
Kristian Svinterud Sørebø
Low

-cost N
avigation and Collision Avoidance System

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Kristian Svinterud Sørebø

Low-cost Navigation and Collision
Avoidance System

Master’s thesis in Robotics and Automation

Supervisor: Amund Skavhaug

July 2020

Kristian Svinterud Sørebø

Low-cost Navigation and Collision
Avoidance System

Master’s thesis in Robotics and Automation
Supervisor: Amund Skavhaug
July 2020

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Low-cost Navigation and Collision Avoidance System

Summary

As the technology related to autonomous ground vehicles(AGV’s) advance, more computational
power is needed in order to realize the systems. At the same time low-cost single board comput-
ers(SBC’s) with significant calculation power have become a common product. Consequently, the
motivation for this master-project is to develop a low-cost navigation and collision avoidance sys-
tem. Similar systems already exist, one example being the Turtlebot. The aim of this project is
not to develop an alternative to the Turtlebot, but rather a stand-alone sensor system that can be
used by the Turtlebot and other robotic vehicles. The objective of the sensor-system is to provide a
robotic vehicle equipped with the system enough information about the surrounding environment
so that it has the possibility to function efficiently and safely in a dynamic environment.

This thesis builds upon a pre-study conducted by the author of this thesis, which is included in
Appendix A. The pre-study is a literature study of existing AGV technology where different tech-
nologies are compared. Further, the pre-study explored the requirements for an AGV to be able to
navigate on its own, as well as operate safely around other agents, especially humans. The pre-study
concludes with a conceptional design for a prototype sensor-system. This design was further devel-
oped and documented throughout the scope of this project. In order to develop a sensor-system
capable of providing the necessary data for an AGV to operate safely and efficiently a list of system
requirements was declared at the beginning of this project. The main requirements being:

• The system should provide enough information about a large enough area and be able to
detect all obstacles within the range of the system so that an AGV can react in time to avoid
accidents.

• The system should be able to automatically update the map of the working environment.
• The system should have a method for keeping track of its position withing the working envi-

ronment.

Further, in the context of this thesis «low-cost» is defined as affordable for lab use without
any extra support from the institute. Which at the Department of Mechanical and Industrial En-
gineering(MTP), NTNU is around 5000 Norwegian kroners. As stated by prof. Amund Skavhaug.
Therefore, the total cost of the system aims to be around 5000 Norwegian kroners. Additionally,
the system aim to be easy to integrate with existing robotic vehicles. For this reason, as well as
the community support and existing packages available, the system is developed using the popular
robotic framework ROS. The main distribution used in relation to this project being ROS2 Dashing.
The SBC used in the development of this project is the Raspberry Pi 4 Model B(RBPi4).

i

Low-cost Navigation and Collision Avoidance System

In order to realize the system requirements the sensor-system consist of three sub-systems. One
obstacle avoidance grid consisting of both ultrasonic- and infrared range sensors. This combination
of sensors is chosen as both sensors has their strength and weaknesses, where the strengths of one
type of sensor covers the weaknesses of the other, and vice versa. Thus minimizing the change of
being unable to detect an obstacle and resulting in a system capable of detecting obstacles indepen-
dent of the obstacles surface characteristics.

Further, for the purpose of automatic mapping the system utilizes an Intel Realsense D435 depth
sensor. Which provides accurate depth data about the surrounding environment. Intel has released
a ROS package for communicating with its depth sensor, and mapping is achieved using the existing
ROS package Rtabmap. Furthermore, a method utilizing a Raspberry Pi V2 camera and QR-codes
attached to the roof was developed in order to estimate the position of the system.

To test the system and its capabilities a set of research questions were devised. The research
questions, as well as the related experiments and results is presented in Chapter 7. The obstacle
avoidance grid consisting of both ultrasonic- and infrared sensor proved able of detecting obstacles
within their operating range independent of the obstacles surface characteristics. Suggesting that
an robotic vehicle equipped with this system should be able to detect both humans, other AGV’s
and other obstacles within the working environment.

With the use of the Intel Realsense D435 and the ROS package Rtabmap the system was able to
create three-dimensional maps of its surrounding environment. However, it is recommended to use
an external and reliable source of odometry in order to achieve the efficiency needed for an AGV
to automatically map the surrounding environment. Further, Rtabmap is not available for ROS2
Dashing, thus ROS Melodic was used to perform mapping. Consequently the whole system is not
yet integrated on the same ROS distribution.

By manually calibrating the Raspberry Pi V2 camera the system was able to estimate its posi-
tion with varying accuracy utilizing QR-codes attached to the roof. The position is estimated with
respect to the detected QR-code, in which the QR-codes position with respect to the working envi-
ronment is encoded. Using this information the position of the system with respect to the working
environment is estimated.

In conclusion the system showed good results in its aim to achieve the system requirements,
but it is not a finalized system yet. Although the system is not complete, the basic groundwork has
been done - thus a low-cost navigation and collision avoidance system to build upon is available for
future students.

ii

Low-cost Navigation and Collision Avoidance System

Sammendrag

Ettersom teknologien rundt autonome bakke-kjøretøy (AGV’er) stadig er i utvikling, trenger man
også mer datakraft for å realisere disse systemene. Samtidig er lav-kost ettkorts datamaskiner
(SBC’er) med høy ytelse blitt et utbredt og tilgjengelig produkt. Derfor er motivasjonen bak denne
masteroppgaven å utvikle et lav-kost system for navigasjon og kollisjonsunngåelse. Det finnes
allerede lignende systemer, et eksempel er Turtlebot. Målet med denne oppgaven er ikke å utvikle
et alternativ til Turtlebot, men heller et sensorsystem som kan brukes av Turtlebot og andre au-
tonome bakke-kjøretøy. Målet med systemet er at det skal være i stand til å gi robotkjøretøy nok
informasjon om de omkringliggende omgivelsene så de har muligheten til å operere trygt og effek-
tivt.

Denne oppgaven bygger videre på et for-prosjekt skrevet av den samme forfatteren. Dette for-
prosjektet er lagt ved som vedlegg, Appendix A. For-prosjektet er en litteraturstudie av eksisterende
teknologi for AGV’er. I for-prosjektet blir de eksisterende teknologiene sammenlignet og veid opp
mot hverandre. Samtidig diskuteres det hva som kreves av et system for at en AGV skal kunne
operere trygt og effektivt i et dynamisk miljø. For-prosjektet konkluderer med et konsept for et
sensor-system som oppfyller disse kravene. Dette konseptet er videreutviklet og dokumentert gjen-
nom denne rapporten. For å sørge for at systemet som utvikles er i stand til å gi et robotkjøretøy
den informasjonen den trenger, ble det satt opp et sett med krav i startfasen av dette prosjektet.
Hovedkravene er:

• Systemet skal gi nok informasjon om det omkringliggende området slik aten AGV som bruker
systemet kan unngå ulykker

• Systemet bør gi muligheten for å automatisk lage et kart av, og oppdatere eksiterende kart
basert på de omkringliggende omgivelsene.

• Systemet bør gi muligheten til å finne og følge AGVens posisjon i forhold til de omkring-
liggende omgivelsene.

Videre, i sammenheng med denne oppgaven er «lav-kost» definert som rimelig nok til å kunne
kjøpes inn til bruk i lab sammenheng uten noen spesiell støtte fra instituttet. Som på Institutt for
maskinteknikk og produksjon (MTP) ved NTNU ligger på rundt 5000 Norske kroner, i følge prof.
Amund Skavhaug. Derfor sikter systemet seg inn på å koste omkring 5000 Norske kroner. I tillegg
er det ønskelig at systemet er lett å integrere med eksisterende robotkjøretøy. Av den grunn i tillegg
til et aktivt utvikler-miljø og mange eksisterende verktøy er det valgt å utvikle systemet i ROS. ROS
versjonen som i hovedsak brukes i dette prosjektet er ROS2 Dashing, og ettkorts maskinen som
systemet utvikles på en en Raspberry Pi 4 Model b(RBPi4).

iii

Low-cost Navigation and Collision Avoidance System

Med mål om å realisere de definerte kravene består systemet av tre sub-systemer. Et sub-system
for å oppdage hindringer. Dette systemet består av både ultrasoniske- og infrarøde sensorer. Denne
kombinasjonen av sensorer er valgt med bakgrunn i at hver av sensorene har sine styrker og
svakheter, hvor styrkene til den ene overlapper svakhetene til den andre, og omvendt. Dette bidrar
til at systemet er mer rustet for å kunne oppdage hindringer uavhengig av overflateegenskapene til
hindringen.
Videre, for å automatisk kunne kartlegge de omkringliggende omgivelse benytter systemet seg av
en Intel Realsense D435 dybde sensor. Intel har utviklet en egen pakke for å bruke denne sensoren
sammen med ROS. Kartlegging av omgivelsene gjøres ved å bruke ROS pakken Rtabmap. Utover
dette er det utviklet en metode som benytter seg av et Raspberry Pi V2 kamera og QR-koder i taket
for å estimere posisjonen til systemet.

For å teste systemet er det utarbeidet et sett med forskningsspørsmål. Forskningsspørsmålene,
samt de utførte ekspimentene og resultatene er presentert i Kapittel 7. Systemet for å oppdage
hindringer ved hjelp av ultrasoniske- og infrarøde sensorer ga gode resultater og var i stand til å
oppdage hindringer innenfor deres rekkevidde uavhengig av overflateegenskapene til hindringen.
Dette tyder på at et robotkjøretøy som bruker dette systemet bør være i stand til å oppdage men-
nesker, andre robotkjøretøy og hindringer som skulle befinne seg i det samme området.
Ved å bruke en Intel Realsense D435 sensor og ROS pakken Rtabmap var systemet i stand til å
lage tre-dimensjonale kart av de omkringliggende omgivelsene. Dette var mulig både med og uten
bruk av noen annen kilde for odometri. Uten å bruke en annen kilde for odometri var resultatene
varierende, og prosessen tok lang tid. Derfor anbefales å bruke odometri data fra en annen kilde
en Intel Realsense D435 sensoren. Videre er ikke pakken Rtabmap tilgjengelig for ROS2 Dahsing,
derfor ble ROS Melodic brukt for kartlegging. Det vil si at hele systemet ikke er integrert på den
samme plattformen ennå.

Ved manuell kalibrering av Raspberry Pi V2 kamera var systemet i stand til å estimere posisjo-
nen sin med varierende nøyaktighet, basert på QR-koder i taket. Posisjonen blir estimert ut ifra
QR-koden. I QR-koden er kodens plassering i forhold til omgivelsene kodet inn. Ved å bruke denne
informasjon sammen med den estimerte posisjonen i forhold til QR-koden kan systemet estimere
sin posisjon i forhold til de omkringliggende omgivelsene.

Som konklusjon har systemet vist gode resultater med tanke på å oppfylle de satte kravene, men
systemet er ikke ferdigutviklet ennå. Selv om systemet ikke er ferdig, har grunnarbeidet blitt gjort –
resultatet er et lav-kost system for navigasjon og kollisjonsunngåelse som fremtidige studenter kan
bygge videre på.

iv

Low-cost Navigation and Collision Avoidance System

Preface

This thesis concludes my master project at NTNU Trondheim carried out during the spring semester
of 2020. The idea for this project came about during a lunch meeting with Amund Skavhaug about
an open project. Trough a discussion regarding my interests and technical background we landed on
a project concerning a low-cost sensor system for autonomous ground vehicles (AGVs). We ended
up with the title «Low-cost Navigation and Collision Avoidance System».

I would like to thank my supervisor Amund Skavhaug for his commitment and guidance through-
out my final year at NTNU.

15-07-2020

v

Low-cost Navigation and Collision Avoidance System

Contents

Summary . i
Sammendrag . iii
Preface . v
Contents . vi
List of Figures . ix
List of Tables . xii
Listings . xiii
Abbreviations . xiv
1 Introduction . 1

1.1 Background and motivation . 1
1.2 Objectives . 4

1.2.1 Research Objectives . 4
1.3 Report Structure . 5

1.3.1 Actions performed to ensure reliability . 5
1.3.2 Literature studies . 5
1.3.3 System requirements . 5
1.3.4 Theory . 5
1.3.5 Concept . 5
1.3.6 System development . 5
1.3.7 Experiments, results and discussion . 5
1.3.8 Discussion, conclusion and future work . 5

2 Literature Studies . 6
2.1 Developed methods . 6

2.1.1 Physical guidelines . 7
2.1.2 Beacons . 8
2.1.3 Natural Feature Navigation . 9
2.1.4 Discussion . 10

3 System requirements . 12
3.1 Technical requirements . 12

3.1.1 Obstacle detection and avoidance . 12
3.1.2 Mapping and positioning . 13

3.2 Simplicity and life expectancy . 14
3.3 Cost and scope of the system . 14
3.4 Summary of requirements . 14

vi

Low-cost Navigation and Collision Avoidance System

4 Background theory . 15
4.1 Obstacle detection with ultrasonic-and infrared range sensors 15

4.1.1 Ultrasonic distance measurement . 15
4.1.2 Infrared distance measurement . 17
4.1.3 Obstacle detection with ultrasonic and infrared sensors 17

4.2 Navigation and mapping . 19
4.2.1 Pinhole camera model . 19
4.2.2 Stereo vision . 21
4.2.3 Active IR stereo vision . 22
4.2.4 Odometry . 23
4.2.5 SLAM . 24
4.2.6 Occupancy grid mapping . 25

5 Conceptional design . 27
5.1 Low-cost computer . 28
5.2 Mapping localization and navigation . 29

5.2.1 Obstacle detection . 31
5.2.2 Overall design of suggested prototype . 32

6 System development . 33
6.1 Sensors and equipment . 33

6.1.1 Total cost of the system . 33
6.1.2 Raspberry Pi 4 model B, Single board computer(SBC) running the system . . 34
6.1.3 Arduino UNO, microcontroller for interfacing with range sensors 34
6.1.4 Intel RealSense 435, depth sensor for navigation and mapping 34
6.1.5 Raspberry Pi V2 camera, RGB camera for detecting visual landmarks 34
6.1.6 GP2Y0A710K0F Sharp, Reflective Sensor, infrared range sensor for obstacle

detection . 35
6.1.7 HC-SR04 ultrasonic sensor, ultrasonic range sensor for obstacle detection . . . 35

6.2 Hardware architecture . 36
6.2.1 Housing . 38

6.3 Development platform and programming language 39
6.4 Software architecture . 42

6.4.1 Visualization package . 44
6.4.2 Installation . 46

6.5 Obstacle detection . 47
6.6 Localization and mapping . 59

6.6.1 Visual landmarks . 59
6.6.2 Detect center of QR-code . 61
6.6.3 Intel Realsense D435 depth sensor . 70
6.6.4 Mapping . 71

6.7 Prototype . 74

vii

Low-cost Navigation and Collision Avoidance System

6.7.1 Functionality of the system . 74
7 Experiments, results and discussion . 77

7.1 Obstacle detection using low-cost range sensors . 77
7.1.1 Is the system capable of detecting obstacles independent of their surface char-

acteristics? . 78
7.1.2 Does the narrow viewing angle of the infrared sensor cause a problem? 81

7.2 Navigation using visual landmarks . 82
7.3 Mapping . 84

7.3.1 Is it feasible to perform indoor mapping without external odometry? 84
7.3.2 Is the system capable of accurately mapping larger more complex environ-

ments? . 87
7.4 Conclusion and discussion of experiments in relation to the system requirements . . 88

7.4.1 The system should provide enough information about a large enough area so
that an AGV can react in time to avoid accidents. 88

7.4.2 The system should have a method for keeping track of its position withing
the working environment. 89

7.4.3 The system should be able to automatically update the map of the working
environment. 89

8 Discussion, conclusion and future work . 90
8.1 Cost, relevance and implementation . 90

8.1.1 Relevance . 90
8.1.2 Implementation . 90

8.2 Development process . 91
Bibliography . 92
A Pre-study . A1

viii

Low-cost Navigation and Collision Avoidance System

List of Figures

1 AGV following a path with the active inductive guidance method [1] 1
2 AGV following the path with the use of a optical sensor [2]. 1
3 Illustration of AGV equipped with LIDAR sensing the surrounding environment [3]. . 2
4 Turtlebot3 series [4]. 3
5 AGV following a path with the active inductive guidance method [1] 7
6 AGV following the path with the use of a optical sensor [2]. 7
7 Determining position of AGV with beacons. [5] . 8
8 Ultrasonic distance sensor failing to detect sound absorbing, and flat angled surface

[6] . 16
9 Illustration of the working method of a infrared distance sensor [7] 17
10 Illustration of two overlapping range sensors. 18
11 Illustration of the pinhole camera model [8] . 19
12 Illustration of the geometry describing the relation between the image plane and

3D-coordinates . 20
13 Epipolar views [9] . 21
14 Illustration of a active IR stereo sensors [10] . 22
15 Blue line depicting the path of the robot before loop-closure, red line depicting the

path after loop-closure [11]. 24
16 Illustration of a robot updating the occupancy grid map using sensor data 25
17 Illustration of the logarithmic updating process . 25
18 Arduino UNO . 28
19 Raspberry Pi 4 model B . 28
20 Intel Realsense D435 [12] . 29
21 Position of QR-code and camera relative to each other 30
22 Illustration of the sensors detection range around the AGV. 31
23 Hardware architecture of proposed system. 32
24 Correlation between output voltage from IR-sensor and measured distance [13] . . . 35
25 Hardware architecture of developed system. 36
26 Connection between Arduino UNO and range sensors (Figure made with Fritzing). . 37
27 Housing for obstacle detection grid . 38
28 ROS 2 Dashing Diademata [14] . 39
29 RVIZ visualisation of turtlebot and LIDAR data [15] 39
30 Illustration of communication between devices. 42
31 Illustration of the data flow in the system . 43

ix

Low-cost Navigation and Collision Avoidance System

32 Model of sensor housing with the coordinate system describing the position of each
range sensor enabled . 45

33 Ultrasonic sensor fails to detect obstacles. 47
34 Fleece jacket placed one meter from the sensors. 48
35 Transparent surface placed 0.7 meters from the sensors. 49
36 Obstacle detection grid consisting of ultrasonic and infrared sensors 50
37 Obstacle detection grid consisting of ultrasonic and infrared sensors, live measure-

ment visualized using Rviz and Ros 2 . 50
38 Data received from one ultrasonic sensor visualized in Rviz 56
39 Chess-pattern used to calibrate the camera . 60
40 Camera calibration flowchart [16] . 60
41 The vertices and the calculated center of the QR-code marked with circles. 61
42 Estimated position of QR-code with respect to camera. 62
43 World - and QR coordinate system . 63
44 QR-code with three markers . 63
45 The six contours of the QR-marker . 64
46 The relationship between each marker represented as a triangle 64
47 Rotation of QR-code around the z-axis with respect to the camera coordinate system 65
48 Resulting translation between coordinate system after estimating distance and rota-

tion from picture of QR-code. Redline: x-axis, green line: y-axis, blue line: z-axis . . . 66
49 Pure visual slam of an indoor room . 72
50 Visual slam with external odometry . 72
51 Illustration of an AGV implemented with the system, the transparent figures shows

the viewing angle of each sensor. Blue: ultrasonic- and infrared sensors, Yellow: Rasp-
berry Pi V2 camera, Purple: Intel Realsense D435. 74

52 Total viewing angle of the system . 76
53 Transparent surface placed 0.7 meters from the sensors. 78
54 Fleece jacket placed one meter from the sensors. 78
55 Sensor measurements from the open testing environment. The green lines represent

the walls, while the brown drawing represent the furniture within the range of the
sensors. 79

56 Measurements from an experiment where a test person walks around the field of
view of the sensor system wearing a fleece jacket, the green arrow indicates the path
of the test person. 80

57 Sensor measurement from experiment where a test person stood in between two
infrared sensors, the green arrow indicates the position of the test person. 81

58 Path for testing the accuracy of the method utilizing visual landmarks 82
59 Resulting path after conducted experiments using QR-codes as visual landmarks . . . 83
60 Pure visual slam of an indoor room . 85
61 Visual slam with external odometry . 85

x

Low-cost Navigation and Collision Avoidance System

62 Floor plan of the living room/test environment. 85
63 Pure visual slam of an indoor room . 86
64 Visual slam with external odometry . 86
65 Floor plan of environment . 87
66 Resulting 3D map after mapping . 87

xi

Low-cost Navigation and Collision Avoidance System

List of Tables

1 Advantages and disadvantages of described methods 10
2 Total cost of developed system. 33

xii

Low-cost Navigation and Collision Avoidance System

Listings

6.1 Setting up a new ROS2 workspace [17] . 40
6.2 Example of a workspace containing an arbitrary amount of packages [18] 40
6.3 Creating a python package in ROS2 . 40
6.4 Set ROS_DOMAIN_ID . 41
6.5 List of packages in project workspace . 43
6.6 Model of the baselink and one attached sensor declared in an URDF file 44
6.7 Install the necessary python dependencies using pip for python3. 46
6.8 Build the workspace and the packages . 46
6.9 Setting up the sensors [19], [20] . 52
6.10 Setting up the arduino and the timer for the ultrasonic sensors [19], [20] 53
6.11 EchoCheck function for ultrasonic sensors. [19], [20] 53
6.12 Arduino main-function. [19], [20] . 54
6.13 Arduino function to publish the data from the range sensors. [19], [20] 55
6.14 Laserscan message [21] . 55
6.15 Import the necessary libraries and initialize communication with Ardunio 56
6.16 Initializing RangeToLaser node for publishing data from range sensors in ROS 2 . . . 57
6.17 Scan function in RangeToLaser class for receiving data from the arduino 58
6.18 Import the necessary libraries and messages for the QRnavigationnode 67
6.19 Initializing QR_navigation node for publishing position and orientation data ob-

tained through the Raspberry Pi V2 camera . 68
6.20 The scan() member function of the class QR_navigation 69
6.21 Install the necessary ROS 2 dependencies . 70
6.22 Install the necessary non-ROS debian packages . 71
6.23 Install ROS 2 Intel RealSense packages . 71
6.24 Adding additional sensor to the URDF model of the system 75

xiii

Low-cost Navigation and Collision Avoidance System

Abbreviations

AGV = Autonomous Ground Vehicle
SLAM = Simultaneous Localization And Mapping
SBC = Single Board Computer
RBPi4 = Raspberry Pi 4 Model B
LIDAR = Light Detection And Ranging
IR = Infrared
US = Ultrasonic
RGB = Red, Green and Blue (Color model)
RAM = Random Access Memory

xiv

CHAPTER 1. INTRODUCTION

1 Introduction

1.1 Background and motivation

We develop robots to streamline production and to reduce the amount of manual labor. Robotic ma-
nipulators are examples of robots developed to perform tasks previously done by hand. Autonomous
ground vehicles(AGV) are an example of robots developed to move objects from one place to an-
other, or to carry out tasks such as cleaning and lawn mowing. In relation to industry, AGVs are
often used as a replacement for the traditional conveyor belt, as they can offer more flexibility and
be convenient in the context of batch production.

The older AVGs follow pre-determined paths in the form of some sort of physical guiding line.
This is a limiting factor when it comes to flexibility. As well as being limited by little to no under-
standing of the surrounding world, these systems are expensive to install and expand due to the
need for integrated guiding systems Figure 5, Figure 6.

Figure 1: AGV following a path with the active
inductive guidance method [1]

Figure 2: AGV following the path with the use of
a optical sensor [2].

In the later years the use of physical guidelines has been replaced by solutions that offer more
flexibility and freedom, allowing them to operate efficiently around both humans and other robots.
For robots to be allowed to work in the same environment as humans there has to be reliable safety
measures to avoid accidents. This means that the AGVs has to be equipped with accurate sensor-
systems and programming so they have a broad enough understanding of the environment to adapt
to their surroundings.

1

CHAPTER 1. INTRODUCTION

Figure 3: Illustration of AGV equipped with LIDAR sensing the surrounding environment [3].

These extra features makes the newer AGVs more complex. Consequently, more computational
power is needed. In the meantime, low-cost of the shelf computers with significant calculation
power have become a common product, it is therefore desirable to extend upon this to develop a
low-cost navigation and collision avoidance system. With respect to this thesis «low-cost» is defined
as affordable for lab use by students without any extra support from the institute. Which usually is
under 5000 Norwegian kroner. As stated by prof. Amund Skavhaug.

Systems like this already exist, a popular one being the Turtlebot Figure 4. This is a robot kit
with open-source software. The aim of this thesis in not to create an alternative to the Turltebot,
but rather a stand-alone sensor system that can be used by the Turtlebot and other robotic vehicles.
The presented system is created with students in mind, with the aim being to create a tool that
can be used in lab-work related to automation and robotic vehicles. Hence the code and hardware
architecture is well documented, and everything are open-source.

2

CHAPTER 1. INTRODUCTION

Figure 4: Turtlebot3 series [4].

Due to the COVID19 outbreak during the spring semester of 2020 a lot of students had to refor-
mulate their master projects to be strictly theoretical. The reason behind this being that campus was
closed for long periods of the semester, making it hard to perform lab-experiments. Together with
my supervisor Amund Skavhaug it was decided to go through with the practical part of the project,
as it was concluded that a lot of the experiments could be conducted at home. However, since
campus was closed it was hard to get the necessary equipment needed to develop the system and
perform the necessary experiments, resulting in limited time to perform experiments and develop
the actual physical system. Consequently, the project had to be scaled down, as it was not enough
time to go through with the project as planned. The remaining work in relation to the project is
described at the end of the thesis.

3

CHAPTER 1. INTRODUCTION

1.2 Objectives

The objective of this master thesis is to develop a prototype low-cost navigation and collision avoid-
ance system. The system aims to provide all the necessary information so that when implemented
on an autonomous ground vehicle(AGV), the AGV can function in a dynamic environment around
other flexible agents. Further it is preferable that the system runs on a low-cost single board com-
puter(SBC). The aim of this project is not to develop new technology, but rather use existing tech-
nology to develop a functioning prototype of a sensor system capable of providing enough infor-
mation so that a robotic vehicle equipped with the system can function automatically. The work
conducted in this thesis builds upon the research previously conducted by the author, described in
Appendix A.

1.2.1 Research Objectives

1. Develop a sensor-system for obstacle detection.
2. Develop a system for mapping and navigation.
3. Implement the system on a low-cost single board computer(SBC)

The related research questions are defined and answered in Chapter 7.

4

CHAPTER 1. INTRODUCTION

1.3 Report Structure

Throughout the thesis choices made in relation to the developed system are discussed, this relates
to the different equipment and methods used in the development of the system. The reason why
this is not discussed in a distinct chapter alone is to make it easier to follow the thought process
behind each choice for the reader. The discussion around each choice is further elaborated on in
Chapter 8, together with a discussion around the results of each experiment.

1.3.1 Actions performed to ensure reliability

To ensure that the information used in the making of this thesis is reliable, the literature should be
from a collection of peer reviewed academic articles, established companies or from conversations
with experts in the respected field. In addition, by having a close collaboration with the supervisor
all information is shared and reviewed together.

1.3.2 Literature studies

This chapter includes information from the conducted pre-study Appendix: A which the chosen
system presented in this thesis builds upon. It is included in the thesis to give the reader some
additional context as to why the developed system is chosen over other similar systems. For further
reading, the whole pre-study is included in Appendix: A.

1.3.3 System requirements

Chapter 3 presents the requirements for a finalized low-cost system for navigation and obstacle
avoidance.

1.3.4 Theory

Chapter 4 presents the relevant background theory. This serves as an introduction to the methods
used in the development of the system.

1.3.5 Concept

Chapter 5 presents the concept of which the final system is based upon. The concept is developed
with background in the pre-study conducted by the author [22].

1.3.6 System development

Chapter 6 presents the development process of the system, and the final product developed in this
project. This includes both hardware and software solutions.

1.3.7 Experiments, results and discussion

Chapter 7 presents the experiments done in relation to each aspect of the developed system, the
result from each experiment and discussions around them. The chapter concludes with a discussion
comparing the results to the system requirements described in chapter Chapter 3.

1.3.8 Discussion, conclusion and future work

Chapter 8 concludes the thesis, presents a discussion around the project as a whole and gives
recommendations for future work related to the project.

5

CHAPTER 2. LITERATURE STUDIES

2 Literature Studies

This chapter is an excerpt of a pre-study related to this thesis conducted by the author. The pre-study is
a literature study of existing systems related to autonomous ground vehicles(AGV’s). The thesis builds
upon the research described in the pre-study, and this chapter is included to give a reference to why the
methods described in this thesis is chosen over other methods commonly used in relation to AGV’s. As
the pre-study is an internally published thesis it is included in Appendix A for easy access.

This chapter gives an overview over some of the existing methods used in the control of au-
tonomous ground vehicles(AGVs). Further, some of the different aspects of safely controlling a AGV
in dynamic environments is discussed, which includes mapping, navigation and obstacle avoidance.
Some of the different sensors and software solutions which is often used to carry out these tasks
are described and evaluated in relation to the main objective of this thesis. That is to research
and determine if it is feasible to develop a low-cost navigation and obstacle avoidance system on
a low-cost off the shelf computer. Consequently, the evaluation of different low-cost Single Board
Computers(SBCs) is given its own section at the end of this chapter.

2.1 Developed methods

There are many applications for automatic guided vehicles(AGVs), varying from handling of haz-
ardous material, to automatic vacuum cleaners and lawn mowers. Through the years as technology
has advanced, AGVs has advanced as well. This has resulted in more flexible solutions, which is one
of the main reasons why AGVs are so prevalent today. This flexibility is also what allows AGVs to
work in dynamic environments around other agents, including humans. This increase in freedom
makes safety a top priority. To ensure that no harm is done to people or objects, it is recommended to
follow several safety regulations. In Europe the standard «EN 1525, Driverless industrial trucks and
their systems» is used as a standard for driverless indoor vehicles. In the book «Automated Guided
Vehicle Systems» the author summarizes some of the regulations directly applicable to AGVs, the
most relevant in relations to this projects is the following:

• «The personnel protection system is essential. It has to ensure that people or objects located
on the drive path or on the envelope curve of the AGV together with its payload are reliably
recognized. Should this occur, the vehicle has to safely come to a stop before persons or objects
are injured or damaged. Mechanical systems react to contact and are designed, e.g., as plastic
bales or soft foam bumpers. Contact-free sensors scan the endangered areas ahead of the
vehicle using laser, radar, infrared or ultrasound, or a combination of several technologies.»
[23].

6

CHAPTER 2. LITERATURE STUDIES

In short this means that the AGV should have a system for obstacle avoidance.

Dependent on the complexity of the task there are developed different methods for the au-
tonomous control of AGVs. A common way for AGVs to navigate is through the use of guided
navigation. This is carried out by retrofitting the workplace with the tools needed for the AGV to
navigate the environment. In an industrial environment this is often solved by the use of physical
guidelines or beacons. Other developed systems are not dependent on retrofitting of the workplace,
and allows the AGV to navigate freely on its own. This comes at the cost of complexity, so the robot
itself must be able to handle a larger amount of data, and perform complex data handling. This is
a result of the AGV having to recognize its environment, as well as other agents operating within
that environment. This section serves as a introduction to some of the most common methods re-
lated to the automatic control of AGVs. The methods are described along with their advantages and
disadvantages, and they are compared to eachother with the main objective of this thesis in mind.

2.1.1 Physical guidelines

One of the simplest methods developed for the autonomous control of AGVs is the use of pre-
determined paths that guide the vehicle. This is often solved either by a optical guidance track,
made from a color that clearly contrast the floor or a inductive guidance track integrated in the
floor itself. Since a strip of coloured tape or paint on the floor is very exposed and easily damaged,
the inductive guidance track is more often used in industrial environments.

Figure 5: AGV following a path with the active
inductive guidance method [1]

Figure 6: AGV following the path with the use of
a optical sensor [2].

With active inductive guidance tracks, the wires embedded in the floor carries a signal with a low
AC-voltage and frequency. Two coils are mounted under the vehicle at right angles to the conductor
in which the alternating current of the guide wire induces a flowing current [23]. This allows the
AGV to navigate its position according to the positing of the wire. With optical sensor technology
the AGV aims to keep the colored line in the center of view, changing its position according to the
displacement of the colored line.

There are several ways of guiding the vehicle along a track, but the principle is the same - adjust

7

CHAPTER 2. LITERATURE STUDIES

the pose of the AGV in order to counter the displacement of the guidance track. Since the AGV is
only capable of following the path of the track, this method offers little flexibility. As a result there
is not much complexity associated with this method. This comes from the fact that the AGV has
no use for intelligence or an advanced sensor-system, since the only action besides following the
pre-determined path is to stop if something is in its direct path. Besides the lack of flexibility this
method comes with another downside. That is the time consuming and costly retrofitting of the
workspace that is needed to install such a system, as the guidance tracks must be installed before
the AGV can function properly. As a result of this it is just as time consuming to make changes to
the system once it is installed, which makes expansion of the system difficult.

Another use of physical guidelines is to use them as barriers which the AGV is not allowed
to cross. Automatic lawn mowers are free to move inside an marked area, and as soon as they
encounter the barrier they will turn around. In the terms of industry this can be used as a extra
safety precaution making sure the AGV does not enter a area it is not allowed to enter.

2.1.2 Beacons

The next step from AGVs dependent on physical guidelines are AGVs that uses beacons placed
around the working environment. The angle and distance to the beacons is calculated and used to
calculate the position of the AGV through triangulation. Since there is no physical guideline telling
the AGV where to move, a map of the environment is optimal along with a system for determining
paths telling the AGV where to move.

The calculated position of the AGV is then compared to the reference position given by the
calculated path and the control system adjust the AGV according to the path. Figure Figure 7 shows
how beacons can be used in practice.

Figure 7: Determining position of AGV with beacons. [5]

This is simply a method for determining the position of the AVG. If the vehicle comes with a

8

CHAPTER 2. LITERATURE STUDIES

integrated map and a collision avoidance system this would allow for more flexible navigation.
The positioning of the vehicle along with a map would allow the AGV to know its position in
relation to the surrounding objects, which makes it possible for path planning around the working
environment. Together with a collision avoidance system ensuring that the vehicle does not collide
with other agents or obstacles this method offers more flexibility. This new layer of flexibility is a
huge improvement from the previously described method. Rerouting of the AGVs paths would be
much easier, since no changes would have to be done to the workspace itself. This makes it possible
for the AGV to work in a dynamically changing environment, and with a collision avoidance system,
around other flexible agents including people. The workplace still has to be retrofitted to the AGV, as
beacons would have to be installed. Still the retrofitting is not as an extensive as with a system based
on physical guidelines. As a result expansion of the system is easier. This comes at the cost for a
more complicated sensor-system and the data handling that comes with the navigation and collision
avoidance system makes this solution more complex. Consequently, a more powerful computer is
needed.

2.1.3 Natural Feature Navigation

Natural feature navigation allows the AGV to navigate the environment without any retrofitting of
the workplace. Instead the AGV rely on natural landmarks in addition to odometry to keep track
of its positioning. Odometry is the use of data from the motion sensors on the AGV to calculate
the change in position over time. This makes for a highly flexible system that is easy to install and
expand, but this comes at the cost of complexity. As it is no easy task to navigate with only the use
of natural features. Usually expensive LIDARs or stereo cameras is needed in order to recognize the
natural landmarks as well as a powerful computer to handle all the sensor data.

9

CHAPTER 2. LITERATURE STUDIES

2.1.4 Discussion

In table 2.1.4 I have tried to systematize the advantages and disadvantages of the different
methods described. This is done with the main objective of the thesis in mind.

Method Advantages Disadvantages

Physical guidelines

Well tested technology. Not flexible, paths can only be
changed by changing the floor
installations.

Simple solution, not much
complexity associated.

Depending on chosen guide-
lines, floor installations may
be costly.

Expansion is hard and time
consuming.

If the guidelines is damaged,
the system stops.

Beacons

Offers high precision if place-
ment is well though out.

Retrofitting is still needed.

AGV can move freely within
area fitted with beacons.

Retrofitting of new area is re-
quired in order to expand the
system.

Expansion is less costly then
with physical guidelines.

Allows for effective operation
within a dynamic environ-
ment if additional system for
object avoidance is included.

Natural feature navigation Flexible Computational cost is high
due to the complexity of the
system.

Easy to expand Depending on the workspace,
it may not be natural unique
landmarks.

Allows for operation within a
dynamic environment.

Table 1: Advantages and disadvantages of described methods

10

CHAPTER 2. LITERATURE STUDIES

When comparing the methods described in this section it is important to have the research ob-
jective in mind. At first glance the use of physical guide lines seems like a good option. Especially
since the complexity is low, and as a result of that the method is well suited for a low cost computer.
However, the costs related to retrofitting the workplace, and the lack of flexibility outweighs the
benefits. That being said, some inspiration can be drawn from this approach, as physical lines can
be used in addition to a more flexible system to make sure the AGV does not enter areas it is not
allowed to enter if a miscalculation were to happen.

Both the method involving beacons and natural feature navigation allows for a flexible AGV
capable of working efficiently in a dynamic environment. Natural feature navigation has the clear
advantage of not needing to retrofit the workspace, but this comes at the cost of a more complex
problems to solve. As a result of this it may be hard to implement on a low cost computer.

With this in mind the rest of the thesis focuses on the more flexible options, which is natural
feature navigation, and methods involving beacons. While solutions relying on guidance lines will
be disregarded, since the retrofitting that comes with these methods are costly, and they do not
meet the criteria for flexibility needed.

11

CHAPTER 3. SYSTEM REQUIREMENTS

3 System requirements

In this chapter the requirements for a complete low-cost navigation and collision avoidance system
is presented. That is, as system capable of providing the necessary information such that an au-
tonomous ground vehicle(AGV) equipped with the system can function safely and effectively in a
dynamic environment. Such a system has the ability to detect obstacles and provides tools for nav-
igating the working environment. Further, the system should allow for flexible AGVs, able to adapt
to changes in the working environment without much retrofitting. In addition to technical require-
ments, requirements in relation to cost, system life expectancy and implementation of the system
are presented, as the main objective is to develop a low-cost system. Each of these requirements are
elaborated further in their own sections.

3.1 Technical requirements

For an AGV to function safely and effectively within a dynamic environment it has to have the
ability to perceive information about the surrounding world, and use this information to navigate
its surrounding while at the same time avoid accidents. A flexible system allows the AGV to adapt
to changes in the working environment, without much retrofitting. As such, the key functions a
navigation and collision avoidance system should include are:

• Reliable obstacle detection.
• Reliable positioning within the working environment.
• Ability to automatically update map of the working environment.

3.1.1 Obstacle detection and avoidance

The main concern of autonomous vehicles is the aspect of safety, especially since AGVs tends to
work alongside humans. Consequently, it is crucial that the system is capable of detecting obstacles
within a certain range of the AGV. With this information available, the AGV can act accordingly and
prevent damage to itself, surrounding equipment and humans.

Consequently, the system should provide enough information about a large enough area such
that the AGV running the system can react in time to avoid collision. There are multiple scenar-
ios which can cause accidents, the main one being the AGV driving into obstacles. Therefore the
obstacle avoidance system should provide the necessary information for the AGV to come to a full
stop before collision. This means that the detection range of the obstacle detection system should
be long enough so that the vehicle has time to stop. Depending on the speed of the vehicle, the
range a AGV needs to come to a full stop may vary. Using the AGVs from the robotic lab at NTNU
as a standard, their maximum speed is 1.5 m/s. Calculating the braking distance with equation

12

CHAPTER 3. SYSTEM REQUIREMENTS

Equation 3.1 and µ = 0.2 in the worst case, yields a braking distance of 0.57 meters.

s =
v0

2

2 ∗ µ ∗ g (3.1)

Taking into consideration that the friction coefficient µ may vary, «obstacles» may approach
the AGV with speed of their own and that the AGV may need some time to react to the detected
obstacle, a detection range of 4-5 meters should be sufficient. This is also taking into account that
the AGV will stop leaving some distance between itself and the obstacle.

Further, accidents may occur if other moving obstacles collide with the AGV. Consequently, it is
beneficial if the system can provide information about the surrounding environment in all direc-
tions. This can be used to avoid accidents such as the AGV coming to a full stop if an obstacle is
moving towards it from behind. The main goal is not to develop a system capable of avoiding all
accidents, but a system able to provide enough information to the AGV controller such that it can
use the provided information to navigate safely.

In conclusion the requirements for the obstacle detection and avoidance system are:

• The system should provide enough information about a large enough area so that an AGV can
react in time to avoid accidents.

3.1.2 Mapping and positioning

For an AGV to work in a dynamic environment, perform tasks and to efficiently move from one place
to another, it should have some understanding of the environment it is working within. If not, the
AGV will not have any way to localize its position within the environment, and therefore not have
the ability to plan routes from one point to another in the working environment. Consequently, the
sensor-system should provide a method for performing mapping and navigation. The point of the
map is to allow the an AGV to keep track of its own position in relation to the other obstacles within
the working environment, allowing it to plan routes around these. For that reason the map should
contain all the stationary installation in the real world. Working environments are often undergoing
changes, which sometimes means new installations is installed, therefore the sensor-system should
be able to update the map [22].

In conclusion with mapping and navigation purposes the system should:

• Automatically create and/or update the map of the working environment.
• Keep track of its position within the working environment.

13

CHAPTER 3. SYSTEM REQUIREMENTS

3.2 Simplicity and life expectancy

Industrial systems often comes with a guarantee for long life expectancy, as one would not want a
lot of additional cost for reparations and replacements of equipment. This however means that the
equipment will be expensive to buy in the first place. With a low cost system the same robustness
cannot be promised, therefore it is desirable that the system is uncomplicated to debug and repair
if necessary. This would also allow for simple implementation of new and better hardware, as low-
cost equipment keeps getting better. Especially low-cost single board computers(SBCs).

Another desirable requirement is that the system is easy to implement. Which means that the
system should be easy to connect to existing AGVs, both with respect to hardware and software.

3.3 Cost and scope of the system

The main objective of this thesis is the development of a low-cost navigation and object avoidance
system. In relation to this thesis «low-cost» is defined as affordable for lab use by students without
any extra support from the institute. Which usually is around 5000 Norwegian kroner. As stated by
prof. Amund Skavhaug.

To achieve this it is desirable to implement the system on a low-cost SBC computer capable of
processing the data on-board. Further the collected overall cost of the system should not be much
more than 5000 Norwegian kroner.

3.4 Summary of requirements

In order to develop a low-cost navigation and collision avoidance system capable of providing
the AGV with enough information to operate within a dynamic environment surrounded by other
agents, the following requirements should be upheld:

Requirement 1 The system should provide enough information about a large enough area and be
able to detect all obstacles within the range of the system so that an AGV can react in time to
avoid accidents.

Requirement 2 The system should be able to automatically update the map of the working envi-
ronment.

Requirement 3 The system should have a method for keeping track of its position within the work-
ing environment.

Requirement 4 The system should be easy to implement.
Requirement 5 The system should be simple to repair and debug.
Requirement 6 The total cost of the system should be less then or around 5000 Norwegian kroner.

The system presented in this thesis aim to uphold these requirements. A control system which
act upon the received information from the sensor system is not described, as this is not a part of
the thesis. The degree to which it does uphold these requirements is presented and discussed in
Chapter 7 and Chapter 8.

14

CHAPTER 4. BACKGROUND THEORY

4 Background theory

This chapter serves as an introduction to the theory used in the development of this project, which
is the development of a low-cost navigation and collision avoidance system. In order to realize this
project a multitude of different sensors work together to perform obstacle detection, navigation and
mapping. This is a mixture of range sensors, visual sensors and depth sensors. Consequently, the
theory behind how these sensors work and the theory behind the methods used to perform mapping
and navigation is explained. Further, specialized theory regarding the implemented methods and
development platform is introduced in their respected section. This includes an introduction to
the robot operating system ROS2 (Section 6.3), how the different sensors interface with the system
(Section 6.5) and the exact method of which the position and orientation of the system is calculated
based on visual landmarks (Section 6.6). The reason for having the specialized theories in the same
sections as the implemented methods are to present the implemented methods without the reader
having to go back and look up the theory from this chapter. This chapter is based on the pre-study
conducted in relation to this thesis appendix: A, notable exceptions are Section 4.1.3, Section 4.2.1
and Section 4.2.3.

4.1 Obstacle detection with ultrasonic-and infrared range sensors

In this section the theories behind two different kind of range sensors are explained. That being
the ultrasonic and the infrared range-sensors, both of which has low-cost alternatives available for
purchase, making them a good fit for this project.

4.1.1 Ultrasonic distance measurement

Ultrasound operates at frequencies greater than what humans can hear, soundwaves over 20kHz is
considered ultrasonic. The sensors consist of an emitter and a receiver. The emitter emits a sound-
wave while the receiver waits for the emitted waves to be reflected back, before calculating the
distance based on the elapsed time. The distance is given by Equation 4.1.

D =
t

2
× c (4.1)

Where D denotes the distance from the sensor to the detected object, t denotes the elapsed time
from emitting to receiving the waves, and c is the speed of sound. Since we only want to know the
distance between the sensor and the object, we have to divide the equation by 2. As the speed of
sound varies based on temperature and the material the waves propagate in, c must be adjusted
based on this. The speed of sound in air can be approximately calculated from Equation 4.2, when
treated as an ideal gas.

15

CHAPTER 4. BACKGROUND THEORY

c =
√
k ∗R ∗ T (4.2)

Where:

• k = ratio of specific heat
• R = gas constant
• T = temperature in kelvin

The main advantage of ultrasonic sensors is that they are easy to use and relatively cheap,
besides this they prevail in poor lightning conditions as this does not effect the measurements. This
also means that the color of the obstacle does not matters, as the sensor will be able to detect it as
long as it reflects sound.

There are several disadvantages with ultrasonic sensors. One of them is its inability to detect
sound absorbing objects, since they will not reflect the emitted signal. Another problem is the fact
that if the surface of the obstacle is at to great an angle relative to the sensor, the signal will not
be reflected back to the sensor. These two scenarios are illustrated in 8. The last drawback with the
ultrasonic sensors is the variance in the speed of sound based on the temperature. If not accounted
for, this will produce errors in the distance measurements as the distance is calculated based on the
speed of sound. However, in relation to this thesis it is assumed that the variance in temperature in
an indoor environment is small enough to be disregarded.

Figure 8: Ultrasonic distance sensor failing to detect sound absorbing, and flat angled surface [6]

16

CHAPTER 4. BACKGROUND THEORY

4.1.2 Infrared distance measurement

Contrary to ultrasonic sensors, infrared sensors are prone to noise from lighting conditions, but they
have the advantage of being reflected by sound absorbing surfaces. In the same way as an ultrasonic
distance sensor, an infrared distance sensor consist of a emitter and a receiver. The difference being
the beam of infrared light as opposed to the ultrasonic beam, and the way in which the distance
is measured. Infrared distance sensor calculates the distance from the sensor to the obstacle by
triangulation, based on the angle of the reflected beam. This is shown in Figure 9.

Figure 9: Illustration of the working method of a infrared distance sensor [7]

4.1.3 Obstacle detection with ultrasonic and infrared sensors

As mentioned in Section 4.1.2 and Section 4.1.1 both sensors have their shortcomings, but they
complement each other, meaning that in a scenario where the ultrasonic sensor may fail to de-
tect an object, the infrared sensors should, in theory, have no problem detecting the same object,
and the other way around. Thus, a system consisting of both ultrasonic and infrared range sensors
should in theory be able to detect obstacles regardless of the surface characteristics of the obstacle.
This is supported by the article «Obstacle Detection and Collision Avoidance for a UAV With Com-
plementary Low-Cost Sensors» where an obstacle avoidance system with basis in a redundant grid
consisting of twelve ultrasonic sensors and eight infrared sensors is developed, and proven able to
avoid collision with obstacles such as walls and people [24].

17

CHAPTER 4. BACKGROUND THEORY

Another way to improve the capabilities of such a system is to have the measurement areas of
the sensor overlap, preferably every angle within the measurement area should be covered by more
than one pair of sensors. Increasing the change of detection of an obstacle if one or more sensors
should produce false measurements. Figure 10 shows an illustration of two overlapping sensors.
The overlapping area is covered by both sensors, thus making measurements from this area more
reliable than the two areas only covered by either of the sensors.

Figure 10: Illustration of two overlapping range sensors.

18

CHAPTER 4. BACKGROUND THEORY

4.2 Navigation and mapping

Besides being able to detect obstacles an automatic ground vehicle(AGV) requires methods for nav-
igating the working environment, and in cases where there exist no prior map of the environment
it is advantageous if the AGV can create a map on its own. There are different ways of doing this, in
relation to this project the chosen methods are visual landmarks for navigation and simultaneous
localization and mapping(SLAM) and occupancy grid mapping for both mapping and navigation.

Visual landmarks serves as distinct landmarks placed withing the working environment, of which
the position is known. The AGV can use these landmarks to update its own position by calculating
its relative position in relation to the landmarks. For this a standard two-dimensional RGB camera
is used. Therefore a subsection is dedicated to how a point in three-dimensional space is calculated
using the pinhole camera model.

For SLAM and occupancy grid mapping to work, the sensor system must provide depth data
of the environment. The difference between a range sensor and a depth sensor is the resolution in
which the sensor can provide information about the surrounding environment. To perform mapping
a high resolution depth image of the environment is needed, this can either be a two-dimensional
image describing the relative position of surrounding environments in a horizontal-plane, or a
three-dimensional image describing the relative position in X, Y and Z - coordinates. Consequently,
a subsection is dedicated to different ways of obtaining depth data. In addition a brief introduction
to both algorithms is given in their own subsections.

4.2.1 Pinhole camera model

The pinhole camera model describes the relationship between a point in three-dimensional space
and its projection onto a two-dimensional image plane of an ideal pinhole camera. This is illustrated
in Figure 12.

Figure 11: Illustration of the pinhole camera model [8]

19

CHAPTER 4. BACKGROUND THEORY

In an ideal camera model we assume that the radius of the pinhole closes down to zero, so that
every ray goes through the optical center of the camera and are then projected upon the image
plane. The distance from the pinhole to the image plane is called the focal length of the camera.
The relationship between a point in three-dimensional space and its projection on the image plane
is illustrated in Figure 12.

Figure 12: Illustration of the geometry describing the relation between the image plane and 3D-coordinates

Summarized the relationship between the 3D coordinates of a point P and the image coordinates
of the reflected point Q in the image plane is given by Equation 4.3.

y1
y2

=
f

x3
∗ x1
x2

(4.3)

Where y1 and y2 refers to the 2D coordinates of point Q in the image plane, x1, x2 and x3 refers
to the real-world coordinates of point P and f is the focal length of the pinhole camera.

20

CHAPTER 4. BACKGROUND THEORY

4.2.2 Stereo vision

In order to map the environment, depth perception is needed, as we want to know the distance
between the AGV and its surroundings. A commonly used method for obtaining depth perception
is stereo-vision. Stereo-vision emulates the most common visual system we find in nature, which
is a set of two eyes. By receiving information about a scene from two cameras fixed in relation
to each other, one can extract depth information. This is done by correlating points in the two
different images, then calculating the depth with triangulation. The problem is to find correlating
pixels in the two images, as searching through the whole two-dimensional image plane in order to
find matching pixels is very time consuming. Instead, since the pose of the two cameras is known,
we use epipolar geometry, which describes the relation between three-dimensional points and their
projection onto the two-dimensional image. This narrows the search for correlating pixels down
from a two-dimensional array containing all the pixels to a one-dimensional array only containing
the pixels along a distinct line in the image plane. This line is called the epipolar line.

Figure 13: Epipolar views [9]

Figure 13 illustrates how one point, denoted by X can be anywhere on the line OL−X from the
view of the left camera. Since it is only seen as a distinct point denoted by XL in a two-dimensional
image plane. From the view of the right camera, OL−X is seen as a line and projected into the right
image plane as the line eR − XR, which is the epipolar line. After searching through the epipolar
line for a matching pixel, we have a known triangle from which the depth can be calculated.

21

CHAPTER 4. BACKGROUND THEORY

4.2.3 Active IR stereo vision

The performance of a stereo vision sensor depends on the degree to which it is capable of distinguish
between features in the images it is taking. A problem for regular passive stereo vision sensors may
occur when the scene consist of flat surfaces where it is difficult to distinguish between neighbouring
points. With an active IR stereo vision sensor a texture projection of IR light is projected upon the
scene which may help to add details to the scene outside of the visual spectrum. This additional
detail makes it easier for the vision sensor to distinguish between the neighbouring points in the
images. This is illustrated in Figure 14

Figure 14: Illustration of a active IR stereo sensors [10]

22

CHAPTER 4. BACKGROUND THEORY

LIDAR technology

LIDAR is an acronym for Light Imaging And Ranging. LIDAR technology uses light pulses to illumi-
nate its surroundings, and it measures the reflected light. There are two methods used to calculate
distance to the surrounding objects. It is either calculated based on time of flight or by analysing the
wavelength of the received signal. With time of flight the distance is calculated with Equation 4.4.

D =
t ∗ c
2

(4.4)

Where D denotes the distance to the object, t is the travel time and c is the speed of light. This is
divided by two to give the distance between the objects.

The typical LIDARs used in robotics are spinning LIDARs, giving them a 360 degree viewing
angle. Because the speed of light is so fast the frequency of the light pulses can be very high,
resulting in a high resolution map of the environment. For robotic-mapping purposes there are two
different options available, either a two-dimensional LIDAR, or a three-dimensional LIDAR. A 2D-
LIDAR sends out light beams only in the horizontal plane, while the 3D-LIDAR also send light beams
in the vertical axis, resulting in a 3D scan of its surroundings. Depending on the chosen LIDAR this
can either be used to create a two-dimensional map or a three-dimensional map.

4.2.4 Odometry

Odometry is the use of sensor data to estimate change in position over time, and is often used in
relation to navigation and mapping in robotics. There are different methods for calculating odom-
etry, one being to calculate odometry from the wheels of the robot. When the circumference of the
wheels is known, and a sensor is keeping track of the rotations of the wheels the change in position
can be calculated. Depending on the robot the position, velocity, angular velocity and orientation
can be estimated by comparing the odometric data from each wheel.

Odometric data can also be obtained by comparing sensor data of the surrounding environment
from one point in time to another, this is the case in visual odometry. With visual odometry distinct
features from the images are compared, and the odometry of the robot is estimated by comparing
the change in position of these features. In order for visual odometry to be effective there has to be
enough distinct features in the scene for the sensor to capture.

23

CHAPTER 4. BACKGROUND THEORY

4.2.5 SLAM

SLAM is an acronym for Simultaneous Localization And Mapping. As the acronym implies, it is a
method for construction a map of an unknown environment, and at the same time keep track of the
agents position within that environment. This is a hard problem to solve, as the path and position
of the agent is not known with certainty. The error in position correlates errors in the map it is
constructing, as a result both has to be estimated simultaneously [25].

Odometry estimates the position of the AGV in relation to its starting position based on data
from motion sensors. AGVs can with rotary encoders on the wheels, and with the angle of the
wheels estimate the change in position over time based on the sensor data. This data is however
prone to error over time, and is therefore not a sufficient method to keep track of the location of the
AGV. The SLAM-algorithms solution to this problem is loop-closure. Loop-closure is the re-visiting
of previously observed landmarks where the positioning of the AGV is known with more certainty.
This extra information of the pose increases the certainty of the previous poses as well [25]

Figure 15: Blue line depicting the path of the robot before loop-closure, red line depicting the path after
loop-closure [11].

Because of the complexity associated with the SLAM method, it is considered a hard problem to
solve, especially as the working environment gets bigger [26].

24

CHAPTER 4. BACKGROUND THEORY

4.2.6 Occupancy grid mapping

Occupancy grid mapping is a term representing a family of robotic algorithms that aim to generate
maps from sensor data assuming the pose of the robot is known. This is the key difference between
this method and the SLAM approach. The robot measures the distance to surrounding objects using
its sensors, the measurements are then translated from the robot frame to the global frame where
it is used to generate the occupancy grid map.

Figure 16: Illustration of a robot updating the
occupancy grid map using sensor data

An occupancy grid map is an array of occu-
pancy variables. Each cell in the occupancy
grid map is associated with one occupancy
variable. This is a binary random variable
with either the value 1 or 0, representing a
occupied or empty cell. If a cell is occupied
this means that it is an obstacle in the corre-
sponding position in the real-world.
Building an occupancy grid map is based on
probabilistic calculations for each cell. From
these calculations a map containing either
free or occupied cells is constructed.

When generating the occupancy grid map every observed cell is given a value describing the
probability of that cell being either occupied or free. As these cells are observed again and again
through overlapping measurements, the value they hold is updated with an update rule. This means
that if a cell is measured to have the same state over and over, the probability of that cell having
that exact state increases. This is illustrated in Figure 17. The lighter the color is, the more probable
it is that the cell is free, the darker the color is, the more probable the cell is occupied.

Figure 17: Illustration of the logarithmic updating process

The accuracy of this method is highly dependent on to which degree the position of the vehicle
can be calculated accurately. Since the problem of mapping the position of other objects in relation
to the position of the AGV alone is a straight forward problem to solve in comparison to having to

25

CHAPTER 4. BACKGROUND THEORY

calculate the position of the AGV at the same time [25], this method is a viable option. As a result
it can be assumed to be easier to implement on a low-cost computer.

26

CHAPTER 5. CONCEPTIONAL DESIGN

5 Conceptional design

This system described is based upon the pre-study, included in appendix: A, where a literature
study of existing technology was conducted, and a concept was developed based on the findings.
The presented concept is similar to the concept presented in appendix: A, notable exceptions are
section 5.2. Along with the description of the system comes a list of the necessary equipment. The
concept is further expanded upon in Chapter 6.

The presented concept is a concept for a stand alone sensor system designed to be coupled with
a existing autonomous ground vehicle(AGV), as such the information provided by the sensor system
alone is not enough to perform mapping, navigation and collision avoidance. The objective of the
described system is to provide enough information about the surrounding environment such that
when coupled with an AGV it should be able to provide these services.

The system does not provide odometry readings nor does it include a method for controlling the
AGV’s actuators. However, one of the goals of the system is to perform mapping and navigation on-
board. Consequently the system should have a method for communicating with the AGV to receive
the necessary information to perform these tasks.

The presented concept is for a prototype system. Therefore, the chosen equipment is for development
purposes. The result of this is that the equipment is not the cheapest available. The equipment is chosen
with basis in price and performance since the main objective of this thesis is to develop a low-cost navi-
gation and obstacle avoidance system, but also for making the development process as straight forward
as possible. In the cases where this is true, an alternative solution is presented.

The following list is the technical requirements of the presented system.

• The whole system should be implemented on a low-cost single board computer(SBC).
• When receiving the necessary data from a AGV the system should have the ability to automat-

ically generate and update a map of its surroundings.
• Coupled with an AGV the system should be able to accurately keep track of its position within

the workspace.
• The system should be able to detect suddenly appearing obstacles before collision occurs.
• The system should have a method for interfacing with an existing AGV to send and receive

the necessary data.

27

CHAPTER 5. CONCEPTIONAL DESIGN

5.1 Low-cost computer

The single board computer most fit for this project is the Raspberry PI 4 Model B(RBPi4). Partly due
to the price, the power of the computer and the community support for Raspberry PI. The RBPi4
should be accompanied by a micro-controller, in this case a Arduino. The Arduino will serve as a
slave to the RBPi4, communicating directly with the range sensors. The data from the Arduino is
sent to the RBPi4 for further processing. The reason why the arduino is used as a hub to commu-
nicate with the range sensor is because of the lack of integrated input/output(I/O) ports on the
RBPi4 and the existing libraries for using low-cost range sensors together with the arduino. Making
it easy for development purposes to have the arduino handle the communication with the sensors.
This is not necessary, but it was deemed as the best choice for development purposes.

Figure 18: Arduino UNO
Figure 19: Raspberry Pi 4 model B

Further, the RBP4 is a generic SBC, meaning it is not specialized for a specific task and has a lot
of unnecessary extra equipment in relation to this project. This is not a problem when developing
and testing a prototype, but a final product should use a barebone computer with no unnecessary
equipment, as this will reduce the cost of the system.

28

CHAPTER 5. CONCEPTIONAL DESIGN

5.2 Mapping localization and navigation

The system should have the ability to use prior available information, such as floor plans to gen-
erate maps of the workspace, as this would simplify the mapping process. In addition it should
have a method for automatic mapping, allowing it to generate the map from scratch and update
the existing map if needed. The two alternatives for automatic mapping are the simultaneous local-
ization and mapping approach(SLAM) and occupancy grid mapping with external odometry. With
SLAM the autonomous ground vehicle(AGV) has to generate a map of the environment while at
the same time keep track of its position within that environment. With occupancy grid mapping the
pose of the AGV is assumed known, which means the AGV only has to generate a map based on
its position, resulting in a less computationally costly mapping algorithm. Both of these methods
serve the purpose of automatically generating and updating a map of the AGVs surroundings. The
SLAM approach has the advantage that no additional method for localization is needed, but this
comes at the cost of complexity. As a result, it may prove to be to computationally costly to perform
efficiently on a low-cost computer in a large environment. Consequently, both methods should be
considered and tested.

Independent on which method is used for automatic mapping, the sensor chosen for this concept
is the Intel RealSense D435. As the amount of data from the sensor is quite large it uses a USB3.0
connection. The older versions of the Raspberry Pi does not support USB3.0, but the RBPi4 does.
Thus the Intel Realsense D435 should be compatible with the RBPi4.

Figure 20: Intel Realsense D435 [12]

The Intel Realsense D435 uses active IR stereo for obtaining depth information about the scene,
besides this it comes with a RBG camera and an on-board vision processor. The on-board vision
processor takes some load of the RBPi4 as it outputs pre-processed depth data.

29

CHAPTER 5. CONCEPTIONAL DESIGN

Navigation using visual landmarks

Since it is unclear whether or not it is feasible to run SLAM on a RBPi4 as the area of the
workspace increases, an alternative method for navigation that can be used together with SLAM
is proposed. The suggested method is to use visual landmarks in the roof, of which the position in
three-dimensional space is known to calculate the relative position of the sensor system. From this
the position of the sensor system within the workspace can be calculated.

The proposed solution is to use QR-codes mounted in the roof holding its position withing
the workspace. Each QR-code will hold a x, y and z coordinate describing it position withing the
workspace, then since the distance from the QR-code to the RGB-camera on the sensor-system is
known, the position of the sensor-system relative to the QR-code can be calculated using the pinhole
camera model described in Section 4.2.1. An illustration of this method is shown in Figure 21. The
method used for calculating the position of the sensor system relative to the workspace is further
expanded upon in Chapter 6.

30

CHAPTER 5. CONCEPTIONAL DESIGN

Figure 21: Position of QR-code and camera relative to each other

5.2.1 Obstacle detection

The sensor used for mapping can also be used for obstacle detection. In comparison to the range
sensors with a measurement range of about four meters, the maximum range of the Intel Realsense
D435 is ten meters. This allows for longer range obstacle detection in the direction the sensor is
facing. Obstacle detection using stereo-vision has previously yielded good results [27]. Since it has
the ability to perceive visual information, this information can be used for recognition and tracking
as well. Potentially allowing the AGV to plan according to its perceived environment instead of just
stopping when faced with a obstacle.

Figure 22: Illustration of the sensors detection
range around the AGV.

Since the viewing angle of the Intel Re-
alsense D435 is limited, an additional
system for obstacle detection is proposed.
This is a short range obstacle detection sys-
tem in the form of a redundant grid around
the AGV, consisting of multiple low-cost
ultrasonic and infrared distance sensors. As
explained in Section 4.1 these sensors com-
plement each other, thus in theory giving
the system the ability to detect obstacles
independent of the surface characteristics.
This enables the system to detect people and
equipment.

This system has been proved to yield good
result in its ability to detect obstacles in-
dependent of the surface characteristics, in
comparison to a system consisting of only ul-
trasonic sensors which fail to detect soft sur-
faces such as clothes [24].

Figure 22 illustrates the detection range of the proposed system. The Intel Realsense D435 has a
viewing angle of 87 degrees and a maximum range of ten meters. The depth sensor is accompanied
by a redundant grid consisting of ultrasonic- and infrared range sensors covering a viewing angle
of 360 degrees.

The obstacle detection grid should consist of low-cost sensors. The suggested infrared- and ultra-
sonic sensors are the «GP2Y0A710K0F Sharp, Reflective infrared Sensor» and the «URM07 - UART
Low-Power Consumption Ultrasonic Sensor». The sensors should form a redundant grid, meaning
the sensors should overlap to enable more reliable obstacle detection, since more than one pair of
sensors covers the same area. Figure 22 illustrates the detection area of the proposed system.

31

CHAPTER 5. CONCEPTIONAL DESIGN

5.2.2 Overall design of suggested prototype

In this subsection a suggested prototype is described. It includes the hardware needed to realize
the system described earlier. Which is a system providing the necessary information such that when
coupled with an autonomous ground vehicle(AGV) it should be capable of mapping and obstacle
avoidance. The following list contains the suggested hardware needed to realize the system, except
for power supply and wiring.

• Raspberry Pi 4 Model B
• Arduino UNO
• Intel RealSense 435
• GP2Y0A710K0F Sharp, Reflective Sensor x 8
• URM07 - UART Low-Power Consumption Ultrasonic Sensor x 8

The Raspberry RBPi4 communicates with the Intel RealSense D435 via an USB3.0 connection.
Communication between the RBPi4 and the Arduino is via serial communication. The sensors are
connected to the Arduino via the I/O pins on the Arduino board. As it exist multiple Arduino li-
braries developed for interfacing with low-cost sensors the Arduino will take care of the range
measurements before sending these to the RBPi4.

Figure 23 shows the hardware architecture of the proposed sensor system.

Figure 23: Hardware architecture of proposed system.

32

CHAPTER 6. SYSTEM DEVELOPMENT

6 System development

The system described in this chapter is based of the concept presented in Chapter 5. In this chapter
the developed system is described along with the hardware and software used in development.
The chapter concludes with a description of a prototype for a low-cost navigation and collision
avoidance system, as well as the experience gained from developing such a system. The prototype
is developed with the main objective of the thesis in mind, which is to develop a low-cost navigation
and collision avoidance system. The system aims to uphold the system requirements presented in
Chapter 3.

6.1 Sensors and equipment

A variety of sensors and equipment make up the system as a whole. In this section each part is
described based on their functionality in relation to the task they are to perform. Some of the
equipment is chosen because it is well suited for a project in development, but they may not be the
best choice for a finalized system, therefore recommendations for equipment better suited for this
are included.

6.1.1 Total cost of the system

With the main objective being to develop a low-cost system for navigation and obstacle avoidance,
the equipment is chosen with this objective in mind. As stated in Section 3.3 the upper price limit
for such a system is around 5000 Norwegian kroner. The total cost of the system is shown in Table 2.

Equipment: Units: Supplier Cost per unit: Cost:
Raspberry Pi 4
model B

1 Atea 583.00 NOK 583.00 NOK

Ardunio Uno 1 Elfa 221.25 NOK 221.25 NOK
Intel RealSense
d435

1 Atea 2327.00 NOK 2327.00 NOK

Sharp reflective
sensor

8 Farnell 207.00 NOK 1656.00 NOK

HC-SR04 Ultra-
sonic sensor

8 Elfa 44.88 NOK 359.04 NOK

Total cost: 5146.29 NOK

Table 2: Total cost of developed system.

As shown in the table the total cost of the system is 5146.29 NOK, which in within the price
range of «around 5000 Norwegian kroners». The prices of the equipment used may vary from
supplier to supplier, and if the equipment where to be bought in bigger batches, this may also affect

33

CHAPTER 6. SYSTEM DEVELOPMENT

the price. Further, the equipment is chosen based on simplicity in relation to development purposes.
Consequently, there is lower cost options available.

6.1.2 Raspberry Pi 4 model B, Single board computer(SBC) running the system

The single board computer(SBC) chosen for this project is the Raspberry Pi 4 model B(RBPi4).
With the main objective of the thesis in mind this SBC falls within a reasonable price range Table 2.
Coupled with the large Raspberry Pi community, the wide range of resources available online and
the newly added computational power, it was concluded that this was a good choice for a SBC to
develop such a system [22]. The RBPi4 model used in the development of this project comes with
4 giga byte(GB) RAM, as opposed to the 1 GB RAM the Raspberry Pi 3, could offer. As of now there
is also a RBPi4 model with 8GB Ram available. RAM is an abbreviation for random access memory,
which is the short term data storage of the computer.

The RBPi4 can run different Linux distributions and it can run ROS 2, which is the robotic
framework used in relation to software development, this is further elaborated upon in Section 6.3.
As the RBPi4 is a SBC developed for general use, it comes with a lot of extra equipment that is
not necessary for a finalized system, but it serves as a good development platform. For a finalized
system a barebone-model with only the necessary ports for communication with the rest of the
system would suffice.

6.1.3 Arduino UNO, microcontroller for interfacing with range sensors

Implemented in the system is a micro-controller in charge of communication with the range sensors.
The reasoning behind this is the fact that the RBPi4 does not have the necessary I/0 ports to commu-
nicate with all of the sensors. The chosen micro-controller is the Arduino UNO. The Arduino UNO
serves the purpose of controlling and receiving information from the range-sensors. One of the main
advantages of using a Arduino UNO is the existing driver for multiple low-cost range sensors, as
well as the low cost of the micro-controller itself. This makes it a good fit for development purposes.

Just as the RBPi4 is a general purpose SBC, the Arduino UNO is a general purpose micro-
controller. Therefore a bare-bone model may be more fit for a finalized system.

6.1.4 Intel RealSense 435, depth sensor for navigation and mapping

The Intel Realsense 435i consist of an active infrared stereo-camera (Section 4.2.3), a high resolu-
tion RGB camera and an on-board vision processor. The Intel Realsense can do image processing
on-board, due to the integrated vision processor. The range for depth sensing is up to ten meters.
[22].

6.1.5 Raspberry Pi V2 camera, RGB camera for detecting visual landmarks

The Raspberry Pi Camera V2 is a 8 megapixel Sony IMX219 sensor custom designed for the Rasp-
berry Pi SBCs. It is capable of 3280 x 2464 pixel still images and support 1080p30, 720p60 and
VGA90 video modes. It is easy to integrate and use with Raspberry Pi SBCs as they come with a

34

CHAPTER 6. SYSTEM DEVELOPMENT

port designed for the camera module. There are also build numerous third-party libraries for the
camera. Making it easier to develop applications based on the camera.

In relation to this system the camera serves the purpose of detecting visual landmarks in the
form of QR-codes containing information about the landmarks position within the work environ-
ment, which is then used to calculate the position of the camera, and therefore the system itself.

6.1.6 GP2Y0A710K0F Sharp, Reflective Sensor, infrared range sensor for obstacle de-
tection

The GP2Y0A710K0F Sharp, Reflective Sensor is a distance measuring unit with a detection range
of 100 to 500 cm. The sensor consists of a emitter, a receiver and a signal processing circuit. The
measured distance is calculated through triangulation (Section 4.1). It outputs an analog voltage
corresponding to the measured distance. The correlation between output voltage and distance is
shown in figure Figure 24. From the figure the measurement range of the sensor is obtained, as the
output of any measured distances shorter than one meter equals the output of measured distances
longer than one meter. Consequently, the minimum range of the sensor is one meter. The maximum
range is five meters, as the slope of the function begins to flatten out which makes it harder to to
distinguish between measurements.

Figure 24: Correlation between output voltage from IR-sensor and measured distance [13]

6.1.7 HC-SR04 ultrasonic sensor, ultrasonic range sensor for obstacle detection

The HC-SR04 ultrasonic sensor is a distance sensor with a detection range of 2 to 400 cm, and
a measuring angle of 15 degrees. The sensor unit consist of an ultrasonic emitter and receiver,

35

CHAPTER 6. SYSTEM DEVELOPMENT

and the measured distance is calculated by the time measured between emitting and receiving the
ultrasonic signal Section 4.1. The sensor outputs a digital value corresponding to the measured
distance.

6.2 Hardware architecture

As the functionality of the system is to perform navigation and collision avoidance the system can
be divided into two parts. The first part is the short range obstacle detection grid consisting of ul-
trasonic range sensors and infrared range sensors. These are connected and controlled through the
Arduino input/output(I/O) ports. Ultrasonic and infrared range sensors each have their own ad-
vantages and disadvantages, when put together they complement each other. Therefore the system
is well adjusted to detect obstacles independent of their surface characteristics [24]. Further, the
Arduino Uno is connected to the RBPi4 through a serial port, and delivers the readings from the
sensors to the RBPi4. Serial communication also allows for programming the Arduino UNO from
the RBPi4. Other communication protocols could be used instead, but for developing purposes us-
ing serial-communication makes it easier and because the Arduino UNO only has a few analog I/O
ports, two of which are used for I2C-communication. Serial was chosen as all the analog I/O ports
were needed for interfacing with the sensors.

Figure 25: Hardware architecture of developed system.

36

CHAPTER 6. SYSTEM DEVELOPMENT

The reason why Arduino board was chosen to interface with the obstacle detection grid, as
opposed to directly interfacing with the RBPi4 is because it is simpler and less time consuming to
set up, which makes it great for development purposes. The Arduino comes with more I/O-ports
and has libraries designed for interfacing with low-cost ultrasonic and infrared sensors. As for a
finalized product, the Arduino would not be necessary.
The ultrasonic sensors are connected with the digital input/output(I/O) pins on the Arduino board,
while the infrared sensors are connected through analog I/O pins. Figure 26 shows how each sensor
are connected to the Arduino microcontroller.

Figure 26: Connection between Arduino UNO and range sensors (Figure made with Fritzing).

The ultrasonic sensor has four connectors, which are connected as follows:

• Vcc: 5 volt supply voltage, in Figure 26 supplied through digital pin 13.
• GND: One connector for ground connected to ground on the Arduino board.
• Trig: Trigger pin which receive a signal to trigger the ultrasonic sensors, connected through

digital pin 10.
• Echo: Echo pin connected to the ultrasonic receiver, it sends a signal to the Arduino UNO

when the ultrasonic sensor receives the reflected signal, also connected to digital pin 10.

The infrared sensor has five connectors, which are connected as follows:

• Vcc x 2: Two connectors for supply voltage, both connected to the 5 volts output on the
Arduino board

• GND x 2: Two connectors for ground, both connected to ground on the Arduino board.
• Vout: A output connector for the output voltage from the sensor, which reflect the measured

distance.

37

CHAPTER 6. SYSTEM DEVELOPMENT

The Intel RealSense D435 and the Raspberry Pi camera module is connected directly to the Rasp-
berry Pi. The Intel Realsense D435 is connected via USB3.0 while the camera module is connected
through the camera module port. The Intel Realsense D435 collects depth data of the surrounding
environment which is then used to perform mapping and navigation, the camera module is tasked
with detecting visual landmarks in order to support with tracking the systems position.

6.2.1 Housing

A housing for the range sensors was designed and 3D printed using TinkerCad, which is a free
online computer-aided design(CAD) program for developing 3D models. The housing is a octagon
with 2x8 slots designed to fit the 8 ultrasonic and 8 infrared distance sensors. This makes up a
obstacle detection grid with a 360 degree viewing angle Figure 27.

Figure 27: Housing for obstacle detection grid

38

CHAPTER 6. SYSTEM DEVELOPMENT

6.3 Development platform and programming language

As the system itself is a sensor system developed to provide the necessary information so that a
robot can function automatically in a dynamic environment it should be easy to integrate and com-
municate with, Chapter 3.

The chosen development platform is therefore
the robot operating system, ROS2. Which is a set
of software libraries and tools for building robot
applications [28].

ROS 2 is the newest version of ROS. ROS 2
supports multiple languages, the two most com-
mon being python 3 and C++. The framework
provides a set of standard messages so that nodes
can communicate with each other independent of
the language the node is written in. Further ROS
2 allows for communication between multiple
computers. In the development of this system
this has proven useful as the Raspberry Pi is
running a barebone ROS2 version and barebone
Ubuntu 18.04 making it difficult to observe what
is happening. Through communication with a
laptop the data from the Raspberry Pi can be
visualized making it easier to debug the code.

For visualization ROS 2 uses Rviz, a graphical in-
terface that allows for visualization of data. Plu-
gins for different topics are available, such as
range sensors, point-clouds, odometry etc. This
makes it possible to visualize the robot with the
connected sensors as well as the robot’s position
within maps. Figure 29 shows a visualization of
the Turltebot3 in Rviz, with measurements from
the LIDAR attached to the robot as visualized with
red dots.

Figure 28: ROS 2 Dashing Diademata [14]

Figure 29: RVIZ visualisation of turtlebot and LIDAR
data [15]

39

CHAPTER 6. SYSTEM DEVELOPMENT

ROS 2 workspace

Before going into the architecture of this system a brief introduction to ROS 2 is provided. When
developing a new project it is a good practice to create a new directory containing the workspace
for that project, as it is important to have a good structure for the project both for the developer,
and other people wanting to make use of it. The workspace will contain all the code developed for
the project. In Listing 6.1 the process for creating a new ros2 workspace i shown, the workspace is
called «ros2_ws», short for ros2 workspace.

mkdir ros2_ws
mkdir ros2_ws/src

Listing 6.1: Setting up a new ROS2 workspace [17]

ROS2 packages
The newly created workspace contains a
folder, called «src», this is the folder where
all the packages should be stored. In ROS2
a package is a container for the code [18].
Packages allows the developer to install and
share the code with other. In Listing 6.2
a trivial ROS 2 workspace containing n
amount of packages is shown.

ROS2 packages use Ament as its build sys-
tem, and Colcon as its build tool. This is
necessary as the code has to be converted
into executables before it can run on the
computer, this is the main task of the build
system. Depending on which language you
choose to write the code, the building tool
for that language must be declared when
creating the package.

workspace_folder/
src/

package_1/
CMakeLists.txt
package.xml

package_2/
setup.py
package.xml
resource/package_2

...
package_n/

CMakeLists.txt
package.xml

Listing 6.2: Example of a workspace containing
an arbitrary amount of packages [18]

A benefit of storing all the relevant packages for the project within a workspace is that instead
of building each package individually, all the packages in the workspace can be built using Colcon.
Listing 6.3 shows the process of navigating to the src-folder and creating a new package called
«my_first_package» within that folder.

cd /ros2_ws/src

ros2 pkg create --build -type ament_python my_first_package
Listing 6.3: Creating a python package in ROS2

ROS 2 nodes

Further, each package can contain multiple nodes which essentially is the code executables. In
ROS 2 a good practice is to have each node be in charge of one task. For example one node is

40

CHAPTER 6. SYSTEM DEVELOPMENT

in charge of the systems range sensors, another one is in charge of the depth-sensor etc. One of
the main advantages of using ROS 2 for robot development as opposed to creating a framework
from scratch is the communication protocols. ROS 2 is a cross-platform, multi-language robotic
framework. Using the communication tools offered by ROS 2, nodes can communicate with each
other independent of the language the code is written in and between multiple computers. For
communication between nodes, different nodes can publish data to any number of topics while
simultaneously subscribe to any number of topics. ROS 2 topics acts as a bus from nodes to exchange
messages [29].

ROS 2 messages

A common communication interface in ROS 2 is messages. Standard messages in ROS 2 are used to
communicate between nodes independent on the programming language. The .msg files are what
describes the fields of a ROS 2 message [30]. This way a node written in python can publish data
through a ROS 2 message which then a node written in C++ can subscribe to. Each message is
published with a custom topic name containing the published message. ROS 2 provides a multitude
of different messages for a wide variety of different sensors and data-types.

ROS 2 communication between multiple computers

As long as the computers are connected to the same network communication between multiple
computerss is enabled by setting the same «ROS_DOMAIN_ID» on the computers. Listing 6.4 shows
how this is achieved by setting the same «ROS_DOMAIN_ID» across multiple computers by simply
typing the following in a command shell.

export ROS_DOMAIN_ID =30

Listing 6.4: Set ROS_DOMAIN_ID

This allows for a computer to subscribe to topics published on another computer.

41

CHAPTER 6. SYSTEM DEVELOPMENT

6.4 Software architecture

In this section the software architecture and the communication between different devices in the
system is described. Additionally a description of how to communicate with external computers is
included. Figure 30 shows the communication setup of the system.

Figure 30: Illustration of communication between devices.

Both the ultrasonic- and infrared sensors is connected to an Arduino UNO. Each ultrasonic sensor
is connected to one digital pin which acts as both a trigger and a digital input pin. From the Arduino
UNO a signal is sent to the ultrasonic sensor triggering the sensor, the sensor then outputs a digital
signal to the same pin when the emitted ultrasonic signal is received. The time between triggering
the ultrasonic sensor to receiving the output signal from the sensor is used to calculate the distance
from the sensor to the obstacle reflecting the signal.

The infrared sensors is constantly outputting an analog signal to one of the analog input ports
on the Arduino UNO which reflects the measured distance from the sensor. The Arduino UNO loops
through each of these ports and the received analog signal is used to estimate the distance to the
obstacle reflecting the infrared beam.

The main purpose of the Arduino UNO is to communicate with the sensors and convert the
sensor signal into distance measurements which is then sent to the RBPi4 through serial commu-
nication for further processing. The RBPi4 is communication directly with the Arduino UNO, and
additionally the Intel Realsense D435 and the Raspberry Pi V2 camera. The Intel Realsense D435
outputs pre-processed depth data and the Raspberry Pi V2 Camera outputs images which is further
processed on the RBPi4. Further, using ROS2 it is possible to communicate with external computers.
This can either be for the purpose data visualization or to communicate with a robotic vehicle. This
is achieved following the method described in Section 6.3.

42

CHAPTER 6. SYSTEM DEVELOPMENT

For the development of this project a new
workspace containing the relevant devel-
oped packages was created. This includes
packages for the range sensors, the RGB
camera used to assist in navigation. It also
includes other existing packages which is in-
cluded in the workspace so that the project
is easy to install and share. This is mainly
the packages related to the Intel Realsense
D435 which is opensource from Intel. List-
ing 6.5 shows the packages contained in the
workspace «SensorSystem_ws»

SensorSystem_ws/
src/

range_sensor/

visualization/

qr_reader/

intel_realsense/

Listing 6.5: List of packages in project workspace

Each of these packages is in charge of one aspect of the system. The package range_sensor/
contains a node which reads the sensor data from the Arduino UNO and publishes the data from
each sensor on a distinct topic as a ROS message. The process of reading and publishing the data
is explained further in Section 6.5. The package visualization/ is used to visualize the sensor data.
This package is meant to run on a external computer communicating with the RBPi4. This is further
explained in Section 6.4.1. The qr_reader/ package is in charge of processing the images taken with
the Raspberry Pi V2 camera in order to detect QR-codes and estimate the position of the system.
The method behind this, as well as the published messages is described in Section 6.6.1. The in-
tel_realsense/ package contains the Intel Realsense package release by Intel. The package contains
multiple nodes to communicate and publish the data from the Intel Realsense D435. The usage of
this package and the published data is further elaborated upon in Section 6.6.3 and Section 6.6.4

As mentioned earlier the main purpose of this system is to provide the necessary information so
that a robotic vehicle equipped with the system can use this information to navigate a working
environment efficiently and safely. All the data published through ROS2 is available to other

computer running the same ROS distribution if they are connected to the same network. Figure 31
shows the available topics from the different packages and the general flow of data between the

developed packages.

Figure 31: Illustration of the data flow in the system

43

CHAPTER 6. SYSTEM DEVELOPMENT

6.4.1 Visualization package

The visualization package contains a model of the sensor-system, tying all the attached sensors to-
gether. The model describes the system and the position of each sensor in relation to each other. The
model itself is declared in a URDF-file. Here a base_link is declared, which in this case is the main
sensors-house. For each sensor a new link is declared, along with a transformation describing the
position of the sensors in relation to the main sensor house. Listing 6.6 shows the code declaration
of the sensor house represented as a cylinder, the size of the cylinder is the size of the actual sensor
house. It also shows the declaration of us_1 which represents the position of a ultrasonic sensor
attached to the sensor house.

<?xml version="1.0" encoding="utf -8"?>
<robot name="sensor_system" >

<link name="base_link">
<!-- Sensor -system housing -->

<visual >
<geometry >

<!-- Cylinder and height 8cm and radius 8.25 cm -->
<cylinder length =0.08"radius="0.0825/ >

</geometry >
</visual >

</link>
<!-- Ultrasonic sensors -->

<link name="us_1">
</link>

<!-- Translation between base_link and sensor -->
<joint name="base_link_to_us_1" type="fixed">

<parent link="base_link"/>
<child link="us_1"/>
<!-- Translation of us_1 link with respect to base link -->

<origin rpy="0 0 0" xyz="0.0825 0 -0.0175"/>
</joint >

</robot >

Listing 6.6: Model of the baselink and one attached sensor declared in an URDF file

Each link has a distinct name, this declaration is used by the other packages to tie the correct
sensors to its position in regard to the housing. This way the sensor readings will reflect the real-
world position with respect to the sensors house. Since all the translations is declared in this file,
there is no need to calculate the relative position when publishing the readings from the sensors.
Another advantage of declaring a model of the system is that it allows for visualization of the model,
as well as visualization of the readings from the sensors. Visualization makes it easier to debug the
code, and make sure that the correct sensor readings are in the correct position with respect to
the model. Figure 32 shows the model of the sensor house and the coordinate system describing
the relative position of each attached sensor. Each coordinate system consist of three axes. The

44

CHAPTER 6. SYSTEM DEVELOPMENT

illustrated model only have a collected 180 degree viewing angle, as opposed to the 360 degree
viewing angle proposed, this is elaborated further in Section 6.5. The meaning of each axis is as
described in the list below.

• Blue line: Z-axis
• Green line: Y-axis
• Red line: X-axis, the direction which the sensor is pointing

Figure 32: Model of sensor housing with the coordinate system describing the position of each range sensor
enabled

45

CHAPTER 6. SYSTEM DEVELOPMENT

6.4.2 Installation

All the developed code is included in the digital appendix. This section explains how to install and
use the developed packages. One prerequisite to use the developed packages is that ROS2 Dashing
is installed on the computer. To install the package for interfacing with the Intel Realsense D435,
one should follow the steps described in Section 6.6.3. This section goes through the installation
process of the package and all its dependencies, this process is also documented on the Intel GitHub
account [31]. The package itself is included in the workspace, but the dependencies must still be
installed in order to build the package and use it.

There is a few dependencies for using the other packages as well, that is OpenCV for python,
Pyzbar, Picamera and Pyserial.

OpenCV is a machine vision library [32] used in relation to the Raspberry Pi V2 camera and
detection of QR-codes. Pyzbar is a library for detecting and reading QR- and barcodes [33]. This
is also used in relation to detection of QR-codes. Picamera is a python library for interfacing with
the Raspberry Pi Cameras and Pyserial is a python library for serial communication, in this case
it is used to communicate with the Arduino UNO. These packages are installed by following the
procedure in Listing 6.7.

pip3 install opencv -python
pip3 install pyzbar
pip3 install picamera
pip3 install pyserial

Listing 6.7: Install the necessary python dependencies using pip for python3.

When the necessary dependencies are installed and the workspace containing the packages is ei-
ther cloned from is installed and unzipped. Then the workspace can be built running the commands
shown in Listing 6.8.

cd /SensorSystem_ws #Navigate to workspace folder
colcon build --symlink -install #Build all the packages in the

workspace

#Or , to only build one package:
colcon build --packages -select <name of package >

Listing 6.8: Build the workspace and the packages

Each package contains ROS nodes, the nodes is executed by running the command: «ros2 run
<name of package> <name of node>. By executing a node, the node will publish all relevant
topics. The published topics can be viewed by running the command: «ros2 topic list».

As previously mentioned the nodes and the related code is explained in the sections related to
the developed methods.

46

CHAPTER 6. SYSTEM DEVELOPMENT

6.5 Obstacle detection

As presented in Chapter 5 the concept for the short range obstacle detection was a 360 degree
redundant grid consisting of both ultrasonic-and infrared range sensors. Since the viewing angle
of each sensor was less than expected, the developed grid only covers 180 degrees. The developed
sensor grid instead will function as a «proof of concept».

The obstacle detection grid consist of both ultrasonic-and infrared range sensors, which in theory
allows for a sensor system more adapt at detecting surfaces independent on the surface character-
istics. As mentioned in Section 4.1, the two sensors complement each other well, as in a situation
where one of the sensors may fail, the other sensor should be able to detect the obstacle. The
infrared sensor is prone to noise from lighting conditions and transparent surfaces which the in-
frared rays will shine through, this, however does not affect the ultrasonic sensor as it operates
with soundwaves which is not affected by light. The ultrasonic sensor on the other hand may fail
to detect sound absorbing surfaces, such as clothing. The sound absorbing properties of a surface
should not affect the infrared sensor, as long as the surface reflects light the sensor should be able
to detect it.

Figure 33: Ultrasonic sensor fails to detect obstacles.

To further solidify this theory two experiments where completed, one where the obstacle had
a sound absorbing surface which in this case was a fleece jacket, and one where the surface of
the obstacle was transparent. In each experiment the distance from the obstacle to the ultrasonic -
and infrared range sensor were the same. The resulting measurement are shown in Figure 56 and
Figure 53.

47

CHAPTER 6. SYSTEM DEVELOPMENT

Figure 56 clearly shows that the infrared sensor is capable of detecting the fleece jacket, while
the ultrasonic sensor is not able to determine the distance to the jacket. The reason behind the
choice of obstacle for this experiment is the importance of safety if an autonomous ground vehi-
cle(AGV) is to work alongside humans. It is therefore crucial that a obstacle avoidance system i
capable of detecting people int the working environment.

Figure 34: Fleece jacket placed one meter from the sensors.

48

CHAPTER 6. SYSTEM DEVELOPMENT

Figure 53 shows the results from an experiment where a transparent surface is placed 0.7 meters
away from the sensor, while the wall behind is 1.5 meters away from them. The infrared sensor is
in this scenario not able to detect the obstacle because the infrared rays are not reflected by the
surface, instead the wall behind is detected. The measurements from the ultrasonic sensor on the
other hand is not affected by the transparent surface, resulting in accurate measurements from the
sensor.

Figure 35: Transparent surface placed 0.7 meters from the sensors.

49

CHAPTER 6. SYSTEM DEVELOPMENT

Obstacle detection grid

As mentioned in Chapter 5 the obstacle detection grid should be a redundant grid with a 360
degree viewing angle. Instead, the presented one has a viewing angle of 180 degrees. This is a
result of the sensor having a narrower field of view than desirable. The effectual angle of the HC-
SR04 ultrasonic sensor is 15 degrees, this is the out most angle a obstacle can be placed from the
center of the sensor and still be detected, meaning the field of view of the sensor is 30 degrees. As a
result the viewing angle of the sensor system had to be narrowed down, in order for the ultrasonic
sensors to overlap. The resulting system consist of nine ultrasonic sensor spread evenly across 180
degrees and five infrared sensor spread evenly across 180 degrees. However, the viewing angle of
each infrared sensor is a lot narrower than the viewing angle of the ultrasonic sensors, ultimately it
detects objects in a straight line from the sensor. Consequently, the infrared sensors have no overlap.
Figure 36 shows the prototype of the sensor system, while Figure 37 shows live measurements from
the system visualized in Rviz and ROS 2.

Figure 36: Obstacle detection grid consisting of
ultrasonic and infrared sensors

Figure 37: Obstacle detection grid consisting of
ultrasonic and infrared sensors, live measurement
visualized using Rviz and Ros 2

The time between each measurement from the sensors is constrained by the ultrasonic sensors,
since they operate with the speed of sound, opposed to the infrared sensors which operate at the
speed of light. With the maximum operating range of the ultrasonic sensor being four meters, the
soundwaves have to travel eight meters at maximum.

t =
s

v
(6.1)

where s represents the distance and v represents the speed. With the speed of sound c being
approximately 343 m

s the time between emitting and receiving a ultrasonic signal is estimated to
be 23.3 milliseconds. In order to prevent the ultrasonic sensors from interfering with each oth-
ers measurements the time between each call is 30 milliseconds. Consequently, one measurement
cycle takes approximately 0.27 seconds, which matches the time the program uses to update the
published measurements. The time the program uses to run on cycle is obtained by running the
Arduino function millis() at the start of the main-program, then printing the result at the end of
the program. From this the displacement of an obstacle relative to a moving autonomous ground
vehicle(AGV) between sensor measurements is derived, in Section 3.1 the standard speed of an

50

CHAPTER 6. SYSTEM DEVELOPMENT

AGV was assumed to be 1.5ms . Using Equation 6.1 the displacement of a static obstacle which the
AGV is heading directly towards amounts to 0.405 meters between each measurement. In the worst
case scenario where both the obstacle and the AGV is moving towards each other the displacement
would double. This is one of the drawbacks of using multiple ultrasonic sensors. However, depend-
ing on how the AGV is programmed to react to obstacles, it should have enough time to stop before
collision even in the worst case scenario.

The narrow viewing angle of the infrared sensor may prove a problem, depending on if obstacles
such as humans are able to slip in between the rays of the infrared sensors without being hit by
them, this is elaborated further upon and tested in Chapter 7.

One solution would be to have the infrared sensors spin around in circles, covering 360 degrees,
thus turning the infrared sensors in to a form of LIDAR. A problem with this would be the signal
- and power transferring, as a slip ring would be necessary. Thus making the hardware-solution
more complex and expensive. Another less complex solution is to have the infrared sensors rotate
back and forth over a set angle, using a step-motor. This way each sensor would span a larger view-
ing angle, without the need for a slip ring. Depending on the angular velocity of which the sensor
would rotate, some wear and tear of the sensor and its connectors over time will occur. However, if
implemented correctly the low-cost infrared sensors would be easy to replace.

Reading sensor data

The range sensors are connected to the Arduino Uno microcontroller which is in charge of trig-
gering the sensors, reading the sensor output and transform the received signal from the sensors
into distance measurements. As mentioned earlier the reason why the Arduino is used to interface
with the sensors is for development purposes, as it exist multiple libraries for interfacing with both
ultrasonic-and infrared sensors available for the Arduino.

For interfacing with the sensors two Arduino libraries are used, NewPing.h which is a library for
interfacing with ultrasonic distance sensors, and SharpIR.h which is a library for interfacing with
infrared distance sensors. The following code snippets shows how to set up the Arduino to interface
with two ultrasonic - and two infrared sensors. The number of sensors used in the example is
reduced in order to make the code easier to read. Listing 6.9 shows how to setup the sensors in
Arduino using the NewPing - and SharpIR libraries.

51

CHAPTER 6. SYSTEM DEVELOPMENT

// Include the necessary libraries
#include <NewPing.h>
#include "SharpIR.h"

// Setting up ultrasonic sensors
#define SONAR_NUM 2 // Number of sensors.
#define MAX_DISTANCE 400 // Maximum distance of the sensor in cm.
#define PING_INTERVAL 100 // Milliseconds between sensor pings.

NewPing sonar[SONAR_NUM] = { // Sensor object array.
NewPing(5, 5, MAX_DISTANCE), // Sensor 1, trigger - and echo pin

//set to digital pin 5.
NewPing(6, 6, MAX_DISTANCE) // Sensor 2, trigger - and echo pin

//set to digital pin 6.
};

// Setting up infrared sensor
#define IRPin1 A0 // Analog pin connected to infrared sensor 1
#define IRPin2 A1 // Analog pin connected to infrared sensor 2

#define model 100500 // Infrared sensor model , this is the number
// describing the infrared sensor used in the
// system

int BIT_val1; // Define variable that stores analog input
int BIT_val2;

int distance_cm1; // Variable to store the estimated length
int distance_cm2;

SharpIR sensor1 = SharpIR(IRPin1 , model); // Setting up each
// infrared sensor

SharpIR sensor2 = SharpIR(IRPin2 , model);

Listing 6.9: Setting up the sensors [19], [20]

52

CHAPTER 6. SYSTEM DEVELOPMENT

Listing 6.10 shows how the Arduino setup and the timer for the ultrasonic sensor.

void setup() //This function runs one time as the progra starts
{

Serial.begin (9600); //Set the Arduino to transmit 9600 bits per
//second , default for Arduino Uno

pingTimer [0] = millis () + 75; // First ping starts at 75ms, gives
//time for the Arduino to start up
// properly before running the code.

for (uint8_t i = 1; i < SONAR_NUM; i++) // Set the starting time
//for each sensor.

pingTimer[i] = pingTimer[i - 1] + PING_INTERVAL;
}

Listing 6.10: Setting up the arduino and the timer for the ultrasonic sensors [19], [20]

Listing 6.10 shows the function which checks the echo for each ultrasonic sensor.

void echoCheck ()
{
// If ping received , set the sensor distance to
//array.

if (sonar[currentSensor]. check_timer ()) {
cm[currentSensor] = sonar[currentSensor]. ping_result
/ US_ROUNDTRIP_CM;
pingResult(currentSensor);

}
}

Listing 6.11: EchoCheck function for ultrasonic sensors. [19], [20]

53

CHAPTER 6. SYSTEM DEVELOPMENT

Listing 6.12 shows the main function in which the data from the connected sensors is read and
transformed to distance measurements by the Arduino.

void loop()
{

// BIT_val equals the input received at the analog pins on the
// Arduino
BIT_val1 = analogRead(IRPin1);
BIT_val2 = analogRead(IRPin2);

// Values read from the analog pins converted into distance[cm].
//The "SharpIR.h" library has a function doing this for us.
distance_cm1 = sensor1.distance ();
distance_cm2 = sensor2.distance ();

// For -loop lopping through all the sensors in the sonar -array
// containing all the ultrasonic sensors

for (uint8_t i = 0; i < SONAR_NUM; i++) {
// Is it this sensor ’s time to ping?
if (millis () >= pingTimer[i]) {

// Set next time this sensor will be pinged.
pingTimer[i] += PING_INTERVAL * SONAR_NUM;
// Make sure previous timer is canceled before starting a
//new ping (insurance).
sonar[currentSensor]. timer_stop ();
// Sensor being accessed.
currentSensor = i;
// Make distance zero in case there ’s no ping echo for this
// sensor.
cm[currentSensor] = 0;
// Do the ping (processing continues , interrupt will call
// echoCheck to look for echo).
sonar[currentSensor]. ping_timer(echoCheck);

}
}

}

Listing 6.12: Arduino main-function. [19], [20]

54

CHAPTER 6. SYSTEM DEVELOPMENT

The last code snippet shows how the Arduino publishes the data as a comma-separated list
Listing 6.13

void OutputResults () // Prints the results from each sensors , each
//value i seperated by a comma.

{
// Output result from ultrasonic sensors followed by result from
// infrared sensor

Serial.print(cm [0]);
Serial.print(’,’);
Serial.print(cm [1]);
Serial.print(’,’);
Serial.print(distance_cm1);
Serial.print(’,’);
Serial.println(distance_cm2); // Serial.println ends the line

}

Listing 6.13: Arduino function to publish the data from the range sensors. [19], [20]

Further the Arduino is connected to the RBPi4 running ROS 2 through serial connection. The
RBPi4 reads the values from the Arduino UNO through a serial port and transforms these to the
right format used by ROS 2. In ROS 2 the readings from each sensor are connected to the correct
link, described in Section 6.4.1. As such each measurement is published at the correct coordinates
with respect to the sensor system. The readings from each sensor are published as a laserscan
message in ROS 2, each assigned to its own topic which again is assigned to the corrects link on
the system model. The laserscan message is specified as shown in Listing 6.14. The reason why
the readings from the sensors is published as laserscan messages as opposed to range messages is
for the sake of simplicity and further processing of the data. Laserscan messages are supported by
the default Ros 2 mapping algorithms, therefore publishing them as laserscan messages enables the
opportunity of having the range sensors support the depth sensor in relation to mapping.

std_msgs/Header header #Timestamp of first point in scan , and
frame_id connecting the scan to the correct
link

float32 angle_min #Start angle of the scan [rad]
float32 angle_max #End angle of the scan [rad]
float32 angle_increment #Angular distance between measurements [rad]
float32 time_increment #Time between measurements [seconds]
float32 scan_time #Time between scans [seconds]
float32 range_min #Minimum range value [m]
float32 range_max #Maximum range value [m]
float32 [] ranges #Range data [m]
float32 [] intensities #Intensity data

Listing 6.14: Laserscan message [21]

55

CHAPTER 6. SYSTEM DEVELOPMENT

The data from the range sensors does not
have the best resolution, meaning that the
the received distance can not be pinpointed
to one exact coordinate, instead in tells
us that an obstacle is detected somewhere
along a curved line spanning the field of view
of the sensors. Publishing the data as a laser-
scan message allows for publishing all the
points where the obstacle may have been ob-
served This is illustrated in Figure 38, where
the red cylinder represents the sensor house,
and the white line shows the data received
from the sensor. Figure 38: Data received from one ultrasonic

sensor visualized in Rviz
The following is the documented code from the node used to retrieve sensors measurements

from the Arduino and publish them as laserscan messages in ROS 2. The node is written in python.
First the necessary libraries are imported, and the communication with the Arduino is initialized.
Listing 6.15 shows the code snippet tasked with this.

#!/user/bin/env python #Tells the system that this is a python node
import rclpy #Contains the source code for the ROS client library

#for python packages

import std_msgs.msg #Standard ros message
from rclpy.node import Node #This is imported so the Node -class

#for python can be used

import serial #Library for serial communication
import math #Math library for mathematical operations
from sensor_msgs.msg import LaserScan #Import the laser message

#Initialize communication with the Arduino.
arduino = serial.Serial(’/dev/ttyACM0 ’, 9600, timeout =.1)

Listing 6.15: Import the necessary libraries and initialize communication with Ardunio

56

CHAPTER 6. SYSTEM DEVELOPMENT

Next a class called «RangeToLaser» which inherits properties from the imported Node-class is
created. This class is in charge of publishing the received sensor data from the Arduino as laserscan
messages. Making a class for this purpose is beneficial since it makes the node more flexible as it
can be used to publish data from a varying number of sensors. It also allows the class to be used
with a variety of different range sensors, as the class can be initialized with different parameters
describing the range of the sensor and the viewing angle. Since the data received from the Arduino
is a comma separated list, the class takes as a input the indices of the sensors from that list it should
read from. The list should be arranged so that all the measurements from one type of sensor comes
before the measurements from another type.

class RangeToLaser (Node) :
#Class constructor with input list for the relevant parameters.
def _ _ i n i t _ _ (s e l f , NR_SENSORS, ANGLE_MIN , ANGLE_MAX,

RANGE_MIN, RANGE_MAX, START_INDEX , END_INDEX) :
super () . _ _ i n i t _ _ ("range_to_laser")
s e l f . nr_sensor = NR_SENSORS #Number of sensors to read data from
s e l f . angle_min = ANGLE_MIN #Minimum angle of sensor
s e l f . angle_max = ANGLE_MAX #Maximum angle of sensor
s e l f . range_min = RANGE_MIN #Minimum range of sensor
s e l f . range_max = RANGE_MAX #Maximum range of sensor
s e l f . s t a r t _ i n d e x = START_INDEX #Start index to read from
s e l f . end_index = END_INDEX #End index to read from
t imer_per iod = 0.27 #Timer period

#Timer calling the scan function reading data from the Arduino
s e l f . t imer = s e l f . c r ea te_ t imer (t imer_per iod , s e l f . scan)
s e l f . pub_array = [] #Array containing publishers for each sensor
s e l f . msg = LaserScan () #Initialize laserscan message

#Creating publisher and assigning topic names to each sensor
for i in range (s e l f . s t a r t _ index , s e l f . end_index + 1) :

sensor_num = i + 1
topic_name = "/distance/range_to_laser%d"%sensor_num
pub = s e l f . c r e a t e _ p u b l i s h e r (LaserScan , topic_name , 5)
s e l f . pub_array . append (pub)

#Default laserscan message for the sensors
s e l f . msg . header = std_msgs . msg . Header ()
s e l f . msg . angle_min = math . rad ians (s e l f . angle_min)
s e l f . msg . angle_max = math . rad ians (s e l f . angle_max)
s e l f . msg . angle_increment = math . rad ians (1)
s e l f . msg . t ime_increment = 0.0
s e l f . msg . range_min = s e l f . range_min
s e l f . msg . range_max = s e l f . range_max

Listing 6.16: Initializing RangeToLaser node for publishing data from range sensors in ROS 2

57

CHAPTER 6. SYSTEM DEVELOPMENT

def scan (s e l f) :
d i s t ance = [] #Empty array to store the distance measurements
ranges = []
s e l f . msg . header . stamp = s e l f . ge t_c lock () . now () . to_msg () #Time of scan
data = arduino . r ead l i ne () #Get the data from the Arduino
if data : #If any data was received

data_array = d a t a _ s t r i n g . s p l i t (’,’) #Split the comma-separated values into
#a list

if data and len (data_array) >= s e l f . nr_sensor : #Doublecheck that the data was
#received correctly

#For-loop assigns the distance measurements to the distance-array
for i in range (s e l f . s t a r t _ index , s e l f . end_index + 1) :

d i s t = data_array [i]
if (i == 0) :

d i s t = float (d i s t [2 :])
elif (i == (len (data_array) − 1)) :

d i s t = float (d i s t [:−5])
else :

d i s t = float (d i s t)
d i s t ance . append (d i s t)

#A message for each topic containing the measurements is published.
for i in range (s e l f . nr_sensor) :

ranges . append (d i s t ance [i]∗0.01) #Convert the measurement from cm to m
#Ranges contains the list of points where the obstacle may have been
#observed
ranges = ranges∗abs (s e l f . angle_min − s e l f . angle_max)
header_id = s e l f . s t a r t _ i n d e x + (i +1)
s e l f . msg . header . frame_id = ’range_%d’%header_id #Assign the measurement to

#the correct link on the
#system model

s e l f . msg . ranges = ranges
s e l f . pub_array [i] . pub l i sh (s e l f . msg) #Publish message

Listing 6.17: Scan function in RangeToLaser class for receiving data from the arduino

58

CHAPTER 6. SYSTEM DEVELOPMENT

6.6 Localization and mapping

6.6.1 Visual landmarks

Visual landmarks will be an alternative and supplemental method for the SLAM approach to per-
form navigation. The method presented is a method which calculates the position of the sensor
system with respect to its real-world coordinates from QR codes attached to the roof using the
Raspberry Pi camera the computer vision library OpenCV [32] and the Pyzbar library which is a
ready to use library for reading barcodes and QR-codes [33].

The QR code when decoded will return its own position in real-world coordinates, from which
the camera can calculate the position of the sensor-system. In order to calculate the relative position
of the sensor system with respect to the QR-code the rotation of the QR-code is assumed to be in
line with the real-world coordinate system. Consequently, the rotation between the QR-code and
the sensor-system describes the rotation between the sensor system and the real-world.

In order to determine the pose of the sensors system in real-world coordinates, the relative
position between the QR-code and the sensor system must be calculated first. The vertical distance
between the camera and the QR-code is assumed known, since the real-world coordinates of the
QR-code is encoded in the QR-code itself. What is left to be estimated is the horizontal displacement
between the camera and the QR-code. In order to estimate this the «pinhole camera model» is used,
which describes the relationship between a point in three-dimensional space and its projection onto
a two-dimensional image plane of an ideal pinhole camera Section 4.2.1. Following is a systematic
approach for estimating the position of the QR-code in relation to the camera coordinate system.

1. Calculate the camera parameter matrix Equation 6.2.
2. Detect the QR-code and calculate the position of its center in pixel coordinates.
3. Calculate the normalized image coordinates of the center from the camera parameter matrix

and the pixel coordinates of the center, Section 6.6.2.
4. Calculate the real-world displacement of the QR-code with respect to the camera coordinate

system by multiplying the normalized image coordinates with the vertical distance between
the camera and QR-code.

Camera parameter matrix

The camera parameter matrix «K» is defined as follows.

K =

f
ρw

0 u0

0 f
ρh

v0

0 0 1

 (6.2)

Where f is the focal length of the camera, ρw and ρh is the size of the pixels in meters and u0,
v0 is the center of the image in pixel coordinates. The camera parameter matrix is used to map the
three-dimensional world onto the image plane.

59

CHAPTER 6. SYSTEM DEVELOPMENT

The camera parameter matrix can either be found by using the data from the data-sheet of the
sensor, or through calibration. Manually calibrating the camera ensures that the resulting camera
parameter matrix is customized for the specific camera used, as the exact specifications of the
camera may vary slightly from the specifications given by the data-sheet. To calibrate the camera a
method provided by OpenCV is used [16]. This method utilizes a chess-pattern, of which the size
of the squares are known. Figure 39 shows the pattern used in calibration of the Raspberry Pi V2
Camera.

Figure 39: Chess-pattern used to calibrate the camera

The calibration method uses multiple images of the chess-pattern from different viewpoints.
Figure 40 shows the flowchart of the camera calibration process.

Figure 40: Camera calibration flowchart [16]

60

CHAPTER 6. SYSTEM DEVELOPMENT

6.6.2 Detect center of QR-code

For detecting and decoding QR-codes a python library called «pyzbar» is used. Which is a ready to
use library for reading barcodes and QR-codes [33]. Besides reading QR-codes, the library can be
used to find the corners of the QR-code in pixel-coordinates, from which the center can be calcu-
lated.

Using the pyzbar.decode(image) function re-
turns a list containing the decoded data from the
code, the type of code which was decoded, the
size of the decoded object and the coordinates
of each corner. From the coordinates describing
the pixel-coordinates of each corner, the geomet-
ric center of the QR-code is calculated. The ge-
ometric center of n amount of points described
by X - and Y-coordinates is calculated by Equa-
tion 6.3.

Xcenter =
X1 +X2 + ...+Xn

n

Ycenter =
Y1 + Y2 + ...+ Yn

n

(6.3)
Figure 41: The vertices and the calculated center
of the QR-code marked with circles.

Normalized image coordinates

The camera parameter matrix defines how a point in three-dimensional space is projected onto the
image plane. As such it can also be used to determine the position of a two-dimensional point on
the image plane in three-dimensional space. Equation 6.4 shows the relationship between a point
(x,y) in pixel coordinates and its real-world counterpart X, Y, Z.

Z ∗

xy
1

 =

f
ρw

0 u0

0 f
ρh

v0

0 0 1

 ∗
XY
Z

 (6.4)

By having Z equal to one the equation can be solved for the X - and Y-coordinate which repre-
sents the normalized image coordinates. This is the projection of a point in three-dimensional space
assuming onto a image plane where it is assumed that the focal length is equal to one measure-
ment unit, in this case one meter. The resulting normalized image coordinates is given in the same

measurement unit. The normalized image coordinates is given on the form:

XY
1

The correlating point in three-dimensional space is found from multiplying the normalized im-

age coordinates with the distance from the camera to the point Z.

61

CHAPTER 6. SYSTEM DEVELOPMENT

Relative position of QR-code with respect to the camera coordinate system.

From the normalized image coordinates the real-world relative position of the QR-code with respect
to the camera coordinate system is calculated by multiplying the normalized image coordinates with
the vertical distance between the camera and the Qr-code. In Figure 42 the estimated position of a
QR-code with respect to the camera coordinate system calculated from an image is visualized in a
three-dimensional coordinate system.

Figure 42: Estimated position of QR-code with respect to camera.

62

CHAPTER 6. SYSTEM DEVELOPMENT

Calculating the pose of the camera with respect to the real-world coordinate system

Up until now the relative position of the QR-
code with respect to the camera coordinate sys-
tem have been estimated. The next step is to es-
timate the position of the camera with respect to
the world coordinate system. In order to achieve
this it is assumed that the coordinate system of
the QR-code is aligned with the world coordinate
system Figure 43. By estimating the rotation of
the QR-code with respect to the camera coordi-
nate system, the rotation of the camera with re-
spect to the world coordinate system can be cal-
culated.

Figure 43: World - and QR coordinate system
A QR-code typically consist of three markers, one in the upper right corner, one in the upper left
corner and one in the bottom left corner Figure 44. The top of the QR-code is assumed to point in
the positive y-direction in the real-world coordinate system. It is further assumed that the z-axis
in the camera coordinate system is pointing directly out of the camera in the same direction as the
z-axis of both the world - and Qr-code coordinate system Figure 43. Consequently, only the rotation
of the camera coordinate system around the z-axis must be calculated in order to determine the
rotation between the camera - and the world coordinate system.

Figure 44: QR-code with three markers

63

CHAPTER 6. SYSTEM DEVELOPMENT

In order to determine the pose of the QR-code with respect to the camera coordinate system
the three markers of the QR-code must be identified as well as their relative position with respect
to each other. The Pyzbar library does not detect the vertices of the QR-code in a specific order,
therefore this is done manually using the computer vision library OpenCV. By identifying the three
markers the contours of the image is identified. A contour represents the outline of a single shape,
in the case of a QR-code it represents the border between the black and white parts of the code.
OpenCV has a function for finding contours in an image, as well as the hierarchy of the contours.
The hierarchy represents the relationship between contours which is nested within each other, as a
parent/child relationship between the contours. The developed method, as well as the implemented
code in inspired by [34].

Figure 45 shows the six contours representing
the QR-marker, one contour from each side
representing the boundary from black to white,
and from white to black. OpenCV return a list
containing all the contours in the image, as
well as a list storing the hierarchy between
each set of nested contours. The hierarchy of
the QR-markers is a set of six nested contours.
Based on this and the assumption that the
hierarchy of the QR-markers is distinct from any
other contour hierarchy in the image, the three
markers and their position in pixel-coordinates
is identified. The next step to determining the
rotation of the QR-code is to to identify the po-
sition of each marker with respect to each other,
as without this information there is no way of
telling in which direction the QR-code is pointing.

The relative position of each marker can be found
by having the markers form a triangle, where
each marker represents a corner in the triangle.
The upper left marker if identified by analyzing
the distance between the center of each marker,
with the assumption that the distance from the
upper left marker to the two other markers is not
equal to the length of the hypotenuse. This means
that the distance from the upper left marker to the
two other markers is equal to the two catheti of
the triangle.

Figure 45: The six contours of the QR-marker

Figure 46: The relationship between each
marker represented as a triangle

64

CHAPTER 6. SYSTEM DEVELOPMENT

Since the orientation of the QR-code in the image is arbitrary, the two remaining markers are
identified by analyzing their position with respect to each other and the marker in the upper left
corner of the QR-code. The markers form a static triangle, where the relative position of the corners
with respect to each other is constant. By analyzing the distance from the upper left marker to the
hypotenuse and the sign of the slope of the hypotenuse, the two remaining markers are identified.

When the three markers are identified the rotation of the QR-code with respect to the camera can
be found by calculating the angle between the horizontal line with respect to the QR-code stretching
from the upper left marker, to the upper right marker, represented in Figure 46 as «Cathetus 2» and
the x-axis of the camera coordinate system. This gives the relative rotation of the QR-code around
the z-axis. See Figure 47 which shows a QR-code rotated -90 degrees with respect to the camera
coordinate system. The blue line is parallel to the x-axis of the camera coordinate system, while
the red line is parallel to the x-axis of the QR-code coordinate system. The angle between them
represents the rotation of the QR-code with respect to the z-axis.

Figure 47: Rotation of QR-code around the z-axis with respect to the camera coordinate system

65

CHAPTER 6. SYSTEM DEVELOPMENT

With the rotation θ and the position of the QR-code with respect to the camera coordinate
system, and the position of the QR-code with respect to the world coordinate system, the position
and orientation with respect to the world coordinate system can be calculated. The translation
matrix describing the position and orientation of the Qr-code with respect to the camera coordinate
system is defined as follows, Equation 6.5.

TCameraQR =

RCameraQR rCameraQR

000 1

 (6.5)

Where RCameraQR represents the rotation of the QR-code around the z-axis and rCameraQR represents
the position of the QR-code with respect to the camera coordinate system.

RCameraQR =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (6.6)

RCameraQR =

XY
Z

 (6.7)

Further, the translation matrix describing the position and orientation of the camera with re-
spect to the QR-code coordinate system is found by calculating the inverse of TQRCamera, resulting
in TCameraQR . Taking into account the position of the QR-code in the world coordinate system which
is found by decoding the QR-code, the translation matrix TCameraWorld is found by adding the position
of the QR-code in the world coordinate system to the position of the camera in the QR-coordinate
system. Figure 48 shows the resulting transformation between the QR-code coordinate system and
the camera coordinate. In this test the QR-code is placed on the floor with the camera looking down
on it. The QR-code is rotated -90 degrees with respect to the camera coordinate system. Further,
in this example the z-axis in the camera coordinate system is pointing out of the backside of the
camera.

Figure 48: Resulting translation between coordinate system after estimating distance and rotation from pic-
ture of QR-code. Redline: x-axis, green line: y-axis, blue line: z-axis

66

CHAPTER 6. SYSTEM DEVELOPMENT

ROS 2 implementation

This method is implemented as a ROS 2 node which publishes a «PoseStamped» message contain-
ing the pose of the system relative to a given coordinate system, and the time of which the message
was published. Listing 6.18 shows the necessary libraries for publishing the data.

#!/user/bin/env python #Tells the system that this is a python node
import rclpy #Contains the source code for the ROS client library

#for python packages
import std_msgs.msg #Standard ros message
from rclpy.node import Node #This is imported so the Node -class

#for python can be used
from geometry_msgs.msg import Pose #Message containing the position

#of the system in x,y - and z
#-coordinates , and the rotation
#given in the form of a
#quaternion

from geometry_msgs.msg import Point #Position given in x,y - and z
#-coordinates

from geometry_msgs.msg import Quaternion #The rotation of the system
from geometry_msgs.msg import PoseStamped #The published message

#containing the relative
#position , orientation
#and the a timestamp of
#when the message
#was published

Listing 6.18: Import the necessary libraries and messages for the QRnavigationnode

67

CHAPTER 6. SYSTEM DEVELOPMENT

Next a class calledQR_navigation is created, which inherits properties from the imported Node-
class. The class is in charge of taking the image, processing it and publishing the data describing the
position and orientation of the system. Listing 6.19 shows the initialization of the QR_navigation
node.

class PosCamera (Node , t imer_per iod) :
def _ _ i n i t _ _ (s e l f) : #Class constructor

super () . _ _ i n i t _ _ (’pos_camera’)
#Timer calling the scan-function
t imer_per iod = t imer_per iod #Timer period
s e l f . t imer = s e l f . c r ea te_ t imer (t imer_per iod , s e l f . scan)
message = PoseStamped () #Relative position and rotation and timestamp
s e l f . po int = Point () #Position given by x,y - and z coordinate
s e l f . quaternion = Quaternion () #Rotation
s e l f . pose = Pose () #Position and orintation
s e l f . msg = message #Initilizing the default message
#Creating the publisher and assigning the topic name
s e l f . pub = s e l f . c r e a t e _ p u b l i s h e r (PoseStamped , "agv/landmark_pose" , 5)

Listing 6.19: Initializing QR_navigation node for publishing position and orientation data obtained through
the Raspberry Pi V2 camera

The position and orientation of the system is estimated by the previously described method
using images from the Raspberry Pi V2 camera. For interfacing with the camera the python library
picamera is used, which is a dedicated library to the Raspberry Pi cameras. The following list shows
the order of operations executed by the node.

1. The Raspberry Pi V2 camera is initiated through the picamera-library
2. The node calls the camera to take a image, which is then published to a python stream
3. The values from the stream is converted into a Numpy-array and decoded by the OpenCV

library to an image format the library can work with
4. From the image the position and orientation of the system is found using the described

method
5. The node publishes the position and orientation of the system relative to the given coordinate

system as a PoseStamped message.

68

CHAPTER 6. SYSTEM DEVELOPMENT

The processing happens in the function scan() which is a member-function of theQR_navigation
class. The function calls the non-member function PosRotCamera() which is a python implemen-
tation of the described method. Then the information is published as a PoseStamped-message. The
scan() function is shown in Listing 6.20.

def scan (s e l f) :
stream = io . BytesIO ()
with picamera . PiCamera () as camera :

#Image captured as stream
camera . capture (stream , format=’jpeg’)

#Data from stream converted to numpy-array
data = np . f roms t r ing (stream . getva lue () , dtype=np . uint8)
#Numpy array decoded to OpenCV image
im = cv2 . imdecode (data , 1)
#Relative position and orintation of camera is estimated
r , p = PosRotCamera (im)
#Orientation of camera is converted into a quaternion
r_w = math . s q r t ((1 + r [0][0] + r [1][1] + r [2][2])/2)
r_x = (r [2][1] − r [1][2])/(4∗ r_w)
r_y = (r [0][2] − r [2][0])/(4∗ r_w)
r_z = (r [1][0] − r [0][1])/(4∗ r_w)
#Position x,y,z as a point-message
s e l f . po int . x = p[0]
s e l f . po int . y = p[1]
s e l f . po int . z = p[2]
#Rotation x,y,z,w as a quaternion -message
s e l f . quaternion . x = r_x
s e l f . quaternion . y = r_y
s e l f . quaternion . z = r_z
s e l f . quaternion .w = r_w
#Pose message
s e l f . pose . p o s i t i o n = s e l f . po in t
s e l f . pose . o r i e n t a t i o n = s e l f . quaternion
#PoseStamped message
s e l f . msg . header = std_msgs . msg . Header ()
#Present time
s e l f . msg . header . stamp = s e l f . ge t_c lock () . now () . to_msg ()
#Frame of which the cameras relative position is estimated from
s e l f . msg . header . frame_id = ’world’
s e l f . msg . pose = s e l f . pose
#Messaging is published
s e l f . pub . pub l i sh (s e l f . msg)

Listing 6.20: The scan() member function of the class QR_navigation

69

CHAPTER 6. SYSTEM DEVELOPMENT

6.6.3 Intel Realsense D435 depth sensor

Intel have released its own packages for using the Intel Realsense D400 series, which includes the
Intel Realsense D435 with ROS 2. The packages, along with instructions is available on GitHub [31].
These packages provides ROS 2 with methods to interface with and use the data published from the
camera. This includes color images, depth images, infrared images and pointclouds derived from
the images. A pointcloud is a set out data points in space, each point is defined by its relative spacial
position with respect to the Intel Realsense depth sensor. In relation to mapping the pointcloud can
be used to perform SLAM or other mapping algorithms to create a three-dimensional map of the
environment.

Further the package comes with an alternative to transform the pointcloud derived from the
depth data into a two-dimensional laserscan message, this is of the same format which the data
from the range sensors is published, but with much higher accuracy. This data can be used in order
to create two-dimensional maps of the environment, and it would lessen the computational load
of running a mapping algorithm since the amount of published points is only in the xy-plane as
opposed to the pointcloud which publishes points in the spacial-frame. Consequently, the amount
of points to process are fewer.

Installing the Intel Realsense ROS 2 packages on Raspberry Pi

The procedure for installing the ROS 2 packages is obtained from Intels own GitHub account [31].
The packages are compatible with ROS 2 Dashing, which is the version of ROS 2 used in the devel-
opment of this project.

The first step is to install the necessary ROS 2 dependencies. This is ROS 2 packages which the
Intel Realsense packages is dependent upon to function. This process is shown in Listing 6.21

sudo apt -get install ros -dashing -cv -bridge
sudo apt -get install ros -dashing -librealsense2
sudo apt -get install ros -dashing -message -filters
sudo apt -get install ros -dashing -image -transport

Listing 6.21: Install the necessary ROS 2 dependencies

70

CHAPTER 6. SYSTEM DEVELOPMENT

The next step is to install non-ROS Debian packages which the Intel Realsense packages is de-
pendent upon. This is shown in Listing 6.22.

sudo apt -get install libssl -dev
sudo apt -get install libusb -1.0-0-dev
sudo apt -get install pkg -config
sudo apt -get install libgtk -3-dev
sudo apt -get install libglfw3 -dev
sudo apt -get install libgl1 -mesa -dev
sudo apt -get install libglu1 -mesa -dev

Listing 6.22: Install the necessary non-ROS debian packages

Finally the ROS 2 Intel Realsense packages can be installed, Listing 6.23.

sudo apt -get install ros -dashing -realsense -camera -msgs
ros -dashing -realsense -ros2 -camera

Listing 6.23: Install ROS 2 Intel RealSense packages

6.6.4 Mapping

Due to the lack of mapping related packages compatible with ROS 2, ROS Melodic was used in rela-
tion to performing mapping using the Intel Realsense D435. The package used is Rtabmap, which
is ROS-wrapper for the library RTAB-Map, a RGB-D, stereo and LIDAR graph-based slam approach
[35].

Using the Intel Realsense D435 with the Rtabmap-package allows for performing SLAM with
only the Realsense D435 alone. In order to ac hive this the position of the sensor is calculated at
the same time as mapping is performed, the general idea behind this is explained in Section 4.2.5.
The process of determining the pose and orientation of the system using this method is called visual
odometry. The pose and orientation are estimated by looking at distinct features in a sequence of
images and comparing the relative position of the features from image to image.

The point-cloud generated from the Intel Realsense D435 is dense, meaning there is a lot of
data to process, especially when performing pure visual-SLAM. It does however work on the RBPi4,
although it is very slow and the odometry often fails and the sensor must return to a known point
where the odometry is known for it to re-calibrate. Since the output of the sensor is a three-
dimensional rendering of the surrounding environment, the odometry is calculated in the x-, y-,
and z-plane. This means that the pose, orientation linear velocity and angular velocity about all
three axes are calculated. As a result it is possible to perform handheld mapping where a person is
carrying the camera by hand. As mentioned this requires a lot of computational power, and proved
to be a time and power consuming process. This is especially true in relation to indoor mapping,
as the performance is better the more texture the scene has. In an indoor environment there is not
a lot of texture to differentiate one part of a wall from another, making it hard to perform visual

71

CHAPTER 6. SYSTEM DEVELOPMENT

odometry. Further, in relation to indoor mapping the work-space is often planar. Consequently there
is no need to calculate the linear velocity along the z-axis or the twist about the x- and y-axes. As in
most cases these variables will be constant and equal to zero. The package Rtabmap allows for in-
tegrating external odometry and disabling the visual odometry from the Intel Realsense D435. This
can be odometry from the wheels of the robot, or from any other source capable of providing odom-
etry data. When testing the mapping capabilities of the system odometry data from a LIDAR was
used as an external source. The odometry is calculated by a node from the Rtabmap-package called
icp_odometry. This node calculates odometry data from laser_scan messages in ROS. Since the LI-
DAR only operates in two dimensions, the motion along the z-axis and around the x- and y-axes is
assumed to be zero. Consequently, the computational power needed to perform the odometry esti-
mations is a lot lower than what is needed to perform odometry estimations in three-dimensional
space. Using external odometry resulted in a much better performance. The LIDAR is not a part of
the actual developed system and was used only to provide odometry data. Although it is possible
to perform mapping without the use of external odometry, it is not optimal as it is very slow and
power consuming. It is therefore recommended that the robotic vehicle equipped with the system
can provide odometry data to the system. This can be odometry data calculated by encoders on the
wheel, as the case is with the turtlebot. Figure 49 shows the resulting two-dimensional map from
mapping a small room using pure visual SLAM while Figure 50 shows the result with and external
odometry source, in this case from a two-dimensional LIDAR.

Figure 49: Pure visual slam of an indoor room Figure 50: Visual slam with external odometry

72

CHAPTER 6. SYSTEM DEVELOPMENT

The blue line in the images indicates the estimated odometry of the system. The room itself has
white walls without many distinct features, which is the reason why the map calculated using visual
SLAM failed. Further, the outlying black part of both images seems to come from the fact that there
is a transparent surface there. Still, using external odometry the system was able to estimate a good
map of the room.

73

CHAPTER 6. SYSTEM DEVELOPMENT

6.7 Prototype

As mentioned earlier the aim of the system is not to be a stand alone autonomous ground vehi-
cle(AGV), but rather a sensor system capable of providing an existing robotic vehicle with enough
information about the environment so that it can perform mapping, navigation and obstacle detec-
tion by making use of the tools the system provides. In theory the sensor data from the system is
enough to perform these tasks, but in reality, some additional information is needed for the system
to function properly. That is mainly, odometry data for mapping and navigation purposes.

The aim of this project is not to develop a system that should replace industrial systems that
serves the same purpose, but rather develop a low-cost system which can be used by students in
lab-work related to automation and robotic vehicles.

6.7.1 Functionality of the system

When it comes to functionality the system aims to provide sensor data that can be used for ob-
stacle detection, navigation and mapping. The main sensors used in relation to obstacle detection
are ultrasonic- and infrared range sensors. For navigation and mapping it is the Raspberry Pi V2
camera used to detect visual landmarks, and the Intel Realsense D435 used to accurately depict the
surrounding environment. Further, the information provided by the Intel Realsense D435 can be
used together with the information provided by the range sensors for obstacle detection purposes.
Figure 51 shows an illustration of an AGV(red square) equipped with the system, whereas the trans-
parent figures illustrates the viewing angle of the different sensors. The ratio in this illustration does
not depict the ranges of the sensors accurately.

Figure 51: Illustration of an AGV implemented with the system, the transparent figures shows the viewing
angle of each sensor. Blue: ultrasonic- and infrared sensors, Yellow: Raspberry Pi V2 camera, Purple: Intel
Realsense D435.

74

CHAPTER 6. SYSTEM DEVELOPMENT

Obstacle detection

The main concern when it comes to obstacle detection is that the system is capable of detecting
obstacles independent of their surface characteristics, hence the use of both ultrasonic- and infrared
range sensors. As explained earlier in this chapter the one type of sensor prevails where the other
one fails, and vice versa. Thus, reducing the chance for an overall error in detecting an obstacle
within the field of view of the system. The goal was to develop a redundant grid consisting of low-
cost ultrasonic- and infrared sensors with a viewing angle of 360 degrees, but as the viewing angle
of each sensor were narrower than anticipated, the overall viewing angle was narrowed down
to 195 degrees. That being said, it is fairly easy to implement additional sensors to the system.
Listing 6.24 shows how to add an additional sensor to the .URDF file showcased in Section 6.4.1.
Further, additional sensors must be connected to the Arduino and accounted for in the Arduino
code and the ROS2 node, this procedure is explained in Section 6.5.

</link>
<!-- Adding additional sensor -->

<link name="new_sensor">
</link>

<!-- Translation between base_link and sensor -->
<joint name="base_link_to_new_sensor" type="fixed">

<parent link="base_link"/>
<child link="new_sensor"/>
<!-- Translation of new_sensor link with respect to
base link -->
<!-- Add the real -world position of the sensor with respect
to the base_link -->

<origin rpy="0 0 0" xyz="0.0825 0 -0.0175"/>
</joint >

</robot >

Listing 6.24: Adding additional sensor to the URDF model of the system

If this is to be done it is necessary with more input/output(IO) ports, subsequently the Arduino
UNO would have to be upgraded or one would have to use an additional Arduino UNO for inter-
facing with the additional sensors. That being said, this type of system should be able to detect
all obstacles within its field of view. By additionally using the Intel Realsense D435 which has a
maximum detection range of ten meters for obstacle detection, the system can detect obstacles ap-
proaching from the side at a range of 4 meters, and obstacles in the driving direction at a range of
ten meters. The obstacle detection capabilities of the sensor grid are further explored in Chapter 7.
Figure 52 shows the viewing angle and detection range of the system. Where the obstacle detection
grid consisting of ultrasonic- and infrared sensors cover a viewing angle of 195 degrees and a range
of four meters and the Intel Realsense D435 covers approximately an 87 degree viewing angle with
a maximum range of approximately 10 meters.

75

CHAPTER 6. SYSTEM DEVELOPMENT

Figure 52: Total viewing angle of the system

Navigation and mapping

For the purpose of navigation and mapping two different sensors are used. The Raspberry Pi V2
camera is used to detect QR-codes and estimate the position of the system, and the Intel Realsense
D435 is used to gather enough information about the surrounding environment, allowing for the
use of mapping-algorithms to generate maps of the environment.

In order to make use of the navigation method using QR-codes, QR-codes must be attached to
the roof and hold information about their own position in the workspace, which the system uses to
estimate its own position in relation to the workspace. This can function as a stand-alone method
for navigation, but can also be used together with additional methods such as odometry to keep
track of the AGV’s position. Further, the Intel Realsense D435 can be used to perform navigation
in a known three-dimensional map, using ROS packages such as the Rtabmap-package introduced
earlier in this chapter. To summarize, the sensor system provides enough information about the
surrounding environment so that it should be possible to perform obstacle detection, navigation
and mapping. Since the mapping is not running on ROS2, the system is not yet merged into one
compact system. The different aspects of the prototype is further explored and tested in Chapter 7

76

CHAPTER 7. EXPERIMENTS, RESULTS AND DISCUSSION

7 Experiments, results and discussion

In this chapter several experiments are presented with results and discussions. The aim of the con-
ducted experiments is to test the capabilities of the developed system and to compare the results
up against the system requirements described in Chapter 3. The chapter is divided into multiple
sections, each related to a specific aspect of the system. Each section has its own introduction de-
scribing the conducted experiments and the research questions related to the them. Further, the
results from the experiments is presented and discussed.

The chapter is divided into multiple sections to present the experiments, results and the related
discussions in a systematic manner. The chapter concludes with and overall discussion where the
system as a whole is compared to the system requirements stated in Chapter 3.

7.1 Obstacle detection using low-cost range sensors

The main task of the obstacle avoidance system is to provide reliable obstacle detection, meaning
that the system should be able to detect obstacle within the operating range of the system, and
detect obstacles independent of the surface characteristics of the obstacle. The conducted experi-
ments in relation to obstacle detection using low-cost range sensors aims to test the reliability of
the sensors and the system as a whole. The first research question is:

• Is the system capable of detecting obstacles independent of their surface characteristics?

As mentioned in Section 6.5 the viewing angle of the infrared sensors is a lot narrower than the
viewing angle of the ultrasonic sensors, which may cause a problem if an obstacle is able to get
in between two infrared beams without being hit by them, thus not being detected by the infrared
sensors. Consequently, the next research question is:

• Does the narrow viewing angle of the infrared sensor cause a problem, or will the in-
frared sensors be able to detect the obstacle before they reach a critical distance from
the sensor system?

Due to the COVID-19 outbreak no lab-facilities were available to perform the experiments in.
Consequently, the area of which the experiments were carried out was not large enough to test the
system to its full operating range.

To visualize the data from the experiments, a python script that communicates with the Arduino
was used. As opposed to visualize the data using Rviz and ROS 2, the python library Matplotlib
allows for a more comprehensible presentation of the data.

77

CHAPTER 7. EXPERIMENTS, RESULTS AND DISCUSSION

7.1.1 Is the system capable of detecting obstacles independent of their surface charac-
teristics?

The two main reasons behind using both ultrasonic - and infrared sensors for obstacle detection
is to reduce the probability of an obstacle not being detected by the system, as the strength and
weaknesses of the two sensor complement each other, Section 6.5, Chapter 6. The conducted ex-
periments aims to test whether or not this theory holds true in real life.

Detecting surfaces using one ultrasonic - and one infrared sensor

The first experiment was to test the surface detecting capabilities of the system in a controlled
environment, using one ultrasonic- and one infrared sensor, both pointing in the same direction
towards an obstacle from the same distance. Two experiments were conducted, one where the ob-
stacle had sound absorbing properties, and one where the obstacle was a transparent surface. These
were briefly discussed in Section 6.5 and supported the premise that the two sensors complemented
each other.

Figure 53 shows the result from multiple scans from both sensors where a transparent obstacle
is placed 0.7 meters away from the sensor. The ultrasonic sensor detects the obstacle, while the
infrared sensor instead detects the wall behind the transparent obstacle.

Figure 54 shows the results from multiple scans from both sensors where a fleece jacket where
placed one meter away from the sensors. The plot shows the ultrasonic sensor having trouble de-
termining the distance to the fleece jacket, while the infrared sensor has no problem detecting it.

The vertical axes represents the measured length, while the horizontal axes represents the num-
ber of conducted scans.

Figure 53: Transparent surface placed 0.7 meters from
the sensors.

Figure 54: Fleece jacket placed one meter from the
sensors.

78

CHAPTER 7. EXPERIMENTS, RESULTS AND DISCUSSION

Obstacle detecting capabilities of the system

The next set of experiments were conducted to test the system as a whole, and especially its ca-
pability to detect humans. The systems capability to detect humans is of out-most importance, as
the safety of the humans working in the same environment as a autonomous ground vehicle(AGV)
must be guaranteed. As the two previous experiments shows, the combination of an ultrasonic- and
infrared sensor is capable of detecting obstacles that falls within either of the sensors weak-points
in a controlled environment. Further, these experiment aims to test whether or not this holds true
in a dynamic environment.

As mentioned in the introduction to this section there were no available lab-facilities to conduct
these experiments, as a result the testing environment is not optimal as it is not large enough to
test the maximum range of the sensors. An optimal environment would be a large enough area so
the sensor could be turned on without any obstacles within the range of the sensor. Then multiple
experiments could be conducted where obstacles were introduced at different controlled distances
from the sensor-system. Instead the environment in which the experiment was conducted is a living
room full of furniture. The system itself is placed at a height in which it does not detect most of the
furniture. Still, it poses a problem as it is hard to measure an exact path with a known distance to
the sensor-system as the test person has to climb over furniture in order to make his way around the
field of view of the sensor system. Consequently, the scope of the experiments had to be reduced to
one experiment where the test person walks around the field of view of the sensor system wearing
the same fleece-jacket used in the previous experiment.

In order to have a standard to compare the results with a plot of the sensor-measurement from
the environment without any external obstacles introduced is shown in Figure 55. Here the walls
and furniture in the environment is illustrated. The red dots represent the measurements from the
ultrasonic sensors, while the blue dots represents the measurements from the infrared sensors.

Figure 55: Sensor measurements from the open testing environment. The green lines represent the walls,
while the brown drawing represent the furniture within the range of the sensors.

79

CHAPTER 7. EXPERIMENTS, RESULTS AND DISCUSSION

Figure 56 shows the resulting plot after a test-person walked around the field of view of the
sensor-system wearing a fleece-jacket. The red dots represents the measurements from the ultra-
sonic sensors, while the blue dots represents the measurements from the infrared sensors. The
test-person is wearing a fleece-jacket as it proved difficult for the ultrasonic sensors to detect in the
previous experiment.

Figure 56: Measurements from an experiment where a test person walks around the field of view of the
sensor system wearing a fleece jacket, the green arrow indicates the path of the test person.

The plot shows that both sensors successfully detects the test person. As opposed to the result
from the experiment using one of each sensors under controlled circumstances.

Conclusion and discussing of experiment

Under controlled circumstances using one of each sensors the ultrasonic sensor had problems de-
tecting sound absorbing surfaces, while the infrared sensor did not detect transparent surfaces. This
supports the premise for the use of both to ensure detection. In the experiment where a test person
walked around the field of view of the sensor system wearing the same fleece-jacket that the ultra-
sonic sensor previously had problems detecting both sensors were successful in detecting the test
person. This suggests that with the use of both ultrasonic- and infrared sensors the sensor-system
is well equipped to detect obstacles independent of their surface characteristics.

80

CHAPTER 7. EXPERIMENTS, RESULTS AND DISCUSSION

7.1.2 Does the narrow viewing angle of the infrared sensor cause a problem?

Since the viewing angle of the infrared sensor is narrow, it may cause a problem as obstacles in
between the beams will not be detected by the infrared sensors. This was tested using a test person
standing one meter away from the sensor system in-between the beams of two infrared sensors.
The results are shown in Figure 57. The green arrow indicates the position of the test person.

Figure 57: Sensor measurement from experiment where a test person stood in between two infrared sensors,
the green arrow indicates the position of the test person.

As the results shows, the infrared sensors was not able to detect the test person, but the ultra-
sonic sensors did.

Conclusion and discussion of experiment

The narrow viewing angle of the infrared sensors and the resulting gap in between the emitted
infrared beams allows for obstacles to be undetected by the infrared sensors in a controlled envi-
ronment. As the idea behind the use of both ultrasonic- and infrared sensors is to ensure that an
obstacle within the range of the sensor is detected, this is not optimal. However, this is in a con-
trolled environment where the sensor system is not moving. In a scenario where an AGV is equipped
with the sensor system, it would be unlikely that an obstacle would move or be positioned such that
it would not cross any of the infrared beams emitted by the infrared sensors. This is however not
yet tested, so it can not be concluded that this is the case. Another solution, which is mentioned in
Section 6.5 is to rotate the infrared sensor back and fourth with the use of a stepper-motor. This
would increase the viewing angle of each infrared sensors, but it would also mean that the infrared
sensor would be exposed to more wear and tear over time because of the movement.

81

CHAPTER 7. EXPERIMENTS, RESULTS AND DISCUSSION

7.2 Navigation using visual landmarks

For the purpose of providing an alternative positioning system a method which uses visual land-
marks in the form of QR-codes was developed, Section 6.6.1. The method utilizes QR-codes at-
tached to the roof of the work environment, encoded in the QR-codes is the position of the QR-code
with respect to the work environment. Using a Raspberry Pi V2 camera the system calculates the rel-
ative position of the QR-code with respect to the system. This information is then used to calculate
the relative position of the system with respect to the QR-code and the work environment.

As the purpose of this method is to calculate the position of the system the related research
question is as follows:

• What is the positioning accuracy of the developed method?

In order to find the accuracy of the method an experiment where the camera was moved between
a set of points of which the position of each points with respect to each other is known. Figure 58
shows the path used in the experiment. Two QR-codes attached to the roof is used. The distance
between the two QR-codes is 1.2 meters and the displacement is encoded in the codes.

Figure 58: Path for testing the accuracy of the method utilizing visual landmarks

82

CHAPTER 7. EXPERIMENTS, RESULTS AND DISCUSSION

Figure 59 shows the results of the experiment, where each point represents the four different
positions of the AGV shown in Figure 58.

Figure 59: Resulting path after conducted experiments using QR-codes as visual landmarks

Conclusion and discussion of experiment

The system is able to utilize multiple visual landmarks to estimate its position. That being said,
when comparing the results of the experiment to the path the system followed illustrated in Fig-
ure 58, the position estimates does not accurately reflect the actual position of the system. It is
off with approximately -0.2 meters per traveled meter. A lot of this comes down to the calibration
of the camera and the resulting camera parameter matrix. A solution could be to tweak the posi-
tion estimates to better reflect the actual position by multiplying with a constant factor or simply
re-calibrate the camera until the results more accurately reflects the actual position. However, mul-
tiplying by a factor which gives satisfactory results would work given that the vertical distance to
the QR-codes attached to the roof is constant. If the vertical distance to the QR-codes varies, as a
result of the distance between the floor and the roof not being constant, this could also result in less
accurate position estimates. In conclusion the method is capable of estimating the position of the
system, and it does accurately reflect the direction of movement between each position estimate.
However, the position estimates themselves does not accurately reflect the change in position of the
system as it underestimates the relative position between measurements.

83

CHAPTER 7. EXPERIMENTS, RESULTS AND DISCUSSION

7.3 Mapping

The main task of the Intel Realesense D435 sensor is to provide the system with a tool which can
be used to perform mapping. This is an active infrared stereo sensor. This sensor is capable of
depicting a three-dimensional rendering of the surrounding environment within its field of view.
Together with mapping algorithms this allows the system to create three-dimensional and two-
dimensional maps of the surrounding environments. The sensor can either perform mapping on its
own using visual SLAM, this means it has to create a map of its environment while at the same
time keep track of its own position within the environment. Another option is to use an external
source of odometry which keeps track of the systems position withing the environment. Both of
these methods will be tested. The package used to perform mapping in these tests is the Rtabmap
package. This package support pure visual SLAM using only the Intel Realsense D435 and mapping
using an external source of odometry. In this case the external odometry is provided by a 2D LIDAR
of which the package-function icp_odometry calculates the odometry data for us. Both methods
will be tested in the same environment and the results will be compared. Further, the results of the
tests will be compared to a floor plan of the testing environment.
As such, the first research question is:

• Is it feasible for an AGV to perform indoor mapping with an Intel Realsense D435 run-
ning on a Raspberry Pi 4(RBPi4) without the use of external odometry?

Further, the systems capabilities when it comes to mapping larger and more complex areas is
tested. As with the experiments conducted in relation to obstacle detection, the testing environment
regarding mapping is not optimal. This is due to the lack of access to the lab facilities. Consequently,
the testing environment is constrained to ground floor of a house. Even though the size of the test-
ing environment is limited, it contains separated rooms and furniture. This makes the environment
more complex than the environment used in the experiments regarding mapping presented in Sec-
tion 6.6.4. That experiment where constrained to one room, testing in a larger area consisting of
multiple separated rooms will further test the system’s ability to recreate accurate maps and ac-
curately place the separated rooms in relations to each other. Consequently, the second research
question regarding mapping is:

• Is the system capable of accurately mapping larger more complex environments?

7.3.1 Is it feasible to perform indoor mapping without external odometry?

Using the Intel Realsense D435 and the Rtabmap package it is possible to perform mapping without
any source of external odometry. Visual SLAM is highly dependent on distinct features present
in the scene that being mapped, as the position of these features from image to image is used
to calculate the odometry of the system. Depending on the environment there may not be many
distinct features available, which may cause a problem. Further, this is used to estimate the system
odometry in three-dimensional space, which maybe unnecessary since an AGV operating in an
indoor environment usually will operate in a planar environment so the movement along the z-
axis is equal to zero, as well as the rotation around the x- and y-axis. The first experiments were

84

CHAPTER 7. EXPERIMENTS, RESULTS AND DISCUSSION

conducted in a small room containing little key features as the walls all were the same color. This is
the same experiment presented in Section 6.6.4. As Figure 60 shows the system failed to map the
environment, while it managed to map the same environment using external odometry as shown
in Figure 61.

Figure 60: Pure visual slam of an indoor room Figure 61: Visual slam with external odometry

Another experiment was conducted in a different testing environment which was bigger, but
contained mote distinct features such as furniture and ornaments on the walls. Figure 62 shows the
floor plan of the environment as a reference to compare the resulting maps with.

Figure 62: Floor plan of the living room/test environment.

85

CHAPTER 7. EXPERIMENTS, RESULTS AND DISCUSSION

Figure 63 shows the resulting map from the test performed without an external source of
odomotry, while Figure 64 shows the resulting map with the use of external odomotry.

Figure 63: Pure visual slam of an indoor
room

Figure 64: Visual slam with external odom-
etry

In this experiment both methods resulted in a map resembling the test environment. However,
the result using external odometry is better an contains less noise. Another key difference is the
amount of time used to map the environment. While only dependent on the Intel Realsense D435
the process is slow, as the odometry is often lost and the system has to be re-positioned to the pre-
vious point where the odometry was not lost. This is not optimal when the goal is a system which
that can be used to automatically map the environment, as one would have to manually interfere
with the process to re-position the system every time it happens. With the use of external odometry,
which in this case was provided by a 2D LIDAR and the function «icp_odometry» from the Rtabmap
package, the process of mapping the environment was completed without interruptions.

Conclusion and discussion of experiment

While the experiments shows that it is possible to perform indoor mapping without the use of a
source of external odometry, it is not an optimal solution. The system produces more accurate maps
and the process of obtaining them runs a lot better using an external and more reliable source of
odometry. For the purpose of an AGV it is preferred that the process can be done automatically,
without having to manually intervene. The conclusion from the conducted experiments is that this
is not the case when only relying on the Intel Realsense D435. As such it is recommended to use an
external and reliable source of odometry together with the Intel Realsense D435 when performing
mapping.

86

CHAPTER 7. EXPERIMENTS, RESULTS AND DISCUSSION

7.3.2 Is the system capable of accurately mapping larger more complex environments?

As concluded it is recommended to use an external and reliable source of odometry together with
the Intel Realsense D435 when performing mapping. The next experiment continues to use the
external odometry provided by the 2d LIDAR together with the Intel Realsense D435 to perform
mapping. The aim of the experiment is to answer the research question: «Is the system capable
of accurately mapping larger more complex environments?». Due to the lack of lab facilities
the testing environment is the ground floor of a house. Although limited in size, the environment
contains separate rooms which has to be accurately mapped in relation to each other. Figure 65
shows the floor plan of the environment while Figure 66 shows the resulting three-dimensional
map from the experiment.

Figure 65: Floor plan of environment Figure 66: Resulting 3D map after mapping
The resulting map is a good representation of the environment when compared side to side with

the floor plan. The conclusion of the experiments related to the research question: «Is the system
capable of accurately mapping larger more complex environments?» is:

The system is capable of mapping more complex environments and accurately map separate
rooms in relation to each other.

Conclusion and discussion of experiment

The system consisting of a RBPi4 and an Intel Realsense D435 sensor is with the use of a reliable
source of external odometry able to accurately map the surrounding environment. It proved able
to map its surrounding environment whether it was one room or consisted of multiple rooms. The
mapping process finished without interruptions suggesting that it is feasible for an AGV to perform
automatic mapping using this method.

87

CHAPTER 7. EXPERIMENTS, RESULTS AND DISCUSSION

7.4 Conclusion and discussion of experiments in relation to the system re-
quirements

To conclude the results from the experiments is compared to the technical system requirements
stated in Chapter 3. The technical requirements are as follows.

1 The system should provide enough information about a large enough area so that an AGV can
react in time to avoid accidents, Requirement 1.

2 The system should be able to automatically update the map of the working environment, Re-
quirement 2

3 The system should have a method for keeping track of its position withing the working environ-
ment, Requirement 3

These requirements are specified with the goal of an AGV utilizing this system to be able to
navigate a dynamic environment safely and efficiently. And the research questions stated in this
chapter is centered around these. To compare the results to the technical requirements a systematic
approach going through each requirement at a time is used.

7.4.1 The system should provide enough information about a large enough area so that
an AGV can react in time to avoid accidents.

In Section 6.5 it is mentioned that one cycle of reading the measurements from all the sensors takes
0.27 seconds, with the standard speed of an operating AGV assumed to be 1.5 m

s the worst case
scenario where an AGV is on collision course with another AGV or a person walking towards at the
same speed, the traveled distance between each update would be 0.810 meters. In Chapter 3 the
braking distance of an AGV driving at 1.5 m

s is in the worst case 0.57 meters. In this scenario the
update time could cause a problem, therefore the Intel Realsense D435 is heading in the driving
direction of the AGV. The depth information from the sensor can not only be used for mapping pur-
poses, but also to assist in detecting obstacles. Since the Intel Realsense D435 updates much faster,
it would allow the AGV to react in time in situations like these. Further, the maximum distance of
the sensor is approximately ten meters, allowing for obstacle detection in the driving direction at
a longer range. Therefore an AGV equipped with this system should be able to operate a dynamic
environment safely. This again depends on the control system steering the AGV, which is not ad-
dressed in this thesis.

In order to operate safely it is not enough that the system is capable of providing information
about a large enough area, it must also be capable of detecting all the obstacles within that area in-
dependent of the characteristics of the obstacle. That is the reason behind the use of both ultrasonic-
and infrared sensors. The conducted experiments shows that by utilizing both, the chance of an er-
ror happening where neither of the sensors is able to detect an obstacle is minimized. One problem
with the sensor-system is the limited viewing angle of the infrared sensors. Under controlled cir-
cumstances it is possible to bypass the infrared sensor if standing in between to beams. This could
cause a problem if the obstacle is sound absorbing and not detected by the ultrasonic sensors. This

88

CHAPTER 7. EXPERIMENTS, RESULTS AND DISCUSSION

is however not likely to be the case when equipped on an operating AGV, as it would be unlikely
that the obstacle would not cross any of the beams from the infrared sensors as they move (Sec-
tion 7.1.2).

To conclude, the system is yet to be tested on an operating AGV, but the conducted experiments
suggests that it provide enough information about a large enough area allowing an AGV to operate
safely and avoid accidents.

7.4.2 The system should have a method for keeping track of its position withing the
working environment.

On its own, the system has two methods for keeping track of its own position within the environ-
ment. One using the described method utilizing visual landmarks, and using the Intel Realsense
D435 along with Rtabmap. The latter is however not tested in this thesis.

Utilizing QR-codes as visual landmarks the system is able to accurately estimate the direction
which it is heading, as documented in Section 7.2. On the other hand, the results were not satisfac-
tory when it came to the accuracy of the actual position estimates.

7.4.3 The system should be able to automatically update the map of the working envi-
ronment.

For the purpose of providing the necessary information to perform mapping, a Intel Realsense D435
is used. Utilizing this sensor it is possible to perform SLAM solely based on the data from the sensor.
However, the conducted experiments shows that this is not an optimal solution for the use of AGVs,
as the process is slow and unstable. Instead, the experiments suggest that a better solution is to
perform mapping utilizing an external source of reliable odomotry. This method produced more
accurate maps and the process ran without interruptions. Utilizing this method also allowed for
mapping larger and more complex environments. Suggesting that it is a good fit for an operating
AGV aiming to map the working environment. The conducted experiments shows that it is possible
to perform visual SLAM with good results using a RBPi4 and an Intel Realsense D435 with the
use of external odometry. Running this system alone would allow for and AGV to automatically
map and/or update a existing map of the surrounding environment. Thus, fulfilling the technical
requirement.

In the context of this thesis the ROS melodic package Rtabmap is used. This package is not yet
available for ROS2 Dashing in which the rest of the system is developed. Consequently, the whole
system is not yet integrated on the same platform. With the aim to have a fully functional providing
tools to perform obstacle detection, navigation and mapping, the system is not yet fully developed,
as the it remains to integrate the whole system on the same platform.

89

CHAPTER 8. DISCUSSION, CONCLUSION AND FUTURE WORK

8 Discussion, conclusion and future work

In Chapter 7 the performance of the system is compared to the technical requirements specified in
Chapter 3. This chapter focuses on the requirements with respect to cost and implementation, the
relevance of the project as well as the development process.

8.1 Cost, relevance and implementation

The name of the thesis is «Low-cost Navigation and Collision Avoidance System», the name reflects
the objective which is to develop a low-cost navigation and obstacle avoidance system capable of
providing robotic vehicles with sufficient information about the surrounding environment. In the
context of this thesis low-cost is defined as «affordable for lab use without any extra support from
the institute», which is usually around 5000 Norwegian kroner, as stated by Amund Skavhaug. The
total cost of the equipment used in the development of this system is 5146.29 Norwegian kroner,
which falls within the suggested price-range.

8.1.1 Relevance

When it comes to the relevance of this project, the aim is not to develop a system which should
be used in industrial applications or be an alternative to similar systems like the Turtlebot. The
goal is the development of a low-cost sensor system which can be used by the Turtlebot and other
robotic vehicles for educational purposes, and allow autonomous ground vehicles(AGVs) utilizing
this system to perform obstacle avoidance, navigation and mapping. The system consist of different
sensors than what is provided by the Turtlebot, as such it would give students opportunity to work
with a wider range of sensors which are commonly used in robotic applications.

8.1.2 Implementation

Requirement 4 states that the system should be easy to implement. This does however depend on
whether or not the robotic vehicle on which the system is to be implemented also runs the same
ROS distribution. If that is the case and both the system and the vehicle are connected to the same
network the communication between them is simple to initiate using the method described in Sec-
tion 6.3. The system is developed for being integrated with other systems using ROS. The reason
for this is that ROS is a universal framework for robotic applications and is widely used in the field
of robotics.

Further, Requirement 5 states that the system should be simple to repair. As the system is now
the hardware architecture is not complicated, and everything is documented in the thesis. If one or

90

CHAPTER 8. DISCUSSION, CONCLUSION AND FUTURE WORK

more sensor should stop working due to wear and tear, they can simply be replaced with a new one
by following the documentation given in the thesis.

8.2 Development process

The project documented throughout this thesis focuses on multiple aspect which together aims to
provide an AGV with the necessary information to operate safely and efficiently. This makes the
project in itself very broad, and the depth in which each aspect of the system is documented and
explored is limited due to the time scope of the master project. On the other hand, this was never
the aim of the project. The aim of the project was to develop a low-cost navigation and collision
avoidance system utilizing existing technology and document the requirements needed for an AGV
to be able to operate safely and efficiently.

By working with the different aspect which makes up the system as a whole, one get a good
understanding of what is actually needed when it comes to AGV’s. The requirements as well as the
developed system is documented throughout this thesis. The system itself is not finished yet, as
some work is still needed to realize the system. Some suggested work for the future is:

• Test the obstacle avoidance grid on a moving vehicle.
• Integrate the Intel Realsense D435 and a method for performing mapping in the same ROS

distribution as the rest of the system(ROS2 Dashing).
• Further test and develop the method utilizing visual landmarks to achieve better accuracy.

Although the system is not finished, the groundwork has been done - thus a platform to further
build upon is available for future students.

The project as a whole consists of both a theoretical part and a practical part. The practical
work which was carried out and is documented throughout this thesis is based upon the previously
conducted research documented in Appendix A. Although the practical part of the project was well
thought out beforehand, the process of utilizing this information to develop an actual system re-
quires a lot of additional research. Consequently, the development process has been a mixture of
learning to use tools such as ROS while at the same time actually developing and building the sys-
tem itself. With the benefit of hindsight I would suggest to have some knowledge within the use
of ROS before embarking on a project like this. ROS offers a lot of relevant tools and developed
methods when it comes to robotics.

91

BIBLIOGRAPHY

Bibliography

[1] KG, G. 2019. Götting kg website. https://www.goetting-agv.com/components/
inductive/introduction. Accessed: 2019-11-21.

[2] KG, G. 2019. Götting kg website. https://www.goetting-agv.com/components/optical/
introduction. Accessed: 2019-11-21.

[3] Robotis. Emanual robotis. http://emanual.robotis.com/docs/en/platform/turtlebot3/
simulation/. Accessed: 2020-27-05.

[4] Turtlebot3. https://www.turtlebot.com/. Accessed: 2020-15-05.

[5] Hellmann, D. 2019-09-17. Kinexon website. https://kinexon.com/solutions/
agv-navigation. Accessed: 2019-11-21.

[6] ArcBotics. 2016. Arcbotics website. http://arcbotics.com/products/sparki/parts/
ultrasonic-range-finder/. Accessed: 2019-02-12.

[7] How to use a sharp gp2y0a710k0f ir distance sensor with arduino. https://www.
makerguides.com/sharp-gp2y0a710k0f-ir-distance-sensor-arduino-tutorial/. Ac-
cessed: 2020-25-06.

[8] Mellish, B. Pinhole camera model. https://commons.wikimedia.org/wiki/File:
Pinhole-camera.png. Accessed: 2020-12-05.

[9] Nordmann, A. 2007. Epipolar geometry.

[10] What is a stereo vision camera? https://www.e-consystems.com/blog/camera/
what-is-a-stereo-vision-camera/. Accessed: 2020-04-06.

[11] Corso, N. & Zakhor, A. 2013. Loop closure transformation estimation and verification using 2
d lidar scanners.

[12] Intel R© realsense depth camera d435. https://no.rs-online.com/web/p/depth-cameras/
1720981/. Accessed: 2020-25-06.

[13] SHARP. Distance measuring sensor unit, 2018.

[14] 2019. Ros 2 dashing diademata. https://discourse.ros.org/t/
ros-2-dashing-diademata-released/9365. Accessed: 2020-28-05.

92

https://www.goetting-agv.com/components/inductive/introduction
https://www.goetting-agv.com/components/inductive/introduction
https://www.goetting-agv.com/components/optical/introduction
https://www.goetting-agv.com/components/optical/introduction
http://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/
http://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/
https://www.turtlebot.com/
https://kinexon.com/solutions/agv-navigation
https://kinexon.com/solutions/agv-navigation
http://arcbotics.com/products/sparki/parts/ultrasonic-range-finder/
http://arcbotics.com/products/sparki/parts/ultrasonic-range-finder/
https://www.makerguides.com/sharp-gp2y0a710k0f-ir-distance-sensor-arduino-tutorial/
https://www.makerguides.com/sharp-gp2y0a710k0f-ir-distance-sensor-arduino-tutorial/
https://commons.wikimedia.org/wiki/File:Pinhole-camera.png
https://commons.wikimedia.org/wiki/File:Pinhole-camera.png
https://www.e-consystems.com/blog/camera/what-is-a-stereo-vision-camera/
https://www.e-consystems.com/blog/camera/what-is-a-stereo-vision-camera/
https://no.rs-online.com/web/p/depth-cameras/1720981/
https://no.rs-online.com/web/p/depth-cameras/1720981/
https://discourse.ros.org/t/ros-2-dashing-diademata-released/9365
https://discourse.ros.org/t/ros-2-dashing-diademata-released/9365

BIBLIOGRAPHY

[15] Turltebot 3 rviz. http://emanual.robotis.com/docs/en/platform/turtlebot3/
applications/. Accessed: 2020-28-05.

[16] Kaustubh Sadekar, S. M. Camera calibration using opencv. https://www.learnopencv.com/
camera-calibration-using-opencv/. Accessed: 2020-24-06.

[17] 2020. Creating a workspace. https://index.ros.org/doc/ros2/Tutorials/Workspace/
Creating-A-Workspace/. Accessed: 2020-28-05.

[18] 2020. Creating your first ros 2 package. https://index.ros.org/doc/ros2/Tutorials/
Creating-Your-First-ROS2-Package/#what-is-a-ros-2-package. Accessed: 2020-28-
05.

[19] Eckel, T. Newping arduino library. https://playground.arduino.cc/Code/NewPing/. Ac-
cessed: 2020-30-05.

[20] Masino, G. Sharpir arduino library. https://github.com/qub1750ul/Arduino_SharpIR. Ac-
cessed: 2020-30-05.

[21] Laserscan.msg. https://github.com/ros2/common_interfaces/blob/master/sensor_
msgs/msg/LaserScan.msg. Accessed: 2020-30-05.

[22] Sørebø, K. S. 2019. Low-cost navigation and collision avoidance system.

[23] Ullrich, G. 2015. Automated Guided Vehicle Systems. Springer.

[24] Nils Gageik, Paul Benz, S. M. 2015. Obstacle detection and collision avoidance for a uav with
complementary low-cost sensors. IEEE Access, (3), 599–609.

[25] Michael Montemerlo, S. T. 2007. Fast Slam. Springer, Berlin, Heidelberg.

[26] Aulinas, J., Petillot, Y., Salvi, J., & Llado, X. 2008. The slam problem: a survey. Frontiers in
Artificial Intelligence and Applications, (184), 363–371.

[27] Drangsholt, M. A. Computer vision as an alternative for collision detection. Master’s thesis,
NTNU, 2015.

[28] 2020. Ros 2 overview. https://index.ros.org/doc/ros2/. Accessed: 2020-05-13.

[29] Understanding ros 2 topics. https://index.ros.org/doc/ros2/Tutorials/Topics/
Understanding-ROS2-Topics/. Accessed: 2020-30-05.

[30] About ros interfaces. https://index.ros.org/doc/ros2/Concepts/
About-ROS-Interfaces/. Accessed: 2020-30-05.

[31] Ros2 wrapper for intel R© realsenseTM devices. https://github.com/intel/ros2_intel_
realsense. Accessed: 2020-06-06.

93

http://emanual.robotis.com/docs/en/platform/turtlebot3/applications/
http://emanual.robotis.com/docs/en/platform/turtlebot3/applications/
https://www.learnopencv.com/camera-calibration-using-opencv/
https://www.learnopencv.com/camera-calibration-using-opencv/
https://index.ros.org/doc/ros2/Tutorials/Workspace/Creating-A-Workspace/
https://index.ros.org/doc/ros2/Tutorials/Workspace/Creating-A-Workspace/
https://index.ros.org/doc/ros2/Tutorials/Creating-Your-First-ROS2-Package/#what-is-a-ros-2-package
https://index.ros.org/doc/ros2/Tutorials/Creating-Your-First-ROS2-Package/#what-is-a-ros-2-package
https://playground.arduino.cc/Code/NewPing/
https://github.com/qub1750ul/Arduino_SharpIR
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/LaserScan.msg
https://github.com/ros2/common_interfaces/blob/master/sensor_msgs/msg/LaserScan.msg
https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/Tutorials/Topics/Understanding-ROS2-Topics/
https://index.ros.org/doc/ros2/Tutorials/Topics/Understanding-ROS2-Topics/
https://index.ros.org/doc/ros2/Concepts/About-ROS-Interfaces/
https://index.ros.org/doc/ros2/Concepts/About-ROS-Interfaces/
https://github.com/intel/ros2_intel_realsense
https://github.com/intel/ros2_intel_realsense

BIBLIOGRAPHY

[32] Opencv webpage. https://opencv.org/. Accessed: 2020-01-06.

[33] Read one-dimensional barcodes and qr codes from python 2 and 3. https://pypi.org/
project/pyzbar/. Accessed: 2020-01-06.

[34] Chen, J. Cameraposeestimation. https://github.com/czcbangkai/
CameraPoseEstimation. Accessed: 2020-25-06.

[35] Rtab-map, real-time appearance-based mapping. http://introlab.github.io/rtabmap/.
Accessed: 2020-20-06.

94

https://opencv.org/
https://pypi.org/project/pyzbar/
https://pypi.org/project/pyzbar/
https://github.com/czcbangkai/CameraPoseEstimation
https://github.com/czcbangkai/CameraPoseEstimation
http://introlab.github.io/rtabmap/

APPENDIX A. PRE-STUDY

A Pre-study

A1

Low-cost navigation and
collision avoidance system

Kristian Svinterud Sørebø

11-12-2019

Specialization Project
Department of Mechanical and Industrial Engineering

Norwegian University of Science and Technology,

Supervisor: Prof. Amund Skavhaug

Low-cost navigation and collision avoidance system

Summary

The main objective of this thesis is to determine the possibilities for the development of a low-cost
navigation and collision avoidance system for automatic ground vehicles(AGVs). The system should
be able to work in a dynamic environment around people. The focus of this thesis is the evaluation
of existing technologies with respect to the main objective.

Several well established systems concerning the automatic control of AGVs are described and
evaluated, before going into the different aspects which make up a complete system. Multiple meth-
ods and technologies in relation to robotic mapping, positioning, navigation and obstacle avoidance
is described and evaluated. One of the main concerns in relation to the low-cost aspect of the
projects is that the whole system should run on a low-cost computer. Consequently a study of low-
cost single board computers was done. Finally a concept for a low-cost system is presented, based
on the findings discussed in the paper. The concept consist of a system for automatic mapping of
the AGVs surroundings, a method for real time positioning of the AGV and a system for obstacle
detection.

i

Low-cost navigation and collision avoidance system

Preface

This thesis concludes my specialization project at NTNU Trondheim carried out during the au-
tumn semester of 2019. The idea for this project came about during a lunch meeting with Amund
Skavhaug about an open project. Trough a discussion regarding my interests and technical back-
ground we landed on a project concerning a low-cost sensor system for autonomous ground vehicles
(AGVs). We ended up with the title «Low cost navigation and obstacle avoidance system».

I would like to thank my supervisor Amund Skavhaug for his commitment and guidance through-
out this semester.

11-12-2019

ii

Low-cost navigation and collision avoidance system

Contents

Summary . i
Preface . ii
Contents . iii
List of Figures . v
List of Tables . vi
Abbreviations . vii
1 Introduction . 1

1.1 Background and motivation . 1
1.2 Objectives . 1

1.2.1 Research Objectives . 1
1.3 Tasks . 2
1.4 Project Scope and Report Structure . 2

1.4.1 Actions Performed to Ensure Reliability . 2
1.4.2 Literature Studies . 2
1.4.3 Concepts . 2
1.4.4 Conclusion and future work . 2

2 Literature Studies . 3
2.1 Developed methods . 3

2.1.1 Physical guidelines . 4
2.1.2 Beacons . 5
2.1.3 Natural Feature Navigation . 6
2.1.4 Discussion . 6

2.2 Mapping . 8
2.2.1 SLAM . 9
2.2.2 Occupancy Grid Mapping . 10
2.2.3 Mapping technology . 11
2.2.4 Structured light . 13
2.2.5 Discussion . 14

2.3 Localization and navigation . 16
2.3.1 Bluetooth 5.1 . 16
2.3.2 Artificial landmarks . 17
2.3.3 5G . 18
2.3.4 Discussion . 18

2.4 Obstacle detection . 19

iii

Low-cost navigation and collision avoidance system

2.4.1 Ultrasonic sensor . 19
2.4.2 Infrared distance sensors . 21
2.4.3 Discussion . 21

2.5 Low-cost computers and interfacing . 23
3 Concepts . 25

3.0.1 Low-cost computer . 25
3.0.2 Mapping localization and navigation . 26
3.0.3 Obstacle detection . 27
3.0.4 Suggested prototype . 28

4 Conclusion and future work . 30
Bibliography . 31

iv

Low-cost navigation and collision avoidance system

List of Figures

1 AGV following a path with the active inductive guidance method [1] 4
2 AGV following the path with the use of a optical sensor [2]. 4
3 Determining position of AGV with beacons. [3] . 5
4 Blue line depicting the path of the robot before loop-closure, red line depicting the

path after loop-closure [4]. 9
5 Illustration of a robot updating the occupancy grid map using sensor data 10
6 Illustration of the logarithmic updating process . 10
7 Epipolar views [5] . 12
8 Illustration of structural light [6] . 13
9 Illustration of the bluetooth 5.1 AoA and AoD method [7] 16
10 Illustration of the AGV localization using artificial landmarks [8]. 17
11 Ultrasonic distance sensor failing to detect sound absorbing, and flat angled surface

[9] . 20
12 Illustration of a infrared distance sensor . 21
13 Left: twelve sectors corresponding to the twelve ultrasonic sensors. Right: eight sec-

tors corresponding to the eight infrared sensors [10]. 22
14 Illustration of the sensors detection range around the AGV. 27
15 Hardware architecture of proposed system. 28

v

Low-cost navigation and collision avoidance system

List of Tables

1 Advantages and disadvantages of described methods 7
2 Advantages and disadvantages of SLAM and occupancy grid mapping. 11
3 Comparison of the specifications of three depth sensors. 15

vi

Low-cost navigation and collision avoidance system

Abbreviations

AGV = Autonomous Ground Vehicle
SLAM = Simultaneous Localization And Mapping
SBC = Single Board Computer
BLE = Bluetooth Low Energy
IMU = Inertial Measurement Unit
AoA = Angle of Arrival
AoD = Angle of Departure
I2C = Inter-Intergrated-Circuit
SCL = Serial Clock
SDA = Serial Data
SPI = Serial Peripheral Interface
SCLK = Serial Clock
MOSI = Master Output Slave Input
MISO = Master Input Slave Output
SS = Slave Select

vii

Low-cost navigation and collision avoidance system

1 Introduction

1.1 Background and motivation

We develop robots to streamline production and to reduce the amount of manual labor. Robotic ma-
nipulators are examples of robots developed to perform tasks previously done by hand. Autonomous
ground vehicles(AGV) are an example of robots developed to move objects from one place to an-
other, or to carry out tasks such as cleaning and lawn mowing. In relation to industry AGVs are
often used as a replacement for the traditional conveyor belt, as they can offer more flexibility and
be convenient in the context of batch production.

The older AVGs follow pre-determined paths in the form of some sort of physical guiding line.
This is a limiting factor when it comes to flexibility. In order for these robots to operate efficiently in
an environment with other agents, everything has to be tailored around the AGV. As well as being
limited by little to no understanding of the world around, these systems are expensive to install and
expand due to the need for integrated guiding systems.

In the later years the use of physical guidelines has been replaced by solutions that offer more
flexibility and freedom, allowing them to operate efficiently around both humans and other robots.
For robots to be allowed to work in the same environment as humans there has to be reliable safety
measurements to avoid accidents. This means that the AGVs has to be equipped with accurate
sensor-systems and programming so they have a broad enough understanding of the environment
to adapt to their surroundings. These extra features makes the newer AGVs more complex, conse-
quently more computational power is needed. These robots have been on the marked for a while,
and they are being used all over the industry, but they are often expensive.

In the meantime, low-cost of the shelf computers with significant calculation power have become
a common product, it is therefore desirable to extend upon this to develop low-cost alternatives.

1.2 Objectives

The objective of this pre-study is to explore the possibilities for developing a low-cost navigation
and collision avoidance system capable of working in dynamic environments around other flexible
agents on a low-cost computer. The objective is not to develop new camera or sensor technology
from scratch, but rather see what technology there are and how this can be used to develop a new
system. Thus this is a feasibility study.

1.2.1 Research Objectives

• Conduct a survey of some of the existing systems.
• How can navigation and collision avoidance-systems be tailored to low-cost, low-powered

1

Low-cost navigation and collision avoidance system

computers?
• Develop concepts for low-cost system based on existing technology.

1.3 Tasks

To achieve the research objectives the following task will be studied and presented in this thesis.

• A description of some commonly used existing systems.
• A literature study regarding standards and regulations
• A literature study regarding collision avoidance.
• A literature study regarding localization and navigation.
• A discussion of the advantages and disadvantages of different low-cost computers.
• Concept generation based on the finding gathered throughout the thesis.

1.4 Project Scope and Report Structure

1.4.1 Actions Performed to Ensure Reliability

To ensure that the information used in the making of this thesis is reliable, the literature should be
from a collection of peer reviewed academic articles, established companies or from conversations
with experts in the respected field. In addition, by having a close collaboration with the supervisor
all information is shared and reviewed together.

1.4.2 Literature Studies

In chapter 2 the findings from the literature study is presented. The literature study covers a wide
area, and was conducted at an early stage of the project to gain a grasp of the most important
theory before conducting deeper research.

1.4.3 Concepts

In this chapter a suggested concept developed with the main objective of the thesis in mind, is
presented. The concept is based on the findings from the conducted studies, and should make
up a complete system consisting of solutions for mapping, navigation, localization and obstacle
avoidance.

1.4.4 Conclusion and future work

Chapter 4 concludes the thesis and gives recommendations for future work.

2

Low-cost navigation and collision avoidance system

2 Literature Studies

This chapter gives an overview over some of the existing methods used in the control of autonomous
ground vehicles(AGVs). Further, some of the different aspects of safely controlling a AGV in dynamic
environments is discussed, which includes mapping, navigation and obstacle avoidance. Some of
the different sensors and software solutions which is often used to carry out these tasks are de-
scribed and evaluated in relation to the main objective of this thesis. That is to research and deter-
mine if it is feasible to develop a low-cost navigation and obstacle avoidance system on a low-cost
off the shelf computer. Consequently, the evaluation of different low-cost Single Board Comput-
ers(SBCs) is given it own section at the end of this chapter.

2.1 Developed methods

There are many applications for automatic guided vehicles(AGVs), varying from handling of haz-
ardous material, to automatic vacuum cleaners and lawn mowers. Trough the years as technology
has advanced, AGVs has advanced as well. This has resulted in more flexible solutions, which is one
of the main reasons why AGVs are so prevalent today. This flexibility is also what allows AGVs to
work in dynamic environments around other agents, including humans. This increase in freedom
makes safety a top priority. To ensure that no harm is done to people or objects, it is recommended to
follow several safety regulations. In Europe the standard «EN 1525, Driverless industrial trucks and
their systems» is used as a standard for driverless indoor vehicles. In the book «Automated Guided
Vehicle Systems» the author summarizes some of the regulations directly applicable to AGVs, the
most relevant in relations to this projects is the following:

• «The personnel protection system is essential. It has to ensure that people or objects located
on the drive path or on the envelope curve of the AGV together with its payload are reliably
recognized. Should this occur, the vehicle has to safely come to a stop before persons or objects
are injured or damaged. Mechanical systems react to contact and are designed, e.g., as plastic
bales or soft foam bumpers. Contact-free sensors scan the endangered areas ahead of the
vehicle using laser, radar, infrared or ultrasound, or a combination of several technologies.»
[11].

In short this means that the AGV should have a system for obstacle avoidance.

Dependent on the complexity of the task there are developed different methods for the au-
tonomous control of AGVs. A common way for AGVs to navigate is trough the use of guided naviga-
tion. This is carried out by retrofitting the workplace with the tools needed for the AGV to navigate
the environment. In an industrial environment this is often solved by the use of physical guide-
lines or beacons. Other developed systems are not dependent on retrofitting of the workplace, and

3

Low-cost navigation and collision avoidance system

allows the AGV to navigate freely on its own. This comes at the cost of complexity, so the robot
itself must be able to handle a larger amount of data, and perform complex data handling. This is
a result of the AGV having to recognize its environment, as well as other agents operating within
that environment. This section serves as a introduction to some of the most common methods re-
lated to the automatic control of AGVs. The methods are described along with their advantages and
disadvantages, and they are compared to eachother with the main objective of this thesis in mind.

2.1.1 Physical guidelines

One of the simplest methods developed for the autonomous control of AGVs is the use of pre-
determined paths that guide the vehicle. This is often solved either by a optical guidance track,
made from a color that clearly contrast the floor or a inductive guidance track integrated in the
floor itself. Since a strip of coloured tape or paint on the floor is very exposed and easily damaged,
the inductive guidance track is more often used in industrial environments.

Figure 1: AGV following a path with the active
inductive guidance method [1]

Figure 2: AGV following the path with the use of
a optical sensor [2].

With active inductive guidance tracks, the wires embedded in the floor carries a signal with a low
AC-voltage and frequency. Two coils are mounted under the vehicle at right angles to the conductor
in which the alternating current of the guide wire induces a flowing current [11]. This allows the
AGV to navigate its position according to the positing of the wire. With optical sensor technology
the AGV aims to keep the colored line in the center of view, changing its position according to the
displacement of the colored line.

There are several ways of guiding the vehicle along a track, but the principle is the same - adjust
the pose of the AGV in order to counter the displacement of the guidance track. Since the AGV is
only capable of following the path of the track, this method offers little flexibility. As a result there
is not much complexity associated with this method. This comes from the fact that the AGV has
no use for intelligence or an advanced sensor-system, since the only action besides following the
pre-determined path is to stop if something is in its direct path. Besides the lack of flexibility this
method comes with another downside. That is the time consuming and costly retrofitting of the
workspace that is needed to install such a system, as the guidance tracks must be installed before

4

Low-cost navigation and collision avoidance system

the AGV can function properly. As a result of this it is just as time consuming to make changes to
the system once it is installed, which makes expansion of the system difficult.

Another use of physical guidelines is to use them as barriers which the AGV is not allowed
to cross. Automatic lawn mowers are free to move inside an marked area, and as soon as they
encounter the barrier they will turn around. In the terms of industry this can be used as a extra
safety precaution making sure the AGV does not enter a area it is not allowed to enter.

2.1.2 Beacons

The next step from AGVs dependent on physical guidelines are AGVs that uses beacons placed
around the working environment. The angle and distance to the beacons is calculated and used to
calculate the position of the AGV trough triangulation. Since there is no physical guideline telling
the AGV where to move, a map of the environment is optimal along with a system for determining
paths telling the AGV where to move.

The calculated position of the AGV is then compared to the reference position given by the
calculated path and the control system adjust the AGV according to the path. Figure 3 shows how
beacons can be used in practice.

Figure 3: Determining position of AGV with beacons. [3]

This is simply a method for determining the position of the AVG. If the vehicle comes with a
integrated map and a collision avoidance system this would allow for more flexible navigation.
The positioning of the vehicle along with a map would allow the AGV to know its position in
relation to the surrounding objects, which makes it possible for path planning around the working
environment. Together with a collision avoidance system ensuring that the vehicle does not collide
with other agents or obstacles this method offers more flexibility. This new layer of flexibility is
a huge improvement from the previously described method. Rerouting of the AGVs paths would
be much easier, since no changes would have to be done to the workspace itself. This makes it

5

Low-cost navigation and collision avoidance system

possible for the AGV to work in a dynamically changing environment, and with a collision avoidance
system, around other flexible agents including people. The workplace still has to be retrofitted to
the AGV, as beacons would have to be installed. Still the retrofitting is not as an extensive as with a
system based on physical guidelines. As a result expansion of the system is easier. This comes at the
cost for a more complicated sensor-system and the data handling that comes with the navigation
and collision avoidance system makes this solution more complex, consequently a more powerful
computer is needed.

2.1.3 Natural Feature Navigation

Natural feature navigation allows the AGV to navigate the environment without any retrofitting of
the workplace. Instead the AGV rely on natural landmarks in addition to odometry to keep track
of its positioning. Odometry is the use of data from the motion sensors on the AGV to calculate
the change in position over time. This makes for a highly flexible system that is easy to install and
expand, but this comes at the cost of complexity. As it is no easy task to navigate with only the use
of natural features. Usually expensive lidars or stereo cameras is needed in order to recognize the
natural landmarks as well as a powerful computer to handle all the sensor data.

2.1.4 Discussion

In table 2.1.4 I have tried to systematize the advantages and disadvantages of the different
methods described. This is done with the main objective of the thesis in mind.

6

Low-cost navigation and collision avoidance system

Method Advantages Disadvantages

Physical guidelines

Well tested technology. Not flexible, paths can only be
changed by changing the floor
installations.

Simple solution, not much
comlexity ascociated.

Depending on chosen guide-
lines, floor installations may
be costly.
Expansion is hard and time
consuming.
If the guidelines is damaged,
the system stops.

Beacons

Offers high precision if place-
ment is well though out.

Retrofitting is still needed.

AGV can move freely within
area fitted with beacons.

Retrofitting of new area is re-
quired in order to expand the
system.

Expansion is less costly then
with physical guidelines.
Allows for effective operation
within a dynamic environ-
ment if additional system for
object avoidance is included.

Natural feature navigation Flexible Computational cost is high
due to the complexity of the
system,

Easy to expand Depending on the workspace,
it may not be natural unique
landmarks.

Allows for operation within a
dynamic environment.

Table 1: Advantages and disadvantages of described methods

When comparing the methods described in this section it is important to have the research ob-
jective in mind. At first glance the use of physical guide lines seems like a good option. Especially
since the complexity is low, and as a result of that the method is well suited for a low cost computer.
However, the costs related to retrofitting the workplace, and the lack of flexibility outweighs the
benefits. That being said, some inspiration can be drawn from this approach, as physical lines can
be used in addition to a more flexible system to make sure the AGV does not enter areas it is not
allowed to enter if a miscalculation were to happen.

Both the method involving beacons and natural feature navigation allows for a flexible AGV
capable of working efficiently in a dynamic environment. Natural feature navigation has the clear
advantage of not needing to retrofit the workspace, but this comes at the cost of a more complex

7

Low-cost navigation and collision avoidance system

problems to solve. As a result of this it may be hard to implement on a low cost computer.

With this in mind the rest of the thesis focuses on the more flexible options, which is natural
feature navigation, and methods involving beacons. While solutions relying on guidance lines will
be disregarded, since the retrofitting that comes with these methods are costly, and they do not
meet the criteria for flexibility needed.

2.2 Mapping

For a AGV to work in a dynamic environment, perform tasks and to efficiently move from one place
to another, it should have some memory of the environment it is working within. If not, the AGV
will not have any way to localize its position within the environment, and therefore not have the
ability to plan routes from one point to another in the workspace. Consequently the AGV should
have an internal representation of the environment, and a way to localize itself within the map.
The point of the map is to allow the AGV to keep track of its own position in relation to the other
obstacles in the workplace, allowing it to plan around these. For that reason the map should contain
all the stationary installation in the real world. Working environments is often undergoing changes,
which sometimes means new installations is installed, therefore the AGV should be able to update
the internal map.

Many buildings these days have three-dimensional building plans available, or at least two-
dimensional floor plans. These drawings contain information that can be used to create a map
representation of the environment for the AGV. The problem is that they do not always contain
every stationary item, as they are not necessarily updated every time a new installation is installed.
Even so, they can and should be used to create the map representation, as they do contain precise
information about the dimensions. That being said, it is desirable to compliment this with a auto-
matic mapping-method to keep the map up to date at all times.

In robotics mapping and localization goes hand in hand. In order for the map to be useful the
robot should have some method of determining its position within the map. In robotic-mapping
there is different ways of obtaining maps of the environment, the complexity of these methods
highly depends on the method used to keep track of the position of the AGV. In this section some
of these methods is described and compared based on advantages and disadvantages in relation to
the main objective of this thesis.

8

Low-cost navigation and collision avoidance system

2.2.1 SLAM

SLAM is an acronym for Simultaneous Localization And Mapping. As the name implies, it is a
method for construction a map of an unknown environment, and at the same time keep track of the
agents position within that environment. This is a hard problem to solve, as the path and position
of the agent is not known with certainty. The error in position correlates errors in the map it is
constructing, as a result both has to be estimated simultaneously [12].

Odomotry estimates the position of the AGV in relation to its starting position based on data
from motion sensors. AGVs can with rotary encoders on the wheels, and with the angle of the
wheels estimate the change in position over time based on the sensor data. This data is however
prone to error over time, and is therefore not a sufficient method to keep track of the location of
the AGV. SLAM-algorithms solution to this problem is loop-closure. Loop-closure is the re-visiting
of previously observed landmarks where the positioning of the AGV is known with more certainty.
This newly found information of the pose increases the certainty of the previous poses as well [12]

Figure 4: Blue line depicting the path of the robot before loop-closure, red line depicting the path after
loop-closure [4].

Because of the complexity associated with the SLAM method, it is considered a hard problem to
solve, especially as the work-space gets bigger [13].

9

Low-cost navigation and collision avoidance system

2.2.2 Occupancy Grid Mapping

Occupancy grid mapping is a term representing a family of robotic algorithms that aim to generate
maps from sensor data assuming the pose of the robot is known. This is the key difference between
this method and the SLAM approach. The robot measures the distance to surrounding objects using
its sensors, the measurements is then translated from the robot frame to the global frame where it
is used to generate the occupancy grid map.

Figure 5: Illustration of a robot updating the oc-
cupancy grid map using sensor data

A occupancy grid map is a array of occu-
pancy variables. Each cell in the occupancy
grid map is associated with one occupancy
variable. This is a binary random variable
with either value 1 or 0, representing a oc-
cupied or empty cell. If a cell is occupied
this means that it is an obstacle in the cor-
responding position in the real world.
Building a occupancy grid map is based on
probabilistic calculations for each cell. From
these calculations a map containing either
free or occupied cells is constructed.

When generating the occupancy grid map every observed cell is given a value describing the
probability of that cell being either occupied or free. As these cells are observed again and again
trough overlapping measurements, the value they hold is updated with a update rule. This means
that if a cell is measured to have the same state over and over, the probability of that cell having
that exact state increases. This is illustrated in 6. The lighter the color is, the more probable it is
that the cell is free, the darker the color is, the more probable the cell is occupied.

Figure 6: Illustration of the logarithmic updating process

10

Low-cost navigation and collision avoidance system

The accuracy of this method is highly dependent on to which degree the position of the vehicle
can be calculated accurately. Since the problem of mapping the position of other objects in relation
to the position of the AGV alone is a straight forward problem to solve in comparison to having to
calculate the position of the AGV at the same time [12], this method is a viable option. As a result
it can be assumed to be easier to implement on a low-cost computer.

Discussion

In table 2 I have tried to systematize the most important characteristics of both SLAM and occu-
pancy grid mapping. This is done in order to compare the two methods, with the main objective of
this thesis in mind.

Method Advantages Disadvantages

SLAM
No retrofitting needed Complex algorithm, the com-

putational cost is high
High flexibility Complexity increases with

larger areas
Easy to update map

Occupancy grid mapping Easy to update map within
working area

Complementary method for
positioning is needed

Since the pose is assumed to
be known, the complexity de-
creases

Cannot expand map without
expanding the chosen method
for positioning

Table 2: Advantages and disadvantages of SLAM and occupancy grid mapping.

Both SLAM and occupancy grid mapping is suitable for this project, as both would allow for
automatically updating the map. The SLAM approach has a clear advantage in that no additional
retrofitting of the workplace is needed. Thus, reducing the costs as well as installation time. The
drawback with SLAM is the computational cost associated with the method, and the fact that it gets
increasingly larger the bigger the scenario gets [13]. Consequently it may be infeasible to develop
a low cost navigation and collision avoidance system capable of preforming well in large industrial
environments based on SLAM.

2.2.3 Mapping technology

The map should represent the workspace with high accuracy. A accurate map representation of
the environment is obtained trough smart software solutions and accurate sensor measurements.
Consequently reliable sensors for distance measurements is needed. This subsection presents some
relevant sensor technology and hardware solutions commonly used in mapping applications.

Stereo-vision technology

In order to map the environment, depth perception is needed, as we want to know the distance
between the AGV and its surroundings. A commonly used method for obtaining depth perception
is stereo-vision. Stereo-vision emulates the most common visual system we find in nature, which
is a set of two eyes. By receiving information about a scene from two cameras fixed in relation to

11

Low-cost navigation and collision avoidance system

another, one can extract depth information. This is done by correlating points in the two different
images, then calculating the depth with triangulation. The problem is to find correlating pixels
in the two images, as searching trough the whole two-dimensional image plane in order to find
matching pixels is very time consuming. Instead, since the pose of the two cameras is known, we
use epipolar geometry. This narrows the search for correlating pixels down from a two-dimensional
array containing all the pixels to a one-dimensional array only containing the pixels along a distinct
line in the image plane. This line is called the epipolar line.

Figure 7: Epipolar views [5]

Figure 7 illustrates how one point, denoted by X can be anywhere on the line OL −X from the
view of the left camera. Since it is only seen as a distinct point denoted by XL in a two-dimensional
image plane. From the view of the right camera, OL − X is seen as a line and projected into the
right image plane as the line eR−XR, which is the epipolar line. After searching trough the epipolar
line for a matching pixel, we have a known triangle from which the depth can be calculated.

Lidar technology

LiDAR is a acronym for Light Imaging And Ranging. Lidar technology uses light pulses to illumi-
nate its surroundings, and it measures the reflected light. There are two methods used to calculate
distance to the surrounding objects. It is either calculated based on time of flight or by laser trian-

12

Low-cost navigation and collision avoidance system

gulation. With time of flight the distance is calculated with 2.1.

D =
t ∗ c
2

(2.1)

Where D denotes the distance to the object, t is the travel time and c is the speed of light. This
is divided by two to give the distance between the objects. With laser triangulation the distance is
calculated by the angle of the reflected beam, which will vary based on the distance to the reflecting
object.

The typical lidars used in robotics are spinning lidars, giving them a 360 degree viewing angle.
Because the speed of light is so fast the frequency of the light pulses can be very high, resulting
in a high resolution map of the environment. For robotic-mapping purposes there is two different
options available, either a two-dimensional lidar, or a three-dimensional lidar. A 2D-lidar sends out
light beams only in the horizontal plane, while the 3D-lidar also send light beams in the vertical
axis, resulting in a 3D scan of its surroundings. Depending on the chosen lidar this can eiter be used
to create a two-dimensional map or a three-dimensional map.

2.2.4 Structured light

Structured light 3D scanning is a method where a known pattern is projected on to a scene. The
light source often operates outside of the visual spectrum so that it does not interfere with regular
vision technologies. The structure of the pattern is known by the sensor, and the depth is calculated
based on the distortion of the projected pattern.

Figure 8: Illustration of structural light [6]

13

Low-cost navigation and collision avoidance system

Microsoft kinect

Microsoft Kinect was originally developed as a gaming accessory for the Xbox-console. While it did
not gain much traction within the gaming community it became popular among developers, due
to the low-cost advanced sensors. The first version of kinect uses structured infrared light in order
to perceive depth. It also includes a regular RGB color camera. The Kinect V2 uses a time-of-flight
infrared depth camera in order to perceive depth, this functions much like a lidar sending out in-
frared light and calculating the distance based on the travel time. The kinect V2 also comes with a
improved RGB camera.

Since the kinect sensors did not gain the anticipated traction in the gaming community, they
have been taken out of production. Instead Microsoft developed the Azure Kinect DK, with artificial
intelligence applications in mind, which was released in 2019. Azure Kinect DK consist of a time
of flight depth sensor, seven microphones, twelve megapixel RGB camera and a integrated inertial
measurement unit. It can measure distances up to 5.46 meters with high accuracy and with the
inertial measurement unit it can determine its pose in three dimensional space. The current price
for a Azure Kinect DK depth sensor is 399$.

Intel RealSense

The Intel Realsense 435i consist of a active infrared stereo-camera, a high resolution RGB camera,
a integrated inertial measurement unit and an on-board vision processor. With the active infrared
stereo-camera the sensor combines regular stereo-vision with the information it gets from the pro-
jected infrared pattern. The Intel Realsense can do image processing on-board, due to the integrated
vision processor. The range for depth sensing is up to ten meters. Along with their product Intel has
open source solution for different mapping algorithms. The price of a Intel RealSense 435i is 199$.

RPLIDAR A2M8 360 degree Laser Scanner

This is a 360 degree two-dimensional laser scanner. It measured distances based on laser triangu-
lation and has a operating range between 0.15 - 12 meters with a accuracy of 1%. The laser output
power meets the standard of FDA Class 1, which states "Considered non-hazardous. Hazard in-
creases if viewed with optical aids, including magnifiers, binoculars, or telescopes." [14]. The price
is 319$.

2.2.5 Discussion

Three different depth sensors has been presented, and the related technology explained. The lidar
sensor has the advantage of 360 degree view, compared to the limited view of the vision bases
sensors. The lidar however lacks the ability to perceive visual cues from the environment. This is
something that should be taken into consideration as having a vision system can be used for other
purposes besides mapping, as a result of the additional information it can perceive. An example of
this is to include the end-location of a package waiting to be moved by the AGV on the package.
Another downside with the presented lidar is that it is limited to two-dimensions. As mentioned
earlier 3D-lidars exist, but they are not within a reasonable price range for this project.

14

Low-cost navigation and collision avoidance system

Table 3 presents a comparison between three different depth sensors, based on the operating
range, the included sensors and the cost of the sensor.

Depth-sensor Operating range Included sensors Price
RPLIDAR A2M8 0.15 meter - 12 meter Laser triangulation

sensor
319$

Microsoft Azure
Kinect

0.5 meter - 5.46 me-
ter

Time of flight depth
sensor, inertial mea-
surement unit, RGB
camera, microphone
grid

399$

Intel RealSense
D4351

2 meter - 10 meter Active infrared
stereo-camera, in-
ertial measurement
unit, RGB camera, D4
vision processor

199$

Table 3: Comparison of the specifications of three depth sensors.

As seen from table 3 the Intel RealSense D430i has the longest operating range of the two
vision based sensor, it is also cheaper then the Azure Kinect DK which is the Kinect sensor that is
currently being produced. Additionally it comes with a inertial measurement unit and a on-board
vision processor. This gives it the ability to off-load the computer as it can perform vision processing
on-board. Having in mind the open-source resources made available from Intel in relation to robotic
mapping, this is a good alternative for this project.

15

Low-cost navigation and collision avoidance system

2.3 Localization and navigation

As stated in 2.2, localisation and mapping goes hand in hand. We previously explored the concept
of simultaneous localization and mapping, which is a method to generate maps while at the same
time keep track of the AGVs position within that map 2.2.1. Another method we explored was
occupancy grid mapping, which assumes that the pose of the AGV is known 2.2.2. If occupancy
grid mapping is to be effective the AGV must have an additional method for determining the pose
with high accuracy. Odometry is a useful method in calculating the pose of a AGV, but the method
is prone to error over time. This is a result of wear and tear of the wheels, and wheel slippage. As
a result it should be accompanied by another localization method which is not dependent on the
dynamics of the AGV. Some of the most prevalent methods use beacons as a way to triangulate the
position of the AGV in the environment. This method for positioning is described in 2.1.2. In this
section some of the hardware solutions for localization utilizing beacons is evaluated.

2.3.1 Bluetooth 5.1

Bluetooth technology has been around for a long time and it is integrated in nearly all mobile
devices. The most commonly known use of bluetooth technology is communication between devices
for sending and receiving data, but it has also had the ability to see if specific devices is within
proximity of another bluetooth device. Bluetooth 4.0 introduced Bluetooth Low Energy(BLE), which
is less costly and has a lower power consumption than its predecessors. Additionally they released
BLE-beacons, which in turn opened up the opportunity to use bluetooth for indoor localization
applications. Like other methods using beacons they rely on triangulation to estimate the position
of a device, this means the device must be within the range of three or more bluetooth beacons
in order for its position to be calculated. Each beacon comes with a range of approximately 70
meters, and the accuracy is within a couple of meters. The distance to each beacon is calculated by
the strength of the signal. With bluetooth 5.1 two new concepts where introduced to the bluetooth
technology, Angle of Arrival(AoA) and Angle of Departure(AoD).

Figure 9: Illustration of the bluetooth 5.1 AoA and AoD method [7]

16

Low-cost navigation and collision avoidance system

AoA and AoD introduced direction finding between two devices. This works by having multiple
antennas in either the transmitting end, or the receiving end of the signal. Bluetooth 5.1 promises
accuracy within centimeters in ideal conditions, and within a meter under normal circumstances.
With the angle of departure and angle of arrival method the position of the AGV can be calculated
even if it is within the range on only one beacon.

Bluetooth 5.1 offers high accuracy positioning with BLE-beacons. The technology has low power
consumption and is a low-cost alternative. Additionally bluetooth technology is integrated in nearly
all mobile devices, which makes it highly available, as a result it is not likely to be replaced in recent
years. As a result of the availability, the low cost and the newly introduces technology it should be
considered as a alternative for a positioning method.

2.3.2 Artificial landmarks

Beacons can also come in the form of artificial landmarks placed around the workspace. Each land-
mark is given a individual design allowing the AGV to distinguish them from another with vision
technology. The landmarks should stand out from its surroundings and be easy to identify for the
vision system. A usual template for the landmarks is a binary black and white image.

A system using artificial landmarks will usually calculate it position over time using odometry.
Since this method is prone to error over time, the calculations will be calibrated using the artificial
landmarks. Since the pose and the coordinates of the landmarks within the workspace is known to
the vision system on the AGV, the position of the AGV in relation to the landmark can be computed
with vision technology. One of the main advantages of this method is that it only requires a regular
camera, and the landmarks can be as simple as a black and white binary image on a paper, resulting
in a low cost localization system.

Figure 10: Illustration of the AGV localization using artificial landmarks [8].

17

Low-cost navigation and collision avoidance system

2.3.3 5G

Finally 5G should be mentioned as an alternative as it is promised to play a huge part in the industry
in the future. 5G is the new generation of mobile networks, which promises up to ten times higher
speeds than its predecessor 4G, and can handle a lot more traffic. It also promises high accuracy
in relation to localization. As it is today, 5G is not a viable option for this project as it is not yet
publicly available, and may not be for a while.

2.3.4 Discussion

Both bluetooth 5.1 and artificial landmarks are viable options for indoor localization. Bluetooth 5.1
promises high accuracy real time localization and is a relatively low cost alternative. In addition
bluetooth it is a well known and integrated technology that is not likely to be replaced in the near
future. This makes bluetooth 5.1 a viable option for AGV localization.

The use of artificial landmarks and odometry is a low-cost way to do indoor localization. The
method can be implemented on a regular camera, and costs in relation to the landmarks are low
due to their simplicity. Earlier projects using this method has yielded results with high accuracy
when the AGV is within a certain distance of the landmark [15], though the accuracy is dependent
on the camera resolution, the size of the landmark and the distance between the landmark and the
AGV. If a stereo depth sensor is chosen for mapping purposes, a localization method using artificial
landmarks could be implemented on the same sensor, thus reducing costs. Based on this, the use of
artificial visual landmarks is a viable localization method for this project.

18

Low-cost navigation and collision avoidance system

2.4 Obstacle detection

With mapping and positioning the AGV has enough information to navigate a static environment.
The problem occurs when other agents are introduced into that environment, and the AGV has to
work alongside them. For the AGV to be able to perform safely and efficiently in a dynamic environ-
ment, a protocol for object detection and avoidance is needed. As it is expected that the AGV will
work alongside humans it is crucial with a reliable system for object avoidance. This system should
be capable of detecting surfaces independent on the characteristics of the surface, as the properties
of soft surfaces like clothing differs from hard surfaces. This means that the object avoidance system
likely has to consist of different sensors working together. If the AGV has a system for automatic
mapping, one could simply rely on the same sensor for object detection. Having in mind how crucial
it is that the AGV can avoid accidents, a complementary system should be considered.

The most common way to avoid collision is to simply stop if an obstacle is to close to the vehicle,
instead of planning a new route avoiding that obstacle. This is a simple, yet effective solution, as
it is important for the people working there to be able to predict how the AGV will act in different
scenarios. That being said, this solution obstructs the workflow as the AGV has to come to a full
stop and wait for a clear path before it continuous with its task. Therefore a solution where the
AGV could plan new routes according to the dynamically changing environment would be more
effective. Independent on the solution for collision avoidance, the need for a sensor system able
to sense the AGVs surroundings is critical. Therefore this section focuses on some of the different
sensors technologies available within a reasonable price range.

2.4.1 Ultrasonic sensor

Ultrasonic sensors are a frequently used method for distance measurement and obstacle detection.
Due to the low cost alternatives, they are used in both hobby projects and more extensive projects
like car parking systems. Ultrasonic distance sensors is best suited for close range applications, due
to the relatively slow speed of sound.

Ultrasound operates at frequencies greater then what humans can hear, soundwaves over 20kHz
is considered ultrasonic. The sensors consist of a emitter and an receiver. The emitter emits a sound-
wave while the receiver waits for the emitted waves to be reflected back, before calculating the
distance based on the elapsed time. The distance is given by 2.2.

D =
t

2
× c (2.2)

Where D denotes the distance from the sensor to the detected object, t denotes the elapsed time
from emitting to receiving the waves, and c is the speed of sound. Since we only want to know the
distance between the sensor and the object, we have to divide the equation by 2. As the speed of
sound varies based on temperature and the material the waves propagate in, c must be adjusted
based on this. The speed of sound in air can be approximately calculated from 2.3, when treated as

19

Low-cost navigation and collision avoidance system

an ideal gas.

c =
√
k ∗R ∗ T (2.3)

Where:

• k = ratio of specific heat
• R = gas constant
• T = temperature in kelvin

The main advantages of ultrasonic sensors is that they are easy to use and relatively cheap,
besides this they prevail in poor lightning conditions as this does not effect the measurements. This
also means that the color of the obstacle does not matters, as the sensor will be able to detect it as
long as it reflects sound.

There are several disadvantages with ultrasonic sensors. One of them is its inability to detect
sound absorbing objects, since they will not reflect the emitted signal. Another problem is the fact
that if the obstacle is at to great an angle relative to the sensor, the signal will not be reflected
back to the sensor. These two scenarios is illustrated in 11. The last drawback with the ultrasonic
sensors is the variance in the speed of sound based on the temperature. If not accounted for, this
will produce errors in the distance measurements as the distance is calculated based on the speed
of sound.

Figure 11: Ultrasonic distance sensor failing to detect sound absorbing, and flat angled surface [9]

20

Low-cost navigation and collision avoidance system

2.4.2 Infrared distance sensors

Contrary to ultrasonic sensor infrared sensor are prone to noise from lightning conditions, but they
have the advantage of being reflected by sound absorbing surfaces. In the same way as a ultrasonic
distance sensor, a infrared distance sensor consist of a emitter and a receiver, the difference being
the beam of infrared light as opposed to the ultrasonic beam, and the way in which the distance
is measured. Infrared distance sensor calculates the distance from the sensor to the obstacle with
triangulation, based on the angle of the reflected beam. This is shown in 12.

Figure 12: Illustration of a infrared distance sensor

2.4.3 Discussion

Both ultrasonic distance sensors and infrared distance sensors are used to measure relatively short
distances, often withing the range of a couple meters. They are relatively cheap, and is therefore
a good alternative for a close range object detection system. As a result of the low-cost of a sensor
in addition to the low computational burden of running the sensors, multiple sensors can be used
together.

As previously mentioned one could simply rely on the mapping sensor to perform object de-
tection and avoidance. The problem with this is the limited range of view. With multiple low-cost
distance measuring sensors it is possible to create a redundant grid around the AGV, capable of de-
tecting objects from every angles. Previous work on the subject concludes that a obstacle detection
grid should not rely on ultrasonic sensors alone, as they fail to detect soft surfaces such has clothes

21

Low-cost navigation and collision avoidance system

[16]. In the article «Obstacle Detection and Collision Avoidance for a UAV With Complementary
Low-Cost Sensors» a obstacle avoidance system with basis in a redundant grid consisting of twelve
ultrasonic sensors and eight infrared sensors is developed, and proven able to avoid collision with
obstacles such as walls and people [10]. The grid used is shown in 13.

Figure 13: Left: twelve sectors corresponding to the twelve ultrasonic sensors. Right: eight sectors corre-
sponding to the eight infrared sensors [10].

Vision technology is another alternative for object detection and avoidance. Obstacle detection
using stereo-vision has been shown to yield good results when implemented on a low-cost com-
puter [17]. In contrast to ultrasonic and infrared distance sensors, stereo-vision has the ability to
obtain visual information about the perceived scene and the obstacles within it. With further devel-
opment of a low-cost obstacle detection system using stereo-vision, this information could be used
to perform obstacle recognizing and obstacle tracking.

22

Low-cost navigation and collision avoidance system

2.5 Low-cost computers and interfacing

The aim is to run the whole system on the Autonomous Ground Vehicle(AGV) itself, as a result
the AGV should have an on-board computer with the necessary power to do so. Single Board Com-
puters(SBCs) are complete computers built on a single circuit board. SBCs are small and compact
which make them perfect for on-board computing on AGVs. There is a wide variety of available
SBC, some of the key factors we should consider in relation to this project is listed below.

• Cost of SBC.
• Performance. It should have the necessary power to perform everything on-board.
• Community support. An active community means there is a lot of resources available.

The most well known SBCs is the Raspberry Pi series. The first Raspberry Pi was realised in 2012,
and they have developed new generations of SBCs since. Since the Raspberry Pi is so popular, it
has a huge and active community of developers contributing with new- and maintaining existing
software. However, it has not been the first choice for developers in relation to projects where high
computational power is needed. Consequently it has not been regarded as the top choice for robotic
mapping, which can be very computationally costly, especially SLAM. This is due to the fact that
other SBCs within a reasonable price range has offered more power and better performance. A al-
ternative has been Odroid, who also has a active community behind it.

However, the Raspberry Pi 4 which was released in 2019 offers a lot better performance then it
predecessor and it is less costly then a SBC from Odroid. Along with the huge community behind
Raspberry Pi, this makes it a good alternative for this project.

Interfacing

The SBC needs to send and receive information from the connected sensor and the actuators con-
trolling the AGV. As a result it must have a protocol for interfacing with them. A common inter-
facing protocol which allow multiple master devices to control multiple slave devices is the Inter-
Integrated circuit(I2c) protocol. The protocol use two wires, a serial clock line(SCL) and a serial
data line(SDA). The SCL-line synchronizes the data transfer between the devices, while the SDA-
line carries the actual data. It is a half-duplex bus, meaning communication can only flow in one
direction at a time. Each slave on the bus has its own unique address, meaning no additional lines
is needed when a new device is added to the bus. This is a standard protocol for communication
between devices over short distances, and it is often included in low-cost sensors.

Another alternative is the Serial Peripheral Interface bus (SPI). SPI allows for communication
between a single master device and multiple slave devices, and compared to I2C the communication
is faster. This is due to the fact that it is a full-duplex bus, which allows for communication to and
from the master simultaneously. The protocol generally uses four wires, Serial Clock(SCLK), Master
Output Slave Input(MOSI), Master Input Slave Output(MISO) and Slave Select(SS), any additional
device needs its own wire.

23

Low-cost navigation and collision avoidance system

The I2C protocol is easier and cheaper to implement than the SPI protocol. Since no additional
wires is needed to connect multiple devices to the hub, it is better suited for systems where commu-
nication between a large number of devices is needed and earlier systems have been successfully
with using the I2C protocol [10], despite the limited speed.. Making it a good fit for this project.

SBCs are great for computationally costly task, but not the best for real time controlling of
external hardware, and it is often the case that SBCs do not have the necessary input/output(I/O)
ports to interface with a large number of external devices by itself. Therefore it is a good alternative
to have the SBC interface with a micro-controller that takes care of direct communication with the
sensors and actuators. A popular low-cost micro-controller that is fit for this project is the Arduino.
In such a system the Arduino will be in charge of direct control of the actuators, and collection of
data from the external sensors. The Raspberry Pi will use the data gathered from the Arduino to do
the necessary calculations, and act as a master telling the Arduino the control sequences it should
send to the actuators.

24

Low-cost navigation and collision avoidance system

3 Concepts

In this section a concept for a navigation and collision avoidance system is presented along with
a list of the necessary equipment. The concept is developed with basis in the content presented in
this thesis. The concept is made with the main objective of the thesis in mind, and should uphold
the following requirements.

• The whole system should be implemented on a low-cost single board computer(SBC).
• The autonomous ground vehicle(AGV) should have the ability to automatically generate and

update a map of its surroundings.
• The AGV should be able to accurately keep track of its position within the workspace.
• The AGV should be able to detect suddenly appearing obstacles before collision occurs.

3.0.1 Low-cost computer

The suggested single board computer for this project is the Raspberry PI 4(RBP4). Partly due to the
price, the power of the computer and the community support for Raspberry PI. The RBP4 should be
accompanied by a micro-controller, in this case a Arduino. The Arduino will serve as a slave to the
RBP4, communicating directly with the sensors. Additionally it will read from sensors connected to
the wheels of the AGV and directly control the actuators steering the AGV. Sending and receiving
information to the RBP4 allows the RBP4 to perform odometry calculations for keeping track of
the AGVs pose and use the information from the distance sensor in order to detect obstacles. The
RBP4 will use the received information together with the information from the vision depth sensor
to decide the appropriate action for the AGV, the Arduino will carry out these actions based on the
feedback it gets.

The RBP4 is a generic SBC, meaning it is not specialized for a specific task and has a lot of
unnecessary extra equipment in relation to this project. This is not a problem when developing
and testing a prototype, but a final product should use a barebone computer with no unnecessary
equipment, as this will reduce the cost of the system.

25

Low-cost navigation and collision avoidance system

3.0.2 Mapping localization and navigation

The AGV should have the ability to use prior available information, such as floor plans and three
dimensional drawings of buildings to generate maps of the workspace. In addition it should have
a method for automatic mapping, allowing it to generate the map from scratch and update the ex-
isting map if needed. The two alternatives for automatic mapping is the simultaneous localization
and mapping approach(SLAM) and occupancy grid mapping. With SLAM the autonomous ground
vehicle(AGV) has to generate a map of the environment while at the same time keep track of its
position within that environment. With occupancy grid mapping the pose of the AGV is assumed
known, which means the AGV only has to generate a map based on its position, resulting in a
less computationally costly mapping algorithm. Both of these methods serve the purpose of auto-
matically generating and updating a map of the AGVs surroundings. The SLAM aproach has the
advantage that no additional method for localization is needed, but this comes at the cost of com-
plexity. As a result it may prove to be to computationally costly to perform efficiently on a low-cost
computer in a large environment. Consequently both methods should be considered and tested.

Independent on which method is used for automatic mapping the sensor chosen for this concept
is the Intel RealSense 435i. The price for this sensor is relatively low, it is compatible with Rasp-
berry PI 4, and Intel has open source libraries in relation to mapping, which can serve a resource
for developing the software.

To perform occupancy grid mapping an additional method for localization is needed. Both blue-
tooth 5.1 beacons and visual artificial landmarks serves this purpose. The advantage with visual
artificial landmarks is that it only relies on a two dimensional camera and odomotry calculations to
perform localization. This means that no additional hardware is needed, as it should be possible to
implement this on the Intel RealSense D435i which has a high quality RGB camera in addition to
the stereo depth sensor. As a result this is the first choice for localization. If it proves hard to per-
form exact localization with this method, bluetooth 5.1 low energy(BLE) beacons is a alternative
as it allows for high accuracy real time positioning, it is easy to implement and the technology is
relatively low cost.

26

Low-cost navigation and collision avoidance system

3.0.3 Obstacle detection

The sensor used for mapping can also be used for obstacle detection. With the relatively long range
of the Intel RealSense D435i it allows for long range obstacle detection in the direction the sensor is
facing. Obstacle detection using stereo-vision has previously yielded good results [17]. Since it has
the ability to perceive visual information, this information can be used for recognition and tracking
as well. Potentially allowing the AGV to plan according to its perceived environment instead of just
stopping when faced with a obstacle.

Figure 14: Illustration of the sensors detection
range around the AGV.

Since the viewing angle of the Intel Re-
alSense D435i is limited an additional
system for obstacle detection is proposed.
This is a short range object detection system
in the form of a grid around the AGV,
consisting of multiple low-cost ultrasonic
and infrared distance sensors. As explained
in 2.4 these sensors compliment eachother,
thus giving the system the ability to detect
obstacles independent of the surface charac-
teristics. This enables the system to detect
people and equipment.

This system has been proved to yield good
result in its ability to detect obstacles in-
dependent of the surface characteristics, in
comparison to a system consisting of only ul-
trasonic sensors which fail to detect soft sur-
faces such as clothes [10].

The obstacle detection grid should consist of low-cost sensors. Alternatives for infrared and ul-
trasonic sensors is the «GP2Y0A710K0F Sharp, Reflective infrared Sensor» and the «URM07 - UART
Low-Power Consumption Ultrasonic Sensor», both of which support I2C communication. The oper-
ating angle of the ultrasonic sensor is 60 degrees, thus six sensor is enough to cover a 360 degree
viewing angle. Figure 14 illustrates the collision detection grid around the AGV and the range of
the depth sensor.

27

Low-cost navigation and collision avoidance system

3.0.4 Suggested prototype

In this subsection a suggested prototype is described. It includes the hardware needed to realize
the system described earlier. Which is a system capable of mapping and positioning with SLAM
and object detection with the same sensor in addition to a short range object detection grid. The
following list contains the suggested hardware needed to realize the system, except for power
supply and wiring.

• Raspberry Pi 4 Model B
• Arduino UNO
• Intel RealSense 435i
• GP2Y0A710K0F Sharp, Reflective Sensor x 8
• URM07 - UART Low-Power Consumption Ultrasonic Sensor x 8

The Raspberry Pi 4 communicates with the Intel RealSense D435i via a USB connection. Com-
munication between the Raspberry Pi 4 and the Arduino is via I2C, as well as the communication
between the Arduino and the ultrasonic and infrared distance sensors. The I2C protocol supports
communication between multiple master and multiple slaves, allowing the Arduino to communi-
cate with the array of ultrasonic and infrared sensors. The Arduino will also be in charge of steering
of the AGV, and reading from the odometry sensors.
Figure 15 shows the hardware architecture of the proposed sensor system.

Figure 15: Hardware architecture of proposed system.

28

Low-cost navigation and collision avoidance system

The suggested system is based on a feasibility study and should not be regarded as final. In
order to realize a fully functional prototype further testing is needed. As a result some alternatives
are mentioned together with the description of the suggested system. Since it is unclear if it is
feasible to efficiently implement SLAM on a low-cost SBC, a method using occupancy grid mapping
is suggested as an alternative. Additionally two methods for indoor localization is described. Indoor
localization using visual artificial landmarks can be implemented without any hardware changes
to the system, while indoor localization using bluetooth 5.1 beacons would need the necessary
bluetooth equipment resulting in some additional costs.

29

Low-cost navigation and collision avoidance system

4 Conclusion and future work

This thesis presents an overview of some of the most relevant technologies in relation to the de-
velopment of low-cost navigation and collision avoidance systems for autonomous ground vehi-
cles(AGVs). In order to acquire the necessary flexibility to operate with efficiency in a dynamic
work environment, the AGV should have the possibility to move freely around the workspace. Thus
a method for localization and navigation which allow this is needed. The two options presented
in this thesis is simultaneous localization and mapping(SLAM) and occupancy grid mapping. The
latter being the best suited for a low-cost computer due to the computational cost of performing
SLAM in large environments.

Safety is of huge importance in relation to AGVs. This comes as a result of the AGV being able
to efficiently work without damaging people, equipment or itself. Therefore a system for obstacle
detection and avoidance is needed. It is important that this system is able to sense everything that
may come into contact with the AGV. This means that the system should have the ability to sense
obstacles independent of the characteristics of the obstacles surface. Such a system is presented,
consisting of multiple infrared and ultrasonic distance sensors.

This thesis presents a feasibility study, and the presented concept is based on this. The presented
concept should not be regarded as a finalized system, as further testing of the individual compo-
nents is needed. Before developing a fully functional prototype the following tests should be carried
out.

• Testing of localization accuracy using SLAM and testing of localization accuracy using visual
beacons.

• Testing of both SLAM and occupancy grid mapping using visual beacons for mapping.
• Testing of obstacle detection using stereo-vision.
• Testing of the presented method for close range obstacle detection.

Based on the information gathered trough out this project, low-cost navigation and collision
avoidance systems seems to be possible to develop with the technology available today.

30

Low-cost navigation and collision avoidance system

Bibliography

[1] KG, G. 2019. Götting kg website. https://www.goetting-agv.com/components/
inductive/introduction. Accessed: 2019-11-21.

[2] KG, G. 2019. Götting kg website. https://www.goetting-agv.com/components/optical/
introduction. Accessed: 2019-11-21.

[3] Hellmann, D. 2019-09-17. Kinexon website. https://kinexon.com/solutions/
agv-navigation. Accessed: 2019-11-21.

[4] Corso, N. & Zakhor, A. 2013. Loop closure transformation estimation and verification using 2
d lidar scanners.

[5] Nordmann, A. 2007. Epipolar geometry.

[6] MoviMED. 2018. Movimed website. https://www.movimed.com/knowledgebase/
what-is-structured-light-imaging/. Accessed: 2019-12-04.

[7] Laboratories, S. 2019. Silicon labs website. https://www.silabs.com/products/wireless/
learning-center/bluetooth/bluetooth-direction-finding. Accessed: 2019-12-03.

[8] Dušan Nemec, Vojtech Šimák, A. J. M. H. E. B. 2018. Precise localization of the mobile
wheeled robot using sensor fusion of odometry, visual artificial landmarks and inertial sensors.

[9] ArcBotics. 2016. Arcbotics website. http://arcbotics.com/products/sparki/parts/
ultrasonic-range-finder/. Accessed: 2019-02-12.

[10] Nils Gageik, Paul Benz, S. M. 2015. Obstacle detection and collision avoidance for a uav with
complementary low-cost sensors. IEEE Access, (3), 599–609.

[11] Ullrich, G. 2015. Automated Guided Vehicle Systems. Springer.

[12] Michael Montemerlo, S. T. 2007. Fast Slam. Springer, Berlin, Heidelberg.

[13] Aulinas, J., Petillot, Y., Salvi, J., & Llado, X. 2008. The slam problem: a survey. Frontiers in
Artificial Intelligence and Applications, (184), 363–371.

[14] FDA. 2018. Fda website. https://www.fda.gov/radiation-emitting-products/
home-business-and-entertainment-products/laser-products-and-instruments. Ac-
cessed: 2019-12-04.

31

Kristian Svinterud Sørebø
Low

-cost N
avigation and Collision Avoidance System

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Kristian Svinterud Sørebø

Low-cost Navigation and Collision
Avoidance System

Master’s thesis in Robotics and Automation

Supervisor: Amund Skavhaug

July 2020

	Summary
	Sammendrag
	Preface
	Contents
	List of Figures
	List of Tables
	Listings
	Abbreviations
	Introduction
	Background and motivation
	Objectives
	Research Objectives

	Report Structure
	Actions performed to ensure reliability
	Literature studies
	System requirements
	Theory
	Concept
	System development
	Experiments, results and discussion
	Discussion, conclusion and future work

	Literature Studies
	Developed methods
	Physical guidelines
	Beacons
	Natural Feature Navigation
	Discussion

	System requirements
	Technical requirements
	Obstacle detection and avoidance
	Mapping and positioning

	Simplicity and life expectancy
	Cost and scope of the system
	Summary of requirements

	Background theory
	Obstacle detection with ultrasonic-and infrared range sensors
	Ultrasonic distance measurement
	Infrared distance measurement
	Obstacle detection with ultrasonic and infrared sensors

	Navigation and mapping
	Pinhole camera model
	Stereo vision
	Active IR stereo vision
	Odometry
	SLAM
	Occupancy grid mapping

	Conceptional design
	Low-cost computer
	Mapping localization and navigation
	Obstacle detection
	Overall design of suggested prototype

	System development
	Sensors and equipment
	Total cost of the system
	Raspberry Pi 4 model B, Single board computer(SBC) running the system
	Arduino UNO, microcontroller for interfacing with range sensors
	Intel RealSense 435, depth sensor for navigation and mapping
	Raspberry Pi V2 camera, RGB camera for detecting visual landmarks
	GP2Y0A710K0F Sharp, Reflective Sensor, infrared range sensor for obstacle detection
	HC-SR04 ultrasonic sensor, ultrasonic range sensor for obstacle detection

	Hardware architecture
	Housing

	Development platform and programming language
	Software architecture
	Visualization package
	Installation

	Obstacle detection
	Localization and mapping
	Visual landmarks
	Detect center of QR-code
	Intel Realsense D435 depth sensor
	Mapping

	Prototype
	Functionality of the system

	Experiments, results and discussion
	Obstacle detection using low-cost range sensors
	Is the system capable of detecting obstacles independent of their surface characteristics?
	Does the narrow viewing angle of the infrared sensor cause a problem?

	Navigation using visual landmarks
	Mapping
	Is it feasible to perform indoor mapping without external odometry?
	Is the system capable of accurately mapping larger more complex environments?

	Conclusion and discussion of experiments in relation to the system requirements
	The system should provide enough information about a large enough area so that an AGV can react in time to avoid accidents.
	The system should have a method for keeping track of its position withing the working environment.
	The system should be able to automatically update the map of the working environment.

	Discussion, conclusion and future work
	Cost, relevance and implementation
	Relevance
	Implementation

	Development process

	Bibliography
	Pre-study

