

Li Lu

Multi-label Medical Image Segmentation using

Convolutional Neural Networks

Master’s thesis in Simulation and Visualization

Supervisor: Kjell-Inge Gjesdal, Robin Trulssen Byeand

June 2020

Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering

Department of ICT and Natural Science

Abstract

Deep learning algorithms, in particular convolutional neural networks, are becoming a

promising research tool in medical image segmentation. This thesis attempted to use

annotated knee MRI images provided by Sunnmøre MR-Klinikk to study three

architectures of convolutional neural networks including 3D U-net, DeepLab and a

type of combined neural network and decide a system that achieves high accuracy

with regard to a segmentation task which has 13 extremely imbalanced classes. For

3D U-net architecture, four advanced blocks including residual blocks, residual SE

blocks, dense blocks and dense SE blocks were used to replace the standard

convolution blocks in it. Because the two SE structures performed better than the

other two in 3D U-net in the experiments, 3D U-net with residual SE blocks and 3D

U-net with dense SE blocks were chosen as the basic networks for the other two

architectures. The experiments show that DeepLab architecture is the most efficient

one among the three architectures. It can achieve relatively high accuracies with both

loss functions used in this thesis including dice loss and weighted dice loss.

Preface

The technology of Artificial Intelligence (AI) has been widely applied in various

industries and achieved great success in recent decades. AI also promises to bring

innovation to the field of medicine. With the development of increased computing

power and deep learning algorithms, convolutional neural networks have the potential

to become a popular technique for medical image analyses. Doctors have been

overwhelmed with the increased amount of diagnostic data: MRI, CT, X-ray, etc.

Convolutional neural networks may be able to effectively process these images and

then reduce the labor force involved. This work aims to study several convolutional

neural networks used for medical image segmentation in order to choose the

architecture which can achieve higher segmentation accuracy on a specific dataset.

The sampling of human (knee) data was approved by the Regional Committee for

Medical and Health Research Ethics (REK nr. 61225).

This thesis is the final work for the master degree in the Simulation and Visualization

program at the Norwegian University of Science and Technology (NTNU),

Department of ICT and Natural Sciences. I have written this thesis in an order that I

progressively learnt and understood the algorithms of convolutional neural networks,

and then developed the neural networks based on the knowledge. I think this order is

clear for me to explain the work in this thesis, which might be a little different from

other theses. For example, I keep the chapter Introduction short and describe lots of

neural networks in the chapter Related work, which some researchers may prefer to

put it in the chapter Introduction.

As an international student in NTNU, I met lots of problems during the period of my

study life. I would like to thank all the people who helped me when I was confused,

sad, and helpless. Their kindness encourages me to be myself no matter what

difficulties may come my way.

Contents

1. Introduction ... 1

1.1 Background & motivation .. 2

1.2 Scope .. 3

1.3 Objectives ... 4

2. Theory ... 5

2.2 Deep learning ... 6

2.2.1 Neural networks .. 6

2.2.2 Convolutional neural networks ... 8

2.2.2.1 Convolution layer ... 8

2.2.2.2 Pooling layer ... 10

2.2.2.3 Fully-connected layer ... 11

2.2.2.4 2D convolutional neural networks .. 11

2.2.2.5 3D convolutional neural networks .. 13

2.2.3 Improving neural networks ... 14

2.2.3.1 Optimization algorithms ... 14

Mini-batch gradient descent ... 14

Gradient descent with Momentum ... 15

RMSProp .. 16

Adam .. 17

2.2.3.2 Hyperparameter tuning ... 17

Learning rate .. 18

Batch-size ... 18

Epochs .. 19

Activation function ... 19

2.2.3.3 Regularization ... 20

Data augmentation ... 20

L1 and L2 regularization .. 21

Dropout .. 22

Early stopping .. 22

2.2.3.4 Normalization ... 23

2.3 MRI image ... 24

3. Related work ... 26

3.1 Computer vison .. 27

3.1.1 Image classification ... 27

3.1.2 Object detection ... 29

3.1.3 Object tracking .. 31

3.1.4 Semantic segmentation .. 32

3.1.5 Instance segmentation ... 33

3.2 Semantic segmentation... 33

3.2.1 Neural networks .. 34

3.2.1.1 FCN .. 34

3.2.1.2 SegNet .. 36

3.2.1.3 DeepLab ... 37

3.2.1.4 Unet .. 38

3.2.1.5 Other networks ... 39

3.2.2 Loss functions ... 39

3.2.2.1 Cross-entropy ... 39

3.2.2.2 Weighted cross-entropy .. 40

3.2.2.3 Focal loss .. 40

3.2.2.4 Dice loss ... 40

3.2.2.5 Generalized Dice loss ... 41

3.2.2.6 IOU loss .. 41

3.2.2.7 Combined loss .. 42

4. Method .. 43

4.1 Neural Networks .. 44

4.1.1 3D U-net variants .. 45

4.1.1.1 Residual Block .. 46

4.1.1.2 Residual SE Block .. 46

4.1.1.3 Dense Block .. 48

4.1.1.4 Dense SE Block .. 49

4.1.2 DeepLab variants ... 49

4.1.2.1 Atrous convolution ... 50

4.1.2.2 Depthwise separable convolution ... 51

4.1.2.3 ASPP ... 52

4.1.2.4 Network .. 54

4.1.3 Combined neural networks.. 55

4.1.3.1 Edge detection networks ... 56

4.1.3.2 Network .. 57

4.2 Loss functions .. 58

4.2.1 For 3D U-net variants and DeepLab variants .. 58

4.2.2 For combined network .. 59

4.3 Metrics ... 60

5. Experiments and results .. 62

5.1 Datasets .. 63

5.1.1 Dataset1 (with 10 labels) ... 63

5.1.2 Dataset2 (with 13 labels) ... 65

5.2 Training and Results .. 66

5.2.1 Experiments on dataset1 .. 67

5.2.1.1 Preprocessing .. 67

Cutting image into patches ... 67

Data format ... 68

5.2.1.2 Training of 3D U-net and its variants ... 69

Preliminary models .. 69

Model with residual SE blocks .. 71

Models with Dense, Dense SE blocks .. 72

Final result .. 73

5.2.2 Experiments on dataset2 .. 76

5.2.2.1 Preprocessing .. 76

Downsampling ... 76

Cutting image into patches ... 77

Data format ... 78

Generate ground truth of edges .. 78

5.2.2.2 Training with downsampling images ... 79

Larger Patch size vs. larger batch size ... 79

3D U-net variants ... 80

Combined network ... 82

Traning time: DeepLab variants vs. other networks 83

5.2.2.3 Training with original images .. 84

DeepLab variants ... 85

Other networks ... 88

6. Discussions ... 91

6.1 Conclusions .. 92

6.2 Contributions .. 93

6.3 Future work .. 95

List of Figures

Figure 2-1. AI, machine learning, and deep learning ... 6

Figure 2-2. Neural network ... 7

Figure 2-3. The calculation of 2D CNN ... 9

Figure 2-4. Padding ... 9

Figure 2-5. Max pooling ... 11

Figure 2-6. An example of 2D CNN .. 12

Figure 2-7. Multi-channels 2D CNN .. 12

Figure 2-8. 3D convolution ... 13

Figure 2-9. Exponentially Weighted averages .. 15

Figure 2-10. Gradient descent with momentum ... 16

Figure 2-11. Large batch size vs. small batch size ... 19

Figure 2-12. Sigmoid and tanh .. 20

Figure 2-13. Using conditional GANs for data augmentation 21

Figure 2-14. Dropout .. 22

Figure 2-15. T1, PD and FS MRI images ... 25

Figure 3-1. An example of image classification ... 27

Figure 3-2. An example of object detection .. 30

Figure 3-3. The implementation stages of R-CNN ... 30

Figure 3-4. Object tracking ... 32

Figure 3-5. An example of Semantic segmentation. ... 33

Figure 3-6. Instance segmentation and semantic segmentation 33

Figure 3-7. Fully Convolutional Network .. 34

Figure 3-8. Deconvolution .. 35

Figure 3-9. Fusing information from layers with different strides 35

Figure 3-10. Results of refining FCN ... 36

Figure 3-11. SegNet .. 36

Figure 3-12. DeepLabV3Plus ... 37

Figure 3-13. U-net ... 38

Figure 4-1. The network uses 3D U-net as the backbone ... 45

Figure 4-2. Residual SE block .. 47

Figure 4-3. Dense SE block .. 48

Figure 4-4. The architecture of encoder-decoder with atrous convolution 50

Figure 4-5. Atrous convolution ... 51

Figure 4-6. Depthwise separable convolution .. 51

Figure 4-7. ASPP (Atrous Spatial Pyramid Pooling) .. 53

Figure 4-8. Atrous separable convolution ... 53

Figure 4-9. The architecture of DeepLab variants .. 54

Figure 4-10. CASENet .. 56

Figure 4-11. Components of CASENet .. 57

Figure 4-12. Combined neural network .. 58

Figure 5-1. An example of segmentation on dataset1 ... 64

Figure 5-2. The frequency of voxels for each class on dataset1 64

Figure 5-3. An example of segmentation on dataset2 ... 65

Figure 5-4. The frequency of voxels for each class on dataset2 66

Figure 5-5. Patch-wise training due to the limitation of GPU memory 67

Figure 5-6. Segmentation results of V-net with dice loss ... 69

Figure 5-7. Performance matrix for V-net .. 70

Figure 5-8. Segmentation results of V-net with Weighted dice loss 70

Figure 5-9. Segmentation results of U-net with residual SE 71

Figure 5-10. Performance matrix for V-net with residual SE blocks 71

Figure 5-11. The process to get the final result .. 75

Figure 5-12. Performance matrix for the final result .. 76

Figure 5-13. The method of cutting patches ... 77

Figure 5-14. Generating edge ground truth ... 79

Figure 5-15. Larger Patch size vs. larger batch size ... 80

Figure 5-16. the segmentation restults on downsampling dataset 81

Figure 5-17. Convergence line of the combined neural network 83

Figure 5-18. Convergence curve of DeepLab no downsampling dataset 84

Figure 5-19. Performance matrix for the DenseDeeplab with dice loss 86

Figure 5-20. Segmentation results of networks on dataset2 90

List of Tables

Table 3-1. A rough development history of neural networks 28

Table 4-1. The numbers of convolution blocks in grey blocks 46

Table 5-1. The abbreviations and values of classes (organs) on dataset1 63

Table 5-2. The hyperparameters of dense blocks ... 72

Table 5-3. Performances of 3 dense structures with SE and without SE 73

Table 5-4. Performances of U-net and its variants ... 74

Table 5-5. Training time on different resolutions ... 77

Table 5-6. The restults of 3D U-net variants on downsampling dataset 81

Table 5-7. Training results of two combined network .. 82

Table 5-8. Training time of an epoch on downsampling dataset 84

Table 5-9. Performance of DeepLab variants ... 85

Table 5-10. Performance of ResidualDeeplab with more data 87

Table 5-11. Performance of networks on original dataset2 .. 88

1

1. Introduction

In the recent decade the development of computational power has made deep learning

algorithms used for analyzing medical images possible. Segmentation is a common

task in medical image analysis. For the task of knee MRI image segmentation in this

thesis, three types of architectures have been developed including 3D U-net variants,

DeepLab variants, and a type of neural network which combines the 3D U-net

variants with an edge detection neural network. This chapter will introduce the

background and motivation for this thesis, and also declare the scope and objectives

of our work.

2

1.1 Background & motivation

Accurate segmentation of organs is essential to support clinical workflows in multiple

domains, including diagnostic interventions, treatment planning etc. However, manual

segmentation of anatomical structures is labor-intensive and therefore expensive,

which motivates automated segmentation researches [1].

According to Geert et al. [2], artificial intelligence technologies have been applied in

automated medical image analysis since 1970s. Initially, researchers used low-level

pixel processing techniques such as edge and line detector filters and mathematical

modelling to build rule-based systems which have been described as GOFAI (good

old-fashioned artificial intelligence). These systems developed based on many if-then-

else statements for particular tasks are often brittle. Supervised techniques were

introduced to construct a system at the end of the 1990s. Building a computer model

and then training it by using related datasets is the crucial idea to develop such a

system. Models based on deep learning algorithms can extract features from the

images efficiently, and therefore have been widely used in computer vision.

Among various types of neural networks built for medical image analysis, the most

successful type is convolutional neural networks (CNNs). The advances in

computational power in recent decades made it possible to train complicated neural

networks such as deep convolutional neural networks (DCNNs) with large datasets,

which has high potential in medical image segmentation. Such a system can increase

the segmentation accuracy, and also decrease the time and labor force involved.

Knee joint is one of the most important joints of the human body, and is frequently

injured in sports and accidents. The Magnetic resonance imaging (MRI) is a widely

used technique to image patients’ knee. Automated knee segmentation can assist

orthopedists in examination and treatment of various kinds of knee lesions.

3

1.2 Scope

The scope of this thesis is to study how to apply technologies of deep learning,

especially convolutional neural networks (CNN), for medical image segmentation.

Details about knee joints or MRI technique in medical domain will not be discussed

unless it is necessary for explaining the deep learning techniques used in this thesis.

Neural networks in deep learning will be introduced first, and then we will discuss the

most commonly used components and techniques in convolutional neural networks.

How to choose the best neural network and how to improve the neural network are

two of significant research domains in deep learning. These techniques will be

introduced next in Chapter 2.

Computer vision is the hottest research area in deep learning. Besides semantic

segmentation, which is the domain of this thesis, several other common tasks in

computer vision will be also introduced in Chapter 3 including image classification,

object detection, object tracking, and instance segmentation. The techniques used in

these tasks can inspire innovative ideas in semantic segmentation. Then we will focus

on the related work in semantic segmentation. Neural networks and loss functions are

the two of most crucial parts which decide the performance of the deep learning

system, so more details in these two areas will be introduced.

In Chapter 4, the methods of building the three architectures including 3D U-net,

DeepLab and combined neural network will be introduced. Firstly, we will discuss

how to build the four variants of 3D U-net using residual blocks, residual squeeze-

and-excitation (SE) blocks, dense blocks and dense SE blocks respectively. Neural

networks developed based on DeepLabv3plus will be introduced next. To improve the

segmentation accuracy, we will also discuss a type of combined neural networks

which combine an edge detection neural network with the segmentation neural

network. The details of these three architectures will be explained in this chapter.

In Chapter 5, we will discuss the details of the experiments including the datasets

used to train the neural networks described in Chapter 4, some implementation details

of the deep learning system and the performances of these neural networks. Plenty of

experiments have been designed to compare the performance of the neural networks

4

in this chapter. The reason behind the performance will be discussed based on the

results as well.

The last chapter will summarize the experiments and discussions of the neural

networks used in this thesis, and also try to generalize the conclusion from the

experiments. In the end, we will discuss the future work based on the work finished in

this thesis.

1.3 Objectives

Small organ segmentation is always a challenge for medical image segmentation. To

address this problem, various types of neural networks and loss functions have been

proposed in recent years. However, for different datasets, their performances are

different. The purpose is to find the best segmentation neural network and the

appropriate loss function on the specific dataset used in this thesis.

Another big challenge for this thesis is that there are multiple classes on our datasets.

Their frequencies are extremely imbalanced, which will be introduced in chapter 5.1.

The neural network needs to achieve high performance on all classes including both

smaller and larger tissues. If unweighted loss function is used, it is possible that the

neural networks intend to ignore the segmentation of small organs. However, if more

attentions are paid on small targets, the neural networks may be apt to sacrifice the

accuracy of large organs to increase the accuracy of small ones. The problem is how

to find a method or a neural network which can balance the performance on both

small and large organs. We will also discuss this problem in this thesis.

5

2. Theory

In this chapter, we will initially discuss the definitions and scopes of artificial

intelligence, machine learning and deep learning. Deep learning is the emphasis of

this thesis, and neural networks are the crucial part to understand deep learning

algorithms. Subsequently, neural networks will be introduced next. Convolutional

neural network (CNN) is the most successful neural network used in computer vision,

which is the hottest research area in deep learning, and also the area of this thesis.

Ultimately, we will discuss more about details regarding CNN that will be helpful for

explanation of segmentation neural networks.

There are plenty of researches relating to improvement of neural networks. It is one of

the crucial parts to improve the training efficiency of CNN. So, more details in this

area will be introduced as well. The basic concepts of MRI images used on this thesis

will be introduced last.

6

2.2 Deep learning

In the past decades, artificial intelligence, machine learning and deep learning have

been applied in a wide range of industries and achieved great success. Countless

articles and researches are about them, but how can we define them clearly and what

is the difference between them?

Figure 2-1 shows the relations of artificial intelligence, machine learning and deep

learning. Artificial intelligence (AI) means any technique that enables computers to

mimic human intelligence. Machine learning is a subset of AI including algorithms

which enable machines to improve their performances on some specific tasks with

experiences. Deep learning is a subset of machine learning and excels at recognizing

patterns. The algorithms of deep learning typically require a large number of data to

train neural networks. Sometimes we use the terminology deep learning to indicate

the process of training neural networks.

Figure 2-1. AI, machine learning, and deep learning

2.2.1 Neural networks

As we discussed above, the basic idea of deep learning is using large datasets to train

neural networks. Neural Network can be understood as a computational model that

works in a similar way to the neurons in human brains. They are designed to

recognize patterns in the datasets which are used to train them.

7

Figure 2-2. Neural network

Figure 2-2 [3] shows a shallow neural network which has two hidden layers. Each

hidden layer has four neurons, which is the basic computational unit of neural

network. The calculating process of each neuron is shown at the top right corner of

the figure. The output is calculated according

 y=f(∑ wixi+bn
i=1) (2.1)

where xi is the input data from previous layer, wi is the weight which is learnable

during training, b is the bias which is also learnable, f is activation function. The

example shown at the top right corner has three inputs because the last layer of hidden

layer 1, which is the input layer, has three neurons. For hidden layer 2, it has four

inputs for each neuro. Bias can be deleted if normalization is chosen.

The calculations before activation function are linear. The representation capacity of a

neural network will be limited if we only use linear calculation in it. So activation

function is adopted to introduce non-linear features in order to increase its

representation capacity, which enables the neural network to implement more

complicated functions and then recognize the more intricate patterns behind the

dataset.

In order to increase the representation capacity of neural networks we can increase the

depth (use more hidden layers) or width (use more neuros in each layer) of the neural

networks. However, it will bring a handful of problems. For example, larger memory

8

will be needed to train the neural networks. Actually lots of researches have been

working on improving the representation capacity of neural networks without

bringing problems at least without bringing more problems.

If we want to build a neural network from scratch, there are lots of elements we need

to consider about such as the number of layers, the number of neuros for each layer

and the activation function. However, there are dozens of existing neural networks

which have various architectures and advantages we can choose or use as references.

There are few researchers choosing to build a neural network from scratch now. They

prefer to use the existing neural networks as the backbone network and then adjust

them or add more advanced components according the feature of datasets they use.

2.2.2 Convolutional neural networks

The most popular research areas in deep learning are computer vision and natural

language processing. Computer vision has wider applications in the fields of

astronomy, medicine, transportation and navigation, and military industry. The most

successful neural network in computer vision is convolutional neural networks (CNN),

which use combinations of convolutions, pooling, and other techniques to extract

features from images to recognize patterns behind the training data.

2.2.2.1 Convolution layer

Most studies in computer vision are dealing with two dimensional images.

Understanding the computational process of 2D convolutions is extremely important

for understanding the architectures of CNN and how it works. The convolutional

calculation on 2D image is shown Figure 2-3.

In this example, the size of input image is 6×6, and the size of convolutional kernel is

3x3. The kernel is slipped on the image in a method as the colorful square frames in

the input image show. Use the data in the kernel to multiply the corresponding data in

the slipping windows, and then use the summary of them as the result in the output

image. For example, for the first slipping window, the result -5 is calculated through

3×1+1×1+2×1+0×0+5×0+7×0+1×(-1)+8×(-1)+2×(-1)=-5.

9

Figure 2-3. The calculation of 2D CNN

After this calculation the image is changed from 6×6 to 4×4. Sometimes we don’t

want to change the size of input image, so padding can be used. As shown in figure

below, padding is adopted to enlarge the size of input image to 8×8, and then the size

of output image is still 6×6 after convolutional calculation.

Figure 2-4. Padding

There is another advantage of padding. The pixels at the corners and on the edges can

contribute more information to the output with padding compared with these without

padding. For example, the pixel at the right top corner is used only once in

convolutional calculation if we don’t use padding, but the pixel in the middle can be

used nine times at most. With padding this pixel will be used four times, which means

the output image contains more information about this pixel. So, researchers usually

choose to use padding when they build a convolutional neural network.

The most frequently used padding mode is same padding, which means the output

image will have the same size as the input image. In such situation, the number of

paddings added on each edge should be (f - 1)/2, where f is the size of convolutional

kernel.

10

When same padding is used, strides can be used to reduce the image’s size. Stride

means the step of slipping the kernel window on images. For example, if we set the

stride to be two, the output image will be reduced half in size when we use same

padding. Strides can also be used for downsampling to increase the receptive field of

an image. Another common operation called valid padding means there is no padding

when employing convolution.

If we employ padding and strides together in convolutions, the size of output images

will be changed from n×n to (
n + 2×p - f

s
+ 1) × (

n + 2×p - f

s
 + 1), where n is the input size

of images, p is the padding number, f is the size of convolutional kernel, s is the stride.

The convolutional kernel is also called filter in convolutions. The filter in the example

above is to detect the vertical edge in the image. Different filters can learn different

features from the image. What the filter should be is the key point to extract features

in convolution layer, and it is also what the convolutional neural network is designed

to learn. Multiple convolutional filters can be used in a convolution layer. It is

obvious that the number of filters used in the convolution decides how many feature

maps will be output in this layer. We often call the different filters used in a

convolution layer as channels. For example, 50 filters are adapted in a convolution

layer, and then the size of output of this layer should be 50×n×n (50 is the number of

filters, n×n is the size of an output feature map).

2.2.2.2 Pooling layer

Downsampling operations enable neural networks to get the features of higher levels,

which can help the neural networks learn more about the input images. In

convolutional neural networks, there are many techniques to implement

downsampling. Using stride in convolution that we discussed above is one of them.

Max pooling is another technique used for downsampling.

Figure 2-5 shows an example how to do max pooling. Same as convolution, a kernel

window is used to slip on the input image. In this example, its size is 3×3. Choose the

maximum one in the window as the result directly. The calculation involved in max

pooling is simpler than convolution, but the result contains less information, which

can be seen obviously in the example. However, it has fewer. There are other methods

11

to do pooling operation such as average pooling, which uses the average value of the

pixels in the slipping window as the result.

Figure 2-5. Max pooling

2.2.2.3 Fully-connected layer

For some computer vision tasks such as image classification, the output should be

vectors (one-dimensional tensors) rather than images (two- dimensional tensors). In

such situation, we can use fully-connected layer to flatten the output of convolution

layer or pooling layer to vectors. Connecting multiple fully-connected layers with

different numbers of neuros, which is same as neural network operations described in

Chapter 2.2.1, can be used to generate vectors in different lengths.

2.2.2.4 2D convolutional neural networks

Convolutional neural networks are combinations of these operations including

convolution layers, pooling layers, and fully-connected layer etc. Figure 2-6 [4] is an

example of CNN used for classifying handwritten digits. The size of input image is

28×28×1. The first layer is convolution layer, which uses n1 convolutional filters. For

each filter, the size is 5×5 with valid padding on the input image. The output of this

layer is 24×24×n1 (n1 is the number of channels). Then max-pooling layer is adopted

to reduce the size of images to 12×12×n1. Similar operations are employed in next

two layers of conv_2 convolution and max-pooling. There is a tricky problem with

regard to the filters used in the convolution layer. We will talk about it very soon. The

two fully-connected layers are used to get the final output which is a vector whose

length is 10 because there are 10 digits we need to classify. Dropout is used in the last

layer, which is a way of regularization. More details about it technique will be

introduced in the chapter that deals with improving neural network.

12

Figure 2-6. An example of 2D CNN

The convolutional neural network we discussed above is 2D convolutions used for

dealing with two dimensional images whose pixels are represented by grey values,

which means the input channel of the images is 1. However, some 2D images’ pixels

are represented by multiple values such as RGB images whose pixels are comprised

by three values, which means the input channel of the images is 3. To deal with such

an image, we use multi-channels 2D convolutions.

Figure 2-7. Multi-channels 2D CNN

Figure 2-7 shows the process how to do multi-channels convolution calculation. The

size of the filter we use in this operation should have the same number of channels as

the input image. In this example, the input channel is 3, so the filter’s channel is 3 as

well. We slip the filter on the input image in the same way as we deal with one

13

channel 2D image. The only difference is that we need to add 27 (9×3) addends for

the summary instead of 9 addends.

The tricky problem mentioned when explaining the neural network above is that the

filter’s channel number must be same as the channel number of input image. When

we put this rule in the middle of a neural network, it becomes the filter’s channel

number used in the convolution layer should be same as the number of filters used in

the last convolution layer. For example, the filters in conv_2 convolution layer should

be n1. It is the most important rule to understand how to use filters in different layers.

2D convolution is actually the operation on 3-dimension tensors, which is (channel,

height, width) or (height, width, channel). Adding the number of samples, the input

should be 4-dimension tensors.

2.2.2.5 3D convolutional neural networks

Some of images are 3 dimensions such as MRI or CT medical images, and videos. 3D

convolution is used to analyze these types of images. The figure below shows the

calculation of 3D convolution. Similar with 2D convolution, it can handle images

with multiple channels. In the example below the input image has 3 channels. The

filter used here also should have the same number of channels as the input images,

which is 3. 3D convolution is actually the operation on 4-demensional tensors, which

is (channel, height, width, depth) or (height, width, depth, channel). The convolutional

filter is also 4D, and will be slipped on three directions. Adding the number of

samples, the input should be 5-demensional tensors.

Figure 2-8. 3D convolution

14

3D convolutional neural networks are also similar as 2D convolutional neural

networks. They are the different combinations of convolutional layer, pooling layer

etc. But these layers are all in 3D. Because this thesis focuses on the analysis of MRI

3D knee images, the neural networks used are 3D CNN. More examples of 3D CNN

will be introduced in Chapter 4.

2.2.3 Improving neural networks

When we have a neural network and the datasets, we can start to train the neural

network. It is rare that the neural network and hyperparameters we used at the

beginning are the best. How to choose or adjust the neural network and how to tune

the hyperparameters are definitely very important problems, even the most important

one in some cases, to get a better result.

2.2.3.1 Optimization algorithms

As we discussed above, we need to choose the most accurate neural network for the

thesis, and also need to find the most suitable hyperparameters for the dataset. It

depends on experiences in some extents, but we still need to train various neural

networks and try different hyperparameters. It is substantially an iterative process.

Optimization algorithms can speed up the training and reduce the time spent on

iteration. Gradient descent is one of the most popular algorithms to optimize neural

networks.

Mini-batch gradient descent

In machine learning, there are three ways in terms of how much data should be used

to calculate gradients to update parameters in a neural network. The first one is batch

gradient descent which is to feed all the training data to the neural network to

calculate the loss and gradient, and then update parameters. For this method, the

computation cost is large, the speed is slow. The second one is stochastic gradient

descent (SGD). It uses a randomly selected subset of the data to update parameters.

The computation burden is reduced, and the iteration speed is faster. But the

convergence performance may be degraded; it may result in a sharp oscillation on the

15

convergence curve. To overcome the drawbacks of the two methods, mini-batch

gradient descent was proposed, which makes a compromise between the performance

and computation burden. It divides the dataset into several batches and updates the

parameters by each batch.

However, mini-batch gradient descent, does not guarantee good convergence, there

are still a few challenges that need to be addressed. Choosing a proper learning rate

can be difficult. In the algorithms we discussed above the same learning rate is

applied to update all parameters. If the features on the dataset have extremely

different frequencies, we might not want to update all of them in the same extent.

Instead we hope to perform a larger update for rarely occurring features [5].

Gradient descent with Momentum

Gradient descent with momentum is an algorithm used to address these problems. It

uses exponentially weighted averages (also known as exponential moving averages)

of gradients to update the parameters. Exponentially weighted averages are calculated

according

 vt=βvt-1+(1-β)θt (2.2)

where vt is the exponentially weighted average of the first t data in the dataset, vt-1 is

the exponentially weighted average of the first t-1 data in the dataset, β is the weight,

θt is the t-th data in the dataset.

Figure 2-9. Exponentially Weighted averages

Figure 2-9 [6] shows an example of exponentially weighted averages of the

temperature of a year in London. If we set β=0.9, the exponentially weighted averages

are shown on the red line; If we set β=0.98, the exponentially weighted averages are

16

shown on the green line; If we set β=0.5, the exponentially weighted averages are

shown on the yellow line. We can see that when β is larger, or close to 1, the line is

smoother because it contains more historical information. And when β is smaller, the

line is oscillating because less data is used to calculate the average and it will be more

influenced by individual data.

Gradient descent with momentum uses exponentially weighted averages of gradients

to update the parameters (equation 2.4) instead of using gradients directly (equation

2.3).

 w:=w-α*dw (2.3)

 w:=w-α*vdw (2.4)

In these equations, dw is the differential of w (weight). α is learning rate, and vdw is

the exponentially weighted averages of dw. If we set the weight β in equation 2.2

close to 1, the exponentially weighted averages of gradients will become smoother

according its historical records. It will accelerate gradient descent in the relevant

direction and dampen oscillations, which can be seen in the figure below [5]. In the

right graph of gradient descent with momentum, the oscillations on the vertical axis

are smaller than on the horizontal axis. So, for gradient descent with momentum there

are two hyperparameters, learning rate α and weight β to calculate exponentially

weighted average, which usually is set to 0.9.

 a)Gradient descent without momentum b)Gradient descent with momentum

Figure 2-10. Gradient descent with momentum

RMSProp

The algorithm of gradient descent with momentum enables users to apply different

learning rates to different features, but the learning rates are changed in the same

17

direction. However, in some cases we want to speed up the descent in a direction and

slow down the descent in another direction. Root mean square prop (RMSProp)

enables users to do so. RMSProp updates weights according

 w:=w-α
dw

√sdw
 (2.5)

where sdw:=βsdw+(1-β)*dw
2
.

Adam

Adaptive Moment Estimation (Adam) [7] is a method that computes adaptive learning

rates. The basic idea of it is to combine the algorithm of gradient descent with

momentum with RMSprop.

 vdw=β
1
vdw+(1-β

1
)*dw (2.6)

 sdw=β
2
sdw+(1-β

2
)*dw

2
 (2.7)

 vdw
corrected=

vdw

1-β1
t (2.8)

 sdw
corrected=

sdw

1-β2
t (2.9)

 w:=w-α
vdw

corrected

√sdw
corrected+ε

 (2.10)

The update process is shown by equation 2.6-2.10. vdw
corrected and sdw

corrected are bias

correction of vdw and sdw . So, there are four hyperparameters here. We usually set β
1

to 0.9, β
2
 to 0.999, and ε to 10

-8
. For learning rate α, it needs to be tuned for different

cases.

2.2.3.2 Hyperparameter tuning

Hyperparameters are the knobs to control a deep learning system. There are mainly

two types of hyperparameters in deep learning. One is to control neural network

structures and loss functions. The other one is to control training efficiency. The

hyperparameters we discussed in Chapter 2.1.1 and 2.1.2 such as number of hidden

18

layers and number of neuros for each layer influence the neural network structure and

its representation capacity. The hyperparameters we discussed in Chapter 2.1.3.1 such

as learning rate affect the training efficiency. We will discuss the most frequently

used hyperparameters and how to adjust them to improve the performance of neural

networks here.

Learning rate

Despite the advanced optimization algorithms which were introduced above, we still

need to set the learning rate for training. The learning rate controls the step of gradient

descent. If we choose a learning rate which is too small, it may result in a long

training process that could get stuck in local minimum. While if we choose a learning

rate which is too big, it may result in a sub-optimal result or an unstable training

process.

The learning rate should be larger at the beginning, and then be reduced in steps. It is

recommended to use a learning rate schedule rather than setting a fixed learning rate

when training a neural network. For example, there is a learning rate schedule called

ReduceLROnPlateau provided by Keras. It will reduce the learning rate when a

plateau in model performance is detected, e.g. no change for a given number of

training epochs.

Batch-size

As we discussed above, mini-batch gradient descent is the most popular way to

choose how much data should be used in gradient descent. In this way, we need to set

the batch size which determines how large a batch should be. Because the computing

resource, e.g. GPU memory, is limited, there is a maximum value of batch size for a

certain neural network and dataset. To maximize the utilization of memory, we should

use as large batch size as possible. However, according to Nitish et al. [8] neural

networks converge to sharp minimum with a large batch size, while converge to flat

minimum with small batch size as shown in Figure 2-11. The second one has better

generalization ability.

19

Figure 2-11. Large batch size vs. small batch size

Epochs

An epoch is defined as the time when all training data has been fed to the neural

network to update the trainable parameters. For batch gradient descent, an epoch takes

an iteration. For SGD and mini-batch gradient descent, an epoch takes a number of

iterations, which depends on the size of batch and dataset. It takes at least several

epochs to achieve the best result. So we should set the maximum number of epochs to

finish the training. Actually, there are other methods to finish the training. One of

them will be introduced in the next sub-chapter.

Activation function

As we discussed above, activation function can introduce non-linear features in the

neural network. Choosing the appropriate activation functions is also very important

to improve the performance of the neural network. The most popular types of

activation functions are ReLu (Rectified Linear Unit), Sigmoid, and Tanh.

The expression of ReLu is R(x)=max (0,x), which is very simple, so the computation

cost is low. It is introduced to avoid and rectify vanishing gradient problem which can

be caused by sigmoid and tanh. It is commonly used in the hidden layers. The output

range of ReLu is from 0 to infinity. For the tasks which have different output range,

such as classification problems whose output should be from 0 to 1, ReLu can’t be

used in the output layer. Leaky ReLu is another activation function proposed based on

20

ReLu in order to address the problem of dead neuros which may be caused by ReLu

because the gradient is always zero when x<0.

For image classification, sigmoid can be used in the output layer because its output

range is from 0 to 1. Its expression is S(x)=
1

1+e-x
 . It is used for binary classification.

Another similar activation function is Softmax, which can be used for multiple classes.

Tanh is expressed by T(x)=
1-e-2x

1+e-2x
 , and its output range is from -1 to 1. The curves of

sigmoid and tanh are shown on figure blew [9]. Compared with sigmoid, tanh is zero-

centered.

Figure 2-12. Sigmoid and tanh

2.2.3.3 Regularization

Regularization aims to improve the generalization ability of neural networks in order

to avoid overfitting, which always happens when the dataset used for training doesn’t

represent the distribution of the data in the real world. Several techniques which are

commonly used for regularization will be introduced.

Data augmentation

Data augmentation enlarges training datasets by adding transitions or perturbations to

the existing data to generate new data. In computer vision, the simplest techniques of

data augmentation are translation, flipping, clipping, scaling, rotation, and adding

Gaussian noise. However, the effect is limited because the new data are generated

21

based on the existing data, which means totally new features won’t be introduced

since it doesn’t exist in the original dataset.

There are also other methods of data augmentation. For example, conditional GANs

(generative adversarial networks) can transform an image from one domain to another

domain, but it is computationally intensive [10]. The graph below [11] shows how

conditional GANs change images.

Figure 2-13. Using conditional GANs for data augmentation

L1 and L2 regularization

L1 and L2 regularization adds penalties on weights in loss functions in order to reduce

the absolute sum of the parameters. The expressions are shown below.

 Loss=Error(y,ŷ) (2.11)

 Loss=Error(y,ŷ)+λ ∑ |wi|
N
i=1 (2.12)

 Loss=Error(y,ŷ)+λ ∑ wi
2N

i=1 (2.13)

L1 regularization has a sparse solution, which means there are many zeros in the

parameters, so it actually does feature selection. L2 regularization’s solution is non-

sparse. Researchers prefer L2 regularization in their projects.

22

Dropout

Dropout reduces interdependent learnings between the neurons. It was proposed by

Nitish et al [12]. In training phase, the algorithm ignores a random fraction of neuros

and corresponding activations for each hidden layer, and each training sample, in each

iteration, which can be seen in the example of Figure 2-14. In this way, it forces the

neural network to learn more robust features that are useful in many different random

subsets of neurons.

Figure 2-14. Dropout

According to Amar [13], Dropout roughly doubles the number of iterations required

to converge. However, training time for each epoch is less than without it.

Early stopping

A method when to stop the training we discussed above is setting the number of

epochs of training. It is extremely inefficient and unnecessary. The training can be

stopped whenever we want manually. But we need to stop it at the best time and stop

it automatically. Too little training will make the model underfitting, while too much

training may cause the model overfitting. Early stopping provides a method to stop

the training at the point when the performance on validation datasets starts to

degrade. The basic procedure to implement early stopping will be described below.

 Split the training data into training set and validation set;

 Train only on training set and evaluate on the validation set;

23

 Stop training as soon as the loss on the validation set is higher than last time

it was evaluated;

 Use parameters in the previous step as the result of the training.

However, the early stopping point on the validation set is not always the point that the

training begins to perform overfitting. When we choose to stop the training, the

optimization is stopped as well, but it is also possible that we have not found the

minimum point yet. We can choose other conditions to trigger the stopping such as

using the similar idea in ReduceLROnPlateau (a learning rate schedule we discussed

above).

2.2.3.4 Normalization

The best dataset for training in Deep Learning should be independent and identically

distributed. One of important reasons to make training a deep neural network so

difficult is that it involves the superposition of many layers. And the parameters

updating in each layer will lead to changes of distribution of input data in the last

connected layer in backpropagation. These changes will become larger with depth,

which needs the connected layers to constantly adapt to this change. In order to train

the model, we need to set the learning rate, initialize the weights, and update the

strategy as carefully as possible. This phenomenon was summarized as Internal

Covariate Shift (ICS).

Whitening is an important data preprocessing step before feeding data to the neural

network. It generally has two purposes. The first one is to remove correlation between

features in order to get independence. The other is to make all features have the same

mean and variance, which means to make sure the data in the same distribution.

Principal Components Analysis (PCA) is one of the most typical methods of

whitening.

To make the data in an independent distribution, theoretically we need to whiten the

data of each layer. However, computational cost of standard whitening operations

such as PCA is high. In addition, we also want whitening operations to be

differentiable to make sure that whitening operations can update gradients through

24

backpropagation. Batch Normalization (BN) [14] is one of the normalization methods

which are proposed as a simplified whitening operation to address the problem of ICS.

However, a recent study [15] shows such distributional stability of layer inputs has

little to do with the success of Batch Normalization. The real reason is that it makes

the optimization landscape significantly smoother. This smoothness induces a more

predictive and stable behavior of the gradients, which leads to faster training.

Whatever the real reason is, batch normalization is an efficient method to speed up the

training. Batch normalization is to apply normalization in a mini-batch of data during

training. The general procedure of such normalization has two steps. The first step is

to apply translation and scaling according

 xnorm
(i)

=
x(i)-μ

√σ2+ε
 (2.14)

where x(i) is the i-th input in the input tensor, μ is the mean, σ2 is the variance, ε is to

avoid the denominator to be zero. Then the inputs are in a standard normal

distribution with mean 0 and variance 1. In order to ensure that the representation

capacity of the neural network does not decline because of normalization, another

transformation is applied according

 x̃(i)=α*xnorm
(i)

+β (2.15)

where α and β are learnable parameters same as other learnable parameters such as

weights in the neural network.

There are other types of normalization such as layer normalization which is applied

data in a layer. It calculates the mean and variance of the input data of each layer, and

uses the same procedure as batch normalization.

2.3 MRI image

A medical image is the representation of the internal structure or function of an

anatomic region in the form of an array of picture elements called pixels or voxels. It

is a discrete representation resulting from a sampling or reconstruction process that

25

maps numerical values to positions of the space. Medical image file formats can be

divided in two categories. The first is formats intended to standardize the images

generated by diagnostic modalities, e.g., Dicom. The second is formats born with the

aim to facilitate and strengthen postprocessing analysis, e.g., Nifti, which is a file

format created at the beginning of 2000s by a committee based at the National

Institutes of Health with the intent to create a format for neuroimaging maintaining

the advantages of the analyze format, but solving the weaknesses [16].

The dataset used in this thesis is in the Nifti format. The main feature of this format is

that it contains affine coordinates which can associate the index (i, j, k) of each voxel

with its spatial position (x, y, z). The Python library which can read Nifti files is

nibble.

Nuclear magnetic resonance imaging is also called Magnetic Resonance Imaging

(MRI), which is an imaging technique that reconstructs images by collecting signals

generated by magnetic resonance phenomena.

A particular setting such as pulse sequences and pulsed field gradients will result in a

particular image appearance in MRI. The particular setting is called MRI sequence.

The MRI sequences used on our dataset are T1, PD and FS, which can be seen in the

Figure 2-15. The sampling of human (knee) data was approved by the Regional

Committee for Medical and Health Research Ethics (REK nr. 61225).

As mentioned in Chapter 1.2, we will not discuss more details about knee joints or

MRI technique in medical domain unless it is necessary for explaining the deep

learning techniques used. So, more details about T1, PD and FS will not be discussed.

 (a) T1 (b) PD (c) FS

Figure 2-15. T1, PD and FS MRI images

26

3. Related work

Semantic segmentation is one of the tasks in computer vision. To optimize the

segmentation neural networks, we can also learn from other tasks in computer vision

such as image classification and object detection. This chapter will introduce five

tasks including image classification, object detection, object tracking, semantic

segmentation, and instance segmentation in computer vison. We will discuss more

details about image classification because it is the base of other tasks. And then we

will focus on semantic segmentation which is the category of this thesis. We will

discuss the commonly used neural networks and loss functions in this area.

27

3.1 Computer vison

Computer Vision (CV) is the most popular research area in deep learning. It has

developed a series of techniques which enable computers to understand and analyze

the content of digital images such as photographs and videos. In Computer vision,

there are mainly five different tasks including image classification, object detection,

object tracking, semantic segmentation, and instance segmentation. The details of

these tasks will be introduced below.

3.1.1 Image classification

Image classification is aimed to classify an image into a specific category defined

by the task. It is the most well-known and simplest computer vision task. Other

computer vision tasks such as object detection, semantic segmentation are based on

image classification problem. Figure 3-1 is an example of image classification using

AlexNet [17]. When an image is input into the neural network, it will output the

class of this image (in this case, the image is classified as cat).

Figure 3-1. An example of image classification

The neural network extracts features of different levels from the input images through

different combinations of operations such as convolution and pooling. More details of

these operations can be found in Chapter 2.2.2. Using these features extracted from

different levels the neural network can recognize the inner patterns of how to classify

the images.

28

Table 3-1 shows a rough development history of neural networks in deep learning.

Most of them are responsible for setting the new state of the art for classification and

detection in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC),

which is the most known competition in computer vision and evaluates algorithms for

object detection and image classification at large scale. Some of them are still widely

used as backbone neural networks on various kinds of tasks.

Table 3-1. A rough development history of neural networks

Date Neural network Description

1994 LeNet5 It was one of the earliest convolutional neural networks.

2012 AlexNet It was a wider and deeper version of LeNet5

2013 OverFeat It was derived from AlexNet and proposed a new technique

of learning bounding box.

2014 VGG It is the first network to use smaller filters (3×3 filter) in

each convolutional layer.

2013 Network-in-

network

It proposed 1×1 convolution which can provide more

combinatorial features.

2014 GoogleNet It was the first architecture of Inception which chooses

filters adaptively.

2016 ResNet It proposed residual structure.

LeNet5 [18] was proposed in 1994. It was one of the earliest convolutional neural

networks. It adopted the combination of convolution, pooling, and nonlinearity

activation function as a sequence to build a neural network, which became the most

commonly used sequence for neural networks in computer vision. It was trained on

CPU because of the underdevelopment of hardware at that moment.

29

After LeNet5, there was a long time that the neural network was in the incubation

stage. Its capacity was unnoticed, while few improvements happened. With the

development of mobile cameras and cheap digital cameras, more and more data

became available. And with the growing computing power, CPU became faster and as

GPU became widely used, deep learning especially computer vision has been in the

high speed period of development since the last decade.

In 2012, AlexNet [17] was proposed. It was a wider and deeper version of LeNet5. It

employed the techniques of ReLu and dropout. It was trained on a GPU and the speed

of training increased dramatically. OverFeat [19] was derived from AlexNet and

proposed a new technique of learning bounding box, which is widely used in object

detection.

VGG [20] was the first network to use consecutive smaller filters (3×3) to replace

larger filters (5×5, 9×9 and 11×11), which was different from the principle of LeNet5

and its derivatives, where large convolutions were used to obtain similar features in an

image. Since then smaller filters has become popular.

The idea of network-in-network [21] was simple but very useful. Use 1×1 convolution

to provide more combinational features of convolutional layers. This technique is

widely used in neural network such as GoogleNet [22], which was the first

architecture of Inception that chooses filters (1×1 or 3×3 or 5×5 or pooling)

adaptively, and ResNet [23], which proposed residual structure that will be introduced

in Chapter 4.1.1.1.

3.1.2 Object detection

Object detection is a task of identifying the objects through a picture or video. Figure

3-2 [24] is an example of object detection. We can see that it provides not only the

classes but also indicate the spatial location of those classes.

30

Figure 3-2. An example of object detection

One of representational neural networks for object detection is the series of R-CNN,

including R-CNN [25], Fast R-CNN [26], Faster R-CNN [27], and Mask R-CNN [28].

They are region based algorithm. Figure 3-3 [25] shows the implementation stages of

R-CNN.

Figure 3-3. The implementation stages of R-CNN

 There are four stages to implement R-CNN:

 Region proposals extraction: to generates 1000~2000 region proposals

(using the Selective Search algorithm);

 Feature extraction: for each region proposal, using convolutional neural

networks (CNN) to extract features;

31

 Classification: These features are fed into SVM classifiers to determine

whether it belongs to this class;

 Bounding box Regression: Use regression to fine-tune the box position,

which is not included in the figure above.

Fast-RCNN [26] shared computation in the steps of feature extraction, classification,

and bounding box regression, and all of them are implemented using CNN. Because

the CNN was implemented on the whole image once rather than on each region

proposal thousands of times, it was faster than R-CNN. But it also brought a problem

that the number of features for each region proposal is different since they are

extracted from the whole image. To solve this problem, Fast-RCNN added ROI layer.

After passing through this layer, the number of features will be the same.

Faster-RCNN [27] introduced RPN networks (region proposal network) to replace the

Selective Search algorithm, which made possible for the whole network to be trained

end to end. Mask-RCNN [28] extended R-CNN to the area of semantic segmentation.

Another important algorithm in object detection is YOLO (You Only Look Once)

[29]. Different from R-CNNs, it used a single CNN to predict the bounding boxes and

the class probabilities for these boxes. It was efficient in term of speed but did not

perform very well on small object detection.

3.1.3 Object tracking

Object tracking aims to detect moving objects, which has many practical applications

including surveillance, traffic flow analysis, and self-driving cars etc. Object tracking

starts with object detection, but there are more challenges compared to static object

detection. Figure 3-4 [30] shows an example of object tracking.

32

Figure 3-4. Object tracking

3.1.4 Semantic segmentation

Semantic segmentation refers to the task of annotating each pixel in 2-dimension

images or each voxel in 3-dimension images to a class label. It is essentially a

classification problem. The figure below [31] gives an example of semantic

segmentation, which shows its connection with image classification. It is the category

of the thesis. We will discuss more details about it in Chapter 3.2.

33

Figure 3-5. An example of Semantic segmentation.

3.1.5 Instance segmentation

Instance segmentation is an extensional task of semantic segmentation. Unlike

semantic segmentation that only needs to classify different categories, instance

segmentation needs to distinguish different instances even if they are in the same

class. Figure 3-6 [32] shows their difference.

 a)semantic segmentation b) instance segmentation

Figure 3-6. Instance segmentation and semantic segmentation

3.2 Semantic segmentation

As we discussed above, semantic segmentation is essentially a classification problem

on pixel or voxel level. The neural networks used for semantic segmentation and the

loss functions used for training these neural networks will be introduced in this sub-

chapter. They are the necessary previous knowledge of Chapter 4.

34

3.2.1 Neural networks

The goal of semantic segmentation is to label each pixel of an image with a

corresponding class. Classical convolutional neural networks such as AlexNet, VGG,

and GoogleNet perform well on image classification. It is natural to use them for

semantic segmentation. However, there are reductions of image resolutions caused by

the repeated combinations of convolutions and max-pooling etc. used by these neural

networks for increasing the receptive field. The output of semantic segmentation is an

image but not a single class. The details lost in this process cannot be used on

generating the segmentation image, which would lead to the loss of accuracy.

3.2.1.1 FCN

One of the most important breakthroughs, maybe the most important one, in recent

years is fully convolutional neural network (FCN) [33], which rewrites the fully

connected layers as convolutions to produce a whole image rather than an output for a

single pixel. The figure below [33] shows this process. The upper network is for

classification, whose output is a series of probabilities. The highest one is tabby cat

which is the input image’s category. Applying convolutionalization to the final layer,

the nether network’s output becomes an image as shown in the nether network.

Figure 3-7. Fully Convolutional Network

35

There are three mainly techniques in FCN. The first one is convolutional, which we

discussed above. It uses convolution layers to replace the fully connected layers in

classification neural networks such as VGG and ResNet. The second one is using

deconvolution to implement upsampling to reconstruct the output image which has

the same size as the input image. Deconvolution (or transposed convolution) can be

understood as the reverse process of convolution.

Figure 3-8. Deconvolution

The process of calculating deconvolution is shown in Figure 3-8. Input images are

used as the center and full zero padding is implemented to get the different sizes of

outputs. In this example, it uses 3×3 deconvolution filter slipping on the input image

whose size is 2×2 to get the output image whose size is 4×4.

Figure 3-9. Fusing information from layers with different strides

The last notable technique used in the FCN is skip connection, which fuses

information from layers with different strides to improve segmentation details. The

paper compared three methods of fusing information, which are shown in Figure 3-9

[33]. For FCN-32s, it uses 32 times upsampled pool5 as the prediction; for FCN-16s,

it fuses 2 times upsampled pool5 with pool4, and then implements 16 times

upsampling as the prediction; for FCN-8s, it fuses 2 times upsampled pool5 with

pool4 first, and then upsamples the results, and then fuses it with pool3, and then

36

implements 8 times upsampling as the prediction. The results are shown in Figure 3-

10 [33]. We can see that FCN-8s has the best result, which means that decreasing the

stride of pooling layers is the most straightforward way to obtain finer predictions.

This method of improving the segmentation accuracy by fusing features from

different strides are widely used in other segmentation neural networks such as U-net

[34] and SegNet [35].

Figure 3-10. Results of refining FCN

3.2.1.2 SegNet

SegNet [35] used elegant encoder-decoder architecture, which is shown below. It used

convolution and pooling in the encoder, decovolution and upsampling in the decoder,

and Softmax for pixel classification. The image segmentation accuracy was improved

by using pooling indices which recorded the position of pooling. This encoder-

decoder architecture is one of the most popular architectures for semantic

segmentation neural networks.

Figure 3-11. SegNet

37

3.2.1.3 DeepLab

The techniques developed by DeepLab series are another important branch in

semantic segmentation. They have used classical convolutional neural networks as

backbones and developed other advanced components added in the systems to

improve the performance.

DeepLabv1 [36] used VGG as the backbone and introduced atrous convolution and

fully-connected Conditional Random Fields (CRF) to solve the problems brought by

reduced resolution. DeepLabv2 [37] used Residual-Net and introduced ASPP (Atrous

Spatial Pyramid Pooling) which used multiple parallel atrous convolution layers with

different sampling rate. DeepLabv3 [38] discussed four types of Fully Convolutional

Networks and improved ASPP.

The lasted version is DeepLabv3plus [39], whose architecture is shown in the figure

below. It was an encoder-decoder architecture. It used Xception as the basic network.

The encoder was comprised of improved Xception and ASPP. The decoder used

bilinear upsampling concatenated with the corresponding low-level features from the

network backbone. More details will be introduced in Chapter 4.1.2. It is one of the

architectures used in this thesis. However, the specific structures such as the basic

network have been modified according the feature of the dataset and the requirement

of the task, just like the other two architectures in this thesis.

Figure 3-12. DeepLabV3Plus

38

3.2.1.4 Unet

These neural networks we discussed above perform great on natural image

segmentations, but they cannot be easily transformed to be used in medical image

segmentations. Medical images segmentation is different from natural images

segmentation. First, the training datasets are small because it is laborious to be

annotated and there are some regulations making it difficult to access. Second, the

features are not that rich compared with natural images. So, too complicated neural

networks shouldn’t be used. Third, medical images such as MRI or CT are 3D.

Expanding 2D neural networks to 3D will increase their complexities and the amount

of data needed to be processed will also rise dramatically. It will be consequently that

we need higher computational power to train them. The limited computational power

has already been a problem on 3D image segmentation even for relatively simple

networks. Because of it, most of 3D convolutional neural networks are trained on

patch-wise. This is also the method adopted in this work.

Figure 3-13. U-net

Although these differences hinder neural networks in natural image segmentation to

be directly used in medical image segmentation, the advanced techniques developed

by natural image segmentation have still been used in various kinds of medical image

segmentation neural networks. U-net [34] was inspired by FCN. It is the most

39

successful neural network used in medical image segmentation. Its architecture is

shown in Figure 3-13 [34]. It used skip-connections to merge the features in different

levels and symmetrical encoder-decoder architecture same as SegNet, achieving great

performances on small datasets.

3.2.1.5 Other networks

As we discussed above, many semantic segmentation neural network in medical

domain take advantage of advanced techniques developed in natural image

segmentation. According to P. Wang et al. [40], fully convolutional network (FCN),

conditional random fields (CRF), and atrous convolution are key components used in

the most state-of-the-art semantic segmentation systems. These components have

been used in medical image segmentation neural networks too. For example, U-net

used the idea of FCN; DeepMedic [41] employed a fully connected CRF as a post-

processing step to achieve more structured predictions; FocusNet [42] utilized atrous

convolution.

3D U-net [43] is one of the most successful convolutional neural networks used for

3D medical image segmentation. There are other neural networks that used it as the

backbone network and added some advanced components to improve the performance.

For example, V-net [44] added residual blocks based on it. Dense V-Net [45] used V-

net as the backbone, and added dense feature stacks inspired from DenseNet [46].

3.2.2 Loss functions

Loss function is another important factor determining the final performance of the

deep learning system. One of the most important problems that is needed to be solved

in in medical image segmentation is the imbalanced samples. For example, abnormal

organs or lesions usually account for a small portion of the whole medical image.

Appropriate loss function needs to be chosen to balance the positive sample and the

background.

3.2.2.1 Cross-entropy

For binary classification, cross-entropy loss function is defined by

40

 CE=-
1

N
∑ (y

i
logp

i
+(1-y

i
)log (1-p

i
))N

i=1 (3.1)

where y
i
 is the truth category of input sample xi , pi

 is the predicted possibility of

input sample xi belonging to category 1. This loss function pays equal attention on

each category. So it cannot work perfectly on imbalanced classes. For medical image

segmentation, the percentage of abnormal organ which needs to be segmented is

usually very small. The worst case is the neural network segments nothing if we use

cross-entropy loss.

3.2.2.2 Weighted cross-entropy

Weighted cross-entropy can be used to address the imbalance we discussed above. It

can be calculated according

 WCE=-
1

N
∑ (w*y

i
logp

i
+(1-y

i
)log (1-p

i
))N

i=1 (3.2)

where w is the weight which needs to be defined before training.

3.2.2.3 Focal loss

Focal loss was proposed in the task of object detection, in order to solve the problem

of imbalance of positive and negative sample ratio. The formula is

 F=-
1

N
∑ (α*y

i
*(1-p

i
)
γ
*logp

i
+(1-α)(1-y

i
)*p

i

γ
*log (1-p

i
))N

i=1 (3.3)

Compared with the formula of cross-entropy, there are two added multipliers (1-p
i
)
γ

and p
i
γ, which aims to increase the loss value when to predict the class whose p

i
 is

small and decrease it when to predict the class whose p
i
 is big. So it can increase the

attention on positive samples whose percentage in the dataset is small.

3.2.2.4 Dice loss

Dice loss was introduced by V-net [44], and developed based on dice coefficient in

order to address the problem of the learning process getting trapped in local minimum

41

when the predictions are strongly biased towards background. The dice coefficient

between two binary volumes is calculated according

D(A,B)=
2 × (|A ∩ B|)

|A| + |B|

 (3.4)

It can also be represented by

Dice=
2TP

2TP+FN+FP

 (3.5)

where TP is true positive, FP is false positive, FN is false negative. Dice loss can be

defined as 1-Dice or -Dice. It performs better on small object segmentation compared

with cross-entropy. However, it also has disadvantages. If there are only foreground

and background in the dataset, prediction errors of small targets will lead to large

changes of dice loss, which will cause sharp gradients and unstable training.

3.2.2.5 Generalized Dice loss

For multi-label segmentation, there is generally one dice coefficient for each class.

Generalized Dice loss integrates the dice coefficients of multiple labels together to

measure the segmentation results. The formula of generalized dice loss for two labels

is

GDL=1-2
∑ wl ∑ rlnp

lnn
2
l=1

∑ wl ∑ rln+p
lnn

2
l=1

(3.6)

where rln is the value of label l in the ground truth, and p
ln

 is its predicted value, wl is

the weight of label l , and is calculated according

wl=
1

(∑ rln
N
n=1)

2

(3.7)

3.2.2.6 IOU loss

Similar as dice coefficient, IOU (intersection-over-union) loss is also use a metric as a

loss function. IOU is actually defined as

42

IOU=
TP

TP+FN+FP

(3.8)

IOU loss as a loss function is defined as

IOU=
I(X)

U(X)
=

X*Y

X+Y

(3.9)

where X is the prediction and Y is the ground truth.

3.2.2.7 Combined loss

To take advantage of multiple loss functions described above or others, we can

combine some of them to a new loss function. For example, we can add cross-entropy

loss with Dice loss as a new loss function:

 Loss=CE+(-Dice) (3.10)

43

4. Method

In this chapter, three architectures used in this work including 3D U-net variants,

DeepLab variants and a type of combined neural network will be introduced. To

explain the 3D U-net architecture, the components used in it will be introduced first.

These components including residual blocks, residual SE blocks, dense blocks and

dense SE blocks. Four variants of U-net have been developed by using these

components. The 3D U-net variants were also used as the backbone network in

DeepLab variants and the combined neural network.

These architectures were not developed from scratch. They used the existing

architectures as references, and were modified according the features of our dataset

and the task. To explain the details how to implement these architectures, the related

neural networks will be introduced first, and then the details of how to modify them to

the neural network for our dataset will be described. The reason why the introduction

of related neural network is presented in this chapter rather than the previous chapter

is to make the descriptions of the modified neural network easy to understand. The

loss functions and metrics used to train them will also be introduced in the end of this

chapter.

44

4.1 Neural Networks

Besides the problems such as small training datasets and large memory requirement

many medical image segmentation tasks have to face, there is one more problem in

this work. It involves multiple imbalance classes, which becomes more intricate

because multi-label segmentation needs to segment both the small organs and the

large ones, which may affect each other in some extent. There are two directions we

can consider to improve the accuracy for such a problem: employing innovative

neural networks, and using appropriate loss functions.

It is obvious that a better neural network can bring more benefits, so more attention

has been paid on improving the neural network. As we discussed above, 3D U-net is

one of the most successful neural networks used for medical image segmentation. In

MICCAI Kidney-tumor Segmentation Challenge in 2019, the neural networks the first

prize winner [47] adopted were based on U-net. It adjusted the networks according

their training image features. Another element helping them achieve best score was

their efforts at data preprocessing. This is one of the evidences that U-net is the most

successful segmentation architecture in medical domain. Based on it, this work

initially chooses 3D U-net as the backbone network. Three advanced components

including residual block, squeeze-and-excitation (SE) blocks [48], dense blocks are

added to form four variants of 3D U-net in order to increase the segmentation

accuracy.

DeepLab series [36][37][38][39] also have notable influence on medical image

segmentation, especially ASPP (Atrous Spatial Pyramid Pooling. Unlike U-net, which

uses symmetrical encoder-decoder architecture, the latest version of DeepLab

(DeepLabv3plus) used symmetrical encoder-decoder architecture. This architecture

has been also adopted in this work, and it was modified according the feature of our

dataset and the requirement of the task.

There are also some researchers attempt to use combined neural networks. Payer C et

al. [49] proposed a pipeline of two FCNs, one to localize the center of the bounding

box, the other focusing on this region to do segmentation. FocusNet [42] used the

similar framework as [49]. AnatomyNet [50] used attention networks which are

widely used in natural language processing. A type of neural networks which

45

combines edge detection neural network with segmentation neural network were tried

to improve the accuracy in this thesis as well.

4.1.1 3D U-net variants

In order to address the problem brought by imbalanced multiple labels in the dataset,

four variants of 3D U-net have been employed including 3D U-net with residual

blocks, with residual blocks adding SE blocks (residual SE blocks), with dense

blocks , and with dense blocks adding SE blocks (dense SE blocks).

3D U-net with residual blocks has similar architecture with V-net. Residual blocks

enable the networks to improve accuracy from considerably increased depth. SE

blocks can adaptively strengthen important features and can be directly applied in

both residual networks and non-residual networks with only light weight

computational increase. Dense blocks improve the performance through feature reuse

by concatenating feature maps learned by different layers instead of using extremely

deep or wide architectures.

Figure 4-1. The network uses 3D U-net as the backbone

Figure 4-1 shows the architecture of the backbone network, which is a typical

encoder-decoder architecture. The downsampling path on the left (encoder) extracts

features using convolutions from the input images, and the upsampling path on the

right (decoder) uses deconvolutions to reconstruct the details for the final

segmentation results. The skip-connections are used to fuse features of different levels

obtained in the downsampling path with the features in the upsampling path in order

to improve the segmentation accuracy. For the grey blocks in both paths, they have

46

been filled by using four types of blocks, including residual blocks, residual SE

blocks, dense blocks, and dense SE blocks. The details will be explained later.

The numbers of filters used in convolution blocks of all layers are designed to be the

multiple of three, because the number of input channels of the datasets is 3 (the

images have three weighted volumes, T1, PD and FS for each object). The

downsampling is designed to be ended when the size of feature maps are reduced to

4×4×4 if the size of input image is 64×64×64. If more downsampling layers are used,

the feature maps in the last layer of encoder will contain too less information.

Different sizes of input images or patches were used in the experiments. The figure

above only shows one of them (64×64×64). Other descriptions about the size of

feature maps in the neural network in Chapter 4.1.1 are based on this figure.

4.1.1.1 Residual Block

Deep residual learning framework [23] was proposed to address the degradation

problem when networks become extremely deep. It used residual connection adding

stacked layers instead of stacking these layers directly, which makes it easier to

optimize compared with the original one. It has already been used in various types of

neural networks and achieved great success. In this work, residual blocks are used to

fill the grey blocks in Figure 4-1 firstly, which is similar with V-net [44]. For each

grey block in different layers, different numbers of convolution blocks are used in

residual blocks. The number of convolution blocks and their sizes are shown in Table

4-1.

Table 4-1. The numbers of convolution blocks in grey blocks

Size of

Convolution Blocks

Number of

Convolution Blocks

48×32×32×32 2

96×16×16×16 3

192×8×8×8 3

384×4×4×4 3

4.1.1.2 Residual SE Block

47

Squeeze-and-Excitation Networks (SENet) [48] introduced SE block which improves

prediction accuracy through modeling the correlations between channels and

adaptively strengthening important features. This structure performed great in ILSVR

competition in 2017. AnatomyNet [51] took advantage of SE residual blocks to build

a 3D SE Res U-net, which performed best among the networks they tested.

Figure 4-2. Residual SE block

In this work, residual SE blocks are also used to fill the grey blocks. As shown in

Figure 4-2, 2 or 3 convolution blocks are used first same as residual blocks described

above. The numbers of blocks stacked are same as Table 4-1. Then SE blocks are

used to strengthen important features. In SE blocks, the channel-wise features are

calculated by global average pooling firstly. For the c-th channel, the feature is

squeezed according

zc =
1

H × W × D
∑ ∑ ∑ uc(i, j, k)

D

k

W

j

H

i

(4.1)

where uc(i, j, k) is an element in the feature map uc (whose size is H×W×D, and

generated by stacked convolution blocks) of the c-th channel. After this operation, the

spatial dimension of the feature map of all channels is changed from H×W×D×C to

1×C. The feature of each channel is squeezed to be represented in a number. After

squeezing, two fully connected layers are used as a simple gating mechanism to

capture channel-wise dependencies. They can be written as:

 sc = F(zc) (4.2)

where F refers to the mapping relations of these two fully connected layers. The final

output of the SE block is obtained by channel-wise multiplication between the feature

map generated by stacked convolution blocks and the scalar output by the two fully

48

connected layers. The feature map of the c-th channel is recalibrated by the factor sc

according

 uc
' = sc* uc (4.3)

In this way SE blocks can be used to adaptively strengthen the important features. SE

blocks perform well on improving the segmentation accuracies of small organs in this

work.

4.1.1.3 Dense Block

Dense convolutional network (DenseNet) [46] considered that the residual

connections combining the input with the output of stacked convolutions by

summation impedes the information flow in the network, and then proposed a

different connectivity pattern. In traditional convolutional networks, the output of

current layer is the input of the next layer, which means L layers have L connections.

DenseNet introduced a framework that connects the output of each previous layer to

the next layer, which means L layers have
L(L+1)

2
 connections.

Figure 4-3. Dense SE block

As shown in Figure 4-3, before the SE block it is a 4-layer dense block. Each layer

takes all preceding feature-maps as the input to reuse these features in order to take

advantage of features gained in different layers to exploit the potential of the network.

The input of i-th layer can be represented by:

 ui=Concat([u0,u1,…,ui-1]) (4.4)

49

where ui is the feature map obtained in i-th layer. The growth rate in the Figure 4-3 is

the number of convolution filters in each layer except the input layer. The number of

input feature maps for l-th layer is c0 + growth_rate × (l − 1). Here c0 is the number

of channels of the input layer in the block. This means the input feature maps increase

by a factor of growth rate. In addition, 1×1×1 convolutions are added as bottleneck

layers before each 3×3×3 convolutions in order to reduce the number of input feature

maps for each layer.

For dense blocks, a relatively small growth rate is sufficient to obtain state-of-the-art

results, which enable us to try a relatively larger batch size because of the high

memory requirement of the model during training. Three dense block structures

whose growth rates decreased gradually are designed in the work. The experiment

shows the network with smaller growth rates and trained in a bigger batch size

achieved better results.

4.1.1.4 Dense SE Block

To take advantage of both dense blocks and SE blocks, the blocks described in Figure

4-3 are used to fill the grey blocks in Figure 4-1. Three structures have been tested

whose dense blocks have the identical hyper parameters as Chapter 4.1.1.3. SE blocks

can be easily added in a residual structure and a non-residual structure. Residual SE

block described in Chapter 4.1.1.2 is obviously an example that it is used in a residual

structure. Dense SE block in this chapter is an example that it is used in a non-residual

structure.

4.1.2 DeepLab variants

The fusion of features in different scales is beneficial in improving accuracy of

semantic segmentation. In Deeplabv3 [38], it discussed four architectures to capture

multi-scale context. The first one is usually applied during the inference stage. For the

other three, encoder-decoder architecture, which was used in U-net, is one of them.

Atrous convolution and Spatial Pyramid Pooling are another two. Deeplabv3plus [39]

took advantage of these three architecture and proposed the architecture of encoder-

decoder with atrous convolution as shown in the figure below.

50

Figure 4-4. The architecture of encoder-decoder with atrous convolution

 Unlike encoder-decoder architecture used in Chapter 4.1.1, encoder-decoder with

atrous convolution is asymmetrical. It used ASPP (Atrous Spatial Pyramid Pooling) at

the end of encoder and bilinear upsampling in the decoder. This architecture has also

employed with modification in this thesis. To explain it clearly, atrous convolution

will be introduced first.

4.1.2.1 Atrous convolution

In convolutional neural network, we usually use pooling and convolution with stride

to downsample images in order to increase the receptive field and then obtain the

features of images in high level. However, there is resolution loss in pooling, and for

convolution with stride, there are many parameters involved. Atrous convolution (or

dilated convolution [52]) was designed to increase receptive field with fewer

parameters. Compared with standard convolution, atrous convolution has one more

hyperparameter, dilation rate, which defines intervals between pixels in the kernel.

For the same kernel size, using a larger dilation rate can obtain a larger receptive field

with the same number of parameters. Atrous convolution can also be used to get the

features from different scales.

Figure 4-5 shows an example of how to calculate two-dilated convolution with stride

1. For two-dilated convolution whose kernel size is 3×3, the receptive field is actually

5×5. It has the same number of trainable parameters as the standard convolution we

discussed in Chapter 2 whose receptive field is 3×3. So, we can see that it can

increase the receptive field with fewer parameters.

51

Figure 4-5. Atrous convolution

4.1.2.2 Depthwise separable convolution

To understand ASPP (Atrous Spatial Pyramid Pooling), we should understand

depthwise separable convolution firstly. Figure 4-6 [53] compares the calculation of

standard convolution and depthwise separable convolution.

a) Standard convolution b) Depthwise separable convolution

Figure 4-6. Depthwise separable convolution

52

For standard convolution, as explaining in Chapter 2, we use the convolution filter

whose channel number is same as the input image (3 in this case) to do element-wise

multiplication, and then add the products together to get a scalar as the final result. So,

the output is an image whose channel number is one as shown in a).

For depthwise separable convolution, it is changed after obtaining the products of

element-wise multiplication. Instead of adding them together, we use addition in

channel-wise. The calculation process is same as using three convolution filters whose

channel numbers are one to operate the corresponding channel of the input image. The

result is a feature map which has the same channel number as the input image, which

means the convolution is only implemented in the height and width directions. It is

the first step as shown in b). Then 1×1 filters whose channel number is same as the

input image are adopted, which means the convolution in the depth direction is

implemented. It is the second step as shown in b).

Depthwise separable convolution uses 1×1 filters to choose features from the results

of element-wise multiplication instead of adding them directly in standard

convolution, which obviously keeps more spatial information. In addition, it uses

fewer parameters in some cases. For example, in the case that the channel number of

input image is 16 to get an output image whose channel number is 32. For standard

convolution, we use 32 filters whose sizes are 3×3×16, so the number of parameters

here is 3×3×16×32 = 4608. For depthwise separable convolution, we use a filter

whose size is 3×3×16, then we use 32 filters whose size are 1×1×16, so the number of

parameters is 3×3×16 + (1×1×16)×32 = 656.

4.1.2.3 ASPP

Spatial Pyramid Pooling was proposed by [54] in order to capture context of images

in different strides. ASPP (Atrous Spatial Pyramid Pooling) was introduced by

DeepLabv2 [37], where parallel atrous convolution layers with different dilation rate

capture multi-scale features, which is shown in the figure below [38].

53

Figure 4-7. ASPP (Atrous Spatial Pyramid Pooling)

It used four atrous convolution layers whose dilation rates are different to capture

multi-scale information of the images, and a global average pooling layer to capture

the image-level feature. The sizes of output images of these five layers are same as the

input image. And then concatenated these five outputs and used 1×1 convolution to

reduce the number of channels and choose features.

DeepLabv3plus [39] applied atrous separable convolution to replace the atrous

convolution in the four convolution layers of ASPP. Atrous convolution was adopted

in the depthwise separable convolution as shown in the figure below [39]. It means to

use atrous convolution instead of standard convolution in the first step of depthwise

separable convolution.

Figure 4-8. Atrous separable convolution

54

4.1.2.4 Network

The architecture of DeepLabv3plus was shown in Chapter 3.2.1.3. It was an

asymmetrical encoder-decoder architecture. The encoder was comprised of improved

Xception and ASPP. The decoder used bilinear upsampling concatenated with the

corresponding low-level features from the network backbone. A type of DeepLab

variant for our dataset was developed based on it. The architecture of the neural

network is shown in the figure below.

Figure 4-9. The architecture of DeepLab variants

DeepLabv3plus used Xception as the basic network. However, Xception is too

complicated, which is not necessary for our dataset. So it is replaced with the encoder

part of 3D U-net variants, and the numbers of channels in each layer is reduced by a

half. The last layer of encoder is removed and ASPP is added at the bottom of encoder.

The dilation rates used in ASPP are [1, 4, 8, 12]. 1×1×1 convolution is used to reduce

the number of channels after ASPP, which is same as it is used in dense blocks.

For decoder, trilinear upsampling (similar with bilinear upsampling in 2D) is used to

upsample the image, and then concatenate with the low-level feature got in the

encoder network. 1×1×1 convolution was applied to reduce the number of channels of

the low-level feature before concatenation. After concatenation, 3×3×3 convolution

block was added before de-convolution upsampling. Then another trilinear

55

upsampling was employed to recover the images to the original size. And then use a

convolution block to get the final segmentation results.

The overall architecture is similar with DeepLabv3plus except the basic network used

in the encoder. De-convolution upsampling block is added between the two trilinear

upsampling operations in order to improve the accuracy because medical image

segmentation has higher requirement than natural image segmentation. The factor of

upsampling in DeepLabv3plus is 4, but in this neural network, it is 2.

As we discussed above, because this architecture use atrous separable convolution,

the numbers of channels in encoder was reduced by a half, and trilinear upsampling

instead of de-convolution was used in decoder, fewer memory resources are required

to train this network. As shown in the figure above, the input patch size is

192×192×192.

4.1.3 Combined neural networks

Combined neural networks can take advantage of multiple neural networks to

improve the accuracy. According to Geirhos et al. [55], common CNN architectures

are biased towards recognizing image textures, not object shape representations. In

medical image analysis, however, expert manual segmentation usually relies on

boundary and organ shape identification. Hatamizadeh et al. [56] proposed a type of

boundary aware CNN for medical image segmentation. It increased the dice

coefficient about 0.05 on BraTS 2018, which provides multimodal 3D brain MRIs and

ground truth brain tumor segmentations annotated by physicians [57]. ET-Net [58]

used the similar method as [56] and achieved better results compared with other

neural networks such as U-net on the datasets they used. So it is possible that this

architecture can bring benefits for this task as well.

A type of combined neural network which is consisted of a segmentation network and

an edge detection network has been built in this work. 3D U-net variants described in

Chapter 4.1.1 are used as the segmentation network. For the edge detection network,

CASENet [59] is used as a reference.

56

4.1.3.1 Edge detection networks

The architecture of CASENet [59] is shown in the figure below [59] where it can be

seen that the left part is similar as the encoder in 3D U-net. So, the right part can be

integrated into the 3D U-net variants easily.

Figure 4-10. CASENet

The left part of CASENet is actually a stack of residual blocks. In the right part, there

are four basic components including side classification, side feature extraction, shared

concatenation, and fused classification as shown in Figure 4-11 [59].

Side classification used 1×1 convolution to reduce the number of feature maps to K

(K is the number of classes in the dataset), and then upsample the feature maps to the

original size. Side feature extraction is similar with side classification but to reduce

the number of feature maps to one instead of K. Shared concatenation concatenated

the feature maps output by two side feature extractions with the K feature maps output

by side classification in the order shown in c) (where K=3) to get 3K feature maps. In

Figure 4-10, there are three side feature extractions, so the number of feature maps is

4K after shared concatenation. In the end, fused classification uses 1×1 convolution to

reduce the number of feature maps to K.

57

a) Side classification b) Side feature extraction

 c) Shared concatenation d) Fused classification

Figure 4-11. Components of CASENet

4.1.3.2 Network

To combine the edge detection network with the segmentation network, 3D U-net

variants described in Chapter 4.1.1 are used as the basic network, and the components

of CASENet described above are added to construct the combined neural network,

whose architecture is shown in Figure 4-12. It is similar with CASENet except the

basic network part where 3D U-net variants were used. 3D U-net is the segmentation

neural network. The encoder part of it is connected with the components of edge

detection. They comprise the edge detection network, whose output should be the

edge image as shown in the figure.

Significantly, the number of labels of edge detection neural network is 2 rather than

13 (there are actually 13 labels in the dataset). The reason is that the purpose is to

improve the segmentation results rather than edge detection results. Only two labels

are needed, edges and non-edges.

58

Figure 4-12. Combined neural network

4.2 Loss functions

As we discussed at the beginning of Chapter 4, there are two directions to improve the

accuracy when the task involves multiple extremely imbalanced classes: employing

innovative neural networks, and using appropriate loss functions. In terms of loss

functions, one of the simplest methods is to use weighted loss functions.

4.2.1 For 3D U-net variants and DeepLab variants

Small object segmentation is always a challenge in semantic segmentation. As we

discussed in Chapter 3.2.2.4, dice loss was developed based on dice coefficient in

order to address the problem that the learning process getting trapped in local

minimum when the predictions are strongly biased towards background. The dice

coefficient between two binary volumes is calculated according

D(A,B)=
2 × (|A ∩ B|)+ smooth

|A| + |B| + smooth

(4.5)

The difference between this equation and equation 3.4 is that it adds smooth (> 0) to

both numerator and denominator. The purpose is to avoid the denominator becomes 0

when |A| + |B|=0.

59

In this task, there are several extremely imbalanced classes (which will be discussed

in Chapter 5.1). To balance different frequencies of multiple classes in the dataset,

weighted dice loss was used. It is calculated according

Loss=1 −
1

n
× ∑ (w

i
×

n

i=1

2× ∑ tijpij
m
j=1 +smooth

∑ (tij+p
ij
)m

j=1 +smooth
)

(4.6)

where n is the number of classes, wi is the weight of class i, m is the number of voxels

of class i, tij is the j-th voxel of class i using one-hot encoding in the truth, p
ij
 is the

corresponding voxel in the prediction.

When weighted dice loss has been chosen, how to set the weights becomes another

problem. Two methods have been tried to set the weights. The first one is to set them

according the frequencies of classes in the dataset:

wi=
max ([f0, f

1
,…,f9])

fi

(4.7)

where f
i
 is the frequency of i-th class, wi is the weight of i-th class. So the weight of

the class which has the largest frequency is one. The second method is to set them

according the final dice coefficients of these classes when the network with

unweighted dice loss is converged.

For 3D U-net variants, because the final dice coefficients of the classes when the

network using unweighted dice loss is converged are close to their frequencies in the

dataset, the first method is used to set the weights. For DeepLab variants, both of

these two methods have been tried.

Some weighted loss functions such as generalized dice loss function as discussed in

Chapter 3.2.2.5, which introduced a method to calculate the weights automatically,

but it makes the optimization unstable in the extremely unbalanced segmentation [60].

4.2.2 For combined network

For the combined network described in Chapter 4.1.3.2, a combined loss function is

needed as well. The gradients of segmentation ground truth are calculated to generate

the ground truth of edges as shown in Figure 4-13. For the segmentation, the loss

60

function is described by equation 4.6. For the edge detection network the loss function

is calculated according this equation as well, but there are only two classes, edges and

non-edges. The total loss function used for training the whole neural network is

 Loss=Seg_loss+w*Edge_loss (4.8)

where w is used for increasing the weight of edge detection loss, Seg_loss is the loss

for segmentation.

4.3 Metrics

The mean of total dice coefficient and the dice coefficient of each class on validation

dataset is used as the metrics during training. However, if the dice coefficient of each

class is calculated by equation (4.5), there is a problem which may cause confusion.

When the batch contains very few voxels of a class, which is possible for small organs

and small batch size, its dice coefficient could become relatively big even if the

overlap between the prediction and the truth is small. The worst case is the batch

doesn’t contain the class; the dice coefficient will become one. So equation (4.5) was

modified to

D(A,B)=
2 × (|A ∩ B|)

|A| + |B| + smooth

(4.9)

It reflects the actual overlap even in worst situation. But equation (4.6) is still used to

calculate the loss function. It performs better in training because it has smoother

gradients compared with (4.9).

To compare the predicted segmentation and the ground truth for each class, the

percentage of class y predicted as class x is calculated according

P(x ,y) =
n(x, y)

ny

(4.10)

where n(x, y) is the number of voxels predicted as class x but annotated as class y in the

ground truth, n𝑦 is the number of voxels annotated as class y in the ground truth. It is

actually the recall rate for class x when x = y. Significantly, it is actually not

confusion matrix, it will be named performance matrix in this thesis. The data in the

61

diagonal line is the recall rate for each class. They should be 1 if all voxels are

segmented correctly. The data in the diagonal line would be precision if replace the

denominator of equation (4.10) as the number of voxels predicted as class y.

Some of tables in the next chapter will show the performance of various neural

networks, which will be evaluated on dice coefficients without adding smooth to

neither numerator nor denominator including the total one and the one for each class.

62

5. Experiments and results

In this chapter, we will discuss the two datasets used to train the neural networks first.

Preprocessing is a very important step to deal with the data before feeding them into a

neural network, so it will be introduced too. Then the details of the experiments will

be introduced. After presenting the results of the experiments, we will discuss the

performance of the neural networks and the reason behind it.

63

5.1 Datasets

The experiments are based on two datasets, which are available in different stages of

the thesis. Both of them are provided by Sunnmøre MR-Klinikk. The first dataset

contains 15 annotated knee MRI images whose size is 400×400×275. Each knee

image has 10 labels in ground truth. The second dataset contains 20 knee MRI images

whose size is 400×400×400. Each knee image has 13 labels in ground truth. For both

datasets, there are three weighted volumes, T1, PD and FS, provided for each knee.

5.1.1 Dataset1 (with 10 labels)

There are 10 classes on dataset1. Table 5-1 shows these classes, and their

abbreviations and values, which will be useful when analyzing the segmentation

results. As declared in Chapter 1.2, the details of these organs in medical domain

won’t be discussed unless it is helpful for the segmentation task.

Table 5-1. The abbreviations and values of classes (organs) on dataset1

Classes Abbreviations value

Background BG 0

Bone BO 1

Posterior cruciate ligament PCL 2

Anterior cruciate ligament ACL 3

Muscle MU 4

Cortical bone CB 5

Blood vessel (popliteal artery/vein ++) BV 6

Adipose tissue (fat) AD 7

Tendons TE 8

Menisci ME 9

Figure 5-1 is an example of segmentation on dataset1, which shows the locations of

these 9 classes (excluding background). The image is 3D, so it may be impossible to

64

show all of them in one 2D image. Here they are shown in two images, which are in

the different depths of the 3D image.

Figure 5-1. An example of segmentation on dataset1

Figure 5-2. The frequency of voxels for each class on dataset1

65

The frequencies of voxels of these classes are extraordinary different, which can be

seen in Figure 5-1. Figure 5-2 shows the details of the frequencies, where we can see

that background accounts for 41.63%. The largest label is AD (adipose tissue)

accounting for 27.54% while the smallest one is ACL (Anterior cruciate ligament)

accounting for 0.05%.

5.1.2 Dataset2 (with 13 labels)

For the second dataset, there are three more classes in the ground truth including

artery, collateral ligament and veins. The figure below is an example of segmentation

on dataset2. The second image is the intersecting surface of the first image. The

abbreviations and values of these 13 classes can be also found in Figure 5-3.

Figure 5-3. An example of segmentation on dataset2

The frequencies of voxels of these classes on dataset2 are even more imbalanced

compared with those on dataset1, which can be seen in Figure 5-4. The background

accounts for 60.43%. The largest percentage of label and the smallest percentage of

66

label are same as on dataset1. The largest label is AD (adipose tissue) accounting for

19.17% while the smallest one is ACL (Anterior cruciate ligament) only accounting

for 0.03%.

Figure 5-4. The frequency of voxels for each class on dataset2

5.2 Training and Results

The experiments on dataset2 are based on the results of experiments on dataset1. So

experiments on dataset1 will be introduced first. For the experiments on dataset1,

Keras based on Tensorflow was used as the deep learning framework because it is

friendly to new users. For the experiments on dataset2, Pytorch was chosen instead

because it has been becoming more popular, and lower level programming (Keras is a

high-level API) is more flexible for customization. In terms of hardware, all the

neural works are trained on GPU GeForce RTX 2080 Ti, whose memory is 11 GB

GDDR6.

The codes of the neural networks are relatively simple because the deep learning

frameworks, Keras or Pytorch, provide functions and interfaces which enable users to

implement them easily. The implementation details of data preprocessing will be

introduced since it is different for diverse types of input data, which have various

formats or sizes etc.

67

5.2.1 Experiments on dataset1

The first dataset used in the experiments contains 15 annotated knee MRI images with

10 labels. 12 images were used for training and 3 of them were used for validation.

The networks described in Chapter 4.1.1 (3D U-net variants) were trained on this

dataset first. The mean of total dice coefficient and the dice coefficient of each class

on validation dataset is used as the metrics during training.

5.2.1.1 Preprocessing

Before starting the training, we need to preprocess the images in order to turn them

into the appropriate format, which can be fed into the neural network. Augmentation

is also another important stage in preprocessing. However, more data means a longer

training time, and the benefit is not that obvious in the experiments. So data

augmentation has not been implemented in the experiments.

Cutting image into patches

As we discussed above, 3D medical images are very large, which need large memory

size for training them. An image even can’t be trained by using only one GPU if the

neural network is complicated. In this case, they should be cut into patches, so they

can be trained in the unit of patch.

For dataset1, the original image’s size is 400×400×275. They were resampled to

274×274×274 in order to decrease the training time. Because the limitation of GPU

memory, they were divided into 64×64×64 patches to feed the neural networks as

shown in Figure 5-5.

Figure 5-5. Patch-wise training due to the limitation of GPU memory

68

The 274×274×274 images were cut into 64×64×64 patches. If the remaining part is

smaller than patch size, the voxels on the edge will be used for padding. Every time a

batch of patches instead of images were fed into the network. The final segmentations

were predicted in patches. Then the predicted patches were integrated into an image.

Data format

HDF5 (Hierarchical Data Format) is used to store the data of input images. HDF5 is a

file format which is designed to store and organize huge amounts of numerical data. A

HDF5 file contains comprehensive information of data, which allows the application

program to interpret the structure and content without any external information. It

allows users to combine relevant data objects together, put them into a hierarchical

structure, and add descriptions and labels to these data objects. Many data types can

be embedded in a HDF5 file. It is a platform-independent file format, which can be

used on different platforms without any conversion.

The input MRI knee images’ format is nifti having the extension .nii. Nibabel, which

is a python package developed for medical images processing, has been used to read

the data of .nii file to .h5 file (HDF5 file). PyTables is a package for managing

hierarchical datasets and designed to efficiently and easily cope with extremely large

amounts of data. It is built on top of the HDF5 library, using Python and the NumPy

package. It was used to process .h5 file in the experiments on dataset1. Related

pseudo- codes are shown below.

load the image using nibabel
images = nib.load(nii_file_path)

other kinds of preprocessing

images = resample(images)

get data from the corresponding image
data = images.get_fdata()…

truth = images.get_fdata()…

affine = images.get_fdata()…

return a hdf5 file handle using PyTables
hdf5_file = tables. open_file(h5_file_name, mode='w')

copy the data into hdf5 file
data_storage = hdf5_file.create_earray(hdf5_file.root, 'data', …)

truth_storage = hdf5_file.create_earray(hdf5_file.root, 'truth', …)

69

affine_storage = hdf5_file.create_earray(hdf5_file.root, 'affine', …)

data_storage.append(np.asarray(data))

truth_storage.append(np.asarray(truth))

affine_storage.append(np.asarray(affine))

…

hdf5_file .close()

5.2.1.2 Training of 3D U-net and its variants

For dataset1, all networks were trained using Nadam optimizer. The batch sizes used

in the implementation were adjusted according the networks. For training the

networks with dice loss, the learning rate was set to 0.001 initially. For training the

networks with weighted dice loss, the initial learning rate was set to 0.01. The

learning rates were set to be reduced by a factor of 0.5 after 5 epochs if the validation

loss is not decreasing.

Preliminary models

3D U-net and V-net (U-net with residual blocks) with dice loss were tested firstly.

The batch size was set to 4. The results show the large organs bone (BO), muscle

(MU) and adipose tissue (AD) were segmented but the small ones such as posterior

cruciate ligament (PCL) are missing, which can be seen in Figure 5-6.

 (a)Ground truth (b) V-net with dice loss

Figure 5-6. Segmentation results of V-net with dice loss

This result is caused by the extremely imbalanced classes. As shown in Figure 5-1,

except background, the percentages of BO, MU and AD in the images are much

70

bigger than others. If the networks segment them correctly, the total dice coefficient

has already been at least 0.94 (see Table 5-4). So it is reasonable for them to almost

ignore the small organs.

The performance matrix is shown in Figure 5-7. The X-axis is the values of predicted

classes, and the Y-axis is the values of ground truth classes. So the column whose X-

value is 0, for example, shows the percentages of the classes are predicted as class 0

respectively. We can see almost all small organs are predicted as background (0),

bone (1), muscle (4), and adipose tissue (7).

Figure 5-7. Performance matrix for V-net

To address this problem, weighted dice loss was adopted. V-net (U-net with residual

blocks) with weighted dice loss and the same batch size was tested. The dice

coefficients of small organs are improved but for the large ones they are decreased,

especially for bones. Its dice coefficient drops dramatically to 0.06 (See Table 5-4).

(a) Ground truth (b) V-net with Weighted dice loss

Figure 5-8. Segmentation results of V-net with Weighted dice loss

71

Model with residual SE blocks

To improve the accuracy, residual SE blocks were used instead. Same batch size and

learning rate as V-net were set. From Table 5-4, we can see that the results of small

organs are improved compared with that using only residual blocks, which is same as

our expectation. However, the accuracy of BO is still low.

(a) Ground truth (b) U-net with residual SE blocks

Figure 5-9. Segmentation results of U-net with residual SE

From Figure 5-10, we can see most of bones (1) are annotated as adipose tissue (7)

incorrectly. Most small organs are around bones, so one explanation is that the

network sacrificed its accuracy to improve the accuracies of small organs because

they have bigger weights. And some small organs especially blood vessels (6) are

annotated as muscles (4) incorrectly because they are close.

Figure 5-10. Performance matrix for V-net with residual SE blocks

72

Models with Dense, Dense SE blocks

Then models with dense and dense SE blocks were tested. To choose a better neural

network for the dataset, three structures were tested. The hyperparameters of dense

blocks in these three networks are shown in Table 5-2. The structure with relatively

smaller growth rates enables us to use a bigger batch size. For dense network 1, 2, and

3 in Table 3, batch size was set to 4, 6, and 8 respectively.

Table 5-2. The hyperparameters of dense blocks

Dense Network1

Size of feature maps Number of layers Growth rate

32x32x32 2 24

16x16x16 3 48

8x8x8 3 96

4x4x4 3 192

Dense Network2

Size of feature maps Number of layers Growth rate

32x32x32 2 12

16x16x16 3 24

8x8x8 3 48

4x4x4 3 96

Dense Network3

Size of feature maps Number of layers Growth rate

32x32x32 2 6

16x16x16 3 12

8x8x8 3 24

4x4x4 3 48

For these three structures, dense blocks and dense with SE blocks were tested using

identical training procedures. The results are shown in Table 5-3. For large organs,

their performances are quite close. The dice coefficients of bones are still low. But for

small organs, the networks with smaller growth rates and a bigger batch size perform

best for both dense blocks and dense SE blocks.

73

Table 5-3. Performances of 3 dense structures with SE and without SE

class Network1 Network2 Network3

Dense Dense SE Dense Dense SE Dense Dense SE

BG 0.99 0.98 0.99 0.99 0.99 0.99

BO 0.003 0.005 0.016 0.008 0.06 0.01

PCL 0.79 0.27 0.65 0.76 0.76 0.81

ACL 0.56 0.08 0.62 0.49 0.72 0.72

MU 0.90 0.89 0.89 0.89 0.90 0.90

CB 0.47 0.39 0.36 0.45 0.56 0.51

BV 0.66 0.52 0.65 0.68 0.79 0.71

AD 0.84 0.83 0.84 0.84 0.84 0.83

TE 0.63 0.51 0.68 0.64 0.69 0.71

ME 0.81 0.74 0.81 0.79 0.81 0.83

Total 0.98 0.98 0.98 0.98 0.98 0.98

SE blocks’ advantage is not that obvious compared with when it was used in residual

blocks. The reason may be that dense blocks use 1×1×1 convolutions, which has

already reduced the number of channels, and then limits SE blocks’ advantage. Based

on these results, the structure with smallest growth rate was chosen as the finial

structure for both 3D U-net with dense blocks and 3D U-net with dense SE blocks to

compare with 3D U-net with other components.

Final result

The Table below shows the performances of U-net and its variants. We can see that

3D U-net with residual SE blocks, dense blocks and dense SE blocks using weighted

dice loss perform well on small organs segmentation. They obtained highest dice

coefficients on different small organs but all lost accuracies on large organs especially

on bones. V-net using dice loss achieved higher accuracies on large organs

segmentation.

74

Table 5-4. Performances of U-net and its variants

Class Dice Loss Weighted Dice Loss

U-net V-net V-net
Residual

SE
Dense

Dense

SE

Merged

results

BG 0.94 0.99 0.98 0.98 0.99 0.99 0.99

BO 0.95 0.95 0.06 0.14 0.06 0.01 0.97

PCL 0 0 0.63 0.77 0.76 0.81 0.81

ACL 0 0.01 0.4 0.65 0.72 0.72 0.7

MU 0.95 0.93 0.88 0.9 0.9 0.9 0.94

CB 0 0 0.41 0.67 0.56 0.51 0.51

BV 0 0 0.5 0.69 0.79 0.71 0.71

AD 0.92 0.96 0.82 0.85 0.84 0.83 0.96

TE 0 0.16 0.58 0.73 0.69 0.71 0.72

ME 0 0.01 0.78 0.79 0.81 0.83 0.83

Total 0.94 0.98 0.98 0.98 0.98 0.98 0.99

To make all organs have relatively high accuracies, the large organs (BO, MU, AD)

segmented by V-net using dice loss and the small organs (PCL, ACL, CB, BV, TE,

ME) segmented by U-net with dense SE blocks were eventually merged as the final

result. The process is shown in Figure 5-11. As we discussed in Chapter 4.1.2, in

Deeplabv3 [38], it discussed four architectures to capture multi-scale context. The

method used in Figure 5-11 is actually similar with the first method described in

DeepLabv3. The performance matrix of final result is shown in Figure 5-12. The

values on the diagonal line show it achieves relatively high accuracies on all organs.

75

Figure 5-11. The process to get the final result

76

Figure 5-12. Performance matrix for the final result

5.2.2 Experiments on dataset2

There are 20 annotated knee MRI images whose size is 400×400×400 in dataset2. 19

images were used for training and one of them was used for validation. There are also

three more labels in the dataset, so it is difficult to achieve same accuracy compared

with the experiments on dataset1. The three architectures including 3D U-net variants,

DeepLab variants and combined neural networks described in Chapter 4.1 were

trained on this dataset. Different from experiments on dataset1, Pytorch was used as

the deep learning framework in the experiments on dataset2.

For experiments on dataset1, the mean of total dice coefficient and the dice coefficient

of each class is used as the metrics during training. For experiments on dataset2, total

dice coefficient is deleted, and the mean of dice coefficient of each class is used as the

metrics during training. It is also the evaluation score which will be shown in some of

the figures in this chapter. Total dice coefficient will still be shown in the table of

performance of neural networks.

5.2.2.1 Preprocessing

Downsampling

Because it takes a long time to finish the training on images whose size is

400×400×400. The images were resampled to a smaller size which is 256×256×256 in

order to reduce the training time, and then to reduce the time spent on debugging. The

77

hyperparameters and neural networks were chosen based on experiments on the

downsampling images and the finial segmentation results were got on 400×400×400

images. The table below shows the times of finishing one epoch of training using V-

net on these two resolutions, where we can see that the time on the downsampling

dataset was reduced by more than half.

Table 5-5. Training time on different resolutions

Resolution Number of iteration Time (hours)

400×400×400 1216 7

256×256×256 513 3

Cutting image into patches

Same as experiments on dataset1, these images are needed to be cut into patches. For

most of neural networks, different patch size which is 128×128×128 was used on this

dataset because the implementation in Pytorch saves memory in some extents, which

enable us to use larger patch size. For DeepLab variants, different patch size that is

larger was tried since the components used in the neural network have fewer

parameters relatively.

Figure 5-13. The method of cutting patches

Unlike the method of cutting patches in experiment1, stride was used to determine the

interval between two patches. So there will be an overlapping between patches if the

78

stride is smaller than the patch size as shown in Figure 5-13. If the remaining part is

not enough for a patch, the boundary of the patch will be moved into the image, which

is shown as the patch at the top right corner.

Data format

HDF5 files were still used to store the data of input images. But another python

package h5py instead of PyTables was used here. H5py is a python package which

provides interface to the HDF5 data format. The related pseudo-codes are shown

below. It is easy to see that this implementation is simpler than using PyTables.

load the image using nibabel
images = nib.load(nii_file_path)

other kinds of preprocessing

images = resample(images)

get data from the corresponding image
data = image.get_fdata()…

truth = image.get_fdata()…

affine = image.get_fdata()…

return a hdf5 file handle using H5py
h5f = h5py.File(os.path.join(hdf5_path, folder+".h5"), 'w')

copy the data into hdf5 file

data = image.get_fdata()

h5f['raw'] = data

h5f['label'] = truth

…

hdf5_file .close()

Generate ground truth of edges

Besides the preprocessing operations for dataset1, the edge ground truth for the

combined neural network described in Chapter 4.1.3 was needed to be generated. It

was used to calculate edge loss function. Numpy.gradient was used to calculate the

gradients of voxels in the ground truth of segmentation to generate the edge ground

truth, which is shown in Figure 5-14.

79

Figure 5-14. Generating edge ground truth

5.2.2.2 Training with downsampling images

For dataset2, all networks were trained using Adam optimizer. The initial learning

rate was set to 0.01 for training with dice loss and was set to 0.001 for training with

weighted dice loss, which is same as that on dataset1. The learning rates were set to

be reduced by a factor of 0.5 after 2 epochs if the validation loss is not decreasing. For

different neural networks, the numbers of epochs of training are different. The

training was stopped when the loss on the validation dataset has not decreased for at

least three epochs.

Larger Patch size vs. larger batch size

For dataset2, Pytorch was used as the deep learning framework. It enables us using a

larger patch size compared with in Keras. To choose between a larger patch size with

a smaller batch size and a smaller patch size with a larger batch size, 3D U-net with

dense blocks in two situations were trained: with patch size 128×128×128 and batch

size 1, and with patch size 64×64×64 and batch size 12. The convergence lines of

these two trainings are shown in Figure 5-15, which we can see that the one with

larger patch size and smaller batch size achieved higher score in less iteration. So,

larger patch size has been chosen in the experiments.

80

Figure 5-15. Larger Patch size vs. larger batch size

3D U-net variants

Same as the experiments on dataset1, V-net with dice loss and the four 3D U-net

variants with weighted dice loss were tested. And the weight of each class was set

according the frequency of the class in the dataset, the first method of setting weights

described in Chapter 4.2.1. Instead of using patch size 64×64×64, the patch size was

set to 128×128×128 and batch size was set to 1. Table 5-6 shows the results of all

networks trained on the downsampling dataset.

From it, we can see that V-net with dice loss still performs poorly in small organs

segmentation although more small organs are segmented compared with the same

network on dataset1. With weighted dice loss, the accuracies of small organs

segmentation are improved. But the accuracy of the class whose frequency is lowest,

which is ACL, is still extremely low (the highest one is less than 0.1). Other classes

have low accuracies are also those whose frequencies are small such as CL, ME and

AR. In general, networks with SE blocks performed better on small organs

segmentation compared with that without SE blocks, which is similar with what was

observed in the experiments on dataset1. So, only networks with SE blocks were

chosen to be trained on original images whose size is 400×400×400.

81

Table 5-6. The restults of 3D U-net variants on downsampling dataset

class
Dice loss Weighted dice loss

V-net V-net Residual SE Dense Dense SE

BG 0.987 0.992 0.989 0.990 0.990

BO 0.917 0.831 0.938 0.932 0.948

PCL 0.002 0.153 0.347 0.338 0.228

ACL 0 0.083 0.096 0.084 0.041

MU 0.927 0.944 0.956 0.928 0.939

CB 0.567 0.500 0.457 0.495 0.515

BV 0.556 0.622 0.603 0.555 0.648

AR 0.057 0.198 0.270 0.152 0.194

CL 0.041 0.470 0.248 0.237 0.370

TE 0.726 0.701 0.723 0.641 0.726

ME 0.191 0.133 0.126 0.139 0.107

AD 0.919 0.876 0.919 0.904 0.925

VE 0 0.396 0.491 0.305 0.528

Total 0.979 0.987 0.983 0.984 0.985

Another notable result is the bones are segmented more completely than in the same

network on dataset1, which can be seen in Figure 5-16. Although there are still some

mistakes, but the improvement is considerably compared with that in Figure 5-9.

a) Ground truth b) Residual SE c) Dense SE

Figure 5-16. the segmentation restults on downsampling dataset

One explanation is that here a larger patch size which enables the networks to see

more parts of the images was used. And the bones are inevitably cut into several parts

since they are large and their positions are in the middle when patch-wise training is

82

used. It is difficult for the neural network to distinguish its pattern because of bones’

special structure if they are scattered into different batches. When larger patch size is

used, more parts of bones are in the same patch. So it can be segmented more

correctly.

Combined network

For the combined neural network described in Chapter 4.1.3, patch size 128×128×128

was used. The initial learning rate was set to 0.01 and would be reduced by a factor of

0.5 if the evaluation score on validation dataset isn’t improved in 2 epochs. The

combined neural networks using 3D U-net with residual SE blocks as the

segmentation network is named ResidualXUnet. The one using 3D U-net with dense

SE blocks as the segmentation network is named DenseXUnet. The results of these

two neural networks are shown in the table below, where we can see that the

accuracies haven’t been improved too much, even decreased, compared with the

corresponding neural network without edge detection network.

Table 5-7. Training results of two combined network

class Residual SE ResidualXUnet Dense SE DenseXUnet

BG 0.989 0.991 0.990 0.991

BO 0.938 0.899 0.948 0.957

PCL 0.347 0.230 0.228 0.219

ACL 0.096 0.081 0.041 0.106

MU 0.956 0.942 0.939 0.937

CB 0.457 0.518 0.515 0.500

BV 0.603 0.636 0.648 0.657

AR 0.270 0.207 0.194 0.215

CL 0.248 0.414 0.370 0.307

TE 0.723 0.716 0.726 0.695

ME 0.126 0.148 0.107 0.135

AD 0.919 0.903 0.925 0.914

VE 0.491 0.539 0.528 0.503

Total 0.983 0.985 0.985 0.986

83

The reason can be found from Figure 5-17, which is the convergence line of the

combined neural network using Residual SE blocks. Although the weight of dice loss

and the weight of edge loss are set to 1 and 1000 respectively, we can still see that the

optimization of dice loss was dominant during the training. The possible main reason

is the limitation of the capacity of the edge detection network. However, if more

attention has been paid on edge detection network, the efficiency of segmentation

network may be affected since the computing resource is limited.

Figure 5-17. Convergence line of the combined neural network

Traning time: DeepLab variants vs. other networks

The patch size used for training DeepLab variants is 192×192×192, which is larger

than other networks in the experiments. The DeepLab variants using the encoder of

3D U-net with dense SE blocks was tested first. The initial learning rate was set to

0.01, and would be reduced by a factor of 0.5 if the evaluation score on validation

dataset wasn’t improved in 3 epochs.

When training DeepLab variant on downsampling dataset, it achieved a relatively

high accuracy in few epochs as shown in the figure below, where we can see that the

evaluation score of DeepLab variant achieved 0.63 (the green line) far more quickly

than 3D U-net with dense SE blocks, which has a similar encoder part with DeepLab

variant here (similar but different, the details can be found in Chapter 4.1.2).

84

Figure 5-18. Convergence curve of DeepLab no downsampling dataset

In addition, the training speed of DeepLab variant was very fast. The table below

shows the training time of an epoch of DeepLab variant (the encoder part used dense

SE blocks), 3D U-net with dense SE blocks, 3D U-net with residual SE blocks and the

corresponding combined neural networks (DenseXUnet and ResidualXUnet).

Table 5-8. Training time of an epoch on downsampling dataset

Network Number of iteration Time (hours)

DeepLab variant 152 0.14

3D U-net with Dense SE 513 0.5

DenseXUnet 513 0.5

3D U-net with Residual SE 513 3

ResidualXUnet 513 3.5

The most important reason is that DeepLab variant used larger patch size. One

explanation that dense SE block was faster than residual SE is that residual block uses

add to fuse features, but dense block uses concatenation, which is light computing

burden compared with adding operation. Because the training speed is fast, most of

experiments about DeepLab variant were conducted on the original dataset directly.

5.2.2.3 Training with original images

85

On this part, we will discuss more about the performance of DeepLab variants and

how to improve it on the original images whose size is 400×400×400. Its performance

will also be compared with other networks introduced in Chapter 4.1.

DeepLab variants

Most of experiments about DeepLab variants have been directly conducted on the

original dataset. Two variants were trained including the one whose basic network

uses Residual SE blocks (ResidualDeeplab) and the one whose basic network uses

Dense SE blocks (DenseDeeplab). Both of them were trained with dice loss and

weighted dice loss.

Table 5-9. Performance of DeepLab variants

class

Dice loss Weighted dice loss

weight1 weight2

Dense

Deeplab

Residual

Deeplab

Dense

Deeplab

Residual

Deeplab

Dense

Deeplab

Residual

Deeplab

BG 0.986 0.983 0.984 0.984 0.977 0.984

BO 0.958 0.936 0.926 0.894 0.809 0.797

PCL 0.752 0.522 0.752 0.807 0.703 0.800

ACL 0.462 0.504 0.249 0.375 0.345 0.457

MU 0.969 0.976 0.959 0.964 0.926 0.950

CB 0.825 0.861 0.756 0.800 0.639 0.701

BV 0.813 0.781 0.748 0.759 0.553 0.627

AR 0.622 0.671 0.622 0.610 0.534 0.422

CL 0.681 0.589 0.596 0.684 0.449 0.536

TE 0.685 0.745 0.751 0.750 0.519 0.609

ME 0.844 0.819 0.797 0.806 0.706 0.794

AD 0.927 0.910 0.894 0.879 0.798 0.799

VE 0.290 0.265 0.359 0.443 0.227 0.344

Total 0.987 0.983 0.984 0.984 0.977 0.984

86

For the training with weighted dice loss, two methods described on Chapter 4.2.1

were used to set the weights. The results are shown in Table 5-9. Weight1 means

using the final dice coefficients when the corresponding network with unweighted

dice loss is converged. Weight2 means setting them according their frequencies. The

initial learning rate was set to 0.001 for the training with dice loss and weighted dice

loss using weight1, and 0.01 for the training with weighted dice loss using weight2

because it has relatively big weight for each class.

The segmentation accuracy of small organs is quite acceptable when used dice loss

(See Figure 5-20 d) and f)), which is different from the performance of 3D U-net

variants. DenseDeeplab with dice loss had higher accuracy on small organs such as

PCL, BV and CL than ResidualDeeplab with dice loss. It achieved almost same, even

higher accuracy compared with these networks with weighted dice loss. The figure

below is the performance matrix of DenseDeepLab with dice loss, where we can see it

achieved relatively high accuracies on all organs. ACL (3) has the smallest frequency

among these classes, so the segmentation accuracy is low. However it is still higher

than VE, a large part of which were predicted as AD. VE is not the smallest organ in

the dataset, but it is the most difficult one to be segmented.

Figure 5-19. Performance matrix for the DenseDeeplab with dice loss

In terms of weighted dice loss, ResidualDeeplab in general performed better than

DenseDeeplab, but not too much. The results also show that it is better to set the

weight according the dice coefficient when the corresponding network with non-

weighted dice loss converges (see Table 5-9). For 3D U-net variants, because the dice

coefficients of the classes when the corresponding network using unweighted dice

87

loss is converged are almost same as their frequencies in the dataset, this situation

cannot be observed. The increase of weights of small organs may cause the

improvement of their accuracies, but it may also damage the performance on large

organs. And the bottleneck of small organ segmentation is normally the neural

network rather than the loss function.

From Figure 5-20 e), some of bones (BOs) were segmented incorrectly. From the

experiments on downsampling dataset, we can learn that a larger patch size may

increase the segmentation accuracy of bones. However, a larger patch size can’t be

used since the computing resource is limited.

Table 5-10. Performance of ResidualDeeplab with more data

class
Residual

Deeplab

ResidualDeeplab

(with more data)

BG 0.984 0.981

BO 0.797 0.807

PCL 0.800 0.805

ACL 0.457 0.523

MU 0.950 0.955

CB 0.701 0.624

BV 0.627 0.627

AR 0.422 0.680

CL 0.536 0.586

TE 0.609 0.591

ME 0.794 0.652

AD 0.799 0.799

VE 0.344 0.347

Total 0.984 0.982

In order to allow the neural network to have a larger view, the downsampling images

whose size was 256×256×256 was added into the training dataset. It was hoped that

the neural network could have a larger receptive field and then improve the

segmentation accuracy of bones if it can learn from the downsampling images. For

each downsampling image, there are 8 patches, while for each original image, there

88

are 27 patches. To balance the frequency of downsampling images and original

images, it was made that the neural network learned the original image once when it

learned the downsampling image three times. The segmentation results of

ResidualDeeplab with more data is shown in Table 5-10, where we can see that the

accuracy of bones was not improved too much, but the accuracies of other organs are

improved especially for AR. However, the accuracies of some organs are decreased

such as ME. So, it is not an efficient way to address the problem and also it took a

longer time to train more data.

Other networks

Table 5-11. Performance of networks on original dataset2

class
Dice loss Weighted dice loss

V-net ResidualDeeplab ResidualSE ResidualDeeplab

BG 0.980 0.983 0.984 0.984

BO 0.866 0.936 0.694 0.894

PCL 0 0.522 0.664 0.807

ACL 0 0.504 0.505 0.375

MU 0.964 0.976 0.932 0.964

CB 0.740 0.861 0.761 0.800

BV 0.777 0.781 0.714 0.759

AR 0 0.671 0.638 0.610

CL 0.014 0.589 0.751 0.684

TE 0.642 0.745 0.712 0.750

ME 0.501 0.819 0.909 0.806

AD 0.854 0.910 0.807 0.879

VE 0.010 0.265 0.426 0.443

Total 0.981 0.983 0.985 0.984

Based on the results of experiments on the downsampling dataset, only 3D U-net with

residual SE blocks and 3D U-net with dense SE blocks were chosen to train on

original dataset for 3D U-net variants. To compare with the preliminary model, V-net

(3D U-net variants with Residual blocks) with dice loss was also trained. The

89

segmentation results of V-net and 3D U-net with residual SE blocks can be seen in

Figure 5-20 b) and c).

Table 5-11 shows the performance of 3D U-net with Residual blocks (V-Net) using

dice loss, 3D U-net with Residual SE blocks (ResidualSE) using weighted dice loss.

The accuracies of small organs are improved compared with those on the

downsampling dataset but the accuracies of large organs, especially bones, are

decreased. The main reason is that the neural networks actually have a smaller view

of the images although the patch sizes used are same. The patch-wise training actually

decreases the receptive field of the images at the beginning. For the downsampling

dataset, the view was reduced to (
128

256
)
3

=0.125. However, the view was reduced to

(
128

400
)
3

≈0.033. So, the improvement couldn’t be kept on the original images.

3D U-net with dense SE blocks performed worse than 3D U-net with residual SE

blocks even though the patch size was increased to 144×144×144 to try to improve

the accuracy. The result is shown neither in Table 5-11 nor in Figure 5-20. The

possible reason is that dense SE blocks use fewer filters, so the representation

capacity of the neural network may be limited when the resolution of the images is

high.

Table 5-11 also shows the performance of ResidualDeeplab. We can see

ResidualDeeplab in general performed better with both loss functions including dice

loss and weighted dice loss even ResidualSE achieved higher accuracy on some small

organs such as ACL and AR.

For the combined neural networks, their performances on the downsampling dataset

are not same as expected. They were also trained on the original images. For the one

whose segmentation neural network is Dense SE, the training time was acceptable,

but the results are not good. For the one whose segmentation neural network is

Residual SE, the training speed was too slow and the coverage rate also showed that it

was not valuable to continue the training. So, more trials about them have been

stopped.

90

 a)Ground truth b)Vnet with dice loss

 c)Residual SE with weighted dice loss d)ResidualDeeplab with dice loss

 e)ResidualDeeplab with weighted dice loss f)DenseDeeplab with dice loss

Figure 5-20. Segmentation results of networks on dataset2

91

6. Discussions

In last chapter, we discussed lots of details about the performance of the three

architectures described in Chapter 4, and the reasons why they performed in that way.

In this chapter, conclusions will be made for the experiments and discussion in

Chapter 5. In the sub-chapter Contribution, these conclusions will be expanded to a

general condition. There are plenty of researches which are valuable to do in the

domain of medical image segmentation. The future work described in the end is based

on the work in this thesis, so it will not go too far.

92

6.1 Conclusions

Deep convolutional neural networks (CNN) have been used in automated medical

image segmentation in recent years. It has decreased time and labor force involved.
This work attempted to use annotated knee MRI images provided by Sunnmøre MR-

Klinikk to train three types of neural networks including 3D U-net variants, DeepLab

variants and combined neural networks in order to choose a system which achieves

high accuracy on the segmentation task which has 13 extremely imbalanced classes.

For 3D U-net variants, three advanced components including residual blocks,

squeeze-and-excitation (SE) blocks, and dense blocks were used to construct four

variants of 3D U-net. The two variants of SE structure were used as the basic network

for the other two architectures. For DeepLab variants, the number of filters used in the

encoder (the basic network) was reduced by a half because Atrous Spatial Pyramid

Pooling (ASPP) was used at the bottom of the encoder, and a small upsampling factor

was used and one more deconvolution layers were added in the decoder for high

accuracy requirement of medical image segmentation. CASENet was used as the

reference of edge detection neural network, whose components were integrated into

3D U-net variants (the basic network) to form a type of combined neural network,

which is the third architecture.

There are two datasets used in the experiments. The first dataset contains 10 labels in

the ground truth. 3D U-net and its four variants with residual blocks, residual SE

blocks, dense blocks and dense SE blocks were tested respectively on it. To reduce

the training time, the size of these images was resampled from 400×400×275 to

274×274×274.

The experiments show the preliminary models including 3D U-net and V-net (3D U-

net with residual blocks) couldn’t segment the small organs correctly. However, with

weighted dice loss, this situation has been changed. SE and dense structures have

better performance on small organs segmentation. By using weighted dice loss, 3D U-

net with residual SE blocks, dense blocks and dense SE blocks obtained highest dice

coefficients on different small organs. V-net using dice loss achieved higher

accuracies on large organs. The large organs segmented by V-net and the small organs

93

segmented by U-net with dense SE blocks were merged as the final result, which

achieved relatively high accuracies on all organs.

The second dataset contains 13 labels and is more imbalanced in terms of the

frequency of voxels of each class. The experiments are based on the results of the

experiments on the first dataset. For the first dataset, only 3D U-net variants were

tested on it. While all three types of neural networks were tested on the second dataset.

Same as the experiments on the first dataset, these images were resampled from

400×400×400 to 256×256×256 . The three types of neural networks were initially

tested on the downsampling dataset in order to reduce the training time and debugging

time. Based on the results, neural networks which have better performance were

chosen to be trained on the original dataset.

The performance of 3D U-net variants on downsampling dataset is similar with those

on the first dataset. However, when they were tested on the original dataset, the

performance of dense structure was decreased. The possible reason is that the

representation capacity of dense structure with fewer filters cannot meet the

requirement of high resolution images.

Because the training speed and the convergence rate are fast for DeepLab variants on

the downsampling dataset, the most of experiments about it were trained on the

original images directly. It achieved relatively high accuracies on both small organs

and large organs even with dice loss, which is quite different from 3D U-net variants

that couldn’t segment small organs correctly with dice loss. For the two methods of

setting weights when weighted dice loss is used, the neural network performed better

with weights set by the finial dice coefficients of the classes when the network with

unweighted dice loss converged. The performance of combined network is not good

as expectation because the capacity of edge detection network is limited.

6.2 Contributions

Various neural networks based on three architectures have been developed in this

thesis including 3D U-net, which is a symmetrical encoder-decoder architecture,

DeepLab, which is an asymmetrical encoder-decoder architecture with ASPP, and a

94

type of combined neural network, which takes advantages of different neural

networks to attempt to improve the accuracy.

For 3D U-net architecture, four advanced blocks were used to replace the standard

convolution blocks in 3D U-net including residual blocks, residual SE blocks, dense

blocks and dense SE blocks The experiments show SE blocks can increase the

accuracy of small organs through modeling the correlations between channels and

adaptively strengthening important features, and dense blocks can obtain good results

with relatively fewer filters, which may enable us to try a relatively larger batch size

or patch size when the GPU memory is limited. The 3D U-net variants were used as

the backbone network for the other two architectures in this thesis.

DeepLab architecture is the most efficient one among the three architectures. It can

achieve a relatively high accuracy at high speed although 3D U-net may achieve

higher accuracy on some of small organs. The main reason why it performs best is

that it uses techniques such as ASPP, which enables the neural network to obtain a

large receptive field and capture multi-scale context with fewer parameters.

The performance of combined network is not good as expectation because the

capacity of edge detection network is limited, and it needs to be improved. However,

the performance of segmentation network may be affected if more attention is paid on

edge detection network because the computing resource is limited.

To design or choose a neural network for multi-label medical image segmentation, a

large receptive field is needed. It enables the neural network to learn more features in

the high level, and then to classify the organs correctly. In order to get a larger

receptive field, downsampling operations such as convolution with stride, pooling are

used, which cause resolution loss. Although fully convolutional neural network and

other techniques used in DeepLab solve this problem in some extent, the contradiction

between receptive field and resolution still exists especially when the computing

resource is limited. When patch-wise training is chosen, the receptive field is reduced

at the beginning. From the experiments in this thesis, the best strategy is to use an

efficient neural network which can obtain a large receptive field and capture multi-

scale context with fewer parameters. Because it uses less computing resource, a larger

patch size can be tried, which means it increases the receptive field at the beginning

95

compared with the networks which use a smaller patch size. However, the resolution

loss is still a problem. In this thesis, the segmentation accuracy of small organs is still

needed to be improved.

6.3 Future work

The three architectures used in this thesis are three of the most commonly used

architectures in medical image segmentation. Even the best one which is DeepLab

still performed not well enough in small organ segmentation especially on VE. So

more advanced components or neural network should be tried to improve the accuracy.

For the combined neural network, because fewer efforts were put into the edge

detection neural network search, it is possible that the performance of this architecture

can be improved if a more advanced edge detection neural network is used.

The neural networks in this thesis were only tested on knee. They may have different

performance on other datasets or organs. They should be tested on other public

datasets to confirm the performance. Different datasets have different features, which

enable us to learn more about the neural networks.

In this thesis, most of time has been spent to search the best combination of the layer

and the appropriate hyperparameters. However, this job can also be done by using

neural networks. V-NAS [61] formulated the structure learning as differentiable

neural architecture search, and let the network itself choose between 2D, 3D or

Pseudo-3D (P3D) convolutions at each layer. It can be tried next step.

96

References

[1] J. Sykes, “Reflections on the current status of commercial automated

segmentation systems in clinical practice,” J. Med. Radiation Sci., vol. 61, no.

3, pp. 131–134, 2014.

[2] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi et al., “A survey on

deep learning in medical image analysis,” J. Medical Image Analysis, Volume

42, 2017, pp. 89-101.

[3] URL: https://cs231n.github.io/neural-networks-1/

[4] Sumit Saha, “A Comprehensive Guide to Convolutional Neural Networks —

the ELI5 way,” 2018, URL: https://towardsdatascience.com/a-comprehensive-

guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

[5] Sebastian Ruder, “An overview of gradient descent optimization algorithms,”

2016, URL: https://ruder.io/optimizing-gradient-descent/

[6] Andrew Ng, “Improving Deep Neural Networks: Hyperparameter tuning,

Regularization and Optimization” URL: https://www.coursera.org/learn/deep-

neural-network?specialization=deep-learning

[7] Diederik P. Kingma, Jimmy Ba, “Adam: a Method for Stochastic

Optimization,” International Conference on Learning Representations, San

Diego, 2015, pp. 1-13.

[8] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail

Smelyanskiy, Ping Tak Peter Tang, “On Large-Batch Training for Deep

Learning: Generalization Gap and Sharp Minima” (2016),

arXiv:1609.04836 [cs.LG].

[9] Sagar Sharma, “Activation Functions in Neural Networks,” 2017, URL:

https://towardsdatascience.com/activation-functions-neural-networks-

1cbd9f8d91d6

[10] Arun Gandhi, “How to use Deep Learning when you have Limited Data,”

2018, URL: https://nanonets.com/blog/data-augmentation-how-to-use-deep-

learning-when-you-have-limited-data-part-2/

[11] Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros, “Unpaared Image-

To-Image Translation Using Cycle-Consistent Adversarial Networks,” The

IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2223-

2232.

https://www.sciencedirect.com/science/article/abs/pii/S1361841517301135#!
https://www.sciencedirect.com/science/article/abs/pii/S1361841517301135#!
https://cs231n.github.io/neural-networks-1/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://ruder.io/optimizing-gradient-descent/
https://www.coursera.org/learn/deep-neural-network?specialization=deep-learning
https://www.coursera.org/learn/deep-neural-network?specialization=deep-learning
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/
https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/

97

[12] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov, “Dropout: a simple way to prevent neural networks

from overfitting,” J. Mach. Learn. Res. 15, 1 (January 2014), 1929–1958.

[13] Amar Budhiraja, “Dropout in (Deep) Machine learning,” 2016, URL:

https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-

learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5

[14] Sergey Ioffe, Christian Szegedy, “Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift,” (2015)

arXiv:1502.03167 [cs.LG].

[15] Santurkar, Shibani and Tsipras, Dimitris and Ilyas, Andrew and Madry,

Aleksander, “How Does Batch Normalization Help Optimization,” Advances

in Neural Information Processing Systems 31, 2018, 2483-2493

[16] Larobina, M., Murino, “Medical Image File Formats,” J Digit

Imaging 27, 200–206 (2014).

[17] Alex Krizhevsky and Sutskever, Ilya and Hinton, Geoffrey E, “ImageNet

Classification with Deep Convolutional Neural Networks,” Advances in

Neural Information Processing Systems 25, 2012, 1097–1105.

[18] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning

applied to document recognition,” in Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278-2324, Nov. 1998.

[19] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, et al.,

“OverFeat: Integrated Recognition, Localization and Detection using

Convolutional Networks, ” (2013) arXiv:1312.6229 [cs.CV] .

[20] Karen Simonyan, Andrew Zisserman, “Very Deep Convolutional Networks

for Large-Scale Image Recognition,” (2014) arXiv:1409.1556 [cs.CV] ,

unpublished.

[21] Min Lin, Qiang Chen, Shuicheng Yan, “Network In Network,” (2013)

arXiv:1312.4400 [cs.NE] , unpublished.

[22] Christian Szegedy, Ii Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, et al.,

“Going Deeper with Convolutions,” (2014) arXiv:1409.4842 [cs.CV],

unpublished.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, “Deep Residual

Learning for Image Recognition,” The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016, pp. 770-778.

https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5

98

[24] Syrya Remanan, “Beginner’s Guide to Object Detection Algorithms,” 2019.

URL: https://medium.com/analytics-vidhya/beginners-guide-to-object-

detection-algorithms-6620fb31c375

[25] Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, “Rich Feature

Hierarchies for Accurate Object Detection and Semantic Segmentation,” The

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014,

pp. 580-587

[26] Ross Girshick, “Fast R-CNN,” The IEEE International Conference on

Computer Vision (ICCV), 2015, pp. 1440-1448.

[27] Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun, “Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal Networks,” 2015,

Advances in Neural Information Processing Systems 28, 91-99.

[28] Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick; “Mask R-CNN,”

The IEEE International Conference on Computer Vision (ICCV), 2017, pp.

2961-2969

[29] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, “You Only

Look Once: Unified, Real-Time Object Detection,” The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779-788

[30] Priya Dwivedi, “People Tracking using Deep Learning,” 2019, URL:

https://towardsdatascience.com/people-tracking-using-deep-learning-

5c90d43774be

[31] Jeremy Jordan, “An overview of semantic image segmentation,” 2018, URL:

https://www.jeremyjordan.me/semantic-segmentation/

[32] Saurabh Pal, “Semantic Segmentation: Introduction to the Deep Learning

Technique Behind Google Pixel’s Camera!” 2019, URL:

https://www.analyticsvidhya.com/blog/2019/02/tutorial-semantic-

segmentation-google-deeplab/

[33] Long, J., Shelhamer, E., Darrell, T., “Fully convolutional networks for

semantic segmentation,” The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2015, pp. 3431-3440.

[34] Ronneberger, O., Fischer, P., Brox, T., “U-Net: convolutional networks for

biomedical image segmentation,” In: Navab, N., Hornegger, J., Ills, W.M.,

Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer,

Heidelberg (2015).

https://medium.com/analytics-vidhya/beginners-guide-to-object-detection-algorithms-6620fb31c375
https://medium.com/analytics-vidhya/beginners-guide-to-object-detection-algorithms-6620fb31c375
https://towardsdatascience.com/people-tracking-using-deep-learning-5c90d43774be
https://towardsdatascience.com/people-tracking-using-deep-learning-5c90d43774be
https://www.jeremyjordan.me/semantic-segmentation/
https://www.analyticsvidhya.com/blog/2019/02/tutorial-semantic-segmentation-google-deeplab/
https://www.analyticsvidhya.com/blog/2019/02/tutorial-semantic-segmentation-google-deeplab/

99

[35] V. Badrinarayanan, A. Kendall and R. Cipolla, “SegNet: A Deep

Convolutional Encoder-Decoder Architecture for Image Segmentation,” IEEE

Transactions on Pattern Analysis and Machine Intelligence , vol. 39, no. 12, pp.

2481-2495, 1 Dec. 2017.

[36] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin

Murphy, Alan L. Yuille, “Semantic Image Segmentation with Deep

Convolutional Nets and Fully Connected CRFs (2014),”

arXiv:1412.7062 [cs.CV], unpublished.

[37] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. L. Yuille, “DeepLab:

Semantic Image Segmentation with Deep Convolutional Nets, Atrous

Convolution, and Fully Connected CRFs,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834-848, 1 April 2018.

[38] Liang-Chieh Chen, George Papandreou, Florian Schroff, Hartwig Adam,

“Rethinking Atrous Convolution for Semantic Image Segmentation” (2017),

arXiv:1706.05587 [cs.CV], unpublished.

[39] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, Hartwig

Adam, “Encoder-Decoder with Atrous Separable Convolution for Semantic

Image Segmentation,” The European Conference on Computer Vision

(ECCV), 2018, pp. 801-818

[40] P. Wang et al., "Understanding Convolution for Semantic Segmentation,”

2018 IEEE Winter Conference on Applications of Computer Vision (WACV),

Lake Tahoe, NV, 2018, pp. 1451-1460.

[41] Kamnitsas K. et al. “DeepMedic for Brain Tumor Segmentation” (2016), In:

Crimi A., Menze B., Maier O., Reyes M., Winzeck S., Handels H. (eds)

Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries.

BrainLes 2016. Lecture Notes in Computer Science, vol 10154. Springer,

Cham.

[42] C. Kaul, S. Manandhar and N. Pears, “Focusnet: An Attention-Based Fully

Convolutional Network for Medical Image Segmentation,” 2019 IEEE 16th

International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy,

2019, pp. 455-458.

[43] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D

U-net: Learning dense volumetric segmentation from sparse annotation,” in

Proc. MICCAI, 2016, pp. 424–432.

100

[44] F. Milletari, N. Navab and S. Ahmadi, “V-Net: Fully Convolutional Neural

Networks for Volumetric Medical Image Segmentation,” 2016 Fourth

International Conference on 3D Vision (3DV), Stanford, CA, 2016, pp. 565-

571.

[45] E. Gibson et al., “Automatic Multi-Organ Segmentation on Abdominal CT

With Dense V-Networks,” in IEEE Transactions on Medical Imaging, vol. 37,

no. 8, pp. 1822-1834, Aug. 2018.

[46] Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Iinberger;

“Densely Connected Convolutional Networks,” The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017, pp. 4700-4708.

[47] Fabian Isensee, Klaus H. Maier-Hein, “An attempt at beating the 3D U-Net”

(2019), arXiv:1908.02182 [eess.IV], unpublished.

[48] Jie Hu, Li Shen, Gang Sun, “Squeeze-and-Excitation Networks,” The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp.

7132-7141.

[49] Payer C., Štern D., Bischof H., Urschler M. (2018), “Multi-label Whole Heart

Segmentation Using CNNs and Anatomical Label Configurations,” In: Pop M.

et al. (eds) Statistical Atlases and Computational Models of the Heart. ACDC

and MMWHS Challenges. STACOM 2017. Lecture Notes in Computer

Science, vol 10663. Springer, Cham

[50] Yan Wang, Yuyin Zhou, Ii Shen, Seyoun Park, Elliot K. Fishman, Alan L.

Yuille, “Abdominal multi-organ segmentation with organ-attention networks

and statistical fusion,” Medical Image Analysis, vol 55, 2019, pp. 88-102,

ISSN 1361-8415

[51] Intao Zhu, Yufang Huang etc., “AnatomyNet: Deep learning for fast and fully

automated whole‐volume segmentation of head and neck anatomy,” in

Medical Physics, vol. 46, Issue 2, pp. 576-589, Feb 2019.

[52] Fisher Yu, Vladlen Koltun, “Multi-Scale Context Aggregation by Dilated

Convolutions,” arXiv:1511.07122 [cs.CV], Published as a conference paper

at ICLR 2016.

[53] Atul Pandey, “Depth-wise Convolution and Depth-wise Separable

Convolution,” 2018, URL: https://medium.com/@zurister/depth-wise-

convolution-and-depth-wise-separable-convolution-37346565d4ec

https://arxiv.org/search/eess?searchtype=author&query=Maier-Hein%2C+K+H
https://medium.com/@zurister/depth-wise-convolution-and-depth-wise-separable-convolution-37346565d4ec
https://medium.com/@zurister/depth-wise-convolution-and-depth-wise-separable-convolution-37346565d4ec

101

[54] K. He, X. Zhang, S. Ren and J. Sun, “Spatial Pyramid Pooling in Deep

Convolutional Networks for Visual Recognition,” in IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1904-1916, 1

Sept. 2015.

[55] Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel,

W. “ImageNet-trained CNNs are biased towards texture; increasing shape bias

improves accuracy and robustness,” International Conference on Learning

Representations (ICLR) (2019)

[56] Hatamizadeh A., Terzopoulos D., Myronenko A. “End-to-End Boundary

Aware Networks for Medical Image Segmentation,” Machine Learning in

Medical Imaging. MLMI 2019. Lecture Notes in Computer Science, vol

11861. Springer, Cham.

[57] Bakas, S., et al. “Advancing the cancer genome atlas glioma MRI collections

with expert segmentation labels and radiomic features,” Sci. Data 4, 170117

(2017).

[58] Zhang Z., Fu H., Dai H., Shen J., Pang Y., Shao L, “ET-Net: A Generic Edge-

aTtention Guidance Network for Medical Image Segmentation,” Medical

Image Computing and Computer Assisted Intervention – MICCAI 2019.

MICCAI 2019. Lecture Notes in Computer Science, vol 11764. Springer,

Cham.

[59] Zhiding Yu, Chen Feng, Ming-Yu Liu, Srikumar Ramalingam, “CASENet:

Deep Category-Aware Semantic Edge Detection,” The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5964-5973.

[60] Sudre C.H., Li W., Vercauteren T., Ourselin S., Jorge Cardoso M.,

“Generalised Dice Overlap as a Deep Learning Loss Function for Highly

Unbalanced Segmentations” (2017), In: Cardoso M. et al. (eds) Deep

Learning in Medical Image Analysis and Multimodal Learning for Clinical

Decision Support. DLMIA 2017, ML-CDS 2017. Lecture Notes in Computer

Science, vol 10553. Springer, Cham

[61] Z. Zhu, C. Liu, D. Yang, A. Yuille and D. Xu, “V-NAS: Neural Architecture

Search for Volumetric Medical Image Segmentation,” 2019 International

Conference on 3D Vision (3DV), Québec City, QC, Canada, 2019, pp. 240-

248, doi: 10.1109/3DV.2019.00035.

