

"When you are studying any matter, or considering any philosophy,
ask yourself only what are the facts and what is the truth that the
facts bear out. Never let yourself be diverted either by what you wish
to believe, or by what you think would have beneficent social effects
if it were believed"

― Bertrand Russell

ii

Preface

This master thesis is written to fulfill the requirement of TPK4950-Reliability,

Availability, Maintainability, and Safety, Master’s Thesis. This thesis is a part of the

two-years master’s program in Mechanical and Industrial Engineering (MTP) at

NTNU. The thesis is written during the spring semester in 2020.

The research work is the continuation of the specialization project written in the fall

semester 2019 about Predictive maintenance and digital twin, where a comprehensive

literature review was carried out, and a digital twin road map for predictive maintenance

was proposed. This thesis is aimed to propose and demonstrate an architecture for the

digital twin implemented in predictive maintenance. Meanwhile, state-of-the-art

methods are implemented in this thesis to get a brief view of how digital twin works.

Further work could be executed based on the architecture proposed.

The inspirations of this thesis are from the course: TPK4450 - Data-Driven Prognostics

and Predictive Maintenance and PK8207 - Maintenance Optimization, together with

the guidance from Jørn Vatn.

This report assumes that the reader has background and knowledge within the RAMS

perspective and basic programming knowledge.

Trondheim,2020-06

Jinghao Wang

汪敬豪

iii

Acknowledgment

I would like to express my sincere thanks to those who have contributed the relevant

work to this thesis and who provide kindness help to me during this pandemic period.

Particularly, I would like to express my thanks to those medical crews. They are risking

their lives and fighting in the frontline against COVID-19 and recapture the lives from

the grim reaper.

First of all, I would like to thank my supervisor Jørn Vatn, who weekly provides help

and suggestions during the whole period. The knowledge he provided helps me to

understand the topic more solidary.

Secondly, I would like to thank my family, who help me go through this period when I

was suffering in the deep moods.

Furthermore, I would like to thank the RAMS group, Cuthbert Shang Wui Ng and

Chuangxin lyu. They provide much help during this period.

Last but not least, I would like to express thanks to all the predicament I met, which

make me stay stronger and not give up.

Jinghao Wang

汪敬豪

iv

Executive Summary

With the development of industry 4.0, the maintenance strategy starts moving towards

predictive maintenance to provide dynamic support to maintenance engineers.

Meanwhile, the digitalization provides a fundamental cognition from the physical asset,

which could help improve system performance and availability through digital

simulation and optimization. The synchronization of the physical asset becomes a trend

in the system diagnostics and prognostics. Therefore, to get the state of physical assets

ahead of time, the concept of the digital twin is defined to duplicate the physical

behavior into digital form. Meanwhile, the Cyber-physical system and Internet of

Things provide a real-time data stream to the digital twin, which provides the ability to

estimate system behavior dynamically.

A digital twin could provide a dynamic system state in the future, while predictive

maintenance could provide support based on system state. Therefore, it is essential to

integrate predictive maintenance in the digital twin. However, predictive maintenance

and digital twin is a rather emerging concept, and there is no standardized document

and practical cases in the literature. Hence, a literature review was conducted to get the

requirements in digital twin and predictive maintenance. Within the requirements, a

digital twin framework for predictive maintenance was proposed after the literature

review.

In order to demonstrate the digital twin framework, a hypothetical system is proposed,

where the concept of the system is based on wind farm maintenance. This system

requires to get a dynamic maintenance schedule within the maintenance window

through real-time and historical data. Thus, the digital twin model is established and

integrated by a communication protocol, PHM models, and a decision model. In the

PHM reference model, we analyze the historical data and get the main features to

extract health indicators. The dataset contains 21 different monitoring signal data and

three operational settings. The dataset is formatted in time series with the 'Cycle' time

scale. According to historical data, we could establish an offline reference model. In

this thesis, we present three states of art methods, neural network, 𝑘 − 𝑁𝑁 regression

model, and Geometric Brownian motion model. (Noted that: In the Geometric

v

Brownian motion model, we need to set the threshold for the degradation, which we

regard as the failure when health indicators exceed the threshold.) Then, the offline

model would be uploaded to the 'Server' by the Socket communication protocol. When

it comes to the prognostics, the real-time data could be streaming from the 'Client' to

the 'Server' through the communication protocol. From the online prognostics, we could

get the estimated RUL in real-time. Then, the RULs could be transferred to the decision

model. The decision model in this thesis is based on a discrete event simulation model

to provide dynamic decision support based on RUL, Cost per unit of time, and Spares

in the inventory.

Through the previous process, we could conclude that the digital twin for predictive

maintenance could follow the framework proposed in the literature review. Moreover,

based on the model selected, the digital twin could provide dynamic decision support

during real-time monitoring. However, for this hypothetical system, we do not have a

standard evaluation of the digital twin performance. So, we compare the PHM method

and the performance, which could provide vital information on the properties of these

three methods and might be helpful when implemented in practice.

This thesis aims to bridge the gap in the digital twin implemented in predictive

maintenance and demonstrate the architecture proposed within the fields of RAMS and

data-driven methods. By applying such a framework, the digital twin could provide

dynamic maintenance support and realize the predictive maintenance behavior.

vi

Table of Contents

PREFACE ... II

ACKNOWLEDGMENT ... III

EXECUTIVE SUMMARY ... IV

LIST OF TABLES .. VIII

LIST OF FIGURES ... X

INTRODUCTION ... 1

1.1 BACKGROUND .. 1

1.2 OBJECTIVES .. 3

1.3 APPROACHES .. 4

1.4 LIMITATION .. 4

1.5 OUTLINE ... 5

SYSTEM DESCRIPTION .. 6

2.1 PHYSICAL SYSTEM .. 6

2.2 DATASET DESCRIPTION .. 7

PREDICTIVE MAINTENANCE AND DIGITAL TWIN .. 9

3.1 PREDICTIVE MAINTENANCE REQUIREMENTS .. 9

3.2 CYBER-PHYSICAL SYSTEM AND DIGITAL TWIN .. 11

DATA ANALYSIS AND PROCESSING METHODS ... 24

4.1 DIMENSION REDUCTION ... 24

4.2 TIME SERIES DECOMPOSITION .. 25

4.3 PATTERN RECOGNITION APPROACHES .. 26

DIGITAL TWIN FRAMEWORK AND ARCHITECTURE .. 36

5.1 COMMUNICATION PROTOCOL ... 36

5.2 PHM FRAME AND METHOD... 37

5.3 DECISION MAKING .. 40

DIGITAL TWIN OFFLINE MODEL ... 41

6.1 DATA PRE-PROCESSING AND OFFLINE REFERENCE MODEL .. 41

6.2 DATA PRE-PROCESSING .. 41

vii

ONLINE PROGNOSTICS AND DECISION MAKING ... 79

7.1 ONLINE PROGNOSTICS .. 79

7.2 PROGNOSTICS INFORMATION OF SIX MACHINES ... 87

7.3 DECISION-MAKING MODEL ... 87

ALTERNATIVE ANALYSIS... 94

DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE

WORK .. 96

9.1 DISCUSSION .. 96

9.2 SUMMARY AND CONCLUSION .. 98

9.3 FURTHER WORK ... 100

BIBLIOGRAPHY ... 103

APPENDIX A .. 108

ACRONYMS .. 108

APPENDIX B ... 110

ROADMAP FOR PREDICTIVE MAINTENANCE DIGITAL TWIN .. 110

APPENDIX C .. 111

PYTHON CODES OF DIGITAL TWIN ARCHITECTURE ... 111

C.1 COMMUNICATION PROTOCOL IN SOCKET ... 111

C.2 DATA PRE-PROCESSING AND ANALYSIS .. 114

C.3 K-NN PROGNOSTICS MODEL (INCLUDING OFFLINE REFERENCE MODEL AND ONLINE

PROGNOSTICS MODEL)... 123

C.4 NEURAL NETWORK MODEL (INCLUDING OFFLINE REFERENCE MODEL AND ONLINE

PROGNOSTICS MODEL)... 131

C.5 GBM ALGORITHM MODEL (INCLUDING OFFLINE REFERENCE MODEL AND ONLINE

PROGNOSTICS MODEL)... 137

viii

List of Tables

TABEL 2.1 DATASET FEATURES DESCRIPTION ... 7

TABEL 2.2 SENSOR PROPERTIES OF THE PHM-08 DATASET .. 8

TABLE 6.1 THE DETAILED INFORMATION OF THE DATASET .. 42

TABLE 6.2 HIGH CORRELATION COEFFICIENT VALUES IN THE CORRELATION MAP 50

TABLE 6.3 THE VALUES OF STANDARD DEVIATION AND MEAN ... 51

TABLE 6.4 CORRELATION, DESCRIPTIVE STATISTICS, AND DISTRIBUTION OF SENSORS FOR ALL

MACHINES ... 53

TABLE 6.5 LINEAR TREND FOR SENSORS ... 57

TABLE 6.6 PCA VARIANCE VALUES ... 58

TABLE 6.7 THE DATAFRAME OF HEALTH INDICATOR INFORMATION AND CORRESPONDING

LIFETIME ... 62

TABLE 6.8 THE EXAMPLE OF THE TRAINING SET AND VALIDATION SET WITH INPUT VARIABLES

AND OUTPUT VARIABLES .. 63

TABLE 6.9 THE K VALUES WITH CORRESPONDING RMSE ... 64

TABLE 6.10 FACTORS OF THE REGRESSION FITTING FOR ALL MACHINES 67

TABLE 6.11 HEALTH INDICATORS FOR 100 MACHINES ... 69

TABLE 6.12 THE NUMBER OF 𝛥𝐿 VALUES .. 69

TABLE 6.13 THE 𝜇, 𝜎, AND THE MEAN VALUES FOR EACH MACHINE 70

TABLE 6.14 DATAFRAME FOR DEEP LEARNING NEURAL NETWORK .. 72

TABLE 6.15 DATAFRAME AFTER NORMALIZATION ... 73

TABLE 6.16 TRAINING DATA SAMPLE FOR NEURAL NETWORK ... 73

TABLE 6.17 AN EXAMPLE OF TRAINING AND VALIDATION DATASET 75

TABLE 7. 1 THE MONITORING DATA OF A NEW MACHINE .. 80

TABLE 7. 2 THE MEAN VALUES AND STANDARD DEVIATIONS OF LIFETIME 82

TABLE 7. 3 THE MEAN VALUES AND STANDARD DEVIATIONS OF RUL 83

TABLE 7. 4 THE MEAN VALUES AND STANDARD DEVIATIONS OF RUL 85

TABLE 7. 5 DATASET AFTER NORMALIZATION .. 86

TABLE 7. 6 THE ESTIMATED RUL .. 86

TABLE 7. 7 ONLINE PROGNOSTICS FOR SIX MACHINES .. 87

TABLE 7. 8 THE LIFETIME INFORMATION ON CYCLE 50,100 AND 150 91

TABLE 7. 9 PARAMETER INFORMATION ... 91

TABLE 7.10 SCHEDULE TIME AND COST .. 92

ix

TABLE 8. 1 𝑅2 AND MSE FOR 𝐴𝑁𝑁 AND 𝑘 − 𝑁𝑁 ... 95

TABLE 9. 1 COMPARISON OF THREE PROGNOSTICS MODELS ... 97

x

List of Figures

FIGURE 3. 1 ILLUSTRATION OF THE CONNECTIONS IN CPS ... 11

FIGURE 3. 2 THE ILLUSTRATION OF IOT AND CPS SYSTEM (WENINGER, 2020) 12

FIGURE 3. 3 DIGITAL TWIN FRAMEWORK AND NECESSARY INFORMATION 14

FIGURE 3. 4 SYSTEM ANALYSIS METHODS AND CLASSIFICATION ... 15

FIGURE 3. 5 PROGNOSTICS AND HEALTH MANAGEMENT PROCESS.. 17

FIGURE 3. 6 THE ‘BATHTUB CURVE’ OF FAILURE RATE (CROARKIN ET AL., 2006). 19

FIGURE 3. 7 TREND AND STATES OF THE DEGRADATION LEVEL.. 20

FIGURE 3. 8 THE INFORMATION PROVIDED BY DIAGNOSTICS (FRANGOPOL, 2011) 21

FIGURE 4. 1 THE ILLUSTRATION OF PCA ... 25

FIGURE 4. 2 K-NN REGRESSION EXAMPLE ... 27

FIGURE 4. 3 FEEDFORWARD NEURAL NETWORK FRAMEWORK ... 29

FIGURE 4. 4 ILLUSTRATION OF BINARY STEP FUNCTION ... 31

FIGURE 4. 5 ILLUSTRATION OF THE SIGMOID ACTIVATION FUNCTION 31

FIGURE 4. 6 ILLUSTRATION OF THE HYPERBOLIC TANGENT FUNCTION 32

FIGURE 4. 7 ILLUSTRATION OF THE RECTIFIED LINEAR UNITS ... 33

FIGURE 5. 1 THE SOCKET COMMUNICATION WORKFLOW ... 37

FIGURE 5. 2 OVERALL SCHEME OF OFFLINE REFERENCE MODEL FLOW CHART 39

FIGURE 5. 3 PHM FLOW CHART AND PROCESS ILLUSTRATION .. 40

FIGURE 6.1 ILLUSTRATION OF THE RAW DATASET .. 44

FIGURE 6.2 ILLUSTRATION OF LABELED DATA .. 44

FIGURE 6.3 THE INFORMATION AND FEATURES OF ALL DATA... 45

FIGURE 6.4 CORRELATION MAP ALL MONITORING DATA FOR ALL MACHINES 48

FIGURE 6.5 CORRELATION MAP ALL MONITORING DATA FOR MACHINE 1 49

FIGURE 6.6 STATISTIC COUNTING FOR ALL MONITORING DATA .. 50

FIGURE 6.7 MEAN VALUES AND STANDARD DEVIATION FOR EACH MONITORING DATA 51

FIGURE 6. 8 DISTRIBUTIONS OF EACH MONITORING SIGNAL ... 53

FIGURE 6.9 REMAINING SENSOR DATA WITH THE LIFETIME FOR ALL OF THE MACHINES 55

FIGURE 6. 10 ILLUSTRATION OF THE SENSOR DATA WILL BE REMOVED 56

FIGURE 6. 11 ILLUSTRATION OF FITTED LINEAR TREND .. 57

FIGURE 6.12 ILLUSTRATION OF LINEAR TRENDS ... 58

FIGURE 6.13 ILLUSTRATION OF FIRST THREE PCA .. 59

FIGURE 6.14 TREND AND INFORMATION FOR HI CANDIDATE ... 60

FIGURE 6.15 TIME SERIES DECOMPOSITION FOR SENSOR 11 OF MACHINE 20.......................... 61

xi

FIGURE 6.16 HEALTH INDICATOR TREND OF ALL MACHINES .. 61

FIGURE 6.17 ILLUSTRATION OF RMSE .. 65

FIGURE 6.18 ILLUSTRATION OF THE VALIDATION PROCESS AND THE PERFORMANCE 65

FIGURE 6.19 AN EXAMPLE OF THE DETERIORATION OF THE MACHINE 66

FIGURE 6. 20 ILLUSTRATION OF REGRESSION CURVES .. 67

FIGURE 6.21 THE ILLUSTRATION OF THE ESTIMATED INCREMENT .. 68

FIGURE 6.22 AN EXAMPLE OF GBM WITH A CERTAIN 𝜇 AND 𝜎 .. 71

FIGURE 6.23 DENSITY DISTRIBUTION OF THE HEALTH INDICATOR FOR 100 MACHINES 71

FIGURE 6.24 GBM PATHS WITH 0.8 AS THE THRESHOLD .. 72

FIGURE 6.25 THE NEURAL NETWORK FRAMEWORK .. 74

FIGURE 6. 26 MODEL LOSS ILLUSTRATION DURING THE TRAINING PROCESS 76

FIGURE 6.27 ILLUSTRATION OF THIS NEURAL NETWORK .. 77

FIGURE 6. 28 UPLOADING OFFLINE REFERENCE MODEL TO THE ‘SERVER’. 78

FIGURE 7. 1 ILLUSTRATION OF RECEIVING MONITORING DATA .. 79

FIGURE 7.2 THE ILLUSTRATION OF SIGNAL EVOLVING .. 81

FIGURE 7. 3 THE PRIMARY TREND BY APPLYING TSD ... 81

FIGURE 7. 4 DISTRIBUTION AND ESTIMATION PROCESS .. 82

FIGURE 7. 5 MCS PROCESS .. 85

FIGURE 7. 6 THE ESTIMATION THROUGHOUT TIME STEPS ... 86

FIGURE 7. 7 AN EXAMPLE OF THE MAINTENANCE PROCESS .. 91

FIGURE 7. 8 COST PER UNIT TIME WITH THE CORRESPONDING CYCLE 92

FIGURE 7. 9 SPARES SPENDING ALONG WITH TIME/CYCLE .. 92

FIGURE 8. 1 ESTIMATIONS OF PHM08 DATASET WITH THREE METHODS 95

FIGURE 9.1 DIGITAL TWIN FRAMEWORK PRESENTED IN THIS THESIS 100

Chapter 1

Introduction

In this chapter, the background is presented to explain the main scope of the digital twin

in predictive maintenance. A case problem is formulated and described in this section

to demonstrate the objectives of the scope. Besides, approaches and limitations in

achieving the scope of objectives are presented. In the end, the structure of this thesis

is presented.

1.1 Background

For industries, it is a challenging problem of how to improve work efficiency based on

their needs and reduce the unnecessary cost of degradation and failure of production or

equipment. A study by the Wall Street Journal and Emerson shows that 42%

unscheduled downtime of equipment is because of the equipment failure, and

unscheduled downtime costs $50 billion every year in manufacturing. Hence, an

efficient maintenance strategy becomes essential (IMMERMAN, 2018).

In the production process, manufacturing and maintenance planning are two separate

processes; however, maintenance scheduling influences both manufacturing and failure

probability. The maintenance during the manufacturing makes production unavailable.

The idea of integrating different maintenance decisions with prognostics and all the

resources is enabled to improve the productivity, efficiency, and availability of the

whole process. (Lu et al., 2007; Liao et al., 2017).

As we are entering the industry 4.0, the focus on maintenance is turning from preventive

to predictive (Wegener, 2019). Predictive maintenance could provide a dynamic insight

view of the maintenance strategy to help lower the maintenance cost, utilize equipment

operation, and improve work efficiency (Luo et al., 2003; Mobley, 2002). With the

development of the network, collaboration, and automation systems, predictive

CHAPTER 1: INTRODUCTION

 2

maintenance has become a new challenge from theory establishment to achievement.

Nowadays, sensors and IoT are widely used in the industries, which make real-time

data easily to be accessed. Thus, industries start to formulate the physical assets into

digital form, to get an insight of the system, which is also known as digitalization

(Vemuri, 2019). Digitalization provides possibilities to achieve predictive maintenance.

The principle of digitalization is to integrate data from manufacture to supply chain

from start to end. All physical information could be transferred into digital information

and connected by the Cyber-Physical Systems (CPS) to make production, sales, and

supplement smarter (Tao et al., 2018a). Digital twin, as an advanced digitized system,

firstly is coined from the aerospace area, especially from NASA. The purpose of the

digital twin is to build a “same” digitalization system as a physical asset to simulate the

state of operation (Glaessgen and Stargel, 2012). With the improvement of productivity

level and the increase of operational data, the implementation of digital transformation

becomes more complicated. Now, Digital twin enabled virtual producing and process

planning, which provides simulation in the future for different purposes with the

synchronization of the current time (Tao et al., 2018a). These properties help digital

twin organize several resources data and different systems and execute the optimized

solutions during the operation via simulation (Kritzinger et al., 2018).

Within the perspective of the RAMS field, the primary focus raises to data-driven

diagnostics, prognostics, and maintenance strategies in the digital twin. According to

real-time data and system behaviors, the diagnostics can help to determine the system

state and health condition at present. As the data updated, the health condition is also

updated. From the diagnoses and the system condition changing overtime, prognostics

can help to find the potential RUL of the system, which could help to decide the

maintenance strategies. (Lee et al., 2017)

Digitalization provides an initial frame and resources to build the digital twin.

Meanwhile, predictive maintenance provides the possibility of making a dynamic

maintenance decision through multiple sources of data. Some researches, such as Qiao

et al., Qi et al., and Tao et al., started trying to link predictive maintenance with the

digital twin together and establish a bridge from the smart devices and physical objects

to digital objects. However, due to various definitions and understandings of the digital

CHAPTER 1: INTRODUCTION

 3

twin, these authors have a different perspective on building a digital twin. Some of them

only focus on data processing methods, not on the structure for predictive maintenance.

(Qiao et al., 2019; Tao et al., 2018b; Qi et al., 2018).The digital twin should not only

be a ‘data monster’ (Boschert and Rosen, 2016).

Problem formulation

Despite having a lot of digital twins exist, which can provide information about the

system conditions and integrated some predictions or other perspectives, still, there are

no standardized requirements on how to establish a digital twin related to predictive

maintenance in the literature. Meanwhile, the standardized digital twin framework is

still under development (ISO/CD, 2019). How to efficiently integrate the information

and establish the predictive maintenance digital twin is still an open question.

Furthermore, what information and methods are needed for a digital twin performing

predictive maintenance? In the literature review of digital twin and predictive

maintenance, an underlying architecture of the digital twin has been pointed out

(Appendix A) (Wang, 2019). Therefore, there is a need to demonstrate digital twin

architecture and select appropriate methods.

1.2 Objectives

The objective of this thesis is mainly to build a digital twin to achieve predictive

maintenance and demonstrate it by a case study. The following sub-objectives are

listed:

• Present the primary information for the case study;

• Present the architecture of digital twin and the relevant sub-systems to establish

the digital twin;

• Perform the literature review of the relevant methods or systems to achieve each

fundamental architecture in the digital twin;

• Propose state-of-the-art methods in the literature to establish the digital twin;

• Establish a digital twin based on the case study and relevant data.

CHAPTER 1: INTRODUCTION

 4

1.3 Approaches

The approaches in this thesis include three parts, propose a hypothetical system and

relevant data to support the objectives, literature review of prevalent systems and

methods, and a case study to apply the explicit methods. The literature review will cover

more on health management and prognostics management, and explicit state-of-the-art

data-driven methods to get a deeper understanding. In order to achieve the objectives,

we will follow the digital twin fundamental architecture proposed in Wang’s literature

review1. Since the literature review of Predictive maintenance and Digital twin has

already been investigated. Here we only propose the findings in the literature.

The relevant research platform used in the literature review were Google Scholar,

ORIA, IEEE transactions, and Research gate. The algorithm support and platforms are

Python, Kaggle, Medium, GitHub, and MATLAB & Simulink. Besides, some

fundamental ideas are from course PK8207 - Maintenance Optimization and TPK4450

- Data-Driven Prognostics and Predictive Maintenance. The data applied in this thesis

is from the open-source PHM08 dataset. We only choose ‘Training FD_001’ and

‘Testing FD_001’.

1.4 Limitation

In this thesis, since the case study is based on a hypothetical system, there might be

some defects when describing the system and establish the digital twin. The whole

concept of the system is based on wind farm maintenance. Some ideas are rather

conceptual, which could bring difficulties to digital twin modelling.

The author of this thesis is in the RAMS field, not a specialist in programming and

computer science field. Due to the limited skills, the model demonstrated may not fully

achieve the expected functions or only be presented as a demo model. However, the

primary function of the digital twin will be presented as much as possible. Meanwhile,

due to the lack of a standard framework in the literature of digital twin for predictive

maintenance, it hard to evaluate the justifiability in practical.

1 This is a literature review on Predictive maintenance and Digital twin. The document explicitly presents

the requirements for building the digital twin of predictive maintenance and architecture of digital twin.

CHAPTER 1: INTRODUCTION

 5

1.5 Outline

The main structure of this thesis will be organized as follows:

• Chapter 1: Present the background and problem formulation for the topic, the

objectives to be achieved, and relevant approaches and limitations for the thesis.

• Chapter 2: Present the hypothetical system, the main architecture and problem

to analysis.

• Chapter 3: Introduce the requirements for predictive maintenance and digital

twin. Present necessary systems to build the digital twin and digital twin

architecture.

• Chapter 4: Introduce Data analysis and processing models; Present principles

and mechanisms of each method explicitly.

• Chapter 5: Present the framework and architecture of the digital twin for the

hypothetical system.

• Chapter 6: Present the digital twin Offline reference model with three different

methods and illustrate the data processing procedure in detail.

• Chapter 7: Present the Online prognostics model and decision model;

meanwhile, present the digital twin workflow.

• Chapter 8: Alternative analysis; analysis performance of three prognostics

models.

• Chapter 9: Present the discussion and conclusions for this thesis, as well as

recommendations for future work.

• Bibliography

• Appendix A: Presents acronyms relevant to this thesis.

• Appendix B: Presents Roadmap for predictive maintenance digital twin in the

literature review

• Appendix C: Presents the programming codes for the work carried out.

Chapter 2

System description

In this Chapter, a hypothetical system is introduced. The purpose of this system is to

demonstrate and connect the digital twin for predictive maintenance. This system

simulates a factory, drawn from the wind farm, which requires long-term maintenance

planning and specific maintenance windows (Seyr and Muskulus, 2019).

2.1 Physical system

There is an unmanned automation factory called ATF. Inside the ATF, there are several

machines in this factory. Due to some reasons, the factory is located far away from the

company. There is no possibility to access in time. The factory works 24h/ day, the real-

time data of each machine is through the network passing to the company (the network

always works). If there are some issues happen, the digital system can alert the crews

to shut down or slow down the process.

Figure 2.1: Illustration of automation factory

Due to the remote location of ATF, the maintenance group cannot fix the issue. Thus,

CHAPTER 2: SYSTEM DESCRIPTION

 7

the maintenance is based on the schedule. Meanwhile, due to inaccessibility,

maintenance only can be conducted in a specific period2. During the maintenance, we

assume the maintenance only needs one type of component. After repair, the machine

is AS GOOD AS NEW. When it comes to the scheduled time, all the machines are

maintained, regardless of their states of failure. There are two repairmen in the

maintenance group. The repair time variating from 4-6 (cycles) depends on the machine

state. In the system, we count time by cycles, not by hours.

2.2 Dataset description

The data set is originally from the Prognostics and Health Management PHM08

Challenge Data Set. This data set is generated by C-MAPSS (Commercial Modular

Aero Propulsion System Simulation)(Saxena et al., 2008). The original datasets have

been pre-processed from the Kaggle website into 4 training datasets (shows in the

following table), 4 testing datasets, and 4 evaluation data containing real RUL, which

can be directly used in the data analysis.

Tabel 2.1 Dataset features description

Data Set: FD001 FD002 FD003 FD004

Train

trajectories:
100 260 100 248

Test

trajectories:
100 259 100 249

Conditions:
ONE (Sea

Level)
SIX ONE (Sea Level) SIX

Fault Modes:
ONE (HPC

Degradation)

ONE (HPC

Degradation)

TWO (HPC

Degradation, Fan

Degradation)

TWO (HPC

Degradation, Fan

Degradation)

In this case study, we select ‘train_FD001’, ‘test_FD001’ and ‘RUL_FD001’ as our

dataset, since there is only one Fault Mode. In addition, we only choose 6 test samples3

corresponding to the 6 machines in this hypothetical system. The reason we choose this

2 In the wind farm maintenance, the available time slot is named as Maintenance window. In the

following part, we call this period as Maintenance window. TAVNER, P. 2012a. Offshore wind turbines:

reliability, availability and maintenance, The Institution of Engineering and Technology.
3 We choose 31,34,35, 68,81,82 as the samples. Since the degradation trends are similar, we could assume

these machines as identical.

CHAPTER 2: SYSTEM DESCRIPTION

 8

dataset is that the objective of the PHM08 is to predict the number of remaining

operational cycles before failure in the test set.,which matches some of the objectives

of this thesis. Inside the datasets from training and test, the given columns are as

following:

1) unit (engine) number

2) time, in cycles

3) operational setting 1

4) operational setting 2

5) operational setting 3

6) 21 sensor monitoring data, shown in the following table:

Tabel 2. 2 Sensor properties of the PHM-08 dataset

Symbol Description Unit of measure Label

T2 Total temperature at fan inlet °R sen1

T24 Total temperature at LPC outlet °R sen2

T30 Total temperature at HPC outlet °R sen3

T50 Total temperature at LPT outlet °R sen4

P2 Pressure at fan inlet psia sen5

P15 Total pressure in bypass-duct psia sen6

P30 Total pressure at HPC outlet psia sen7

Nf Physical fan speed rpm sen8

Nc Physical core speed rpm sen9

epr Engine pressure ratio (P50/P2) -- sen10

Ps30 Static pressure at HPC outlet psia sen11

phi Ratio of fuel flow to Ps30 pps/psi sen12

NRf Corrected fan speed rpm sen13

NRc Corrected core speed rpm sen14

BPR Bypass Ratio -- sen15

farB Burner fuel-air ratio -- sen16

htBleed Bleed Enthalp -- sen17

Nf_dmd Demanded fan speed rpm sen18

PCNfR_dmd Demanded corrected fan speed rpm sen19

W31 HPT coolant bleed lbm/s sen20

W32 LPT coolant bleed lbm/s sen21

Chapter 3

Predictive maintenance and Digital twin

3.1 Predictive maintenance requirements

Due to the stochastic and dynamic behavior of the disturbance in the manufacturing

process, maintenance planning becomes more critical. The concept of predictive

maintenance is by analyzing relevant information and conducting the diagnosis to

predict the potential failure or RUL of the equipment, as well as providing maintenance

support dynamically (Lee et al., 2017).

Predictive maintenance could track the system condition by detection and indication

during the operation. In principle, predictive maintenance optimizes the maintenance

behavior to prevent unexpected maintenance, and lower the maintenance frequency and

cost (Mobley, 2002). It is based on essential data from internal and external information

to predict asset behaviors and scheduling maintenance strategy. Thus, a platform, such

as a digital twin, is necessary to integrate different information to make maintenance

schedules based on the prediction of assets condition and available resources.

Predictive maintenance relies on the actual condition of equipment, rather than average

or expected life statistics, to predict when maintenance will be required. It means the

predictive maintenance acquires not only the RUL prediction but dynamically provides

different scenarios for the users to choose, based on alternative information. Therefore,

a robust system and more information are necessary to realize predictive maintenance

(Cachada et al., 2018).

In Wang’s literature review, the following is the main points to realize predictive

maintenance:

• Data gathering and pre-processing;

• Indicators selection and model training;

CHAPTER 3: PREDICTIVE MAINTENANCE AND DIGITAL TWIN

 10

• Pre-detection and localization;

• Prediction and prognosis (including remain useful life prediction or fault

prognostics);

• Decision making and actions

(Wang, 2019)

Within the scope, real-time monitoring is essential for predictive maintenance, which

could provide internal real-time data and external information to evaluate and track

system performance. Hence, a robust system that including communication and the

digital system is critical for predictive maintenance (Nguyen and Medjaher, 2019).

In addition, to illustrate the predictive maintenance better, we give a brief example. We

consider a critical component in a machine that is exposed to deterioration. To measure

the deterioration, it is possible to install sensors that, in real-time, could monitor the

behaviors of the critical component. The deterioration is considered to be governed by

some stochastic loads. In order to measure the deterioration, we need an evaluation

method, named as 𝑋(𝑡), to establish the bridge between the data and deterioration

behavior. We assume we could observe 𝑋(𝑡) in real-time. From the point of time, we

decide to change the component. Then we need to decide what time to choose to do the

maintenance and take the lowest risk.

When we consider the predictive maintenance in this example, these questions should

be considered4. 𝑋(𝑡) is univariate, could be questioned. Therefore, we need to look into

how to select the feature to establish the 𝑋(𝑡) and the maintenance threshold.

Meanwhile, how to monitor data and select the data-driven methods, since the data

could be muti-dimensional. Besides, how to establish an objective function. Hence,

there should be a digital twin system to support us in solving these questions efficiently.

4 The questions also could be presented as: the techniqal aspects for monitoring and acquiring real-time

data, data-driven method and PHM process, and objective model for making decisions.

CHAPTER 3: PREDICTIVE MAINTENANCE AND DIGITAL TWIN

 11

3.2 Cyber-physical system and digital twin

3.2.1 Communication system

Technically, Digital twin represents physical assets in a virtual form. As the physical

assets operating, digital twin serves to simulate or estimate the state of the process. To

make sure these two identical parts could be connected and synchronized, Digital twin

should be able to communicate with the physical systems or multi-phase digital systems

(Wegener, 209). Cyber-physical system (CPS) and the Internet of things (IoT) enable

communication between the digital twin and physical assets.

Figure 3. 1 Illustration of the connections in CPS

The Cyber-physical system (CPS) is a group combination of physical components and

computational processes. The term ‘cyber’ and ‘physical’ are firmly connected and

interacting. These two parts are tightly interwoven and continually interacting, which

is not duplicated merely or united with each other (Akkaya, 2016). The Cyber-physical

system (CPS) is not a reference model, which does not reflect any other applications.

Within the scope of Industry 4.0, the Internet of things (IoT) is a successful

implementation of CPSs, which connects different domains and provide a bridge (Lee,

2015).

CHAPTER 3: PREDICTIVE MAINTENANCE AND DIGITAL TWIN

 12

Figure 3. 2 The illustration of IoT and CPS system (Weninger, 2020)

Internet of things (IoT) provides interrelationship for physical machines and digital

twin, smart devices, objects, even human. Through the unique identifiers (UIDs) of

each object. IoT can transfer data over the network and remote control automatically

and allow the information transferred from different places and different devices, which

improve data accessibility and transmission efficiency.

The integration and connection of information make the environment can communicate

with physical assets dynamically, which allows the terminal to provide an intelligent,

dynamic decision. (Akkaya, 2016)

3.2.2 Digital twin

The digital twin is designed to manage data, store, process, and communicate with

physical systems and the environment. It is the crucial component to achieve system

digitalization and real-time optimization. (Söderberg et al., 2017)

The digital twin can cover various perspectives in different aspects. In the

manufacturing field, a digital twin can connect essential information for prediction and

simulation, which can be used to optimize the whole manufacturing procedure and

activities (Rosen et al., 2015). The digital twin is not a new concept, and it is evolving

from time to time. (Wegener, 2019; Bacidore, 2019). For a digital twin, the most crucial

element is data. The quantity and quality of data in some way could influence the

accuracy of simulation digital twin. Also, the digital twin function is limited by the

CHAPTER 3: PREDICTIVE MAINTENANCE AND DIGITAL TWIN

 13

data-driven method. What kind of information can be gathered from physical assets is

another critical factor. In theory (Grieves and Vickers, 2017), the digital twin could

represent the physical model. The feature implemented in digital could be decided by

physical system analysis, which could influence the data fusion and prediction

accuracy.

On the industry level, Digital twin could provide prognostics and health management

(PHM), optimize decision making under uncertainty, and provide a series probabilistic

model, which performs as a reward model to help correct predictive maintenance

(Rocchetta et al., 2019). Because of the complexity of the system, a digital twin can

help to separate the mission to different sub-systems, make whole processes more

efficient, and avoid having an all integrated system, which might slow down the

analysis procedure. (Qiao et al., 2019)

3.2.3 Digital twin architecture

A digital twin can cover various perspectives in different aspects. In the manufacturing

field, a digital twin can connect essential information for prediction and simulation,

which can be used to optimize the whole manufacturing procedure and activities (Rosen

et al., 2015). With a different perspective, the digital twin has different formations and

requirements. In (Wang, 2019), the literature review shows that there are mainly seven

requirements needed to build a digital twin for predictive maintenance:

• Physical system background and information

• Real-time data from equipment,

• Local data with lifecycle stage,

• Automatic self-updating/communication,

• Working status definition.

• Data-driven technologies,

• Decision and evaluation

They are highly suggested by literature and take a high percentage of all the

requirements. Along with all the requirements, some of them have common parts with

the PHM process. The PHM process can be regarded as a part of the digital twin, which

could provide prognostics for the system (Rocchetta et al., 2019). So, to build the digital

CHAPTER 3: PREDICTIVE MAINTENANCE AND DIGITAL TWIN

 14

twin, we need Physical system background and information, real-time data, historical

data, prognostics and health management (PHM), and decision-making module.

Figure 3. 3 Digital twin framework and necessary information

3.2.3.1 Physical system background and information

Nowadays, Industrial systems become more complex, and it is hard to transfer all of

the system’s physical processes to digital form. Hence, we need methods to extract the

main feature or principal components from the physical system to represent the whole

degradation (Scheifele et al., 2019).

In order to determine the critical components or sub-systems, one of the typical

methodologies is to apply hazard analysis or risk assessment, which both belong to

system analysis. System analysis can estimate the likelihood, cause, and consequences

of a hazardous event or condition, which requires a good understanding of the system

and proper methods. Typically, system analysis could be divided into two parts:

qualitative and quantitive analysis, shown in Figure 3. 4. Different methods provide

different systems analysis approaches.

CHAPTER 3: PREDICTIVE MAINTENANCE AND DIGITAL TWIN

 15

Figure 3. 4 System analysis methods and classification

Within these methods, FMECA and FTA are the primary approaches in determining

critical sub-systems or components. FMECA analyzes as many components and

subsystems as possible to identify the failure modes and effects. It documents the result

of failure on the system, which can be regarded as the basis for inspection and

monitoring. FTA represents the interrelationship between sub-systems and components

related to the critical accident in the system. According to the likelihood of each critical

event and components fail, we could decide which components or sub-system are more

valuable to monitor.

The analysis of the physical system aims to understand the failure mode and risk of the

system failure, which could help industries to avoid unnecessary cost and reduce the

risk. (Bevilacqua et al., 2020). The failure mode and relevant physical information can

help to determine the system degraded state, which could be adopted in establishing the

health indicator for PHM (Atamuradov et al., 2017).

3.2.3.2 Data availability

In industries, sensors are wildly used in different processes. After monitoring the data,

suitable software or method needs to be done to process these data. In the digital twin

requirements, two kinds of data are needed: one is historical data, and the other is real-

time data. In (Tao et al., 2019) and (Ding et al., 2019), historical data for the whole

lifecycle stage is stored in the cloud to provide a reference model for the prognostics.

In (Biesinger et al., 2019), the real-time data is gathered by sensors under MQTT

(Message Queuing Telemetry Transport) and MSB (Media Stream Broadcast) protocol.

In order to get the RUL prediction, the requirements of data in the following should be

CHAPTER 3: PREDICTIVE MAINTENANCE AND DIGITAL TWIN

 16

considered (Tao et al., 2018b):

1. Historical data. The historical data can help to extract the main feature of the

system, which includes failure mode, failure time, and system behavior. This

information can indicate the potential failure of the same or similar system as a

reference database.

2. Realtime data and labelling. The real-time data needs to be gathered in a fixed

interval and transmitted to the digital twin. The data should be labelled with

relevant physical meaning or sensor location, which is available for system

component level analysis.

For some of the industries, because of the system and lack of historical data, usually

conditional monitoring and mathematical model are used. The digital twin could

process real-time data and give a probability of each state of the system or the

probability of reaching the system healthy threshold. Then, based on prediction and real

case, an evaluation for the digital twin would be conducted. Furthermore, if necessary,

the improvement could be implemented to the digital twin and get better performance.

For those who both have real-time data and historical data, the process would be more

complicated. The historical data can be stored in the cloud or specific data storage

space. The data processing could help to clean and process the redundant and missing

data. After this, based on systematic analysis, some relevant features in historical data

could be selected. By using mathematical or big data algorithms, a simulation digital

twin model could be established, and historical data is for training the model. Then,

based on the model, real-time data could be used to make a prediction. There could be

two types of predictions, in which one is long-term, and the other is short term. For

long-term prediction, it is usually for maintenance planning and resource arrangement.

For short-term prediction, it is usually for an emergency, and it is more like conditional

monitoring to get a short time alert for the unexpected situation.

 (Wang, 2019)

3.2.3.3 Prognostics and health management

Prognostics and health management (PHM) is a modern engineering concept which

provides an overview in the real-time assessment of system operational health state,

CHAPTER 3: PREDICTIVE MAINTENANCE AND DIGITAL TWIN

 17

along with the prediction according to multiple information. PHM aims to reveal system

failure trends, diagnostics, and prognostics to perform health management. Further, it

can assist in providing maintenance suggestions or determine the optimal execution

plan (Atamuradov et al., 2017). With the explosive development of digital information,

PHM conveys data and information into connection with the health state, which

provides a perceptual intuition of system properties. Due to PHM could conduct the

prediction of remain useful life (RUL), it becomes an intermediary process in realizing

predictive maintenance (Kim et al., 2016).

The main task of PHM is that a PHM system needs to consider three-stage: current

system state estimation, estimate future state and remain useful life (RUL), and the

impact of failure (Atamuradov et al., 2017). According to the task, the process of PHM

includes data collection, diagnostics, prognostics, and health management. Data

collection is to acquire the condition monitoring data and, according to data, extract

some main features for the following process and establish an evaluation method.

Diagnostics is to detect the system state at present based on the evaluation method.

Prognostics is to get a predictive lifetime or RUL based on the monitoring data. Then,

through all of the information obtained from previous, health management is to give a

general maintenance plan. (Atamuradov et al., 2017)

Figure 3. 5 Prognostics and health management process

Remaining useful of lifetime

The remaining useful of lifetime (RUL) is the length from the current time to the end

of lifetime, which wildly applies in the PHM and maintenance schedule. RUL highly

depends on the current system statue, operation environment, and relevant health

condition (Si et al., 2011b). Usually, RUL follows some distribution, which is a time-

dependent variable with a mean value. We define RUL (tj) as a random variable of

CHAPTER 3: PREDICTIVE MAINTENANCE AND DIGITAL TWIN

 18

remaining useful of lifetime at time tj. The health indicator which denotes the health

statue of the assets on degradation level, we define as Y(t). During deterioration, the

system may still be functional, but may not perform well after a threshold. We define

SL as an unacceptable failure limit. The RUL (tj)) is defined with the following formula:

𝑅𝑈𝐿(𝑡𝑗) = inf൛ℎ: 𝑌(𝑡𝑗 + ℎ) ∈ 𝑆𝐿ห𝑌(𝑡𝑗 < 𝐿), 𝑌(𝑠)0≤𝑠≤𝑡𝑗ൟ (3.1)

The definition requires:

1. To have Y(tj) as health indicator at time tj;

2. To have SL as acceptance threshold;

3. Able to estimate Y(tj);

4. Able to predict Y(tj) at any time interval h.(Barros, 2019; Si et al., 2011b)

State identification

State identification is to detect and recognize the system state at present from condition

monitoring data. There are a variety of factors could influence the system performance

and cause degradation in operation. Even the newly assembled equipment has an early

failure period. An example is the ‘Bathtub curve’, shown in Figure 3. 6.

CHAPTER 3: PREDICTIVE MAINTENANCE AND DIGITAL TWIN

 19

Figure 3. 6 The ‘Bathtub curve’ of failure rate (Croarkin et al., 2006).

Hence, a consistent application is needed to evaluate the health state of how degraded

the system is. Figure 3. 7 illustrates the trend and states of a degradation level. In the

illustration, the system degraded states have two thresholds: one is alert, one is the

alarm, three phases: healthy, degraded, failure. Phase 1, the system is in the health

state, where the degradation level is from 𝐻𝐼0 to HI1 . In this phase, the system is

regarded in the health state. Phase 2, the system is slightly degraded, some of the

failures start to show up, but the majority of failure is still not revealed. In this phase,

the degradation level reaches the HI1 -alert level. Phase 3 the system is severely

degraded; the majority of failures are within this period. Moreover, it passed the alarm

threshold – HI2, which means the system is going to fail.

CHAPTER 3: PREDICTIVE MAINTENANCE AND DIGITAL TWIN

 20

Figure 3. 7 Trend and states of the degradation level

In this concept, we need to decide the HI threshold in terms of categorizing the system

degradation level. However, pre-set the threshold is a bit challenged, which needs a

complete understanding of system behavior and operational information. The historical

system data is essential here to address the system state, which provides a reference to

set up the threshold (ISO, 2019).

Diagnostics

Diagnostics is a part of state identification, but with more aspects. It mainly focuses on

faulty or failure with a high degraded level. Generally speaking, diagnostics performs

high detection of faulty state when the system still can operate, and with the lower false

alarm rate (Atamuradov et al., 2017). The main task of diagnostics is to 1.detect the

fault, which indicates the abnormal performance of the system; 2. isolate the fault,

which is to address the system component problem; 3. identify the fault, which is the

root cause of this failure (Janasak and Beshears, 2007). Diagnostics can be classified

into four categories:

1. General inspection;

The general inspection is primarily related to the sensory inspection and functional test,

which is conducted on accessible equipment by operators. Usually, the frequency is

CHAPTER 3: PREDICTIVE MAINTENANCE AND DIGITAL TWIN

 21

high, which might be hourly or daily. The general inspection can reveal 40% in the

early stage of faulty.

2. Detailed inspection and detection;

Detailed inspection and detection are conducted by the expertise or maintenance group.

During the operation, some of the tests cannot be carried out by operators, such as

voltage examination, equipment decomposition.

3. Offline equipment evaluation;

Offline equipment evaluation is based on specific physical properties (temperature,

vibration, sound, etc.) to determine the degradation of the system. To some extent,

offline equipment evaluation is conducted with a schedule. It can be regarded as

preventive maintenance, which does not reveal the failure or faulty directly.

4. Realtime data monitoring.

Realtime data monitoring is wildly applied nowadays, which provides the opportunity

for acquiring the functional feature online. From analyzing those features and dynamic

updating, it can indicate the system statue and degradation state.

(Frangopol, 2011)

Figure 3. 8 The information provided by diagnostics (Frangopol, 2011)

Diagnostics provides information about which components failed or degraded and what

reason cause this situation, which helps to predict the further potential degradation or

CHAPTER 3: PREDICTIVE MAINTENANCE AND DIGITAL TWIN

 22

failure. (Janasak and Beshears, 2007)

Prognostics

Prognostics focuses on the prediction of the system state, in which the system is no

longer functional, or it reaches the maintenance threshold. Typically, through

comparison between the operational condition with the health indicator, the deviation

shows the deterioration of the system with the time scale. Further, according to this

mechanism, prognostics could provide a time estimation of future performance (Pecht,

2009). Within the scope, it is crucial to collect system information for the faulty and

failure mode(including the abnormal signal, system behavior, and reason for the

phenomenon) (Atamuradov et al., 2017).

There are three approaches to realize prognostics: 1.data-driven prognostics; 2.model-

based prognostics(statistical approaches); 3.hybrid prognostics.(An et al., 2013)

Data-driven prognostics applies the historical data (training data) to determine the

current state of the system and predict the future trend. The principle is only focusing

on the data through the whole operation period and ignoring the system architecture

and physical meaning. This method applies to the complex system, or the dataset is not

suitable for model-based prognostics (Barros, 2019; An et al., 2013). Artificial

intelligence approaches and fuzzy logic are the typical methods of data-driven

prognostics. The prediction uncertainty is estimated by a validation data set (Barros,

2019).

Model-based prognostics usually combines physical models and degradation level to

estimate the RUL of the system. The model-based prognostics applies several physical

considerations and system monitoring variables into a mathematical model. However,

this process might reduce the accuracy of the degradation model, especially when the

system becomes complex. So, the model-based prognostics typically perform on

components level or damage propagation. (Mosallam et al., 2013; Barros, 2019).

Statistical approaches are the classical method of model-based prognostics, which can

estimate the RUL along with probability. Classical model-based prognostics methods

are trend models, time series, and stochastic processes. (Barros, 2019)

Hybrid prognostics takes the advantages of both data-driven and model-based. In the

practical, the data-driven method needs historical data (i.e., training dataset) to obtain

CHAPTER 3: PREDICTIVE MAINTENANCE AND DIGITAL TWIN

 23

the degradation trend and threshold. However, some of the system failures are not

frequent. It is hard to get several historical data. Hence, the hybrid prognostics method

combines statistical approaches with data-driven methods (Pecht and Jaai, 2010).

Health indicator (Health index)

The implement of prognostic needs evaluation scale that identifies the health condition

of the system operating condition. This evaluation scale is called a health indicator or

health index. There are two kinds of health indicators: Physics Health Indicator (PHI)

and Virtual health indicator (VHI). The PHI is related to the physical phenomenon,

such as the vibration of bearing (Mosallam et al., 2015), and the temperature of the

lithium-ion battery. This implement needs acquired signals related to system

degradation level, which depends on system complexity and difficulty of decomposing

the system while analyzing. Hence, the VHI is available for those failures which are

not directly to physical phenomenon. Multiple sensors information and data sources

can merge into one-dimension health indicators, such as linear weight (Bai et al., 2014).

3.2.3.4 Decision making

In practical, some maintenance schedule is not a short-time plan. Due to the availability

of resources and accessibility for physical assets, it is necessary to have a decision

model to help engineers make the maintenance schedule. According to the marketing,

environmental, and resource information, the decision digital twin could not only help

engineers balance the cost and plans, but also provide several decisions with a different

probability. Meanwhile, the decision is dynamic, which means as more real-time data

collected, the prediction would be more accurate, and the decision could be corrected

along with the time (Seyr and Muskulus, 2019). The decision-making methods are

various. In Liu et al. , the author states that the inventory of spare parts is one critical

influence factor in predictive maintenance arrangement (Liu et al., 2013; Liu et al.,

2018). Bousdekis et al. propose a decision model based on economic loss when the

system in different deterioration states (Bousdekis et al., 2018). In general, the decision

model should be established based on real need and loss when the system failed.

Chapter 4

Data analysis and processing methods

In this chapter, the data analysis and processing methods are presented. The purpose of

these methods is to analyze historical data to establish the offline reference model for

the digital twin.

4.1 Dimension reduction

Data collected from monitoring usually contains multi-dimensional time-series signals.

Thus, it is essential to compress the signals into one phase or select the most

representative ones. The principal component analysis (𝑃𝐶𝐴) can help to reduce the

dimension (Mosallam et al., 2016). The mechanism of 𝑃𝐶𝐴 relies on the linear algebra

of several dimensions, which could transfer the data to a new coordinate system. The

purpose of PCA is to find the most significant variance in the new coordinate system.

The first principle is to choose the direction with the most significant variance in the

original data. The second principle is to choose the orthogonal axis with the first

principle component, along with the most significant variance in this coordinate system,

and so on. The axis with the most significant variances is the principal component, as

Figure 4. 1 shows.

CHAPTER 4: DATA ANALYSIS AND PROCESSING METHODS

 25

Figure 4. 1 The illustration of PCA

Assume, the data set is X = ሼ𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛ሽ , based on the eigenvalue decomposition

covariance matrix or singular value decomposition (𝑆𝑉𝐷):

1. Normalization or de-average;

2. Calculate the covariance matrix
1

𝑛
𝑋𝑋𝑇;

3. Find the eigenvalue and eigenvector of the covariance matrix by using

eigenvalue decomposition or 𝑆𝑉𝐷;

4. Sort the values from largest to smallest, and form a new matrix 𝑃

5. Convert the data in a new matrix from 𝑃 and 𝑋, which is 𝑌 = 𝑃𝑋

(Shlens, 2014)

After the dimension reduction, the multi-dimensional signal data could be merged into

several principal components. The first principal component contains the most

significant variance, which could represent the main feature of the dataset.

4.2 Time series decomposition

4.2.1 Time series patterns

The real-time data usually includes some signal errors and fluctuate. The disturbance

CHAPTER 4: DATA ANALYSIS AND PROCESSING METHODS

 26

of the external environment and human interrupt usually makes sensor signal quality

not that feasible to analyze directly. Generally, the real-time monitoring data is a time

series, including a specified time step and corresponding values. There are three typical

patterns in time series: Trend, Seasonal, and Cyclic. The trend is capable of a long-term

increase or decrease in the data series. The trend does not need to be linear or specified

functions. The seasonal pattern is that the time series follows a fixed frequency, such

as daily, monthly, and yearly. It typically shows periodically trend. Cyclic applies when

the data trend variating not follows a specified frequency, which seems more random.

4.2.2 Time series components

Real-time data could be a combination of those patterns. When it comes to the analysis,

time series decomposition could split a real-time series into trend-cycle (trend),

seasonal, and residuals, these three components. Let’s 𝑆𝑡 denote seasonal component,

Tt is trend-cycle components, and Rt is the residual components, 𝑦𝑡 is the value of the

signal, at time t. The additive decomposition 4.1 and multiplicative decomposition 4.2

can be formulated as:

𝑦𝑡 = 𝑆𝑡 + 𝑇𝑡 + 𝑅𝑡 (4.1)

𝑦𝑡 = 𝑆𝑡 × 𝑇𝑡 × 𝑅𝑡 (4.2)

The additive is applicable when the magnitude of the variation does not fluctuate around

the trend-cycle. Otherwise, it is better to use multiplicative decomposition.

(Hyndman and Athanasopoulos, 2018)

4.3 Pattern recognition approaches

Pattern recognition is a recognizing process that matches the information from input

data to stored historical data. This method is widely applied in machine learning

because of high efficiency (Barros, 2019; Pecht, 2010). Pattern recognition can be done

direct computation through machines, such as k-Nearest-Neighbor (k-NN), and

Decision tree, or on bionics-related, such as the Artificial Neural Network (ANN)

(Venkatesan et al., 2019; Jesan, 2004). In this part, the neural network and k-NN are

introduced.

CHAPTER 4: DATA ANALYSIS AND PROCESSING METHODS

 27

4.3.1 K Nearest Neighbors

K Nearest Neighbors (k-NN) is a similarity approach according to entire training data

and classification. Not like other methods, k-NN does not spend lots of time on training.

The k-NN is a non-parametric method, which means the prediction only depends on the

training data without learning any specific functions (Singh, 2018). Figure 4. 2 shows

an example of 𝑘 − 𝑁𝑁 Regression

Figure 4. 2 k-NN regression example

4.3.1.1 k-NN prediction

The k-NN prediction is by searching for the k most similar neighbors, i.e., instances.

For the distance measuring, three methods are wildly used, Euclidean, Manhattan,

Minkowski. The mathematical approaches and formulas of distance functions are

showing in the following (Singh, 2018).

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑎, 𝑏) = ඩ(𝑎𝑖 − 𝑏𝑖)2

𝑛

𝑖=1

(4.3)

CHAPTER 4: DATA ANALYSIS AND PROCESSING METHODS

 28

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛(𝑎, 𝑏) = ඩȁ𝑎𝑖 − 𝑏𝑖ȁ2

𝑛

𝑖=1

(4.4)

𝑀𝑘𝑜𝑤𝑠𝑘𝑖(𝑎, 𝑏) = ඩ൭(ȁ𝑎𝑖 − 𝑏𝑖ȁ)𝑞

𝑘

𝑖=1

൱
𝑞

(4.5)

These three methods are only valid for the continuous model. If there is NaN or null

value in the model, it should be changed into a specific value.

4.3.2 Neural Network (ANN)

The artificial neural network is an information recognition and classification system,

which the network through studying through input data to learn the mechanism and

generate desired outputs. The linkage between input and output depends on how neural

network architecture is built and what kind of activation function is chosen

(Atamuradov et al., 2017; Venkatesan et al., 2019; Jesan, 2004). The neural network

now has developed broad branches with multiple domains, such as the convolutional

neural network (CNN), Long short-term memory (LSTM) (Kim et al., 2016; Pecht,

2009; Atamuradov et al., 2017).

4.3.2.1 Neural Network introduction

The primary component in the neural network is called nodes. Each node could be

formulated into different functions. The nodes with the same function can be grouped,

called layers. Typically, the layers can be categorized into three different types, which

are the input layer, hidden layer, and output layer. In the NN, the input layer first

collects the data from outside, then passes the data to the hidden layer(s). In the end,

the data past from the hidden layer(s) to the output layer and output the data (Kim et

al., 2016; Fortuner, 2019).

Figure 4. 3 shows a typical NN model with three layers. In this NN model, 𝑥𝑛 , ℎ𝑛 and

z represents the nodes respectively in the Input layer, Hidden layer, and Output layer.

CHAPTER 4: DATA ANALYSIS AND PROCESSING METHODS

 29

Between each layer, 𝑊𝑥𝑛𝑛 and 𝑊ℎ𝑛 represents weights, 𝐵𝑥𝑛𝑛 and 𝐵𝑧𝑛 represents the

biases.

Figure 4. 3 Feedforward neural network framework

4.3.2.2 Neural Network mechanism

The primary process of NN is to estimate the value of 𝑊𝑠 and 𝐵𝑠 . From layer to layer,

there are activation functions to determine the relations between input and output

variables. In this case, the weights and biases from the input layer become the input of

the activation function. The output of the activation function is distributed to hidden

nodes in the hidden layer. Similarly, the hidden weights from the output of hidden nodes

become the input of another activation function. After the activation function, the

outputs are the final outputs in the output layer.

Typically, the weights and biases of the input nodes are formulated by a linear

CHAPTER 4: DATA ANALYSIS AND PROCESSING METHODS

 30

combination, which is the input of the activation function in the next layer. The

mathematical formula could be described as:

𝐻 = 𝑑ℎ(𝑊𝑥𝑛𝑛 ∙ 𝑋 + 𝐵ℎ𝑛𝑛) (4.6)

𝑍 = 𝑑𝑧(𝑊ℎ𝑛 ∙ 𝐻 + 𝐵𝑧𝑛) (4.7)

Where: 𝑋 is a matrix of training dataset with 𝑖 × 𝑗 data point, 𝑊𝑥𝑛𝑛 is the input weights

for the activation function with 𝑖 × 𝑘 datapoints, 𝐵ℎ𝑛𝑛 is the hidden bias with 1 × 𝑘

vector, 𝐻 is hidden nodes with a 𝑘 × 𝑗 matrix, 𝑑ℎ is the activation function between

each layer, 𝑊ℎ𝑛 is the hidden weight with 1 × 𝑘 vector, 𝐵𝑧𝑛 is 1 × 𝑗 bias vector, and

𝑍 is the final output with 𝑗 elements.

4.3.2.3 Activation function

The purpose of the activation function is to convert the input to the node and classify

which node it should be located. After training, each node has a weight and bias. When

the new feature comes to input, the activation function could decide which node should

be activated or not. With the activation function, in principle, the neural network could

learn and compute any function.

(SHARMA, 2017 ; Missinglink.ai, 2020)

Typical activation Functions(commonly):

Binary step function

The binary step function is a classification function by evaluating the input with a

specific threshold. The threshold could be modified and divided into several levels.

𝑓(𝑥) = ቄ
0
1

𝑖𝑓 𝑥 < 0
𝑖𝑓 𝑥 ≥ 0

(4.8)

CHAPTER 4: DATA ANALYSIS AND PROCESSING METHODS

 31

Figure 4. 4 Illustration of Binary step function

Sigmoid Activation Function

The sigmoid activation function is an ‘S’ shape curve with the limitation from 0 to 1.

Thus, this function is used widely for prediction of probability. The shortcoming of this

function is that the neural network will collapse if the input is a strong negative value.

𝑠(𝑧) =
1

1 + 𝑒−𝑧
(4.9)

Figure 4. 5 Illustration of the Sigmoid Activation Function

Hyperbolic Tangent Function — (tanh)

Tanh is a non-linear function with real-valued range form (-1,1). Compared with

Sigmoid function, Tanh can be used with strong negative input, and near-zero input

CHAPTER 4: DATA ANALYSIS AND PROCESSING METHODS

 32

could compute near-zero output. It is more preferred than the sigmoid function.

𝑡𝑎𝑛ℎ(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
(4.10)

Figure 4. 6 Illustration of the Hyperbolic Tangent Function

Rectified Linear Units — (ReLu)

ReLu is a function with a range from [0, +∞), which is the most used function in the

hidden layers. ReLu corrects the vanish of the gradient problem, but it could blow up

the activation. Moreover, because of the lower limit, the gradients might die during the

training. Leaky ReLu was introduced. The parameter ‘a’ usually is around 0.01.

𝑓(𝑥) = ൜
0 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟𝑥 > 0

(4.11)

𝑓(𝑥) = ൜
𝑎𝑥 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟𝑥 > 0

(4.12)

CHAPTER 4: DATA ANALYSIS AND PROCESSING METHODS

 33

a. without ‘a’ factor (formula 4.11) b. with ‘a’ factor (formula 4.22)

Figure 4. 7 Illustration of the Rectified Linear Units

4.3.2.4 The learning process and cost function

When the framework and activation function are selected, the next step is to train the

neural network. During the training process, it is necessary to know when the training

is complete and how successful it is. Thus, the cost function is established, which is

based on the error value of estimation, such as mean squared error (MSE). The training

process is to get the cost function as low as possible and update the weight, which also

is called back-propagation.

(Chauhan, 2019)

𝑀𝑆𝐸 =
1

𝑗
ൣ𝑦𝑗 − 𝑧𝑗(𝑊𝑥, 𝐵ℎ, 𝑊ℎ, 𝐵𝑧)൧

2

𝑗

𝑗=1

(4.13)

The optimizers are used to speed up the reduction of losses process and find the optimal

training the model with different weights and biases. Among all of the optimizers,

Adam spends less time and more efficiently, which provides an adjusted learning rate

for each parameter. The mathematical principle works as follows:

𝑣𝑑𝑊 = 𝛽1𝜈𝑑𝑤 + (1 − 𝛽1)
𝜕𝐽

𝜕𝑤
(4.14)

CHAPTER 4: DATA ANALYSIS AND PROCESSING METHODS

 34

𝑆𝑑𝑊 = 𝛽2𝑠𝑑𝑊 + (1 − 𝛽2) ൬
𝜕𝐽

𝜕𝑤
൰

2

(4.15)

𝑣𝑑𝑊
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =

𝑣𝑑𝑤

1 − (𝛽1)𝑡
(4.16)

𝑠𝑑𝑊
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =

𝑠𝑑𝑤

1 − (𝛽1)𝑡
(4.17)

𝑊 = 𝑊 − 𝑎
𝑣𝑑𝑊

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

ට𝑠𝑑𝑊
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 + 𝜀

(4.18)

The 𝑣𝑑𝑊 is the past gradients with an exponentially weighted average, while 𝑆𝑑𝑊 is

corresponding to the square of the past gradients. 𝑣𝑑𝑊
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 and 𝑠𝑑𝑊

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 are the error

correction of the bias. 𝑊 is the weight matrix, and undated from average calculations.

(Doshi, Jan 13, 2019)

4.3.3 Stochastic process (model-based)

The stochastic process is prevalent to model the deterioration of components, where the

system deterioration is non-monotonic and with some randomness (Zhang et al., 2018;

Le Son et al., 2013). The stochastic process can link to probability theory, which

combines statistical-based data-driven with uncertainty and health indicator (Zhang et

al., 2018; Si et al., 2011a).

4.3.3.1 Brownian motion and Geometric Brownian motion

The Brownian motion is also called the Wiener process. It is a continuous-time

stochastic process with a stationary trend and independent increment (Le Son et al.,

2013; Si et al., 2011a). The equation of one-dimension Brownian motion is defined as

the following:

𝑌(𝑡) = 𝑢𝑡 + 𝜎𝑊(𝑡) (4.19)

Where, 𝑊(0) = 0, 𝑊(𝑠) − 𝑊(𝑡) ~𝑁(0, 𝑠 − 𝑡), (𝑓𝑜𝑟 0 < 𝑠 < 𝑡). This is a Wiener

process undulating around zero, where the drift is:

CHAPTER 4: DATA ANALYSIS AND PROCESSING METHODS

 35

𝑌(𝑡) − 𝑌(𝑠)~𝑁 ቀ𝑢(𝑠 − 𝑡),𝜎
2(𝑡 − 𝑠)ቁ (4.20)

Geometric Brownian motion (𝐺𝐵𝑀) is also called exponential Brownian motion. The

increment of 𝐺𝐵𝑀 is related to the current value. The stochastic differential equation

(𝑆𝐷𝐸) is:

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 (4.21)

Where the 𝑊𝑡 is a Wiener process, 𝑑𝑆𝑡 is the increment of a short-time-interval 𝑑𝑡, μ

is the percentage drift, and σ is the percentage volatility.

In order to find the probability when the stochastic process passes the threshold of a

prognostic process, it is necessary to calculate the probability density function of the

deterioration. Thus, we define the following equation:

𝑌(𝑡 + 𝑑𝑡) = 𝑌(𝑡) + 𝑆𝑦,𝑡,𝑑𝑡 (4.22)

Where 𝑌(𝑡 + 𝑑𝑡) is the deterioration from 𝑌(𝑡) after time 𝑑𝑡 , 𝑆𝑦,𝑡,𝑑𝑡 is the random

quantity in 𝑑𝑡 . Let 𝑔(𝑠) be the 𝑃𝐷𝐹 of 𝑆𝑦,𝑡,𝑑𝑡 , 𝑓(𝑦) be the 𝑃𝐷𝐹 of 𝑌(𝑡) . After

considering the threshold of deterioration 𝐿, we can get:

𝑓(𝑡ȁ𝑑 + 𝑑𝑡) = න 𝑓(𝑦 − 𝑠ȁ𝑡)⬚𝑔(𝑠) 𝑑𝑠
∞

𝑦−𝐿

(4.23)

The failure probability density function:

𝐹𝑇(𝑡) = 𝑃𝑟(𝑇 ≦ 𝑡) = 1 − න 𝑓(𝑦ȁ𝑡)𝑑𝑦
𝐿

−∞

(4.24)

Chapter 5

Digital twin framework and architecture

In this chapter, a digital twin framework for predictive maintenance is presented. There

are three parts in the digital twin, which are a communication protocol, PHM, including

data-driven and prediction method, and strategic and decision making.

The digital system (digital twin) mainly divided into three parts:

• Communication protocols (models)

• Machine diagnostics and prognostics models

• Decision models

Communication protocols (models) perform communication between cloud storage or

local storage and different machines. The communication includes data flow (inlet and

outlet), data file transfer, and terminal control.

Machine diagnostics and prognostics models execute system diagnostics and

prognostics algorithms and prediction of RUL. These processes are based on the

historical data from the cloud storage or local storage and real-time data from machines.

The predictions could pass to the decision models to execute further functions.

After the predicted RUL and some environmental information passed to decision

models, the decision models could provide the cost of maintenance behavior and update

in real-time joint with a schedule.

5.1 Communication protocol

The communication protocol is based on the Transmission control protocol (TCP)

(Foundation, 2020). In this thesis, Sockets programming is used to present the

connection and communication between the physical part and the digital part. The

CHAPTER 5: DIGITAL TWIN FRMAEWORK AND ARCHITECTURE

 37

sockets are a client and server interaction, which typically has clients and servers on

both sides. In sockets, the Client’s machine could connect with the servers via IP

address. The workflow of Sockets shows in the following:

Figure 5. 1 The Socket communication workflow

The primary steps of setting up the Socket is:

1. The socket protocol firstly is set up in the server and client machine, which are

connected by WLAN or LAN with descriptor;

2. The descriptor could provide a label to each Client with a bind () name to get

access from the network;

3. While the server set up, the listen () 𝐴𝑃𝐼 will indicate the request-listen (), from

the Client. Then after approved- accept () by Sever, the connection is set up.

4. When the connection is established, the clients and server could transfer stream

data by data transfer APIs, such as to send () and receive ().

5. When the stream finishes, the API close could stop the service for both sides.

5.2 PHM frame and method

The online and offline framework, according to Mosallam et al. (Mosallam et al., 2016;

CHAPTER 5: DIGITAL TWIN FRMAEWORK AND ARCHITECTURE

 38

Mosallam et al., 2015), contains three different methods, which are 1)similarity-based

prognostics based on the a. 𝑘 − 𝑁𝑁 approach5 , 2) Data-driven prognostics, which are

b. Deep-learning based on Artificial neural network (𝐴𝑁𝑁) (Raman and Hassanaly,

2019; Venkatesan et al., 2019), and c. Stochastic process (Atamuradov et al., 2017; Le

Son et al., 2013; Zhang et al., 2018).

5.2.1 Offline reference model

The offline reference model is aimed to extract the trend and health indicator for the

prognostics, which is emphasized in Chapter 3&4. The health indicator should be

extracted from training data that has already stored in the cloud or local mirror (Pecht

and Jaai, 2010). The historical data includes time-to-failure trajectories and multiple

sensors or labeled data (Kim et al., 2016). The primary step of construct the offline

reference follows the step below:

1. Data pre-processing: including data cleaning, check out missing value, find the

features of the differently labeled data. The purpose of data pre-processing is to

get a general impression of the whole dataset, minimize the prediction error

caused by raw data.

2. Feature selection: Typically, for monitoring, not all of the data are informative

from monitoring. Thus, it is essential to reduce the dimension of the dataset and

compress the variables. Principal component analysis (𝑃𝐶𝐴) introduced in

Chapter 4, could merge the relevant data and get the merged or selected data set

from the raw dataset (Mosallam et al., 2016; Mosallam et al., 2015).

3. Trend extraction and noise elimination: The signal data generally is combined

with noise, so it is essential to extract the primary trend of a time trajectory. In

Chapter 4, the time-series component decomposition is introduced to extract the

trend, which is presented in Hyndman and Athanaspopoulos’s book (Hyndman

and Athanasopoulos, 2018).

4. Health indicator construction: After analysis of the primary trend, the health

5 The main process of k-NN model presented in this thesis follows main process of a case study in

MATLAB. Further, the author of this thesis did some modifications according to the system.

https://se.mathworks.com/help/predmaint/ug/similarity-based-remaining-useful-life-

estimation.html#SimilarityBasedRULExample-10

https://se.mathworks.com/help/predmaint/ug/similarity-based-remaining-useful-life-estimation.html#SimilarityBasedRULExample-10
https://se.mathworks.com/help/predmaint/ug/similarity-based-remaining-useful-life-estimation.html#SimilarityBasedRULExample-10

CHAPTER 5: DIGITAL TWIN FRMAEWORK AND ARCHITECTURE

 39

indicator could be selected as an evaluation standard. When real-time data

collected from monitoring, there is a standard to classify the state of the system.

Noted that the ANN does not follow these steps, the primary process to establish the

𝐴𝑁𝑁 will be discussed in the following chapters.

Figure 5. 2 Overall scheme of offline reference model flow chart

5.2.2 Online prognostics model

In the online phase, new data is collected by sensors through the communication

protocol, transferring to the data pre-process model. The data pre-process mode is to

extract the same feature data as the reference model. Then according to the current data

point, the prognostics processes are to perform RUL prediction. The prognostics can

acquire through the model-based or data-driven method, which is introduced in Chapter

4. Then the estimated RUL will transfer through the decision-making model in real-

time to help make maintenance decisions.

CHAPTER 5: DIGITAL TWIN FRMAEWORK AND ARCHITECTURE

 40

Figure 5. 3 PHM flow chart and process illustration

5.3 Decision making

The decision making is based on a simplified block replacement modeling (Formula

5.1) and static group maintenance (Formula 5.2). The basic idea is to calculate the cost

per unit of time in order to find the best time slot for maintenance.

𝐶𝐵(𝑡0) =
𝑐 + 𝑘𝑊(𝑡0)

𝑡0

(5.1)

Where: 𝑐 is the preventive maintenance cost, 𝑘 is the unplanned cost of system failure,

𝑊() is the mean number of failures in the interval.

𝐶(𝑇1, 𝑇2, 𝑇3, 𝑇4 … , 𝑇𝑚) =
𝑆

𝑇𝑗

𝑚

𝑗=1

+ ቈ
𝐶𝑖

𝑝

𝑇𝑗
+ 𝐶𝑖

𝑢𝜆𝐸,𝑖(𝑇𝑖)

𝑗∈𝐺𝑗

(5.2)

Where, 𝐶(𝑇1, 𝑇2, 𝑇3, 𝑇4 … , 𝑇𝑚) is the cost at the time 𝑇𝑚, 𝑆 is the set-up cost, 𝐺𝑗 is a

maintenance candidate group, 𝐶𝑖
𝑝
is the planned maintenance cost, 𝐶𝑖

𝑢 is the unplanned

maintenance cost, 𝜆𝐸,𝑖 is an effective failure rate for component.

Chapter 6

Digital twin offline model

In this chapter, we are going to analyze the data from our system and establish the

offline reference model. This process is the fundamental process in the digital twin

establishment.

6.1 Data pre-processing and offline reference

model

The following Chapter presents the establishment of a reference model for a digital

twin, which provides an offline model to perform prognostics. The main idea of this

offline reference model is based on a ‘Similarity-Based Remaining Useful Life

Estimation’ published on MATLAB 6 (Wang et al., 2008), a deep learning neural

network, and the stochastic process, respectively. Besides, the open-source libraries and

packages are presented to build this offline reference model.

6.2 Data pre-processing

Data pre-processing is aimed at process raw data and prepare the data for the next stage.

It is not extracting features or data fusion. The data pre-processing could increase data

quality and provide a better solution when it comes to analysis. (Mosallam et al., 2015;

Mosallam et al., 2016).

6. The main process of k-NN model presented in this thesis follows main process of a case study in

MATLAB. https://se.mathworks.com/help/predmaint/ug/similarity-based-remaining-useful-life-

estimation.html#SimilarityBasedRULExample-10

https://se.mathworks.com/help/predmaint/ug/similarity-based-remaining-useful-life-estimation.html#SimilarityBasedRULExample-10
https://se.mathworks.com/help/predmaint/ug/similarity-based-remaining-useful-life-estimation.html#SimilarityBasedRULExample-10

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 42

6.2.1 Historical data description

As presented in Chapter 2, the historical datasets are uploaded to the cloud through the

communication system. The machine starts operating from a healthy state and degraded

during the operation. When the system runs to failure, the monitoring stops. There are

100 machines in the historical dataset, and each machine is independent identical

operating during operation. The dataset includes 21 different monitoring signal data

and three operational settings. Each row is taken by a time unit-cycle, which is regarded

as the time scale. The columns correspond to 1. Machine serial number; 2. Time/Cycle;

3-5. Operational setting; 6-26. Sensor measurement.

Table 6.1 The detailed information of the dataset

Symbol Description Unit of measure Label

T2 Total temperature at fan inlet °R sen1

T24 Total temperature at LPC outlet °R sen2

T30 Total temperature at HPC outlet °R sen3

T50 Total temperature at LPT outlet °R sen4

P2 Pressure at fan inlet psia sen5

P15 Total pressure in bypass-duct psia sen6

P30 Total pressure at HPC outlet psia sen7

Nf Physical fan speed rpm sen8

Nc Physical core speed rpm sen9

epr Engine pressure ratio (P50/P2) -- sen10

Ps30 Static pressure at HPC outlet psia sen11

phi Ratio of fuel flow to Ps30 pps/psi sen12

NRf Corrected fan speed rpm sen13

NRc Corrected core speed rpm sen14

BPR Bypass Ratio -- sen15

farB Burner fuel-air ratio -- sen16

htBleed Bleed Enthalp -- sen17

Nf_dmd Demanded fan speed rpm sen18

PCNfR_dmd Demanded corrected fan speed rpm sen19

W31 HPT coolant bleed lbm/s sen20

W32 LPT coolant bleed lbm/s sen21

(Saxena et al., 2008)

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 43

6.2.2 Software and libraries for data pre-processing

The digital twin proposed is programmed in Python version 3.8. The algorithm will be

present in Appendix C. Besides, there are extra libraries used to process the data;

• Os: Os function is to get access to the operating system dependent functionality.

Usually, Os is related to file editing and transferring. In the digital twin model,

Os performs read and updating files.

• Pandas: Pandas is mainly to structure data efficiently and intuitively. The data

frame in Pandas contains two-dimensional and corresponding labels. For the

Pandas data frame, the processing speed is faster than standard EXCEL and

SQL in many cases.

• Seaborn: Seaborn is a Python visualization library based on matplotlib, which

provides an API to apply for a statistical plot and integrated with Pandas data

frame functionality.

6.2.3 Raw data pre-processing

A ‘.txt’ format document collects the raw datasets. Based on the raw data structure and

properties, the following steps need to be done for raw data pre-processing:

1. Build data labels: In the raw datasets, there is no index for each column and

rows. In order to make data tight and easy to process in the following steps, it

is necessary to add labels to the dataset;

2. Diagnose data for cleaning: In the monitoring, there could be some data missing

and inconsistency. The missing value should be either replaced or removed.

3. Data information: After diagnosis, it is essential to get a general impression if

how much data in the dataset, the data type, and anything wrong with the data

frame established.

4. Data category: There are 100 machines data in the dataset, and each machine

has the same label in columns. Thus, the data should be categorized by machine

labels and time step.

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 44

Figure 6.1 Illustration of the raw dataset

The raw data shows in Figure 6.1. The label of corresponding data is added to the data

frame. The data set is categorized by machine number and time series. The following

figures show the total data frame of historical data and the data frame of the first

machine.

Figure 6.2 Illustration of labeled data

Missing data will influence the data processing procedure. Figure 6.3 is the information

of all data to count the missing value and invalid value. Besides, the memory usage of

this data set is provided, which could help the company to decide the storage method.

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 45

Figure 6.3 The information and features of all data

In this data set, there is no missing data or invalid data. Thus, the raw data set is prepared

to continue further analysis.

6.2.4 Offline reference model establishing

6.2.4.1 Data fusion and extraction

In the monitoring, not all signals are capable of building a health indicator. The primary

purpose is to select non-random relationships through all signals and get a 𝑉𝐻𝐼 for the

prognostics. To select such an indicator, the following steps and Python libraries are

implemented:

Data fusion steps:

1. Variable selection: The variable selection is to filter the signals which do not

relate to the degradation or has negligible influence. The most common method

is to find Pearson’s correlation coefficient-𝑟𝑥𝑦 for all of the signals data.

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 46

𝑟𝑥𝑦 =
𝛴𝑖=1

𝑛 (𝑥𝑖 − 𝑥ҧ)(𝑦𝑖 − 𝑦ത)

ඥσ (𝑥𝑖 − 𝑥ҧ)2𝑛
𝑖ሶ=1 ඥσ (𝑦𝑖 − 𝑦ത)2𝑛

𝑖ሶ=1

(6.1)

Where: 𝑥𝑖 and 𝑦𝑖 defines as two continues variables, i.e., signal data, 𝑥ҧ and 𝑦ത

are the mean values of these variables. there is a strong relationship between 𝑥𝑖

and 𝑦𝑖 If 𝑟𝑥𝑦 is close to 1, vice versa. However, Pearson’s correlation coefficient

measures the linear correlation between two variables, which may not be

efficient for the non-linear case. Hence, the statistic visualization should be

performed as well, such as distribution, descriptive statistics.

2. Dimension reduction: In Chapter 4, the 𝑃𝐶𝐴 method is introduced to implement

in dimension reduction. The 𝑃𝐶𝐴 could provide a compact data set for health

indicator extract. (Mosallam et al., 2015; Mosallam et al., 2016)

3. Trend extraction: For a monitoring signal, due to the environmental

disturbances and human activities, the signal might be variating and not efficient

for health indictor formulating. In Chapter 4, the time series decomposition is

introduced to reduce the noise error to obtain a clear and reasonable trend for

health indicator establishment. (Mosallam et al., 2015; Hyndman and

Athanasopoulos, 2018)

Python libraries:

1. Scikit-learn: Scikit-learn is an efficient package for data mining and data

analysis. The priory functions in Scikit-learn are classification, regression,

clustering, dimensionality reduction model selection, and pre-processing.

Besides, Scikit-learn supports NumPy and SciPy, which means it has more

compatibility and performs faster7.

2. Statsmodels: Statsmodels provides different functions for statistical model

estimation and data exploration. The priory functions used in this thesis are

Time series analysis and PCA. Statsmodels are based on NumPy, SciPy, and

Matplotlib, which are advanced for statistical testing, modeling, and

visualization.

The correlation heat map uses colored blocks to reveal the correlation coefficient, which

7 The methods and data processing precdure are following the packages in the websites below:

https://www.dataquest.io/blog/sci-kit-learn-tutorial/ ; https://scikit-learn.org/stable/

https://www.dataquest.io/blog/sci-kit-learn-tutorial/
https://scikit-learn.org/stable/

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 47

has the advantages of illustration intuition of the correlation coefficient. The correlation

coefficient can help to find if there is a possibility to reduce the dimension of the

historical data frame. Figure 6.4 and Figure 6.5, respectively show a correlation heat

map of all monitoring data and one machine monitoring data.

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 48

Figure 6.4 Correlation map all monitoring data for all machines

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 49

Figure 6.5 Correlation map all monitoring data for machine 1

In the figure, the color becomes darker, the higher relationship between the horizon-

axis variable and the vertical-axis variable. There are some missing values on Operation

condition 3, Sensor 18, and Sensor 19. The reason might be that the value of these three

does not change over time. Both from a single machine and all machine, it shows that

some of the variables are highly correlated, which means those could be deleted or

fused. The highly correlated pairs are shown in Table 6. 2. Assuming when the

correlation is higher than 0.9, we regard it as highly correlated.

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 50

Table 6. 2 High correlation coefficient values in the correlation map

Sensor labels Correlation coefficient

Sensor 1 and Sensor 5 1.0

Sensor 1 and Sensor 10 1.0

Sensor 1 and Sensor 16 1.0

Sensor 5 and Sensor 10 1.0

Sensor 5 and Sensor 16 1.0

Sensor 9 and Sensor 14 0.96

Sensor 10 and Sensor 16 1.0

In Figure 6.6, the descriptive statistics show the information about 24 signal data. Some

of the mean value and standard deviation (𝑠𝑡𝑑) are rather small, which means the data

of this signal is negligible.

Figure 6.6 Statistic counting for all monitoring data

To get a straightforward impression of the mean value and std in various signal data,

we illustrate the mean and std values for each signal in Figure 6.7, a. and b.

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 51

a. Mean values of signals b. std values of signals

Figure 6.7 Mean values and standard deviation for each monitoring data

The illustrations indicate the variation and possible range of each signal. Some of the

signals are not variating through the changing of time.

Table 6. 3 The values of Standard deviation and Mean

 Standard deviation value Mean value

Operation condition 1 2.187313e-03 -0.000009

Operation condition 2 2.930621e-04 0.000002

Operation condition 3* 0.000000e+00 100.000000

Sensor 1* 6.537152e-11 518.670000

Sensor 2 5.000533e-01 642.680934

Sensor 3 6.131150e+00 1590.523119

Sensor 4 9.000605e+00 1408.933782

Sensor 5* 3.394700e-12 14.620000

Sensor 6 1.388985e-03 21.609803

Sensor 7 8.850923e-01 553.367711

Sensor 8 7.098548e-02 2388.096652

Sensor 9 2.208288e+01 9065.242941

Sensor 10* 4.660829e-13 1.300000

Sensor 11 2.670874e-01 47.541168

Sensor 12 7.375534e-01 521.413470

Sensor 13 7.191892e-02 2388.096152

Sensor 14 1.907618e+01 8143.752722

Sensor 15 3.750504e-02 8.442146

Sensor 16* 1.556432e-14 0.030000

Sensor 17 1.548763e+00 393.210654

Sensor 18* 0.000000e+00 2388.000000

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 52

Sensor 19* 0.000000e+00 100.000000

Sensor 20 1.807464e-01 38.816271

Sensor 21 1.082509e-01 23.289705

We assume that if the standard deviation is below 10e-10, the sensor data could be

regarded as a constant along with tie variation. In Table 6. 3, the sensor label with ‘*’

could be regarded as a constant value, not change with time.

Thus, it is possible to filter out the none time-varying data to optimize the speed of

processing. However, removing data from the historical data frame is risky, since the

training and prognostics are all based on this data frame. In order to get a

straightforward impression in which data could be deleted from the data frame, the

following picture shows the distribution of sensor data.

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 53

Figure 6. 8 Distributions of each monitoring signal

From this illustration, it is evident that some of the sensor data do not change along

with time. According to correlation, descriptive statistics, and distribution of sensors

for all of the machines in Table 6. 4, the following sensors data could be considered as

no effect on the model building, and these data could be removed from the data frame.

Table 6. 4 Correlation, descriptive statistics, and distribution of sensors for all machines

 Correlation Descriptive statistics Distribution

Data label

Sensor

(1,5,10,16,18,19)

Operation condition 3

Sensor

(1,5,10,16,18,19)

Operation condition 3

Sensor

(1,5,6,10,16,18,19)

Operation condition 3

Data

removal

Sensor (1,5,10,16,18,19); Operation condition 3

The Sensor 1,5,10,16,18,19 and Operation condition three are removed from the

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 54

original data frame since they do not change or has a negligible effect on the following

analysis. The sensor 9 and 14 are highly related, which could be merged into one

dimension in the following process. Figure 6.9 illustrates sensor data with the lifetime

for all of the machines after removing data. Some of the data shows a trend related to

lifetime, which could be used in the health indicator construction. While some variating

depends on different machines, such as sensor 9 and sensor 14, which could be removed

from the data frame.

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 55

Figure 6.9 Remaining sensor data with the lifetime for all of the machines

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 56

6.2.4.2 Health indicator building

Trend extracting

From the illustration in Figure 6. 10, operational condition 1 and 2 do not have a clear

trend, and it shows a noise throughout the time scale. Sensor 9 and 14 also show trends.

However, the trends depend on the machine, not on the deterioration level. In the

following processes, theses four signals could be discarded. Sensor 6 shows a discrete

state, and some of the machines do have the signal for sensor 6. Hence it can be

abandoned in the following analysis.

Figure 6. 10 Illustration of the sensor data will be removed

The linear slope could be an evaluation scale to acquire the most apparent trend

throughout all the signals. Figure 6. 11 shows machine 20 with the fitted linear trend.

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 57

Table 6. 5 shows the signal trends of all sensors and machines. From the illustration

and table, all of the signals show an apparent trend, while different sensors might have

a different trend.

Figure 6. 11 Illustration of fitted Linear trend

Table 6. 5 Linear trend for sensors

 sensor_2 sensor_3 sensor_4 ... sensor_17 sensor_20 sensor_21

1 0.012146 0.009863 0.014113 ... 0.011758 -0.012135 -0.013337

2 0.010617 0.009526 0.010825 ... 0.009322 -0.010204 -0.009955

3 0.012130 0.014022 0.014576 ... 0.013707 -0.012684 -0.013178

...

98 0.017200 0.016361 0.019765 ... 0.015148 -0.016696 -0.017117

99 0.013823 0.011721 0.014742 ... 0.012696 -0.012731 -0.013448

100 0.011005 0.010159 0.012809 ... 0.010688 -0.013099 -0.011720

Throughout all of the linear trends, Figure 6.12 shows a primary trend. From the

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 58

illustration, the majority trends concentrate in one range, which indicates that all of the

sensor trends could be merged into one dimension. In the following process, the PCA

is to extract this feature.

Figure 6.12 Illustration of linear trends

Dimension reduction

In (Mosallam et al., 2015), Mosallam et al. propose the principal component analysis

method for variable compression. The raw data containing multiple sensors could be

regarded as muti-dimensional data. The purpose of implementing PCA is to merge the

multi-dimensional data into one-dimensional data space. The first principle component

could represent the rest of the sensors, which contains the maximum of the variance

(Wold et al., 1987).

The PCA calculation is through the Python package of Sklearn.decomposition. After

PCA, the rank of the most apparent factors with variance ratio is listed in Table 6.6.

Table 6.6 PCA variance values

0.74022293 0.04098082 0.0335441

0.0302408 0.02793587 0.02547959

0.0239673 0.01916276 0.01703485

0.01472286 0.01438374 0.01232441

The first principal component takes 74% of the total factors of influence. The first three

principal components take higher than 90% representativeness of the 12-dimensional

characteristics. The health indicator should be chosen from these three principal

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 59

components; however, after visualization in Figure 6.13, the 2nd and 3rd are noisy

throughout time, which are not accessible to extract the trend. Thus, the first principal

component is taken as a health indicator.

Figure 6.13 Illustration of first three PCA

The data put into PCA is standardized scaling. However, when it comes to the

prognostics of real-time data, the scaling will change. Therefore, it is better to track

back and using the original data for the health indicator establishing. By evaluation and

weight extract, sensor 11 is the most evident; Figure 6.14,b shows all the rank of

sensors.

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 60

a. Illustration of sensor 11 for machine 20

b. The rank of all sensors according to the first principal component

Figure 6.14 Trend and information for HI candidate

In Figure 6.14,a, the signal displays a noise around a stationary trend. The time series

decomposition (TSD) is introduced in Chapter 4, which could help to extract the main

trend of the noisy signal. After implement TSD , the trend, seasonal, and residual

features could be acquired. Figure 6.15 shows an example of machine 20.

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 61

Figure 6.15 Time series decomposition for sensor 11 of machine 20

The TSD method is aimed to remove the stationary and regular noise to reveal the true

trend of the signal. Figure 6.16 shows the indicator trends of all the machines, after

scaling the trend feature by subtracting the data from the minimum value of each

machine.

Figure 6.16 Health indicator trend of all machines

Through previous steps, the health indicator data of each machine is collected and

stored as data frame 𝑀, with corresponding input values 𝑋- health indicator and output

values 𝑌-lifetime.

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 62

Table 6.7 The dataframe of health indicator information and corresponding lifetime

Label
Health indicator (𝑿)

Lifetime (𝒀)
0 1 2 ... 350 351

1 0.0415 0.0100 0.0000 ... 0.9130 0.9130 191.0

2 0.0550 0.0635 0.0485 ... 1.0525 1.0525 286.0

3 0.0000 0.0040 0.0105 ... 0.8215 0.8215 178.0

...

98 0.0000 0.0045 0.0290 ... 0.9470 0.9470 155.0

99 0.0520 0.0460 0.0435 ... 0.9345 0.9345 184.0

100 0.0680 0.0750 0.0820 ... 0.8035 0.8035 199.0

6.2.4.3 Offline reference model

The feature of deterioration is extracted from historical data in the data fusion.

According to these historical data (𝑀), the offline reference model could be established

to evaluate the health state of a new machine in the future prognostics. In this section,

three reference models are established according to the complexity and computational

resource, which are similarity-based, deep learning neural network, and stochastic

process.

Similarity-based model (𝒌 − 𝑵𝑵 regression model)

The mechanism of the similarity-based model is based on k-NN regression (Barros,

2019; Wang et al., 2008). The main steps for establishing the similarity-based reference

model are:

a) Split the historical data frame:

To avoid the overfitting problem, we split the data frame (𝑀𝑘) into two subsets,

training and validation ሼ𝑀𝑘
𝑇 , 𝑀𝑘

𝑉ሽ . Meanwhile, 𝑀𝑘
𝑉 could help to determine the

optimized k-value. The training data set takes 70% of the whole data frame. The

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 63

training data and validation data are:

𝑀𝑘 = ሼ𝑀𝑘
𝑇 , 𝑀𝑘

𝑉ሽ

each subset with the corresponding input and output are:

𝑀𝑘
𝑇 = ሼ𝑋𝑘

𝑇 , 𝑌𝑘
𝑇ሽ, 𝑀𝑘

𝑉 = ሼ𝑋𝑘
𝑉 , 𝑌𝑘

𝑉ሽ

Table 6.8 shows an example of the training set and validation set with input variables

and output variables.

Table 6.8 The example of the training set and validation set with input variables and

output variables

 Label
Health indicator (𝑿𝒌)

Lifetime (𝒀𝒌)
0 1 2 ... 350 351

Training

data set

൛𝑿𝒌
𝑻, 𝒀𝒌

𝑻ൟ

6 0.0000 0.0215 0.0350 ... 0.9210 0.9210 258.0

29 0.0475 0.0515 0.0450 ... 0.9225 0.9225 193.0

55 0.0960 0.1015 0.1015 ... 0.5475 0.5475 274.0

...

47 0.1150 0.1040 0.0855 ... 0.7775 0.7775 230.0

75 0.0210 0.0090 0.0000 ... 0.7370 0.7370 209.0

80 0.0335 0.0380 0.0430 ... 0.7320 0.7320 239.0

Validation

data set

൛𝑿𝒌
𝑽, 𝒀𝒌

𝑽ൟ

32 0.025 0.0185 0.0190 ... 0.9740 0.9740 199.0

52 0.011 0.0000 0.0070 ... 0.6960 0.6960 194.0

2 0.000 0.0040 0.0105 ... 0.8215 0.8215 178.0

...

68 0.078 0.0850 0.0875 ... 0.8605 0.8515 361.0

10 0.023 0.0230 0.0115 ... 0.8740 0.8740 239.0

19 0.093 0.0795 0.0670 ... 0.7065 0.7065 233.0

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 64

b) Set-up 𝒌 − 𝑵𝑵 regressor model:

In 𝑘 − 𝑁𝑁 regressor model, we use the Python package from sklearn. The basic

parameter settings are:

• n_neighbors, will be optimized in step c)

• weights= distance, which allocates the weight by the inverse of 3 nearest

neighbours distance;

• p=2, which applies Euclidean distance.

c) Identify optimized k by using root mean square error (RMSE):

The reference model is established by 𝑀𝑘
𝑇. Then, we could get the estimated lifetime

𝑌𝑘
𝑉 by fitting 𝑋𝑘

𝑉 to 𝑋𝑘
𝑇 and after, compare 𝑌𝑘

𝑉 with true value 𝑌𝑘
𝑉 by using RMSE.

During the estimation, various 𝑘𝑠 are used to get different RMSEs. By selecting the

corresponding k with the lowest RMSE, we could get the optimized k in the training

process.

Table 6.9 and Figure 6.17 show the k values and the optimized k throughout previous

steps. Among all of the k values, when k is equal to 3, the RMSE is the lowest. So, we

choose 3 as k nearest neighbor.

Table 6.9 the k values with corresponding RMSE

k-values 1 2 3 4 5 6 7 8 9 10 11

RMSE 4.53 5.56 2.70 4.24 5.80 6.84 7.90 7.95 9.13 9.99 10.67

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 65

Figure 6.17 Illustration of RMSE

d) Validate the estimation and evaluate the model:

In this step, we change the n_neighbors to 3. Then, we fit 𝑋𝑘
𝑉 to 𝑋𝑘

𝑇 and get a new

estimated lifetime, 𝑌𝑘
𝑉′

. This procedure is achieved by ‘neigh.fit’ in the algorithm. The

comparisons between true 𝑌𝑘
𝑉 and estimated 𝑌𝑘

𝑉′
are shown in Figure 6.18 a and b.

a. Comparison between the true value

and estimation value

b. The distribution of errors

Figure 6.18 Illustration of the validation process and the performance

e) Find a suitable model:

In the validation process, the distribution of error could represent the performance of

the 𝑘 − 𝑁𝑁 reference model. In order to obtain a relatively accurate model, we repeat

the step a) and c) with the constant 𝑘 value until the error on the validation data set is

minimized.

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 66

When the previous processes are done, the 𝑘 − 𝑁𝑁 reference model could be upload to

the ‘Server’ for further online prediction process.

Stochastic process

As mentioned in Chapter 4, the stochastic process is implemented in a non-monotonic

case. Since the pre-processed data still have the feature of fluctuation, we consider the

stochastic process to describe the characteristics of the deterioration respected to the

operational environment.

Figure 6.19 An example of the deterioration of the machine

Figure 6.19 shows an example of the deterioration of the machine. The historical data

has an exponential trend with some noise, which means the deterioration might have an

accelerated feature with time (Si et al., 2011a), or depends on the previous degradation

level (Le Son et al., 2013). Therefore, we could consider applying Geometric Brownian

Motion (𝐺𝐵𝑀) to this degradation process. Since 𝐻𝐼𝑠 shows an exponential trend, we

fit an exponential model (Formula 6.1) proposed in Le Son et al. to have a general

understanding of the deterioration evolving (Le Son et al., 2013).

𝑦(𝑡) = 𝑎𝑒(−𝑏𝑡−𝑐) (6.1)

Where 𝑎, 𝑏, 𝑐 are regression factors, which are shown in table x; 𝑦(𝑡) is estimated

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 67

health indicator, and 𝑡 is the lifetime of the machine.

Table 6.10 Factors of the regression fitting for all machines

 a b c

1 0.277957 -0.016010 1.834878

2 0.217378 -0.012961 2.106209

3 0.208583 -0.021156 2.384633

...

98 0.340329 -0.021403 2.183700

99 0.251561 -0.020031 2.334489

100 0.292956 -0.016423 2.189216

Figure 6. 20 Illustration of regression curves

Since we have acquired the exponential regression model, let us take the natural

logarithm to find the increment of on fitted curve by formula 6.2.

𝛥𝑦 = 𝐼𝑛 𝑦(𝑡 + 𝛥𝑡) − 𝐼𝑛 𝑦(𝑡) (6.2)

Where: 𝛥𝑦 is the increment in time 𝛥𝑡, 𝑦(𝑡) is the value of estimated 𝐻𝐼 at time 𝑡;

𝑦(𝑡 + 𝛥𝑡) is the value of 𝐻𝐼 at time 𝑡 + 𝛥𝑡.

For each different curve, the 𝛥𝑦 is the −𝑏 factor in the regression, which represents an

estimated increment. Therefore, we assume the increment fluctuates around some

specific value in the historical data.

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 68

Figure 6.21 The illustration of the estimated increment

In Chapter 4, the SDE of GBM is introduced as:

𝑑S(t) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊(𝑡)

We could solve the SDE formula under Itô’s interpretation (Kobayashi et al., 2011):

S(t) = S(0) exp ൭ቆ𝜇 −
𝜎2

2
ቇ 𝑡 + 𝜎𝑊(𝑡)൱ (6.3)

Where: 𝑆𝑡 are the values of health indicator at time 𝑡, 𝑆0 is the initial value of health

indicator, µ is the percentage drift, 𝜎 is the percentage volatility, 𝑊(𝑡) is Wiener

Process or Standard Brownian Motion.

For estimating 𝜇 and 𝜎, some of the authors by using Most Likelihood Estimation to

get the parameters (Kaise, 2012; Park and Padgett, 2005; Zhang et al., 2018). Since the

method is rather complicated and time-consuming, we use historical data to simplify

this process(Chiang et al., 2015).

In order to estimate the drift and volatility by historical data, we transfer formula 6.4

by taking the natural logarithm and get 6.4, 6.5 (Assume the time step is 1):

𝐼𝑛 𝑆(𝑡) = 𝐼𝑛 𝑆(0) + ቆµ −
𝜎2

2
ቇ 𝑡 + 𝜎𝑊(𝑡) (6.4)

𝐼𝑛 S(𝑡 − 1) = 𝐼𝑛 S(0) + ቆµ −
𝜎2

2
ቇ (𝑡 − 1) + 𝜎𝑊(𝑡 − 1) (6.5)

We could obtain 𝛥𝐿 by subtracting 6.4 by 6.5:

 𝛥𝐿 = 𝐼𝑛 S(t) − 𝐼𝑛 S(𝑡 − 1) = ቆµ −
𝜎2

2
ቇ + 𝜎(𝑊(𝑡) − 𝑊(𝑡 − 1)) (6.6)

https://en.wikipedia.org/wiki/It%C3%B4_calculus

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 69

According to the previous assumption-𝛥𝐿 is increment fluctuates around a mean value,

and equation 6.4, 𝛥𝐿 follows a normal distribution:

𝛥𝐿 ~ 𝑁(𝜇 −
𝜎2

2
, 2𝜎2)

Table 6.11 shows the historical dataset 𝑀𝑠 with 100 machines.

Table 6.11 Health indicators for 100 machines

Label
Health indicator 𝑺(𝒕)

0 1 2 3 ... 349 350 351

1 0.0415 0.0100 0.0000 0.0210 ... 0.9130 0.9130 0.9130

2 0.0550 0.0635 0.0485 0.0400 ... 1.0525 1.0525 1.0525

3 0.0000 0.0040 0.0105 0.0175 ... 0.8215 0.8215 0.8215

4 0.0205 0.0215 0.0160 0.0155 ... 0.7390 0.7390 0.7390

...

97 0.0965 0.1020 0.0925 0.0945 ... 0.7195 0.7195 0.7195

98 0.0000 0.0045 0.0290 0.0555 ... 0.9470 0.9470 0.9470

99 0.0520 0.0460 0.0435 0.0305 ... 0.9345 0.9345 0.9345

100 0.0680 0.0750 0.0820 0.0860 ... 0.8035 0.8035 0.8035

Since we are going to take nature logarithm for all of the 𝑆(𝑡), we remove all the ‘0’

values and substitute them with the next closest values in the 𝑀𝑠 . Table 6.12 shows the

value after the substitution and transforming into 𝛥𝐿.

Table 6.12 The number of 𝜟𝑳 values

Label
𝛥𝐿

0 1 2 3 ... 348 349 350

1 -1.42311 0.741937 0 0.579818 ... 0.031508 0.029988 0.01768

2 0.143707 -0.26948 -0.19268 -0.07796 ... 0.017813 0.019908 0.011948

3 0 0.965081 0.510826 -0.72213 ... 0.023099 0.021263 0.037424

4 0.047628 -0.29546 -0.03175 0.478036 ... 0.04705 0.034247 0.026857

...

97 0.05543 -0.09776 0.021391 0.031253 ... 0.037598 0.039788 0.020359

98 0 1.863218 0.649087 0.267204 ... 0.014558 0.020358 0.031102

99 -0.1226 -0.05588 -0.35503 -0.3973 ... 0.031476 0.029969 0.021634

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 70

100 0.09798 0.089231 0.047628 0.017291 ... -0.01302 0.013021 0.038698

However, some of the original values in the dataset 𝑀𝑠 are rather small, which could

cause a large value by taking the natural logarithm. For example, in the dataset 𝑀𝑠 , one

of the values is 2.77556E-16, where the 𝛥𝐿 is almost 33. It is not practical in this case.

Therefore, in the 𝛥𝐿 dataset, we keep the values within the range (-5,5) through

investigating the dataset. Then, we could get the 𝜇′ and 𝜎′2 from 𝛥𝐿 dataset for each

machine.

In the prognostics, the following formula is prepared for estimation:

𝑆(𝑡) = 𝑆(𝑡 − 1) + 𝑆(𝑡 − 1)𝜇Δ𝑡 + 𝑆(𝑡 − 1)𝜎𝑊(0,1) (6.7)

Thus, we need 𝜇 and 𝜎. By applying

𝜎 =
𝜎′2

2
(6.8)

and

𝜇 = 𝜇′ +
𝜎′2

4
(6.9)

Table 6.13 partially shows the 𝜇 and 𝜎 for each machine and the mean values.

Table 6.13 The 𝝁, 𝝈, and the mean values for each machine

 1 2 3 4 … 99 100 Mean

𝝁 0.02347 0.026679 0.041537 0.020817 … 0.070827 0.02685 0.032436

𝝈 0.111367 0.178142 0.131663 0.236773 … 0.328432 0.164762 0.159177

Figure 6.22 shows the GBM with µ = 0.02347 and σ = 0.111367 with the initial 𝑆(0) =

0.001.

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 71

Figure 6.22 An example of GBM with a certain 𝝁 and 𝝈

However, when it comes to prognostics, we only need one variable for each µ and σ.

Meanwhile, at the beginning of the monitoring, there is no sufficient data for

obtaining 𝜇 and 𝜎. Hence, we take the mean value of 𝜇s and the mean value of the 𝜎s

as the initial variable. When there are enough data, we could consider updating these

two parameters by new monitoring data.

The stochastic process model is unlike the neural network model and 𝑘 − 𝑁𝑁 model.

In the formula, the process could evolve to infinite if a 𝜇 and 𝜎 are set up. Therefore,

when it comes to prognostics, we need to set a threshold to indicate that the machine is

considered failed if the health indicator value passes this threshold. Figure 6.23 is the

density distribution of the health indicator when 100 machines reach the end of the

lifetime.

Figure 6.23 Density distribution of the health indicator for 100 machines

We set the threshold by the mean value of the health indicators, i.e., 𝑆(𝑡) = 0.8 with an

uncertainty variable, i.e., 𝜎 = 0.137. Figure 6.24 shows ten paths when the simulation

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 72

stops after 𝑆(𝑡) > 0.8 with 𝑆(0) = 0.001, 𝜇 = 0.032436 and 𝜎 = 0.111367.

Figure 6.24 GBM paths with 0.8 as the threshold

Deep learning neural network

From the mechanism in Chapter 4, the trend model prognostics are one-dimensional

process, while deep learning neural network supports multi-dimensional input (Hu et

al., 2019; Raman and Hassanaly, 2019). Thus, in this section, we change the previous

trend extraction process into a neural network for the reference model directly. The

main framework of the neural network is under the TensorFlow platform. The necessary

information of the neural network is introduced in Chapter 4. The steps of building a

neural network are the following:

a) Data filtering:

In this part, the data filtering is aimed to remove the unchanged data and noise input,

i.e., the operation condition 1-3 and sensor 1,5,6,10,16,18,19 are discarded from the

data frame.

Table 6.14 Dataframe for deep learning neural network

 time/cycle Sensor 2 Sensor 3 Sensor 4 ... Sensor 17 Sensor 20

1 1 641.82 1589.70 ... 392 39.06 23.4190

1 2 642.15 1591.82 ... 392 39.00 23.4236

1 3 642.35 1587.99 ... 390 38.95 23.3442

...

100 198 643.42 1602.46 ... 398 38.44 22.9333

100 199 643.23 1605.26 ... 395 38.29 23.0640

100 200 643.85 1600.38 ... 396 38.37 23.0522

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 73

b) Normalization

In the remaining data frame, the scaling of signals is different. Hence, we need to

formulate all the signals in range (0,1). The normalization is implemented in the scaling,

which follows equation 6.4.

𝑋𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

(6.10)

Table 6.15 Dataframe after normalization

 Sensor 2 Sensor 3 Sensor 4 ... Sensor 17 Sensor 20 Sensor 21

0 0.183735 0.406802 0.309757 ... 0.333333 0.713178 0.724662

1 0.283133 0.453019 0.352633 ... 0.333333 0.666667 0.731014

2 0.343373 0.369523 0.370527 ... 0.166667 0.627907 0.621375

...

20628 0.665663 0.684979 0.775321 ... 0.833333 0.232558 0.053991

20629 0.608434 0.746021 0.747468 ... 0.583333 0.116279 0.234466

20630 0.795181 0.639634 0.842167 ... 0.666667 0.178295 0.218172

c) Define the input variables and output variables:

In the neural network, the input layer contains input dimensions. In this case, the input

variables are the remaining 12-dimensional training data, and the output variable is the

RUL values.

Table 6.16 Training data sample for neural network

Input data (𝑿𝒅)

Lifetime (𝒀𝒅)
Sensor 2 Sensor 3 Sensor 4 ... Sensor 17 Sensor 20

0 0.183735 0.406802 0.309757 ... 0.333333 0.713178 191

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 74

1 0.283133 0.453019 0.352633 ... 0.333333 0.666667 190

2 0.343373 0.369523 0.370527 ... 0.166667 0.627907 189

...

20628 0.665663 0.684979 0.775321 ... 0.833333 0.232558 2

20629 0.608434 0.746021 0.747468 ... 0.583333 0.116279 1

20630 0.795181 0.639634 0.842167 ... 0.666667 0.178295 0

d) Define layers and nodes:

 In this case, we consider establishing a four-layer neural network with two hidden

layers, one input layer, and one output layer. The architecture of the neural network is

shown in Figure 6.25.

Figure 6.25 The neural network framework

e) Activation and optimizer function:

 In this case, we choose sigmoid function as activation function, which could indicate

the properties of each machine. Moreover, for the optimizer function, we choose Adam

with a learning rate of 0.0015.

f) Cross-validation:

To prevent the overfitting problem and evaluate the model, we split the total data frame

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 75

(𝑀𝑑) into a training dataset 𝑀𝑑
𝑇 and a testing data set 𝑀𝑑

𝑉. The training dataset takes

70% of the whole data frame. The training data and validation data are:

𝑀𝑑 = ሼ𝑀𝑑
𝑇 , 𝑀𝑑

𝑉ሽ

each subset with the corresponding input and output are:

𝑀𝑑
𝑇 = ሼ𝑋𝑑

𝑇 , 𝑌𝑑
𝑇ሽ, 𝑀𝑑

𝑉 = ሼ𝑋𝑑
𝑉 , 𝑌𝑑

𝑉ሽ

The rule of splitting the training data set 𝑀𝑑
𝑇 and a testing data set 𝑀𝑑

𝑉 are realized by a

Python function ‘validation_split’, which is a random quantity in each epoch.

Table 6.17 is an example of a training and validation dataset with the corresponding

input variables (𝑋𝑑) and the output variable (𝑌𝑑).

Table 6.17 An example of training and validation dataset

Input data (𝑿𝒅)

Lifetime (𝒀𝒅)
Sensor 2 Sensor 3 Sensor 4 ... Sensor 17 Sensor 20

Training

data set

൛𝑿𝒅
𝑻, 𝒀𝒅

𝑻ൟ

3725 0.530120 0.454545 0.388758 ... 0.379845 0.623170 50.0

4130 0.481928 0.509483 0.485652 ... 0.418605 0.321320 37.0

14458 0.343373 0.324395 0.517218 ... 0.573643 0.661143 92.0

...

4227 0.325301 0.397646 0.325118 ... 0.620155 0.547501 135.0

5572 0.331325 0.446697 0.440749 ... 0.565891 0.591964 57.0

18814 0.463855 0.632003 0.649223 ... 0.558140 0.302403 41.0

Validation

data set

൛𝑿𝒅
𝑽, 𝒀𝒅

𝑽ൟ

7810 0.825301 0.627207 0.799291 ... 0.302326 0.427644 15.0

13428 0.590361 0.778068 0.916779 ... 0.294574 0.232809 3.0

18683 0.319277 0.274907 0.469784 ... 0.496124 0.613781 172.0

...

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 76

1025 0.436747 0.316765 0.382512 ... 0.620155 0.657553 90.0

16576 0.611446 0.608023 0.720628 ... 0.519380 0.256421 15.0

16113 0.771084 0.608895 0.744092 ... 0.418605 0.191798 24.0

The mean square error is calculated in each epoch and used to evaluate the model.

Figure 6. 26 illustrates the model loss of training dataset and testing dataset. From the

model loss, we could assume this model could be used for the estimation after 100

epochs.

Figure 6. 26 Model loss illustration during the training process

When the monitoring data from a new machine is collected, it will be passed to this

model and get the lifetime prediction. The illustration of this neural network is shown

in Figure 6.27.

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 77

Figure 6.27 Illustration of this neural network

6.2.5 Upload the offline reference model

When the reference model is established, the whole frameworks could be uploaded to

the ‘Server’ and store all of the information. The ‘Server’ could be a local mirror with

the LAN network or on the ‘Cloud’.

For the model uploading, in the communication protocol, we need to insert the 𝐼𝑃

address to build the connection between ‘Server’ and ‘Client’. In this case, our 𝐿𝐴𝑁 𝐼𝑃

address is ‘192.168.137.1’.

Figure 6. 28 shows the interface of request to upload the reference model to the ‘Server’,

and the uploading process.

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL

 78

a. Uploading request from the ‘Client’.

b. Receiving offline reference model.

Figure 6. 28 Uploading offline reference model to the ‘Server’.

Since we upload all of the offline reference models, we could pursue the following

online prognostics section.

Chapter 7

Online prognostics and decision making

In this chapter, we are going to apply the reference model on the new dataset collected

from a new machine and make decisions in real-time. The prognostics are based on

three reference models established in Chapter 5. The real-time decision-making model

is based on the formula in Chapter 4.

7.1 Online prognostics

In this section, the new sensor data are collected through the communication protocol.

Figure 7. 1 shows the process of transferring data from the ‘Client’ machine to ‘Server’.

Every cycle, the monitoring data will be streamed from the machine (‘Client’) to the

reference model (‘Server’). The algorithm operates and estimates the lifetime of the

machine. Each cycle, the ‘Server’ could receive the monitoring data from the ‘Client’

machine.

Figure 7. 1 Illustration of receiving monitoring data

For the 𝑘 − 𝑁𝑁 and stochastic process model, we apply the same pre-processing

procedure to the newly collected data, as shown in Chapter 6. In contrast, for the

𝐴𝑁𝑁 model, we use the same input signals as in the reference model. In the following

CHAPTER 7: ONLINE PROGNOSTICS AND DECISON MAKING

 80

section, the prognostics are presented through three reference models. Table 7.1 shows

the monitoring data of a new machine, which is used to present as input parameters in

the following sections.

Table 7.1 The monitoring data of a new machine

 Sensor 2 Sensor 3 Sensor 4 ... Sensor 17 Sensor 20 Sensor 21

1 642.75 1582.03 1392.43 ... 394 38.83 23.4048

2 642.02 1586.39 1398.94 ... 391 39.03 23.2768

3 642.36 1590.20 1405.66 ... 391 38.99 23.3628

...

194 643.30 1593.45 1426.21 ... 395 38.52 23.0864

195 643.57 1603.82 1426.44 ... 396 38.49 23.1562

196 643.31 1598.19 1420.66 ... 395 38.53 23.1105

7.1.1 Similarity-based model (𝒌 − 𝑵𝑵 regression model):

Since the 𝑘 − 𝑁𝑁 regression model is established according to sensor 11, we drop other

parameters and only collect sensor 11 as the input signal in the prognostics. The data

streams into the reference model in each cycle. Figure 7.2(a,b,c) shows the signal

evolving in cycle 50,100 and 150 of one new machine.

a. Signal information within Cycle 50

b. Signal information within Cycle 100

CHAPTER 7: ONLINE PROGNOSTICS AND DECISON MAKING

 81

Figure 7.2 The illustration of signal evolving

Figure 7. 3(a,b,c) shows that after we eliminate partial noise and extract the primary

trend by 𝑇𝑆𝐷. Meanwhile, we scale the data from 0 by subtracting the minimum value

of dataset as the new monitoring data 𝑁𝑘.

a. Signal information within Cycle 50

b. Signal information within Cycle 100

c. Signal information within Cycle 150

Figure 7. 3 the primary trend by applying TSD

After the pre-process of the new dataset 𝑁𝑘, we search from the 𝑘 − 𝑁𝑁 reference

model to find similar growths with the new dataset 𝑁𝑘 and get the estimated lifetime

𝑇 . This process achieved by Python 𝑘 − 𝑁𝑁 library, ‘neigh.predict’. As time goes by,

we could obtain several estimated 𝑇𝑖
 . However, the 𝑘 − 𝑁𝑁 could only get a specific

value without uncertainty. To obtain uncertainty of the prediction, we propose to collect

all of the estimations 𝑇𝑖
 , and get their distributions. Figure 7. 4 shows the distributions

c. Signal information within Cycle 150

CHAPTER 7: ONLINE PROGNOSTICS AND DECISON MAKING

 82

and estimation processes of 𝑇50 , 𝑇100 and 𝑇150. The dark bule points are estimated

lifetime, the red curve is the real-time monitoring data, and the light blue points are the

historical data. Table 7. 2 shows the mean values and standard deviations of 𝑇50 , 𝑇100

and 𝑇150.

a. Distribution of estimation on cycle 50

a’. k-NN point plot on cycle 50

b. Distribution of estimation on cycle 100

b’. k-NN point plot on cycle 100

c. Distribution of estimation on cycle 150

c’. k-NN point plot on cycle 150

Figure 7. 4 Distribution and estimation process

Table 7. 2 The mean values and standard deviations of lifetime

 𝑻𝟓𝟎 𝑻𝟏𝟎𝟎 𝑻𝟏𝟓𝟎

Mean 217.40 198.32 196.61

SD 20.71 25.04 21.21

CHAPTER 7: ONLINE PROGNOSTICS AND DECISON MAKING

 83

After the estimation time by time, we could obtain a series lifetime for the different

machine through this process, and calculate the RUL-𝑅𝑡 with mean value and std.

Further, the estimated lifetime will be transferred into the decision model.

Table 7. 3 The mean values and standard deviations of RUL

 𝑹𝟓𝟎 𝑹𝟏𝟎𝟎 𝑹𝟏𝟓𝟎

Mean 167.40 98.32 46.61

SD 20.71 25.04 21.21

7.1.2 Stochastic process model

The Stochastic process model is established by the primary trend of Sensor 11.

Therefore, when the new data streams into the model, we only keep Sensor 11 and make

the prognostics.

The raw data processing is the same as 𝑘 − 𝑁𝑁 regression model (here no longer

repeat), and we denote the new dataset as 𝑁𝑠. The principal mechanism is following

equation 6.7, where we consider the parameter 𝑑𝑡 = 1 , 𝜇 = 0.032436, and 𝜎 =

0.159177. The essential algorithm is shown in the following:

Algorithm 1 Geometric Brownian Motion

Input: S[0], I

Output: S[t], T[t]
for all t in range I:

rand = random_normal(0,1)*0.159177

S[t] = S[t-1]+0.032436*S[t-1]+rand*S[t-1]

T[t] = t

If S[t]>0.8

break

end

Algorithm 1 only can provide one path of health indictor. Therefore, The Monte Carlo

Simulation is implemented to generate several paths and get the uncertainty of

estimation. Algorithm 2 shows the Monte Carlo process of collecting the lifetime

variables:

CHAPTER 7: ONLINE PROGNOSTICS AND DECISON MAKING

 84

Algorithm 2 Monte Carlo Simulation

Input: S[0], I, N

Output: lifetime[]
m = 0

While m < N:

result = GBM(S[0],I)

x = result[1]

y = result[0]

lifetime.append(x[-1])

m += 1

end

As proposed in 𝑘 − 𝑁𝑁 model, we estimate the RUL- 𝑅50 , 𝑅100 and 𝑅150 in

time/cycle 50, 100 and 150, with corresponding uncertainty parameters – standard

deviation. Meanwhile, we update the 𝜇 and 𝜎 by the new data with the percentage of

current health indicator value:

𝜇′ = ൬
𝐻𝐼𝑡

0.8
൰ ∗ 𝜇 + ൬1 −

𝐻𝐼𝑡

0.8
 ൰ ∗ 𝜇𝑛 (7.1)

𝜎′ = ൬
𝐻𝐼𝑡

0.8
൰ ∗ 𝜎 + ൬1 −

𝐻𝐼𝑡

0.8
 ൰ ∗ 𝜎𝑛 (7.2)

Where 𝑢′ and 𝜎′ is the current value in the GBM, 𝜇 and 𝜎 are historical values, 𝜇𝑛 and

𝜎𝑛 is the new value obtained from the new dataset, 𝐻𝐼𝑡 is the current health indicator.

Here, the alternative method for updating 𝜇′ and 𝜎′ is applying Bayesian approaches

(Mosallam et al., 2015). The Bayesian approach, in this case, is rather complicated. We

simplify this process by taking the weight between the new parameter and the historical

parameter as formula 7.1 and 7.2.

Figure 7.5 shows the Monte Carlo simulation processes of 𝑅50 , 𝑅100 and 𝑅150.

CHAPTER 7: ONLINE PROGNOSTICS AND DECISON MAKING

 85

a. MCS on cycle 50

b. MCS on cycle 100

c. MCS on cycle 150

Figure 7. 5 MCS process

Table 7. 4 The mean values and standard deviations of RUL

 𝑹𝟓𝟎 𝑹𝟏𝟎𝟎 𝑹𝟏𝟓𝟎

Mean 123.762 99.77 44.91

SD 78.162 77.51 54.49

After, we could steam the estimation data and uncertainty in the decision model.

7.1.3 Deep learning neural network model

When we obtain the new data from the machine, we need to follow the same

normalization procedure in the offline phase in Chapter 6 formula 6.10, since the data

does not cover all the value. Therefore, we could obtain the following dataset 𝑁𝑑 after

normalization in Table 7. 5.

CHAPTER 7: ONLINE PROGNOSTICS AND DECISON MAKING

 86

Table 7. 5 Dataset after normalization

 Sensor 2 Sensor 3 Sensor 4 ... Sensor 17 Sensor 20 Sensor 21

1 0.511041 0.337315 0.164182 ... 0.625 0.472727 0.664402

2 0.280757 0.450532 0.297121 ... 0.250 0.654545 0.483227

3 0.388013 0.549468 0.434348 ... 0.250 0.618182 0.604954

...

193 0.684543 0.633861 0.853992 ... 0.750 0.190909 0.213730

194 0.769716 0.903142 0.858689 ... 0.875 0.163636 0.312527

195 0.687697 0.756946 0.740658 ... 0.750 0.200000 0.247841

At each cycle/time, we feed the data to the 𝑁𝑁 reference model, and then, there is an

estimated RUL value- 𝑌𝑖 by executing ‘Sequential().predict()’. Table 7. 6 shows the

partial estimated RUL values in each cycle. Figure 7. 6 illustrates the estimation

throughout time steps.

Table 7. 6 The estimated RUL

 1 2 3 4 … 195

𝒀𝒊 135.07 139.41 134.99 137.80 … 7.27

Figure 7. 6 The estimation throughout time steps

CHAPTER 7: ONLINE PROGNOSTICS AND DECISON MAKING

 87

7.2 Prognostics information of six machines

The previous section presents the necessary processes for prognostics of one machine.

Since we have six identical independent machines, we execute the same process for

these six machines and get the RUL in time 𝑡 = 50,100 and 150.

Table 7. 7 Online prognostics for six machines

𝑘 − 𝑁𝑁

(RUL)

𝐺𝐵𝑀

(RUL)

Neural network

(RUL)

 Mean SD Mean SD

Machine 1

t = 50 167.4 20.71 123.762 78.162 148.67

t = 100 98.32 25.04 99.77 77.51 118.71

t = 150 46.61 21.21 44.91 54.49 63.37

Machine 2

t = 50 172.39 22.82 148.50 75.79 190.67

t = 100 130.83 35.85 107.59 70.18 148.71

t = 150 44.43 4.54 49.79 52.94 53.29

Machine 3

t = 50 151.51 17.70 117.70 65.18 146.03

t = 100 169.91 30.72 99.07 63.02 131.39

t = 150 83.76 14.47 65.31 53.16 50.27

Machine 4

t = 50 157.63 32.36 148.87 78.27 146.03

t = 100 97.83 17.60 67.71 61.06 100.25

t = 150 36.18 9.08 38.12 49.98 43.25

Machine 5

t = 50 136.73 21.12 119.40 65.57 137.55

t = 100 112.71 34.09 77.65 59.27 117.05

t = 150 67.98 13.68 53.08 48.30 56.06

Machine 6

t = 50 168.50 17.36 153.06 95.31 143.42

t = 100 109.65 15.47 84.26 80.58 96.40

t = 150 45.699 11.69 36.412 22.54 49.79

7.3 Decision-making model

In this section, the decision-making model is introduced to demonstrate the importance

of decision-making in the predictive maintenance digital twin. The underlying

mechanism is to follow equation 5.3 in Chapter 5. The decision model is aimed to find

a suitable time slot for maintenance and pre-prepare the suitable service for the

CHAPTER 7: ONLINE PROGNOSTICS AND DECISON MAKING

 88

maintenance process based on the cost per unit time.

𝐶(𝑡0) = (𝑆 + 𝐼𝑗

𝑚

𝑗∈𝐺𝑗

× 𝐶𝑝𝑚 + 𝐼𝑖

𝑚

𝑖∉𝐺𝑗

× 𝐶𝑢 × 𝑡)/𝑡0 (7.3)

The decision model is established in the Python environment with Simpy package.

Simpy is a discrete-event simulation framework powered by Python generator

functions, which is a process-based simulation, especially for continuous-time

simulation.8

The fundamental assumptions of this model are simulating the maintenance decision

for the wind farm, which has a specific maintenance window due to the weather or other

environmental issues. Moreover, the cost of maintenance is rather high if we miss a

suitable maintenance window (Tavner, 2012b).

In this case, we assume the maintenance could only be conducted during the

maintenance window. During each maintenance action, we replace the main component

for all of the machines, and we assume that after the replacement, the machines are

AGAN. To make the model more intuitive, we only consider one round and apply the

mean lifetime without uncertainty in this model. In order to make the model more

practical, we also consider modelling the repair time with randomness, repairman, and

spare parts. The decision model is divided into two parts, one for factory modelling,

one for optimization information.

The main architecture for this factory is shown in Algorithm 1:

8 The decision mode is based on the Simpy package and examples on the

websitehttps://pypi.org/project/simpy/

https://pypi.org/project/simpy/

CHAPTER 7: ONLINE PROGNOSTICS AND DECISON MAKING

 89

Algorithm 1 Machine farm

Input: The initial cost for prepare

Repair schedule

Maintenance engineers

Repair time

Machine lifetime

Output: Total cost, spares

Main:
Class: Machine farm

Function: Machine operation

If lifetime < repair schedule:

Failed time = lifetime

Repairing time = scheduled time

Cost for penalty = delay days * cost / day

else: (machine failed after scheduled time)

Repairing time = scheduled time

Function: Repair

Request engineers

Request spares ## components

Cost for repair = Repair time * cost/day

end

Algorithm 1 is to simulate the machine operational information. After we establish the

machinery information, we could follow Algorithm 2 to get the maintenance time slot

within the maintenance window.

Algorithm 2 Optimizer

Input: Maintenance window

Output: Total cost per unit time, spares

Main:
For time_slot in Maintenance window:

 Algorithm 1

Per_Unit_Cost =Total cost/time_slot

end

Find_optimized time slot

Find_spares used

end

CHAPTER 7: ONLINE PROGNOSTICS AND DECISON MAKING

 90

Algorithm 2 is to find the optimized time slot within the maintenance window by

collecting the cost information.

7.3.1 Decision model implement

For this model, we need the following assumptions:

• The Set-up cost (𝑆) , which indicates the costs for preparations, such as

transportation, raw materials.

• Planned maintenance cost (𝐶𝑝𝑚), which indicates the costs of machine repair

before machine failure.

• Unplanned maintenance cost (𝐶𝑢), which is the cost after the machine failure.

• Repair time (𝑡𝑟), in this case, the repair time is a random variable, which

indicates the repair time could depend on the situation.

• Repair schedule (𝑡0), the set-up schedule to conduct maintenance activity.

The formula for this model is:

𝐶(𝑡0) = (𝑆 + 𝐶𝑝𝑚 × 𝑡𝑟𝑗

𝑚

𝑗∈𝐺𝑗

+ 𝐶𝑢 × (𝛥𝑡 + 𝑡𝑟𝑖)

𝑛

𝑖∉𝐺𝑗

)/𝑡0 (7.4)

Where, 𝐶(𝑡0) is the cost/ unit time, 𝑆 is the set-up cost, 𝐺𝑗 is a non-failure machine

group, 𝐶𝑝𝑚 is the preventive maintenance cost, 𝐶𝑢 is the corrective maintenance cost,

𝑡𝑟 is the repair cost, 𝛥𝑡 is the interval between failure time and schedule time.

After we acquire the lifetime/RUL from the prognostics model, the information could

be transferred into a real-time decision model through the communication protocol.

We use the mean value of the lifetime from prognostics model in cycle 50, 100, and

150 as the example to illustrate the process. The lifetime information is showed in Table

7. 8:

CHAPTER 7: ONLINE PROGNOSTICS AND DECISON MAKING

 91

Table 7. 8 The lifetime information on cycle 50,100 and 150

 Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 Machine 6

50 217 222 202 208 187 219

100 198 231 240 198 213 210

150 197 194 234 187 212 195

The parameters settings:

Table 7. 9 Parameter information

Maintenance

window

Set-up

cost
Repair time

Repair

engineers
𝐶𝑝𝑚 𝐶𝑢

160-260 30k $
Random variable

from 4-6 cycles
2

2 k

$/cycle

10 k

$/cycle

We set the repair limitation to 2, which means only two of the machines could be

repaired at one time. Figure 7. 7 shows an example when we repair all of the machines

after failure in cycle 256.

Figure 7. 7 An example of the maintenance process

After all of the parameters are set up, we could obtain a suitable time slot for doing

maintenance and get the corresponding cost.

CHAPTER 7: ONLINE PROGNOSTICS AND DECISON MAKING

 92

Table 7.10 Schedule time and cost

Cycle 50 100 150

Best schedule time 187 198 187

Cost 0.9k 0.8k 0.9k

a. Schedule time in cycle 50

b. Schedule time in cycle 100

c. Schedule time in cycle 150

Figure 7. 8 Cost per unit time with the corresponding cycle

From the simulation, we could know the suitable time is around cycle 198 during the

process. After we set the schedule, the spares information in the inventory also could

be illustrated. Here, we assume the spares are enough.

Figure 7. 9 Spares spending along with time/cycle

CHAPTER 7: ONLINE PROGNOSTICS AND DECISON MAKING

 93

Further, we could add uncertainty and inventory information in this model to get the

dynamic decision recommendations via different input schedules.

Chapter 8

Alternative analysis

In the previous chapters, the digital twin model is presented, and the relevant theoretical

background is introduced. However, this digital twin is based on a hypothetical system,

and we do not have a robust standard to evaluate the result of this model.

In the previous part, we apply PHM 08 dataset and only select six engine data to

perform the prognostics. In order to show the performance of these three models, i.e.,

𝑘 − 𝑁𝑁 regression, stochastic process, and 𝐴𝑁𝑁 , we apply the same process in

Chapter 6 and 7 to all of the data in the PHM 08. Here, the figure shows the performance

of the whole PHM08 test dataset in the following with corresponding error distribution.

The table shows the accuracy 𝑅2 score and Root mean square error.

a. Prediction and estimation on NN

a'. Error distribution

CHAPTER 8: ALTERNATIVE ANALYSIS

 95

Figure 8. 1 Estimations of PHM08 dataset with three methods

Table 8. 1 𝑹𝟐 and MSE for 𝑨𝑵𝑵 and 𝒌 − 𝑵𝑵

 𝑹𝟐 MSE

𝑨𝑵𝑵 0.51 29.10

𝒌 − 𝑵𝑵 0.26 45.77

The GBM process seems not robust9 than 𝐴𝑁𝑁 and 𝑘 − 𝑁𝑁 in this process. The reason

could be that the parameters are estimated by data directly, and the variances are

enormous for each prediction. So, it is hard to get the exact number as the other two

methods.

9 The ‘robust’ here means the performance between estimated mean values and the specific real RUL in

this case is not so accurate than other two methods.

b. Prediction and estimation on k-NN

b’. Error distribution

c. Prediction and estimation on GBM

c'. Standard deviations

Chapter 9

Discussion, Conclusions, and Recommendations

for Future Work

In this chapter, a discussion and conclusion are presented. In order to get improvement,

the recommendations for further work also are listed here.

9.1 Discussion

In this thesis, the whole digital twin framework is connected by the Socket

communication protocol model. This model is mainly in charge of file transferring and

essential real-time communication. However, the Socket model in this thesis could not

fully achieve automatic control in the case study, which passes the dataset or data file

manually.

In Chapter 6, when extracting the health indicator, we use the 𝑉𝐻𝐼 rather than 𝑃𝐻𝐼. As

presented in Chapter 3, the 𝑉𝐻𝐼 could capture the primary information. It could not

combine all of the information from sensors. During the trend extracting process, it

could lose some information, because we abandon some of the signal information in

the offline model establishment procedure. Thus, a hybrid model could be considered

to combine physical information by applying some relevant equations. For example,

we could apply the thermal equation to combine some of the information. Then the data

fusion could combine all of the information to approach the real connection by physical

machine structure between sensors.

For the whole digital twin, we assume the machines are identical. However, after

obtaining the primary trend in Chapter 4, the initial value of each machine is slightly

different, which might cause by the operational information in the dataset. These

CHAPTER 9: DISCUSSION, CONCLUSION, AND

RECOMMENDATIONS FOR FUTURE WORK

 97

differences could be one reason that the lifetime of the machines is variating that much

at the end.

In the digital twin offline model, we propose three different models, i.e., 𝑘 − 𝑁𝑁

regression, stochastic process, and 𝐴𝑁𝑁. In the following, we are going to compare

these three methods. Since the accuracy performance depends on further adjusting, the

following comparison does not include accuracy performance.

Table 9. 1 Comparison of three prognostics models

 Pros Cons

𝑘 − 𝑁𝑁

1. Easy to apply;

2. Not time-consuming for training, because

the prediction depends on the comparison

between historical data and real-time data

directly;

3. Fast processing if the data set is one-

dimensional;

4. Initially, it could not obtain uncertainty.

We propose to collect historical

predictions to obtain uncertainty. So, it

can provide uncertainty information.

1. The prediction highly depends on

historical data. If the historical data

could cover all of the situations,

the predictions could be unreliable;

2. For different predictions, 𝑘 value

could be a dispute, since the k

selection based on existing data,

not on real-time data;

3. Not suitable for a multi-

dimensional data sample in this

case.

𝐺𝐵𝑀

1. Suitable for one-dimensional data;

2. Possible to obtain uncertainty

information and failure rate function;

3. Possible to update variables according to

new data;

4. Does not need to cover all the aspect in

the historical data;

5. Flexible; could use mathematic way to

estimate parameters or by historical data

directly;

1. High expertise; Need to have a

good understanding of the

deterioration evolving and choose

the correct model.

2. Time-consuming when applying

stochastic model (GBM)

3. Hard to find proper parameters

support multi-dimensional data

4. We need to define the failure

threshold, which increases

uncertainty.

CHAPTER 9: DISCUSSION, CONCLUSION, AND

RECOMMENDATIONS FOR FUTURE WORK

 98

𝐴𝑁𝑁

1. Support multi-dimensional data;

2. Fast processing since we have the

offline model;

3. Easy to apply;

4. Possible to acquire uncertainty

information by Bayesian drop out;

5. Could update parameters when comes

the new dataset;

6. It could be regarded as a universal proxy

model if the training data covers most of

the features.

1. The prognostics depend on the

historical data;

2. The training process is Time-

consuming;

3. High professionalism; Need to

have a good understanding of the

mechanism of 𝐴𝑁𝑁;

4. Hard to get the best model, since

there is serval different 𝐴𝑁𝑁s;

5. The prediction is only based on

the latest data in this case, which

increase the vulnerability;

6. Easy to hit overfitting problems.

In Chapter 8, we propose a decision model. To make the model directive and

illustrative, we do not consider the uncertainty of the lifetime or RUL. This model is to

present that what kind of information could a decision model provides since there is not

much information from the literature review on how to formulate a decision model in

the digital twin. This information is essential when it comes to long-term planning, such

as windfarm maintenance and subsea equipment maintenance. The decision model is

cost-based monitoring combined with spares, which could be adapted to net present

value and inventory information. In practice, the deterioration of components is not

identical. After adjusting and re-organizing, the decision-model could provide dynamic

support for long-term planning.

9.2 Summary and Conclusion

The main objectives of this thesis are to propose a digital twin framework for predictive

maintenance and demonstrate the framework by a case study.

From the literature review, there is not much information about a standardized

methodology and process to build a digital twin for predictive maintenance. Inspired

CHAPTER 9: DISCUSSION, CONCLUSION, AND

RECOMMENDATIONS FOR FUTURE WORK

 99

by several standards, websites, and documentation, we propose a conceptual framework

to illustrate the primary process for establishing a digital twin by integrating existing

systems for industries in Chapter 3. The framework information includes but not limited

to:

• System information collecting and system analysis

• Data availability, structure, and types

• Communication through different models

• PHM methods

• Decision making

In order to demonstrate the framework, a hypothetical system is introduced in Chapter

2. This system simulates a factory, drawn from the wind farm, which requires long-

term maintenance planning and specific maintenance windows. This system could

provide an insightful view of how to decide maintenance through primary factors

dynamically.

Within this scope, the interior architecture of the digital twin presented in this thesis is

a communication protocol, three state-of-the-art PHM methods, and a decision model.

The three PHM methods are 𝑘 − 𝑁𝑁 similarity-based model, the Artificial Neural

network model, and the Stochastic process, presented in Chapter 4. Inside the digital

twin, the models are connected by a communication protocol-Socket, which is aimed

at establishing bridges through models and execute commands. In order to simulate the

data streaming process, we divide the PHM process into two phases, offline reference,

and online prognostics, respectively, to three different PHM methods. Meanwhile, the

streaming data from machines are with noise and missing values. The pre-processing

of the dataset is necessary before the offline model, which is presented in Chapter 4 and

Chapter 6, to enhance the performance of PHM methods and get a robust prediction.

For offline reference and online prognostics, all three methods have unique

characteristics both in model training and prognostics, as presented in Chapter 6 and 7.

These characteristics could be an evaluation standard of the performance in the

practical, such as the complexity, time spending, and accuracy. The comparison of these

three methods is also discussed in Chapter 8 Discussion. The purpose of prognostics is

CHAPTER 9: DISCUSSION, CONCLUSION, AND

RECOMMENDATIONS FOR FUTURE WORK

 100

to get the RUL with uncertainty, which is the input of the decision model.

In this thesis, a simplified dynamic decision model is proposed in Chapter 7. For

predictive maintenance, the decision model provides an evaluation standard of when to

conduct maintenance. This standard is based on preparation, maintenance capacity,

inventory, and the cost. The purpose of the decision model is not only to find a

maintenance time but to integrate and allocate the resource and provide a dynamic

strategy based on predicted and known events.

Figure 9.1 Digital twin framework presented in this thesis

As a whole, due to the limitations of heavy computational work, some of the models

are not completed, only present a demo version. However, the integrated digital twin

with predictive maintenance could demonstrate the framework and conceptual ideas

(shown in Figure 9.1), such that it could be concluded that the main objectives for this

master thesis are met.

9.3 Further Work

In this section, we are going to discuss the potential improvements and

recommendations of the digital twin as guidance to implement predictive maintenance

successfully in the future.

Remote control

In the digital twin proposed, the communication protocol is to establish a bridge

CHAPTER 9: DISCUSSION, CONCLUSION, AND

RECOMMENDATIONS FOR FUTURE WORK

 101

between different models and transferring data. With the prognostics model, the RUL

information could be obtained. However, due to the environmental disturbance, the

prognostics could not be that accurate. To avoid unnecessary loss, the communication

model should send control information to the assets to adjust the working preference.

Further, the model could pre-define the state of assets according to external

information, such as bad weather and maintenance window time, to strive for extending

the lifetime.

Prognostics and health management

In this thesis, we discussed three different methods. For these three methods, we could

try to merge the Pros to get a hybrid model. In the prognostics, most of the input variable

is sequential; meanwhile, In industries, some of the assets do not have much historical

data. Recurrent Neural Networks (RNN) is aimed at time series analysis, which should

perform better than the regular feed-forward neural network. Stochastic processes use

‘the percentage drift’ and ‘the percentage volatility’ to estimate the health indicator.

Bayesian could help to update the parameters. There could be some hybrid neural

network model to integrate these three features 10 , which could be a potential

development.

Decision model

For predictive maintenance, the decision model could provide solutions to engineers

and realize partial control of the assets. During the operation of the asset, one

deterioration component may cause a chain effect and cause more damage to the

machine. Thus, it is essential to lower or shut down the machine remotely or

automatically to reduce the cost of maintenance by the decision model. Meanwhile, the

primary mission of predictive maintenance is to overall plan the cost and available

resources. Meanwhile, it could monitor the market and calculate the updated price of

rental or purchase according to the net present value (NPV). In the future, the decision

10 The combination of these three features could be inside RNN, the activation function is related to ‘the

percentage drift’ and ‘the percentage volatility’, and the parameters are updated by Bayesian model.

CHAPTER 9: DISCUSSION, CONCLUSION, AND

RECOMMENDATIONS FOR FUTURE WORK

 102

model should act as a ‘brain’ in the whole digital twin. It could overall plan the

maintenance schedule and allocate resources. Moreover, it could illustrate the

consequence when engineers select different scenarios, such as postpone the

maintenance schedule and partial maintenance. These improvements could make

maintenance more flexible and smarter.

Bibliography

AKKAYA, I. 2016. Data-driven cyber-physical systems via real-time stream analytics and

machine learning. UC Berkeley.

AN, D., CHOI, J. H. & KIM, N. H. Options for Prognostics Methods: A review of data-driven

and physics-based prognostics. 54th AIAA/ASME/ASCE/AHS/ASC Structures,

Structural Dynamics, and Materials Conference, 2013. 1940.

ATAMURADOV, V., MEDJAHER, K., DERSIN, P., LAMOUREUX, B. & ZERHOUNI, N.

2017. Prognostics and health management for maintenance practitioners-review,

implementation and tools evaluation. International Journal of Prognostics and Health

Management, 8, 1-31.

BACIDORE, M. 2019. The all-knowing digital twin [Online]. Control Design. Available:

https://www.controldesign.com/articles/2019/the-all-knowing-digital-twin/ [Accessed

11 2019].

BAI, G., WANG, P., HU, C. & PECHT, M. 2014. A generic model-free approach for lithium-

ion battery health management. Applied Energy, 135, 247-260.

BARROS, A. 2019. Data Driven Prognostic and Predictive Maintenance. Norwegian

University of Science and Technology.

BEVILACQUA, M., BOTTANI, E., CIARAPICA, F. E., COSTANTINO, F., DI DONATO,

L., FERRARO, A., MAZZUTO, G., MONTERIÙ, A., NARDINI, G. & ORTENZI, M.

2020. Digital Twin Reference Model Development to Prevent Operators’ Risk in

Process Plants. Sustainability, 12, 1088.

BIESINGER, F., MEIKE, D., KRAß, B. & WEYRICH, M. 2019. A digital twin for production

planning based on cyber-physical systems: A Case Study for a Cyber-Physical System-

Based Creation of a Digital Twin. Procedia CIRP, 79, 355-360.

BOSCHERT, S. & ROSEN, R. 2016. Digital twin—the simulation aspect. Mechatronic

Futures. Springer.

CACHADA, A., BARBOSA, J., LEITÑO, P., GCRALDCS, C. A., DEUSDADO, L., COSTA,

J., TEIXEIRA, C., TEIXEIRA, J., MOREIRA, A. H. & MOREIRA, P. M. Maintenance

4.0: Intelligent and Predictive Maintenance System Architecture. 2018 IEEE 23rd

International Conference on Emerging Technologies and Factory Automation (ETFA),

2018. IEEE, 139-146.

CHAUHAN, N. S. 2019 Introduction to Artificial Neural Networks(ANN) [Online]. Available:

https://towardsdatascience.com/introduction-to-artificial-neural-networks-ann-

1aea15775ef9 [Accessed].

CHIANG, J. Y., LIO, Y. & TSAI, T. R. 2015. Degradation tests using geometric Brownian

motion process for lumen degradation data. Quality and Reliability Engineering

International, 31, 1797-1806.

CROARKIN, C., TOBIAS, P., FILLIBEN, J., HEMBREE, B. & GUTHRIE, W. 2006.

https://www.controldesign.com/articles/2019/the-all-knowing-digital-twin/
https://towardsdatascience.com/introduction-to-artificial-neural-networks-ann-1aea15775ef9
https://towardsdatascience.com/introduction-to-artificial-neural-networks-ann-1aea15775ef9

BIBLIOGRAPHY

 104

NIST/SEMATECH e-handbook of statistical methods. NIST/SEMATECH, July.

Available online: http://www. itl. nist. gov/div898/handbook.

DING, K., CHAN, F. T. S., ZHANG, X., ZHOU, G. & ZHANG, F. 2019. Defining a Digital

Twin-based Cyber-Physical Production System for autonomous manufacturing in

smart shop floors. International Journal of Production Research, 57, 6315-6334.

DOSHI, S. Jan 13, 2019. Various Optimization Algorithms For Training Neural Network

[Online]. Available: https://medium.com/@sdoshi579/optimizers-for-training-neural-

network-59450d71caf6 [Accessed].

FORTUNER, B. 2019. Machine learning glossary [Online]. Available: http://ml-

cheatsheet.readthedocs.io [Accessed].

FOUNDATION, P. S. 2020. Python - Network Programming [Online]. Available:

https://www.tutorialspoint.com/python/python_networking.htm [Accessed].

FRANGOPOL, D. M. 2011. Life-cycle performance, management, and optimisation of

structural systems under uncertainty: accomplishments and challenges 1. Structure and

infrastructure Engineering, 7, 389-413.

GLAESSGEN, E. & STARGEL, D. The digital twin paradigm for future NASA and US Air

Force vehicles. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics

and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference

14th AIAA, 2012. 1818.

GRIEVES, M. & VICKERS, J. 2017. Digital twin: Mitigating unpredictable, undesirable

emergent behavior in complex systems. Transdisciplinary perspectives on complex

systems. Springer.

HU, C., YOUN, B. D. & WANG, P. 2019. Engineering design under uncertainty and health

prognostics, Springer.

HYNDMAN, R. J. & ATHANASOPOULOS, G. 2018. Forecasting: principles and practice,

OTexts.

IMMERMAN, G. 2018. The Impact of Predictive Maintenance on Manufacturing [Online].

Available: https://www.machinemetrics.com/blog/the-impact-of-predictive-

maintenance-on-manufacturing [Accessed].

ISO, -. 2019. 13374-1: 2003 Condition Monitoring and Diagnostics of Machines—Data

Processing. Communication and Presentation—Part, 1.

ISO/CD, -. 2019. Digital Twin manufacturing framework — Part 1: Overview and general

principles [Online]. Available: https://www.iso.org/standard/75066.html [Accessed].

JANASAK, K. M. & BESHEARS, R. R. Diagnostics to Prognostics-A product availability

technology evolution. 2007 Annual Reliability and Maintainability Symposium, 2007.

IEEE, 113-118.

JESAN, J. P. 2004. The neural approach to pattern recognition. Ubiquity, 2004, 2.

KAISE, T. Reliability Analysis for Degradation Data Based on Stochastic Process Models and

Bayesian Estimations. Proceedings of the ISCIE International Symposium on

Stochastic Systems Theory and its Applications, 2012. The ISCIE Symposium on

Stochastic Systems Theory and Its Applications, 246-250.

KIM, N.-H., AN, D. & CHOI, J.-H. 2016. Prognostics and health management of engineering

http://www/
https://medium.com/@sdoshi579/optimizers-for-training-neural-network-59450d71caf6
https://medium.com/@sdoshi579/optimizers-for-training-neural-network-59450d71caf6
http://ml-cheatsheet.readthedocs.io/
http://ml-cheatsheet.readthedocs.io/
https://www.tutorialspoint.com/python/python_networking.htm
https://www.machinemetrics.com/blog/the-impact-of-predictive-maintenance-on-manufacturing
https://www.machinemetrics.com/blog/the-impact-of-predictive-maintenance-on-manufacturing
https://www.iso.org/standard/75066.html

BIBLIOGRAPHY

 105

systems: An introduction, springer.

KOBAYASHI, H., MARK, B. L. & TURIN, W. 2011. Probability, random processes, and

statistical analysis: applications to communications, signal processing, queueing

theory and mathematical finance, Cambridge University Press.

KRITZINGER, W., KARNER, M., TRAAR, G., HENJES, J. & SIHN, W. 2018. Digital Twin

in manufacturing: A categorical literature review and classification. IFAC-

PapersOnLine, 51, 1016-1022.

LE SON, K., FOULADIRAD, M., BARROS, A., LEVRAT, E. & IUNG, B. 2013. Remaining

useful life estimation based on stochastic deterioration models: A comparative study.

Reliability Engineering & System Safety, 112, 165-175.

LEE, C., CAO, Y. & NG, K. H. 2017. Big data analytics for predictive maintenance strategies.

Supply Chain Management in the Big Data Era. IGI Global.

LEE, E. A. 2015. The past, present and future of cyber-physical systems: A focus on models.

Sensors, 15, 4837-4869.

LIAO, W., CHEN, M. & YANG, X. 2017. Joint optimization of preventive maintenance and

production scheduling for parallel machines system. Journal of Intelligent & Fuzzy

Systems, 32, 913-923.

LIU, Q., DONG, M. & CHEN, F. 2018. Single-machine-based joint optimization of predictive

maintenance planning and production scheduling. Robotics and Computer-Integrated

Manufacturing, 51, 238-247.

LIU, Q., DONG, M. & PENG, Y. 2013. A dynamic predictive maintenance model considering

spare parts inventory based on hidden semi-Markov model. Proceedings of the

Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering

Science, 227, 2090-2103.

LU, S., TU, Y. C. & LU, H. 2007. Predictive condition‐based maintenance for continuously

deteriorating systems. Quality and Reliability Engineering International, 23, 71-81.

LUO, J., NAMBURU, M., PATTIPATI, K., QIAO, L., KAWAMOTO, M. & CHIGUSA, S.

Model-based prognostic techniques [maintenance applications]. Proceedings

AUTOTESTCON 2003. IEEE Systems Readiness Technology Conference., 2003.

IEEE, 330-340.

MISSINGLINK.AI. 2020. 7 Types of Neural Network Activation Functions: How to Choose?

[Online]. Available: https://missinglink.ai/guides/neural-network-concepts/7-types-

neural-network-activation-functions-right/ [Accessed].

MOBLEY, R. K. 2002. An introduction to predictive maintenance, Elsevier.

MOSALLAM, A., MEDJAHER, K. & ZERHOUNI, N. 2013. Nonparametric time series

modelling for industrial prognostics and health management. The International Journal

of Advanced Manufacturing Technology, 69, 1685-1699.

MOSALLAM, A., MEDJAHER, K. & ZERHOUNI, N. Component based data-driven

prognostics for complex systems: Methodology and applications. 2015 First

International Conference on Reliability Systems Engineering (ICRSE), 2015. IEEE, 1-

7.

MOSALLAM, A., MEDJAHER, K. & ZERHOUNI, N. 2016. Data-driven prognostic method

https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/

BIBLIOGRAPHY

 106

based on Bayesian approaches for direct remaining useful life prediction. Journal of

Intelligent Manufacturing, 27, 1037-1048.

NGUYEN, K. T. & MEDJAHER, K. 2019. A new dynamic predictive maintenance framework

using deep learning for failure prognostics. Reliability Engineering & System Safety,

188, 251-262.

PARK, C. & PADGETT, W. 2005. Accelerated degradation models for failure based on

geometric Brownian motion and gamma processes. Lifetime Data Analysis, 11, 511-

527.

PECHT, M. 2009. Prognostics and health management of electronics. Encyclopedia of

structural health monitoring.

PECHT, M. & JAAI, R. 2010. A prognostics and health management roadmap for information

and electronics-rich systems. Microelectronics Reliability, 50, 317-323.

PECHT, M. G. 2010. A prognostics and health management roadmap for information and

electronics-rich systems. IEICE ESS Fundamentals Review, 3, 4_25-4_32.

QI, Q., TAO, F., ZUO, Y. & ZHAO, D. 2018. Digital twin service towards smart

manufacturing. Procedia CIRP, 72, 237-242.

QIAO, Q., WANG, J., YE, L. & GAO, R. X. 2019. Digital Twin for Machining Tool Condition

Prediction. Procedia CIRP, 81, 1388-1393.

RAMAN, V. & HASSANALY, M. 2019. Emerging trends in numerical simulations of

combustion systems. Proceedings of the Combustion Institute, 37, 2073-2089.

ROCCHETTA, R., BELLANI, L., COMPARE, M., ZIO, E. & PATELLI, E. 2019. A

reinforcement learning framework for optimal operation and maintenance of power

grids. Applied energy, 241, 291-301.

ROSEN, R., VON WICHERT, G., LO, G. & BETTENHAUSEN, K. D. 2015. About the

importance of autonomy and digital twins for the future of manufacturing. IFAC-

PapersOnLine, 48, 567-572.

SAXENA, A., GOEBEL, K., SIMON, D. & EKLUND, N. Damage propagation modeling for

aircraft engine run-to-failure simulation. 2008 international conference on prognostics

and health management, 2008. IEEE, 1-9.

SCHEIFELE, C., VERL, A. & RIEDEL, O. 2019. Real-time co-simulation for the virtual

commissioning of production systems. Procedia CIRP, 79, 397-402.

SEYR, H. & MUSKULUS, M. 2019. Decision Support Models for Operations and

Maintenance for Offshore Wind Farms: A Review. Applied Sciences, 9, 278.

SHARMA, S. 2017 Activation Functions in Neural Networks [Online]. Available:

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

[Accessed].

SHLENS, J. 2014. A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100.

SI, X.-S., HU, C.-H., CHEN, M.-Y. & WANG, W. An adaptive and nonlinear drift-based

Wiener process for remaining useful life estimation. 2011 Prognostics and System

Health Managment Confernece, 2011a. IEEE, 1-5.

SI, X.-S., WANG, W., HU, C.-H. & ZHOU, D.-H. 2011b. Remaining useful life estimation–a

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

BIBLIOGRAPHY

 107

review on the statistical data driven approaches. European journal of operational

research, 213, 1-14.

SINGH, A. 2018. A Practical Introduction to K-Nearest Neighbors Algorithm for Regression

(with Python code). Accès à https://www. analyticsvidhya. com/blog/2018/08/k-

nearestneighbor-introduction-regression-python.

SÖDERBERG, R., WÄRMEFJORD, K., CARLSON, J. S. & LINDKVIST, L. 2017. Toward

a Digital Twin for real-time geometry assurance in individualized production. CIRP

Annals, 66, 137-140.

TAO, F., CHENG, J., QI, Q., ZHANG, M., ZHANG, H. & SUI, F. 2018a. Digital twin-driven

product design, manufacturing and service with big data. The International Journal of

Advanced Manufacturing Technology, 94, 3563-3576.

TAO, F., QI, Q., LIU, A. & KUSIAK, A. 2018b. Data-driven smart manufacturing. Journal of

Manufacturing Systems, 48, 157-169.

TAO, F., SUI, F., LIU, A., QI, Q., ZHANG, M., SONG, B., GUO, Z., LU, S. C. Y. & NEE, A.

Y. C. 2019. Digital twin-driven product design framework. International Journal of

Production Research, 57, 3935-3953.

TAVNER, P. 2012a. Offshore wind turbines: reliability, availability and maintenance, The

Institution of Engineering and Technology.

TAVNER, P. 2012b. Offshore wind turbines: reliability, availability and maintenance, IET.

VEMURI, S. 2019. Why Is Predictive Maintenance Important? [Online]. Available:

https://www.digitaldoughnut.com/articles/2018/january/why-is-predictive-

maintenance-important [Accessed].

VENKATESAN, S., MANICKAVASAGAM, K., TENGENKAI, N. & VIJAYALAKSHMI,

N. 2019. Health monitoring and prognosis of electric vehicle motor using intelligent-

digital twin. IET Electric Power Applications, 13, 1328-1335.

WANG, J. 2019. Predictive maintenance and Digital twins. TPK4550 Specialization project.

WANG, T., YU, J., SIEGEL, D. & LEE, J. A similarity-based prognostics approach for

remaining useful life estimation of engineered systems. 2008 international conference

on prognostics and health management, 2008. IEEE, 1-6.

WEGENER, P. 2019. GERMAN STANDARDIZATION ROADMAP Industrie 4.0 Version 3.

DIN e, 2018.

WENINGER, R. 2020. What Do the Next Five Years Hold For the IoT? [Online]. Innovation

& Technology Business School. [Accessed 5.20 2020].

WOLD, S., ESBENSEN, K. & GELADI, P. 1987. Principal component analysis. Chemometrics

and intelligent laboratory systems, 2, 37-52.

ZHANG, L., MU, Z. & SUN, C. 2018. Remaining useful life prediction for lithium-ion batteries

based on exponential model and particle filter. IEEE Access, 6, 17729-17740.

https://www/
https://www.digitaldoughnut.com/articles/2018/january/why-is-predictive-maintenance-important
https://www.digitaldoughnut.com/articles/2018/january/why-is-predictive-maintenance-important

 108

Appendix A

Acronyms

ANN Artificial Neural Network

ATF Automation factory

CNN convolutional neural network

CPS Cyber-Physical Systems

FMECA Failure mode, effects, and criticality analysis

FTA Fault tree analysis

GBM Geometric Brownian motion

HI Health indicator

IoT internet of things

IP Internet Protocol address

k-NN k-Nearest-Neighbor

LSTM Long short-term memory

MQTT Message Queuing Telemetry Transport

MSB Media Stream Broadcast

MSE Mean squared error

NPV Net present value

PCA Principal component analysis

PDF Probability density function

PHI Physics Health Indicator

 109

PHM prognostics and health management

RAMS Reliability availability maintenablity and safety

RNN Recurrent Neural Networks

RUL Remaining useful if life

SDE Stochastic differential equation

SVD Singular value decomposition

TCP Transmission control protocol

TSC Time series components

VHI Virtual health indicator

 110

Appendix B

Roadmap for Predictive maintenance Digital

twin

 111

Appendix C

Python codes of digital twin architecture

C.1 Communication protocol in Socket

C1.1 Socket listening file transferring ‘Server’

1. """
2. file: recv.py
3. socket service
4. """
5.
6. import socket
7. import tqdm
8. import os
9.
10. # device's IP address
11. SERVER_HOST = input("Please input server Ip: ")
12. SERVER_PORT = 5003
13. # receive 4096 bytes each time
14. BUFFER_SIZE = 4096
15. SEPARATOR = "<SEPARATOR>"
16. # create the server socket
17. # TCP socket
18. s = socket.socket()
19. # bind the socket to our local address
20. s.bind((SERVER_HOST, SERVER_PORT))
21. # enabling our server to accept connections
22. # 5 here is the number of unaccepted connections that
23. # the system will allow before refusing new connections
24. s.listen(5)
25. os.chdir(input("please input save location:"))
26. print(f"[*] Listening as {SERVER_HOST}:{SERVER_PORT}")
27. # accept connection if there is any
28. client_socket, address = s.accept()
29. # if below code is executed, that means the sender is connected
30. print(f"[+] is connected.")
31. # receive the file infos
32. # receive using client socket, not server socket
33. received = client_socket.recv(BUFFER_SIZE).decode()
34. filename, filesize = received.split(SEPARATOR)
35. # remove absolute path if there is
36. filename = os.path.basename(filename)
37. # convert to integer
38. filesize = int(filesize)
39. # start receiving the file from the socket
40. # and writing to the file stream
41. progress = tqdm.tqdm(range(filesize), f"Receiving {filename}", unit="B", uni

t_scale=True, unit_divisor=1024)

 112

42. with open(filename, "wb") as f:
43. for _ in progress:
44. # read 1024 bytes from the socket (receive)
45. bytes_read = client_socket.recv(BUFFER_SIZE)
46. if not bytes_read:
47. # nothing is received
48. # file transmitting is done
49. break
50. # write to the file the bytes we just received
51. f.write(bytes_read)
52. # update the progress bar
53. progress.update(len(bytes_read))
54.
55.
56. # close the client socket
57. client_socket.close()
58. # close the server socket
59. s.close()

C1.2 Socket listening file transferring ‘Client’

1. import socket
2. import tqdm
3. import os
4.
5. SEPARATOR = "<SEPARATOR>"
6. BUFFER_SIZE = 4096 # send 4096 bytes each time step
7.
8. # the ip address or hostname of the server, the receiver
9. host = input("Please input server ip:")
10. # the port, let's use 5001
11. port = 5003
12. # the name of file we want to send, make sure it exists
13. filename = "D:\programming/√Knn regression.ipynb"
14. # get the file size
15. filesize = os.path.getsize(filename)
16.
17. # create the client socket
18. s = socket.socket()
19.
20. print(f"[+] Connecting to :{port}")
21. s.connect((host, port))
22. print("[+] Connected.")
23.
24. # send the filename and filesize
25. s.send(f"{filename}{SEPARATOR}{filesize}".encode())
26.
27. # start sending the file
28. progress = tqdm.tqdm(range(filesize), f"Sending {filename}", unit="B", unit_

scale=True, unit_divisor=1024)
29. with open(filename, "rb") as f:
30. for _ in progress:
31. # read the bytes from the file
32. bytes_read = f.read(BUFFER_SIZE)
33. if not bytes_read:
34. # file transmitting is done
35. break

 113

36. # we use sendall to assure transimission in
37. # busy networks
38. s.sendall(bytes_read)
39. # update the progress bar
40. progress.update(len(bytes_read))
41. # close the socket
42. s.close()

C1.3 Socket monitoring file transferring ‘Server’

1. '''''

2. server：

3. '''
4. import socket
5. server = socket.socket()
6. server.bind(("192.168.137.1",5001)) #port and ip
7. server.listen(5) # listing, mostly have five connection
8. print('waiting the call')
9. while True:
10. conn,addr = server.accept() # waiting for caling
11. print(conn)
12. print('the call has comming')
13. while True:
14. data = conn.recv(1024)
15. if not data :
16. print('this user is end,exit!\n next user')
17. break
18. print('data:',data.decode())
19. conn.send(data.upper())

C1.4 Socket monitoring file transferring ‘Client’

1. import socket
2. import os
3.
4. SEPARATOR = "<SEPARATOR>"
5. BUFFER_SIZE = 4096 # send 4096 bytes each time step
6.
7. # the ip address or hostname of the server, the receiver
8. host = input("Please input server ip:")
9. # the port, let's use 5001
10. port = 5001
11. # the name of file we want to send, make sure it exists
12.
13.
14. # create the client socket
15. s = socket.socket()
16.
17. print(f"[+] Connecting to {host}:{port}")
18. s.connect((host, port))

 114

19. print("[+] Connected.")
20.
21.
22. while True:
23. msg = input("massage:").strip()
24.
25. if len(msg) == 0:
26. continue
27.
28. s.send(msg.encode(encoding='utf-8')) # not allowed empty message
29.
30. data = s.recv(1024)
31. print(data.decode())
32.
33. s.close()

C.2 Data pre-processing and analysis

1. # coding: utf-8
2.
3. # In[125]:
4.
5. # package import
6.
7. import pandas as pd
8. import os
9. import numpy as np
10. import matplotlib.pyplot as plt
11. import seaborn as sns
12.
13. import importlib
14. from sklearn.linear_model import LinearRegression
15. from sklearn import preprocessing
16. from sklearn.preprocessing import StandardScaler
17. from sklearn.decomposition import PCA
18. # from sklearn.feature_selection import f_regression
19. from sklearn.linear_model import LogisticRegression
20. from scipy.signal import savgol_filter
21. from scipy.optimize import curve_fit
22. from sklearn.model_selection import TimeSeriesSplit
23. from sklearn.metrics.pairwise import euclidean_distances
24. get_ipython().run_line_magic('matplotlib', 'inline')
25.
26. # In[76]:
27.
28. ## data import
29. dirname = os.getcwd()
30. data_pth_train = os.path.join(dirname, 'training','train_FD001.txt')
31. data_pth_rul = os.path.join(dirname, 'rul','RUL_FD001.txt')
32. # column names for the dataset
33. # op_cond refers to operational condition, sn: sensor
34. col_name = ['machine', 'time/cycle', 'op_cond_1', 'op_cond_2', 'op_cond_3']

35. col_name = col_name + ['sn_{}'.format(s + 1) for s in range(21)]
36.
37. # In[77]:

 115

38.
39. # load data into sensor df
40. # notice index_col=0 is used so that the data for each separate engine can b

e obtained easily
41. #(engine columns is just a group of data)
42. df_train = pd.read_csv(data_pth_train, header=None, names=col_name,delim_whi

tespace=True,index_col=0)
43. TrueRUL= pd.read_csv(data_pth_rul, sep = "\n", header = None)
44.
45. # In[78]:
46.
47. TrueRUL.columns= ['RUL']
48. TrueRUL.head()
49.
50. # In[79]:
51.
52. # Take a look at data
53. #df_train.head()
54. #pd.set_option('max_rows', 10,'max_columns',8)
55.
56. # In[80]:
57.
58. df_train
59.
60. # so basically there are 218 engines in the data set
61.
62. # In[81]:
63.
64. df_train.info()
65.
66. # There is no missing data or Null data
67.
68. # In[82]:
69.
70. df_train.describe()
71.
72. # In[83]:
73.
74. # look at the mean of all columns
75. df_train.std().plot.bar(figsize=(12,8));
76. plt.title('std value of signals')
77.
78. # In[84]:
79.
80. df_train.mean()
81.
82. # In[85]:
83.
84. df_train_data1 = df_train.loc[1,"time/cycle" : "sn_21"]
85. df_train_data1.info()
86. #pd.set_option('max_rows', 5,'max_columns',8)
87. # In[86]:
88. df_train_data1
89. # In[87]:
90. df_train_data1.describe()
91. # In[88]:
92. df_train_data1.mean().plot.bar(figsize=(12,8));
93. # Examine Correlation Between Columns (linear)
94. # In[89]:
95. #For all
96. #heatmap to view correlation between independent variables
97. correlations = df_train.drop('time/cycle',axis = 1).corr()
98. #corr_map = sns.diverging_palette(220, 10, as_cmap=True)

 116

99. f, ax = plt.subplots(figsize=(30,30))
100. sns.heatmap(correlations, annot=True, linewidths=0.5,linecolor="red",

 fmt= '.1f',ax=ax)
101. plt.title('The correlation map of all machines ',color = 'black',font

size = 50)
102. plt.show()
103. # In[90]:
104. # correaltion for engine 1
105. #engine_num=1
106. f,ax = plt.subplots(figsize=(30, 30))
107. sns.heatmap(df_train_data1.corr(), annot=True, linewidths=0.5,linecol

or="red", fmt= '.1f',ax=ax)
108. plt.title('The correlation map of machine 1',color = 'black',fontsize

 = 50)
109. plt.show()
110. # R value in the figure
111. # From these two figure , we could say there are alot variables have

correlations and in order to find the correlation part
112. # only consider the positive values
113. # and the totally value figure is not that different compared with th

e first machine
114. #
115. # Then categorize the highly correlation pairs
116. # In[91]:
117.
118. def find_corr_pairs(corr,thrsh):
119.
120. """
121. find high correlation column pairs in df
122. ======================================
123. input:
124. corr - (df)- correlation matrix generated by pandas
125. thrsh - (float) threshold value to consider correlation as high s

o that it is included in the output
126. output:
127. high_corr_pairs - (list) list of tuples of the two-

column names and their correlation. corr> thrsh
128. """
129. high_corr_pairs = []
130. # same as input 'corr' but the upper -

triangle half of the matrix is zeros (for convenience only)
131. corr_diag = pd.DataFrame(np.tril(corr.values), columns=corr.colum

ns, index = corr.index)
132.
133. # check the correlation between every pair of columns in the cor

r and keeps the high ones
134. for col_num , col in enumerate(corr_diag):
135. col_corr=corr_diag[col].iloc[col_num+1:] # this slicing ensur

es ignoring self_corr and duplicates due to symmetry
136. # bool mask for pairs with high corr with col
137. mask_pairs = col_corr.apply(lambda x: abs(x))>thrsh
138. idx_pairs=col_corr[mask_pairs].index
139.
140. # create list of high corr pairs
141. for idx , corr in zip(idx_pairs,col_corr[mask_pairs].values):

142. high_corr_pairs.append((col, idx, corr))
143.
144. return high_corr_pairs
145.
146. # In[92]:
147.
148. corr_pairs=find_corr_pairs(correlations,0.9)

 117

149. for c in corr_pairs:
150. print(c)
151. # the value above are correlated with others , however, we need to ch

eck if they really correlated.
152. # then we will plot the signal PDF for each sensor.
153. #
154. # plot variables distribution
155. # In[93]:
156. def plot_distribution(df, engine_num=None):
157. '''''plot all non trivial measurements and states'''
158.
159. cols = df.columns
160. n_cols = min(len(cols), 5)
161. n_rows = int(np.ceil(len(cols) / n_cols))
162.
163. sns.set()
164. fig, axes = plt.subplots(n_rows, n_cols, figsize=(15,12))
165. axes = axes.flatten()
166. if engine_num != None:
167. fig.suptitle('distributions for Machines #: {}'.format(engine

_num))
168. df_plot = df.loc[engine_num]
169. else:
170. fig.suptitle('distributions for all Machines')
171. df_plot = df
172. for col, ax in zip(cols, axes):
173. ax=sns.distplot(df_plot[col], ax=ax, label=col)
174. ax.legend(loc=1)
175. # labels(col, "p", ax)
176. return fig
177. # In[94]:
178. fig=plot_distribution(df_train)
179.
180. # In[95]:
181.
182. df_train_std = df_train.drop('time/cycle',axis=1)
183.
184. df_train_std.std().plot.bar(figsize=(12,8));
185.
186. # In[96]:
187. df_train_std.std()
188. # dropping insignificant variables
189. # remove the virable in the dataset
190. # In[97]:
191. variable_remove=[col for col in df_train.columns if (df_train[col].s

td() <= .0001)]
192. print('columns to be removed from analysis since they do not change w

ith time \n',variable_remove)
193. # In[98]:
194. df_train.drop(columns=variable_remove,axis=1,inplace=True)
195. # In[99]:
196. def plot_ts(df, engine_num):
197. """
198. plot time history of for specific engine
199. ==
200. input:
201. df - (df) Dataframe you wish to plot the time series for its colu

mns
202. engine_num - (int) engine number to selector
203. """
204.
205. # prepare the dataframe for plotting
206. ts = df.loc[engine_num].copy() # df for the needed engine

 118

207. time = ts['time/cycle']
208. ts.drop(labels=['time/cycle'],axis=1,inplace=True)
209. cols = ts.columns
210.
211. # plotting
212. fig, axes = plt.subplots(len(cols), 1, figsize=(19,17))
213. for col, ax in zip(cols, axes):
214. ax.plot(time,ts[col],label=col)
215. ax.legend(loc=2)
216.
217. # figure title
218. fig.suptitle('Engine #: {}'.format(engine_num))
219.
220. # In[100]:
221. fig_signal1= plot_ts(df_train, 1)
222. # In[101]:
223. # add RUL to each engine based on time column,
224. # notice that RUL is negative quantity here to make 0 as the end of l

ife for all engines
225. for id in df_train.index.unique():
226. df_train.loc[id,'RUL'] = df_train.loc[id]['time/cycle'].apply(lam

bda x: x-df_train.loc[id]['time/cycle'].min())
227. # In[102]:
228. def plot_ts_all(df):
229. """
230. plot time history of for all engines in the data
231. ===
232. input:
233. df - (df) Dataframe you whish to plot the time series for its col

umns
234. """
235.
236. # prepare the dataframe for plotting
237. ts = df.copy() # df for the needed engine
238. ts.drop(labels=['time/cycle'],axis=1,inplace=True)
239.
240. cols = ts.columns
241. # plotting
242. fig, axes = plt.subplots(len(cols)-1, 1, figsize=(19,17))
243. for col, ax in zip(cols, axes):
244. if col == 'RUL':
245. continue
246.
247. fontdict = {'fontsize': 12}
248. ax.set_title(col,loc='left',fontdict=fontdict)
249. for engine_id in ts.index.unique():
250. time = ts.loc[engine_id,'RUL']
251. ax.plot(time,ts.loc[engine_id,col],label=col)
252.
253. # figure title
254.
255. return fig
256. # In[103]:
257. fig=plot_ts_all(df_train)
258. fig.suptitle('All Machine Time Series \n each line is different machi

ne response\n x-axis is lifetime')
259. # In[60]:
260.
261. df_train.drop(['sn_2','sn_3' ,'sn_4' , 'sn_7','sn_8','sn_11','sn_12',

'sn_13','sn_15','sn_17','sn_20','sn_21'],axis=1,inplace=True)
262. # In[104]:
263. fig=plot_ts_all(df_train)

 119

264. fig.suptitle('All Machine Time Series \n each line is different machi
ne response\n x-axis is lifetime')

265. # In[105]:
266. df_train.drop(['op_cond_1','op_cond_2' ,'sn_6' ,'sn_9' , 'sn_14'],axi

s=1,inplace=True)
267. df_train.shape
268. # In[143]:
269. for id in df_train.index.unique():
270. df_train.loc[id,'RUL'] = df_train.loc[id]['time/cycle'].apply(lam

bda x: x-df_train.loc[id]['time/cycle'].min())
271. # positive RUL for each engine
272.
273. # get all sensors
274. raw_columns = df_train.columns.values[1:-1]
275. raw_sensors = df_train[raw_columns].values # as numpy array
276. raw_columns
277.
278. # In[107]:
279. standard_scale = StandardScaler()
280. standard_sensors = standard_scale.fit_transform(raw_sensors)
281. # In[108]:
282. lin_model =LinearRegression()
283. engine_num=20
284. x = df_train.loc[engine_num,'RUL'].values
285. # In[109]:
286. row_name=df_train.loc[engine_num].iloc[-1].name
287. row_sl=df_train.index.get_loc(row_name) # row slice to get numpy inde

x
288. y=standard_sensors[row_sl] # sensor values for the specific engine
289. x.reshape(-1, 1).shape # add dimension, to fit the line
290. x.shape
291. lin_model.fit(x.reshape(-1, 1),y)
292.
293. # In[110]:
294.
295. lin_model.coef_[:,0].shape
296. # how many line has been fitted
297.
298. # In[111]:
299.
300. lin_model.score(x.reshape(-1, 1),y)
301. # Return the coefficient of determination R^2 of the prediction.
302.
303. # In[112]:
304.
305. y_hat = lin_model.predict(x.reshape(-1, 1))
306.
307. # In[113]:
308.
309. # plotting
310. time = df_train.loc[engine_num,'RUL']
311. cols = df_train.columns[1:-1]
312. fig, axes = plt.subplots(len(cols), 1, figsize=(19,17))
313. for col, ax in zip(range(standard_sensors.shape[1]), axes):
314. ax.plot(time,standard_sensors[row_sl,col],label=col+1)
315. ax.plot(time,y_hat[:,col],label='trend')
316. ax.legend(loc=2)
317.
318. # In[114]:
319. def lin_slopes(sensors,df,engine_num):
320. """
321. gives slopes of a teh tred lines for each sesnor
322. ===

 120

323. input:
324. sensors - (ndarray) numpy array of standardized signals (rows: -

RUL columns, various signals)
325. engine_num - (int) engine number to selector
326. df - (df) data frame of data
327. output:
328. slopes -

(ndarray) numpy array of slopes rows: slope of each signal linear trend line

329. """
330. model = LinearRegression()
331. x = df.loc[engine_num,'RUL'].values
332. row_name=df.loc[engine_num].iloc[-1].name
333. row_sl=df.index.get_loc(row_name) # row slice to get numpy index

334. y=sensors[row_sl] # sensor values for the specifc engine
335. model.fit(x.reshape(-1, 1),y)
336. slopes=model.coef_[:,0]
337. return slopes
338.
339. # In[115]:
340. # finding slopes for all engines
341. engines=df_train.index.unique().values
342. slopes = np.empty((standard_sensors.shape[1],len(engines)))
343. for i,engine in enumerate(engines):
344. slopes[:,i] = lin_slopes(standard_sensors,df_train,engine)
345.
346. # In[116]:
347. slopes_df = pd.DataFrame(slopes.T,index=engines,columns =raw_columns)

348. slopes_df
349. # In[117]:
350. for sn in slopes_df.columns[1:-1]:
351. plt.plot(abs(slopes_df[sn]))
352. plt.show()
353.
354. # engine 20
355. # From the pic above, we can find that , mainly there are two signal

 of slope can reveal the potential trend of
356. # all sensors , so in the following , we are going to use PCA to extr

act the main feature of several signals.
357. #
358. # first, we are going to get the slopes of each linear model.
359.
360. # In[118]:
361. slope_order_idx=np.argsort(np.abs(slopes.mean(axis=1)))[::-1]
362. raw_columns[slope_order_idx]
363. # In[119]:
364. # PCA with all sensors engine 20
365. # get first impression of how many PCA it might have
366. pca = PCA()
367. # In[120]:
368. num_high_slopes = 6
369. pca_high_n_components=3
370. sensors_high_trend=standard_sensors[:,slope_order_idx[0:num_high_slop

es]]
371. pca_high = PCA(pca_high_n_components,whiten=True)
372. pca_high.fit(sensors_high_trend)
373. # In[121]:
374. pca_high.explained_variance_ratio_
375. # In[128]:
376. sensors_pca=pca_high.transform(sensors_high_trend)
377. sensors_pca

 121

378. # In[122]:
379. # create a dictionary with engine slices
380. engines=df_train.index.unique().values # engine numbers
381. engine_slices = dict()# key is engine number, value is a slice that g

ives numpy index for the data that pertains to an engine
382.
383. for i,engine_num in enumerate(engines):
384. row_name=df_train.loc[engine_num].iloc[-1].name
385. row_sl=df_train.index.get_loc(row_name) # row slice to get numpy

index
386. engine_slices[engine_num]=row_sl
387. # In[136]:
388. # create RUL vector
389. RUL = np.empty(len(engines))
390.
391. for i,engine_num in enumerate(engines):
392. RUL[i]=df_train.loc[engine_num]['RUL'].max()
393.
394. # In[137]:
395. # fit a model to get fused sensor
396. #Multiple Linear Regression
397. HI_linear = LinearRegression()
398. data_scaler = preprocessing.MinMaxScaler()
399. preprocessing.MinMaxScaler()
400. # In[144]:
401. engine_num=20
402. engine_sensors=sensors_pca[engine_slices[engine_num],:]
403. RUL_engine = df_train.loc[engine_num]['RUL'].values
404. # In[145]:
405. y1_engine = engine_sensors[:,0]# sn_11
406. #y1_engine = engine_sensors[:,0]# sn_11
407. y2_engine = engine_sensors[:,1]
408. y3_engine = engine_sensors[:,2]
409. x1_engine = RUL_engine = df_train.loc[engine_num]['RUL']
410. x2_engine = RUL_engine = df_train.loc[engine_num]['RUL'] #df_op.loc[e

ngine_num]['op_cond_1']
411. x3_engine = RUL_engine = df_train.loc[engine_num]['RUL']#df_op.loc[e

ngine_num]['op_cond_2']
412. fig, axes = plt.subplots(3, 1, figsize=(19,17))
413. plt.subplot(311)
414. plt.plot(x1_engine,y1_engine,label='PCA_rank1')
415. plt.title('Health Index ')
416.
417. plt.legend()
418. plt.subplot(312)
419. plt.plot(x2_engine,y2_engine,label='PCA_rank2')
420. plt.title('Health Index ')
421.
422. plt.legend()
423. plt.subplot(313)
424. plt.plot(x3_engine,y3_engine,label='PCA_rank3')
425. plt.legend()
426. plt.title('Health Index ')
427. plt.xlabel('lifetime [cycles]')
428.
429. plt.legend()
430. # In[146]:
431. op_column = ['sn_11']
432. df_op = df_train[op_column]
433.
434. # In[147]:
435. engine_num=3
436. #engine_sensors=sensors_pca[engine_slices[engine_num],:]

 122

437. RUL_engine = df_train.loc[engine_num]['RUL'].values
438. engine_sensors_o= df_op.values[engine_slices[engine_num],:]
439. # In[148]:
440. plt.plot(RUL_engine,engine_sensors_o[:,0],label='x1')
441. # In[149]:
442. from pandas import Series
443. from matplotlib import pyplot
444. from statsmodels.tsa.seasonal import seasonal_decompose
445. result = seasonal_decompose(engine_sensors_o[:,0], model='multiplicat

ive', freq=10)#
446. trend= result.trend
447. plt.plot(trend)
448. pyplot.show()
449. # In[150]:
450.
451. result.plot()
452. pyplot.show()
453.
454. # In[151]:
455.
456. y1_engine = trend
457. x1_engine = df_train.loc[engine_num]['RUL']
458. plt.plot(x1_engine,y1_engine,label='x1')
459. # In[152]:
460. x_tran= engine_sensors_o[:,0]-

np.min(engine_sensors_o[:,0])+0.000001#
461. result = seasonal_decompose(x_tran, model='multiplicative', freq=10)#

462. trend= result.trend
463. plt.plot(trend)
464. pyplot.show()
465. # In[153]:
466. HI_x= np.delete(RUL_engine,np.argwhere(np.isnan(trend)))
467. transfer_y = trend[~np.isnan(trend)]
468. plt.plot(HI_x,transfer_y)
469. # In[155]:
470. df_curvefitting = pd.DataFrame()
471. df_midfitting = pd.DataFrame()
472. # In[156]:
473. for engine_num in engines:
474. engine_sensors_o= df_op.values[engine_slices[engine_num],:]
475. x_tran= engine_sensors_o[:,0]-

np.min(engine_sensors_o[:,0])+0.000001
476. RUL_engine = df_train.loc[engine_num]['RUL'].values
477. result = seasonal_decompose(x_tran, model='multiplicative', freq=

10)#
478. trend= result.trend
479. HI_x= np.delete(RUL_engine,np.argwhere(np.isnan(trend)))
480. transfer_y = trend[~np.isnan(trend)]
481. HI_y= transfer_y-np.min(transfer_y)
482.
483. #df_midfitting = pd.DataFrame({'RUL': HI_x, 'HI': HI_y}, columns=

['RUL', 'HI'])
484.
485. df_midfitting = pd.DataFrame(data=HI_y.reshape(1,-1))
486. df_curvefitting=df_curvefitting.append(df_midfitting)
487. #plt.scatter(HI_x,HI_y,label='raw')
488. plt.plot(HI_x,HI_y,label='exp_fitted')
489. #plt.axhline(y=1.0, linestyle='-',lw=2)
490. plt.title('Health Index (HI)')
491. plt.xlabel('RUL [cycles]')
492. plt.ylabel('HI [-]')

 123

C.3 k-NN prognostics model (Including offline

reference model and online prognostics model)

1. # coding: utf-8
2.
3. # In[1]:
4.
5.
6. # package import
7.
8. import pandas as pd
9. import os
10. import numpy as np
11. import matplotlib.pyplot as plt
12. import seaborn as sns
13. import importlib
14. from sklearn.linear_model import LinearRegression
15. from sklearn.preprocessing import StandardScaler
16. from sklearn.decomposition import PCA
17. # from sklearn.feature_selection import f_regression
18. from sklearn.linear_model import LogisticRegression
19. from scipy.signal import savgol_filter
20. from scipy.optimize import curve_fit
21. from sklearn.model_selection import TimeSeriesSplit
22. from sklearn.metrics.pairwise import euclidean_distances
23. from statsmodels.tsa.holtwinters import ExponentialSmoothing , HoltWintersRe

sults
24. from sklearn import preprocessing
25.
26. get_ipython().run_line_magic('matplotlib', 'inline')
27.
28. # In[2]:
29.
30. ## data import
31. dirname = os.getcwd()
32. data_pth_train = os.path.join(dirname, 'training','train_FD001.txt')
33. data_pth_rul = os.path.join(dirname, 'rul','RUL_FD001.txt')
34. # column names for the dataset
35. # op_cond refers to operational condition, sn: sensor
36. col_name = ['engine', 'time/cycle', 'op_cond_1', 'op_cond_2', 'op_cond_3']
37. col_name = col_name + ['sn_{}'.format(s + 1) for s in range(21)]
38. df_train = pd.read_csv(data_pth_train, header=None, names=col_name,delim_whi

tespace=True,index_col=0)
39.
40. # In[3]:
41.
42. variable_remove=[col for col in df_train.columns if (df_train[col].std() <=

 .0001)]
43.
44. print('columns to be removed from analysis since they do not change with tim

e \n',variable_remove)
45.
46. # In[4]:
47.
48. df_train.drop(columns=variable_remove,axis=1,inplace=True)
49.
50. op_column = ['sn_11']
51. df_op = df_train[op_column]

 124

52.
53. # In[5]:
54.
55. for id in df_train.index.unique():
56. df_train.loc[id,'RUL'] = df_train.loc[id]['time/cycle'].apply(lambda x:

x-df_train.loc[id]['time/cycle'].min())
57. # positive RUL for each engine
58.
59. # In[6]:
60.
61. # get all sensors
62. raw_columns = df_train.columns.values[1:-1]
63. raw_sensors = df_train[raw_columns].values # as numpy array
64.
65. # In[7]:
66.
67. # create a dictionary with engine slices
68. engines=df_train.index.unique().values # engine numbers
69. engine_slices = dict()# key is engine number, value is a slice that gives nu

mpy index for the data that pertains to an engine
70.
71. for i,engine_num in enumerate(engines):
72. row_name=df_train.loc[engine_num].iloc[-1].name
73. row_sl=df_train.index.get_loc(row_name) # row slice to get numpy index

74. engine_slices[engine_num]=row_sl
75. # In[8]:
76. RUL = np.empty(len(engines))
77. for i,engine_num in enumerate(engines):
78. RUL[i]=df_train.loc[engine_num]['RUL'].max()
79. # In[9]:
80. engine_num=1
81. #engine_sensors=sensors_pca[engine_slices[engine_num],:]
82. RUL_engine = df_train.loc[engine_num]['RUL'].values
83. engine_sensors_o= df_op.values[engine_slices[engine_num],:]
84. # In[10]:
85. plt.plot(RUL_engine,engine_sensors_o[:,0],label='x1')
86. # In[11]:
87. from pandas import Series
88. from matplotlib import pyplot
89. from statsmodels.tsa.seasonal import seasonal_decompose
90. result = seasonal_decompose(engine_sensors_o[:,0], model='multiplicative', f

req=10)#
91. trend= result.trend
92. plt.plot(trend)
93. pyplot.show()
94. # In[12]:
95.
96. x_tran= engine_sensors_o[:,0]-np.min(engine_sensors_o[:,0])+0.000001#
97. result = seasonal_decompose(x_tran, model='multiplicative', freq=10)#
98. trend= result.trend
99. plt.plot(trend)
100. pyplot.show()
101. # In[13]:
102. HI_x= np.delete(RUL_engine,np.argwhere(np.isnan(trend)))
103. transfer_y = trend[~np.isnan(trend)]
104. #transfer_y= np.nan_to_num(trend)
105. #HI_linear.fit(HI_x,HI_y)
106. #print('Coefficients: \n', HI_linear.coef_)
107. plt.plot(HI_x,transfer_y)
108.
109. # In[14]:
110.

 125

111. df_curvefitting = pd.DataFrame()
112. df_midfitting = pd.DataFrame()
113. for engine_num in engines:
114. engine_sensors_o= df_op.values[engine_slices[engine_num],:]
115. x_tran= engine_sensors_o[:,0]-

np.min(engine_sensors_o[:,0])+0.000001
116. RUL_engine = df_train.loc[engine_num]['RUL'].values
117. result = seasonal_decompose(x_tran, model='multiplicative', freq=

10)#
118. trend= result.trend
119. HI_x= np.delete(RUL_engine,np.argwhere(np.isnan(trend)))
120. transfer_y = trend[~np.isnan(trend)]
121. HI_y= transfer_y-np.min(transfer_y)
122.
123. #df_midfitting = pd.DataFrame({'RUL': HI_x, 'HI': HI_y}, columns=

['RUL', 'HI'])
124.
125. df_midfitting = pd.DataFrame(data=HI_y.reshape(1,-1))
126. df_curvefitting=df_curvefitting.append(df_midfitting)
127.
128. # In[15]:
129.
130. df_curvefitting=df_curvefitting.reset_index()
131. df_curvefitting.drop(['index'],axis=1,inplace=True)#
132. #df_curvefitting.interpolate(method='nearest', limit_direction='forwa

rd')
133.
134. # In[16]:
135.
136. df_curvefitting=df_curvefitting.interpolate(axis=1)
137.
138. # In[17]:
139.
140. pd.set_option('max_rows', 9,'max_columns',9)
141.
142. # In[18]:
143.
144. df_curvefitting
145.
146. # In[19]:
147.
148. df_curvefitting['RUL'] = RUL.reshape(-1,1)
149.
150. # In[20]:
151. data_pth_test = os.path.join(dirname, 'test','test_FD001.txt')
152. data_pth_rul = os.path.join(dirname, 'rul','RUL_FD001.txt')
153. # column names for the dataset
154. # op_cond refers to operational condition, sn: sensor
155. col_name = ['engine', 'time/cycle', 'op_cond_1', 'op_cond_2', 'op_con

d_3']
156. col_name = col_name + ['sn_{}'.format(s + 1) for s in range(21)]
157. df_test = pd.read_csv(data_pth_test, header=None, names=col_name,deli

m_whitespace=True,index_col=0)
158.
159. # In[21]:
160.
161. df_op_t = df_test[op_column]
162. df_RUL_TRUE= pd.read_csv(data_pth_rul,header=None)
163. df_RUL_TRUE.columns= ['RUL']
164.
165. # In[22]:
166.
167. for id_t in df_test.index.unique():

 126

168. df_test.loc[id_t,'RUL'] = df_test.loc[id_t]['time/cycle'].apply(l
ambda x: x-df_test.loc[id_t]['time/cycle'].min())

169.
170. # In[23]:
171.
172. engines_t=df_test.index.unique().values # engine numbers
173. engine_slices_t = dict()# key is engine number, value is a slice that

 gives numpy index for the data that pertains to an engine
174. for i_t,engine_num_t in enumerate(engines_t):
175. row_name_t=df_test.loc[engine_num_t].iloc[-1].name
176. row_sl_t=df_test.index.get_loc(row_name_t) # row slice to get num

py index
177. engine_slices_t[engine_num_t]=row_sl_t
178.
179. # In[24]:
180.
181. RUL_t = np.empty(len(engines_t))
182. for i_t,engine_num_t in enumerate(engines_t):
183. RUL_t[i_t]=df_test.loc[engine_num_t]['RUL'].max()
184.
185. # In[25]:
186.
187. engines_t=df_test.index.unique().values # engine numbers
188. engine_slices_t = dict()
189. for i_t,engine_num_t in enumerate(engines_t):
190. row_name_t=df_test.loc[engine_num_t].iloc[-1].name
191. row_sl_t=df_test.index.get_loc(row_name_t) # row slice to get num

py index
192. engine_slices_t[engine_num_t]=row_sl_t
193.
194. # In[105]:
195.
196. engine_num_t=20
197. RUL_engine_t = df_test.loc[engine_num_t]['RUL'].values
198. engine_sensors_t= df_op_t.values[engine_slices_t[engine_num_t],:]
199.
200. # In[106]:
201.
202. y1_engine_t = engine_sensors_t# sn_11
203. x1_engine_t = df_test.loc[engine_num_t]['RUL']
204. #df_op.loc[engine_num]['op_cond_2']
205. #plt.subplots(figsize=(19,10))
206.
207. plt.plot(x1_engine_t[0:150],y1_engine_t[0:150],label='x1')
208.
209.
210. plt.xlabel('lifetime [cycles]')
211. plt.ylabel('Signal value')
212. plt.show();
213.
214. # In[107]:
215.
216. result_t = seasonal_decompose(engine_sensors_t[:,0], model='multiplic

ative', freq=10)#
217. trend_t= result_t.trend
218. plt.plot(trend_t)
219. pyplot.show()
220.
221. # In[108]:
222.
223. HI_x_t= np.delete(RUL_engine_t,np.argwhere(np.isnan(trend_t)))
224. transfer_y_t = trend_t[~np.isnan(trend_t)]
225. HI_y_t= transfer_y_t-np.min(transfer_y_t)

 127

226. #transfer_y= np.nan_to_num(trend)
227. #HI_linear.fit(HI_x,HI_y)
228. #print('Coefficients: \n', HI_linear.coef_)
229. plt.plot(HI_x_t,HI_y_t)
230.
231. # In[109]:
232.
233. pd.DataFrame(data=HI_y_t)
234.
235. # In[110]:
236.
237. from sklearn.neighbors import KNeighborsRegressor
238. from sklearn.neighbors import KNeighborsClassifier
239. from sklearn.model_selection import train_test_split
240. #import required packages
241. from sklearn import neighbors
242. from sklearn.metrics import mean_squared_error
243. from math import sqrt
244. import matplotlib.pyplot as plt
245. get_ipython().run_line_magic('matplotlib', 'inline')
246. train , test = train_test_split(df_curvefitting, test_size = 0.3)
247. x_train = train.drop('RUL', axis=1)
248. y_train = train['RUL']
249.
250. x_test = test.drop('RUL', axis = 1)
251. y_test = test['RUL']
252. np.random.seed()
253. train , test = train_test_split(df_curvefitting, test_size = 0.3)
254.
255. # In[111]:
256.
257. model = neighbors.KNeighborsRegressor(n_neighbors = 3, weights='dista

nce',p=2)
258. model.fit(x_train, y_train) #fit the model
259. pred=model.predict(x_test) #make prediction on test set
260. error = sqrt(mean_squared_error(y_test,pred)) #calculate rmse
261.
262. # In[112]:
263.
264. plt.plot(y_test.values,label='True value')
265. plt.plot(pred,label='estimation')
266. plt.xlabel('unit', fontsize = 15)
267. plt.ylabel('Lifetime', fontsize = 15)
268. plt.legend()
269. plt.show()
270.
271. # In[113]:
272.
273. fig, ax = plt.subplots()
274. ax.scatter(pred,y_test.values, edgecolors=(0, 0, 0))
275. ax.plot([y_test.min(),y_test.max()], [y_test.min(), y_test.max()], 'k

--', lw = 2)
276. ax.set_xlabel('Predicted RUL', fontsize = 18)
277. ax.set_ylabel('Actual RUL', fontsize = 18)
278. ax.tick_params(axis='both', which='major', labelsize = 14)
279. ax.set_title('Predicted Lifetime vs Actual Lifetime', fontsize = 20)

280. plt.show()
281.
282. # In[114]:
283.
284. print(np.mean(y_test-pred))
285. print(np.std(y_test-pred))

 128

286.
287. # In[115]:
288.
289. from scipy.stats import norm
290. sns.distplot(y_test-pred,fit=norm,kde=False)
291. plt.title('The distribution of errors')
292.
293. # In[116]:
294.
295. timelimit=150
296.
297. # In[117]:
298.
299. neigh = neighbors.KNeighborsRegressor(n_neighbors = 3,weights='distan

ce',algorithm='auto')
300. #neigh.fit(df_curvefitting.iloc[:,0:len(HI_y_t)],np.ravel(RUL))
301.
302. neigh.fit(df_curvefitting.iloc[:,0:timelimit],np.ravel(RUL).reshape(-

1,1))
303. pred_t=neigh.predict(HI_y_t.reshape(1,-1)[:,0:timelimit])
304. print(pred_t)
305.
306. # In[118]:
307.
308. lifetime=[]
309. for t in range (1,timelimit):
310. neigh.fit(df_curvefitting.iloc[:,0:t],np.ravel(RUL).reshape(-

1,1))
311. pred_t=neigh.predict(HI_y_t.reshape(1,-1)[:,0:t])
312. lifetime.append(pred_t.item())
313. lifetime_new = np.array(lifetime)[-51:-1]
314.
315. # In[119]:
316.
317. lifetime_new
318.
319. # In[120]:
320.
321. pred_t.item()
322.
323. # In[121]:
324.
325. #pred_t=neigh.predict(HI_y_t.reshape(1,-1))
326.
327. # In[122]:
328.
329.
330. from scipy.stats import norm
331. sns.distplot(lifetime_new, kde=True,
332. bins=int(6), color = 'blue',
333. hist_kws={'edgecolor':'black'},
334.)#kde_kws={'linewidth': 2}
335.
336.
337. # In[123]:
338.
339. pred_t
340.
341. # In[124]:
342.
343. print(np.array(lifetime_new).mean())
344. print(np.array(lifetime_new).std())
345.

 129

346. # In[125]:
347.
348. np.array(lifetime_new).mean()-len(HI_y_t)
349.
350. # In[126]:
351.
352. np.array(lifetime_new).mean()
353.
354. # In[127]:
355.
356. HI_vector = []
357. #Initial_vector = []
358. for engine_num in engines:#
359. engine_sensors_o= df_op.values[engine_slices[engine_num],:]
360. x_tran= engine_sensors_o[:,0]-

np.min(engine_sensors_o[:,0])+0.000001#
361. RUL_engine = df_train.loc[engine_num]['RUL'].values
362. result = seasonal_decompose(x_tran, model='multiplicative', freq=

10)#
363. trend= result.trend
364. HI_x= np.delete(RUL_engine,np.argwhere(np.isnan(trend)))
365. transfer_y = trend[~np.isnan(trend)]
366. HI_y= transfer_y-np.min(transfer_y)
367. HI_vector.append(np.max(HI_y))
368. #Initial_vector.append(HI_y[0])
369. #plt.scatter(HI_x,HI_y,label='raw'
370.
371. #plt.axhline(0.15, color='r', linestyle='-')
372.
373. plt.show()
374.
375. # In[128]:
376.
377. final_pd=pd.DataFrame(data=HI_vector)
378. final_pd[1]=np.array(RUL).reshape(-1,1)
379.
380. # In[129]:
381.
382. from scipy import spatial
383. HIpoint=[]
384.
385. A=np.array(final_pd[1]).reshape(-1, 1)
386. for t in range (1,51):
387. neigh.fit(df_curvefitting.iloc[:,0:t],np.ravel(RUL).reshape(-

1,1))
388. pred_t=neigh.predict(HI_y_t.reshape(1,-1)[:,0:t])
389. pt=[pred_t.item()]
390. A[spatial.KDTree(A).query(pt)[1]]
391. distance,index = spatial.KDTree(A).query(pt)
392. HIpoint.append(final_pd.iloc[index][0])
393.
394.
395. # In[130]:
396.
397. for engine_num in engines:
398. engine_sensors_o= df_op.values[engine_slices[engine_num],:]
399. x_tran= engine_sensors_o[:,0]-

np.min(engine_sensors_o[:,0])+0.000001
400. RUL_engine = df_train.loc[engine_num]['RUL'].values
401. result = seasonal_decompose(x_tran, model='multiplicative', freq=

10)#
402. trend= result.trend
403. HI_x= np.delete(RUL_engine,np.argwhere(np.isnan(trend)))

 130

404. transfer_y = trend[~np.isnan(trend)]
405. HI_y= transfer_y-np.min(transfer_y)
406. plt.scatter(HI_x,HI_y,s=1,c='lightblue')
407. #plt.plot(HI_x,HI_y,label='exp_fitted')
408. #plt.axhline(y=1.0, linestyle='-',lw=2)
409. #plt.title('Health Index (HI)')
410. #plt.xlabel('RUL [cycles]')
411. #plt.ylabel('HI [-]')
412.
413. plt.plot(HI_x_t[0:timelimit],HI_y_t[0:timelimit],c='r')
414. plt.plot(lifetime_new,HIpoint,'*',c='b')
415. #plt.plot(lifetime)
416. plt.show()
417.
418. # with open("C:\\Users\\wjh62\\Desktop\\data.txt","w") as f:
419. # np.savetxt(f,final_pd, delimiter=",")
420.
421. # with open("C:\\Users\\wjh62\\Desktop\\data.txt","w") as d:
422. # np.savetxt(d,lifetime, delimiter=",")
423.
424. # In[52]:
425.
426. pd_prediction = []
427. pd_prediction_mid=[]
428.
429. for engine_num_t in engines_t:
430. engine_sensors_t= df_op.values[engine_slices_t[engine_num_t],:]
431. x_tran_t= engine_sensors_t[:,0]-

np.min(engine_sensors_t[:,0])+0.000001
432. result_t = seasonal_decompose(x_tran_t, model='multiplicative', f

req=10)#
433. trend_t= result_t.trend
434. RUL_engine_t= df_test.loc[engine_num_t]['RUL'].values
435. HI_x_t= np.delete(RUL_engine_t,np.argwhere(np.isnan(trend_t)))
436. transfer_y_t = trend_t[~np.isnan(trend_t)]
437. HI_y_t= transfer_y_t-np.min(transfer_y_t)
438. neigh.fit(df_curvefitting.iloc[:,0:len(HI_y_t)],np.ravel(RUL))
439. pred_t=np.int(neigh.predict(HI_y_t.reshape(1,-1)))
440. #pd_prediction_mid = pd.DataFrame(nt(pred_t))
441. pd_prediction.append(int(pred_t))
442. pd_prediction_mid.append(pred_t-len(HI_y_t))#
443.
444.
445. # In[53]:
446.
447. plt.plot(df_RUL_TRUE, color = 'red', label = 'Real data')
448. plt.plot(pd_prediction_mid, color = 'blue', label = 'Predicted data')

#*400
449. plt.title('Prediction')
450. plt.legend()
451. plt.show()
452.
453. # In[54]:
454.
455.
456. neigh = neighbors.KNeighborsRegressor(n_neighbors = 3,weights='distan

ce',algorithm='auto')
457.
458. # In[55]:
459.
460. sns.distplot((pd_prediction_mid-

df_RUL_TRUE['RUL']), fit=norm, kde=False)
461.

 131

462. # In[56]:
463.
464. fig, ax = plt.subplots()
465. ax.scatter(pd_prediction_mid,df_RUL_TRUE, edgecolors=(0, 0, 0))
466. ax.plot([df_RUL_TRUE.min(),df_RUL_TRUE.max()], [df_RUL_TRUE.min(), df

_RUL_TRUE.max()], 'k--', lw = 2)
467. ax.set_xlabel('Predicted RUL', fontsize = 18)
468. ax.set_ylabel('Actual RUL', fontsize = 18)
469. ax.tick_params(axis='both', which='major', labelsize = 14)
470. ax.set_title('Predicted RUL vs Actual RUL', fontsize = 20)
471. plt.show()
472.
473. # In[57]:
474.
475. from sklearn.metrics import r2_score, mean_squared_error
476. rmse_test = np.sqrt(mean_squared_error(pd_prediction_mid,df_RUL_TRUE)

)
477. r2_test = r2_score(pd_prediction_mid,df_RUL_TRUE)
478. print("The model performance for the test set")
479. print("---")
480. print("RMSE of test set is {}".format(rmse_test))
481. print("R2 score of test set is {}".format(r2_test))

C.4 Neural network model (Including offline

reference model and online prognostics model)

1. # coding: utf-8
2.
3. # In[1]:
4.
5.
6. # package import
7.
8. import pandas as pd
9. import os
10. import numpy as np
11. import matplotlib.pyplot as plt
12. import seaborn as sns
13.
14. import importlib
15. from sklearn.linear_model import LinearRegression
16. from sklearn.preprocessing import StandardScaler
17. from sklearn.decomposition import PCA
18. # from sklearn.feature_selection import f_regression
19. from sklearn.linear_model import LogisticRegression
20. from scipy.signal import savgol_filter
21. from scipy.optimize import curve_fit
22. from sklearn.model_selection import TimeSeriesSplit
23. from sklearn.metrics.pairwise import euclidean_distances
24. from statsmodels.tsa.holtwinters import ExponentialSmoothing , HoltWintersRe

sults
25. from sklearn import preprocessing
26.
27. get_ipython().run_line_magic('matplotlib', 'inline')
28.
29.
30. # In[2]:

 132

31.
32. dirname = os.getcwd()
33. data_pth_train = os.path.join(dirname, 'training','train_FD001.txt')
34. # column names for the dataset
35. # op_cond refers to operational condition, sn: sensor
36. col_name = ['engine', 'time/cycle', 'op_cond_1', 'op_cond_2', 'op_cond_3']
37. col_name = col_name + ['sn_{}'.format(s + 1) for s in range(21)]
38. df_train = pd.read_csv(data_pth_train, header=None, names=col_name,delim_whi

tespace=True,index_col=0)
39.
40. # In[3]:
41.
42. data_pth_test = os.path.join(dirname, 'test','test_FD001.txt')
43. data_pth_rul = os.path.join(dirname, 'rul','RUL_FD001.txt')
44. col_name = ['engine', 'time/cycle', 'op_cond_1', 'op_cond_2', 'op_cond_3']
45. col_name = col_name + ['sn_{}'.format(s + 1) for s in range(21)]
46. df_test = pd.read_csv(data_pth_test, header=None, names=col_name,delim_white

space=True,index_col=0)
47. TrueRUL= pd.read_csv(data_pth_rul, sep = "\n", header = None)
48.
49. # In[4]:
50.
51. variable_remove=[col for col in df_train.columns if (df_train[col].std() <=

 .0001*df_train[col].mean()) & (df_train[col].nunique() <=4)]
52.
53. print('columns to be removed from analysis since they do not change with tim

e \n',variable_remove)
54.
55. # In[5]:
56.
57. df_train.drop(columns=variable_remove,axis=1,inplace=True)
58.
59. # In[6]:
60.
61. df_test.drop(columns=variable_remove,axis=1,inplace=True)
62.
63. # In[7]:
64.
65. df_test.drop(['op_cond_1','op_cond_2','sn_9','sn_14'],axis=1,inplace=True)
66.
67. #df_test.drop(['op_cond_1','op_cond_2'],axis=1,inplace=True)
68. df_test.shape
69.
70. # In[8]:
71.
72. df_train.drop(['op_cond_1','op_cond_2','sn_9','sn_14'],axis=1,inplace=True)

73. #df_train.drop(['op_cond_1','op_cond_2'],axis=1,inplace=True)
74. df_train.shape
75.
76. # In[9]:
77.
78. for id in df_train.index.unique():
79. df_train.loc[id,'RUL'] = df_train.loc[id]['time/cycle'].apply(lambda x:

df_train.loc[id]['time/cycle'].max()-x)
80. # positive RUL for each engine
81.
82. for id_t in df_test.index.unique():
83. df_test.loc[id_t,'RUL'] = df_test.loc[id_t]['time/cycle'].apply(lambda x

: x-df_test.loc[id_t]['time/cycle'].min()+1)
84.
85. # In[10]:
86.

 133

87. # get all sensors
88. raw_columns = df_train.columns.values[1:-1]
89. raw_sensors = df_train[raw_columns].values # as numpy array
90. raw_columns
91.
92. raw_columns_t = df_test.columns.values[1:-1]
93. raw_sensors_t = df_test[raw_columns_t].values # as numpy array
94. raw_columns_t
95.
96. # In[11]:
97.
98. engines=df_train.index.unique().values # engine numbers
99. engine_slices = dict()# key is engine number, value is a slice that gives nu

mpy index for the data that pertains to an engine
100.
101. for i,engine_num in enumerate(engines):
102. row_name=df_train.loc[engine_num].iloc[-1].name
103. row_sl=df_train.index.get_loc(row_name) # row slice to get numpy

index
104. engine_slices[engine_num]=row_sl
105.
106.
107. engines_t=df_test.index.unique().values # engine numbers
108. engine_slices_t = dict()# key is engine number, value is a slice that

 gives numpy index for the data that pertains to an engine
109.
110. for i_t,engine_num_t in enumerate(engines_t):
111. row_name_t=df_test.loc[engine_num_t].iloc[-1].name
112. row_sl_t=df_test.index.get_loc(row_name_t) # row slice to get num

py index
113. engine_slices_t[engine_num_t]=row_sl_t
114.
115. # In[12]:
116.
117. # create RUL vector
118. RUL = np.empty(len(engines))
119.
120. for i,engine_num in enumerate(engines):
121. RUL[i]=df_train.loc[engine_num]['RUL'].max()
122.
123.
124. RUL_t = np.empty(len(engines_t))
125.
126. for i_t,engine_num_t in enumerate(engines_t):
127. RUL_t[i_t]=df_test.loc[engine_num_t]['RUL'].max()
128.
129. # In[13]:
130.
131.
132. # normalization
133. engine_sensors=(raw_sensors-

raw_sensors.min(axis=0))/(raw_sensors.max(axis=0)-
134. raw_sensors.min

(axis=0))
135.
136.
137. # In[14]:
138.
139. cycle_RUL= (df_train['RUL'].values)
140. cycle_RUL_t= (df_test['RUL'].values)
141.
142. # In[15]:
143.

 134

144. x_train= engine_sensors
145. y_train = cycle_RUL.reshape(-1,1)
146.
147. # In[164]:
148.
149. from keras.layers import Dense, Dropout, LSTM, Activation
150. from keras.models import Sequential
151. from tensorflow.keras import layers
152. from tensorflow.keras import activations
153.
154. # Initialising the ANN
155. ann = Sequential()
156.
157. # Adding the input layer and the first hidden layer
158. ann.add(Dense(14, activation=activations.sigmoid, input_dim = 12))
159. #ann.add(Dropout(0.3))
160. #ann.add(LSTM(input_shape=(100, 12),units=100,return_sequences=True))

161. # Adding the second hidden layer
162. ann.add(Dense(units = 400, activation=activations.softplus)) #softsig

n
163. #ann.add(Dropout(0.3))
164. # Adding the third hidden layer
165. ann.add(Dense(units = 128, activation=activations. sigmoid)) #
166. # Adding the third hidden layer
167. # Adding the output layer
168.
169. ann.add(Dense(units = 1))
170.
171. #model.add(Dense(1))
172.
173.
174. # In[165]:
175.
176. ann.summary()
177.
178. # In[166]:
179.
180. import keras
181.
182. # In[167]:
183.
184. # Compiling the ANN
185. ann.compile(optimizer = keras.optimizers.Adam(learning_rate=0.0015),

loss = 'mean_squared_error', metrics=['mae'])#adamax
186.
187. history=ann.fit(x_train, y_train,validation_split=0.3, epochs=100
188. ,verbose=2)#batch_size = 1,
189.
190. #compling the Artificial neural network
191. #classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy',

 metrics = ['accuracy'])
192.
193. #fitting the training setvalidation_split=0.17,
194. #classifier.fit(x_train, y_train, batch_size = 10, nb_epoch = 100)
195.
196. # In[168]:
197.
198. #plt.axis([0, 100, 0, 0.1])
199. plt.plot(history.history['loss'])
200. plt.plot(history.history['val_loss'])
201. plt.title('model loss')
202. plt.ylabel('loss')

 135

203. plt.xlabel('Number of Epoch')
204. plt.legend(['Training', 'Validation'], loc='upper right')
205.
206. plt.show()
207.
208. # In[169]:
209.
210. get_ipython().system('pip3 install ann_visualizer')
211. get_ipython().system('pip install graphviz')
212. from ann_visualizer.visualize import ann_viz
213. from graphviz import Source
214.
215. ann_viz(ann, view=True, title="Neural network plot")
216. Source.from_file('network.gv')
217.
218. # In[170]:
219.
220.
221. #normalization
222. engine_sensors_t=(raw_sensors_t-

raw_sensors_t.min(axis=0))/(raw_sensors_t.max(axis=0)-
223. raw_sensors_t.m

in(axis=0))
224.
225.
226. # In[171]:
227.
228. engine_num_t = 31
229.
230. x_predict_31=engine_sensors_t[engine_slices_t[engine_num_t],:]
231.
232. # In[172]:
233.
234. x_predict_31
235.
236. # In[173]:
237.
238. prediction_ann = ann.predict(x_predict_31)
239.
240. # In[174]:
241.
242. prediction_ann
243.
244. # In[175]:
245.
246. plt.plot(prediction_ann)
247.
248. # In[176]:
249.
250. df_e=pd.DataFrame(data=df_test.index.values,columns=['machine'])
251. df_r=pd.DataFrame(data= engine_sensors_t)
252. predict_sensor=df_r.join(df_e)
253. predict_sensor=predict_sensor.set_index(['machine'])
254.
255. # In[177]:
256.
257. df_pre = pd.DataFrame()
258. for j in engines_t:
259. df_mid = predict_sensor.loc[j].iloc[-1:]
260. df_pre = df_pre.append(df_mid)
261. #return df_mid
262.
263. # In[178]:

 136

264.
265. Truepre_t=ann.predict(df_pre)
266.
267. # In[179]:
268.
269. plt.plot(TrueRUL, color = 'red', label = 'Real data')
270. plt.plot(Truepre_t, color = 'blue', label = 'Predicted data')#*400
271. plt.title('Prediction')
272. plt.legend()
273. plt.show()
274.
275. # In[185]:
276.
277. fig, ax = plt.subplots()
278. ax.scatter(TrueRUL,Truepre_t, edgecolors=(0, 0, 0))
279. ax.plot([TrueRUL.min(), TrueRUL.max()], [TrueRUL.min(), TrueRUL.max()

], 'k--', lw = 2)
280. ax.set_xlabel('Predicted RUL', fontsize = 18)
281. ax.set_ylabel('Actual RUL', fontsize = 18)
282. ax.tick_params(axis='both', which='major', labelsize = 14)
283. ax.set_title('Neural Network Predicted RUL vs Actual RUL', fontsize

= 20)
284. plt.show()
285.
286. # In[181]:
287.
288. error = TrueRUL-Truepre_t
289. ax=sns.distplot(error,bins=8)
290.
291. # In[182]:
292.
293. from sklearn.metrics import r2_score, mean_squared_error
294.
295. from sklearn.model_selection import train_test_split
296.
297. rmse_test = np.sqrt(mean_squared_error(TrueRUL, Truepre_t))
298. r2_test = r2_score(TrueRUL, Truepre_t)
299.
300.
301. print("The model performance for the test set")
302. print("---")
303. print("RMSE of test set is {}".format(rmse_test))
304. print("R2 score of test set is {}".format(r2_test))
305.
306. # In[183]:
307.
308. def score(estimated_RUL,true_RUL):
309.
310. error = np.array(estimated_RUL)-np.array(true_RUL)
311. error = np.array(error)
312. S1 = np.heaviside(error,0)* (np.exp(error/10)-

1) # postive errors
313. S2 = np.heaviside(-1*error,0)* (np.exp(-1*error/13)-

1) # negative errors
314. S = S1 + S2
315.
316. return S.mean()
317.
318. # In[184]:
319.
320. score(Truepre_t,TrueRUL)

 137

C.5 GBM algorithm model (Including offline

reference model and online prognostics model)

1. # coding: utf-8
2.
3. # In[4]:
4.
5.
6. # package import
7.
8. import pandas as pd
9. import os
10. import numpy as np
11. import matplotlib.pyplot as plt
12. import seaborn as sns
13.
14. import importlib
15. from sklearn.linear_model import LinearRegression
16. from sklearn.preprocessing import StandardScaler
17. from sklearn.decomposition import PCA
18. # from sklearn.feature_selection import f_regression
19. from sklearn.linear_model import LogisticRegression
20. from scipy.signal import savgol_filter
21. from scipy.optimize import curve_fit
22. from sklearn.model_selection import TimeSeriesSplit
23. from sklearn.metrics.pairwise import euclidean_distances
24. from statsmodels.tsa.holtwinters import ExponentialSmoothing , HoltWintersRe

sults
25. from sklearn import preprocessing
26.
27. get_ipython().run_line_magic('matplotlib', 'inline')
28.
29.
30. # import math
31. # x = np.arange(1,200)
32. # def y(t):
33. # y= 0.27796*np.exp(0.01601*t-1.83488)
34. # return y
35. # plt.plot(x,y(x))
36. # plt.axhline(0.15, color='r', linestyle='--',xmin=0.4, xmax=0.6)
37. # plt.axvline(123, color='r', linestyle='--',ymin=0.13, ymax=0.3)
38.
39. # In[114]:
40.
41.
42. dirname = os.getcwd()
43. data_pth_test = os.path.join(dirname, 'test','test_FD001.txt')
44. data_pth_rul = os.path.join(dirname, 'rul','RUL_FD001.txt')
45. # column names for the dataset
46. # op_cond refers to operational condition, sn: sensor
47. col_name = ['engine', 'time/cycle', 'op_cond_1', 'op_cond_2', 'op_cond_3']
48. col_name = col_name + ['sn_{}'.format(s + 1) for s in range(21)]
49. df_test = pd.read_csv(data_pth_test, header=None, names=col_name,delim_white

space=True,index_col=0)
50. TrueRUL= pd.read_csv(data_pth_rul, sep = "\n", header = None)
51.
52.
53. # In[115]:

 138

54.
55.
56. TrueRUL.columns= ['RUL']
57. TrueRUL.head()
58.
59.
60. # In[6]:
61.
62.
63. op_column = ['sn_11']
64.
65. df_op_t = df_test[op_column]
66.
67.
68. # In[7]:
69.
70.
71. for id_t in df_test.index.unique():
72. df_test.loc[id_t,'RUL'] = df_test.loc[id_t]['time/cycle'].apply(lambda x

: x-df_test.loc[id_t]['time/cycle'].min())
73.
74.
75. # In[8]:
76.
77.
78. engines_t=df_test.index.unique().values # engine numbers
79. engine_slices_t = dict()
80. for i_t,engine_num_t in enumerate(engines_t):
81. row_name_t=df_test.loc[engine_num_t].iloc[-1].name
82. row_sl_t=df_test.index.get_loc(row_name_t) # row slice to get numpy inde

x
83. engine_slices_t[engine_num_t]=row_sl_t
84.
85.
86. # In[9]:
87.
88.
89. df_mid = pd.DataFrame()
90. df_final = pd.DataFrame()
91.
92.
93. # In[10]:
94.
95.
96. from statsmodels.tsa.seasonal import seasonal_decompose
97. from matplotlib import pyplot
98. engine_num_t=82
99. RUL_engine_t = df_test.loc[engine_num_t]['RUL'].values
100. engine_sensors_t= df_op_t.values[engine_slices_t[engine_num_t],:]
101.
102.
103. # In[11]:
104.
105.
106. y1_engine_t = engine_sensors_t# sn_11
107.
108. x1_engine_t = df_test.loc[engine_num_t]['RUL']
109. #df_op.loc[engine_num]['op_cond_2']
110. #plt.subplots(figsize=(19,10))
111.
112. plt.plot(x1_engine_t[0:150],y1_engine_t[0:150],label='x1')
113.
114.

 139

115. plt.xlabel('lifetime [cycles]')
116. plt.ylabel('Signal value')
117. plt.show();
118.
119.
120. # In[12]:
121.
122.
123. result_t = seasonal_decompose(engine_sensors_t, model='multiplicative

', freq=10)#
124. trend_t= result_t.trend
125. plt.plot(trend_t)
126. pyplot.show()
127.
128.
129. # In[13]:
130.
131.
132. HI_x_t= np.delete(RUL_engine_t,np.argwhere(np.isnan(trend_t)))
133. transfer_y_t = trend_t[~np.isnan(trend_t)]
134. HI_y_t= transfer_y_t-np.min(transfer_y_t)
135. #transfer_y= np.nan_to_num(trend)
136. #HI_linear.fit(HI_x,HI_y)
137. plt.plot(HI_x_t,HI_y_t)
138.
139.
140. # In[14]:
141.
142.
143. df_mid = pd.DataFrame(data=HI_y_t.reshape(1,-1))
144. df_final=df_final.append(df_mid)
145.
146.
147. # In[15]:
148.
149.
150. HI_y_t[49]
151.
152.
153. # In[16]:
154.
155.
156.
157. def GBM(Y0, M,mu,sigma):
158. dt = 1
159. Y = np.zeros((I + 1), np.float64)
160. T = np.zeros((I + 1), np.float64)
161. Y[0] = Y0
162. T[0] = 0.0001
163.
164. for t in range(1, I + 1):
165.
166. rand = np.random.normal(0, 0.159177*(Y0/0.8)+(1-

Y0/0.8)*sigma)#*0.1+0.9*0.1607)0.1*+0.9*0.0104847
167. Y[t] = Y[t-1]+(0.032436*(Y0/0.8)+(1-Y0/0.8)*mu)*Y[t-

1]*dt+rand*Y[t-1]
168. T[t] = t
169.
170. if Y[t]>0.8:
171. break
172.
173. return Y[Y != 0],T[T != 0]
174.

 140

175.
176.
177.
178. # In[17]:
179.
180.
181. end_life=[]
182.
183. I=300
184. Y0 = 0.717
185.
186.
187. mu = 0.015205587
188.
189.
190. sigma =0.134393064
191.
192.
193.
194. m=0
195. while m < 1000:
196. result = GBM(Y0,I,mu,sigma)
197. x=result[1]
198. y=result[0]
199. end_life.append(x[-1])
200. m+=1
201. if y[-1] > 0.8:
202. plt.plot(x,y)
203. plt.grid(True)
204. plt.xlabel('time steps')
205. plt.ylabel('HI')
206. plt.axhline(0.8, color='r', linestyle='-')
207.
208.
209. # In[18]:
210.
211.
212. np.mean(end_life)
213.
214.
215. # In[19]:
216.
217.
218. np.std(end_life)
219.
220.
221. # In[20]:
222.
223.
224. with open("C:\\Users\\wjh62\\Desktop\\data.txt","w") as f:
225. np.savetxt(f,df_final, delimiter=",")
226.
227.
228. # In[77]:
229.
230.
231. HI_test = []
232. HI_test_mid=[]
233.
234. df_prediction = pd.DataFrame()
235. df_midfitting = pd.DataFrame()
236.
237. for engine_num_t in engines_t:

 141

238. engine_sensors_t= df_op_t.values[engine_slices_t[engine_num_t],:]

239. x_tran_t= engine_sensors_t[:,0]-
np.min(engine_sensors_t[:,0])+0.000001

240. result_t = seasonal_decompose(x_tran_t, model='multiplicative', f
req=10)#

241. trend_t= result_t.trend
242. RUL_engine_t= df_test.loc[engine_num_t]['RUL'].values
243. HI_x_t= np.delete(RUL_engine_t,np.argwhere(np.isnan(trend_t)))
244. transfer_y_t = trend_t[~np.isnan(trend_t)]
245. HI_y_t= transfer_y_t-np.min(transfer_y_t)
246. HI_test_mid = HI_y_t[-1]
247. HI_test.append(HI_test_mid)
248. df_midfitting = pd.DataFrame(data=HI_y_t.reshape(1,-1))
249. df_prediction=df_prediction.append(df_midfitting)
250.
251.
252.
253. # In[34]:
254.
255.
256. with open("C:\\Users\\wjh62\\Desktop\\data.txt","w") as f:
257. np.savetxt(f,df_prediction, delimiter=",")
258.
259.
260. # In[87]:
261.
262.
263. df_sigma.iloc[a].name
264.
265.
266. # In[90]:
267.
268.
269. end_life=[]
270.
271. a=17
272.
273.
274. I=300
275. Y0 =HI_test[a]
276.
277. mu =df_mu.iloc[a].name
278.
279. sigma =df_sigma.iloc[a].name
280.
281.
282. m=0
283. while m < 2500:
284. result = GBM(Y0,I,mu,sigma)
285. x=result[1]
286. y=result[0]
287. end_life.append(x[-1])
288. m+=1
289. if y[-1] > 0.8:
290. plt.plot(x,y)
291. plt.grid(True)
292. plt.xlabel('time steps')
293. plt.ylabel('HI')
294. plt.axhline(0.8, color='r', linestyle='-')
295. print(np.mean(end_life))
296. print(np.std(end_life))
297.

 142

298.
299. # In[57]:
300.
301.
302. data_pth_mu = os.path.join(dirname, 'test','mu.txt')
303. data_pth_sigma = os.path.join(dirname, 'test','sigma.txt')
304. df_mu = pd.read_csv(data_pth_mu, header=None, delim_whitespace=True,i

ndex_col=0)
305. df_sigma=pd.read_csv(data_pth_sigma, header=None, delim_whitespace=Tr

ue,index_col=0)
306.
307.
308. # In[117]:
309.
310.
311. end_life=[]
312. end_mean=[]
313. end_std=[]
314. for i in range(0,100):
315. I=300
316. Y0 =HI_test[i]
317.
318. mu =df_mu.iloc[i].name
319.
320. sigma =df_sigma.iloc[i].name
321.
322.
323. m=0
324. while m < 2500:
325. result = GBM(Y0,I,mu,sigma)
326. x=result[1]
327. y=result[0]
328. end_life.append(x[-1])
329. m+=1
330. end_mean.append(np.mean(end_life))
331. end_std.append(np.std(end_life))
332. print(np.mean(end_life))
333. print(np.std(end_life))
334.
335.
336. # In[122]:
337.
338.
339. plt.plot(TrueRUL, color = 'red', label = 'Real data')
340. plt.plot(end_mean, color = 'blue', label = 'Mean-

Predicted data')#*400
341. plt.title('Prediction')
342. plt.legend()
343. plt.show()
344.
345.
346. # In[120]:
347.
348.
349. from sklearn.metrics import r2_score, mean_squared_error
350. rmse_test = np.sqrt(mean_squared_error(TrueRUL, end_mean))
351. r2_test = r2_score(TrueRUL, end_mean)
352.
353.
354.
355. print("The model performance for the test set")
356. print("---")
357. print("RMSE of test set is {}".format(rmse_test))

 143

358. print("R2 score of test set is {}".format(r2_test))
359.
360.
361. # In[121]:
362.
363.
364. plt.plot(end_std)

	Preface
	Acknowledgment
	Executive Summary
	List of Tables
	List of Figures
	Introduction
	1.1 Background
	Problem formulation

	1.2 Objectives
	1.3 Approaches
	1.4 Limitation
	1.5 Outline

	System description
	2.1 Physical system
	2.2 Dataset description

	Predictive maintenance and Digital twin
	3.1 Predictive maintenance requirements
	3.2 Cyber-physical system and digital twin
	3.2.1 Communication system
	3.2.2 Digital twin
	3.2.3 Digital twin architecture
	Remaining useful of lifetime
	State identification
	Diagnostics
	Prognostics
	Health indicator (Health index)

	Data analysis and processing methods
	4.1 Dimension reduction
	4.2 Time series decomposition
	4.2.1 Time series patterns
	4.2.2 Time series components

	4.3 Pattern recognition approaches
	4.3.1 K Nearest Neighbors
	4.3.2 Neural Network (ANN)
	Typical activation Functions(commonly):
	Binary step function
	Sigmoid Activation Function
	Hyperbolic Tangent Function — (tanh)
	Rectified Linear Units — (ReLu)

	4.3.3 Stochastic process (model-based)

	Digital twin framework and architecture
	5.1 Communication protocol
	5.2 PHM frame and method
	5.3 Decision making

	Digital twin offline model
	6.1 Data pre-processing and offline reference model
	6.2 Data pre-processing
	6.2.1 Historical data description
	6.2.2 Software and libraries for data pre-processing
	6.2.3 Raw data pre-processing
	6.2.4 Offline reference model establishing
	Trend extracting
	Dimension reduction
	Similarity-based model (𝒌−𝑵𝑵 regression model)
	Stochastic process
	Deep learning neural network

	6.2.5 Upload the offline reference model

	Online prognostics and decision making
	7.1 Online prognostics
	7.2 Prognostics information of six machines
	7.3 Decision-making model
	7.3.1 Decision model implement

	Alternative analysis
	Discussion, Conclusions, and Recommendations for Future Work
	9.1 Discussion
	9.2 Summary and Conclusion
	9.3 Further Work
	Remote control
	Prognostics and health management
	Decision model

	Bibliography
	Appendix A
	Acronyms

	Appendix B
	Roadmap for Predictive maintenance Digital twin

	Appendix C
	Python codes of digital twin architecture
	C.1 Communication protocol in Socket
	C1.1 Socket listening file transferring ‘Server’
	C1.2 Socket listening file transferring ‘Client’
	C1.3 Socket monitoring file transferring ‘Server’
	C1.4 Socket monitoring file transferring ‘Client’

	C.2 Data pre-processing and analysis
	C.3 k-NN prognostics model (Including offline reference model and online prognostics model)
	C.4 Neural network model (Including offline reference model and online prognostics model)
	C.5 GBM algorithm model (Including offline reference model and online prognostics model)

