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Abstract

The Burridge-Knopoff-Pad model is a novel and largely unstudied model made to rep-
resent the squealing noise from car brakes due to friction-induced vibrations. The model
combines the Burridge Knopoff model used to study earthquakes and a single-degree-of-
freedom model. The Burridge-Knopoff-Pad model consists of a pad and several blocks,
where the blocks are used as a discretization of the elastic brake discs in a physical braking
system to represent their natural vibrations. This master’s thesis aims to investigate the
Burridge-Knopoff-Pad model with a special focus on eigenmodes and Rayleigh damping.
This is done by simulating the model using C++ and visualizing the simulation results
through plots made in Python. A method has been developed to visualize which normal
modes of the model are activated throughout simulations. The thesis also studies the
number of degrees of freedom in the model and compares it to the Burridge-Knopoff and
single-degree-of-freedom model to get a better understanding of what the extra degree of
freedom does to the Burridge-Knopoff-Pad model.

The results show that by changing the external slider speed that acts on the system, the
model transitions from periodic to chaotic behaviour, which is consistent with research
suggesting that the response from brake squeal can be treated as chaotic. Comparing
the Burridge-Knopoff-Pad and the Burridge-Knopoff model with 100 blocks, the mod-
els show the same general behaviour, but when decreasing the degrees of freedom, the
models show considerable differences and it becomes evident that the pad in the Burridge-
Knopoff-Pad model damps the system. The thesis concludes that more than two degrees
of freedom are required in the Burridge-Knopoff-Pad model to represent brake squeal and
that convergence of the solution is achieved for approximately 40 degrees of freedom.
The introducing of Rayleigh damping is found to lead to both theoretical explainable
and several unexplained behaviours, verifying other research stating the importance of
damping in the modeling of friction-induced vibration systems. This thesis study shows
many interesting behaviours in the model, concluding that the model has the potential to
represent brake squeal, indicating that further work is needed.
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Sammendrag

Burridge-Knopoff-Pad-modellen er en nyutviklet og lite studert modell laget for å repres-
entere den skjærende lyden fra bilbremser grunnet friksjonsinduserte vibrasjoner. Mod-
ellen kombinerer Burridge-Knopoff-modellen som brukes til å studere jordskjelv med et
enkeltfrihetgradsystem. Burridge-Knopoff-Pad-modellen består av en stor masse og flere
blokker, hvorav blokkene er brukt som en diskretisering av de elastiske bremseskivene i et
fysisk bremsesystem for å representere deres naturlige vibrasjoner. Denne masteroppgaven
tar sikte på å undersøke Burridge-Knopoff-Pad-modellen med spesielt fokus på egenmoder
og Rayleigh-demping. Dette er gjort ved å simulere modellen i C++ og visualisere simuler-
ingsresultatene gjennom plott laget i Python. En metode er utviklet for å visualisere hvilke
normalmoder i modellen som er aktive gjennom simuleringer. Oppgaven studerer også
antall frihetsgrader i modellen og sammenligner den med Burridge-Knopoff modellen og
enkeltfrihetgradsystemet for å få en bedre forståelse av hva den ekstra frihetsgraden gjør
med Burridge-Knopoff-Pad-modellen.

Resultatene viser at ved å endre den eksterne glideshastigheten som virker på systemet,
beveger modellen seg fra periodisk til kaotisk oppførsel, noe som verifiserer annen for-
skning som indikerer at responsen til skjærende bremselyder kan betraktes som kaotisk.
Oppgaven konkluderer med at mer enn to grader av frihet kreves i Burridge-Knopoff-
Pad-modellen for å representere skjærende bremselyder, og at modellen konvergerer ved
omtrent 40 frihetsgrader. Når man sammenligner Burridge-Knopoff-Pad og Burridge-
Knopoff-modellen med 100 blokker, vises den samme generelle oppførselen i begge mod-
ellene, men når man reduserer antall frihetsgrader, viser modellene betydelige forskjeller,
og det blir tydelig at den store massen i Burridge-Knopoff-Pad-modellen demper systemet.
Innføringen av Rayleigh demping viser seg å føre til både teoretisk forklarlige og flere
uforklarte atferder, hvilket verifiserer annen forskning som diskuterer viktigheten av de-
mping i friksjonsinduserte bremsesystemer. Oppgaven viser flere interessante oppførelser
i modellen og konkluderer med at modellen har potensial til å representere skjærende
bremselyder, noe som indikerer at det er behov for videre arbeid.
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Chapter I

Introduction

1.1 Motivation
Many sound waves are produced by frictional motion. An example is the squealing noise
from car brakes, which occurs due to the vibrations induced by the frictional braking
force. Friction induced vibrations in braking systems is a problem in the industry, as it can
cause severe damages on machinery (Jean-Jacques Sinou (2007)). Although friction and
friction-induced vibrations is a well-studied field, it is complex, and to this date, there is
no accurate model to represent friction-induced vibrations.

In 2017, Astrid De Wijn and Bjørn Haugen at NTNU suggested merging a model fre-
quently used in earthquake analysis, the Burridge-Knopoff model, with a single-degree-of-
freedom model often used to represent car brakes, to make an improved model to represent
the squealing noise from car brakes. The result is a set of second-order differential equa-
tions with the received name the Burridge-Knopoff-Pad model. The model consists of a
pad and several blocks acted upon by a moving substrate. The blocks are used to discretize
the elastic brake discs in a physical braking system to represent their natural vibrations.

Three master students, Ferre (2018), Standnes (2019) and Høgberg (2019), have previously
studied the Burridge-Knopoff-Pad model. They have simulated the model and analyzed
the results, mostly regarding how position and velocity change over time with different
initial conditions. The previous students have found that the model has the potential to
represent friction-induced vibrations and concludes that more work is needed to further
assess the model, which is the starting point for this thesis.

1.2 Goal and Objectives
The project’s overall goal is to explore if it is possible to use the Burridge-Knopoff-Pad
model to obtain an improved way to represent friction and friction-induced vibrations.
This thesis combines previous work with new analysis to get more familiar with the model
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and get closer to the project’s overall goal. The main goal of working with this thesis
has been to bring two new perspectives to the study of the model. The first is to look
at which normal modes are present in the model at different behavioural regions. The
second new perspective is to introduce Rayleigh damping, to see how it affects the system.
Additionally, a study of the number of blocks and a comparison to the Burridge-Knopoff
and SDOF model will be used to get more familiar with the model and thus get closer to
the overall goal.

As three other students have previously worked on the project, the first objective is to grasp
the state of the project. Additionally, many researchers have worked with the Burridge-
Knopoff model. To look into their work is also one of the objectives. In order to bring in the
perspective of normal modes and damping, knowledge and theory in structural dynamics
need to be adapted, and it needs to be applied to the Burridge-Knopoff-Pad-model.

The previous students have written code used for simulations in the programming language
C++. Learning the basis of C++ and use it to run different simulations with different initial
conditions will be a large part of the project. Using C++ to implement new functionalities
that allow studying normal modes and damping is also necessary. An objective is also to
create a well-documented, easy-to-read, and easy-to-run code, allowing for further work
with the project. As the C++ simulation outputs raw data, Python code will be written to
analyze the data from the simulations through plots.

1.3 Outline
The thesis starts with providing the theoretical framework used in this thesis. It will then
describe relevant previous work done by the master students Ferre (2018) and Standnes
(2019). This includes introducing the Burridge-Knopoff-Pad model and summarizing
useful results obtained by the previous students, ensuring that the reader does not need to
read the former theses to understand the content of thesis. The methods used are split into
two chapters - Implementation Tools and Analysis Methods. The chapter Implementation
Tools describes the programming languages used, the structure of the code, documenta-
tion, and how the model is built up in terms of inputs and outputs. The chapter Analysis
Methods starts by introducing the general behaviour of the model before describing how
the theory is used to implement an eigenmode analysis and Rayleigh damping. Further,
Chapter 6 will present the results, Chapter 7 will discuss the results, and Chapter 8 provides
a conclusion and suggestions for further work.

1.4 Related Work
As will be shown, the response of the Burridge-Knopoff and the Burridge-Knopoff-Pad
models share similarities. Standnes (2019) demonstrated several common behavioural
patterns, and it can be assumed that interesting aspects and papers on the Burridge-Knopoff
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model can be used as inspiration for analysis of the Burridge-Knopoff-Pad model.

This thesis is a continuation of work done by Ferre (2018) and Standnes (2019), and their
work has been actively used throughout this paper. Their methods in terms of program-
ming were adopted and extended to allow for additional functionalities. The work done
by the master student Høgberg (2019) dealt with fretting fatigue, which is less relevant for
this thesis, and is thus not used extensively in this paper.

The Burridge-Knopoff model was originally constructed by Burridge and Knopoff (1967).
The model was further analyzed and modified by Carlson and Langer (1989), in which
version is used in this thesis. The model has later been analyzed in a large variety of
articles, desertions, and books. Papers by Mascia and Moschetta (2020) and Ferguson,
Klein and Rundle (1998) are used as they provide a more straightforward understanding
of the model and how it relates to earthquakes.

Many researchers have come up with models to represent friction-induced vibration. Papan-
gelo et al. (2016) and (2017) wrote two papers on snaking bifurcation where they presented
a model with apparent similarities to the Burridge-Knopoff model. Despite the similarities,
the BK model is not mentioned. This might be because snaking bifurcation is a different
science area, and the authors were not aware of the Burridge-Knockoff model.

A common characteristic of many suggested models to represent friction-induced vibra-
tions is that there are instabilities in the models (Jean-Jacques Sinou (2007)). Sinou
published the paper Mode coupling instability in friction-induced vibrations and its de-
pendency on system parameters including damping. Here, Jean-Jacques Sinou (2007)
states that even though several researchers over the years have studied friction-induced
vibrations, no method reduces instabilities. The paper further explains a stability ana-
lysis (Hopf bifurcation point) using a model to represent friction-induced vibrations. It
concludes by emphasizing the considerable importance of damping in stability analysis
and that it can lead to a misunderstanding of the mode coupling instability of mechanical
systems. Wernitza and Hoffmannb (2016) also shows that intermittency and multiscale
behaviour is dominant in friction-induced vibration for braking systems.

In the paper Nonlinear Dynamics and Control in an Automotive Brake System, Chang and
Hu (2016) use an 2-DOF model to study brake squeal. As Jean-Jacques Sinou (2007), they
use different methods to look into the transition to chaotic behaviour for the model they
use, concluding that their experiments have indicated that the response of brake squeal
can be treated as chaotic. In order to study chaotic behaviour they use a bifurcation
diagram, phase portraits, a Poincaré map, frequency spectra, and Lyapunov exponents.
The latter concepts are different ways to study chaotic motion (Artuso et al. (2020)). As
Jean-Jacques Sinou (2007), Chang and Hu (2016) also notes the importance of damping
in their brake squeal model.
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Carlson and Langer (1989) argue that the velocity weakening friction law they use in the
Burridge-Knopoff model is responsible for amplifying small heterogeneities in the initial
spatial distribution, which leads to chaotic motion. Erickson, Birnir and Lavallée (2010)
simulates the Burridge-Knopoff model with a different number of blocks and concludes
that, with the parameters used in the study, the model has a transition to chaotic behaviour
at N > 21 blocks. In the same paper, Erickson, Birnir and Lavallée (2010) argue that the
friction law may be responsible for causing small instabilities to grow large finite events,
similar to the conclusion of Carlson and Langer (1989).
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Chapter II

Theoretical Framework

This chapter will provide the theoretical framework necessary to understand the model
itself, its implementation for numerical simulations, and the methods used to analyze the
model. The first four sections, Sliding Friction, The Burridge-Knopoff model, A Single-
Degree-of-Freedom system, and Numerical Simulations, are relevant to understand the
development and numerical implementation of the new model. The following section,
Structural Dynamics, will provide theory in the area of structural dynamics needed to
understand the study of normal modes and Rayleigh damping.

2.1 Sliding Friction
The study of friction is one of the oldest, most common, and most fundamental problems in
physics (Persson (1998)). It is usually introduced and studied in a simplified manner in an
early stage of the first physics classes. However, Persson (1998) states that the behaviours
of friction are complicated and not well understood.

One can define sliding friction as a force between surfaces in contact that opposes relative
motion between the surfaces (Persson (1998)). The forces between the two bodies are
ultimately due to electromagnetic forces between the solids’ particles. Thus, to describe
the exact interaction between two solids, one would need to incorporate all electrons and
nuclei’s coupling using microscopic equations. Even though practically all macroscopic
solids are asperate from a microscopic point of view, microscopic studies of a contact
surface of macroscopic size would include a large number of atoms which is not feasible,
nor meaningful, to simulate. Friction is a substitute for such a microscopic analysis.

More than 500 years ago, Leonardo Da Vinci defined friction to be proportional to the
normal force (Freedman (1998)). His results are still used today, and sliding friction is
often defined in terms of the coefficient of friction µ, which is given as F/N , where F is
the force by friction working opposite to the direction of motion, and N is the force acting
normal to the surface (Freedman (1998)). One also often defines static friction µs, as the
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(a) Steady sliding. (b) Periodic stick-slip motion (c) Chaotic motion

Figure 2.1: The force acting on a block in three different sliding motion scenarios (Persson (1998)).

friction coefficient in the case where the objects have a static relative motion.

2.1.1 The Stick-Slip Phenomenon
The stick-slip phenomenon describes a motion that can occur when two objects are sliding
opposite to each other with a nonzero relative motion (Persson (1998)). One of the
fundamental problems in the study of friction is discovering the origin of the microscopic
stick-slip motion. It is believed that the phenomenon is caused by the fact that the static
friction coefficient is usually higher than the kinetic friction between two surfaces.

Imagine an object laying on a plate and acted on by an external force in the direction
parallel to the plate. When the force by motion overcomes the force by static friction,
there will be an instant reduction of the absolute value of the total force by friction, and
the object will start to move (Persson (1998)). Suppose then that the force from motion
becomes insufficient to overcome the kinetic friction. In that case, the object’s motion will
decelerate to a state of rest by the static friction, and the phenomenon can repeat.

Figure 2.1 from Persson (1998) illustrates different developments of friction over a period
of time for an object laying on a frictional plate and acted upon by a spring force. Figure
2.1(b) illustrates how the friction force changes during periodic occurrences of the stick-
slip motion. As a comparison, Figure 2.1(a) and (c) show how the force changes during
steady sliding and chaotic motion, respectively.

2.1.2 Stick-Slip Friction Law
Coulomb’s law states that kinetic friction is almost independent of velocity (Freedman
(1998)). However, when considering stick-slip, the stick-slip friction law can be used
(Carlson and Langer (1989)). This law describes how the force F on a sliding element is
dependent on the velocity ẋ and decreases towards zero as |ẋ| increases. This is illustrated
in Figure 2.2, where it is also illustrated how F (ẋ) varies between ±F0 as ẋ is equal to
zero.
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Figure 2.2: Illustration of the stick-slip friction law described by Carlson and Langer (1989).

2.2 The Burridge-Knopoff Model
The Burridge-Knopoff (BK) model is a set of differential equations originally used to
model the physics of earthquakes, suggesting that the tectonic plates are in contact only at
discrete points (Burridge and Knopoff (1967)). Earthquakes can happen at different kinds
of faults, but this model focuses on earthquakes occurring due to stick-slip faults. These
earthquakes have their initial rapture close to the earth’s surface, a relatively rigid layer
consisting of the crust and upper mantle (Mascia and Moschetta (2020)). The BK model
approaches the problem of stick-slip faults between two surfaces by letting two parallel
surfaces move relative to one another with a set of blocks in between, representing the
contact area between the surfaces.

The version of the model used in this project is developed by Carlson and Langer (1989)
and has slight adjustments from the original model. The model is illustrated in Figure 2.3.
It consists of n massive blocks of mass m all connected via springs with a spring constant
kc following Hooke’s law. The blocks are in contact with a straight, frictional, moving
substrate, a slider plate, on one side and connected to a stationary plate via springs of
spring constant kp on the opposite side. "The spring constants kc and kp describe the linear
elastic response of the contact region to compression and shear, respectively (Carlson
and Langer (1989))." As the slider plate moves with velocity, v, the blocks experience
a frictional force F , in the opposite direction of the slider plate motion.

Imagine the blocks are initially at rest. As the loader plate starts to move, the static friction
increases to the point where the friction force will decrease as the velocity of the blocks
deviates from zero (Ferguson, Klein and Rundle (1998)). The force will now depend on the
kinetic friction coefficient instead of the static, as explained in Section 2.1.1. The friction
force will then increase to the point where the blocks slide to a lower residual force state
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Figure 2.3: Illustration of the BK model. The blocks of mass m are connected to each other via
springs with spring constant kc and in contact with a moving frictional substrate. The blocks are
also connected to a stationary plate via springs with spring constant kp. (Recreation of the model

by Carlson and Langer (1989))

and decrease their velocity to the state of rest. To produce this dynamic instability, the
BK model uses a velocity-dependent frictional force, such as the stick-slip friction law
explained, that will decrease as the sliding block velocity increase (Ferguson, Klein and
Rundle (1998)).

The BK model is described using Newton’s second law of motion, which states that force
is equal to mass times acceleration, and Hooke’s law, which says that force is equal to
Hooke’s constant times the relative displacement. The model for one block is given in
Equation 2.1, where the equation is written as in the master thesis of Standnes (2019).
The mass of block i is given as mi, xi(t) is the displacement at time t, the dot notation
represents the time derivative and v is the velocity of the slider plate.

miẍi(t) = kc[xi+1(t)− 2xi(t) + xi−1(t)]− kpxi(t)− F (v + ẋi(t)) (2.1)

As seen in the first term of Equation 2.1, a sliding block i is dependent on its two neigh-
boring blocks, i − 1 and i + 1. If any of the neighboring blocks receives enough force to
cause them to slip, it can result in the slip of block i. Imagining that this happens to enough
blocks, a chain reaction of failure can occur. Going back to the origin of the model, this is
when an earthquake would occur (Mascia and Moschetta (2020)).

2.3 A Single-Degree-of-Freedom System
A single-degree-of-freedom (SDOF) oscillator system is a system used to simplify many
different motion systems (Clough and Penzien (1995)). Single-degree-of-freedom means
that only a single variable is needed to describe the system’s motion. Figure 2.4 illustrates
one of many ways to represent an SDOF system, where a block, or pad, of mass m is
connected to a spring, a damper, and an external friction force in terms of a moving plate,
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Figure 2.4: Representation of a single-degree-of freedom system, including a massive block, or
pad, with mass m, a damper with damping constant cp, a spring with spring constant kp0 and a

moving plate with velocity v.

moving with velocity v. The motion of the system can be described by the second order
differential equation (Clough and Penzien (1995)):

mẍ = −cpẋ− kp0x− f(ẋ+ v), (2.2)

with initial conditions
ẋ(0) = ẋ0, x(0) = x0, (2.3)

where x denotes the mass position, cp is the damping constant, kp0 is the spring coefficient
and f(ẋ+ v) is the force caused by friction.

2.4 Numerical Simulations
Many engineering problems involve complex differential equations that do not have an
exact analytic solution. To approximate a solution to such equations, they can be solved
numerically. In order to solve Equation 2.1, Burridge and Knopoff (1967) suggested using
the numerical method 2nd order Runga-Kutta. The following section will review both
Euler’s method and the 2nd order Runga-Kutta based on the compendium by Hellevik
(2020).

A second-order differential equation is an equation where the highest order of the deriv-
ative is of the second order, such as Equation 2.1. In an ordinary differential equation,
the term ordinary indicates that the derivatives are only with respect to one independent
variable. This is opposed to partial differential equation, where the derivatives can be with
respect to more than one independent variable.

2.4.1 Euler’s Method / First Order Runge-Kutta
One of the simplest ways to understand numerical methods is through Euler’s method, or
the first order Runge-Kutta method. Consider the initial value problem:
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Figure 2.5: Illustration of how Euler’s method approximate the function y.

dy

dx
= f(x, y),

y(x0) = y0,
(2.4)

where y is the unknown function of x to approximate. Picking a step size h > 0, Euler’s
approximation of the analytical value y(xj+1) can be calculated as:

yj+1 = yj + hf(xj , yj), (2.5)

where j is the step number. Equation 2.5 states that the next step, yj+1 is the sum of the
previous step, yj , and the step size times the derivative in the previous step hf(xj , yj).
Each step of the equation is analogous to calculating the displacement of an object moving
with constant velocity over the time step, y = y0 + tv0. Euler’s method is illustrated in
Figure 2.5. It can be shown using the Taylor’s series, that Euler’s method has a single step
error of O(h2) and hence the error for the whole approximation is O(h).

2.4.2 2nd Order Runge Kutta / Midpoint Method

The 2nd order Runge Kutta, or the explicit midpoint method, is another numerical method.
Again, consider the initial value problem described in Equation 2.4. Choosing the step
size h > 0, the midpoint method can be defined as:

yj+1 = yj + hf(xj +
h

2
, yj +

h

2
f(xj , yj)). (2.6)

The midpoint method and its relation to Euler’s method is illustrated in Figure 2.6. The
method expands Euler’s method by adding a midpoint between the steps used in Euler’s
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Figure 2.6: Illustration of the midpoint method and its relation to Euler’s method.

method to increase the accuracy and stability of the model. The midpoint method is a
second order approximation, hence the error is O(h3) for each step and O(h2) for the full
approximation. Regarding stability, Hellevik (2020) shows by the numerical amplification
factor that the midpoint method has a larger stability range than Euler’s method.

2.4.3 Second Order Equations in Vector Form
In order to solve a second-order differential equation such as the BK equation, the initial
value problem stated in Equation 2.4 needs to be modified to yield for second-order
derivatives as well. This is solved by writing the function to approximate in vector form:

~y =

[
y
ẏ

]
, ~̇y =

d

dx
(~y)

[
ẏ
ÿ

]
. (2.7)

2.5 Structural Dynamics

2.5.1 The General Eigenvalue Problem
The problem Ax = λx is an eigenvalue problem if it has a non-trivial solution (Lay, Lay
and McDonald (2016)). In that case, the scalar λ is known as the eigenvalue of the system,
and the nonzero vector x is the corresponding eigenvector for the matrixA.

To solve the eigenvalue problem, the problem can be rewritten to (A−λ)x = 0 and solved
by finding the eigenvalue λ which satisfies the characteristic equation forA,
det (A− λI) = 0, where I is the identity matrix. Gaussian Elimination can be used
to find the eigenvector x (Lay, Lay and McDonald (2016)). Note that an n × n matrix
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will have a characteristic polynomial of order n and will hence have a maximum of n
unique solutions, meaning it can have a maximum of n possible unique eigenvalues and
corresponding eigenvectors.

2.5.2 Equation of Motion of a Simple Dynamic System
Consider the SDOF system in Section 2.3, with an applied load p(t) substituting the
moving loader plate. In accordance with d’Alembert’s principle this can be written as
(e.g. Clough and Penzien (1995), Chopra (2017)):

mẍ(t) + cẋ(t) + kx(t) = p(t). (2.8)

From Hooke’s law, the angular frequency is expressed as ω =
√
k/m and the frequency

can be expressed as:

f =
ω

2π
=

1

2π

√
k

m
. (2.9)

From the angular frequency and the damping ratio, which is introduced as ζ = c/2mω,
Equation 2.8 can be rewritten as (Chopra (2017))

ẍ(t) + 2ζωẋ(t) + ω2x(t) = p(t)/m. (2.10)

By setting p(t) = 0, a second order homogeneous differential equation which governs the
free vibration response of the SDOF-system is obtained. Inserting the solution x = est

gives

(s2 + 2ζωs+ ω2)est = 0, (2.11)

where s is a constant (Kreyszig (2011)). The solution to the term in the parenthesis, also
known as the characteristic equation, can be inserted into the general solution of Equation
2.10, x(t) = a1e

s1t + a2e
s2t (Chopra (2017)). This gives

x(t) = e−ζωt(a1e
iωDt + a2e

−iωDt), (2.12)

with the complex valued constants a1 and a2, and the damped angular frequency ωD =
ω
√

1− ζ2. By the use of Euler’s formula the exponential terms are transformed into
trigonometric terms, giving

x(t) = e−ζωt(A cos(ωDt) +B sin(ωDt)), (2.13)
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with the constants A and B determined by the initial conditions A = x(0) and B =
(ẋ(0) + ζωx(0))/ωD. For the undamped case with ζ = 0 Equation 2.13 is reduced to

x(t) = A cos (ωt) +B sin (ωt) (2.14)

with A = x(0) and B = ẋ(0)/ω (Chopra (2017)).

2.5.3 Normal Modes
The motion pattern of an oscillating system in which all parts of the system moves si-
nusoidally with the same fixed phase and frequency is known as a normal mode of the
system. Common names for these fixed frequencies of the normal modes are the system’s
resonant or natural frequencies. In a linear oscillatory mass spring system, the eigenvalues
and eigenvectors give the normal modes of the system (Clough and Penzien (1995)).

The study of normal modes generally deals with several masses (Morin (2007)). Consider
a multi degree-of-freedom system (MDOF) with n masses, expressed as an expansion of
the homogeneous form of Equation 2.8

n∑
i=1

miẍi + ciẋi + kixi = 0 i = 1, 2, . . . , n. (2.15)

Equation 2.15 expresses a free motion system with n degrees of freedom (Bergan, Larsen
and Mollestad (1986), Clough and Penzien (1995)). Equation 2.15 can be expressed on a
more compact form using matrices:

Mẍ+Cẋ+Kx = 0, (2.16)

where M is the mass matrix, C as the damping matrix, K as the stiffness or spring con-
stant matrix, and x is the displacement vector, and where a dot denotes a time derivative.
In the undamped case the damping matrix C can be omitted to obtain

Mẍ+Kx = 0. (2.17)

A system’s response vibrating its ith normal mode can be by split into a deflection shape
φi and the time variation of the deflections given by the harmonic function qi(t). Thus the
system’s response can be given as

x(t) = qi(t)φi, (2.18)
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where φi is a vector with length equal to the number of degrees of freedom in the model,
and gives the direction and amplitude of the deflection relative to that of the other DOFs.
In accordance with Equation 2.14, the time variation is given as q(t) = Ai cos (ωit) +
Bi sin (ωit), with Ai, Bi and ωi given as in Equation 2.14. Inserting q(t) and Equation
2.18 into Equation 2.17 gives

(−ω2
iMφi +Kφi)qi(t) = 0. (2.19)

A solution to this equation is qi(t) = 0, but as this term describes the time variation of
the normal mode it is of little interest because it implies no motion. This is also know
as a trivial solution. Non-trivial solutions can be found by considering the term in the
parenthesis. Rewriting the term gives

(K − ω2
iM)φi = 0. (2.20)

Having i = 1, 2, . . . , n, Equation 2.20 can be be recognised as a set of n linear eigenvalue
problems (Géradin and Rixen (1997)). Solving for ω2

i by setting the determinant of the
parenthesis term equal to zero, det (K − ω2

iM) = 0, non-trivial solutions can be found.
For a known normal frequency ωi its corresponding deflection shape, mode shape, normal
vector or eigenvector φi can be calculated by Equation 2.20.

The n frequencies ωi are usually sorted from smallest to largest as

ω2
1 , ω

2
2 , ω

2
3 , . . . , ω

2
n, (2.21)

with corresponding eigenvectors

φ1,φ2,φ3, . . . ,φn. (2.22)

The vector consisting of all the frequencies is called the frequency vector ω. It can be
shown that for a real, symmetric, and positive definite mass and stiffness matrix, all roots
of the eigenvalues will be real and positive (Clough and Penzien (1995)).

Orthogonality Conditions

It can be shown that the deviation of the natural modal shapes leads to orthogonal prop-
erties of the mass and stiffness matrices (Bergan, Larsen and Mollestad (1986), Chopra
(2017)). The orthogonal properties are given as

φTMφ = I, φTKφ = Ω2, (2.23)
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where I is the identity matrix and Ω2 is the diagonal matrix with ωi2 on the diagonal.

2.5.4 Damped Free Vibrations
If damping is present in the system, such as in the SDOF system described above, the
solution to Equation 2.11 can be expressed as (Craig and Kurdila (1981))

s1,2 = − 1

2m
±
√

(
c

2m
)2 − ω2. (2.24)

The solution describes three different types of motion, determined by whether the value
under the root sign, the radical term, is positive, negative, or zero. The three types of
motion are known as overdamped, underdamped, and critically damped, respectively.
Consider first the critically damped case where the radical term is zero so that c/2m =
ω. In this case, the damping coefficient c is known as the critical damping coefficient
cc = 2mω = 2

√
mk. A critically damped system will move asymptotically towards

equilibrium with no oscillations around this point.

The ratio the given damping has to its critical value can now be introduced as ζ = c/cc. An
underdamped system is described by ζ < 1, critically damped by ζ = 1, and overdamped
by ζ > 1. An overdamped system will move slowly to an equilibrium position compared
to the underdamped and critically damped cases, but an underdamped system will oscillate
around the equilibrium point.

Rayleigh Damping

Viscous velocity damping is difficult to visualize for most structures, and simplified damp-
ing matrices are used in computer and mathematical models to avoid a matrix based on the
physical properties of the structure (Wilson (2002)). Rayleigh damping is one type of
damping often used in mathematical models to simulate the dynamic response. Rayleigh
damping makes the assumption that the damping matrix is proportional to the mass and
stiffness matrices (Wilson (2002)):

C = ηM + δK. (2.25)

The definition of the damping ration ζ = c/cc = 2mω and the orthogonal properties of
the mass and stiffness vectors gives:

2ωnζn = φn
TCφn = ηφn

TMφn + δφn
TKφn. (2.26)

The orthogonal properties further gives:

ζn =
η

2ωn
+
δωn

2
. (2.27)
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Figure 2.7: Relationship between Rayleigh damping ratio and frequency, and how the mass and
stiffness proportional damping affects the total Rayleigh damping.

Equation 2.27 can be used to estimate δ and η, by determining the damping ratio at two
separate frequencies and solving for δ and η.

Figure 2.7 shows the relationship between Rayleigh damping and frequency and how the
mass and stiffness proportional damping affects the total Rayleigh damping. Generally,
the mass proportional damping will have the largest impact at smaller frequencies, while
the stiffness proportional damping will have a larger impact at higher frequencies.
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Chapter III

The Burridge-Knopoff-Pad Model and Previous Work

As motioned, three other master students have worked on this project, two of whom this
thesis is built upon. This chapter will describe the BKP model in a similar way done by
the two previous students Ferre (2018) and Standnes (2019). It will also summarize the
essence of previous students’ work.

3.1 The Burridge-Knopoff-Pad Model
The Burridge-Knopoff-Pad (BKP) model was first presented by Ferre (2018) in his mas-
ter’s thesis, which to his awareness, had never been studied before. The model combines
an SDOF model, shown in Section 2.3, and the Burridge-Knopoff model, showed in
Section 2.2, in order to capture the squealing sound of car brakes. The SDOF model is
frequently used to model braking systems, but Ferre (2018) argues that it is too simple to
study brake vibrations and noise and that its simplicity might be the reason it is frequently
implemented. The blocks are thus included in the BKP model as a discretization of the
elastic brake discs in a physical braking system to represent their natural vibrations.

Figure 3.1 illustrates the BKP model. The figure clearly shows that the model combines the
SDOF system from Section 2.3 (top section of the illustration) and the BK model (bottom
section of the illustration). The equations governing the BKP model is shown in Equation
3.1, and is also a combination of the equations governing the BK and SDOF models from
Equation 2.1 and 2.2, respectively.

The pad position is described by x and each blocks position by uj , where j = 1, 2, . . . , N
and N is the number of blocks. The friction law φ(v + u̇j) is described in Section 3.2.
The rest of the parameters in Equation 3.1 are described in Table 3.1.
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Figure 3.1: Illustration of the Burridge-Knopoff-Pad model. The top part of the illustration
including the block with mass mx originates from the SDFS model and the bottom part of the

illustration including the blocks with mass mu is taken from the BK model.

muüj(t) = kc(ui+1(t)− 2ui(t) + ui−1(t))− kp(uj − x(t))−muφ(v + u̇j)

mxẍ(t) = −cpẋ(t)− kp0x+ kp

N∑
j=1

(uj − x(t))
(3.1)

3.2 Friction Law
The dimensionless friction law used is similar to the general stick-slip friction law outlined
in Section 2.1.2, and is given by Equation 3.2.

φ(y) =

{
F0[−1, 1], y = 0

F0
1−σ

1+ |y|
1−σ

sgn(y), y 6= 0
(3.2)

The parameter σ is the friction law scaling parameter and F0 is the maximum static friction
force. The parameter y is the relative velocity between the objects acted on by the friction
force, and sgn is the signum function returning real numbers. Note that the friction law
allows for negative displacement, a necessity for the simulation as the blocks are dragged
backwards by the slider plate up to the instance where the pulling springs overcome the
friction force.
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3.3 Parameters
Table 3.1 below shows all the parameters in Equation 3.1, in addition some parameters
used to simplify the implementation of the model, all chosen by Ferre (2018). The addi-
tional parameters and how they are used to determine the Derived parameters in Table 3.1
are explained in this section. Note that all parameters are dimensionless.

User defined parameters Symbol Value
Number of blocks N 100
Pad mass mx 100
Top plate-pad spring constant kp0 100
Damping ratio ζ 1

12
Maximum static friction force F0 1
Friction law scaling parameter σ 0.01
Slider speed v Varying
Block mass scaling factor sm 1
Pulling spring constant scaling factor sp 1
Neighboring spring scaling factor sc 0.01
Derived parameters Given by
Block mass mu 1 sm

mx
N

Pulling spring constant kp 1 sp
kp0
N

Neighboring spring constant kc 100 sckp0N

Critical damping coefficient cc ≈ 282.84 2
√
mx(kp0 +Nkp)

Pad damping coefficient cp ≈ 23.57 ζcc

Table 3.1: Parameters used in the BKP model.

3.3.1 Scaling Factors
To ensure that the friction force on the pad is independent of the number of blocks, the
mass of each block, mu, is proportional to the mass of the pad divided by the number of
blocks, mu = mxsm/N . Here, sm is the block mass scaling factor, which is set to 1.
Similarly, by the same argument, the spring constant between the pad and the blocks, kp,
is proportional to the upper spring constant, kp0, divided by N times the scaling factor sp,
which is also set to 1. The neighboring spring constant, kc, is proportional to N to ensure
the blocks’ axial stiffness to be independent of the number of blocks. The neighboring
spring constant is also multiplied to the neighbouring spring scaling factor sc, which is set
to 0.01.
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3.3.2 Damping Ratio

From Section 2.5.4, ζ = c/cc, where cc = 2
√
mxk. In this case, c = cp and cc =

2
√
mxK, where K is the sum of all spring constants connected to the pad,K = kp0+Nkp.

Inserting numbers, one can calculate cc resulting in cc ≈ 282.84 as seen in Table 3.1.

With the damping ratio set to 1/12, a number chosen by previous students, cp ≈ 23.57, as
seen in Table 3.1.

3.4 Numerical Implementation
The BKP model in Equation 3.1 is a set of second-order differential equations that can
be solved numerically. As stated, Burridge and Knopoff (1967) suggested using 2nd order
Runge-Kutta as the numerical scheme for the BK model. With that as a basis, the previous
master students have chosen the numerical scheme 2nd order Runge-Kutta to simulate the
BKP model, which is also used in this thesis.

Writing the BKP in vector form as in Equation 2.7 yields Equation 3.3. By substituting
Equation 3.3 for y in Equation 2.6, the BKP equation can be solved using the 2nd order
Runge Kutta.

~uj =

[
uj
u̇j

]
, ~̇uj =[

u̇j
1
mu

(kc(uj+1(t)− 2uj(t) + uj−1(t)) + kp(uj − x(t)) +muφ(v + u̇j))

]
~x =

[
x
ẋ

]
, ~̇x =

[
ẋ

1
mx

(−cpẋ− kp0x+ kp
∑N
j=1(uj − x))

]
.

(3.3)

3.4.1 Time Step
Ferre (2018) chose the time step, ∆t, based on the value which gives the vibrational mode
its highest frequency. The highest frequency of the BKP model will be the mode where
all adjacent blocks move with the opposite phase. The natural undamped frequency of this
mode is given as:

ω = 2πf =

√
2(2kc) + kp

mu
. (3.4)
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With a safety factor of 1/20, the time step can be calculated as:

∆t =
1

20f
=

1

20

2π
√
mu√

4kc + kp
= 0.0157. (3.5)

The above number is thus a definite upper bound for ∆t to ensure numerical stability. With
that as a basis, the time step ∆t was set to 0.005.

3.5 Results from Previous Students
In this section, a summery of the results of the previous students will be provided. Ferre
(2018), as the first student working on the project, introduced the model and created
a codebase to simulate it, in addition to performing some analysis. Standnes (2019)
continued by analyzing the model in different ways. Many of these results have been
considered when continuing on the project.

3.5.1 General Behaviour
Standnes (2019) showed how the friction amplitude differed by using different initial
conditions on the model. He showed that most simulations are quite similar but that some
simulations stick out and differ from the rest. Standnes (2019) also created animations of
the model, which shows how the pad and block position and velocity develops through
time 1.

Standnes found differences in how the pad position changes with slider velocity, depending
on whether the slider velocity increase or decrease during the simulation. The difference
was found largest in the velocity range between 0.68 and 1.11, where the model transitions
from low to high friction amplitudes. Standnes (2019) also uses the Fourier spectrum
to view different peaks of amplitude from different frequencies of the model for some
constant slider velocities.

3.5.2 Comparing the BK and BKP model
The previous students have compared the BK and BKP model. They found that both the
BK and BKP model have two "dips" in friction amplitude around 0.11 and 0.16 (depending
slightly on the simulation). Standnes (2019) found that even though the models show
similar behaviour, the second dip is not always present in the BKP model. Standnes argues
that running larger batches of both models would be interesting for further work to see if
this behaviour continues.

Standnes (2019) also shows plots where it is evident that including a pad in BK model
lowers the friction amplitude in the slider velocity interval 0.25 to 0.68 compared to not

1Animations: https://izome.github.io/burridge-knopoff-pad-karsten/

https:////izome.github.io//burridge-knopoff-pad-karsten//
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having the pad, both for increasing and decreasing slider velocities. However, in the slider
velocity interval 0.86 to 1.06, the decreasing BKP model shows the highest amplitude.
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Chapter IV

Implementation Tools

This chapter will outline the implementation tools used to simulate and analyze the BKP
model. The implementation tools include programming languages, programming struc-
tures, technologies, and some of the main classes and variables. The repository has
additional code documentation explaining all the functions, variables, classes, and libraries
used in the code, but this chapter will give an overall view of the procedure.

4.1 Overall Code Structure
Figure 4.1 shows the overall code structure. The code used to simulate the model is
written in C++ (referring to C++11). A YAML-file, including the parameters described
in Section 3.3 and a string with a proper run name, is used as input in the C++ code.
YAML, which is a recursive acronym for YAML Ain’t markup language, is a human-
readable data serialization standard compatible with many programming languages (Ben-
Kiki, Evans and döt Net (2001-2009)). When the C++ simulation program starts, it creates
a folder with the run name specified in the YAML-input file. As the program runs, it saves
the results, including the friction force and the pad and blocks’ velocity and position, in
separate CSV-files. CSV stands for comma separated values and is a file format used to
save data in a simple and effective way (Python Software Foundation (2021)). The CSV-
files are later used as input in Python-scripts that output figures enabling visualizations of
the simulations.

The code-base and architecture for running the Runge-Kutta simulations are taken from
Standnes (2019), which again took inspiration from Ferre (2018). Further adjustments
are made in order to implement the additional functionalities required. As Standnes
(2019) states, the implementation strives to have a good flow so that the code does not
need changes between runs. Similarly, modifications and additions to the code are herein
performed with re-usability in mind. This means that the functions are not dependant on a
particular instance and can be reused between runs, making it easy for the user to choose
what functionalities to use.
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Figure 4.1: Overall code structure. The C++ program takes a YAML-file as input and outputs
CSV-files, which are the input of different Python scripts, which again output figures. Output data

and figures are all saved in the same folder.

4.2 C++ Code
The C++ code is built up in an object-oriented manner with classes. The code is split into
three classes, called Simulation, Parameters, and Operation. Simulation and Parameters
were made by Standnes (2019) and have herein been further modified. Each class has a
header file (.hpp) and one or several C++-files (.cpp). The class Parameters deals with
reading the YAML-input-file, called parameters.yaml, and saving the parameters to a
Parameters object. The desired input parameters are specified in the parameters.yaml file
before running a new simulation. Section 4.6 describes parameters.yaml in detail.

When a Simulation object is initialized it takes in an instance of Parameters and creates
a result-folder. The Simulation object then simulates the BKP model using the 2nd order
Runge-Kutta method and creates CSV-output files which are added to the generated folder.
These output files include the friction force and the pad and blocks position and velocity
as CSV-files. The Operation class contains methods dealing with smaller operations such
as computing eigenvalues, eigenvectors, and mode shape contributions, which are further
discussed in Chapter 5. When an Operation object is initialized, it takes in an instance of
Simulation and when the program is finished, it outputs the eigenvalues, eigenvectors, and
modal contribution matrices as CSV-files, all added to the same result folder. A main.cpp
file with a main method is used to create the class instances and initializes the simulation
and operations. The connection between the header files and the main script is illustrated
in Figure 4.2.

4.2.1 Compilation
In C++, the code needs to be compiled to machine code that the processor can execute
before running the program (Stroustrup (2014)). This is in contrast to, for instance, the
language Python, where the code compiles through the interpreter 1 (Asadi (2016)). The
advantage with compiled languages is that the execution time is faster than for interpreted

1In interactive mode, Python code can also be run as a compiled program, but it is usually defined as an
interpreted language.
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Figure 4.2: Relationship between the main script, main.cpp, and the header files in the program.

languages (Asadi (2016)), which is the main reason it is used for the simulations of this
project.

During compilation, each C++ file is compiled into object-files, which are linked together
by a linker to make them executable (Brigs (2019)). If a program consists of various
scripts (and hence various object files after compilation), and a change is done in one of
the scripts, the linker allows for the recompilation of only the scripts that have been edited.
One such linker that helps to monitor what files in the program has changed is a Makefile
(Brigs (2019)). Makefiles includes both flags/dependencies and rules, which specify what
will be recompiled after a change is made (Brigs (2019)). Makefiles can be self-written,
but there are also programs that automatically create makefiles, such as Cmake.

While the previous students compiled using Cmake, however the adopted code could not
compile and Cmake made errors challenging to debug. In this work a self-written makefile
was created using the compiler g++. The inability to compile could be attributed to
several reasons, e.g., use of a different operating system, outdated packages, or insufficient
documentation of dependencies. See the readme.md files in the repository for a more
detailed description of how to compile using the makefile.

4.2.2 Libraries
These are the main libraries used in the C++ code:

• Armadillo

• Eigen

• YAML

Armadillo is a library simplifying all matrix operations necessary in this application (Sander-
son and Curtin (2016)). Almost all vectors and matrices in the program are made using
Armadillo. Eigen is a template library for linear algebra with matrices, vectors, and
operations, amongst others (Guennebaud, Jacob et al. (2010)). As mentioned, YAML
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is a file format, and the YAML library is necessary to import for the program to read the
YAML input file (Ben-Kiki, Evans and döt Net (2001-2009)).

4.3 Python Code
Python3 (otherwise referred to as "Python") is used to visualize the data output from the
simulations. Most of the code is built up in an object-oriented manner with classes and
methods. Most of the scripts deal with plotting, and others are purely help-functions. The
script help_functions.py contains the class LoadFile, which deals with operations such
as loading the YAML-file, loading the simulation outputs, and saving created figures. The
LoadFile class is used in almost all other classes and scripts.

The libraries Matplotlib and Seaborn are used for plotting. The Matplotlib package is the
main Python package for data visualization (Hunter (2007)). Seaborn is a visualization
library used on top of Matplotlib with a large focus on styling (Michael Waskom and the
Seaborn development team (2020)).

In order to keep an organized repository, both the Python scripts and the figures are saved
to the folder with the simulation run name. Changes are continuously made in the Python
scripts, making it helpful to have a copy of the previously used script. Note that the
disc space taken up by some copies of the scripts is small compared to the disc space of
simulations.

4.4 Technologies

4.4.1 Editor
The editor and programming environment used is Visual Studio Code (VS Code). VS
Code is a free, open-source text editor used to view, run, edit and debug code (VS Code
(n.d.)). It is the most widely used for client-side applications written in JavaScript, but it
also supports C++ and Python (VS Code (n.d.)). The previous students used VS Code for
this project, hence it was guaranteed it has the necessary functionalities for the project.
Based on the above, VS Code was chosen.

4.4.2 Version Control and Project Repository
The repository is found on a gitolite-server set up by the supervisor and accessed with SSH.
Git is used as version control. The author of this thesis has also cloned the repository to
her private GitLab profile so that others can easily access the work 2.

2https://gitlab.stud.idi.ntnu.no/theamm/burridge-knopoff-pad

https://gitlab.stud.idi.ntnu.no/theamm/burridge-knopoff-pad
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4.4.3 Hardware
A Mac Book Air with 4 GB ram and 1,4 GHz processor is used for the project. The Mac
Book is not very powerful, and a more powerful computer would be preferable. A backup
disk was also needed to store the files, as one single simulation easily reach 1-2 GB and
sometimes reached more than 20 GB.

4.5 Documentation and Code Base
The documentation and repository for the project can be accessed though the following:

• Gitolite repository on a remote server.

• The authors private GitLab repository (equal to gitolite repository)3.

• Doxygen HTML page, including all code documentation found in the repositories.

• Doxygen Latex document (equal to the Doxygen HTML page, but in pdf.-format).

• Web page with extended appendices 4.

4.5.1 Repository
The repository contains the code base for the project. The repository also contains four
readme.md (markedown)-files — one on the main page and one in three of the three sub-
directories. Note that previous students’ functionalities that are not used in this thesis have
been kept unchanged but are included in the repository "archive" folder.

4.5.2 Doxygen
Doxygen is a standard tool for generating documentation from C++, and it also supports
several other languages, such as Python. The doxygen files made in this project only con-
tains the C++ code documentation, as including the python code was considered excessive.
Doxygen is used to generate both an on-line HTML-page and an off-line Latex document
with both the documentation from the source code and visualization of the code structure.

4.5.3 Web Page
A web page was created as an extended appendix which can be helpful for further work
with the project 5. A description of how the web page is created is found in Appendix B.

3See footnote 2.
4https://theamartine.github.io/Burridge-Knopoff-Pad-Model/
5See footnote 4.

https://theamartine.github.io/Burridge-Knopoff-Pad-Model/
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4.6 Model Input
The following code is the parameters.yaml-file that is used as input in the model. Table
3.1 describes most of the parameters, but this section explains the rest.

Parameters:
dt: 0.005
seed: 101
num_events: 1
N: 100
max_time: 80000
slider_speed: 0
increment: 0
interval: 0
file_name: "test"
progress_indicator: true
m_F0: 1
m_alpha: 0.5
m_sigma: 0.01
m_mass_x: 100
m_scale_mass: 1
m_zeta: 0.0833
m_k_P0: 100
m_scale_P: 1
m_scale_C: 0.01
m_t: 0.0
m_v0: 0.0001
m_u_min: 0
blocks:
start_speed_continuous: 2
end_speed_continuous: 0
save_interval_dt: 100
threshold_speed: 0.1
m_eta: 0.2
m_delta: 0.047
lyapunov_delta: 0.00000001

Debug:
debug_no_friction: false
debug_no_neighbor_springs: false
debug_no_stationary_springs: false
debug_no_damper: false
debug_no_pad: false
debug_negative_initial_values: false
debug_only_negative_initial: false
debug_only_write_friction: false
debug_continuous_slider_speed: true
debug_one_degree_freedom_mode: false
rayleigh_damping: false

The number of time steps will be equal to max_time divided by dt. The parameter
save_speed_interval_dt determines the fraction of time steps that will be part of the
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output files. Thus, the number of saved time steps is equal to the total number of time steps
divided by save_speed_interval_dt. By not saving each time step, disk space is spared
and time used to save output files decreased, along with the run time to plot numerical
results.

Standnes (2019) tried both step-wise and continuous change of slider velocity. The para-
meters increment, interval and threshold_speed were made by Standnes (2019) and
are not used in this thesis, but will be explained due to their presence on the parameter list.
Step-wise change means that a velocity is kept constant for a certain amount of time steps
before increasing or decreasing with a jump. The parameter increment determines the
amount the slider velocity is incremented at each step-wise change. The number of time
steps run at each slider velocity is determined by interval divided by the total number of
time steps. With a step-wise slider velocity, there will be created separate output files for
each slider velocity.

In this thesis, the program has been run with continuous increase or decrease of slider
velocity. That means that the slider velocity changes with the same step size each time
step, giving a constant acceleration or deceleration. The two parameters
start_speed_continuous and end_speed_continuous are used to set the slider speed if
the boolean value debug_continuous_slider_speed is set to true. According to Standnes’
research, the system is more robust when running step-wise simulations, which can be
because the system will have some time to stabilize for each change in slider velocity.
Nevertheless, step-wise change also leads to more extensive sudden disruptions making
the model require more time to stabilize than if using continuous increasing or decreasing
slider velocity.

If the parameter threshold_speed is used, the program will increase or decrease the slider
velocity continuously until the program reaches the specified threshold. Then the program
will run with that slider speed (which is now equal to the threshold speed) throughout
the run. Standnes (2019) argues that the use of threshold velocity did not prove useful to
understand the model better.

The difference between the parameters N and blocks should also be noted. As N is an
integer representing the number of blocks used in the simulations, the list of blocks is
the blocks that will be part of the output file. If blocks is left blank, all blocks will be
part of the output. As for save_speed_interval_dt, the reasons to not always output all
blocks are to save disk space and decrease the time used to save the simulation output and
to create plots.

The parameter file_name should be a short but descriptive name for the given simulation.
This will be the name of the directory where the results are saved.

The parameter seed determines how the matrices used in the simulations are initialized.
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Different seed numbers lead to different initial conditions.

The values m_eta and m_delta are the two Rayleigh constants of Equation 2.25. These
are implemented in addition to the damper cp in the BKP model of Equation 3.1. In order
to only have Rayleigh damping (and cp set to zero), the Boolean value debug_no_damper

needs to be set to true.

The parameter lyapunov_delta is used in the code to calculate the maximum Lyapunov
exponent. The implementation is not completed.

As for debug_no_damper, the other Boolean values are also used to isolate different parts
of the model or to use different parts of the program. For example, by setting the parameter
debug_no_pad to True, the system will simplify the BKP model to the BK model.
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Chapter V

Analysis Methods

Whereas the previous chapter dealt with how the model is simulated and how the results are
plotted in terms of programming and computer tools, this chapter will provide the methods
used to analyze the model on a more theoretical level. It will first introduce the general
behaviour of the model, and how some some of the parameters from the previous chapter
are chosen. Further, the chapter will describe how the percentage of stick-slip behaviour
is calculated. Section 5.4 will show how the eigenvalue problem is implemented in both
the BK and BKP model, and how it is used to study the models. Lastly, the chapter will
describe the implementation of Rayleigh damping in the BKP model.

5.1 General Behaviour
Figure 5.1 illustrates the pad position plotted as a function of slider velocity as the slider
velocity decreases with constant deceleration from 2 to 0. The run specifications are found
in Appendix A.1. Figure 5.1 shows that in the beginning of the simulation, when the slider
velocity is close to 2, the system uses some time to reach a steady state before the pad is
dragged backwards by the movement of the slider plate and the position gets a negative
value. At high velocities, in the slider velocity range v ∈ [1.9, 0.75], the pad position
oscillate with decreasing amplitudes. When the slider velocity is approximately 0.7, there
is a sudden jump in position amplitude. As the slider velocity continues to decrease, the
amplitude of the position gets smaller. When the slider velocity is approximately 0.1, there
is a sudden shrink in position amplitude before it gets larger after a short time interval.

As will be shown in Section 5.2, varying the initial conditions will lead to changes in the
system’s behaviour. Nevertheless, most of the general behaviour explained in this section
will remain the same.
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Figure 5.1: Pad position as a function of slider velocity where the slider velocity decreases
continuously from 2 to 0. (Run specifications: Appendix A.1.)

In the rest of the thesis, in order to quickly see the general behaviour of the model, friction
is plotted as a function of slider velocity, as in Figure 5.2(a) which clearly shows the same
general behaviour as the pad position in Figure 5.1. Note that in the case when the slider
velocity decreases continuously, plotting against slider velocity is equivalent to plotting
against time, as v = 2 is at t = 0 and v = 0 is at t = 80 000, where 80 000 is the max
time of this run. The latter is seen by comparing Figure 5.1 and Figure 5.2(b), where the
pad position plotted against time. The pad velocity plotted against time in Figure 5.2(c).
The general behaviour of the blocks’ position and velocity is similar to that of the pad and
can be seen in Appendix C.

5.2 Parameters
Different initial conditions have proven to affect the system differently. The following
section will show how the parameters seed, max time, start/end velocity, and save interval
affect the response of the system.

Note that there are many different ways to compare and plot different runs. The previous
students have calculated the error/difference between each time step in a run and compared
it to the mean value of all runs. In this thesis, the primary way to compare runs has been
to plot friction versus time of each run next to each other. A considerable advantage with
this approach is that one can easily see the difference in the runs at critical sections of the
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(a) Friction as a function of slider velocity. (b) Pad position as a function of time.

(c) Pad velocity as a function of time.

Figure 5.2: Different plots of the pad behaviour from a simulation with constant deceleration. (Run
specification: Appendix A.1.)



34 5. Analysis Methods

model. A disadvantage is that it does not accurately quantify to what extent the simulations
differs.

5.2.1 Seed
As mentioned in Section 4.6, the seed determines the simulation’s initial condition. Figure
5.3 shows the friction plotted against slider velocity for several runs where the seed is the
only varying factor. As seen in Figure 5.3, the seed choice leads to some variations. Many
runs, such as the run with seed 160 in the bottom right corner, has an area of "medium
increased" amplitude, around v = 1, before the area of larger amplitudes starts around
v = 0.7. This behaviour can also be seen for many other seeds (e.g. 1 and 10).

Another difference is the amplitude at higher slider velocities. For instance, seed 101 and
seed 40 have a higher amplitude in the range from slider velocity 1.9 to 1, compared to
the other runs. Thirdly, there is an evident amplitude drop at very low slider velocities
(v ≈ 0.2) for some runs, such as seed 30, 40, and 70, which is not visible for e.g. seed 90
and 100.

There are differences in the model’s response depending on the seed. Therefore, when
analysing the model, different seeds will be considered. However, to retain consistency
with previous work with the model, seed 101 will primarily be used to analyse the model,
though seed 100 is often used as a compliment. From Figure 5.3 these two seeds, 100 and
101, have distinct behaviours in some regions, making it reasonable analyse both.

5.2.2 Max Time
Different simulations are run to decide the max time, which again determines the number
of time steps. Figure 5.4 shows a comparison between six simulations where the only
parameter changed is the max time.

The two subplots with blue shade, which represent a max time of 10 000 and 20 000,
show severe differences from plots with a higher max time, indicating that it is too low.
The behaviour of the model does not change significantly when increasing the max time
beyond 40 000, and this is thus assumed to be sufficient to represent an accurate response
of the model. Based on this, a max time of 80 000 is used when the slider velocity moves
from 2 to 0 or 0 to 2. 80 000 was also the max time used by Standnes (2019) in most of his
simulations. A max time of 80 000 is equivalent to 16 000 000 time steps with the fixed
dt of 0.005.
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Figure 5.3: Friction force versus slider velocity for 16 different runs of different seed. (Run
specifications seed 101: Appendix A.1. Only the seed is changed in the rest of the runs.)
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(a) Seed 101.

(b) Seed 100.

Figure 5.4: A max time comparison between six different runs for two different seeds. (Run
specifications seed 101 max time 80 000: Appendix 1. Only max time and seed are the varying

parameters in the other runs.)
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5.2.3 Start and End Slider Velocity
Visualized in Figure 5.5 are two runs starting at v = 4 and v = 2 for seed 100 and 101. As
can be seen, the conditions at v = 2 is different for the two runs. Note that when starting
the simulation at v = 4, the max time number is doubled compared to the runs starting at
v = 2.

As the behaviour is mostly interesting when v is below approximately 1.3, it is chosen to
use a start slider velocity of 2, as this is considered sufficient to capture that area.

(a) Seed 101. (b) Seed 100.

Figure 5.5: Two different runs plotted on top of each other for two different seeds, where the
orange plots has an initial velocity of 2, while the blue has an initial velocity of 4. (Run

specifications: Appendix A.1, A.3, A.4 and A.5 )

5.2.4 Save Interval
As mentioned in Section 4.6, the save interval determines the fraction of the saved time
steps. Decreasing the number of saved time steps will not affect the simulation’s run time
but will decrease the run time of all post-processing and plotting operations. Standnes
(2019) analyzed how the save interval affects the system. He shows that the friction
amplitude error increased proportionally as fewer time steps were saved and used a save
interval of 1/100, which has also been used in this thesis. For some runs, the save interval
is set to 1/10. This is specified in Appendix A.

5.3 Stick
It was desired to get more familiar with how stick depends on slider velocity. For different
slider velocities, the mean percentage of stick for each block can be calculated.

In relation to Section 2.1.1, stick is when there is zero relative velocity between a block
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and the slider plate. The latter translates to when a block’s velocity is equal to the slider
velocity. However, checking when two continuously changing numbers are equal is com-
plicated in a numerical simulation, as everything changes step-wise. To get around this
issue, the definition of stick used here is when the velocity of a block, rounded to three
decimals, is equal to the slider velocity, rounded to three decimals. Therefore, the stick
percentage calculated is not entirely accurate, but it can indicate how stick varies with
slider velocity.

There are also other ways to calculate stick. Corrado and Mascia (2016) calculates stick
in the BK model. They define a block as "stuck" if both the elastic resultant force is less
than the maximum static friction force and the velocity is equal to zero. Corrado and
Mascia (2016) define zero relative velocity as when there is a sign change and the velocity
becomes negative. This is different than the method used in this thesis to define zero
relative velocity. Further, Corrado and Mascia (2016) state that using a threshold value,
similar to what is done here, for creating a range for the zero velocity is a popular method
to calculating stick.

5.4 The Eigenvalue Problem
Section 2.5.3 showed that when neglecting damping, the eigenvalue problem can be ex-
pressed as in Equation 2.17.

Mẍ+Kx = 0. (2.17)

In order to get a better understanding of the BKP model, it was desired to study the most
dominant frequencies using eigenvalues and eigenvectors. This section will demonstrate
how to compute the eigenvalues and eigenvectors for the BK and BKP model, and how
they are used to analyse how the activation of different modes change during simulations
of the BKP model.

5.4.1 Mass and stiffness matrices for the BKP Model
In order to compute the eigenvalues and eigenvectors for the BKP model, the equation of
motion for the BKP model in Equation 3.1 has to be rewritten on the form of Equation
2.17. In the case of the BKP equation, x is the position vector for both the blocks and
the pad, on the form [u1, u2, u3, . . . , uN , x]. Its second time derivative is ẍ. The number
of degrees of freedom in this system is N + 1, one degree of freedom for each block,
and one for the pad. Hence, both the mass and stiffness matrices will be of dimension
N + 1×N + 1, where the first N columns and rows represent the blocks and the last row
and column represent the pad. The mass matrix is presented in Equation 5.1 with all the
masses in the system on the diagonal, where it is shown how the N blocks each have mass
m, and the pad has mass M .
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The stiffness matrix is derived by considering all the spring constants in the BKP model
and translating it to matrix form. From the illustration of the BKP model in Figure 3.1,
the first block from the left is connected to a block on its right side with a spring of spring
constant kc and to the pad with a spring of spring constant kp. The (0, 0) element of the
stiffness matrix will hence be kp + kc. The (0, 1) element will be −kc as it describes
the stiffness from block number two from the left onto block number one. Similarly, the
(0, N) element will be −kp, as −kp ∗ x describes the spring force from the pad to the
block. In the same way, all the other elements are derived, resulting in the stiffness matrix
in Equation 5.2.


m1 0 . . . 0 0
0 m2 . . . 0 0
...

...
. . .

...
...

0 0 . . . mn 0
0 0 . . . 0 M

⇒

m 0 . . . 0 0
0 m . . . 0 0
...

...
. . .

...
...

0 0 . . . m 0
0 0 . . . 0 M

 (5.1)



kc + kp −kc 0 . . . 0 0 −kp
−kc 2kc + kp −kc . . . 0 0 −kp

...
...

...
. . .

...
...

...
0 0 0 . . . 2kc + kp −kc −kp
0 0 0 . . . −kc kc + kp −kp
−kp −kp −kp . . . −kp −kp kp0 +N ∗ kp


(5.2)

5.4.2 Mass and Stiffness Matrices for the BK Model
The mass and stiffness matrices of the BK model will be similar to those in the previous
section. However, the BK equation does not have the pad on the (N+1)th row and column.
Hence, the mass and stiffness matrices of the BK equation will be equal to those of the
BKP with the (N + 1)th row and column removed. The mass matrix for the BK model is
shows in Equation 5.3 and the stiffness matrix in Equation 5.4.


m 0 . . . 0
0 m . . . 0
...

...
. . .

...
0 0 . . . m

 (5.3)
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kc + kp −kc 0 . . . 0 0
−kc 2kc + kp −kc . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 2kc + kp −kc
0 0 0 . . . −kc kc + kp

 (5.4)

5.4.3 Computing Eigenvalues and Eigenvectors
There are different functions, both in C++ and Python, for calculating eigenvalues and
eigenvectors. The function eig_pair from the Armadillo library has the advantage of
taking in two square matrices as input and solves the eigenvalue problem on the form it
is in Equation 2.17 (Sanderson and Curtin (2016)). The two input matrices correspond to
K and M in the eigenvalue problem. For mass and stiffness matrices of size (N + 1) ×
(N + 1), the function calculates and outputs N + 1 eigenvalues and N + 1 corresponding
eigenvectors, each of length N + 1. The eigenvalues are added to an Armadillo vector,
and the eigenvectors are added as columns in an Armadillo matrix, where an index in the
eigenvalue vector corresponds to the same column index in the eigenvector matrix.

Note that the Armadillo eig_pair function outputs both a real and imaginary part, but
from the Section 2.5.3, when mass and stiffness matrices are symmetric, the imaginary
part of the output will always be zero. As the mass and stiffness matrices for both the BK
and BKP equations are symmetric, the imaginary part is zero and the program can safely
be simplified to output only the real part of the eigenvalues.

Often, only the low frequency eigenmodes will be relevant for the research. Wilson
(2002) argues that seismic motions excite only the lower frequencies of a structure and
that neglecting large eigenvalues does not typically lead to errors. After looking at how
the different modes affect the system, the 21 lowest modes were used. This will be showed
in Chapter 6.

5.4.4 Normalization
There are different ways to normalize the eigenvectors. Examples of this are to use the first,
second, and infinite norm and normalizing based on the mass and stiffness matrix. Mass
generalized normalization is used following other structural dynamics literature (Wilson
(2002)). Mass generalised normalisation means that

φTMφ = I, (5.5)

where φ is an eigenvector (Chopra (2017)). In order to scale φ so that Equation 5.5 holds,
the following transformations are used (Chopra (2017)):
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mi = φi
TMφi φi = φi/

√
m, (5.6)

wherem is the vector containing the N + 1 mi elements.

5.4.5 Mode Shape Plots
After computing the eigenvectors and eigenvalues, these can be plotted to view which
modes are dominant at different times and slider velocities. With N = 100 blocks and
one pad in the system, there will be 101 degrees of freedom, hence 101 eigenvalues with
corresponding eigenvectors. Note that in this thesis, mode 0 refers to the mode shape
of the lowest frequency. This contradicts some literature that uses mode 1 as the lowest
frequency mode (Clough and Penzien (1995)).

Figure 5.6 illustrates the approach to plot the mode shapes used in this thesis. the figure
shows each of the 101 values in the eigenvector corresponding to the second mode plotted
as bars. The first bar on the left is the eigenvector value corresponding to the first degree
of freedom in the mass and stiffness matrices, i.e., the first block from the left in the BKP
model illustration in Figure 3.1. Further, the second bar represents the second block and
so forth. The last bar represents the last degree of freedom from the mass and stiffness
matrices, which describes the pad.
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Figure 5.6: The eigenvector of mode 2 plotted as bars.

5.4.6 Interpretation of Different Modes
The goal of doing an eigenmode analysis was to understand what modes contribute to
disturbances in the system, which can help understand the model’s periodicity. Consider
the mode shape matrix Φ consisting of N + 1 eigenvectors φ, each of length N + 1:

Φ = φ1, . . . ,φN+1. (5.7)

Consider also the displacement matrix which consists of t vectors, where t is the number
of time step, each of length N + 1:

D = x1, . . . ,xt. (5.8)

By taking the dot product between a displacement vector at a given time step and an
eigenvector, as shown in Equation 5.9, yields a number, eij , representing the contribution
of the respective mode to displacement at the respective time.

eij = xj · φi j = 1, . . . , t i = 1, . . . , N + 1 (5.9)
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Similarly, one can take the dot product between each mode shape and the velocity vector
ẋj , at each time step j, to obtain how much each mode contributes to the change in velocity
over time.

ėj = ẋj · φi j = 1, . . . , t i = 1, . . . , N + 1 (5.10)

One can also use the previous dot products to obtain the kinetic and potential energy in
each mode. The kinetic energy for a given time step is given as

T =

N+1∑
i=1

1

2
miẋi

=
1

2
ẋMẋ

=
1

2
ẋΦΦTMẋ

=

N+1∑
i

(ẋφi
T)(φiMẋ)

=

N+1∑
i,k

(ẋφi)(φi
TMφk)(ẋφk) (5.10)

From Section 2.5.3 φT
iMφk is a diagonal matrix, and by extracting the diagonal part of

Equation 5.10 (Wilson (2002)):

Ti,i =
1

2
(ẋφi)

2mi (5.11)

Similarly, the expression for potential energy will be:

Vi,i =
1

2
(xφi)

2ki, (5.12)

where mi and ki are the elements of the diagonal lines of the diagonal mass and stiffness
matrices, respectively.

5.4.7 Heat Maps
The modal contributions found in the previous section can be used to create spatiotemporal
plots, also known as heat maps. The plots will have each mode on the vertical axis and
time (or slider velocity, for runs with constant acceleration or deceleration of the slider
velocity) on the horizontal axis. The content of the heat map will be the modal contribution
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amplitudes for displacement, e, velocity, ė or energy, which where found in the previous
section.

A heat map is shown in Figure 5.7 for a small test run with few time steps and 30 blocks.
The heat map shows how each mode contributes to velocity. Comparing this to the the
friction plot in Figure 5.7(a) for the same run, the regions with much mess for low slider
velocities in the heat map corresponds to the high amplitude in the friction plot for the
same slider velocities. Reversely, the regions of low friction amplitude corresponds to
regions with distinct activated modes contributing to velocity. This type of analysis will
be done for several simulations in Chapter 6 Results.
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(a) Friction plot.

(b) Velocity heat map.

Figure 5.7: Friction as a function of slider velocity for a test simulation with increasing slider
velocity from 0 to 2. The heat map shows the contribution to velocity for each normal mode. (Run

specifications: Appendix A.8.)
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5.4.8 Removal of Dominant Modes
As shown in the displacement heat map in Figure 5.7(a), some modes are very dominant,
making it difficult to visualize how the other modes affect the model. To get a better view
of the other modes as well, three approaches have been tested. The first is to remove
the most dominant modes from the plot. Note that with this approach, the modes are not
removed from the simulation, only from the heat map. The second approach is to remove
the mean value. Figure 5.8(b) shows a displacement heat map for the same run as Figure
5.8(a), but with subtracted mean. The third approach was to use only the steady-state
solution of the displacement and velocity vectors. The latter was tested with poor results.

5.5 Rayleigh Damping
Section 2.5.4 describes Rayleigh damping as proportional to the mass and stiffness matrix,
as in Equation 2.25.

C = ηM + δK. (2.25)

Rayleigh damping differs from the damping in the BKP model, Equation 3.1, where there
is only one element in the damping matrix, namely the (N + 1, N + 1) element between
the pad and the top loader plate, which is equal to cp.

Introducing Rayleigh damping a challenge is to choose the constants η and δ. To obtain
an understanding of how mass and stiffness proportional damping affect the system, both
of them can be adjusted. In this project, the primary approach has been to adjust the two
constants separately.

In a paper by Chowdhury and Dasgupta (2003), a method is developed to calculate δ and
η by first estimating two values for ζ at two different frequencies using Equation 2.27. A
simplified method was tested here. Equation 2.27 was used to calculate η and δ using two
significant modes. Setting ζ to a chosen value and using the frequency from two significant
modes, one obtains two equations with two unknowns which can be solved for η and δ. A
drawback with this approach is that it can be challenging to choose significant modes and
to guess or estimate values for ζ.
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(a) Displacement heat map.

(b) Displacement heat map with subtracted mean.

Figure 5.8: Heat map of modal contribution to displacement, with and without the mean value
subtracted for each modal displacement vector. (Run specifications: Appendix A.8.)
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Chapter VI

Results

This chapter will provide the thesis results. It starts by providing a stick-slip analysis
for the BKP model. Secondly, a more extensive normal mode study will be given. This
analysis will demonstrate the different mode shapes of the BKP model before using these
to view what modes are activated at different slider velocity regions of the model. The
next three sections will compare how the model behaves at increasing and decreasing
slider velocities, for different seeds, and it will compare the BK and BKP mode, all in
terms of eigenmodes. Section 6.5 shows how the model depends on the number of blocks.
Finally, Section 6.6 shows how different values of the Rayleigh damping constants affect
the BKP model.

6.1 Stick-Slip Analysis
It was desired to see how the stick-slip behaviour varies with slider velocity. This is
something both Standnes (2019) and Corrado and Mascia (2016) has proved is happening
for the regular Burridge-Knopoff model.

Figure 6.1(a) and (b) shows the block position, u, plotted against block velocity, u̇, for
block number 50. The figures shows two different subsections of the slider velocity range
for the same run as in Figure 5.1. Figure 6.1(a) shows a subsection of the data where the
velocity is low, i.e. varies from 0.3 to 0.2. Figure 6.1(a) clearly shows that the stick-slip
behaviour is present, with the straight line representing the area in which the block velocity
is equal to the slider velocity, and hence stick occurs. Figure 6.1(b) shows a subsection of
the simulation where the slider velocity is high, i.e. varies form 1.7 to 1.6. Figure 6.1(b)
shows that the stick-slip behaviour seen in Figure 6.1(a) is not present at larger velocities.

Figure 6.2 shows the average percentage of stick for each of the 100 blocks for different
simulations, where each simulation is run with a constant slider velocity. Note that the
graph is scaled by a factor of ten each tenth decimal place, as seen at the v-axis on the
figure.
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The figure shows that the percentage of stick-slip behaviour is relatively high at low
velocities and decreases as the slider velocity increase. When the slider velocity is low,
below 0.01, the figure shows that the stick percentage reaches almost 10%. It also shows
that when the slider velocity is higher, above 0.9, the stick percentage is close to 0%. There
is also a drop in stick percentage at the constant velocities 0.005 and 0.006, which does
not follow the usual trend.

See Appendix D for the same type of plot made using a different seed. The behaviour with
a different seed shows the same tendency.

(a) Slider velocity range from 0.3 to 0.2. (b) Slider velocity range from 1.7 to 1.6.

Figure 6.1: Block position plotted against block velocity at two different subsections of the slider
velocity for block number 50. (Run specifications: Appendix A.1.)
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Figure 6.2: Percentage of stick for 31 runs ran at different constant slider velocity. Note that the
graph is scaled by ten each tenth decimal place, as seen on the v-axis on the figure. (Run
specifications: Appendix A.9, with varying start and end speed according to the figure.)

6.2 Normal Mode Analysis

6.2.1 Mode Shapes
Figure 6.3 shows the first eight mode shapes for the BKP model. As mentioned in Section
5.4.5, the first 100 bars in the bar plot represent the blocks, and the 101st bar in the bar
plot represents the pad. Mode 0, represented in Figure 6.3(a), shows the mode where all
the blocks and the pad move in the same direction. Mode 1, illustrated in Figure 6.3(b),
follows a sinusoidal behaviour with half of a wave cycle. Mode 2−4, Figure 6.3(c)-6.3(e),
also show sinusoidal behaviours where the number of wave cycles increase with one half
each mode.

Mode 5, Figure 6.3(f), shows a different behaviour, where all the blocks move in one
direction, while the pad moves in the opposite. Mode 6 and 7, Figure 6.3(g) and 6.3(h),
follow the behaviour as before, where the motion is sinusoidal with increasing amounts
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of sine waves. This pattern continues more or less for each of the following modes. The
mode shape of all 101 modes can be seen on the web page 1. Figure 6.4 shows the four
modes corresponding the system’s highest frequencies. For these modes, the sign of each
value in the eigenvectors change for every value. The overall shape for these modes, given
by the amplitude of these alternating values, is also shaped as a wave with low frequency.

(a) (b)

(c) (d)

1https://theamartine.github.io/Burridge-Knopoff-Pad-Model/

https://theamartine.github.io/Burridge-Knopoff-Pad-Model/
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(e) (f)

(g) (h)

Figure 6.3: Bar plot of the first eight mode shapes. (Run specifications: Appendix A.1.)
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(a) (b)

(c) (d)

Figure 6.4: Bar plot of the four modes corresponding to the system’s highest frequencies. (Run
specifications: Appendix A.1.)

6.2.2 Modal Contribution to the BKP Model
Figure 5.1 showed the pad position versus velocity for a run where the slider velocity
decreases from 2 to 0. The results in the rest of this section will use the same simulation
as in Figure 5.1, with run specifications found in Appendix A.1.

Figure 6.5 shows a heat map of all hundred modes for the full slider velocity range 2 to
0, which clearly demonstrates that the two lower modes are dominant. In accordance with
Section 5.4.3, the lower modes are of most interest and the rest of the thesis will therefore
focus on the lowest 21 modes.

Figure 6.6 shows a plot of friction versus slider velocity and two heat maps of the modal
contribution to displacement and velocity for the lowest 21 modes. Appendix E shows the
contribution to energy. The next paragraphs will focus on the three following subsections
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of Figure 6.6:

1. The area of high velocities where there are two visible modes.

2. The area where there is a transition to higher friction amplitudes around v = 0.7,
and the heat maps show a transition to a different behaviour.

3. The area of low slider velocity.

Figure 6.5: Each modes contribution to displacement for all 101 modes.
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(a) Friction.

(b) Displacement heat map.
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(c) Velocity heat map.

Figure 6.6: Friction versus slider velocity and heat maps of the modal contribution to displacement
and velocity for the 21 lowest frequencies as the velocity decreases from 2 to 0 for seed 101. (Run

specifications: Appendix A.1.)
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High Slider Velocity Range

The first area to discuss is the high slider velocity range, from 1.9 to about 0.8, where
Figure 6.6(a) shows that the friction has a low amplitude. Figure 6.6(b) shows that that
eigenmodes 0 and 5 are the two most active modes and have an extensive contribution to
displacement. Note from the mode shapes in Figure 6.3 from the previous section that
mode 0 is when the blocks and pad move in the same direction and mode 5 is when the
blocks move in one direction and the pad in the opposite. The eigenvalues of these two
modes are 0.38 and 2.62, respectively. From Equation 2.9, this corresponds to the two
frequencies 0.098 and 0.258.

Figure 6.6(c), the modal contribution to velocity, shows that these two modes do not show
the same dominance with regards to velocity.

Figure 6.7 shows a displacement heat map in the velocity range 1.7 to 1.5 where mode 0
and 5 are removed. The figure shows that several modes are active, but the activation
of each mode is continuous in the sense that modes are activated to the same degree
throughout the whole slider velocity region.

The latter is even more clear in Figure 6.8, which shows heat maps for the slider velocity
range 1.700 to 1.698. Figure 6.8(a) shows the contribution to displacement for the 21
lowest modes. Figure 6.8(b) shows the modal contribution to displacement when mode
0 and 5 are removed. Figure 6.8(c) shows the modal contribution to the energy in the
system when mode 0 and 5 are removed. All three figures show that there are few jumps
in which modes are activated in the slider velocity range 1.700 to 1.698, and the motion is
seemingly periodic.

Figure 6.7: Each eigenmodes contribution to displacement when the slider velocity decreases
continuously from 1.7 to 1.5 with mode 0 and 5 removed. (Run specifications: Appendix A.1.)



6.2. Normal Mode Analysis 59

(a) Displacement heat map. (b) Displacement heat map. Modes 0 and 5 removed.

(c) Energy heat map with removed modes 0 and 5.

Figure 6.8: Modal contribution heat maps to displacement and energy in the velocity range 1.700
to 1.698. (Run specifications: Appendix A.2.)

Transition to More Active Modes

The second slider velocity range to examine is in the transition to the suddenly larger
friction amplitude and more activated modes. Figure 6.9(a) shows the friction plotted
against slider velocity in the slider velocity range v ∈ [0.8, 0.6], showing the sudden
increase in friction amplitude at v ≈ 0.67. Figure 6.9(b) shows how there is also a change
in what mode are active at v ≈ 0.67. This is also clear from the velocity heat map in Figure
6.6(c). At v ≈ 0.67, Figure 6.9(b) shows that the previously distinct modal contributions
fades to a section where many modes contribute to displacement in a less ordered manner.
After this point, mode 0 and 5 still stands out, but many other modes are also activated and
contribute to displacement and velocity.
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(a)

(b)

Figure 6.9: Figure a) shows each eigenmodes contribution to displacement of the blocks and pad
when the slider velocity decreases continuously from 0.8 to 0.6. Figure b) shows friction plotted

against slider velocity in the same range. (Run specifications: Appendix A.1.)
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Low Slider Velocity Range

Figure 6.10 shows zoomed heat maps of the slider velocity section 0.4 to 0.2. In this area,
the friction has a lower amplitude than in the slider velocity region v ∈ [0.8, 0.6], but the
friction looks more chaotic compared to the higher slider velocity ranges with v > 0.67.
Figure 6.10 shows the same modal behaviour as the lower slider velocity region of Figure
6.9(b), where several modes contributes to displacement.

Figure 6.11 shows heat maps for the slider velocity region 0.400 and 0.398. From Figure
6.11(a), mode 0 and 5 are consistently activated though the slider velocity region. How-
ever, the energy heat map in Figure 6.11(b), where mode 0 and 5 are removed from the
plot, shows that there are large jumps in what modes that are activated. Mode 1 is activated
in the beginning, before the figure shows a jump to the activation of mode 2, which again
vanishes after some time. This is a sign that the model exhibits chaotic motion.

Figure 6.10: Each eigenmodes contribution to displacement when the slider velocity decreases
continuously from 0.4 to 0.2. (Run specifications: Appendix A.1.)
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(a) Displacement heat map. (b) Energy heat map with removed modes 0 and 5.

Figure 6.11: Modal distribution heat maps to displacement and energy in the velocity range 0.400
to 0.398. (Run specifications: Appendix A.2.)

6.2.3 Displacement at Each Mode
Figure 6.12 shows the dot product between displacement and mode shape plotted against
time, for the first six modes. From Section 5.4.6 the parameter e denotes this dot product.
Figure 6.12 shows how mode 0 and 5 differ from the rest. The displacement amplitude is
also higher for these two modes, and opposed to the other modes, nor mode 0 and 5 have
a mean value of zero.
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(a) Mode 0 (b) Mode 1

(c) Mode 2 (d) Mode 3

(e) Mode 4 (f) Mode 5

Figure 6.12: Each modes contribution to displacement for the first six modes. (Run specifications:
Appendix A.1.)



64 6. Results

6.2.4 Seed Comparison
The former heat maps were taken from runs with seed 101. From the seed comparison
in Section 5.2.1 and Figure 5.3, it is evident that for instance seed 100, 101 and 140
show different characteristics of how friction amplitude develops with slider velocity. It
was therefore desired to see if the results from the previous section also yields different
seeds. In this section, the displacement heat maps of seed 100 and 140 will be shown and
compared to seed 101.

Figure 6.13(a) shows friction against slider velocity for seed 100. Figure 6.13(b) shows
its respective displacement heat map. In the slider velocity range 1.1 to 0.8, the friction
amplitude increase to a "medium" level, F ∈ [−20, 80], before increasing to the same
level as for seed 101, F ∈ [10,−120] at v ≈ 0.7. Figure 6.13(c) and (d) show a zoomed
friction plot and heat map of this area. At v = 1.1, the friction amplitude increases, but,
the heat map in Figure 6.13(d) does not show a large change in the modal contribution to
displacement until the slider velocity is at v ≈ 0.8, meaning that model looks to exhibit
periodic motion in the area of "medium" increased friction amplitude.

Another difference between the behaviour of the friction force of seed 100 and 101 is
the region of higher slider velocities, v ∈ [1.9, 1.2]. For seed 101, this region has a
higher friction amplitude than for seed 100. Figure 6.14 shows what modes contribute
to displacement in the velocity range 1.7 to 1.5 when mode 0 and 5 are removed from
the plot. Even though both seeds shows that mode 0 and 5 are the most dominant to
displacement, Figure 6.14 shows that mode 1 of seed 101 takes up much of the modal
contribution to displacement, with a value of 0.25. This is opposed to mode 1 of seed 101,
showed in Figure 6.7, which has a maximum value of 0.06.

Figure 6.15(a) shows friction against slider velocity in the range v ∈ [2, 0] for seed 140.
The heat map in Figure 6.15(b) shows the modal displacement in the range v ∈ [1.7, 1.5],
with mode 0 and 5 removed. In this velocity range, the friction amplitude is more similar
to seed 101, but the heat map shows more similarity to seed 100.

Regardless of the differences, all seeds show the same general behaviour. At high velo-
cities, the same modes contribute to displacement during long slider velocity ranges and
there are no jumps between modes, for all three seeds. Similarly, at low slider velocities,
the most activated modes change during short time intervals for all three seeds.
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(a) Friction plot.
(b) Displacement heat map.

(c) Zoomed friction plot.
(d) Zoomed heat map.

Figure 6.13: Friction plot and displacement heat map for seed 100 with slider velocity decreasing
from 2 to 0. (Run specifications: Appendix A.4.)
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Figure 6.14: Displacement heat map for seed 100 in the velocity range 1.7 to 1.5. Mode 0 and 5
are removed. (Run specifications: Appendix A.4).

(a) Friction. (b) Displacement heat map.

Figure 6.15: Friction plot of the whole velocity range and displacement heat map for v ∈ [1.7, 1.5]
for seed 140. (Run specifications: Appendix A.6.)

6.3 Increasing Slider Velocity
As mentioned in Section 3.5.1, Standnes (2019) studied the difference between increas-
ing and decreasing slider velocity, which has been further analyzed with the extension
of studying the normal modes. This has been done in order to understand the general
behaviour of the model better, and to study if the results from decreasing slider velocity
also holds for increasing slider velocity. Standnes (2019) highlighted four slider velocity
regions to compare. This section will show a comparison of what modes are present in
some of these same regions. Appendix F compares all the same regions as in the thesis of
Standnes (2019).
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Figure 6.16(a) shows the pad position as a function of increasing and decreasing slider
velocity and Figure 6.16(b) shows the displacement heat map for the increasing case. For
the low regions of slider velocity, both the increasing and decreasing cases show a modal
behaviour where many modes are present, and it is hard to distinguish the differences in
the two cases. Even in the region around v = 0.2 where the position plot in Figure 6.16(a)
shows a clear difference between the two simulations, there are little distinctions in the
heat maps.

In the velocity range where the pad position of the two cases differ most, v ∈ [0.67, 1.1],
the modal displacement also shows a clear difference. Figure 6.16(b) shows a chaotic
behaviour with many present modes from around v ≈ 0.8, where the friction amplitude
also has a sudden increase. As for decreasing slider velocity, the heat map for increasing
slider velocity is consistent with its corresponding friction plot, showing that as the friction
amplitude has a sudden increase, the heat map shows chaotic behaviour.

When the slider velocity is above v ≈ 1.2 the friction amplitude is low for both cases.
Recall from Figure 6.5 that the decreasing slider velocity case showed a periodic motion
with modes 0 and 5 as the most activated when v > 1.2. Figure 6.16(b) shows that with
increasing slider velocity, mode 1 also has a large contribution to displacement. Appendix
F shows zoomed heat maps on the regions discussed.
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(a) Decreasing versus increasing slider velocity.

(b) Modal displacement as a function of increasing slider velocity.

Figure 6.16: Increasing slider velocity.(Run specifications: Appendix A.1(decreasing) and A.7
(increasing)).
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6.4 The BK Versus the BKP Model
It was desired to analyze the differences and similarities between the BK and BKP model
to get a better understanding of what the pad brings to the system. As mention in Section
3.5.2, Standnes (2019) compared the BK and the BKP model. He primarily focused on
the slider velocity range v ∈ [0.1, 0.25] for increasing slider velocity where there are dips
in the friction force, as mentioned in Section 3.5.2. This section will address this same
velocity range.

When creating heat maps for the BK model, both the mode shapes of the model itself and
the mode shapes of the BKP model has been used. The mode shapes of the BK model are
found from the mass and stiffness matrices in Section 5.4.2 and are seen in Appendix H.
As the BK model does not have a pad, mode 5 follows the sinusoidal behaviour like the
other modes.

Figure 6.17 and 6.18 show a comparison between the BK and BKP model when the slider
velocity is decreasing. Figure 6.17 shows the whole velocity range from 2 to 0. Figure 6.18
shows a section of the slider velocity range v ∈ [0.1, 0.25]. One difference between the
BK and BKP model in the figures is that the BKP model has a slightly larger displacement
amplitude, especially in the lower rages of slider velocity, which can be seen on the bar on
the right-hand side of the heat maps and in the friction plots. Except from the latter, the
two models shows a similar general behaviour.

Figure 6.19 and 6.20 show a comparison between the BK and BKP model when the slider
velocity is increasing. Figure 6.19 shows the whole slider velocity range from 0 to 2
and Figure 6.20 shows the slider velocity range v ∈ [0.1, 0.25]. Similar to the case of
decreasing slider velocity, the BKP model shows higher mode amplitudes than the BK
model for increasing slider velocity, seen on the bar on the right hand side of the heat maps.
In the higher ranges of slider velocity, the BK model shows the highest modal amplitude.
In the latter region, Figure 6.19 shows that for the BK model, mode 4 is activated to a large
degree, while in the BKP model, mode 1 is more active.

As when comparing increasing and decreasing slider velocity, this comparison show that,
despite some differences, the response of the models are in most ways similar. The same
type of figures as showed in this section made using a different seed is found in Appendix
H.
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(a) BKP. (b) BKP.

(c) BK. (d) BK.

Figure 6.17: Displacement heat maps of the the BK and BKP model with decreasing slider
velocity from 2 to 0. (Run Specifications: Run A.10.)
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(a) BKP. (b) BKP.

(c) BK. (d) BK.

Figure 6.18: Plots of the BK and BKP model for decreasing slider velocity in the slider velocity
subsection 0.3 to 0.05. (Run Specifications: Run A.10.)
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(a) BKP. (b) BKP.

(c) BK. (d) BK with BK mode shapes.

Figure 6.19: Heat maps for increasing slider velocity in the range 0 to 2 for BK and BKP. (Run
specification: Appendix A.11.)
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(a) BKP. (b) BKP.

(c) BK.
(d) BK with BK mode shapes.

Figure 6.20: Increasing slider velocity in the range 0.5 to 0.3 for BK and BKP. (Run specification:
Appendix A.11.)
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6.5 Number of Blocks
It was desired to study how the number of blocks affects the BKP model. As a comparison
it was also desired to study the number of blocks in the BK model. Note that unless other
is specified, all results refer to the BKP model. Recall from Section 3.3 that the spring
constants and block masses are dependent on the number of blocks. When decreasing the
number of blocks, the total weight of the model, each block’s axial stiffness, and the total
stiffness between the blocks and pad will remain constant.

As the stiffness between the pad and each block gets larger when decreasing the number
of blocks, simulating with one block becomes almost analogous to having no blocks and
hence having the SDOF model showed in Section 2.3. Figure 6.21 shows a comparison
between the friction force and displacement heat maps for one and ten blocks. Comparing
Figure 6.21(a) and (b), the friction amplitude when having one block is generally much
larger than when having ten blocks, especially in higher ranges of slider velocity.

Four notes should be made from Figure 6.21. Firstly, Figure 6.21(b) shows a high fric-
tion amplitude for high slider velocities, but the heat map of Figure 6.21(d) indicates
periodic motion. The periodicity is also indicated in the friction plot, given its even
shape. Secondly, Figure 6.21(d) at v ≈ 1.1 shows a region of lower modal displacement
amplitude for mode 0 which is not present in the friction plot 6.21 (b).

Thirdly, Figure 6.21(c) shows that mode 5 is activated to large degree. Figure 6.22 illus-
trates the mode shape of mode 5 when using 10 blocks, showing that in this mode, all
blocks move in the same direction and the pad moves in the opposite, similar to the mode
shape of mode 5 when having 100 blocks. Lastly, the heat map with 10 blocks shows
alternations between what modes are most active throughout the run, suggesting chaotic
motion. This is in contrast to when having 100 blocks, where the heat maps show little
alternation between modes in the higher slider velocity intervals.

Figure 6.23 shows friction plotted against slider velocity for several simulations with an
increasing number of blocks for two different seeds. The figure shows that there is a
difference in the response of the model depending on the number of blocks used. With 100
blocks, it is assumed that the system is independent of the number of blocks. However, it
looks like the medium amplitude region around slider velocity v = 1 for seed 100 (and
other seeds, see Section 5.2.1) at 100 blocks, becomes clear when increasing the number of
blocks above 100 also for those seeds that do not have this section at 100 blocks. Neither
seed 30, 101 nor 140 shows this section with 100 blocks, but all of them show this section
with 130 blocks. This is showed in Figure 6.23(a) for seed 101 and in Appendix G for
seed 30 and 140. Figure 6.23 also shows that the general behaviour when exceeding from
30 to 40 blocks, is very similar to the behaviour at 100 blocks, indicating that the system
converges at a lower number of blocks than 100.
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Figure 6.24 shows a comparison between different number of blocks for two different
seeds of the BK model. The BK model shows clear differences from the the BKP model
when the number of blocks is below 100. It shows that the friction amplitudes are high
at high slider velocity, similarly to what the BKP model shows when having only one
block. It also shows that when v < 1 a different behaviour begins. Figure 6.25 shows a
displacement heat map for the BK model ran with 10 blocks. It shows that even tough the
friction amplitude is high when v > 1, the chaotic alternation between modes starts when
the slider velocity is approximately v = 1 and continues until the slider velocity is zero.

(a) Ten blocks. (b) One block.

(c) Ten blocks. (d) One block.

Figure 6.21: Comparison between one and ten blocks. Figure a) and c) shows friction as a function
of slider velocity, while Figure b) and d) shows displacement heat maps for different modes.
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Figure 6.22: Mode shape of mode 5 with 10 blocks.
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(a) Seed 101.

(b) Seed 100.

Figure 6.23: Comparison of different number of blocks for two different seeds for the BKP model.
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(a) Seed 101.

(b) Seed 100.

Figure 6.24: Comparison of different number of blocks for two different seeds for the BK model.
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Figure 6.25: Displacement heat map of the BK model with 10 blocks.

6.6 Rayleigh Damping
In order to study how damping affects the model, this section will show the results from the
implementation of Rayleigh damping. The next two subsection will show different values
for the stiffness and mass proportional damping constants separately. In these subsections,
the damping element with damping coefficient cp between the pad and the stationary plate
as in the original BKP model from Equation 3.1 is remained unchanged, meaning that the
mass and stiffness proportional damping are added in addition to cp. In the figures in this
section, the latter is specified by the value of cp = 23.57, which is the value specified in
the parameter list in Table 3.1. Section 6.6.3 will show one example where both the mass
and stiffness proportional damping is tested together while cp is set to 0.

6.6.1 Stiffness Proportionality
Figure 6.26 shows friction plotted as a function of slider velocity when the model is run
with nine different values of the stiffness proportional damping factor δ. The same plots
made with different seeds is shows in Appendix I and shows similar responses.

The last row in Figure 6.26(a) when δ is in the range δ ∈ [0.5, 1] shows that increasing the
stiffness proportional damping leads to lower amplitudes, i.e., more damped behaviour, in
the higher ranges of velocity. This stiffness proportional damping behaviour is consistent
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with the Rayleigh curve in Figure 2.7, showing that stiffness proportional damping damps
high frequencies, which again generally relates to high velocities. However, when δ is in
the range 0.001 to 0.1, adding higher values of stiffness proportional damping increases
the friction amplitude in the higher ranges of slider velocity.

To further investigate the latter, Figure 6.27 shows the displacement heat map for δ =
0.005. From v ∈ [2, 1.5] it shows the dominance of mode 0 and 5 in addition to mode
2 and some other modes. It is clear what modes that are activated, indicating periodic
motion. At slider velocity v ≈ 1.4, there is a change in friction amplitude seen in Figure
6.27(a). This change is also visible in the heat map in Figure 6.27(b), where there is a
transition between some modes, especially mode 2 and mode 3. However, it is still clear
what modes are most activated. From v ≈ 1.1, there is another change in both friction
amplitude and the heat maps. After this, the heat map starts to look like the very disordered
behaviour discussed earlier, where several modes contribute to displacement and there are
little consistency in what modes that are activated.

Figure 6.28 shows the friction force plotted for two simulations made to compare damping
proportional to kp and kp0, to kc. In the light blue plot, the simulation is run with the
damping constant proportional to kp and kp0 equal to 0.1 while the damping constant
proportional to kc is equal to zero. Reversely, in the dark blue plot, the damping constant
proportional to kp and kp0 is equal to zero, while the damping proportional constant to
kc = 0.1. The figure shows how the damping proportional to kp and kp0 contributes to the
response of increased friction amplitude in the higher ranges of slider velocity. In other
words, it is the damping between the pad and stationary top loader plate and between the
pad and the blocks that contribute to this response, while only adding damping between
neighboring blocks does not lead to many changes in the response compared to when using
only the original cp damping constant.
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(a)

(b)

Figure 6.26: Friction force as a function of slider velocity with different values of the stiffness
proportional damping, δ. (Run specifications: A.12.)
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(a) Friction as a function of slider velocity with
δ = 0.005 and eta = 0. (b) Displacement heat map as a function of velocity.

Figure 6.27: Friction plot and heat map when δ = 0.005 and η = 0. (Run specifications:
Appendix A.13.)

Figure 6.28: Comparison between damping proportional to stationary kp and pad-top-plate kp0
spring constants versus neighbouring kc spring constant. (Run specifications: A.12.)
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6.6.2 Mass Proportionality
Figure 6.29 shows the friction force plotted against slider velocity for varying values of
the mass proportional factor η. The same figure made with a different seed is shows in
Appendix I. The transition from the base case in the top left corner of figure 6.29(a),
where both the mass and stiffness proportional damping coefficients are equal to 0, to
the case where η = 0.01, shows that increasing η leads to a more damped behaviour.
The last row shows that high numbers of η damps the system to a state of almost no
fluctuations. When η = 1, the plot shows a single line. Looking at the Rayleigh curve
in Figure 2.7, it is expected that large mass proportional damping damps the behaviour at
low frequencies, and thus generally low velocities, to a more considerable degree than the
stiffness proportional damping.

When η = 0.2, there is a sudden jump in friction force at v ≈ 1. The same jump is to be
found at v ≈ 0.7 when η = 0.3. This jump is further investigated in Figure 6.30 and 6.31.
In Figure 6.30, η is plotted with different values between 0.15 and 0.4. Figure 6.30 shows
that the jump propagates closer to 0 as η is increases. Figure 6.31 gives a closer look at the
jump for η = 0.2 with respective displacement heat maps. Figure 6.31(b), shows that even
though there is a jump, the two modes 0 and 5 are still very dominant. When removing
these two modes from the plot, as showed in Figure 6.31(c), there is indeed something
happening with the modal distribution at the time of the jump. It shows that several modes
are activated in a chaotic manner.

6.6.3 Using Significant Modes
Recall Figure 6.8 showing heat maps for seed 101. As mode 5 and mode 14 show a higher
amplitude than other modes, they can be chosen as significant modes. Setting ζ to 1/10,
recalling the approach described in Section 5.5 and using Equation 2.27 yields η = 0.20
and δ = 0.047. Figure 6.32 shows the model response with η = 0.20 and δ = 0.047,
and no other damping, i.e. cp = 0. The figure shows a very damped system until a slider
velocity of v ≈ 0.8, where the response from this point shows similar shape with δ = 0.1
in Figure 6.26.
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(a)

(b)

Figure 6.29: Mass proportional damping for different values of η for seed 101. (Run
specifications: Appendix A.14.)
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Figure 6.30: Mass proportional damping where η changes from 0.15 to 0.4. (Run specifications:
Appendix A.14.)
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(a) Friction plot. (b) Displacement heat map.

(c) Displacement heat map with mode 0 and 5 are removed.

Figure 6.31: Friction plot and heat plot for η = 0.2 in the velocity range v = [1.135, 1.110]. (Run
specifications: Appendix A.15.)
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Figure 6.32: Example of Rayleigh damping with η = 0.20 and δ = 0.047. (Run specifications:
Appendix A.16.)
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Chapter VII

Discussion

7.1 Mode Study
This thesis has presented a method developed to visualize the contribution of eigenvalues
and normal modes to displacement, velocity, and energy at different time steps of the
newly developed Burridge-Knopoff-Pad model. The method has proven useful, and the
results of the analysis show that the model abruptly changes from oscillating with periodic
behaviour to more chaotic motion when changing the external conditions in terms of the
slider velocity. The results hold for both increasing and decreasing slider velocity and for
different seeds. The sudden change to chaotic motion can be analogous to the onset of
squealing sound from car brakes and shows the model’s potential.

The Burridge-Knopoff-Pad model shows consistency with research on the area of brake
squeal and friction-induced vibrations. As stated in Section 1.4, researchers have indic-
ated, through numerous analytical and experimental studies, that that brake squeal is a
non-linear transient phenomenon and that its response can be treated as chaotic. Assuming
that the BKP model can represent brake squeal, the results obtained in this thesis further
indicate that brake squeal response can be treated as chaotic and thus supports other
research. Vice versa, assuming that a good model for representing brake squeal must
be capable of exhibiting chaotic motion, the BKP model proves to be a good model to
represent brake squeal on this point.

Researchers have previously proposed the hypothesis that systems with a large number of
degrees of freedom are usually chaotic (Gallavotti and Cohen (1995)). This is consistent
with the BKP model. The study of the model’s sensitivity to the number of blocks shows
that chaotic behaviour is obtained for as few as ten, and possibly less, blocks. Reducing
the number of blocks to as low as 5 or 10 shows chaotic motion, but the model’s general
behaviour with 10 blocks shows severe differences from the 100-block case. However,
increasing the number of blocks in the BKP model shows that once the number of blocks
is approximately 30 to 40, additional blocks do not alter the results’ general trends. In other
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words, the response using 30 blocks closely resembles the response of 100 blocks. This
suggests that simulating with 40 blocks could be sufficient for the solution to converge. If
the model converges with a low number of blocks, excessive blocks should be avoided as
it would reduce computation time.

It is deemed that the results validate that the model transitions to chaotic behaviour, but
further work is required to assess the chaotic behaviour quantitatively. A maximum Lya-
punov exponent could be calculated to verify the chaotic behaviour with a varying number
of blocks and would be a natural place to continue working on the model. The degree
of chaos in the numerical results is not quantified, and gathering experimental data from
physical experiments and relate it to the model was also outside this thesis’s scope. A
Poincaré map to study the degree of chaos, bifurcation regimes to study the route to chaos,
and validation from physical experiments are thus suggestions for further work.

7.2 BKP versus BK and SDOF model
The BKP model is a combination of the BK and an SDOF model. Through comparisons,
the response of the BKP model with 100 blocks resembles the BK model with 100 blocks
but looks different from both the SDOF model and the BKP model with one block. The
response of the BKP model with one block resembles the SDOF model, often used to study
braking systems. The one-block BKP model shows periodic behaviour for both large and
small slider velocities. As mentioned, researchers state that brake squeal is non-linear and
can be treated as chaotic. Therefore, as neither the SDOF model nor the BKP model with
one block detects chaotic motion, they are not capable of representing the sound-induced
vibrations of a braking system, and more degrees of freedom are needed.

The study of the number of blocks shows a severe difference between the BK and BKP
model. With less than 100 blocks, the BK model shows a much higher friction amplitude
for high velocities than that of the BKP model, but the friction amplitude in this region
exhibits periodic motion for both models. The extra degree of freedom added to the BK
model to create the BKP model gives an indirect coupling between the blocks that the BK
model does not have. This makes the pad work as a damper for the model, but above 100
blocks, the two models suddenly resemble each other.

One explanation for this change of behaviour of the BK model at 100 blocks can be the
chosen values for the parameters. The block massmu is equal to the pad mass, which is set
to 100 for all simulations, divided by the number of blocks, making the total block mass
independent of the number of blocks. On the contrary, the neighbouring spring constant
increases with the number of blocks, kc = 1 ∗ N . That means that when the number of
blocks exceeds 100, the neighbouring spring constant becomes larger than the total block
mass, making the system stiffness controlled. It also means that when the number of blocks
is less than 100, the neighbouring spring constants are smaller than the total block mass,
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making the system mass controlled. The latter yields for both the BK and BKP model
used in this thesis. From the Rayleigh graph in Figure 2.7, mass controlled systems are
characterized with being damped at low frequencies, which are often most present at low
slider velocities. It thus makes sense, from a theoretical point of view, that the BK model
is not damped at high slider velocities with a block number below 100. When exceeding
100 blocks, the BK model gets stiffness controlled, meaning that the model gets damped
at high frequencies, which can be the reason why it is damped at high slider velocities.
Comparing this with the BKP model, which only has the same type of undamped motion
for high slider velocities when having 1 block, it is evident that the pad works as a damper
for the model, and that it damps especially at high slider velocities.

Both in this thesis and the theses by previous students, it has been tried to find differences
between the two models when running them with 100 blocks. There are indeed differences
and unexplained behaviours regarding, among other things, different types of dips at lower
slider velocities and differences in what modes are activated at higher slider velocities.
However, the differences do not deal with the general response of the system. Thus, they
are considered to be of low significance, as the differences look to be almost equally as
much due to numerical differences as the actual differences in the models. As there are
few severe differences between the models with 100 blocks, it can be concluded that, if
simulating braking systems with 100 blocks, there is little reason to use the BKP instead
of the BK model (even though the BK model is made to represent earthquakes). However,
as stated in the previous section, there are reasons to represent brake squeal with less than
100 blocks, and in that case, the BKP model can be a better representation for brake squeal
than the BK model.

Studying the BK and BKP equations parameters goes beyond this thesis’s scope but would
be a natural thing to do if continuing to compare the models. Especially to verify why the
BK model has a sudden change of its response around 100 blocks, in which behavioural
change the BKP model does not have. Also, as the BKP model looks to converge faster to
the 100-block case than the BK model, it would be interesting to study if the BKP model
would be a better model to study earthquakes than the BK model if using few blocks.
With that being said, the BK model is often studied with much more than 100 blocks
when studying earthquakes. To study earthquake models goes beyond the area of friction-
induced vibrations, but as the work with this model also proves, it could be beneficial for
different areas of science to learn from each other.

7.3 Damping
Chapter 6 shows an analysis using Rayleigh damping in the BKP model. In accordance
with the Rayleigh curve in Figure 2.7, the stiffness proportional damping matrix affects
high frequencies. The opposite is evident for the mass proportional matrix. Thus the study
is in some ways consistent with the theoretical framework and shows that the simulations
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are working.

However, several unexplained behaviours were seen in this study. First, adding small val-
ues for stiffness proportional damping seems to add more chaos to the system. Secondly,
some values of the mass proportional damping constant lead to a sudden jump in friction
amplitude and a sudden jump of chaotic behaviour. Both these observations are somewhat
unexplained, but they verify papers stating the importance of damping when studying the
chaotic motion of friction-induced vibration systems, discussed in Section 1.4. The fact
that the BKP model is consistent with other friction-induced vibration research regarding
damping is another indication to use the model to represent brake squeal.

From the previous sections, it is desired to view the system with fewer blocks. For further
work, it would be beneficial to study damping in relation to the number of blocks. That
is, to find the amount of damping and a small block number that leads to the case where
when increasing the block number further, the results do not change anymore. This is
already found to be the case of 30 − 40 blocks in this study, but with the right amount
of damping, it might happen with a much smaller amount of blocks. For this to happen,
more stiffness proportional damping affecting low freqencies would probably be needed.
To further investigate how different values of the stiffness proportional damping constant
affects the system, relate it to the number of blocks, compare it to more previous work,
and incorporate the damping in the eigenmode calculations would thus be interesting
approaches for further work.
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Chapter VIII

Conclusion and Further Work

8.1 Conclusion
The Burridge-Knopoff-Pad model is a spring-mass damper system combining the Burridge-
Knopoff model with a single-degree-of-freedom model to capture the squealing sound
from car brakes. The model consists of a pad and a number of blocks included as a dis-
cretization of the elastic brake discs of a physical braking system, to represent their natural
vibrations. This project’s goal was to study the newly developed Burridge-Knopoff-Pad
model in different ways with a large focus on eigenmodes and damping.

The results show that when changing the system’s external conditions in terms of a slider
velocity, the motion exhibits a sudden change in behaviour from periodic to chaotic mo-
tion. This result is in agreement with research stating that brake squeal can be treated
as chaotic motion. Simulations were largely conducted using a total of 101 degrees of
freedom (100 blocks); however, a sensitivity study into the impact of the number of blocks
showed that the model does not exhibit severe changes when increasing from 30 to 40
blocks, indicating that the number of blocks can be set much lower than 100. On the other
hand, as researchers have previously indicated that brake squeal exhibits chaotic motion,
the periodicity found in the SDOF system and the one-block BKP model makes these
models too simple to describe friction-induced vibrations.

With 100 blocks, the BK and BKP model share the same general behaviour with respect
to both friction and position development, and the jumps between chaotic and periodic
trends. With fewer blocks a more pronounced difference was found between the two
models, where the BKP model noticeably exhibits greater damping for higher ranges of
slider velocity as a result of the pad included in the model. From the comparison between
the models, it can therefore be concluded that with more than 100 blocks, the pay off
of using the BKP model diminishes and is perhaps eclipsed by the extra computational
costs of using a more complex model, whereas, for fewer blocks, the results suggest that
the BKP model is better suited for representing the sound-induced vibrations of a braking
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system.

It has also been demonstrated that damping affects how and where the model enters chaotic
regions, and it was found several unexplained behaviours, such as the increase in amplitude
when adding different values of Rayleigh damping factors. This also confirms research
stating the importance of damping in chaotic friction-induced vibration systems. Hence,
the normal mode study results, the study of the number of blocks and Rayleigh damping
all show relation to related work and proves the potential of the model, indicating that
further work is needed.

8.2 Proposal for Further Work
• Confirm chaotic behaviour by calculating the maximum Lyapunov exponent.

• Analysis of chaos, bifurcation, and the Poincaré section as described in Artuso et al.
(2020) and done by e.g. Chang and Hu (2016).

• Do a more dedicated study on Rayleigh damping, especially stiffness proportional
damping, and find the exact number of blocks and amount of damping needed for
the solution to converge.

• Perform a more substantial parametric study to further outline the difference between
the Burridge-Knopoff and Burridge-Knopoff-Pad model and to get more familiar
with the latter.

• Explore the application of the Burridge-Knopoff-Pad model in earthquake modeling.

• The stick percentage was studied for two different seeds. It would be interesting to
investigate why there is a drop in stick percentage around the constant slider velocity
0.004 and 0.005.

• Test the model using a numerical schemes other than 2nd order Runge-Kutta, with
an emphasis on stability, accuracy, and computational cost.
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Appendix - A

Run Specifications

Unless other is specified, all specifications will be as in Appendix A.1

A.1 Main Run
Parameters:

dt: 0.005
seed: 101
num_events: 1
N: 100
max_time: 80000
slider_speed: 0
increment: 0.1
interval: 0
file_name: "simulation_1"
progress_indicator: true
m_F0: 1
m_alpha: 0.5
m_sigma: 0.01
m_mass_x: 100
m_scale_mass: 1
m_zeta: 0.0833
m_k_P0: 100
m_scale_P: 1
m_scale_C: 0.01
m_t: 0.0
m_v0: 0.0001
m_u_min: 0
blocks:
start_speed_continuous: 2
end_speed_continuous: 0
save_interval_dt: 100
threshold_speed: 0.1
m_eta: 0.2
m_delta: 0.047
lyapunov_delta: 0.00000001
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Debug:
debug_no_friction: false
debug_no_neighbor_springs: false
debug_no_stationary_springs: false
debug_no_damper: false
debug_no_pad: false
debug_negative_initial_values: false
debug_only_negative_initial: false
debug_only_write_friction: false
debug_continuous_slider_speed: true
debug_one_degree_freedom_mode: false
rayleigh_damping: false
calculate_Lyapunov: false

A.2 Small Save Interval
Parameters:

seed: 101
max_time: 80000
save_interval_dt: 10
start_speed_continuous: 2
end_speed_continuous: 0

A.3 Start Speed 4
Parameters:

seed: 101
max_time: 160000
start_speed_continuous: 4
end_speed_continuous: 0

A.4 Seed 100
Parameters:

seed: 100
max_time: 80000
start_speed_continuous: 2
end_speed_continuous: 0

A.5 Start Speed 4, Seed 100
Parameters:

seed: 100
max_time: 160000
start_speed_continuous: 4
end_speed_continuous: 0
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A.6 Seed 104
Parameters:

seed: 104
max_time: 80000
start_speed_continuous: 2
end_speed_continuous: 0
save_interval_dt: 100

A.7 Increasing Run
Parameters:

seed: 101
max_time: 80000
start_speed_continuous: 0
end_speed_continuous: 2
save_interval_dt: 100

A.8 Small Run
Parameters:

seed: 101
N: 100
max_time: 800
start_speed_continuous: 2
end_speed_continuous: 0
save_interval_dt: 100

A.9 Constant Slider Velocity
Parameters:

seed: 101
max_time: 80000
start_speed_continuous: 0.001
end_speed_continuous: 0.001
save_interval_dt: 100

A.10 BK Decreasing Run
Parameters:

seed: 101
max_time: 80000
start_speed_continuous: 2
end_speed_continuous: 0
save_interval_dt: 100

Debug:
debug_no_pad: True



102 A. Run Specifications

A.11 BK Increasing Run
Parameters:

seed: 101
max_time: 80000
start_speed_continuous: 0
end_speed_continuous: 2
save_interval_dt: 100
Debug:
debug_no_pad: True

A.12 Stiffness Proportional Damping
Parameters:

seed: 101
max_time: 80000
start_speed_continuous: 2
end_speed_continuous: 0
save_interval_dt: 100
r_eta: 0
r_delta: varying
Debug:
rayleigh_damping: true

A.13 Stiffness Proportional Damping
Parameters:

seed: 101
max_time: 80000
start_speed_continuous: 2
end_speed_continuous: 0
save_interval_dt: 100
r_eta: 0
r_delta: 0.005

Debug:
debug_no_damper = false
rayleigh_damping: true

A.14 Mass Proportional Damping
Parameters:

seed: 101
max_time: 80000
start_speed_continuous: 2
end_speed_continuous: 0
save_interval_dt: 100
r_eta: varying
r_delta: 0
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Debug:
debug_no_damper = false
rayleigh_damping: true

A.15 Mass Proportional Damping
Parameters:

seed: 101
max_time: 80000
start_speed_continuous: 2
end_speed_continuous: 0
save_interval_dt: 100
r_eta: 0.2
r_delta: 0
Debug:
debug_no_damper = false
rayleigh_damping: true

A.16 Rayleigh Damping
Parameters:

seed: 101
max_time: 80000
start_speed_continuous: 2
end_speed_continuous: 0
save_interval_dt: 100
r_eta: 0.20
r_delta: 0.047
Debug:
debug_no_damper = true
rayleigh_damping: true
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Appendix - B

Web Page

A web page was created as an extended appendices. The service GitHub Pages was used in
order to make the website, which is a free way to create simple web pages. The web page
is made using purely markdown (.md) and HTML programming and the site generator
jeykill. Jeykill makes the theme for the page and makes it responsive (working on a
standard computer screen, iPad, and on galaxy and iPhone). By default, when creating
a repository for a GitHub Pages page, an index.md file is created which will be the default
main page of the web page. Markeown is a simple language to make text documents, and
is the standard languge used to create readme-files.
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General Behaviour

(a) Block position as a function of time. (b) Block velocity as a function of time.

(c) Block position as a function of block velocity.

Figure C.1: General behaviour of block number 50. (Run specification: Appendix A.1.)
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Appendix - D

Stick Percentage for Seed 1

Figure D.1: Mean stick percentage for each block for different constant slider velocities for seed 1.
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Appendix - E

Energy Heat Map

Figure E.1: Energy heat map. Run specification (Appendix A.1.)
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Appendix - F

Increasing Slider Velocity

Standnes (2019) studied the difference between the response of increasing and decreasing
slider velocity. He showed four slider velocity regions where the two runs differ. Modal
displacement heat maps for the same four slider velocity sections are shown in Figure F.1
to F.4. Figure F.5 and F.6 shows zoomed heat maps of the slider velocity regions discussed
in Section 6.3.

Note that the heat maps for the decreasing case are horizontally flipped so they start at the
lowest slider velocity. For the run with slider velocity ranging from 2 to 0, this means that
slider velocity 0 is on the left hand side of the figure even though the slider velocity of the
simulation starts at 2. This is done for a more manageable comparison between the cases.

(a) Decreasing. (b) Increasing.

Figure F.1: Heatmaps for increasing and decreasing runs, in the slider velocity range 0 to 0.14.
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(a) Decreasing. (b) Increasing.

Figure F.2: Heatmaps for increasing and decreasing runs, in the slider velocity range 0.3 to 0.44.

(a) Decreasing. (b) Increasing.

Figure F.3: Heat maps for increasing and decreasing runs, in the slider velocity range 0.8 to 0.66.
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(a) Decreasing. (b) Increasing.

Figure F.4: Heatmaps for increasing and decreasing runs, in the slider velocity range 1.08 to 1.22.

(a) Decreasing. (b) Increasing.

Figure F.5: Heat maps for increasing and decreasing runs, in the slider velocity range 0.8 to 0.66.
(Run specifications: Appendix A.1 and A.7).
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(a) Decreasing. (b) Increasing.

Figure F.6: Heat maps for increasing and decreasing runs, in the slider velocity range 1.5 to 1.7.
(Run specifications: Appendix A.1 and A.7.)



117

Appendix - G

130 Blocks

(a) Seed 30. (b) Seed 140.

Figure G.1: Simulations ran with 130 blocks.
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Appendix - H

The BK Model

H.1 Mode Shapes of the BK Model

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure H.1: Bar plot of the first 8 eigenmodes for the BK model, where each value in the
eigenvector corresponding to each mode is plotted as a bar.
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H.2 Comparing BK and BKP for Seed 100

(a) BKP. (b) BKP.

(c) BK. (d) BK with mode shapes from BKP.

(e) BK with mode shapes from BK.

Figure H.2: Increasing slider velocity from 0 to 2.
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(a) BKP. (b) BKP.

(c) BK.
(d) BK with mode shapes from BKP.

(e) BK with mode shapes from BK.

Figure H.3: Increasing slider velocity from 0.05 to 0.3.
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(a) BKP. (b) BKP.

(c) BK. (d) BK with mode shapes from BKP.

(e) BK with mode shapes from BK.

Figure H.4: Decreasing slider velocity from 2 to 0.
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(a) BKP. (b) BKP.

(c) BK.
(d) BK with mode shapes from BKP.

(e) BK with mode shapes from BK.

Figure H.5: Decreasing slider velocity from 0.05 to 0.3.
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Appendix - I

Rayleigh Damping

Figure I.1: Different values of the mass proportional damping constant η for seed 100.
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Figure I.2: Stiffness proportional damping for different values of δ for seed 100.

Figure I.3: Stiffness proportional damping for different values of δ for seed 103.
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