	Activation function
	Loss function
	Gradient descent
	Backpropagation
	Overfitting
	Learning rate
	Deep learning

	Convolutional Neural Networks
	Structure
	Convolution layer
	Pooling
	Fully connected layer
	Shared weights
	Local receptive field
	Patch-based analysis

	Semantic segmentation loss functions
	Dice loss
	Cross entropy
	DicePlusXEnt

	Data augmentation
	Elastic deformation

	Evaluation metrics
	Machine learning evaluation metrics
	Evaluation metrics for medical imaging

	Related work
	Traditional rule-based segmentation techniques for medical image segmentation
	Deep learning applications in medical image segmentation
	U-Net variants

	Convolutional neural networks for segmentation of knee joint anatomy

	Methodology
	Hardware & Software
	Hardware
	Software

	Data
	Convolutional neural network implementation
	Hyper-parameter optimization
	Baseline model configuration

	Experiments
	Resolution (pixel dimension)
	Spatial window size
	Training
	Inference
	Additional hypothesis

	Loss type
	Normalisation
	Learning rate
	Data Augmentation

	Results
	Resolution (pixel dimension)
	Spatial window size
	Loss type
	Dice loss type
	DicePlusXEnt loss type

	Normalisation
	Dice baseline with normalisation
	DicePlusXEnt baseline with normalisation
	DicePlusXEnt with 0.001 learning rate and normalisation

	Learning rate
	Learning rate 0.00001
	Learning rate 0.001
	Learning rate 0.01

	Data Augmentation

	Discussion
	Resolution (pixel dimension)
	Spatial window size
	Loss type
	Normalisation
	Learning rate
	Data Augmentation

	Conclusion
	Contribution
	Future work

	Bibliography

