

N
T

N
U

N
o
rw

e
g

ia
n
 U

n
iv

e
rs

it
y
 o

f

S
c
ie

n
c
e
 a

n
d
 T

e
c
h
n
o
lo

g
y

D
e
p

a
rt

m
e

n
t
o

f

In
fo

rm
a

ti
o

n
 &

C
o

m
m

u
n

ic
a

ti
o

n
 T

e
c
h

n
o

lo
g

y
 (

IC
T

)

R
e

p
o

rt

Ahsan Mafaz Hasan Abdul Kader
Supervisor – Ibrahim A. Hameed

Adversarial Attacks on Neural

Networks & Defense for it

Ålesund – June 03 – 2020

Summary

The Recent Advancement in the field of Machine Learning, enabled the emergence of

powerful Neural Networks in domains like Computer Vision, NLP which are capable

of achieving Human-level accuracy. As the result of this, incredible applications

were born ranging from Face-Based Authorization & Authentication systems, self-

driving cars to chatbots, language translators and the number is rising up everyday

including in many safety & security sensitive environments. With this huge boon,

there comes a major problem alongside "Adversarial Attacks on Neural Networks".

Inorder to exploit the advantages offered by Neural Networks and to take over the

control of the systems controlled by Neural Networks, Adversaries has developed

variety of techniques to attack the Network by feeding in Handcrafted-Inputs known

as Adversarial Inputs and make the Neural Network to predict a wrong output rather

than the true output, thereby fooling the Network.

The above problem is investigated in multiple-dimensions. The first dimen-

sion being the Different flavours of these attacks, their varied nature with respect

to factors like accuracy, time-consumption, perturbation-level etc. The different at-

tack strategies are performed on various types of Neural Networks like Convolution

Neural Network (CNN), Recurrent Neural Network (RNN) and Long-Short-Term-

Memory (LSTM) with standard datasets as input.

The second dimension investigates about popular Defense strategies which

can resist/prevent the attacks on the Neural Network, the relative strength and weak-

ness, the resisting capability with respect to different attack types.

In the third dimension, a live-demo of the attack is demonstrated by picking

up a real-world dataset and attacking the same to produce the intended output rather

than the original one.

i

Preface

This master thesis is submitted as the final work of the Master of Science degree at

the Simulation and Visualization program at the Norwegian University of Science

and Technology (NTNU), Department of ICT and Natural Sciences. The research

and report are done during the final semester, spring 2020. This thesis aims to ex-

plore security vulnerabilities in deep learning & the ways to improve the robustness.

It is investigated if it has the potential to improve the current defense strategies by ex-

ploiting the loopholes in it or if there is a possibility to come up with a new technique.

The main parts of the thesis is to demonstrate & analyze popular attack & defense

strategies with the complete analysis of relative strength & weakness, thereby lay-

ing the foundation for the bigger map. I’ve got inspired with this topic by reading

across the current trends in the AI world & also strong motivation from my supervisor

Ibrahim A Hameed.

ii

Table of Contents

Summary i

Preface ii

Table of Contents v

List of Tables vii

List of Figures xi

Abbreviations xii

1 Introduction 1
1.1 Scope of the Thesis . 3

1.2 Brief Introduction To Deep Learning 3

1.3 Standard Deep Neural Network Architectures 4

1.4 Standard Deep Learning Datasets 5

1.5 Types of Neural Networks . 5

1.5.1 FeedForward Neural Network 6

1.5.2 Convolutional Neural Network (CNN) - 8

1.5.3 Recurrent Neural Network (RNN) - 11

1.5.4 Long Short Term Memory (LSTM) - 12

iii

2 Literature Review 14

3 Basic Theory 20
3.1 Adversarial Examples - What is it? 20

3.2 Why to worry about Adversarial Examples? 22

3.3 Where do Adversarial examples come from? 24

3.4 Linear Explanation of Adversarial Examples 26

3.5 Why do Adversarial examples Generalize? - (Transferability) 26

3.6 Taxonomy of Adversarial Examples 27

3.6.1 Threat Model . 27

3.6.2 Perturbation . 31

3.6.3 Benchmark . 32

3.7 Adversarial Attacks on Neural Networks 34

3.7.1 Fast Gradient Sign Method - FGSM 34

3.7.2 BIM - Basic Iterative Method aka IFGSM 36

3.7.3 RFGSM - Randomized Fast Gradient Sign Method 36

3.7.4 Projected Gradient Descent - PGD 38

3.7.5 Randomized Projected Gradient Descent - RPGD 40

3.7.6 Averaged Projected Gradient Descent - APGD 41

3.7.7 Iterative Least Likely Class Method - ILL 41

3.7.8 Carlini & Wagner Attack - C&W Attack 44

3.7.9 Jacobian Saliency Map based Attack - JSMA 48

3.7.10 Black-Box Attack: . 51

3.8 DEFENSE towards Adversarial Attacks 52

3.8.1 Adversarial Training . 52

3.8.2 Ensemble Adversarial Training 54

3.8.3 Defensive Distillation . 54

3.9 Real-World Dataset Attack . 57

3.9.1 DeepWordBug . 57

iv

4 Experiment 60

5 Analysis 74

6 Conclusion 112

v

List of Tables

4.1 Datasets Summary . 61

4.2 MNIST Architecture . 62

4.3 CIFAR10 Architecture . 62

4.4 InceptionV3 Architecture(ImageNet) 63

4.5 Epsilon values set . 64

4.6 Additional default Hyperparameters 65

4.7 Sampling values set for APGD . 65

4.8 C&W Attack Hyperparameter . 66

4.9 MNIST Architecture . 67

4.10 CIFAR10 Dataset . 67

4.11 CIFAR10 Substitute Model Architecture 68

4.12 CIFAR10 Target Model Architecture 69

4.13 Attack Hyperparameter . 70

4.14 Custom MNIST Architecture . 70

4.15 MNIST Dataset . 71

4.16 MNIST Architecture . 71

4.17 Defense Hyperparameters . 71

4.18 NLP Datasets . 72

4.19 NLP Model Architecture . 73

vi

5.1 FGSM - Test Accuracy Percentage 74

5.2 IFGSM - Test Accuracy Percentage 78

5.3 RFGSM - Test Accuracy Percentage 82

5.4 PGD - Test Accuracy Percentage 86

5.5 RPGD - Test Accuracy Percentage 90

5.6 APGD - Test Accuracy Percentage 94

5.7 ITERLL - Test Accuracy Percentage 98

5.8 C&W - Test Accuracy Percentage 102

vii

List of Figures

1.1 Thesis Scope . 3

1.2 FeedForward Neural Network . 6

1.3 Convolutional Neural Network . 8

1.4 Recurrent Neural Network, unrolled over time 11

1.5 LSTM cell . 12

3.1 Adversarial Examples in computer-vision & speech-recognition do-

mains . 21

3.2 Adversarial Examples in NLP domain 21

3.3 Fooling of Autonomous cars - Scenario 1 22

3.4 Fooling of Autonomous cars - Scenario 2 23

3.5 Facial Impersonation Attack . 23

3.6 Malware Bypassing Attack . 24

3.7 It is the imperfect fit of the learned Decision boundary by the machine-

learning model which creates a room for adversarial examples & by

the adversarial attack, we are trying to shift the correct samples to-

wards this region . 25

3.8 Threat Model Decomposition . 29

3.9 Perturbation Classification . 31

3.10 Benchmark . 33

viii

3.11 FGSM performed on an image of hen as predicted by the unperturbed

model. After adding some perturbation, we can see that the image is

still a hen but our model does not predict it as hen even in its top five

predictions. Here our ε of 0.3 corresponds to the magnitude of the

perturbation. 35

3.12 (a) denotes the curvature in the model’s loss function while (b) de-

notes the same but in much zoomed-in level 37

3.13 PGD maintaining the noise within a circle of particular radius, L2

norm in this case . 38

3.14 Projection of the noise which lies outside the feasible set back into

the permissible set . 39

3.15 We kept the target class as ”hen” (instead of choosing the least likely

class, we selected a random class) for this image but this method

could not yield that prediction in this case. But we can observe that

it has misclassified the image. 43

3.16 Saliency Maps with the corresponding input image 48

3.17 JSMA Algorithm as defined in the original paper Anqi Xu et al[10] . . 49

3.18 Process Flow in a Black-Box attack mode 51

3.19 Representation of Decision boundary of the model 53

3.20 Deep Neural Network Architecture 55

3.21 Outcome of DeepWordBug . 58

3.22 Token Transformation . 59

5.1 FGSM’s impact on sample MNIST Input batch - [7,2,1,0], with pre-

dicted outputs . 75

5.2 FGSM’s impact on sample CIFAR10 Input batch, with predicted out-

puts . 76

5.3 FGSM’s impact on ImageNet’s Input Image of giantPanda, with pre-

dicted outputs . 77

ix

5.4 IFGSM’s impact on sample MNIST Input batch - [7,2,1,0], with pre-

dicted outputs . 79

5.5 IFGSM’s impact on sample CIFAR10 input batch of [cat,ship,ship,plane],

with predicted outputs . 80

5.6 IFGSM’s impact on ImageNet’s Input Image of giantPanda, with pre-

dicted outputs . 81

5.7 RFGSM’s impact on sample MNIST Input batch - [7,2,1,0], with

predicted outputs . 83

5.8 RFGSM’s impact on sample CIFAR10 input batch of [cat,ship,ship,plane],

with predicted outputs . 84

5.9 RFGSM’s impact on ImageNet’s Input Image of giantPanda, with

predicted outputs . 85

5.10 PGD’s impact on sample MNIST Input batch - [7,2,1,0], with pre-

dicted outputs . 87

5.11 PGD’s impact on sample CIFAR10 input batch of [cat,ship,ship,plane],

with predicted outputs . 88

5.12 PGD’s impact on sample ImageNet image of giantPanda, with pre-

dicted outputs . 89

5.13 RPGD’s impact on sample MNIST Input batch - [7,2,1,0], with pre-

dicted outputs . 91

5.14 RPGD’s impact on sample CIFAR10 input batch of [cat,ship,ship,plane],

with predicted outputs . 92

5.15 RPGD’s impact on sample ImageNet image of giantPanda, with pre-

dicted outputs . 93

5.16 APGD’s impact on sample MNIST Input batch - [7,2,1,0], with pre-

dicted outputs . 95

5.17 APGD’s impact on sample CIFAR10 input batch of [cat,ship,ship,plane],

with predicted outputs . 96

x

5.18 APGD’s impact on sample ImageNet image of giantPanda, with pre-

dicted outputs . 97

5.19 ITERLL’s impact on sample MNIST Input batch - [7,2,1,0], with

predicted outputs . 99

5.20 ITERLL’s impact on sample CIFAR10 Input batch - [cat,ship,ship,plane],

with predicted outputs . 100

5.21 ITERLL’s impact on sample ImageNet image of giantPanda, with

predicted outputs . 101

5.22 C&W’s impact on sample MNIST Input batch - [7,2,1,0], with pre-

dicted outputs . 103

5.23 C&W’s impact on sample CIFAR10 Input batch - [cat,ship,ship,plane],

with predicted outputs . 104

5.24 C&W’s impact on sample ImageNet Input image of giantPanda, with

predicted outputs in all possible cases 105

5.25 JSMA Attack with 2 Experiments. Experiment (a) signifies the input

image as 7 & the target to be 1, while Experiment (b) is vice-versa

case of (a). 107

5.26 Output for Ag_News dataset . 110

5.27 Output for norec,Norwegian dataset 111

xi

Abbreviations

CNN = Convolutional Neural Network

RNN = Recurrent Neural Network

LSTM = Long Short Term Memory

FGSM = Fast Gradient Sign Method

IFGSM = Iterative Fast Gradient Sign Method

RFGSM = Randomized Fast Gradient Sign Method

PGD = Projected Gradient Descent

RPGD = Randomized Projected Gradient Descent

APGD = Averaged Projected Gradient Descent

ITERLL = Iterative Least Likely Class Method

C&W = Carlini & Wagner Attack

JSMA = Jacobian Saliency Map Based Attack

NLP = Natural Language Processing

iter = iterations

xii

Chapter 1
Introduction

Deep learning (DL) has made significant progress in several dimensions of machine

learning (ML) like : image classification, object recognition, object detection ,speech

recognition , language translation , voice synthesis . The online Go Master (AlphaGo

) beat more than 50 top go players in the world. Recently AlphaGo Zero surpassed its

previous version without using human knowledge and a generic version, AlphaZero

, achieved a superhuman level within 24 hours of cross domains of chess, Shogi, and

Go.

Constantly increasing number of real-world applications and systems have been

powered by deep learning. For instance, companies from IT to the auto industry

(e.g., Google, Telsa, Mercedes, and Uber) are testing self-driving cars, which require

plenty of deep learning techniques such as object recognition, reinforcement learn-

ing, and multimodal learning. Face recognition system has been deployed in ATMs

as a method of biometric authentication. Apple also provides face authentication to

unlock mobile phones.

Despite great successes in numerous applications, many of the deep-learning based

empowered applications are life crucial, raising great concerns in the field of safety

and security. “With great power comes great responsibility”. Recent studies find

that deep learning is vulnerable against well-designed input samples. These sam-

ples can easily fool a well-performing deep learning model with little perturbations

1

Chapter 1. Introduction

imperceptible to humans.

Extensive deep learning based applications have been used or planned to be de-

ployed in the physical world, especially in the safety-critical environments. In the

meanwhile, recent studies show that adversarial examples can be applied to real

world. For instance, an adversary can construct physical adversarial examples and

confuse autonomous vehicles by manipulating the stop sign in a traffic sign recog-

nition system or removing the segmentation of pedestrians in an object recognition

system. Attackers can generate adversarial commands against Automatic-Speech-

Recognition (ASR) models and Voice-Controllable-System(VCS) such as Apple Siri

, Amazon Alexa , and Microsoft Cortana .

Deep learning is widely regarded as a “black box” technique as quoted by Yuan

et al[13] — we all know that it performs well, but with limited knowledge of the

reason. Many studies have been proposed to explain and interpret deep neural net-

works. From inspecting adversarial examples, we may gain insights on semantic

inner levels of neural networks and find problematic decision boundaries, which in

turn helps to increase robustness and performance of neural networks and improve

the interpretability.

2

1.1 Scope of the Thesis

1.1 Scope of the Thesis

Figure 1.1: Thesis Scope

This Thesis can be dissected into 3 fragments, 1 part deals with Attack strategies

along with the analysis while another part in contrary handles the Defense aspect of

the same. The third fragment is dedicated exclusively for NLP domain & a real-world

dataset is used as opposed to the standard datasets like MNIST, CIFAR10 .. which

are used in the other two fragments.

1.2 Brief Introduction To Deep Learning

Deep learning is a type of machine learning method that makes computers to learn

from experience and knowledge without explicit programming and extract useful pat-

terns from raw data. For conventional machine learning algorithms, it is difficult to

extract well-represented features due to limitations, such as curse of dimensionality,

computational bottleneck , and requirement of the domain and expert knowledge.

3

Chapter 1. Introduction

Deep learning solves the problem of representation by building multiple simple fea-

tures to represent a sophisticated concept. For example, a deep learning-based image

classification system represents an object by describing edges, fabrics, and structures

in the hidden layers. With the increasing number of available training data, deep

learning becomes more powerful. Deep learning models have solved many compli-

cated problems, with the help of hardware acceleration in computational time.

A neural network layer is composed of a set of perceptrons (artificial neurons).

Each perceptron maps a set of inputs to output values with an activation function.

The function of a neural network is formed in a chain:

f(x) = f (k)(...f (2)(f (1)(x))) (1.1)

where f (i) is the function of the ith layer of the network, i = 1,2,···k.

Convolutional neural networks (CNNs) and Recurrent neural networks (RNNs)

are the two most widely used neural networks in recent neural network architectures.

CNNs deploy convolution operations on hidden layers to share weights and reduce

the number of parameters. CNNs can extract local information from grid-like in-

put data. CNNs have shown incredible successes in computer vision tasks, such as

image classification , object detection and semantic segmentation. RNNs are neural

networks for processing sequential input data with variable length. RNNs produce

outputs at each time step. The hidden neuron at each time step is calculated based on

current input data and hidden neurons at previous time step. Long Short-Term Mem-

ory (LSTM) and Gated Recurrent Unit (GRU) with controllable gates are designed to

avoid vanishing/exploding gradients of RNNs in long-term dependency. These will

be explored in depth in the future sections.

1.3 Standard Deep Neural Network Architectures

Several deep learning architectures are widely used in computer vision tasks: LeNet,

VGG, AlexNet, GoogLeNet (Inception V1-V4), and ResNet, from the simplest (old-

est) network to the deepest and the most complex (newest) one. AlexNet first showed

4

1.4 Standard Deep Learning Datasets

that deep learning models can largely surpass conventional machine learning algo-

rithms in the ImageNet 2012 challenge and led the future study of deep learning.

These architectures made tremendous breakthroughs in the ImageNet challenge and

can be seen as milestones in image classification problem. Attackers usually generate

adversarial examples against these baseline architectures.

1.4 Standard Deep Learning Datasets

MNIST, CIFAR-10, ImageNet are three widely used datasets in computer vision

tasks. The MNIST dataset is for handwritten digits recognition . The CIFAR-10

dataset and the ImageNet dataset are for image recognition task. The CIFAR-10 con-

sists of 60,000 tiny color images (32 × 32) with ten classes. The ImageNet dataset

consists 14,197,122 images with 1,000 classes. Because of the large number of im-

ages in the ImageNet dataset, most adversarial approaches are evaluated on only

part of the ImageNet dataset. The Fashion MNIST dataset, similar to the MNIST

dataset, consists of ten classes of fahion products like T-shirt, shoes, sneakers etc.

The Youtube-Dataset is gained from Youtube consisting of about ten million images.

1.5 Types of Neural Networks

This section explores about the different types of Neural Networks, with its applica-

tions including the strength & weakness.

5

Chapter 1. Introduction

1.5.1 FeedForward Neural Network

Figure 1.2: FeedForward Neural Network

Also, known as Multi-Layer-Perceptrons (MLP), a FeedForward neural network is

the most basic type of vanilla Neural network. As evident from the above figure,

there are three types of layers namely Input layer, Hidden layer & Output layer. The

Input layer is simply a container which holds the input data which is to be feeded in to

the neural network, while the output layer in contrary is a container to hold the output

data/response from the neural network. All the remaining layers which are present

in-between the input & output layer are called Hidden layers which forms the core

of the neural network. From a technical perspective, the Hidden layer represents the

6

1.5 Types of Neural Networks

input data in fine-discrete & intermediate form in such a way that when one navigates

from the left-most hidden layer to the right-most one, the representation complexity

increases due to the fact that input source to a particular hidden layer is simply the

output from the immediate before hidden layer. It should be noted that process flow

is from the left-most input layer to the right-most output layer which is a one-way

communication and hence the name FeedForward Neural Network.

Lets now take the mathematical perspective to view the neural

network. From this standpoint, neural networks are nothing more than a mapping

function of the form y = f(x : θ) where y denotes the output while x represents the

input. θ points to the model’s parameters namely weights & biases. The weight

values are connections between the various layers in the neural network and forms

the heart of the neural network training as these weights actually encodes the relative

importance of the various features in the input towards generating a particular output.

The training performance of a neural network can be evaluated or

quantified using a Cost function, which actually measures the difference between the

approximation learnt by the model & the true actual output. The result will always

be a single number & the goal of the training process is to minimize this number &

bring it as close to zero, which represents the point where the model has completely

learnt the mapping of the given input dataset.

In practice, optimizers are used to minimize the cost function by

updating the network’s weights & biases using the network’s gradients computed

from the cost/loss function. Stochastic Gradient Descent, Adam, Adagrad are some

of the frequently used optimizers.

The one such application of these neural networks can be at-

tributed to any supervised learning problem in which we have a knowledge about

the output for a given input and in addition to it, Linear Regression problems which

calculates the output from the given input features are benefited from this as well.

The main drawback associated with the Feedforward neural net-

works is it works well only for Linearly separable problems i.e the different output

7

Chapter 1. Introduction

classes can be separated by a line. But when it comes to non-linear problems or if

the input is image (Computer Vision) or text (Natural Language Processing), Feed-

Forward network is not the best candidate to opt for, which paves the way for other

types of neural networks.

1.5.2 Convolutional Neural Network (CNN) -

Figure 1.3: Convolutional Neural Network

When it comes to Image processing, CNN would be the best choice to go for it.

The basic objective behind the existence of CNN can be attributed to Image classi-

fication i.e if a picture of a cat or dog is shown to these neural network, it should

clearly identify & distinguish between the two categories, in a similar way a human

would do. It would be interesting to see the biological connection between a CNN

& Human’s visual cortex. The visual cortex in humans is found to consist of small

region of cells which are sensitive to specific regions of the visual field. Biological

experiments found that specific set of neurons fires/activates when an input with par-

ticular edge,curve & orientation is shown. Also, all these neurons were arranged in

8

1.5 Types of Neural Networks

a columnar architecture. This nature of specialized components within a particular

system which is dedicated for a particular input formed basis for CNN.

Lets now investigate about different types of layers present in

CNN & their respective roles in it. To begin with an image is feeded as input to

the network (CNN also works under Text, NLP domain). One must notice that neu-

ral network looks at an image as a matrix of numbers & it would be an array of the

form width * height * depth like 32*32*3. The depth is given as 3 as it points to

RGB color channels of the image. The first layer following the input layer would

be the convolution layer in CNN always, which forms the heart of this neural net-

work. The convolution layer has a set of matrix of numbers called Filters, with width

equal to height & depth must match the input image’s depth. The main objective be-

hind these filters is to extract a predefined edge/shape/boundary in the given image

through a process called convolving. By convolving, element-wise multiplication is

performed between the pixels in the input image & filter’s pixels, post-which a sum-

mation is done with the result which finally produces a single number. The notion

is if the image contains the expected edge/shape in this region/section of the image,

then this number would be very high (similar to neurons firing in visual cortex) else

zero otherwise. As a next step, filter is shifted/strided some units to the right. These

units shifting can be 1 or any other number but higher the number, lesser would be

the dimensions for the resulting matrix. When the filter covers the entire region of

the image, the resulting matrix is called activation maps, the dimensions of which

would be less than the original image. In cases in which the dimensions should be

maintained, image borders can be padded with zeros which is called zero-padding.

The next layer in the sequence which immediately follows the

convolution layer would be ReLU layer aka Rectilinear activations. The purpose of

this layer is to set all the negative activations in the activation maps to zero & has a

mathematical representation of f(x) = max(0,x). It was also found that ReLU makes

the traning of the network much faster than compared to other activations like tanh,

sigmoid. This is the part in which a non-linearity is introduced in the network.

9

Chapter 1. Introduction

Following the ReLU layer comes the pooling layer, which down-

samples the given input. It comes under different flavours like MaxPooling, L2, Av-

erage pooling, with MaxPooling being the most-frequently used one. The theme

behind MaxPooling is to apply a window of specific size like 5X5 to the given input

& pick the maximum value within the window, post-which striding happens. The

result being the reduced size of the feeded input. It is based on the fact that only

the relative positioning of different features in the image matters & not the absolute

position.

Until this point, all the layers which are explained above forms

the set of layers which are unique to convolutional neural network. This layer set

is duplicated for a certain number of times in-order for the filters to extract much

complex representations present in the image than the simple curves/shapes like in

the initial layers. Next layers in the network would be the normal hidden layers as

in the FeedForward Neural Network & the neurons in this layer will be learning the

right set of weights to produce a particular output when a specific shape exists in the

image. The final output will be set of probabilities which denotes the given input

belongs to a particular class.

CNN has huge list of applications under it, most of which involves

image-processing in various forms like object detection, image segmentation etc.

Commercial applications of CNN includes Facebook which uses automatic photo-

tagging, Google for photo-search, Instagram for search infrastructure.

While the strength of the CNN can be attributed to its success in

computer vision tasks, its drawback would be it’s inefficieny to process sequential

input data.

10

1.5 Types of Neural Networks

1.5.3 Recurrent Neural Network (RNN) -

Figure 1.4: Recurrent Neural Network, unrolled over time

RNN solves the major drawback faced by FeedForward network & CNN namely se-

quential input-data processing. In some sense, RNN is just a flavour of FeedForward

networks as it is equivalent to FeedForward Network + Loop as shown in the above

figure. In case of FeedForward networks, the generation of a particular output de-

pends only on the input on that specific time-step & is completely independent of all

the input/outputs present in the previous layer. This is the notion where RNN stands

apart from other neural networks & is capable of remembering all the previous out-

puts in the sequence using sequential memory or Hidden state which is considered

before producing an output. It must be noted that the same weight is shared across

all the hidden state in the RNN.

A major struggle faced by RNN is the problem of vanishing/exploding

gradient. The reason behind this problem is the nature of Backpropogation algo-

rithm, which makes a particular weight update to depend upon all the weight updates

in the layers succeeding it, in which case if the weight update is a small value in a par-

ticular layer, then the layers preceding it will perform even more small weight update

with the initial layer doing a weight update close to zero. This is known an van-

11

Chapter 1. Introduction

ishing gradient problem, which implies that RNN can’t remember long sequences

& is capable of only short-term memory. The vice-versa case of vanishing gradient

problem is known as Exploding gradient problem in which the weight update will

keep increasing as we navigate from output layer to the first hidden layer.

Coming to the applications of RNN, it is used in NLP tasks like

Chatbots, Language Translation, speech recognition, stock prediction, Image cap-

tioning etc.

1.5.4 Long Short Term Memory (LSTM) -

Figure 1.5: LSTM cell

12

1.5 Types of Neural Networks

LSTM is simply a RNN but with the cell state (hidden state) controlled in a bit more

sophisticated way through gates & operations. As shown in the above figure, the first

horizontal line from the top represents the cell state, which runs across the entire cell

like a conveyor belt & its contents can be dynamically added or removed in a much

controlled way by the use of gates.

Lets investigate more on the roles of each of these gates in the

LSTM cell. one must note that the input at the present time-step is feeded across

all the gates over here. Now, Starting from the left-most sigmoid activation function

which is called forget gate as the sigmoid function will always outputs a value from

0-1 & when this output is multiplied by the cell’s hidden state in the main line, it can

actually remove/erase the cell’s past memory to the extent of the multiplied number

& hence the name. This is identical to the valve that controls the water-flow in a pipe.

The next process in the pipeline will be the cell state update which

is done with two sets of gate, one with sigmoid function called input layer gate &

the other with tanh function. The tanh layer creates a new candidate vectors while the

sigmoid layer again acts as a valve in the pipe that controls the information flow, the

result of which is added into the cell’s main memory through a summation operation.

The final step in the process is the output generation. The final

hidden state is basically the cell’s main memory but with some contents filtered.

This work can be attributed to the sigmoid & tanh layers present at the right-most

side of the cell. To begin with, contents of the cell’s main memory is feeded into the

tanh layer which outputs the value in the range -1 to +1, which is again made to pass

through a valve provided by sigmoid layer, as explained before. This performs the

filteration & this filtered value forms the new hidden state which forms the input for

the next LSTM cell.

13

Chapter 2
Literature Review

Until the year 2012, Machine learning models were evaluated only on

clean inputs & Adversarial examples has no involvement in impacting the robustness

of neural networks until Szegedy et al [1] investigated the existence of adversarial

examples in machine learning models through experiments. He proved the fact that

it was the High-dimensionality in the input data under a Linear model setting, visits

unnaturally occuring points in space i.e adversarial examples and most of the Neural

Networks spends the majority of their time in the linear-saturating region, thereby

well-aligning with the linear model explanation. In short, this work proved that lin-

earity is the cause here as opposed to the previous hypothesis which was in favour of

non-linearity. It was also discovered that the generated adversarial examples can be

transferred from one machine-learning model to a completely different one. The rea-

son behind that can be attributed to the contiguous occurence in broad region of 1-D

spaces when perturbation points to the right direction with a significant magnitude. It

is surprising to know that Szegedy at al [1] also discovered a way to resist/defend ad-

versarial examples through a method called "Adversarial Training", which provides

a unique regularization property, which can’t be found in traditional regularization

techniques like Dropout etc. This way of resistance was strongly backed up by Uni-

versal approximator theorem which guarantees that any machine learning model can

learn the resistance embedded objective functions if it has atleast one hidden layer

14

and no upper-bound on the number of neurons in those layers.

An analysis about the input representation in the neural network

was done by Ian J.Goodfellow et al [2], who came up with two important results from

their work. The first one being the information about the semantic structure of the

input is stored in activation space and the individual units aka neurons has no involve-

ment in the storage. While the second result revolves around the fact that the hidden

layers present in the neural networks is responsible for representing non-local gener-

alization information. In simple terms, the output layer assigns some non-significant

probabilities to those regions of the input which doesn’t has any training examples in

their vicinity. It is this region which represents the input from different perspective.

Also, this work has discovered a way to traverse the manifold represented by the net-

work to reach the adversarial examples which occur in High-dimensional space that

are quite unnatural.

A much interesting work was done by Sameer Singh et al [3]

with respect to Natural Adversarial examples generation. In contrary to the previous

works which mostly concerned about adversarial examples generation under white-

box setting, this work focuses on developing a framework which produces semanti-

cally similar adversarial examples through a special type of Neural Network known

as Generative-Adversarial Network (GAN) and feed this natural adversarial samples

to any Black-box classifier. It is important to note that the proposed framework is ca-

pable of producing adversarial samples for both Image as well as Text domain, which

makes this to stand apart from other existing approaches. The main theme behind this

approach is instead of modifying the given input sample be it an image or a text, it

produces a dense-vector representation of this input through a pre-trained Inverter,

which forms one part of the GAN. Once the Dense vector is obtained, then the mod-

ifications are applied on these original dense-vector to get perturbed dense-vector

which are then fed into pre-trained generator which finally produces set of natural

adversarial samples. A notable observation over here is, it is quite easy to gener-

ate adversarial samples for images as they are represented in continuous value range

15

Chapter 2. Literature Review

which isn’t the same case when it comes to text as they have discrete values. All

the previous works, exploited strong NLP-oriented strategies and manual interven-

tion to develop adversarial samples and that too it wasn’t semantically similar. But in

this approach, a special technique known as Textual Entailment was used which uses

a pair of sentences called ’preamble’ and ’hypothesis’ and modify the ’hypothesis’

sentence to produce natural adversarial text. The adversaries generated were able to

attack ’Google Translate’ and sounded perfectly well in both semantic and logical

aspects.

Szegedy et al [1] came up with the very first method to gener-

ate adversarial example by exploiting the gradients of the underlying model which

was known as FGSM. Although it was the first method, the attack was quite rapid

& powerful which eventually paved the way for other types of attacks. Goodfellow

et al [7] proposed an Iterative version of FGSM, IFGSM in which all the operations

of FGSM was done in an iterative way with the intermittent values clipped within

some range & similarly, Papernot et al’s [11] work adds one more step of randomiz-

ing the initial starting points before starting the iteration in FGSM, inorder to escape

getting struck in the local minimum. Madry et al [8] did bit different by clipping

the noise level produced by the iterative version within a particular range i.e always

maintain the noise within a circle of particular radius & adds this controlled noise

to the original input without the input values exceeding the permissible range. This

method was known as PGD, which emerged as one of the most powerful attack with

Randomized-PGD & Averaged-PGD as its flavours to escape the local optimum &

attack the Bayesian Neural Networks. Carlini et al [9] came up with the most power-

ful attack ever devised so far which is known as C&W attack that considers both the

intensity of perturbation level & misclassification rate by encoding both of them in

the objective function to be optimized. C&W attack rose to the power in such a way

that it is used as the Benchmark to evaluate the robustness of neural network or the

resisting capability of a particular defense strategy.

The first practical demonstration of the Black-box attacks in the

16

real-world setting was performed by Papernot et al [4] in a unique approach which

doesn’t require any knowledge about the target Neural Network’s weights and hy-

perparameters as well as avoids the access to large training dataset. Theme was that

the target Neural Network was hosted at a third-party API service and adversary has

zero knowledge about the model type, architecture and its hyperparameters while the

only access the adversary has is to query the model by feeding an input and get the

predicted output label (not the probability) by the model. And there is a restriction to

the number of queries made to the target model to view the output because if it is per-

missible to query infinite times, then adversary can completely learn about the target

model. The proposed solution under this setting was to construct a substitute model

compatible with the problem domain say Convolution Neural Network for computer

vision domain, with random architecture and hyperparameter and train the model in

a normal manner but with a synthetic dataset. The Synthetic dataset is formed by tak-

ing very few samples from the test-set of the given problem say images representing

0-9 in the MNIST dataset but with the labels omitted. In order to get the labels, the

raw input samples are fed into the target model & the predicted output is assigned as

the label for that particular sample. Then, the model is trained with this dataset and

post-which synthetic generation happens in which Jacobian derivatives of each sam-

ples in the present dataset are calculated with respect to the labels and added to the

corresponding samples after the Jacobian is multiplied with a hyperparameter λ and

the new sample is appended to the original dataset. In this way the substitute model

is able to approximate the target model’s decision boundaries. Then, the adversarial

examples are generated using traditional approaches say FGSM with the substitute

model and fed into the target model. Due to the property of Transferability, the target

model misclassifies the sample as well. By tuning the hyperparameter λ, the rate of

Transferability was increased.

There was a speculation within the machine-learning community

that adversarial attacks are applicable only in theory but it is highly uncertain when

it comes to practical real-world attacks. This was broken with the work done by

17

Chapter 2. Literature Review

Stephan et al [6] by demonstrating an attack on Real Facial-Recognition system us-

ing the notion of adversarial patches. Unlike the previous works which strongly

demanded the need for the creation of complex-shaped objects and specific light-

ing conditions, this strategy can be universally applied across any model without

any strong restrictions. The demonstration was done on a Facial-Recognition system

called ArcFace which uses state-of-the-art Face ID model called LResNet100E-IR

with the novel strategy called AdvHat. The main objective behind the AdvHat tech-

nique is to create a rectangular image using a novel algorithm and finally place this

generated image on a hat which is to be weared by a person who wants to dodge

the system and hence the name AdvHat. The proposed pipeline behind AdvHat is to

create a rectangular image using a novel off-plane transformation as the image has

to go through a series of transformations and project this generated image on a high-

quality image of a face with some small perturbations in the projection parameters to

make the patch more robust. Following this, the obtained patch is transformed to fit

into the ArcFace format which can be feeded in as input. As a final transformation of

the pipeline, a sum is computed between two parameters namely TV loss & cosine

similarity between embeddings and the patch is tweaked to reduce this sum. It was

also observed that maximum intensity of the attack was witnessed when the patch

was pasted at the bottom of the hat and this attack falls into Dodge category and not

impersonation.

Another similar work which proved the practicality of adversarial

examples was done by Alexey et al[7] who proved the practical possibility of these

attacks. They have done series of experiments in which inputs to the neural networks

are provided by some physical mediums like camera, sensor etc. and explored the

adversarial attack behaviours through it. Surprisingly, it worked for both White-

box & Black-Box attacks in the physical world. one such notable work was using

Imagenet Inception classifier but simply feed the adversarial-inputs via cellphone-

camera as opposed to previous style of images. Most of the adversarial samples got

misclassified & the accuracy is nearly same as that of before. By this, lower-bound

18

classification accuracy was established for white/box attacks. Regarding the Black-

box attack, a pair of real & adversarial images were printed adjacently in a piece of

paper pointed to a object recognition software through cell-phone camera. Again, the

adversarial samples got misclassified. It was also observed that adversarial samples

generated via Fast Gradient Sign Method is more robust to series of transformations

like cropping, lighting conditions etc. to name a few.

With the rise in popularity of these attacks, the exploration of de-

fense strategies got widened & papernot et al[4] came up with the quite successful

defense method known as Adversarial Training, a unique regularization technique

which possess some capabilities that can’t be seen in conventional L0 & L2 regular-

ization. The idea behind this approach is to inject the adversarial examples during

the routine training of the neural networks, so that model gets aware of the false

samples & becomes cautious accordingly. It should be noted that the model’s very

own parameters are used to generate adversarial samples. Alexey et al[11] modified

this approach a bit & proposed that rather than using the model’s own parameters to

generate adversarial samples, use a substitute model to generate these samples which

are then used in the training process. In this way, model gets more robust towards

Black-Box attacks.

The state-of-the-art defense was developed by Xi Wu et al[5] using

a variant of Distillation. The Distillation technique actually refers to transferring the

knowledge learned by big neural networks in the form of probability vectors to an-

other neural network which is relatively of small size without any loss in accuracy, so

that the small-sized neural network can be implemented on resource-constrained de-

vices like smartphones. The variant proposed in this work was to transfer the output

probability vectors learnt to another network which is an exact replica of the original

one and train the second network with the feeded probability vectors as the soft-labels

rather than the hard-labels used in the original network. A special hyperparameter

called ’Distillation Temperature’ was used at the neurons present in the final-softmax

layer of the network, which proved to be a core component behind this technique.

19

Chapter 3
Basic Theory

3.1 Adversarial Examples - What is it?

Szegedy et al. [1] first noticed the existence of adversarial examples in the image

classification domain, when he observed that on applying an imperceptible non-

random perturbation to a test image, it was possible to change the network’s pre-

diction arbitrarily. These perturbations were found by optimizing the input to maxi-

mize the prediction error and were termed as Adversarial Examples which can be de-

fined as "Instances with small, intentional feature perturbations to fool the Machine-

Learning model". To put it in simple words,

Adversarial Input = Original Input + carefully calculated noise

Ideally the Noise must be imperceptible to Human observers/listeners, meaning

if a Human looks at an adversarial image or listens to adversarially modified audio

file, he must still believe that it is normal input & there is no tampering in it. Also,

this attacks can be applied in any domains like computer vision, NLP where there is

a room for Deep Neural Networks.

20

3.1 Adversarial Examples - What is it?

Figure 3.1: Adversarial Examples in computer-vision & speech-recognition domains

Figure 3.2: Adversarial Examples in NLP domain

21

Chapter 3. Basic Theory

3.2 Why to worry about Adversarial Examples?

Recent breakthroughs in Computer Vision have led to near human level performance

in various tasks like Image Classification and Object Detection. There is also break-

through in speech-recognition & NLP areas like Google Translate. These advances

also call for widespread adoption of such methods for various problems by individ-

uals and industry because of their accurate results. But this also means that such

systems would naturally be applied in security-critical scenarios. It turns out that

these "highly accurate classifiers" show an inherent weakness known as adversarial

examples.

Let’s take an example to illustrate the importance of defenses required against ad-

versarial attacks. State-of-the-art neural networks are extensively used in autonomous

vehicles for Computer Vision tasks. Generally some decision regarding the path,

speed, etc is taken after doing some computation based on the images taken by the

camera. Say our car encounters a signal which says to stop. On an unperturbed in-

put, our car would stop but if our input is perturbed (imperceptible but non-random

perturbation), our network’s prediction would be of some arbitrary class, say ’Go

Right’. As you can imagine all autonomous cars on the road would behave in a

similar manner, and it would lead to chaos.

Figure 3.3: Fooling of Autonomous cars - Scenario 1

In the autonomous cars, another scenario could be lets say some pedestrains are

crossing the road. The trained neural network model could correctly recognizes the

pedestrains in the image but with the adversarial attack, the neural network can be

fooled to get an impression like no one is on the road & the car can move forward

22

3.2 Why to worry about Adversarial Examples?

freely which in reality would cause a disaster.

Figure 3.4: Fooling of Autonomous cars - Scenario 2

Another case of these attacks can be seen in Face-Recognition domain. In To-

day’s world, Face-based authorization system has carved out a unique place & it’s

application ranges from simple work-attendance to secured Bank vaults, military.

But hackers successfully attacked the neural networks behind these systems, forcing

the network to predict their own identity as some specific person who has authorized

access. Here, two things are possible, either prevent the network from making the

correct prediction which is called dodging or impersonate a particular person.

Figure 3.5: Facial Impersonation Attack

Another example would be of a malicious file or malware. By changing some bits

of the file which are benign, our systems might predict that it is a benign file (though

it did not alter the malicious part of the file, so it still should be classified as malware)

and would not block it, therefore posing a security risk to the computer.

23

Chapter 3. Basic Theory

Figure 3.6: Malware Bypassing Attack

Hence, it became the fact that all the machine models including the state-of-the art

neural networks are vulnerable to adversarial attacks. The misclassification happens

even when the same adversarial example is fed into different neural networks with

completely different architectures and trained with different subsets of data. This

raised a serious concern among the machine learning scientists and community as

its applications involves safety-critical environment and this technically restricts the

application of machine-learning in many areas despite of its huge success.

3.3 Where do Adversarial examples come from?

Machine learning algorithms are usually designed under the assumption that models

are trained on samples drawn from a distribution that is representative of test samples

for which we would later make predictions. However, this is not true in the case of

adversarial examples. Let us define a Machine Learning Classifier and we will then

try to understand the statistical properties of adversarial examples through the eyes

of the classifier.

An input x εX with n features and y εY be the label for that input. A classifier

then tries to learn a mapping f : x →y such that the function tries to minimize the

empirical risk. The classifier outputs probabilities and then the label corresponding to

24

3.3 Where do Adversarial examples come from?

the largest probability is chosen as the prediction of the model. There is an unknown

distribution DCi real for each class Ci and the training data X is obtained from this

distribution, and the classifier tries to approximate this distribution during training,

thereby learning DCi train.

A notable result in ML is that any stable learning algorithms will learn the real

distribution DCi real up to any multiplicative factor given a sufficient number of train-

ing examples drawn from DCi real. But complete generalization is not possible due to

finite number of training samples.

The existence of adversarial examples is a manifestation of the difference be-
tween the real distribution DCireal and the learned training distribution DCi train,

i.e the adversary aims to find a sample from DCi real whose behavior is not captured

by the learned distribution DCi train. But the adversary does not know the real distribu-

tion (if we would, then no need to learn anything) so it takes a sample from DCi train

and tries to perturb it to craft adversarial examples. Each such example made would

belong to DCiadv for the class. Since the perturbations applied are tiny in nature, we

know that DCiadv is consistent with DCi real (since a sample in DCiadv would also be in

DCi real) , but DCiadv differs from DCi train.

(a) Non-aligning Decision Boundary (b) Room for adversarial example

Figure 3.7: It is the imperfect fit of the learned Decision boundary by the machine-learning model
which creates a room for adversarial examples & by the adversarial attack, we are trying to shift
the correct samples towards this region

25

Chapter 3. Basic Theory

3.4 Linear Explanation of Adversarial Examples

Adversarial examples not only exist in big neural networks but also for shallow linear

models. We explain the existence of such examples in linear models in this section.

Digital images are capable of storing 8 bits of information per pixel (i.e from

0-255) and changes below the order of 2-8 are not recognized by a computer let alone

human vision. So maximum change per pixel should be ||η|| 8 < ε where ε is small

enough to be discarded by the sensor. For linear models, we calculate the inner

product between the weights of the network w and the adversarial example x , as :

wTx = wTx+ wTη (3.1)

where x is the unperturbed image

This equation tells us that the activation increases by wT . Our goal is to increase

this activation as much as possible, while having capped the maximum change per

pixel. This can be achieved by assigning η = sign(w). To analyze this behaviour, we

assume w is of n dimensions and average value of elements of w is m. This implies

that our activation grows by mn on average, which tells us that activation can grow

linearly with the amount of perturbation added unlike ||η|| 8. So for large images(or

high dimensional data), we could make very small changes to pixel which would

add up to something substantial to increase our activation values.

This explanation shows that a simple linear model can have adversarial examples

if its input has sufficient dimensionality.

3.5 Why do Adversarial examples Generalize? - (Transferability)

An Intriguing aspect of adversarial examples is that an example generated for one

model is often misclassified by other models, even when they have different archi-

tectures or were trained on disjoint training sets. Moreover, when these different

models misclassify an adversarial example, they often agree with each other on its

class.

26

3.6 Taxonomy of Adversarial Examples

Under the linear view, adversarial examples occur in broad subspaces. one must

note that adversarial example generation methods depends only on the sign of the

gradient & not on its magnitude. This means that as long as signs are matching with

noise level bit significant, one can observe the adversarial examples in contiguous

regions of the 1-D subspace as defined by the fast gradient sign method, & not in fine

pockets. This explains why adversarial examples are abundant and why an example

misclassified by one classifier has a fair high probability of being misclassified by

another classifier.

To explain why multiple classifiers assign the same class to adversarial examples,

lets claim a hypothesize that neural networks trained with current methodologies

learned on the same training set. This reference classifier is able to learn approxi-

mately the same classification weights when trained on different subsets of the train-

ing set, simply because machine learning algorithms are able to generalize. The

stability of the underlying classification weights in turn results in the stability of ad-

versarial examples.

3.6 Taxonomy of Adversarial Examples

To systematically analyze approaches for generating adversarial examples, we an-

alyze and categorize them along three dimensions: threat model, perturbation, and

benchmark. Note the Yuan et al[13] is used as a reference for this section.

3.6.1 Threat Model

• The adversaries can attack only at the testing/deploying stage. They can tamper

the input data only in the testing stage after the victim deep learning model got

trained. Neither the trained model or the training dataset can be modified. The

adversaries may have knowledge of trained models (architectures and parame-

ters) but are not allowed to modify models, which is a common assumption

for many online machine learning services. Attacking at the training stage (e.g.,

training data poisoning) is not performed here.

27

Chapter 3. Basic Theory

• We focus on attacks against models built with deep neural networks, due to the

great performance achieved. Adversarial examples against deep neural networks

proved effective than the conventional machine learning models aka (linear-

models).

• Adversaries only aim at compromising integrity. Integrity is presented by per-

formance metrics (e.g., accuracy, F1 score, AUC), which is essential to a deep

learning model. Although other security issues pertaining to confidentiality and

privacy have been drawn attention in deep learning, we focus on the attacks that

degrade the performance of deep learning models, which cause an increase of

false positives and false negatives.

Based on different scenarios, assumptions, and quality requirements, adversaries de-

cide the attributes they need in adversarial examples and then deploy specific attack

approaches. We further decompose the threat model into four aspects: adversar-

ial falsification, adversary’s knowledge, adversarial specificity, and attack frequency.

For example, if an adversarial example is required to be generated in real-time, ad-

versaries should choose a onetime attack instead of an iterative attack, in order to

complete the task.

• Adversarial Falsification

– False positive attacks generate a negative sample which is misclassified as a

positive one (Type I Error). In a malware detection task, a benign software

being classified as malware is a false positive. In an image classification

task, a false positive can be an adversarial image unrecognizable to human,

while deep neural networks predict it to a class with a high confidence score.

– False negative attacks generate a positive sample which is misclassified as

a negative one (Type II Error). In a malware detection task, a false negative

can be the condition that a malware (usually considered as positive) can-

not be identified by the trained model. False negative attack is also called

machine learning evasion. This error is shown in most adversarial images,

28

3.6 Taxonomy of Adversarial Examples

Figure 3.8: Threat Model Decomposition

where human can recognize the image, but the neural networks cannot iden-

tify it.

• Adversary’s Knowledge

– White-box attacks assume that the adversary knows everything related to

trained neural network models, including training data, model architectures,

hyper-parameters, numbers of layers, activation functions, model weights.

Many adversarial examples are generated by calculating model gradients.Since

deep neural networks tend to require only raw input data without hand-

crafted features and to deploy end-to-end structure, feature selection is not

necessary compared to adversarial examples in machine learning.

– Black-box attacks assume the adversary has no access to the trained neu-

ral network model. The adversary, acting as a standard user, only knows the

output of the model (label or confidence score). This assumption is common

for attacking online Machine Learning services (e.g., Machine Learning on

AWS,Google Cloud AI, Microsoft Azure, Face++). Most adversarial exam-

ple attacks are white-box attacks. However, they can be transferred to attack

black-box services due to the transferability of adversarial examples.

29

Chapter 3. Basic Theory

• Adversarial Specificity

– Targeted attacks misguide deep neural networks to a specific class. Tar-

geted attacks usually occur in the multiclass classification problem. For

example, an adversary fools an image classifier to predict all adversarial

examples as one class. In a face recognition/biometric system, an adver-

sary tries to disguise a face as an authorized user (Impersonation). Targeted

attacks usually maximize the probability of targeted adversarial class.

– Non-targeted attacks do not assign a specific class to the neural network

output. The adversarial class of output can be arbitrary except the orig-

inal one. For example, an adversary makes his/her face misidentified as

an arbitrary face in face recognition system to evade detection (dodging).

Non-targeted attacks are easier to implement compared to targeted attacks

since it has more options and space to redirect the output. Non-targeted

adversarial examples are usually generated in two ways: 1) running several

targeted attacks and taking the one with the smallest perturbation from the

results; 2) minimizing the probability of the correct class. Some generation

approaches (e.g., extended BIM, ZOO) can be applied to both targeted and

non-targeted attacks. For binary classification, targeted attacks are equiva-

lent to non-targeted attacks.

• Attack Frequency

– One-time attacks take only one time to optimize the adversarial examples.

– Iterative attacks take multiple times to update the adversarial examples.

Compared with one-time attacks, iterative attacks usually generate better

adversarial examples, but require more interactions with victim classifier

(more queries) and cost more computational time to generate them. For

some computational-intensive tasks (e.g., reinforcement learning), one-time

attacking may be the only feasible choice.

30

3.6 Taxonomy of Adversarial Examples

3.6.2 Perturbation

Small perturbation is a fundamental premise for adversarial examples. Adversarial

examples are designed to be close to the original samples and imperceptible to a hu-

man, which causes the performance degradation of deep learning models compared

to that of a human. We analyze three aspects of perturbation: perturbation scope,

perturbation limitation, and perturbation measurement.

Figure 3.9: Perturbation Classification

• Perturbation Scope

– Individual attacks generate different perturbations for each clean input.

– Universal attacks creates a universal perturbation for the whole dataset.

This perturbation can be applied to all clean input data. Most of the cur-

rent attacks generate adversarial examples individually. However, universal

perturbations make it easier to deploy adversary examples in the real world.

Adversaries do not require to change the perturbation when the input sample

changes.

• Perturbation Limitation

31

Chapter 3. Basic Theory

– Optimized Perturbation sets perturbation as the goal of the optimization

problem. These methods aim to minimize the perturbation so that humans

cannot recognize the perturbation.

– Constraint Perturbation sets perturbation as the constraint of the opti-

mization problem. These methods only require the perturbation to be small

enough.

• Perturbation Measurement

– lp (L0, L2, L 8) measures the magnitude of perturbation by p-norm distance:

||x||p = (
n∑
i=1

||xi||p)1/p (3.2)

– L0 perturbation - Restricts the number of pixels to be perturbed. This

ultimately leads to Larger-Amplitude variations in individual pixels.

– L2 perturbation - Root Mean Square (RMS) between the original input

the perturbed image. This takes into account both the number of pixels to

be modified as well as the maximum change per pixel.

– L 8 perturbation - Puts a cap on the maximum limit a given pixel can be

perturbed.

– Psychometric perceptual adversarial similarity score (PASS) is a new metric

introduced which is consistent with human perception. But this is seldom

followed in any type of attack.

3.6.3 Benchmark

Adversaries show the performance of their adversarial attacks based on different

datasets and victim models. This inconsistency brings obstacles to evaluate the ad-

versarial attacks and measure the robustness of deep learning models. Large and

high-quality datasets, complex and high-performance deep learning models usually

32

3.6 Taxonomy of Adversarial Examples

make adversaries/defenders hard to attack/defend. The diversity of datasets and vic-

tim models also makes researchers hard to tell whether the existence of adversarial

examples is due to datasets or models.

Figure 3.10: Benchmark

• Datasets - MNIST, CIFAR-10, and ImageNet are three most widely used im-

age classification datasets to evaluate adversarial attacks. Because MNIST and

CIFAR-10 are proved easy to attack and defend due to its simplicity and small

size, ImageNet is the best dataset to evaluate adversarial attacks so far. A well-

designed dataset is required to evaluate adversarial attacks.

• Victim Models - Adversaries usually attack several well-known deep learning

models, such as LeNet, InceptionV3, VGG, AlexNet, GoogLeNet, CaffeNet,

and ResNet.

33

Chapter 3. Basic Theory

3.7 Adversarial Attacks on Neural Networks

This section explores about different types of popular adversarial attacks on Neural

Networks, both white-box & black-box attacks, targeted & non-targeted, with the

key-properties, strength & weakness alongside.

3.7.1 Fast Gradient Sign Method - FGSM

Goodfellow et al. [1] proposed a fast method called Fast Gradient Sign Method to

generate adversarial examples. They only performed one step gradient update along

the direction of the sign of gradient at each pixel. Let θ be the parameters of the

model, x is the input image, y is the true label for x, and J(θ,x,y) is the loss function

for the network. We now linearize the loss function at the current value of θ, then

their perturbation (Noise) can be expressed as:

η = εsign(OxJθ(x, l)) (3.3)

where ε is the magnitude of the perturbation. The generated adversarial example

x| is calculated as: x| = x + η. This perturbation can be computed by using back-

propagation. One thing to notice is that we assume that parameters of the model is

fixed and compute the gradient with respect to the input, thereby getting a matrix of

the same size as that of the input. This cheap method is able to get high levels of mis-

classifications on datasets like MNIST, CIFAR-10. Figure 3.11 shows an adversarial

example on ImageNet.

34

3.7 Adversarial Attacks on Neural Networks

Figure 3.11: FGSM performed on an image of hen as predicted by the unperturbed model. After
adding some perturbation, we can see that the image is still a hen but our model does not predict
it as hen even in its top five predictions. Here our ε of 0.3 corresponds to the magnitude of the
perturbation.

Key-Properties :

• Non-Targeted

• one-step attack

• L 8 perturbation

Strength : Faster generation of adversarial images.

Weakness : Although it can fool some models, It is not powerful & fails to fool

many models.

35

Chapter 3. Basic Theory

3.7.2 BIM - Basic Iterative Method aka IFGSM

The Basic Iterative Method is simply a flavour of Fast Gradient Sign Method. Good-

fellow et al [7] observed that by taking multiple smaller steps of size α instead of

one step of ε as in FGSM, one can obtain finely grinded pixels in the output. It is

basically an extension of Fast Gradient Sign method by running a finer optimization

(smaller change) for multiple iterations. In each iteration, pixel values are clipped to

avoid large change on each pixel:

Xadv
0 = X, Xadv

N+1 = ClipX,ε(X
adv
N + αsign(OXJ(X

adv
N , ytrue))) (3.4)

The reason behind the clipping at every iteration is to ensure that they are in ε neigh-

bourhood of the original image. The number of iterations are taken to be

min(ε + 4, 1.25 ε). This was chosen heuristically ; it is sufficient for the adversarial

example to reach the edge of the max-norm ball but restricted enough to keep the

computational cost of the experiments manageable.

Key-Properties :

• Non-Targeted

• Iterative attack

• L 8 perturbation

3.7.3 RFGSM - Randomized Fast Gradient Sign Method

RFGSM is another flavour of FGSM founded by Papernot et al[8] in which a ran-

domness is added to the original input before feeding in to the machine-learning

model. The reason with randomness is to escape the non-smoothness vicinity in the

loss-function curve which is obtained by feeding in the original input & it was also

observed that gradients are able to represent the loss function in a poor manner.

xadv = x
′
+ (ε− α).sign(OX ′J(X

′
, ytrue))) (3.5)

36

3.7 Adversarial Attacks on Neural Networks

Figure 3.12: (a) denotes the curvature in the model’s loss function while (b) denotes the same but
in much zoomed-in level

Key-Properties :

• Non-Targeted

• Iterative attack

• L 8 perturbation

Advantages :

• Model gets exposed to much diversified perturbations

• Naive FGSM transformed to powerful single-step attack

• Low computational time

Drawback : Still not strong enough to fool many powerful models.

37

Chapter 3. Basic Theory

3.7.4 Projected Gradient Descent - PGD

PGD, a technique proposed by Madry et al [8] is basically a Projected method which

is generally used when dealing with box constrained optimization problems like -

5<=x<=5, where the constraint is imposed on feasible set of parameters, NOISE in

this case. As we optimize the function, we might take a step that takes us outside

of the feasible set and we need to find a way to correct for that. A way to achieve

it is to project the point back to the closest boundary of this feasible set. It is just

gradient descent, where for every step taken, we project the resulting point to the

closest feasible point. From another perspective, it keeps the noise level within a

circle of particular radius.

Figure 3.13: PGD maintaining the noise within a circle of particular radius, L2 norm in this case

Algorithm for PGD:

• pick an initial point x0 εQ

• Loop until stopping condition is met

– Descent direction: pick the descent direction as -O f(xk)

– Step size: pick a step size tk

– Update yk+1 = xk - tkO f(xk)

38

3.7 Adversarial Attacks on Neural Networks

Figure 3.14: Projection of the noise which lies outside the feasible set back into the permissible
set

– Projection : xk+1 = argminxεQ 1/2 || x-yk+1 ||22

Key-Properties :

• Non-Targeted

• Iterative attack

• L 8 & L2 perturbation

Advantages :

• Much powerful than the FGSM & all its flavours

• Good candidate to generate strong adversaries

• Used as a part of Adversarial Training in many cases inorder to harden the

neural-networks.

Drawbacks : The major drawback of this approach would be if there is any error

during the updation at any point of the iteration, then it implies a wrong input is being

fed into the next step of the iteration, which on overall gives a wrong output at the

end.

39

Chapter 3. Basic Theory

3.7.5 Randomized Projected Gradient Descent - RPGD

Similar to RFGSM, this is just another flavour of vanilla PGD, a randomized version

of PGD as proposed by Madry et al [8]. Here, before the input is being fed into the

model, it is added with a random value of identical shape. The reason behind the

initial random restarts is to escape being struck in the local minimum if it happens

in any iteration & to reach the global optimum. Another supporting reason could be

that a single gradient descent alone cannot solve the problem.

Key-Properties :

• Non-Targeted

• Iterative attack

• L 8 & L2 perturbation

Advantages :

• Encodes a way to escape the local minimum & reach the global optimum

• Solves the problem of incapability of single gradient descent alone to generate

adversaries

• By Randomization, aggressive search of input space is obtained

Drawbacks : At times, if randomization is bit higher, then the algorithm may

end up searching up in unwanted space which in reality wastes significant amount of

time.

40

3.7 Adversarial Attacks on Neural Networks

3.7.6 Averaged Projected Gradient Descent - APGD

APGD is a special case of PGD which came into existence due to the inability of

vanilla PGD to attack & fool Bayesian Neural network (BNN). It was observed that

inorder to attack BNN, there is a need to incorporate stochastic nature into the ex-

isting PGD & to cater that Madry et al [8] came up with this approach in which for

each sample, gradients are calculated multiple times & the average of these values is

found out & used as the final gradient value & hence the name Averaged -PGD.

Key-Properties :

• Non-Targeted

• Iterative attack

• L 8 & L2 perturbation

Advantages :

• Capable enough to attack Bayesian Neural network

• Due to its success, it’s also used in Adversarial training of BNN, inorder to

harden it.

Drawbacks : Not wise to use this on general type of neural network as this is

way too much & it wastes out computational resources.

3.7.7 Iterative Least Likely Class Method - ILL

Both of the above methods, we discussed are untargeted in nature, i.e they increase

the cost of the correct class without choosing the target class for misclassification.

Now we will discuss a method which targets a specific class for misclassifications

proposed by Papernot et al [7]. This would in some sense will fall under targeted
attack. This attack is of interest on datasets with large number of classes, since

on datasets like MNIST we have lower number of classes with higher distinction

between classes. If we use untargeted attacks on ImageNet we can get uninteresting

41

Chapter 3. Basic Theory

misclassifications like a change in breed of an animal as a misclassification. On the

other hand it would indeed be interesting to see a misclassification of a spider as a

towel.

This method tries to misclassify the original image to the class with the least

probability according to prediction of original image. This class is found by :

yLL = argminy(P (y|X)) (3.6)

To achieve this misclassification we try to maximize log p(yLL|X) by making itera-

tive steps in the opposite direction of sign(OX log p(yLL|X)). This expression equals

sign(OXJ(X,yLL)) for networks with cross entropy loss. Therefore we have the fol-

lowing method :

Xadv
0 = X, Xadv

N+1 = ClipX,ε(X
adv
N − αsign(OXJ(X

adv
N , yLL))) (3.7)

We follow the same number of iterations and value of alpha as that in Basic Iterative

Method.It is not guaranteed that we would always have the corresponding adversarial

example since the above methods are not exact.

Key-Properties :

• Targeted

• Iterative

• L 8 perturbation

42

3.7 Adversarial Attacks on Neural Networks

Strength : Brings in a new feature to select the target class

Weakness :

• Not guaranteed every time that output will be misclassified as specified targeted

class

• Other than this feature, it is identical to IFGSM method. Nothing much new

here.

Figure 3.15: We kept the target class as ”hen” (instead of choosing the least likely class, we
selected a random class) for this image but this method could not yield that prediction in this case.
But we can observe that it has misclassified the image.

43

Chapter 3. Basic Theory

3.7.8 Carlini & Wagner Attack - C&W Attack

This is one of the most powerful attack ever devised so far which was proposed by

Carlini et al [9]. The reason behind this statement is as follows:

• All the remaining attacks whatever we explored above, was easily defeated by

Defensive Distillation, a powerful technique on the Defence side but when it

comes to C&W attack, Defensive Distillation was unable to defend it and in

addition to it, C&W attack was successfully able to generate adversarial images

for all the 1000 images provided as input and visually indistinguishable from

the original image.

• Another reason could be that it was this specific attack which takes into con-

sideration of both the misclassification rate & the perturbation level into the

objective function, which was seldom noticed in the previous attack strategies.

Lets explore more about the C&W attack in this section.

There are 3 distance metrics that have been defined as part of this attack which are

described below:

• L0 distance measures the number of coordinates i such that xi 6= xi
|. Thus, the L0

distance corresponds to the number of pixels that have been altered in an image.

• L2 distance measures the standard Euclidean (rootmean-square) distance be-

tween x and x0. The L2 distance can remain small when there are many small

changes to many pixels.

• L 8 distance measures the maximum change to any of the coordinates:

||x− x||| 8 = max(|x1 − x|1|, ...|xn − xn1 |) (3.8)

For images, we can imagine there is a maximum budget, and each pixel is al-

lowed to be changed by up to this limit, with no limit on the number of pixels

that are modified.

44

3.7 Adversarial Attacks on Neural Networks

It would be interesting to see the history behind the existence of the C&W Attack.

The main reason this attack came into the picture is as a solution to Box-Constrained
optimization problem, very similar to projected gradient descent.

While modifying the input image, to ensure the modification yields a valid image,

we have a constraint on δ: we must have 0 ≤ xi +δi ≤ 1 for all i. In the optimization

literature, this is known as a “box constraint.” There were three approaches to address

this problem:

• Projected gradient descent performs one step of standard gradient descent, and

then clips all the coordinates to be within the box.

• Clipped gradient descent does not clip xi on each iteration; rather, it incorpo-

rates the clipping into the objective function to be minimized. In other words,

we replace f(x + δ) with f(min(max(x + δ, 0), 1)), with the min and max taken

component-wise.

• Change of variables introduces a new variable w and instead of optimizing over

the variable δ defined above, we apply a change-of-variables and optimize over

w, setting

δi = 1/2(tanh(wi) + 1)− xi (3.9)

The problem formulation for C&W attack can be defined as:

minimize(x,x+δ)D

such that c(x+δ) = t

x+δ ε [0,1]n

where x is fixed and we need to find δ to minimize D(x,x+δ). D is our distance

metric and can be any of L0, L2, L 8. There are many different approaches to solve

this optimization problem, and as a first step the problem is reformulated in a bit

different way as the constraint is highly non-linear.

Re-Formulation: We define an objective function f such that C(x+δ) = t if and only

if f(x+δ) ≤ 0. Now we have an alternate formulation of the problem :

45

Chapter 3. Basic Theory

minimize(x,x+δ)D + c.f(x+δ)

such that x+δ ε [0,1]n

where c≥0 is a constant. After assigning an Lp norm to D the problem finally

becomes:

minimize ||δ||p + c.f(x+δ)

such that x+δ ε[0,1]n

1-D optimization techniques like binary search is used to find optimum c. Also

we need to take care of the range of xi +δi, i.e the pixels should remain between 0

and 1. To solve this Box-constrained optimization problem the change of variables

technique is exploited out, which introduces a new variable w, due to which the

problem becomes as optimizing over w instead of δ.

δi = 0.5(tanh(wi+1)-xi)

The advantage of this equation is that it automatically follows box constraints, i.e

-1 ≤ tanh(wi) ≤ 1 => 0 ≤ xi + δi ≤ 1.

There were around 9 candidate functions for the proposed "f" function in the orig-

inal work but majority of them failed in 1 edge case or the other but there was one

which met all the specified condition, which is:

f(x
′
) = max(max(Z(x

′

i)− Z(x
′

t))),−κ) (3.10)

where Z(x) denotes the logits i.e the input values provided to the final soft-

max layer & κ is a hyperparameter which provides a way to control the prediction’s

confidence level as well.

46

3.7 Adversarial Attacks on Neural Networks

Key-Properties :

• Targeted & Non-Targeted

• Iterative

• L0, L2, L 8 perturbations

Strength :

• At present, this is the Benchmark to evaluate the Robustness of Neural network.

In other words, if someone comes up with a new defense technique, then it

is tested against this attack technique to evaluate how powerful the proposed

defense method is.

• Can be Tailored to all three types of perturbations

• Gives the user, the control to even set the model’s final prediction confidence

level too

• Broke the hypothesis that Defensive Distillation was the most resistable & un-

breakable of all the defense technique & exposed the truth behind defensive

distillation that even it is not learning the true underlying concepts.

Weakness :

• Takes long time to generate adversarial examples

• In some cases, it even fails to generate one as the loss function used fails to

converge which leads to early-stopping of the program.

47

Chapter 3. Basic Theory

3.7.9 Jacobian Saliency Map based Attack - JSMA

The purest form of targeted attack can be probably attributed to JSMA, although

in some sense IterLL, C&W attacks would fall under this category as well. It was

proposed by Anqi Xu et al[10] with some variants of it alongside. Before diving into

the details, lets explore a bit about the Saliency maps & the purpose of it.

Saliency Maps are basically a visualization tool which can provide the user an

insight into the model’s prediction decision.

Figure 3.16: Saliency Maps with the corresponding input image

It is usually rendered as heatmaps as shown in the image above where the hotness

corresponds to the regions of big impact in the model’s decision process. From an

image perspective, it identifies the most influential pixels towards a particular class

prediction. In this aspect, this can be used to perform a post-mortem analysis to find

the reason behind the wrong prediction by the model.

With this background, lets now analyze about the JSMA technique. It basically

exploits the saliency maps to generate adversarial images by minimizing the most

influential pixels towards the original or true class (assigns 0)& maximizing the in-

fluential pixels towards the target class (assigns 1).

S+(x(i), c) =

0 if ∂f(x)c
∂xi

< 0 or
∑ ∂f(x)

c
′

∂xi
> 0

−∂f(x)c
∂xi

.
∑ ∂f(x)

c
′

∂xi
otherwise

(3.11)

48

3.7 Adversarial Attacks on Neural Networks

Figure 3.17: JSMA Algorithm as defined in the original paper Anqi Xu et al[10]

It is in this way the input image is bit perturbed inorder to yield the specified target

as the model’s prediction.

49

Chapter 3. Basic Theory

Key-Properties :

• Targeted

• Iterative

• L0 perturbation

Strength :

• Allows the user to specify the target & tries to make the model predict the spec-

ified target as the output.

• Also, Targeted attack is the most difficult attack to perform than the non-targeted

one.

Drawback :

• At first case, this is not at all a guaranteed attack. In fact, the results are noticed

in rare cases.

• The property of structural similarity is expected between the original input &

the specified target which makes the success rate higher. For Example, incase

of MNIST dataset ’7’ & ’1’ would meet this condition.

• In some cases, there is way too much distortion to the input image which gets

clearly visible to the outsider.

50

3.7 Adversarial Attacks on Neural Networks

3.7.10 Black-Box Attack:

Lets navigate from White-Box attack mode to a completely different form of attack

namely Black-Box attack. As opposed to white-box attack, in which the attacker has

complete knowledge about the victim model right from its architecture to its trainable

parameters values, here in contrary to that, attacker has zero knowledge about the

victim model with no gradient information available (which is exploited in all the

previous methods). This leaves us with a question ’How to attack such a model?’.

The Answer is :

Figure 3.18: Process Flow in a Black-Box attack mode

As the attacker is unaware of the victim model, he develops another model locally

called substitute model for which he has full-control over it i.e complete knowledge

about the model’s architecture & its parameters. with this model in hand, the situation

becomes similar to white-box attack mode & the attacker uses this substitute model

to generate adversarial examples, which are then feeded into the Black-box victim

model & the output is noted. Based on the output, the parameters of the substitute

model is tuned which will eventually match or gets closer to the victim model’s

parameters & thereby generating strong adversaries & successfully fooling the black-

box model. It must be noted that this attack gets harder based on the restrictions

51

Chapter 3. Basic Theory

imposed by the black-box model like no.of permissible queries, shape of the output

response i.e if the model spits out class-probabilities, it is quite easy to guess the

gradient information.

3.8 DEFENSE towards Adversarial Attacks

In general, the defense strategies can be classified into two types namely, reactive

where the model has the capability to detect adversarial examples while the other

being proactive in which the model itself is robust against adversarial examples. The

defenders perspective will be mostly towards training a model at high cost by in-

creasing model’s complexity or using High-dimensional input.

3.8.1 Adversarial Training

It has been observed that by training the neural network on a mixture of adversarial

and clean examples, a neural network could be regularized to an extent. Training

on adversarial examples basically involves special kind of data augmentation which

uses input that are unlikely to occur naturally. The working nature of this technique

is very similar to Human’s Immunity system which when provided with a sample

of particular virus (anti-vaccine), it becomes aware of this & the next time when it

encounters the same virus, it offers complete resistance. The same analogy can be

applied to this technique as well.

52

3.8 DEFENSE towards Adversarial Attacks

Figure 3.19: Representation of Decision boundary of the model

From the model’s perspective, it is learning the true decision boundary which is

responsible for accommodating the adversarial sample, which the sample exploits as

well.

Strength:

Able to successfully harden the model & thereby resist/defend against adversarial

attacks.

Weakness:

• Is completely irresistant towards Black-Box Attacks

• Even in case of white-box attack mode, it cannot defend against some powerful

attacks like C&W attack method.

53

Chapter 3. Basic Theory

3.8.2 Ensemble Adversarial Training

This is probably another variant of vanilla Adversarial Training which was proposed

by Florian et al[11]. The main objective behind this method is to provide a way

to defend against Black-box attacks & it does so by using some random pre-trained

model’s parameters to generate adversaries samples & transfers this samples to ad-

versarially train the needed model. In this way, it incorporates the black-box nature

into the naive adversarial training.

Strength:

• Defends against Black-box attacks

• Decouples adversarial sample generation from model’s parameters

• Brings in the Transfer nature of Black-Box attacks

• Model gets exposed to Diversification of perturbations.

Drawback:

• Still vulnerable to some powerful attacks

• Doesn’t provides a guarantee.

3.8.3 Defensive Distillation

The most powerful defense technique ever found so far can be attributed to Defensive

Distillation as it can practically defend against all types of attacks except for C&W

Attack. To be precise, Distillation is completely a different idea, the goal of which is

to run giant neural networks on low-powered devices like smartphones which other-

wise doesn’t has the capability to do so. The following section briefs out in a detailed

way.

54

3.8 DEFENSE towards Adversarial Attacks

Neural Network Distillation -

The ultimate goal behind Neural Network Distillation [5] is to provide low-powered

devices like smartphones to utilise the knowledge learnt by Highly-complex neural

networks by transferring the knowledge in the form of class-probability vectors to

a relatively small-sized network. The main foundation behind this approach is that

Deep Neural Networks’s knowledge is not only embedded in the weights between the

various layers but also in the final class-probability vectors produced in the softmax

layer.

Figure 3.20: Deep Neural Network Architecture

The above figure can be considered as a reference under Distillation context.

There are some conditions which has to be met to perform Network Distillation

which are described as follows:

• At present, Distillation is done only under ’Supervised learning’ environment

55

Chapter 3. Basic Theory

• The final most layer in the Neural Network has to be the softmax layer as evident

from the above figure.

• In the softmax layer, there is an additional parameter called ’Distillation Tem-

perature’ which forms the core of this technique and explained below :

F (X) = [ezi(X)/T/
N−1∑
l=0

ezl(X)/T]i∈0...N−1 (3.12)

• During the Training process, the Distillation Temperature T > 1 and the ideal

value is T = 20 but while testing T = 1 which restores back to the normal softmax

layer.

In the Distillation terminology, the first big neural network is called as ’Teacher’

network while the reduced second network is called as ’Child’ network. Also, the

term ’logits’ refers to the output produced by the last hidden layer which is also the

input to the softmax layer.

Lets shift the focus towards the Training process. As explained previously, the

final softmax layer is tweaked a bit to include Distillation Temperature in it and the

value is set to 20 post-which neural network is trained in a normal way with the

final class-probability vector is recorded to the corresponding inputs. These class-

probability vectors which are now used to label the inputs are called as ’soft-labels’

as opposed to previously marked ’hard-labels’. Now with the new Dataset which is

marked with soft-labels, the second small-sized network, ’child’ network is trained

using this dataset. In this way, the child network completely utilises the knowledge

learnt by the teacher network.

Defensive Distillation -

Armed with Network Distillation in the background, lets dive into the Defensive

Distillation aspect. The majority of the things here works in the same way as that of

Network Distillation with the only change being the teacher and the child network

are same. The objective here is not to reduce the size of the network but to make the

56

3.9 Real-World Dataset Attack

given network more robust towards adversarial examples by training it with Defen-

sive Distillation and hence this approach is adapted. It has been found that by this

training the amplitude of the network’s gradients was reduced to 1030 times which is

the main factor behind reducing the model’s sensitivity towards minor perturbations.

3.9 Real-World Dataset Attack

This section explores about the Real-world Dataset Attack which forms the third part

of the Thesis. As all the previous sections dealt with computer vision problems, this

section is dedicated completely for NLP domain which is explained as follows:

3.9.1 DeepWordBug

DeepWordBug is a novel algorithm exclusively dedicated for NLP attacks in Black-
box mode, which was invented by Ji Gao et al [12]. Unlike the attack algorithms

which works only for computer vision domain, DeepWordBug possess some unique

capabilities as it needs to handle some additional challenges involved with NLP at-

tacks. The one such major challenge is discrete nature of the NLP in contrary to

continuous nature of computer vision problems i.e while performing attack on im-

ages, it perfectly makes sense to modify the pixel to any value within the permissible

set but this is not the case with NLP problems, as the new transformed character must

be a valid one like alphabets or alpha-numeric & the new word produced after the

transformed character should completely make sense i.e man & map is completely

valid here. There are 2 novel things which makes this a unique approach:

57

Chapter 3. Basic Theory

Figure 3.21: Outcome of DeepWordBug

Scoring Function - The Scoring function forms the main foundation & the ob-

jective is to identify the most sensitive/influential characters in the given sentence &

assign score values to it. It is interesting to note that this scoring function is inde-

pendent of model’s parameters & not attributed to any specific model which means

it can work well across any type of model. The main idea behind this working is it

scans the given sentence from left to right & for each character, it records the output

classification label while that character is present & records the same by removing

that character. If the output changes, then it implies that this character is influential

towards this particular class. The score calculation happens in 3 parts namely:

Temporal Score - Let the given input sentence be X = x1,x2,x3,...xn,, where xi

represents the ith character in the sentence.

TS(xi) = F (x1, x2, x3,xi−1, xi)− F (x1, x2, x3,xi−1) (3.13)

Temporal Tail Score - One problem with Temporal Score is it gives importance only

to the characters preceding the given character & it completely ignores the characters

succeeding it, which was the reason TTS came into existence:

TTS(xi) = F (xi, xi+1, xi+2....xn)− F (xi+1, xi+2....xn) (3.14)

Combined Score - Like in the name, CS considers both the above approaches to

58

3.9 Real-World Dataset Attack

calculate the final score, which is:

CS(xi) = TS(xi) + λ.TTS(xi) (3.15)

where λ is hyperparameter.

Token Transformation - Armed with the scores of each character in the given

sentence in our hand, next step is to transform these characters inorder to fool the

model. The first step involves sorting the scores of the characters in the descending

order i.e sort by the most-influential characters. Then one of the following transfor-

mation techniques can be applied:

Figure 3.22: Token Transformation

Note that in the modern way, when it comes to substitute,insert,swap operations,

homoglyph characters are used so that it makes nearly impossible for a human ob-

server to distinguish it.

This in overall makes the Adversarial attack possible & can be applied to any type

of model like CNN,RNN,LSTM.

59

Chapter 4
Experiment

A. White-Box Non-Targeted-Attack

Attack Type : The following types of non-targeted white-box attacks are ex-

perimented out in this Thesis:

• FGSM - Fast Gradient Sign Method

• IFGSM - Iterative Fast Gradient Sign Method

• RFGSM - Randomized Fast Gradient Sign Method

• PGD - Projected Gradient Descent

• RPGD - Randomized Projected Gradient Descent

• APGD - Averaged Projected Gradient Descent

• ITERLL - Iterative Least-Likely Class Method

• C&W - Carlini & Wagner Attack

Dataset : All the attack variants are experimented with three types of datasets

namely MNIST Dataset, CIFAR10 Dataset and ImageNet Dataset.

The first dataset MNIST consist of 60,000 training samples and 10,000

test samples of handwritten-digits from 0-9. Each image is a gray-scale image

with 28 X 28 pixels, size-normalized and centered. The 60,000 image samples

60

present in the training set were composed by 250 writers & 10,000 test image

samples were produced by completely different set of 250 writers.

Following the MNIST dataset, we have CIFAR 10 dataset. This dataset

consist of 60,000 images in total & the images are colored images with size

32X32. There are in total 10 output classes which corresponds to some real-

world entities like cat,deer,ship,truck etc. with each class having 1000 images

under it & the classes are mutually exclusive. The entire dataset is divided into

training set with 50,000 images & test set with 10,000 images.

ImageNet is an image dataset organized according to the WordNet hier-

archy. Each meaningful concept in WordNet, possibly described by multiple

words or word phrases, is called a "synonym set" or "synset". There are more

than 100,000 synsets in WordNet, majority of them are nouns (80,000+). In

ImageNet, there are on average 1000 images, to illustrate each synset. Images

of each concept are quality-controlled and human-annotated. This Dataset is

constantly updated from time to time and continues evolving. In its completion,

ImageNet will offer tens of millions of cleanly sorted images for most of the

concepts in the WordNet hierarchy.

Dataset Training Test Total
MNIST 60000 10000 70000
CIFAR10 50000 10000 60000

Table 4.1: Datasets Summary

Model -

All the above datasets are experimented with 3 different models of Convolution

Neural Network (CNN) with each model type dedicated for particular dataset,

the architectures of which are described below:

61

Chapter 4. Experiment

Layer Type I/P Feature O/P Feature Filters/Pooling
convolutional 1 10 10 filters, 5X5
Relu Pooling 10 10 Max Pool, 2X2
convolutional 10 20 20 filters, 5X5
Relu Pooling 20 20 Max Pool, 2X2
Dropout - - -
Fully connected 320 50 -
Fully connected 50 10 -
Softmax 10 10 -

Table 4.2: MNIST Architecture

Layer Type I/P Feature O/P Feature Filters/Pooling
Relu convolutional 3 6 6 filters, 5X5
Pooling 6 6 Max Pool, 2X2
Relu convolutional 6 16 16 filters, 5X5
Pooling 16 16 Max Pool, 2X2
Fully connected 450 120 -
Fully connected 120 84 -
Fully connected 84 10 -

Table 4.3: CIFAR10 Architecture

62

Layer Type patch size stride I/P size
convolutional 3X3 2 299X299X3
convolutional 3X3 1 149X149X32
conv padded 3X3 1 147X147X32
pool 3X3 2 147X147X64
convolutional 3X3 1 73X73X64
convolutional 3X3 2 71X71X80
convolutional 3X3 1 35X35X192
3 X Inception - - 35X35X288
5 X Inception - - 17X17X768
2 X Inception - - 8X8X1280
Pool 8X8 - 8X8X2048
Linear logits - 1X1X2048
Softmax classifier - 1X1X1000

Table 4.4: InceptionV3 Architecture(ImageNet)

63

Chapter 4. Experiment

Justification for Model Architectures & Datasets-

• In-order to analyze the strength of different attack strategies, models of

varying sizes are chosen & this is complete random.

• In accordance with the Benchmark aspect of the Threat model, standard

datasets of MNIST,CIFAR10, ImageNet are chosen with the state-of-the-

art Inception v3 being dedicated for ImageNet example.

• Due to the huge size of ImageNet dataset, the whole dataset can’t be con-

sidered which makes the Thesis scope infeasible. Hence just 1 single image

of giantPanda is used (randomly) as a representation for this dataset but all

the input items in the dataset along with the labels is feeded into the model

in the form of python dictionaries which safely permits to use any of these

class labels for the attack methods & hence this single image is referred as

’ImageNet’ Dataset across the Thesis.

Attack -

The following table summarizes about the set of epsilon values(perturbation

level) experimented with for the different types of attack techniques:

Attack Experiment(1) Experiment(2) Experiment(3)
FGSM 0.7 0.07 0.2
IFGSM 40/255 4/255 15/255
RFGSM 160/255 16/255 70/255
PGD 0.3 0.03 0.1
RPGD 0.3 0.03 0.1
APGD 0.3 0.03 0.1
ITERLL 40/255 4/255 15/255

Table 4.5: Epsilon values set

The way these epsilon values chosen is, first a standard recommended value

from the original paper is chosen & based on this, other two values are chosen

in a complete random fashion with 1 value above the recommended value while

64

the other one below it. Readers might wonder why same set of epsilon values

isn’t used across all the attacks which may yield a clear analysis,and the reason

is majority of these attacks are mutually exclusive & for the proper functioning

of these attacks, the epsilons should fall under some specific scale range. In

cases, where the attacks shares similarity, same value set is used as evident from

the above table.

In addition to the above mentioned epsilon values which is the major factor

which controls the intensity of the attacks, there are also other hyperparame-
ters, which are described in the following table:

Attack Alpha Iteration
IFGSM 1/255 0
RFGSM 8/255 1
PGD 2/255 40
RPGD 2/255 40
APGD 2/255 40
ITERLL 1/255 0

Table 4.6: Additional default Hyperparameters

In some cases, iterations are set to zero or 1 as it will get inferred automatically

from the formula & in addition to it, it will expose how much difference is

created from the naive methods.APGD has additional hyperparameter called

sampling which determines the fine sampling of the gradients & is described

below:

APGD Experiment(1) Experiment(2) Experiment(3)
Sampling 10 5 15

Table 4.7: Sampling values set for APGD

Note that C&W attack is quite unique from other attack types & doesn’t have

overlapping hyperparameters, which is explained below:

65

Chapter 4. Experiment

parameter value
C 10
kappa 0
Iteration 1000
learning
rate

0.01

Table 4.8: C&W Attack Hyperparameter

B. White-Box Targeted Attack

When it comes to attacks, the most difficult attack is the Targeted attack in which

the model is forced to predict a particular target instead of a random one & this

is done by using JSMA (Jacobian based Saliency Map) Attack.

Input -

MNIST dataset is used as input here, as JSMA is a targeted attack, it works best

when both the given input & the specified target has high structural similarity.

For this reason, two specific cases are chosen:

Case 1: Input Image - 7 & Target - 1

Case 2: Input Image - 1 & Target - 7

This setting gives JSMA an easy-environment, post-which experiment is done.

66

Model Architecture -

Layer Type I/P Feature O/P Feature Filters/Pooling
convolutional 1 10 10 filters, 5X5
Relu Pooling 10 10 Max Pool, 2X2
convolutional 10 20 20 filters, 5X5
Relu Pooling 20 20 Max Pool, 2X2
Dropout - - -
Fully connected 320 50 -
Fully connected 50 10 -
Softmax 10 10 -

Table 4.9: MNIST Architecture

Attack -

There isn’t much hyperparameter to experiment with in this case except for

Max-Iteration which is set to 10000 as the whole algorithm keeps running un-

til the model makes the given target as the prediction or there are no more valid

pixels left out to perturb it.

C. Black-Box Attack

As the Black-box attack should be performed on an unknown model, two types

of models are used here namely substitute model & target model. Note that

size of the target model is pretty big as it will clearly expose the power of Trans-
ferability in Black-Box attacks. The following section explains in a much de-

tailed way:

Dataset -

Dataset Training Test Total
CIFAR10 50000 10000 60000

Table 4.10: CIFAR10 Dataset

Model -

67

Chapter 4. Experiment

Layer Type I/P Feature O/P Feature Filters/Pooling
convolutional 3 32 32 filters, 5X5
Relu 32 32 -
BatchNormalization 32 32 -
MaxPooling 32 32 Max Pool, 2X2
Convolutional 32 64 64 filters, 5X5
BatchNormalization 64 64 -
Relu 64 64 -
MaxPooling 64 64 2X2

Table 4.11: CIFAR10 Substitute Model Architecture

68

Layer Type I/P Feature O/P Feature Filters/Pooling
convolutional 3 96 96 filters, 3X3
GroupNormalization 32 96 -
ELU - - -
Dropout2D - - 0.5
convolutional 96 96 96 filters, 3X3
GroupNormalization 32 96 -
ELU - - -
convolutional 96 96 96 filters, 3X3
GroupNormalization 32 96 -
ELU - - -
Dropout2D - - 0.5
convolutional 96 192 192 filters, 3X3
GroupNormalization 32 192 -
ELU - - -
convolutional 192 192 192 filters, 3X3
GroupNormalization 32 192 -
ELU - - -
Dropout2D - - 0.5
convolutional 192 256 256 filters, 3X3
GroupNormalization 32 256 -
ELU - - -
convolutional 256 256 256 filters, 1X1
GroupNormalization 32 256 -
ELU - - -
convolutional 256 10 10 filters, 1X1
Avg Pooling 10 10 20X20

Table 4.12: CIFAR10 Target Model Architecture

69

Chapter 4. Experiment

Attack -

Attack Epsilon Alpha Iteration
PGD 0.3 2/255 10

Table 4.13: Attack Hyperparameter

The above experiments summarizes different attack strategies

that can fool the neural network. The next section explores about some pop-

ular defense strategies which can defend from above attacks.

D. Adversarial Training -

Adversarial Training uses a custom MNIST Architecture with MNIST dataset

similar to that of previous experiments & PGD is used to adversarially train the

network with configurations same as that of JSMAs PGD attack while FGSM is

used in the Testing phase to analyze the cross-attack resistivity.

Layer Type I/P Feature O/P Feature Filters/Pooling
convolutional 1 16 16 filters, 5X5
Relu 16 16 -
convolutional 16 32 32 filters, 5X5
Relu 32 32 -
Pooling 32 32 Max Pool, 2X2
convolutional 32 64 64 filters, 5X5
Relu 64 64 -
Pooling 64 64 Max Pool, 2X2
Fully connected 576 100 -
Fully connected 100 10 -

Table 4.14: Custom MNIST Architecture

70

E. Defensive Distillation -

Defensive Distillation involves training the model twice, with the first model

undergoes normal training & the soft-labels (class-probabilities) are extracted

out of it. The second time training is done by using these soft-labels as their

target instead of hard-labels as in the first training.

Dataset-

Dataset Training Test Total
MNIST 60000 10000 70000

Table 4.15: MNIST Dataset

Model Architecture -

Layer Type I/P Feature O/P Feature Filters/Pooling
convolutional 1 10 10 filters, 5X5
Relu Pooling 10 10 Max Pool, 2X2
convolutional 10 20 20 filters, 5X5
Relu Pooling 20 20 Max Pool, 2X2
Dropout - - -
Fully connected 320 50 -
Fully connected 50 10 -
Softmax 10 10 -

Table 4.16: MNIST Architecture

Defense -

Process Temperature Label Loss
Train 1 20 Hard CrossEntropy
Train 2 20 Soft KLDivLoss
Test 2 1 Hard -

Table 4.17: Defense Hyperparameters

71

Chapter 4. Experiment

F. Real World Dataset, NLP Attack -

To demonstrate this attack, character-level CNN is used as the model & 2 types

of datasets are used namely Ag_News & NoRec. ’Ag_news’ dataset is the En-

glish news dataset which classifies the news/input sentence into 4 categories

while ’NoREC’ is the norwegian movie review dataset that sentiments the movie

reviews into 6 classes.

Dataset -

Dataset Training Test Total Class
AG_NEWS 120000 7600 127600 4
NOREC 28155 7038 35194 6

Table 4.18: NLP Datasets

Model Architecture -

The major hyperparameter associated with this approach is power which denotes

the number of characters in the input sentence to be modified. It is set as 10 for

the experiments. If the value is high, then the attack might get visible to the

human observers but if its low then it might impact the strength of the attack.

So proper balance should be maintained. Another hyperparameter is maximum

length of the input sentence which is set to 1014 in this case.

72

Layer Type I/P Feature O/P Feature Filters/Pooling

convolutional-1D 69 256
256 filters,
7X7

Relu 1D-Pooling 256 256 Max Pool, 3X3

convolutional-1D 256 256
256 filters,
7X7

Relu 1D-Pooling 256 256 Max Pool, 3X3

convolutional-1D 256 256
256 filters,
3X3

Relu 256 256 -

convolutional-1D 256 256
256 filters,
3X3

Relu 256 256 -

convolutional-1D 256 256
256 filters,
3X3

Relu 256 256 -

convolutional-1D 256 256
256 filters,
7X7

Relu 1D-Pooling 256 256 Max Pool, 3X3
Fully connected 8704 1024 -
Relu 1024 1024 -

Dropout - -
0.5 dropout
rate

Fully connected 1024 1024 -
Relu 1024 1024 -

Dropout - -
0.5 dropout
rate

Fully connected 1024 4/6 -
Softmax 4/6 4/6 -

Table 4.19: NLP Model Architecture

73

Chapter 5
Analysis

A. White-Box Non-Targeted-Attack :

The following section does an analysis about the Test-accuracies i.e the total

number of correctly classified samples, after the attack is made on previously

described models which is followed by a sample perturbed image which shows

the impact of the attack.

Attack Type - FGSM

Model
Epsilon

0.07 0.2 0.7

MNIST 91.22 43.01 0.77
CIFAR10 8.69 1.75 0.36
ImageNet 100 100 0.0

Table 5.1: FGSM - Test Accuracy Percentage

74

Perturbed Image -

(a) Epsilon - 0.07

(b) Epsilon - 0.2

(c) Epsilon - 0.7

Figure 5.1: FGSM’s impact on sample MNIST Input batch - [7,2,1,0], with predicted outputs

75

Chapter 5. Analysis

(a) Epsilon - 0.07

(b) Epsilon - 0.2

(c) Epsilon - 0.7

Figure 5.2: FGSM’s impact on sample CIFAR10 Input batch, with predicted outputs

76

(a) Epsilon - 0.07 (b) Epsilon - 0.2

(c) Epsilon - 0.7

Figure 5.3: FGSM’s impact on ImageNet’s Input Image of giantPanda, with predicted outputs

77

Chapter 5. Analysis

Analysis -

From the first sight it can be inferred that FGSM attack is able to quickly gen-

erate adversarial image using the gradient information & the attack strength or

misclassification accuracy is completely dependent upon the hyperparameter,

epsilon. For all the three models, highest misclassification accuracy or least test

accuracy of about 0.5, was reached when epsilon=0.7. When epsilon=0.07 &

eplsilon=0.2, ImageNet has a constant accuracy of 100% while CIFAR10 main-

tains an accuracy of less than 10% in both the cases. But interestingly, MNIST

accuracies decreases in some proportion with the increase of epsilon values.

Thus, with high values of epsilon, maximum misclassification is possible.

From the perspective of perturbed image, almost zero noise is

visible when epsilon=0.07 & the image is completely blurred or destroyed if

epsilon=0.7 but when epsilon=0.2, a mixture of both the true image & the noise

can be seen. From these observations, with high values of epsilon although high

misclassification rate can be achieved it becomes visually detectable & vice-

versa with low epsilon values. Thus, inorder to perform a good attack, one must

pick an accuracy that maintains a good balance on both the sides.

Attack Type - IFGSM

Model
Epsilon

4/255 15/255 40/255

MNIST 96.69 88.83 31.89
CIFAR10 41.59 1.27 0.0
ImageNet 0.0 0.0 0.0

Table 5.2: IFGSM - Test Accuracy Percentage

78

Perturbed Image -

(a) Epsilon - 4/255

(b) Epsilon - 15/255

(c) Epsilon - 40/255

Figure 5.4: IFGSM’s impact on sample MNIST Input batch - [7,2,1,0], with predicted outputs

79

Chapter 5. Analysis

(a) Epsilon - 4/255

(b) Epsilon - 15/255

(c) Epsilon - 40/255

Figure 5.5: IFGSM’s impact on sample CIFAR10 input batch of [cat,ship,ship,plane], with pre-
dicted outputs

80

(a) Epsilon - 4/255 (b) Epsilon - 15/255

(c) Epsilon - 40/255

Figure 5.6: IFGSM’s impact on ImageNet’s Input Image of giantPanda, with predicted outputs

81

Chapter 5. Analysis

Analysis -

Despite of being the fact that IFGSM is basically an Iterative

version of FGSM, we can notice considerable differences in the impact of the

attack. To begin with test-accuracy, ImageNet always maintains a constant ac-

curacy of zero while CIFAR10 showing a sharp dip in the accuracy with just

a minor shift of epsilon from 4/255 to 15/255 & finally reaches zero with ep-

silon=40/255. It is the MNIST alone, which shows accuracy variations directly

proportional with respect to the epsilon values & it never reached zero in any

case.

In case of perturbed images, no complete destruction or blurring

of the input image is seen in any case with these epsilon value set & when

epsilon=40/255, we can see the embedded noise to a small extent. From this,

we can tell that IFGSM is bit more powerful than the plain FGSM.

Attack Type - RFGSM

Model
Epsilon

16/255 70/255 160/255

MNIST 95.91 22.02 0.33
CIFAR10 17.85 1.3 0.46
ImageNet 0.0 100.0 0.0

Table 5.3: RFGSM - Test Accuracy Percentage

82

Perturbed Image -

(a) Epsilon - 16/255

(b) Epsilon - 70/255

(c) Epsilon - 160/255

Figure 5.7: RFGSM’s impact on sample MNIST Input batch - [7,2,1,0], with predicted outputs

83

Chapter 5. Analysis

(a) Epsilon - 16/255

(b) Epsilon - 70/255

(c) Epsilon - 160/255

Figure 5.8: RFGSM’s impact on sample CIFAR10 input batch of [cat,ship,ship,plane], with pre-
dicted outputs

84

(a) Epsilon - 16/255 (b) Epsilon - 70/255

(c) Epsilon - 160/255

Figure 5.9: RFGSM’s impact on ImageNet’s Input Image of giantPanda, with predicted outputs

85

Chapter 5. Analysis

Analysis -

With respect to the Test-Accuracy, there are some interesting

results here as compared with the previous attacks. To begin with even with

the least epsilon of 16/255, CIFAR10 shows an accuracy of 17.85% but for

higher epsilon values, it becomes less than 1. In accordance with previous cases,

MNIST varies in proportion with epsilon values. Surprisingly, ImagNet shows

an accuracy of about 100% for epsilon=70/255 & zero for other cases.

In case of perturbed images, the result is very similar to plain

FGSM attack, in which the noise is clearly visible with high epsilon values but

just to note that when epsilon=160/255, the image is bit more visible as opposed

to the complete destruction in case of FGSM.

Attack Type - PGD

Model
Epsilon

0.03 0.1 0.3

MNIST 95.85 74.58 0.12
CIFAR10 10.00 0.36 0.0
ImageNet 0.0 0.0 0.0

Table 5.4: PGD - Test Accuracy Percentage

86

Perturbed Image -

(a) Epsilon - 0.03

(b) Epsilon - 0.1

(c) Epsilon - 0.3

Figure 5.10: PGD’s impact on sample MNIST Input batch - [7,2,1,0], with predicted outputs

87

Chapter 5. Analysis

(a) Epsilon - 0.03

(b) Epsilon - 0.1

(c) Epsilon - 0.3

Figure 5.11: PGD’s impact on sample CIFAR10 input batch of [cat,ship,ship,plane], with predicted
outputs

88

(a) Epsilon - 0.03 (b) Epsilon - 0.1

(c) Epsilon - 0.3

Figure 5.12: PGD’s impact on sample ImageNet image of giantPanda, with predicted outputs

89

Chapter 5. Analysis

Analysis -

Here ImagNet shows a constant accuracy of 0 in all the cases

whereas CIFAR10 shows an accuracy of 10% when epsilon=0.03 but in the

remaining cases it is close to zero. Even in case of MNIST, it doesn’t vary in the

normal pattern as compared with previous cases & note that just with a shift of

0.07 in the epsilon, accuracy shows a dip of about 20%.

In case of Image perturbation, there isn’t much noise visible

except for the case of epsilon=0.3 with MNIST in which a small amount of

noise is still visible.

From this, it is not wrong to say that PGD is quite strong &

powerful attack than compared with all the variants of FGSM as it can maintain

a good balance between the two aspects of the attack.

Attack Type - RPGD

Model
Epsilon

0.03 0.1 0.3

MNIST 95.88 75.27 0.22
CIFAR10 9.96 0.37 0.0
ImageNet 0.0 0.0 0.0

Table 5.5: RPGD - Test Accuracy Percentage

90

Perturbed Image -

(a) Epsilon - 0.03

(b) Epsilon - 0.1

(c) Epsilon - 0.3

Figure 5.13: RPGD’s impact on sample MNIST Input batch - [7,2,1,0], with predicted outputs

91

Chapter 5. Analysis

(a) Epsilon - 0.03

(b) Epsilon - 0.1

(c) Epsilon - 0.3

Figure 5.14: RPGD’s impact on sample CIFAR10 input batch of [cat,ship,ship,plane], with pre-
dicted outputs

92

(a) Epsilon - 0.03 (b) Epsilon - 0.1

(c) Epsilon - 0.3

Figure 5.15: RPGD’s impact on sample ImageNet image of giantPanda, with predicted outputs

93

Chapter 5. Analysis

Analysis -

It is surprising to note that the behaviour of RPGD is almost

identical to that of naive PGD both in terms of Test-Accuracies & the level of

perturbation in the resulting images. This clearly proves the point that other than

escaping the local optimum RPGD has no other additional benefit & if the naive

PGD can reach the global optimum, then both becomes same.

Attack Type - APGD

Model
Epsilon

0.03 0.1 0.3

MNIST 95.85 74.58 0.12
CIFAR10 10.00 0.36 0.0
ImageNet 0.0 0.0 0.0

Table 5.6: APGD - Test Accuracy Percentage

94

Perturbed Image -

(a) Epsilon - 0.03

(b) Epsilon - 0.1

(c) Epsilon - 0.3

Figure 5.16: APGD’s impact on sample MNIST Input batch - [7,2,1,0], with predicted outputs

95

Chapter 5. Analysis

(a) Epsilon - 0.03

(b) Epsilon - 0.1

(c) Epsilon - 0.3

Figure 5.17: APGD’s impact on sample CIFAR10 input batch of [cat,ship,ship,plane], with pre-
dicted outputs

96

(a) Epsilon - 0.03 (b) Epsilon - 0.1

(c) Epsilon - 0.3

Figure 5.18: APGD’s impact on sample ImageNet image of giantPanda, with predicted outputs

97

Chapter 5. Analysis

Analysis -

Similar to RPGD, here as well results are interesting that the

behaviour is identical to that of PGD & RPGD. From this, it can be inferred

that all the flavours of a particular algorithm exist only to solve some specific

edge cases which the naive algorithm may fail to handle at times but in the cases

in which the naive algorithm handles that perfectly then the outcome/behaviour

becomes identical.

Attack Type - ITERLL

Model
Epsilon

4/255 15/255 40/255

MNIST 97.82 95.63 66.69
CIFAR10 54.94 13.09 1.34
ImageNet 0.0 0.0 0.0

Table 5.7: ITERLL - Test Accuracy Percentage

98

Perturbed Image -

(a) Epsilon - 4/255

(b) Epsilon - 15/255

(c) Epsilon - 40/255

Figure 5.19: ITERLL’s impact on sample MNIST Input batch - [7,2,1,0], with predicted outputs

99

Chapter 5. Analysis

(a) Epsilon - 4/255

(b) Epsilon - 15/255

(c) Epsilon - 40/255

Figure 5.20: ITERLL’s impact on sample CIFAR10 Input batch - [cat,ship,ship,plane], with pre-
dicted outputs

100

(a) Epsilon - 4/255 (b) Epsilon - 15/255

(c) Epsilon - 40/255

Figure 5.21: ITERLL’s impact on sample ImageNet image of giantPanda, with predicted outputs

101

Chapter 5. Analysis

Analysis -

Like in the case of FGSM attacks, here as well, CIFAR10 is

sensitive to the perturbation level which isn’t the case with MNIST. ImageNet

shows a constant of zero in all cases. But it has to be noted that here we are

forcing the model to predict a specific output & it is not quite easy to achieve.

This attack does a fairly good job with respect to Image pertur-

bation but the noise level is much more visible than PGD.

Attack Type - C&W

Model
C, LR

5, 0.01 8, 0.5 10, 0.01

MNIST 98.0 98.0 98.0
CIFAR10 5.74 3.77 2.76
ImageNet 0.0 0.0 0.0

Table 5.8: C&W - Test Accuracy Percentage

NOTE - In the above table, ’C’ denotes the perturbation level & ’LR’ denotes

the learning-rate which controls the C&W attack.

102

Perturbed Image -

(a) C-5

(b) C-8

(c) C-10

Figure 5.22: C&W’s impact on sample MNIST Input batch - [7,2,1,0], with predicted outputs

103

Chapter 5. Analysis

(a) C-5

(b) C-8

(c) C-10

Figure 5.23: C&W’s impact on sample CIFAR10 Input batch - [cat,ship,ship,plane], with predicted
outputs

104

(a) C-5,8,10

Figure 5.24: C&W’s impact on sample ImageNet Input image of giantPanda, with predicted out-
puts in all possible cases

105

Chapter 5. Analysis

Analysis -

The most-powerful attack among all the attacks we explored so far, can be at-

tributed to ’C&W’ attack as it has the capability to evade strong defense strate-

gies. Here, both MNIST & ImageNet always maintains a constant accuracy but

CIFAR10 shows an accuracy of less than 5% in all the cases. Although this is a

powerful attack, the reason why it can’t bring down the accuracy of the MNIST

model can be pointed to tuning the hyperparameter. As opposed to previous

attacks which has hardly 1 or 2 hyperparameters to tweak with, in this case the

number is bit high. Thus, by setting the hyperparameters to right values, the

strength of the attack can be increased.

This attack does an extremely good job with respect to perturbed

images as it is evident from CIFAR10, in which despite being the attack accu-

racy less than 5% in all cases, there is no difference among the adversarial image

& the true input image. Almost zero noise is visible here.

If we exclude one drawback associated with this attack which is

high computation time, the title winner among all the ’White-box Non-Targeted’

attack can be certainly attributed to ’C&W’ attack.

B. White-Box Targeted-Attack - JSMA:

Jacobian Saliency Map Attack (JSMA) is the only pure form of Targeted attack

(although Iterative-least-likely-class method roughly fall under this category as

well), which in theory modifies the given input image in a least extent to ap-

proximately match with the targeted image, so that the machine learning model

predicts the specific target instead of a random target. One must be cautioned

that it is not a guarantee that this will force the model to make the wrong pre-

diction.

106

Hypothesis -

Lets set a Hypothesis that "For a given MNIST image, JSMA can tweak it in

visually indistinguishable way & fool the model to predict the specified target in

all possible scenarios."

Perturbed Images -

(a) 7 -> 1 Attack (b) 1 -> 7 Attack

Figure 5.25: JSMA Attack with 2 Experiments. Experiment (a) signifies the input image as 7 &
the target to be 1, while Experiment (b) is vice-versa case of (a).

107

Chapter 5. Analysis

Analysis -

From the very first impression, it is clearly evident that JSMA as it claimed

is able to tweak the input image but the concern is on the extent of tweaking.

Incase of Experiment (a), most of the pixels are blackened out but still one

can confidentally claim the output as 7 by the looks of it whereas incase of

Experiment (b), it has nearly distorted the input image & one can’t be certain

about the output in this case.

Coming to the prediction aspects, the given model is able to

make the correct prediction in both the cases which means JSMA is unable

to fool the given model. In experiment (a), i=904, signifies that JSMA attack

process is stopped at that iteration although it is permissible to run for 10,000

iterations. This means there are no more valid pixels to be perturbed after this.

Hence, the claimed hypothesis "For a given MNIST image, JSMA can tweak it

in visually indistinguishable way & fool the model to predict the specified target

in all possible scenarios." is false. This reflects the point that although ’JSMA

is targeted attack, it is not the guaranteed one’.

C. BLACK BOX ATTACK WITH PGD :

Here, there are two models namely substitute & victim. The victim model is the

actual model which is to be attacked & the substitute model is the one which

is used for the sole purpose of generation of adversarial images. The generated

adversarial images are stored & the victim model’s accuracy is tested in 2 cases

- one with clean input images & the other with the generated adversarial images.

ANALYSIS -

There is nothing new to comment about the quality of perturbed images as it

was done before. But coming to the Test Accuracy of the victim model, with

the clean input images, the victim model is able to achieve an accuracy of about

77.77% but when the same victim model is feeded with the generated adversar-

ial images its accuracy drops to 26.63%. This clearly proves the Transferable

108

nature of adversarial attacks.

DEFENSE ASPECTS

D. ADVERSARIAL TRAINING :

After completing the Adversarial Training of the model, it is tested by providing

the clean images with zero noise & with the adversarial images generated from

its very own parameters. Test-accuracy came out to be 99.10% for clean images

while 98.99% for adversarial images. This clearly proves that Neural Network

got hardened against adversarial examples but if the adversaries are generated

from a substitute model & transferred to this model, it fails to resist against this

which means they are unable to defend against Black-Box attacks. From this

it can be inferred that this basically prevents/resist the attack strategies from

exploiting out the model’s gradients, which is a key ingredient when it comes to

generation of adversaries.

E. DEFENSIVE DISTILLATION :

The most powerful defense strategy is perhaps the ’Defensive Distillation’, as

it can defend against any type of attack except for C&W attack & Transferable

attacks. But the results were not that great with the present implementation as

the model predicts the output value as ’7’ every time irrespective of the input.

There is a suspicion if the ’KLDivergenceLoss’ is best loss function candidate

under this setting or if there is some problem in the implementation logic.

109

Chapter 5. Analysis

NLP Attack - Real World Datasets

F. AG_NEWS Dataset:

Figure 5.26: Output for Ag_News dataset

As shown in the result, the Black-box mode NLP attack on the ag_news dataset

is pretty good & the result shows that the original input sentence with the pre-

dicted class which is followed by the adversarially modified sentence with its

prediction alongside. The ’Red’ underline shows the transformed characters

which the scoring algorithm has identified & it is visually indistinguishable for

a human eye to pick that up.

110

G. NOREC Dataset:

Figure 5.27: Output for norec,Norwegian dataset

Although the same model with its hyperparameter is used as that of ’agnews’

dataset, it isn’t functioning properly when it comes to attacking the Norwegian

dataset.Despite of the fact that irrespective of the dataset’s language, it is con-

verted to numerical tensor, it produces the output class as ’3’ in most-of the

cases which leaves with a possibility that model should receive the same input

for that to happen. Is the activation function turning the input to zero? If yes,

then how does it work for agnews dataset is the interesting point which has to

be researched further.

111

Chapter 6
Conclusion

By this Thesis, we completely explored about the working nature of the popular ad-

versarial attacks & defense techniques with their relative strength & weakness along-

side. An in-depth analysis about the Image perturbation level by different attack

methods were also done & explained why some attacks can come up with fine per-

turbations while other methods stick with high perturbations. Although basic demon-

stration of all these techniques were successful, in few cases the quality of results has

the possibility to improve further. Similarly, we also explored about how the NLP is

different from an image attack with the analysis of challenges/constraints invlolved

& then came up with the attack method, which adhered with the constraints.

In Future work, i would like to contribute myself towards the machine-learning se-

curity by working on Defensive Distillation in unsupervised or reinforcement learn-

ing environment, thereby identifying the potential opportunity to improvise it further.

Also, i would like to invest more time to explore if there is a possibility to defend

C&W attack & propose a new technique for it.

This work lays the foundation for the paper "The possibility for Universal De-

fense against Adversarial attacks" which briefs about the probability to devise a new

defense strategy which is capable to defend against all types of attacks possibly in all

types of environments namely supervised, unsupervised, reinforcement.

112

Bibliography

[1] Christian Szegedy, Ian J.Goodfellow Jonathon Shlens; Explaining and Harness-

ing Adversarial Examples. Google Inc, Mountain View, CA, 2015.

[2] Ian J.Goodfellow, Christian Szegedy, Rob Fergus et al; Intriguing properties of a

Neural Network. February 2014.

[3] Zhengli Zhao, Dheeru Dua, Sameer Singh; Generating Natural Adversarial Ex-

amples. February 2018.

[4] Nicolas Papernot, Ian Goodfellow, Ananthram Swami et al; Practical Black-Box

attacks against Machine-Learning. March 2017.

[5] Xi Wu, Nicolas Papernot, Ananthram Swami et al; Distillation as a Defense To

Adversarial Perturbation against Deep Neural Networks. March 2016.

[6] Stepan Komkov, Aleksandr Petiushko; ADVHAT:REAL-WORLD ADVERSAR-

IAL ATTACK ON ARC FACE FACEID SYSTEM. Aug 2019.

[7] Alexey kurakin, Ian J Goodfellow, Papernot et al; Adversarial Examples in the

physical world. Feb 2017.

[8] Aleksander Madry, Aleksandar Makelov, Papernot et al; Towards Deep Learning

Models Resistant to Adversarial Attacks. May 2017.

[9] Nicholas Carlini, David Wagner et al; Towards Evaluating the Robustness of

Neural Networks. August 2016.

113

BIBLIOGRAPHY

[10] Rey Wiyatno, Anqi Xu et al; Maximal Jacobian-based Saliency Map Attack.

August 2018.

[11] Florian Tramèr, Alexey Kurakin et al; Ensemble Adversarial Training: Attacks

and Defenses. May 2017.

[12] Ji Gao, Jack Lanchantin et al; Black-box Generation of Adversarial Text Se-

quences to Evade DeepLearning Classifiers. 2018.

[13] Xiaoyong Yuan, Pan He et al; Adversarial Examples: Attacks and Defenses for

Deep Learning . 2018.

114

	Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Scope of the Thesis
	Brief Introduction To Deep Learning
	Standard Deep Neural Network Architectures
	Standard Deep Learning Datasets
	Types of Neural Networks
	FeedForward Neural Network
	Convolutional Neural Network (CNN) -
	Recurrent Neural Network (RNN) -
	Long Short Term Memory (LSTM) -

	Literature Review
	Basic Theory
	Adversarial Examples - What is it?
	Why to worry about Adversarial Examples?
	Where do Adversarial examples come from?
	Linear Explanation of Adversarial Examples
	Why do Adversarial examples Generalize? - (Transferability)
	Taxonomy of Adversarial Examples
	Threat Model
	Perturbation
	Benchmark

	Adversarial Attacks on Neural Networks
	Fast Gradient Sign Method - FGSM
	BIM - Basic Iterative Method aka IFGSM
	RFGSM - Randomized Fast Gradient Sign Method
	Projected Gradient Descent - PGD
	Randomized Projected Gradient Descent - RPGD
	Averaged Projected Gradient Descent - APGD
	Iterative Least Likely Class Method - ILL
	Carlini & Wagner Attack - C&W Attack
	Jacobian Saliency Map based Attack - JSMA
	Black-Box Attack:

	DEFENSE towards Adversarial Attacks
	Adversarial Training
	Ensemble Adversarial Training
	Defensive Distillation

	Real-World Dataset Attack
	DeepWordBug

	Experiment
	Analysis
	Conclusion

