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Abstract 

Deep learning algorithms, in particular convolutional neural networks, are becoming a 

promising research tool in medical image segmentation. This thesis attempted to use 

annotated knee MRI images provided by Sunnmøre MR-Klinikk to study three 

architectures of convolutional neural networks including 3D U-net, DeepLab and a 

type of combined neural network and decide a system that achieves high accuracy 

with regard to a segmentation task which has 13 extremely imbalanced classes. For 

3D U-net architecture, four advanced blocks including residual blocks, residual SE 

blocks, dense blocks and dense SE blocks were used to replace the standard 

convolution blocks in it. Because the two SE structures performed better than the 

other two in 3D U-net in the experiments, 3D U-net with residual SE blocks and 3D 

U-net with dense SE blocks were chosen as the basic networks for the other two 

architectures. The experiments show that DeepLab architecture is the most efficient 

one among the three architectures. It can achieve relatively high accuracies with both 

loss functions used in this thesis including dice loss and weighted dice loss. 

 

  



Preface 

The technology of Artificial Intelligence (AI) has been widely applied in various 

industries and achieved great success in recent decades. AI also promises to bring 

innovation to the field of medicine. With the development of increased computing 

power and deep learning algorithms, convolutional neural networks have the potential 

to become a popular technique for medical image analyses. Doctors have been 

overwhelmed with the increased amount of diagnostic data: MRI, CT, X-ray, etc. 

Convolutional neural networks may be able to effectively process these images and 

then reduce the labor force involved. This work aims to study several convolutional 

neural networks used for medical image segmentation in order to choose the 

architecture which can achieve higher segmentation accuracy on a specific dataset. 

The sampling of human (knee) data was approved by the Regional Committee for 

Medical and Health Research Ethics (REK nr. 61225). 

This thesis is the final work for the master degree in the Simulation and Visualization 

program at the Norwegian University of Science and Technology (NTNU), 

Department of ICT and Natural Sciences. I have written this thesis in an order that I 

progressively learnt and understood the algorithms of convolutional neural networks, 

and then developed the neural networks based on the knowledge. I think this order is 

clear for me to explain the work in this thesis, which might be a little different from 

other theses. For example, I keep the chapter Introduction short and describe lots of 

neural networks in the chapter Related work, which some researchers may prefer to 

put it in the chapter Introduction. 

As an international student in NTNU, I met lots of problems during the period of my 

study life. I would like to thank all the people who helped me when I was confused, 

sad, and helpless. Their kindness encourages me to be myself no matter what 

difficulties may come my way.  
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1. Introduction 

In the recent decade the development of computational power has made deep learning 

algorithms used for analyzing medical images possible. Segmentation is a common 

task in medical image analysis. For the task of knee MRI image segmentation in this 

thesis, three types of architectures have been developed including 3D U-net variants, 

DeepLab variants, and a type of neural network which combines the 3D U-net 

variants with an edge detection neural network. This chapter will introduce the 

background and motivation for this thesis, and also declare the scope and objectives 

of our work. 
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1.1 Background & motivation    

Accurate segmentation of organs is essential to support clinical workflows in multiple 

domains, including diagnostic interventions, treatment planning etc. However, manual 

segmentation of anatomical structures is labor-intensive and therefore expensive, 

which motivates automated segmentation researches [1]. 

According to Geert et al. [2], artificial intelligence technologies have been applied in 

automated medical image analysis since 1970s. Initially, researchers used low-level 

pixel processing techniques such as edge and line detector filters and mathematical 

modelling to build rule-based systems which have been described as GOFAI (good 

old-fashioned artificial intelligence). These systems developed based on many if-then-

else statements for particular tasks are often brittle. Supervised techniques were 

introduced to construct a system at the end of the 1990s. Building a computer model 

and then training it by using related datasets is the crucial idea to develop such a 

system. Models based on deep learning algorithms can extract features from the 

images efficiently, and therefore have been widely used in computer vision.  

Among various types of neural networks built for medical image analysis, the most 

successful type is convolutional neural networks (CNNs). The advances in 

computational power in recent decades made it possible to train complicated neural 

networks such as deep convolutional neural networks (DCNNs) with large datasets, 

which has high potential in medical image segmentation. Such a system can increase 

the segmentation accuracy, and also decrease the time and labor force involved.  

Knee joint is one of the most important joints of the human body, and is frequently 

injured in sports and accidents. The Magnetic resonance imaging (MRI) is a widely 

used technique to image patients’ knee. Automated knee segmentation can assist 

orthopedists in examination and treatment of various kinds of knee lesions. 
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1.2 Scope 

The scope of this thesis is to study how to apply technologies of deep learning, 

especially convolutional neural networks (CNN), for medical image segmentation. 

Details about knee joints or MRI technique in medical domain will not be discussed 

unless it is necessary for explaining the deep learning techniques used in this thesis. 

Neural networks in deep learning will be introduced first, and then we will discuss the 

most commonly used components and techniques in convolutional neural networks. 

How to choose the best neural network and how to improve the neural network are 

two of significant research domains in deep learning. These techniques will be 

introduced next in Chapter 2.  

Computer vision is the hottest research area in deep learning. Besides semantic 

segmentation, which is the domain of this thesis, several other common tasks in 

computer vision will be also introduced in Chapter 3 including image classification, 

object detection, object tracking, and instance segmentation. The techniques used in 

these tasks can inspire innovative ideas in semantic segmentation. Then we will focus 

on the related work in semantic segmentation. Neural networks and loss functions are 

the two of most crucial parts which decide the performance of the deep learning 

system, so more details in these two areas will be introduced. 

In Chapter 4, the methods of building the three architectures including 3D U-net, 

DeepLab and combined neural network will be introduced. Firstly, we will discuss 

how to build the four variants of 3D U-net using residual blocks, residual squeeze-

and-excitation (SE) blocks, dense blocks and dense SE blocks respectively. Neural 

networks developed based on DeepLabv3plus will be introduced next. To improve the 

segmentation accuracy, we will also discuss a type of combined neural networks 

which combine an edge detection neural network with the segmentation neural 

network. The details of these three architectures will be explained in this chapter. 

In Chapter 5, we will discuss the details of the experiments including the datasets 

used to train the neural networks described in Chapter 4, some implementation details 

of the deep learning system and the performances of these neural networks. Plenty of 

experiments have been designed to compare the performance of the neural networks 



4 

 

in this chapter. The reason behind the performance will be discussed based on the 

results as well.  

The last chapter will summarize the experiments and discussions of the neural 

networks used in this thesis, and also try to generalize the conclusion from the 

experiments. In the end, we will discuss the future work based on the work finished in 

this thesis. 

1.3 Objectives 

Small organ segmentation is always a challenge for medical image segmentation. To 

address this problem, various types of neural networks and loss functions have been 

proposed in recent years. However, for different datasets, their performances are 

different. The purpose is to find the best segmentation neural network and the 

appropriate loss function on the specific dataset used in this thesis. 

Another big challenge for this thesis is that there are multiple classes on our datasets. 

Their frequencies are extremely imbalanced, which will be introduced in chapter 5.1. 

The neural network needs to achieve high performance on all classes including both 

smaller and larger tissues. If unweighted loss function is used, it is possible that the 

neural networks intend to ignore the segmentation of small organs. However, if more 

attentions are paid on small targets, the neural networks may be apt to sacrifice the 

accuracy of large organs to increase the accuracy of small ones. The problem is how 

to find a method or a neural network which can balance the performance on both 

small and large organs. We will also discuss this problem in this thesis. 
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2. Theory 

In this chapter, we will initially discuss the definitions and scopes of artificial 

intelligence, machine learning and deep learning. Deep learning is the emphasis of 

this thesis, and neural networks are the crucial part to understand deep learning 

algorithms. Subsequently, neural networks will be introduced next. Convolutional 

neural network (CNN) is the most successful neural network used in computer vision, 

which is the hottest research area in deep learning, and also the area of this thesis. 

Ultimately, we will discuss more about details regarding CNN that will be helpful for 

explanation of segmentation neural networks. 

There are plenty of researches relating to improvement of neural networks. It is one of 

the crucial parts to improve the training efficiency of CNN. So, more details in this 

area will be introduced as well. The basic concepts of MRI images used on this thesis 

will be introduced last.  
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2.2 Deep learning 

In the past decades, artificial intelligence, machine learning and deep learning have 

been applied in a wide range of industries and achieved great success. Countless 

articles and researches are about them, but how can we define them clearly and what 

is the difference between them?  

Figure 2-1 shows the relations of artificial intelligence, machine learning and deep 

learning. Artificial intelligence (AI) means any technique that enables computers to 

mimic human intelligence. Machine learning is a subset of AI including algorithms 

which enable machines to improve their performances on some specific tasks with 

experiences. Deep learning is a subset of machine learning and excels at recognizing 

patterns. The algorithms of deep learning typically require a large number of data to 

train neural networks. Sometimes we use the terminology deep learning to indicate 

the process of training neural networks. 

 

Figure 2-1. AI, machine learning, and deep learning 

2.2.1 Neural networks 

As we discussed above, the basic idea of deep learning is using large datasets to train 

neural networks. Neural Network can be understood as a computational model that 

works in a similar way to the neurons in human brains. They are designed to 

recognize patterns in the datasets which are used to train them. 
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Figure 2-2. Neural network 

Figure 2-2 [3] shows a shallow neural network which has two hidden layers. Each 

hidden layer has four neurons, which is the basic computational unit of neural 

network. The calculating process of each neuron is shown at the top right corner of 

the figure. The output is calculated according 

 y=f( ∑ wixi+bn
i=1 )  (2.1) 

where xi is the input data from previous layer, wi is the weight which is learnable 

during training, b is the bias which is also learnable, f is activation function. The 

example shown at the top right corner has three inputs because the last layer of hidden 

layer 1, which is the input layer, has three neurons. For hidden layer 2, it has four 

inputs for each neuro. Bias can be deleted if normalization is chosen. 

The calculations before activation function are linear. The representation capacity of a 

neural network will be limited if we only use linear calculation in it. So activation 

function is adopted to introduce non-linear features in order to increase its 

representation capacity, which enables the neural network to implement more 

complicated functions and then recognize the more intricate patterns behind the 

dataset.  

In order to increase the representation capacity of neural networks we can increase the 

depth (use more hidden layers) or width (use more neuros in each layer) of the neural 

networks. However, it will bring a handful of problems. For example, larger memory 
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will be needed to train the neural networks. Actually lots of researches have been 

working on improving the representation capacity of neural networks without 

bringing problems at least without bringing more problems.  

If we want to build a neural network from scratch, there are lots of elements we need 

to consider about such as the number of layers, the number of neuros for each layer 

and the activation function. However, there are dozens of existing neural networks 

which have various architectures and advantages we can choose or use as references. 

There are few researchers choosing to build a neural network from scratch now. They 

prefer to use the existing neural networks as the backbone network and then adjust 

them or add more advanced components according the feature of datasets they use. 

2.2.2 Convolutional neural networks 

The most popular research areas in deep learning are computer vision and natural 

language processing. Computer vision has wider applications in the fields of 

astronomy, medicine, transportation and navigation, and military industry. The most 

successful neural network in computer vision is convolutional neural networks (CNN), 

which use combinations of convolutions, pooling, and other techniques to extract 

features from images to recognize patterns behind the training data. 

2.2.2.1 Convolution layer 

Most studies in computer vision are dealing with two dimensional images. 

Understanding the computational process of 2D convolutions is extremely important 

for understanding the architectures of CNN and how it works. The convolutional 

calculation on 2D image is shown Figure 2-3. 

In this example, the size of input image is 6×6, and the size of convolutional kernel is 

3x3. The kernel is slipped on the image in a method as the colorful square frames in 

the input image show. Use the data in the kernel to multiply the corresponding data in 

the slipping windows, and then use the summary of them as the result in the output 

image. For example, for the first slipping window, the result -5 is calculated through 

3×1+1×1+2×1+0×0+5×0+7×0+1×(-1)+8×(-1)+2×(-1)=-5. 
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Figure 2-3. The calculation of 2D CNN 

After this calculation the image is changed from 6×6 to 4×4. Sometimes we don’t 

want to change the size of input image, so padding can be used. As shown in figure 

below, padding is adopted to enlarge the size of input image to 8×8, and then the size 

of output image is still 6×6 after convolutional calculation. 

 

Figure 2-4. Padding 

There is another advantage of padding. The pixels at the corners and on the edges can 

contribute more information to the output with padding compared with these without 

padding. For example, the pixel at the right top corner is used only once in 

convolutional calculation if we don’t use padding, but the pixel in the middle can be 

used nine times at most. With padding this pixel will be used four times, which means 

the output image contains more information about this pixel. So, researchers usually 

choose to use padding when they build a convolutional neural network. 

The most frequently used padding mode is same padding, which means the output 

image will have the same size as the input image. In such situation, the number of 

paddings added on each edge should be (f - 1)/2, where f is the size of convolutional 

kernel.  
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When same padding is used, strides can be used to reduce the image’s size. Stride 

means the step of slipping the kernel window on images. For example, if we set the 

stride to be two, the output image will be reduced half in size when we use same 

padding. Strides can also be used for downsampling to increase the receptive field of 

an image. Another common operation called valid padding means there is no padding 

when employing convolution.  

If we employ padding and strides together in convolutions, the size of output images 

will be changed from n×n to (
n + 2×p - f 

s
+ 1) × (

n + 2×p - f

s
 + 1), where n is the input size 

of images, p is the padding number, f is the size of convolutional kernel, s is the stride. 

The convolutional kernel is also called filter in convolutions. The filter in the example 

above is to detect the vertical edge in the image. Different filters can learn different 

features from the image. What the filter should be is the key point to extract features 

in convolution layer, and it is also what the convolutional neural network is designed 

to learn. Multiple convolutional filters can be used in a convolution layer. It is 

obvious that the number of filters used in the convolution decides how many feature 

maps will be output in this layer. We often call the different filters used in a 

convolution layer as channels. For example, 50 filters are adapted in a convolution 

layer, and then the size of output of this layer should be 50×n×n (50 is the number of 

filters, n×n is the size of an output feature map).  

2.2.2.2 Pooling layer 

Downsampling operations enable neural networks to get the features of higher levels, 

which can help the neural networks learn more about the input images. In 

convolutional neural networks, there are many techniques to implement 

downsampling. Using stride in convolution that we discussed above is one of them. 

Max pooling is another technique used for downsampling.  

Figure 2-5 shows an example how to do max pooling. Same as convolution, a kernel 

window is used to slip on the input image. In this example, its size is 3×3. Choose the 

maximum one in the window as the result directly. The calculation involved in max 

pooling is simpler than convolution, but the result contains less information, which 

can be seen obviously in the example. However, it has fewer. There are other methods 



11 

 

to do pooling operation such as average pooling, which uses the average value of the 

pixels in the slipping window as the result.  

 

Figure 2-5. Max pooling 

2.2.2.3 Fully-connected layer 

For some computer vision tasks such as image classification, the output should be 

vectors (one-dimensional tensors) rather than images (two- dimensional tensors). In 

such situation, we can use fully-connected layer to flatten the output of convolution 

layer or pooling layer to vectors. Connecting multiple fully-connected layers with 

different numbers of neuros, which is same as neural network operations described in 

Chapter 2.2.1, can be used to generate vectors in different lengths. 

2.2.2.4 2D convolutional neural networks 

Convolutional neural networks are combinations of these operations including 

convolution layers, pooling layers, and fully-connected layer etc. Figure 2-6 [4] is an 

example of CNN used for classifying handwritten digits. The size of input image is 

28×28×1. The first layer is convolution layer, which uses n1 convolutional filters. For 

each filter, the size is 5×5 with valid padding on the input image. The output of this 

layer is 24×24×n1 (n1 is the number of channels). Then max-pooling layer is adopted 

to reduce the size of images to 12×12×n1. Similar operations are employed in next 

two layers of conv_2 convolution and max-pooling. There is a tricky problem with 

regard to the filters used in the convolution layer. We will talk about it very soon. The 

two fully-connected layers are used to get the final output which is a vector whose 

length is 10 because there are 10 digits we need to classify. Dropout is used in the last 

layer, which is a way of regularization. More details about it technique will be 

introduced in the chapter that deals with improving neural network. 
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Figure 2-6.  An example of 2D CNN 

The convolutional neural network we discussed above is 2D convolutions used for 

dealing with two dimensional images whose pixels are represented by grey values, 

which means the input channel of the images is 1. However, some 2D images’ pixels 

are represented by multiple values such as RGB images whose pixels are comprised 

by three values, which means the input channel of the images is 3. To deal with such 

an image, we use multi-channels 2D convolutions. 

 

Figure 2-7. Multi-channels 2D CNN 

Figure 2-7 shows the process how to do multi-channels convolution calculation. The 

size of the filter we use in this operation should have the same number of channels as 

the input image. In this example, the input channel is 3, so the filter’s channel is 3 as 

well. We slip the filter on the input image in the same way as we deal with one 
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channel 2D image. The only difference is that we need to add 27 (9×3) addends for 

the summary instead of 9 addends. 

The tricky problem mentioned when explaining the neural network above is that the 

filter’s channel number must be same as the channel number of input image. When 

we put this rule in the middle of a neural network, it becomes the filter’s channel 

number used in the convolution layer should be same as the number of filters used in 

the last convolution layer. For example, the filters in conv_2 convolution layer should 

be n1. It is the most important rule to understand how to use filters in different layers. 

2D convolution is actually the operation on 3-dimension tensors, which is (channel, 

height, width) or (height, width, channel). Adding the number of samples, the input 

should be 4-dimension tensors.  

2.2.2.5 3D convolutional neural networks 

Some of images are 3 dimensions such as MRI or CT medical images, and videos. 3D 

convolution is used to analyze these types of images. The figure below shows the 

calculation of 3D convolution. Similar with 2D convolution, it can handle images 

with multiple channels. In the example below the input image has 3 channels. The 

filter used here also should have the same number of channels as the input images, 

which is 3. 3D convolution is actually the operation on 4-demensional tensors, which 

is (channel, height, width, depth) or (height, width, depth, channel). The convolutional 

filter is also 4D, and will be slipped on three directions. Adding the number of 

samples, the input should be 5-demensional tensors.  

 

Figure 2-8. 3D convolution 
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3D convolutional neural networks are also similar as 2D convolutional neural 

networks. They are the different combinations of convolutional layer, pooling layer 

etc. But these layers are all in 3D. Because this thesis focuses on the analysis of MRI 

3D knee images, the neural networks used are 3D CNN.  More examples of 3D CNN 

will be introduced in Chapter 4. 

2.2.3 Improving neural networks 

When we have a neural network and the datasets, we can start to train the neural 

network. It is rare that the neural network and hyperparameters we used at the 

beginning are the best. How to choose or adjust the neural network and how to tune 

the hyperparameters are definitely very important problems, even the most important 

one in some cases, to get a better result. 

2.2.3.1 Optimization algorithms 

As we discussed above, we need to choose the most accurate neural network for the 

thesis, and also need to find the most suitable hyperparameters for the dataset. It 

depends on experiences in some extents, but we still need to train various neural 

networks and try different hyperparameters. It is substantially an iterative process. 

Optimization algorithms can speed up the training and reduce the time spent on 

iteration. Gradient descent is one of the most popular algorithms to optimize neural 

networks. 

Mini-batch gradient descent 

In machine learning, there are three ways in terms of how much data should be used 

to calculate gradients to update parameters in a neural network. The first one is batch 

gradient descent which is to feed all the training data to the neural network to 

calculate the loss and gradient, and then update parameters. For this method, the 

computation cost is large, the speed is slow. The second one is stochastic gradient 

descent (SGD). It uses a randomly selected subset of the data to update parameters. 

The computation burden is reduced, and the iteration speed is faster. But the 

convergence performance may be degraded; it may result in a sharp oscillation on the 
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convergence curve. To overcome the drawbacks of the two methods, mini-batch 

gradient descent was proposed, which makes a compromise between the performance 

and computation burden. It divides the dataset into several batches and updates the 

parameters by each batch. 

However, mini-batch gradient descent, does not guarantee good convergence, there 

are still a few challenges that need to be addressed. Choosing a proper learning rate 

can be difficult. In the algorithms we discussed above the same learning rate is 

applied to update all parameters. If the features on the dataset have extremely 

different frequencies, we might not want to update all of them in the same extent. 

Instead we hope to perform a larger update for rarely occurring features [5]. 

Gradient descent with Momentum 

Gradient descent with momentum is an algorithm used to address these problems. It 

uses exponentially weighted averages (also known as exponential moving averages) 

of gradients to update the parameters. Exponentially weighted averages are calculated 

according 

 vt=βvt-1+(1-β)θt (2.2) 

where vt is the exponentially weighted average of the first t data in the dataset, vt-1 is 

the exponentially weighted average of the first t-1 data in the dataset, β is the weight, 

θt is the t-th data in the dataset. 

  

Figure 2-9. Exponentially Weighted averages 

Figure 2-9 [6] shows an example of exponentially weighted averages of the 

temperature of a year in London. If we set β=0.9, the exponentially weighted averages 

are shown on the red line; If we set β=0.98, the exponentially weighted averages are 
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shown on the green line; If we set β=0.5, the exponentially weighted averages are 

shown on the yellow line. We can see that when β is larger, or close to 1, the line is 

smoother because it contains more historical information. And when β is smaller, the 

line is oscillating because less data is used to calculate the average and it will be more 

influenced by individual data. 

Gradient descent with momentum uses exponentially weighted averages of gradients 

to update the parameters (equation 2.4) instead of using gradients directly (equation 

2.3).  

 w:=w-α*dw (2.3) 

 w:=w-α*vdw (2.4) 

In these equations, dw is the differential of w (weight). α is learning rate, and vdw is 

the exponentially weighted averages of dw. If we set the weight β in equation 2.2 

close to 1, the exponentially weighted averages of gradients will become smoother 

according its historical records. It will accelerate gradient descent in the relevant 

direction and dampen oscillations, which can be seen in the figure below [5]. In the 

right graph of gradient descent with momentum, the oscillations on the vertical axis 

are smaller than on the horizontal axis. So, for gradient descent with momentum there 

are two hyperparameters, learning rate α  and weight β  to calculate exponentially 

weighted average, which usually is set to 0.9. 

       

 a)Gradient descent without momentum         b)Gradient descent with momentum 

Figure 2-10. Gradient descent with momentum 

RMSProp 

The algorithm of gradient descent with momentum enables users to apply different 

learning rates to different features, but the learning rates are changed in the same 
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direction. However, in some cases we want to speed up the descent in a direction and 

slow down the descent in another direction. Root mean square prop (RMSProp) 

enables users to do so. RMSProp updates weights according 

 w:=w-α
dw

√sdw
 (2.5) 

where sdw:=βsdw+(1-β)*dw
2
. 

Adam 

Adaptive Moment Estimation (Adam) [7] is a method that computes adaptive learning 

rates. The basic idea of it is to combine the algorithm of gradient descent with 

momentum with RMSprop. 

 vdw=β
1
vdw+(1-β

1
)*dw  (2.6) 

 sdw=β
2
sdw+(1-β

2
)*dw

2
 (2.7) 

 vdw
corrected=

vdw

1-β1
t  (2.8) 

 sdw
corrected=

sdw

1-β2
t  (2.9) 

 w:=w-α
vdw

corrected

√sdw
corrected+ε

 (2.10) 

The update process is shown by equation 2.6-2.10. vdw
corrected  and sdw

corrected  are bias 

correction of vdw and sdw . So, there are four hyperparameters here. We usually set β
1
 

to 0.9, β
2
 to 0.999, and ε to 10

-8
. For learning rate α, it needs to be tuned for different 

cases. 

2.2.3.2 Hyperparameter tuning 

Hyperparameters are the knobs to control a deep learning system. There are mainly 

two types of hyperparameters in deep learning. One is to control neural network 

structures and loss functions. The other one is to control training efficiency. The 

hyperparameters we discussed in Chapter 2.1.1 and 2.1.2 such as number of hidden 
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layers and number of neuros for each layer influence the neural network structure and 

its representation capacity. The hyperparameters we discussed in Chapter 2.1.3.1 such 

as learning rate affect the training efficiency. We will discuss the most frequently 

used hyperparameters and how to adjust them to improve the performance of neural 

networks here. 

Learning rate 

Despite the advanced optimization algorithms which were introduced above, we still 

need to set the learning rate for training. The learning rate controls the step of gradient 

descent. If we choose a learning rate which is too small, it may result in a long 

training process that could get stuck in local minimum. While if we choose a learning 

rate which is too big, it may result in a sub-optimal result or an unstable training 

process. 

The learning rate should be larger at the beginning, and then be reduced in steps. It is 

recommended to use a learning rate schedule rather than setting a fixed learning rate 

when training a neural network. For example, there is a learning rate schedule called 

ReduceLROnPlateau provided by Keras. It will reduce the learning rate when a 

plateau in model performance is detected, e.g. no change for a given number of 

training epochs.  

Batch-size 

As we discussed above, mini-batch gradient descent is the most popular way to 

choose how much data should be used in gradient descent. In this way, we need to set 

the batch size which determines how large a batch should be. Because the computing 

resource, e.g. GPU memory, is limited, there is a maximum value of batch size for a 

certain neural network and dataset. To maximize the utilization of memory, we should 

use as large batch size as possible. However, according to Nitish et al. [8] neural 

networks converge to sharp minimum with a large batch size, while converge to flat 

minimum with small batch size as shown in Figure 2-11. The second one has better 

generalization ability. 
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Figure 2-11. Large batch size vs. small batch size 

Epochs 

An epoch is defined as the time when all training data has been fed to the neural 

network to update the trainable parameters. For batch gradient descent, an epoch takes 

an iteration. For SGD and mini-batch gradient descent, an epoch takes a number of 

iterations, which depends on the size of batch and dataset. It takes at least several 

epochs to achieve the best result. So we should set the maximum number of epochs to 

finish the training. Actually, there are other methods to finish the training. One of 

them will be introduced in the next sub-chapter. 

Activation function 

As we discussed above, activation function can introduce non-linear features in the 

neural network. Choosing the appropriate activation functions is also very important 

to improve the performance of the neural network. The most popular types of 

activation functions are ReLu (Rectified Linear Unit), Sigmoid, and Tanh.  

The expression of ReLu is R(x)=max  (0,x), which is very simple, so the computation 

cost is low. It is introduced to avoid and rectify vanishing gradient problem which can 

be caused by sigmoid and tanh. It is commonly used in the hidden layers. The output 

range of ReLu is from 0 to infinity. For the tasks which have different output range, 

such as classification problems whose output should be from 0 to 1, ReLu can’t be 

used in the output layer. Leaky ReLu is another activation function proposed based on 
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ReLu in order to address the problem of dead neuros which may be caused by ReLu 

because the gradient is always zero when x<0. 

For image classification, sigmoid can be used in the output layer because its output 

range is from 0 to 1. Its expression is S(x)=
1

1+e-x
 . It is used for binary classification. 

Another similar activation function is Softmax, which can be used for multiple classes.  

Tanh is expressed by T(x)=
1-e-2x

1+e-2x
 , and its output range is from -1 to 1. The curves of 

sigmoid and tanh are shown on figure blew [9]. Compared with sigmoid, tanh is zero-

centered.  

 

Figure 2-12. Sigmoid and tanh  

2.2.3.3 Regularization 

Regularization aims to improve the generalization ability of neural networks in order 

to avoid overfitting, which always happens when the dataset used for training doesn’t 

represent the distribution of the data in the real world. Several techniques which are 

commonly used for regularization will be introduced. 

Data augmentation 

Data augmentation enlarges training datasets by adding transitions or perturbations to 

the existing data to generate new data. In computer vision, the simplest techniques of 

data augmentation are translation, flipping, clipping, scaling, rotation, and adding 

Gaussian noise. However, the effect is limited because the new data are generated 
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based on the existing data, which means totally new features won’t be introduced 

since it doesn’t exist in the original dataset.  

There are also other methods of data augmentation. For example, conditional GANs 

(generative adversarial networks) can transform an image from one domain to another 

domain, but it is computationally intensive [10]. The graph below [11] shows how 

conditional GANs change images.  

 

Figure 2-13. Using conditional GANs for data augmentation 

L1 and L2 regularization 

L1 and L2 regularization adds penalties on weights in loss functions in order to reduce 

the absolute sum of the parameters. The expressions are shown below.  

 Loss=Error(y,ŷ) (2.11) 

 Loss=Error(y,ŷ)+λ ∑ |wi|
N
i=1  (2.12) 

 Loss=Error(y,ŷ)+λ ∑ wi
2N

i=1  (2.13) 

L1 regularization has a sparse solution, which means there are many zeros in the 

parameters, so it actually does feature selection. L2 regularization’s solution is non-

sparse. Researchers prefer L2 regularization in their projects. 
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Dropout 

Dropout reduces interdependent learnings between the neurons. It was proposed by 

Nitish et al [12]. In training phase, the algorithm ignores a random fraction of neuros 

and corresponding activations for each hidden layer, and each training sample, in each 

iteration, which can be seen in the example of Figure 2-14. In this way, it forces the 

neural network to learn more robust features that are useful in many different random 

subsets of neurons. 

 

Figure 2-14. Dropout 

According to Amar [13], Dropout roughly doubles the number of iterations required 

to converge. However, training time for each epoch is less than without it. 

Early stopping 

A method when to stop the training we discussed above is setting the number of 

epochs of training. It is extremely inefficient and unnecessary. The training can be 

stopped whenever we want manually. But we need to stop it at the best time and stop 

it automatically. Too little training will make the model underfitting, while too much 

training may cause the model overfitting. Early stopping provides a method to stop 

the training at the point when the performance on validation datasets starts to 

degrade. The basic procedure to implement early stopping will be described below. 

 Split the training data into training set and validation set; 

 Train only on training set and evaluate on the validation set; 
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 Stop training as soon as the loss on the validation set is higher than last time 

it was evaluated; 

 Use parameters in the previous step as the result of the training. 

However, the early stopping point on the validation set is not always the point that the 

training begins to perform overfitting. When we choose to stop the training, the 

optimization is stopped as well, but it is also possible that we have not found the 

minimum point yet. We can choose other conditions to trigger the stopping such as 

using the similar idea in ReduceLROnPlateau (a learning rate schedule we discussed 

above). 

2.2.3.4 Normalization 

The best dataset for training in Deep Learning should be independent and identically 

distributed. One of important reasons to make training a deep neural network so 

difficult is that it involves the superposition of many layers. And the parameters 

updating in each layer will lead to changes of distribution of input data in the last 

connected layer in backpropagation. These changes will become larger with depth, 

which needs the connected layers to constantly adapt to this change. In order to train 

the model, we need to set the learning rate, initialize the weights, and update the 

strategy as carefully as possible. This phenomenon was summarized as Internal 

Covariate Shift (ICS).  

Whitening is an important data preprocessing step before feeding data to the neural 

network. It generally has two purposes. The first one is to remove correlation between 

features in order to get independence. The other is to make all features have the same 

mean and variance, which means to make sure the data in the same distribution. 

Principal Components Analysis (PCA) is one of the most typical methods of 

whitening.  

To make the data in an independent distribution, theoretically we need to whiten the 

data of each layer. However, computational cost of standard whitening operations 

such as PCA is high. In addition, we also want whitening operations to be 

differentiable to make sure that whitening operations can update gradients through 
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backpropagation. Batch Normalization (BN) [14] is one of the normalization methods 

which are proposed as a simplified whitening operation to address the problem of ICS.  

However, a recent study [15] shows such distributional stability of layer inputs has 

little to do with the success of Batch Normalization. The real reason is that it makes 

the optimization landscape significantly smoother. This smoothness induces a more 

predictive and stable behavior of the gradients, which leads to faster training.  

Whatever the real reason is, batch normalization is an efficient method to speed up the 

training. Batch normalization is to apply normalization in a mini-batch of data during 

training. The general procedure of such normalization has two steps. The first step is 

to apply translation and scaling according 

 xnorm
(i)

=
x(i)-μ

√σ2+ε
 (2.14) 

where x(i) is the i-th input in the input tensor, μ is the mean, σ2 is the variance, ε is to 

avoid the denominator to be zero. Then the inputs are in a standard normal 

distribution with mean 0 and variance 1. In order to ensure that the representation 

capacity of the neural network does not decline because of normalization, another 

transformation is applied according 

 x̃(i)=α*xnorm
(i)

+β (2.15) 

where α and β are learnable parameters same as other learnable parameters such as 

weights in the neural network. 

There are other types of normalization such as layer normalization which is applied 

data in a layer. It calculates the mean and variance of the input data of each layer, and 

uses the same procedure as batch normalization.  

2.3 MRI image 

A medical image is the representation of the internal structure or function of an 

anatomic region in the form of an array of picture elements called pixels or voxels. It 

is a discrete representation resulting from a sampling or reconstruction process that 
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maps numerical values to positions of the space. Medical image file formats can be 

divided in two categories. The first is formats intended to standardize the images 

generated by diagnostic modalities, e.g., Dicom. The second is formats born with the 

aim to facilitate and strengthen postprocessing analysis, e.g., Nifti, which is a file 

format created at the beginning of 2000s by a committee based at the National 

Institutes of Health with the intent to create a format for neuroimaging maintaining 

the advantages of the analyze format, but solving the weaknesses [16]. 

The dataset used in this thesis is in the Nifti format. The main feature of this format is 

that it contains affine coordinates which can associate the index (i, j, k) of each voxel 

with its spatial position (x, y, z). The Python library which can read Nifti files is 

nibble. 

Nuclear magnetic resonance imaging is also called Magnetic Resonance Imaging 

(MRI), which is an imaging technique that reconstructs images by collecting signals 

generated by magnetic resonance phenomena.  

A particular setting such as pulse sequences and pulsed field gradients will result in a 

particular image appearance in MRI. The particular setting is called MRI sequence. 

The MRI sequences used on our dataset are T1, PD and FS, which can be seen in the 

Figure 2-15. The sampling of human (knee) data was approved by the Regional 

Committee for Medical and Health Research Ethics (REK nr. 61225). 

As mentioned in Chapter 1.2, we will not discuss more details about knee joints or 

MRI technique in medical domain unless it is necessary for explaining the deep 

learning techniques used. So, more details about T1, PD and FS will not be discussed.  

      

              (a) T1                                   (b) PD                               (c) FS 

Figure 2-15. T1, PD and FS MRI images 
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3. Related work 

Semantic segmentation is one of the tasks in computer vision. To optimize the 

segmentation neural networks, we can also learn from other tasks in computer vision 

such as image classification and object detection. This chapter will introduce five 

tasks including image classification, object detection, object tracking, semantic 

segmentation, and instance segmentation in computer vison. We will discuss more 

details about image classification because it is the base of other tasks.  And then we 

will focus on semantic segmentation which is the category of this thesis. We will 

discuss the commonly used neural networks and loss functions in this area.  
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3.1 Computer vison 

Computer Vision (CV) is the most popular research area in deep learning. It has 

developed a series of techniques which enable computers to understand and analyze 

the content of digital images such as photographs and videos. In Computer vision, 

there are mainly five different tasks including image classification, object detection, 

object tracking, semantic segmentation, and instance segmentation. The details of 

these tasks will be introduced below. 

3.1.1 Image classification 

Image classification is aimed to classify an image into a specific category defined 

by the task. It is the most well-known and simplest computer vision task. Other 

computer vision tasks such as object detection, semantic segmentation are based on 

image classification problem. Figure 3-1 is an example of image classification using 

AlexNet [17]. When an image is input into the neural network, it will output the 

class of this image (in this case, the image is classified as cat). 

 

Figure 3-1. An example of image classification 

The neural network extracts features of different levels from the input images through 

different combinations of operations such as convolution and pooling. More details of 

these operations can be found in Chapter 2.2.2. Using these features extracted from 

different levels the neural network can recognize the inner patterns of how to classify 

the images. 
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Table 3-1 shows a rough development history of neural networks in deep learning. 

Most of them are responsible for setting the new state of the art for classification and 

detection in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC), 

which is the most known competition in computer vision and evaluates algorithms for 

object detection and image classification at large scale. Some of them are still widely 

used as backbone neural networks on various kinds of tasks. 

Table 3-1. A rough development history of neural networks 

Date Neural network Description 

1994 LeNet5 It was one of the earliest convolutional neural networks. 

2012 AlexNet It was a wider and deeper version of LeNet5 

2013 OverFeat It was derived from AlexNet and proposed a new technique 

of learning bounding box. 

2014 VGG It is the first network to use smaller filters (3×3 filter) in 

each convolutional layer. 

2013 Network-in-

network 

It proposed 1×1 convolution which can provide more 

combinatorial features. 

2014 GoogleNet It was the first architecture of Inception which chooses 

filters adaptively. 

2016 ResNet It proposed residual structure. 

 

LeNet5 [18] was proposed in 1994. It was one of the earliest convolutional neural 

networks. It adopted the combination of convolution, pooling, and nonlinearity 

activation function as a sequence to build a neural network, which became the most 

commonly used sequence for neural networks in computer vision. It was trained on 

CPU because of the underdevelopment of hardware at that moment.  
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After LeNet5, there was a long time that the neural network was in the incubation 

stage. Its capacity was unnoticed, while few improvements happened. With the 

development of mobile cameras and cheap digital cameras, more and more data 

became available. And with the growing computing power, CPU became faster and as 

GPU became widely used, deep learning especially computer vision has been in the 

high speed period of development since the last decade.  

In 2012, AlexNet [17] was proposed. It was a wider and deeper version of LeNet5. It 

employed the techniques of ReLu and dropout. It was trained on a GPU and the speed 

of training increased dramatically. OverFeat [19] was derived from AlexNet and 

proposed a new technique of learning bounding box, which is widely used in object 

detection. 

VGG [20] was the first network to use consecutive smaller filters (3×3) to replace 

larger filters (5×5, 9×9 and 11×11), which was different from the principle of LeNet5 

and its derivatives, where large convolutions were used to obtain similar features in an 

image. Since then smaller filters has become popular.  

The idea of network-in-network [21] was simple but very useful. Use 1×1 convolution 

to provide more combinational features of convolutional layers. This technique is 

widely used in neural network such as GoogleNet [22], which was the first 

architecture of Inception that chooses filters (1×1  or 3×3  or 5×5 or pooling) 

adaptively, and ResNet [23], which proposed residual structure that will be introduced 

in Chapter 4.1.1.1. 

3.1.2 Object detection 

Object detection is a task of identifying the objects through a picture or video. Figure 

3-2 [24] is an example of object detection. We can see that it provides not only the 

classes but also indicate the spatial location of those classes.  
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Figure 3-2. An example of object detection 

One of representational neural networks for object detection is the series of R-CNN, 

including R-CNN [25], Fast R-CNN [26], Faster R-CNN [27], and Mask R-CNN [28]. 

They are region based algorithm. Figure 3-3 [25] shows the implementation stages of 

R-CNN. 

 

Figure 3-3. The implementation stages of R-CNN 

 There are four stages to implement R-CNN: 

 Region proposals extraction: to generates 1000~2000 region proposals 

(using the Selective Search algorithm); 

 Feature extraction: for each region proposal, using convolutional neural 

networks (CNN) to extract features; 
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 Classification: These features are fed into SVM classifiers to determine 

whether it belongs to this class; 

 Bounding box Regression: Use regression to fine-tune the box position, 

which is not included in the figure above. 

Fast-RCNN [26] shared computation in the steps of feature extraction, classification, 

and bounding box regression, and all of them are implemented using CNN. Because 

the CNN was implemented on the whole image once rather than on each region 

proposal thousands of times, it was faster than R-CNN. But it also brought a problem 

that the number of features for each region proposal is different since they are 

extracted from the whole image. To solve this problem, Fast-RCNN added ROI layer. 

After passing through this layer, the number of features will be the same. 

Faster-RCNN [27] introduced RPN networks (region proposal network) to replace the 

Selective Search algorithm, which made possible for the whole network to be trained 

end to end. Mask-RCNN [28] extended R-CNN to the area of semantic segmentation. 

Another important algorithm in object detection is YOLO (You Only Look Once) 

[29]. Different from R-CNNs, it used a single CNN to predict the bounding boxes and 

the class probabilities for these boxes. It was efficient in term of speed but did not 

perform very well on small object detection. 

3.1.3 Object tracking 

Object tracking aims to detect moving objects, which has many practical applications 

including surveillance, traffic flow analysis, and self-driving cars etc. Object tracking 

starts with object detection, but there are more challenges compared to static object 

detection. Figure 3-4 [30] shows an example of object tracking. 
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Figure 3-4. Object tracking 

3.1.4 Semantic segmentation 

Semantic segmentation refers to the task of annotating each pixel in 2-dimension 

images or each voxel in 3-dimension images to a class label.  It is essentially a 

classification problem. The figure below [31] gives an example of semantic 

segmentation, which shows its connection with image classification. It is the category 

of the thesis. We will discuss more details about it in Chapter 3.2.  
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Figure 3-5. An example of Semantic segmentation. 

3.1.5 Instance segmentation 

Instance segmentation is an extensional task of semantic segmentation. Unlike 

semantic segmentation that only needs to classify different categories, instance 

segmentation needs to distinguish different instances even if they are in the same 

class. Figure 3-6 [32] shows their difference. 

 
     a)semantic segmentation                                        b) instance segmentation 

Figure 3-6. Instance segmentation and semantic segmentation 

3.2 Semantic segmentation 

As we discussed above, semantic segmentation is essentially a classification problem 

on pixel or voxel level. The neural networks used for semantic segmentation and the 

loss functions used for training these neural networks will be introduced in this sub-

chapter. They are the necessary previous knowledge of Chapter 4. 



34 

 

3.2.1 Neural networks 

The goal of semantic segmentation is to label each pixel of an image with a 

corresponding class. Classical convolutional neural networks such as AlexNet, VGG, 

and GoogleNet perform well on image classification. It is natural to use them for 

semantic segmentation. However, there are reductions of image resolutions caused by 

the repeated combinations of convolutions and max-pooling etc. used by these neural 

networks for increasing the receptive field. The output of semantic segmentation is an 

image but not a single class. The details lost in this process cannot be used on 

generating the segmentation image, which would lead to the loss of accuracy.  

3.2.1.1 FCN 

One of the most important breakthroughs, maybe the most important one, in recent 

years is fully convolutional neural network (FCN) [33], which rewrites the fully 

connected layers as convolutions to produce a whole image rather than an output for a 

single pixel. The figure below [33] shows this process. The upper network is for 

classification, whose output is a series of probabilities. The highest one is tabby cat 

which is the input image’s category. Applying convolutionalization to the final layer, 

the nether network’s output becomes an image as shown in the nether network. 

 

Figure 3-7. Fully Convolutional Network 
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There are three mainly techniques in FCN. The first one is convolutional, which we 

discussed above. It uses convolution layers to replace the fully connected layers in 

classification neural networks such as VGG and ResNet. The second one is using 

deconvolution to implement upsampling to reconstruct the output image which has 

the same size as the input image. Deconvolution (or transposed convolution) can be 

understood as the reverse process of convolution. 

 

Figure 3-8. Deconvolution 

The process of calculating deconvolution is shown in Figure 3-8. Input images are 

used as the center and full zero padding is implemented to get the different sizes of 

outputs. In this example, it uses 3×3 deconvolution filter slipping on the input image 

whose size is 2×2 to get the output image whose size is 4×4.  

 

Figure 3-9. Fusing information from layers with different strides 

The last notable technique used in the FCN is skip connection, which fuses 

information from layers with different strides to improve segmentation details. The 

paper compared three methods of fusing information, which are shown in Figure 3-9 

[33]. For FCN-32s, it uses 32 times upsampled pool5 as the prediction; for FCN-16s, 

it fuses 2 times upsampled pool5 with pool4, and then implements 16 times 

upsampling as the prediction; for FCN-8s, it fuses 2 times upsampled pool5 with 

pool4 first, and then upsamples the results, and then fuses it with pool3, and then 
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implements 8 times upsampling as the prediction. The results are shown in Figure 3-

10 [33]. We can see that FCN-8s has the best result, which means that decreasing the 

stride of pooling layers is the most straightforward way to obtain finer predictions. 

This method of improving the segmentation accuracy by fusing features from 

different strides are widely used in other segmentation neural networks such as U-net 

[34] and SegNet [35]. 

 

Figure 3-10. Results of refining FCN 

3.2.1.2 SegNet 

SegNet [35] used elegant encoder-decoder architecture, which is shown below. It used 

convolution and pooling in the encoder, decovolution and upsampling in the decoder, 

and Softmax for pixel classification. The image segmentation accuracy was improved 

by using pooling indices which recorded the position of pooling. This encoder-

decoder architecture is one of the most popular architectures for semantic 

segmentation neural networks. 

 

Figure 3-11. SegNet 
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3.2.1.3 DeepLab 

The techniques developed by DeepLab series are another important branch in 

semantic segmentation. They have used classical convolutional neural networks as 

backbones and developed other advanced components added in the systems to 

improve the performance.   

DeepLabv1 [36] used VGG as the backbone and introduced atrous convolution and 

fully-connected Conditional Random Fields (CRF) to solve the problems brought by 

reduced resolution. DeepLabv2 [37] used Residual-Net and introduced ASPP (Atrous 

Spatial Pyramid Pooling) which used multiple parallel atrous convolution layers with 

different sampling rate. DeepLabv3 [38] discussed four types of Fully Convolutional 

Networks and improved ASPP.  

The lasted version is DeepLabv3plus [39], whose architecture is shown in the figure 

below. It was an encoder-decoder architecture. It used Xception as the basic network. 

The encoder was comprised of improved Xception and ASPP. The decoder used 

bilinear upsampling concatenated with the corresponding low-level features from the 

network backbone. More details will be introduced in Chapter 4.1.2. It is one of the 

architectures used in this thesis. However, the specific structures such as the basic 

network have been modified according the feature of the dataset and the requirement 

of the task, just like the other two architectures in this thesis. 

 

Figure 3-12. DeepLabV3Plus 
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3.2.1.4 Unet 

These neural networks we discussed above perform great on natural image 

segmentations, but they cannot be easily transformed to be used in medical image 

segmentations. Medical images segmentation is different from natural images 

segmentation. First, the training datasets are small because it is laborious to be 

annotated and there are some regulations making it difficult to access. Second, the 

features are not that rich compared with natural images. So, too complicated neural 

networks shouldn’t be used. Third, medical images such as MRI or CT are 3D. 

Expanding 2D neural networks to 3D will increase their complexities and the amount 

of data needed to be processed will also rise dramatically. It will be consequently that 

we need higher computational power to train them. The limited computational power 

has already been a problem on 3D image segmentation even for relatively simple 

networks. Because of it, most of 3D convolutional neural networks are trained on 

patch-wise. This is also the method adopted in this work. 

 

Figure 3-13. U-net 

Although these differences hinder neural networks in natural image segmentation to 

be directly used in medical image segmentation, the advanced techniques developed 

by natural image segmentation have still been used in various kinds of medical image 

segmentation neural networks. U-net [34] was inspired by FCN. It is the most 
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successful neural network used in medical image segmentation. Its architecture is 

shown in Figure 3-13 [34]. It used skip-connections to merge the features in different 

levels and symmetrical encoder-decoder architecture same as SegNet, achieving great 

performances on small datasets.  

3.2.1.5 Other networks 

As we discussed above, many semantic segmentation neural network in medical 

domain take advantage of advanced techniques developed in natural image 

segmentation. According to P. Wang et al. [40], fully convolutional network (FCN), 

conditional random fields (CRF), and atrous convolution are key components used in 

the most state-of-the-art semantic segmentation systems. These components have 

been used in medical image segmentation neural networks too. For example, U-net 

used the idea of FCN; DeepMedic [41] employed a fully connected CRF as a post-

processing step to achieve more structured predictions; FocusNet [42] utilized atrous 

convolution. 

3D U-net [43] is one of the most successful convolutional neural networks used for 

3D medical image segmentation. There are other neural networks that used it as the 

backbone network and added some advanced components to improve the performance. 

For example, V-net [44] added residual blocks based on it. Dense V-Net [45] used V-

net as the backbone, and added dense feature stacks inspired from DenseNet [46].  

3.2.2 Loss functions 

Loss function is another important factor determining the final performance of the 

deep learning system. One of the most important problems that is needed to be solved 

in in medical image segmentation is the imbalanced samples. For example, abnormal 

organs or lesions usually account for a small portion of the whole medical image. 

Appropriate loss function needs to be chosen to balance the positive sample and the 

background. 

3.2.2.1 Cross-entropy 

For binary classification, cross-entropy loss function is defined by  
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where y
i
 is the truth category of input sample xi , pi

 is the predicted possibility of 

input sample xi belonging to category 1. This loss function pays equal attention on 

each category. So it cannot work perfectly on imbalanced classes. For medical image 

segmentation, the percentage of abnormal organ which needs to be segmented is 

usually very small. The worst case is the neural network segments nothing if we use 

cross-entropy loss. 

3.2.2.2 Weighted cross-entropy 

Weighted cross-entropy can be used to address the imbalance we discussed above. It 

can be calculated according 
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where w is the weight which needs to be defined before training. 

3.2.2.3 Focal loss 

Focal loss was proposed in the task of object detection, in order to solve the problem 

of imbalance of positive and negative sample ratio. The formula is  
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Compared with the formula of cross-entropy, there are two added multipliers (1-p
i
)
γ
 

and p
i
γ, which aims to increase the loss value when to predict the class whose p

i
 is 

small and decrease it when to predict the class whose p
i
 is big. So it can increase the 

attention on positive samples whose percentage in the dataset is small. 

3.2.2.4 Dice loss 

Dice loss was introduced by V-net [44], and developed based on dice coefficient in 

order to address the problem of the learning process getting trapped in local minimum 
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when the predictions are strongly biased towards background. The dice coefficient 

between two binary volumes is calculated according 

D(A,B)=
2 × (|A ∩ B|)

|A| + |B| 
 

 (3.4) 

It can also be represented by 

Dice=
2TP

2TP+FN+FP
 

 (3.5) 

where TP is true positive, FP is false positive, FN is false negative. Dice loss can be 

defined as 1-Dice or -Dice. It performs better on small object segmentation compared 

with cross-entropy. However, it also has disadvantages. If there are only foreground 

and background in the dataset, prediction errors of small targets will lead to large 

changes of dice loss, which will cause sharp gradients and unstable training. 

3.2.2.5 Generalized Dice loss 

For multi-label segmentation, there is generally one dice coefficient for each class. 

Generalized Dice loss integrates the dice coefficients of multiple labels together to 

measure the segmentation results. The formula of generalized dice loss for two labels 

is 

GDL=1-2
∑ wl ∑ rlnp

lnn
2
l=1

∑ wl ∑ rln+p
lnn

2
l=1

 
(3.6) 

where rln is the value of label l in the ground truth, and p
ln

 is its predicted value, wl is 

the weight of label l , and is calculated according 

wl=
1

( ∑ rln
N
n=1 )

2
 

(3.7) 

3.2.2.6 IOU loss 

Similar as dice coefficient, IOU (intersection-over-union) loss is also use a metric as a 

loss function. IOU is actually defined as  
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IOU=
TP

TP+FN+FP
 

(3.8) 

IOU loss as a loss function is defined as 

IOU=
I(X)

U(X)
=

X*Y

X+Y
 

(3.9) 

where X is the prediction and Y is the ground truth. 

3.2.2.7 Combined loss 

To take advantage of multiple loss functions described above or others, we can 

combine some of them to a new loss function. For example, we can add cross-entropy 

loss with Dice loss as a new loss function: 

 Loss=CE+(-Dice) (3.10) 
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4. Method 

In this chapter, three architectures used in this work including 3D U-net variants, 

DeepLab variants and a type of combined neural network will be introduced. To 

explain the 3D U-net architecture, the components used in it will be introduced first. 

These components including residual blocks, residual SE blocks, dense blocks and 

dense SE blocks. Four variants of U-net have been developed by using these 

components. The 3D U-net variants were also used as the backbone network in 

DeepLab variants and the combined neural network.  

These architectures were not developed from scratch. They used the existing 

architectures as references, and were modified according the features of our dataset 

and the task. To explain the details how to implement these architectures, the related 

neural networks will be introduced first, and then the details of how to modify them to 

the neural network for our dataset will be described. The reason why the introduction 

of related neural network is presented in this chapter rather than the previous chapter 

is to make the descriptions of the modified neural network easy to understand. The 

loss functions and metrics used to train them will also be introduced in the end of this 

chapter. 
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4.1 Neural Networks  

Besides the problems such as small training datasets and large memory requirement 

many medical image segmentation tasks have to face, there is one more problem in 

this work. It involves multiple imbalance classes, which becomes more intricate 

because multi-label segmentation needs to segment both the small organs and the 

large ones, which may affect each other in some extent. There are two directions we 

can consider to improve the accuracy for such a problem: employing innovative 

neural networks, and using appropriate loss functions.  

It is obvious that a better neural network can bring more benefits, so more attention 

has been paid on improving the neural network. As we discussed above, 3D U-net is 

one of the most successful neural networks used for medical image segmentation. In 

MICCAI Kidney-tumor Segmentation Challenge in 2019, the neural networks the first 

prize winner [47] adopted were based on U-net. It adjusted the networks according 

their training image features. Another element helping them achieve best score was 

their efforts at data preprocessing. This is one of the evidences that U-net is the most 

successful segmentation architecture in medical domain. Based on it, this work 

initially chooses 3D U-net as the backbone network. Three advanced components 

including residual block, squeeze-and-excitation (SE) blocks [48], dense blocks are 

added to form four variants of 3D U-net in order to increase the segmentation 

accuracy.  

DeepLab series [36][37][38][39] also have notable influence on medical image 

segmentation, especially ASPP (Atrous Spatial Pyramid Pooling. Unlike U-net, which 

uses symmetrical encoder-decoder architecture, the latest version of DeepLab 

(DeepLabv3plus) used symmetrical encoder-decoder architecture. This architecture 

has been also adopted in this work, and it was modified according the feature of our 

dataset and the requirement of the task. 

There are also some researchers attempt to use combined neural networks. Payer C et 

al. [49] proposed a pipeline of two FCNs, one to localize the center of the bounding 

box, the other focusing on this region to do segmentation. FocusNet [42] used the 

similar framework as [49]. AnatomyNet [50] used attention networks which are 

widely used in natural language processing. A type of neural networks which 
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combines edge detection neural network with segmentation neural network were tried 

to improve the accuracy in this thesis as well. 

4.1.1 3D U-net variants 

In order to address the problem brought by imbalanced multiple labels in the dataset, 

four variants of 3D U-net have been employed including 3D U-net with residual 

blocks, with residual blocks adding SE blocks (residual SE blocks), with dense 

blocks , and with dense blocks adding SE blocks (dense SE blocks).  

3D U-net with residual blocks has similar architecture with V-net. Residual blocks 

enable the networks to improve accuracy from considerably increased depth. SE 

blocks can adaptively strengthen important features and can be directly applied in 

both residual networks and non-residual networks with only light weight 

computational increase. Dense blocks improve the performance through feature reuse 

by concatenating feature maps learned by different layers instead of using extremely 

deep or wide architectures. 

 

Figure 4-1. The network uses 3D U-net as the backbone 

Figure 4-1 shows the architecture of the backbone network, which is a typical 

encoder-decoder architecture. The downsampling path on the left (encoder) extracts 

features using convolutions from the input images, and the upsampling path on the 

right (decoder) uses deconvolutions to reconstruct the details for the final 

segmentation results. The skip-connections are used to fuse features of different levels 

obtained in the downsampling path with the features in the upsampling path in order 

to improve the segmentation accuracy. For the grey blocks in both paths, they have 
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been filled by using four types of blocks, including residual blocks, residual SE 

blocks, dense blocks, and dense SE blocks. The details will be explained later. 

The numbers of filters used in convolution blocks of all layers are designed to be the 

multiple of three, because the number of input channels of the datasets is 3 (the 

images have three weighted volumes, T1, PD and FS for each object). The 

downsampling is designed to be ended when the size of feature maps are reduced to 

4×4×4 if the size of input image is 64×64×64. If more downsampling layers are used, 

the feature maps in the last layer of encoder will contain too less information. 

Different sizes of input images or patches were used in the experiments. The figure 

above only shows one of them (64×64×64). Other descriptions about the size of 

feature maps in the neural network in Chapter 4.1.1 are based on this figure.  

4.1.1.1 Residual Block 

Deep residual learning framework [23] was proposed to address the degradation 

problem when networks become extremely deep. It used residual connection adding 

stacked layers instead of stacking these layers directly, which makes it easier to 

optimize compared with the original one. It has already been used in various types of 

neural networks and achieved great success. In this work, residual blocks are used to 

fill the grey blocks in Figure 4-1 firstly, which is similar with V-net [44]. For each 

grey block in different layers, different numbers of convolution blocks are used in 

residual blocks. The number of convolution blocks and their sizes are shown in Table 

4-1. 

Table 4-1. The numbers of convolution blocks in grey blocks 

Size of  

Convolution Blocks 

Number of 

Convolution Blocks 

48×32×32×32 2 

96×16×16×16 3 

192×8×8×8 3 

384×4×4×4 3 

4.1.1.2 Residual SE Block 
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Squeeze-and-Excitation Networks (SENet) [48] introduced SE block which improves 

prediction accuracy through modeling the correlations between channels and 

adaptively strengthening important features. This structure performed great in ILSVR 

competition in 2017. AnatomyNet [51] took advantage of SE residual blocks to build 

a 3D SE Res U-net, which performed best among the networks they tested.  

 

Figure 4-2. Residual SE block 

In this work, residual SE blocks are also used to fill the grey blocks. As shown in 

Figure 4-2, 2 or 3 convolution blocks are used first same as residual blocks described 

above. The numbers of blocks stacked are same as Table 4-1. Then SE blocks are 

used to strengthen important features. In SE blocks, the channel-wise features are 

calculated by global average pooling firstly. For the c-th channel, the feature is 

squeezed according 

zc = 
1

H × W × D
∑ ∑ ∑ uc(i, j, k)

D

k

W

j

H

i

 
(4.1) 

where uc(i, j, k) is an element in the feature map uc   (whose size is H×W×D, and 

generated by stacked convolution blocks) of the c-th channel. After this operation, the 

spatial dimension of the feature map of all channels is changed from H×W×D×C to 

1×C. The feature of each channel is squeezed to be represented in a number. After 

squeezing, two fully connected layers are used as a simple gating mechanism to 

capture channel-wise dependencies. They can be written as:  

 sc = F(zc) (4.2) 

where F refers to the mapping relations of these two fully connected layers. The final 

output of the SE block is obtained by channel-wise multiplication between the feature 

map generated by stacked convolution blocks and the scalar output by the two fully 
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connected layers. The feature map of the c-th channel is recalibrated by the factor sc 

according  

 uc
'  = sc* uc (4.3) 

In this way SE blocks can be used to adaptively strengthen the important features. SE 

blocks perform well on improving the segmentation accuracies of small organs in this 

work.  

4.1.1.3 Dense Block 

Dense convolutional network (DenseNet) [46] considered that the residual 

connections combining the input with the output of stacked convolutions by 

summation impedes the information flow in the network, and then proposed a 

different connectivity pattern. In traditional convolutional networks, the output of 

current layer is the input of the next layer, which means L layers have L connections. 

DenseNet introduced a framework that connects the output of each previous layer to 

the next layer, which means L layers have 
L(L+1)

2
 connections.  

 

Figure 4-3. Dense SE block 

As shown in Figure 4-3, before the SE block it is a 4-layer dense block. Each layer 

takes all preceding feature-maps as the input to reuse these features in order to take 

advantage of features gained in different layers to exploit the potential of the network. 

The input of i-th layer can be represented by: 

 ui=Concat([u0,u1,…,ui-1]) (4.4) 
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where ui is the feature map obtained in i-th layer. The growth rate in the Figure 4-3 is 

the number of convolution filters in each layer except the input layer. The number of 

input feature maps for l-th layer is c0 + growth_rate × (l − 1). Here c0 is the number 

of channels of the input layer in the block. This means the input feature maps increase 

by a factor of growth rate. In addition, 1×1×1 convolutions are added as bottleneck 

layers before each 3×3×3 convolutions in order to reduce the number of input feature 

maps for each layer.  

For dense blocks, a relatively small growth rate is sufficient to obtain state-of-the-art 

results, which enable us to try a relatively larger batch size because of the high 

memory requirement of the model during training. Three dense block structures 

whose growth rates decreased gradually are designed in the work. The experiment 

shows the network with smaller growth rates and trained in a bigger batch size 

achieved better results. 

4.1.1.4 Dense SE Block 

To take advantage of both dense blocks and SE blocks, the blocks described in Figure 

4-3 are used to fill the grey blocks in Figure 4-1. Three structures have been tested 

whose dense blocks have the identical hyper parameters as Chapter 4.1.1.3. SE blocks 

can be easily added in a residual structure and a non-residual structure. Residual SE 

block described in Chapter 4.1.1.2 is obviously an example that it is used in a residual 

structure. Dense SE block in this chapter is an example that it is used in a non-residual 

structure. 

4.1.2 DeepLab variants 

The fusion of features in different scales is beneficial in improving accuracy of 

semantic segmentation. In Deeplabv3 [38], it discussed four architectures to capture 

multi-scale context. The first one is usually applied during the inference stage. For the 

other three, encoder-decoder architecture, which was used in U-net, is one of them. 

Atrous convolution and Spatial Pyramid Pooling are another two. Deeplabv3plus [39] 

took advantage of these three architecture and proposed the architecture of encoder-

decoder with atrous convolution as shown in the figure below.  



50 

 

 

Figure 4-4. The architecture of encoder-decoder with atrous convolution 

 Unlike encoder-decoder architecture used in Chapter 4.1.1, encoder-decoder with 

atrous convolution is asymmetrical. It used ASPP (Atrous Spatial Pyramid Pooling) at 

the end of encoder and bilinear upsampling in the decoder. This architecture has also 

employed with modification in this thesis. To explain it clearly, atrous convolution 

will be introduced first. 

4.1.2.1 Atrous convolution 

In convolutional neural network, we usually use pooling and convolution with stride 

to downsample images in order to increase the receptive field and then obtain the 

features of images in high level. However, there is resolution loss in pooling, and for 

convolution with stride, there are many parameters involved. Atrous convolution (or 

dilated convolution [52]) was designed to increase receptive field with fewer 

parameters. Compared with standard convolution, atrous convolution has one more 

hyperparameter, dilation rate, which defines intervals between pixels in the kernel. 

For the same kernel size, using a larger dilation rate can obtain a larger receptive field 

with the same number of parameters. Atrous convolution can also be used to get the 

features from different scales. 

Figure 4-5 shows an example of how to calculate two-dilated convolution with stride 

1. For two-dilated convolution whose kernel size is 3×3, the receptive field is actually 

5×5. It has the same number of trainable parameters as the standard convolution we 

discussed in Chapter 2 whose receptive field is 3×3. So, we can see that it can 

increase the receptive field with fewer parameters. 
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Figure 4-5. Atrous convolution 

4.1.2.2 Depthwise separable convolution 

To understand ASPP (Atrous Spatial Pyramid Pooling), we should understand 

depthwise separable convolution firstly. Figure 4-6 [53] compares the calculation of 

standard convolution and depthwise separable convolution. 

            

a) Standard convolution                b) Depthwise separable convolution 

Figure 4-6. Depthwise separable convolution 



52 

 

For standard convolution, as explaining in Chapter 2, we use the convolution filter 

whose channel number is same as the input image (3 in this case) to do element-wise 

multiplication, and then add the products together to get a scalar as the final result. So, 

the output is an image whose channel number is one as shown in a).  

For depthwise separable convolution, it is changed after obtaining the products of 

element-wise multiplication. Instead of adding them together, we use addition in 

channel-wise. The calculation process is same as using three convolution filters whose 

channel numbers are one to operate the corresponding channel of the input image. The 

result is a feature map which has the same channel number as the input image, which 

means the convolution is only implemented in the height and width directions. It is 

the first step as shown in b). Then 1×1 filters whose channel number is same as the 

input image are adopted, which means the convolution in the depth direction is 

implemented. It is the second step as shown in b). 

Depthwise separable convolution uses 1×1 filters to choose features from the results 

of element-wise multiplication instead of adding them directly in standard 

convolution, which obviously keeps more spatial information. In addition, it uses 

fewer parameters in some cases. For example, in the case that the channel number of 

input image is 16 to get an output image whose channel number is 32. For standard 

convolution, we use 32 filters whose sizes are 3×3×16, so the number of parameters 

here is 3×3×16×32  = 4608. For depthwise separable convolution, we use a filter 

whose size is 3×3×16, then we use 32 filters whose size are 1×1×16, so the number of 

parameters is 3×3×16 + (1×1×16)×32 = 656. 

4.1.2.3 ASPP 

Spatial Pyramid Pooling was proposed by [54] in order to capture context of images 

in different strides. ASPP (Atrous Spatial Pyramid Pooling) was introduced by 

DeepLabv2 [37], where parallel atrous convolution layers with different dilation rate 

capture multi-scale features, which is shown in the figure below [38]. 
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Figure 4-7. ASPP (Atrous Spatial Pyramid Pooling) 

It used four atrous convolution layers whose dilation rates are different to capture 

multi-scale information of the images, and a global average pooling layer to capture 

the image-level feature. The sizes of output images of these five layers are same as the 

input image. And then concatenated these five outputs and used 1×1 convolution to 

reduce the number of channels and choose features. 

DeepLabv3plus [39] applied atrous separable convolution to replace the atrous 

convolution in the four convolution layers of ASPP. Atrous convolution was adopted 

in the depthwise separable convolution as shown in the figure below [39]. It means to 

use atrous convolution instead of standard convolution in the first step of depthwise 

separable convolution. 

 

Figure 4-8. Atrous separable convolution 
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4.1.2.4 Network 

The architecture of DeepLabv3plus was shown in Chapter 3.2.1.3. It was an 

asymmetrical encoder-decoder architecture. The encoder was comprised of improved 

Xception and ASPP. The decoder used bilinear upsampling concatenated with the 

corresponding low-level features from the network backbone. A type of DeepLab 

variant for our dataset was developed based on it. The architecture of the neural 

network is shown in the figure below. 

 

Figure 4-9. The architecture of DeepLab variants 

DeepLabv3plus used Xception as the basic network. However, Xception is too 

complicated, which is not necessary for our dataset. So it is replaced with the encoder 

part of 3D U-net variants, and the numbers of channels in each layer is reduced by a 

half. The last layer of encoder is removed and ASPP is added at the bottom of encoder. 

The dilation rates used in ASPP are [1, 4, 8, 12]. 1×1×1 convolution is used to reduce 

the number of channels after ASPP, which is same as it is used in dense blocks.  

For decoder, trilinear upsampling (similar with bilinear upsampling in 2D) is used to 

upsample the image, and then concatenate with the low-level feature got in the 

encoder network. 1×1×1 convolution was applied to reduce the number of channels of 

the low-level feature before concatenation. After concatenation, 3×3×3 convolution 

block was added before de-convolution upsampling. Then another trilinear 
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upsampling was employed to recover the images to the original size. And then use a 

convolution block to get the final segmentation results. 

The overall architecture is similar with DeepLabv3plus except the basic network used 

in the encoder. De-convolution upsampling block is added between the two trilinear 

upsampling operations in order to improve the accuracy because medical image 

segmentation has higher requirement than natural image segmentation. The factor of 

upsampling in DeepLabv3plus is 4, but in this neural network, it is 2. 

As we discussed above, because this architecture use atrous separable convolution, 

the numbers of channels in encoder was reduced by a half, and trilinear upsampling 

instead of de-convolution was used in decoder, fewer memory resources are required 

to train this network. As shown in the figure above, the input patch size is 

192×192×192. 

4.1.3 Combined neural networks 

Combined neural networks can take advantage of multiple neural networks to 

improve the accuracy. According to Geirhos et al. [55], common CNN architectures 

are biased towards recognizing image textures, not object shape representations. In 

medical image analysis, however, expert manual segmentation usually relies on 

boundary and organ shape identification. Hatamizadeh et al. [56] proposed a type of 

boundary aware CNN for medical image segmentation. It increased the dice 

coefficient about 0.05 on BraTS 2018, which provides multimodal 3D brain MRIs and 

ground truth brain tumor segmentations annotated by physicians [57]. ET-Net [58] 

used the similar method as [56] and achieved better results compared with other 

neural networks such as U-net on the datasets they used. So it is possible that this 

architecture can bring benefits for this task as well. 

A type of combined neural network which is consisted of a segmentation network and 

an edge detection network has been built in this work. 3D U-net variants described in 

Chapter 4.1.1 are used as the segmentation network. For the edge detection network, 

CASENet [59] is used as a reference. 
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4.1.3.1 Edge detection networks 

The architecture of CASENet [59] is shown in the figure below [59] where it can be 

seen that the left part is similar as the encoder in 3D U-net. So, the right part can be 

integrated into the 3D U-net variants easily. 

 

 

Figure 4-10. CASENet 

The left part of CASENet is actually a stack of residual blocks. In the right part, there 

are four basic components including side classification, side feature extraction, shared 

concatenation, and fused classification as shown in Figure 4-11 [59].  

Side classification used 1×1 convolution to reduce the number of feature maps to K 

(K is the number of classes in the dataset), and then upsample the feature maps to the 

original size. Side feature extraction is similar with side classification but to reduce 

the number of feature maps to one instead of K. Shared concatenation concatenated 

the feature maps output by two side feature extractions with the K feature maps output 

by side classification in the order shown in c) (where K=3) to get 3K feature maps. In 

Figure 4-10, there are three side feature extractions, so the number of feature maps is 

4K after shared concatenation. In the end, fused classification uses 1×1 convolution to 

reduce the number of feature maps to K.  
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a) Side classification                   b) Side feature extraction 

 

                   c) Shared concatenation                        d) Fused classification 

Figure 4-11. Components of CASENet 

4.1.3.2 Network 

To combine the edge detection network with the segmentation network, 3D U-net 

variants described in Chapter 4.1.1 are used as the basic network, and the components 

of CASENet described above are added to construct the combined neural network, 

whose architecture is shown in Figure 4-12. It is similar with CASENet except the 

basic network part where 3D U-net variants were used. 3D U-net is the segmentation 

neural network. The encoder part of it is connected with the components of edge 

detection. They comprise the edge detection network, whose output should be the 

edge image as shown in the figure. 

Significantly, the number of labels of edge detection neural network is 2 rather than 

13 (there are actually 13 labels in the dataset). The reason is that the purpose is to 

improve the segmentation results rather than edge detection results.  Only two labels 

are needed, edges and non-edges.  
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Figure 4-12. Combined neural network 

4.2 Loss functions 

As we discussed at the beginning of Chapter 4, there are two directions to improve the 

accuracy when the task involves multiple extremely imbalanced classes: employing 

innovative neural networks, and using appropriate loss functions. In terms of loss 

functions, one of the simplest methods is to use weighted loss functions. 

4.2.1 For 3D U-net variants and DeepLab variants 

Small object segmentation is always a challenge in semantic segmentation. As we 

discussed in Chapter 3.2.2.4, dice loss was developed based on dice coefficient in 

order to address the problem that the learning process getting trapped in local 

minimum when the predictions are strongly biased towards background. The dice 

coefficient between two binary volumes is calculated according 

D(A,B)=
2 × (|A ∩ B|)+ smooth

|A| + |B| + smooth
 

(4.5) 

The difference between this equation and equation 3.4 is that it adds smooth (> 0) to 

both numerator and denominator. The purpose is to avoid the denominator becomes 0 

when |A| + |B|=0. 
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In this task, there are several extremely imbalanced classes (which will be discussed 

in Chapter 5.1). To balance different frequencies of multiple classes in the dataset, 

weighted dice loss was used. It is calculated according  

Loss=1 −
1

n
× ∑ (w

i
×

n

i=1

2× ∑ tijpij
m
j=1 +smooth

∑ (tij+p
ij
)m

j=1 +smooth
) 

(4.6) 

where n is the number of classes, wi is the weight of class i, m is the number of voxels 

of class i, tij is the j-th voxel of class i using one-hot encoding in the truth, p
ij
 is the 

corresponding voxel in the prediction.  

When weighted dice loss has been chosen, how to set the weights becomes another 

problem. Two methods have been tried to set the weights. The first one is to set them 

according the frequencies of classes in the dataset: 

wi=
max ([f0, f

1
,…,f9])

fi

 
(4.7) 

where f
i
 is the frequency of i-th class, wi is the weight of i-th class. So the weight of 

the class which has the largest frequency is one. The second method is to set them 

according the final dice coefficients of these classes when the network with 

unweighted dice loss is converged. 

For 3D U-net variants, because the final dice coefficients of the classes when the 

network using unweighted dice loss is converged are close to their frequencies in the 

dataset, the first method is used to set the weights. For DeepLab variants, both of 

these two methods have been tried. 

Some weighted loss functions such as generalized dice loss function as discussed in 

Chapter 3.2.2.5, which introduced a method to calculate the weights automatically, 

but it makes the optimization unstable in the extremely unbalanced segmentation [60]. 

4.2.2 For combined network 

For the combined network described in Chapter 4.1.3.2, a combined loss function is 

needed as well. The gradients of segmentation ground truth are calculated to generate 

the ground truth of edges as shown in Figure 4-13. For the segmentation, the loss 
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function is described by equation 4.6. For the edge detection network the loss function 

is calculated according this equation as well, but there are only two classes, edges and 

non-edges. The total loss function used for training the whole neural network is  

 Loss=Seg_loss+w*Edge_loss (4.8) 

where w is used for increasing the weight of edge detection loss, Seg_loss is the loss 

for segmentation. 

4.3 Metrics 

The mean of total dice coefficient and the dice coefficient of each class on validation 

dataset is used as the metrics during training. However, if the dice coefficient of each 

class is calculated by equation (4.5), there is a problem which may cause confusion. 

When the batch contains very few voxels of a class, which is possible for small organs 

and small batch size, its dice coefficient could become relatively big even if the 

overlap between the prediction and the truth is small. The worst case is the batch 

doesn’t contain the class; the dice coefficient will become one. So equation (4.5) was 

modified to  

D(A,B)=
2 × (|A ∩ B|)

|A| + |B| + smooth
 

(4.9) 

It reflects the actual overlap even in worst situation. But equation (4.6) is still used to 

calculate the loss function. It performs better in training because it has smoother 

gradients compared with (4.9). 

To compare the predicted segmentation and the ground truth for each class, the 

percentage of class y predicted as class x is calculated according 

P(x ,y) = 
n(x, y)

ny
 

(4.10) 

where n(x, y) is the number of voxels predicted as class x but annotated as class y in the 

ground truth, n𝑦 is the number of voxels annotated as class y in the ground truth. It is 

actually the recall rate for class x when x = y. Significantly, it is actually not 

confusion matrix, it will be named performance matrix in this thesis. The data in the 
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diagonal line is the recall rate for each class. They should be 1 if all voxels are 

segmented correctly. The data in the diagonal line would be precision if replace the 

denominator of equation (4.10) as the number of voxels predicted as class y.  

Some of tables in the next chapter will show the performance of various neural 

networks, which will be evaluated on dice coefficients without adding smooth to 

neither numerator nor denominator including the total one and the one for each class.   
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5. Experiments and results 

In this chapter, we will discuss the two datasets used to train the neural networks first. 

Preprocessing is a very important step to deal with the data before feeding them into a 

neural network, so it will be introduced too. Then the details of the experiments will 

be introduced. After presenting the results of the experiments, we will discuss the 

performance of the neural networks and the reason behind it.  
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5.1 Datasets 

The experiments are based on two datasets, which are available in different stages of 

the thesis. Both of them are provided by Sunnmøre MR-Klinikk. The first dataset 

contains 15 annotated knee MRI images whose size is 400×400×275. Each knee 

image has 10 labels in ground truth. The second dataset contains 20 knee MRI images 

whose size is 400×400×400. Each knee image has 13 labels in ground truth. For both 

datasets, there are three weighted volumes, T1, PD and FS, provided for each knee. 

5.1.1 Dataset1 (with 10 labels) 

There are 10 classes on dataset1. Table 5-1 shows these classes, and their 

abbreviations and values, which will be useful when analyzing the segmentation 

results. As declared in Chapter 1.2, the details of these organs in medical domain 

won’t be discussed unless it is helpful for the segmentation task. 

Table 5-1. The abbreviations and values of classes (organs) on dataset1 

Classes Abbreviations value 

Background BG 0 

Bone BO 1 

Posterior cruciate ligament PCL 2 

Anterior cruciate ligament ACL 3 

Muscle MU 4 

Cortical bone CB 5 

Blood vessel (popliteal artery/vein ++) BV 6 

Adipose tissue (fat) AD 7 

Tendons TE 8 

Menisci ME 9 

 

Figure 5-1 is an example of segmentation on dataset1, which shows the locations of 

these 9 classes (excluding background). The image is 3D, so it may be impossible to 
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show all of them in one 2D image. Here they are shown in two images, which are in 

the different depths of the 3D image. 

 

Figure 5-1. An example of segmentation on dataset1 

 

Figure 5-2. The frequency of voxels for each class on dataset1 
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The frequencies of voxels of these classes are extraordinary different, which can be 

seen in Figure 5-1. Figure 5-2 shows the details of the frequencies, where we can see 

that background accounts for 41.63%. The largest label is AD (adipose tissue) 

accounting for 27.54% while the smallest one is ACL (Anterior cruciate ligament) 

accounting for 0.05%. 

5.1.2 Dataset2 (with 13 labels) 

For the second dataset, there are three more classes in the ground truth including 

artery, collateral ligament and veins. The figure below is an example of segmentation 

on dataset2. The second image is the intersecting surface of the first image. The 

abbreviations and values of these 13 classes can be also found in Figure 5-3. 

 

Figure 5-3. An example of segmentation on dataset2 

The frequencies of voxels of these classes on dataset2 are even more imbalanced 

compared with those on dataset1, which can be seen in Figure 5-4. The background 

accounts for 60.43%. The largest percentage of label and the smallest percentage of 
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label are same as on dataset1. The largest label is AD (adipose tissue) accounting for 

19.17% while the smallest one is ACL (Anterior cruciate ligament) only accounting 

for 0.03%. 

 

Figure 5-4. The frequency of voxels for each class on dataset2  

5.2 Training and Results 

The experiments on dataset2 are based on the results of experiments on dataset1. So 

experiments on dataset1 will be introduced first. For the experiments on dataset1, 

Keras based on Tensorflow was used as the deep learning framework because it is 

friendly to new users. For the experiments on dataset2, Pytorch was chosen instead 

because it has been becoming more popular, and lower level programming (Keras is a 

high-level API) is more flexible for customization. In terms of hardware, all the 

neural works are trained on GPU GeForce RTX 2080 Ti, whose memory is 11 GB 

GDDR6. 

The codes of the neural networks are relatively simple because the deep learning 

frameworks, Keras or Pytorch, provide functions and interfaces which enable users to 

implement them easily. The implementation details of data preprocessing will be 

introduced since it is different for diverse types of input data, which have various 

formats or sizes etc. 
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5.2.1 Experiments on dataset1  

The first dataset used in the experiments contains 15 annotated knee MRI images with 

10 labels. 12 images were used for training and 3 of them were used for validation. 

The networks described in Chapter 4.1.1 (3D U-net variants) were trained on this 

dataset first. The mean of total dice coefficient and the dice coefficient of each class 

on validation dataset is used as the metrics during training. 

5.2.1.1 Preprocessing 

Before starting the training, we need to preprocess the images in order to turn them 

into the appropriate format, which can be fed into the neural network. Augmentation 

is also another important stage in preprocessing. However, more data means a longer 

training time, and the benefit is not that obvious in the experiments. So data 

augmentation has not been implemented in the experiments. 

Cutting image into patches 

As we discussed above, 3D medical images are very large, which need large memory 

size for training them. An image even can’t be trained by using only one GPU if the 

neural network is complicated. In this case, they should be cut into patches, so they 

can be trained in the unit of patch.  

For dataset1, the original image’s size is 400×400×275. They were resampled to 

274×274×274 in order to decrease the training time. Because the limitation of GPU 

memory, they were divided into 64×64×64 patches to feed the neural networks as 

shown in Figure 5-5.  

 

Figure 5-5. Patch-wise training due to the limitation of GPU memory 
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The 274×274×274 images were cut into 64×64×64 patches. If the remaining part is 

smaller than patch size, the voxels on the edge will be used for padding. Every time a 

batch of patches instead of images were fed into the network. The final segmentations 

were predicted in patches. Then the predicted patches were integrated into an image. 

Data format  

HDF5 (Hierarchical Data Format) is used to store the data of input images. HDF5 is a 

file format which is designed to store and organize huge amounts of numerical data. A 

HDF5 file contains comprehensive information of data, which allows the application 

program to interpret the structure and content without any external information. It 

allows users to combine relevant data objects together, put them into a hierarchical 

structure, and add descriptions and labels to these data objects. Many data types can 

be embedded in a HDF5 file. It is a platform-independent file format, which can be 

used on different platforms without any conversion. 

The input MRI knee images’ format is nifti having the extension .nii. Nibabel, which 

is a python package developed for medical images processing, has been used to read 

the data of .nii file to .h5 file (HDF5 file). PyTables is a package for managing 

hierarchical datasets and designed to efficiently and easily cope with extremely large 

amounts of data. It is built on top of the HDF5 library, using Python and the NumPy 

package. It was used to process .h5 file in the experiments on dataset1. Related 

pseudo- codes are shown below. 

# load the image using nibabel  
images = nib.load(nii_file_path) 

# other kinds of preprocessing 

 

images = resample(images) 

 
# get data from the corresponding image 
data = images.get_fdata()… 

truth = images.get_fdata()… 

affine = images.get_fdata()… 

# return a hdf5 file handle using PyTables 
hdf5_file = tables. open_file(h5_file_name, mode='w') 

 
# copy the data into hdf5 file 
data_storage = hdf5_file.create_earray(hdf5_file.root, 'data', …) 

truth_storage = hdf5_file.create_earray(hdf5_file.root, 'truth', …) 
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affine_storage = hdf5_file.create_earray(hdf5_file.root, 'affine', …) 

data_storage.append(np.asarray(data)) 

truth_storage.append(np.asarray(truth)) 

affine_storage.append(np.asarray(affine)) 

… 

hdf5_file .close() 

 

5.2.1.2 Training of 3D U-net and its variants 

For dataset1, all networks were trained using Nadam optimizer. The batch sizes used 

in the implementation were adjusted according the networks. For training the 

networks with dice loss, the learning rate was set to 0.001 initially. For training the 

networks with weighted dice loss, the initial learning rate was set to 0.01. The 

learning rates were set to be reduced by a factor of 0.5 after 5 epochs if the validation 

loss is not decreasing.  

Preliminary models 

3D U-net and V-net (U-net with residual blocks) with dice loss were tested firstly. 

The batch size was set to 4. The results show the large organs bone (BO), muscle 

(MU) and adipose tissue (AD) were segmented but the small ones such as posterior 

cruciate ligament (PCL) are missing, which can be seen in Figure 5-6.  

              

                                  (a)Ground truth                                  (b) V-net with dice loss     

Figure 5-6. Segmentation results of V-net with dice loss 

This result is caused by the extremely imbalanced classes. As shown in Figure 5-1, 

except background, the percentages of BO, MU and AD in the images are much 
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bigger than others. If the networks segment them correctly, the total dice coefficient 

has already been at least 0.94 (see Table 5-4). So it is reasonable for them to almost 

ignore the small organs. 

The performance matrix is shown in Figure 5-7. The X-axis is the values of predicted 

classes, and the Y-axis is the values of ground truth classes. So the column whose X-

value is 0, for example, shows the percentages of the classes are predicted as class 0 

respectively. We can see almost all small organs are predicted as background (0), 

bone (1), muscle (4), and adipose tissue (7). 

 

Figure 5-7. Performance matrix for V-net 

To address this problem, weighted dice loss was adopted. V-net (U-net with residual 

blocks) with weighted dice loss and the same batch size was tested. The dice 

coefficients of small organs are improved but for the large ones they are decreased, 

especially for bones. Its dice coefficient drops dramatically to 0.06 (See Table 5-4). 

              

(a) Ground truth                        (b) V-net with Weighted dice loss    

Figure 5-8. Segmentation results of V-net with Weighted dice loss  
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Model with residual SE blocks 

To improve the accuracy, residual SE blocks were used instead. Same batch size and 

learning rate as V-net were set. From Table 5-4, we can see that the results of small 

organs are improved compared with that using only residual blocks, which is same as 

our expectation. However, the accuracy of BO is still low.  

              

(a) Ground truth                        (b) U-net with residual SE blocks 

Figure 5-9. Segmentation results of U-net with residual SE 

From Figure 5-10, we can see most of bones (1) are annotated as adipose tissue (7) 

incorrectly. Most small organs are around bones, so one explanation is that the 

network sacrificed its accuracy to improve the accuracies of small organs because 

they have bigger weights. And some small organs especially blood vessels (6) are 

annotated as muscles (4) incorrectly because they are close. 

 

Figure 5-10. Performance matrix for V-net with residual SE blocks 
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Models with Dense, Dense SE blocks 

Then models with dense and dense SE blocks were tested. To choose a better neural 

network for the dataset, three structures were tested. The hyperparameters of dense 

blocks in these three networks are shown in Table 5-2. The structure with relatively 

smaller growth rates enables us to use a bigger batch size. For dense network 1, 2, and 

3 in Table 3, batch size was set to 4, 6, and 8 respectively. 

Table 5-2. The hyperparameters of dense blocks 

Dense Network1 

Size of feature maps Number of layers Growth rate 

32x32x32 2 24 

16x16x16 3 48 

8x8x8 3 96 

4x4x4 3 192 

Dense Network2 

Size of feature maps Number of layers Growth rate 

32x32x32 2 12 

16x16x16 3 24 

8x8x8 3 48 

4x4x4 3 96 

Dense Network3 

Size of feature maps Number of layers Growth rate 

32x32x32 2 6 

16x16x16 3 12 

8x8x8 3 24 

4x4x4 3 48 

 

For these three structures, dense blocks and dense with SE blocks were tested using 

identical training procedures. The results are shown in Table 5-3. For large organs, 

their performances are quite close. The dice coefficients of bones are still low. But for 

small organs, the networks with smaller growth rates and a bigger batch size perform 

best for both dense blocks and dense SE blocks.  
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Table 5-3. Performances of 3 dense structures with SE and without SE 

class Network1 Network2 Network3 

Dense Dense SE Dense Dense SE Dense Dense SE 

BG 0.99 0.98 0.99 0.99 0.99 0.99 

BO 0.003 0.005 0.016 0.008 0.06 0.01 

PCL 0.79 0.27 0.65 0.76 0.76 0.81 

ACL 0.56 0.08 0.62 0.49 0.72 0.72 

MU 0.90 0.89 0.89 0.89 0.90 0.90 

CB 0.47 0.39 0.36 0.45 0.56 0.51 

BV 0.66 0.52 0.65 0.68 0.79 0.71 

AD 0.84 0.83 0.84 0.84 0.84 0.83 

TE 0.63 0.51 0.68 0.64 0.69 0.71 

ME 0.81 0.74 0.81 0.79 0.81 0.83 

Total 0.98 0.98 0.98 0.98 0.98 0.98 

 

SE blocks’ advantage is not that obvious compared with when it was used in residual 

blocks. The reason may be that dense blocks use 1×1×1 convolutions, which has 

already reduced the number of channels, and then limits SE blocks’ advantage. Based 

on these results, the structure with smallest growth rate was chosen as the finial 

structure for both 3D U-net with dense blocks and 3D U-net with dense SE blocks to 

compare with 3D U-net with other components. 

Final result 

The Table below shows the performances of U-net and its variants. We can see that 

3D U-net with residual SE blocks, dense blocks and dense SE blocks using weighted 

dice loss perform well on small organs segmentation. They obtained highest dice 

coefficients on different small organs but all lost accuracies on large organs especially 

on bones. V-net using dice loss achieved higher accuracies on large organs 

segmentation.  
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Table 5-4. Performances of U-net and its variants 

Class Dice Loss Weighted Dice Loss 

U-net V-net  V-net 
Residual 

SE  
Dense  

Dense 

SE  

Merged 

results 

BG 0.94 0.99 0.98 0.98 0.99 0.99 0.99 

BO 0.95 0.95 0.06 0.14 0.06 0.01 0.97 

PCL 0 0 0.63 0.77 0.76 0.81 0.81 

ACL 0 0.01 0.4 0.65 0.72 0.72 0.7 

MU 0.95 0.93 0.88 0.9 0.9 0.9 0.94 

CB 0 0 0.41 0.67 0.56 0.51 0.51 

BV 0 0 0.5 0.69 0.79 0.71 0.71 

AD 0.92 0.96 0.82 0.85 0.84 0.83 0.96 

TE 0 0.16 0.58 0.73 0.69 0.71 0.72 

ME 0 0.01 0.78 0.79 0.81 0.83 0.83 

Total 0.94 0.98 0.98 0.98 0.98 0.98 0.99 

 

To make all organs have relatively high accuracies, the large organs (BO, MU, AD) 

segmented by V-net using dice loss and the small organs (PCL, ACL, CB, BV, TE, 

ME) segmented by U-net with dense SE blocks were eventually merged as the final 

result. The process is shown in Figure 5-11. As we discussed in Chapter 4.1.2, in 

Deeplabv3 [38], it discussed four architectures to capture multi-scale context. The 

method used in Figure 5-11 is actually similar with the first method described in 

DeepLabv3. The performance matrix of final result is shown in Figure 5-12. The 

values on the diagonal line show it achieves relatively high accuracies on all organs. 
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Figure 5-11. The process to get the final result 
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Figure 5-12. Performance matrix for the final result 

5.2.2 Experiments on dataset2  

There are 20 annotated knee MRI images whose size is 400×400×400 in dataset2. 19 

images were used for training and one of them was used for validation. There are also 

three more labels in the dataset, so it is difficult to achieve same accuracy compared 

with the experiments on dataset1. The three architectures including 3D U-net variants, 

DeepLab variants and combined neural networks described in Chapter 4.1 were 

trained on this dataset. Different from experiments on dataset1, Pytorch was used as 

the deep learning framework in the experiments on dataset2. 

For experiments on dataset1, the mean of total dice coefficient and the dice coefficient 

of each class is used as the metrics during training. For experiments on dataset2, total 

dice coefficient is deleted, and the mean of dice coefficient of each class is used as the 

metrics during training. It is also the evaluation score which will be shown in some of 

the figures in this chapter. Total dice coefficient will still be shown in the table of 

performance of neural networks. 

5.2.2.1 Preprocessing 

Downsampling 

Because it takes a long time to finish the training on images whose size is 

400×400×400. The images were resampled to a smaller size which is 256×256×256 in 

order to reduce the training time, and then to reduce the time spent on debugging. The 
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hyperparameters and neural networks were chosen based on experiments on the 

downsampling images and the finial segmentation results were got on 400×400×400 

images. The table below shows the times of finishing one epoch of training using V-

net on these two resolutions, where we can see that the time on the downsampling 

dataset was reduced by more than half. 

Table 5-5. Training time on different resolutions 

Resolution Number of iteration Time (hours) 

400×400×400 1216 7 

256×256×256 513 3 

Cutting image into patches 

Same as experiments on dataset1, these images are needed to be cut into patches. For 

most of neural networks, different patch size which is 128×128×128 was used on this 

dataset because the implementation in Pytorch saves memory in some extents, which 

enable us to use larger patch size. For DeepLab variants, different patch size that is 

larger was tried since the components used in the neural network have fewer 

parameters relatively. 

 

Figure 5-13. The method of cutting patches 

Unlike the method of cutting patches in experiment1, stride was used to determine the 

interval between two patches. So there will be an overlapping between patches if the 



78 

 

stride is smaller than the patch size as shown in Figure 5-13. If the remaining part is 

not enough for a patch, the boundary of the patch will be moved into the image, which 

is shown as the patch at the top right corner. 

Data format  

HDF5 files were still used to store the data of input images. But another python 

package h5py instead of PyTables was used here. H5py is a python package which 

provides interface to the HDF5 data format. The related pseudo-codes are shown 

below. It is easy to see that this implementation is simpler than using PyTables. 

# load the image using nibabel  
images = nib.load(nii_file_path) 

# other kinds of preprocessing 

 

images = resample(images) 

 
# get data from the corresponding image 
data = image.get_fdata()… 

truth = image.get_fdata()… 

affine = image.get_fdata()… 

# return a hdf5 file handle using H5py 
h5f = h5py.File(os.path.join(hdf5_path, folder+".h5"), 'w')  

# copy the data into hdf5 file 

 

data = image.get_fdata() 

h5f['raw'] = data 

h5f['label'] = truth 

… 

hdf5_file .close() 

Generate ground truth of edges 

Besides the preprocessing operations for dataset1, the edge ground truth for the 

combined neural network described in Chapter 4.1.3 was needed to be generated. It 

was used to calculate edge loss function. Numpy.gradient was used to calculate the 

gradients of voxels in the ground truth of segmentation to generate the edge ground 

truth, which is shown in Figure 5-14. 

 



79 

 

        

Figure 5-14. Generating edge ground truth     

5.2.2.2 Training with downsampling images 

For dataset2, all networks were trained using Adam optimizer. The initial learning 

rate was set to 0.01 for training with dice loss and was set to 0.001 for training with 

weighted dice loss, which is same as that on dataset1. The learning rates were set to 

be reduced by a factor of 0.5 after 2 epochs if the validation loss is not decreasing. For 

different neural networks, the numbers of epochs of training are different. The 

training was stopped when the loss on the validation dataset has not decreased for at 

least three epochs. 

Larger Patch size vs. larger batch size 

For dataset2, Pytorch was used as the deep learning framework. It enables us using a 

larger patch size compared with in Keras. To choose between a larger patch size with 

a smaller batch size and a smaller patch size with a larger batch size, 3D U-net with 

dense blocks in two situations were trained: with patch size 128×128×128 and batch 

size 1, and with patch size 64×64×64 and batch size 12. The convergence lines of 

these two trainings are shown in Figure 5-15, which we can see that the one with 

larger patch size and smaller batch size achieved higher score in less iteration. So, 

larger patch size has been chosen in the experiments. 
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Figure 5-15. Larger Patch size vs. larger batch size 

3D U-net variants 

Same as the experiments on dataset1, V-net with dice loss and the four 3D U-net 

variants with weighted dice loss were tested. And the weight of each class was set 

according the frequency of the class in the dataset, the first method of setting weights 

described in Chapter 4.2.1. Instead of using patch size 64×64×64, the patch size was 

set to 128×128×128 and batch size was set to 1. Table 5-6 shows the results of all 

networks trained on the downsampling dataset.  

From it, we can see that V-net with dice loss still performs poorly in small organs 

segmentation although more small organs are segmented compared with the same 

network on dataset1. With weighted dice loss, the accuracies of small organs 

segmentation are improved. But the accuracy of the class whose frequency is lowest, 

which is ACL, is still extremely low (the highest one is less than 0.1). Other classes 

have low accuracies are also those whose frequencies are small such as CL, ME and 

AR. In general, networks with SE blocks performed better on small organs 

segmentation compared with that without SE blocks, which is similar with what was 

observed in the experiments on dataset1. So, only networks with SE blocks were 

chosen to be trained on original images whose size is 400×400×400. 
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Table 5-6. The restults of 3D U-net variants on downsampling dataset 

class 
Dice loss Weighted dice loss 

V-net V-net Residual SE Dense Dense SE 

BG 0.987 0.992 0.989 0.990 0.990 

BO 0.917 0.831 0.938 0.932 0.948 

PCL 0.002 0.153 0.347 0.338 0.228 

ACL 0 0.083 0.096 0.084 0.041 

MU 0.927 0.944 0.956 0.928 0.939 

CB 0.567 0.500 0.457 0.495 0.515 

BV 0.556 0.622 0.603 0.555 0.648 

AR 0.057 0.198 0.270 0.152 0.194 

CL 0.041 0.470 0.248 0.237 0.370 

TE 0.726 0.701 0.723 0.641 0.726 

ME 0.191 0.133 0.126 0.139 0.107 

AD 0.919 0.876 0.919 0.904 0.925 

VE 0 0.396 0.491 0.305 0.528 

Total 0.979 0.987 0.983 0.984 0.985 

 

Another notable result is the bones are segmented more completely than in the same 

network on dataset1, which can be seen in Figure 5-16. Although there are still some 

mistakes, but the improvement is considerably compared with that in Figure 5-9.  

     
a) Ground truth                         b) Residual SE                     c) Dense SE 

Figure 5-16. the segmentation restults on downsampling dataset 

One explanation is that here a larger patch size which enables the networks to see 

more parts of the images was used. And the bones are inevitably cut into several parts 

since they are large and their positions are in the middle when patch-wise training is 
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used. It is difficult for the neural network to distinguish its pattern because of bones’ 

special structure if they are scattered into different batches. When larger patch size is 

used, more parts of bones are in the same patch. So it can be segmented more 

correctly. 

Combined network 

For the combined neural network described in Chapter 4.1.3, patch size 128×128×128 

was used. The initial learning rate was set to 0.01 and would be reduced by a factor of 

0.5 if the evaluation score on validation dataset isn’t improved in 2 epochs. The 

combined neural networks using 3D U-net with residual SE blocks as the 

segmentation network is named ResidualXUnet. The one using 3D U-net with dense 

SE blocks as the segmentation network is named DenseXUnet. The results of these 

two neural networks are shown in the table below, where we can see that the 

accuracies haven’t been improved too much, even decreased, compared with the 

corresponding neural network without edge detection network.  

Table 5-7. Training results of two combined network 

class Residual SE ResidualXUnet Dense SE DenseXUnet 

BG 0.989 0.991 0.990 0.991 

BO 0.938 0.899 0.948 0.957 

PCL 0.347 0.230 0.228 0.219 

ACL 0.096 0.081 0.041 0.106 

MU 0.956 0.942 0.939 0.937 

CB 0.457 0.518 0.515 0.500 

BV 0.603 0.636 0.648 0.657 

AR 0.270 0.207 0.194 0.215 

CL 0.248 0.414 0.370 0.307 

TE 0.723 0.716 0.726 0.695 

ME 0.126 0.148 0.107 0.135 

AD 0.919 0.903 0.925 0.914 

VE 0.491 0.539 0.528 0.503 

Total 0.983 0.985 0.985 0.986 
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The reason can be found from Figure 5-17, which is the convergence line of the 

combined neural network using Residual SE blocks. Although the weight of dice loss 

and the weight of edge loss are set to 1 and 1000 respectively, we can still see that the 

optimization of dice loss was dominant during the training. The possible main reason 

is the limitation of the capacity of the edge detection network. However, if more 

attention has been paid on edge detection network, the efficiency of segmentation 

network may be affected since the computing resource is limited. 

 

Figure 5-17. Convergence line of the combined neural network 

Traning time: DeepLab variants vs. other networks 

The patch size used for training DeepLab variants is 192×192×192, which is larger 

than other networks in the experiments. The DeepLab variants using the encoder of 

3D U-net with dense SE blocks was tested first. The initial learning rate was set to 

0.01, and would be reduced by a factor of 0.5 if the evaluation score on validation 

dataset wasn’t improved in 3 epochs.  

When training DeepLab variant on downsampling dataset, it achieved a relatively 

high accuracy in few epochs as shown in the figure below, where we can see that the 

evaluation score of DeepLab variant achieved 0.63 (the green line) far more quickly 

than 3D U-net with dense SE blocks, which has a similar encoder part with DeepLab 

variant here (similar but different, the details can be found in Chapter 4.1.2). 
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Figure 5-18. Convergence curve of DeepLab no downsampling dataset 

In addition, the training speed of DeepLab variant was very fast. The table below 

shows the training time of an epoch of DeepLab variant (the encoder part used dense 

SE blocks), 3D U-net with dense SE blocks, 3D U-net with residual SE blocks and the 

corresponding combined neural networks (DenseXUnet and ResidualXUnet).  

Table 5-8. Training time of an epoch on downsampling dataset 

Network Number of iteration Time (hours) 

DeepLab variant 152 0.14 

3D U-net with Dense SE 513 0.5 

DenseXUnet 513 0.5 

3D U-net with Residual SE 513 3 

ResidualXUnet 513 3.5 

 

The most important reason is that DeepLab variant used larger patch size. One 

explanation that dense SE block was faster than residual SE is that residual block uses 

add to fuse features, but dense block uses concatenation, which is light computing 

burden compared with adding operation. Because the training speed is fast, most of 

experiments about DeepLab variant were conducted on the original dataset directly. 

5.2.2.3 Training with original images 
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On this part, we will discuss more about the performance of DeepLab variants and 

how to improve it on the original images whose size is 400×400×400. Its performance 

will also be compared with other networks introduced in Chapter 4.1. 

DeepLab variants 

Most of experiments about DeepLab variants have been directly conducted on the 

original dataset. Two variants were trained including the one whose basic network 

uses Residual SE blocks (ResidualDeeplab) and the one whose basic network uses 

Dense SE blocks (DenseDeeplab). Both of them were trained with dice loss and 

weighted dice loss.  

Table 5-9. Performance of DeepLab variants 

class 

Dice loss Weighted dice loss 

weight1 weight2 

Dense 

Deeplab 

Residual 

Deeplab 

Dense 

Deeplab 

Residual 

Deeplab 

Dense 

Deeplab 

Residual 

Deeplab 

BG 0.986 0.983 0.984 0.984 0.977 0.984 

BO 0.958 0.936 0.926 0.894 0.809 0.797 

PCL 0.752 0.522 0.752 0.807 0.703 0.800 

ACL 0.462 0.504 0.249 0.375 0.345 0.457 

MU 0.969 0.976 0.959 0.964 0.926 0.950 

CB 0.825 0.861 0.756 0.800 0.639 0.701 

BV 0.813 0.781 0.748 0.759 0.553 0.627 

AR 0.622 0.671 0.622 0.610 0.534 0.422 

CL 0.681 0.589 0.596 0.684 0.449 0.536 

TE 0.685 0.745 0.751 0.750 0.519 0.609 

ME 0.844 0.819 0.797 0.806 0.706 0.794 

AD 0.927 0.910 0.894 0.879 0.798 0.799 

VE 0.290 0.265 0.359 0.443 0.227 0.344 

Total 0.987 0.983 0.984 0.984 0.977 0.984 
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For the training with weighted dice loss, two methods described on Chapter 4.2.1 

were used to set the weights. The results are shown in Table 5-9. Weight1 means 

using the final dice coefficients when the corresponding network with unweighted 

dice loss is converged. Weight2 means setting them according their frequencies. The 

initial learning rate was set to 0.001 for the training with dice loss and weighted dice 

loss using weight1, and 0.01 for the training with weighted dice loss using weight2 

because it has relatively big weight for each class. 

The segmentation accuracy of small organs is quite acceptable when used dice loss 

(See Figure 5-20 d) and f)), which is different from the performance of 3D U-net 

variants. DenseDeeplab with dice loss had higher accuracy on small organs such as 

PCL, BV and CL than ResidualDeeplab with dice loss. It achieved almost same, even 

higher accuracy compared with these networks with weighted dice loss. The figure 

below is the performance matrix of DenseDeepLab with dice loss, where we can see it 

achieved relatively high accuracies on all organs. ACL (3) has the smallest frequency 

among these classes, so the segmentation accuracy is low. However it is still higher 

than VE, a large part of which were predicted as AD. VE is not the smallest organ in 

the dataset, but it is the most difficult one to be segmented. 

 

Figure 5-19. Performance matrix for the DenseDeeplab with dice loss 

In terms of weighted dice loss, ResidualDeeplab in general performed better than 

DenseDeeplab, but not too much. The results also show that it is better to set the 

weight according the dice coefficient when the corresponding network with non-

weighted dice loss converges (see Table 5-9). For 3D U-net variants, because the dice 

coefficients of the classes when the corresponding network using unweighted dice 
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loss is converged are almost same as their frequencies in the dataset, this situation 

cannot be observed. The increase of weights of small organs may cause the 

improvement of their accuracies, but it may also damage the performance on large 

organs. And the bottleneck of small organ segmentation is normally the neural 

network rather than the loss function.  

From Figure 5-20 e), some of bones (BOs) were segmented incorrectly. From the 

experiments on downsampling dataset, we can learn that a larger patch size may 

increase the segmentation accuracy of bones. However, a larger patch size can’t be 

used since the computing resource is limited.  

Table 5-10. Performance of ResidualDeeplab with more data 

class 
Residual 

Deeplab 

ResidualDeeplab 

(with more data) 

BG 0.984 0.981 

BO 0.797 0.807 

PCL 0.800 0.805 

ACL 0.457 0.523 

MU 0.950 0.955 

CB 0.701 0.624 

BV 0.627 0.627 

AR 0.422 0.680 

CL 0.536 0.586 

TE 0.609 0.591 

ME 0.794 0.652 

AD 0.799 0.799 

VE 0.344 0.347 

Total 0.984 0.982 

 

In order to allow the neural network to have a larger view, the downsampling images 

whose size was 256×256×256 was added into the training dataset. It was hoped that 

the neural network could have a larger receptive field and then improve the 

segmentation accuracy of bones if it can learn from the downsampling images. For 

each downsampling image, there are 8 patches, while for each original image, there 
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are 27 patches. To balance the frequency of downsampling images and original 

images, it was made that the neural network learned the original image once when it 

learned the downsampling image three times. The segmentation results of 

ResidualDeeplab with more data is shown in Table 5-10, where we can see that the 

accuracy of bones was not improved too much, but the accuracies of other organs are 

improved especially for AR. However, the accuracies of some organs are decreased 

such as ME. So, it is not an efficient way to address the problem and also it took a 

longer time to train more data. 

Other networks 

Table 5-11. Performance of networks on original dataset2 

class 
Dice loss Weighted dice loss 

V-net ResidualDeeplab ResidualSE ResidualDeeplab 

BG 0.980 0.983 0.984 0.984 

BO 0.866 0.936 0.694 0.894 

PCL 0 0.522 0.664 0.807 

ACL 0 0.504 0.505 0.375 

MU 0.964 0.976 0.932 0.964 

CB 0.740 0.861 0.761 0.800 

BV 0.777 0.781 0.714 0.759 

AR 0 0.671 0.638 0.610 

CL 0.014 0.589 0.751 0.684 

TE 0.642 0.745 0.712 0.750 

ME 0.501 0.819 0.909 0.806 

AD 0.854 0.910 0.807 0.879 

VE 0.010 0.265 0.426 0.443 

Total 0.981 0.983 0.985 0.984 

 

 

Based on the results of experiments on the downsampling dataset, only 3D U-net with 

residual SE blocks and 3D U-net with dense SE blocks were chosen to train on 

original dataset for 3D U-net variants. To compare with the preliminary model, V-net 

(3D U-net variants with Residual blocks) with dice loss was also trained. The 
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segmentation results of V-net and 3D U-net with residual SE blocks can be seen in 

Figure 5-20 b) and c).  

Table 5-11 shows the performance of 3D U-net with Residual blocks (V-Net) using 

dice loss, 3D U-net with Residual SE blocks (ResidualSE) using weighted dice loss. 

The accuracies of small organs are improved compared with those on the 

downsampling dataset but the accuracies of large organs, especially bones, are 

decreased. The main reason is that the neural networks actually have a smaller view 

of the images although the patch sizes used are same. The patch-wise training actually 

decreases the receptive field of the images at the beginning. For the downsampling 

dataset, the view was reduced to (
128

256
)
3

=0.125. However, the view was reduced to 

(
128

400
)
3

≈0.033. So, the improvement couldn’t be kept on the original images.  

3D U-net with dense SE blocks performed worse than 3D U-net with residual SE 

blocks even though the patch size was increased to 144×144×144 to try to improve 

the accuracy. The result is shown neither in Table 5-11 nor in Figure 5-20. The 

possible reason is that dense SE blocks use fewer filters, so the representation 

capacity of the neural network may be limited when the resolution of the images is 

high.  

Table 5-11 also shows the performance of ResidualDeeplab. We can see 

ResidualDeeplab in general performed better with both loss functions including dice 

loss and weighted dice loss even ResidualSE achieved higher accuracy on some small 

organs such as ACL and AR.  

For the combined neural networks, their performances on the downsampling dataset 

are not same as expected. They were also trained on the original images. For the one 

whose segmentation neural network is Dense SE, the training time was acceptable, 

but the results are not good. For the one whose segmentation neural network is 

Residual SE, the training speed was too slow and the coverage rate also showed that it 

was not valuable to continue the training. So, more trials about them have been 

stopped.  
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                      a)Ground truth                                    b)Vnet with dice loss 

        

    c)Residual SE with weighted dice loss      d)ResidualDeeplab with dice loss 

              

   e)ResidualDeeplab with weighted dice loss    f)DenseDeeplab with dice loss 

Figure 5-20. Segmentation results of networks on dataset2 
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6. Discussions 

In last chapter, we discussed lots of details about the performance of the three 

architectures described in Chapter 4, and the reasons why they performed in that way. 

In this chapter, conclusions will be made for the experiments and discussion in 

Chapter 5. In the sub-chapter Contribution, these conclusions will be expanded to a 

general condition. There are plenty of researches which are valuable to do in the 

domain of medical image segmentation. The future work described in the end is based 

on the work in this thesis, so it will not go too far. 
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6.1 Conclusions 

Deep convolutional neural networks (CNN) have been used in automated medical 

image segmentation in recent years. It has decreased time and labor force involved. 
This work attempted to use annotated knee MRI images provided by Sunnmøre MR-

Klinikk to train three types of neural networks including 3D U-net variants, DeepLab 

variants and combined neural networks in order to choose a system which achieves 

high accuracy on the segmentation task which has 13 extremely imbalanced classes.  

For 3D U-net variants, three advanced components including residual blocks, 

squeeze-and-excitation (SE) blocks, and dense blocks were used to construct four 

variants of 3D U-net. The two variants of SE structure were used as the basic network 

for the other two architectures. For DeepLab variants, the number of filters used in the 

encoder (the basic network) was reduced by a half because Atrous Spatial Pyramid 

Pooling (ASPP) was used at the bottom of the encoder, and a small upsampling factor 

was used and one more deconvolution layers were added in the decoder for high 

accuracy requirement of medical image segmentation. CASENet was used as the 

reference of edge detection neural network, whose components were integrated into 

3D U-net variants (the basic network) to form a type of combined neural network, 

which is the third architecture. 

There are two datasets used in the experiments. The first dataset contains 10 labels in 

the ground truth. 3D U-net and its four variants with residual blocks, residual SE 

blocks, dense blocks and dense SE blocks were tested respectively on it. To reduce 

the training time, the size of these images was resampled from 400×400×275 to 

274×274×274.  

The experiments show the preliminary models including 3D U-net and V-net (3D U-

net with residual blocks) couldn’t segment the small organs correctly. However, with 

weighted dice loss, this situation has been changed. SE and dense structures have 

better performance on small organs segmentation. By using weighted dice loss, 3D U-

net with residual SE blocks, dense blocks and dense SE blocks obtained highest dice 

coefficients on different small organs. V-net using dice loss achieved higher 

accuracies on large organs. The large organs segmented by V-net and the small organs 
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segmented by U-net with dense SE blocks were merged as the final result, which 

achieved relatively high accuracies on all organs.  

The second dataset contains 13 labels and is more imbalanced in terms of the 

frequency of voxels of each class. The experiments are based on the results of the 

experiments on the first dataset. For the first dataset, only 3D U-net variants were 

tested on it. While all three types of neural networks were tested on the second dataset. 

Same as the experiments on the first dataset, these images were resampled from 

400×400×400  to 256×256×256 . The three types of neural networks were initially 

tested on the downsampling dataset in order to reduce the training time and debugging 

time. Based on the results, neural networks which have better performance were 

chosen to be trained on the original dataset.  

The performance of 3D U-net variants on downsampling dataset is similar with those 

on the first dataset. However, when they were tested on the original dataset, the 

performance of dense structure was decreased. The possible reason is that the 

representation capacity of dense structure with fewer filters cannot meet the 

requirement of high resolution images.  

Because the training speed and the convergence rate are fast for DeepLab variants on 

the downsampling dataset, the most of experiments about it were trained on the 

original images directly. It achieved relatively high accuracies on both small organs 

and large organs even with dice loss, which is quite different from 3D U-net variants 

that couldn’t segment small organs correctly with dice loss. For the two methods of 

setting weights when weighted dice loss is used, the neural network performed better 

with weights set by the finial dice coefficients of the classes when the network with 

unweighted dice loss converged. The performance of combined network is not good 

as expectation because the capacity of edge detection network is limited. 

6.2 Contributions 

Various neural networks based on three architectures have been developed in this 

thesis including 3D U-net, which is a symmetrical encoder-decoder architecture, 

DeepLab, which is an asymmetrical encoder-decoder architecture with ASPP, and a 
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type of combined neural network, which takes advantages of different neural 

networks to attempt to improve the accuracy.  

For 3D U-net architecture, four advanced blocks were used to replace the standard 

convolution blocks in 3D U-net including residual blocks, residual SE blocks, dense 

blocks and dense SE blocks The experiments show SE blocks can increase the 

accuracy of small organs through modeling the correlations between channels and 

adaptively strengthening important features, and dense blocks can obtain good results 

with relatively fewer filters, which may enable us to try a relatively larger batch size 

or patch size when the GPU memory is limited. The 3D U-net variants were used as 

the backbone network for the other two architectures in this thesis. 

DeepLab architecture is the most efficient one among the three architectures. It can 

achieve a relatively high accuracy at high speed although 3D U-net may achieve 

higher accuracy on some of small organs. The main reason why it performs best is 

that it uses techniques such as ASPP, which enables the neural network to obtain a 

large receptive field and capture multi-scale context with fewer parameters. 

The performance of combined network is not good as expectation because the 

capacity of edge detection network is limited, and it needs to be improved. However, 

the performance of segmentation network may be affected if more attention is paid on 

edge detection network because the computing resource is limited. 

To design or choose a neural network for multi-label medical image segmentation, a 

large receptive field is needed. It enables the neural network to learn more features in 

the high level, and then to classify the organs correctly. In order to get a larger 

receptive field, downsampling operations such as convolution with stride, pooling are 

used, which cause resolution loss. Although fully convolutional neural network and 

other techniques used in DeepLab solve this problem in some extent, the contradiction 

between receptive field and resolution still exists especially when the computing 

resource is limited. When patch-wise training is chosen, the receptive field is reduced 

at the beginning. From the experiments in this thesis, the best strategy is to use an 

efficient neural network which can obtain a large receptive field and capture multi-

scale context with fewer parameters. Because it uses less computing resource, a larger 

patch size can be tried, which means it increases the receptive field at the beginning 
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compared with the networks which use a smaller patch size. However, the resolution 

loss is still a problem. In this thesis, the segmentation accuracy of small organs is still 

needed to be improved. 

6.3 Future work 

The three architectures used in this thesis are three of the most commonly used 

architectures in medical image segmentation. Even the best one which is DeepLab 

still performed not well enough in small organ segmentation especially on VE. So 

more advanced components or neural network should be tried to improve the accuracy. 

For the combined neural network, because fewer efforts were put into the edge 

detection neural network search, it is possible that the performance of this architecture 

can be improved if a more advanced edge detection neural network is used. 

The neural networks in this thesis were only tested on knee. They may have different 

performance on other datasets or organs. They should be tested on other public 

datasets to confirm the performance. Different datasets have different features, which 

enable us to learn more about the neural networks. 

In this thesis, most of time has been spent to search the best combination of the layer 

and the appropriate hyperparameters. However, this job can also be done by using 

neural networks. V-NAS [61] formulated the structure learning as differentiable 

neural architecture search, and let the network itself choose between 2D, 3D or 

Pseudo-3D (P3D) convolutions at each layer. It can be tried next step. 
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