
O
liver I. Funch and Robert M

arhaug
D

etecting Im
properly Sorted M

aterials in Trash Bags

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Oliver Istad Funch and Robert Marhaug

Detecting Improperly Sorted Materials
In Trash Bags

The Development of a System for Analyzing
Household Trash Bags with Sound and Metal
Detection using Artificial Neural Networks

Master’s thesis in Mechanical Engineering

Supervisor: Martin Steinert

June 2020

Oliver Istad Funch and Robert Marhaug

Detecting Improperly Sorted Materials
In Trash Bags

The Development of a System for Analyzing
Household Trash Bags with Sound and Metal
Detection using Artificial Neural Networks

Master’s thesis in Mechanical Engineering
Supervisor: Martin Steinert
June 2020

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Abstract

In this thesis, the application of machine learning to identify glass and
metal in municipal waste is investigated. The system utilizes sound and
metal detector data from an experimental setup as inputs for the machine
learning model. The experiment was made to simulate the emptying of
waste performed by a waste collection truck, as this location was the in-
tended implementation location. The experiment involved the emptying
of one bag at a time, as it was seen as a necessary first step. The machine
learning model used was a CNN model, developed iteratively through an
ablation study. Both multiclass classification and multilabel classification
was tested. Multilabeling was the favored approach where an accuracy of
96.25% was reached on independent test data. These were obtained using
condenser microphones, a Beat-frequency oscillation metal detector, and
both Mel spectrograms and MFCC spectrograms to represent the sound
recordings. The results shows that the system works well for identifying
glass and metal in singular bags, and thereby shows promise in the pro-
posed location, as well as other implementation areas. The system will
however require some additional testing after installation on a collection
truck, as it was only tested in the experimental setting.

ii

Acknowledgement

We would like to extend our gratitude to Renovasjonsetaten for enabling this
project. Special thanks goes to Jørgen Simensen Almankaas and Jan Haakon
Ellefsen-Killerud for your extensive knowledge and valuable reflections in many
of our discussion on waste management.

We would also like to extend our greatest gratitude to our supervisors for mo-
tivating feedback and valuable advice throughout this process. Special thanks
to Sampsa Kohtala for his constructive advice and many insightful suggestions
and who has instrumental in the writing of our paper.

iv

Contents

1 Introduction 1
1.1 Formal Problem Description . 1
1.2 Introduction to the Master’s Thesis 1

2 Background and Theory 3
2.1 Waste Collection . 3

2.1.1 Collection Cycle . 3
2.1.2 Waste Statistics . 4

2.2 Machine Learning . 6
2.2.1 General Overview of Machine Learning 6
2.2.2 Convolutional Neural Networks 8
2.2.3 Keras and TensorFlow . 14
2.2.4 Evaluation Metrics . 17

2.2.4.1 Accuracy . 19
2.2.4.2 Loss . 20
2.2.4.3 Precision . 20
2.2.4.4 Recall . 20
2.2.4.5 Micro and Macro Averaged 20
2.2.4.6 Overfit . 20

2.2.5 Artificial Intelligence in Waste Management 21
2.2.6 Machine Learning for Sound Recognition 22

2.3 Sound Preprocessing . 22
2.3.1 Mel-Spectrogram . 23
2.3.2 Mel Frequency Cepstral Coefficient spectrogram 25

2.4 Metal Detection . 27

3 Development 30
3.1 Trash Collection Simulation . 30

3.1.1 Metal Detector . 34
3.1.2 Test Rig . 36
3.1.3 Trash Generation . 40
3.1.4 Data Collection . 41
3.1.5 Data Exploration . 45

3.1.5.1 Sound . 45
3.1.5.2 Metal . 47
3.1.5.3 Weight . 50

3.1.6 GUI . 50
3.1.6.1 Page 1 . 52
3.1.6.2 Page 2 . 54

3.2 Model Development . 58
3.2.1 Initial Model . 59

3.2.1.1 Input Data . 60
3.2.1.2 Training and Testing 61

vi

3.2.2 Testing More Models . 62
3.2.2.1 Model 2 . 62
3.2.2.2 Model 3 . 64

3.2.3 Ablation Study . 66
3.2.3.1 Mel-spectrogram vs MFCC 67
3.2.3.2 Adjusting Erratic Metal Detector Data 67
3.2.3.3 Difference Between Microphone Types 70
3.2.3.4 Spectrogram Alterations 70
3.2.3.5 Weight Measurements 72

3.3 Preliminary Evaluation of Models 73
3.3.1 CNN, Multiclass Classification Results 73
3.3.2 Multi Labelling . 78

3.3.2.1 Training Multi Labelling Models 79
3.3.2.2 Optimal Threshold 82

4 Results and Discussion 86
4.1 Trash Collection Simulation . 86
4.2 CNN Model . 89

4.2.1 Ablation Study . 89
4.2.1.1 Results . 89
4.2.1.2 Discussion . 91

4.2.2 CNN Model . 91
4.2.2.1 Results . 91
4.2.2.2 Discussion . 94

5 Limitations, Applications and Future Work 95
5.1 Limitations . 95

5.1.1 Trash Collection Simulation 95
5.1.2 CNN Model . 96

5.2 Application in Waste Collection Cycles 98
5.3 Including More Video Data . 98
5.4 Detecting More Than Glass and Metal 100
5.5 Other Possible Implementation Areas for the System 101

6 Implementation in Oslo 102
6.1 Sensors and Placement . 102

6.1.1 Sound Recording . 102
6.1.2 Metal Detection . 104
6.1.3 Proximity Sensor . 106

6.2 Control Software . 106
6.3 Data Gathering . 107
6.4 Training the CNN Model . 108

7 Journal Paper ”Detecting improperly sorted content of trash
bags during waste collection using convolutional neural net-
works” 109

vii

8 Conclusion 125

A Appendix a
A.1 Trash Collection Experiment . a

A.1.1 Arduino Code . a
A.1.2 GUI Code . d

A.2 CNN Model . s
A.2.1 Model 1 . s
A.2.2 Model 2 . w
A.2.3 Model 3 . x
A.2.4 Multi-class model(model 1) y
A.2.5 Main .
A.2.6 Saving Arrays .
A.2.7 Batch File .

A.3 Project Thesis .

viii

List of Figures

1 Collection cycle . 3
2 Distribution of bags from waste analysis, weight percent (Text in

figure has been translated from Norwegian to English) [33] 4
3 Distribution of materials, in weight percent (Text in figure has

been translated from Norwegian to English) [33] 5
4 Sorting degree for separate areas (Text in figure has been trans-

lated from Norwegian to English) [33] 6
5 Neural Network . 9
6 Kernel Convolution . 10
7 Multichannel Kernel Convolution 11
8 Input dimensionality and resulting output dimensionality of a

convolutional layer with 16 filters 12
9 Global averaging vs Flatten . 13
10 Complete CNN architecture [5] 14
11 TensorFlow Hierarchy [10] . 15
12 TP, FP, TN and FN in multiclass 19
13 Fourier transform of single time segment [12] 23
14 Frequency spectrogram [12] . 24
15 Log-scaled spectrogram [12] . 24
16 Mel-Spectrogram [12] . 25
17 Waveplot . 25
18 Mel-spectrogram . 26
19 MFCC spectrogram . 26
20 Tank Circuit [18] . 27
21 Colpitts Oscillator Circuit [18] 28
22 Metal detection coil on test setup 29
23 Metal detector readings . 30
24 Test rig . 31
25 Computer- and Arduino Interaction 33
26 Old vs new metal detector . 35
27 Real life vs test rig . 36
28 Loading tray . 37
29 Picture comparison . 39
30 Circuit . 40
31 Mel spectrogram comparison . 42
32 MFCC comparison . 43
33 Metal detector output comparison, (note varying y-axis scale) . . 44
34 Metal data input visualization . 45
35 Average strength of sound at different frequencies (4 classes) from

the condenser microphone . 46
36 Average strength of sound at different frequencies (4 classes) from

the contact microphone . 47
37 Metal detector: Average reading at peak (4 classes) 48

ix

38 Sporadic metal detector reading on a sample from the PMX class 48
39 Metal detector peak vs. average sound strength at impact 49
40 Metal detector peak vs. average sound strength at impact, with

indications of grouping . 49
41 Metal detector: Average reading at peak (4 classes) 50
42 GUI: Page 1 . 52
43 GUI: Page 1, USB Port . 53
44 GUI: Page 1, Data directory . 54
45 GUI: Page 2 . 55
46 GUI: Page 2, Ready to flip . 56
47 GUI: Page 2, Recordings presented 57
48 GUI: Page 2, Save button pressed 58
49 Metal detector plots . 68
50 Metal detector box-plots . 69
51 Unaltered Mel-spectrogram . 71
52 Altered Mel-spectrogram . 71
53 Confusion matrices on validation data for best obtained Model 1 80
54 Confusion matrices on test data for best Model 1 81
55 Confusion matrices on test data for best Model 3 82
56 ROC M-1 validation set . 83
57 ROC M-1 zoomed . 84
58 ROC M-1 test set . 85
59 ROC M-1 test set, marked . 86
60 GUI: Page 2, Final Edition . 89
61 Confusion matrices on test data for best Model 1 94
62 Mask of trash bag found . 99
63 Trash bag mid fall . 100
64 Suggested execution plan . 102
65 Microphone placement suggestion (picture from REN, altered)

(microphone clip-art designed by Freepik) 104
66 Bad choice for metal detector implementation (Original image

from Joab.se, altered) . 105
67 Suggested metal detector installation area (picture from REN,

altered) . 106

List of Tables

1 Confusion Matrix . 18
2 Multi Class confusion matrix example 18
3 Multi class confusion matrix with TPs and FPs 18
4 Confusion matrices for two classes 19
5 Model 1 Architecture . 59
6 Included classes and amount of samples 60
7 Included data sources and their data type 61
8 Model 2 Architecture . 63

x

9 Model 3 Architecture . 65
10 Test of spectrogram test score influence 67
11 Metal data input comparison . 70
12 Microphone type comparison . 70
13 Altered spectrogram comparison 72
14 Weight data effect . 72
15 Results with 50 epochs . 73
16 Results with 70 epochs . 73
17 False classification distribution 74
18 False classification distribution with 0.7 threshold 75
19 Confusion matrix, model with highest validation accuracy 76
20 Confusion matrix, model with highest test accuracy 77
21 Single best model from multiclass 78
22 Individual labels corresponding to the four classes 78
23 Validation results of Model 1, 2 and 3 using multilabel 79
24 Test results of Model 1, 2 and 3 using multilabel 81
25 The effect of sensors and preprocessing of data on the test accuracy 90
26 Sensors and data for optimal detection rate on used data set . . 90
27 Model 1 architecture . 92
28 M-1 Results . 93

xi

1 Introduction

1.1 Formal Problem Description

In municipal waste management (MWM), information about sorting quality and
location variances in sorting is important for being able to make correct and
effective improvement measures. The waste collection system in Oslo makes
information gathering difficult, so a way of effectively gathering the desired info
needs to be devised.

1.2 Introduction to the Master’s Thesis

Renovasjonsetaten (REN) is the department responsible for municipal waste
management in Oslo. REN is interested in gathering more information about
the collected waste, especially concerning the quality of household sorting per-
formed by the consumer. The goal of this initiative is to better understand
today’s waste management system so effective improvement measures can be
implemented. The sorting and recycling process is also considered relevant for
this thesis even though it is performed by a separate department, as the depart-
ments are soon to merge.

Information about household sorting, specifically concerning materials being
wrongly sorted, is of high value to help develop measures that can improve the
status quo. Also, the ability to track the time and location of bad sorting acts as
an incentive to the consumer to follow the guidelines given. This is made clear
by Rada et al. [30], who found that controlled household containers had better
sorting quality than uncontrolled road containers as they could not be traced
to a specific household. This was true even for areas where the population was
highly respectful of the environment. This control refers to the implementation
of Radio-Frequency Identification (RFID) tracking in trash bins. This system
does not provide automatic collected information about the sorting quality of
the collected trash, only the means of connecting a container to a household.
It can therefore be suspected that a combination of an automatic classification
system for sorting quality along with an RFID system might further incite the
consumer to follow the sorting guidelines. Locating households or areas respon-
sible for poor sorting can also lead to more effective measures taken.

According to the field association for recycling in Norway, Avfall Norge [28],
the target goals for recycling are 50%, 55%, 60%, and 65%, within the years
2020, 2025, 2030, and 2035, respectively. These numbers are set by the EU, and
relates to the amount of materials/waste to be properly handled. According to
REN, the current level is at about 35% [4], where most of the loss stems from
incineration of recyclable materials.

This Master’s thesis is based on a previous project work (Appendix A.3) where
the goal was to determine the best way to approach the given problem de-

1

scription from REN. The assignment for the project was to determine where
in the waste collection cycle to collect information and find the best method
for performing the task. The conclusion of the project was to develop a ma-
chine learning based identification system that can be mounted to the back of a
garbage collection truck. This allows the detection of sorting quality at an early
stage in the trash collection cycle. This conclusion was largely based on the suc-
cess of using sound recordings with machine learning to identify the presence
of glass, and the ease of applying a metal detector to detect metal. The initial
motivation for using sound in conjunction with machine learning, was that dur-
ing a ride along on two of the trash collection routes done by the authors, they
could effortlessly recognize the sound of glass breaking upon hitting the back of
the truck. If one could log this occurrence and where it happened, an overview
of which areas are bad at sorting could be obtained. Combining both sound and
metal detection data could potentially yield a high accuracy for classifying the
glass and metal presence of individual trash bins. Also, identifying poor sorting
at this stage has the advantage of knowing where the trash originated, as the
bins are equipped with RFID tags that identify their location in combination
with GPS on the collection trucks.

The goal of this thesis is to develop this classification system and improve it to
the point that it can confidently determine the presence of glass and/or metal
in singular trash bags. Even though trash bags are emptied in batches, this
project focuses on the classification of one bag at a time to prove the ease of
applying deep learning in conjunction with sound and metal detection data to
detect glass and/or metal. The system must still be designed so it can be in-
stalled at the back of a garbage truck, be easy to operate, and preferably be
autonomous. As current circumstances (COVID 19) have prevented any pro-
totyping on a waste collection truck, the aim has instead been to develop such
a system to function on a locally simulated version of a garbage truck. This
Master’s Thesis is comprised of two main components:

The design of a trash collection simulation involving sensors and a controlling
algorithm

and

The development of a deep learning model able to predict the classes of the
data collected from the trash collection simulation.

As a result of the work performed in this project, the paper ”Detecting improp-
erly sorted content of trash bags during waste collection using convolutional
neural networks” has been written and submitted for review on June 30, 2020,
for the Waste Management journal. The article can be seen as an overview of
this thesis, however, presents some additional details. Additionally, the article
utilizes a multi-labeling approach when performing the ablation study as op-
posed to multi-classification. As such, the paper is added as its own section

2

before the conclusion.

Section 2 will give the necessary background and theory to give better un-
derstanding of the methods used in this thesis. Section 3 presents the method,
development and intermediate results of the two main components of the sys-
tem. Section 4 presents results and a discussion on the simulation as well as
results and a discussion on the most promising models emerged from previous
sections. Section 5 describes the limitations and application of the developed
system and possible future improvements/additions to the system. Section 6
will give a thorough walk-through on how REN may fit the system to their
garbage trucks. Lastly, Section 8 contains the conclusion of this thesis.

2 Background and Theory

2.1 Waste Collection

2.1.1 Collection Cycle

The main stages of the collection cycle are shown in figure 1.

Figure 1: Collection cycle

The consumer sorts their waste according to categories. Clean plastic goes into
blue bags, food waste into green bags, and mixed waste into grocery bags which
are largely white in color (shown as black in the figure). Waste that does not
belong in either category, i.e. glass, metal, hazardous waste and electrical waste,
goes into a separate category labelled ”other waste” in the figure. ”Other waste”
has to be disposed of at designated locations. The blue, green and white bags
are placed in the consumers personal bin, or a shared bin for apartment com-
plexes. The same bin is used for all the separate colored bags. The bins are

3

then emptied by a waste collection truck, who brings the collected waste from
multiple locations to the sorting facility for further processing. Any informa-
tion about the origins of the bags are lost after the truck has emptied bins from
different locations, as the bags are mixed together inside the truck.

In the sorting facility the bags are separated by color. The blue bags are sent
to a different facility for plastic recycling, the green bags are sent to a biogas
production facility, and the mixed waste bags are sent to incineration.

2.1.2 Waste Statistics

Every year REN performs an analysis of a subset of the collected waste in Oslo.
In the waste analysis from 2019 [33], 4259kg of waste in total from 10 selected
areas was sorted manually and the contents recorded in detail. The distribution
between green, blue and other bags are shown in figure 2.

Figure 2: Distribution of bags from waste analysis, weight percent (Text in
figure has been translated from Norwegian to English) [33]

According to the analysis, the amount of glass and metal waste found in the
bags constitutes 4.6 weight percent, displayed in figure 3. This corresponds to
a ratio of approximately 1

20 between bags containing metal and/or glass to bags
that are correctly sorted.

4

Figure 3: Distribution of materials, in weight percent (Text in figure has been
translated from Norwegian to English) [33]

For the mixed waste bags alone, the amount of glass and metal is 6.1 weight
percent, so these materials are most likely found in these bags. Table 4 shows
the distribution of correctly sorted bags versus wrongly sorted bags for each of
the 10 collection areas. This clearly shows that some areas take the sorting more
seriously than others as the wrongly sorted share varies from 9.8% to 63.4%.

5

Figure 4: Sorting degree for separate areas (Text in figure has been translated
from Norwegian to English) [33]

2.2 Machine Learning

2.2.1 General Overview of Machine Learning

Machine learning has become a prominent field of study within computer sci-
ence in later years. As advancements within the field continue, scientists and
engineers are finding ever more use for it. Although its existence dates back to
at least 1958 when Arthur Samuel is said to have coined the term [34], it isn’t
until recently that the availability of computational power and the accessibility
of large amounts of data has unlocked its true potential [21].

As mentioned in the project thesis (A.3), a paraphrasing of A. Samuel often
goes as follows: ”Machine learning is the field of study that gives computers the
ability to learn without being explicitly programmed.” In other words, machine
learning is the study of algorithms that automatically adapts to complex data.

Machine learning has applications in many fields. Speech recognition, speech
synthesis, and audio and music processing in sound recognition areas; document
and text processing in natural language processing; search algorithms and fil-
tration techniques in information retrieval or data mining; and object detection
in image classification and computer vision [9]. Machine learning methods are
great for solving complex problems which can seem trivial for humans but often
difficult using conventional computer algorithms (hand engineering solutions).

Machine learning is commonly divided into two subcategories: Unsupervised
learning, where no guidance is given where the algorithm learns to detect pat-
terns and group data points without knowledge of their meanings, and super-
vised learning, where already recorded data along with its implications are given
to the algorithm so that it may learn to predict the meaning of unseen data.

6

Supervised learning is further divided into regression, with a continuous nu-
merical output, and classification, where the output is a set of probabilities.
With classification, certain discrete possible outcomes (classes) are pre-defined,
such that the output is the probabilities of the instance (the analyzed data)
belonging to each individual class. Classification happens when, for instance,
the largest probability is chosen. For example, determining the amount of time
passed since an apple has been picked based on its color is a regression problem,
whereas determining the type of apple based on color is a classification problem.
The output of the former would be a time-unit, while the output of the latter
would be the probability of the apple belonging to each of the specified types
(for instance, 0.32 Aroma, 0.68 Cripps Pink).

In the example given above, the classes are mutually exclusive. That is, an
apple cannot be both an Aroma and a Cripps Pink simultaneously. There are,
however, many cases where an instance might belong to several classes. A trash
bag may contain both glass and metal. In that case, one may specify additional
possible classes describing the occurrence of both classes. For instance, the
classes may be ”Only Metal”, ”Only Glass”, ”Metal and Glass” and ”Neither
Metal Nor Glass”. These would then be mutually exclusive. Another means for
applying multiple labels is by use of a multi-label classifier. That is, the sum
of the output probabilities is not necessarily one, rather, it describes individ-
ual probabilities of the instance having a certain label independent of the other
labels. By defining a threshold value, which denotes the minimum confidence
required for an input to be assigned a label, it may be predicted which labels
are present, which might be several.

There are several machine learning models, Including Decision Trees, Support
Vector Machines, Regression Analysis, Hidden Markov Model, Bayesian Net-
works and more. Perhaps the most popular are Artificial Neural Networks
(ANN), that are loosely aimed at modelling the human brain through its artifi-
cial neurons connected to each other. There are many variations within ANNs,
though it is the convolutional neural network (CNN) and its content that will
be explained and explored in later sections.

ANNs must be given enough labeled data to perform adequately ([21]). It
is common to split this labeled data into a bigger training set, and a smaller
validation set. As such, the performance of the network can be measured on
the unseen validation set. When training, a batch size amount of the samples
is given to the network to train on. When it has trained on the whole batch,
a step is completed. When the number of batches (steps) that constitutes the
whole data set has been trained on, an epoch has been finished. Several epochs
of training is common to gradually optimize the model while logging the per-
formance on the validation set between a certain number of epochs to monitor
and evaluate.

7

2.2.2 Convolutional Neural Networks

The CNN is a very common neural network that have shown high effectiveness
in image recognition [21]. A CNN mainly consists of convolutional blocks (con-
volutional layers, pooling layers and dropout layers) and fully connected layers,
all necessary for a complete CNN model [11]. To get a complete understand-
ing of a convolutional neural network, an introduction to the fundamentals of a
neural network will be given before each component of a CNN will be explained.

Neural Network
A neural network consist of multiple connected neurons each holding a number
between 0 and 1. These neurons can be activated such that some of their values
are transmitted to other connected neurons. The amount transmitted to an-
other neuron is determined by the connection strength (weight) between them.
Whether the combined neuron value and weight is high enough for transmission,
is governed by an activation function. Such a function often accentuates high
values and weakens low values, and thereby ”selects” which signals are trans-
mitted. When using Sigmoid as activation function all signals are transmitted
but lower values will fade quickly as they progress through neurons. A neural
network commonly consists of layers of neurons connected to neighbouring lay-
ers of neurons. The input layer is given the initial data, while the output layer
gives the final prediction. It is the value of the neurons in the output layer that
represents the probabilities of the classes being present. With additional layers
in between (hidden layers), it is called a deep neural network.

Figure 5 shows the mapping of one input node, a11 to an output layer, a3 = [a31a
3
2]

, through one hidden layer, a2. The value of a21, for instance, is determined by:
the value of the neuron connected to it, a11 and the weight, w1

11 between them
are multiplied

z21 = a11w
1
11

which yields the output value of the input node. This value is further processed
in an activation function

a21 = σ(z21)

which ultimately results in a value for a21. Note that for a neuron getting input
from several connected neurons, its value is determined by summing all the
inputs, such as for a31:

a31 =

j∑
j=1

σ(z2j)

8

Figure 5: Neural Network

During training, the weights are altered until the input causes the activation of
the neurons that ultimately results in the correct answer (decided by the de-
veloper). In a feed forward neural network, where all signals propagate strictly
in one direction (as in Figure 5) this alteration of weights is usually done by a
backpropagation algorithm [10], which will not be explained further.

Convolutional Layer
The convolutional layer is the cornerstone of the CNN model. Through kernel
convolutions, these layers are able to extract distinguishing features of an im-
age or a spectrogram. In image processing, when for instance performing edge
detection, a filter is applied to an image. In such a filter, for instance the kernel0 1 0

1 −4 1
0 1 0

which is a matrix, is convolved with the image and thereby accentuate areas
where pixel values drastically change. A CNN may learn these filters on its
own. A convolution is a matrix operation involving two matrices, where they
are multiplied elementwise and summed up, resulting in one value.

9

Figure 6: Kernel Convolution

In other words, the resulting value is the weighted sum of a pixel and its neigh-
bors with weights defined in the filter. The kernel in Fig 6 with a filter as
demonstrated above will stride along the input image doing the same operation
on every jump until the output matrix is filled. Notice that the output will
have two less rows and columns compared to the input. This is because the
kernel cannot include non-existing values outside the matrix. To include the
outer rows and columns in the convolution, one may for instance zero pad the
matrix (add extra rows and columns of zeros) such that the kernel is able to
stride the outer values as well. However, it is also common to let the spatial
dimension reduce through the application of convolutions. If there are multiple
matrices representing one image (multichannel), as for instance three (RGB),
the convolution is performed on all three matrices on every stride. As such, the
kernel has the same depth as the input. All values generated from each matrix
are then summed up.

In a convolutional layer these filters are learned through backpropagation. The
values of the filter might also differ in the depth resulting in different feature
extractions for different channels as shown in Figure 7. The values in the kernel
are analogous to the weights described above in that they accentuate constel-
lations of matrix elements worth examining to reach the correct answer. Note
that there is a ”bias” added to the resulting sum of the kernel convolutions. A
bias can be added to any neuron as the developer see fit.

10

Figure 7: Multichannel Kernel Convolution

When adding a convolutional layer to a neural network, one must specify the
number of filters that will be learned and the sizes of them (kernel size). If a
multichannel image of size 256x256 with three channels is given, the input would
be a tensor with shape (256,256,3). Now, if the specified number of filters is 16,
there will be learned 16 filters each with a depth of 3, that when concatenated
results in an output shape of (256,256,16). As such, each channel is given some
separate attention. In sound recognition, these channels might be spectrograms
(Figure 16) of the same sound event but from different microphones. Forward
feeding this to a new convolutional layer, would results in kernels in having a
depth of 16, as illustrated in Figure 8.

11

Figure 8: Input dimensionality and resulting output dimensionality of a convo-
lutional layer with 16 filters

Activation Function
After convolutions are performed and an output matrix is produced, the val-
ues of the output matrix are processed through an activation function in the
same manner as described above. This results in a matrix of the same size,
but with altered values according to the activation function. Such an output
is called an activation/feature map and contains the features the convolutional
layer has extracted. The Rectified Linear Unit (ReLU) function is very common
in conjunction with convolutional layers due to its computational efficiency [21].

Pooling Layer
When for instance applying 3x3 kernel convolutions in the convolutional layer,
relatively small and precise features of a matrix are extracted (features the size
of 3x3). In for instance image recognition, a small rotation of the object might
result in completely different filters being generated even though the object
is the same. To battle this, pooling is applied after convolutional layers. This
reduces the resolution of the image by merging patches of matrix elements (com-
monly with the size of 2x2). This is often done by calculating the average value
of the four matrix elements (Average Pooling), or by applying the maximum
value found in the patch (Max Pooling). The first method will present the most
average features, while the second accentuates the most prominent features. As
such, the convolutional layer will increase a tensor’s depth while the pooling
layer will decrease its height and width.

Dropout Layer
When training a neural network to reach a specific output, it may find one path
through is network to the output and stick only to that path. This may cause
problems if the network is introduced to new data that represents the same
class but in a slightly different manner. The network is in other words highly
proficient at classifying the data it has trained on but will perform poorly when
encountering new data that does not exactly match any of the training data.

12

This phenomenon is termed overfit. A dropout layer [39] randomly chooses neu-
rons to be ignored at each epoch, such that the network is forced to find new
paths to the same goal, and thereby making the model more robust and able to
generalize.

Fully Connected Layer
A CNN is not able to land on a specific class with only convolutional blocks.
The output of these are also matrices (feature maps) such that a layer that out-
puts single values containing class probabilities, is needed. In CNN, such a layer
is often a fully connected layer. Fig 5 shows examples of fully connected layers.
All neurons in layer 1 are connected to all neurons in layer two, which are all
connected to all neurons in layer 3. Hence ”fully connected”. Since this layer
requires input in the form of a 1-dimensional vector, the feature maps coming
from the last convolutional block can be sequentially fed to the fully connected
layer (flattened). Another common approach is to apply a global average pool-
ing layer, which calculates the average of a complete feature map and adds it as
one element to a vector. As such, a vector with the same length as the number
of feature maps in the last convolutional block is produced and fed to the fully
connected layer.

Figure 9: Global averaging vs Flatten

An example of a complete CNN architecture is shown in Figure 10. The features
are extracted in the convolutional blocks followed by a classification based on
the features in the fully connected layers.

13

Figure 10: Complete CNN architecture [5]

2.2.3 Keras and TensorFlow

Every layer and operation described in the previous section must be coded in a
programming language somehow. Since many people have done this before, it is
unnecessary to do this every time. Therefore, machine learning frameworks ex-
ist. These are libraries where operations and layers described above are already
coded into easily accessible objects and functions (API), such that one may for
instance create a convolutional layer using one line of code.

There are many different frameworks able to perform the same tasks. These of-
ten differ in the way they are structured, how they initialize the weights (static
and dynamic graph (Graph Neural Networks: A Review of Methods and Ap-
plications). Some also enable the GPU to help perform calculations such that
both training and inference are performed quicker. Only TensorFlow and Keras
(based on Tensorflow) will be explained further.

TensorFlow
TensorFlow is a machine learning framework developed by a research team at
Google for internal use, that has since been released to the public. The frame-
work is now free and open source [14]. The library offers source code for many
different machine learning methods, including neural networks. It supports
both extensive control with low-level API as well as easy-to-use high-level API
(tf.keras). The framework offers code able to run on CPU, GPU and TPU. TPU
(tensor processing unit) is a chip specialized at performing tensor operations.

14

Figure 11: TensorFlow Hierarchy [10]

Keras
Keras is an API developed specifically for neural networks [36]. Originally Keras
was able to utilize several different low-level API’s such as TensorFlow, Microsoft
Cognitive Toolkit, R, Theano, and PlaidML. In other words, it was an API that
presented other frameworks in a more high-level manner. Google has since sup-
ported the library and added it to TensorFlow as their high-level API.

Through its easy-to-use high-level representation of neural networks, it allows
for rapid prototyping and fast experimentation. The implementation of each
component described in Section 2.2.2 will be briefly presented and explained.

The model
The very first operation performed, is the creation of the model object:

model = Sequent i a l ()

Sequential() is the name of the class that represents sequential models. A model
is sequential when all layers are added sequentially after each other (no parallel
layers).

Convolutional layer

model . add (Conv2D(f i l t e r s =32, k e r n e l s i z e =(3 ,3) , s t r i d e s = (1 , 1) ,
input shape =(100 ,256 ,256 ,3) , a c t i v a t i o n= ' r e l u '))

This convolutional layer will learn 32 filters for each channel all with a 3x3
size as defined by the kernel size. The strides = (1,1) describes the amount of
elements to jump between every convolution. As described in the previous sec-
tion, the kernel strides along the matrix until the whole matrix is convoluted.
With a stride of (2,2), the kernel will perform convolutions on every other matrix
element and its neighbors along one row and skip the entire next row. input shape

= (100,256,256,3) specifies the shape of the input tensor. In this case, there are
100 samples, having 256x256 matrix elements, with a depth of 3 (for instance
rgb). activation='relu' defines which activation function to use, in this case, relu
is chosen.

15

Pooling layers

model . add (MaxPooling2D (p o o l s i z e =(2 ,2)))

model . add (AveragePooling2D (p o o l s i z e =(2 ,2)))

A max pooling or an average pooling layer can be added. pool size = (2,2) de-
scribes how many matrix elements will be concatenated. A pool size (2,2) will
cause the resolution of the image to be halved in both height and width.

Dropout layer

model . add (Dropout (0 . 2))

This dropout layer will randomly set 20% of its input units to 0 on every step
during training. As such, the selected units are effectively ignored during that
specific step.

Fully connected layer

model . add (Dense (un i t s=3))

A fully connected layer in Keras is termed Dense. units=3 defines the number of
neurons, in this case 3. Note that for the output coming from the convolutional
block to fit as input to this layer, either a global average pooling layer

model . add (GlobalAveragePooling2D ())

or a flatten layer

model . add (Flat ten ())

must be added before the fully connected layer.

16

A complete model

model = Sequent i a l ()
model . add (Conv2D(f i l t e r s =32, k e r n e l s i z e =(3 ,3) , s t r i d e s = (1 , 1) ,

input shape =(100 ,256 ,256 ,3) , a c t i v a t i o n= ' r e l u '))
model . add (MaxPooling2D (p o o l s i z e =(2 ,2)))
model . add (Dropout (0 . 2))

model . add (Conv2D(f i l t e r s =64, k e r n e l s i z e =(3 ,3) , s t r i d e s = (1 , 1) ,
a c t i v a t i o n= ' r e l u '))

model . add (MaxPooling2D (p o o l s i z e =(2 ,2)))
model . add (Dropout (0 . 2))

model . add (Conv2D(f i l t e r s =128 , k e r n e l s i z e =(3 ,3) , s t r i d e s = (1 , 1) ,
a c t i v a t i o n= ' r e l u '))

model . add (MaxPooling2D (p o o l s i z e =(2 ,2)))
model . add (Dropout (0 . 2))

model . add (GlobalAveragePooling2D ())

model . add (Dense (un i t s =3, a c t i v a t i o n= ' softmax '))

The code above shows an example of a CNN model architecture created using
Keras. Notice that only the first convolutional layer needs to know the input
shape. Input shapes in-between layers are calculated and defined automatically.

To train the model, the function

model . f i t (x t ra in , y t ra in , b a t ch s i z e =32, epochs=100 ,
v a l i d a t i on da t a=(x val , y va l))

is called. Here the batch size and amount of epochs (2.2) are specified.

2.2.4 Evaluation Metrics

When evaluating an artificial neural network on a certain set of data, it is com-
mon to utilize standardized metrics to measure its performance. There are many
metrics to consider, all representing different nuances of the performance of the
algorithm.

Most of the metrics used are defined by the contents of a confusion matrix.
A confusion matrix in relation to machine learning shows the algorithm’s pre-
dictions on a data set. How many positive predictions were right or wrong, and
how many negative predictions were right or wrong. In other words, true and
false positives, and true and false negatives. Such a confusion matrix is shown
in Table 1.
Multi Class
If the problem is not binary and there are several classes, like in a multi-class
classification, there should be more rows and columns to the confusion matrix.
An example is given in Table 2.

17

Table 1: Confusion Matrix

Predictions

Truth
True positives False Negatives
False positives True Negatives

Table 2: Multi Class confusion matrix example

Predictions

Truth
Class 1 Class 2 Class 3 Class 4

Class 1 8 2 2 1
Class 3 2 7 2 1
Class 3 0 0 11 2
Class 4 2 0 1 10

Here all values on the diagonal are True Positives(TP) while values anywhere
else constitutes False Positives(FP).

Table 3: Multi class confusion matrix with TPs and FPs

Predictions

Truth
Class 1 Class 2 Class 3 Class 4

Class 1 TP FP FP FP
Class 2 FP TP FP FP
Class 3 FP FP TP FP
Class 4 FP FP FP TP

Notice that Table 3 has no True Negatives(TN) or False Negatives(FN). TN
and FN are specific to classes. For instance, if a sample has class 1 as true label,
but is predicted as class 2, it is an FP from an overall point of view. Class
1 sees this as an FN, while class 3 and 4 sees it as TN. Figure 12 shows how
predictions are separated into TP, FP, FN and TN for each class.

18

Figure 12: TP, FP, TN and FN in multiclass

Multi Label
In the case of multi label, it is common to have one confusion matrix as in Table
1 for each class, as for instance with two classes as shown in Table 4. Here the
presence of class 1 and 2 are termed Pos C1 and Pos C2, while the absence of
class 1 and 2 are termed Neg C1 and Neg C2.

Table 4: Confusion matrices for two classes

Predictions

Truth
Pos C 1 Neg C 1

Pos C 1 TP FN
Neg C 1 FP TN

Predictions

Truth
Pos C 2 Neg C 2

Pos C 2 TP FN
Neg C 2 FP TN

2.2.4.1 Accuracy

Perhaps the most common metric is the accuracy and it is widely used when
bench marking models. It can be described as the portion of correct predictions
among all predictions made. It is usually the accuracy that is monitored while
training a neural network.

Accuracy =
Correct Predictions

All Predictions
=

TP + TN

TP + TN + FP + FN

19

2.2.4.2 Loss

Loss is a metric of how good the model is at fitting the examples provided.
There are several different functions used to calculate the loss, so there is no
single correct way of doing it. A decreasing loss indicates that the model is
improving, to a certain degree (see overfit below). A widely used function is
”Mean square error”, shown in equation 1, which calculates the average loss for
all examples.

MSE =
1

N

∑
(x,y)εD

(y − prediction(x))2 (1)

2.2.4.3 Precision

Precision measures the percentage of positive identifications that were actually
true. This is calculated using equation 2.

Precision =
True positives

True positives+ False positives
=

TP

TP + FP
(2)

2.2.4.4 Recall

Recall measures the percentage of positive samples that were identified as pos-
itives. This is calculated using equation 3.

Recall =
True positives

True positives+ False negatives
=

TP

TP + FN
(3)

2.2.4.5 Micro and Macro Averaged

The overall accuracy, precision and recall of a multi-labelling model is commonly
averaged in two different ways. A macro averaged accuracy, precision or recall
assumes equal weight to all classes, such that the overall score is simply the av-
erage of the individual class scores. With micro averaged scores each individual
class score is weighted according to how many samples of the class are in the
data set.

2.2.4.6 Overfit

An overfit model means a model that has achieved a very low loss but does a
poor job of predicting new data. This happens because the model has become
too specialized in predicting the provided examples. There are several ways to
prevent overfitting. The first is to include a large sample size, more samples
decrease the probability of the model becoming too specialized on the insignif-
icant features found in the samples. It is also important to ensure that the
samples have a wide variation, representing most of the possible examples that
can be encountered. Another factor is to train the model for the right amount
of epochs. Training too long can result in overfitting as the model starts to go

20

too deep into insignificant features.

2.2.5 Artificial Intelligence in Waste Management

Several different approaches to trash classification has been investigated. A
project thesis from Stanford by Yang and Thung [42] uses image classification
to categorize different classes of waste. Their data set contains about 2,400
images sorted into six classes: glass, paper, cardboard, plastic, metal and trash.
The best accuracy achieved was 63%. This project and its dataset have been
used by others, including Adedeji and Wang [3] for the same purpose, achieving
an accuracy of 87%. While this approach seems to work well, it is not very
applicable to the collection cycle at REN, where the trash is contained within
plastic bags. Since the contents of the bags cannot be seen with regular imaging
methods, image classification will not be applicable. In addition, the dataset
used in these projects contain images on a uniform background, which is prob-
ably quite different from real world scenarios.

A study by Korucu et al. [19], uses sound recordings of different materials
taken during free fall impact, impact from a pneumatic cylinder and hydraulic
crushing to train a neural network to separate between material types. The pa-
per shows good results, although similarly to the image recognition approach,
it is not directly applicable to the current problem as the objects in this study
were individual instead of mixed together inside a plastic bag. The main con-
cept is however quite similar, which is sorting between materials based on sound
recordings. The study is also different from the approach proposed in this thesis
in that they only utilized one type of input data, i.e. images or sound, and not
a combination of different sources.

Utilizing multiple sources of data to classify waste has been attempted by Chu
et. al. [8] where a hybrid deep-learning system was developed to sort waste as
recyclable or not. In this study a camera, a weight scale and a metal detector
were used to gather the input data for their deep-learning model. For feature
extraction and classification, several CNN layers were used to extract features
from images taken by the camera. 22 outputs from the last CNN layer were
then combined with the data from the weight scale and metal detector in a
fully connected layer (see Section 2.2.2) that in turn resulted in a classification.
Achieving over 90% accuracy, which they claim was significantly better than
reference models, they showed that including several sources of data could be
beneficiary when classifying waste. This study also collected data from single
objects placed in front of a uniform background, again making it less applicable
to REN’s collection cycle.

The system developed in this project is aimed at detecting unwanted materials
without the need for removing the waste from the plastic bags. It also provides
the option of recording information about where the unwanted materials were

21

collected, presenting possibilities for mapping behavior patterns in certain areas
and more. While the system is meant to work with the trash contained in a bag,
it does not exclude its use from situations where waste is loosely contained, for
instance if transported along a conveyor belt.

2.2.6 Machine Learning for Sound Recognition

The use of sound data in conjunction with machine learning is a well studied
field with applications such as speech recognition, audio surveillance, environ-
mental sound recognition and sound event recognition [35]. In speech recogni-
tion, Hidden Markov Models (HMM) and Gaussian Mixture Models (GMM) are
frequently used machine learning models ([9], [41], [45]), however, other deep
learning methods has been applied successfully as well ([26], [24]).

Using machine learning for recognizing the source of a sound with regards to
material has been well studied. Perhaps the most relevant is the earlier men-
tioned article by Korucu et al. [19] that achieved a 97.7% accuracy using HMM.
Luo et al. [25] successfully developed a deep learning model that with 91.5% ac-
curacy is able to recognize which object is being struck by a marker pen. Gong
et al. [13] developed an SVM classifier that could recognize the material of an
object (98% accuracy) using data generated by the microphone, gyroscope and
accelerometer on a smartphone when knocked against the object.

Using CNNs in sound recognition is not new either. There is no doubt of the
performance of CNNs when it comes to image recognition ([21]), so that apply-
ing a CNN on an ”image” of a sound (e.g MFCCs and/or Mel Spectrograms
described in the next section) could very well be applicable. Hersey et al. [17]
show promising results using CNN in sound recognition using MFCC. CNNs are
better at generalizing by ignoring local variations ([7]) compared to traditional
models, such as HMMs. CNNs may therefore perform better in chaotic envi-
ronments ([43]) where the distinguishing features are subtle, for example when
unloading a bin of trash bags into the back of a waste collection truck. A lot
of irregular acoustic noise can be expected when collecting waste, which a CNN
model may be better at filtering out.

2.3 Sound Preprocessing

When using sound for machine learning, the sound clips must be preprocessed
into something the algorithm can use. The usual approach is to convert the
sound to spectrograms that describe features of the sound in terms of values.
Two types of spectrograms are usually applied, the Mel-Spectrogram and the
Mel Frequency Cepstral Coefficient spectrogram (MFCCS for short). In addition
to converting sound to values in a matrix, this processing can also highlight and
scale the information contained in the audio in different ways. Depending on
the method used this can for instance highlight changes in the sound, which
might be an important factor when distinguishing between different sounds.

22

2.3.1 Mel-Spectrogram

The Mel-spectrogram describes the strength of frequencies at specific times in
an audio clip. The spectrogram is created by first dividing the sound clip into
time segments. A fourier transform is then applied to each of these time seg-
ments, which yields information about the strength of each frequency present
in the time segment. A plot of a fourier transform on a single segment can be
seen in figure 13. The frequency of the plot is along the x-axis and the strength
along the y-axis.

Figure 13: Fourier transform of single time segment [12]

Each of these fourier transforms output a vector with length equal to the number
of frequencies described. Each index of the vector corresponds to a frequency,
and the value at that index the strenght of that frequency. By transposing
each of the vectors and combining them into a 2D-matrix, a representation of
frequency strengths at different time segments in the audio clip is created. A
2D-plot of such a matrix is shown in figure 14, this is a frequency spectrogram
where the color of each pixel represents the strenght of the corresponding fre-
quency at one time segment.

23

Figure 14: Frequency spectrogram [12]

As can be seen in figure 14, the high frequencies are almost non-existing com-
pared to the low frequencies. This is due to the power scaling being linear.
In the Mel-Spectrogram, the y-axis and amplitude (color axis) are scaled. The
frequencies are log-scaled and the amplitudes are scaled to Decibels which is the
most common way of scaling the volume of sound. Applying this scaling results
in figure 15.

Figure 15: Log-scaled spectrogram [12]

A Mel-Spectrogram is almost the same as the one in figure 15, but with a
slightly different log-scaling of the y-axis. The scaling used is the Mel-scale,
created by Volkmann, Stevens and Newman [40]. This scale is based on which
increments in frequency that listeners observed as equal increments in pitch.
The Mel-Spectrogram, which also includes power scaling in dB, is shown in

24

figure 16.

Figure 16: Mel-Spectrogram [12]

2.3.2 Mel Frequency Cepstral Coefficient spectrogram

The MFCC spectrogram is obtained by applying a linear cosine transform to the
Mel-spectrogram. The result is something called a Cepstrum. The Cepstrum
shows peaks where there are periodic elements in the sound clip [27]. The y-axis
of this plot has changed due to the operations performed, and are now in the
”Quefrency” domain, a coin termed by Bogert et al. [29]. This spectrogram is
complicated to understand, but is frequently used in deep learning when dealing
with sound. This is especially true for speech recognition. Figure 17, 18, and 19
show a sound clip used in this thesis plotted as a waveplot, a Mel-spectrogram,
and a MFCC spectrogram respectively.

Figure 17: Waveplot

25

Figure 18: Mel-spectrogram

Figure 19: MFCC spectrogram

26

2.4 Metal Detection

The metal detector used in this project is derived from a DIY project found at
All About Circuits by Evan Kale [18].

The detector consists of two main components, a Colpitts oscillator and an
Arduino. The main function of the oscillator is to create a frequency that the
Arduino can compare to a stored frequency, where any deviance will indicate a
presence of metal. The Colpitts oscillator is a circuit that utilizes a combina-
tion of inductors and capacitors to produce an oscillating voltage at a certain
frequency depending on the inductance and capacitance of components used.
The frequency can be determined using formula 4 [31]. The main component of
this ciruit is called the Tank Circuit, shown in figure 20 below.

f =
1

2 ∗ π ∗
√
L ∗ C

[Hz] (4)

Figure 20: Tank Circuit [18]

The capacitor will discharge causing the coil to develop a magnetic field. Once
the magnetic field has more energy than the capacitor, the coil will begin to
induce a current which will charge the capacitor. This causes the current to
oscillate back and forth which creates a fluctuating voltage in the circuit. In
theory this could continue indefinitely, but the internal resistance in the compo-
nents will cause some heat development resulting in energy being lost. Because
of this it is required to continuously feed the circuit from an external power
source. This is accomplished using a BJT inverting amplifier. The circuit for
the oscillator used in this project is shown in figure 21.

27

Figure 21: Colpitts Oscillator Circuit [18]

When the arduino setup runs, the frequency of the Colpitts oscillator is mea-
sured and stored. While the program runs it will continously compare the os-
cillator frequency to the stored frequency and output the difference. Deviance
in the frequency will occur if metal is present near the coil as it will change its
inductance and in turn change the frequency of the oscillation. The reason for
change in inductance happens for one of two reasons. Either a ferromagnetic
metals magnetic field aligns with the magnetic field of the coil, increasing the
inductance, or a non-magnetic metal decreases the inductance due to Eddy Cur-
rents being induced in the metal which counteract the field. The coil (yellow
wiring) used is shown in figure 22.

28

Figure 22: Metal detection coil on test setup

The inductance change in the coil is largely affected by three factors. Type of
metal, amount, and orientation of the object. Different metals have different
densities and magnetic properties, and therefore affect the inductance differ-
ently. Higher amounts have stronger effects, and objects oriented in the same
plane as the coil will affect the inductance more than objects normal to the
plane. Because of this, it is not possible to determine any of these factors from
the data alone. Therefore, the metal detector is most effective at determining
whether metal is present or not. Some idea of the properties can be deduced
however. An object normal to the plane will cause a smaller reading than the
same object aligned with the plane, but the reading will be spread over a longer
time period. This change is very small, and hard for a human operator to in-
terpret, but a computer might be able to distinguish between cases.

Examples of readings from the detector in figure 22 are shown in figure 23,
notice the difference in the y-axis in the two plots. The spikes in the mixed
waste plot are caused by unidentified noise, but are small and should not prove
significant when machine learning is applied.

29

(a) Reading from mixed waste (b) Reading from pure metal waste

Figure 23: Metal detector readings

3 Development

This section aims at giving both a description of the development as well as the
reasoning behind any choices made during the process. Intermediate results will
be presented in this section as the development process is based on an iterative
procedure. The system involves the development of two main components as
described in Section 1, and will be presented accordingly.

3.1 Trash Collection Simulation

When training a machine learning model it is necessary to have many examples
of each class so the model can learn to differentiate between the data belonging
to each class. The best way to obtain this data would be to implement the
system at the location it would later be used, which is at the back of a garbage
truck. As we did not have access to a truck for as long a period as we would need,
we decided instead to build a measuring rig that would mimic the emptying of
trash bins into the truck. This rig included all the sensors we would like to
include in the final system, or a suitable replacement. These sensors are as
follows:

• Weight sensor

• Proximity sensor

• Metal detector

• Sound recorder

• Video recorder

For all listed components, except the metal detector, existing sensors were cho-
sen. The metal detector was built locally and is presented in Section 3.1.1. In

30

addition to these components, an Arduino was included to automate the record-
ing process, as manually controlling the recording equipment would significantly
slow down the operation and require a lot of post-processing of the data. All
components are shown in figure 24.

Figure 24: Test rig

The system operates as follows. A computer is connected to the Arduino and
sound recorder via usb cable, and to the GoPro camera through WiFi. A
program specifically made for this operation is run on the computer, which
launches a graphic user interface to assist in the measurements (see section
3.1.6). Next a trash bag is placed in the tray at the back of the rig (left side
in figure 24). The weight sensor will record the weight of the bag and a cue
light will show in the GUI when the tray is ready to be flipped. At the same
time the camera will start recording. The operator then flips the tray which
causes the bag to fall down the chute and trigger the proximity sensor. This
in turn triggers a python script on the computer that starts recording sound
from microphones, and the arduino to send data from the metal detector. The
bag lands in the metal tray, and the sound and video recording stops. These
recordings are set to stop after a specified time has passed since the proximity
sensor was triggered. All recorded data is temporarily stored, and when ready
the GUI shows a spectrogram plot of the sound recorded and a plot of the data
from the metal detector. If the operator is satisfied with the measurements,

31

he presses a button in the GUI which saves the data to a folder structure on
the computer. During this save process the video recording is cut to remove
the part from before the proximity sensor was triggered. When all the data is
saved, the rig is ready for the next measurement. Each component is explained
in more detail in the sections below, and figure 25 contains a flowchart of all
the stages in the program.

32

Request weight from
arduino, turn cue light

yellow

Yes

No
Weight

received?

Request proximity
sensor, turn cue light

green

Main script initiated

No

Yes

Proximity
sensor

triggered?

Metal detection threadGoPro thread

Initiate 3 separate
threads for sound,

metal detection and
video. Cue light red

Start GoPro
Record time, t1

Record x chunks of
sound from recording
unit(usb) resulting in

2 seconds

Receive a stream of
metal detection data

points from
arduino(usb) resulting

in 2 seconds

Wait 1 second

Stop recording and
download video
recording from

GoPro(wiFi)

Record time, t2
Save time increment

t1-t2

No

Yes

All data
received?

Store recordings
 to temporary
variables and

 folders

Enable save and
discard button

Discard

SaveWhich button
pressed?

Delete content of
temporary folder and

reset all variables

Store data in
folder

according to
 class

Sound thread

Arduino booted

'w'

other

otherSerial data
available, which

character?

Get average of 10
weight measurement.
Do until discrepancy
from last average is

less than 5

Send weight

Send character 'w'

Send character 'p'

Yes

No

Record n amount of
metal data point,

resulting in 2 seconds

Send 'Record'

Stream metal data

'p'

Serial data
available, which

character?

Serial not available

proximity
triggered?

Send character 'a'

'a'

other

Reset all variables

Serial data
available, which

character?

Data transferComputer program Arduino program

Figure 25: Computer- and Arduino Interaction

33

3.1.1 Metal Detector

The original plan was to use a Pulse Induction metal detector for this project.
This detector is described in detail in the project thesis A.3 which the masters
thesis is based on. The previous detector used a small coil with very limited
range, so attempts were made to scale it up as a greater range or size would
be required for it to function due to the size of the trash bags. None of these
attempts were successful. The detection range was limited to a few cm from the
windings of the coil, and attempts to change coil diameter, number of windings,
or increased amperage or voltage did not seem to have any measurable effect.
Therefore another type of detector was tested, which yielded much better re-
sults. The new detector type is called a beat-frequency oscillation detector, and
the working principle is described in the theory section (2.4).

The detector exhibits a larger range of about 10cm, and also produced more
stable readings than the previous type used. The readings proved consistent,
and noise is minimal, resulting in very clear indications when metal is present.
Two images comparing the old and new detector readings are shown in figure
26.

34

(a) Old metal detector readout as shown in the Arduino serial plotter

(b) New metal detector readout as shown in the Arduino serial plotter

Figure 26: Old vs new metal detector

The old detector was erratic in that the value when no metal was present was
constantly changing. This could cause confusion for the machine learning algo-
rithm and decrease its performance. The output was also much less consistent
when the same metal object was applied, so the new detector was a big im-
provement. Readings obtained from metal object generally produce amplitudes
between 500 and 5000, where the amplitude refers to the change in oscillation
frequency. Any noise experienced generally produced amplitudes of around 40.

35

3.1.2 Test Rig

Construction:

As using a collection truck for the data collection was deemed unfeasible for
initial testing, the testing rig was built to imitate the event of emptying a trash
bin into a collection truck. This way, the acquired data would be representative
while giving the experimenter more time and flexibility when testing and gath-
ering the data.

To mimic the trash bin, four 3 mm thick plexi glass plates were cut with finger
joint patterns at the edges and glued together using Super Glue. A transparent
material such as plexi was chosen to give the experimenter vision while the bag
was sliding through the chute and thereby better control of the experiment. The
plates were cut with a width of 50cm and a length of 70cm making the chute
a 50x50x70cm cube with openings at the top and bottom. With the added
length of 40cm from the load tray (which will be covered later), it would closely
resemble a trash bin (58x74x107) and thereby approximate the time taken from
trash bin flipping to the bags landing in the truck. Mimicking this time was
necessary in order to design a system that could work on a service car, where
timings are of high importance.

(a) Picture taken from garbage truck

(b) Test rig comparison

Figure 27: Real life vs test rig

As for the landing tray in the back of the truck, an old metal hot water tank
was re-purposed to mimic the landing tray in a truck while also producing a
similar sound. The hot water tank was cut in half resulting in an open half-
cylinder shape as found in the back of the service car. With a width of 80cm
and a radius of 25cm it did not accurately resemble the dimensions of the metal
tray, which is close to 2m in length and 0.5m in radius, in the collection truck.

36

However, it is the sound of impact that is essential to mimic for the data to be
representative, and since the simulation was a rather small scale of reality (i.e
flipping 1-2 bags and not a full bin) the dimensions were deemed acceptable. A
comparison between the landing tray and the tray of a collection truck can be
seen in figure 29 at the end of this section.

Attached to the back of the chute is the loading tray, shown in figure 28. Its
function is, as mentioned, to initiate the bag sliding when being tilted by the
operator. A box of dimensions 46x40x15 with an open top and front (front
facing the chute), was constructed by cutting out four 6mm thick MDF plates
with finger joint edges and gluing them together with hot glue. Due to the more
coarse nature of the surface of MDF compared to plexi, hot glue was sufficient.
Attached underneath the box was two elongated beams also cut from 6mm MDF
plates with length 40cm, attached with a 15.5cm space between each other. The
beams were placed such that 5cm was sticking out in the front of the box. With
horizontal holes at the tips, they functioned as attachments for axles and thus
giving the loading tray the ability to be flipped. The material for the load tray
did not need to be transparent as it was open in the top and front and had
low walls making the visibility sufficient. A tiltable loading tray was chosen to
mimic the initial speed the bags obtain when trash bins are tilted and emptied
in a service car. Approximating the same speed was regarded as necessary as it
would influence both the metal detector readings as well as the sound of impact
upon the metal tray.

Figure 28: Loading tray

The support frame was built using 2” by 4”, and 2” by 2” profiled wood. This
material was chosen due to availability and ease of forming. Additionally, the
material provided more than enough structural strength for the rig during op-
eration. A framework was built around the metal tray to elevate it from the
ground and to hinder the sound from propagating through the floor rather than
through the tray. The elevation also provided a more comfortable level to work
with for the operator. The chute was further elevated about 30cm from the

37

edge of the metal tray such that the bags would have a fall height of 30-55cm
and thereby creating a sound loud enough for sufficient details to appear in a
spectrogram of the impact. The chute was installed at a 25° angle relative to
the horizontal plane to approximate the angle of a trash bin being emptied in a
collection truck.

Metal Detector:

The metal detector is placed in two main locations. First, the search coil is
wound around the plexiglass chute to register the bags passing through. The
coil is connected to the circuit board which contains the rest of the detector cir-
cuit described earlier, and the Arduino Nano responsible for the data recording
and transfer to an external computer. All components are indicated in figure 24
shown previously. The detector also needs an external power supply as the Ar-
duino is not powerful enough. The one used for the rig delivers 5.7V and 300mA.

Weight Registration:

The weight sensor is located under the loading tray, and is shown in figure
24. The load cell is centered under the middle of the tray, and is connected
to a HX711 load cell amplifier mounted on the circuit board. The amplifier is
connected to the Arduino which stores and transfers the measurements to the
external computer.

Sound Recording:

The sound recording system consists of microphones, a recording unit, and
an external computer. There are four microphones; two contact microphones
and two condenser microphones. The contact microphones are Korg CM300-
BK clip-on microphones, which are located on each side of the landing tray,
as indicated on figure 24. The condenser microphones are components for the
Zoom recorder, and both are contained together in one unit. The microphones
are identical, but faces in separate directions. All microphones are connected to
a Zoom H6n recorder unit which performs all necessary processing of the sound,
like amplification and digitalization. The recorder acts like a sound board for
the computer, and its location is indicated in figure 24. By selecting the Zoom
unit as the sound input for the computer, the sound can be recorded in any
way desired. For this project the sound was recorded by a python script using
the Pyaudio package. The main reason for using python was that the recording
could easily be syncronized with other parts of the rig, i.e. the proximity sensor.
The sound clips were recorded at 48,000 samples per second, with a bitrate of 16.

Camera:

The camera is placed overlooking the tray so it captures both the tray and
the end of the chute. The placement is meant to capture both the whole tray

38

and the bag as it falls from the chute, to include the possibility of using pic-
tures from the bags both in free fall and after landing. The camera was set
to record video at 720p resolution at 120 frames per second. The high frame
rate is required to get a clear picture of a falling bag. Even higher frame rate
would be recommended, as long as it does not reduce image resolution below
720p. REN already has cameras installed that capture still pictures, and a
comparison between pictures from the test rig and REN is shown in figure 29.

(a) Still picture taken by REN from garbage truck

(b) Video frame captured by test rig

Figure 29: Picture comparison

Arduino Circuit:

After completing the circuit and ensuring everything worked, it was perma-
nently soldered together on a single circuit board. The location of the board is
indicated in figure 24, and figure 30 shows the wiring diagram. The Arduino

39

code can be found in Appendix A.1.1.

Figure 30: Circuit

3.1.3 Trash Generation

To gather the training data it was necessary to produce trash bags to be mea-
sured with the test rig. Trash bags were created and categorized in six categories;
Pure metal (PM), pure glass (PG), metal and mixed waste (MMX), glass and
mixed waste (GMX), glass and metal (GM), and pure mixed waste (PMX).
Mixed waste refers to all other materials that are frequently deposited in the
trash, not including hazardous materials. The materials used were collected
from the recycling department at NTNU. Care was taken to ensure that all
bags were different in size, weight and composition within each class to simulate
real life conditions. Several types of metal and glass in different shapes and
materials were used, as well as a high variety of items for the mixed waste. The
categories MMX and GMX were made sure to include both samples of high,
medium and low metal/glass content. Due to the extensive time requirements
of producing unique bags for the entire training set, each bag was reused several
times. In total there were about 25 unique bags present for each class used for
the training data set. The argument for reusing bags for training was that the
bags would fall with different orientations, resulting in different sound record-
ings and metal detector readings each time. For end testing, a separate set
of measurements was recorded, containing only single measurements of unique

40

bags, this set containing 10 measurements from each class.

About half the measurements of MMX and GMX for training were performed
by including glass or metal in a previously measured bag in the PMX category.
The reason for this was to ensure that the program could separate between very
similar bags where the only difference was the inclusion of glass or metal. This
approach might force the program to focus on the unique signatures created by
glass and metal, and focus less on the differences between the bags as a whole.

3.1.4 Data Collection

The data gathered from each bag were stored as numpy arrays (with the excep-
tion of video) in the following categories:

• Mel spectrograms

• MFCC spectrograms

• Weight data

• Metal detector data

• Video clip

The figures below show comparisons of this data between the classes MMX,
GMX, GM and PMX. A different colorscheme than in other sections has been
selected for the spectrograms for better comparison, but the data remains the
same. Mel spectrograms are shown i figure 31, MFCC spectrograms in figure 32,
metal detector measurements in figure 33, and weight measurements in figure
??.

41

(a) Glass and metal Mel spectrogram

(b) Glass and mix Mel spectrogram

(c) Metal and mix Mel spectrogram

(d) Pure mix Mel spectrogram

Figure 31: Mel spectrogram comparison

42

(a) Glass and metal MFCC spectrogram

(b) Glass and mix MFCC spectrogram

(c) Metal and mix MFCC spectrogram

(d) Pure mix MFCC spectrogram

Figure 32: MFCC comparison

43

(a) Metal detector output, Glass and metal (b) Metal detector output, Glass and mix

(c) Metal detector output, Metal and mix (d) Metal detector output, Pure mix

Figure 33: Metal detector output comparison, (note varying y-axis scale)

Due to the machine learning model requiring that all input data has the same
format, the metal data had to be reshaped to (256,256). To achieve this, the
time axis was first interpolated to 256 pixels using bilinear interpolation, and
then the data was repeated 256 times for the second domain. A visualization of
the data after these changes is shown in figure 34.

44

Figure 34: Metal data input visualization

3.1.5 Data Exploration

In this section, the data gathered from the waste collection simulation will be
explored and analyzed. The purpose is to investigate the distinctions between
the classes and explore the feasibility of applying machine learning methods or
even simpler deterministic methods for glass and/or metal detection. Classes,
PM and PG have been left out of this analysis as they have been deemed unlikely
to occur in reality [4]. This is further discussed in Section 3.2.1.1.

3.1.5.1 Sound

Figure 35 presents the average measured sound power over frequency for each of
the four categories, at the point of impact, including the standard deviation at
certain frequencies. Figure 35 shows that there is a distinctive spread between
all four classes. As can be seen, nearly all error bars overlap each other. In fact,
every frequency step overlaps between all classes, except between GM-MMX and
GM-MX where 80 and 3 steps overlap respectively. The differences between the
classes are all significant (p≤0.05) on all frequencies except in between GMX-
MMX. For this comparison, among a total of 128 frequency steps, 28 of them
showed insignificant differences. These are mainly found in the mel-frequency
ranges of 60-300, and 1300-1550 Mels. This can also be seen from the figure, as
the two curves tend to overlap in these regions.

45

Figure 35: Average strength of sound at different frequencies (4 classes) from
the condenser microphone

The above figure suggests the trash bags containing glass and metal simply cre-
ates a louder noise, such that it may be possible to distinguish GM and MMX
from each other with high accuracy by simply comparing the strength in nearly
whichever frequency. Additionally GM and MMX may be distinguished from
each other by comparing strengths in frequencies between 1788-2840 Mels where
they do not overlap. Regarding the other 4 comparisons, there are considerable
overlaps such that it would seem unfeasible to distinguish them from mere sound
strength.

Figure 36 shows the average frequency strengths at impact for the left con-
tact microphone. It is clear that general strength level is lower than for the
condenser microphone. The average strength is about 3.5-11.2 dB lower across
all classes. Additionally the overall standard deviation is substantially larger
for the contact microphone, with about 2.9-7.3 dB across all classes. This is
also reflected in the amount of classes overlapping each other. Here only one
comparison has non-overlapping error bars, which is GM vs. MX, where 28
frequency steps overlap. These are evenly spread out across the 128 steps. All
classes are significantly different from each other (p≤0.05) in most frequencies
here as well, with the exception of 13 frequencies in GMX vs. MMX and one
frequency in GMX vs. MX.

46

Figure 36: Average strength of sound at different frequencies (4 classes) from
the contact microphone

As can be seen in the figure above, the contact microphone shows some of the
same trends as the condenser microphone. The GM class is quite distinguish-
able from MX and the curves of GMX and MMX tend to cross and overlap each
other.

3.1.5.2 Metal

Figure 37 shows the maximum metal detector readings for the different classes.
GM and MMX have higher maximum metal detection readings than GMX and
PMX. This is expected as PMX should not contain any metal and should thereby
have around zero maximum readings. GMX should also exhibit low metal de-
tector readings except for the occasional metal lid. PMX does display some
rouge readings where maximum values reaches 1000 to 3000. And example of
one of these readings is shown in Figure 38. Furthermore, all differences between
classes are significant(p≤0.05).

47

Figure 37: Metal detector: Average reading at peak (4 classes)

Figure 38: Sporadic metal detector reading on a sample from the PMX class

It should be possible to simply apply a threshold to the metal detection reading
at 200-300 to determine the presence of metal. However, some mistakes will
be made due to sporadic readings. If a filter were applied, and sudden jumps
were removed, a deterministic approach could be used. A simple algorithm for
thresholding metal detection data was consequently tested. It was found that
a threshold of 250 would result in detecting the presence or absence of metal
with 98.4% accuracy. The code for this program can be found in Appendix A.
However, this approach is not able to detect the presence of glass.

It may be possible to make further distinctions between the classes by com-
bining the sound and metal detection data. Figure 39 shows a scatter plot of

48

all measurements with the average strength[dB] across all frequencies along the
x-axis, and metal detector reading along the y-axis.

Figure 39: Metal detector peak vs. average sound strength at impact

There does seem to be some distinct areas for the different classes as shown in
Figure 40. Specifically GM and MMX seems distinguishable. GMX and PMX
overlaps substanially on both axes making them hard to differentiate, however,
a machine learning model might be able to capture the differences using a non-
linear solution.

Figure 40: Metal detector peak vs. average sound strength at impact, with
indications of grouping

49

3.1.5.3 Weight

Figure 41 shows the weights of the different classes. All comparisons, except be-
tween GMX-MMX and MMX-PMX, are significantly different from each other(p
≤ 0.05). They do still exhibit extensive overlapping. There seems to be little
to be said from the weight alone, except that if it is very high, it is likely to be
in the GM class. The weight does not support much distinction between GMX
and PMX even though the differences are significant (p = 0.0044).

Figure 41: Metal detector: Average reading at peak (4 classes)

The analysis shows that there are differences between the classes, which may
indicate that a machine learning model can find the non-linear relations between
them. There may lie patterns in the combination of strengths of frequencies,
that is, there might be a certain profile to each class. However, it would require
a deeper understanding of sound analysis to use any deterministic approach
on the data gathered here alone. A machine learning model, may potentially
learn these patterns on its own without the need for expertise. The fact that
most differences in sound strengths of classes are significant may point to that
a machine learning model can find a pattern in the spectrograms. Had not the
differences in so many of the frequencies been significant, it is possible that a
machine learning model could be blind to the distinction. This is hard to say,
however, as a machine learning model is a black box that may find patterns
invisible to any human. A machine learning model may also find patterns in
the combination of the different sensor readings. Additionally, the analysis may
help explain certain results achieved using CNN.

3.1.6 GUI

To aid the experimenter during data collection, a simple graphical user interface
(GUI) was developed. The software’s primary task was to function as a control
panel that presents certain sensor recordings in between measurements. When
recordings are presented, the experimenter is given the choice of either saving,

50

in the case of satisfactory sensory readings, or discarding, in the case of faulty
sensory readings. The code for the GUI can be found in Appendix A.1.2.

Such a GUI was deemed necessary for the data collection system to ensure
valid recordings while keeping up the efficiency. Sensory reading could alter-
natively be manually validated after each single recording, though it would
require the experimenter to pause the main script between every measurement
and run a separate script showing the data. This would greatly increase the
time consumption of the data collection. Additionally, neglecting to validate
sensor readings could result in erroneous recordings within the data set causing
the machine learning model later developed to learn on wrong premises. Worst
case, a whole collection session could be wasted due to an unseen bug. Also,
acquiring the data for machine learning tasks is often the most cumbersome
and time-consuming process. A GUI displaying sensor readings would greatly
increase the efficiency and control of the data collection.

Python was chosen as the programming language due to the wide availabil-
ity of libraries as well as flexibility with regards to testing certain functions.
Librosa enables easy creation and display of spectrograms, Numpy offers great
flexibility when handling arrays and matrices and Tkinter is a relatively easy
to use library for developing graphical user interfaces. Also, Python is an inter-
preted language, such that tests on individual components of the program can
be conducted without the whole program functioning properly.

51

3.1.6.1 Page 1

When launching the GUI, the operator is first met with Page 1 as shown in
Figure 42.

Figure 42: GUI: Page 1

First, the operator must select the USB-port the arduino is connected to. If an
arduino is connected, the port will show in the drop down menu labeled ”Select
port” in Figure 43.

52

Figure 43: GUI: Page 1, USB Port

By clicking the browse button, a window pops up showing the computer’s folder
system. The operator now selects where all collected data should be stored.

53

Figure 44: GUI: Page 1, Data directory

It is not until the operator has chosen the USB-port and data directory that
he/she is able to click the ”Run” button. If for instance a location was not
specified and measurements had been initiated, either the program would crash
or the recordings would have been lost. By simply disabling the button un-
til the above mentioned options have been set, it is ensured that the program
starts with a connection to the Arduino and a location for the data. This is the
purpose of having an introduction window, to ensure valid configuration when
initiating measurements and thereby avoid program crashes or lost measure-
ments. Additionally, error handling does not have to be programmed simply by
not allowing the error to happen.

3.1.6.2 Page 2

The operator has now clicked the ”Run” button and is met with Page 2, which is
the main window of the application (Figure 45). If not already in place, a folder
system is automatically created, containing all the class folders as well as a temp
folder for intermediate storage. Additionally, a file named ”storageLocation.txt”
containing the selected data directory is created at the same location as the
python file, such that the directory field is automatically filled on next start-up.

54

The yellow cue light indicates that a bag should be placed in the loading tray
(yellow square in figure 45).

Figure 45: GUI: Page 2

Next, the weight is registered and displayed by the label ”Weight”. In this case
601.5 grams. Then the cue light turns green, telling the operator to flip the
tray. This is also the moment video recording is initiated.

55

Figure 46: GUI: Page 2, Ready to flip

When the video, sound and metal recordings have been completed after the
bag has landed in the metal tray, some of the recorded data is displayed in the
GUI (See Figure 47). The cue light is turned red, indicating that the operator
should not place any bags in the loading tray yet. The video recording must be
downloaded from the GoPro via WiFi connection which may take some time,
but this download is queued once the recording is stopped. The metal data is
shown on the right, while the right-side condenser microphone data is shown on
the left. Now the operator is able to check the sensor readings before continuing.
It was assumed that if one of the sides of the condenser microphone gave valid
recording, all microphones did. Also, to maintain the flow and uphold the
efficiency, it was decided not to wait for the video download to finish to show a
frame of it as well. Notice that the ”Save” button is disabled until metal and
sound recordings are completed. This, again, stops the operator from clicking
the button prematurely causing a program crash or lost measurements. The
discard button is always enabled, as clicking this resets all variables and restarts
the program loop. Before saving, the operator can change the current class by
toggling one of the buttons on the left side, though it is not required in enabling
the save-button. Chosen class number is displayed next to ”Class number”
label, which by default is set to zero at startup.

56

Figure 47: GUI: Page 2, Recordings presented

After the save button is pressed, a folder with the current measurement number
as name, is created. The program knows the current measurement number,
by reading the file ”measurementNumber.txt”, which is created when the save
button is clicked for the first time. After sensor readings and video file is stored
in the newly created folder, the ”measurementNumber.txt” file is incremented
by one. By storing this number externally it is possible to quit the program,
and continue at a later instance. Once all saving is completed, the loop starts
all over. This is indicated by the cue light once again turning yellow (see Figure
48).

57

Figure 48: GUI: Page 2, Save button pressed

3.2 Model Development

After a sufficient amount of data had been gathered from the trash collection
simulation experiment, development and testing of CNN models were initiated.
This stage started with getting to know the framework. Keras was chosen due
to its high-level API (2.2.3) allowing rapid prototyping. As such, several models
could be developed and tested in this Master’s Thesis. (2.2.2).

An architecture based on common CNN models ([23], [20], [37]) has been used
as a baseline model (Section 3.2.1), and have been the basis of an ablation
study conducted to determine which sensors contribute to increased model per-
formance. The results of the ablation study will be presented consecutively as
they form the foundation of further model development.

Three models have been developed and tested on the input data resulting from
the ablation study. All models use a multi-class approach. These differ in layer
count, filter count, kernel sizes and pool sizes. Additionally, all models will
be tested using multi-class and multi-label classification labelling schemes (see
Section 2.2).

58

3.2.1 Initial Model

As described in Section 2.2.2, a CNN commonly consists of convolutional blocks
followed by one or more fully connected layers. The amount of blocks and
fully connected layers seem to vary among successful CNN based sound clas-
sifiers([22],[43],[17]). A simple configuration containing 5 convolutional blocks
and one fully connected layer as shown in Table 5 was chosen for the initial
model such that the effect of input data could be the focus.

Table 5: Model 1 Architecture

The model has uniformly sized kernels (3x3) through all convolutional layers,
each pooling layer halves both the height and the width of each feature map

59

fed to the layer and all dropout layers blocks 20% of input units. Since it is
argued that it is the convolutional layers that causes the high performance [21]
when extracting features of matrices, it was decided to include only one fully
connected layer to keep it simple and reduce amount of network computations.
As such, the model goes straight from the last convolution to classification.

3.2.1.1 Input Data

The model was initially trained using all 6 classes recorded in the trash collec-
tion simulation (see Section 3.1). In reality, trash bags having only metal or
only glass would very rarely find their way into a mixed trash bin, according to
employees at REN [4]. PM and PG was nevertheless included as classes while
recording as it was hypothesized that it could improve the models ability to
find distinguishing features. Having bags with only metal or only glass could
accentuate those features, such that the model could find them in smaller scale
on more realistic bags. However, it was quickly realized that the two classes
PM and PG did not improve accuracy, specifically if excluded from only the
validation data. The included classes are shown in Table 6.

Table 6: Included classes and amount of samples

Furthermore, testing also showed that the weight data did not improve accu-
racy, but rather constituted a source of confusion for the model. As shown in
Figure ??, weight varies greatly among all classes. Specifically, it can be seen
that weight measurements in PMX class deviates both beneath and above GM,
PM and MMX, such that a model finds it hard to conclude based on the weight.
It was decided to exclude the weight for all further model development to reduce
the input size and increase accuracy. The included data sources are shown in
Table 7.

60

Table 7: Included data sources and their data type

Each of the data source listed above was designated a separate channel since
they all represent the same event, resulting in 9 channels. All spectrograms
where resized to 256x256. The metal data was interpolated to 256 data points
and stacked 256 times on top of each other along the second axis, as the CNN
requires a constant input shape for all channels 2.2.2. This approach was chosen
as during training it was observed that zero padding the metal detection data
would result in the model effectively ignoring this input. As such, the initial
shape of the input tensor was (2019,256,256,9).

3.2.1.2 Training and Testing

Using the input data shown in Table 7, Model 1 was trained on a 80/20 train-
ing/validation split. Due to random initialization of weights and a random se-
lection of dropped units (Section 2.2.2) the result may vary every time a model
is trained and validated on the exact same data samples. Because of this, the
model was fitted 20 times to find the standard deviation and average validation
accuracy so the different input variations would be comparable. Reaching a
maximum accuracy of 96.54.% and an average of 94.94%, it seemed too good
to be true. It was hypothesized that it may have been overfit, even though the
validation accuracy also being high should prove otherwise. The reason it still
could be overfit was that individual measurements of the same class were very
similar to each other, likely because the same exact bag was used many times.
This is a possible issue that will be discussed further in detail in Section 4.
// By collecting data from an additional 10 new trash bags of every class, the

61

possible problem of overfit could be addressed. Every single bag of these new
measurements were unique, and no bags were reused. This ensured that a model
could not by chance either be good or bad at classifying one specific bag and
thereby reach a high or low score. The test would show its ability to classify
10 new bags within each class. The newly gathered data set was called the test
set, and was further used in conjunction with validation accuracy to benchmark
models developed.

By loading the model weights for the best trained model (96.54% accuracy)
and performing inference on the newly gathered data set, an accuracy of 80%
was reached, which was significantly lower than on the validation set. The
reason for this might be that the new data set was captured in different circum-
stances as the rig was moved to a new location at one point. However, about
half of the training set was collected in the new location, such that the lower
score might simply be due to the new data set containing trash bags that have
not been used to generate data points for training. Either way, it may point
to that the model is specialized on the validation set because it resembles the
training set more than the newly gathered test set resembles the training set.
Which in turn may mean that the data set gathered is not varied enough.

3.2.2 Testing More Models

Additional models where created to enable comparison of different parameters.
Two more models where created.

3.2.2.1 Model 2

The second model developed has an additional convolutional block and three
more fully connected layers. As such, the effect of depth of a CNN could be as-
sessed as well as the contribution of the fully connected layers. Its architecture
is shown in Table 8.

62

Table 8: Model 2 Architecture

63

The filter count starts at 16 and doubles on every new convolutional layer, end-
ing at 512. The kernel sizes starts with 9x9 and descends through convolutional
layers. Having bigger kernels in the first layers and smaller kernels in the later
layers is said make the network able to extract both overarching patterns as
well as smaller detailed features([22]). A bigger kernel will include more of
a matrix element’s surrounding neighbours in kernel convolutions (See section
2.2.2), such that more information is included into the resulting feature map.
Additionally, the dropout rate is set to 0.4 in the first layer.

Model 2 was trained on the same data set as the previously trained Model
1. Reaching a maximum and average validation accuracy of 93.54% and 89.62%
respectively, it scored lower on the validation set than Model 1. On the test
set, the model that reached 93.54% validation accuracy, achieved 77.5% test
accuracy. It was hypothesized that the model was simply too complex to learn
from the amount of data gathered and that it would require more to reach a
performance similar to model 1.

3.2.2.2 Model 3

A third and final model was developed and tested. This time with less layers
than model 2 as it seemed to be too deep. It’s architecture is shown in Table 9.

64

Table 9: Model 3 Architecture

As can be seen, a slight different approach with regards to kernel sizes was
tested. Here the first kernel is wider than it is tall, as such, including more
information along the x-axis (time domain) while being more specific along the
y-axis (the frequency band). It was hypothesized that this would let the kernel
look at two frequency bands at a time and thereby focusing on finding individ-
ual patterns in the time domain for each frequency. Additionally, all data is
padded (2.2.2) on each convolutional layer. If not padded, the outer rows are

65

excluded each complete convolution resulting in whole frequency bands being
lost. In image recognition this might not be important as the object usually
resides in many more rows. However, if there are distinguishing features in
the outer frequencies, these should be included. Figure ?? shows the average
strength in each frequency for all classes. The lowest frequency does seem to
have lowest differences between the classes, while differences are reducing with
high frequencies as well. Even though the differences are largest in the middle,
there does seem to be a significant difference in the top frequency.

Being trained on the same data set as model 1 and 2, model 3 reached a max-
imum and average validation accuracy of 96.02% and 94.95%. The model that
achieved the best validation score, achieved 77.5% test accuracy. As of now,
Model 1 shows most promise and will be used further in an ablation study to
determine which sensors contribute to increased detection.

3.2.3 Ablation Study

The following section will compare the results of training a model while varying
the input data to try to understand which of the inputs contribute the most to
successful identification.

As previously described, the input data consists of mainly sound and metal
detector readings. The sound recordings come from separate microphones of
two different types, and the sound is then fed to the deep learning algorithm
after preprocessing. This preprocessing yields two separate spectrograms, as
described in section 2.3. Some of these inputs may contribute more to identifi-
cation than others, and some may even cause the classification to achieve worse
results due to added complexity without adding relevant information.

The following tests were performed using four separate classes; GM, GMX,
MMX and PMX. The model architecture used was the same for all runs of
training. As some combinations could require more or less epochs to train suc-
cessfully than others, the tests were run with 50 epochs and 70 epochs for each
combination. At first another set of runs at 100 epochs was included, but this
seemed to result in overtrained models so instead the fewer epochs were run
more times. The standard deviation between runs is high enough to require
many training runs for comparable results, so most of the tests were done using
20 runs for each epoch number, totalling in 40 runs for each combination. After
performing the tests, the results were recorded and analysed using a two-tailed
t-test to determine if a difference in total test score was statistically signifi-
cant, meaning that any observed accuracy differences were not due to random
variations.

66

3.2.3.1 Mel-spectrogram vs MFCC

Firstly, tests were performed to see if there was a difference between using
both the mel-spectrogram and the MFCC spectrogram, and using only one at a
time. Results showed that using both spectrograms yielded a better test score
compared to a single one, with significant P-values in both cases. Table 10
shows the average scores for each case and the calculated P-value compared to
using both spectrograms.

Table 10: Test of spectrogram test score influence

3.2.3.2 Adjusting Erratic Metal Detector Data

For unknown reasons, the metal detector would in a few rare cases have a base
value other than zero. This wasn’t always discovered during data collection so
some of the measurements have readings like shown in figure 49 below. A normal
reading is also shown for comparison. The deviation, as seen in the second plot,
is that y-axis values start at 3500 instead of the normal 0 value. The difference
between minimum and maximum values in the measurements were still in the
same range as the regular readings, the readings were only shifted by a constant
value.

67

(a) Normal metal detector plot

(b) High base value metal detector plot

Figure 49: Metal detector plots

The differences are very clear if the data is shown in a box-plot of the average
values from each measurement. These are shown in figure 50. The plot shows
that there are some average values that are far higher than total average, and
are off by many standard deviations. The second plot shows the values after an
adjustment has been made. There are still some high values, but these are now
much closer to the global average value.

68

(a) Normal metal detector box-plot

(b) Adjusted metal detector box-plot

Figure 50: Metal detector box-plots

The adjustment was performed as follows: A python script was used to import
the data and subtract the lowest value in the vector from all values in the vector,
so as to move the plot closer to the zero value without causing negative values.
Afterwards, a model was trained 20 times with 50 epochs and 20 times with
70 epochs, and the test scores recorded for comparison with previously trained
models, all with identical parameters and same number of epochs and runs. The
results are shown in table 11.

69

Table 11: Metal data input comparison

The two-tailed t-test shows that there is no significant difference between the
results as it is higher than 0.05. It was therefore concluded that the adjustment
does not affect the results. A possible explanation for this might be that the
model doesn’t emphasize the values of the data, but instead focuses on the
change between values. This change is not affected by the shifted base value, as
the amplitude of the change is independent from it.

3.2.3.3 Difference Between Microphone Types

As described earlier the measurements were performed using both condenser
microphones and contact microphones. It was unclear which of these were most
suited for our use, so tests were performed to assess the performance of the
model. Several runs of training were performed while excluding one type at a
time, and the results were then compared to earlier runs where both microphones
types were present. The results are shown in table 12.

Table 12: Microphone type comparison

As P-values are below 0.05, the conclusion was that the condenser microphone
performs better than the contact microphones. Therefore the contact micro-
phones should not be used as input data. It should be noted that the contact
microphones used for this project were not very expensive, so it is possible that
another model would perform better.

3.2.3.4 Spectrogram Alterations

As can be seen from figure 51, the time frame where the bag lands in the tray
is a very short part of the spectrogram. The bag hits at approximately x = 0.4
in the spectrogram.

70

Figure 51: Unaltered Mel-spectrogram

This means that the spectrogram contains a lot of unnecessary information that
does not relate to the measured bag. It was therefore attempted to remove most
of the unwanted parts so the remaining information would be more relevant for
training the model. A script was writted to identify the peak, and a portion
of 64 columns (or pixels, representing a timestep in the recording) to the left
and 192 to the right from this peak was selected, resulting in an x-axis length
of 256 columns. The original length was 1379 columns. The reason for having
more columns on the right side of the impact can be seen in the spectrogram,
as it appears to be more valuable information to the right than to the left. The
same spectrogram with this alteration is shown in figure 52.

Figure 52: Altered Mel-spectrogram

Tests were performed in the same fashion as earlier to see if the alterations had
any effect. Earlier modifications were also included, so both reference models

71

and new models were trained using only condenser microphones. The results
are shown in table 13.

Table 13: Altered spectrogram comparison

The tests show a significant increase in test accuracy, so this alteration should
be included in the pre-processing of the collected data. An added advantage is
that the spectrogram matrix used for training the model will be much smaller,
reducing the computing power needed to train the model.

3.2.3.5 Weight Measurements

It was discovered early that excluding the weight measurements from the model
seemed to yield better results. Due to incomplete data, a new test was run
to compare results with and without the weight included to ensure that this
decision was correct. This test was conducted with the earlier discussed changes
in place, like altered spectrograms and no contact microphone. The results are
shown in table 14.

Table 14: Weight data effect

The results are clearly worse when the weight data is included. There are a
couple different possible reasons for this. The most likely is that the weight
does not contribute to any pattern, as the addition of glass and/or metal to a
bag does not mean that the bag must be lighter or heavier than a bag with other
materials. Another possibility is that the method for including the data in the
program was poor. As the weight only produces a single data point, this value
had to be added to all indices of a matrix the same shape as the spectrogram
and metal measurements. This is because the program will not accept inputs
of different shapes. A possible use for the weight was proposed, but not tested
fully due to time restrictions. If the surface area or volume of the bag can be
measured using video footage, the density of the bag can be calculated. The
possibility and use for this will be discussed later in the thesis. Unless such a
system is implemented, it is recommended to leave out the weight data from
the machine learning model.

72

3.3 Preliminary Evaluation of Models

3.3.1 CNN, Multiclass Classification Results

The best results obtained from the CNN single labeling model are discussed in
this section. Due to variations between training runs, the model was trained
several times using the same train/test split with both 50 and 70 epochs to
assess the accuracy and stability of the model. The best results were obtained
when selecting a section of 256 x 128 pixels centered around the peak of the
spectrograms, as described in the ablation study section. Also, the model uses
only the condenser microphone. The results are shown in table 15 and table
16, where each column is a separate training run. The values show the number
of successful classifications for that class. The classifications were performed on
the separate test set consisting of unique bags not used for training, as described
in the development section, consisting of 10 sample bags for each class.

Table 15: Results with 50 epochs

Table 16: Results with 70 epochs

It is clear that the model seems biased towards classifying a bag as containing

73

glass, as the GM and GMX categories hit accuracies of 98-99%, while the other
two categories have a lower accuracy score. The misidentifications in the PMX
category poses a problem, as the amount of bags expected to be in this category
can be assumed to be much higher than in the other categories. For the 70
epoch trained models, one out of five bags are falsely classified as containing
either metal or glass, which might lead to many false positives. According to
the trash analysis performed by REN in 2019 [33], 4.6% of the trash in a bin is
glass and metal. This means there is a 20:1 ratio of bags without glass or metal
for every bag containing either of these materials. This means that there will
be 4.55 false positives for every correct identification of glass/metal, calculated
using equation 5.

20

1
∗ 1− (True PMX classification ratio)

True classification ratio(MM ∪MMX ∪GMX)
(5)

This poses a serious problem as the amount of false positives might cause false
patterns to develop. On the positive side, the false positives will be spread out
across all areas over time, so there is still a fair chance that certain areas will
stand out if the positives occur frequently at the same locations. Taking into
account what the false positives are identified as, the ratio improves. Table 17
shows a confusion matrix over the false classification distribution for all training
runs using 70 epochs.

Table 17: False classification distribution

Two combinations stand out in this distribution. Almost all false classifications
are either MMX being identified as GM, or PMX begin identified as GMX. The
first presents a lesser problem, as both are categories that indicate bad sorting
so they can still be counted as a true positive for this calculation. The largest
issue is PMX identified as GMX, as PMX is the category that will be in ma-
jority in the trash collection. It is therefore these false positives that need to
be addressed. When calculating the ratio of false vs true positives while only
taking into account the PMX misclassification, the ratio looks marginally bet-
ter. If again assuming a 20:1 ratio between correctly sorted bags against bags
containing glass and/or metal, the false/true positive ratio becomes 4.22. Note
that this is based on an average of 20 trained models, where some individual

74

models have a higher accuracy than the average. This might mean that one
individual model might achieve a much better false vs true positive ratio.

To attempt to remedy this issue, the same models were used for reclassification,
but this time using a minimum threshold for the confidence of classifications.
If the confidence of a classification was below 0.7, the bag was placed into a
separate ”unsorted” class. The false classifications are shown in table 18.

Table 18: False classification distribution with 0.7 threshold

For this distribution, still only taking into account the PMX misclassifications,
the false/true positive ratio becomes 4.11. The ratio is slightly better, but the
addition of the unsorted category means that the model is missing out on some
true positives, especially in the MMX category. However, the reduction of false
positives is a desirable result.

So far the results discussed have been based on the average values of several
runs. This is helpful for development as it accentuates patterns, though in the
end only a single model will be used. The test set used is somewhat small,
and will not necessarily show the most successful model, therefore it may be
best to focus on the validation accuracies of the models. The model with the
highest validation accuracy may not yield the highest result on the test set, but
might prove the most accurate when applied to a real setting. The best model
in terms of validation accuracy had an accuracy of 99% and had a test accuracy
of 87.5%. For comparison, the models with the highest test accuracy (95%) had
validation accuracies of 98% and 97.3%. The confusion matrices from the first
and second are shown in the tables below.

75

Table 19: Confusion matrix, model with highest validation accuracy

76

Table 20: Confusion matrix, model with highest test accuracy

77

Table 21 shows the results from the single best model trained with multiclass
classification, as opposed to the 20 run averages presented earlier. It also shows
percision and recall for each class.

Table 21: Single best model from multiclass

3.3.2 Multi Labelling

Another way of approaching the problem is multi-labeling. With multi-labeling
(see Section 2.2) one is able ask two question at the same time:

1: Is there metal in the bag?
2: Is there glass in the bag?

The two question are independent and not mutually exclusive. As such the
problem can be framed in a simpler way while maintaining the level of detail,
that is, being able to specify the exact combination of materials present. Table
22 shows a truth table involving two parameters, ”Metal” and ”Glass”, corre-
sponding to each class as used in multiclass.

Multilabel labels
Metal Glass

Multiclass labels
PMX 0 0
GMX 0 1
MMX 1 0
GM 1 1

Table 22: Individual labels corresponding to the four classes

In essence, multilabelling and multiclass are the same. It is possible to go back
and forth and frame the problem in both ways after attaining results simply by
assigning labels from Table 22 to all elements in the confusion matrix shown in
Figure 20.

It does, however, make more sense to use multilabelling as it is related to the
questions that matters for REN. Was there glass and/or metal in the trash
bag? Multilabelling presents the answer to this in its simplest form. Addi-
tionally, multilabel simplifies the model output by reducing the units to two in

78

the last layer. This does, however, require a change in activation function(See
Section 2.2.2) after the last layer, as Softmax requires the sum of output con-
fidences to be 1. Using Sigmoid activation function enables the output of two
independent confidences. How this affects the performance of the models devel-
oped is investigated further.

3.3.2.1 Training Multi Labelling Models

As changing to multi label could potentially alter the accuracy of the model,
Model 1, Model 2 and Model 3 as presented in Section 3, were once again trained
on the data set resulting from the ablation study, 20 times each, with 70 epochs.
Both individual and macro averaged accuracy, precision and recall are registered
on both validation and test data on each run. As such, maximum and average
scores were found for the three different architectures. The results of this will
be presented here.

Table 23 shows the results achieved using multi labelling on all three mod-
els developed. The first three rows presents the model achieving the single
highest validation accuracy, while the following three shows average scores ob-
tained. Results presented under ”All” are all macro averaged, as equal amount
of significance is attributed to both classes.

Table 23: Validation results of Model 1, 2 and 3 using multilabel

It can be seen that Model 1 (M-1) reaches the single highest accuracy of 98.14%.
Model 1 is also the best performer in overall precision (99.48%), accuracy on
metal (100%), recall on metal (100%), accuracy on glass (96.28%) and preci-
sion on glass (98.95%). Model 2 (M-2) does outperform M-1 on overall recall

79

(97.77%) and recall on glass (96.04%). Regarding the average scores, M-1 ob-
tains the best in all categories except overall precision, precision on metal and
precision on glass, where M-2 scores higher.

As multi labelling and multiclass are mostly similar, it was expected that M-1
performed best on the validation set as it did when using multi-class. The best
multiclass model did get higher validation accuracy (99.01%) than that of the
best multilabel model (98.14%). Additionally, multiclass obtains 0.7% higher
average validation accuracy with a P-value of 0.00009.

Figure 53a and 53b shows confusion matrices for the best of the 20 trained
Model 1 on metal and glass respectively. As suggested by the results presented
above, every prediction regarding metal is correct. Glass, on the other hand,
misses 15 times, where 13 of them are false negatives.

(a) Metal (b) Glass

Figure 53: Confusion matrices on validation data for best obtained Model 1

Table 24 presents the score on the test data set.

80

Table 24: Test results of Model 1, 2 and 3 using multilabel

On the test data, M-3 produces the best model within all categories except
overall recall, accuracy, precision and recall of metal, and recall of glass, where
all models are equal. M-1 and M-2 obtains the exact same results. M-3 also
scores better on average in most categories, except overall precision, recall of
metal, and accuracy and precision of glass. In these categories, Model 2 (M-2)
obtains the best result.

Figure 54 shows the confusion matrices of metal and glass on the test set for best
obtained M-1. No mistakes were made regarding the classification of metal. On
glass, 3 false predictions where made with 1 false negative and 2 false positives.

(a) Metal (b) Glass

Figure 54: Confusion matrices on test data for best Model 1

81

As can be seen in figure 24, M-3 achieves high results. Its confusion matrices
are shown in Figure 55

(a) Confusion matrix on test data: Metal (b) Confusion matrix: Glass

Figure 55: Confusion matrices on test data for best Model 3

3.3.2.2 Optimal Threshold

When using multi-labelling a threshold must be defined in order classify a sam-
ple as either positive or negative of the two classes. In all results presented
above, the default threshold has been used, which is 0.5. This makes it essen-
tially equal to multi-class, due to the sum of all probabilities being one, once a
class probability is greater than 0.5 means that it must be greater than all other
classes. An algorithm was developed to find the threshold that constitutes the
highest possible accuracy. It was in fact found to be 0.5.

By increasing the threshold, less positive labels would be applied by the model
resulting in less true positives that in turn results in higher precision and lower
recall. If decreased, more positive predictions would occur resulting in more
false positives and thereby lower precision but higher recall. In other words,
there is a certain trade-off between the amount of true positives and false pos-
itives and thereby precision and recall, when altering the threshold. Figure 56
shows a curve that is constructed using several thresholds from 0 to 1 and the
resulting true positive rate (recall) vs false positive rate (ratio of false positives
to all positives) and thereby presents this trade-off for the validation set. How
or big or small this trade-off is can be described by the area under the curve
(AUC), which when low constitutes a high trade-off.

82

Figure 56: ROC M-1 validation set

As can be seen in the figure, there is not much of a trade-off. The model is quite
fast able reach a high recall when increasing the threshold. Figure 57 shows a
closer look at the slope of the curve.

83

Figure 57: ROC M-1 zoomed

Figure 58 shows the ROC of the classes on the test set. Here the trade-off is
larger than on the validation set, however the model still reaches quite a high
recall rather quickly once increasing the threshold.

84

Figure 58: ROC M-1 test set

By for instance choosing the threshold that constitutes the point on the curve
illustrated in Figure 59, one would achieve a false positive rate of about 0.05
and a true positive rate (recall) of 0.95. This threshold would be 0.98, meaning
that the model seems quite confident of its predictions. This threshold would
result in a validation accuracy of 97.14% and an unchanged test accuracy. As
such, a threshold of 0.5 was chosen.

85

Figure 59: ROC M-1 test set, marked

4 Results and Discussion

In this section, results and their implications regarding the two main compo-
nents of this Master’s will be presented and discussed. In the first part of this
section an evaluation of the Trash Collection Experiment will be given along
with a discussion on its implications. The second part will contain results and
discussions on the ablation study and the CNN model. For each, the results
will be presented first, after which an analysis and interpretation of the results
will be given.

4.1 Trash Collection Simulation

In the Trash Collection Experiment, a simulation of the emptying of trash bags
was created successfully with moderate realism. The construction was com-
prised of relatively cheap and easily accessible materials and was easy to build.
The framework was able to withstand loads caused by the trash bags while
maintaining reliable sensor readings. The complete system worked as intended,
both with regards to the mechanics and the electronics. The trash bags were
flipped and sent through the chute correctly and all sensors readings where ini-
tiated at correct timings.

86

At first, the plexiglass used exhibited too high friction causing some bags to
lag and even stop completely when sent through the chute. To remedy this, a
silicone spray was applied to the surface. This allowed the bags to easily slide
through the chute. A plastic material was chosen as to mimic the sound of bags
sliding out of trash bins. Plexi glass and silicone are quite different materials
from the trash bins(PE)) and a slightly different sound can be expected. The
hope was to show the plausibility to listen to the sliding as well, and another
plastic material was seen as more resembling than for instance MDF. However,
in the experiment almost no sound were generated until the impact, especially
when the silicone spray was applied. To get a closer resemblance, an actual
trash bin could have been used instead.

Even though the metal detector was developed using rather cheap and obtain-
able components, it exhibited decent readings, with a clear spike if metal was
present. Figure 33 shows readings of four different classes. As can be seen, the
data is rather erratic. A filter could potentially be applied upon recording the
data in order to get a smoother curve.

The condenser microphone was able to record a wide range of frequencies and
strengths, thereby producing detailed spectrograms. Figure 35 shows that the
average strength of different frequencies at impact for each class used are rela-
tively different from each other. Almost all classes are significantly different(p
<0.05) from each other on almost every frequency step. This indicates that the
differences between the classes are effectively caught. This shows that the con-
denser microphone was able to record with adequate resolution and consistency.

The contact microphone was also able to record many frequencies, though on
a lower strength level than the condenser microphone as shown in Figure 36.
The standard deviations of the different frequencies are much larger than on
the data captured by the condenser microphone, indicating that the contact
microphone suffers more from inconsistency. It should still be possible to dis-
tinguish GM from PMX with high accuracy by comparing the strengths of the
non-overlapping frequencies. It possible that an increase in gain on the contact
microphone could be beneficial in order to capture more of the details, how-
ever, it is unknown how that would affect the variance. For this, further testing
should be considered in the future.

The camera producing videos of the emptying has not yet been utilized in this
masters thesis. An example of its usage will be explored in 5. It did indeed
record as expected and was able to capture most of the emptying event using
a wide field of view (FOV). From time to time the camera would tilt down due
to heavy forces hitting the metal tray, such that a more secure fastener should
have been chosen.

The weight readings showed both good consistency and high accuracy in a
standalone test. For this experiment, the relative weight was seen more crucial

87

than what the actual weight was. It did not matter for the proof of concept if
the scale was set with a non-zero unloaded value, as long as this remained the
same for all measurements. When placed in the rig, the consistency diminished
greatly, as shown in Figure 41. In the end, the weight data was not used in
classification as it was quickly realized that it affected the models negatively.

The inconsistency of the weight readings was likely due to the how the weight
was recorded. Because the loading tray was attached in one end, the weight
scale may have recorded the torque as opposed to downward force. Unless the
bag was placed with its center of mass directly above the weight scale each
time, the recordings would vary. By filing out bigger holes for the axles leaving
a wiggle room and thereby removing the upward reaction force, the consistency
could be improved. This was attempted, but was likely not done thorough
enough. Nonetheless, having a certain amount of inconsistency was also seen
as advantageous as the same bags were used to create several readings. The
sound recording and metal detection would vary inherently between every mea-
surement as the orientation of the bag could affect the readings. In a sense,
this resulted in a completely ”new” reading on every measurement of the same
bag. If the weight scale was perfect, the orientation of the bag would not affect
the weight reading, such that even though having different sound and metal
detection readings for several measurements of the same bag, the weight would
be the same every time. This could potentially create biases in the network.
Therefore, the inconsistency in the weight measurements was left unattended.

Using the proximity sensor as a trigger mechanism proved to work well. On
very few occasions did the proximity sensor not register the trash bag sliding
past. Additionally, a few ghost readings were experienced. However, if the bag
was placed too close to the edge, the sensor could be triggered due to the plastic
bag handle triggering the sensor. Either using a sensor with slimmer detection
area or moving the sensor further down the chute would eliminate this problem.

The GUI increased the efficiency drastically. In the end, about 10-15 sec-
onds were required for each measurement such that 240-360 measurement
could be taken per hour, given all bags were prepared in advance. For coher-
ence with multi labeling, the labeling scheme in the GUI was changed in the
final version. Here one must simply check a box if the bag contains the specified
material, as shown in Figure 60. Additionally, the possibility of choosing class
in Page 1 has been removed. Now PureMix is set as default class. The folder
system was kept the same. For a future version, control of contact microphone
and video recording should be added as well. Especially regarding the camera,
as it were tilted down from time to time. This would have been noticed at once
if a frame from the video had been presented in the GUI.

88

Figure 60: GUI: Page 2, Final Edition

4.2 CNN Model

4.2.1 Ablation Study

4.2.1.1 Results

The ablation study (see Section 3.2.3) performed showed that not all data gath-
ered would contribute to improved detection rate. Table 25 shows the effect
of different alterations of included data and preprocessing on the test accuracy.
Table 26 shows the resulting sensors and data that in conjunction with M-1,
demonstrates best detection performance on the test data set.

89

Table 25: The effect of sensors and preprocessing of data on the test accuracy

Table 26: Sensors and data for optimal detection rate on used data set

The ablation study shows clear advantages of choosing condenser microphones
over contact microphones. Additionally, a better result is achieved if including
both Mel-spectrograms and MFCCs. The modification that contributed most to
increased performance, was the extraction of relevant frame around the moment
of impact. The weight was excluded from model development rather early, as
it was seemed clear from early on that the results would improve. The ablation
study later showed that this was correct.

90

4.2.1.2 Discussion

The model achieves better results by using both Mel-spectrograms and MFCCs.
It may be because it enables the CNN to extract different features from Mel-
spectrograms and MFCCs that are both relevant to the classification. Addition-
ally, by extracting the relevant frames from the spectrograms, the CNN might
be able learn features more specific to the actual impact, rather than having
to make account for the surrounding irrelevant noise or silence. This may have
eradicated a potential bias where the location (on the horizontal axis) of the
impact could be a deciding factor of which class the sample belonged to.

The favoring of condenser microphone may be due to its consistency. The
contact microphones, as described in Section 3.1.5, exhibited much larger vari-
ance, which may have been the cause of its negative contribution to detection
rate. A dynamic microphone might also be used, though in general condenser
microphones have a larger frequency range which may be important considering
analysis of the frequencies in Section 3.1.5. It should also be noted that the con-
tact microphones used in the experiment were inexpensive and might not have
been of very high quality. Installing less hardware is also desired considering the
amount of trucks that will need modification, since it will reduce costs. Gener-
ally, it is recommended to perform an ablation study after implementation, as
this has proved an effective and simple way of finding the best data sources.

The negative impact of the weight is likely due to large variances found within
the measurements(see Section 3.1.5). As can be seen from Figure 41 it is dif-
ficult to distinguish the classes from mere weight data. It is possible that the
weight could have contributed if there was information about the size of the
bags as well. Since the bags could have many sizes, weight would have to be
combined with its size in order to extract information about the content of the
bag. If a method as will be described in Section 5 was implemented, the weight
might have been more useful. This method involves extracting the amount of
pixels classified as being part of the trash bag, thus giving a representation of
the area and thereby adding context to the weight.

4.2.2 CNN Model

4.2.2.1 Results

Both multi-class and multi-labelling models have been developed and tested.
The multi-labelling has been chosen as the favorable labelling scheme using
Sigmoid as activation function on the final classification layer. The labelling
approach used is shown in Table 22.

Several models have been tested. M-1 reaches the single best (98.14%) and
average (97.24%) validation accuracy. Its average validation accuracy is 2.26%
higher than Model 2 (p = 0.0003) and 0.99% higher than Model 1 (p = 0.00009).
The architecture of M-1 is shown in Table 27 and its results are presented in

91

Table 28.

Table 27: Model 1 architecture

92

Table 28: M-1 Results

Table 28 shows the results of the best out of 20 trained M-1 on the validation set
and test set. A validation accuracy of 98.14% means that the model can reliably
determine the presence or absence of glass and/or metal in the validation data
set. The positive classifications across both classes delivered by the model are
correct 99.48% of the time (precision). Among all positives that should have
been reported, the model reports 96.78% of them (recall). All metrics for metal
are maximized, meaning that no mistakes where made when predicting presence
or absence of the class. Regarding glass, 98.95% of the positives reported were
correct (precision), whereas 93.56% of the total amount of samples containing
glass where reported (recall). Scores are lower on the test set, though only with
regards to the glass class. Recall is higher than precision, 95% and 90.48% re-
spectively, meaning that the model favors a more complete delivery of actual
positives than a precise one, on the test set.

As seen in Figure 61, the model makes no mistakes regarding the metal class.
Whereas three mistakes are made on glass. As mentioned earlier, the ratio be-
tween correctly sorted bags to wrongly sorted bags is about 20:1, based on the
statistics presented in section 2.1.2. Using equation 6, it can be shown that
one can expect around 0.21 false positives for every true positive if using the
validation score as basis. With the test score, 2.1 false positives can be expected
for every true positive in real application in Oslo.

20

1
∗ (

FP

FP + TN
÷ TP

TP + FN
) (6)

93

(a) Metal (b) Glass

Figure 61: Confusion matrices on test data for best Model 1

4.2.2.2 Discussion

Even though the multi-class model achieves a better validation accuracy(+0.7%,
p = 0.00009), a multi-labeling approach is favored. The reason is that framing
the question in such a way seems to be more coherent with reality. Additionally,
if more classes are to be introduced at some point, it is easily scalable with multi-
labelling by directly adding the classes, whereas the amount of classes(output
neurons) needed for multi-class would increase exponentially as every combina-
tion must be a separate class. This was seen as more valuable than the 0.7%
extra validation accuracy multi-class could provide on the data set used.

M-3 does achieve better on the test set with maximum 98.75% and average
94.13% accuracy as opposed to a maximum of 96.25% and average of 93.81%
for M-1 as shown in Table 24. The increased score on the test set is, however,
not significant(p = 0.66) such that it can be attributed to coincidence. As such,
it cannot with confidence be said that M-3 in general will perform better than
M-1 in glass and metal detection. On the validation set M-1 performs better
with significance (p ≤ 0.05), such that one could argue that it has a higher
probability of achieving the best performing model when several of them are
trained for the real scenario.

It cannot be easily determined which metric is more important to maximize.
Having a higher precision than recall means that the false negatives outnum-
bers the false positives. This may be favorable, as many false positives can lead
to a consumer being falsely accused of poor sorting, for this a threshold even
higher than 0.98 could be chosen. On the other hand, REN is likely interested
in catching as many bad sorting cases as possible such that they may take mea-
sures that affects more of the people that are not sorting correctly, in that case a
lower threshold should be chosen. It really comes down to what measures REN

94

wants to take. If they are related to money, for instance by giving fines to people
that do not sort or a relief in waste collection fees to people that do sort, it may
be of high interest to avoid miscarriage of justice (high precision). However, if
the measures are to increase the information given to the people that do not
sort, by for instance putting up posters in the immediate area, then perhaps
including more of the bad sorting cases (high recall) is more important than all
of them being correct. In the precision and recall scores reached in the data
sets used here the trade-offs are not very big, however, it is likely that a model
trained on several bags being emptied at the same time in varying locations will
have substantially more FPs and FNs, as will be discussed in Section 5.1.

The metal classification reaching 100% accuracy is not a surprising result when
studying the metal data collected in the experiment. The indications are so
clear that this classification could be done manually as shown in Section 3.1.5,
where an accuracy of 98.4% was reached. It seems, however, that the model
was able to learn to ignore the sporadic readings shown in Figure 38 such that
it reached an accuracy of 100% on the metal class. Additionally, many glass
containers have metal lids, so the metal detector may add more information to
the glass classification as well.

There is a certain difference in the corrected amount of false positives for every
true positive between validation and test set. The 2.1 FP for every TP for the
test set is a substantial amount. This can, however, still be seen as an acceptable
number considering that the false positives will over time be spread out evenly
across all locations in the real-world, while the true positives will concentrate
in areas of poor sorting, assuming such trends in sorting exist.

5 Limitations, Applications and Future Work

In this section, the main limitations and drawbacks of the system will be dis-
cussed followed by its application. Furthermore, future potential additions will
be explored. It must be noted that other applications are discussed in the article
in Section 7 as well.

5.1 Limitations

5.1.1 Trash Collection Simulation

The trash collection simulation were developed with the intention of mimicking
the real life scenario. It must be stated that the evaluation of resemblance given
in this thesis is mostly based the authors personal experience, experience from
several visits with REN and interviews with employees at REN. One of these
visits included a complete ride along on two trash collection routes such that the

95

authors could experience trash collection at first hand giving a deeper insight
into the trash collection operation. In order to get a more scientifically grounded
evaluation, however, readings should have been performed on the truck as well.
Recordings of bag impact from the truck and the simulation could be compared,
for instance by comparing the strengths of different frequencies. As such, one
could discover the potential shortcomings of the simulation and alter it there-
after.

Even though using an actual trash bin as chute could ensure resemblance, it
has been convenient to have a transparent material. During operation, this
only improves the experience for the operator. However, it has been helpful
during the development and prototyping of the rig. The rig could have been
nearly fully developed using transparent material, after which the completion
could be done with an actual trash bin.

The chosen microphone was a rather expensive component, and it is unclear how
well a cheaper microphone will catch the details of the impact. It is certainly
something that should be tested prior to initiating any big scale development.
If a sufficiently cheap microphone is not able to record with enough resolution
then it would halt the project.

It must be noted that the analysis performed in Section 3.1.5 represents the
differences in the obtained data set and does not necessarily reflect how every
future reading of trash bags within those classes will be. There are many metal
and glass objects that were not in any of the bags measured. It is expected
that these objects would make sounds similar to other objects of the same ma-
terial, but whether it resembles sufficiently for successful detection is unclear.
Furthermore, the fact that GM has higher average metal detection peak may
be simply because the bags were consistently loaded with more metal than that
of the MMX class as it often got additional metal from lids of glass containers.
Lastly, the PMX trash bags contained trash collected on the campus of NTNU
and may not be the most representative mixed trash.

5.1.2 CNN Model

The use of sound recordings and metal detection with CNN seems a promising
approach for detecting glass and metal when considering the results achieved.
The high test accuracy of 96.25% might indicate that there is a good possibility
of a high accuracy when the system is installed in the intended location. The
primary purpose of the test set was to benchmark a model’s applicability in a
semi-real scenario. Whether or not this test set actually captured much of the
varieties found in reality is not apparent. As it only contains 10 measurements
of each class, there are likely many more variations. However, it was believed to
be the most varying data set obtained in this project such that using it to mea-

96

sure the models’ generality was seen as the most valuable aspect of it. There is a
possibility that the test set, even though being different from the rest, resembled
itself such that it simply caught one other variation. If that is the case, then
perhaps it is best put to use by simply including it in the training. How much
40 measurements as opposed to 2000 would affect the weights of the model is
unclear, however.

Another purpose of the test set was to possibly verify the hypothesis that one
bag could effectively represent several trash bags of the same class. The fact
that there was significant discrepancy between the scores on the data sets, could
not refute the hypothesis either. The differences in the data sets may be due
to other circumstances. For instance, two people were in the room instead of
one when it was recorded, such that it may have caused changes to the acous-
tics and thereby the sound data. There might also have been other unknown
methodical errors. In any case, an analysis of the effect of reusing bags should
be performed. For instance by comparing the variances of a data set containing
unique bags and a data set containing reused bags. What is certainly clear
from the discrepancy between the scores, is that the training set does not vary
enough to capture the reality.

It must be stated that the high accuracy scores has been achieved in a highly
controlled environment (i.e. the trash collection simulation) and is likely to
perform poorer at the back of a truck. Several factors can lead to the results
deviating from this experiment, such as dissimilar ambient noise and differ-
ent sensor placement. The largest unknown factor is that the collection trucks
empty several bags at the same time. In the experiment the bags where emp-
tied separately, so especially the sound might differ greatly compared to the real
situation. Experimenting with several bags at a time on the test rig is probably
not the best way to progress further, as it will only yield information on that
particular subject. As there are other unknown factors, the recommended next
step will be to install the system on a collection truck so the results will give a
definite answer on the full applicability of the system.

Neural networks in general vary greatly and there are near infinite combina-
tions of layers and model parameters. There is no golden standard for all tasks,
let alone all sound recognition tasks. A large part in finding a suitable network
constellation is trial and error. It is hard to explicitly recommend a specific
model for further work as the data set representing the reality will likely differ
substantially from the data set used here. All models perform quite well on the
data set used, M-1 did the best, however it is unclear whether the same model
would perform best in the real situation as well. The experiment does show
that the task of recognizing glass and/or metal using CNN seem quite possible.

97

5.2 Application in Waste Collection Cycles

A glass and metal detection system may have many applications in a trash
collection cycle, but one of the more beneficial application is perhaps early in
the collection cycle, at the back of a service truck, where traceability of bags
is still intact as mentioned in Section 1. Gathering the data here would result
in a clearer image of people’s recycling behavior. The system developed in this
thesis is with good accuracy able to detect the presence of glass and/or metal
in singular trash bags hitting a metal tray. In reality, bags come in batches;
however, being able to classify one bag at a time was seen as a necessary first
step to show the feasibility of using sound for recognition. It must be stated
that the trained models presented cannot be directly used with the emptying of
several bags. For this, a new model must be fitted and trained using appropriate
data. It is unclear whether one could achieve similar results having a full bin of
trash bags, but having the results of the models developed here in mind, it does
show promise. Testing with the system mounted to a waste collection truck was
desirable, but unfortunately not possible due to the COVID-19 pandemic.

If a robust model for detecting the presence of glass and/or metal when emp-
tying trash bins were to be developed, any municipality collecting waste that
should not contain glass or metal using waste collection trucks, may benefit
from it. Most of the bigger cities of Norway collect glass and/or metal separate
from the rest ([38],[2],[1],[32]), and may make use of such a system.

There is no doubt that more data on the recycling behavior is beneficial for
improved waste management. It enables decision makers to make fact based
decisions that may result in more efficient measures.

5.3 Including More Video Data

The video camera was included in the experiment with the aim of enabling
other possible means to extract information through image recognition. One
such method is to extract the area of the bags and thereby adding a much
needed context for the weight measurements. As mentioned previously, one
possible reason the weight did not improve detection rate, was that bags would
vary much in size such that the weight varied a lot as well. With the added
surface area, the weight could contribute through determining a sort of density
of the trash bag, and since different materials have different densities, this could
provide additional patterns for the CNN to detect.

There was an attempt at estimating the surface area of the bag using Mask
R-CNN [16] with moderate success. Figure 62 shows a detection performed by
Mask R-CNN. Mask R-CNN has not been covered in this Master’s Thesis, such
that the reader is referred to their study for more information.

98

Figure 62: Mask of trash bag found

By counting the amount of pixels in the resulting mask, one could either use
that number as is, or attempt to estimate the actual area by accounting for the
camera placement and FOV. In this case, the 9837 pixels where classified as
being part of the trash bag.

This approach was not taken further as much of the camera footage was faulty.
As for instance seen in the figure above, the trash bag is slightly out of the
picture. This would result in faulty area readings as well.

Extracting a picture of the bag slightly before impact was also attempted. Fig-
ure 63 shows a picture of a bag mid fall that could be used instead of the last
image. However, since the camera were tilted from the forces of the impact from
time to time, the camera angle was not consistent. Extracting a certain frame
in a specific moment, would thereby not result in consistent area readings.

99

Figure 63: Trash bag mid fall

There was and idea of training a model to detect the masks of trash bags well
enough, so that it could detect when the trash bag was in the middle of the
picture, and first then extract the area. This could result in slightly more con-
sistent readings, however, this would suffer from the bag not being positioned
at the same distance from the camera every time, thereby still producing faulty
area readings.

Focus were placed elsewhere in this thesis, but the method has potential for
future work.

5.4 Detecting More Than Glass and Metal

As is evident by the distribution of materials shown in section 2.1.2, there are
other types that could be useful to be able to detect. At the time, REN collects
food waste in separate bags, but in the same bin as plastic and mixed waste.
A new approach is being tested which has a separate bin for food waste, and if
this project continues it will be necessary to measure the amount of food that
is disposed of in the wrong place, i.e. with the mixed waste or plastic waste.
Other types of sensors could possibly work well to identify food or other mate-
rials, and may also improve the functionality of the existing system.

In the paper ”Multi-material classification of dry recyclables from municipal
solid waste based on thermal imaging” [15], thermal imaging is used to sort
between iron, stainless steel/aluminum, plastic/paper and wood. The materials

100

were heated before an image was taken, and machine learning was then used
for classification. The accuracy obtained was between 85-96%. Some possible
problems with including this in the system is that heating may be required,
which takes time and energy, and the imaging may not work as well when the
waste is contained inside a plastic bag.

Another method is called Hyperspectral imaging, which is a form of spectroscopy
using different wavelength of light to determine the material composition of an
item. This method shows promise, but as thermal imaging it has only been
tested for loose objects. A study by Zheng et. al. reports a 100% classification
accuracy of different plastics, although with a sample size of only 94 [44]. It is
possible however that this method could work for objects inside plastic bags as
some wavelengths of light can penetrate through the bag and therefore expose
the objects within in the image. Some studies of transmittance in polyethylene
indicate this possibility, including one by Balocco et. al. [6].

5.5 Other Possible Implementation Areas for the System

While the system has been designed with the goal of installing it on a garbage
truck, this is not the only location it could prove useful. Another possible loca-
tion could be inside the sorting facility, where the bags are separated by color.
During this sorting the bags are transported between stations on conveyor belts,
and over time they become separated into either single bags or small clusters of
2-3 bags. If a drop is included somewhere along the line, the sound of the bags
landing can be recorded, and it would be trivial to install a metal detector there
as well. This could be used to separate bags containing glass or metal before
they reach their final destination, preventing unwanted materials contaminat-
ing biogas production, plastic recycling or similar. The major downside of this
placement is that there is no information regarding the origin of the bag, yet
a considerable advantage lies in easier installation and the possibility of mea-
suring a single bag at a time, simplifying the operation. Also, there are many
collection trucks that will need modification, but in the sorting facility only a
few measuring stations will be required.

Another possible location could be in shared garbage chutes, for instance out-
side condominium buildings. These often have chutes that need to be unlocked
with a personal RFID tag, so the bags could be measured and the measurement
linked to the individual who disposed of it. An advantage here is that the chutes
are generally too small to dispose of several bags at the same time, so the mea-
surement would always read a single bag at a time. From personal experience,
these chutes are about the same size as the plexiglass chute in the testrig, so
the equipment could be installed in a similar way, perhaps with an impact spot
along the way for the bag to generate sound before it lands among the previ-
ously disposed of bags. The trash from these shared containers are emptied by
dedicated trucks, so installing the system here would not exclude the need for
using it on the trucks that empty the single household bins. Therefore it would

101

be recommended to install it in both locations.

6 Implementation in Oslo

This section has the aim of enabling employees at REN to fit the system pre-
sented in this Master for their own trash collection cycle. For that, they should
replicate the experiment performed in this Master, using their own service cars
and trash gathered from their clients. This will hopefully result in a model
capable of classifying the presence of metal or glass in a bin of trash bags, that
they may use to gather information about peoples recycling habits regarding
glass and metal.

An overview of an execution plan on how to develop and implement the system
on the service cars is shown in Figure 64. This execution plan includes sugges-
tions on the selection of sensors and their placement, how to gather the training
data efficiently and sensibly using the GUI developed in this Master, how to
develop and train a CNN model, and how to test and implement a finished
model.

Figure 64: Suggested execution plan

6.1 Sensors and Placement

6.1.1 Sound Recording

There are many possible ways to go about sound recording, and due to none
of us being experts in the field, this part will only include suggestions on how
it can be solved easily. The quality of the recording is of high importance as
the differences between bags containing metal and glass is very slight compared
to normal mixed waste. The operating environment is harsh as it is exposed
outside weather, so the equipment should be of high quality as well as being
made for rough operating conditions.

102

A good candidate is the recorder used for the measurements in the project. The
Zoom H6 can deliver multi-channel audio to a small device like a Raspberry Pi
for recording. If our approach is used, the sound is recorded and stored using
a short python script which is included in the ready made program. Other
recorder types can be used without any changes as long as the device outputs
audio in separate channels to the receiving device. The Zoom H6 supports 6
channels, while other types like the Zoom H4 supports 4 channels. This project
has not investigated how many channels should be applied as this depends on
the size of the tray on the back of the truck. The amount of microphones must
at least be enough to pick up sound from any location in the tray. A suggestion
for amount of microphones and location will be provided at the end of this sec-
tion.

As concluded earlier, contact microphones have poorer performance than con-
denser microphones. There are several types of condenser microphones, but the
safest choice would be one covering a wide range of frequencies and with di-
rectionality suited to covering the whole area. The condenser microphone used
in the project was the one included with the Zoom recorder. This microphone
has a range of 44.1kHz at 16-bit resolution. This has proved adequate for this
project, and in lack of testing will be considered sufficient for later implementa-
tion. It should be noted that in the study ”An investigation of the usability of
sound recognition for source separation of packaging wastes in reverse vending
machines” [19], dynamic microphones are suggested because of similar perfor-
mance to condenser microphones at a lower cost.

Placement of the microphones will depend on how many are used, and their
directionality. To minimize outside noise it would be beneficial to have some
directionality to the microphone. The zoom microphone could be set to either
90 or 120 degrees, meaning that it registers sound in a cone within the set angle.
On the test set 90 degrees was used, which was appropriate due to its placement.

A suggestion for microphone placement is shown in figure 65. These areas
are not subject to any moving parts and also less prone to damage. It is not
mandatory to use four microphones as shown in the picture, but generally more
sensors will improve the quality of the data collected. It will probably be suf-
ficient with two microphones if the directionality is wide enough to cover the
whole tray. The placement of the Zoom recorder (Zoom H4n shown in the pic-
ture) can be selected freely, a suitable location is easier to decide once other
components are considered.

103

Figure 65: Microphone placement suggestion (picture from REN, altered)
(microphone clip-art designed by Freepik)

6.1.2 Metal Detection

The metal detector used in the project is cheap and easy to build, but has
some issues that must be considered. The detector reacts well to metal passing
through the search coil, but the range outside the coil is very limited. At about
10cm for a beverage can, the range is not sufficient to cover the required area.
Therefore it could be difficult using it for truck applications. It would probably
be better to use an adapted commercial detector with a range of about 0.5
meters that could output its signal directly to a Raspberry Pi or similar. This
solution would prove more compact, and probably be more robust, which is of
importance due to the harsh conditions it would be operating under. Employing
the metal detector used in the project in the same manner would be impractical
and prone to damage from debris, as illustrated in figure 66 where the yellow
drawing indicates the search coil.

104

Figure 66: Bad choice for metal detector implementation (Original image from
Joab.se, altered)

A commercial, compact metal detector could possibly be modified and mounted
to the hydraulic arm that lifts the bins. This would put it in close proximity
to the bags as they exit the bin and given a sufficient detection range, be able
to pick up any metal as the bags pass the detector. Such a detector has to be
specialized to some degree, and it would be advisable to consult with someone
experienced on the subject for selecting the device to use. This solution might
well prove to be the easiest and most reliable. A commercial detector typically
has a search coil with diameter about 200mm. One example claims to detect a
coin at about 120mm depth in the ground, which seems to be a quite common
range for these. This puts the range somewhat lower than desired as the smallest
bins have a width of 480mm and the larger ones are 1200mm wide. Metal objects
found in the bins will however generally be larger than coin sized, so the range
might be adequate as it depends on object size. The example detector here is one
of the cheap models, some claim search depth of 250mm and more, depending on
the size of the object. An example of a possible installation location is provided
in figure 67. To cover the whole area several coils will have to be installed if the
commercial circular types are employed.

105

Figure 67: Suggested metal detector installation area (picture from REN, al-
tered)

6.1.3 Proximity Sensor

Using a proximity sensor in the same was it was employed in the test rig would
be difficult on a waste collection truck. The sensor could be triggered by outside
factors, like the workers, or miss the bags entirely due to the less constrained
area they pass through when falling from a bin. There is however already a
system in place that can be used instead of a proximity sensor. Some trucks in
Oslo already has a sensor mounted to the hydraulic lifting arm that measures
the angular position. The feedback from this sensor can be used in place of the
proximity sensor to start recordings, and the recordings can be stopped by a
time counter in the program in the same way as the test rig operates. This is
probably the easiest solution as it is already developed and is not likely to be
triggered by any outside factors.

6.2 Control Software

In order to control the initiation of each of the sensors described above, it is
recommended to utilize an Arduino as it provides easy prototyping and control
of sensors. It is also highly recommended to utilize the GUI developed in this
Thesis as it enables the operators to control each and every measurement taken
as to ensure the readings are not faulty. Both scripts are added in the Appendix
and may be used and tweaked freely as seen fit by the employees at REN.
The camera already installed on the trucks is connected and controlled by a
Raspberry Pi. It is possible to connect to this unit through WiFi as it creates

106

its own network. This way, commands can be sent to it from a computer telling
it to initiate video recording.

6.3 Data Gathering

The initial step in data gathering will be to produce bags which will be mea-
sured and used to train the machine learning model. There are several factors
to consider when making these bags to ensure the system functions as intended
and to insure optimal performance.

Realism:
Creating bags that resemble the bags found under normal operations is of high-
est importance. It may be tempting to just use bags that have been collected
during daily operation directly, but this will require that the contents is checked
for any unwanted items. If a bag is measured and labeled as containing no glass
or metal, it is vital that this is actually the case. The only exception here would
be very small amounts that are considered acceptable. During the project we
encountered empty cardboard beverage containers that had an aluminum lining
on the inside. These were registered by the metal detector, but we included
them as mixed waste as we deemed them acceptable in this category. Decisions
concerning if very small amounts of metal and glass should be in the accepted
category must be made by the appropriate authority on the subject.
This leaves two options for the accepted bags, either go through the bags al-
ready collected to ensure no unwanted items and store them for use, or make
entirely new bags. The recommended approach will be discussed in the end of
this section.

Variety:
It is important that the bags are varied in contents, size and composition. The
reason for this is to reflect the real conditions as precisely as possible. Bags
containing different amounts of metal and glass should be represented, from the
smallest amount deemed unacceptable to the highest amount deemed realistic.
Each of these amounts must be present in several bags with varying contents to
ensure that as many possible realistic combinations are represented in the train-
ing data set. Size of the bags is also important, as this is a variable encountered
in real operation. Weight and size relation should be taken into account as it
is probable to encounter small and heavy bags as well as large and light bags.
In short, the goal should be to include as many possible combinations of these
variables as possible, the only exception being if some combination will never
be encountered during operation.

Quantity:
In general, the more measurements taken, the better. At some point though,
the training set will become so large that the computing power required will
present a problem. Also, the performance of the system will not improve in-
finitely, so collecting too much data would be a waste of time and resources.

107

The question then becomes how many measurements to take, which does not
have a definite answer. Based on experience from this project, and a general
idea from other machine learning projects, the amount of measured bags in each
category should be at least between 500 and 1000. If the measurements are easy
to obtain, 1000 of each category will be a good starting point. The model can
then be evaluated and one can decide if more measurements are needed. One
additional consideration is that each class should have about the same number
of measured bags. If one class is over-represented it may lead to the model
favoring this class during operation.

Producing bags for measurement:
It is known that REN performs a manual sorting event one or two times every
year. During this event employees manually go through trash bags and record
the contents to assess the quality of the household sorting. This event is perfect
to combine with the production of bags for building the test set. As the bags
are processed, they can be rebagged after the contents is recorded so the con-
tents is perfectly controlled. Alternatively, the bags can be measured before the
contents is checked. As most of the bags encountered during this process will
probably not contain metal or glass, it is recommended that these materials are
procured beforehand so they are ready to combine with bags for the test set.
It is very important that all personnel participating are briefed on the factors
detailed in this chapter so the bags created uphold these criteria. In addition,
one must remember to tag the bags in some way to make sure that the contents
is known for later.

6.4 Training the CNN Model

The models presented in this Master has been reached through an iterative pro-
cedure where many different constellations and settings has been tested. For
REN to reach a model best fit for their system, a similar approach should be
taken. However, it is sensible to first try the architectures used in this Master,
though, other architectures should be tested as well. REN is currently work-
ing on machine learning solutions and possesses both knowledge and experience
within the field [4] such that it is expected that they could develop their own
model.

After which a round of data gathering has been performed, an ablation study
should be conducted. By removing one data source at a time, which sensors
that contribute to increased detection rate may be uncovered. If additional data
sources are added at a new round of data gathering, all previous data sources
even though deemed unnecessary by the ablation study, should be included in
a new ablation study. New data sources might give context to previously used
data sources, and only by including everything may this be revealed.

Every combination of included data should be saved as an array locally on
the computer. This way, one may run one main script training a model on

108

all data sets. An example of training M-1 both with and without contact mi-
crophones is shown in Appendix A.2.5. If one wishes to train several models,
additional main files can be created importing different models in the first line.
A batch script may then be created running the different main files as shown in
Appendix A.2.7.

7 Journal Paper ”Detecting improperly sorted
content of trash bags during waste collection
using convolutional neural networks”

This section contains the paper that was written about the work performed in
this thesis. The complete article is presented in the next page.

109

1

Detecting improperly sorted content of trash bags
during waste collection using convolutional neural

networks

List of authors:

 Oliver Istad Funcha,*

 Robert Marhaugb,*

 Sampsa Kohtalac,*

 Martin Steinertd,*

Authors’ affiliation(s):

*Norwegian University of Science and Technology (NTNU), Department of

Mechanical and Industrial Engineering, Richard Birkelands Veg 2B, 7491

Trondheim, Norway

 a
 oliver.funch@gmail.com

 brobertmarhaug@gmail.com

 csampsa.kohtala@ntnu.no

 dmartin.steinert@ntnu.no

Corresponding author:

Name: Sampsa Kohtala

Email: sampsa.kohtala@ntnu.no

2

Abstract
We present a proof-of-concept method for classifying the presence of glass and metal in consumer trash bags.

With the prevalent utilization of waste collection trucks in municipal solid waste management, the aim of the

method is to help pinpoint the locations where waste sorting quality is below accepted standards, making it

possible and more efficient to develop tailored procedures that can improve the waste sorting quality where

it is needed the most. Using trash bags containing various amounts of glass and metal, in addition to common

waste found in households, we use a combination of sound recording and a beat-frequency oscillation metal

detector as inputs to a machine learning algorithm to identify the occurrence of glass and metal in trash bags.

A custom-built test rig is developed with the purpose of mimicking a real waste collection truck, which is

used for testing different sensors and building the data sets. Convolutional neural networks have been trained

for the classification task, achieving accuracies up to 98%. The promising results supports potential

implementation in real waste collection trucks, with the method enabling location-specific and long-term

monitoring of consumer waste sorting quality which can provide decision support for waste management

systems, and research on consumer behavior.

Keywords: Trash bag classification, convolutional neural network, waste collection, sound recognition,

metal detection

Nomenclature:

BFO Beat-Frequency Oscillation

CNN Convolutional Neural Network

GM Glass and Metal

GMX Glass and Mixed waste

HMM Hidden Markov Model

MFCC Mel Frequency Cepstral Coefficients

ML Machine Learning

MMX Metal and Mixed waste

PG Pure Glass

PM Pure Metal

PMX Pure Mixed waste

REN Renovasjonsetaten

RFID Radio Frequency Identification

ROC Receiver Operating Characteristics

SVM Support Vector Machine

3

1 Introduction
The increasing focus on preserving the global environment has led to marked changes in the municipal waste

management policies around the world. The EU has set targets for recycling of household waste at 50%

within 2020, 55% within 2025, 60% within 2030, and 65% within 2035 according to Avfall Norge, the field

association for recycling in Norway (Wilsgaard, 2018). Currently, this number is around 35% according to

Renovasjonsetaten (REN), the department responsible for municipal waste management in Oslo.

According to Adhithyarasanna and Kaushal (2018), waste should be sorted at the earliest stage possible to

reduce contamination during the recycling processes. Improper sorting can lead to bag rupture due to sharp

edges, contamination of plastic reducing the recyclability (J. Almankaas & J. H. Ellefsen-Killerud, personal

communication, 4 January 2020), contaminated biogas production (Jiang et al., 2020), and contamination

during waste incineration. Recycling materials like aluminum is also a preferable alternative to incineration

as the energy costs of aluminum production is much greater than the cost of recycling. The current municipal

waste system in Oslo, as illustrated in Figure 1, relies on home sorting by the consumer. Consumers sort their

waste into bags of specific colors, which are later separated in a waste sorting facility. Neither glass nor metal

should go in these bags as a separate collection point is dedicated for these materials. For this system to

function, it is vital that the consumer performs this sorting (Rousta & Ekström, 2013), and does so correctly

since the sorting facility only considers the distinct bag color and not its content. Radio frequency

identification (RFID) tags are fixed on the waste containers outside people’s homes, which are read by the

waste collection trucks to record the location of each emptying, along with a timestamp and the weight of

each waste bin. The degree to which the contents of the colored bags are correctly sorted is not known during

this collection process. Today, knowledge about incorrect sorting in Oslo is gathered by manually analyzing

a portion of collected waste once a year. 4259kg of waste from 10 different areas were analyzed and reported

in 2019 ("Avfallsanalysen 2019," 2019). The report found that in the mixed waste category that will

ultimately be incinerated, only 26.6% in weight of the contents belonged in that category. Of the materials

not belonging in this category, the fourth largest was glass and metal, constituting 6.1% in weight. There was

also a significant difference in sorting quality between the geographical areas, where the amount of wrongly

sorted trash varied from 9.8% to 63.4% in weight.

Figure 1: The waste management cycle that is the basis for this study, which starts from the source separation by

consumers and ends at the optical sorting facility.

Attempts have been made in previous works to improve on consumer sorting, either by developing an

automatic system to perform the sorting instead of the consumer or a system for quality control of the home

sorting task, usually relying on some sort of classification method. The most prevalent shortcoming of these

approaches is the use of single objects per datapoint (Adhithyarasanna & Kaushal, 2018), often requiring or

4

assuming that a dedicated sorting system is able to accurately separate piles of trash or rely on consumers to

separate each trash individually. Meanwhile, convenience is one of the driving factors for source-segregation

of waste in households (Bernstad, 2014; Rousta et al., 2017), such as having separate bins for different waste

types. Consumer sorting requires knowledge and incentives to function properly. Being able to identify and

link consumers to their trash sorting habits can help localize the areas where sorting behavior needs

improvement. Rada et al. (2013) stated that uncontrolled road containers in Italy had lower sorting quality,

indicating that consumers are less concerned when the trash bins are not directly relatable to them, thereby

making a link between consumers and sorting quality an incentive for changing behavior.

The selected approach in this study aims to identify glass and metal in the collected waste without having to

inspect the contents of the individual bags manually. Glass and metal are chosen as they are commonly sorted

wrong by consumers who are not using (or are not aware of) the designated collection points for these

materials. Our method utilizes a combination of sound recording and a beat-frequency oscillation metal

detector as inputs to a machine learning algorithm to identify the occurrence of glass and metal in trash bags.

The intended implementation for the method is in the trash collection trucks, with the aim of collecting

information about the quality of sorting during the normal collection routines. As a system with RFID is

already in place for the trash bins scheduled for collection, our approach aims to help pinpoint the locations

where waste sorting quality is below accepted standards, making it possible and more efficient to develop

tailored procedures that can improve the waste sorting quality where it is needed the most, thus improving

the overall waste management system. Other potential benefits associated with collecting this type of data

will also be discussed.

An experimental design has been developed including a custom-built test rig for capturing data sets of trash

bags containing different levels of glass and metal. For the proof-of-concept trash-classification system, we

generated bags in six different categories for training and evaluating several machine learning (ML) models.

Multiple sensors are tested to find the best combination of input data for the models, and the final models are

presented with results and a discussion on the implications and prospects of our approach for supporting

waste management systems.

2 Related work

2.1 Solid waste classification

A common trend for classifying solid waste in literature is based on analyzing image data. Specifically,

Convolutional Neural Networks (CNNs) have been heavily used in multiple applications after gaining

popularity over the past few decades, mostly due to its impressive accuracy in classifying images with an

increasing training speed (Krizhevsky et al., 2012). A CNN is a supervised learning method, mapping two-

dimensional input data (e.g. images) to output data (classes or categories). The main idea behind CNNs is to

automatically learn to extract relevant features and find patterns from the input data (LeCun et al., 1998). In

simple terms, a CNN consists of the input and output layer, with hidden units in-between consisting of

convolutional- and pooling layers for extracting features and a fully connected neural network for calculating

class probabilities based on the features. Using the input and output examples (i.e. labeled images) the CNN

is able to update its weights through backpropagation to improve the classification accuracy of the model

being trained. One of the challenges with CNNs is acquiring the large amounts of data that is often needed

to properly train and tune a model.

In one of the earlier works on applying machine learning to classify solid waste by Yang and Thung (2016),

they generated a dataset called TrashNet with roughly 2400 images of solid waste in six different categories

(glass, paper, metal, plastic, cardboard and general trash). They achieved an accuracy of 63% using an SVM

(support vector machine) with a feature detection algorithm, and 22% using a CNN. Bircanoğlu et al. (2018)

experimented with several different CNN architectures on the TrashNet dataset. They achieved the highest

accuracy of 95% by fine-tuning a pre-trained model and using data augmentation (flipping and rotating

training samples) to increase the data set size. Similarly, using randomly initiated weights for the model, Ruiz

et al. (2019) achieved an accuracy of 89%. Lindermayr et al. (2018) extended the TrashNet dataset by

capturing more images of trash. To resemble their application of roadside trash detection, they also generated

synthetic data by segmenting the trash and adding different backgrounds to the images. Their best model

5

reached an accuracy of 84% for the more challenging dataset. Toğaçar et al. (2020) combined an auto encoder,

CNNs and an SVM to classify images of waste as organic or recyclable from a large dataset of over 20k

images, and achieved nearly 100% accuracy. Chu et al. (2018) developed a classification system utilizing

images together with weight and metal detection sensors. Their method, called multilayer hybrid method,

used a CNN for extracting image features and sensors to capture numerical features. Their model had an

accuracy of over 90% for classifying items such as paper, plastic, metal, glass, and food waste as recyclable

or not. A classification model for electronic waste including the ability to estimate the object size (object

detection) was presented by Nowakowski and Pamuła (2020), showing an accuracy of over 90%. Korucu et

al. (2016) used a Hidden Markov Model (HMM) and SVM to classify materials based on sound. Their

approach is similar to ours, although their focus lies in source separation of packaging waste in reverse

vending machines. They achieved up to 100% classification accuracy when measuring free falling impact

sounds from glass, plastic, metal and cardboard, in addition to high accuracy when estimating the size of the

objects as well.

Most of the waste classification methods found in literature are based on images of single objects with

homogeneous backgrounds, in addition to often lacking a description of direct real-world applications. While

it is valuable to develop methods for automatically classifying any kind of waste, it is important to consider

their applicability in today’s waste management systems in order to reach the fast-approaching goals set by

the EU.

2.2 Sound Recognition

Several studies have shown that sound recognition is a good method for determining material properties of

objects. Giordano and McAdams (2006) showed good results on material recognition by humans based on

impact sounds between gross material categories, but found that the acoustical and source properties contains

sufficient information for identifying even sub-categories of same materials. Consequently, a machine

learning algorithm might be able to perform even better than the human by detecting small variations in the

data. A study by Gong et al. (2019) demonstrated the use of microphone, accelerometer and gyroscope data

generated from a smartphone to recognize objects using an SVM. By simply knocking the phone against an

object they were able to identify its material. The accuracy was high when using sound, but poor from the

other sensors which further indicates that sound is well suited for detecting materials.

Machine learning techniques usually employ spectrograms to process and visualize sound data and to

highlight distinguishing features. Two widely used types are the Mel spectrogram and the Mel Frequency

Cepstral Coefficients (MFCC) spectrogram. To create a Mel spectrogram, a Fourier transform is applied to

time segments of the sound clip which shows the energy present for each frequency. The frequency axis is

then scaled to a Mel scale, which is a log scale created to mimic how a human experiences sound (Volkmann

et al., 1937). The energy axis is also scaled to a decibel scale as the experienced sound volume is not linear

(Chapman, 2000). The MFCC spectrogram is similar to the Mel spectrogram, but includes one additional

processing step using a reverse Fourier transform which results in a Cepstrum. This spectrogram has peak

values where there are periodic elements in the time segment (Noll, 1967).

Traditional sound recognition often utilizes an HMM, gaussian mixture model or SVMs (Ananthi &

Dhanalakshmi, 2015; Deng & Yu, 2014; Li et al., 2017; McLoughlin et al., 2015; Mesaros et al., 2010; Sharan

& Moir, 2016), and several studies have also shown promising results using CNNs (Hershey et al., 2017;

Khamparia et al., 2019; Kumar & Raj, 2017). CNN models often perform better in chaotic environments

(Zhang et al., 2015), and are able to extract more abstract features while unaffected by local variations (Çakır

et al., 2017). In the case of trash collection, a lot of irregular acoustic noise can be expected, for which a CNN

model may perform well.

2.3 Metal detection

Metal detection is a well proven concept which is widely used in multiple applications. Common methods

include Beat-Frequency Oscillation (BFO), very low frequency and pulse induction. The type we have used

is a BFO detector, mainly due to its simple design. The BFO creates an oscillating frequency by using an

LC-circuit. The LC-circuit causes an oscillation frequency due to the capacitor first discharging to the

inductor, and thereafter being charged by the induced voltage created in the coil. The charging and

6

discharging are time-shifted between the components, which causes the current to rise and fall. As the internal

resistance of the components cause the energy to dissipate, the circuit requires an external power supply to

keep the oscillation going. The frequency depends on the inductance of the search coil of the detector, which

is made by winding insulated cable in a loop. If a metal object is in close proximity to the coil, the inductance

changes which in turn changes the oscillation frequency. By storing this frequency and constantly comparing

it to the current frequency, any change will indicate the presence of metal. An Arduino microcontroller can

be used to perform this comparison and output the detection results.

3 Method

3.1 Experimental setup and data recording procedures

A custom test rig was built for recording sound and metal detector data from trash bags. The purpose of this

rig is to mimic the part of the truck where the trash bins are emptied during the normal collection cycle,

making the data acquisition similar to real conditions. Figure 2 shows a comparison of the tray in a waste

collection truck and the landing tray of the test rig. Apart from the difference is size, the trays are similar in

appearance. This simplified approximation provides more control over the experiments in addition to

enabling rapid prototyping of the classification system.

Figure 2: The landing tray of a waste collection truck under operation is shown on the left and the test rig on the right.

The main parts of the rig consist of a loading tray, a chute, and a steel landing tray. The chute is approximately

the same size as a normal thrash bin to simulate the velocity of trash bags before impact. A distance sensor

is located at the top of the chute for registering when a trash bag is sent through. Next to the landing tray is

mounted a Zoom H6n recorder which functions as a sound board, including two stereo condenser

microphones attached to the recorder and two additional contact microphones that are placed on each side of

the landing tray. A length of wire is wound around the chute which works as the search coil for the metal

detector. The setup also includes a weight sensor beneath the loading tray, a GoPro camera mounted at the

end of the landing tray, and a circuit board containing an Arduino Nano and a HX711 load cell amplifier.

The rig is illustrated in Figure 3.

7

Figure 3: 3D-model of the test rig showing all the components used for data collection.

Trash bags were created in six different categories: Pure metal (PM), pure glass (PG), metal and mixed waste

(MMX), glass and mixed waste (GMX), glass and metal (GM), and pure mixed waste (PMX). Each category

contains about 500 measurements. Since glass and metal are generally found mixed with other waste in a

real-world scenario, PM and PG were omitted from the data set, reducing it to about 2000 samples. Care was

taken to ensure that all bags had different size, weight, and composition within each category to simulate real

conditions. The glass used was mostly bottles and jars that are normally found in households. The metal is

an assortment of beverage cans and tins from canned food and some scrap sheet metal. The mixed waste

category is composed of waste found in trash bins around the campus of the Norwegian University of Science

and Technology where the experiment was conducted. These materials were thoroughly inspected to ensure

that no metal or glass were present. The categories MMX and GMX were made sure to include samples of

high, medium, and low metal or glass content. Due to the extensive time requirement of producing unique

bags for the entire training set, each bag was reused several times. In total there were about 20 unique bags

present for each category. We hypothesize that when the same bag is used several times with random

orientations, the resulting sound and metal detection characteristics will be different. To verify our hypothesis,

a separate data set (test set) was created containing 40 unique bags (10 for each category), where the bags

were not reused.

Each bag was recorded individually when capturing the data sets. Weight was automatically recorded after

the bag was placed in the loading tray. After tilting the loading tray to initiate the recording procedure, sound

and metal detector data was recorded automatically for 2 seconds after the distance sensor was triggered.

Video recording started when the weight was measured, and later automatically edited to include only 2

seconds after the distance sensor was triggered. The procedure was monitored from a custom graphical

interface, allowing erroneous measurements to be discarded directly, making the data collection more robust.

3.2 Data and model preparation

In this study, several CNN-based models are developed and tested. A simple ablation study is conducted to

determine which sensors and input data contribute to model performance, including different sound recorders,

sound data representations (Mel spectrogram and MFCC spectrogram), metal detector data and weight. The

ablation study was performed in consecutive order, where inputs contributing to significant increase in

accuracy (P-value below 0.05) are included in the next test. Consequent tests are compared to the previous

best result.

8

Mel spectrograms and MFCCs were created using the Python package Librosa. Examples of both

spectrograms, including metal detection data, are shown in Figure 4, each taken from the same sample. To

reduce the sample size and computational power needed for training, an algorithm was used to detect the

moment of impact to extract a smaller frame around the event. The time window of 2 seconds was originally

divided into 1379 columns, or time segments. 64 segments before the impact and 192 after the impact were

extracted for a total of 256 columns for each sample in the data sets, as it was assumed that more features of

interest would occur following impact. The vertical axis was resized to 256 using bilinear interpolation

resulting in a shape of 256x256. The metal detector data originally recorded 600 data points in a 1D-array,

totaling 2 seconds of data. This is longer than required as the bags are only briefly passing the metal detector

during the initial part of the recording, but it was preferred to ensure that all bags would be captured regardless

of sliding speed through the chute. The data was interpolated to 256 data points and repeated along the second

axis, as the CNN requires a constant input shape for all channels. This approach was chosen as during training

it was observed that zero padding the metal detection data would result in the model effectively ignoring this

input. The data set was split into 80% for training and 20% for validation, totaling 1616 training samples and

403 validation samples, in addition to the test set containing 40 samples. All data from each measurement

was fed to the network as separate channels, where the data presented in Figure 4 results in 9 channels (two

condenser- and contact microphones for each spectrogram, and metal detector data).

Figure 4: Examples of a Mel spectrogram, MFCC, and the transformed metal detector data for a sample from the metal

and mixed waste category, used as input for the CNN.

Three CNN models having different numbers of layers and model parameters were tested. Model 1 (M-1) is

a simple model having five convolutional layers, one fully connected layer and uniformly sized kernels (3x3).

Model 2 (M-2) extends the former with two additional convolutional and fully connected layers while also

having descending kernel sizes. Model 3 (M-3) is between M-1 and M-2 in layer count but uses a rectangular

kernel (4x8) in the first layer. M-1 was the subject for the ablation study. Additionally, several convolutional

layers were tested for M-1, where it was found that five layers was optimal for this data set. Three labelling

schemes were considered (multi-class, multi-label, and binary classification), where multi-labeling was

chosen due to its ability to consider each material independently, regardless of their combination in each

sample.

To evaluate and discuss the classification performance, we use standard metrics commonly used to evaluate

ML-models, namely accuracy, precision, and recall. Receiver operating characteristics (ROC) curves are also

included which offers a simple representation of the classification thresholds and their effect on true positive-

and false positive rates. The influence of the number of training samples is presented in the form of learning

curves for each data set, which can be analyzed to detect the degree of bias and variance in the models.

4 Results

4.1 Ablation study with input data

Results of the ablation study are shown in Table 1. Initially, every input data was included as a reference.

Weight was excluded in the first test, resulting in a better performing model. The next test (no metal) was

then compared to the model trained on all the data except weight. Excluding the metal detection data did not

yield a significant difference in accuracy for the validation set, although the accuracy was substantially lower

for the test set. Due to the significant reduction in accuracy for the test set, metal detection data was included

9

in both cases going forward. Using only one of the two microphones was compared in the third test, resulting

in a contradiction between the data sets. For the validation set, using only the condenser microphone gave a

significant reduction in accuracy, while the test set indicates an even more significant increase in accuracy.

The difference is arguably small for the validation set, while an increase of 2.25% in accuracy is beneficial

for the test set. Using only the condenser microphone was therefore decided as favorable for our model. A

reduction in accuracy when only using Mel spectrograms or MFCC was observed for the validation set, with

no significant increase in accuracy using only the Mel spectrogram for the test set, thus showing the benefit

of including both.

Table 1: Results from the ablation study showing the change in model performance based on input data, on both the

validation (valid) and test set. Every positive result is carried over to the next test, showing the cumulative change in

score. Significant results are shown in bold.

Test Input data
Number

of runs

Average score

change (valid)
P(T<=t)

Average score

change (test)
P(T<=t)

0 All data 20 0.00% Reference 0.00% Reference

1 No weight 20 +0.70% 0.0096 +2.19% 0.0294

2 No metal 20 -0.05% 0.3449 -16.06% < 0.0001

3
Condenser

microphone
20 -0.63% 0.0031 +2.25% 0.0025

Contact

microphone
20 -0.42% 0.0550 -2.00% 0.0105

4 Mel 20 -1.84% < 0.0001 +0.50% 0.4794

 MFCC 20 -2.54% < 0.0001 -17.00% < 0.0001

4.2 Results on final sensors setup

M-1, M-2 and M-3 were trained using the input data resulting in the highest increase in accuracy from the

ablation study. For each model, training was performed 20 times. Small variations were observed between

training iterations, and the best results are presented in Table 4. All results are based on a 0.5 threshold (or

confidence) for counting a prediction as valid. M-1 achieves the highest validation accuracy, which is able

to correctly predict the presence of metal with 100% accuracy, and 96.28% for glass. Inference is also

included for M-1 on the test set, showing a slightly lower performance compared to the validation set. The

results on the test data are shown at the bottom of Table 4.

Table 2: Accuracy (A), precision (P) and recall (R) for each model on the validation set, with the same metrics for the

best performing model on the test set.

Figure 8 shows the confusion matrices for M-1 on the validation and test set. It clearly shows that glass has

the highest number of false positives, while metal is predicted correctly for every sample. Glass has more

false positives than false negatives on the validation set, indicating a slight bias towards detecting glass.

 All Metal Glass

Model Data

set

A P R A P R A P R

M-1 Valid 98.14 99.49 96.77 100.00 100.00 100.00 96.28 98.95 93.56

M-2 97.52 97.28 97.77 99.75 100.00 99.50 95.29 94.63 96.04

M-3 97.02 96.56 97.52 99.75 100.00 99.50 94.29 93.24 95.54

M-1 Test 96.25 95.24 97.50 100.00 100.00 100.00 92.50 90.48 95.00

10

Figure 5: Confusion matrices for glass and metal on each data set.

Figure 6 shows the receiver operating characteristics for M-1 on both the validation- and test set. The AUCs

being close to 100% shows there is little trade-off between the true positive- and false positive rate when

tuning the threshold, and a high recall can be achieved without sacrificing much precision.

Figure 6: ROC curves for the validation- and test set.

The learning curves in Figure 7 seems to converge after including more than 8 samples per category when

training the model. With each data set having small loss values and showing convergence, few samples are

needed to train the model while showing low levels of bias and variance. Consequently, adding more training

11

data would not improve the model, with the optimal model performance being achieved using only 16

samples per category (64 samples in total).

Figure 7: Learning curves where the loss for each data set is calculated for each increment of the number of training

samples used.

5 Discussion
The results have shown great potential for applying CNNs to classify the presence of glass and metal in trash

bags using sound and metal detection. While Korucu et al. (2016) demonstrated the applicability of using

sound for detecting materials in a reverse vending machine, our approach takes it a step further by detecting

materials mixed inside trash bags. With our aim to support current waste management systems relying on

consumer sorting, without proposing radical changes to the status quo, the approach seems feasible based on

the results.

The ablation study consolidated the benefit of using both Mel and MFCC spectrograms. We also found that

using only condenser microphones, and not contact microphones, can improve the detection, which is desired

since less hardware will be required to reduce cost in a potential future implementation. However, given that

this is a proof-of-concept, we would still recommend testing both microphones in a realistic setting as our

data set can be biased from the controlled experiment. A commercial metal detector should also be tested in

a real context, where a longer range and better robustness may be required. Nonetheless, the use of metal

detection data had less effect when running the models on the validation set but had a significant contribution

to improving the accuracy on the test set. Event though metal was detected with 100% accuracy, making it

possible to detect metal using only a simple threshold-based algorithm, it may be an important input for ML-

models when detecting finer details, such as metal lids on glass jars, which were not accounted for in our

data set. ML-models may also be able to differentiate between low and high metal or glass content in bags,

providing more information about the consumer sorting behavior.

The model shows slightly better accuracy for the validation set, which contains bags from the same

distribution as the training data where bags were reused, compared to the test set containing only unique bags.

It is possible that reusing bags with random orientation have less variation than expected, causing the models

to overfit on the bags used for training and validation. It is also a possibility that the test set contains slightly

different features due to having been captured during a different time and location, which may have affected

the sensor readings. It can be valuable to analyze the variance between the sensor readings of trash bags when

using different orientations and different environments, to better understand if either approach can or should

be used in the future. The benefit of reusing bags is to capture more data faster, as making unique bags is a

cumbersome and time-consuming task. However, based on the learning curves in Figure 7, few training

samples may be needed, and capturing samples with large variation is more important. When approaching a

real-world application, we suggest collecting trash bags from consumers to build the data sets. It is then, for

12

example, possible to pass the collected bags through the experimental rig or a collection truck before

analyzing the bags manually to determine the correct label for the data, thereby producing an even more

realistic data set for training a classifier. To reduce the manual labor, an image-based classification system

could also be implemented for this purpose.

Adjusting the classification threshold usually results in either an increase of the precision and reduction of

the recall, or vice versa. According to the ROC plots in Figure 6, this trade-off is miniscule for our models,

however, is likely to be substantially larger (smaller AUC) for real-world application. Which metric to favor

depends on how the results will be used. If the goal is to plan on initiating pecuniary measures based on who

sorts poorly, then perhaps avoiding miscarriage of justice (false positives) is essential, thereby maximizing

precision. If the measures are, for instance, to distribute more information in areas of poor sorting, then

including as many of the cases as possible may be of more interest, thereby maximizing recall.

An important factor to consider in a real-world setting is the ratio between correctly sorted and wrongly

sorted bags, which is about 20:1 according to statistics from REN (J. Almankaas & J. H. Ellefsen-Killerud,

personal communication, 4 January 2020). Using the Bayes’ theorem in the case of detecting glass using the

results from the test set, where we want to calculate the likelihood of finding a true positive (A) given that

the model has classified the bag as positive (B), P(A|B), where we know that the probability of classifying a

positive given a true positive, P(B|A), is the precision (90.48%), and the probability of finding a true positive

P(A) is 1/21, with a false positive rate of 0.1, we get 31.15% likelihood that a classified positive is a true

positive. In other words, we can expect 2.2 false positives for every true positive. If multiple areas of trash

collection over time is considered, this is an acceptable result as the positive detections are likely to

accumulate at the locations where bad sorting occurs more often, thereby increasing the likelihood of locating

true positives.

The data sets used in this study was captured under highly controlled circumstances with one bag at a time.

It is unclear how a model would perform on data from the actual collection routine. One possible problem

relating to the collection truck is that many bags are emptied at once, which may increase the classification

difficulty. If this proves a problem, a possible solution might be to include some sort of funnel on the

collection truck which forces the bags to fall through one at a time, or to simply train the model with multiple

bags at a time.

While the method is mainly developed for use in a collection truck, there are other areas where

implementation would be easy and effective. For example, it could support the sorting facility in separating

bags based on their content, although information about the source of bad sorting behavior will be lost at this

stage. Also, many condominium buildings have shared trash disposal units, often hidden underground, where

the chute provides an excellent location for installing sensors. These systems often have RFID in place,

enabling a link between the consumer and their sorting behavior to be made.

It is no doubt that capturing data on consumers’ sorting behaviors is beneficial to most waste management

systems as it enables fact-based decision making. Most households in Oslo have a distance less than 300

meters to the nearest collection point, although in some cases it is further. Together with our approach it is

possible to optimize the location of collection points to benefit consumers, as convenience is an important

factor (Bernstad, 2014; Rousta et al., 2017). Some waste management systems also utilizes mobile recycling

stations that accepts, among others, metal and e-waste, which are regularly moved. Data on consumer sorting

may help to choose optimal routines and placements for the mobile units.

If successfully deployed, our approach may also support research on consumer waste sorting behavior. In

general, data captured with our system may contribute to studies attempting to predict municipal solid waste

generation (Adamović et al., 2018; Kannangara et al., 2018; Wu et al., 2020) as it may provide accurate

location specific data. Rousta and Ekström (2013) studied the environmental, economic, and social aspects

of incorrect sorting, however, concluded that future research should be conducted to uncover the driving

factors of consumer sorting, for which our method may be useful. Bernstad (2014) argued that research on

factors influencing participation in waste sorting has been largely inconsistent, and that the effects of

promotional campaigns is often unknown due to a lack of proper monitoring. Our approach enables long-

term monitoring, which can be used to find the most sustainable methods for improving consumer sorting.

13

6 Conclusion
With the increasing focus on preserving the global environment, necessary targets have been set for

increasing the recycling of household waste within the next few years. Consumer sorting is widely deployed

as the first step in a sustainable waste management system. Since the degree of correct sorting is not known

during the normal collection process, we aim to support waste management systems in understanding

consumer waste generation and behavior by enabling trash bags to be classified during this process. The

proof-of-concept system is able to identify the occurrence of glass and metal in consumer trash bags with

high accuracy. With an RFID system in place for the collection of municipal waste, our method can help

pinpoint the areas where bad sorting occurs without having to invest in considerable changes to the current

system.

The classification system comprising a combination of sound recording and a beat-frequency oscillation

metal detector has been developed successfully. The trained CNN model is able to identify the occurrence of

glass and metal in trash bags with 98% accuracy. Considering the experimental nature of the study, along

with the high accuracies achieved with relatively small amounts of data required, the potential for applying

this method in the real world is promising.

For future research, we suggest collecting more realistic data sets of consumer trash bags for training a CNN

model. The use of sound recorders and metal detection has shown promising results and should be tested in

more realistic settings. Enabling long-term monitoring of consumer waste sorting quality will also benefit

research on consumer behavior. For waste management systems, fact-based decision making can be realized

using our approach, to for example optimize the location of collection points to increase convenience for

consumers.

Acknowledgments
We would like to thank Renovasjonsetaten in Oslo for providing valuable insights to their waste management

system.

References

Adamović, V. M., Antanasijević, D. Z., Ćosović, A. R., Ristić, M. Đ., & Pocajt, V. V. (2018). An artificial

neural network approach for the estimation of the primary production of energy from municipal

solid waste and its application to the Balkan countries. Waste management, 78, 955-968.

doi:10.1016/j.wasman.2018.07.012

Adhithyarasanna, S., & Kaushal, V. (2018). Survey on identification and classification of waste for efficient

disposal and recycling. International Journal of Engineering & Technology, 7(2.8), 520-523.

doi:10.14419/ijet.v7i2.8.10513

Ananthi, S., & Dhanalakshmi, P. (2015). SVM and HMM modeling techniques for speech recognition using

LPCC and MFCC features. Paper presented at the Proceedings of the 3rd International Conference

on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014.

Avfallsanalysen 2019. (2019). Retrieved May 23, 2020, from https://www.oslo.kommune.no/avfall-og-

gjenvinning/hvordan-kildesortere-i-oslo/avfallsanalysen/#gref.

Bernstad, A. (2014). Household food waste separation behavior and the importance of convenience. Waste

management, 34(7), 1317-1323.

Bircanoğlu, C., Atay, M., Beşer, F., Genç, Ö., & Kızrak, M. A. (2018). RecycleNet: Intelligent waste sorting

using deep neural networks. Paper presented at the 2018 Innovations in Intelligent Systems and

Applications (INISTA).

Çakır, E., Parascandolo, G., Heittola, T., Huttunen, H., & Virtanen, T. (2017). Convolutional Recurrent

Neural Networks for Polyphonic Sound Event Detection. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 25(6), 1291-1303. doi:10.1109/TASLP.2017.2690575

Chapman, D. M. F. (2000). Decibels, SI units, and standards. The Journal of the Acoustical Society of

America, 108(2), 480-480. doi:10.1121/1.429620

Chu, Y., Huang, C., Xie, X., Tan, B., Kamal, S., & Xiong, X. (2018). Multilayer hybrid deep-learning method

for waste classification and recycling. Computational Intelligence and Neuroscience, 2018.

Deng, L., & Yu, D. (2014). Deep Learning: Methods and Applications. Foundations and Trends in Signal

Processing, 7(3–4), 197–387. doi:10.1561/2000000039

14

Giordano, B. L., & McAdams, S. (2006). Material identification of real impact sounds: Effects of size

variation in steel, glass, wood, and plexiglass plates. The Journal of the Acoustical Society of

America, 119(2), 1171. doi:10.1121/1.2149839

Gong, T., Cho, H., Lee, B., & Lee, S.-J. (2019). Knocker: Vibroacoustic-based Object Recognition with

Smartphones. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous

Technologies, 3(3), 1-21. doi:10.1145/3351240

Hershey, S., Chaudhuri, S., Ellis, D. P. W., Gemmeke, J. F., Jansen, A., Moore, R. C., . . . Wilson, K. (2017,

March 2017). CNN architectures for large-scale audio classification. Paper presented at the 2017

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

Jiang, P., Fan, Y. V., Zhou, J., Zheng, M., Liu, X., & Klemeš, J. J. (2020). Data-driven analytical framework

for waste-dumping behaviour analysis to facilitate policy regulations. Waste management, 103, 285-

295. doi:10.1016/j.wasman.2019.12.041

Kannangara, M., Dua, R., Ahmadi, L., & Bensebaa, F. (2018). Modeling and prediction of regional municipal

solid waste generation and diversion in Canada using machine learning approaches. Waste

management, 74, 3-15. doi:10.1016/j.wasman.2017.11.057

Khamparia, A., Gupta, D., Nhu, N., Khanna, A., Pandey, B., & Tiwari, P. (2019). Sound Classification Using

Convolutional Neural Network and Tensor Deep Stacking Network. IEEE Access, PP, 1-1.

doi:10.1109/ACCESS.2018.2888882

Korucu, M. K., Kaplan, Ö., Büyük, O., & Güllü, M. K. (2016). An investigation of the usability of sound

recognition for source separation of packaging wastes in reverse vending machines. Waste

management, 56, 46-52.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural

networks. Paper presented at the Advances in neural information processing systems.

Kumar, A., & Raj, B. (2017). Deep CNN Framework for Audio Event Recognition using Weakly Labeled

Web Data. arXiv:1707.02530 [cs].

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11), 2278-2324.

Li, J., Dai, W., Metze, F., Qu, S., & Das, S. (2017, March 2017). A comparison of Deep Learning methods

for environmental sound detection. Paper presented at the 2017 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP).

Lindermayr, J., Senst, C., Hoang, M.-H., & Haegele, M. (2018). Visual Classification of Single Waste Items

in Roadside Application Scenarios for Waste Separation. Paper presented at the 50th International

Symposium on Robotics (ISR 2018).

McLoughlin, I., Zhang, H., Xie, Z., Song, Y., & Xiao, W. (2015). Robust Sound Event Classification Using

Deep Neural Networks. IEEE/ACM Transactions on Audio, Speech, and Language Processing,

23(3), 540-552. doi:10.1109/TASLP.2015.2389618

Mesaros, A., Heittola, T., Eronen, A., & Virtanen, T. (2010, August 2010). Acoustic event detection in real

life recordings. Paper presented at the 2010 18th European Signal Processing Conference.

Noll, A. M. (1967). Cepstrum Pitch Determination. The Journal of the Acoustical Society of America, 41(2),

293–309. doi:10.1121/1.1910339

Nowakowski, P., & Pamuła, T. (2020). Application of deep learning object classifier to improve e-waste

collection planning. Waste management, 109, 1-9.

Rada, E. C., Ragazzi, M., & Fedrizzi, P. (2013). Web-GIS oriented systems viability for municipal solid

waste selective collection optimization in developed and transient economies. Waste management,

33(4), 785-792.

Rousta, K., & Ekström, K. M. (2013). Assessing incorrect household waste sorting in a medium-sized

Swedish city. Sustainability, 5(10), 4349-4361.

Rousta, K., Ordoñez, I., Bolton, K., & Dahlén, L. (2017). Support for designing waste sorting systems: A

mini review. Waste Management & Research, 35(11), 1099-1111.

Ruiz, V., Sánchez, Á., Vélez, J. F., & Raducanu, B. (2019). Automatic image-based waste classification.

Paper presented at the International Work-Conference on the Interplay Between Natural and

Artificial Computation.

Sharan, R. V., & Moir, T. J. (2016). An overview of applications and advancements in automatic sound

recognition. Neurocomputing, 200, 22–34. doi:10.1016/j.neucom.2016.03.020

15

Toğaçar, M., Ergen, B., & Cömert, Z. (2020). Waste classification using AutoEncoder network with

integrated feature selection method in convolutional neural network models. Measurement, 153,

107459.

Volkmann, J., Stevens, S. S., & Newman, E. B. (1937). A Scale for the Measurement of the Psychological

Magnitude Pitch. The Journal of the Acoustical Society of America, 8(3), 208–208.

doi:10.1121/1.1915893

Wilsgaard, S. (2018). Europa har fått nye avfallsdirektiv. Retrieved May 12, 2019, from

https://www.avfallnorge.no/bransjen/nyheter/europa-har-f%C3%A5tt-nye-avfallsdirektiv.

Wu, F., Niu, D., Dai, S., & Wu, B. (2020). New insights into regional differences of the predictions of

municipal solid waste generation rates using artificial neural networks. Waste management, 107,

182-190. doi:10.1016/j.wasman.2020.04.015

Yang, M., & Thung, G. (2016). Classification of trash for recyclability status. CS229 Project Report, 2016.

Zhang, H., McLoughlin, I., & Song, Y. (2015, April 2015). Robust sound event recognition using

convolutional neural networks. Paper presented at the 2015 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP).

8 Conclusion

Through a review of relevant material and several interviews with employees at
REN, one of their main roadblocks regarding their waste collection cycle has
been discovered: not enough is known about the recycling habits of specific
households in Oslo and little is known about the source of wrongly sorted mate-
rial. This makes it challenging to introduce effective location specific measures.
It is argued that with more data, as well as higher quality data able to pin point
which bin a wrongly sorted material originates from, REN will be able to take
more effective action against unsatisfactory recycling behavior.

In this Master’s Thesis, an attempt have been made to develop a CNN-based
glass-and-metal detection system using sensors recommended by the preceding
Project Thesis A.3. These include microphone, weight scale, metal detector
and camera. The system was meant to be installed on a waste collection truck,
such that the detection of glass or metal can be linked to a location. Due to
insufficient availability of a trash collection truck, a simulation of the empty-
ing of trash bin was made locally such that a model could be trained on data
resembling the real situation. The results show that detecting glass and metal
using a combination of sound and metal detection is an effective approach in
the classification of singular trash bags. With an accuracy of 98.14% in the
validation set and 96.25% in the test set, the model developed is able to detect
the presence of glass and/or metal with high precision in a considerable amount
of trash bags. This does not conclusively prove the feasibility of such a model on
a truck where several bags are emptied simultaneously, but provide support for
further research and testing. A conclusive test will require testing and operation
of the system in the actual implementation location.

The developed system is not yet fully implementable on a service truck as the
CNN model must be trained on data from actual emptying of trash bins in the
final implementation location. However, great efforts has been put in to en-
abling a replication of the experiment on a truck, and the results show promise
for the system being able to function as intended.

125

References

[1] Oppdatert: 20.05.2020. Kildesortering — Stavanger kommune. no. Library
Catalog: www.stavanger.kommune.no. url: https://www.stavanger.
kommune.no/renovasjon-og-miljo/kildesortering/ (visited
on 05/26/2020).

[2] BIR A/S. Glass- og metallemballasje - BIR. no. Library Catalog: bir.no.
url: https://bir.no/slik-sorterer-du/glass-og-metallemballasje/
(visited on 05/26/2020).

[3] Olugboja Adedeji and Zenghui Wang. “Intelligent Waste Classification
System Using Deep Learning Convolutional Neural Network”. en. In:
Procedia Manufacturing. The 2nd International Conference on Sustain-
able Materials Processing and Manufacturing, SMPM 2019, 8-10 March
2019, Sun City, South Africa 35 (Jan. 2019), pp. 607–612. issn: 2351-
9789. doi: 10.1016/j.promfg.2019.05.086. url: http://www.
sciencedirect.com/science/article/pii/S2351978919307231
(visited on 05/14/2020).

[4] Jørgen Almankaas and Jan Haakon Ellefsen-Killerud. Interview With Em-
ployees at REN. Norwegian. Jan. 2020.

[5] Md Zahangir Alom et al. “A State-of-the-Art Survey on Deep Learn-
ing Theory and Architectures”. eng. In: Electronics 8.3 (2019). Publisher:
MDPI AG, pp. 292–. issn: 2079-9292. doi: 10.3390/electronics8030292.
url: https://doaj.org/article/2fc4ff8667364b7899b508a21a30d572
(visited on 06/27/2020).

[6] Carla Balocco et al. “Experimental transmittance of polyethylene films
in the solar and infrared wavelengths”. eng. In: Solar Energy 165 (2018).
Publisher: Elsevier Ltd, pp. 199–205. issn: 0038-092X. doi: 10.1016/
j.solener.2018.03.011.

[7] Emre Çakır et al. “Convolutional Recurrent Neural Networks for Poly-
phonic Sound Event Detection”. In: IEEE/ACM Transactions on Audio,
Speech, and Language Processing 25.6 (June 2017). Conference Name:
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
pp. 1291–1303. issn: 2329-9304. doi: 10.1109/TASLP.2017.2690575.

[8] Yinghao Chu et al. “Multilayer Hybrid Deep-Learning Method for Waste
Classification and Recycling”. en. In: Computational Intelligence and Neu-
roscience 2018 (Nov. 2018), pp. 1–9. issn: 1687-5265, 1687-5273. doi:
10.1155/2018/5060857. url: https://www.hindawi.com/
journals/cin/2018/5060857/ (visited on 05/24/2020).

[9] Li Deng and Dong Yu. “Deep Learning: Methods and Applications”. In:
Foundations and Trends in Signal Processing 7.3–4 (June 2014), pp. 197–
387. issn: 1932-8346. doi: 10.1561/2000000039. url: https://
doi.org/10.1561/2000000039 (visited on 06/09/2020).

126

[10] Google Developers. Introduction to TensorFlow — Machine Learning Crash
Course. en. Library Catalog: developers.google.com. 2020. url: https:
//developers.google.com/machine-learning/crash-course/
first-steps-with-tensorflow/toolkit (visited on 06/01/2020).

[11] Juan Du. “Understanding of Object Detection Based on CNN Family and
YOLO”. en. In: Journal of Physics: Conference Series 1004 (Apr. 2018),
p. 012029. issn: 1742-6588, 1742-6596. doi: 10.1088/1742- 6596/
1004/1/012029. url: http://stacks.iop.org/1742-6596/
1004/i=1/a=012029?key=crossref.aef5af21bb1bf8edebfb4bd94c9cf5ff
(visited on 12/03/2019).

[12] Dalya Gartzman. Getting to Know the Mel Spectrogram. en. Library Cata-
log: towardsdatascience.com. Jan. 2020. url: https://towardsdatascience.
com/getting-to-know-the-mel-spectrogram-31bca3e2d9d0
(visited on 04/29/2020).

[13] Taesik Gong et al. “Knocker: Vibroacoustic-based Object Recognition
with Smartphones”. en. In: Proceedings of the ACM on Interactive, Mo-
bile, Wearable and Ubiquitous Technologies 3.3 (Sept. 2019), pp. 1–21.
issn: 2474-9567, 2474-9567. doi: 10.1145/3351240. url: https:
//dl.acm.org/doi/10.1145/3351240 (visited on 05/21/2020).

[14] Google. TensorFlow. en. Library Catalog: www.tensorflow.org. 2020. url:
https://www.tensorflow.org/?hl=nb (visited on 06/04/2020).

[15] Sathish Paulraj Gundupalli, Subrata Hait, and Atul Thakur. “Multi-
material classification of dry recyclables from municipal solid waste based
on thermal imaging”. eng. In: Waste Management 70 (2017). Publisher:
Elsevier Ltd, pp. 13–21. issn: 0956-053X. doi: 10.1016/j.wasman.
2017.09.019.

[16] Kaiming He et al. “Mask R-CNN”. eng. In: (2017). url: https://
arxiv.org/abs/1703.06870 (visited on 06/28/2020).

[17] Shawn Hershey et al. “CNN architectures for large-scale audio classifica-
tion”. In: 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). ISSN: 2379-190X. Mar. 2017, pp. 131–135.
doi: 10.1109/ICASSP.2017.7952132.

[18] Evan Kale. Build Your Own Metal Detector with an Arduino - Projects. en.
url: https://www.allaboutcircuits.com/projects/metal-
detector-with-arduino/ (visited on 03/30/2020).

[19] M. Kemal Korucu et al. “An investigation of the usability of sound recog-
nition for source separation of packaging wastes in reverse vending ma-
chines.(Report)”. eng. In: Waste Management 56 (2016). Publisher: Else-
vier BV, pp. 46–52. issn: 0956-053X. doi: 10.1016/j.wasman.2016.
06.030.

127

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. “ImageNet classifi-
cation with deep convolutional neural networks”. eng. In: Communications
of the ACM 60.6 (2017). Publisher: ACM, pp. 84–90. issn: 0001-0782. doi:
10.1145/3065386.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Clas-
sification with Deep Convolutional Neural Networks”. In: Advances in
Neural Information Processing Systems 25. Ed. by F. Pereira et al. Curran
Associates, Inc., 2012, pp. 1097–1105. url: http://papers.nips.cc/
paper/4824-imagenet-classification-with-deep-convolutional-
neural-networks.pdf (visited on 06/01/2020).

[22] Anurag Kumar and Bhiksha Raj. “Deep CNN Framework for Audio Event
Recognition using Weakly Labeled Web Data”. In: arXiv:1707.02530 [cs]
(July 2017). arXiv: 1707.02530. url: http://arxiv.org/abs/1707.
02530 (visited on 06/09/2020).

[23] Y. Lecun et al. “Gradient-based learning applied to document recogni-
tion”. eng. In: Proceedings of the IEEE 86.11 (1998). Publisher: IEEE,
pp. 2278–2324. issn: 0018-9219. doi: 10.1109/5.726791.

[24] Juncheng Li et al. “A comparison of Deep Learning methods for en-
vironmental sound detection”. In: 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). ISSN: 2379-190X.
Mar. 2017, pp. 126–130. doi: 10.1109/ICASSP.2017.7952131.

[25] Shan Luo et al. “Knock-Knock: Acoustic object recognition by using
stacked denoising autoencoders”. eng. In: Neurocomputing 267.C (2017).
Publisher: Elsevier BV, pp. 18–24. issn: 0925-2312. doi: 10.1016/j.
neucom.2017.03.014.

[26] Ian McLoughlin et al. “Robust Sound Event Classification Using Deep
Neural Networks”. In: IEEE/ACM Transactions on Audio, Speech, and
Language Processing 23.3 (Mar. 2015). Conference Name: IEEE/ACM
Transactions on Audio, Speech, and Language Processing, pp. 540–552.
issn: 2329-9304. doi: 10.1109/TASLP.2015.2389618.

[27] A. Michael Noll. “Cepstrum Pitch Determination”. eng. In: The Journal
of the Acoustical Society of America 41.2 (1967). Publisher: Acoustical
Society of America, pp. 293–309. issn: 0001-4966. doi: 10.1121/1.
1910339.

[28] Avfall Norge. Europa har f̊att nye avfallsdirektiv. no. url: https://
www.avfallnorge.no/bransjen/nyheter/europa-har-f%C3%
A5tt-nye-avfallsdirektiv (visited on 12/05/2019).

[29] A. V. Oppenheim and R. W. Schafer. “From frequency to quefrency: a
history of the cepstrum”. eng. In: IEEE Signal Processing Magazine 21.5
(2004). Publisher: IEEE, pp. 95–106. issn: 1053-5888. doi: 10.1109/
MSP.2004.1328092.

128

[30] E. C. Rada, M. Ragazzi, and P. Fedrizzi. “Web-GIS oriented systems via-
bility for municipal solid waste selective collection optimization in devel-
oped and transient economies”. eng. In: Waste Management 33.4 (2013).
Publisher: Elsevier Ltd, pp. 785–792. issn: 0956-053X. doi: 10.1016/
j.wasman.2013.01.002.

[31] B. Visvesvara Rao. Electronic circuit analysis. English. OCLC: 890449125.
Chennai: Pearson, 2012. isbn: 978-81-317-5428-3.

[32] Trondheim Renholdsverk. Slik sorterer du. no. Library Catalog: trv.no.
url: https://trv.no/sortere/ (visited on 05/26/2020).

[33] Renovasjonsetaten. Avfallsanalysen. no. Library Catalog: www.oslo.kommune.no.
url: https://www.oslo.kommune.no/avfall-og-gjenvinning/
hvordan-kildesortere-i-oslo/avfallsanalysen/ (visited on
05/23/2020).

[34] Arthur L. Samuel. “Some Studies in Machine Learning Using the Game
of Checkers”. In: IBM J. Res. Dev. (1959). doi: 10.1147/rd.33.0210.

[35] Roneel V. Sharan and Tom J. Moir. “An overview of applications and
advancements in automatic sound recognition”. eng. In: Neurocomputing
200 (2016). Publisher: Elsevier BV, pp. 22–34. issn: 0925-2312. doi: 10.
1016/j.neucom.2016.03.020.

[36] Keras SIG. Keras: the Python deep learning API. 2020. url: https:
//keras.io/ (visited on 06/04/2020).

[37] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. eng. In: arXiv.org (2015). Place:
Ithaca Publisher: Cornell University Library, arXivorg. issn: 2331-8422.
url: http://search.proquest.com/docview/2081521649/
?pq-origsite=primo (visited on 06/08/2020).

[38] Avfall Sør. Glass- og metallemballasje. nb-NO. Library Catalog: avfall-
sor.no. url: https://avfallsor.no/hvor-skal-dette/glass-
og-metallemballasje/ (visited on 05/26/2020).

[39] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting”. en. In: (), p. 30.

[40] J. Volkmann, S. S. Stevens, and E. B. Newman. “A Scale for the Measure-
ment of the Psychological Magnitude Pitch”. eng. In: The Journal of the
Acoustical Society of America 8.3 (1937). Publisher: Acoustical Society of
America, pp. 208–208. issn: 0001-4966. doi: 10.1121/1.1915893.

[41] Tadeusz A. Wysocki et al. Advanced Signal Processing for Communication
Systems. eng. Vol. 703. International series in engineering and computer
science ; Boston, MA: Springer US, 2002. isbn: 978-0-306-47791-1.

[42] Mindy Yang and Gary Thung. “Classification of trash for recyclability
status”. In: CS229 Project Report 2016 (2016).

129

[43] Haomin Zhang, Ian McLoughlin, and Yan Song. “Robust sound event
recognition using convolutional neural networks”. In: 2015 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP).
ISSN: 2379-190X. Apr. 2015, pp. 559–563. doi: 10.1109/ICASSP.
2015.7178031.

[44] Yan Zheng et al. “A discrimination model in waste plastics sorting us-
ing NIR hyperspectral imaging system”. eng. In: Waste Management 72
(2018). Publisher: Elsevier Ltd, pp. 87–98. issn: 0956-053X. doi: 10.
1016/j.wasman.2017.10.015.

[45] 熙 古井. “An Overview of Speaker Recognition Technology”. eng. In:
1994, pp. 1–9. url: http://t2r2.star.titech.ac.jp/cgi-
bin/publicationinfo.cgi?q_publication_content_number=
CTT100589789 (visited on 06/01/2020).

A Appendix

A.1 Trash Collection Experiment

A.1.1 Arduino Code

1 #include "HX711.h"
2
3 #define DOUT 6 // Arduino pin 6 connect to HX711 DOUT
4 #define CLK 3 // Arduino pin 5 connect to HX711 CLK
5
6 HX711 scale;
7
8 int proximityPin = 4;
9 bool weight_reg = false;

10
11 double weight = 0;
12 double current_weight = 0;
13 int datapoints = 600; // Number of metal detector

readings
14
15 bool metal_sent = false;
16
17 // Number of cycles from external counter needed to

generate a signal event
18 #define CYCLES_PER_SIGNAL 1000
19
20 unsigned long lastSignalTime = 0;
21 unsigned long signalTimeDelta = 0;
22

a

23 boolean firstSignal = true;
24 unsigned long storedTimeDelta = 0;
25 double discrepancy = 1000;
26
27 int sensorPin = A4;
28 int val;
29
30 SIGNAL(TIMER1_COMPA_vect)
31 {
32 unsigned long currentTime = micros();
33 signalTimeDelta = currentTime - lastSignalTime;
34 lastSignalTime = currentTime;
35
36 if (firstSignal)
37 {
38 firstSignal = false;
39 }
40 else if (storedTimeDelta == 0)
41 {
42 storedTimeDelta = signalTimeDelta;
43 }
44
45 // Reset OCR1A
46 OCR1A += CYCLES_PER_SIGNAL;
47 }
48
49
50 void setup() {
51 Serial.begin(9600);
52 TCCR1A = 0b00000000;
53
54 // Set CSS(Clock Speed Selection) to 0b111 (External

clock source on T1 pin
55 // (ie, pin 5 on UNO). Clock on rising edge.)
56 TCCR1B = 0b00000111;
57
58 // Enable timer compare interrupt A (ie, SIGNAL(

TIMER1_COMPA_VECT))
59 TIMSK1 |= (1 << OCIE1A);
60
61 // Set OCR1A (timer A counter) to 1 to trigger

interrupt on next cycle
62 OCR1A = 1;
63
64 pinMode(proximityPin,INPUT);

b

65 scale.begin(DOUT,CLK); // initialize the scale using
pin DOUT and CLK defined above

66 scale.set_scale(244); // Start scale, for some reason
1000 amounts to grams

67 scale.tare(); // Reset scale to zero
68
69
70
71 }
72
73 void loop() {
74 if(Serial.available()){
75 char decider = Serial.read();//Arduino reads the

character received from computer
76
77
78 if (decider == 'w'){ //Initializes weight reading
79 while(discrepancy>5 || weight<3.00){//If

discrepancy between four consectuvie readings
is low enough, register weight

80 for(int i = 0;i<4;i++){
81 current_weight=(double)scale.get_units(10);
82 discrepancy = current_weight - weight;
83 weight = current_weight;
84 delay(100);
85 }
86 Serial.println(weight);//Sends weight data to

computer
87 }
88
89
90 if(decider == 'p'){//Initializes proximity sensor

reading followed by metal detection reading
91 while(val <200){ //A while loop halts the

script untill proximity sensor is triggered
92 val = 0;
93 for(int i = 0;i<5;i++){
94 val += analogRead(sensorPin);
95 }
96 val = val/5;//Finds the average of five

sensor readings
97 }
98
99 double metalValue;

100 Serial.println("Record"); //Tells computer to
record sound data as proximity has been

c

triggered and Arduino is ready to record
metal data

101 for(int i = 0; i<datapoints; i++){
102 metalValue = (storedTimeDelta -

signalTimeDelta) * 10; \\ Save difference
between stored and measured value

103 if (metalValue>10000){
104 metalValue = 0;
105 }
106 Serial.println(metalValue);//Sends readings

to the computer continuously
107 }
108
109 Serial.println("complete");//Tells computer its

finished sending metal detector data
110 }
111
112 else if(decider == 'a'){//Resets all variables
113 weight = 0;
114 current_weight = 0;
115 discrepancy = 1000
116 val = 0;
117 storedTimeDelta = 0;
118 decider;
119 scale.begin(DOUT,CLK);
120 scale.tare();
121
122 for(int i = 0; i<datapoints; i++){
123 metal_detection_data[i] = 0.0;
124 }
125
126 }
127 }
128 }

A.1.2 GUI Code

1
2 import a t e x i t
3 import t k i n t e r as tk
4 from tk i n t e r import f i l e d i a l o g
5 from tk i n t e r import ∗
6 import time
7 import i t e r t o o l s
8 import s e r i a l
9 import numpy as np

10 from matp lo t l i b . backends . backend tkagg import (
11 FigureCanvasTkAgg , NavigationToolbar2Tk)
12

d

13 from matp lo t l i b . backend bases import k ey p r e s s hand l e r
14
15 from matp lo t l i b . f i g u r e import Figure
16 import matp lo t l i b . pyplot as p l t
17
18 from tk i n t e r import Canvas
19
20 import os
21 import thread ing
22
23 import pyaudio
24 import wave
25 import l i b r o s a
26 import l i b r o s a . d i sp l ay
27
28 from goprocam import GoProCamera
29 from goprocam import cons tant s
30
31 import s e r i a l . t o o l s . l i s t p o r t s
32
33 from moviepy . v ideo . i o . f fmpeg too l s import f fmpeg ex t r a c t s ub c l i p
34
35
36
37 c l a s s App(tk .Tk) :
38
39 de f i n i t (s e l f) :
40 tk .Tk . i n i t (s e l f)
41 s e l f . f rame = None
42 s e l f . geometry (' 1000 x700 ')
43 s e l f . show frame1 ()
44 s e l f . w i n f o t op l e v e l () . t i t l e (”Trash Co l l e c t i o n GUI”)
45
46 de f show frame1 (s e l f) :
47
48 new frame = Page1 (s e l f)
49 i f s e l f . f rame i s not None :
50 s e l f . f rame . des t roy ()
51 s e l f . f rame = new frame
52 s e l f . f rame . p lace (r e l x =0, r e l y =0)
53
54
55 de f show frame2 (s e l f , classNum , s e r i a lPo r t , dataDir) :
56
57 try :
58 s e l f . f rame . s t o rageLocF i l e . wr i t e (dataDir)
59 s e l f . f rame . s t o rageLocF i l e . c l o s e ()
60 except :
61 pass
62 new frame = Page2 (s e l f , (0 , 0) , s e r i a lPo r t , dataDir)
63 i f s e l f . f rame i s not None :
64 s e l f . f rame . des t roy ()
65 s e l f . f rame = new frame
66 s e l f . f rame . p lace (r e l x =0, r e l y =0)
67 s e l f . f rame . updater ()
68
69 de f e x i t (s e l f) :

e

70 try :
71 s e l f . f rame . s e r . c l o s e ()
72 except Att r ibuteError :
73 pass
74
75 c l a s s Page1 (tk . Frame) :
76 de f i n i t (s e l f , master) :
77 tk . Frame . i n i t (s e l f , master , width=1000 , he ight=700)
78 s e l f . c u r r d i r = os . getcwd ()
79 s e l f . tempdir = s e l f . c u r r d i r
80
81 try :
82 s e l f . s t o r ageLocF i l e = open (s e l f . c u r r d i r+ ' /

StorageLocat ion . txt ' , ' r ')
83 s e l f . s torageLoc = s e l f . s t o r ageLocF i l e . read ()
84 i f s e l f . s torageLoc == ' ' :
85 r a i s e NameError (”Empty s t o r g e l o c a t i o n f i l e ”)
86 except :
87 s e l f . s t o r ageLocF i l e = open (s e l f . c u r r d i r+ ' /

StorageLocat ion . txt ' , 'w+ ')
88 s e l f . s torageLoc = ' '
89
90
91
92
93 s e l f . por t s = s e l f . s e r i a l p o r t s ()
94
95
96
97 s e l f . p o r t S e l e c t i o n = tk . Str ingVar ()
98 s e l f . p o r t S e l e c t i o n . s e t (' ')
99

100 s e l f . dropdownMenu = OptionMenu (s e l f , s e l f . po r tSe l e c t i on , ∗
s e l f . por t s)

101
102 #l a b e l s
103 s e l f . p o r t l a b e l = Label (s e l f , t ex t=” S e l e c t port : ” , f g=” black

”)
104 s e l f . d i rLabe l = Label (s e l f , t ex t=”Data d i r e c t o r y : ” , f g=” black

”)
105
106 #Old l a b e l
107 ## s e l f . c l a s sLab e l = Label (s e l f , t e x t=”Choose c l a s s : ” , f g=”

b l a c k ”)
108
109
110 s e l f . classNum = (0 ,0)
111
112 s e l f . entry = Entry (s e l f)
113
114
115 ##OLD##
116 # Class indexes : 1 = Pure Glass
117 # 2 = Glass and metal
118 # 3 = Glass and mixed
119 # 4 = Pure metal
120 # 5 = Metal and mixed

f

121 # 6 = Pure mixed
122 # 7 = Mixed , g l a s s and metal
123
124
125 #Old but tons in page 1 , found unecessary
126 ## button1 = tk . Button (s e l f , t e x t=”Pure Glass ” , command=

lambda : s e l f . s e t c l a s s (0))
127 ## button2 = tk . Button (s e l f , t e x t=”Glass and metal ” , command

=lambda : s e l f . s e t c l a s s (1))
128 ## button3 = tk . Button (s e l f , t e x t=”Glass and mixed ” , command

=lambda : s e l f . s e t c l a s s (2))
129 ## button4 = tk . Button (s e l f , t e x t=”Pure metal ” , command=

lambda : s e l f . s e t c l a s s (3))
130 ## button5 = tk . Button (s e l f , t e x t=”Metal and mixed ” , command

=lambda : s e l f . s e t c l a s s (4))
131 ## button6 = tk . Button (s e l f , t e x t=”Pure mixed ” , command=

lambda : s e l f . s e t c l a s s (5))
132 ## button7 = tk . Button (s e l f , t e x t=”Mixed , g l a s s and metal ” ,

command=lambda : s e l f . s e t c l a s s (6))
133 button8 = tk . Button (s e l f , t ex t=”Browse” , command=s e l f .

g e t d i r)
134 button9 = tk . Button (s e l f , t ex t=”Run” ,command = lambda :

master . show frame2 (s e l f . classNum , s e l f . p o r t S e l e c t i o n . get
() , s e l f . entry . get ()))

135 ##
136 ## button1 . p lace (r e l x =0.4 , y=100)
137 ## button2 . p lace (r e l x =0.4 , y=25+100)
138 ## button3 . p lace (r e l x =0.4 , y=50+100)
139 ## button4 . p lace (r e l x =0.4 , y=75+100)
140 ## button5 . p lace (r e l x =0.4 , y=100+100)
141 ## button6 . p lace (r e l x =0.4 , y=125+100)
142 ## button7 . p lace (r e l x =0.4 , y=150+100)
143
144
145
146
147 s e l f . dropdownMenu . p lace (r e l x =0.4 , y=300)
148 s e l f . p o r t l a b e l . p l ace (r e l x =0.4 , y=300 , anchor=NE)
149 s e l f . d i rLabe l . p l ace (r e l x =0.4 , y=350 , anchor=E)
150 #s e l f . c l a s sLab e l . p l ace (r e l x =0.4 , y=100,anchor=NE)
151 s e l f . entry . p lace (r e l x =0.4 , y=350 , anchor=W)
152 button8 . p lace (r e l x =0.6 , y=350 , anchor=W)
153 button9 . p lace (r e l x =0.4 , y=400 , he ight =100 ,width=100)
154
155 i f s e l f . s torageLoc :
156 s e l f . entry . i n s e r t (0 , s e l f . s torageLoc)
157
158 de f s e r i a l p o r t s (s e l f) :
159 r e s u l t = []
160 por t s = [comport . dev i c e f o r comport in s e r i a l . t o o l s .

l i s t p o r t s . comports ()]
161 f o r port in por t s :
162 try :
163 s = s e r i a l . S e r i a l (port)
164 s . c l o s e ()
165 r e s u l t . append (port)
166 except (OSError , s e r i a l . S e r i a lExcep t i on) :

g

167 pass
168 re turn r e s u l t
169
170 de f g e t d i r (s e l f) :
171 s e l f . tempdir = f i l e d i a l o g . a s kd i r e c t o r y (parent=s e l f ,

i n i t i a l d i r=s e l f . cu r rd i r , t i t l e= ' Please s e l e c t a
d i r e c t o r y ')

172 s e l f . entry . i n s e r t (0 , s e l f . tempdir)
173
174 de f s e t c l a s s (s e l f , classNum) :
175 s e l f . classNum = classNum
176
177 c l a s s Page2 (tk . Frame) :
178 de f i n i t (s e l f , master , classNum , s e r i a lPo r t , dataDir) :
179 tk . Frame . i n i t (s e l f , master , width=1000 , he ight=700)
180
181 s e l f . classNum = classNum
182 master . bind ('<Return> ' , s e l f . en te r) #Binds enter but ton to

func t i on s e l f . en ter
183
184
185 # paths
186 s e l f . path measurements = dataDir+ ' /Measurements '
187 s e l f . tempPath = s e l f . path measurements + ' /temp '
188
189 #Old c l a s s l i s t
190 ## s e l f . c l a s s L i s t = ['/ GlassPure / ' , '/GlassAndMetal / ' , '/

GlassAndMix / ' , '/MetalPure / ' , '/MetalAndMix / ' ,
191 ## '/MixPure / ' , '/MixedGlassAndMetal / ']
192
193 #New c l a s s d i c t i ona ry
194 s e l f . c l a s s L i s t = { (1 , 1) : ' /GlassAndMetal/ ' , (0 , 1) : ' /

GlassAndMix/ ' , (1 , 0) : ' /MetalAndMix/ ' , (0 , 0) : ' /MixPure/ ' }
195
196 #crea te d i r e c t o r i e s i f not e x i s t i n g
197 i f not os . path . e x i s t s (s e l f . path measurements) :
198 os . mkdir (s e l f . path measurements)
199
200 f o r C in s e l f . c l a s s L i s t :
201 path = s e l f . path measurements+s e l f . c l a s s L i s t [C]
202 i f not os . path . e x i s t s (path) :
203 os . mkdir (path)
204
205 i f not os . path . e x i s t s (s e l f . tempPath) :
206 os . mkdir (s e l f . tempPath)
207
208 #Previous bu t tons
209 ## s e l f . but ton1 = tk . Button (s e l f , t e x t=”Pure Glass ” , command

=lambda : s e l f . d e f i n e c l a s s (0 , s e l f . but ton1))
210 ## s e l f . but ton2 = tk . Button (s e l f , t e x t=”Glass and metal ” ,

command=lambda : s e l f . d e f i n e c l a s s (1 , s e l f . button2 ,))
211 ## s e l f . but ton3 = tk . Button (s e l f , t e x t=”Glass and mixed ” ,

command=lambda : s e l f . d e f i n e c l a s s (2 , s e l f . button3 ,))
212 ## s e l f . but ton4 = tk . Button (s e l f , t e x t=”Pure metal ” , command

=lambda : s e l f . d e f i n e c l a s s (3 , s e l f . but ton4))
213 ## s e l f . but ton5 = tk . Button (s e l f , t e x t=”Metal and mixed ” ,

command=lambda : s e l f . d e f i n e c l a s s (4 , s e l f . but ton5))

h

214 ## s e l f . but ton6 = tk . Button (s e l f , t e x t=”Pure mixed ” , command
=lambda : s e l f . d e f i n e c l a s s (5 , s e l f . but ton6))

215 ## s e l f . but ton7 = tk . Button (s e l f , t e x t=”Mixed , g l a s s and
metal ” ,command=lambda : s e l f . d e f i n e c l a s s (6 , s e l f . but ton7))

216
217 s e l f . checkVar1 = tk . IntVar ()
218 s e l f . checkVar2 = tk . IntVar ()
219
220 s e l f . checkbutton1 = tk . Checkbutton (s e l f , t ex t=”Metal” ,

v a r i ab l e = s e l f . checkVar1 , onvalue = 1 , o f f v a l u e =0,
command=lambda : s e l f . d e f i n e c l a s s (0 , s e l f . checkbutton1 ,
s e l f . checkbutton2))

221 s e l f . checkbutton2 = tk . Checkbutton (s e l f , t ex t=”Glass ” ,
v a r i ab l e = s e l f . checkVar2 , onvalue = 1 , o f f v a l u e =0,
command=lambda : s e l f . d e f i n e c l a s s (1 , s e l f . checkbutton1 ,
s e l f . checkbutton2))

222
223
224 s e l f . canva = Canvas (s e l f)
225 s e l f . myrectangle = s e l f . canva . c r e a t e r e c t a n g l e (30 , 10 , 120 ,

80 , o u t l i n e=”#fb0 ” , f i l l =”#fb0 ”)
226
227 s e l f . StorageLocat ion = ””
228
229 #Timing−v a r i a b l e s
230 s e l f . currTime = 0.000
231 s e l f . cutIncrement = 0.000
232
233 # dybamic t e x t and l a b e l
234 s e l f . dynamicText = tk . Str ingVar ()
235 s e l f . dynamicText . s e t (”−”)
236
237 s e l f . dynamicText2 = tk . Str ingVar ()
238
239 s e l f . l a b e l t i t l e = Label (s e l f , t e x t v a r i a b l e=s e l f . dynamicText

, f g=”black ” , f ont=(”He lve t i ca ” , 25))
240
241 s e l f . l a b e l t i t l e 2 = Label (s e l f , t e x t v a r i a b l e=s e l f .

dynamicText2 , f g=”black ” , f ont=(”He lve t i ca ” , 25))
242
243 s e l f . we i gh t l abe l = Label (s e l f , t ex t=”Weight : ” , f g=” black ”)
244
245 s e l f . c l a s s l a b e l = Label (s e l f , t ex t=”Class number : ” , f g=”

black ”)
246
247 s e l f . dynamicText2 . s e t (s t r (s e l f . classNum))
248
249 # save but ton
250 s e l f . d i sp layButton = Button (s e l f , t ex t=”Save” ,
251 command=s e l f . save)
252
253 # qu i t but ton
254 s e l f . quitButton = Button (s e l f , t ex t=”QUIT” , f g=” red ” , cn f

={} , command=master . des t roy)
255
256 #discard but ton
257 s e l f . d i scardButton = Button (s e l f , t ex t = ”Discard ” , command

i

= s e l f . d i s ca rd)
258
259 # boolean v a r i a b l e s
260 s e l f . we i gh t r e c e i v ed = False
261 s e l f . me ta l r e c e i v ed = False
262 s e l f . p r ox im i ty r e c e i v ed = False
263 s e l f . meta l r ecorded = False
264 s e l f . we ight r eques t ed = False
265 s e l f . p rox imi ty reques t ed = False
266 s e l f . meta l r eques ted = False
267 s e l f . r ecorded = False
268 s e l f . rdySave = False
269 s e l f . update = True
270 s e l f . vidDownloaded = True
271 s e l f . v e r y r e c e i v ed = False
272 s e l f . vidRdy = False
273
274 # array fo r metal data
275 s e l f . meta l data = []
276
277 # s e r i a l
278 s e l f . s e r = s e r i a l . S e r i a l (s e r i a lPo r t , 9600)
279 time . s l e e p (2)
280 s e l f . s e r . r e s e t i n p u t b u f f e r ()
281
282 # spectrograms
283 s e l f . mfccs1 = np . empty (shape=(0 , 0))
284 s e l f . mfccs2 = np . empty (shape=(0 , 0))
285 s e l f . mel1 = np . empty (shape=(0 , 0))
286 s e l f . mel2 = np . empty (shape=(0 , 0))
287
288 # gopro
289 s e l f . cam = GoProCamera . GoPro(cons tant s . gpcontro l ,

mac address = ”74−70−FD−C7−72−E3”)
290
291
292 # Class indexes : 1 = Pure Glass
293 # 2 = Glass and metal
294 # 3 = Glass and mixed
295 # 4 = Pure metal
296 # 5 = Metal and mixed
297 # 6 = Pure mixed
298 # 7 = Mixed , g l a s s and metal
299
300
301 s e l f . t = np . empty (shape=(1 , 1))
302 s e l f . f i g = Figure (f i g s i z e =(5 , 4) , dpi=100)
303
304 s e l f . f i g . add subplot (111) . p l o t (s e l f . t)
305
306 # p l o t
307 s e l f . canvas = FigureCanvasTkAgg (s e l f . f i g , master=master) #

A tk . DrawingArea .
308 s e l f . canvas . draw ()
309
310 # spectrogram p l o t s
311 s e l f . specFig = p l t . Figure (f i g s i z e =(5 , 4))

j

312 s e l f . specCanvas = FigureCanvasTkAgg (s e l f . specFig , master=
master)

313 s e l f . specCanvas . g e t tk w idge t () . p l ace (r e l x =0, r e l y =0.4)
314 s e l f . canvas . g e t tk w idge t () . p l ace (r e l x =0.5 , r e l y =0.4)
315 s e l f . canva . p lace (r e l x =0.5 , r e l y =0.3 , anchor=N)
316
317 s e l f . canvas . draw ()
318 s e l f . specCanvas . draw ()
319 s e l f . packing ()
320
321
322 de f cance l (s e l f) :
323 i f s e l f . j ob i s not None :
324 s e l f . a f t e r c a n c e l (s e l f . j ob)
325 s e l f . j ob = None
326
327 de f packing (s e l f) :
328 #Prev ious l y but ton placements
329 ## s e l f . but ton1 . p lace (x=10,y=10)
330 ## s e l f . but ton2 . p lace (x=10,y=10+25∗1)
331 ## s e l f . but ton3 . p lace (x=10,y=10+25∗2)
332 ## s e l f . but ton4 . p lace (x=10,y=10+25∗3)
333 ## s e l f . but ton5 . p lace (x=10,y=10+25∗4)
334 ## s e l f . but ton6 . p lace (x=10,y=10+25∗5)
335 ## s e l f . but ton7 . p lace (x=10,y=10+25∗6)
336
337 s e l f . checkbutton1 . p lace (x=10,y=10)
338 s e l f . checkbutton2 . p lace (x=10,y=10+25∗1)
339
340 s e l f . we i gh t l abe l . p l ace (x=550 ,y=10, anchor=NE)
341 s e l f . c l a s s l a b e l . p l ace (x=300 ,y=10, anchor=NE)
342
343 s e l f . l a b e l t i t l e . p lace (x=580 ,y=10)
344 s e l f . l a b e l t i t l e 2 . p lace (x=330 ,y=10)
345
346 s e l f . d i sp layButton . p lace (x=850 ,y=10, anchor=N)
347 s e l f . d i scardButton . p lace (x=850 ,y=100 , anchor=N)
348 s e l f . quitButton . p lace (x=850 ,y=200 , anchor=N)
349
350
351
352 de f ente r (s e l f , event=None) :
353 i f s e l f . rdySave :
354 s e l f . save ()
355
356 de f r un s c r i p t (s e l f) : #Main govenrning func t i on . Loops

cons t an t l y u n t i l program i s shut down .
357 # ge t the weight
358 i f not s e l f . we i gh t r e c e i v ed and s e l f . vidDownloaded :
359 s e l f . canva . i t emcon f i g (s e l f . myrectangle , f i l l = ' orange ')
360 i f not s e l f . we ight r eques t ed :
361 s e l f . s e r . r e s e t i n p u t b u f f e r ()
362 s e l f . s e r . r e s e t o u t pu t bu f f e r ()
363 s e l f . s e r . wr i t e (”w” . encode ())
364 s e l f . we ight r eques t ed = True
365 re turn
366 e l i f s e l f . s e r . i n wa i t i n g :

k

367 b = s e l f . s e r . r e ad l i n e () . decode ()
368 s e l f . weight = f l o a t (b)
369 s e l f . dynamicText . s e t (s t r (s e l f . weight))
370 i f not s e l f . weight == 0 :
371
372 s e l f . we i gh t r e c e i v ed = True
373 s e l f . currTime = time . time ()
374 s e l f . cam . shut t e r (cons tant s . s t a r t)
375 s e l f . canva . i t emcon f i g (s e l f . myrectangle , f i l l = '

green ')
376
377 re turn
378
379 # ge t prox imi ty s i g n a l
380 e l i f not s e l f . p r ox im i ty r e c e i v ed and s e l f . we i gh t r e c e i v ed

== True :
381 i f not s e l f . p rox imi ty reques t ed :
382 s e l f . s e r . f l u s h ()
383 s e l f . s e r . wr i t e (”p” . encode ())
384 s e l f . p rox imi ty reques t ed = True
385 re turn
386 e l i f s e l f . s e r . i n wa i t i n g :
387 s e l f . canva . i t emcon f i g (s e l f . myrectangle , f i l l = ' red ')
388 b = s t r (s e l f . s e r . r e ad l i n e () . decode () . s t r i p (”\ r \n”))
389
390 i f b == ”Record” :
391 s e l f . vidRdy = False
392 x3 = thread ing . Thread (t a r g e t = s e l f .

r e c e iveMeta l)
393 x2 = thread ing . Thread (t a r g e t = s e l f . gopro)
394 x1 = thread ing . Thread (t a r g e t=s e l f . r ecord)
395
396 s e l f . cutIncrement = time . time ()− s e l f . currTime

−1.00
397
398 #x2 . s t a r t ()
399 x3 . s t a r t ()
400 x1 . s t a r t ()
401 s e l f . p r ox im i ty r e c e i v ed = True
402
403 re turn
404
405 e l i f s e l f . me ta l r e c e i v ed and not s e l f . v e r y r e c e i v ed :
406 s e l f . cam . shut t e r (cons tant s . stop)
407 s e l f . t = np . asar ray (s e l f . meta l data)
408 s e l f . f i g . add subplot (111) . p l o t (s e l f . t)
409 s e l f . canvas . draw ()
410 s e l f . v e r y r e c e i v ed = True
411
412 i f s e l f . r ecorded and s e l f . me ta l r e c e i v ed :
413 s e l f . d i sp layButton . c on f i gu r e (s t a t e=NORMAL)
414 s e l f . rdySave = True
415
416 l i b r o s a . d i sp l ay . specshow (s e l f . mel3 , x ax i s= ' time ' , ax=

s e l f . specFig . add subplot (111))
417 s e l f . specCanvas . draw ()
418 s e l f . update = False

l

419
420 de f r e ce iveMeta l (s e l f) :
421 i f s e l f . s e r . i n wa i t i n g :
422 complete = False
423 whi l e not complete : #read un t i l Arduino sends complete

s i g n a l
424 b = s e l f . s e r . r e ad l i n e ()
425 b = b . decode ()
426 try :
427 s e l f . meta l data . append (f l o a t (b . s t r i p (”\ r \n”)))

#try to append metal data
428 except : #i f not s u c c e s s f u l l , then arduino has sent

chars
429 i f b . s t r i p (”\ r \n”)==”complete ” :
430 complete = True
431 s e l f . me ta l r e c e i v ed = True
432 cont inue
433 s e l f . meta l data . append (0)
434 s e l f . s e r . f l u s h ()
435
436 de f save (s e l f) :
437 s e l f . r e s e t d a t a ()
438
439 # Read l a s t measurement number from t x t f i l e
440 measurementNumberPath = s e l f . path measurements + ' /

MeasurementNumber . txt '
441 NumberFile = open (measurementNumberPath , ' r ')
442 MeasurementNumber = in t (NumberFile . read ())
443 NumberFile . c l o s e ()
444
445 # Increment measurement number
446 MeasurementNumber += 1
447 NumberFile = open (measurementNumberPath , 'w ')
448 NumberFile . wr i t e (s t r (MeasurementNumber))
449 NumberFile . c l o s e ()
450
451
452 # Create record ing f o l d e r
453 s e l f . StorageLocat ion = (s e l f . path measurements + s e l f .

c l a s s L i s t [s e l f . classNum] + s t r (MeasurementNumber) + ' / '
)

454 os . mkdir (s e l f . StorageLocat ion)
455
456
457
458 # saving data
459 np . save (s e l f . StorageLocat ion + ' weight . npy ' , s e l f . weight)
460
461 np . save (s e l f . StorageLocat ion + ' metal data . npy ' , s e l f . t)
462
463 np . save (s e l f . StorageLocat ion + 'MFCCS1. npy ' , s e l f . mfccs1)
464 np . save (s e l f . StorageLocat ion + 'MelSpectrogram1 . npy ' , s e l f .

mel1)
465
466 np . save (s e l f . StorageLocat ion + 'MFCCS2. npy ' , s e l f . mfccs2)
467 np . save (s e l f . StorageLocat ion + 'MelSpectrogram2 . npy ' , s e l f .

mel2)

m

468
469 np . save (s e l f . StorageLocat ion + 'MFCCS3. npy ' , s e l f . mfccs3)
470 np . save (s e l f . StorageLocat ion + 'MelSpectrogram3 . npy ' , s e l f .

mel3)
471
472 np . save (s e l f . StorageLocat ion + 'MFCCS4. npy ' , s e l f . mfccs4)
473 np . save (s e l f . StorageLocat ion + 'MelSpectrogram4 . npy ' , s e l f .

mel4)
474
475 # moving wav− f i l e s
476 os . rename (s e l f . tempPath + ' /Recording1 . wav ' , s e l f .

StorageLocat ion + ' Recording1 .Wav ')
477 os . rename (s e l f . tempPath + ' /Recording2 . wav ' , s e l f .

StorageLocat ion + ' Recording2 .Wav ')
478 os . rename (s e l f . tempPath + ' /Recording3 . wav ' , s e l f .

StorageLocat ion + ' Recording3 .Wav ')
479 os . rename (s e l f . tempPath + ' /Recording4 . wav ' , s e l f .

StorageLocat ion + ' Recording4 .Wav ')
480
481 # running cut v id thread
482 x4 = thread ing . Thread (t a r g e t=s e l f . cutVid)
483 x4 . s t a r t ()
484
485
486
487
488
489
490 de f cutVid (s e l f) :
491 os . chd i r (s e l f . tempPath)
492 whi le not s e l f . vidRdy :
493 pass
494 #de l e t i n g gopro content s
495 f o r f i l e in os . l i s t d i r (' . ') :
496 i f f i l e [: 8] ==”101GOPRO” :
497 f fmpeg ex t r a c t s ub c l i p (f i l e , s e l f . cutIncrement ,

s e l f . cutIncrement+2, targetname=s e l f .
StorageLocat ion+” t e s t .mp4”)

498 os . remove (f i l e)
499 s e l f . vidDownloaded = True
500
501
502
503 de f updater (s e l f) :#Function causing s e l f . r un s c r i p t () to loop
504 s e l f . r u n s c r i p t ()#Runs s c r i p t
505 i f s e l f . update :
506 s e l f . j ob = s e l f . a f t e r (100 , s e l f . updater)#Schedule to

run s e l f . updater a f t e r 100ms
507
508 de f r e s e t d a t a (s e l f) :
509
510 # re s e t t i n g arduino v a r i a b l e s
511 s e l f . s e r . wr i t e (”a” . encode ())
512
513 # re s e t t i n g v a r i a b l e s
514 s e l f . vidDownloaded = False
515 s e l f . we i gh t r e c e i v ed = False

n

516 s e l f . me ta l r e c e i v ed = False
517 s e l f . p r ox im i ty r e c e i v ed = False
518 s e l f . meta l r ecorded = False
519 s e l f . meta l data = []
520 s e l f . we ight r eques t ed = False
521 s e l f . p rox imi ty reques t ed = False
522 s e l f . meta l r eques ted = False
523 s e l f . r ecorded = False
524 s e l f . rdySave = False
525 s e l f . update = True
526 s e l f . v e r y r e c e i v ed = False
527
528 s e l f . s e r . f l u s h ()
529 s e l f . f i g . c l f ()
530 s e l f . specFig . c l f ()
531 l i b r o s a . cache . c l e a r ()
532 try :
533 s e l f . canvas . pa ck f o r g e t ()
534 except :
535 pass
536 try :
537 s e l f . specCanvas . pa ck f o r g e t ()
538 except :
539 pass
540
541
542
543 # d i s a b l i n g save but ton
544 s e l f . d i sp layButton . c on f i gu r e (s t a t e=DISABLED)
545 s e l f . updater ()
546
547 de f d i s ca rd (s e l f) :
548 s e l f . r e s e t d a t a ()
549 #s e l f . cam . d e l e t e (” a l l ”)
550 try :
551 os . chd i r (s e l f . tempPath)
552 f o r f i l e in os . l i s t d i r (' . ') :
553 i f f i l e [: 8] ==”101GOPRO” :
554 os . remove (f i l e)
555 s e l f . vidDownloaded = True
556 except :
557 pass
558
559 try :
560 s e l f . cam . shut t e r (cons tant s . stop)
561 except :
562 pass
563 try :
564 os . remove (s e l f . tempPath+ ' /Recording1 . wav ')
565 os . remove (s e l f . tempPath + ' /Recording2 . wav ')
566 os . remove (s e l f . tempPath + ' /Recording3 . wav ')
567 os . remove (s e l f . tempPath + ' /Recording4 . wav ')
568 except :
569 pass
570
571 de f d e f i n e c l a s s (s e l f , classNum , button1 , button2) :
572 #For o ld bu t tons

o

573 ## for B in (s e l f . button1 , s e l f . button2 , s e l f . button3 , s e l f .
button4 , s e l f . button5 , s e l f . button6 , s e l f . but ton7) :

574 ## B. con f i gure (s t a t e=NORMAL)
575 ## aButton . con f i gure (s t a t e=DISABLED)
576 ## s e l f . classNum = classNum
577
578 c l a s sLab e l s = (s e l f . checkVar1 . get () , s e l f . checkVar2 . get ())
579 s e l f . dynamicText2 . s e t (s t r (c l a s sLab e l s [0])+” , ”+s t r (

c l a s sLab e l s [1]))
580
581 de f gopro (s e l f) :
582
583 time . s l e e p (1)
584 s e l f . cam . shut t e r (cons tant s . stop)
585 os . chd i r (s e l f . tempPath)
586 s e l f . c l i p = s e l f . cam . downloadLastMedia ()
587 s e l f . vidRdy = True
588
589
590 de f record (s e l f) :
591 chunk = 256 # Record in chunks o f 256 samples
592 sample format = pyaudio . paInt16 # 16 b i t s per sample
593 Channels = 4
594
595
596 f s = 48000 #Record at 48 000 frames per second
597 seconds = 2
598 f i l ename1 = (s e l f . tempPath + ' /Recording1 . wav ')
599 f i l ename2 = (s e l f . tempPath + ' /Recording2 . wav ')
600 f i l ename3 = (s e l f . tempPath + ' /Recording3 . wav ')
601 f i l ename4 = (s e l f . tempPath + ' /Recording4 . wav ')
602
603 p = pyaudio . PyAudio () # Create an i n t e r f a c e to PortAudio
604
605 stream = p . open (format=sample format ,
606 channe l s=Channels ,
607 ra t e=fs ,
608 f r ame s p e r bu f f e r=chunk ,
609 input=True)
610
611 frames1 = [] # I n i t i a l i z e array to s t o r e frames
612 frames2 = [] # I n i t i a l i z e array to s t o r e frames
613 frames3 = [] # I n i t i a l i z e array to s t o r e frames
614 frames4 = [] # I n i t i a l i z e array to s t o r e frames
615
616 # Store data in chunks f o r 2 seconds
617 f o r i in range (0 , i n t (f s / chunk ∗ seconds)) :
618 data = stream . read (chunk)
619 # Convert s t r i n g to numpy array
620 dataArray = np . f rombuf f e r (data , dtype= ' i n t16 ')
621 # Dein te r l eave channels
622 channel1 = dataArray [0 : : Channels]
623 channel2 = dataArray [1 : : Channels]
624 channel3 = dataArray [2 : : Channels]
625 channel4 = dataArray [3 : : Channels]
626 # Convert back to s t r i n g
627 dataChannel1 = channel1 . t o s t r i n g ()

p

628 dataChannel2 = channel2 . t o s t r i n g ()
629 dataChannel3 = channel3 . t o s t r i n g ()
630 dataChannel4 = channel4 . t o s t r i n g ()
631 frames1 . append (dataChannel1)
632 frames2 . append (dataChannel2)
633 frames3 . append (dataChannel3)
634 frames4 . append (dataChannel4)
635
636 # Stop and c l o s e the stream
637 stream . stop st ream ()
638 stream . c l o s e ()
639 # Terminate the PortAudio i n t e r f a c e
640 p . terminate ()
641
642 # Save the recorded data as a WAV f i l e
643 wf = wave . open (f i l ename1 , 'wb ')
644 wf . s e tnchanne l s (1)
645 wf . setsampwidth (p . g e t s amp l e s i z e (sample format))
646 wf . s e t f r amera t e (f s)
647 wf . wr i t e f rames (b ' ' . j o i n (frames1))
648 wf . c l o s e ()
649
650 wf = wave . open (f i l ename2 , 'wb ')
651 wf . s e tnchanne l s (1)
652 wf . setsampwidth (p . g e t s amp l e s i z e (sample format))
653 wf . s e t f r amera t e (f s)
654 wf . wr i t e f rames (b ' ' . j o i n (frames2))
655 wf . c l o s e ()
656
657 wf = wave . open (f i l ename3 , 'wb ')
658 wf . s e tnchanne l s (1)
659 wf . setsampwidth (p . g e t s amp l e s i z e (sample format))
660 wf . s e t f r amera t e (f s)
661 wf . wr i t e f rames (b ' ' . j o i n (frames3))
662 wf . c l o s e ()
663
664 wf = wave . open (f i l ename4 , 'wb ')
665 wf . s e tnchanne l s (1)
666 wf . setsampwidth (p . g e t s amp l e s i z e (sample format))
667 wf . s e t f r amera t e (f s)
668 wf . wr i t e f rames (b ' ' . j o i n (frames4))
669 wf . c l o s e ()
670
671 # Create spectrogram and s t o r e as f i l e
672 # Channel 1
673 try :
674 audio , sample rate = l i b r o s a . load (f i l ename1 , r e s t yp e= '

k a i s e r f a s t ')
675 s e l f . mfccs1 = l i b r o s a . f e a tu r e . mfcc (y=audio , s r=

sample rate , hop length=32, n mfcc=200)
676 s e l f . mfccs1 = l i b r o s a . power to db (s e l f . mfccs1)
677
678 except Exception :
679 p r i n t (”Error encountered whi l e par s ing f i l e : ” ,

f i l ename1)
680
681 try :

q

682 audio , sample rate = l i b r o s a . load (f i l ename1 , r e s t yp e= '
k a i s e r f a s t ')

683 s e l f . mel1 = l i b r o s a . f e a tu r e . melspectrogram (y=audio , s r=
sample rate , n f f t =2048 , hop length=32)

684 s e l f . mel1 = l i b r o s a . power to db (s e l f . mel1)
685
686 except Exception :
687 p r i n t (”Error encountered whi l e par s ing f i l e : ” ,

f i l ename1)
688
689 # Channel 2
690 try :
691 audio , sample rate = l i b r o s a . load (f i l ename2 , r e s t yp e= '

k a i s e r f a s t ')
692 s e l f . mfccs2 = l i b r o s a . f e a tu r e . mfcc (y=audio , s r=

sample rate , hop length=32, n mfcc=200)
693 s e l f . mfccs2 = l i b r o s a . power to db (s e l f . mfccs2)
694
695 except Exception :
696 p r i n t (”Error encountered whi l e par s ing f i l e : ” ,

f i l ename2)
697
698 try :
699 audio , sample rate = l i b r o s a . load (f i l ename2 , r e s t yp e= '

k a i s e r f a s t ')
700 s e l f . mel2 = l i b r o s a . f e a tu r e . melspectrogram (y=audio , s r=

sample rate , n f f t =2048 , hop length=32)
701 s e l f . mel2 = l i b r o s a . power to db (s e l f . mel2)
702
703 except Exception :
704 p r i n t (”Error encountered whi l e par s ing f i l e : ” ,

f i l ename2)
705
706 # Channel 3
707 try :
708 audio , sample rate = l i b r o s a . load (f i l ename3 , r e s t yp e= '

k a i s e r f a s t ')
709 s e l f . mfccs3 = l i b r o s a . f e a tu r e . mfcc (y=audio , s r=

sample rate , hop length=32, n mfcc=200)
710 s e l f . mfccs3 = l i b r o s a . power to db (s e l f . mfccs3)
711
712 except Exception :
713 p r i n t (”Error encountered whi l e par s ing f i l e : ” ,

f i l ename3)
714
715 try :
716 audio , sample rate = l i b r o s a . load (f i l ename3 , r e s t yp e= '

k a i s e r f a s t ')
717 s e l f . mel3 = l i b r o s a . f e a tu r e . melspectrogram (y=audio , s r=

sample rate , n f f t =2048 , hop length=32)
718 s e l f . mel3 = l i b r o s a . power to db (s e l f . mel3)
719
720 except Exception :
721 p r i n t (”Error encountered whi l e par s ing f i l e : ” ,

f i l ename3)
722
723 # Channel 4

r

724 try :
725 audio , sample rate = l i b r o s a . load (f i l ename4 , r e s t yp e= '

k a i s e r f a s t ')
726 s e l f . mfccs4 = l i b r o s a . f e a tu r e . mfcc (y=audio , s r=

sample rate , hop length=32, n mfcc=200)
727 s e l f . mfccs4 = l i b r o s a . power to db (s e l f . mfccs4)
728
729 except Exception :
730 p r i n t (”Error encountered whi l e par s ing f i l e : ” ,

f i l ename4)
731
732 try :
733 audio , sample rate = l i b r o s a . load (f i l ename4 , r e s t yp e= '

k a i s e r f a s t ')
734 s e l f . mel4 = l i b r o s a . f e a tu r e . melspectrogram (y=audio , s r=

sample rate , n f f t =2048 , hop length=32)
735 s e l f . mel4 = l i b r o s a . power to db (s e l f . mel4)
736
737 except Exception :
738 p r i n t (”Error encountered whi l e par s ing f i l e : ” ,

f i l ename4)
739
740 s e l f . r ecorded = True
741
742 de f d e l (s e l f) :
743 s e l f . s e r . c l o s e ()
744
745
746
747
748
749 i f name == ” main ” :
750
751 app = App()
752 a t e x i t . r e g i s t e r (app . e x i t)
753 app . mainloop ()
754 app . e x i t ()

A.2 CNN Model

All code regarding CNN models are presented here. The complete model class
is only presented for Model 1, as only ”def build model(self)” differs between
them. Complete code is presented for multi-class Model 1 as well, since it differs
in the way it creates confusion matrices.

A.2.1 Model 1

1 from ten so r f l ow . keras . models import Sequent ia l , Model
2 from ten so r f l ow . keras . l a y e r s import Conv2D , MaxPooling2D ,

AveragePooling2D , GlobalAveragePooling2D , Dropout , Dense ,
Act ivat ion

3 from ten so r f l ow . keras . op t im i z e r s import Adam, RMSprop
4 from ten so r f l ow . keras . c a l l b a c k s import ModelCheckpoint ,

ReduceLROnPlateau
5 from ten so r f l ow . keras . m ixed pre c i s i on import exper imenta l as

m ixed pre c i s i on

s

6 from sk l ea rn . met r i c s import accuracy score , hamming loss ,
mu l t i l ab e l c on fu s i on mat r i x , ConfusionMatrixDisplay ,
p r e c i s i o n s c o r e

7 import matp lo t l i b . pyplot as p l t
8 import sys
9 from u t i l s 2 import Logger

10 import os
11 import datet ime
12 from con t e x t l i b import r e d i r e c t s t d o u t
13 import numpy as np
14
15 c l a s s trashDetCNN :
16 de f i n i t (s e l f , input shape , num classes , s ave d i r , ba t ch s i z e ,

epoch count) :
17 s e l f . input shape = input shape
18 s e l f . b a t c h s i z e = ba t ch s i z e
19 s e l f . epoch count = epoch count
20 s e l f . num classes = num classes
21 s e l f . mode l d i r = os . path . j o i n (save d i r , datet ime . datet ime .

now() . s t r f t ime ('%d−%m−%Y %H−%M−%S '))
22 os . mkdir (s e l f . mode l d i r)
23 sys . s tdout = Logger (s e l f . mode l d i r)
24 s e l f . bu i ld model ()
25 p r i n t (s e l f . input shape)
26 p r i n t (s e l f . b a t c h s i z e)
27 p r i n t (s e l f . epoch count)
28 p r i n t (s e l f . num classes)
29 p r i n t (s e l f . mode l d i r)
30
31 de f bui ld model (s e l f) :
32 p r i n t (' Bui ld ing model . . . ')
33
34 ### Convo lu t iona l b l o c k s
35 s e l f . model = Sequent i a l ()
36 s e l f . model . add (Conv2D(f i l t e r s =32, k e r n e l s i z e =(3 ,3) ,

s t r i d e s = (1 , 1) , data format = ” chann e l s l a s t ” ,
input shape=s e l f . input shape , a c t i v a t i o n= ' r e l u '))

37 s e l f . model . add (MaxPooling2D (p o o l s i z e =(2 ,2)))
38 s e l f . model . add (Dropout (0 . 2))
39
40 s e l f . model . add (Conv2D(f i l t e r s =64, k e r n e l s i z e =(3 ,3) ,

a c t i v a t i o n= ' r e l u '))
41 s e l f . model . add (MaxPooling2D (p o o l s i z e =2))
42 s e l f . model . add (Dropout (0 . 2))
43
44 s e l f . model . add (Conv2D(f i l t e r s =128 , k e r n e l s i z e =(3 ,3) ,

a c t i v a t i o n= ' r e l u '))
45 s e l f . model . add (MaxPooling2D (p o o l s i z e =2))
46 s e l f . model . add (Dropout (0 . 2))
47
48 s e l f . model . add (Conv2D(f i l t e r s =256 , k e r n e l s i z e =(3 ,3) ,

a c t i v a t i o n= ' r e l u '))
49 s e l f . model . add (AveragePooling2D (p o o l s i z e =2))
50 s e l f . model . add (Dropout (0 . 2))
51
52 s e l f . model . add (Conv2D(f i l t e r s =256 , k e r n e l s i z e =(3 ,3) ,

a c t i v a t i o n= ' r e l u '))

t

53 s e l f . model . add (AveragePooling2D (p o o l s i z e =2))
54 s e l f . model . add (Dropout (0 . 2))
55
56
57
58 #model . add (F la t t en ())
59
60 s e l f . model . add (GlobalAveragePooling2D ())
61
62 ## Softmax Output
63 s e l f . model . add (Dense (s e l f . num classes , name= ' preds '))
64 s e l f . model . add (Act ivat ion (' s igmoid '))
65 #ke r n e l r e g u l a r i z e r=r e g u l a r i z e r s . l 2 (0 .01)
66 opt = Adam(l r =0.001)
67 #opt = RMSprop(l r =0.0005) # Optimizer
68
69 s e l f . model . compi le (
70 l o s s= ' b ina ry c ro s s en t r opy ' ,
71 opt imize r=opt ,
72 met r i c s =[' accuracy ']
73)
74
75 p r i n t (s e l f . model . summary ())
76
77
78 de f t ra in mode l (s e l f , x t ra in , y t ra in , x val , y va l , x t e s t ,

y t e s t) :
79 che ckpo in t c a l l b a ck = ModelCheckpoint (r 'G:\ workspace python

\ml model l er \cnn\cnn2\weights \weights . bes t . h5 ' , monitor
= ' va l ac curacy ' , verbose=2, s av e b e s t on l y=True , mode= '
max ')

80
81 r e du c e l r c a l l b a c k = ReduceLROnPlateau (
82 monitor= ' va l accuracy ' , f a c t o r =0.5 , pa t i ence

=10,
83 verbose=2
84)
85 c a l l b a c k s l i s t = [checkpo in t ca l l back , r e d u c e l r c a l l b a c k]
86
87 # Fit the model and ge t t r a i n i n g h i s t o r y .
88 p r i n t (' Train ing . . . ')
89 #with open (os . path . j o in (model dir , ' l o g . t x t ') , 'w ') as f :
90 # with r e d i r e c t s t d o u t (f) :
91 s e l f . h i s t o r y = s e l f . model . f i t (x t ra in , y t ra in , b a t ch s i z e=

s e l f . ba t ch s i z e , epochs=s e l f . epoch count ,
v a l i d a t i on da t a=(x val , y va l) , verbose=2, c a l l b a c k s=
c a l l b a c k s l i s t)

92 s e l f . save model (x t ra in , y t ra in , x val , y va l , x t e s t ,
y t e s t)

93
94 de f save model (s e l f , x t ra in , y t ra in , x val , y va l , x t e s t , y t e s t) :
95
96 s e l f . model . save (os . path . j o i n (s e l f . model dir , 'Model . h5 '))
97 with open (os . path . j o i n (s e l f . model dir , 'modelsummary . txt ') ,

'w ') as f :
98 with r e d i r e c t s t d o u t (f) :
99 s e l f . model . summary ()

u

100 con f i d enc e s = s e l f . model . p r ed i c t (x va l)
101 np . save (os . path . j o i n (s e l f . model dir , ” c on f i d enc e s ”) ,

c on f i d enc e s)
102
103 con f i d ence s2 = s e l f . model . p r ed i c t (x t e s t)
104 np . save (os . path . j o i n (s e l f . model dir , ” c o n f i d e n c e s t e s t ”) ,

c on f i d ence s2)
105
106 p r e d i c t i o n s = con f i d enc e s
107 f o r i in range (l en (con f i d enc e s)) :
108 f o r n in range (l en (con f i d enc e s [i])) :
109 i f c on f i d enc e s [i , n] >0.8:
110 p r ed i c t i o n s [i , n] = 1
111 e l s e :
112 p r ed i c t i o n s [i , n] = 0
113
114 with open (os . path . j o i n (s e l f . model dir , ' accuracy . txt ') , 'w ')

as f :
115 f . wr i t e (s t r (max(s e l f . h i s t o r y . h i s t o r y [' va l ac curacy '])))
116
117 conf = mu l t i l a b e l c on f u s i on ma t r i x (y val , p r e d i c t i o n s)
118
119 d i sp = Confus ionMatr ixDisplay (conf [0] , ['Metal ' , 'No Metal '])
120 d i sp = disp . p l o t (x t i c k s r o t a t i o n= ' v e r t i c a l ')
121 p l t . s a v e f i g (os . path . j o i n (s e l f . model dir , '

ConfusionMatrixMetal . png ') , bbox inches= ' t i g h t ')
122
123 d i sp = Confus ionMatr ixDisplay (conf [1] , [' Glass ' , 'No Glass '])
124 d i sp = disp . p l o t (x t i c k s r o t a t i o n= ' v e r t i c a l ')
125 p l t . s a v e f i g (os . path . j o i n (s e l f . model dir , '

Confus ionMatr ixGlass . png ') , bbox inches= ' t i g h t ')
126
127 p l t . c l f ()
128
129 p l t . p l o t (s e l f . h i s t o r y . h i s t o r y [' accuracy '])
130 p l t . p l o t (s e l f . h i s t o r y . h i s t o r y [' va l accuracy '])
131 p l t . t i t l e ('model accuracy ')
132 p l t . y l ab e l (' accuracy ')
133 p l t . x l ab e l (' epoch ')
134 p l t . l egend ([' t r a i n ' , ' va l '] , l o c= ' upper l e f t ')
135 p l t . t ex t (s e l f . epoch count ∗0 .56 , (max(s e l f . h i s t o r y . h i s t o r y ['

accuracy ']) ∗0 . 8) , ('Max accuracy : ' , round (max(s e l f .
h i s t o r y . h i s t o r y [' accuracy ']) , 5)) , bbox=d i c t (f a c e c o l o r=
'C0 ' , a lpha =0.5))

136 p l t . t ex t (s e l f . epoch count ∗0 .56 , (max(s e l f . h i s t o r y . h i s t o r y ['
accuracy ']) ∗0 . 7) , ('Max accuracy : ' , round (max(s e l f .
h i s t o r y . h i s t o r y [' va l ac curacy ']) , 5)) , bbox=d i c t (
f a c e c o l o r= 'C1 ' , a lpha =0.5))

137 p l t . s a v e f i g (os . path . j o i n (s e l f . model dir , 'Accuracy . png '))
138 p l t . c l f ()
139
140
141 # Summarize h i s t o r y f o r l o s s
142 p l t . p l o t (s e l f . h i s t o r y . h i s t o r y [' l o s s '])
143 p l t . p l o t (s e l f . h i s t o r y . h i s t o r y [' v a l l o s s '])
144 p l t . t i t l e ('model l o s s ')
145 p l t . y l ab e l (' l o s s ')

v

146 p l t . x l ab e l (' epoch ')
147 p l t . l egend ([' t r a i n ' , ' va l '] , l o c= ' upper l e f t ')
148 p l t . t ex t (s e l f . epoch count ∗0 .56 , (max(s e l f . h i s t o r y . h i s t o r y ['

l o s s ']) ∗0 . 5) , ('Min l o s s : ' , round (min (s e l f . h i s t o r y .
h i s t o r y [' l o s s ']) , 5)) , bbox=d i c t (f a c e c o l o r= 'C0 ' , a lpha
=0.5))

149 p l t . t ex t (s e l f . epoch count ∗0 .56 , (max(s e l f . h i s t o r y . h i s t o r y ['
v a l l o s s ']) ∗0 . 1) , ('Min l o s s : ' , round (min (s e l f . h i s t o r y
. h i s t o r y [' v a l l o s s ']) , 5)) , bbox=d i c t (f a c e c o l o r= 'C1 ' ,
a lpha =0.5))

150 p l t . s a v e f i g (os . path . j o i n (s e l f . model dir , ' Loss . png '))
151 p l t . c l f ()
152
153 np . save (os . path . j o i n (s e l f . model dir , ” l o s s ”) , s e l f . h i s t o r y .

h i s t o r y [' l o s s '])
154 np . save (os . path . j o i n (s e l f . model dir , ” v a l l o s s ”) , s e l f .

h i s t o r y . h i s t o r y [' v a l l o s s '])
155 np . save (os . path . j o i n (s e l f . model dir , ” acc ”) , s e l f . h i s t o r y .

h i s t o r y [' accuracy '])
156 np . save (os . path . j o i n (s e l f . model dir , ” va l a c c ”) , s e l f . h i s t o r y

. h i s t o r y [' va l accuracy '])

A.2.2 Model 2

1 de f bui ld model (s e l f) :
2 p r i n t (' Bui ld ing model . . . ')
3
4 ### Convo lu t iona l b l o c k s
5 s e l f . model = Sequent i a l ()
6 s e l f . model . add (Conv2D(f i l t e r s =16, k e r n e l s i z e =(9 ,9) ,

s t r i d e s = (1 , 1) , data format = ” chann e l s l a s t ” ,
input shape=s e l f . input shape , a c t i v a t i o n= ' r e l u '))

7 s e l f . model . add (MaxPooling2D (p o o l s i z e =(2 ,2)))
8 s e l f . model . add (Dropout (0 . 4))
9

10 s e l f . model . add (Conv2D(f i l t e r s =32, k e r n e l s i z e =(7 ,7) ,
a c t i v a t i o n= ' r e l u '))

11 s e l f . model . add (MaxPooling2D (p o o l s i z e =2))
12 s e l f . model . add (Dropout (0 . 2))
13
14 s e l f . model . add (Conv2D(f i l t e r s =64, k e r n e l s i z e =(5 ,5) ,

a c t i v a t i o n= ' r e l u '))
15 s e l f . model . add (MaxPooling2D (p o o l s i z e =2))
16 s e l f . model . add (Dropout (0 . 2))
17
18 s e l f . model . add (Conv2D(f i l t e r s =128 , k e r n e l s i z e =(3 ,3) ,

a c t i v a t i o n= ' r e l u '))
19 s e l f . model . add (MaxPooling2D (p o o l s i z e =2))
20 s e l f . model . add (Dropout (0 . 2))
21
22 s e l f . model . add (Conv2D(f i l t e r s =256 , k e r n e l s i z e =(1 ,1) ,

a c t i v a t i o n= ' r e l u '))
23 s e l f . model . add (MaxPooling2D (p o o l s i z e =2))
24 s e l f . model . add (Dropout (0 . 2))
25
26 s e l f . model . add (Conv2D(f i l t e r s =512 , k e r n e l s i z e =(1 ,1) ,

a c t i v a t i o n= ' r e l u '))

w

27 s e l f . model . add (MaxPooling2D (p o o l s i z e =2))
28 s e l f . model . add (Dropout (0 . 2))
29
30 #model . add (F la t t en ())
31
32 s e l f . model . add (GlobalAveragePooling2D ())
33 ## Softmax Output
34 s e l f . model . add (Dense (128 , a c t i v a t i o n = ' r e l u ' , name= ' dense1

'))
35 s e l f . model . add (Dense (64 , a c t i v a t i o n = ' r e l u ' , name= ' dense2 '

))
36 s e l f . model . add (Dense (32 , a c t i v a t i o n = ' r e l u ' , name= ' dense3 '

))
37 s e l f . model . add (Dense (16 , a c t i v a t i o n = ' r e l u ' , name= ' dense4 '

))
38 s e l f . model . add (Dense (s e l f . num classes , name= ' preds '))
39 s e l f . model . add (Act ivat ion (' s igmoid '))
40 #ke r n e l r e g u l a r i z e r=r e g u l a r i z e r s . l 2 (0 .01)
41 opt = Adam(l r =0.001)
42 #opt = RMSprop(l r =0.0005) # Optimizer
43
44 s e l f . model . compi le (
45 l o s s= ' b ina ry c ro s s en t r opy ' ,
46 opt imize r=opt ,
47 met r i c s =[' accuracy ']
48)
49
50 p r i n t (s e l f . model . summary ())

A.2.3 Model 3

1 de f bui ld model (s e l f) :
2 p r i n t (' Bui ld ing model . . . ')
3
4 ### Convo lu t iona l b l o c k s
5 s e l f . model = Sequent i a l ()
6 s e l f . model . add (Conv2D(f i l t e r s =32, k e r n e l s i z e =(4 ,8) ,

s t r i d e s = (1 , 1) , data format = ” chann e l s l a s t ” ,
input shape=s e l f . input shape , padding = ' same ' ,
a c t i v a t i o n= ' r e l u '))

7 s e l f . model . add (MaxPooling2D (p o o l s i z e =(2 ,2)))
8 s e l f . model . add (Dropout (0 . 2))
9

10 s e l f . model . add (Conv2D(f i l t e r s =64, k e r n e l s i z e =(5 ,5) , padding
= ' same ' , a c t i v a t i o n= ' r e l u '))

11 s e l f . model . add (MaxPooling2D (p o o l s i z e =2))
12 s e l f . model . add (Dropout (0 . 2))
13
14 s e l f . model . add (Conv2D(f i l t e r s =128 , k e r n e l s i z e =(5 ,5) ,

padding = ' same ' , a c t i v a t i o n= ' r e l u '))
15 s e l f . model . add (MaxPooling2D (p o o l s i z e =2))
16 s e l f . model . add (Dropout (0 . 2))
17
18 s e l f . model . add (Conv2D(f i l t e r s =256 , k e r n e l s i z e =(3 ,3) ,

padding = ' same ' , a c t i v a t i o n= ' r e l u '))
19 s e l f . model . add (MaxPooling2D (p o o l s i z e =2))
20 s e l f . model . add (Dropout (0 . 2))

x

21
22 s e l f . model . add (Conv2D(f i l t e r s =256 , k e r n e l s i z e =(1 ,1) ,

padding = ' same ' , a c t i v a t i o n= ' r e l u '))
23 s e l f . model . add (MaxPooling2D (p o o l s i z e =2))
24 s e l f . model . add (Dropout (0 . 2))
25
26
27 #model . add (F la t t en ())
28
29 s e l f . model . add (GlobalAveragePooling2D ())
30 ## Softmax Output
31 s e l f . model . add (Dense (128 , a c t i v a t i o n = ' r e l u ' , name= ' dense1

'))
32 s e l f . model . add (Dense (64 , a c t i v a t i o n = ' r e l u ' , name= ' dense2 '

))
33 s e l f . model . add (Dense (s e l f . num classes , name= ' preds '))
34 s e l f . model . add (Act ivat ion (' s igmoid '))
35 #ke r n e l r e g u l a r i z e r=r e g u l a r i z e r s . l 2 (0 .01)
36 opt = Adam(l r =0.001)
37 #opt = RMSprop(l r =0.0005) # Optimizer
38
39 s e l f . model . compi le (
40 l o s s= ' b ina ry c ro s s en t r opy ' ,
41 opt imize r=opt ,
42 met r i c s =[' accuracy ']
43)
44
45 p r i n t (s e l f . model . summary ())

A.2.4 Multi-class model(model 1)

1 from ten so r f l ow . keras . models import Sequent ia l , Model
2 from ten so r f l ow . keras . l a y e r s import Conv2D , MaxPooling2D ,

AveragePooling2D , GlobalAveragePooling2D , Dropout , Dense ,
Act ivat ion

3 from ten so r f l ow . keras . op t im i z e r s import Adam, RMSprop
4 from ten so r f l ow . keras . c a l l b a c k s import ModelCheckpoint ,

ReduceLROnPlateau
5 from ten so r f l ow . keras . m ixed pre c i s i on import exper imenta l as

m ixed pre c i s i on
6 from sk l e a rn . met r i c s import accuracy score , hamming loss ,

con fus ion matr ix , ConfusionMatrixDisplay , p r e c i s i o n s c o r e
7 import matp lo t l i b . pyplot as p l t
8 import sys
9 from u t i l s 2 import Logger

10 import os
11 import datet ime
12 from con t e x t l i b import r e d i r e c t s t d o u t
13 import numpy as np
14 import j son
15
16 c l a s s trashDetCNN :
17 de f i n i t (s e l f , input shape , num classes , s ave d i r , ba t ch s i z e ,

epoch count) :
18 s e l f . input shape = input shape
19 s e l f . b a t c h s i z e = ba t ch s i z e
20 s e l f . epoch count = epoch count

y

21 s e l f . num classes = num classes
22 s e l f . mode l d i r = os . path . j o i n (save d i r , datet ime . datet ime .

now() . s t r f t ime ('%d−%m−%Y %H−%M−%S '))
23 os . mkdir (s e l f . mode l d i r)
24 sys . s tdout = Logger (s e l f . mode l d i r)
25 s e l f . bu i ld model ()
26 p r i n t (s e l f . input shape)
27 p r i n t (s e l f . b a t c h s i z e)
28 p r i n t (s e l f . epoch count)
29 p r i n t (s e l f . num classes)
30 p r i n t (s e l f . mode l d i r)
31
32 de f bui ld model (s e l f) :
33 p r i n t (' Bui ld ing model . . . ')
34
35 ### Convo lu t iona l b l o c k s
36 s e l f . model = Sequent i a l ()
37 s e l f . model . add (Conv2D(f i l t e r s =32, k e r n e l s i z e =(3 ,3) ,

s t r i d e s = (1 , 1) , data format = ” chann e l s l a s t ” ,
input shape=s e l f . input shape , a c t i v a t i o n= ' r e l u '))

38 s e l f . model . add (MaxPooling2D (p o o l s i z e =(2 ,2)))
39 s e l f . model . add (Dropout (0 . 2))
40
41 s e l f . model . add (Conv2D(f i l t e r s =64, k e r n e l s i z e =(3 ,3) ,

a c t i v a t i o n= ' r e l u '))
42 s e l f . model . add (MaxPooling2D (p o o l s i z e =2))
43 s e l f . model . add (Dropout (0 . 2))
44
45 s e l f . model . add (Conv2D(f i l t e r s =128 , k e r n e l s i z e =(3 ,3) ,

a c t i v a t i o n= ' r e l u '))
46 s e l f . model . add (MaxPooling2D (p o o l s i z e =2))
47 s e l f . model . add (Dropout (0 . 2))
48
49 s e l f . model . add (Conv2D(f i l t e r s =256 , k e r n e l s i z e =(3 ,3) ,

a c t i v a t i o n= ' r e l u '))
50 s e l f . model . add (AveragePooling2D (p o o l s i z e =2))
51 s e l f . model . add (Dropout (0 . 2))
52
53 s e l f . model . add (Conv2D(f i l t e r s =256 , k e r n e l s i z e =(3 ,3) ,

a c t i v a t i o n= ' r e l u '))
54 s e l f . model . add (AveragePooling2D (p o o l s i z e =2))
55 s e l f . model . add (Dropout (0 . 2))
56
57 #model . add (F la t t en ())
58
59 s e l f . model . add (GlobalAveragePooling2D ())
60 ## Softmax Output
61
62 s e l f . model . add (Dense (s e l f . num classes , a c t i v a t i o n = '

softmax ' , name= ' preds '))
63
64 #ke r n e l r e g u l a r i z e r=r e g u l a r i z e r s . l 2 (0 .01)
65 opt = Adam(l r =0.001)
66 #opt = RMSprop(l r =0.0005) # Optimizer
67
68 s e l f . model . compi le (
69 l o s s= ' c a t e g o r i c a l c r o s s e n t r o p y ' ,

z

70 opt imize r=opt ,
71 met r i c s =[' accuracy ']
72)
73
74 p r i n t (s e l f . model . summary ())
75
76
77 de f t ra in mode l (s e l f , x t ra in , y t ra in , x val , y va l , x t e s t ,

y t e s t) :
78 che ckpo in t c a l l b a ck = ModelCheckpoint (r 'G:\ workspace python

\ml model l er \cnn\cnn2\weights \weights . bes t . h5 ' , monitor
= ' va l ac curacy ' , verbose=2, s av e b e s t on l y=True , mode= '
max ')

79
80 r e du c e l r c a l l b a c k = ReduceLROnPlateau (
81 monitor= ' va l accuracy ' , f a c t o r =0.5 , pa t i ence

=10,
82 verbose=2
83)
84 c a l l b a c k s l i s t = [checkpo in t ca l l back , r e d u c e l r c a l l b a c k]
85
86 # Fit the model and ge t t r a i n i n g h i s t o r y .
87 p r i n t (' Train ing . . . ')
88 #with open (os . path . j o in (model dir , ' l o g . t x t ') , 'w ') as f :
89 # with r e d i r e c t s t d o u t (f) :
90 s e l f . h i s t o r y = s e l f . model . f i t (x t ra in , y t ra in , b a t ch s i z e=

s e l f . ba t ch s i z e , epochs=s e l f . epoch count ,
v a l i d a t i on da t a=(x val , y va l) , verbose=2, c a l l b a c k s=
c a l l b a c k s l i s t)

91 s e l f . save model (x t ra in , y t ra in , x val , y va l , x t e s t ,
y t e s t)

92
93 de f save model (s e l f , x t ra in , y t ra in , x val , y va l , x t e s t , y t e s t) :
94
95 s e l f . model . save (os . path . j o i n (s e l f . model dir , 'Model . h5 '))
96 with open (os . path . j o i n (s e l f . model dir , 'modelsummary . txt ') ,

'w ') as f :
97 with r e d i r e c t s t d o u t (f) :
98 s e l f . model . summary ()
99 con f i d enc e s = s e l f . model . p r e d i c t c l a s s e s (x va l)

100 rounded l abe l s=np . argmax (y val , ax i s=1)
101 rounded l abe l s [1]
102
103 rounded labe l s2=np . argmax (y t e s t , ax i s=1)
104 rounded labe l s2 [1]
105 np . save (os . path . j o i n (s e l f . model dir , ” c on f i d enc e s ”) ,

c on f i d enc e s)
106 p r e d i c t i o n s = con f i d enc e s
107
108
109
110 conf = con fus i on mat r ix (rounded labe l s , p r e d i c t i o n s)
111 #conf = mu l t i l a b e l c on f u s i on ma t r i x (y va l , p r e d i c t i on s)
112
113 d i sp = Confus ionMatr ixDisplay (conf , ['MixPure ' , 'MetalAndMix

' , 'GlassAndMetal ' , 'GlassAndMix '])
114 d i sp = disp . p l o t (x t i c k s r o t a t i o n= ' v e r t i c a l ')

115 p l t . s a v e f i g (os . path . j o i n (s e l f . model dir , ' ConfusionMatrixVal
. png ') , bbox inches= ' t i g h t ')

116
117 p l t . c l f ()
118
119 con f i d ence s2 = s e l f . model . p r e d i c t c l a s s e s (x t e s t)
120 conf2 = con fus i on mat r ix (rounded labe l s2 , c on f i d ence s2)
121 di sp2 = Confus ionMatr ixDisplay (conf2 , ['MixPure ' , '

MetalAndMix ' , 'GlassAndMetal ' , 'GlassAndMix '])
122 d i sp2 = disp2 . p l o t (x t i c k s r o t a t i o n= ' v e r t i c a l ' , cmap = '

Blues ')
123 p l t . s a v e f i g (os . path . j o i n (s e l f . model dir , '

ConfusionMatrixTest . png ') , bbox inches= ' t i g h t ')
124
125 p l t . c l f ()
126 p r i n t (con f i d ence s2 . shape)
127 p r i n t (y t e s t . shape)
128 p r i n t (x t e s t . shape)
129 con = np . argmax (con f idences2 , ax i s=0)
130 p r i n t (con f i d ence s2 . t ranspose ())
131 p r i n t (rounded labe l s2)
132
133 with open (os . path . j o i n (s e l f . model dir , ' accuracy . j son ') , 'w '

) as f :
134 j son .dump({ ' valAcc ' : s t r (max(s e l f . h i s t o r y . h i s t o r y ['

va l ac curacy '])) , ' testAcc ' : s t r (a c cu racy s co r e (
rounded labe l s2 . t ranspose () , c on f i d ence s2 . t ranspose
())) } , f)

135
136 p l t . p l o t (s e l f . h i s t o r y . h i s t o r y [' accuracy '])
137 p l t . p l o t (s e l f . h i s t o r y . h i s t o r y [' va l accuracy '])
138 p l t . t i t l e ('model accuracy ')
139 p l t . y l ab e l (' accuracy ')
140 p l t . x l ab e l (' epoch ')
141 p l t . l egend ([' t r a i n ' , ' va l '] , l o c= ' upper l e f t ')
142 p l t . t ex t (s e l f . epoch count ∗0 .56 , (max(s e l f . h i s t o r y . h i s t o r y ['

accuracy ']) ∗0 . 8) , ('Max accuracy : ' , round (max(s e l f .
h i s t o r y . h i s t o r y [' accuracy ']) , 5)) , bbox=d i c t (f a c e c o l o r=
'C0 ' , a lpha =0.5))

143 p l t . t ex t (s e l f . epoch count ∗0 .56 , (max(s e l f . h i s t o r y . h i s t o r y ['
accuracy ']) ∗0 . 7) , ('Max accuracy : ' , round (max(s e l f .
h i s t o r y . h i s t o r y [' va l ac curacy ']) , 5)) , bbox=d i c t (
f a c e c o l o r= 'C1 ' , a lpha =0.5))

144 p l t . s a v e f i g (os . path . j o i n (s e l f . model dir , 'Accuracy . png '))
145
146
147
148 # Summarize h i s t o r y f o r l o s s
149 p l t . p l o t (s e l f . h i s t o r y . h i s t o r y [' l o s s '])
150 p l t . p l o t (s e l f . h i s t o r y . h i s t o r y [' v a l l o s s '])
151 p l t . t i t l e ('model l o s s ')
152 p l t . y l ab e l (' l o s s ')
153 p l t . x l ab e l (' epoch ')
154 p l t . l egend ([' t r a i n ' , ' va l '] , l o c= ' upper l e f t ')
155 p l t . t ex t (s e l f . epoch count ∗0 .56 , (max(s e l f . h i s t o r y . h i s t o r y ['

l o s s ']) ∗0 . 5) , ('Min l o s s : ' , round (min (s e l f . h i s t o r y .
h i s t o r y [' l o s s ']) , 5)) , bbox=d i c t (f a c e c o l o r= 'C0 ' , a lpha

=0.5))
156 p l t . t ex t (s e l f . epoch count ∗0 .56 , (max(s e l f . h i s t o r y . h i s t o r y ['

l o s s ']) ∗0 . 1) , ('Min l o s s : ' , round (min (s e l f . h i s t o r y .
h i s t o r y [' v a l l o s s ']) , 5)) , bbox=d i c t (f a c e c o l o r= 'C1 ' ,
a lpha =0.5))

157 p l t . s a v e f i g (os . path . j o i n (s e l f . model dir , ' Loss . png '))

A.2.5 Main

1 from model CNN1 import ∗#de f i n e s which model to t r a in
2 import os
3 import j son
4
5
6 ba t ch s i z e = 32
7 epoch count = 70
8
9

10 de f t ra in mode l (r o o t d i r , s ave d i r , i t e r a t i o n s) :
11 i f not os . path . e x i s t s (s a v e d i r) :
12 os . mkdir (s a v e d i r)
13
14 x t r a i n = np . load (os . path . j o i n (r o o t d i r , ' x t r a i n . npy '))
15 y t r a i n = np . load (os . path . j o i n (r o o t d i r , ' y t r a i n . npy '))
16 x va l = np . load (os . path . j o i n (r o o t d i r , ' x va l . npy '))
17 y va l = np . load (os . path . j o i n (r o o t d i r , ' y va l . npy '))
18 x t e s t = np . load (os . path . j o i n (r o o t d i r , ' x t e s t . npy '))
19 y t e s t = np . load (os . path . j o i n (r o o t d i r , ' y t e s t . npy '))
20
21
22 input shape = (x t r a i n . shape [1] , x t r a i n . shape [2] , x t r a i n . shape

[3])
23 num classes = y t r a i n . shape [1]
24
25 f o r i in range (i t e r a t i o n s) :
26 p r i n t (”Train ing s e s s i o n ” , i +1)
27 model = trashDetCNN(input shape , num classes , s ave d i r ,

ba t ch s i z e , epoch count)
28 model . t ra in mode l (x t ra in , y t ra in , x val , y va l , x t e s t , y t e s t

)
29
30
31 x t r a i n = None
32 y t r a i n = None
33 x va l = None
34 y va l = None
35
36 s a v e d i r s = [r 'E:\Master\Models\Model1\1100110010 ' , r 'E:\Master\

Models\Model1\1111111110 ']
37
38 da t a d i r s = [r 'E:\Master\SavedData \1100110010 ' , r 'E:\Master\

SavedData \1111111110 ']
39
40
41 f o r save d i r , da t a d i r in z ip (s av e d i r s , d a t a d i r s) :
42 t ra in mode l (data d i r , s ave d i r , 2 0)

A.2.6 Saving Arrays

This code was used to load the saved data into arrays such that they could be
saved.

1 from meta l In t e rpo l a t o r import ∗
2 import numpy as np
3 from cv2 import r e s i z e
4 import random
5 import os
6 import matp lo t l i b . pyplot as p l t
7 import l i b r o s a
8 import l i b r o s a . d i sp l ay
9 from ten so r f l ow . keras . u t i l s import t o c a t e g o r i c a l

10 from sys import g e t s i z e o f
11 import p i c k l e
12 import j son
13 import sys
14 from sk l e a rn . p r ep ro c e s s i ng import Mul t iLabe lB inar i z e r
15
16
17 de f l i s t d i r f u l l P a t h (path) :
18 re turn [os . path . j o i n (path , s) f o r s in os . l i s t d i r (path)]
19
20 de f getDataList (data path , inc luded data) :
21 num2label = {0 : 'MelSpectrogram1 . npy ' , 1 : 'MelSpectrogram2 . npy ' , 2 :

'MelSpectrogram3 . npy ' , 3 : 'MelSpectrogram4 . npy ' , 4 : 'MFCCS1. npy
' , 5 : 'MFCCS2. npy ' , 6 : 'MFCCS3. npy ' , 7 : 'MFCCS4. npy ' , 8 : '
metal data . npy ' , 9 : ' weight . npy ' } #Dict ionary used to
detemine what data to inc lude .

22 labelNums = [i f o r i in range (l en (inc luded data)) i f
i nc luded data [i]==1] #Uses inc l uded da ta to determine what
data to inc lude

23 dataL i s t = []
24 f o r labelNum in labelNums :
25 dataL i s t . append (os . path . j o i n (data path , num2label [labelNum])

)
26 re turn dataL i s t
27
28 de f getDataList f romArray (data paths , inc luded data) :
29 re turn [getDataList (data path , inc luded data) f o r data path in

data paths]
30
31 de f getPathLis t (r o o t d i r , measurements per c las s , s p l i t , c l a s s L i s t ,

i nc luded data) :
32 c l a s sD i c t = { 'MetalPure ' : (0 ,) , ' GlassPure ' : (1 ,) , 'MixPure ' : () , '

GlassAndMetal ' : (0 , 1) , 'MetalAndMix ' : (0 ,) , 'GlassAndMix ' : (1 ,) }
#Label data according to c l a s sD i c t

33 p r i n t (”Gathering data paths . . . ”)
34 c l a s s L i s t = c l a s s L i s t
35 i f measurements per c la s s == ' a l l ' :
36 measurements per c la s s = None
37 s t a r t = None
38 e l i f type (measurements per c la s s) == in t :
39 measurements per c la s s = measurements per c la s s
40 s t a r t = 0
41 e l s e :

42 p r i n t (”Provide ' a l l ' or an i n t e g e r f o r input '
imag e s p e r c l a s s ' ”)

43 re turn
44
45 t r a i n s p l i t = s p l i t
46
47 y t r a i n = []
48 y va l = []
49
50 x t r a i n = []
51 x va l = []
52
53 mlb = Mul t iLabe lB inar i z e r ()
54
55 f o r n , l a b e l in enumerate (c l a s s L i s t) :
56 tmp = l i s t d i r f u l l P a t h (os . path . j o i n (r o o t d i r , l a b e l)) [s t a r t :

measurements per c la s s]
57 random .Random(42) . s h u f f l e (tmp)
58 x t r a i n += getDataList f romArray (tmp , inc luded data)
59 f o r i in range (i n t (round (t r a i n s p l i t ∗ l en (tmp)))) :
60 y va l . append (c l a s sD i c t [l a b e l])
61 x va l . append (x t r a i n . pop ())
62 y t r a i n +=[c l a s sD i c t [l a b e l]] ∗ i n t (l en (tmp)−round (l en (tmp) ∗

s p l i t))
63 re turn x t ra in , mlb . f i t t r a n s f o rm (y t r a i n) , x va l , mlb .

f i t t r a n s f o rm (y va l)
64
65 de f l oad data f rom paths (x , shape , t1 , t2 , t ime frame) :
66 i f l en (x [0]) >1:
67 x dat = np . z e r o s ([l en (x) , shape [0] , t ime frame , l en (x [0])] ,

dtype= ' f l o a t 1 6 ')
68 f o r n in range (l en (x)) :
69 tmp =x [n] [0] . s p l i t (' \\ ') [0 : −1]
70 tmp . append ('MelSpectrogram1 . npy ')
71 a , b = getImpactX (r e s i z e (np . load (' \\ ' . j o i n (tmp)) , (shape

[1] , shape [0])) , t1 , t2)
72 f o r i in range (l en (x [0])) :
73 i f x [n] [i] [− 5 :] in [' 1 . npy ' , ' 2 . npy ' , ' 3 . npy ' , ' 4 . npy '

, ' t . npy '] :
74 x dat [n , : , : , i] = r e s i z e (np . load (x [n] [i]) , (shape

[1] , shape [0])) [: , a : b]
75 e l s e :
76 x dat [n , : , : , i] = i n t e r p o l a t e (np . load (x [n] [i]) , (

t ime frame , shape [0]))
77 re turn x dat
78
79 e l i f l en (x [0]) ==1:
80 i f x [0] [− 5 :] in [' 1 . npy ' , ' 2 . npy ' , ' 3 . npy ' , ' 4 . npy ' , ' t . npy '] :
81 f o r n in range (l en (x)) :
82 tmp =r e s i z e (np . load (x [n] [0]) , (shape [1] , shape [0]))
83 a , b = getImpactX (tmp , t1 , t2)
84 x dat = tmp [: , a : b]
85 e l s e :
86 f o r n in range (l en (x)) :
87 x dat = i n t e r p o l a t e (np . load (x [n] [0]) , (t ime frame ,

shape [0]))
88 re turn x dat

89 e l s e :
90 p r i n t (”No data inc luded ”)
91 re turn
92
93 de f l oad data (r o o t d i r , s ave d i r ,
94 measurements per c la s s=None , s p l i t=None ,
95 c l a s s L i s t=None , inc luded data=None , shape=None ,
96 t1=None , t2=None) :
97 r e t u r n c l a s s L i s t = Fal se
98 i f ' dataSetup . j son ' in os . l i s t d i r (s a v e d i r) :
99 measurements per c las s , s p l i t , c l a s s L i s t , inc luded data , shape ,

t1 , t2 ,mode = load se tup (s a v e d i r)
100 s p l i t = 0
101 r e t u r n c l a s s L i s t = True
102 i f t1 and t2 i s None :
103 t ime frame = shape [1]
104 e l s e :
105 t ime frame = t1+t2
106 x t ra in , y t ra in , x val , y va l = getPathLis t (r o o t d i r ,

measurements per c las s , s p l i t , c l a s s L i s t , i nc luded data)
107 x t r a i n = load data f rom paths (x t ra in , shape , t1 , t2 , t ime frame)
108 try :
109 x va l = l o ad d i c t [mode] (x val , shape , t1 , t2 , t ime frame)
110 except :
111 p r i n t (”No va l i d a t i o n data”)
112 x va l = None
113 y va l = None
114
115 i f r e t u r n c l a s s L i s t :
116 re turn x t ra in , y t ra in , c l a s s L i s t
117
118 #save se tup (save d i r , measurements per c lass , s p l i t , c l a s sL i s t ,

inc luded da ta , shape , t1 , t2 ,mode)
119 re turn x t ra in , y t ra in , x val , y va l
120
121 de f getImpactX (spec , t1 , t2) :
122 i f t1 and t2 i s not None :
123 xMax = in t (round (np .mean(np . argmax (spec , ax i s=1))))
124 re turn xMax−t1 , xMax+t2
125 e l s e :
126 re turn None , None
127
128
129 de f save se tup (save d i r , measurements per c las s , s p l i t , c l a s s L i s t ,

inc luded data , shape , t1 , t2 ,mode) :
130 setup = { ' measurements per c la s s ' : measurements per c las s ,
131 ' s p l i t ' : s p l i t ,
132 ' c l a s s L i s t ' : c l a s s L i s t ,
133 ' i n c luded data ' : inc luded data ,
134 ' shape ' : shape ,
135 ' t1 ' : t1 , ' t2 ' : t2 ,
136 'mode ' : mode}
137
138 with open (os . path . j o i n (save d i r , ' dataSetup . j son ') , 'w ') as f i l e :
139 j son .dump(setup , f i l e)
140
141 de f l oad se tup (s a v e d i r) :

142 with open (os . path . j o i n (save d i r , ' dataSetup . j son ') , ' r ') as f i l e :
143 d = json . load (f i l e)
144 re turn d [' measurements per c la s s '] , d [' s p l i t '] , d [' c l a s s L i s t '] , d [

' i n c luded data '] , d [' shape '] , d [' t1 '] , d [' t2 '] , d ['mode ']
145
146 c l a s s Logger (ob j e c t) :
147 de f i n i t (s e l f , s a v e d i r) :
148 s e l f . t e rmina l = sys . s tdout
149 s e l f . l og = open (os . path . j o i n (save d i r , ” l o g f i l e . l og ”) , ”a”)
150
151 de f wr i t e (s e l f , message) :
152 s e l f . t e rmina l . wr i t e (message)
153 s e l f . l og . wr i t e (message)
154
155 de f f l u s h (s e l f) :
156 #t h i s f l u s h method i s needed fo r python 3 c ompa t i b i l i t y .
157 #t h i s hand les the f l u s h command by doing nothing .
158 #you might want to s p e c i f y some ex t ra behav ior here .
159 pass
160
161
162 x t ra in , y t ra in , x val , y va l = load data (r 'E:\Master\Measurements

' , r 'E:\Master ' , ' a l l ' , 0 . 2 , ['MixPure ' , 'MetalAndMix ' , '
GlassAndMetal ' , 'GlassAndMix '] , [1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 0] ,

163 shape =(256 ,1379) , t1 =
128−64 , t2 = 128+64)

164
165 x t e s t , y t e s t , , = load data (r 'E:\Master\UnikeMeasurements\

Measurements ' , r 'E:\Master ' , ' a l l ' , 0 , ['MixPure ' , 'MetalAndMix ' , '
GlassAndMetal ' , 'GlassAndMix '] , [1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 0] ,

166 shape =(256 ,1379) , t1 =
128−64 , t2 = 128+64)

167
168
169 save = r 'E:\Master\Paper\Model\Mu l t i l a b e l 2 c l a s s e s \Ablat ion \

NoWeightSmoothMetal '
170 i f not os . path . e x i s t s (save) :
171 os . mkdir (save)
172
173 np . save (os . path . j o i n (save , ' x t r a i n ') , x t r a i n)
174 np . save (os . path . j o i n (save , ' y t r a i n ') , y t r a i n)
175 np . save (os . path . j o i n (save , ' x va l ') , x va l)
176 np . save (os . path . j o i n (save , ' y va l ') , y va l)
177 np . save (os . path . j o i n (save , ' x t e s t ') , x t e s t)
178 np . save (os . path . j o i n (save , ' y t e s t ') , y t e s t)

A.2.7 Batch File

py −3 main1 . py
py −3 main2 . py
py −3 main3 . py
py −3 main4 . py
py −3 main5 . py

A.3 Project Thesis

Project Thesis

A Study of Data Gathering and
Utilization For Improvement
Purposes In Household Trash

Collection

Robert Marhaug and Oliver Istad Funch

supervised by
Martin Steinert

Sampsa Matias Ilmari Kohtala
Heikki Sjöman

December 2019

Abstract

This project thesis’ purpose has been to explore problems related to the
trash collection cycle in Oslo, as well as develop methods for measuring
the magnitude of the identified problems to estimate their significance.
A brief theoretical background is given on the concepts used during the
development. Through a Wayfaring process, several concepts has been
tested through prototyping. The concepts that showed promise which will
be given further attention is: metal detection to determine metal content
of trash bags, object detection(machine learning) to count bags and detect
and classify loose objects, sound detection(machine learning) to detect the
presence of glass and spectroscopy using a dual-paraboloid constellation
in order to create a concentrated beam. The final recommendation given
to Renovasjonsetaten is to combine the aforementioned methods into a
single system placed on the back of the trash collection truck. The back
of the truck is seen as the location with most potential due to possibility
of implementation as well as traceability to the household.

i

ii

Contents

1 Introduction 1
1.1 Information gathering . 1
1.2 Collection cycle . 3
1.3 Revised problem statement . 13

2 Background and Theory 16
2.1 Design Methodology . 16

2.1.1 Prototyping . 16
2.1.2 The Hunter-Gatherer Model based on Wayfaring 16

2.2 Technology Review and Theory 18
2.2.1 Machine learning - Object Detection 18
2.2.2 Machine learning - Sound Identification 22
2.2.3 Metal detection . 23
2.2.4 Force sensing . 24
2.2.5 ESP8266 NodeMCU v3 26
2.2.6 Spectroscopy . 26
2.2.7 Parabolic Reflector . 27

3 Development and Discussion 29
3.1 Metal detector . 29

3.1.1 Motivation . 29
3.1.2 Prototyping . 29
3.1.3 Testing . 29
3.1.4 Viability and implementation 31

3.2 Sensor ball . 31
3.2.1 Motivation . 31
3.2.2 Prototyping . 31
3.2.3 Testing . 33
3.2.4 Viability and implementation 35

3.3 Trash-detection through object-detection 35
3.3.1 Motivation . 35
3.3.2 Prototyping . 35
3.3.3 Testing . 37
3.3.4 Viability and implementation 38

3.4 Trash-detection through sound-detection 39
3.4.1 Motivation . 39
3.4.2 Prototyping and testing 39
3.4.3 Viability and implementation 41

3.5 Infrared trash classification . 42
3.5.1 Motivation . 42
3.5.2 Prototyping and testing 42
3.5.3 Viability and implementation 42

3.6 WiFi trash classification . 42
3.6.1 Motivation . 42

iii

3.6.2 Prototyping . 43
3.6.3 Testing . 43
3.6.4 Viability and implementation 44

3.7 Bagrip detection . 45
3.7.1 Motivation . 45
3.7.2 Prototyping . 45
3.7.3 Viability and implementation 46

4 Application and future work 48
4.1 Non-focused information gathering 48
4.2 Possible areas for further work 49

4.2.1 Sensor bag . 49
4.2.2 Trash Classification in sorting facility 50
4.2.3 Trash classification in truck 51
4.2.4 Trash classification stage 1 53
4.2.5 Trash classification stage 2 54

4.3 Combination of sensory outputs and machine learning 55
4.4 Ranking of methods and implementation areas 55

5 Conclusion 57

A Appendix a
A.1 Arduino code for metal detector a
A.2 Image processing and contour detecting code d
A.3 Machine learning code for sound classification j
A.4 Code for Sensor ball . m
A.5 Additional Figures . n

iv

List of Figures

1 Video footage snapshots . 2
2 Collection cycle overview, Stage 1 3
3 Collection cycle overview, Stage 2 4
4 Collection cycle overview, Stage 3 5
5 Collection cycle overview, Stage 4 6
6 Collection cycle overview, Stage 5 7
7 Collection cycle overview, Stage 6 8
8 Collection cycle overview, Stage 7 9
9 Collection cycle overview, Stage 8 10
10 Collection cycle overview, Stage 9.1 11
11 Collection cycle overview, Stage 9.2 12
12 Loose trash in sorting facility . 14
13 Root cause of problems and their consequences 15
14 Hunter-Gatherer Model . 17
15 Single Layer, Fully connected neural network 19
16 You Only Look Once Architecture 21
17 Yolomark GUI . 21
18 Loss [6] . 22
19 Precision [1] . 22
20 MFCC Spectrogram example [26] 23
21 Metal detector circuit diagram [21] 24
22 Reconfiguration of fibers due to strain application [4] 25
23 Parabola with incoming rays, horizontal axis: x, vertical axis: y . 27
24 Parabola with outgoing rays, horizontal axis: x, vertical axis: y . 28
25 Metal Detector Setup . 30
26 5 Readings of metal followed by 5 readings of glass jar with metal

lid . 30
27 Sensor ball . 32
28 Sensor ball test setup . 33
29 Sensor ball test data . 34
30 Front view bag detection . 36
31 Side view bag detection . 36
32 Performance Chart Yolov3 Trash Detection 38
33 Glass detection test . 38
34 UrbanSound8K training data . 40
35 Self-made training data . 40
36 3D printed parabola . 43
37 WiFi classification test setup . 44
38 RSSI values with various objects blocking the signal 44
39 Bag rip detection, resistance monitoring 46
40 Bag rip detection, gas monitoring 47
41 JOAB garbage truck [13] . 53
42 Interior compartment [14] . 54
43 Sobel filter operator . n

v

44 Image before and after Sobel filter application o
45 Machine Learning Tests . p
46 WiFi test setup . q

vi

1 Introduction

The project is funded by Renovasjonsetaten in Oslo, the department for col-
lection of household garbage. Sorting and recycling is performed by a separate
department, but this assignment can also include these areas as the departments
are soon to merge. The initial problem statement from the customer is as fol-
lows: Too little information is known about the garbage collected, especially
considering to what degree the consumer is sorting their garbage properly. It is
desired to collect more information to determine if this data might reveal useful
insights for future improvement of the current collection system.

The task is not very specific, as the starting goal was to collect information
of any kind from any place in the cycle deemed appropriate. The information
gathered does not necessarily need to be targeted for a specific end use, as it
can be hard to determine what kind of information will prove most valuable.
The overall goal for Renovasjonsetaten is to increase the amount of trash that
is recycled, in contrast to incinerated or deposited. The EU has set target goals
for recycling at 50% within 2020, 55% within 2025, 60% within 2030, and 65%
within 2035 according to Avfall Norge, the field association for recycling in Nor-
way [18]. According to the customer, the current level is at about 35%.

1.1 Information gathering

Information from the customer might not yield the greatest insights into the
problem, and the surroundings are best understood by seeing them in person.
Therefore we went to Oslo to meet with Renovasjonsetaten and take part in
their daily activity. The task was discussed in detail, and we took a tour of
the sorting facility where the bags of different color are separated. As we would
probably involve a garbage truck in our work, we inspected one thoroughly to
assess possibilities for adding equipment as well as possible problem areas. We
also spent half a day working as trash collectors, joining with one truck each
on their daily collection route. Underway we collected video footage as well as
talking to the workers to gain insights from them. The images in figure 1 are
taken from this video footage.

1

(a) Side view from video footage
(b) Rear view from video footage

Figure 1: Video footage snapshots

2

1.2 Collection cycle

It is useful to have a clear overview of the whole garbage cycle, so the cycle was
separated into stages, illustrated, and known problems listed.

Stage 1 in figure 2 shows home sorting done by the consumer. There are three
categories: plastic, food waste, and miscellaneous/mixed waste. All plastic in
the plastic bin should be clean. If it is not possible to clean it properly it
should be deposited in the mixed waste. Metal, glass and hazardous waste are
deposited in separate containers at specified locations. Problems here include
indifference, meaning the consumer does not care about correct sorting, lack of
knowledge about sorting, and discarding contaminated plastic without cleaning
it first.

Figure 2: Collection cycle overview, Stage 1

3

In Stage 2 in figure 3, the consumer deposits the different colored bags into
the same bin. This can be a private bin connected to their household, or a shared
bin for an apartment complex. The bags should be tied with a double knot to
prevent them from opening. Problems here include items that are not placed in
bags, which should not occur, and items that do not belong, for instance garden
waste and glass.

Figure 3: Collection cycle overview, Stage 2

4

At stage 3 in figure 4, the bins are unloaded into the back tray of the garbage
truck. The unloading is performed by an operator that places the bin next to
the loading arm, and operates the hydraulic arm to turn the bin upside down
over the tray. The bins have RFID (Radio-Frequency Identification) tags which
are read by a scanner on the loading arm, and the weight of the bin is also
measured by equipment attached to the arm. The bags might be damaged at
this stage when falling from the bin into the tray. This is also the last stage
where the bags can be traced to a specific bin, which can be done using the
information in the RFID tag.

Figure 4: Collection cycle overview, Stage 3

5

At stage 4 in figure 5, the trash is moved by a hydraulic arm to the interior
of the truck. Inside the compartment there is a wall that the trash is compacted
against. As the amount of bags increase, the wall moves to make room for more.
The wall automatically moves when a certain pressure against it is registered.
Problems here include high forces from the compression, which could lead to
bag rupture, and potential contact with sharp objects both from parts of the
truck and objects in the bags. Sharp objects could be a cause of bag rupture.

Figure 5: Collection cycle overview, Stage 4

6

In stage 5 figure 6, the truck unloads its cargo into the sorting facility. The
back of the truck opens and the interior piston pushes the bags out of the truck.
The bags might receive fall damage during the unloading, or from being pushed
out of the truck. There is also the potential for damage caused by sharp objects.

Figure 6: Collection cycle overview, Stage 5

7

The trash is then moved into the sorting facility in stage 6, figure 7. This is
done on a surface where separate segments move at different times. This surface
is called a ”walking floor”. In this stage there is much movement of the bags
relative to each other which may cause damage and/or rupturing. The pile of
trash is very large, so it is subjected to high forces during the movement.

Figure 7: Collection cycle overview, Stage 6

8

In stage 7, figure 8, the trash passes through a filtering system designed
to separate the objects by size. The tilted surface shakes, causing the items
to move downward. Along the surface there are gaps of different sizes where
the objects fall through if they are smaller than the gap. Many loose objects
are removed at this stage as they are smaller than the bags. Large objects are
also separated as they remain at the end of the stage. There is much movement
between objects, possibly causing damage, and very small bags might be filtered
out as loose objects and therefore not go through the appropriate sorting system
later.

Figure 8: Collection cycle overview, Stage 7

9

At stage 8 figure 9, the bags are sorted according to color. The green bags
are sent to bio gas production and the blue bags go to another sorting step
shown in stage 9.1. The bags with mixed waste continue through. These sorters
are not perfect and sometimes miss bags of the correct color. The bags are
removed using a moving mechanical arm that shoves them from the conveyor
belt, and if the bags are close to each other, a wrong bag may accompany the
bag that is to be removed.

Figure 9: Collection cycle overview, Stage 8

10

Stage 9.1 figure 10 shows the next step in the sorting for the blue bags
containing plastic. The bags pass by a fan blowing air. If the bag is light it is
blown into a chute, and if it is heavy it drops down onto a conveyor belt that
transports it to the mixed trash path. The bags passing through the chute are
considered pure plastic and packed before shipping to Germany for recycling.
The purpose of this stage is to remove heavy bags, as the added weight is
often caused by other materials than plastic being present. The criteria here is,
according to Renovasjonsetaten, too strict and often removes bags containing
only plastic, so some recycling opportunity is lost. Also, the fan often gets
contaminated by debris so its function degrades. Therefore it requires regular
cleaning for it to operate satisfactory. This sorting method also does not account
for other light materials that should not be present, like paper or cardboard.

Figure 10: Collection cycle overview, Stage 9.1

11

Stage 9.2 in figure 11 is the final stage of the sorting. Here, everything not
sorted into plastic or food waste earlier is passed through to an incinerator.
Due to insufficient sorting at earlier stages, there are items at this stage that
should not have ended up in the incinerator. These include unsorted bags,
garden waste, electronics, and more. Some of these items will not be thoroughly
incinerated and will remain afterwards, like for instance glass which has a high
melting temperature and even higher burn temperature. The loose items from
ripped bags also end up at this stage.

Figure 11: Collection cycle overview, Stage 9.2

12

1.3 Revised problem statement

The problems described in each stage in section 1.2 are mainly based on discus-
sions with employees at Renovasjonsetaten but also on observations made when
working as trash collectors and visiting the sorting facility. It is however un-
known to REN which problems are the most prominent and which areas should
be focused on. A fact-based decision may only take you as far as the facts
go. As such, this projects mission has been to explore and develop methods
for gathering information at several stages in order to determine the proposed
problems magnitudes.

Detecting the magnitude of several of these proposed problems rely on the same
fundamental sub-problem being solved:

Wrongly sorted material:
The significance of the indifference and contaminated plastic in stage 1, cate-
gories that do not belong in stage 2(which leads to categories not belonging in
stage 3), too strict criteria in stage 9.1 as well as unwanted objects in stage 9.2,
all relies on classification of material inside and outside of bags. The reasons
these are listed as problems are that when non-coloured bags contain plastics
or food waste that should have been sorted in their respective bags, it’s a lost
opportunity to increase the percentage recycled. Furthermore, plastic bags con-
taining uncleaned plastics or other items causes the plastic recycling facility in
Germany that receives our plastics to down-prioritize it. This results in a lower
return for the shipped plastic bags.

Bag ruptures:
Having a system for determining forces, pressures, impacts and ruptures on
bags as well as where it happened may determine the significance of problems
in stage 3, 4, 5 and 6. The reason forces, pressures, impacts, relative motion
and possible contact with sharp objects are listed as problems in these stages,
is that if blue and green bags are ruptured such that their content spills out,
they are not being sorted. Additionally, as noted by employees at REN, when
green bags rupture food waste spills over plastic bags and thereby lowers its
recyclability as mentioned above.

Loose objects:
Lastly, the magnitude of the problem of loose items in stage 2 (leading to loose
items in later stages) may be estimated by somehow determining the amount
of loose items vs trash bags on several stages. Loose items were listed as a
problem due to all of it going to incineration regardless of its material, so items
that could have been recycled will be burned instead; again a lost opportunity
to increase the percentage recycled. Also, it was noted that there was a high
amount of loose trash inside the sorting facility that was not contained in a bag.
This might be the source of ruptured bags though it can also cause problems for
the machinery in the facility due to clogging and contamination. An example

13

of this problem can be seen in figure 12.

Figure 12: Loose trash in sorting facility

14

The problems listed in the stages in Section 1.2 are largely interrelated. Also,
some of the problems listed are rather root causes to other problems, see figure
13.

Figure 13: Root cause of problems and their consequences

If one could determine the magnitude of the problems described in the
rounded squares in figure 13, one could possibly gain insights into which area(s)
one should focus on improvements. Note that all the problems, causes and con-
sequences depicted in this figure were not known at the onset of the project,
but was rather discovered throughout the development. Also, the figure does
not presume to illustrate the whole problems-, root causes- and consequences-
situation at Renovasjonsetaten, but is a proposal of areas that should be ex-
plored further.

15

2 Background and Theory

This chapter aims to give a basic understanding of the development process
used as well as the theory behind concepts that are presented throughout this
document. Additionally, it provides meaning to terms that will be used in later
chapters.

2.1 Design Methodology

2.1.1 Prototyping

The Greek word “prototype” meaning “primitive form” has been used exten-
sively in relation to many design tasks lately. It can be described as the prim-
itive version or first(“protos”) impression(“typos”) of a product. It has been
commonly associated with a physical representation of a product that tests its
physical properties. Lately, both when computer software rose and CAD soft-
ware were introduced, the meaning has changed. A prototype according to
Ulrich, Eppinger and Yang[28] is “an approximation of the product along one
or more dimensions of interest” with the dimensions of interest being focused
vs. comprehensive and analytical vs. physical. A focused prototype aims at
testing a few functions extensively rather than the interplay of properties as a
comprehensive prototype does. A physical prototype is, well, physical, while an
analytical prototype may be a computer simulation of the product or a sketch
for that matter. In other words, a prototype according to Eppinger et al. aims
to test or get an impression of one or more aspects of a product, be it design,
function(s), form, integration etc. ”Prototyping” is then the act of creating such
an approximation.

In the sentence “an approximation of the product. . . ” it is assumed that the
idea of the product already exists and one knows how much the prototype
approximates it. As such, this definition may refer to prototyping in a relatively
late stage of the product development process. Lim et al. (2008) [17] defines
prototyping as follows: ”...a prototype is fundamentally different from the final
product, whether or not it is identical to the final product. Prototypes are
means and tools for design and are not the ultimate target for design.”. In
other words, prototyping can be described as a means to define the product
itself, to explore possibilities and clarify problems.

2.1.2 The Hunter-Gatherer Model based on Wayfaring

The hunter-gatherer model based on wayfaring [25] addresses the issue of man-
aging innovation in the fuzzy front end stage. That is, before requirements are
set, before the great idea is discovered and before it is known what to actually
make. This stage cannot be guided by a step-by-step process often mentioned
when talking about product development. The name of the Hunter-Gatherer
Model comes from an analogy to when humans lived in a hunter-gatherer soci-
ety. When hunting, little was known of the prey’s exact location. The hunters

16

would have to venture out and find their way as they went, tracking down the
prey. The prey is the ”next big idea” in this regard. The location of this idea,
or rather what the idea is, cannot be known before it is discovered. This un-
known requires abduction to be discovered, that is, it starts with observation
followed by a search for an explanation. As such, designers should embark on
an iterative journey of cycles with abduction/prototyping, testing and learning
in order to get ever closer to the next big idea. Figure 14 illustrates this journey.

In the model, three rules are proposed:

Human Rule, 1) ’never go hunting alone’ : Hunting in teams consisting of peo-
ple with various skills (tracking, killing, weather prediction, etc.) increases the
chance of success. In terms of product development, having small agile teams
with a diverse set of skills that fulfill each other, all equipped with tools and
training increases the chances of finding the idea.

Ambiguity Rule, 2) ’never go home prematurely’ : Even though the hunt may
have seemed to yield no result, the prey might lie around the next corner, or, a
new prey may present itself. On the product development side, this means that
the team should not settle for a ’thank you’ result even though the long journey
and ambiguity starts to puncture their spirits. Rather, change focus and en-
ter an entirely new concept and solution space and keep hunting for the big idea.

Re-Design Rule, 3) ’bring it home’ : The prey is located and the killing blow is
struck, yet the hunt is not over. The prey must be brought home. Now that the
big idea is located, it is time for the well known linear step-by-step optimization
of the product to begin.

Figure 14: Hunter-Gatherer Model

17

2.2 Technology Review and Theory

2.2.1 Machine learning - Object Detection

Machine learning has become a popular tool in recent years. Although it has
existed for a while, it isn’t until now that the increased computing power as
well as the accessibility of large amounts of data has unlocked its true poten-
tial[15].Paraphrasing of Arthur Samuel, generally regarded as the pioneer of
machine learning, often goes as follows: ”Machine learning is the field of study
that gives computers the ability to learn without being explicitly told” [22]

It has become commonplace to distinguish between supervised- and unsu-
pervised learning forms of machine learning. Both aim at making meaning out
of data given to it. With unsupervised learning algorithms there are no specific
labels or categories such that there is no answer to be given in advance. This
type of algorithm tries to make meaning out of the data by finding rules, de-
tecting patterns and grouping data points. As supervised algorithms are more
common and are commonly used when performing object detection, unsuper-
vised algorithms will not be discussed further.

With supervised learning, the algorithm is given earlier occurrence of what
it tries to predict. When training such an algorithm, the correct answer to a
question is given in advance such that the code may “learn” how to reach the
answer on its own. In other words, it receives a series of inputs with their as-
sociated outputs such that it may create ”rules” in order to map the inputs to
the outputs in a way that best fits all the data given.

There are two sub categories of supervised learning, regression and clas-
sification. With regression, the outputs are continuous values whereas with
classification, they are discrete. As exemplified by Andrew Ng on Coursera [24],
predicting house prices based on their sizes is a regression problem, whereas
whether the house sells for more or less than the asking price, is a classification
problem.

With a neural network(NN) the learning described above takes place in the
form of altering the synaptic strength(i.e. weight, w) between nodes across lay-
ers in a neural network, see Figure 15. This weight, for instance w1

11, controls
the influence the input x has on a21.

Following figure 15 the value of a21 is determined by first multiplying its in-
puts with their respective weights and adding them together z21 = xw1

11 + b21,
and then processing the result in an activation function a21 = σ(z21). This will
in turn be the input for nodes in the next layer.

There are several different types of activation functions. Its main objective
is to introduce non-linearity such that the network may solve more than trivial

18

Figure 15: Single Layer, Fully connected neural network

tasks.

The convolutional neural network(CNN) has been the state-of-the-art net-
work within image classification ever since Krizhevsky et al. [15] outperformed
all others in the annual LSVRC in 2012 (They go by the name ”SuperVision”,
but often referred to as AlexNet)[16]. Its essential building blocks consist of
convolutional layers, activation layer rectified linear units(ReLu), pooling layers
and fully connected layers[7].

The convolutional layers are the cornerstones of the CNN. They contain a
specific amount of filters (small in size) that are not pre-defined but are to be
learned. For instance, a Sobel filter/kernels accentuates contours in an image by
iterating through all pixels of an image and calculating the approximate deriva-
tive of pixel values by using two 3x3 filters (one for x and one for y-direction) and
the local 3x3 pixels found at present iteration. These calculated values are then
added and put in a new matrix which is the resulting convolution, see appendix
figure 44. Such a filter is pre-defined, appendix figure 43. In a CNN network,
these filters are defined based on the data passed on to them during training
and will usually be able to detect many different types of features. Here, there
are several filters, all producing an output matrix. These matrices are processed
in an activation function (ReLu being popular) which results in an activation

19

map. These activation maps are stacked together producing the output and
thereby the input to the next layer, which eventually is a new filter. As filters
are succeeded by new self-learned filters, they become more complex and able
to detect more abstract patterns in the image. The reason a filter takes a spe-
cific form, is to support the final decision at the last layer. Hence, the filters
can be seen as the weights between convolutional layers. The stronger a filter
reacts to a specific part of the image the more likely the numerical value is to
propagate further through the network. As such, these filters extracts features
worth examining in order to classify objects.
The pooling layers ”pools” together values in the output matrix from a con-
volutional layer, for instance by calculating the average value of a 2x2 matrix
and substituting it with one pixel value. They lower the resolution such that
small changes to an image containing the same feature would not result in a
completely different activation map[5] and thereby reduces overfitting.

Overfitting happens when a network is highly specialized for its input caus-
ing the algorithm to be very good at predicting output of training data but
cannot be used on other data. Dropout layers and data augmentation [20] are
two ways of reducing this phenomenon. In order to test for overfitting, often
20% of the data is set aside before training such that the algorithm may test it
self on never-seen-before data.

The final fully connected layers as shown in Figure 15 will determine the
probabilities each image has of belonging in each class. Classification happens
when a probability surpasses a pre-defined threshold set by the programmer.
As such, object detection through CNN is a regression problem until the very
end.

The AlexNet[15] as well as the LSVRC challenge only concerns itself with
image classification, that is, detecting what classes might reside in the image
and not their locations. Object localization is another task that may also be per-
formed by a CNN network. This is usually done by segmenting the image into
sub-images containing one object each, and then classifying these sub-images.

You Only Look Once(Yolo) is a method for localizing objects and classifying
them (thereby object detection) that is based on a CNN[20]. Though here, the
whole network performs both tasks in one network iteration (hence the name) by
pre-segmenting the image and calculating both class probabilities and bounding
box probabilities. The total probability of an object and its location is the two
probabilities multiplied. The model uses 24 convolutional layers followed by two
fully connected layers. The convolutional layers extracts the features while the
fully connected layers predicts the objects present and their bounding boxes.
Its architecture is shown in Figure 16.

When predicting the bounding boxes, four parameters are predicted per ob-
ject. x, y, w and h describes the position(x, y) of a box defined by the width(w)

20

Figure 16: You Only Look Once Architecture

and the height(h) of the box. When training on a data-set, these parameters
must be given in advance for each object in each image. Yolomark is an intu-
itive GUI[2] made to mark images and autogenerate a .txt document containing
these parameters used to train. See Figure 17.

Figure 17: Yolomark GUI

During training, the algorithm tries to minimize or optimize for a certain loss
function. In statistics, a loss function maps the relationship between predicted
values and actual values. If the loss is small then the prediction is accurate. In
Figure 18 the red arrows illustrates the loss. As the function is fitted to the
data the red arrows(the loss) becomes smaller(right). Yolo optimizes for the
sum squared error function.

The precision of an algorithm is usually of interest. It is described as correct

21

Figure 18: Loss [6]

predictions vs all predictions that should have been made, or, true positives
divided by (true positives + false positives). As such, the closer to 100% the
better. In Yolo, precision is based on the same principle, though here it is the
area of the intersection between the detected box and the actual box (the area
that was correct) divided by the area of the actual box. See Figure 19.

Figure 19: Precision [1]

Mean average precision(mAP) is a much used metric in order to express a
networks performance. It is specifically used to determine the performance in
the PASCAL VOC challenge [27]. mAP is much of the same as described above,
although it is an average of all the average precisions of the individual classes.

2.2.2 Machine learning - Sound Identification

Sound identification works much in the same way as object identification de-
scribed in the section above. The difference lies in converting sound files to a
format that the machine learning algorithm can use, and this is done by cre-
ating an image that describes the sound file. The process used is derived from
a project by Mike Smales, ”Classifying Urban sounds using Deep Learning”
[23]. The complete code used can be reviewed in the appendix. The code con-
verts each sound file to an image which is a Mel-Frequency Cepstral Coefficients
Spectrogram [30], hereby referred to as an MFCCS. The MFCCS shows the en-
ergy in different frequency bands at different time segments in the audio file,
see figure 20 for an example. This conversion is performed using the python

22

package Librosa. Setting parameters will result in a consistent x-axis for every
image, but the y-axis will differ based on the length of the sound file. This
will present a problem at a later stage because the algorithm requires similar
divisions for comparison, and must therefore be corrected using the function
defined ”interpolate”. This segment changes the dimensions of the y-axis to a
consistent value by either adding new values derived from the current ones, or
compressing the existing values. Further processing is done in the same way as
for image classification described earlier.

Figure 20: MFCC Spectrogram example [26]

2.2.3 Metal detection

Metal detection in this project is based an instructables.com tutorial by user
rcgo [21]. The sensor consists of an Arduino, a diode, a resistor, a capacitor and
a coil. The circuit is shown in figure 21. When the coil experiences a change
in current, a magnetic field is induced in the coil. According to Faraday’s law
of induction [8], this changing field induces an electric field that opposes the
change. The voltage from this field is related to the coils inductance which is
indirectly what the circuit is measuring. The voltage relation to the inductance
is described by equation 1, derived from Faraday’s law where v is voltage in
Volts, i is current in Amperes and L is inductance in Henry’s.

v(t) = L
di

dt
(1)

If the coil is in near proximity to metal, the inductance will change depend-
ing on the metal. Ferromagnetic metals will increase the inductance as their
magnetic field will align with and add to the field of the coil. Non-magnetic
metals will cause it to decrease due to induced eddy currents in the metal which
opposes the field of the coil.
Measuring the inductance is done using the coil as part of a high-pass filter and
sending a block-wave current through from the A0 pin. The current creates a

23

magnetic field in the coil which will induce a voltage when the current is switched
off. This voltage spike has a duration proportional to the coils inductance. Be-
cause these spikes are very short they are difficult to read with precision due to
the Arduinos clock frequency of 16MHz. To overcome this problem, the pulses
are instead used to charge the capacitor and this charge is measured on the A1
pin. After the measurement is made, the capacitor is discharged before the next
measurement. For greater accuracy, several measurements are recorded and the
result is averaged. The charge is not linear to the inductance of the coil, and the
inductance is also very dependent on the orientation and proximity of the metal.
Therefore the measured value cannot be used to discern the type of metal or the
mass of the object. The detector is therefore only usable for detecting if metal
is present or not.

Figure 21: Metal detector circuit diagram [21]

2.2.4 Force sensing

Force or strain sensing can be performed using a composite material consisting
of chopped carbon fibers in a silicone rubber matrix. The procedure used is
similar to the one described in ”Highly Sensitive, Stretchable Chopped Carbon
Fiber/Silicon Rubber Based Sensors for Human Joint Motion Detection” [4].
Carbon fiber is first heated to 450◦C to remove epoxy, which is not a desired
part of the composite. The fibers are then chopped into pieces with length
around 1mm, as the desired result is randomly oriented strands of fiber. These
pieces are then mixed with silicone rubber and cast in a mould to the desired
dimensions. This composite functions as a piezoresistive sensor. When the
material is at rest there exists connections between the randomly distributed
carbon fiber pieces, and when the composite is subjected to strain these connec-
tions change, causing the resistance of the material to change. This is illustrated
in figure 22. By passing a current through the composite the resistance can be
measured and used to determine the applied strain, which in turn can be used

24

to determine the force applied.

According to the tests performed in the paper, the minimum amount of carbon
fiber is about 1.47wt%. Amounts less than this value resulted in connection
loss through the composite, due to the conducting fibers being too far apart.
There is also a maximum strain value, where exceeding the value will not re-
sult in changing resistance. This is because the fibers move too far apart for
conduction to happen, and is shown in the far right part of figure 22.

Figure 22: Reconfiguration of fibers due to strain application [4]

25

2.2.5 ESP8266 NodeMCU v3

ESP8266 is a microchip produced by Espressif Systems capable of WiFi-communication
through TCP/IP. By connecting it to a microcontroller it allows the micro-
controller connection to internet. There are several different modules of the
ESP8266, the first being ESP01. This module, as most of the modules, has its
own sets of inputs and outputs, and is therefore capable to act as a microcon-
troller itself. The NodeMCU v3 is a later module also equipped with a set of
inputs and outputs.
These microcontrollers are as easy to use as an Arduino. In fact, they may
be programmed through the Arduino IDE by installing the ESP8266 Add-On,
after which the regular Arduino WiFi [11] library may be used. Through At-
tention(AT) commands, which is a specific command language used to produce
operations at wireless modems, one can configure the ESP8266 to either be an
access point(server), a client, or both an access point and a client [10].

On an ESP8266 configured as an access point setting up the network is easily
done with the following line of code:

1 WiFi.softAP("TrashNet", "abcd1234");

Where ”TrashNet” refers to the SSID given to the network while ”abcd1234”
refers to the password. On an ESP8266 configured as a client the following line
of code

1 WiFi.begin("TrashNet", "abcd1234");

will connect it to the network created by the server.
Received signal strength indication(RSSI) is a measure of the strength of

the signal. The higher the number, the stronger the signal. Thus, when values
are represented in the negative form, values closer to zero amounts to a higher
RSSI. This value can be displayed using the line:

1 Serial.println(WiFi.RSSI());

The ESP8266 produces a 2,4GHz signal which is about 12,5cm wavelength.

2.2.6 Spectroscopy

Spectroscopy refers to the study of the interaction between materials and elec-
tromagnetic radiation. There are several types of spectroscopy. One may for
instance concern oneself with what happens when a material is beamed by a
specific radiation. When radiation is incident upon an object, a part of the
radiation energy is reflected, another part is transmitted and the last part is
absorbed [9]. That is

ρλ + τλ + αλ = 1 (2)

where ρλ refers to the amount reflected, τλ refers to the amount transmitted and
αλ refers to the amount absorbed. The sub-scripted λ denotes the dependency
this balance has on the wavelength of the incident radiation. In other words,
the amount reflected, transmitted and absorbed by the object may be different

26

when for instance microwaves are the incident radiation as opposed to when
infrared waves hit the object. These values usually differ with different materials
such that a specific profile or balance may be obtained for a material if these
properties can be determined.

2.2.7 Parabolic Reflector

A parabolic reflector is a shape often used to collect and focus incoming energy
into a single point. The purpose can be to strengthen radio waves coming from
a specific direction or it may be used for other purposes, such as focusing heat
waves in order to generate heat for a heat stove. Through its parabolic shape
described by the equation

4fy = x2 (3)

where x and y are Cartesian coordinates and f is the focal length, it focuses
the incoming radio waves upon the focal point F with a distance f from origin.
See figure 23.

Figure 23: Parabola with incoming rays,
horizontal axis: x, vertical axis: y

Due the nature of waves having the same outgoing angle as the incoming
angle when reflecting off of surfaces [9], combined with the shape of the parabola,
the vectors w and u are directed towards F. This is true for all rays travelling
parallel to the y-axis hitting the parabola. Following this, the opposite must be

27

true as well. A circular wave generated at point F is redirected along the y-axis,
forming a collimated beam. That is, parallel rays that will spread minimally as
it propagates along the y-axis. See figure 24.

Figure 24: Parabola with outgoing rays,
horizontal axis: x, vertical axis: y

By revolving the parabola around the y-axis, a paraboloid is created. This is
a 3-dimensional version of a parabola holding the same properties as described
above. Here a spherical wave generated at point F can be redirected to form a
collimated beam.

28

3 Development and Discussion

In this chapter several prototypes will be presented as well as the motivation for
creating them and a discussion of their application. It should be mentioned that
when using the terms ”prototype” and ”prototyping” it refers to the definition
described by Lim, Stolterman and Tenenberg[17] in Section 2.1. The Hunter-
Gatherer Model described in Section 2.1.2 has been applied to the development
process to a large degree. That is, prototyping has been used extensively to
explore the solution space, generate knowledge and provided guidance for the
next step.

3.1 Metal detector

3.1.1 Motivation

In general, there should be no metal present in the trash collected in Oslo as
metal is supposed to be recycled at specified collection points. Some metal is
to be expected in the bags containing mixed waste, but at present there are no
good estimates for the amount. Metal content in the blue bags will result in
contamination of the plastic to be recycled, and metal in the green bags will
contaminate the process of producing bio gas from food waste. Sharp metal
can also cause the bags to rupture which is undesirable. Also, the incineration
process of mixed waste happens at a temperature too low to incinerate metal,
so any metal present will remain afterwards. It is therefore of interest to be able
to quantify if and how often metal is present in the system.

3.1.2 Prototyping

For this application, a simple metal detector was built with the purpose of log-
ging the presence of metal, see figure 25a. The detector in question was built
according to an instructables.com guide by user rcgo [21] and its working prin-
ciple is covered in section 2.2.3. The development was simple, using insulated
wire wrapped around a round piece of plastic cut from a cup as the coil. After
completing the circuit the code was slightly altered to only print when a change
was registered in the readings.

3.1.3 Testing

Initial testing revealed that the sensor gave very reliable readings, being com-
pletely stable until metal was brought in close proximity. Adapting the Arduino
code to only register when the measurement changed by a minimum value yields
a detector that can reliably sense when a metal object passes through or close
to the coil. The code used can be found in the appendix. The test setup used
is shown in figure 25b. A simple cover was placed on the detector to ensure
the test bags were placed in equal proximity to the sensor. The bags used were
identical, with different contents. One filled with metal pieces, one containing
a glass jar with a metal lid and one containing MDF and plastic. The test

29

results are shown in figure 26. Note that the bag with MDF and plastic gave
no indication and is therefore not present in the figure. The indicated change is
larger for the bag with metal pieces, but this is mostly due to proximity to the
coil and not due to the material or amount of metal present.

(a) Metal detector (b) Metal detector with cover

Figure 25: Metal Detector Setup

Figure 26: 5 Readings of metal followed by 5 readings of glass jar with metal
lid

30

3.1.4 Viability and implementation

As the readings from this detector varies with orientation, size and material of
the object, its use is limited to detecting the presence of metal. Depending on
where the sensor is applied, this does not have to be a disqualifying characteris-
tic. One possible application is detection of metal in bags exclusively for plastic
waste. In this case any presence would lead to the bag being removed from the
plastic recycling chain, regardless of the metal amount or composition. This
also applies to the green bags for food waste. It is also useful in combination
with other sensors, as the combined output can be used both for identifying
false positives or negatives, and possibly identify common objects that combine
metal and other materials like for instance glass jars with metal lids. The de-
tector can also be applied when emptying the bins into the truck. As the bins
are tagged with an RFID, a frequent occurrence of metal can reveal if a single
source is not performing the sorting properly.
If more accurate readings showing for instance metal amount is desired, a pos-
sible solution might be to include several small coils in a grid pattern or similar,
as a small coil might be less affected by the orientation of the material. This
method would require additional testing to determine its viability.

3.2 Sensor ball

3.2.1 Motivation

During the process of collecting and sorting trash, the bags collected will be
subjected to varying forces at different locations. This subjection is a possible
reason for the bags rupturing during the process, causing the bags to spill their
contents and reducing the quality of the sorting as described in 1.3. At the time,
the magnitude of the forces and their locations are unknown, so a method for
measuring this is desired.

3.2.2 Prototyping

A force sensor was developed with the intention of logging the forces applied dur-
ing the trash collection cycle. The working principle of this sensor is described
in detail in section 2.2.4. Using the previously described composite material,
tests were performed to assess if it was applicable to this problem. Preliminary
tests indicated that the readings were consistent with the magnitude of the force
applied, but the samples used were not directly applicable to the intended use.
Therefore a new sample was made by wrapping a sphere of rigid foam in the
composite material, see figure 27. The reason for the spherical shape was for
the sensor to give consistent readings regardless of its orientation. The ball was
connected to an Arduino to obtain readings and subjected to testing using a
specialized test setup as shown in figure 28.

31

Figure 27: Sensor ball

32

Figure 28: Sensor ball test setup

3.2.3 Testing

The test was conducted by placing the sensor ball at the bottom of the tower
and dropping a bag of known weight from a set height. The readings were
recorded and are shown in figure 29. The separate tests relate to different
orientations of the ball. As seen in the graphs, the difference between 250
and 500 grams is not significant, which lead to the conclusion that the sensor
could not be trusted without making changes to the design. It should be noted
though that the readings are very consistent between each test. Further testing
revealed that the sensor had a maximum threshold for applied load, probably
due to the silicone matrix reaching its maximum deformation. It is possible
that increasing the material thickness or hardness would increase this threshold
so the sensor can differentiate between loads in the desired spectrum. At the
time, the magnitude of the loads that can be expected in the trash collection
are unknown and will require extensive trial and error to ascertain.

33

Figure 29: Sensor ball test data

34

3.2.4 Viability and implementation

As the sensor will require a lot of rework, and must be extensively tested dur-
ing development, it was decided at the current stage to pause its development
and explore other avenues in the project. In addition to tuning its applicable
sensing area, it will be necessary to place its location in the collection cycle as
it is desirable to know both the magnitude of force and the place where it was
measured. This means that some way of location tracking must be implemented
which has challenges of its own. Several locations, including the garbage truck
and sorting facility, may be shielded from GPS and/or network signals which
would make tracking more difficult. Also, some way of extracting the device
at the end of the cycle is desirable, as failure to do so would result in it being
incinerated. In conclusion, this device requires extensive work and the results
might not be worth the effort.

3.3 Trash-detection through object-detection

3.3.1 Motivation

Gathering information about types of garbage collected can be of great interest
for Renovasjonsetaten. The ratio of blue, green and regular bags may reveal
important insights about the amount of material recycled by the consumer. For
instance, if the number of blue and green bags are kept consistently low over an
extended period of time at a specific household, it may indicate an absence of
recycling initiatives adding to the severity of ”wrongly sorted material” in figure
13. Counting bags may also aid in the estimation of the amount of ripped bags
by comparing the amount before and after a stage. Estimating the amount of
loose items and classifying them within each stage of the collection cycle may
also provide useful insights as to how significant that problem is. An object
detection algorithm may provide information on all three problems.

3.3.2 Prototyping

At first, focus was on training a network to detect blue and green bags in the
back of the truck in order to determine its viability. Darknet was chosen as the
neural network framework due to its simplicity as well as its ability to support
GPU calculations making the training speed up to 500 times faster[19]. Fur-
thermore, yolomark was used to mark and classify the bags [2]. Training the
algorithm to detect blue and green bags in the garbage truck proved to be easy
and required less than 50 pictures to be marked before it reached decidedly high
precision. Additionally, it was experimented with other camera angles, such as
a side view, see Figure 31. The goal was to uncover bags that are left undetected
by the front camera due to other material blocking the view and as such, acquire
more accurate data. A challenge then would be to combine the two algorithms,
preventing the same bag being counted twice.

35

Figure 30: Front view bag detection

Figure 31: Side view bag detection

As it was clear that implementing object detection was viable, it was de-
cided to take it a step further. Yang and Thung[31] attempted to train an

36

algorithm to classify pictures (object classification, not object detection) con-
taining six different kinds of waste with moderate success. They tested with
both AlexNet[15], a CNN based model, as well as an SVM model. The achieved
accuracy was 63% and 22% respectively. Accuracy is a metric that is mostly
useful in image classification, and it’s simply described as the percentage of
correctness in the predictions. Between 300 to 500 pictures within each class
were used to train the models. The data was obtained manually by acquiring
different kinds of waste and photographing each individual object on a white
background. This was described as the most tedious and time-consuming part
of the project. Luckily, the pictures were made available through a git-hub for
others to use[kilde github]. [kilde til de andre som prøvde] tested several deep
learning models on the same data set, including Densenet121, DenseNet169,
InceptionResnetV2, MobileNet, Xception. They achieved a test accuracy rate
of 95% using Densenet121 as the best performing architecture.

It was decided to utilize the data set made available by [31] to attempt to
train a yolov3 model using Darknet for object detecting even though the images
were meant for image classification. To train, bounding boxes had to be placed
in each of the 2527 pictures in a manner described in section 2.2.1. As it seemed
like a tedious job, a code was developed in C++ using OpenCV to automatically
detect contours in each picture and thereby assign a bounding box [referanse
til kode i Appendix]. This was possible due to the white background of the
pictures which was one of the advantages of the highly standardized data-set.
To avoid including contours that occurred due to shadows, each picture had to
be blurred prior to detecting contours. That is, averaging out pixel values based
on the surrounding pixel values. Additionally, a threshold for what constitutes
a contour could also be altered based on the object in the picture. These param-
eters were not the same for all pictures. One combination would for instance
be perfect for colored glass, though leave out much of a transparent glass. As
such, yolo mark was used to scan through all bounding boxes to correct those
that were poorly placed by the code.

The algorithm was set to train overnight using the .cfg file shown in [ap-
pendix] with 20% of the data within each category set aside for testing. The
algorithm reached a mAP of about 84%, see figure 32, which compared to Yolov3
performance in PASCAL VOC is a relatively high precision. Additionally, the
loss function seems to have converged to a fairly low number.

3.3.3 Testing

Even though the results seemed promising, the object detection algorithm per-
formed poorly when presented with self made data. It especially had troubles
distinguishing clear glass from plastic as shown in Figure 33.

Live testing using a web-camera was also performed. As expected it also
performed poorly. It is likely that the trained network suffers from overfitting
described in Section 2.2.1.

37

Figure 32: Performance Chart Yolov3 Trash Detection

Figure 33: Glass detection test

3.3.4 Viability and implementation

The bag detection algorithm was relatively successful in that it reached a high
accuracy with only a few images. As all data given to this algorithm would
be from the same angle (the camera is stationary) with a constant background
(truck) the problem of specialized data would not be a big problem. As such,

38

it is not necessary for this specific network to be able to detect bags in other
circumstances, which makes the training simpler and the likelihood of success
higher.

If one wishes to count bags in other areas as well, one could simply train a
separate network for that exact location. As most areas of interest in the trash
collection cycle has a constant background this is likely an easy implementa-
tion. Such locations might be before and after stage 3 to stage 5 to estimate
the amount of ripped bags in the truck. It may also be before and after stage 7
to estimate the amount of ripped bags in the filtering machine.

With regards to classifying and localizing different types of trash, more test-
ing and more data gathering should be conducted before landing on a decision.
It is likely that since the images used where only meant for image classification
the network had a hard time detecting several objects, see Appendix A.5 Figure
45d. Images from the exact location where the object detection is supposed
to happen, should be collected. It might be of interest to focus only on few
classes or just loose items in general. For instance, one might train a network
to estimate the amount of blue, green and regular bags, as well as estimate the
volume of loose items, that is, all other objects than bags. Such a network might
be useful in order to determine the severity of loose items at several stages. It
might also be interesting to place it before and after stages, as described above,
in order to correlate loose items to ripped bags. As such, one might get a sense
of which root cause of ripped bags might be the more critical.

3.4 Trash-detection through sound-detection

3.4.1 Motivation

One material that is not supposed to be discarded into the regular garbage
is glass. Glass is supposed to be deposited at separate collection points that
are emptied by dedicated trucks at certain times. Despite this, glass often
appears in the mixed trash bags, and possibly also in the plastic and food waste
bags. This is a problem for several reasons. Glass has a higher melting point
than the temperature in the incinerator, and must therefore be removed at
regular intervals. Broken glass is also sharp, and may be a cause of ripped bags
during the collection cycle. Lastly, glass present with the plastic waste will be
a problem in the plastic recycling process, and glass in food waste causes issues
with the bio gas production. We knew from talking to the people employed
at Renovasjonsetaten that glass could be heard from time to time during trash
collection, so there is a possibility of recording and recognizing these sounds
with a machine learning algorithm.

3.4.2 Prototyping and testing

The python code described in section 2.2.2 was used to determine if sound
classification was a possible way to gain information about trash bag contents.

39

The first task was to ensure that the program functioned as intended, and
for this purpose the data set used in the reference project [23] was imported
for initial testing. Figure 34 shows the training and test accuracy using the
UrbanSounds8K data set. A test accuracy of 92.9% shows promise, though it
does not guarantee that the model will function well when trained using other
input data.

Figure 34: UrbanSound8K training data

After the proper function of the program was confirmed, a new test set was
made to assess its accuracy in classifying mixed trash of different types. Three
separate bags were made, one containing two glass jars, the second containing
MDF and plastic, and the third containing plastic and metal pieces. The test
set was created using a Zoom microphone, and repeatedly dropping the bags on
a table. A sound editing program was used to separate the sound file into short
segments by splitting into segments whenever a period of silence was detected.
The resulting set consists of 220 glass sounds, 272 metal sounds and 210 plas-
tic/MDF sounds. Two classes were established for training, ”glass” and ”rest”.
The goal for this test was to see how good the algorithm is at distinguishing
between the two classes. Figure 35 shows training and test accuracy using this
data set.

Figure 35: Self-made training data

Although the training shows high accuracy and also high precision in clas-
sifying the allocated test set, there are important factors to consider. The test
set is small and very specialized. The size of the test set limits the variation
available for training, and this can result in the model becoming overfitted [3].
An overfit model will have difficulties in classifying sounds that are different
from the ones encountered in the data set, for instance with other background
noises present. This same problem is made even worse by the set being so spe-
cialized. Specialized in this setting means that the sounds are recorded in very

40

controlled circumstances with barely any noise in the background. Any random
noise will therefore cause much confusion for the model, and possibly lead to
false classification. One advantage though is that the sounds recorded are very
similar, as most of the sound made comes from the table when the bags hit.
As the sounds are similar, there is little difference left for the model to distin-
guish between, and the high test accuracy shows that this is not a problem.
The conclusion then is that there are slight differences that the program can
differentiate between with good accuracy, and in the real setting that is what
will be required because of high amounts of background noise.

3.4.3 Viability and implementation

This approach presents several difficulties to overcome. Several factors affect
the end performance, the most important being the data set used for training,
and the microphones used.

The data set has to be of sufficient size to ensure that the program will be
able to find the distinguishing factors between the different sounds produced
by different materials found in the trash. A higher number of sounds distin-
guished requires a larger data set, and a larger set will also reduce the chance
of false readings as it will have a higher chance of containing all random noises
encountered from different sources. Obtaining a good set is time consuming,
as it is necessary to ensure that the sound clips are classified correctly; for in-
stance a glass sound has to be labeled correctly as glass and other sounds must
have their corresponding labels. The set must therefore be created in controlled
circumstances. For optimal performance, the data set must also be recorded
in a setting as close as possible to the real life situation. Any noise encoun-
tered in an actual situation should be present when making the recordings, thus
requiring the data collection to be performed on site, preferably under normal
operation. If the only distinction desired is between glass and other sounds, sev-
eral thousand clips where glass is known to be present must be recorded while
the other part of the set can be recorded randomly during normal operation.
Any recordings done from normal operation should be controlled to ensure they
contain no sounds from glass, and this will probably take a lot of work. Once
the data set has been made however, the work does not have to be repeated
unless major changes to the collection process are implemented which change
the overall sound picture.

Another important factor to consider is the type and placement of the record-
ing microphones. Tests have to be performed to make sure the sound recorded
yields a high difference between the desired sounds so they are easier to distin-
guish. There is possibly a high difference between using a contact microphone
compared to one picking up from the surrounding air, and some types are more
dependent on direction than others. Placement and quantity is also to be consid-
ered, and possibly merging several recordings to one clip to obtain an averaged
result.

41

The custom data set was tested on other recorded sounds using a different mi-
crophone, but with the same bags used to make the data set. This test revealed
that using the same microphone in the same placement is vital as the results
from this test was poor compared to the results from earlier. Sounds were often
misidentified though in general they were closer to their real classification than
not, giving some confidence to the viability of the method.

3.5 Infrared trash classification

3.5.1 Motivation

As indicated in 2.2.6 it may be possible to obtain a material specific profile
by determining its reflectivity, absorptivity and its transmissivity on a specific
wavelength, for instance in the infrared waves region. As determining bag con-
tents as well as classifying loose items is a need for REN, beaming bags or
objects with infrared waves might prove to be useful.

3.5.2 Prototyping and testing

The initial idea was to point an infrared diode on an object and measure the
amount received at the other end. Such a diode where plugged in the Arduino as
well as an infrared photoresistor, which is a resistor that changes its resistance
based on amount of incident infrared light. As such one could hopefully correlate
the data with what type of material was being scanned.

Initial tests of this showed that almost no radiation would pass typical ob-
jects found in trash bags. However, there might still have been a difference in
reflection. As such, the receiver was placed next to the emitter with isolation
between. This did not prove to be a viable method either as the received signal
was quite low and the output values did not change sufficiently. A reason for
this might have been a lack of power from the infrared diode. Therefore, a high
power infrared diode was tested as well, though with the same result.

3.5.3 Viability and implementation

It was concluded that more precise equipment would be needed in order to
utilize infrared light to determine the type of material. NIR [12] is a proven
method for determining different types of plastics using infrared light.

3.6 WiFi trash classification

3.6.1 Motivation

The motivation for a WiFi trash classification system is much of the same as
with Infrared trash classification. If the amount of radiation passing through
a bag differs based on the material residing inside, one might gain information
about the contents of a bag by reading the received signal on the other side.

42

3.6.2 Prototyping

By using two ESP8266 configuring one to be the server and the other to be the
client, one could possibly send a WiFi signal through a bag, receive it at the
other end, and display the signal strength using RSSI(), see section 2.2.5. Sim-
ply placing different objects between the two did not alter the signal strength.
A reason for this might be that the signals reflect off other surfaces in the room
and back to the receiver, inhibiting a change in the RSSI.

By shielding the signal from the surroundings one could achieve less reflections.
The initial test of this concept was done by inserting one of the ESP8266 in
a steel cylinder (vaccuum chamber at TrollLabs). The RSSI clearly increased
when the other ESP8266 was held in front of the opening as well as decreased
when placed next to the cylinder.

Additionally, it was hypothesized that if one could concentrate the signal into
a pipe sized beam (with the diameter of a trash bag), one could possibly re-
duce the reflections from the surroundings simply by letting less of the radiation
go to the surroundings. Such a beam of radiation is called a collimated beam
as described in section 2.2.7 and could be achieved using a paraboloid. Two
paraboloids were 3D printed according to the model in figure 36. Both where
laced with aluminum foil as to increase reflectivity of the parabola.

Figure 36: 3D printed parabola

3.6.3 Testing

An elongated plate with glued on slots was created in order to ensure the same
distance and orientation with every measurement. Additionally, brackets for

43

Figure 37: WiFi classification test setup

holding the ESP8266 were made in order to keep the sender and receiver at the
focal point of each paraboloid, ref section 2.2.7. The whole test setup is shown
in figure 37.

Seven different cases were tested. Nothing(air), bag containing plastic, bag
containing glass, metal, a slice of pizza, a water bottle and a hand. Pictures of
these tests can be found int he appendix, see figure 45. The RSSI was recorded
in each case when it had reached a stable value. The results are presented in
figure 38.

Figure 38: RSSI values with various objects blocking the signal

3.6.4 Viability and implementation

From the test results it seems there is a certain reaction from some objects
blocking the beam. There is a change present for the hand and the water bot-
tle, which block or absorb much of the beam. The explanation for this might be
a high absorptivity of radio waves in liquid. However, other material might have
been present during the tests such that much more data must be collected in
order to safely assume a specific reaction to a specific material. At least the data
proves that one might get a reaction in the RSSI when creating a collimated
beam and blocking it. When not using paraboloids, there would be little to no
change in this value. As such, there is potential in this device, and it should be

44

explored further.

It should be mentioned that the beam cannot be perfectly collimated be-
cause one cannot make a perfect paraboloid. Additionally, the signal is not
generated at exactly one point and will thereby cause some radiation to reach
the surroundings. As such, a change in the surrounding geometry may lead to
a change in received signal strength. An idea could be to surround parts of
the outgoing and receiving beam with an absorbing material causing less radia-
tion to escape the surroundings, and less radiation reflected to reach the receiver.

The experiment shows promise for a dual-paraboloid constellation in con-
junction with microwaves for spectroscopy. Other frequencies should be tested
with this device as well, such as radio waves lower than the WiFi frequencies
or UV-frequencies. A placement for this device could be in the trash bin or in
the truck. That is, in Stage 2 or stage 3 such that content could be detected
prior to losing traceability. Additionally, it could be placed before Stage 9.1 in
order more accurately filter out contaminated plastics, or at any stage where
classification is desired.

3.7 Bagrip detection

3.7.1 Motivation

Some prototyping was performed at an early stage to attempt to make a bag
that would record if it was ripped open. The motivation for this was the prob-
lem with loose objects inside the sorting facility. A significant part of the loose
items originate from bags that are ripped open during the collection cycle, evi-
denced by there being found many empty, open bags inside the sorting facility.
This leads to lots of material being incinerated instead of being sorted correctly.
Also, the plastic waste is contaminated by loose waste, such as food waste es-
pecially, and this degrades its quality considering later recycling. As previously
mentioned, it is not known where and why most bags are ripped, so specialized
bags that can detect where this occurs is of interest.

3.7.2 Prototyping

One idea consisted of making a mesh of conducting material embedded in the
bag, see figure 39. Ripping a hole would change this mesh, severing connections
that cause the resistance to either drop or increase. Placing all the electron-
ics on the inside and filling the rest of the bag with waste, and possibly other
sensors, would allow it to behave exactly like a regular trash bag, and thereby
giving good feedback on where ripping occurs. This would of course require
several bags and several trips through the system to gain enough data points.
The idea of embedded conducting material comes with several challenges. The
strength of the material must not be changed significantly, as this could lead to
no ripping, or at a different location than usual. Also, the conducting material

45

has to tear at the same time as the bag, or it could result in false readings. A
conducting coating was suggested, but it would need to be flexible and bond
well to the plastic. Also, any change in resistance is difficult to measure if the
value is very low. All these constraints make material selection very challenging.

Figure 39: Bag rip detection, resistance monitoring

Another solution that would be easier to implement, is using a gas sensor
inside a sealed bag, see figure 40. The bag can either be filled with a gas that
the sensor can detect, causing the amount to drop when the bag is ripped, or it
can react to any gases that can reliably be found in the collection cycle. Some
initial testing showed that the sensors easily available were not sensitive enough,
but there are sensors on the market that would be adequate, although at a much
steeper price. Additionally, most of the sensors are made to detect flammable
gases, which we do not want to make use of due to health and safety concerns.

3.7.3 Viability and implementation

Other features that will have to be implemented is some way of knowing the
location of the bag when a rip is detected, and preferably a way of recovering
it before it ends up in the incinerator. Wireless transmission of the data would
render this unnecessary, but it would still be optimal if the bag could be reused.
In general this product seems achievable, but it requires a lot of work for it to
function as intended and the gain might not be worth it compared to other areas
of interest. Due to other projects looking more promising, further development
of these prototypes was stopped.

46

Figure 40: Bag rip detection, gas monitoring

47

4 Application and future work

In this chapter the findings applications will be discussed as well as reflections
on possible future work. Lastly, a ranking on the methods and concepts will be
given. It must be mentioned that the hunt2.1.2 is by no means over such that
the methods recommended should be further investigated. Additionally, there
is likely many more stones left unturned such that the eyes should be kept open
for new discoveries.

4.1 Non-focused information gathering

The initial request made by the customer was to use an array of different sensors
placed strategically at a point in the collection cycle with the goal of collecting
information without a predetermined purpose. While this method could prove
valuable, it also comes with very high risk. The array could consist of for in-
stance microphones, cameras, IR emitters and sensors, UV emitters and sensors,
several radio wave transmitters and receivers. Another possibility in this regard
would be to make a sensing unit that travels through the system packed with
several sensors, but without any consideration for how the sensors are placed
or what they should be tuned for. This information gathering could potentially
reveal some interesting information over time, but the drawbacks are large and
there is a high probability that the collected data would not be useful. One
major reason for this is that many sensors require tuning depending on what
they are supposed to detect. This is made clear with the sensor ball discussed
earlier, which could not differentiate between 250 grams and 500 grams dropped
from the same height. If this was placed directly into the system without any
prior testing, the results would probably be chaotic and yield little valuable in-
formation. The readings peaked at very low forces, so the sensor would probably
show high impacts through the entire collection cycle. As this situation applies
to other sensors as well, the conclusion would be that a lot of work has been
done for very little or no gain.

This issue can be overcome by front-loading, which is also a very economic
approach. By running tests on each sensor in the lab, situations similar to the
real world application can be used to tune the sensors before installation. This
approach is cheap and quick, and increases the chance of gaining good data.
The sensors would most likely require additional tuning after applying them to
the end stage, but this tuning is made easier after the coarse testing done in the
lab. Doing this would still work with the same approach as originally intended,
but have a much higher possibility of yielding useful information.

It is however worth mentioning that machine learning has the possibility of
detecting subtle differences in the data that are invisible otherwise. Not doing
any sensor testing beforehand has a much higher chance being successful when
applying machine learning to interpret the collected data. This does add the
need for data classification discussed earlier, which is very time consuming. Also,

48

preliminary tuning of the sensors does not necessarily affect the machine learn-
ing in a negative way, and also adds the possibility of producing understandable
data for a human interpreter. Therefore preliminary testing and tuning is still
a preferable approach.

In general, the non-focused approach is not recommended in the initial phase,
as an approach designed to look for specific targets will have a higher proba-
bility of yielding useful results. Over time however, when a sensor apparatus is
already implemented, it could be interesting to see if the data could be used in
other ways than at first intended. Different combinations or applications can
possibly result in new discoveries not originally planned for.

4.2 Possible areas for further work

4.2.1 Sensor bag

One idea discussed consists of making a sensor bag, which is a sensor array that
mimics a trash bag to be sent through the system and collect information along
the way. This product would preferably be approximately the same size and
weight as an average trash bag, and have more than a single function. Previously
discussed development could be implemented in this device, such as the sensor
ball, and some sort of bag rip detection. Other sensors include accelerometers,
temperature, moisture and gas. This array could provide many useful insights,
making it possible to eliminate known problems like bags being ripped apart by
identifying the stages where this happens. There are some problems to over-
come if this device is to be created. The information is a lot more useful if
the location of the bag can be pinpointed at all times during the cycle. This
is because one needs to know at what location the readings were made for the
data to be useful, and also to correct for expected circumstances like the weight
of trash above the sensor.

Positioning was explored to some degree, and found that this was not easy to
implement. A rough positioning is achievable using for instance GPS or RFID
scanning at specific locations. The GPS positioning could be problematic due
to the sensor being underneath piles of trash and not getting a signal to the
positioning satellites. Parts of the cycle take place inside a truck or a building
containing heavy machinery and this would probably disrupt the signal. Using
RFID is possible, but would the range of these devices is very limited and would
require the sensor to pass close to an antenna at each stage. High power anten-
nas and the use of several at key positions could be adequate for this to work.
This does not however give very accurate positioning, like for instance the ver-
tical position of the sensor inside the garbage truck. Triangulation was ex-
plored for this purpose, but this is also problematic due to varying amounts of
garbage around the sensor. Triangulation usually depends on comparing the
signal strength of several sources, and this strength would vary with the mate-
rial present between source and sensor bag. As the amount of debris in between

49

is unknown, it is impossible to account for this signal distortion. A solution
using a grid of narrow beam transmitters was proposed, where the sensor bag
could infer its position based on which of the transmitters were visible, but this
solution is complex and would require many components to be implemented.

In general the sensor bag would possibly yield a high amount of useful informa-
tion, but there are many difficult design challenges to overcome for it to work.
After discussing pros and cons of the possible angles to approach, this device
was rejected due to its complexity. It is however an interesting possibility that
could be explored further in the future.

4.2.2 Trash Classification in sorting facility

In the case of trash classification, which in general refers to detecting the con-
tents of a bag and/or loose items, there are several places such a system could
be implemented. One of these is inside of the sorting facility. The quality of
the sorting could be dramatically improved depending on the accuracy of the
system, and other problems caused by unwanted items could also be avoided.
An assessment of the possible implementation areas was made to decide whether
such a system should be placed somewhere inside the facility, or at another lo-
cation for the most impact. The first point to discuss is whether the system
should be placed before the color sorting of the bags, or at a later stage. At the
early stage the system can be used to separate loose items, eliminating their
negative impact on the machinery in later stages like debris clogging. There
is also the possibility of extracting bags that contain wrongly sorted material
by scanning their contents in combination with color detection. The bags at
this stage are however less separated than later, so there could arise problems
with several bags being detected at the same time, confusing the sensors as to
which bag contains the unwanted contents. It would also be required to scan the
color so the system knows what contents is acceptable, something that would
be unnecessary if the system is implemented after color sorting. Since the color
sorting is already in place, it seems logical to place the sensors at a later stage.
A less sophisticated system could be used before sorting just to single out loose
objects or similar. After sorting the bags are less frequent, minimizing confu-
sion, and the criteria for acceptance are clearer.

One specific location is of special interest inside the sorting facility. At stage
9.1 in figure 10, the plastic bags are separated by weight as the heavy bags are
suspected of containing other than plastic. The mentioned classification sys-
tem could potentially improve this, gaining a higher accuracy resulting in less
wasted pure plastic and removing more contaminated plastic. This would work
in a similar fashion for the green bags, as the biogas production is less efficient
if the food waste contains unwanted material.

As for the mixed waste that goes to incineration, the contents are less im-

50

portant, but it would still be of interest to be able to remove particular objects.
For instance glass and metal has too high burn temperature and won’t be in-
cinerated in the process, so it has to be removed at regular intervals. Also,
food waste is hard to incinerate due to high moisture content, and will therefore
inhibit the incineration process.

Additionally, there are several stages that might be suitable for object detection.
In general, the amount of loose items vs bags might be of interest as all loose
items goes to incineration. If the amount of loose items proves to be high, then
there might be much to be gained by reducing it with regards to the percentage
recycled waste. Loose items might stem from bags that are ruptured somewhere
in the process and/or from people throwing loose items without sorting them.
By attaching a camera at several stages in the sorting facility, for instance, at
the intersection of stage 6 and 7 in figure 7 and 8 as well as on the begin-
ning of stage 8 9 one might simply count the number of green and blue bags
within a specific amount of time on each stage and determine the discrepancy.
This discrepancy could be attributed to the amount of ruptured bags, though
it might also indicate a difference in precision of the algorithms. Even though
the bags are more spaced out at the intersection of stage 6 and 7 than at the
beginning of stage 6, they are more cramped together here than at the begin-
ning of stage 8. This may cause the algorithm at stage 6-7 to be less precise
due to more disturbances in the pictures. Whether or not this will cause more
false positives or less true positives is likely dependent on the types of other
items found in the stage. Determining the accuracy of this method can easily
be done by manual counting and comparing it to the output from the algorithm.

In a wider aspect, the sorting facility is a good candidate for implementation of
a classification system. There are some drawbacks compared to other locations
though. When wrongly sorted material is found, there is no way of tracing
its origin. If the origin of the bag was known, the information could be used
to map which areas or households need more information about correct home
sorting. Implementing the system into the facility is also harder compared to
for instance a collection truck, as there is a lot of machinery in place already
and the space is limited.

4.2.3 Trash classification in truck

Placing a trash classification system in the truck has both advantages and dis-
advantages compared to the sorting facility. There are only two possible place-
ments on the truck for such a system, and that is in and around the tray where
the bins are unloaded, and inside the storage compartment where the trash is
compressed.

The tray is located at the back of the truck and is open to the outside environ-
ment, see figure 41 below for reference. Installation here would require shielding
the sensors from rain and cold, but this is a very small challenge compared to

51

all the other factors that need to be resolved. All equipment will need to be
placed away from moving machinery, and not inhibit the daily operation of the
workers in a significant way. Fortunately there are plenty of spaces available for
mounting equipment, which facilitates fast prototyping in the early stage. The
largest selling point for this location is trace-ability. There is already a system
implemented using RFID where a chip in the bin is scanned when it’s emptied. If
something notable is recorded by the classification system it can automatically
be connected to the bin where the trash came from, and this enables Reno-
vasjonsetaten to take action to avoid similar issues in the future. In addition to
the RFID system, there is also a camera system already in place at this location,
and this can readily be used with object recognition. The preexisting system
has already implemented wireless transfer of its data to a central server so any
heavy computing does not need to be performed by equipment mounted on the
truck. There are some drawbacks to this position however. In the sorting facil-
ity there are only a few locations where sensors must be installed while there are
a large number of trucks in use, so the equipment must eventually be mounted
on all of them. The only issue with this is price however, as the development
can be done on only one truck until it is finished. Additionally, after the bin is
dumped into the tray the collection of bags is very chaotic, so when a detector
senses something of interest it is difficult to know which bag contains the object.
A possibility here is to do measurements while the bags are moving between bin
and tray, though the time to collect a reading is very limited. If the readings
are collected fast enough, it might be possible for the object detection program
to detect which bag was passing the sensor at the moment of the reading. As
for detection in the tray, a sensor array that passes over the trash could be able
to use location and object detection to sync the sensor readings to a specific bag.

The sensor array might also be placed so it scans the bin as it is hooked on
to the loading arm on the back of the truck. The problem with this solution is
that it would be impossible to combine with a camera feed, so detecting trash
sorted in the wrong bags would be impossible. Metal and glass might still be
detected with this approach, so a possibility is placing those sensors at this
location and other sensors around the tray. A thorough assessment including
testing should be done for several locations to ensure the optimal location for
each type of sensor.

As for the interior compartment of the truck (figure 42, this location has several
problems and no clear advantages over the outside placement. The compart-
ment is very cramped due to the compression of the trash, so it is hard to place
equipment and camera footage would be impossible. The amount of trash in-
creases over time, so the readings will be harder to distinguish from another
and trace-ability to the bins is lost.

In general, the truck is a good location especially because of trace-ability to
the bins, and due to the pre-existing equipment already in place that the new
equipment can be connected to. Access to the trucks is easier than to the sorting

52

facility, and there are many possible mounting points.

Figure 41: JOAB garbage truck [13]

4.2.4 Trash classification stage 1

There are other possible areas for classification apart from the sorting facility
and garbage truck. Some of these possibilities have been discussed and are
mentioned here. The first possibility is in the home of the consumer, at stage
1 described in figure 2. A potential issue to be solved at this stage is consumer
lack of knowledge, resulting in sub optimal sorting. The sorting could be done
automatically, by for instance a trash can consisting of sensors combined with
machine learning and a way of separating the objects into selected containers
similar to [29]. Objects can also be discarded if they do not belong in the three
categories described, which are plastic, food waste and mixed waste.

This area is not considered promising due to several factors. It is hard to
ascertain how effective this sorting system would be compared to the consumer
sorting manually. It is highly probable that a well-informed consumer will sort
just as good or better than an automatic system due to the high variation of
waste that exists. It may therefore be preferable to identify consumers bad at
sorting and providing them with information on the subject. It is also a very
expensive solution, as a large amount of households would need these installed,
including having access to power.

53

Figure 42: Interior compartment [14]

4.2.5 Trash classification stage 2

Another area to consider is the trash bins outside of households. These would
only provide information about the contents and would be quite similar to the
system discussed on the garbage trucks. The sensor data obtained would have
to be collected, for instance by the garbage truck during emptying or by wireless
transfer. This area faces many of the same difficulties as with the in-house sort-
ing system. Power to the sensors and collection interface must be considered,
provided by for instance a battery or wirelessly from the truck during emptying.
Also there are expenses to consider as this solution would require every trash
bin to be equipped, rather than on the trucks, and the equipment would have
to withstand harsh conditions like snow and rain. There are some advantages
however, as this system is related to a specific container which is connected to
a specific household. This makes it easy to follow up on issues like bad sort-
ing. Some of these problems are also avoided if this type of system is applied
only to large containers placed at for instance apartment complexes. These are
fewer than the single household containers, so the implementation costs and
challenges would be lower in total. In this case it becomes significantly more
promising, as it is the last point where trace-ability to a specific household can
be achieved. Also, due to its size, it is easier to defend costs and difficulties
related to powering the sensing system.

54

4.3 Combination of sensory outputs and machine learning

At several points during the assignment, using many sensors at the same lo-
cation has been mentioned. A large disadvantage with using a single sensor is
the problem with false positives. When a sensor output is received, the data is
often not specific enough to tell exactly what material or object it has detected.
This is for instance the case when applying radio waves (see section 3.6), as the
output received has very low resolution. The output gives some information
about the object in between, but not enough to tell exactly what it is. As trash
generally contains a huge variety of different objects and materials, it is very
hard for any single sensor to yield a high accuracy classification.

This problem can be overcome with combining the output of several sensors. A
good way of doing this is by using machine learning. For each sensor added,
a new dimension of information is added to the data set the algorithm uses
to learn. While the combinations of several sensor outputs can be hard for a
human to read, it can provide a pattern that the machine learning algorithm
is able to recognize. In a case where the algorithm has trouble distinguishing
between two possible classifications, a new sensor input might give definitive
answer for which of the two classifications is correct. How well this combination
works in practice is near impossible to tell beforehand, and must be tested to
assess its validity. It should be noted though that in many cases the multiple
dimensions of information available is one reason humans are good at distin-
guishing between different objects. For instance, deciding which material an
object consists of is not necessarily easy to tell just by sight, while adding the
weight and feel of the object might make it trivial.

Combining the inputs might provide some challenge as most available algo-
rithms are specialized for one type of information. Most existing programs are
made to interpret images or speech, and it might possibly require expert knowl-
edge of the subject to combine inputs which are not directly comparable. The
possible gain however is vast, and is also the most promising way of gaining the
desired information the customer wants.

4.4 Ranking of methods and implementation areas

The following list shows the recommended solutions, starting with the most
promising method. This prioritization is based on the discussion in section 4.

1. Trash classification by machine learning

(a) Image classification

(b) Metal detection

(c) Sound classification

(d) Radio wave classification

(e) Infrared classification

55

2. Sensor bag

(a) Bag rip detection

(b) Force sensing

3. Smart sorter for apartment complexes

4. Smart home sorter

Below follows a list of the recommended implementation areas in prioritized
order.

1. Collection truck

2. Sorting facility

3. Trash bins, exterior

4. Trash bins, interior

56

5 Conclusion

During testing and development some methods have distinguished themselves
by results and possibilities. In general, machine learning combined with several
sensor inputs has many possible uses, for instance better sorting inside the facil-
ity or determining how well consumers sort at home. Because of this versatility,
this method has been selected as the most promising for future development. As
for the implementation area, the back of the collection truck has been identified
as most promising. The primary reason for this is the trace-ability to individ-
ual consumers, as this has the potential to greatly improve home sorting which
could eliminate the need for better sorting in later stages. The recommended
system is then: a machine learning powered trash classification system based
on a wide variety of sensor outputs placed in the back of the collection truck.
Recommended machine learning inputs include camera feed, sound recordings,
metal detection and spectroscopy through electromagnetic radiation.

57

References

[1] Alexey. AlexeyAB/darknet. original-date: 2016-12-02T11:14:00Z. Dec. 17,
2019. url: https://github.com/AlexeyAB/darknet (visited on
12/17/2019).

[2] Alexey. AlexeyAB/Yolo mark. original-date: 2016-12-17T21:25:07Z. Dec. 17,
2019. url: https://github.com/AlexeyAB/Yolo_mark (visited on
12/17/2019).

[3] Tensorflor authors. Overfit and underfit — TensorFlow Core. Tensor-
Flow. url: https://www.tensorflow.org/tutorials/keras/
overfit_and_underfit (visited on 12/10/2019).

[4] M. Azizkhani et al. “Highly Sensitive, Stretchable Chopped Carbon Fiber/Sil-
icon Rubber Based Sensors for Human Joint Motion Detection”. In: Fibers
and Polymers 20.1 (2019), pp. 35–44. issn: 1229-9197. doi: 10.1007/
s12221-019-8662-0.

[5] Jason Brownlee. A Gentle Introduction to Pooling Layers for Convolu-
tional Neural Networks. Machine Learning Mastery. Apr. 21, 2019. url:
https://machinelearningmastery.com/pooling- layers-
for-convolutional-neural-networks/ (visited on 12/17/2019).

[6] Descending into ML: Training and Loss — Machine Learning Crash Course.
Google Developers. url: https://developers.google.com/machine-
learning/crash- course/descending- into- ml/training-
and-loss (visited on 12/17/2019).

[7] Juan Du. “Understanding of Object Detection Based on CNN Family
and YOLO”. In: Journal of Physics: Conference Series 1004 (Apr. 2018),
p. 012029. issn: 1742-6588, 1742-6596. doi: 10.1088/1742- 6596/
1004/1/012029. url: http://stacks.iop.org/1742-6596/
1004/i=1/a=012029?key=crossref.aef5af21bb1bf8edebfb4bd94c9cf5ff
(visited on 12/03/2019).

[8] Edward C. Jordan. Electromagnetic waves and radiating systems. In col-
lab. with Keith G. Balmain. 2nd ed. Prentice-Hall electrical engineering
series. Englewood Cliffs, N.J: Prentice-Hall, 1968. xiii+753. isbn: 978-0-
13-249995-8.

[9] Frank P. Incropera et al. Incropera’s Principles of heat and mass transfer.
8. utg. Global ed. Singapore: Wiley, 2017. xxi+978. isbn: 978-1-119-38291-
1.

[10] Fuho. ESP8266 - AT Command Reference · room-15. url: https://
room-15.github.io/blog/2015/03/26/esp8266-at-command-
reference/ (visited on 12/11/2019).

[11] Arduino Referance Guide. Arduino - WiFi. url: https://www.arduino.
cc/en/Reference/WiFi (visited on 12/11/2019).

58

[12] Hamed Masoumi, Seyed Mohsen Safavi, and Zahra Khani. Identification
And Classification Of Plastic Resins Using Near Infrared Reflectance Spec-
troscopy. 2012. url: http://dx.doi.org/10.5281/zenodo.
1076915 (visited on 12/12/2019).

[13] JOAB. JOAB Anaconda HD. Joab. url: https://www.joab.se/en/
product/joab-anaconda-hd/ (visited on 12/10/2019).

[14] FAUN Umwelttechnik GmbH \& Co. KG. FAUN VARIOPRESS Heck-
lader Animation. url: https://www.youtube.com/watch?v=
UGYsEi4D5Dg (visited on 12/12/2019).

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Clas-
sification with Deep Convolutional Neural Networks”. In: Advances in
Neural Information Processing Systems 25. Ed. by F. Pereira et al. Curran
Associates, Inc., 2012, pp. 1097–1105. url: http://papers.nips.cc/
paper/4824-imagenet-classification-with-deep-convolutional-
neural-networks.pdf (visited on 12/09/2019).

[16] Stanford Vision Lab. ImageNet Large Scale Visual Recognition Compe-
tition 2012 (ILSVRC2012). 2012. url: http://image- net.org/
challenges/LSVRC/2012/results.html (visited on 12/17/2019).

[17] Youn-kyung Lim, Erik Stolterman, and Josh Tenenberg. 7The Anatomy of
Prototypes: Prototypes as Filters, Prototypes as Manifestations of Design
Ideas.

[18] Avfall Norge. Europa har f̊att nye avfallsdirektiv. url: https://www.
avfallnorge . no / bransjen / nyheter / europa - har - f % C3 %
A5tt-nye-avfallsdirektiv (visited on 12/05/2019).

[19] Joseph Redmon. Darknet: Open Source Neural Networks in C. 2013. url:
http://pjreddie.com/darknet/.

[20] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object
Detection”. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, June 2016,
pp. 779–788. isbn: 978-1-4673-8851-1. doi: 10.1109/CVPR.2016.91.
url: http://ieeexplore.ieee.org/document/7780460/ (vis-
ited on 12/19/2019).

[21] rgco. Simple Arduino Metal Detector. Instructables. url: https://www.
instructables.com/id/Simple-Arduino-Metal-Detector/
(visited on 11/18/2019).

[22] A. L. Samuel. “Some studies in machine learning using the game of check-
ers”. In: IBM Journal of Research and Development; Armonk 44.1 (1959),
pp. 206–226. issn: 00188646. url: https://search.proquest.com/
docview/220681210/abstract/4997F25972114809PQ/1 (visited
on 12/17/2019).

59

[23] Mike Smales. mikesmales/Udacity-ML-Capstone. original-date: 2018-12-
11T10:36:47Z. Nov. 13, 2019. url: https://github.com/mikesmales/
Udacity-ML-Capstone (visited on 11/28/2019).

[24] Stanford. Machine Learning. Coursera. url: https://www.coursera.
org/learn/machine-learning?utm_source=gg&utm_medium=
sem&utm_content=07-StanfordML-ROW&campaignid=2070742271&
adgroupid=80109820241&device=c&keyword=machine%20learning%
20mooc&matchtype=b&network=g&devicemodel=&adpostion=
1t1&creativeid=369041663186&hide_mobile_promo&gclid=
Cj0KCQiA89zvBRDoARIsAOIePbBCOAb26hmmN9KdrH5K1bmdTspDedsMUgOhU9r8BABULktMzVusNF4aAuzlEALw_
wcB (visited on 12/16/2019).

[25] Martin Steinert and Larry Leifer. “’Finding One’s Way’: Re-Discovering
a Hunter-Gatherer Model based on Wayfaring”. In: International Journal
of Engineering Education 28 (Jan. 1, 2012), pp. 251–252.

[26] Librosa development team. librosa.feature.melspectrogram — librosa 0.7.1
documentation. url: https://librosa.github.io/librosa/
generated/librosa.feature.melspectrogram.html#librosa.
feature.melspectrogram (visited on 12/12/2019).

[27] The PASCAL Visual Object Classes Homepage. url: http://host.
robots.ox.ac.uk/pascal/VOC/ (visited on 12/17/2019).

[28] Karl T. Ulrich and Steven D. Eppinger. Product design and development.
Sixth edition. New York, NY: McGraw-Hill Education, 2016. 432 pp. isbn:
978-0-07-802906-6.

[29] Wevolver. Sorting Marshmallows with AI - Using Coral and Teachable
Machine. Wevolver. url: https://www.wevolver.com/lucas.
ochoa/sorting.marshmallows.with.ai.-.using.coral.and.
teachable.machine/master/ (visited on 12/09/2019).

[30] M. Xu et al. “HMM-based audio keyword generation”. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics) 3333 (2004), pp. 566–574.
issn: 0302-9743.

[31] Mindy Yang and Gary Thung. “Classication of Trash for Recyclability
Status”. In: (), p. 6.

60

A Appendix

A.1 Arduino code for metal detector

1 // Metal detector
2 // Runs a pulse over the search loop in series with

resistor
3 // Voltage over search loop spikes
4 // Through a diode this charges a capacitor
5 // Value of capacitor after series of pulses is read by

ADC
6
7 // Metal objects near search loop change inductance.
8 // ADC reading depends on inductance.
9 // changes wrt long-running mean are indicated by LEDs

10 // LED1 indicates rise in inductance
11 // LED2 indicates fall in inductance
12 // the flash rate indicates how large the difference is
13
14 // wiring:
15 // 220Ohm resistor on D2
16 // 10-loop D=10cm seach loop between ground and resistor
17 // diode (-) on pin A0 and (+) on loop-resistor

connection
18 // 10nF capacitor between A0 and ground
19 // LED1 in series with 220Ohm resistor on pin 8
20 // LED2 in series with 220Ohm resistor on pin 9
21
22 // First time, run with with serial print on and tune

value of npulse
23 // to get capacitor reading between 200 and 300
24
25 const byte npulse = 10;
26
27 const byte pin_pulse=A0;
28 const byte pin_cap =A1;
29
30 void setup() {
31 Serial.begin(9600);
32 pinMode(pin_pulse, OUTPUT);
33 digitalWrite(pin_pulse, LOW);
34 pinMode(pin_cap, INPUT);
35 }
36
37 const int nmeas=256; //measurements to take
38 long int sumsum=0; //running sum of 64 sums

a

39 long int skip=0; //number of skipped sums
40 long int diff=0; //difference between sum and

avgsum
41 long int flash_period=0;//period (in ms)
42 long unsigned int prev_flash=0; //time stamp of previous

flash
43 double value = 0;
44 double a = 0.2;
45
46 void loop() {
47
48 int minval=1023;
49 int maxval=0;
50 double first;
51 double timer;
52 double timer1;
53
54 //perform measurement
55 long unsigned int sum=0;
56 for (int imeas=0; imeas<nmeas+2; imeas++){
57 //reset the capacitor
58 pinMode(pin_cap,OUTPUT);
59 digitalWrite(pin_cap,LOW);
60 delayMicroseconds(20);
61 pinMode(pin_cap,INPUT);
62 //apply pulses
63 for (int ipulse = 0; ipulse < npulse; ipulse++) {
64 digitalWrite(pin_pulse,HIGH); //takes 3.5

microseconds
65 delayMicroseconds(3);
66 digitalWrite(pin_pulse,LOW); //takes 3.5

microseconds
67 delayMicroseconds(3);
68 }
69 //read the charge on the capacitor
70 int val = analogRead(pin_cap); //takes 13x8=104

microseconds
71 minval = min(val,minval);
72 maxval = max(val,maxval);
73 sum+=val;
74 }
75 value = value*a + (1-a)*sum;
76
77 while (millis() > 5000){
78 if (timer == 0) {
79 first = value;

b

80 }
81 sum = 0;
82 for (int imeas=0; imeas<nmeas+2; imeas++){
83 //reset the capacitor
84 pinMode(pin_cap,OUTPUT);
85 digitalWrite(pin_cap,LOW);
86 delayMicroseconds(20);
87 pinMode(pin_cap,INPUT);
88 //apply pulses
89 for (int ipulse = 0; ipulse < npulse; ipulse++) {
90 digitalWrite(pin_pulse,HIGH); //takes 3.5

microseconds
91 delayMicroseconds(3);
92 digitalWrite(pin_pulse,LOW); //takes 3.5

microseconds
93 delayMicroseconds(3);
94 }
95 //read the charge on the capacitor
96 int val = analogRead(pin_cap); //takes 13x8=104

microseconds
97 minval = min(val,minval);
98 maxval = max(val,maxval);
99 sum+=val;

100 }
101 value = value*a + (1-a)*sum;
102 timer1 = millis();
103 timer = millis();
104 if ((abs(value - first)) >= 200) {
105 while (timer < (timer1 + 1000)) {
106 sum = 0;
107 for (int imeas=0; imeas<nmeas+2; imeas++){
108 //reset the capacitor
109 pinMode(pin_cap,OUTPUT);
110 digitalWrite(pin_cap,LOW);
111 delayMicroseconds(20);
112 pinMode(pin_cap,INPUT);
113 //apply pulses
114 for (int ipulse = 0; ipulse < npulse; ipulse++)

{
115 digitalWrite(pin_pulse,HIGH); //takes 3.5

microseconds
116 delayMicroseconds(3);
117 digitalWrite(pin_pulse,LOW); //takes 3.5

microseconds
118 delayMicroseconds(3);
119 }

c

120 //read the charge on the capacitor
121 int val = analogRead(pin_cap); //takes 13x8=104

microseconds
122 minval = min(val,minval);
123 maxval = max(val,maxval);
124 sum+=val;
125 }
126 value = value*a + (1-a)*sum;
127 Serial.println(value);
128 //Serial.print(",");
129 timer = millis();
130 }
131 //Serial.println();
132 timer = 0;
133 }
134 }
135 }

A.2 Image processing and contour detecting code

#include ”opencv2/ imgcodecs . hpp”
#include ”opencv2/ h ighgu i . hpp”
#include ”opencv2/ imgproc . hpp”
#include <iostream>
#include ”opencv2/ imgproc/ imgproc . hpp”
#include ”opencv2/ h ighgu i / h ighgu i . hpp”
#include <s t d l i b . h>
#include <s t d i o . h>
#include <opencv2/ core / types . hpp>
#include <fstream>

using namespace cv ;
using namespace std ;

/∗Mat s r c g r a y ;
i n t t h r e s h = 100; ∗/
RNG rng (12 345) ;

Mat src , s r c g r a y ;
Mat dst , d e t e c t ed edge s ;
Mat myImage ;

int edgeThresh = 1 ;
int lowThreshold =13;

d

int const max lowThreshold = 100 ;
int r a t i o = 3 ;
int k e r n e l s i z e = 3 ;
S t r ing window name = ”someWindow” ;
S t r ing window name2 = ”someWindow2” ;

double minVal ;
double maxVal ;
Point minLoc ;
Point maxLoc ;

double minVal1 ;
double maxVal1 ;
Point minLoc1 ;
Point maxLoc1 ;

double imWidth ;
double imHeight ;

double boxWidth ;
double boxHeight ;
double boxCenterX ;
double boxCenterY ;

s t r i n g imFi le ;
s t r i n g t x t F i l e ;
s t r i n g l a b e l ;
s t r i n g f o l d e r ;

vec to r <vector<Point>> contours ;

// vo id t h r e s h c a l l b a c k (in t , vo id ∗) ;

void CannyThreshold (int , void ∗)
{

/// Reduce no i se wi th a k e r n e l 3x3
blur (s r c g ray , de tec ted edges , S i z e (7 , 7)) ;

/// Canny d e t e c t o r
Canny(detec ted edges , de tec ted edges , lowThreshold , lowThreshold ∗ r a t i o , k e r n e l s i z e) ;

/// Using Canny ’ s output as a mask , we d i s p l a y our r e s u l t
dst = Sca la r : : a l l (0) ;

e

s r c . copyTo (dst , d e t e c t ed edge s) ;

//imshow (window name , d s t) ;
}

void wri teToFi l e () {

ofstream outF i l e { t x t F i l e } ;
i f (! ou tF i l e) { c e r r << ”Can ’ t open f i l e ” << endl ; }

ou tF i l e << l abe l<<” ”<<boxCenterX / imWidth << ” ” << boxCenterY / imHeight << ” ” << boxWidth / imWidth << ” ” << boxHeight / imHeight << endl ;
ou tF i l e . c l o s e () ;

}

int main (int argc , char∗∗ argv)
{

i f (argc != 2)
{

cout << ” Usage : d i sp lay image ImageToLoadAndDisplay” << endl ;
return −1;

}
f o l d e r = argv [1] ;

for (int n = 1 ; n < 11 ; n++) {

imFi le = f o l d e r + ”/” + f o l d e r +t o s t r i n g (n)+ ” . jpg ” ;

t x t F i l e = imFi le ;

t x t F i l e . e r a s e (t x t F i l e . end () − 3 , t x t F i l e . end ()) ;

t x t F i l e = t x t F i l e + ” txt ” ;

cout << t x t F i l e << endl ;

cout << ”Char : ” << imFi le [0] << endl ;

switch (imFi le [0])
{
case ’ c ’ :

l a b e l = ”0” ;

f

break ;
case ’ g ’ :

l a b e l = ”1” ;
break ;

case ’m’ :
l a b e l = ”2” ;
break ;

case ’ p ’ :
i f (imFi le [1] == ’ a ’) {

l a b e l = ”3” ;
break ;

}
else {

l a b e l = ”4” ;
break ;

}
case ’ t ’ :

l a b e l = ”5” ;
break ;

default :
cout << ” Uncorrect image or f i l e ” << endl ;
break ;

}

cout << ” Label : ” << l a b e l << endl ;

s r c = imread (imFile , CV LOAD IMAGE COLOR) ;

imWidth = s r c . c o l s ;
imHeight = s r c . rows ;

i f (! s r c . data)
{

cout << ”Could not open image” << endl ;
return −1;

}

/// Create a matrix o f the same type and s i z e as s rc (f o r d s t)
dst . c r e a t e (s r c . s i z e () , s r c . type ()) ;

/// Convert the image to g r a y s c a l e
cvtColor (src , s r c g ray , CV BGR2GRAY) ;
b lur (s r c g ray , s r c g ray , S i z e (4 , 4)) ;
/// Create a window
namedWindow(window name , CV WINDOW AUTOSIZE) ;

g

/// Create a Trackbar f o r user to en ter t h r e s h o l d
// createTrackbar (”Min Threshold : ” , window name , &lowThreshold , max lowThreshold , CannyThreshold) ;

/// Show the image
CannyThreshold (0 , 0) ;
//minMaxLoc(d e t e c t e d e d g e s , &minVal , &maxVal , &minLoc , &maxLoc) ;

//minMaxLoc(d e t e c t e d e d g e s , &minVal , &maxVal , &minLoc , &maxLoc) ;

cout << ”min l o c : ” << minLoc << endl ;
cout << ”max l o c : ” << maxLoc << endl ;
cout << ”amount : ” << de t e c t ed edge s . t o t a l () << endl ;
cout << ”Type : ” << de t e c t ed edge s . type () << endl ;

vector<Vec4i> h i e ra r chy ;
cout << ”The t e s t ” << endl ;
f indContours (de tec ted edges , contours , RETR EXTERNAL, CHAIN APPROX SIMPLE, Point (0 , 0)) ;
cout << ”Got through ” << endl ;
//Mat drawing = Mat : : z e r o s (d e t e c t e d e d g e s . s i z e () , CV 8UC3) ;
/∗ f o r (i n t i = 0 ; i < contours . s i z e () ; i++)
{

Sca lar c o l o r = Sca lar (255 , 255 , 255) ;
drawContours (drawing , contours , i , co lor , 2 , 8 ,0 , 0 , Point ()) ;

}∗/
Sca la r c o l o r = Sca la r (255 , 255 , 2 5 5) ;

// drawContours (drawing , contours , 0 , co lor , 2 , 8 , 0 , 0 , Point ()) ;

// Rect rec = minAreaRect (contours) . boundingRect () ;
i f (contours . s i z e () == 0) { continue ; }
Point min = contours [0] [0] ;
Point max = contours [0] [0] ;
cout << ”Got through ” << endl ;

for (int i = 0 ; i < contours . s i z e () ; i++) {
for (int j = 0 ; j < contours [i] . s i z e () ; j++) {

// cout << contours [i] [j] << end l ;
i f (contours [i] [j] . y < min . y) {

min . y = contours [i] [j] . y ;
}
i f (contours [i] [j] . x < min . x) {

min . x = contours [i] [j] . x ;
}
i f (contours [i] [j] . y > max . y) {

h

max . y = contours [i] [j] . y ;
}
i f (contours [i] [j] . x > max . x) {

max . x = contours [i] [j] . x ;
}

}

}

cout << boxCenterX / imWidth << ” ” << boxCenterY / imHeight << ” ” << boxWidth / imWidth << ” ” << boxHeight / imHeight << endl ;

r e c t a n g l e (src , min , max , Sca l a r (0 , 0 , 0) , 2 , 8 , 0) ;

boxWidth = max . x − min . x ;
boxHeight = max . y − min . y ;
boxCenterX = boxWidth / 2 + min . x ;
boxCenterY = boxHeight / 2 + min . y ;

/∗ boxWidth = imWidth ;
boxHeight = imHeight ;
boxCenterX = boxWidth / 2 ;
boxCenterY = boxHeight / 2 ; ∗/

// Normaliz ing p o s i t i o n s accord ing to image s i z e and w r i t i n g to f i l e

wri teToFi l e () ;
cout << endl ;
imshow (tx tF i l e , s r c) ;
imFi le = ”” ;
t x t F i l e = ”” ;

}
//imshow (window name2 , s r c) ;

/// Wait u n t i l user e x i t program by p r e s s i n g a key
waitKey (0) ;

}

/∗ i f (! s r c . data) // Check f o r i n v a l i d input
{

cout << ”Could not open or f i n d the image” << s t d : : end l ;
re turn −1;

i

}

cv tCo lor (src , s rc gray , COLOR BGR2GRAY) ;
GaussianBlur (src , src , S i z e (3 , 3) , 0 , 0 , BORDER DEFAULT) ;
cons t char∗ source window = ” Source ” ;
namedWindow(source window) ;
imshow (source window , src) ;
cons t i n t max thresh = 255;
createTrackbar (”Canny t h r e s h : ” , source window , &thresh , max thresh , t h r e s h c a l l b a c k) ;
t h r e s h c a l l b a c k (0 , 0) ;
waitKey () ;
re turn 0 ;

}∗/

A.3 Machine learning code for sound classification

Load v a r i o u s imports
import pandas as pd
import os
import l i b r o s a
import l i b r o s a . d i s p l a y
import numpy as np

Load v a r i o u s imports

Set the path to the f u l l UrbanSound d a t a s e t
f u l l d a t a s e t p a t h = ”D: / Prosjektoppgave / Mask in laer ing / EgetDatasett /”

metadata = pd . r ead c sv (f u l l d a t a s e t p a t h + ”/metadata/Metadata . csv ”)

f e a t u r e s = []

global mfccs

def e x t r a c t f e a t u r e s (f i l e n a m e) :
global mfccs
try :

audio , sample rate = l i b r o s a . load (f i l e name , r e s t y p e=’ k a i s e r f a s t ’)
mfccs = l i b r o s a . f e a t u r e . mfcc (y=audio , s r=sample rate , n mfcc =40)

except Exception :
print (” Error encountered whi l e par s ing f i l e : ” , f i l e n a m e)
return None

j

return mfccs

def r eb in (a , xrange , b ins) :
mfccsrebinned = np . z e r o s ([xrange , b ins])
global mfccs
for i in range (xrange) :

amplitude = max(mfccs [i] − min(mfccs [i]))
s tep = amplitude / b ins
mfccsbinned = np . z e r o s (b ins)
for j in range (b ins) :

mfccsbinned [j] = np . mean(mfccs [i] [(mfccs [i] > (min(mfccs [i])+ step ∗ j)) ∗ (mfccs [i] < (min(mfccs [i])+ step ∗(j +1)))])
mfccsbinned [j] = np . nan to num (mfccsbinned [j])

mfccsrebinned [i] = mfccsbinned
return mfccsrebinned

I t e r a t e through each sound f i l e and e x t r a c t the f e a t u r e s
for index , row in metadata . i t e r r o w s () :

f i l e n a m e = os . path . j o i n ((f u l l d a t a s e t p a t h) , str (row [” f o l d ”])+ ’ / ’+” cut ” , str (row [” s l i c e f i l e n a m e ”]))

c l a s s l a b e l = row [” c l a s s ”]
data = reb in (e x t r a c t f e a t u r e s (f i l e n a m e) , 40 , 40)

f e a t u r e s . append ([data , c l a s s l a b e l])

Convert i n t o a Panda dataframe
f e a t u r e s d f = pd . DataFrame (f e a tu r e s , columns=[’ f e a t u r e ’ , ’ c l a s s l a b e l ’])

print (’ F in i shed f e a t u r e e x t r a c t i o n from ’ , len (f e a t u r e s d f) , ’ f i l e s ’)

from s k l e a rn . p r e p r o c e s s i n g import LabelEncoder
from keras . u t i l s import t o c a t e g o r i c a l

Convert f e a t u r e s and corresponding c l a s s i f i c a t i o n l a b e l s i n t o numpy arrays
X = np . array (f e a t u r e s d f . f e a t u r e . t o l i s t ())
y = np . array (f e a t u r e s d f . c l a s s l a b e l . t o l i s t ())

Encode the c l a s s i f i c a t i o n l a b e l s
l e = LabelEncoder ()
yy = t o c a t e g o r i c a l (l e . f i t t r a n s f o r m (y))

s p l i t the d a t a s e t
from s k l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

x t ra in , x t e s t , y t ra in , y t e s t = t r a i n t e s t s p l i t (X, yy , t e s t s i z e =0.2 , random state = 42)

k

from keras . models import Sequent i a l
from keras . l a y e r s import Dense , Dropout
from keras . l a y e r s import Conv2D , MaxPooling2D , GlobalAveragePooling2D

num rows = 40
num columns = 40
num channels = 1

x t r a i n = x t r a i n . reshape (x t r a i n . shape [0] , num rows , num columns , num channels)
x t e s t = x t e s t . reshape (x t e s t . shape [0] , num rows , num columns , num channels)

num labels = yy . shape [1]
f i l t e r s i z e = 2

Construct model
model = Sequent i a l ()
model . add (Conv2D(f i l t e r s =16, k e r n e l s i z e =2, input shape=(num rows , num columns , num channels) , a c t i v a t i o n=’ r e l u ’))
model . add (MaxPooling2D (p o o l s i z e =2))
model . add (Dropout (0 . 2))

model . add (Conv2D(f i l t e r s =32, k e r n e l s i z e =2, a c t i v a t i o n=’ r e l u ’))
model . add (MaxPooling2D (p o o l s i z e =2))
model . add (Dropout (0 . 2))

model . add (Conv2D(f i l t e r s =64, k e r n e l s i z e =2, a c t i v a t i o n=’ r e l u ’))
model . add (MaxPooling2D (p o o l s i z e =2))
model . add (Dropout (0 . 2))

model . add (Conv2D(f i l t e r s =128 , k e r n e l s i z e =2, a c t i v a t i o n=’ r e l u ’))
model . add (MaxPooling2D (p o o l s i z e =2))
model . add (Dropout (0 . 2))
model . add (GlobalAveragePooling2D ())

model . add (Dense (num labels , a c t i v a t i o n=’ softmax ’))

Compile the model
model . compile (l o s s=’ c a t e g o r i c a l c r o s s e n t r o p y ’ , met r i c s =[’ accuracy ’] , opt imize r=’adam ’)

Disp lay model a r c h i t e c t u r e summary
model . summary ()

C a l c u l a t e pre−t r a i n i n g accuracy
s co r e = model . eva luate (x t e s t , y t e s t , verbose =1)
accuracy = 100∗ s co r e [1]

l

print (”Pre−t r a i n i n g accuracy : %.4 f%%” % accuracy)

from keras . c a l l b a c k s import ModelCheckpoint
from datet ime import datet ime

num epochs = 500
num batch s ize = 200

checkpo inte r = ModelCheckpoint (f i l e p a t h=’D: / Prosjektoppgave / Mask in laer ing / saved models / weights . bes t . ba s i c cnn . hdf5 ’ ,
verbose =1, s a v e b e s t o n l y=True)

s t a r t = datet ime . now ()

model . f i t (x t ra in , y t ra in , b a t c h s i z e=num batch size , epochs=num epochs , v a l i d a t i o n d a t a =(x t e s t , y t e s t) , c a l l b a c k s =[checkpo inte r] , verbose =1)

durat ion = datet ime . now () − s t a r t
print (” Train ing completed in time : ” , durat ion)

Eva lua t ing the model on the t r a i n i n g and t e s t i n g s e t
s co r e = model . eva luate (x t ra in , y t ra in , verbose =0)
print (” Train ing Accuracy : ” , s c o r e [1])

s co r e = model . eva luate (x t e s t , y t e s t , verbose =0)
print (” Test ing Accuracy : ” , s c o r e [1])

A.4 Code for Sensor ball

1 int readPin = A0;
2 double value;
3 double a = 0.9;
4 double Time1;
5 double Time2;
6 double saved1;
7 double saved2;
8
9 void setup() {

10 Serial.begin(9600);
11 value = analogRead(readPin);
12 }
13
14 void loop() {
15 value = value*a + (1-a)*analogRead(readPin);

//Sensor values with filtering
16 if (saved1 == 0) {

//Set start

m

time and reference value
17 saved1 = value;
18 Time1 = millis();
19 }
20 if (millis() > (Time1 + 0.01)) {

//Check if time has
increased enough for calculating value change

21 saved2 = value*a + (1-a)*analogRead(readPin);
22 if (abs(saved2 - saved1) > 0) {

//If value has increased
enough, start output

23 Time1 = millis();
24 while (Time2 < (Time1 + 1000)){

//Output sensor data for
one second, then reset references.

25 value = value*a + (1-a)*analogRead(readPin);
26 Serial.println(abs(value));
27 //Serial.print(",");

//
Commaseparated data for easy Excel import

28 Time2 = millis();
29 }
30 saved1 = 0;
31 Serial.println();

//Make a
space in between sensor data chunks

32 }
33 }
34 }

A.5 Additional Figures

Figure 43: Sobel filter operator

n

Figure 44: Image before and after Sobel filter application

o

(a) Aluminum

(b) Plastic

(c) Glass

(d) Several Objects

Figure 45: Machine Learning Tests

p

(a) Air (b) Bag containing plastic

(c) Water Bottle

(d) Slice of pizza

(e) Bag containing glass

(f) Hand

(g) Metal

Figure 46: WiFi test setup

q

O
liver I. Funch and Robert M

arhaug
D

etecting Im
properly Sorted M

aterials in Trash Bags

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Oliver Istad Funch and Robert Marhaug

Detecting Improperly Sorted Materials
In Trash Bags

The Development of a System for Analyzing
Household Trash Bags with Sound and Metal
Detection using Artificial Neural Networks

Master’s thesis in Mechanical Engineering

Supervisor: Martin Steinert

June 2020

