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Executive Summary 

With the development of industry 4.0, the maintenance strategy starts moving towards 

predictive maintenance to provide dynamic support to maintenance engineers. 

Meanwhile, the digitalization provides a fundamental cognition from the physical asset, 

which could help improve system performance and availability through digital 

simulation and optimization. The synchronization of the physical asset becomes a trend 

in the system diagnostics and prognostics. Therefore, to get the state of physical assets 

ahead of time, the concept of the digital twin is defined to duplicate the physical 

behavior into digital form. Meanwhile, the Cyber-physical system and Internet of 

Things provide a real-time data stream to the digital twin, which provides the ability to 

estimate system behavior dynamically.  

A digital twin could provide a dynamic system state in the future, while predictive 

maintenance could provide support based on system state. Therefore, it is essential to 

integrate predictive maintenance in the digital twin. However, predictive maintenance 

and digital twin is a rather emerging concept, and there is no standardized document 

and practical cases in the literature. Hence, a literature review was conducted to get the 

requirements in digital twin and predictive maintenance. Within the requirements, a 

digital twin framework for predictive maintenance was proposed after the literature 

review.  

In order to demonstrate the digital twin framework, a hypothetical system is proposed, 

where the concept of the system is based on wind farm maintenance. This system 

requires to get a dynamic maintenance schedule within the maintenance window 

through real-time and historical data. Thus, the digital twin model is established and 

integrated by a communication protocol, PHM models, and a decision model. In the 

PHM reference model, we analyze the historical data and get the main features to 

extract health indicators. The dataset contains 21 different monitoring signal data and 

three operational settings. The dataset is formatted in time series with the 'Cycle' time 

scale. According to historical data, we could establish an offline reference model. In 

this thesis, we present three states of art methods, neural network, 𝑘 − 𝑁𝑁 regression 

model, and Geometric Brownian motion model. (Noted that: In the Geometric 
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Brownian motion model, we need to set the threshold for the degradation, which we 

regard as the failure when health indicators exceed the threshold.) Then, the offline 

model would be uploaded to the 'Server' by the Socket communication protocol. When 

it comes to the prognostics, the real-time data could be streaming from the 'Client' to 

the 'Server' through the communication protocol. From the online prognostics, we could 

get the estimated RUL in real-time. Then, the RULs could be transferred to the decision 

model. The decision model in this thesis is based on a discrete event simulation model 

to provide dynamic decision support based on RUL, Cost per unit of time, and Spares 

in the inventory.  

Through the previous process, we could conclude that the digital twin for predictive 

maintenance could follow the framework proposed in the literature review. Moreover, 

based on the model selected, the digital twin could provide dynamic decision support 

during real-time monitoring. However, for this hypothetical system, we do not have a 

standard evaluation of the digital twin performance. So, we compare the PHM method 

and the performance, which could provide vital information on the properties of these 

three methods and might be helpful when implemented in practice. 

This thesis aims to bridge the gap in the digital twin implemented in predictive 

maintenance and demonstrate the architecture proposed within the fields of RAMS and 

data-driven methods. By applying such a framework, the digital twin could provide 

dynamic maintenance support and realize the predictive maintenance behavior. 
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Chapter 1  

Introduction 

In this chapter, the background is presented to explain the main scope of the digital twin 

in predictive maintenance. A case problem is formulated and described in this section 

to demonstrate the objectives of the scope. Besides, approaches and limitations in 

achieving the scope of objectives are presented. In the end, the structure of this thesis 

is presented. 

1.1 Background 

For industries, it is a challenging problem of how to improve work efficiency based on 

their needs and reduce the unnecessary cost of degradation and failure of production or 

equipment. A study by the Wall Street Journal and Emerson shows that 42% 

unscheduled downtime of equipment is because of the equipment failure, and 

unscheduled downtime costs $50 billion every year in manufacturing. Hence, an 

efficient maintenance strategy becomes essential (IMMERMAN, 2018).  

In the production process, manufacturing and maintenance planning are two separate 

processes; however, maintenance scheduling influences both manufacturing and failure 

probability. The maintenance during the manufacturing makes production unavailable. 

The idea of integrating different maintenance decisions with prognostics and all the 

resources is enabled to improve the productivity, efficiency, and availability of the 

whole process. (Lu et al., 2007; Liao et al., 2017). 

As we are entering the industry 4.0, the focus on maintenance is turning from preventive 

to predictive (Wegener, 2019). Predictive maintenance could provide a dynamic insight 

view of the maintenance strategy to help lower the maintenance cost, utilize equipment 

operation, and improve work efficiency (Luo et al., 2003; Mobley, 2002). With the 

development of the network, collaboration, and automation systems, predictive 
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maintenance has become a new challenge from theory establishment to achievement.   

Nowadays, sensors and IoT are widely used in the industries, which make real-time 

data easily to be accessed. Thus, industries start to formulate the physical assets into 

digital form, to get an insight of the system, which is also known as digitalization 

(Vemuri, 2019). Digitalization provides possibilities to achieve predictive maintenance. 

The principle of digitalization is to integrate data from manufacture to supply chain 

from start to end. All physical information could be transferred into digital information 

and connected by the Cyber-Physical Systems (CPS) to make production, sales, and 

supplement smarter (Tao et al., 2018a). Digital twin, as an advanced digitized system, 

firstly is coined from the aerospace area, especially from NASA. The purpose of the 

digital twin is to build a “same” digitalization system as a physical asset to simulate the 

state of operation (Glaessgen and Stargel, 2012). With the improvement of productivity 

level and the increase of operational data, the implementation of digital transformation 

becomes more complicated. Now, Digital twin enabled virtual producing and process 

planning, which provides simulation in the future for different purposes with the 

synchronization of the current time (Tao et al., 2018a). These properties help digital 

twin organize several resources data and different systems and execute the optimized 

solutions during the operation via simulation (Kritzinger et al., 2018). 

Within the perspective of the RAMS field, the primary focus raises to data-driven 

diagnostics, prognostics, and maintenance strategies in the digital twin. According to 

real-time data and system behaviors, the diagnostics can help to determine the system 

state and health condition at present. As the data updated, the health condition is also 

updated. From the diagnoses and the system condition changing overtime, prognostics 

can help to find the potential RUL of the system, which could help to decide the 

maintenance strategies. (Lee et al., 2017)  

Digitalization provides an initial frame and resources to build the digital twin. 

Meanwhile, predictive maintenance provides the possibility of making a dynamic 

maintenance decision through multiple sources of data. Some researches, such as Qiao 

et al., Qi et al., and Tao et al., started trying to link predictive maintenance with the 

digital twin together and establish a bridge from the smart devices and physical objects 

to digital objects. However, due to various definitions and understandings of the digital 
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twin, these authors have a different perspective on building a digital twin. Some of them 

only focus on data processing methods, not on the structure for predictive maintenance. 

(Qiao et al., 2019; Tao et al., 2018b; Qi et al., 2018).The digital twin should not only 

be a ‘data monster’ (Boschert and Rosen, 2016). 

Problem formulation 

Despite having a lot of digital twins exist, which can provide information about the 

system conditions and integrated some predictions or other perspectives, still, there are 

no standardized requirements on how to establish a digital twin related to predictive 

maintenance in the literature. Meanwhile, the standardized digital twin framework is 

still under development (ISO/CD, 2019). How to efficiently integrate the information 

and establish the predictive maintenance digital twin is still an open question.  

Furthermore, what information and methods are needed for a digital twin performing 

predictive maintenance? In the literature review of digital twin and predictive 

maintenance, an underlying architecture of the digital twin has been pointed out 

(Appendix A) (Wang, 2019). Therefore, there is a need to demonstrate digital twin 

architecture and select appropriate methods. 

1.2 Objectives 

The objective of this thesis is mainly to build a digital twin to achieve predictive 

maintenance and demonstrate it by a case study. The following sub-objectives are 

listed: 

• Present the primary information for the case study; 

• Present the architecture of digital twin and the relevant sub-systems to establish 

the digital twin; 

• Perform the literature review of the relevant methods or systems to achieve each 

fundamental architecture in the digital twin; 

• Propose state-of-the-art methods in the literature to establish the digital twin; 

• Establish a digital twin based on the case study and relevant data. 
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1.3 Approaches 

The approaches in this thesis include three parts, propose a hypothetical system and 

relevant data to support the objectives, literature review of prevalent systems and 

methods, and a case study to apply the explicit methods. The literature review will cover 

more on health management and prognostics management, and explicit state-of-the-art 

data-driven methods to get a deeper understanding. In order to achieve the objectives, 

we will follow the digital twin fundamental architecture proposed in Wang’s literature 

review1. Since the literature review of Predictive maintenance and Digital twin has 

already been investigated. Here we only propose the findings in the literature. 

The relevant research platform used in the literature review were Google Scholar, 

ORIA, IEEE transactions, and Research gate. The algorithm support and platforms are 

Python, Kaggle, Medium, GitHub, and MATLAB & Simulink. Besides, some 

fundamental ideas are from course PK8207 - Maintenance Optimization and TPK4450 

- Data-Driven Prognostics and Predictive Maintenance.  The data applied in this thesis 

is from the open-source PHM08 dataset. We only choose ‘Training FD_001’ and 

‘Testing FD_001’. 

1.4 Limitation 

In this thesis, since the case study is based on a hypothetical system, there might be 

some defects when describing the system and establish the digital twin. The whole 

concept of the system is based on wind farm maintenance. Some ideas are rather 

conceptual, which could bring difficulties to digital twin modelling. 

The author of this thesis is in the RAMS field, not a specialist in programming and 

computer science field. Due to the limited skills, the model demonstrated may not fully 

achieve the expected functions or only be presented as a demo model. However, the 

primary function of the digital twin will be presented as much as possible. Meanwhile, 

due to the lack of a standard framework in the literature of digital twin for predictive 

maintenance, it hard to evaluate the justifiability in practical.  

 
1 This is a literature review on Predictive maintenance and Digital twin. The document explicitly presents 

the requirements for building the digital twin of predictive maintenance and architecture of digital twin. 
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1.5 Outline 

The main structure of this thesis will be organized as follows: 

• Chapter 1: Present the background and problem formulation for the topic, the 

objectives to be achieved, and relevant approaches and limitations for the thesis. 

• Chapter 2: Present the hypothetical system, the main architecture and problem 

to analysis. 

• Chapter 3: Introduce the requirements for predictive maintenance and digital 

twin. Present necessary systems to build the digital twin and digital twin 

architecture. 

• Chapter 4: Introduce Data analysis and processing models; Present principles 

and mechanisms of each method explicitly. 

• Chapter 5: Present the framework and architecture of the digital twin for the 

hypothetical system.  

• Chapter 6: Present the digital twin Offline reference model with three different 

methods and illustrate the data processing procedure in detail. 

• Chapter 7: Present the Online prognostics model and decision model; 

meanwhile, present the digital twin workflow. 

• Chapter 8: Alternative analysis; analysis performance of three prognostics 

models.  

• Chapter 9: Present the discussion and conclusions for this thesis, as well as 

recommendations for future work.  

• Bibliography 

• Appendix A: Presents acronyms relevant to this thesis. 

• Appendix B: Presents Roadmap for predictive maintenance digital twin in the 

literature review 

• Appendix C: Presents the programming codes for the work carried out. 

 



 

Chapter 2  

System description 

In this Chapter, a hypothetical system is introduced. The purpose of this system is to 

demonstrate and connect the digital twin for predictive maintenance. This system 

simulates a factory, drawn from the wind farm, which requires long-term maintenance 

planning and specific maintenance windows (Seyr and Muskulus, 2019). 

2.1 Physical system  

There is an unmanned automation factory called ATF. Inside the ATF, there are several 

machines in this factory. Due to some reasons, the factory is located far away from the 

company. There is no possibility to access in time. The factory works 24h/ day, the real-

time data of each machine is through the network passing to the company (the network 

always works). If there are some issues happen, the digital system can alert the crews 

to shut down or slow down the process.  

 

Figure 2.1: Illustration of automation factory  

Due to the remote location of ATF, the maintenance group cannot fix the issue. Thus, 
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the maintenance is based on the schedule. Meanwhile, due to inaccessibility, 

maintenance only can be conducted in a specific period2. During the maintenance, we 

assume the maintenance only needs one type of component. After repair, the machine 

is AS GOOD AS NEW. When it comes to the scheduled time, all the machines are 

maintained, regardless of their states of failure. There are two repairmen in the 

maintenance group. The repair time variating from 4-6 (cycles) depends on the machine 

state. In the system, we count time by cycles, not by hours.  

2.2 Dataset description 

The data set is originally from the Prognostics and Health Management PHM08 

Challenge Data Set. This data set is generated by C-MAPSS (Commercial Modular 

Aero Propulsion System Simulation)(Saxena et al., 2008). The original datasets have 

been pre-processed from the Kaggle website into 4 training datasets (shows in the 

following table), 4 testing datasets, and 4 evaluation data containing real RUL, which 

can be directly used in the data analysis. 

Tabel 2.1 Dataset features description  

Data Set: FD001 FD002 FD003 FD004 

Train 

trajectories: 
100 260 100 248 

Test 

trajectories: 
100 259 100 249 

Conditions: 
ONE (Sea 

Level) 
SIX ONE (Sea Level) SIX 

Fault Modes: 
ONE (HPC 

Degradation) 

ONE (HPC 

Degradation) 

TWO (HPC 

Degradation, Fan 

Degradation) 

TWO (HPC 

Degradation, Fan 

Degradation) 

 

In this case study, we select ‘train_FD001’, ‘test_FD001’ and ‘RUL_FD001’ as our 

dataset, since there is only one Fault Mode. In addition, we only choose 6 test samples3 

corresponding to the 6 machines in this hypothetical system. The reason we choose this 

 
2  In the wind farm maintenance, the available time slot is named as Maintenance window. In the 

following part, we call this period as Maintenance window. TAVNER, P. 2012a. Offshore wind turbines: 

reliability, availability and maintenance, The Institution of Engineering and Technology.    
3 We choose 31,34,35, 68,81,82 as the samples. Since the degradation trends are similar, we could assume 

these machines as identical. 
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dataset is that the objective of the PHM08 is to predict the number of remaining 

operational cycles before failure in the test set.,which matches some of the objectives 

of this thesis. Inside the datasets from training and test, the given columns are as 

following: 

1) unit (engine) number 

2) time, in cycles 

3) operational setting 1 

4) operational setting 2 

5) operational setting 3 

6) 21 sensor monitoring data, shown in the following table: 

Tabel 2. 2 Sensor properties of the PHM-08 dataset 

Symbol Description Unit of measure Label 

T2 Total temperature at fan inlet °R sen1 

T24 Total temperature at LPC outlet °R sen2 

T30 Total temperature at HPC outlet °R sen3 

T50 Total temperature at LPT outlet °R sen4 

P2 Pressure at fan inlet psia sen5 

P15 Total pressure in bypass-duct psia sen6 

P30 Total pressure at HPC outlet psia sen7 

Nf Physical fan speed rpm sen8 

Nc Physical core speed rpm sen9 

epr Engine pressure ratio (P50/P2) -- sen10 

Ps30 Static pressure at HPC outlet psia sen11 

phi Ratio of fuel flow to Ps30 pps/psi sen12 

NRf Corrected fan speed rpm sen13 

NRc Corrected core speed rpm sen14 

BPR Bypass Ratio -- sen15 

farB Burner fuel-air ratio -- sen16 

htBleed Bleed Enthalp -- sen17 

Nf_dmd Demanded fan speed rpm sen18 

PCNfR_dmd Demanded corrected fan speed rpm sen19 

W31 HPT coolant bleed lbm/s sen20 

W32 LPT coolant bleed lbm/s sen21 



 

 

Chapter 3 

Predictive maintenance and Digital twin 

3.1 Predictive maintenance requirements 

Due to the stochastic and dynamic behavior of the disturbance in the manufacturing 

process, maintenance planning becomes more critical. The concept of predictive 

maintenance is by analyzing relevant information and conducting the diagnosis to 

predict the potential failure or RUL of the equipment, as well as providing maintenance 

support dynamically (Lee et al., 2017). 

Predictive maintenance could track the system condition by detection and indication 

during the operation. In principle, predictive maintenance optimizes the maintenance 

behavior to prevent unexpected maintenance, and lower the maintenance frequency and 

cost (Mobley, 2002). It is based on essential data from internal and external information 

to predict asset behaviors and scheduling maintenance strategy. Thus, a platform, such 

as a digital twin, is necessary to integrate different information to make maintenance 

schedules based on the prediction of assets condition and available resources. 

Predictive maintenance relies on the actual condition of equipment, rather than average 

or expected life statistics, to predict when maintenance will be required. It means the 

predictive maintenance acquires not only the RUL prediction but dynamically provides 

different scenarios for the users to choose, based on alternative information.  Therefore, 

a robust system and more information are necessary to realize predictive maintenance 

(Cachada et al., 2018). 

In Wang’s literature review, the following is the main points to realize predictive 

maintenance: 

• Data gathering and pre-processing; 

• Indicators selection and model training; 
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• Pre-detection and localization; 

• Prediction and prognosis (including remain useful life prediction or fault 

prognostics); 

• Decision making and actions 

(Wang, 2019) 

Within the scope, real-time monitoring is essential for predictive maintenance, which 

could provide internal real-time data and external information to evaluate and track 

system performance. Hence, a robust system that including communication and the 

digital system is critical for predictive maintenance (Nguyen and Medjaher, 2019). 

In addition, to illustrate the predictive maintenance better, we give a brief example. We 

consider a critical component in a machine that is exposed to deterioration. To measure 

the deterioration, it is possible to install sensors that, in real-time, could monitor the 

behaviors of the critical component. The deterioration is considered to be governed by 

some stochastic loads. In order to measure the deterioration, we need an evaluation 

method, named as 𝑋(𝑡), to establish the bridge between the data and deterioration 

behavior. We assume we could observe 𝑋(𝑡) in real-time. From the point of time, we 

decide to change the component. Then we need to decide what time to choose to do the 

maintenance and take the lowest risk.  

When we consider the predictive maintenance in this example, these questions should 

be considered4. 𝑋(𝑡) is univariate, could be questioned. Therefore, we need to look into 

how to select the feature to establish the 𝑋(𝑡)  and the maintenance threshold. 

Meanwhile, how to monitor data and select the data-driven methods, since the data 

could be muti-dimensional. Besides, how to establish an objective function. Hence, 

there should be a digital twin system to support us in solving these questions efficiently. 

 
4 The questions also could be presented as: the techniqal aspects for monitoring and acquiring real-time 

data, data-driven method and PHM process, and objective model for making decisions. 
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3.2  Cyber-physical system and digital twin 

3.2.1 Communication system 

Technically, Digital twin represents physical assets in a virtual form. As the physical 

assets operating, digital twin serves to simulate or estimate the state of the process. To 

make sure these two identical parts could be connected and synchronized, Digital twin 

should be able to communicate with the physical systems or multi-phase digital systems 

(Wegener, 209). Cyber-physical system (CPS) and the Internet of things (IoT) enable 

communication between the digital twin and physical assets.  

 

Figure 3. 1 Illustration of the connections in CPS  

 

The Cyber-physical system (CPS) is a group combination of physical components and 

computational processes. The term ‘cyber’ and ‘physical’ are firmly connected and 

interacting. These two parts are tightly interwoven and continually interacting, which 

is not duplicated merely or united with each other (Akkaya, 2016). The Cyber-physical 

system (CPS) is not a reference model, which does not reflect any other applications. 

Within the scope of Industry 4.0, the Internet of things (IoT) is a successful 

implementation of CPSs, which connects different domains and provide a bridge (Lee, 

2015). 
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Figure 3. 2 The illustration of IoT and CPS system (Weninger, 2020) 

Internet of things (IoT) provides interrelationship for physical machines and digital 

twin, smart devices, objects, even human. Through the unique identifiers (UIDs) of 

each object. IoT can transfer data over the network and remote control automatically 

and allow the information transferred from different places and different devices, which 

improve data accessibility and transmission efficiency. 

The integration and connection of information make the environment can communicate 

with physical assets dynamically, which allows the terminal to provide an intelligent, 

dynamic decision. (Akkaya, 2016) 

3.2.2 Digital twin 

The digital twin is designed to manage data, store, process, and communicate with 

physical systems and the environment. It is the crucial component to achieve system 

digitalization and real-time optimization. (Söderberg et al., 2017) 

The digital twin can cover various perspectives in different aspects. In the 

manufacturing field, a digital twin can connect essential information for prediction and 

simulation, which can be used to optimize the whole manufacturing procedure and 

activities (Rosen et al., 2015). The digital twin is not a new concept, and it is evolving 

from time to time. (Wegener, 2019; Bacidore, 2019). For a digital twin, the most crucial 

element is data. The quantity and quality of data in some way could influence the 

accuracy of simulation digital twin. Also, the digital twin function is limited by the 
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data-driven method. What kind of information can be gathered from physical assets is 

another critical factor. In theory (Grieves and Vickers, 2017), the digital twin could 

represent the physical model. The feature implemented in digital could be decided by 

physical system analysis, which could influence the data fusion and prediction 

accuracy.   

On the industry level, Digital twin could provide prognostics and health management 

(PHM), optimize decision making under uncertainty, and provide a series probabilistic 

model, which performs as a reward model to help correct predictive maintenance 

(Rocchetta et al., 2019). Because of the complexity of the system, a digital twin can 

help to separate the mission to different sub-systems, make whole processes more 

efficient, and avoid having an all integrated system, which might slow down the 

analysis procedure. (Qiao et al., 2019) 

3.2.3 Digital twin architecture 

A digital twin can cover various perspectives in different aspects. In the manufacturing 

field, a digital twin can connect essential information for prediction and simulation, 

which can be used to optimize the whole manufacturing procedure and activities (Rosen 

et al., 2015). With a different perspective, the digital twin has different formations and 

requirements. In (Wang, 2019), the literature review shows that there are mainly seven 

requirements needed to build a digital twin for predictive maintenance:  

• Physical system background and information 

• Real-time data from equipment, 

• Local data with lifecycle stage,  

• Automatic self-updating/communication,  

• Working status definition.  

• Data-driven technologies, 

• Decision and evaluation 

They are highly suggested by literature and take a high percentage of all the 

requirements. Along with all the requirements, some of them have common parts with 

the PHM process. The PHM process can be regarded as a part of the digital twin, which 

could provide prognostics for the system (Rocchetta et al., 2019). So, to build the digital 
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twin, we need Physical system background and information, real-time data, historical 

data, prognostics and health management (PHM), and decision-making module. 

 

Figure 3. 3 Digital twin framework and necessary information 

3.2.3.1 Physical system background and information 

Nowadays, Industrial systems become more complex, and it is hard to transfer all of 

the system’s physical processes to digital form. Hence, we need methods to extract the 

main feature or principal components from the physical system to represent the whole 

degradation (Scheifele et al., 2019). 

In order to determine the critical components or sub-systems, one of the typical 

methodologies is to apply hazard analysis or risk assessment, which both belong to 

system analysis. System analysis can estimate the likelihood, cause, and consequences 

of a hazardous event or condition, which requires a good understanding of the system 

and proper methods. Typically, system analysis could be divided into two parts: 

qualitative and quantitive analysis, shown in Figure 3. 4. Different methods provide 

different systems analysis approaches.   

 



 

CHAPTER 3: PREDICTIVE MAINTENANCE AND DIGITAL TWIN 

 15 

 

 

Figure 3. 4 System analysis methods and classification 

Within these methods, FMECA and FTA are the primary approaches in determining 

critical sub-systems or components. FMECA analyzes as many components and 

subsystems as possible to identify the failure modes and effects. It documents the result 

of failure on the system, which can be regarded as the basis for inspection and 

monitoring. FTA represents the interrelationship between sub-systems and components 

related to the critical accident in the system. According to the likelihood of each critical 

event and components fail, we could decide which components or sub-system are more 

valuable to monitor.  

The analysis of the physical system aims to understand the failure mode and risk of the 

system failure, which could help industries to avoid unnecessary cost and reduce the 

risk. (Bevilacqua et al., 2020). The failure mode and relevant physical information can 

help to determine the system degraded state, which could be adopted in establishing the 

health indicator for PHM (Atamuradov et al., 2017). 

3.2.3.2 Data availability  

In industries, sensors are wildly used in different processes. After monitoring the data, 

suitable software or method needs to be done to process these data. In the digital twin 

requirements, two kinds of data are needed: one is historical data, and the other is real-

time data. In (Tao et al., 2019) and (Ding et al., 2019), historical data for the whole 

lifecycle stage is stored in the cloud to provide a reference model for the prognostics. 

In (Biesinger et al., 2019), the real-time data is gathered by sensors under MQTT 

(Message Queuing Telemetry Transport) and MSB (Media Stream Broadcast) protocol. 

In order to get the RUL prediction, the requirements of data in the following should be 
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considered (Tao et al., 2018b):  

1. Historical data. The historical data can help to extract the main feature of the 

system, which includes failure mode, failure time, and system behavior. This 

information can indicate the potential failure of the same or similar system as a 

reference database. 

2. Realtime data and labelling. The real-time data needs to be gathered in a fixed 

interval and transmitted to the digital twin. The data should be labelled with 

relevant physical meaning or sensor location, which is available for system 

component level analysis. 

For some of the industries, because of the system and lack of historical data, usually 

conditional monitoring and mathematical model are used. The digital twin could 

process real-time data and give a probability of each state of the system or the 

probability of reaching the system healthy threshold. Then, based on prediction and real 

case, an evaluation for the digital twin would be conducted. Furthermore, if necessary, 

the improvement could be implemented to the digital twin and get better performance. 

For those who both have real-time data and historical data, the process would be more 

complicated. The historical data can be stored in the cloud or specific data storage 

space. The data processing could help to clean and process the redundant and missing 

data. After this, based on systematic analysis, some relevant features in historical data 

could be selected. By using mathematical or big data algorithms, a simulation digital 

twin model could be established, and historical data is for training the model. Then, 

based on the model, real-time data could be used to make a prediction. There could be 

two types of predictions, in which one is long-term, and the other is short term. For 

long-term prediction, it is usually for maintenance planning and resource arrangement. 

For short-term prediction, it is usually for an emergency, and it is more like conditional 

monitoring to get a short time alert for the unexpected situation. 

 (Wang, 2019) 

3.2.3.3 Prognostics and health management 

Prognostics and health management (PHM) is a modern engineering concept which 

provides an overview in the real-time assessment of system operational health state, 
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along with the prediction according to multiple information. PHM aims to reveal system 

failure trends, diagnostics, and prognostics to perform health management. Further, it 

can assist in providing maintenance suggestions or determine the optimal execution 

plan (Atamuradov et al., 2017). With the explosive development of digital information, 

PHM conveys data and information into connection with the health state, which 

provides a perceptual intuition of system properties. Due to PHM could conduct the 

prediction of remain useful life (RUL), it becomes an intermediary process in realizing 

predictive maintenance (Kim et al., 2016). 

The main task of PHM is that a PHM system needs to consider three-stage: current 

system state estimation, estimate future state and remain useful life (RUL), and the 

impact of failure (Atamuradov et al., 2017). According to the task, the process of PHM 

includes data collection, diagnostics, prognostics, and health management. Data 

collection is to acquire the condition monitoring data and, according to data, extract 

some main features for the following process and establish an evaluation method. 

Diagnostics is to detect the system state at present based on the evaluation method. 

Prognostics is to get a predictive lifetime or RUL based on the monitoring data. Then, 

through all of the information obtained from previous, health management is to give a 

general maintenance plan. (Atamuradov et al., 2017) 

 

Figure 3. 5 Prognostics and health management process 

Remaining useful of lifetime 

The remaining useful of lifetime (RUL) is the length from the current time to the end 

of lifetime, which wildly applies in the PHM and maintenance schedule. RUL highly 

depends on the current system statue, operation environment, and relevant health 

condition (Si et al., 2011b). Usually, RUL follows some distribution, which is a time-

dependent variable with a mean value. We define RUL (tj) as a random variable of 
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remaining useful of lifetime at time tj. The health indicator which denotes the health 

statue of the assets on degradation level, we define as Y(t). During deterioration, the 

system may still be functional, but may not perform well after a threshold. We define 

SL as an unacceptable failure limit. The RUL (tj)) is defined with the following formula: 

𝑅𝑈𝐿(𝑡𝑗) = inf൛ℎ: 𝑌(𝑡𝑗 + ℎ) ∈ 𝑆𝐿ห𝑌(𝑡𝑗 < 𝐿), 𝑌(𝑠)0≤𝑠≤𝑡𝑗ൟ (3.1) 

The definition requires: 

1. To have Y(tj) as health indicator at time tj; 

2. To have SL as acceptance threshold; 

3. Able to estimate Y(tj); 

4. Able to predict Y(tj) at any time interval h.(Barros, 2019; Si et al., 2011b) 

State identification 

State identification is to detect and recognize the system state at present from condition 

monitoring data. There are a variety of factors could influence the system performance 

and cause degradation in operation. Even the newly assembled equipment has an early 

failure period. An example is the ‘Bathtub curve’, shown in Figure 3. 6. 
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Figure 3. 6 The ‘Bathtub curve’ of failure rate (Croarkin et al., 2006). 

 

Hence, a consistent application is needed to evaluate the health state of how degraded 

the system is. Figure 3. 7 illustrates the trend and states of a degradation level. In the 

illustration, the system degraded states have two thresholds: one is alert, one is the 

alarm, three phases: healthy, degraded, failure.  Phase 1, the system is in the health 

state, where the degradation level is from 𝐻𝐼0  to HI1 . In this phase, the system is 

regarded in the health state. Phase 2, the system is slightly degraded, some of the 

failures start to show up, but the majority of failure is still not revealed. In this phase, 

the degradation level reaches the HI1 -alert level. Phase 3 the system is severely 

degraded; the majority of failures are within this period. Moreover, it passed the alarm 

threshold – HI2, which means the system is going to fail. 
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Figure 3. 7 Trend and states of the degradation level 

In this concept, we need to decide the HI threshold in terms of categorizing the system 

degradation level. However, pre-set the threshold is a bit challenged, which needs a 

complete understanding of system behavior and operational information. The historical 

system data is essential here to address the system state, which provides a reference to 

set up the threshold (ISO, 2019). 

Diagnostics 

Diagnostics is a part of state identification, but with more aspects. It mainly focuses on 

faulty or failure with a high degraded level. Generally speaking, diagnostics performs 

high detection of faulty state when the system still can operate, and with the lower false 

alarm rate (Atamuradov et al., 2017). The main task of diagnostics is to 1.detect the 

fault, which indicates the abnormal performance of the system; 2. isolate the fault, 

which is to address the system component problem; 3. identify the fault, which is the 

root cause of this failure (Janasak and Beshears, 2007). Diagnostics can be classified 

into four categories: 

1. General inspection; 

The general inspection is primarily related to the sensory inspection and functional test, 

which is conducted on accessible equipment by operators. Usually, the frequency is 
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high, which might be hourly or daily. The general inspection can reveal 40% in the 

early stage of faulty. 

2. Detailed inspection and detection; 

Detailed inspection and detection are conducted by the expertise or maintenance group. 

During the operation, some of the tests cannot be carried out by operators, such as 

voltage examination, equipment decomposition. 

3. Offline equipment evaluation; 

Offline equipment evaluation is based on specific physical properties (temperature, 

vibration, sound, etc.) to determine the degradation of the system. To some extent, 

offline equipment evaluation is conducted with a schedule. It can be regarded as 

preventive maintenance, which does not reveal the failure or faulty directly. 

4. Realtime data monitoring. 

Realtime data monitoring is wildly applied nowadays, which provides the opportunity 

for acquiring the functional feature online. From analyzing those features and dynamic 

updating, it can indicate the system statue and degradation state. 

(Frangopol, 2011) 

 

Figure 3. 8 The information provided by diagnostics (Frangopol, 2011) 

Diagnostics provides information about which components failed or degraded and what 

reason cause this situation, which helps to predict the further potential degradation or 
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failure. (Janasak and Beshears, 2007) 

Prognostics 

Prognostics focuses on the prediction of the system state, in which the system is no 

longer functional, or it reaches the maintenance threshold. Typically, through 

comparison between the operational condition with the health indicator, the deviation 

shows the deterioration of the system with the time scale. Further, according to this 

mechanism, prognostics could provide a time estimation of future performance (Pecht, 

2009). Within the scope, it is crucial to collect system information for the faulty and 

failure mode(including the abnormal signal, system behavior, and reason for the 

phenomenon) (Atamuradov et al., 2017).  

There are three approaches to realize prognostics: 1.data-driven prognostics; 2.model-

based prognostics(statistical approaches); 3.hybrid prognostics.(An et al., 2013) 

Data-driven prognostics applies the historical data (training data) to determine the 

current state of the system and predict the future trend. The principle is only focusing 

on the data through the whole operation period and ignoring the system architecture 

and physical meaning. This method applies to the complex system, or the dataset is not 

suitable for model-based prognostics (Barros, 2019; An et al., 2013). Artificial 

intelligence approaches and fuzzy logic are the typical methods of data-driven 

prognostics. The prediction uncertainty is estimated by a validation data set (Barros, 

2019).   

Model-based prognostics usually combines physical models and degradation level to 

estimate the RUL of the system. The model-based prognostics applies several physical 

considerations and system monitoring variables into a mathematical model. However, 

this process might reduce the accuracy of the degradation model, especially when the 

system becomes complex. So, the model-based prognostics typically perform on 

components level or damage propagation. (Mosallam et al., 2013; Barros, 2019). 

Statistical approaches are the classical method of model-based prognostics, which can 

estimate the RUL along with probability. Classical model-based prognostics methods 

are trend models, time series, and stochastic processes. (Barros, 2019) 

Hybrid prognostics takes the advantages of both data-driven and model-based. In the 

practical, the data-driven method needs historical data (i.e., training dataset) to obtain 
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the degradation trend and threshold. However, some of the system failures are not 

frequent. It is hard to get several historical data. Hence, the hybrid prognostics method 

combines statistical approaches with data-driven methods (Pecht and Jaai, 2010). 

Health indicator (Health index) 

The implement of prognostic needs evaluation scale that identifies the health condition 

of the system operating condition. This evaluation scale is called a health indicator or 

health index. There are two kinds of health indicators: Physics Health Indicator (PHI) 

and Virtual health indicator (VHI).  The PHI is related to the physical phenomenon, 

such as the vibration of bearing (Mosallam et al., 2015), and the temperature of the 

lithium-ion battery. This implement needs acquired signals related to system 

degradation level, which depends on system complexity and difficulty of decomposing 

the system while analyzing. Hence, the VHI is available for those failures which are 

not directly to physical phenomenon. Multiple sensors information and data sources 

can merge into one-dimension health indicators, such as linear weight (Bai et al., 2014).  

3.2.3.4 Decision making  

In practical, some maintenance schedule is not a short-time plan. Due to the availability 

of resources and accessibility for physical assets, it is necessary to have a decision 

model to help engineers make the maintenance schedule. According to the marketing, 

environmental, and resource information, the decision digital twin could not only help 

engineers balance the cost and plans, but also provide several decisions with a different 

probability. Meanwhile, the decision is dynamic, which means as more real-time data 

collected, the prediction would be more accurate, and the decision could be corrected 

along with the time (Seyr and Muskulus, 2019). The decision-making methods are 

various. In  Liu et al. , the author states that the inventory of spare parts is one critical 

influence factor in predictive maintenance arrangement (Liu et al., 2013; Liu et al., 

2018). Bousdekis et al. propose a decision model based on economic loss when the 

system in different deterioration states (Bousdekis et al., 2018).  In general, the decision 

model should be established based on real need and loss when the system failed.  

 



 

 

Chapter 4 

Data analysis and processing methods 

In this chapter, the data analysis and processing methods are presented. The purpose of 

these methods is to analyze historical data to establish the offline reference model for 

the digital twin.  

4.1 Dimension reduction  

Data collected from monitoring usually contains multi-dimensional time-series signals. 

Thus, it is essential to compress the signals into one phase or select the most 

representative ones. The principal component analysis (𝑃𝐶𝐴) can help to reduce the 

dimension (Mosallam et al., 2016).  The mechanism of 𝑃𝐶𝐴 relies on the linear algebra 

of several dimensions, which could transfer the data to a new coordinate system. The 

purpose of PCA is to find the most significant variance in the new coordinate system. 

The first principle is to choose the direction with the most significant variance in the 

original data. The second principle is to choose the orthogonal axis with the first 

principle component, along with the most significant variance in this coordinate system, 

and so on. The axis with the most significant variances is the principal component, as 

Figure 4. 1 shows.  
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Figure 4. 1 The illustration of PCA 

Assume, the data set is X =  ሼ𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛ሽ , based on the eigenvalue decomposition 

covariance matrix or singular value decomposition (𝑆𝑉𝐷):  

1. Normalization or de-average; 

2. Calculate the covariance matrix 
1

𝑛
𝑋𝑋𝑇; 

3. Find the eigenvalue and eigenvector of the covariance matrix by using 

eigenvalue decomposition or 𝑆𝑉𝐷; 

4. Sort the values from largest to smallest, and form a new matrix 𝑃 

5. Convert the data in a new matrix from 𝑃 and 𝑋, which is 𝑌 = 𝑃𝑋 

(Shlens, 2014) 

After the dimension reduction, the multi-dimensional signal data could be merged into 

several principal components. The first principal component contains the most 

significant variance, which could represent the main feature of the dataset. 

4.2 Time series decomposition 

4.2.1 Time series patterns 

The real-time data usually includes some signal errors and fluctuate. The disturbance 
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of the external environment and human interrupt usually makes sensor signal quality 

not that feasible to analyze directly. Generally, the real-time monitoring data is a time 

series, including a specified time step and corresponding values.  There are three typical 

patterns in time series: Trend, Seasonal, and Cyclic. The trend is capable of a long-term 

increase or decrease in the data series. The trend does not need to be linear or specified 

functions. The seasonal pattern is that the time series follows a fixed frequency, such 

as daily, monthly, and yearly. It typically shows periodically trend. Cyclic applies when 

the data trend variating not follows a specified frequency, which seems more random.  

4.2.2 Time series components 

Real-time data could be a combination of those patterns. When it comes to the analysis, 

time series decomposition could split a real-time series into trend-cycle (trend), 

seasonal, and residuals, these three components. Let’s 𝑆𝑡 denote seasonal component, 

Tt is trend-cycle components, and Rt is the residual components, 𝑦𝑡 is the value of the 

signal, at time t.  The additive decomposition 4.1 and multiplicative decomposition 4.2 

can be formulated as:  

𝑦𝑡 = 𝑆𝑡 + 𝑇𝑡 + 𝑅𝑡 (4.1) 

𝑦𝑡 = 𝑆𝑡 × 𝑇𝑡 × 𝑅𝑡 (4.2) 

The additive is applicable when the magnitude of the variation does not fluctuate around 

the trend-cycle. Otherwise, it is better to use multiplicative decomposition. 

(Hyndman and Athanasopoulos, 2018) 

4.3 Pattern recognition approaches 

Pattern recognition is a recognizing process that matches the information from input 

data to stored historical data. This method is widely applied in machine learning 

because of high efficiency (Barros, 2019; Pecht, 2010). Pattern recognition can be done 

direct computation through machines, such as k-Nearest-Neighbor (k-NN), and 

Decision tree, or on bionics-related, such as the Artificial Neural Network (ANN) 

(Venkatesan et al., 2019; Jesan, 2004). In this part, the neural network and k-NN are 

introduced.  
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4.3.1 K Nearest Neighbors  

K Nearest Neighbors (k-NN) is a similarity approach according to entire training data 

and classification. Not like other methods, k-NN does not spend lots of time on training. 

The k-NN is a non-parametric method, which means the prediction only depends on the 

training data without learning any specific functions (Singh, 2018). Figure 4. 2 shows 

an example of 𝑘 − 𝑁𝑁 Regression 

 

Figure 4. 2 k-NN regression example 

4.3.1.1 k-NN prediction 

The k-NN prediction is by searching for the k most similar neighbors, i.e., instances. 

For the distance measuring, three methods are wildly used, Euclidean, Manhattan, 

Minkowski. The mathematical approaches and formulas of distance functions are 

showing in the following (Singh, 2018). 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑎, 𝑏) = ඩ(𝑎𝑖 − 𝑏𝑖)2

𝑛

𝑖=1

(4.3) 
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𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛(𝑎, 𝑏) = ඩȁ𝑎𝑖 − 𝑏𝑖ȁ2

𝑛

𝑖=1

(4.4) 

𝑀𝑘𝑜𝑤𝑠𝑘𝑖(𝑎, 𝑏) = ඩ൭(ȁ𝑎𝑖 − 𝑏𝑖ȁ)𝑞

𝑘

𝑖=1

൱
𝑞

(4.5) 

 

These three methods are only valid for the continuous model. If there is NaN or null 

value in the model, it should be changed into a specific value. 

4.3.2 Neural Network (ANN) 

The artificial neural network is an information recognition and classification system, 

which the network through studying through input data to learn the mechanism and 

generate desired outputs. The linkage between input and output depends on how neural 

network architecture is built and what kind of activation function is chosen 

(Atamuradov et al., 2017; Venkatesan et al., 2019; Jesan, 2004). The neural network 

now has developed broad branches with multiple domains, such as the convolutional 

neural network (CNN), Long short-term memory (LSTM) (Kim et al., 2016; Pecht, 

2009; Atamuradov et al., 2017). 

4.3.2.1 Neural Network introduction 

The primary component in the neural network is called nodes. Each node could be 

formulated into different functions. The nodes with the same function can be grouped, 

called layers. Typically, the layers can be categorized into three different types, which 

are the input layer, hidden layer, and output layer. In the NN, the input layer first 

collects the data from outside, then passes the data to the hidden layer(s). In the end, 

the data past from the hidden layer(s) to the output layer and output the data (Kim et 

al., 2016; Fortuner, 2019). 

Figure 4. 3 shows a typical NN model with three layers. In this NN model, 𝑥𝑛 , ℎ𝑛 and 

z represents the nodes respectively in the Input layer, Hidden layer, and Output layer. 
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Between each layer, 𝑊𝑥𝑛𝑛 and 𝑊ℎ𝑛 represents weights, 𝐵𝑥𝑛𝑛 and 𝐵𝑧𝑛 represents the 

biases.  

 

Figure 4. 3 Feedforward neural network framework 

4.3.2.2 Neural Network mechanism  

The primary process of NN is to estimate the value of 𝑊𝑠 and 𝐵𝑠 . From layer to layer, 

there are activation functions to determine the relations between input and output 

variables. In this case, the weights and biases from the input layer become the input of 

the activation function. The output of the activation function is distributed to hidden 

nodes in the hidden layer. Similarly, the hidden weights from the output of hidden nodes 

become the input of another activation function. After the activation function, the 

outputs are the final outputs in the output layer.  

Typically, the weights and biases of the input nodes are formulated by a linear 
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combination, which is the input of the activation function in the next layer. The 

mathematical formula could be described as: 

𝐻 = 𝑑ℎ(𝑊𝑥𝑛𝑛 ∙ 𝑋 + 𝐵ℎ𝑛𝑛) (4.6) 

𝑍 = 𝑑𝑧(𝑊ℎ𝑛 ∙ 𝐻 + 𝐵𝑧𝑛) (4.7) 

Where: 𝑋 is a matrix of training dataset with 𝑖 × 𝑗 data point, 𝑊𝑥𝑛𝑛 is the input weights 

for the activation function with 𝑖 × 𝑘 datapoints, 𝐵ℎ𝑛𝑛 is the hidden bias with 1 × 𝑘 

vector, 𝐻 is hidden nodes with a 𝑘 × 𝑗 matrix, 𝑑ℎ is the activation function between 

each layer, 𝑊ℎ𝑛 is the hidden weight with 1 × 𝑘 vector, 𝐵𝑧𝑛 is 1 × 𝑗 bias vector, and 

𝑍 is the final output with 𝑗 elements. 

4.3.2.3 Activation function 

The purpose of the activation function is to convert the input to the node and classify 

which node it should be located. After training, each node has a weight and bias. When 

the new feature comes to input, the activation function could decide which node should 

be activated or not. With the activation function, in principle, the neural network could 

learn and compute any function. 

(SHARMA, 2017 ; Missinglink.ai, 2020) 

Typical activation Functions(commonly): 

Binary step function 

The binary step function is a classification function by evaluating the input with a 

specific threshold. The threshold could be modified and divided into several levels. 

𝑓(𝑥) = ቄ
0
1

𝑖𝑓 𝑥 < 0
𝑖𝑓 𝑥 ≥ 0

(4.8) 
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Figure 4. 4 Illustration of Binary step function 

Sigmoid Activation Function 

The sigmoid activation function is an ‘S’ shape curve with the limitation from 0 to 1. 

Thus, this function is used widely for prediction of probability. The shortcoming of this 

function is that the neural network will collapse if the input is a strong negative value. 

𝑠(𝑧) =
1

1 + 𝑒−𝑧
(4.9) 

 

 

Figure 4. 5 Illustration of the Sigmoid Activation Function 

Hyperbolic Tangent Function — (tanh) 

Tanh is a non-linear function with real-valued range form (-1,1). Compared with 

Sigmoid function, Tanh can be used with strong negative input, and near-zero input 
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could compute near-zero output. It is more preferred than the sigmoid function. 

𝑡𝑎𝑛ℎ(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
(4.10) 

 

Figure 4. 6 Illustration of the Hyperbolic Tangent Function 

Rectified Linear Units — (ReLu) 

ReLu is a function with a range from [ 0, +∞), which is the most used function in the 

hidden layers. ReLu corrects the vanish of the gradient problem, but it could blow up 

the activation.  Moreover, because of the lower limit, the gradients might die during the 

training. Leaky ReLu was introduced. The parameter ‘a’ usually is around 0.01. 

𝑓(𝑥) = ൜
0 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟𝑥 > 0

(4.11) 

𝑓(𝑥) = ൜
𝑎𝑥 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟𝑥 > 0

(4.12) 
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a.  without ‘a’ factor  (formula 4.11) b. with ‘a’ factor (formula 4.22) 

Figure 4. 7 Illustration of the Rectified Linear Units 

4.3.2.4 The learning process and cost function 

When the framework and activation function are selected, the next step is to train the 

neural network. During the training process, it is necessary to know when the training 

is complete and how successful it is. Thus, the cost function is established, which is 

based on the error value of estimation, such as mean squared error (MSE). The training 

process is to get the cost function as low as possible and update the weight, which also 

is called back-propagation. 

(Chauhan, 2019 ) 

𝑀𝑆𝐸 =
1

𝑗
ൣ𝑦𝑗 − 𝑧𝑗(𝑊𝑥, 𝐵ℎ, 𝑊ℎ, 𝐵𝑧)൧

2

𝑗

𝑗=1

(4.13) 

 

The optimizers are used to speed up the reduction of losses process and find the optimal 

training the model with different weights and biases. Among all of the optimizers, 

Adam spends less time and more efficiently, which provides an adjusted learning rate 

for each parameter. The mathematical principle works as follows: 

𝑣𝑑𝑊 = 𝛽1𝜈𝑑𝑤 + (1 − 𝛽1)
𝜕𝐽

𝜕𝑤
(4.14) 
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𝑆𝑑𝑊 = 𝛽2𝑠𝑑𝑊 + (1 − 𝛽2) ൬
𝜕𝐽

𝜕𝑤
൰

2

(4.15) 

𝑣𝑑𝑊
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =

𝑣𝑑𝑤

1 − (𝛽1)𝑡
(4.16) 

𝑠𝑑𝑊
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =

𝑠𝑑𝑤

1 − (𝛽1)𝑡
(4.17) 

𝑊 = 𝑊 − 𝑎
𝑣𝑑𝑊

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

ට𝑠𝑑𝑊
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 + 𝜀

(4.18)
 

The 𝑣𝑑𝑊 is the past gradients with an exponentially weighted average, while 𝑆𝑑𝑊 is 

corresponding to the square of the past gradients. 𝑣𝑑𝑊
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 and 𝑠𝑑𝑊

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 are the error 

correction of the bias. 𝑊 is the weight matrix, and undated from average calculations. 

(Doshi, Jan 13, 2019) 

4.3.3 Stochastic process (model-based) 

The stochastic process is prevalent to model the deterioration of components, where the 

system deterioration is non-monotonic and with some randomness  (Zhang et al., 2018; 

Le Son et al., 2013). The stochastic process can link to probability theory, which 

combines statistical-based data-driven with uncertainty and health indicator (Zhang et 

al., 2018; Si et al., 2011a).  

4.3.3.1 Brownian motion and Geometric Brownian motion 

The Brownian motion is also called the Wiener process. It is a continuous-time 

stochastic process with a stationary trend and independent increment (Le Son et al., 

2013; Si et al., 2011a). The equation of one-dimension Brownian motion is defined as 

the following: 

𝑌(𝑡) = 𝑢𝑡 + 𝜎𝑊(𝑡) (4.19) 

Where, 𝑊(0) = 0, 𝑊(𝑠) − 𝑊(𝑡) ~𝑁(0, 𝑠 − 𝑡), (𝑓𝑜𝑟 0 <  𝑠 <  𝑡).  This is a Wiener 

process undulating around zero, where the drift is: 
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𝑌(𝑡) − 𝑌(𝑠)~𝑁 ቀ𝑢(𝑠 − 𝑡),𝜎
2(𝑡 − 𝑠)ቁ (4.20) 

Geometric Brownian motion (𝐺𝐵𝑀) is also called exponential Brownian motion. The 

increment of 𝐺𝐵𝑀 is related to the current value. The stochastic differential equation 

(𝑆𝐷𝐸) is: 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 (4.21) 

Where the 𝑊𝑡 is a Wiener process, 𝑑𝑆𝑡  is the increment of a short-time-interval 𝑑𝑡, μ 

is the percentage drift, and σ is the percentage volatility. 

In order to find the probability when the stochastic process passes the threshold of a 

prognostic process, it is necessary to calculate the probability density function of the 

deterioration.  Thus, we define the following equation: 

𝑌(𝑡 + 𝑑𝑡) = 𝑌(𝑡) + 𝑆𝑦,𝑡,𝑑𝑡 (4.22) 

 

Where 𝑌(𝑡 + 𝑑𝑡) is the deterioration from 𝑌(𝑡) after time 𝑑𝑡 , 𝑆𝑦,𝑡,𝑑𝑡  is the random 

quantity in 𝑑𝑡 . Let 𝑔(𝑠)  be the 𝑃𝐷𝐹  of 𝑆𝑦,𝑡,𝑑𝑡 , 𝑓(𝑦)  be the 𝑃𝐷𝐹  of 𝑌(𝑡) . After 

considering the threshold of deterioration 𝐿, we can get: 

𝑓(𝑡ȁ𝑑 + 𝑑𝑡) = න 𝑓(𝑦 − 𝑠ȁ𝑡)⬚𝑔(𝑠) 𝑑𝑠
∞

𝑦−𝐿

(4.23) 

 

The failure probability density function: 

𝐹𝑇(𝑡) = 𝑃𝑟(𝑇 ≦ 𝑡) = 1 − න 𝑓(𝑦ȁ𝑡)𝑑𝑦
𝐿

−∞

(4.24) 

 



 

 

Chapter 5  

Digital twin framework and architecture 

In this chapter, a digital twin framework for predictive maintenance is presented. There 

are three parts in the digital twin, which are a communication protocol, PHM, including 

data-driven and prediction method, and strategic and decision making.  

The digital system (digital twin) mainly divided into three parts: 

• Communication protocols (models) 

• Machine diagnostics and prognostics models  

• Decision models 

Communication protocols (models) perform communication between cloud storage or 

local storage and different machines. The communication includes data flow (inlet and 

outlet), data file transfer, and terminal control. 

Machine diagnostics and prognostics models execute system diagnostics and 

prognostics algorithms and prediction of RUL. These processes are based on the 

historical data from the cloud storage or local storage and real-time data from machines. 

The predictions could pass to the decision models to execute further functions. 

After the predicted RUL and some environmental information passed to decision 

models, the decision models could provide the cost of maintenance behavior and update 

in real-time joint with a schedule.   

5.1 Communication protocol 

The communication protocol is based on the Transmission control protocol (TCP) 

(Foundation, 2020). In this thesis, Sockets programming is used to present the 

connection and communication between the physical part and the digital part. The 
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sockets are a client and server interaction, which typically has clients and servers on 

both sides. In sockets, the Client’s machine could connect with the servers via IP 

address.  The workflow of Sockets shows in the following:  

 

Figure 5. 1 The Socket communication workflow 

The primary steps of setting up the Socket is: 

1. The socket protocol firstly is set up in the server and client machine, which are 

connected by WLAN or LAN with descriptor; 

2. The descriptor could provide a label to each Client with a bind () name to get 

access from the network; 

3. While the server set up, the listen () 𝐴𝑃𝐼 will indicate the request-listen (), from 

the Client. Then after approved- accept () by Sever, the connection is set up. 

4. When the connection is established, the clients and server could transfer stream 

data by data transfer APIs, such as to send () and receive (). 

5. When the stream finishes, the API close could stop the service for both sides. 

5.2 PHM frame and method 

The online and offline framework, according to Mosallam et al. (Mosallam et al., 2016; 
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Mosallam et al., 2015), contains three different methods, which are 1)similarity-based 

prognostics based on the a. 𝑘 − 𝑁𝑁 approach5 , 2) Data-driven prognostics, which are 

b. Deep-learning based on Artificial neural network (𝐴𝑁𝑁) (Raman and Hassanaly, 

2019; Venkatesan et al., 2019), and c. Stochastic process (Atamuradov et al., 2017; Le 

Son et al., 2013; Zhang et al., 2018). 

5.2.1 Offline reference model 

The offline reference model is aimed to extract the trend and health indicator for the 

prognostics, which is emphasized in Chapter 3&4. The health indicator should be 

extracted from training data that has already stored in the cloud or local mirror (Pecht 

and Jaai, 2010). The historical data includes time-to-failure trajectories and multiple 

sensors or labeled data (Kim et al., 2016). The primary step of construct the offline 

reference follows the step below: 

1. Data pre-processing: including data cleaning, check out missing value, find the 

features of the differently labeled data. The purpose of data pre-processing is to 

get a general impression of the whole dataset, minimize the prediction error 

caused by raw data. 

2. Feature selection: Typically, for monitoring, not all of the data are informative 

from monitoring. Thus, it is essential to reduce the dimension of the dataset and 

compress the variables. Principal component analysis (𝑃𝐶𝐴 ) introduced in 

Chapter 4, could merge the relevant data and get the merged or selected data set 

from the raw dataset (Mosallam et al., 2016; Mosallam et al., 2015). 

3. Trend extraction and noise elimination: The signal data generally is combined 

with noise, so it is essential to extract the primary trend of a time trajectory. In 

Chapter 4, the time-series component decomposition is introduced to extract the 

trend, which is presented in Hyndman and Athanaspopoulos’s book (Hyndman 

and Athanasopoulos, 2018). 

4. Health indicator construction: After analysis of the primary trend, the health 

 
5 The main process of k-NN model presented in this thesis follows main process of a case study in 

MATLAB. Further, the author of this thesis did some modifications according to the system. 

https://se.mathworks.com/help/predmaint/ug/similarity-based-remaining-useful-life-

estimation.html#SimilarityBasedRULExample-10 

https://se.mathworks.com/help/predmaint/ug/similarity-based-remaining-useful-life-estimation.html#SimilarityBasedRULExample-10
https://se.mathworks.com/help/predmaint/ug/similarity-based-remaining-useful-life-estimation.html#SimilarityBasedRULExample-10
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indicator could be selected as an evaluation standard. When real-time data 

collected from monitoring, there is a standard to classify the state of the system. 

Noted that the ANN does not follow these steps, the primary process to establish the 

𝐴𝑁𝑁 will be discussed in the following chapters. 

 

 

Figure 5. 2  Overall scheme of offline reference model flow chart 

5.2.2 Online prognostics model 

In the online phase, new data is collected by sensors through the communication 

protocol, transferring to the data pre-process model. The data pre-process mode is to 

extract the same feature data as the reference model. Then according to the current data 

point, the prognostics processes are to perform RUL prediction.  The prognostics can 

acquire through the model-based or data-driven method, which is introduced in Chapter 

4.  Then the estimated RUL will transfer through the decision-making model in real-

time to help make maintenance decisions. 
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Figure 5. 3 PHM flow chart and process illustration 

5.3 Decision making  

The decision making is based on a simplified block replacement modeling (Formula 

5.1) and static group maintenance (Formula 5.2). The basic idea is to calculate the cost 

per unit of time in order to find the best time slot for maintenance.  

𝐶𝐵(𝑡0) =
𝑐 + 𝑘𝑊(𝑡0)

𝑡0

(5.1) 

Where: 𝑐 is the preventive maintenance cost, 𝑘 is the unplanned cost of system failure, 

𝑊() is the mean number of failures in the interval. 

 

𝐶(𝑇1, 𝑇2, 𝑇3, 𝑇4 … , 𝑇𝑚) = 
𝑆

𝑇𝑗

𝑚

𝑗=1

+  ቈ
𝐶𝑖

𝑝

𝑇𝑗
+ 𝐶𝑖

𝑢𝜆𝐸,𝑖(𝑇𝑖)

𝑗∈𝐺𝑗

(5.2) 

Where, 𝐶(𝑇1, 𝑇2, 𝑇3, 𝑇4 … , 𝑇𝑚) is the cost at the time 𝑇𝑚, 𝑆 is the set-up cost, 𝐺𝑗  is a 

maintenance candidate group, 𝐶𝑖
𝑝
is the planned maintenance cost, 𝐶𝑖

𝑢 is the unplanned 

maintenance cost, 𝜆𝐸,𝑖 is an effective failure rate for component. 



 

 

Chapter 6 

Digital twin offline model 

In this chapter, we are going to analyze the data from our system and establish the 

offline reference model. This process is the fundamental process in the digital twin 

establishment. 

6.1 Data pre-processing and offline reference 

model 

The following Chapter presents the establishment of a reference model for a digital 

twin, which provides an offline model to perform prognostics. The main idea of this 

offline reference model is based on a ‘Similarity-Based Remaining Useful Life 

Estimation’ published on MATLAB 6  (Wang et al., 2008), a deep learning neural 

network, and the stochastic process, respectively. Besides, the open-source libraries and 

packages are presented to build this offline reference model.  

6.2 Data pre-processing  

Data pre-processing is aimed at process raw data and prepare the data for the next stage. 

It is not extracting features or data fusion. The data pre-processing could increase data 

quality and provide a better solution when it comes to analysis. (Mosallam et al., 2015; 

Mosallam et al., 2016). 

 
6. The main process of k-NN model presented in this thesis follows main process of a case study in 

MATLAB. https://se.mathworks.com/help/predmaint/ug/similarity-based-remaining-useful-life-

estimation.html#SimilarityBasedRULExample-10 

https://se.mathworks.com/help/predmaint/ug/similarity-based-remaining-useful-life-estimation.html#SimilarityBasedRULExample-10
https://se.mathworks.com/help/predmaint/ug/similarity-based-remaining-useful-life-estimation.html#SimilarityBasedRULExample-10
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6.2.1 Historical data description 

As presented in Chapter 2, the historical datasets are uploaded to the cloud through the 

communication system. The machine starts operating from a healthy state and degraded 

during the operation. When the system runs to failure, the monitoring stops. There are 

100 machines in the historical dataset, and each machine is independent identical 

operating during operation. The dataset includes 21 different monitoring signal data 

and three operational settings. Each row is taken by a time unit-cycle, which is regarded 

as the time scale. The columns correspond to 1. Machine serial number; 2. Time/Cycle; 

3-5. Operational setting; 6-26. Sensor measurement.  

Table 6.1 The detailed information of the dataset 

Symbol Description Unit of measure Label 

T2 Total temperature at fan inlet °R sen1 

T24 Total temperature at LPC outlet °R sen2 

T30 Total temperature at HPC outlet °R sen3 

T50 Total temperature at LPT outlet °R sen4 

P2 Pressure at fan inlet psia sen5 

P15 Total pressure in bypass-duct psia sen6 

P30 Total pressure at HPC outlet psia sen7 

Nf Physical fan speed rpm sen8 

Nc Physical core speed rpm sen9 

epr Engine pressure ratio (P50/P2) -- sen10 

Ps30 Static pressure at HPC outlet psia sen11 

phi Ratio of fuel flow to Ps30 pps/psi sen12 

NRf Corrected fan speed rpm sen13 

NRc Corrected core speed rpm sen14 

BPR Bypass Ratio -- sen15 

farB Burner fuel-air ratio -- sen16 

htBleed Bleed Enthalp -- sen17 

Nf_dmd Demanded fan speed rpm sen18 

PCNfR_dmd Demanded corrected fan speed rpm sen19 

W31 HPT coolant bleed lbm/s sen20 

W32 LPT coolant bleed lbm/s sen21 

(Saxena et al., 2008) 
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6.2.2 Software and libraries for data pre-processing 

The digital twin proposed is programmed in Python version 3.8. The algorithm will be 

present in Appendix C.  Besides, there are extra libraries used to process the data; 

• Os: Os function is to get access to the operating system dependent functionality. 

Usually, Os is related to file editing and transferring. In the digital twin model, 

Os performs read and updating files. 

• Pandas: Pandas is mainly to structure data efficiently and intuitively. The data 

frame in Pandas contains two-dimensional and corresponding labels. For the 

Pandas data frame, the processing speed is faster than standard EXCEL and 

SQL in many cases. 

• Seaborn: Seaborn is a Python visualization library based on matplotlib, which 

provides an API to apply for a statistical plot and integrated with Pandas data 

frame functionality. 

6.2.3 Raw data pre-processing 

A ‘.txt’ format document collects the raw datasets. Based on the raw data structure and 

properties, the following steps need to be done for raw data pre-processing: 

1. Build data labels: In the raw datasets, there is no index for each column and 

rows. In order to make data tight and easy to process in the following steps, it 

is necessary to add labels to the dataset; 

2. Diagnose data for cleaning: In the monitoring, there could be some data missing 

and inconsistency. The missing value should be either replaced or removed. 

3. Data information: After diagnosis, it is essential to get a general impression if 

how much data in the dataset, the data type, and anything wrong with the data 

frame established. 

4. Data category: There are 100 machines data in the dataset, and each machine 

has the same label in columns. Thus, the data should be categorized by machine 

labels and time step. 
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Figure 6.1 Illustration of the raw dataset  

The raw data shows in Figure 6.1. The label of corresponding data is added to the data 

frame. The data set is categorized by machine number and time series. The following 

figures show the total data frame of historical data and the data frame of the first 

machine. 

 

Figure 6.2 Illustration of labeled data 

Missing data will influence the data processing procedure. Figure 6.3 is the information 

of all data to count the missing value and invalid value. Besides, the memory usage of 

this data set is provided, which could help the company to decide the storage method. 
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Figure 6.3 The information and features of all data  

In this data set, there is no missing data or invalid data. Thus, the raw data set is prepared 

to continue further analysis. 

6.2.4 Offline reference model establishing  

6.2.4.1 Data fusion and extraction 

In the monitoring, not all signals are capable of building a health indicator. The primary 

purpose is to select non-random relationships through all signals and get a 𝑉𝐻𝐼 for the 

prognostics. To select such an indicator, the following steps and Python libraries are 

implemented: 

Data fusion steps: 

1. Variable selection: The variable selection is to filter the signals which do not 

relate to the degradation or has negligible influence. The most common method 

is to find Pearson’s correlation coefficient-𝑟𝑥𝑦 for all of the signals data.  
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𝑟𝑥𝑦 =
𝛴𝑖=1

𝑛 (𝑥𝑖 − 𝑥ҧ)(𝑦𝑖 − 𝑦ത)

ඥσ (𝑥𝑖 − 𝑥ҧ)2𝑛
𝑖ሶ=1 ඥσ (𝑦𝑖 − 𝑦ത)2𝑛

𝑖ሶ=1

(6.1) 

Where: 𝑥𝑖 and 𝑦𝑖 defines as two continues variables, i.e., signal data, 𝑥ҧ and 𝑦ത 

are the mean values of these variables. there is a strong relationship between 𝑥𝑖 

and 𝑦𝑖 If 𝑟𝑥𝑦 is close to 1, vice versa. However, Pearson’s correlation coefficient 

measures the linear correlation between two variables, which may not be 

efficient for the non-linear case. Hence, the statistic visualization should be 

performed as well, such as distribution, descriptive statistics. 

2. Dimension reduction: In Chapter 4, the 𝑃𝐶𝐴 method is introduced to implement 

in dimension reduction. The 𝑃𝐶𝐴 could provide a compact data set for health 

indicator extract. (Mosallam et al., 2015; Mosallam et al., 2016) 

3. Trend extraction: For a monitoring signal, due to the environmental 

disturbances and human activities, the signal might be variating and not efficient 

for health indictor formulating.  In Chapter 4, the time series decomposition is 

introduced to reduce the noise error to obtain a clear and reasonable trend for 

health indicator establishment. (Mosallam et al., 2015; Hyndman and 

Athanasopoulos, 2018)  

Python libraries: 

1. Scikit-learn: Scikit-learn is an efficient package for data mining and data 

analysis. The priory functions in Scikit-learn are classification, regression, 

clustering, dimensionality reduction model selection, and pre-processing. 

Besides, Scikit-learn supports NumPy and SciPy, which means it has more 

compatibility and performs faster7.  

2. Statsmodels:  Statsmodels provides different functions for statistical model 

estimation and data exploration. The priory functions used in this thesis are 

Time series analysis and PCA.  Statsmodels are based on NumPy, SciPy, and 

Matplotlib, which are advanced for statistical testing, modeling, and 

visualization. 

The correlation heat map uses colored blocks to reveal the correlation coefficient, which 

 
7  The methods and data processing precdure are following the packages in the websites below: 

https://www.dataquest.io/blog/sci-kit-learn-tutorial/ ; https://scikit-learn.org/stable/ 

https://www.dataquest.io/blog/sci-kit-learn-tutorial/
https://scikit-learn.org/stable/
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has the advantages of illustration intuition of the correlation coefficient. The correlation 

coefficient can help to find if there is a possibility to reduce the dimension of the 

historical data frame. Figure 6.4 and  Figure 6.5, respectively show a correlation heat 

map of all monitoring data and one machine monitoring data. 
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Figure 6.4 Correlation map all monitoring data for all machines 
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Figure 6.5 Correlation map all monitoring data for machine 1  

In the figure, the color becomes darker, the higher relationship between the horizon-

axis variable and the vertical-axis variable. There are some missing values on Operation 

condition 3, Sensor 18, and Sensor 19. The reason might be that the value of these three 

does not change over time.  Both from a single machine and all machine, it shows that 

some of the variables are highly correlated, which means those could be deleted or 

fused.  The highly correlated pairs are shown in Table 6. 2. Assuming when the 

correlation is higher than 0.9, we regard it as highly correlated. 
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Table 6. 2 High correlation coefficient values in the correlation map 

Sensor labels Correlation coefficient 

Sensor 1 and Sensor 5 1.0 

Sensor 1 and Sensor 10 1.0 

Sensor 1 and Sensor 16 1.0 

Sensor 5 and Sensor 10 1.0 

Sensor 5 and Sensor 16 1.0 

Sensor 9 and Sensor 14 0.96 

Sensor 10 and Sensor 16 1.0 

 

In Figure 6.6, the descriptive statistics show the information about 24 signal data. Some 

of the mean value and standard deviation (𝑠𝑡𝑑) are rather small, which means the data 

of this signal is negligible.  

 

Figure 6.6 Statistic counting for all monitoring data 

To get a straightforward impression of the mean value and std in various signal data, 

we illustrate the mean and std values for each signal in Figure 6.7, a. and b. 
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a. Mean values of signals b. std values of signals 

Figure 6.7 Mean values and standard deviation for each monitoring data 

 

The illustrations indicate the variation and possible range of each signal. Some of the 

signals are not variating through the changing of time.   

Table 6. 3 The values of Standard deviation and Mean 

 Standard deviation value Mean value 

Operation condition 1 2.187313e-03 -0.000009 

Operation condition 2 2.930621e-04 0.000002 

Operation condition 3* 0.000000e+00 100.000000 

Sensor 1* 6.537152e-11 518.670000 

Sensor 2 5.000533e-01 642.680934 

Sensor 3 6.131150e+00 1590.523119 

Sensor 4 9.000605e+00 1408.933782 

Sensor 5* 3.394700e-12 14.620000 

Sensor 6 1.388985e-03 21.609803 

Sensor 7 8.850923e-01 553.367711 

Sensor 8 7.098548e-02 2388.096652 

Sensor 9 2.208288e+01 9065.242941 

Sensor 10* 4.660829e-13 1.300000 

Sensor 11 2.670874e-01 47.541168 

Sensor 12 7.375534e-01 521.413470 

Sensor 13 7.191892e-02 2388.096152 

Sensor 14 1.907618e+01 8143.752722 

Sensor 15 3.750504e-02 8.442146 

Sensor 16* 1.556432e-14 0.030000 

Sensor 17 1.548763e+00 393.210654 

Sensor 18* 0.000000e+00 2388.000000 
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Sensor 19* 0.000000e+00 100.000000 

Sensor 20 1.807464e-01 38.816271 

Sensor 21 1.082509e-01 23.289705 

 

We assume that if the standard deviation is below 10e-10, the sensor data could be 

regarded as a constant along with tie variation. In Table 6. 3, the sensor label with ‘*’ 

could be regarded as a constant value, not change with time.  

Thus, it is possible to filter out the none time-varying data to optimize the speed of 

processing. However, removing data from the historical data frame is risky, since the 

training and prognostics are all based on this data frame. In order to get a 

straightforward impression in which data could be deleted from the data frame, the 

following picture shows the distribution of sensor data. 
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Figure 6. 8 Distributions of each monitoring signal 

From this illustration, it is evident that some of the sensor data do not change along 

with time. According to correlation, descriptive statistics, and distribution of sensors 

for all of the machines in Table 6. 4, the following sensors data could be considered as 

no effect on the model building, and these data could be removed from the data frame. 

 

Table 6. 4 Correlation, descriptive statistics, and distribution of sensors for all machines 

 Correlation Descriptive statistics Distribution 

 

Data label 

Sensor 

(1,5,10,16,18,19) 

Operation condition 3 

Sensor 

(1,5,10,16,18,19) 

Operation condition 3 

Sensor 

(1,5,6,10,16,18,19) 

Operation condition 3 

Data 

removal 

Sensor (1,5,10,16,18,19); Operation condition 3 

 

 

The Sensor 1,5,10,16,18,19 and Operation condition three are removed from the 
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original data frame since they do not change or has a negligible effect on the following 

analysis. The sensor 9 and 14 are highly related, which could be merged into one 

dimension in the following process. Figure 6.9 illustrates sensor data with the lifetime 

for all of the machines after removing data. Some of the data shows a trend related to 

lifetime, which could be used in the health indicator construction. While some variating 

depends on different machines, such as sensor 9 and sensor 14, which could be removed 

from the data frame.  
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Figure 6.9 Remaining sensor data with the lifetime for all of the machines 
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6.2.4.2 Health indicator building  

Trend extracting 

From the illustration in Figure 6. 10, operational condition 1 and 2 do not have a clear 

trend, and it shows a noise throughout the time scale. Sensor 9 and 14 also show trends. 

However, the trends depend on the machine, not on the deterioration level. In the 

following processes, theses four signals could be discarded. Sensor 6 shows a discrete 

state, and some of the machines do have the signal for sensor 6. Hence it can be 

abandoned in the following analysis.   

 

Figure 6. 10 Illustration of the sensor data will be removed 

 

The linear slope could be an evaluation scale to acquire the most apparent trend 

throughout all the signals. Figure 6. 11 shows machine 20 with the fitted linear trend. 
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Table 6. 5 shows the signal trends of all sensors and machines. From the illustration 

and table, all of the signals show an apparent trend, while different sensors might have 

a different trend.  

 

Figure 6. 11 Illustration of fitted Linear trend  

 

Table 6. 5 Linear trend for sensors 

 sensor_2 sensor_3 sensor_4 ... sensor_17 sensor_20 sensor_21 

1 0.012146 0.009863 0.014113 ... 0.011758 -0.012135 -0.013337 

2 0.010617 0.009526 0.010825 ... 0.009322 -0.010204 -0.009955 

3 0.012130 0.014022 0.014576 ... 0.013707 -0.012684 -0.013178 

... ... ... ... ... ... ... ... 

98 0.017200 0.016361 0.019765 ... 0.015148 -0.016696 -0.017117 

99 0.013823 0.011721 0.014742 ... 0.012696 -0.012731 -0.013448 

100 0.011005 0.010159 0.012809 ... 0.010688 -0.013099 -0.011720 

 

Throughout all of the linear trends, Figure 6.12 shows a primary trend. From the 
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illustration, the majority trends concentrate in one range, which indicates that all of the 

sensor trends could be merged into one dimension. In the following process, the PCA 

is to extract this feature. 

 

Figure 6.12 Illustration of linear trends 

Dimension reduction 

In (Mosallam et al., 2015), Mosallam et al. propose the principal component analysis 

method for variable compression. The raw data containing multiple sensors could be 

regarded as muti-dimensional data. The purpose of implementing PCA is to merge the 

multi-dimensional data into one-dimensional data space. The first principle component 

could represent the rest of the sensors, which contains the maximum of the variance 

(Wold et al., 1987). 

The PCA calculation is through the Python package of Sklearn.decomposition. After 

PCA, the rank of the most apparent factors with variance ratio is listed in Table 6.6. 

Table 6.6  PCA variance values  

0.74022293 0.04098082 0.0335441 

0.0302408 0.02793587 0.02547959 

0.0239673 0.01916276 0.01703485 

0.01472286 0.01438374 0.01232441 

The first principal component takes 74% of the total factors of influence. The first three 

principal components take higher than 90% representativeness of the 12-dimensional 

characteristics. The health indicator should be chosen from these three principal 



 

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL 

 59 

 

components; however, after visualization in Figure 6.13, the 2nd and 3rd are noisy 

throughout time, which are not accessible to extract the trend. Thus, the first principal 

component is taken as a health indicator. 

 

Figure 6.13 Illustration of first three PCA 

 

The data put into PCA is standardized scaling. However, when it comes to the 

prognostics of real-time data, the scaling will change. Therefore, it is better to track 

back and using the original data for the health indicator establishing. By evaluation and 

weight extract, sensor 11 is the most evident; Figure 6.14,b shows all the rank of 

sensors. 
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a. Illustration of sensor 11 for machine 20 

 
b. The rank of all sensors according to the first principal component 

Figure 6.14 Trend and information for HI candidate  

In Figure 6.14,a, the signal displays a noise around a stationary trend. The time series 

decomposition (TSD) is introduced in Chapter 4, which could help to extract the main 

trend of the noisy signal. After implement TSD , the trend, seasonal, and residual 

features could be acquired. Figure 6.15 shows an example of machine 20. 
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Figure 6.15 Time series decomposition for sensor 11 of machine 20 

The TSD method is aimed to remove the stationary and regular noise to reveal the true 

trend of the signal. Figure 6.16 shows the indicator trends of all the machines, after 

scaling the trend feature by subtracting the data from the minimum value of each 

machine.   

 

Figure 6.16 Health indicator trend of all machines 

Through previous steps, the health indicator data of each machine is collected and 

stored as data frame 𝑀, with corresponding input values 𝑋- health indicator and output 

values 𝑌-lifetime.   
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Table 6.7 The dataframe of health indicator information and corresponding lifetime 

Label 
Health indicator (𝑿) 

Lifetime (𝒀) 
0 1 2 ... 350 351 

1 0.0415 0.0100 0.0000 ... 0.9130 0.9130 191.0 

2 0.0550 0.0635 0.0485 ... 1.0525 1.0525 286.0 

3 0.0000 0.0040 0.0105 ... 0.8215 0.8215 178.0 

... ... ... ... ... ... ... ... 

98 0.0000 0.0045 0.0290 ... 0.9470 0.9470 155.0 

99 0.0520 0.0460 0.0435 ... 0.9345 0.9345 184.0 

100 0.0680 0.0750 0.0820 ... 0.8035 0.8035 199.0 

 

6.2.4.3 Offline reference model 

The feature of deterioration is extracted from historical data in the data fusion. 

According to these historical data (𝑀), the offline reference model could be established 

to evaluate the health state of a new machine in the future prognostics. In this section, 

three reference models are established according to the complexity and computational 

resource, which are similarity-based, deep learning neural network, and stochastic 

process. 

Similarity-based model (𝒌 − 𝑵𝑵 regression model) 

The mechanism of the similarity-based model is based on k-NN regression (Barros, 

2019; Wang et al., 2008). The main steps for establishing the similarity-based reference 

model are: 

a) Split the historical data frame:  

To avoid the overfitting problem, we split the data frame (𝑀𝑘)  into two subsets, 

training and validation ሼ𝑀𝑘
𝑇 , 𝑀𝑘

𝑉ሽ . Meanwhile,  𝑀𝑘
𝑉  could help to determine the 

optimized k-value. The training data set takes 70% of the whole data frame. The 
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training data and validation data are: 

𝑀𝑘 = ሼ𝑀𝑘
𝑇 , 𝑀𝑘

𝑉ሽ 

each subset with the corresponding input and output are: 

𝑀𝑘
𝑇 = ሼ𝑋𝑘

𝑇 , 𝑌𝑘
𝑇ሽ, 𝑀𝑘

𝑉 = ሼ𝑋𝑘
𝑉 , 𝑌𝑘

𝑉ሽ 

 

Table 6.8 shows an example of the training set and validation set with input variables 

and output variables. 

Table 6.8 The example of the training set and validation set with input variables and 

output variables 

 Label 
Health indicator (𝑿𝒌) 

Lifetime (𝒀𝒌) 
0 1 2 ... 350 351 

 

 

Training 

data set 

൛𝑿𝒌
𝑻, 𝒀𝒌

𝑻ൟ 

6 0.0000 0.0215 0.0350 ... 0.9210 0.9210 258.0 

29 0.0475 0.0515 0.0450 ... 0.9225 0.9225 193.0 

55 0.0960 0.1015 0.1015 ... 0.5475 0.5475 274.0 

... ... ... ... ... ... ... ... 

47 0.1150 0.1040 0.0855 ... 0.7775 0.7775 230.0 

75 0.0210 0.0090 0.0000 ... 0.7370 0.7370 209.0 

80 0.0335 0.0380 0.0430 ... 0.7320 0.7320 239.0 

 

Validation 

data set 

൛𝑿𝒌
𝑽, 𝒀𝒌

𝑽ൟ 

32 0.025 0.0185 0.0190 ... 0.9740 0.9740 199.0 

52 0.011 0.0000 0.0070 ... 0.6960 0.6960 194.0 

2 0.000 0.0040 0.0105 ... 0.8215 0.8215 178.0 

... ... ... ... ... ... ... ... 

68 0.078 0.0850 0.0875 ... 0.8605 0.8515 361.0 

10 0.023 0.0230 0.0115 ... 0.8740 0.8740 239.0 

19 0.093 0.0795 0.0670 ... 0.7065 0.7065 233.0 
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b) Set-up 𝒌 − 𝑵𝑵 regressor model:  

In 𝑘 − 𝑁𝑁  regressor model, we use the Python package from sklearn. The basic 

parameter settings are:  

• n_neighbors, will be optimized in step c) 

• weights= distance, which allocates the weight by the inverse of 3 nearest 

neighbours distance; 

• p=2, which applies Euclidean distance. 

 

c) Identify optimized k by using root mean square error (RMSE):  

The reference model is established by 𝑀𝑘
𝑇. Then, we could get the estimated lifetime 

𝑌𝑘
𝑉  by fitting 𝑋𝑘

𝑉  to 𝑋𝑘
𝑇 and  after, compare 𝑌𝑘

𝑉  with true value 𝑌𝑘
𝑉  by using RMSE.  

During the estimation, various 𝑘𝑠 are used to get different RMSEs. By selecting the 

corresponding k with the lowest RMSE, we could get the optimized k in the training 

process. 

Table 6.9 and Figure 6.17 show the k values and the optimized k throughout previous 

steps. Among all of the k values, when k is equal to 3, the RMSE is the lowest. So, we 

choose 3 as k nearest neighbor. 

Table 6.9 the k values with corresponding RMSE 

k-values 1 2 3 4 5 6 7 8 9 10 11 

RMSE 4.53 5.56 2.70 4.24 5.80 6.84 7.90 7.95 9.13 9.99 10.67 
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Figure 6.17 Illustration of RMSE 

 

d) Validate the estimation and evaluate the model: 

In this step, we change the n_neighbors to 3. Then, we fit 𝑋𝑘
𝑉  to 𝑋𝑘

𝑇  and get a new 

estimated lifetime, 𝑌𝑘
𝑉′

. This procedure is achieved by ‘neigh.fit’ in the algorithm. The 

comparisons between true 𝑌𝑘
𝑉  and estimated 𝑌𝑘

𝑉′
are shown in Figure 6.18 a and b. 

  
a. Comparison between the true value 

and estimation value 

b. The distribution of errors 

Figure 6.18 Illustration of the validation process and the performance  

 

e) Find a suitable model: 

In the validation process, the distribution of error could represent the performance of 

the 𝑘 − 𝑁𝑁 reference model.  In order to obtain a relatively accurate model, we repeat 

the step a) and c) with the constant 𝑘 value until the error on the validation data set is 

minimized. 
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When the previous processes are done, the 𝑘 − 𝑁𝑁 reference model could be upload to 

the ‘Server’ for further online prediction process. 

Stochastic process  

As mentioned in Chapter 4, the stochastic process is implemented in a non-monotonic 

case. Since the pre-processed data still have the feature of fluctuation, we consider the 

stochastic process to describe the characteristics of the deterioration respected to the 

operational environment. 

 

 

Figure 6.19 An example of the deterioration of the machine 

 

Figure 6.19 shows an example of the deterioration of the machine. The historical data 

has an exponential trend with some noise, which means the deterioration might have an 

accelerated feature with time (Si et al., 2011a), or depends on the previous degradation 

level (Le Son et al., 2013). Therefore, we could consider applying Geometric Brownian 

Motion (𝐺𝐵𝑀) to this degradation process. Since 𝐻𝐼𝑠 shows an exponential trend, we 

fit an exponential model (Formula 6.1) proposed in Le Son et al. to have a general 

understanding of the deterioration evolving (Le Son et al., 2013). 

𝑦(𝑡) = 𝑎𝑒(−𝑏𝑡−𝑐) (6.1) 

Where 𝑎, 𝑏, 𝑐  are regression factors, which are shown in table x; 𝑦(𝑡) is estimated 
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health indicator, and 𝑡 is the lifetime of the machine. 

Table 6.10 Factors of the regression fitting for all machines 

 a b c 

1 0.277957 -0.016010 1.834878 

2 0.217378 -0.012961 2.106209 

3 0.208583 -0.021156 2.384633 

... ... ... ... 

98 0.340329 -0.021403 2.183700 

99 0.251561 -0.020031 2.334489 

100 0.292956 -0.016423 2.189216 

 

 

Figure 6. 20 Illustration of regression curves 

Since we have acquired the exponential regression model, let us take the natural 

logarithm to find the increment of on fitted curve by formula 6.2. 

𝛥𝑦 = 𝐼𝑛 𝑦(𝑡 + 𝛥𝑡) − 𝐼𝑛 𝑦(𝑡) (6.2) 

Where: 𝛥𝑦 is the increment in time 𝛥𝑡, 𝑦(𝑡) is the value of estimated 𝐻𝐼 at time 𝑡; 

𝑦(𝑡 + 𝛥𝑡) is the value of 𝐻𝐼 at time 𝑡 + 𝛥𝑡. 

For each different curve, the 𝛥𝑦 is the −𝑏 factor in the regression, which represents an 

estimated increment. Therefore, we assume the increment fluctuates around some 

specific value in the historical data. 
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Figure 6.21 The illustration of the estimated increment  

In Chapter 4, the SDE of GBM is introduced as: 

𝑑S(t) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊(𝑡) 

We could solve the SDE formula under Itô’s interpretation (Kobayashi et al., 2011): 

S(t) = S(0) exp ൭ቆ𝜇 −
𝜎2

2
ቇ 𝑡 + 𝜎𝑊(𝑡)൱ (6.3) 

Where: 𝑆𝑡 are the values of health indicator at time 𝑡, 𝑆0 is the initial value of health 

indicator, µ  is the percentage drift, 𝜎  is the percentage volatility, 𝑊(𝑡)  is Wiener 

Process or Standard Brownian Motion. 

For estimating 𝜇 and 𝜎, some of the authors by using Most Likelihood Estimation to 

get the parameters (Kaise, 2012; Park and Padgett, 2005; Zhang et al., 2018). Since the 

method is rather complicated and time-consuming, we use historical data to simplify 

this process(Chiang et al., 2015). 

In order to estimate the drift and volatility by historical data, we transfer formula 6.4 

by taking the natural logarithm and get 6.4, 6.5 (Assume the time step is 1): 

𝐼𝑛 𝑆(𝑡) = 𝐼𝑛 𝑆(0) + ቆµ −
𝜎2

2
ቇ 𝑡 + 𝜎𝑊(𝑡) (6.4) 

𝐼𝑛 S(𝑡 − 1) = 𝐼𝑛 S(0) + ቆµ −
𝜎2

2
ቇ (𝑡 − 1) + 𝜎𝑊(𝑡 − 1) (6.5) 

 

We could obtain  𝛥𝐿 by subtracting 6.4 by 6.5:  

 𝛥𝐿 = 𝐼𝑛 S(t) − 𝐼𝑛 S(𝑡 − 1) = ቆµ −
𝜎2

2
ቇ + 𝜎( 𝑊(𝑡) − 𝑊(𝑡 − 1) ) (6.6) 

https://en.wikipedia.org/wiki/It%C3%B4_calculus
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According to the previous assumption-𝛥𝐿 is increment fluctuates around a mean value, 

and equation 6.4, 𝛥𝐿 follows a normal distribution: 

𝛥𝐿 ~ 𝑁(𝜇 −
𝜎2

2
, 2𝜎2) 

Table 6.11 shows the historical dataset 𝑀𝑠 with 100 machines. 

Table 6.11 Health indicators for 100 machines 

Label 
Health indicator 𝑺(𝒕) 

0 1 2 3 ... 349 350 351 

1 0.0415 0.0100 0.0000 0.0210 ... 0.9130 0.9130 0.9130 

2 0.0550 0.0635 0.0485 0.0400 ... 1.0525 1.0525 1.0525 

3 0.0000 0.0040 0.0105 0.0175 ... 0.8215 0.8215 0.8215 

4 0.0205 0.0215 0.0160 0.0155 ... 0.7390 0.7390 0.7390 

... ... ... ... ... ... ... ... ... 

97 0.0965 0.1020 0.0925 0.0945 ... 0.7195 0.7195 0.7195 

98 0.0000 0.0045 0.0290 0.0555 ... 0.9470 0.9470 0.9470 

99 0.0520 0.0460 0.0435 0.0305 ... 0.9345 0.9345 0.9345 

100 0.0680 0.0750 0.0820 0.0860 ... 0.8035 0.8035 0.8035 

 

Since we are going to take nature logarithm for all of the 𝑆(𝑡), we remove all the ‘0’ 

values and substitute them with the next closest values in the 𝑀𝑠 . Table 6.12 shows the 

value after the substitution and transforming into 𝛥𝐿.  

Table 6.12 The number of 𝜟𝑳 values  

Label 
𝛥𝐿 

0 1 2 3 ... 348 349 350 

1 -1.42311 0.741937 0 0.579818 ... 0.031508 0.029988 0.01768 

2 0.143707 -0.26948 -0.19268 -0.07796 ... 0.017813 0.019908 0.011948 

3 0 0.965081 0.510826 -0.72213 ... 0.023099 0.021263 0.037424 

4 0.047628 -0.29546 -0.03175 0.478036 ... 0.04705 0.034247 0.026857 

... ... ... ... ... ... ... ... ... 

97 0.05543 -0.09776 0.021391 0.031253 ... 0.037598 0.039788 0.020359 

98 0 1.863218 0.649087 0.267204 ... 0.014558 0.020358 0.031102 

99 -0.1226 -0.05588 -0.35503 -0.3973 ... 0.031476 0.029969 0.021634 
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100 0.09798 0.089231 0.047628 0.017291 ... -0.01302 0.013021 0.038698 

 

However, some of the original values in the dataset 𝑀𝑠  are rather small, which could 

cause a large value by taking the natural logarithm. For example, in the dataset 𝑀𝑠 , one 

of the values is 2.77556E-16, where the 𝛥𝐿 is almost 33. It is not practical in this case. 

Therefore, in the 𝛥𝐿  dataset, we keep the values within the range (-5,5) through 

investigating the dataset. Then, we could get the 𝜇′ and 𝜎′2 from 𝛥𝐿 dataset for each 

machine. 

In the prognostics, the following formula is prepared for estimation: 

𝑆(𝑡) = 𝑆(𝑡 − 1) + 𝑆(𝑡 − 1)𝜇Δ𝑡 + 𝑆(𝑡 − 1)𝜎𝑊(0,1) (6.7) 

Thus, we need 𝜇 and 𝜎. By applying 

𝜎 =
𝜎′2

2
(6.8) 

and 

𝜇 = 𝜇′ +
𝜎′2

4
(6.9) 

 

Table 6.13 partially shows the 𝜇 and 𝜎 for each machine and the mean values. 

Table 6.13 The 𝝁, 𝝈,  and the mean values for each machine  

 1 2 3 4 … 99 100 Mean 

𝝁 0.02347 0.026679 0.041537 0.020817 … 0.070827 0.02685 0.032436 

𝝈 0.111367 0.178142 0.131663 0.236773 … 0.328432 0.164762 0.159177 

 

Figure 6.22 shows the GBM with µ = 0.02347 and σ = 0.111367 with the initial 𝑆(0) = 

0.001. 
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Figure 6.22 An example of GBM with a certain 𝝁 and 𝝈 

However, when it comes to prognostics, we only need one variable for each µ and σ. 

Meanwhile, at the beginning of the monitoring, there is no sufficient data for 

obtaining 𝜇 and 𝜎. Hence, we take the mean value of 𝜇s and the mean value of the 𝜎s 

as the initial variable. When there are enough data, we could consider updating these 

two parameters by new monitoring data. 

The stochastic process model is unlike the neural network model and 𝑘 − 𝑁𝑁 model. 

In the formula, the process could evolve to infinite if a 𝜇 and 𝜎 are set up. Therefore, 

when it comes to prognostics, we need to set a threshold to indicate that the machine is 

considered failed if the health indicator value passes this threshold. Figure 6.23 is the 

density distribution of the health indicator when 100 machines reach the end of the 

lifetime.  

 

Figure 6.23 Density distribution of the health indicator for 100 machines 

We set the threshold by the mean value of the health indicators, i.e., 𝑆(𝑡)  = 0.8 with an 

uncertainty variable, i.e., 𝜎 = 0.137. Figure 6.24 shows ten paths when the simulation 



 

CHAPTER 6: DIGITAL TWIN OFFLINE MODEL 

 72 

 

stops after 𝑆(𝑡) > 0.8  with 𝑆(0) =  0.001,  𝜇 = 0.032436 and 𝜎 = 0.111367. 

 

 

Figure 6.24 GBM paths with 0.8 as the threshold 

 

Deep learning neural network 

From the mechanism in Chapter 4, the trend model prognostics are one-dimensional 

process, while deep learning neural network supports multi-dimensional input (Hu et 

al., 2019; Raman and Hassanaly, 2019). Thus, in this section, we change the previous 

trend extraction process into a neural network for the reference model directly. The 

main framework of the neural network is under the TensorFlow platform. The necessary 

information of the neural network is introduced in Chapter 4. The steps of building a 

neural network are the following: 

a) Data filtering:  

In this part, the data filtering is aimed to remove the unchanged data and noise input, 

i.e., the operation condition 1-3 and sensor 1,5,6,10,16,18,19 are discarded from the 

data frame.  

Table 6.14 Dataframe for deep learning neural network 

 time/cycle Sensor 2 Sensor 3 Sensor 4 ... Sensor 17 Sensor 20 

1 1 641.82 1589.70 ... 392 39.06 23.4190 

1 2 642.15 1591.82 ... 392 39.00 23.4236 

1 3 642.35 1587.99 ... 390 38.95 23.3442 

... ... ... ... ... ... ... ... 

100 198 643.42 1602.46 ... 398 38.44 22.9333 

100 199 643.23 1605.26 ... 395 38.29 23.0640 

100 200 643.85 1600.38 ... 396 38.37 23.0522 
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b) Normalization 

In the remaining data frame, the scaling of signals is different. Hence, we need to 

formulate all the signals in range (0,1). The normalization is implemented in the scaling, 

which follows equation 6.4. 

 

𝑋𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

(6.10) 

 

Table 6.15 Dataframe after normalization 

 Sensor 2 Sensor 3 Sensor 4 ... Sensor 17 Sensor 20 Sensor 21 

0 0.183735 0.406802 0.309757 ... 0.333333 0.713178 0.724662 

1 0.283133 0.453019 0.352633 ... 0.333333 0.666667 0.731014 

2 0.343373 0.369523 0.370527 ... 0.166667 0.627907 0.621375 

... ... ... ... ... ... ... ... 

20628 0.665663 0.684979 0.775321 ... 0.833333 0.232558 0.053991 

20629 0.608434 0.746021 0.747468 ... 0.583333 0.116279 0.234466 

20630 0.795181 0.639634 0.842167 ... 0.666667 0.178295 0.218172 

 

c) Define the input variables and output variables:  

In the neural network, the input layer contains input dimensions. In this case, the input 

variables are the remaining 12-dimensional training data, and the output variable is the 

RUL values. 

Table 6.16 Training data sample for neural network 

 

Input data (𝑿𝒅) 

Lifetime (𝒀𝒅) 
Sensor 2 Sensor 3 Sensor 4 ... Sensor 17 Sensor 20 

0 0.183735 0.406802 0.309757 ... 0.333333 0.713178 191 
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1 0.283133 0.453019 0.352633 ... 0.333333 0.666667 190 

2 0.343373 0.369523 0.370527 ... 0.166667 0.627907 189 

... ... ... ... ... ... ... ... 

20628 0.665663 0.684979 0.775321 ... 0.833333 0.232558 2 

20629 0.608434 0.746021 0.747468 ... 0.583333 0.116279 1 

20630 0.795181 0.639634 0.842167 ... 0.666667 0.178295 0 

 

d) Define layers and nodes: 

 In this case, we consider establishing a four-layer neural network with two hidden 

layers, one input layer, and one output layer. The architecture of the neural network is 

shown in Figure 6.25. 

 

Figure 6.25 The neural network framework 

e) Activation and optimizer function: 

 In this case, we choose sigmoid function as activation function, which could indicate 

the properties of each machine. Moreover, for the optimizer function, we choose Adam 

with a learning rate of 0.0015.  

f) Cross-validation:  

To prevent the overfitting problem and evaluate the model, we split the total data frame  
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(𝑀𝑑)  into a training dataset 𝑀𝑑
𝑇 and a testing data set 𝑀𝑑

𝑉. The training dataset takes 

70% of the whole data frame. The training data and validation data are: 

𝑀𝑑 = ሼ𝑀𝑑
𝑇 , 𝑀𝑑

𝑉ሽ 

each subset with the corresponding input and output are: 

𝑀𝑑
𝑇 = ሼ𝑋𝑑

𝑇 , 𝑌𝑑
𝑇ሽ, 𝑀𝑑

𝑉 = ሼ𝑋𝑑
𝑉 , 𝑌𝑑

𝑉ሽ 

 

The rule of splitting the training data set 𝑀𝑑
𝑇 and a testing data set 𝑀𝑑

𝑉 are realized by a 

Python function ‘validation_split’, which is a random quantity in each epoch. 

Table 6.17 is an example of a training and validation dataset with the corresponding 

input variables (𝑋𝑑) and the output variable (𝑌𝑑). 

 

Table 6.17 An example of training and validation dataset  

 

Input data (𝑿𝒅) 

Lifetime (𝒀𝒅) 
Sensor 2 Sensor 3 Sensor 4 ... Sensor 17 Sensor 20 

 

 

Training 

data set 

൛𝑿𝒅
𝑻, 𝒀𝒅

𝑻ൟ 

3725 0.530120 0.454545 0.388758 ... 0.379845 0.623170 50.0 

4130 0.481928 0.509483 0.485652 ... 0.418605 0.321320 37.0 

14458 0.343373 0.324395 0.517218 ... 0.573643 0.661143 92.0 

... ... ... ... ... ... ... ... 

4227 0.325301 0.397646 0.325118 ... 0.620155 0.547501 135.0 

5572 0.331325 0.446697 0.440749 ... 0.565891 0.591964 57.0 

18814 0.463855 0.632003 0.649223 ... 0.558140 0.302403 41.0 

 

Validation 

data set 

൛𝑿𝒅
𝑽, 𝒀𝒅

𝑽ൟ 

7810 0.825301 0.627207 0.799291 ... 0.302326 0.427644 15.0 

13428 0.590361 0.778068 0.916779 ... 0.294574 0.232809 3.0 

18683 0.319277 0.274907 0.469784 ... 0.496124 0.613781 172.0 

... ... ... ... ... ... ... ... 
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1025 0.436747 0.316765 0.382512 ... 0.620155 0.657553 90.0 

16576 0.611446 0.608023 0.720628 ... 0.519380 0.256421 15.0 

16113 0.771084 0.608895 0.744092 ... 0.418605 0.191798 24.0 

 

The mean square error is calculated in each epoch and used to evaluate the model. 

Figure 6. 26 illustrates the model loss of training dataset and testing dataset. From the 

model loss, we could assume this model could be used for the estimation after 100 

epochs. 

 

 

Figure 6. 26 Model loss illustration during the training process 

 

When the monitoring data from a new machine is collected, it will be passed to this 

model and get the lifetime prediction. The illustration of this neural network is shown 

in Figure 6.27. 
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Figure 6.27 Illustration of this neural network 

6.2.5 Upload the offline reference model 

When the reference model is established, the whole frameworks could be uploaded to 

the ‘Server’ and store all of the information. The ‘Server’ could be a local mirror with 

the LAN network or on the ‘Cloud’.  

For the model uploading, in the communication protocol, we need to insert the 𝐼𝑃 

address to build the connection between ‘Server’ and ‘Client’. In this case, our 𝐿𝐴𝑁 𝐼𝑃 

address is ‘192.168.137.1’. 

Figure 6. 28 shows the interface of request to upload the reference model to the ‘Server’, 

and the uploading process. 
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a. Uploading request from the ‘Client’. 

 

b. Receiving offline reference model. 

Figure 6. 28 Uploading offline reference model to the ‘Server’. 

Since we upload all of the offline reference models, we could pursue the following 

online prognostics section. 

 



 

 

Chapter 7  

Online prognostics and decision making 

In this chapter, we are going to apply the reference model on the new dataset collected 

from a new machine and make decisions in real-time. The prognostics are based on 

three reference models established in Chapter 5. The real-time decision-making model 

is based on the formula in Chapter 4. 

7.1 Online prognostics 

In this section, the new sensor data are collected through the communication protocol. 

Figure 7. 1 shows the process of transferring data from the ‘Client’ machine to ‘Server’.  

Every cycle, the monitoring data will be streamed from the machine (‘Client’) to the 

reference model (‘Server’). The algorithm operates and estimates the lifetime of the 

machine.  Each cycle, the ‘Server’ could receive the monitoring data from the ‘Client’ 

machine. 

 

Figure 7. 1 Illustration of receiving monitoring data 

For the 𝑘 − 𝑁𝑁  and stochastic process model, we apply the same pre-processing 

procedure to the newly collected data, as shown in Chapter 6. In contrast, for the 

𝐴𝑁𝑁 model, we use the same input signals as in the reference model. In the following 
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section, the prognostics are presented through three reference models. Table 7.1 shows 

the monitoring data of a new machine, which is used to present as input parameters in 

the following sections.  

Table 7.1 The monitoring data of a new machine 

 Sensor 2 Sensor 3 Sensor 4 ... Sensor 17 Sensor 20 Sensor 21 

1 642.75 1582.03 1392.43 ... 394 38.83 23.4048 

2 642.02 1586.39 1398.94 ... 391 39.03 23.2768 

3 642.36 1590.20 1405.66 ... 391 38.99 23.3628 

... ... ... ... ... ... ... ... 

194 643.30 1593.45 1426.21 ... 395 38.52 23.0864 

195 643.57 1603.82 1426.44 ... 396 38.49 23.1562 

196 643.31 1598.19 1420.66 ... 395 38.53 23.1105 

 

7.1.1 Similarity-based model (𝒌 − 𝑵𝑵 regression model): 

Since the 𝑘 − 𝑁𝑁 regression model is established according to sensor 11, we drop other 

parameters and only collect sensor 11 as the input signal in the prognostics. The data 

streams into the reference model in each cycle.  Figure 7.2(a,b,c) shows the signal 

evolving in cycle 50,100 and 150 of one new machine. 

 

a.  Signal information within Cycle 50 

 

b. Signal information within Cycle 100 
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Figure 7.2 The illustration of signal evolving 

Figure 7. 3(a,b,c) shows that after we eliminate partial noise and extract the primary 

trend by 𝑇𝑆𝐷. Meanwhile, we scale the data from 0 by subtracting the minimum value 

of dataset as the new monitoring data 𝑁𝑘.  

 
a.  Signal information within Cycle 50 

 
b. Signal information within Cycle 100 

 
c. Signal information within Cycle 150 

Figure 7. 3 the primary trend by applying TSD 

After the pre-process of the new dataset 𝑁𝑘, we search from the 𝑘 − 𝑁𝑁  reference 

model to find similar growths with the new dataset 𝑁𝑘 and get the estimated lifetime 

𝑇 . This process achieved by Python 𝑘 − 𝑁𝑁  library, ‘neigh.predict’.  As time goes by, 

we could obtain several estimated 𝑇𝑖
  . However, the  𝑘 − 𝑁𝑁 could only get a specific 

value without uncertainty. To obtain uncertainty of the prediction, we propose to collect 

all of the estimations 𝑇𝑖
 , and get their distributions. Figure 7. 4 shows the distributions 

 
c. Signal information within Cycle 150 
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and estimation processes of 𝑇50 , 𝑇100 and  𝑇150. The dark bule points are estimated 

lifetime, the red curve is the real-time monitoring data, and the light blue points are the 

historical data.  Table 7. 2 shows the mean values and standard deviations of 𝑇50 , 𝑇100 

and  𝑇150. 

 

a. Distribution of estimation on cycle 50 

 

a’. k-NN point plot on cycle 50 

 

b. Distribution of estimation on cycle 100 

 

b’. k-NN point plot on cycle 100 

 

c. Distribution of estimation on cycle 150 

 

c’. k-NN point plot on cycle 150 

Figure 7. 4 Distribution and estimation process  

 

Table 7. 2  The mean values and standard deviations of lifetime 

 𝑻𝟓𝟎 𝑻𝟏𝟎𝟎 𝑻𝟏𝟓𝟎 

Mean 217.40 198.32 196.61 

SD 20.71 25.04 21.21 
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After the estimation time by time, we could obtain a series lifetime for the different 

machine through this process, and calculate the RUL-𝑅𝑡  with mean value and std. 

Further, the estimated lifetime will be transferred into the decision model.  

Table 7. 3 The mean values and standard deviations of RUL 

 𝑹𝟓𝟎 𝑹𝟏𝟎𝟎 𝑹𝟏𝟓𝟎 

Mean 167.40 98.32 46.61 

SD 20.71 25.04 21.21 

 

7.1.2 Stochastic process model 

The Stochastic process model is established by the primary trend of Sensor 11. 

Therefore, when the new data streams into the model, we only keep Sensor 11 and make 

the prognostics.   

The raw data processing is the same as 𝑘 − 𝑁𝑁  regression model (here no longer 

repeat), and we denote the new dataset as 𝑁𝑠. The principal mechanism is following 

equation 6.7, where we consider the parameter 𝑑𝑡 = 1 , 𝜇 = 0.032436,  and 𝜎 =

0.159177. The essential algorithm is shown in the following: 

Algorithm 1    Geometric Brownian Motion 

Input:  S[0], I 

Output: S[t], T[t] 
for all t in range I: 

rand = random_normal(0,1)*0.159177 

S[t] = S[t-1]+0.032436*S[t-1]+rand*S[t-1] 

T[t] = t 

If S[t]>0.8 

break 

end 

 

Algorithm 1 only can provide one path of health indictor. Therefore, The Monte Carlo 

Simulation is implemented to generate several paths and get the uncertainty of 

estimation. Algorithm 2 shows the Monte Carlo process of collecting the lifetime 

variables: 
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Algorithm 2    Monte Carlo Simulation 

Input:  S[0], I, N 

Output: lifetime[] 
m = 0  

While m < N: 

result = GBM(S[0],I) 

x = result[1] 

y = result[0] 

lifetime.append(x[-1]) 

m += 1 

end 

As proposed in 𝑘 − 𝑁𝑁  model,  we estimate the RUL- 𝑅50  ,  𝑅100  and  𝑅150  in 

time/cycle 50, 100 and 150, with corresponding uncertainty parameters – standard 

deviation. Meanwhile, we update the 𝜇 and 𝜎 by the new data with the percentage of 

current health indicator value: 

𝜇′ = ൬
𝐻𝐼𝑡

0.8
൰ ∗ 𝜇 + ൬1 −

𝐻𝐼𝑡

0.8
 ൰ ∗ 𝜇𝑛 (7.1) 

𝜎′ = ൬
𝐻𝐼𝑡

0.8
൰ ∗ 𝜎 + ൬1 −

𝐻𝐼𝑡

0.8
 ൰ ∗ 𝜎𝑛 (7.2) 

 

Where 𝑢′ and 𝜎′ is the current value in the GBM, 𝜇 and 𝜎 are historical values, 𝜇𝑛 and 

𝜎𝑛 is the new value obtained from the new dataset, 𝐻𝐼𝑡 is the current health indicator. 

Here, the alternative method for updating 𝜇′ and 𝜎′ is applying Bayesian approaches 

(Mosallam et al., 2015). The Bayesian approach, in this case, is rather complicated. We 

simplify this process by taking the weight between the new parameter and the historical 

parameter as formula 7.1 and 7.2. 

Figure 7.5 shows the Monte Carlo simulation processes of 𝑅50 , 𝑅100 and  𝑅150. 
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a. MCS on cycle 50 

 
b. MCS on cycle 100 

 
c. MCS on cycle 150 

Figure 7. 5 MCS process 

 

Table 7. 4 The mean values and standard deviations of RUL 

 𝑹𝟓𝟎 𝑹𝟏𝟎𝟎 𝑹𝟏𝟓𝟎 

Mean 123.762 99.77 44.91 

SD 78.162 77.51 54.49 

 

After, we could steam the estimation data and uncertainty in the decision model. 

7.1.3 Deep learning neural network model 

When we obtain the new data from the machine, we need to follow the same 

normalization procedure in the offline phase in Chapter 6 formula 6.10, since the data 

does not cover all the value. Therefore, we could obtain the following dataset 𝑁𝑑 after 

normalization in Table 7. 5. 
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Table 7. 5 Dataset after normalization 

 Sensor 2 Sensor 3 Sensor 4 ... Sensor 17 Sensor 20 Sensor 21 

1 0.511041 0.337315 0.164182 ... 0.625 0.472727 0.664402 

2 0.280757 0.450532 0.297121 ... 0.250 0.654545 0.483227 

3 0.388013 0.549468 0.434348 ... 0.250 0.618182 0.604954 

... ... ... ... ... ... ... ... 

193 0.684543 0.633861 0.853992 ... 0.750 0.190909 0.213730 

194 0.769716 0.903142 0.858689 ... 0.875 0.163636 0.312527 

195 0.687697 0.756946 0.740658 ... 0.750 0.200000 0.247841 

 

At each cycle/time, we feed the data to the 𝑁𝑁 reference model, and then, there is an 

estimated RUL value- 𝑌𝑖 by executing ‘Sequential().predict( )’. Table 7. 6 shows the 

partial estimated RUL values in each cycle. Figure 7. 6 illustrates the estimation 

throughout time steps. 

Table 7. 6 The estimated RUL 

 1 2 3 4 … 195 

𝒀𝒊 135.07 139.41 134.99 137.80 … 7.27 

 

 

Figure 7. 6 The estimation throughout time steps 
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7.2 Prognostics information of six machines 

The previous section presents the necessary processes for prognostics of one machine. 

Since we have six identical independent machines, we execute the same process for 

these six machines and get the RUL in time 𝑡 = 50,100 and 150. 

Table 7. 7 Online prognostics for six machines 

 
𝑘 − 𝑁𝑁 

(RUL) 

𝐺𝐵𝑀 

(RUL) 

Neural network 

(RUL) 

 Mean SD Mean SD  

Machine 1 

t = 50 167.4 20.71 123.762 78.162 148.67 

t = 100 98.32 25.04 99.77 77.51 118.71 

t = 150 46.61 21.21 44.91 54.49 63.37 

Machine 2 

t = 50 172.39 22.82 148.50 75.79 190.67 

t = 100 130.83 35.85 107.59 70.18 148.71 

t = 150 44.43 4.54 49.79 52.94 53.29 

Machine 3 

t = 50 151.51 17.70 117.70 65.18 146.03 

t = 100 169.91 30.72 99.07 63.02 131.39 

t = 150 83.76 14.47 65.31 53.16 50.27 

Machine 4 

t = 50 157.63 32.36 148.87 78.27 146.03 

t = 100 97.83 17.60 67.71 61.06 100.25 

t = 150 36.18 9.08 38.12 49.98 43.25 

Machine 5 

t = 50 136.73 21.12 119.40 65.57 137.55 

t = 100 112.71 34.09 77.65 59.27 117.05 

t = 150 67.98 13.68 53.08 48.30 56.06 

Machine 6 

t = 50 168.50 17.36 153.06 95.31 143.42 

t = 100 109.65 15.47 84.26 80.58 96.40 

t = 150 45.699 11.69 36.412 22.54 49.79 

 

7.3 Decision-making model 

In this section, the decision-making model is introduced to demonstrate the importance 

of decision-making in the predictive maintenance digital twin. The underlying 

mechanism is to follow equation 5.3 in Chapter 5. The decision model is aimed to find 

a suitable time slot for maintenance and pre-prepare the suitable service for the 
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maintenance process based on the cost per unit time. 

𝐶(𝑡0) = (𝑆 +  𝐼𝑗

𝑚

𝑗∈𝐺𝑗

× 𝐶𝑝𝑚 +  𝐼𝑖

𝑚

𝑖∉𝐺𝑗

× 𝐶𝑢 × 𝑡)/𝑡0 (7.3) 

The decision model is established in the Python environment with Simpy package. 

Simpy is a discrete-event simulation framework powered by Python generator 

functions, which is a process-based simulation, especially for continuous-time 

simulation.8 

The fundamental assumptions of this model are simulating the maintenance decision 

for the wind farm, which has a specific maintenance window due to the weather or other 

environmental issues. Moreover, the cost of maintenance is rather high if we miss a 

suitable maintenance window (Tavner, 2012b).  

In this case, we assume the maintenance could only be conducted during the 

maintenance window. During each maintenance action, we replace the main component 

for all of the machines, and we assume that after the replacement, the machines are 

AGAN. To make the model more intuitive, we only consider one round and apply the 

mean lifetime without uncertainty in this model. In order to make the model more 

practical, we also consider modelling the repair time with randomness, repairman, and 

spare parts. The decision model is divided into two parts, one for factory modelling, 

one for optimization information. 

The main architecture for this factory is shown in Algorithm 1: 

 

 

 

 

 

8  The decision mode is based on the Simpy package and examples on the 

websitehttps://pypi.org/project/simpy/ 

https://pypi.org/project/simpy/
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Algorithm 1    Machine farm 

Input:  The initial cost for prepare 

Repair schedule 

Maintenance engineers 

Repair time 

Machine lifetime 

Output: Total cost, spares 

Main: 
Class: Machine farm  

Function: Machine operation 

If lifetime < repair schedule:  

Failed time = lifetime 

Repairing time = scheduled time  

Cost for penalty = delay days * cost / day  

else: (machine failed after scheduled time) 

Repairing time = scheduled time  

Function: Repair 

Request engineers  

Request spares ## components 

Cost for repair = Repair time * cost/day  

end 

 

Algorithm 1 is to simulate the machine operational information. After we establish the 

machinery information, we could follow Algorithm 2 to get the maintenance time slot 

within the maintenance window. 

Algorithm 2    Optimizer 

Input:  Maintenance window  

Output: Total cost per unit time, spares  

Main: 
For time_slot in Maintenance window: 

 Algorithm 1  

Per_Unit_Cost =Total cost/time_slot 

end 

Find_optimized time slot 

Find_spares used 

end 
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Algorithm 2 is to find the optimized time slot within the maintenance window by 

collecting the cost information. 

7.3.1 Decision model implement 

For this model, we need the following assumptions: 

• The Set-up cost (𝑆) , which indicates the costs for preparations, such as 

transportation, raw materials. 

• Planned maintenance cost (𝐶𝑝𝑚), which indicates the costs of machine repair 

before machine failure. 

• Unplanned maintenance cost (𝐶𝑢), which is the cost after the machine failure. 

• Repair time (𝑡𝑟  ), in this case, the repair time is a random variable, which 

indicates the repair time could depend on the situation. 

• Repair schedule (𝑡0), the set-up schedule to conduct maintenance activity. 

The formula for this model is: 

 

𝐶(𝑡0) = (𝑆 +  𝐶𝑝𝑚 × 𝑡𝑟𝑗

𝑚

𝑗∈𝐺𝑗

+  𝐶𝑢 × (𝛥𝑡 + 𝑡𝑟𝑖)

𝑛

𝑖∉𝐺𝑗

 )/𝑡0 (7.4) 

 

Where, 𝐶(𝑡0) is the cost/ unit time, 𝑆 is the set-up cost, 𝐺𝑗  is a non-failure machine 

group, 𝐶𝑝𝑚 is the preventive maintenance cost, 𝐶𝑢 is the corrective maintenance cost, 

𝑡𝑟 is the repair cost, 𝛥𝑡 is the interval between failure time and schedule time. 

After we acquire the lifetime/RUL from the prognostics model, the information could 

be transferred into a real-time decision model through the communication protocol. 

We use the mean value of the lifetime from prognostics model in cycle 50, 100, and 

150 as the example to illustrate the process. The lifetime information is showed in Table 

7. 8: 
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Table 7. 8 The lifetime information on cycle 50,100 and 150 

 Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 Machine 6 

50 217 222 202 208 187 219 

100 198 231 240 198 213 210 

150 197 194 234 187 212 195 

  

The parameters settings:  

Table 7. 9 Parameter information 

Maintenance 

window 

Set-up 

cost 
Repair time 

Repair 

engineers 
𝐶𝑝𝑚 𝐶𝑢 

160-260 30k $ 
Random variable 

from 4-6 cycles 
2 

2 k 

$/cycle  

10 k 

$/cycle  

 

We set the repair limitation to 2, which means only two of the machines could be 

repaired at one time. Figure 7. 7 shows an example when we repair all of the machines 

after failure in cycle 256. 

 

Figure 7. 7 An example of the maintenance process 

After all of the parameters are set up, we could obtain a suitable time slot for doing 

maintenance and get the corresponding cost. 



 

CHAPTER 7: ONLINE PROGNOSTICS AND DECISON MAKING 

 92 

 

 

Table 7.10 Schedule time and cost 

Cycle 50 100 150 

Best schedule time 187 198 187 

Cost  0.9k 0.8k 0.9k 

 

 

a. Schedule time in cycle 50 

 
b. Schedule time in cycle 100 

 

c. Schedule time in cycle 150 

Figure 7. 8 Cost per unit time with the corresponding cycle 

From the simulation, we could know the suitable time is around cycle 198 during the 

process. After we set the schedule, the spares information in the inventory also could 

be illustrated. Here, we assume the spares are enough. 

 

Figure 7. 9 Spares spending along with time/cycle 
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Further, we could add uncertainty and inventory information in this model to get the 

dynamic decision recommendations via different input schedules.



 

 

Chapter 8 

Alternative analysis 

In the previous chapters, the digital twin model is presented, and the relevant theoretical 

background is introduced. However, this digital twin is based on a hypothetical system, 

and we do not have a robust standard to evaluate the result of this model.  

In the previous part, we apply PHM 08 dataset and only select six engine data to 

perform the prognostics. In order to show the performance of these three models, i.e., 

𝑘 − 𝑁𝑁  regression, stochastic process, and 𝐴𝑁𝑁 , we apply the same process in 

Chapter 6 and 7 to all of the data in the PHM 08. Here, the figure shows the performance 

of the whole PHM08 test dataset in the following with corresponding error distribution. 

The table shows the accuracy 𝑅2 score and Root mean square error. 

 

a. Prediction and estimation on NN 

 

a'. Error distribution 
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Figure 8. 1 Estimations of PHM08 dataset with three methods  

Table 8. 1 𝑹𝟐 and MSE for 𝑨𝑵𝑵 and 𝒌 − 𝑵𝑵 

 𝑹𝟐 MSE 

𝑨𝑵𝑵 0.51 29.10 

𝒌 − 𝑵𝑵 0.26 45.77 

 

The GBM process seems not robust9 than 𝐴𝑁𝑁 and 𝑘 − 𝑁𝑁 in this process. The reason 

could be that the parameters are estimated by data directly, and the variances are 

enormous for each prediction. So, it is hard to get the exact number as the other two 

methods. 

 
9 The ‘robust’ here means the performance between estimated mean values and  the specific real RUL in 

this case is not so accurate than other two methods. 

 

b. Prediction and estimation on k-NN 

 

b’. Error distribution 

 

c. Prediction and estimation on GBM 

 

c'. Standard deviations 



 

 

Chapter 9 

Discussion, Conclusions, and Recommendations 

for Future Work 

In this chapter, a discussion and conclusion are presented. In order to get improvement, 

the recommendations for further work also are listed here. 

9.1 Discussion 

In this thesis, the whole digital twin framework is connected by the Socket 

communication protocol model. This model is mainly in charge of file transferring and 

essential real-time communication. However, the Socket model in this thesis could not 

fully achieve automatic control in the case study, which passes the dataset or data file 

manually.  

In Chapter 6, when extracting the health indicator, we use the 𝑉𝐻𝐼 rather than 𝑃𝐻𝐼. As 

presented in Chapter 3, the 𝑉𝐻𝐼 could capture the primary information. It could not 

combine all of the information from sensors. During the trend extracting process, it 

could lose some information, because we abandon some of the signal information in 

the offline model establishment procedure. Thus, a hybrid model could be considered 

to combine physical information by applying some relevant equations. For example, 

we could apply the thermal equation to combine some of the information. Then the data 

fusion could combine all of the information to approach the real connection by physical 

machine structure between sensors.  

For the whole digital twin, we assume the machines are identical. However, after 

obtaining the primary trend in Chapter 4, the initial value of each machine is slightly 

different, which might cause by the operational information in the dataset. These 
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differences could be one reason that the lifetime of the machines is variating that much 

at the end. 

In the digital twin offline model, we propose three different models, i.e., 𝑘 − 𝑁𝑁 

regression, stochastic process, and 𝐴𝑁𝑁. In the following, we are going to compare 

these three methods. Since the accuracy performance depends on further adjusting, the 

following comparison does not include accuracy performance.  

Table 9. 1 Comparison of three prognostics models 

 Pros Cons 

𝑘 − 𝑁𝑁 

1. Easy to apply; 

2. Not time-consuming for training, because 

the prediction depends on the comparison 

between historical data and real-time data 

directly; 

3. Fast processing if the data set is one-

dimensional; 

4. Initially, it could not obtain uncertainty. 

We propose to collect historical 

predictions to obtain uncertainty. So, it 

can provide uncertainty information. 

1. The prediction highly depends on 

historical data. If the historical data 

could cover all of the situations, 

the predictions could be unreliable; 

2. For different predictions, 𝑘 value 

could be a dispute, since the k 

selection based on existing data, 

not on real-time data; 

3. Not suitable for a multi-

dimensional data sample in this 

case. 

𝐺𝐵𝑀 

1. Suitable for one-dimensional data; 

2. Possible to obtain uncertainty 

information and failure rate function; 

3. Possible to update variables according to 

new data; 

4. Does not need to cover all the aspect in 

the historical data; 

5. Flexible; could use mathematic way to 

estimate parameters or by historical data 

directly; 

1. High expertise; Need to have a 

good understanding of the 

deterioration evolving and choose 

the correct model. 

2. Time-consuming when applying 

stochastic model (GBM) 

3. Hard to find proper parameters 

support multi-dimensional data 

4. We need to define the failure 

threshold, which increases 

uncertainty. 
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𝐴𝑁𝑁 

1. Support multi-dimensional data; 

2. Fast processing since we have the 

offline model; 

3. Easy to apply; 

4. Possible to acquire uncertainty 

information by Bayesian drop out; 

5. Could update parameters when comes 

the new dataset; 

6. It could be regarded as a universal proxy 

model if the training data covers most of 

the features. 

1. The prognostics depend on the 

historical data; 

2. The training process is Time-

consuming; 

3. High professionalism; Need to 

have a good understanding of the 

mechanism of 𝐴𝑁𝑁; 

4. Hard to get the best model, since 

there is serval different 𝐴𝑁𝑁s; 

5. The prediction is only based on 

the latest data in this case, which 

increase the vulnerability; 

6. Easy to hit overfitting problems. 

 

In Chapter 8, we propose a decision model. To make the model directive and 

illustrative, we do not consider the uncertainty of the lifetime or RUL. This model is to 

present that what kind of information could a decision model provides since there is not 

much information from the literature review on how to formulate a decision model in 

the digital twin. This information is essential when it comes to long-term planning, such 

as windfarm maintenance and subsea equipment maintenance. The decision model is 

cost-based monitoring combined with spares, which could be adapted to net present 

value and inventory information. In practice, the deterioration of components is not 

identical. After adjusting and re-organizing, the decision-model could provide dynamic 

support for long-term planning. 

9.2 Summary and Conclusion 

The main objectives of this thesis are to propose a digital twin framework for predictive 

maintenance and demonstrate the framework by a case study. 

From the literature review, there is not much information about a standardized 

methodology and process to build a digital twin for predictive maintenance. Inspired 
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by several standards, websites, and documentation, we propose a conceptual framework 

to illustrate the primary process for establishing a digital twin by integrating existing 

systems for industries in Chapter 3. The framework information includes but not limited 

to:  

• System information collecting and system analysis 

• Data availability, structure, and types 

• Communication through different models 

• PHM methods 

• Decision making  

In order to demonstrate the framework, a hypothetical system is introduced in Chapter 

2. This system simulates a factory, drawn from the wind farm, which requires long-

term maintenance planning and specific maintenance windows. This system could 

provide an insightful view of how to decide maintenance through primary factors 

dynamically.  

Within this scope, the interior architecture of the digital twin presented in this thesis is 

a communication protocol, three state-of-the-art PHM methods, and a decision model. 

The three PHM methods are 𝑘 − 𝑁𝑁  similarity-based model, the Artificial Neural 

network model, and the Stochastic process, presented in Chapter 4. Inside the digital 

twin, the models are connected by a communication protocol-Socket, which is aimed 

at establishing bridges through models and execute commands.  In order to simulate the 

data streaming process, we divide the PHM process into two phases, offline reference, 

and online prognostics, respectively, to three different PHM methods.  Meanwhile, the 

streaming data from machines are with noise and missing values. The pre-processing 

of the dataset is necessary before the offline model, which is presented in Chapter 4 and 

Chapter 6, to enhance the performance of PHM methods and get a robust prediction.  

For offline reference and online prognostics, all three methods have unique 

characteristics both in model training and prognostics, as presented in Chapter 6 and 7. 

These characteristics could be an evaluation standard of the performance in the 

practical, such as the complexity, time spending, and accuracy. The comparison of these 

three methods is also discussed in Chapter 8 Discussion. The purpose of prognostics is 
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to get the RUL with uncertainty, which is the input of the decision model.  

In this thesis, a simplified dynamic decision model is proposed in Chapter 7. For 

predictive maintenance, the decision model provides an evaluation standard of when to 

conduct maintenance. This standard is based on preparation, maintenance capacity, 

inventory, and the cost. The purpose of the decision model is not only to find a 

maintenance time but to integrate and allocate the resource and provide a dynamic 

strategy based on predicted and known events. 

 

Figure 9.1 Digital twin framework presented in this thesis 

As a whole, due to the limitations of heavy computational work, some of the models 

are not completed, only present a demo version. However, the integrated digital twin 

with predictive maintenance could demonstrate the framework and conceptual ideas 

(shown in Figure 9.1), such that it could be concluded that the main objectives for this 

master thesis are met. 

9.3 Further Work 

In this section, we are going to discuss the potential improvements and 

recommendations of the digital twin as guidance to implement predictive maintenance 

successfully in the future.  

Remote control 

In the digital twin proposed, the communication protocol is to establish a bridge 
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between different models and transferring data.  With the prognostics model, the RUL 

information could be obtained. However, due to the environmental disturbance, the 

prognostics could not be that accurate. To avoid unnecessary loss, the communication 

model should send control information to the assets to adjust the working preference. 

Further, the model could pre-define the state of assets according to external 

information, such as bad weather and maintenance window time, to strive for extending 

the lifetime. 

Prognostics and health management 

In this thesis, we discussed three different methods. For these three methods, we could 

try to merge the Pros to get a hybrid model. In the prognostics, most of the input variable 

is sequential; meanwhile, In industries, some of the assets do not have much historical 

data. Recurrent Neural Networks (RNN) is aimed at time series analysis, which should 

perform better than the regular feed-forward neural network. Stochastic processes use 

‘the percentage drift’ and ‘the percentage volatility’ to estimate the health indicator. 

Bayesian could help to update the parameters. There could be some hybrid neural 

network model to integrate these three features 10 , which could be a potential 

development. 

Decision model 

For predictive maintenance, the decision model could provide solutions to engineers 

and realize partial control of the assets. During the operation of the asset, one 

deterioration component may cause a chain effect and cause more damage to the 

machine. Thus, it is essential to lower or shut down the machine remotely or 

automatically to reduce the cost of maintenance by the decision model. Meanwhile, the 

primary mission of predictive maintenance is to overall plan the cost and available 

resources. Meanwhile, it could monitor the market and calculate the updated price of 

rental or purchase according to the net present value (NPV). In the future, the decision 

 
10 The combination of these three features could be inside RNN, the activation function is related to ‘the 

percentage drift’ and ‘the percentage volatility’, and the parameters are updated by Bayesian model. 
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model should act as a ‘brain’ in the whole digital twin. It could overall plan the 

maintenance schedule and allocate resources. Moreover, it could illustrate the 

consequence when engineers select different scenarios, such as postpone the 

maintenance schedule and partial maintenance. These improvements could make 

maintenance more flexible and smarter. 
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Appendix A 

Acronyms 

ANN Artificial Neural Network  

ATF Automation factory  

CNN convolutional neural network  

CPS Cyber-Physical Systems  

FMECA  Failure mode, effects, and criticality analysis 

FTA Fault tree analysis 

GBM Geometric Brownian motion 

HI Health indicator 

IoT internet of things 

IP  Internet Protocol address 

k-NN k-Nearest-Neighbor  

LSTM  Long short-term memory  

MQTT Message Queuing Telemetry Transport 

MSB Media Stream Broadcast 

MSE Mean squared error  

NPV Net present value  

PCA Principal component analysis  

PDF Probability density function 

PHI Physics Health Indicator  
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PHM prognostics and health management 

RAMS  Reliability availability maintenablity and safety 

RNN Recurrent Neural Networks  

RUL Remaining useful if life 

SDE Stochastic differential equation 

SVD Singular value decomposition  

TCP Transmission control protocol  

TSC Time series components 

VHI Virtual health indicator   
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Appendix B 

Roadmap for Predictive maintenance Digital 

twin 
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Appendix C  

Python codes of digital twin architecture 

C.1 Communication protocol in Socket  

C1.1 Socket listening file transferring ‘Server’ 

1. """  
2. file: recv.py  
3. socket service  
4. """   
5.    
6. import socket   
7. import tqdm   
8. import os   
9.    
10. # device's IP address   
11. SERVER_HOST = input("Please input server Ip: ")   
12. SERVER_PORT = 5003   
13. # receive 4096 bytes each time   
14. BUFFER_SIZE = 4096   
15. SEPARATOR = "<SEPARATOR>"   
16. # create the server socket   
17. # TCP socket   
18. s = socket.socket()   
19. # bind the socket to our local address   
20. s.bind((SERVER_HOST, SERVER_PORT))   
21. # enabling our server to accept connections   
22. # 5 here is the number of unaccepted connections that   
23. # the system will allow before refusing new connections   
24. s.listen(5)   
25. os.chdir(input("please input save location:"))   
26. print(f"[*] Listening as {SERVER_HOST}:{SERVER_PORT}")   
27. # accept connection if there is any   
28. client_socket, address = s.accept()   
29. # if below code is executed, that means the sender is connected   
30. print(f"[+]  is connected.")   
31. # receive the file infos   
32. # receive using client socket, not server socket   
33. received = client_socket.recv(BUFFER_SIZE).decode()   
34. filename, filesize = received.split(SEPARATOR)   
35. # remove absolute path if there is   
36. filename = os.path.basename(filename)   
37. # convert to integer   
38. filesize = int(filesize)   
39. # start receiving the file from the socket   
40. # and writing to the file stream   
41. progress = tqdm.tqdm(range(filesize), f"Receiving {filename}", unit="B", uni

t_scale=True, unit_divisor=1024)   
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42. with open(filename, "wb") as f:   
43.     for _ in progress:   
44.         # read 1024 bytes from the socket (receive)   
45.         bytes_read = client_socket.recv(BUFFER_SIZE)   
46.         if not bytes_read:   
47.             # nothing is received   
48.             # file transmitting is done   
49.             break   
50.         # write to the file the bytes we just received   
51.         f.write(bytes_read)   
52.         # update the progress bar   
53.         progress.update(len(bytes_read))   
54.    
55.    
56. # close the client socket   
57. client_socket.close()   
58. # close the server socket   
59. s.close()   

C1.2 Socket listening file transferring ‘Client’ 

 

1. import socket   
2. import tqdm   
3. import os   
4.    
5. SEPARATOR = "<SEPARATOR>"   
6. BUFFER_SIZE = 4096 # send 4096 bytes each time step   
7.    
8. # the ip address or hostname of the server, the receiver   
9. host = input("Please input server ip:")   
10. # the port, let's use 5001   
11. port = 5003   
12. # the name of file we want to send, make sure it exists   
13. filename = "D:\programming/√Knn regression.ipynb"   
14. # get the file size   
15. filesize = os.path.getsize(filename)   
16.    
17. # create the client socket   
18. s = socket.socket()   
19.    
20. print(f"[+] Connecting to :{port}")   
21. s.connect((host, port))   
22. print("[+] Connected.")   
23.    
24. # send the filename and filesize   
25. s.send(f"{filename}{SEPARATOR}{filesize}".encode())   
26.    
27. # start sending the file   
28. progress = tqdm.tqdm(range(filesize), f"Sending {filename}", unit="B", unit_

scale=True, unit_divisor=1024)   
29. with open(filename, "rb") as f:   
30.     for _ in progress:   
31.         # read the bytes from the file   
32.         bytes_read = f.read(BUFFER_SIZE)   
33.         if not bytes_read:   
34.             # file transmitting is done   
35.             break   
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36.         # we use sendall to assure transimission in   
37.         # busy networks   
38.         s.sendall(bytes_read)   
39.         # update the progress bar   
40.         progress.update(len(bytes_read))   
41. # close the socket   
42. s.close()   

 

C1.3 Socket monitoring file transferring ‘Server’  

1. '''''  

2. server：  

3. '''   
4. import socket   
5. server = socket.socket()   
6. server.bind(("192.168.137.1",5001)) #port and ip   
7. server.listen(5) # listing, mostly have five connection   
8. print('waiting the call')   
9. while True:   
10.     conn,addr = server.accept() # waiting for caling    
11.     print(conn)   
12.     print('the call has comming')   
13.     while True:   
14.         data = conn.recv(1024)   
15.         if not data :   
16.             print('this user is end,exit!\n next user')   
17.             break   
18.         print('data:',data.decode())   
19.         conn.send(data.upper())   

C1.4  Socket monitoring file transferring ‘Client’  

 

1. import socket   
2. import os   
3.    
4. SEPARATOR = "<SEPARATOR>"   
5. BUFFER_SIZE = 4096 # send 4096 bytes each time step   
6.    
7. # the ip address or hostname of the server, the receiver   
8. host = input("Please input server ip:")   
9. # the port, let's use 5001   
10. port = 5001   
11. # the name of file we want to send, make sure it exists   
12.    
13.    
14. # create the client socket   
15. s = socket.socket()   
16.    
17. print(f"[+] Connecting to {host}:{port}")   
18. s.connect((host, port))   
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19. print("[+] Connected.")   
20.    
21.    
22. while True:   
23.     msg = input("massage:").strip()   
24.    
25.     if len(msg) == 0:   
26.         continue   
27.    
28.     s.send(msg.encode(encoding='utf-8'))  # not allowed empty message   
29.    
30.     data = s.recv(1024)   
31.     print(data.decode())   
32.    
33. s.close()   

 

C.2 Data pre-processing and analysis 

1. # coding: utf-8   
2.    
3. # In[125]:   
4.    
5. # package import   
6.    
7. import pandas as pd   
8. import os   
9. import numpy as np   
10. import matplotlib.pyplot as plt   
11. import seaborn as sns   
12.    
13. import importlib   
14. from sklearn.linear_model import LinearRegression   
15. from sklearn import preprocessing   
16. from sklearn.preprocessing import StandardScaler   
17. from sklearn.decomposition import PCA   
18. # from sklearn.feature_selection import f_regression   
19. from sklearn.linear_model import LogisticRegression   
20. from scipy.signal import savgol_filter   
21. from scipy.optimize import curve_fit   
22. from sklearn.model_selection import TimeSeriesSplit   
23. from sklearn.metrics.pairwise import euclidean_distances   
24. get_ipython().run_line_magic('matplotlib', 'inline')   
25.    
26. # In[76]:   
27.    
28. ## data import    
29. dirname = os.getcwd()   
30. data_pth_train = os.path.join(dirname, 'training','train_FD001.txt')   
31. data_pth_rul = os.path.join(dirname, 'rul','RUL_FD001.txt')   
32. # column names for the dataset   
33. # op_cond refers to operational condition, sn: sensor   
34. col_name = ['machine', 'time/cycle', 'op_cond_1', 'op_cond_2', 'op_cond_3'] 

  
35. col_name = col_name + ['sn_{}'.format(s + 1) for s in range(21)]   
36.    
37. # In[77]:   
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38.    
39. # load data into sensor df   
40. # notice index_col=0 is used so that the data for each separate engine can b

e obtained easily   
41. #(engine columns is just a group of data)   
42. df_train = pd.read_csv(data_pth_train, header=None, names=col_name,delim_whi

tespace=True,index_col=0)   
43. TrueRUL= pd.read_csv(data_pth_rul, sep = "\n", header = None)   
44.    
45. # In[78]:   
46.    
47. TrueRUL.columns= ['RUL']   
48. TrueRUL.head()   
49.    
50. # In[79]:   
51.    
52. # Take a look at data   
53. #df_train.head()   
54. #pd.set_option('max_rows', 10,'max_columns',8)   
55.    
56. # In[80]:   
57.    
58. df_train   
59.    
60. # so basically there are 218 engines in the data set   
61.    
62. # In[81]:   
63.    
64. df_train.info()   
65.    
66. # There is no missing data or Null data   
67.    
68. # In[82]:   
69.    
70. df_train.describe()   
71.    
72. # In[83]:   
73.    
74. # look at the mean of all columns   
75. df_train.std().plot.bar(figsize=(12,8));   
76. plt.title('std value of signals')   
77.    
78. # In[84]:   
79.    
80. df_train.mean()   
81.    
82. # In[85]:   
83.    
84. df_train_data1 = df_train.loc[1,"time/cycle" : "sn_21"]    
85. df_train_data1.info()   
86. #pd.set_option('max_rows', 5,'max_columns',8)   
87. # In[86]:   
88. df_train_data1   
89. # In[87]:   
90. df_train_data1.describe()   
91. # In[88]:   
92. df_train_data1.mean().plot.bar(figsize=(12,8));   
93. # Examine Correlation Between Columns (linear)   
94. # In[89]:   
95. #For all   
96. #heatmap to view correlation between independent variables   
97. correlations = df_train.drop('time/cycle',axis = 1).corr()   
98. #corr_map = sns.diverging_palette(220, 10, as_cmap=True)   
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99. f, ax = plt.subplots(figsize=(30,30))   
100. sns.heatmap(correlations, annot=True, linewidths=0.5,linecolor="red",

 fmt= '.1f',ax=ax)   
101. plt.title('The correlation map of all machines ',color = 'black',font

size = 50)   
102. plt.show()   
103. # In[90]:   
104. # correaltion for engine 1   
105. #engine_num=1   
106. f,ax = plt.subplots(figsize=(30, 30))   
107. sns.heatmap(df_train_data1.corr(), annot=True, linewidths=0.5,linecol

or="red", fmt= '.1f',ax=ax)   
108. plt.title('The correlation map of machine 1',color = 'black',fontsize

 = 50)   
109. plt.show()   
110. # R value in the figure   
111. # From these two figure , we could say there are alot variables have 

correlations and in order to find the correlation part   
112. # only consider the positive values    
113. # and the totally value figure is not that different compared with th

e first machine    
114. #    
115. # Then categorize the highly correlation pairs   
116. # In[91]:   
117.    
118. def find_corr_pairs(corr,thrsh):   
119.        
120.     """  
121.     find high correlation column pairs in df   
122.     ======================================  
123.     input:   
124.     corr - (df)- correlation matrix generated by pandas  
125.     thrsh - (float) threshold value to consider correlation as high s

o that it is included in the output   
126.     output:  
127.     high_corr_pairs - (list) list of tuples of the two-

column names and their correlation. corr> thrsh  
128.     """   
129.     high_corr_pairs = []   
130.     # same as input 'corr' but the upper -

triangle half of the matrix is zeros ( for convenience only)    
131.     corr_diag = pd.DataFrame(np.tril(corr.values), columns=corr.colum

ns, index = corr.index)   
132.    
133.     # check  the correlation between every pair of columns in the cor

r and keeps the high ones   
134.     for col_num , col in enumerate(corr_diag):   
135.         col_corr=corr_diag[col].iloc[col_num+1:] # this slicing ensur

es ignoring self_corr and duplicates due to symmetry   
136.         # bool mask for pairs with high corr with col   
137.         mask_pairs = col_corr.apply(lambda x: abs(x))>thrsh    
138.         idx_pairs=col_corr[mask_pairs].index   
139.    
140.         # create list of high corr pairs   
141.         for idx , corr in zip(idx_pairs,col_corr[mask_pairs].values):

   
142.             high_corr_pairs.append((col, idx, corr))   
143.        
144.     return high_corr_pairs   
145.    
146. # In[92]:   
147.    
148. corr_pairs=find_corr_pairs(correlations,0.9)   
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149. for c in corr_pairs:   
150.     print(c)   
151. # the value above are correlated with others , however, we need to ch

eck if they really correlated.   
152. # then we will plot the signal PDF for each sensor.    
153. #    
154. # plot variables distribution   
155. # In[93]:   
156. def plot_distribution(df, engine_num=None):   
157.     '''''plot all non trivial measurements and states'''   
158.        
159.     cols = df.columns   
160.     n_cols = min(len(cols), 5)   
161.     n_rows = int(np.ceil(len(cols) / n_cols))   
162.        
163.     sns.set()   
164.     fig, axes = plt.subplots(n_rows, n_cols, figsize=(15,12))   
165.     axes = axes.flatten()   
166.     if engine_num != None:    
167.         fig.suptitle('distributions for Machines #: {}'.format(engine

_num))   
168.         df_plot = df.loc[engine_num]   
169.     else:    
170.         fig.suptitle('distributions for all Machines')   
171.         df_plot = df   
172.     for col, ax in zip(cols, axes):   
173.         ax=sns.distplot(df_plot[col], ax=ax, label=col)   
174.         ax.legend(loc=1)   
175. #         labels(col, "p", ax)   
176.     return fig   
177. # In[94]:   
178. fig=plot_distribution(df_train)   
179.    
180. # In[95]:   
181.    
182. df_train_std = df_train.drop('time/cycle',axis=1)   
183.    
184. df_train_std.std().plot.bar(figsize=(12,8));   
185.    
186. # In[96]:   
187. df_train_std.std()   
188. # dropping insignificant variables   
189. # remove the virable in the dataset   
190. # In[97]:   
191. variable_remove=[ col for col in df_train.columns if (df_train[col].s

td() <= .0001)  ]   
192. print('columns to be removed from analysis since they do not change w

ith time \n',variable_remove)   
193. # In[98]:   
194. df_train.drop(columns=variable_remove,axis=1,inplace=True)   
195. # In[99]:   
196. def plot_ts(df, engine_num):   
197.     """  
198.     plot time history of for specific engine   
199.     ========================================  
200.     input:   
201.     df - (df) Dataframe you wish to plot the time series for its colu

mns  
202.     engine_num - (int) engine number to selector    
203.     """   
204.        
205.     # prepare the dataframe for plotting   
206.     ts = df.loc[engine_num].copy() # df for the needed engine   
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207.     time = ts['time/cycle']   
208.     ts.drop(labels=['time/cycle'],axis=1,inplace=True)   
209.     cols = ts.columns   
210.        
211.     # plotting   
212.     fig, axes = plt.subplots(len(cols), 1, figsize=(19,17))   
213.     for col, ax in zip(cols, axes):   
214.         ax.plot(time,ts[col],label=col)   
215.         ax.legend(loc=2)   
216.            
217.     # figure title       
218.     fig.suptitle('Engine #: {}'.format(engine_num))   
219.    
220. # In[100]:   
221. fig_signal1= plot_ts(df_train, 1)   
222. # In[101]:   
223. # add RUL to each engine based on time column,    
224. # notice that RUL is negative quantity here to make 0 as the end of l

ife for all engines   
225. for id in df_train.index.unique():   
226.     df_train.loc[id,'RUL'] = df_train.loc[id]['time/cycle'].apply(lam

bda x: x-df_train.loc[id]['time/cycle'].min())   
227. # In[102]:   
228. def plot_ts_all(df):   
229.     """  
230.     plot time history of for all engines in the data  
231.     =================================================  
232.     input:   
233.     df - (df) Dataframe you whish to plot the time series for its col

umns  
234.     """   
235.        
236.     # prepare the dataframe for plotting   
237.     ts = df.copy() # df for the needed engine   
238.     ts.drop(labels=['time/cycle'],axis=1,inplace=True)   
239.        
240.     cols = ts.columns   
241.     # plotting   
242.     fig, axes = plt.subplots(len(cols)-1, 1, figsize=(19,17))   
243.     for col, ax in zip(cols, axes):   
244.         if col == 'RUL':   
245.             continue   
246.                
247.         fontdict = {'fontsize': 12}   
248.         ax.set_title(col,loc='left',fontdict=fontdict)   
249.         for engine_id in ts.index.unique():   
250.             time = ts.loc[engine_id,'RUL']   
251.             ax.plot(time,ts.loc[engine_id,col],label=col)        
252.            
253.     # figure title       
254.        
255.     return fig   
256. # In[103]:   
257. fig=plot_ts_all(df_train)   
258. fig.suptitle('All Machine Time Series \n each line is different machi

ne response\n x-axis is lifetime')   
259. # In[60]:   
260.    
261. df_train.drop(['sn_2','sn_3' ,'sn_4' , 'sn_7','sn_8','sn_11','sn_12',

'sn_13','sn_15','sn_17','sn_20','sn_21'],axis=1,inplace=True)   
262. # In[104]:   
263. fig=plot_ts_all(df_train)   
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264. fig.suptitle('All Machine Time Series \n each line is different machi
ne response\n x-axis is lifetime')   

265. # In[105]:   
266. df_train.drop(['op_cond_1','op_cond_2' ,'sn_6' ,'sn_9' , 'sn_14'],axi

s=1,inplace=True)   
267. df_train.shape   
268. # In[143]:   
269. for id in df_train.index.unique():   
270.     df_train.loc[id,'RUL'] = df_train.loc[id]['time/cycle'].apply(lam

bda x: x-df_train.loc[id]['time/cycle'].min())   
271. # positive RUL for each engine   
272.    
273. # get all sensors   
274. raw_columns = df_train.columns.values[1:-1]   
275. raw_sensors = df_train[raw_columns].values # as numpy array   
276. raw_columns   
277.    
278. # In[107]:   
279. standard_scale = StandardScaler()   
280. standard_sensors = standard_scale.fit_transform(raw_sensors)   
281. # In[108]:   
282. lin_model =LinearRegression()   
283. engine_num=20   
284. x = df_train.loc[engine_num,'RUL'].values   
285. # In[109]:   
286. row_name=df_train.loc[engine_num].iloc[-1].name   
287. row_sl=df_train.index.get_loc(row_name) # row slice to get numpy inde

x   
288. y=standard_sensors[row_sl] # sensor values for the specific engine   
289. x.reshape(-1, 1).shape # add dimension, to fit the line   
290. x.shape   
291. lin_model.fit(x.reshape(-1, 1),y)   
292.    
293. # In[110]:   
294.    
295. lin_model.coef_[:,0].shape   
296. # how many line has been fitted    
297.    
298. # In[111]:   
299.    
300. lin_model.score(x.reshape(-1, 1),y)   
301. #   Return the coefficient of determination R^2 of the prediction.   
302.    
303. # In[112]:   
304.    
305. y_hat = lin_model.predict(x.reshape(-1, 1))   
306.    
307. # In[113]:   
308.    
309. # plotting   
310. time = df_train.loc[engine_num,'RUL']   
311. cols = df_train.columns[1:-1]   
312. fig, axes = plt.subplots(len(cols), 1, figsize=(19,17))   
313. for col, ax in zip(range(standard_sensors.shape[1]), axes):   
314.     ax.plot(time,standard_sensors[row_sl,col],label=col+1)   
315.     ax.plot(time,y_hat[:,col],label='trend')   
316.     ax.legend(loc=2)   
317.    
318. # In[114]:   
319. def lin_slopes(sensors,df,engine_num):   
320.     """  
321.     gives slopes of a teh tred lines for each sesnor   
322.     =================================================  
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323.     input:   
324.     sensors - (ndarray) numpy array of standardized signals ( rows: -

RUL columns, various signals)  
325.     engine_num - (int) engine number to selector  
326.     df - (df) data frame of data  
327.     output:   
328.     slopes -

(ndarray) numpy array of slopes rows: slope of each signal linear trend line
  

329.     """   
330.     model = LinearRegression()   
331.     x = df.loc[engine_num,'RUL'].values   
332.     row_name=df.loc[engine_num].iloc[-1].name   
333.     row_sl=df.index.get_loc(row_name) # row slice to get numpy index 

   
334.     y=sensors[row_sl] # sensor values for the specifc engine   
335.     model.fit(x.reshape(-1, 1),y)   
336.     slopes=model.coef_[:,0]   
337.     return slopes   
338.    
339. # In[115]:   
340. # finding slopes for all engines   
341. engines=df_train.index.unique().values   
342. slopes = np.empty((standard_sensors.shape[1],len(engines)))   
343. for i,engine in enumerate(engines):   
344.     slopes[:,i] = lin_slopes(standard_sensors,df_train,engine)   
345.    
346. # In[116]:   
347. slopes_df = pd.DataFrame(slopes.T,index=engines,columns =raw_columns)

   
348. slopes_df   
349. # In[117]:   
350. for sn in slopes_df.columns[1:-1]:    
351.     plt.plot(abs(slopes_df[sn]))   
352. plt.show()   
353.    
354. # engine 20   
355. # From the pic above, we can find that , mainly there are two signal 

 of slope can reveal the potential trend of    
356. # all sensors , so in the following , we are going to use PCA to extr

act the main feature of several signals.   
357. #    
358. # first, we are going to get the slopes of each linear model.   
359.    
360. # In[118]:   
361. slope_order_idx=np.argsort(np.abs(slopes.mean(axis=1)))[::-1]   
362. raw_columns[slope_order_idx]   
363. # In[119]:   
364. # PCA with all sensors   engine 20   
365. # get first impression of how many PCA it might have   
366. pca = PCA()   
367. # In[120]:   
368. num_high_slopes = 6   
369. pca_high_n_components=3   
370. sensors_high_trend=standard_sensors[:,slope_order_idx[0:num_high_slop

es]]   
371. pca_high = PCA(pca_high_n_components,whiten=True)   
372. pca_high.fit(sensors_high_trend)   
373. # In[121]:   
374. pca_high.explained_variance_ratio_   
375. # In[128]:   
376. sensors_pca=pca_high.transform(sensors_high_trend)   
377. sensors_pca   
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378. # In[122]:   
379. # create a dictionary with engine slices    
380. engines=df_train.index.unique().values # engine numbers   
381. engine_slices = dict()# key is engine number, value is a slice that g

ives numpy index for the data that pertains to an engine     
382.    
383. for i,engine_num in enumerate(engines):   
384.     row_name=df_train.loc[engine_num].iloc[-1].name   
385.     row_sl=df_train.index.get_loc(row_name) # row slice to get numpy 

index    
386.     engine_slices[engine_num]=row_sl   
387. # In[136]:   
388. # create RUL vector   
389. RUL = np.empty(len(engines))   
390.    
391. for i,engine_num in enumerate(engines):   
392.     RUL[i]=df_train.loc[engine_num]['RUL'].max()   
393.    
394. # In[137]:   
395. # fit a model to get fused sensor    
396. #Multiple Linear Regression   
397. HI_linear = LinearRegression()   
398. data_scaler = preprocessing.MinMaxScaler()   
399. preprocessing.MinMaxScaler()   
400. # In[144]:   
401. engine_num=20   
402. engine_sensors=sensors_pca[engine_slices[engine_num],:]   
403. RUL_engine = df_train.loc[engine_num]['RUL'].values   
404. # In[145]:   
405. y1_engine = engine_sensors[:,0]# sn_11   
406. #y1_engine = engine_sensors[:,0]# sn_11   
407. y2_engine = engine_sensors[:,1]   
408. y3_engine = engine_sensors[:,2]   
409. x1_engine = RUL_engine = df_train.loc[engine_num]['RUL']   
410. x2_engine = RUL_engine = df_train.loc[engine_num]['RUL'] #df_op.loc[e

ngine_num]['op_cond_1']   
411. x3_engine =  RUL_engine = df_train.loc[engine_num]['RUL']#df_op.loc[e

ngine_num]['op_cond_2']   
412. fig, axes = plt.subplots(3, 1, figsize=(19,17))   
413. plt.subplot(311)   
414. plt.plot(x1_engine,y1_engine,label='PCA_rank1')   
415. plt.title('Health Index ')   
416.    
417. plt.legend()   
418. plt.subplot(312)   
419. plt.plot(x2_engine,y2_engine,label='PCA_rank2')   
420. plt.title('Health Index ')   
421.    
422. plt.legend()   
423. plt.subplot(313)   
424. plt.plot(x3_engine,y3_engine,label='PCA_rank3')   
425. plt.legend()   
426. plt.title('Health Index ')   
427. plt.xlabel('lifetime [cycles]')   
428.    
429. plt.legend()   
430. # In[146]:   
431. op_column = ['sn_11']   
432. df_op = df_train[op_column]   
433.    
434. # In[147]:   
435. engine_num=3   
436. #engine_sensors=sensors_pca[engine_slices[engine_num],:]   
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437. RUL_engine = df_train.loc[engine_num]['RUL'].values   
438. engine_sensors_o= df_op.values[engine_slices[engine_num],:]   
439. # In[148]:   
440. plt.plot(RUL_engine,engine_sensors_o[:,0],label='x1')   
441. # In[149]:   
442. from pandas import Series   
443. from matplotlib import pyplot   
444. from statsmodels.tsa.seasonal import seasonal_decompose   
445. result = seasonal_decompose(engine_sensors_o[:,0], model='multiplicat

ive', freq=10)#   
446. trend= result.trend   
447. plt.plot(trend)   
448. pyplot.show()   
449. # In[150]:   
450.    
451. result.plot()   
452. pyplot.show()   
453.    
454. # In[151]:   
455.    
456. y1_engine = trend   
457. x1_engine =  df_train.loc[engine_num]['RUL']   
458. plt.plot(x1_engine,y1_engine,label='x1')   
459. # In[152]:   
460. x_tran= engine_sensors_o[:,0]-

np.min(engine_sensors_o[:,0])+0.000001#   
461. result = seasonal_decompose(x_tran, model='multiplicative', freq=10)#

   
462. trend= result.trend   
463. plt.plot(trend)   
464. pyplot.show()   
465. # In[153]:   
466. HI_x= np.delete(RUL_engine,np.argwhere(np.isnan(trend)))   
467. transfer_y = trend[~np.isnan(trend)]   
468. plt.plot(HI_x,transfer_y)   
469. # In[155]:   
470. df_curvefitting = pd.DataFrame()   
471. df_midfitting = pd.DataFrame()   
472. # In[156]:   
473. for engine_num in engines:   
474.     engine_sensors_o= df_op.values[engine_slices[engine_num],:]   
475.     x_tran= engine_sensors_o[:,0]-

np.min(engine_sensors_o[:,0])+0.000001   
476.     RUL_engine = df_train.loc[engine_num]['RUL'].values   
477.     result = seasonal_decompose(x_tran, model='multiplicative', freq=

10)#   
478.     trend= result.trend   
479.     HI_x= np.delete(RUL_engine,np.argwhere(np.isnan(trend)))   
480.     transfer_y = trend[~np.isnan(trend)]   
481.     HI_y= transfer_y-np.min(transfer_y)   
482.        
483.     #df_midfitting = pd.DataFrame({'RUL': HI_x, 'HI': HI_y}, columns=

['RUL', 'HI'])   
484.        
485.     df_midfitting = pd.DataFrame(data=HI_y.reshape(1,-1))   
486.     df_curvefitting=df_curvefitting.append(df_midfitting)   
487.     #plt.scatter(HI_x,HI_y,label='raw')   
488.     plt.plot(HI_x,HI_y,label='exp_fitted')   
489.     #plt.axhline(y=1.0, linestyle='-',lw=2)   
490.     plt.title('Health Index (HI)')   
491.     plt.xlabel('RUL [cycles]')   
492.     plt.ylabel('HI [-]')   



 

 

 123 

 

C.3 k-NN prognostics model (Including offline 

reference model and online prognostics model) 

1. # coding: utf-8   
2.    
3. # In[1]:   
4.    
5.    
6. # package import   
7.    
8. import pandas as pd   
9. import os   
10. import numpy as np   
11. import matplotlib.pyplot as plt   
12. import seaborn as sns   
13. import importlib   
14. from sklearn.linear_model import LinearRegression   
15. from sklearn.preprocessing import StandardScaler   
16. from sklearn.decomposition import PCA   
17. # from sklearn.feature_selection import f_regression   
18. from sklearn.linear_model import LogisticRegression   
19. from scipy.signal import savgol_filter   
20. from scipy.optimize import curve_fit   
21. from sklearn.model_selection import TimeSeriesSplit   
22. from sklearn.metrics.pairwise import euclidean_distances   
23. from statsmodels.tsa.holtwinters import ExponentialSmoothing , HoltWintersRe

sults   
24. from sklearn import preprocessing   
25.    
26. get_ipython().run_line_magic('matplotlib', 'inline')   
27.    
28. # In[2]:   
29.    
30. ## data import    
31. dirname = os.getcwd()   
32. data_pth_train = os.path.join(dirname, 'training','train_FD001.txt')   
33. data_pth_rul = os.path.join(dirname, 'rul','RUL_FD001.txt')   
34. # column names for the dataset   
35. # op_cond refers to operational condition, sn: sensor   
36. col_name = ['engine', 'time/cycle', 'op_cond_1', 'op_cond_2', 'op_cond_3']   
37. col_name = col_name + ['sn_{}'.format(s + 1) for s in range(21)]   
38. df_train = pd.read_csv(data_pth_train, header=None, names=col_name,delim_whi

tespace=True,index_col=0)   
39.    
40. # In[3]:   
41.    
42. variable_remove=[ col for col in df_train.columns if (df_train[col].std() <=

 .0001)  ]   
43.    
44. print('columns to be removed from analysis since they do not change with tim

e \n',variable_remove)   
45.    
46. # In[4]:   
47.    
48. df_train.drop(columns=variable_remove,axis=1,inplace=True)   
49.    
50. op_column = ['sn_11']   
51. df_op = df_train[op_column]   
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52.    
53. # In[5]:   
54.    
55. for id in df_train.index.unique():   
56.     df_train.loc[id,'RUL'] = df_train.loc[id]['time/cycle'].apply(lambda x: 

x-df_train.loc[id]['time/cycle'].min())   
57. # positive RUL for each engine   
58.    
59. # In[6]:   
60.    
61. # get all sensors   
62. raw_columns = df_train.columns.values[1:-1]   
63. raw_sensors = df_train[raw_columns].values # as numpy array   
64.    
65. # In[7]:   
66.    
67. # create a dictionary with engine slices    
68. engines=df_train.index.unique().values # engine numbers   
69. engine_slices = dict()# key is engine number, value is a slice that gives nu

mpy index for the data that pertains to an engine     
70.    
71. for i,engine_num in enumerate(engines):   
72.     row_name=df_train.loc[engine_num].iloc[-1].name   
73.     row_sl=df_train.index.get_loc(row_name) # row slice to get numpy index  

  
74.     engine_slices[engine_num]=row_sl   
75. # In[8]:   
76. RUL = np.empty(len(engines))   
77. for i,engine_num in enumerate(engines):   
78.     RUL[i]=df_train.loc[engine_num]['RUL'].max()   
79. # In[9]:   
80. engine_num=1   
81. #engine_sensors=sensors_pca[engine_slices[engine_num],:]   
82. RUL_engine = df_train.loc[engine_num]['RUL'].values   
83. engine_sensors_o= df_op.values[engine_slices[engine_num],:]   
84. # In[10]:   
85. plt.plot(RUL_engine,engine_sensors_o[:,0],label='x1')   
86. # In[11]:   
87. from pandas import Series   
88. from matplotlib import pyplot   
89. from statsmodels.tsa.seasonal import seasonal_decompose   
90. result = seasonal_decompose(engine_sensors_o[:,0], model='multiplicative', f

req=10)#   
91. trend= result.trend   
92. plt.plot(trend)   
93. pyplot.show()   
94. # In[12]:   
95.    
96. x_tran= engine_sensors_o[:,0]-np.min(engine_sensors_o[:,0])+0.000001#   
97. result = seasonal_decompose(x_tran, model='multiplicative', freq=10)#   
98. trend= result.trend   
99. plt.plot(trend)   
100. pyplot.show()   
101. # In[13]:   
102. HI_x= np.delete(RUL_engine,np.argwhere(np.isnan(trend)))   
103. transfer_y = trend[~np.isnan(trend)]   
104. #transfer_y= np.nan_to_num(trend)   
105. #HI_linear.fit(HI_x,HI_y)   
106. #print('Coefficients: \n', HI_linear.coef_)   
107. plt.plot(HI_x,transfer_y)   
108.    
109. # In[14]:   
110.    
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111. df_curvefitting = pd.DataFrame()   
112. df_midfitting = pd.DataFrame()   
113. for engine_num in engines:   
114.     engine_sensors_o= df_op.values[engine_slices[engine_num],:]   
115.     x_tran= engine_sensors_o[:,0]-

np.min(engine_sensors_o[:,0])+0.000001   
116.     RUL_engine = df_train.loc[engine_num]['RUL'].values   
117.     result = seasonal_decompose(x_tran, model='multiplicative', freq=

10)#   
118.     trend= result.trend   
119.     HI_x= np.delete(RUL_engine,np.argwhere(np.isnan(trend)))   
120.     transfer_y = trend[~np.isnan(trend)]   
121.     HI_y= transfer_y-np.min(transfer_y)   
122.        
123.     #df_midfitting = pd.DataFrame({'RUL': HI_x, 'HI': HI_y}, columns=

['RUL', 'HI'])   
124.        
125.     df_midfitting = pd.DataFrame(data=HI_y.reshape(1,-1))   
126.     df_curvefitting=df_curvefitting.append(df_midfitting)   
127.    
128. # In[15]:   
129.    
130. df_curvefitting=df_curvefitting.reset_index()   
131. df_curvefitting.drop(['index'],axis=1,inplace=True)#   
132. #df_curvefitting.interpolate(method='nearest', limit_direction='forwa

rd')   
133.    
134. # In[16]:   
135.    
136. df_curvefitting=df_curvefitting.interpolate(axis=1)   
137.    
138. # In[17]:   
139.    
140. pd.set_option('max_rows', 9,'max_columns',9)   
141.    
142. # In[18]:   
143.    
144. df_curvefitting   
145.    
146. # In[19]:   
147.    
148. df_curvefitting['RUL'] = RUL.reshape(-1,1)   
149.    
150. # In[20]:   
151. data_pth_test = os.path.join(dirname, 'test','test_FD001.txt')   
152. data_pth_rul = os.path.join(dirname, 'rul','RUL_FD001.txt')   
153. # column names for the dataset   
154. # op_cond refers to operational condition, sn: sensor   
155. col_name = ['engine', 'time/cycle', 'op_cond_1', 'op_cond_2', 'op_con

d_3']   
156. col_name = col_name + ['sn_{}'.format(s + 1) for s in range(21)]   
157. df_test = pd.read_csv(data_pth_test, header=None, names=col_name,deli

m_whitespace=True,index_col=0)   
158.    
159. # In[21]:   
160.    
161. df_op_t = df_test[op_column]   
162. df_RUL_TRUE= pd.read_csv(data_pth_rul,header=None)   
163. df_RUL_TRUE.columns= ['RUL']   
164.    
165. # In[22]:   
166.    
167. for id_t in df_test.index.unique():   
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168.     df_test.loc[id_t,'RUL'] = df_test.loc[id_t]['time/cycle'].apply(l
ambda x: x-df_test.loc[id_t]['time/cycle'].min())   

169.    
170. # In[23]:   
171.    
172. engines_t=df_test.index.unique().values # engine numbers   
173. engine_slices_t = dict()# key is engine number, value is a slice that

 gives numpy index for the data that pertains to an engine     
174. for i_t,engine_num_t in enumerate(engines_t):   
175.     row_name_t=df_test.loc[engine_num_t].iloc[-1].name   
176.     row_sl_t=df_test.index.get_loc(row_name_t) # row slice to get num

py index    
177.     engine_slices_t[engine_num_t]=row_sl_t   
178.    
179. # In[24]:   
180.    
181. RUL_t = np.empty(len(engines_t))   
182. for i_t,engine_num_t in enumerate(engines_t):   
183.     RUL_t[i_t]=df_test.loc[engine_num_t]['RUL'].max()   
184.    
185. # In[25]:   
186.    
187. engines_t=df_test.index.unique().values # engine numbers   
188. engine_slices_t = dict()   
189. for i_t,engine_num_t in enumerate(engines_t):   
190.     row_name_t=df_test.loc[engine_num_t].iloc[-1].name   
191.     row_sl_t=df_test.index.get_loc(row_name_t) # row slice to get num

py index    
192.     engine_slices_t[engine_num_t]=row_sl_t   
193.    
194. # In[105]:   
195.    
196. engine_num_t=20   
197. RUL_engine_t = df_test.loc[engine_num_t]['RUL'].values   
198. engine_sensors_t= df_op_t.values[engine_slices_t[engine_num_t],:]   
199.    
200. # In[106]:   
201.    
202. y1_engine_t = engine_sensors_t# sn_11   
203. x1_engine_t =  df_test.loc[engine_num_t]['RUL']   
204. #df_op.loc[engine_num]['op_cond_2']   
205. #plt.subplots(figsize=(19,10))   
206.    
207. plt.plot(x1_engine_t[0:150],y1_engine_t[0:150],label='x1')   
208.    
209.    
210. plt.xlabel('lifetime [cycles]')   
211. plt.ylabel('Signal value')   
212. plt.show();   
213.    
214. # In[107]:   
215.    
216. result_t = seasonal_decompose(engine_sensors_t[:,0], model='multiplic

ative', freq=10)#   
217. trend_t= result_t.trend   
218. plt.plot(trend_t)   
219. pyplot.show()   
220.    
221. # In[108]:   
222.    
223. HI_x_t= np.delete(RUL_engine_t,np.argwhere(np.isnan(trend_t)))   
224. transfer_y_t = trend_t[~np.isnan(trend_t)]   
225. HI_y_t= transfer_y_t-np.min(transfer_y_t)   
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226. #transfer_y= np.nan_to_num(trend)   
227. #HI_linear.fit(HI_x,HI_y)   
228. #print('Coefficients: \n', HI_linear.coef_)   
229. plt.plot(HI_x_t,HI_y_t)   
230.    
231. # In[109]:   
232.    
233. pd.DataFrame(data=HI_y_t)   
234.    
235. # In[110]:   
236.    
237. from sklearn.neighbors import KNeighborsRegressor   
238. from sklearn.neighbors import KNeighborsClassifier   
239. from sklearn.model_selection import train_test_split   
240. #import required packages   
241. from sklearn import neighbors   
242. from sklearn.metrics import mean_squared_error    
243. from math import sqrt   
244. import matplotlib.pyplot as plt   
245. get_ipython().run_line_magic('matplotlib', 'inline')   
246. train , test = train_test_split(df_curvefitting, test_size = 0.3)   
247. x_train = train.drop('RUL', axis=1)   
248. y_train = train['RUL']   
249.    
250. x_test = test.drop('RUL', axis = 1)   
251. y_test = test['RUL']   
252. np.random.seed()   
253. train , test = train_test_split(df_curvefitting, test_size = 0.3)   
254.    
255. # In[111]:   
256.    
257. model = neighbors.KNeighborsRegressor(n_neighbors = 3, weights='dista

nce',p=2)   
258. model.fit(x_train, y_train)  #fit the model   
259. pred=model.predict(x_test) #make prediction on test set   
260. error = sqrt(mean_squared_error(y_test,pred)) #calculate rmse   
261.    
262. # In[112]:   
263.    
264. plt.plot(y_test.values,label='True value')   
265. plt.plot(pred,label='estimation')   
266. plt.xlabel('unit', fontsize = 15)   
267. plt.ylabel('Lifetime', fontsize = 15)   
268. plt.legend()   
269. plt.show()   
270.    
271. # In[113]:   
272.    
273. fig, ax = plt.subplots()   
274. ax.scatter(pred,y_test.values, edgecolors=(0, 0, 0))   
275. ax.plot([y_test.min(),y_test.max()], [y_test.min(), y_test.max()], 'k

--', lw = 2)   
276. ax.set_xlabel('Predicted RUL', fontsize = 18)   
277. ax.set_ylabel('Actual RUL', fontsize = 18)   
278. ax.tick_params(axis='both', which='major', labelsize = 14)   
279. ax.set_title( 'Predicted Lifetime vs Actual Lifetime', fontsize = 20)

   
280. plt.show()   
281.    
282. # In[114]:   
283.    
284. print(np.mean(y_test-pred))   
285. print(np.std(y_test-pred))   
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286.    
287. # In[115]:   
288.    
289. from scipy.stats import norm   
290. sns.distplot(y_test-pred,fit=norm,kde=False)   
291. plt.title('The distribution of errors')   
292.    
293. # In[116]:   
294.    
295. timelimit=150   
296.    
297. # In[117]:   
298.    
299. neigh = neighbors.KNeighborsRegressor(n_neighbors = 3,weights='distan

ce',algorithm='auto')   
300. #neigh.fit(df_curvefitting.iloc[:,0:len(HI_y_t)],np.ravel(RUL))   
301.    
302. neigh.fit(df_curvefitting.iloc[:,0:timelimit],np.ravel(RUL).reshape(-

1,1))   
303. pred_t=neigh.predict(HI_y_t.reshape(1,-1)[:,0:timelimit])   
304. print(pred_t)   
305.    
306. # In[118]:   
307.    
308. lifetime=[]   
309. for t in range (1,timelimit):   
310.     neigh.fit(df_curvefitting.iloc[:,0:t],np.ravel(RUL).reshape(-

1,1))   
311.     pred_t=neigh.predict(HI_y_t.reshape(1,-1)[:,0:t])   
312.     lifetime.append(pred_t.item())   
313. lifetime_new = np.array(lifetime)[-51:-1]   
314.    
315. # In[119]:   
316.    
317. lifetime_new   
318.    
319. # In[120]:   
320.    
321. pred_t.item()   
322.    
323. # In[121]:   
324.    
325. #pred_t=neigh.predict(HI_y_t.reshape(1,-1))   
326.    
327. # In[122]:   
328.    
329.    
330. from scipy.stats import norm   
331. sns.distplot(lifetime_new, kde=True,    
332.              bins=int(6), color = 'blue',    
333.              hist_kws={'edgecolor':'black'},   
334.              )#kde_kws={'linewidth': 2}   
335.    
336.    
337. # In[123]:   
338.    
339. pred_t   
340.    
341. # In[124]:   
342.    
343. print(np.array(lifetime_new).mean())   
344. print(np.array(lifetime_new).std())   
345.    
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346. # In[125]:   
347.    
348. np.array(lifetime_new).mean()-len(HI_y_t)   
349.    
350. # In[126]:   
351.    
352. np.array(lifetime_new).mean()   
353.    
354. # In[127]:   
355.    
356. HI_vector = []   
357. #Initial_vector = []   
358. for engine_num in engines:#   
359.     engine_sensors_o= df_op.values[engine_slices[engine_num],:]   
360.     x_tran= engine_sensors_o[:,0]-

np.min(engine_sensors_o[:,0])+0.000001#   
361.     RUL_engine = df_train.loc[engine_num]['RUL'].values   
362.     result = seasonal_decompose(x_tran, model='multiplicative', freq=

10)#   
363.     trend= result.trend   
364.     HI_x= np.delete(RUL_engine,np.argwhere(np.isnan(trend)))   
365.     transfer_y = trend[~np.isnan(trend)]   
366.     HI_y= transfer_y-np.min(transfer_y)   
367.     HI_vector.append(np.max(HI_y))   
368.     #Initial_vector.append(HI_y[0])   
369.     #plt.scatter(HI_x,HI_y,label='raw'   
370.    
371. #plt.axhline(0.15, color='r', linestyle='-')   
372.    
373. plt.show()   
374.    
375. # In[128]:   
376.    
377. final_pd=pd.DataFrame(data=HI_vector)   
378. final_pd[1]=np.array(RUL).reshape(-1,1)   
379.    
380. # In[129]:   
381.    
382. from scipy import spatial   
383. HIpoint=[]   
384.    
385. A=np.array(final_pd[1]).reshape(-1, 1)   
386. for t in range (1,51):   
387.     neigh.fit(df_curvefitting.iloc[:,0:t],np.ravel(RUL).reshape(-

1,1))   
388.     pred_t=neigh.predict(HI_y_t.reshape(1,-1)[:,0:t])   
389.     pt=[pred_t.item()]   
390.     A[spatial.KDTree(A).query(pt)[1]]   
391.     distance,index = spatial.KDTree(A).query(pt)   
392.     HIpoint.append(final_pd.iloc[index][0])   
393.        
394.    
395. # In[130]:   
396.    
397. for engine_num in engines:   
398.     engine_sensors_o= df_op.values[engine_slices[engine_num],:]   
399.     x_tran= engine_sensors_o[:,0]-

np.min(engine_sensors_o[:,0])+0.000001   
400.     RUL_engine = df_train.loc[engine_num]['RUL'].values   
401.     result = seasonal_decompose(x_tran, model='multiplicative', freq=

10)#   
402.     trend= result.trend   
403.     HI_x= np.delete(RUL_engine,np.argwhere(np.isnan(trend)))   
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404.     transfer_y = trend[~np.isnan(trend)]   
405.     HI_y= transfer_y-np.min(transfer_y)       
406.     plt.scatter(HI_x,HI_y,s=1,c='lightblue')   
407.     #plt.plot(HI_x,HI_y,label='exp_fitted')   
408.     #plt.axhline(y=1.0, linestyle='-',lw=2)   
409.     #plt.title('Health Index (HI)')   
410.     #plt.xlabel('RUL [cycles]')   
411.     #plt.ylabel('HI [-]')   
412.    
413. plt.plot(HI_x_t[0:timelimit],HI_y_t[0:timelimit],c='r')   
414. plt.plot(lifetime_new,HIpoint,'*',c='b')   
415. #plt.plot(lifetime)   
416. plt.show()   
417.    
418. # with open("C:\\Users\\wjh62\\Desktop\\data.txt","w") as f:   
419. #         np.savetxt(f,final_pd, delimiter=",")   
420.    
421. # with open("C:\\Users\\wjh62\\Desktop\\data.txt","w") as d:   
422. #         np.savetxt(d,lifetime, delimiter=",")   
423.    
424. # In[52]:   
425.    
426. pd_prediction = []   
427. pd_prediction_mid=[]   
428.    
429. for engine_num_t in engines_t:   
430.     engine_sensors_t= df_op.values[engine_slices_t[engine_num_t],:]   
431.     x_tran_t= engine_sensors_t[:,0]-

np.min(engine_sensors_t[:,0])+0.000001   
432.     result_t = seasonal_decompose(x_tran_t, model='multiplicative', f

req=10)#   
433.     trend_t= result_t.trend   
434.     RUL_engine_t= df_test.loc[engine_num_t]['RUL'].values   
435.     HI_x_t= np.delete(RUL_engine_t,np.argwhere(np.isnan(trend_t)))   
436.     transfer_y_t = trend_t[~np.isnan(trend_t)]   
437.     HI_y_t= transfer_y_t-np.min(transfer_y_t)   
438.     neigh.fit(df_curvefitting.iloc[:,0:len(HI_y_t)],np.ravel(RUL))   
439.     pred_t=np.int(neigh.predict(HI_y_t.reshape(1,-1)))   
440.     #pd_prediction_mid = pd.DataFrame(nt(pred_t))   
441.     pd_prediction.append(int(pred_t))   
442.     pd_prediction_mid.append(pred_t-len(HI_y_t))#   
443.    
444.    
445. # In[53]:   
446.    
447. plt.plot(df_RUL_TRUE, color = 'red', label = 'Real data')   
448. plt.plot(pd_prediction_mid, color = 'blue', label = 'Predicted data')

#*400   
449. plt.title('Prediction')   
450. plt.legend()   
451. plt.show()   
452.    
453. # In[54]:   
454.    
455.    
456. neigh = neighbors.KNeighborsRegressor(n_neighbors = 3,weights='distan

ce',algorithm='auto')   
457.    
458. # In[55]:   
459.    
460. sns.distplot((pd_prediction_mid-

df_RUL_TRUE['RUL']), fit=norm, kde=False)   
461.    
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462. # In[56]:   
463.    
464. fig, ax = plt.subplots()   
465. ax.scatter(pd_prediction_mid,df_RUL_TRUE, edgecolors=(0, 0, 0))   
466. ax.plot([df_RUL_TRUE.min(),df_RUL_TRUE.max()], [df_RUL_TRUE.min(), df

_RUL_TRUE.max()], 'k--', lw = 2)   
467. ax.set_xlabel('Predicted RUL', fontsize = 18)   
468. ax.set_ylabel('Actual RUL', fontsize = 18)   
469. ax.tick_params(axis='both', which='major', labelsize = 14)   
470. ax.set_title( 'Predicted RUL vs Actual RUL', fontsize = 20)   
471. plt.show()   
472.    
473. # In[57]:   
474.    
475. from sklearn.metrics import r2_score, mean_squared_error   
476. rmse_test = np.sqrt(mean_squared_error(pd_prediction_mid,df_RUL_TRUE)

)   
477. r2_test = r2_score(pd_prediction_mid,df_RUL_TRUE)   
478. print("The model performance for the test set")   
479. print("-------------------------------------------")   
480. print("RMSE of test set is {}".format(rmse_test))   
481. print("R2 score of test set is {}".format(r2_test))   

C.4 Neural network model (Including offline 

reference model and online prognostics model) 

1. # coding: utf-8   
2.    
3. # In[1]:   
4.    
5.    
6. # package import   
7.    
8. import pandas as pd   
9. import os   
10. import numpy as np   
11. import matplotlib.pyplot as plt   
12. import seaborn as sns   
13.    
14. import importlib   
15. from sklearn.linear_model import LinearRegression   
16. from sklearn.preprocessing import StandardScaler   
17. from sklearn.decomposition import PCA   
18. # from sklearn.feature_selection import f_regression   
19. from sklearn.linear_model import LogisticRegression   
20. from scipy.signal import savgol_filter   
21. from scipy.optimize import curve_fit   
22. from sklearn.model_selection import TimeSeriesSplit   
23. from sklearn.metrics.pairwise import euclidean_distances   
24. from statsmodels.tsa.holtwinters import ExponentialSmoothing , HoltWintersRe

sults   
25. from sklearn import preprocessing   
26.    
27. get_ipython().run_line_magic('matplotlib', 'inline')   
28.    
29.    
30. # In[2]:   
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31.    
32. dirname = os.getcwd()   
33. data_pth_train = os.path.join(dirname, 'training','train_FD001.txt')   
34. # column names for the dataset   
35. # op_cond refers to operational condition, sn: sensor   
36. col_name = ['engine', 'time/cycle', 'op_cond_1', 'op_cond_2', 'op_cond_3']   
37. col_name = col_name + ['sn_{}'.format(s + 1) for s in range(21)]   
38. df_train = pd.read_csv(data_pth_train, header=None, names=col_name,delim_whi

tespace=True,index_col=0)   
39.    
40. # In[3]:   
41.    
42. data_pth_test = os.path.join(dirname, 'test','test_FD001.txt')   
43. data_pth_rul = os.path.join(dirname, 'rul','RUL_FD001.txt')   
44. col_name = ['engine', 'time/cycle', 'op_cond_1', 'op_cond_2', 'op_cond_3']   
45. col_name = col_name + ['sn_{}'.format(s + 1) for s in range(21)]   
46. df_test = pd.read_csv(data_pth_test, header=None, names=col_name,delim_white

space=True,index_col=0)   
47. TrueRUL= pd.read_csv(data_pth_rul, sep = "\n", header = None)   
48.    
49. # In[4]:   
50.    
51. variable_remove=[ col for col in df_train.columns if (df_train[col].std() <=

 .0001*df_train[col].mean()) & (df_train[col].nunique() <=4)   ]   
52.    
53. print('columns to be removed from analysis since they do not change with tim

e \n',variable_remove)   
54.    
55. # In[5]:   
56.    
57. df_train.drop(columns=variable_remove,axis=1,inplace=True)   
58.    
59. # In[6]:   
60.    
61. df_test.drop(columns=variable_remove,axis=1,inplace=True)   
62.    
63. # In[7]:   
64.    
65. df_test.drop(['op_cond_1','op_cond_2','sn_9','sn_14'],axis=1,inplace=True)   
66.    
67. #df_test.drop(['op_cond_1','op_cond_2'],axis=1,inplace=True)   
68. df_test.shape   
69.    
70. # In[8]:   
71.    
72. df_train.drop(['op_cond_1','op_cond_2','sn_9','sn_14'],axis=1,inplace=True) 

  
73. #df_train.drop(['op_cond_1','op_cond_2'],axis=1,inplace=True)   
74. df_train.shape   
75.    
76. # In[9]:   
77.    
78. for id in df_train.index.unique():   
79.     df_train.loc[id,'RUL'] = df_train.loc[id]['time/cycle'].apply(lambda x: 

df_train.loc[id]['time/cycle'].max()-x)   
80. # positive RUL for each engine   
81.    
82. for id_t in df_test.index.unique():   
83.     df_test.loc[id_t,'RUL'] = df_test.loc[id_t]['time/cycle'].apply(lambda x

: x-df_test.loc[id_t]['time/cycle'].min()+1)   
84.    
85. # In[10]:   
86.    
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87. # get all sensors   
88. raw_columns = df_train.columns.values[1:-1]   
89. raw_sensors = df_train[raw_columns].values # as numpy array   
90. raw_columns   
91.    
92. raw_columns_t = df_test.columns.values[1:-1]   
93. raw_sensors_t = df_test[raw_columns_t].values # as numpy array   
94. raw_columns_t   
95.    
96. # In[11]:   
97.    
98. engines=df_train.index.unique().values # engine numbers   
99. engine_slices = dict()# key is engine number, value is a slice that gives nu

mpy index for the data that pertains to an engine     
100.    
101. for i,engine_num in enumerate(engines):   
102.     row_name=df_train.loc[engine_num].iloc[-1].name   
103.     row_sl=df_train.index.get_loc(row_name) # row slice to get numpy 

index    
104.     engine_slices[engine_num]=row_sl   
105.    
106.        
107. engines_t=df_test.index.unique().values # engine numbers   
108. engine_slices_t = dict()# key is engine number, value is a slice that

 gives numpy index for the data that pertains to an engine     
109.    
110. for i_t,engine_num_t in enumerate(engines_t):   
111.     row_name_t=df_test.loc[engine_num_t].iloc[-1].name   
112.     row_sl_t=df_test.index.get_loc(row_name_t) # row slice to get num

py index    
113.     engine_slices_t[engine_num_t]=row_sl_t   
114.    
115. # In[12]:   
116.    
117. # create RUL vector   
118. RUL = np.empty(len(engines))   
119.    
120. for i,engine_num in enumerate(engines):   
121.     RUL[i]=df_train.loc[engine_num]['RUL'].max()   
122.        
123.        
124. RUL_t = np.empty(len(engines_t))   
125.    
126. for i_t,engine_num_t in enumerate(engines_t):   
127.     RUL_t[i_t]=df_test.loc[engine_num_t]['RUL'].max()       
128.    
129. # In[13]:   
130.    
131.    
132. # normalization   
133. engine_sensors=(raw_sensors-

raw_sensors.min(axis=0))/(raw_sensors.max(axis=0)-   
134.                                                       raw_sensors.min

(axis=0))   
135.    
136.    
137. # In[14]:   
138.    
139. cycle_RUL= (df_train['RUL'].values)   
140. cycle_RUL_t= (df_test['RUL'].values)   
141.    
142. # In[15]:   
143.    
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144. x_train= engine_sensors   
145. y_train = cycle_RUL.reshape(-1,1)   
146.    
147. # In[164]:   
148.    
149. from keras.layers import Dense, Dropout, LSTM, Activation   
150. from keras.models import Sequential   
151. from tensorflow.keras import layers   
152. from tensorflow.keras import activations   
153.    
154. # Initialising the ANN   
155. ann = Sequential()   
156.    
157. # Adding the input layer and the first hidden layer   
158. ann.add(Dense(14, activation=activations.sigmoid, input_dim = 12))   
159. #ann.add(Dropout(0.3))   
160. #ann.add(LSTM(input_shape=(100, 12),units=100,return_sequences=True))

   
161. # Adding the second hidden layer   
162. ann.add(Dense(units = 400, activation=activations.softplus)) #softsig

n   
163. #ann.add(Dropout(0.3))   
164. # Adding the third hidden layer   
165. ann.add(Dense(units = 128, activation=activations. sigmoid )) #   
166. # Adding the third hidden layer   
167. # Adding the output layer   
168.    
169. ann.add(Dense(units = 1))   
170.    
171. #model.add(Dense(1))   
172.    
173.    
174. # In[165]:   
175.    
176. ann.summary()   
177.    
178. # In[166]:   
179.    
180. import keras   
181.    
182. # In[167]:   
183.    
184. # Compiling the ANN   
185. ann.compile(optimizer = keras.optimizers.Adam(learning_rate=0.0015), 

loss = 'mean_squared_error', metrics=['mae'])#adamax   
186.    
187. history=ann.fit(x_train, y_train,validation_split=0.3, epochs=100   
188.                 ,verbose=2 )#batch_size = 1,   
189.    
190. #compling the Artificial neural network   
191. #classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy',

 metrics = ['accuracy'])   
192.    
193. #fitting the training setvalidation_split=0.17,   
194. #classifier.fit(x_train, y_train, batch_size = 10, nb_epoch = 100)   
195.    
196. # In[168]:   
197.    
198. #plt.axis([0, 100, 0, 0.1])   
199. plt.plot(history.history['loss'])   
200. plt.plot(history.history['val_loss'])   
201. plt.title('model loss')   
202. plt.ylabel('loss')   
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203. plt.xlabel('Number of Epoch')   
204. plt.legend(['Training', 'Validation'], loc='upper right')   
205.    
206. plt.show()   
207.    
208. # In[169]:   
209.    
210. get_ipython().system('pip3 install ann_visualizer')   
211. get_ipython().system('pip install graphviz')   
212. from ann_visualizer.visualize import ann_viz   
213. from graphviz import Source   
214.    
215. ann_viz(ann, view=True, title="Neural network plot")   
216. Source.from_file('network.gv')   
217.    
218. # In[170]:   
219.    
220.    
221. #normalization   
222. engine_sensors_t=(raw_sensors_t-

raw_sensors_t.min(axis=0))/(raw_sensors_t.max(axis=0)-   
223.                                                       raw_sensors_t.m

in(axis=0))   
224.    
225.    
226. # In[171]:   
227.    
228. engine_num_t = 31   
229.    
230. x_predict_31=engine_sensors_t[engine_slices_t[engine_num_t],:]   
231.    
232. # In[172]:   
233.    
234. x_predict_31   
235.    
236. # In[173]:   
237.    
238. prediction_ann = ann.predict(x_predict_31)   
239.    
240. # In[174]:   
241.    
242. prediction_ann   
243.    
244. # In[175]:   
245.    
246. plt.plot(prediction_ann)   
247.    
248. # In[176]:   
249.    
250. df_e=pd.DataFrame(data=df_test.index.values,columns=['machine'])   
251. df_r=pd.DataFrame(data= engine_sensors_t)   
252. predict_sensor=df_r.join(df_e)   
253. predict_sensor=predict_sensor.set_index(['machine'])   
254.    
255. # In[177]:   
256.    
257. df_pre = pd.DataFrame()   
258. for j in engines_t:   
259.     df_mid = predict_sensor.loc[j].iloc[-1:]   
260.     df_pre = df_pre.append(df_mid)   
261.     #return df_mid   
262.    
263. # In[178]:   
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264.    
265. Truepre_t=ann.predict(df_pre)   
266.    
267. # In[179]:   
268.    
269. plt.plot(TrueRUL, color = 'red', label = 'Real data')   
270. plt.plot(Truepre_t, color = 'blue', label = 'Predicted data')#*400   
271. plt.title('Prediction')   
272. plt.legend()   
273. plt.show()   
274.    
275. # In[185]:   
276.    
277. fig, ax = plt.subplots()   
278. ax.scatter(TrueRUL,Truepre_t, edgecolors=(0, 0, 0))   
279. ax.plot([TrueRUL.min(), TrueRUL.max()], [TrueRUL.min(), TrueRUL.max()

], 'k--', lw = 2)   
280. ax.set_xlabel('Predicted RUL', fontsize = 18)   
281. ax.set_ylabel('Actual RUL', fontsize = 18)   
282. ax.tick_params(axis='both', which='major', labelsize = 14)   
283. ax.set_title( 'Neural Network Predicted RUL vs Actual RUL', fontsize 

= 20)   
284. plt.show()   
285.    
286. # In[181]:   
287.    
288. error = TrueRUL-Truepre_t   
289. ax=sns.distplot(error,bins=8)   
290.    
291. # In[182]:   
292.    
293. from sklearn.metrics import r2_score, mean_squared_error   
294.    
295. from sklearn.model_selection import train_test_split   
296.    
297. rmse_test = np.sqrt(mean_squared_error(TrueRUL, Truepre_t))   
298. r2_test = r2_score(TrueRUL, Truepre_t)   
299.    
300.      
301. print("The model performance for the test set")   
302. print("-------------------------------------------")   
303. print("RMSE of test set is {}".format(rmse_test))   
304. print("R2 score of test set is {}".format(r2_test))   
305.    
306. # In[183]:   
307.    
308. def score(estimated_RUL,true_RUL):   
309.        
310.     error = np.array(estimated_RUL)-np.array(true_RUL)   
311.     error = np.array(error)   
312.     S1 = np.heaviside(error,0)* (np.exp(error/10)-

1) # postive errors   
313.     S2 = np.heaviside(-1*error,0)* (np.exp(-1*error/13)-

1) # negative errors   
314.     S = S1 + S2    
315.    
316.     return S.mean()   
317.    
318. # In[184]:   
319.    
320. score(Truepre_t,TrueRUL)   
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C.5 GBM algorithm model (Including offline 

reference model and online prognostics model) 

1. # coding: utf-8   
2.    
3. # In[4]:   
4.    
5.    
6. # package import   
7.    
8. import pandas as pd   
9. import os   
10. import numpy as np   
11. import matplotlib.pyplot as plt   
12. import seaborn as sns   
13.    
14. import importlib   
15. from sklearn.linear_model import LinearRegression   
16. from sklearn.preprocessing import StandardScaler   
17. from sklearn.decomposition import PCA   
18. # from sklearn.feature_selection import f_regression   
19. from sklearn.linear_model import LogisticRegression   
20. from scipy.signal import savgol_filter   
21. from scipy.optimize import curve_fit   
22. from sklearn.model_selection import TimeSeriesSplit   
23. from sklearn.metrics.pairwise import euclidean_distances   
24. from statsmodels.tsa.holtwinters import ExponentialSmoothing , HoltWintersRe

sults   
25. from sklearn import preprocessing   
26.    
27. get_ipython().run_line_magic('matplotlib', 'inline')   
28.    
29.    
30. # import math   
31. # x = np.arange(1,200)   
32. # def y(t):   
33. #     y= 0.27796*np.exp(0.01601*t-1.83488)   
34. #     return y   
35. # plt.plot(x,y(x))   
36. # plt.axhline(0.15, color='r', linestyle='--',xmin=0.4, xmax=0.6)   
37. # plt.axvline(123, color='r', linestyle='--',ymin=0.13, ymax=0.3)   
38.    
39. # In[114]:   
40.    
41.    
42. dirname = os.getcwd()   
43. data_pth_test = os.path.join(dirname, 'test','test_FD001.txt')   
44. data_pth_rul = os.path.join(dirname, 'rul','RUL_FD001.txt')   
45. # column names for the dataset   
46. # op_cond refers to operational condition, sn: sensor   
47. col_name = ['engine', 'time/cycle', 'op_cond_1', 'op_cond_2', 'op_cond_3']   
48. col_name = col_name + ['sn_{}'.format(s + 1) for s in range(21)]   
49. df_test = pd.read_csv(data_pth_test, header=None, names=col_name,delim_white

space=True,index_col=0)   
50. TrueRUL= pd.read_csv(data_pth_rul, sep = "\n", header = None)   
51.    
52.    
53. # In[115]:   



 

 

 138 

 

54.    
55.    
56. TrueRUL.columns= ['RUL']   
57. TrueRUL.head()   
58.    
59.    
60. # In[6]:   
61.    
62.    
63. op_column = ['sn_11']   
64.    
65. df_op_t = df_test[op_column]   
66.    
67.    
68. # In[7]:   
69.    
70.    
71. for id_t in df_test.index.unique():   
72.     df_test.loc[id_t,'RUL'] = df_test.loc[id_t]['time/cycle'].apply(lambda x

: x-df_test.loc[id_t]['time/cycle'].min())   
73.    
74.    
75. # In[8]:   
76.    
77.    
78. engines_t=df_test.index.unique().values # engine numbers   
79. engine_slices_t = dict()   
80. for i_t,engine_num_t in enumerate(engines_t):   
81.     row_name_t=df_test.loc[engine_num_t].iloc[-1].name   
82.     row_sl_t=df_test.index.get_loc(row_name_t) # row slice to get numpy inde

x    
83.     engine_slices_t[engine_num_t]=row_sl_t   
84.    
85.    
86. # In[9]:   
87.    
88.    
89. df_mid = pd.DataFrame()   
90. df_final = pd.DataFrame()   
91.    
92.    
93. # In[10]:   
94.    
95.    
96. from statsmodels.tsa.seasonal import seasonal_decompose   
97. from matplotlib import pyplot   
98. engine_num_t=82   
99. RUL_engine_t = df_test.loc[engine_num_t]['RUL'].values   
100. engine_sensors_t= df_op_t.values[engine_slices_t[engine_num_t],:]   
101.    
102.    
103. # In[11]:   
104.    
105.    
106. y1_engine_t = engine_sensors_t# sn_11   
107.    
108. x1_engine_t =  df_test.loc[engine_num_t]['RUL']   
109. #df_op.loc[engine_num]['op_cond_2']   
110. #plt.subplots(figsize=(19,10))   
111.    
112. plt.plot(x1_engine_t[0:150],y1_engine_t[0:150],label='x1')   
113.    
114.    
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115. plt.xlabel('lifetime [cycles]')   
116. plt.ylabel('Signal value')   
117. plt.show();   
118.    
119.    
120. # In[12]:   
121.    
122.    
123. result_t = seasonal_decompose(engine_sensors_t, model='multiplicative

', freq=10)#   
124. trend_t= result_t.trend   
125. plt.plot(trend_t)   
126. pyplot.show()   
127.    
128.    
129. # In[13]:   
130.    
131.    
132. HI_x_t= np.delete(RUL_engine_t,np.argwhere(np.isnan(trend_t)))   
133. transfer_y_t = trend_t[~np.isnan(trend_t)]   
134. HI_y_t= transfer_y_t-np.min(transfer_y_t)   
135. #transfer_y= np.nan_to_num(trend)   
136. #HI_linear.fit(HI_x,HI_y)   
137. plt.plot(HI_x_t,HI_y_t)   
138.    
139.    
140. # In[14]:   
141.    
142.    
143. df_mid = pd.DataFrame(data=HI_y_t.reshape(1,-1))   
144. df_final=df_final.append(df_mid)   
145.    
146.    
147. # In[15]:   
148.    
149.    
150. HI_y_t[49]   
151.    
152.    
153. # In[16]:   
154.    
155.    
156.    
157. def GBM(Y0, M,mu,sigma):   
158.     dt = 1   
159.     Y = np.zeros((I + 1), np.float64)    
160.     T = np.zeros((I + 1), np.float64)    
161.     Y[0] = Y0   
162.     T[0] = 0.0001   
163.        
164.     for t in range(1, I + 1):   
165.            
166.         rand = np.random.normal(0, 0.159177*(Y0/0.8)+(1-

Y0/0.8)*sigma)#*0.1+0.9*0.1607)0.1*+0.9*0.0104847   
167.         Y[t] = Y[t-1]+(0.032436*(Y0/0.8)+(1-Y0/0.8)*mu)*Y[t-

1]*dt+rand*Y[t-1]   
168.         T[t] = t   
169.            
170.         if Y[t]>0.8:   
171.             break   
172.                
173.     return Y[Y != 0],T[T != 0]   
174.               
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175.          
176.    
177.    
178. # In[17]:   
179.    
180.    
181. end_life=[]   
182.    
183. I=300   
184. Y0 = 0.717   
185.    
186.    
187. mu = 0.015205587   
188.    
189.    
190. sigma =0.134393064   
191.    
192.    
193.    
194. m=0   
195. while m < 1000:   
196.     result = GBM(Y0,I,mu,sigma)   
197.     x=result[1]   
198.     y=result[0]   
199.     end_life.append(x[-1])   
200.     m+=1   
201.     if y[-1] > 0.8:   
202.         plt.plot(x,y)   
203.         plt.grid(True)   
204.         plt.xlabel('time steps')   
205.         plt.ylabel('HI')       
206. plt.axhline(0.8, color='r', linestyle='-')   
207.    
208.    
209. # In[18]:   
210.    
211.    
212. np.mean(end_life)   
213.    
214.    
215. # In[19]:   
216.    
217.    
218. np.std(end_life)   
219.    
220.    
221. # In[20]:   
222.    
223.    
224. with open("C:\\Users\\wjh62\\Desktop\\data.txt","w") as f:   
225.         np.savetxt(f,df_final, delimiter=",")   
226.    
227.    
228. # In[77]:   
229.    
230.    
231. HI_test = []   
232. HI_test_mid=[]   
233.    
234. df_prediction = pd.DataFrame()   
235. df_midfitting = pd.DataFrame()   
236.    
237. for engine_num_t in engines_t:   
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238.     engine_sensors_t= df_op_t.values[engine_slices_t[engine_num_t],:]
   

239.     x_tran_t= engine_sensors_t[:,0]-
np.min(engine_sensors_t[:,0])+0.000001   

240.     result_t = seasonal_decompose(x_tran_t, model='multiplicative', f
req=10)#   

241.     trend_t= result_t.trend   
242.     RUL_engine_t= df_test.loc[engine_num_t]['RUL'].values   
243.     HI_x_t= np.delete(RUL_engine_t,np.argwhere(np.isnan(trend_t)))   
244.     transfer_y_t = trend_t[~np.isnan(trend_t)]   
245.     HI_y_t= transfer_y_t-np.min(transfer_y_t)   
246.     HI_test_mid = HI_y_t[-1]   
247.     HI_test.append(HI_test_mid)   
248.     df_midfitting = pd.DataFrame(data=HI_y_t.reshape(1,-1))   
249.     df_prediction=df_prediction.append(df_midfitting)   
250.        
251.    
252.    
253. # In[34]:   
254.    
255.    
256. with open("C:\\Users\\wjh62\\Desktop\\data.txt","w") as f:   
257.         np.savetxt(f,df_prediction, delimiter=",")   
258.    
259.    
260. # In[87]:   
261.    
262.    
263. df_sigma.iloc[a].name   
264.    
265.    
266. # In[90]:   
267.    
268.    
269. end_life=[]   
270.    
271. a=17   
272.    
273.    
274. I=300   
275. Y0 =HI_test[a]   
276.    
277. mu =df_mu.iloc[a].name   
278.    
279. sigma =df_sigma.iloc[a].name   
280.    
281.    
282. m=0   
283. while m < 2500:   
284.     result = GBM(Y0,I,mu,sigma)   
285.     x=result[1]   
286.     y=result[0]   
287.     end_life.append(x[-1])   
288.     m+=1   
289.     if y[-1] > 0.8:   
290.         plt.plot(x,y)   
291.         plt.grid(True)   
292.         plt.xlabel('time steps')   
293.         plt.ylabel('HI')       
294. plt.axhline(0.8, color='r', linestyle='-')   
295. print(np.mean(end_life))   
296. print(np.std(end_life))   
297.    
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298.    
299. # In[57]:   
300.    
301.    
302. data_pth_mu = os.path.join(dirname, 'test','mu.txt')   
303. data_pth_sigma = os.path.join(dirname, 'test','sigma.txt')   
304. df_mu = pd.read_csv(data_pth_mu, header=None, delim_whitespace=True,i

ndex_col=0)   
305. df_sigma=pd.read_csv(data_pth_sigma, header=None, delim_whitespace=Tr

ue,index_col=0)   
306.    
307.    
308. # In[117]:   
309.    
310.    
311. end_life=[]   
312. end_mean=[]   
313. end_std=[]   
314. for i in range(0,100):   
315.     I=300   
316.     Y0 =HI_test[i]   
317.    
318.     mu =df_mu.iloc[i].name   
319.    
320.     sigma =df_sigma.iloc[i].name   
321.    
322.    
323.     m=0   
324.     while m < 2500:   
325.         result = GBM(Y0,I,mu,sigma)   
326.         x=result[1]   
327.         y=result[0]   
328.         end_life.append(x[-1])   
329.         m+=1   
330.     end_mean.append(np.mean(end_life))   
331.     end_std.append(np.std(end_life))   
332.     print(np.mean(end_life))   
333.     print(np.std(end_life))   
334.    
335.    
336. # In[122]:   
337.    
338.    
339. plt.plot(TrueRUL, color = 'red', label = 'Real data')   
340. plt.plot(end_mean, color = 'blue', label = 'Mean-

Predicted data')#*400   
341. plt.title('Prediction')   
342. plt.legend()   
343. plt.show()   
344.    
345.    
346. # In[120]:   
347.    
348.    
349. from sklearn.metrics import r2_score, mean_squared_error   
350. rmse_test = np.sqrt(mean_squared_error(TrueRUL, end_mean))   
351. r2_test = r2_score(TrueRUL, end_mean)   
352.    
353.    
354.      
355. print("The model performance for the test set")   
356. print("-------------------------------------------")   
357. print("RMSE of test set is {}".format(rmse_test))   
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358. print("R2 score of test set is {}".format(r2_test))   
359.    
360.    
361. # In[121]:   
362.    
363.    
364. plt.plot(end_std)   
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